

Real-time 3D Character
Animation with Visual C++

This book is dedicated to David Lever (1927–2001).

My Dad, who is greatly missed.

Real-time 3D
Character Animation
with Visual C++

Nik Lever

Focal Press

OXFORD AUCKLAND BOSTON JOHANNESBURG MELBOURNE NEW DELHI

Focal Press
An imprint of Butterworth-Heinemann
Linacre House, Jordan Hill, Oxford OX2 8DP
225 Wildwood Avenue, Woburn, MA 01801-2041
A division of Reed Educational and Professional Publishing Ltd

A member of the Reed Elsevier plc group

First published 2002

© Nik Lever 2002

All rights reserved. No part of this publication may be reproduced in
any material form (including photocopying or storing in any medium by
electronic means and whether or not transiently or incidentally to some
other use of this publication) without the written permission of the
copyright holder except in accordance with the provisions of the Copyright,
Designs and Patents Act 1988 or under the terms of a licence issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London,
England W1P 0LP. Applications for the copyright holder’s written
permission to reproduce any part of this publication should be addressed
to the publishers

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication Data
A catalogue record for this book is available from the Library of Congress

ISBN 0 240 51664 8

For information on all Focal Press publications visit our website at:
www.focalpress.com

Composition by Genesis Typesetting, Laser Quay, Rochester, Kent
Printed and bound in Great Britain

Contents at a glance

About the author xiii

Introduction xv

Chapter 1: 3D basics 1
Chapter 2: Drawing points and polygons the hard way 14
Chapter 3: Drawing points and polygons the easy way

with OpenGL 39
Chapter 4: OpenGL lighting and textures 58
Chapter 5: Creating low polygon characters 78
Chapter 6: Texture mapping 97
Chapter 7: Setting up a single mesh character 124
Chapter 8: Keyframe animation 145
Chapter 9: Inverse kinematics 168
Chapter 10: Importing geometry and animation from

Lightwave 3D 184
Chapter 11: Importing geometry and animation from 3DS Max 215
Chapter 12: Motion capture techniques 259
Chapter 13: Collision detection 287
Chapter 14: Using morph objects 304
Chapter 15: Using subdivision surfaces 320
Chapter 16: Using multi-resolution meshes 346
Chapter 17: The scene graph 364
Chapter 18: Web 3D, compression and streaming 386
Appendix A: Using Toon3D Creator 405
Appendix B: MFC Document/View architecture – a short

introduction 444
Appendix C: Further information 457

Index 461

vi Contents at a glance

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

The Toon3D Creator application.

Contents in summary

� About the author xiii

� Introduction xv
How to install the CD software. Compiling a first test program with
Visual C++.

� Chapter 1: 3D basics 1
Describing points in space. Transforming, rotating and scaling points.
Connecting points to form triangles and quads to form polygons.
Polygon normals and point normals. Connecting polygons to form
objects. This chapter introduces vector manipulation, dot and cross
products.

� Chapter 2: Drawing points and polygons the hard way 14
Creating memory for a background display. Writing to the display.
Blitting the display to the screen. Drawing a line with Bresenham’s
algorithm. Painting a flat coloured polygon. Painting a shaded polygon.
Painting a textured polygon.

� Chapter 3: Drawing points and polygons the easy way with
OpenGL 39

Introducing the OpenGL library. Creating a double buffered window
using PIXELFORMATDESCRIPTOR. Drawing a point. Drawing a line.
Drawing an unshaded polygon.

� Chapter 4: OpenGL lighting and textures 58
Using lights. Transforming normals. Drawing a shaded polygon.
Drawing a textured polygon.

viii Contents in summary

� Chapter 5: Creating low polygon characters 78
An introduction to low polygon modelling. The tutorial uses Lightwave
3D for the modelling. However, the ideas can easily be applied to the
reader’s preferred modelling environment. If it is possible to get a demo
version of a CGI modeller to ship on the CD, then an explanation will be
offered as to how to use this for low polygon modelling.

� Chapter 6: Texture mapping 97
Loading a windows bitmap. Loading a TGA file. Loading a JPEG file.
Assigning the pixel data to the OpenGL texture engine. Generating
texture coordinates. Displaying the result.

� Chapter 7: Setting up a single mesh character 124
Introducing the alternative approaches to the control of the movement
of individual vertices in a mesh. A detailed look at one method, that of
control objects with shared points. Producing a hierarchy of control
objects and adjusting the pivot location.

� Chapter 8: Keyframe animation 145
Principles of keyframe animation. Using live action reference. Using
Toon3D Creator to animate ‘Actions’ for your characters. Ensuring the
action’s loop.

� Chapter 9: Inverse kinematics 168
The problem of anchoring parts of a character while continuing to
animate the remainder. How inverse kinematics can eliminate foot slip
and provide a solution for characters picking up something from the
environment.

� Chapter 10: Importing geometry and animation from Lightwave
3D 184

Lightwave 3D scene files are simple text files that define how objects
appear and animate in a scene. In this chapter we look in detail at the
scene file and how to extract the animation data. Lightwave is unusual
for CGI packages in storing rotation data as Euler angles. This is why
the package can suffer from gimbal lock; a mathematical explanation of
this is covered in the chapter. Lightwave 3D object files are binary files
containing point, polygon and surface data. This chapter covers in
detail how to parse such a file and extract the information necessary to
display the geometry.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Contents in summary ix

� Chapter 11: Importing geometry and animation from 3DS
Max 215

3DS Max has an option to export an entire scene as an ASCII text file.
This chapter goes into detail showing how to use this file to rebuild the
geometry it contains, use the surface data to recreate maps and the
mapping coordinates to allow these to be displayed accurately.

� Chapter 12: Motion capture techniques 259
Starting with an overview of motion capture techniques, optical,
magnetic and mechanical, the chapter goes on to show how it is
possible with a little simple engineering and some limited electronics
skill to create a motion capture set-up using simple electronics and
hardware. A full motion capture set-up for less than $1000. Applying
motion capture data to your characters’ actions.

� Chapter 13: Collision detection 287
Collision detection at the bounding box level and the polygon level is
covered in this chapter.

� Chapter 14: Using morph objects 304
To get total control over the deformation of your characters, you need
to be able to model deformations using a modelling application and
then blend between several different models in the runtime application.
Morph objects are the easiest solution to this complex geometrical
problem.

� Chapter 15: Using subdivision surfaces 320
How to implement subdivision surfaces using modified butterfly
subdivision.

� Chapter 16: Using multi-resolution meshes 346
Displaying an appropriate amount of polygons for the display. Reducing
polygons using subdivision surfaces. Reducing polygons using Quadric
Error Metrics.

� Chapter 17: The scene graph 364
How to store the complexity of a scene, using object, light, camera,
image and surface lists. Using multiple scenes in a single project.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

x Contents in summary

� Chapter 18: Web 3D, compression and streaming 386
If you intend to distribute your masterpiece on the Internet, then you will
find this chapter particularly useful. How to deliver the data so that the
user gets to see some content before it has all downloaded. Delivering
bounding box data first so that some painting can start early.

� Appendix A: Using Toon3D Creator 405
Using the included application Toon3D Creator to import geometry,
surfaces and animation. Creating geometry, animation and surfaces.
Defining behaviours and compressing your data. Using Tscript to add
interactivity. Check out the website for more tutorials, toon3d.com

� Appendix B: MFC Document/View architecture – a short
introduction 444

Most examples in this book from Toon3D source code use MFC. For
those readers who are unfamiliar with the document/view architecture,
this appendix provides a brief introduction.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Animating with Toon3D.

Contents in summary xi

� Appendix C: Further information 457
Where to start to look for additional information.

� Index 461

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

The Toon3D logo.

This Page Intentionally Left Blank

About the author

The author has been programming for about 20 years. Professionally, he
started out as a drawn animator. These days he spends most of his time
programming, but occasionally gets his pencil out. He is married with two
children, one of whom spends far too long glued to his PS1!! He lives high
in the Pennines in England and tries to get out sailing when it’s not raining,
which means he spends most of his time playing with computers, because
it rains a lot in England.

Using the Toon3D application.

This Page Intentionally Left Blank

Introduction

Who should read this book?

To get the best from this book, you need some experience with C and a
reasonable knowledge of C++. It does not attempt to teach the basics of
C/C++ programming. If you are new to programming then I recommend
getting a good introduction to C++ programming, particularly Visual
C++.

If you have ever looked at a PC or Playstation game with characters
running and leaping through an exciting landscape and wondered how it
was done, then you should read this book. You may be a hobby
programmer, a student or a professional.

Hobby programmer

The book takes you on an exciting adventure. From the basics of 3D
manipulation to morph objects and subdivision. On the way, you get
Visual C++ project files to load and software that runs on the Windows
desktop. You get a full-featured development environment for 3D
character animation, so even if you find the maths and the code hard to
follow, you can still create games to impress the kids. The game engine
even has an ActiveX control that allows you to distribute your work on the
Internet.

Student

The computer games industry has become an important employer,
always looking for new talent. After reading this book you will be ready to
create the sample programs that will get you that first job. You will be
guided through the maths and the principal ideas involved in displaying

xvi Introduction

complex moving characters. You will get an insight into the artist’s
problems in keeping the characters interesting while not exhausting the
game engine.

Professional

You need to display characters in architectural walkthroughs or you may
want to add this level of sophistication to multimedia kiosks that you
produce. Maybe you use Director and want to add 3D support via an
ActiveX control. If you are a web developer then you will find the chapter
on streaming and compression particularly useful.

Using the CD

Most of the chapters have example programs to help illustrate the
concepts described. These example programs provide you with source
code to get you started with your own programs. The CD has two folders,
Examples and Toon3D.

Inside the Examples folder you will find folders labelled Chapterxx,
where xx is the chapter number. To find the examples for the chapter you
are reading simply look in the appropriate Chapter folder. Many of the
examples use Microsoft Foundation Classes (MFC). When programming
with Visual C++, MFC is a common approach. You will find a brief
introduction to MFC in Appendix B; if you have never used MFC then I
recommend reading this and perhaps getting one of the many intro-
ductory MFC books.

The Toon3D folder contains all the source code for a Web3D
application. Toon3D allows you to develop in Lightwave 3D or Max and
import the geometry, surface data and animation into Toon3D. In the
application you can add interactive behaviour and then publish the
material suitable for the Internet. Toon3D is mentioned throughout the
book because it is used to illustrate some concepts; the application is also
in the Toon3D folder along with some content to play about with. Toon3D
is explained in detail in Appendix A.

There is no installation program on the CD. If you want to use an
example then copy it to your hard drive and remember to change the file
attributes from Read-only. In Explorer you can do this by selecting the files
and right clicking; in the pop-up menu select Properties and uncheck the
Read-only check box.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Introduction xvii

Typographic conventions

All code examples are set out using Courier New:

BOOL CMyClass::CodeExample(CString str){

CString tmp;

if (str.Find(“code example”)!=-1) return FALSE;

tmp.Format(“The string you passed was %s”, str);

AfxMessageBox(tmp);

Return TRUE;

}

All C++ classes are prefixed with the letter C. When variables or
function names are used in the text they are italicized; for example,

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Altering file attributes using Windows Explorer.

xviii Introduction

CodeExample uses the parameter str. I prefer not to use the m_ to
indicate a member variable in a class. Additionally, I do not use Hungarian
notation to indicate the variable type. Source code style is a matter of
heated debate but I prefer name rather than m_szName. Variables are all
lower case and function names use capital letters to indicate the
beginning of a word, for example CodeExample.

How much maths do I need?

3D computer graphics uses a lot of maths, there is no denying it. In this
book I have kept the maths to a minimum. You will need basic school
maths up to trigonometric functions, inverse trigonometric functions and
algebra. When concepts are introduced they are explained fully and if you
find some of the later chapters confusing in their use of the trig functions
then I recommend reading Chapter 1 again, where the concepts are
explained more fully. You will not find any proofs in this book. If you want
to find why a particular technique for using a curve works rather than
taking it on trust, then I suggest you look at Appendix C. Appendix C
provides a list of alternative sources of information if you want to delve
deeper into a particular topic.

All vertex transformations are done with the processor in the sample
code. This helps illustrate what is going on, but it does mean that the
accelerated graphics card that includes transformations is not being used
to its best effect. Once you are familiar with the techniques you may
choose to let the hardware look after transformations, leaving the
processor to look after the logic.

Credits

The development of 3D graphics has been a combined effort by many
people. In the text I explain most techniques with no clear indication of
who should be given the credit for developing the technique in the first
place. Appendix C on further information makes some attempt to give the
credit to the individuals who devised the techniques and also to those who
have provided much needed assistance to fledgling developers in the 3D
industry.

Contacting the author

I hope you enjoy the book and find it useful. If you do then send me an email
at nik@toon3d.com, if you don’t then send me an email at nik@anywhere-
else.com; just kidding, I would like to hear your views good and bad.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

1 3D basics

In this chapter we are going to introduce the 3D basics. We will look at
how to store the information required for a computer to display a 3D
object. In addition, we will consider the maths required to manipulate this
object in 3D space and then convert this to a 2D display. We need a
sufficiently general scheme that will allow us to store and manipulate the
data that can be displayed as a box, a teapot or an action hero. The
method generally used is to store a list of points and a list of polygons.
Throughout this book, all the source code is designed to handle polygons
with three or four sides.

In later chapters we will leave most low-level operations to a graphics
library, which will manage most of the mathematical manipulation. In this
book we use the graphics library, OpenGL. But to ease the creation of
seamless mesh characters, we will need to do some of our own
manipulation of point data; to understand how this code operates you will
need to follow the methods outlined in this chapter.

OpenGL is the most widely adopted graphics standard

From the OpenGL website www.opengl.org

‘OpenGL is the premier environment for developing portable,
interactive 2D and 3D graphics applications. Since its introduction in
1992, OpenGL has become the industry’s most widely used and
supported 2D and 3D graphics application programming interface
(API), bringing thousands of applications to a wide variety of computer
platforms. OpenGL fosters innovation and speeds application devel-
opment by incorporating a broad set of rendering, texture mapping,
special effects and other powerful visualization functions. Developers
can leverage the power of OpenGL across all popular desktop and
workstation platforms, ensuring wide application deployment.’

2 3D basics

Describing 3D space

First let’s imagine a small box lying on the floor of a simple room (Figure
1.1).

How can we create a dataset that
describes the position of the box? One
method is to use a tape measure to find
out the distance of the box from each
wall. But which wall? We need to have a
frame of reference to work from.

Figure 1.2 shows the same room, only
this time there are three perpendicular
axes overlaid on the picture. The point
where the three axes meet is called the
origin. The use of these three axes
allows you as a programmer to specify
any position in the room using three
numerical values.

In Figure 1.2, the two marked lines
perpendicular to the axes give an indica-
tion of the scale we intend to use. Each
slash on these lines represents 10 cm.
Counting the slashes gives the box as 6
along the x-axis and 8 along the z-axis.
The box is lying on the floor, so the value
along the y-axis is 0. To define the
position of the box with respect to the
frame of reference we use a vector,

[6, 0, 8]

In this book, all vectors are of the form
[x, y, z].

The direction of the axes is the
scheme used throughout this book. The y-axis points up, the x-axis points
to the right and the z-axis points out of the screen. We use this scheme
because it is the same as that used by the OpenGL graphics library.

Transforming the box
To move the box around the room we can create a vector that gives the
distance in the x, y and z directions that you intend to move the box. That

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 1.1 A simplified room
showing a small box.

Figure 1.2 A simplified room
with overlaid axes.

3D basics 3

is, if we want to move the box 60 cm to the right, 30 cm up and 20 cm
towards the back wall, then we can use the vector [6, 3, 2] (recall that the
scale for each dash is 10 cm) to move the box. The sum of two vectors is
the sum of the components.

[x, y, z] = [x1, y1, z1] + [x2, y2, z2]

where x = x1 + x2, y = y1 + y2 and z = z1 + z2

For example, [12, 3, 10] = [6, 0, 8] + [6, 3, 2]

Describing an object

The simplest shape that has some volume has just four points or vertices.
A tetrahedron is a pyramid with a triangular base. We can extend the idea
of a point in 3D space to define the four vertices needed to describe a
tetrahedron. Before we can draw an object we also need to define how to
join the vertices. This leads to two lists: a list of vertices and a list of faces
or polygons.

The vertices used are:

A: [0.0, 1.7, 0.0]
B: [–1.0, 0.0, 0.6]
C: [0.0, 0.0, –1.1]
D: [1.0, 0.0, 0.6]

To describe the faces we give a list of the
vertices that the face shares:

1: A,B,D
2: A,D,C
3: A,C,B
4: B,C,D

Although the triangles ABD and ADB appear to be the same, the order of
the vertices is clearly different. This ordering is used by many computer
graphics applications to determine whether a face is pointing towards the
viewer or away from the viewer. Some schemes use points described in
a clockwise direction to indicate that this face is pointing towards the
viewer. Other schemes choose counter-clockwise to indicate forward-
facing polygons. In this book we used counter-clockwise. There are no
advantages or disadvantages to either scheme, it is simply necessary to

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 1.3 A tetrahedron.

4 3D basics

be consistent. Think about the triangle ABD as the tetrahedron rotates
about the y-axis. If this rotation is clockwise when viewed from above then
the vertex B moves right and the vertex D moves left. At a certain stage
the line BD is vertical. If the rotation continues then B is to the right of D.
At this stage in the rotation the face ABD is pointing away from the viewer.
Since we know that the order of the vertices read in a counter-clockwise
direction should be ABD, when the order changes to ADB, the triangle has
turned away from the viewer. This is very useful because in most
situations it is possible to effectively disregard this polygon. (If an object
is transparent then it will be necessary to continue to render back-facing
polygons.) We will look at other techniques to determine back-facing
polygons, but vertex order is always the most efficient to compute.

Polygon normals

A normal is simply a vector that points
directly out from a polygon. It is used in
computer graphics for determining lighting
levels, amongst other things. For the soft-
ware accompanying this book we store the
normal for every polygon in a scene. We
have already seen how to deal with the sum
of two vectors. The method is easily exten-
ded to allow us to subtract two vectors:

[x, y, z] = [x1, y1, z1] – [x2, y2, z2]

= [x1 – x2, y1 – y2, z1 – z2]

For example, [6, 0, 8] – [6, 3, 2] = [6 – 6, 0 – 3, 8 – 2]

= [0, –3, 6]

But what happens when we choose to multiply two vectors. In fact, there
are two methods of ‘multiplying’ vectors. One is referred to as the dot
product. This is defined as

a•b = �a � �b� cos(�) where 0 ≤ � ≤ 180°

The symbol |a| refers to the magnitude of the vector a, which is defined
as:

�a� = √(x*x + y*y + z*z)

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 1.4 A polygon normal.

3D basics 5

This is a method of measuring the length of the vector. It is a 3D version
of the famous theorem of Pythagoras that gives the length of the
hypotenuse of a right-angled triangle from the two other sides.

For example, if a = [6, 3, 2], then:

�a� = √(6*6 + 3*3 + 2*2)

= √(36 + 9 + 4)

= √49 = 7

The dot product is a scalar; this simply means it is a number with a single
component not a vector. Given two vectors a = [ax, ay, az] and b = [bx, by,
bz], the dot product is given by

a•b = ax × bx + ay × by + az × bz

The dot product is very useful for finding angles between vectors. Since
we know that

a•b = �a � �b� cos �

This implies that

a•b

�a � �b�
= cos �

Now we can calculate cos � directly. We can then use the inverse function
of cos, acos, to calculate the value of �. Here is a code snippet that will
pump out the angle between two vectors.

double angleBetweenVectors(VECTOR &v1, VECTOR &v2){

doubles,dot,mag1,mag2;

//Calculate the magnitude of the two supplied vectors

mag1=sqrt(v1.x*v1.x + v1.y*v1.y + v1.z*v1.z);

mag2=sqrt(v2.x*v2.x + v2.y*v2.y + v2.z*v2.z);

//Calculate the sum of the two magnitudes

s=mag1 * mag2;

//Avoid a division by zero

if (s==0.0) s=0.00001;

dot=v1.x*v2.x + v1.y*v2.y + v1.z*v2.z;

//Cos theta is dot/s. Therefore theta=acos(dot/s)

return acos(dot/s);

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

6 3D basics

The alternative technique for ‘multiplying’ vectors is the cross product.
This method creates a further vector that is at right angles or orthogonal
to the two vectors used in the cross product. Unlike the dot product the
operation is not commutative. This simply means that

A × B does not necessarily equal B × A. Whereas A•B = B•A

The cross product of two 3D vectors is given by

A × B = [Ay*Bz – Az*By, Az*Bx – Ax*Bz, Ax*By – Ay*Bx]

This is easier to remember if we look at the pattern for calculating
determinants. Determinants are important scalar values associated with
square matrices. The determinant of a 1 × 1 matrix [a] is simply a. If A is
a 2 × 2 matrix then the determinant is given by

A = � a b

c d �, det A = � a b

c d � = ad – bc

That is the diagonal top left, bottom right minus top right, bottom left.
When extended to 3 × 3 matrices we have:

A = �
a b c

d e f

g h i �,
det A = a � e f

h i � – b � d f

g i � + c � d e

g h �
= a(ei – fh) – b(di – fg) + c(dh – eg)

Here we take the top row one at a time and multiply it by the determinant
of the remaining two rows, excluding the column used in the top row. The
only thing to bear in mind is that the middle term has a minus sign. If we
apply this to the vectors A and B we get

A = �
x y z

Ax Ay Az

Bx By Bz � det A = x �Ay Az

By Bz� – y �Ax Az

By Bz� + z �Ax Ay

Bx By �

= x(AyBz – AzBy) – y(AxBz – AzBx) + z(AxBy – AyBx)

= x(AyBz – AzBy) + y(AzBx – AxBz) + z(AxBy – AyBx)

The x, y and z terms are then found from the determinants of the matrix A.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

3D basics 7

The purpose of all this vector manipulation is that, given three vertices
that are distinct and define a polygon, we can find a vector that extends
at right angles from this polygon. Given vertices A, B and C we can create
two vectors. N is the vector from B to A and M is the vector from B to C.
Simply subtracting B from A and B from C respectively creates these
vectors. Now the cross product of the vectors N and M is the normal of the
polygon. It is usual to scale this normal to unit length. Dividing each of the
terms by the magnitude of the vector achieves this.

Rotating the box

There are many options available when rotating a 3D representation of an
object; we will consider the three principal ones. The first option we will
look at uses Euler angles.

Euler angles

When considering this representation it is useful
to imagine an aeroplane flying through the sky.
Its direction is given by its heading. The slope of
the flight path is described using an angle we
shall call pitch and the orientation of each wing
can be described using another angle which we
shall call bank. The orientation can be com-
pletely given using these three angles. Heading
gives the rotation about the y-axis, pitch gives
rotation about the x-axis and bank gives rotation
about the z-axis.

To describe the orientation of an object we store an angle for the
heading, the pitch and the bank. Assuming that the rotation occurs about
the point [0, 0, 0] as the box is modelled then heading is given from the 3
× 3 matrix:

H = �
cos(h) 0 sin(h)

0 1 0

–sin(h) 0 cos(h) �

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 1.5 Euler angle
rotation.

8 3D basics

Rotation in the pitch is given by:

P = �
1 0 0

0 cos(p) –sin(p)

0 sin(p) cos(p) �
and bank rotation is given by:

B = �
cos(b) sin(b) 0

–sin(b) cos(b) 0

0 0 1 �
Combining columns with rows as follows is another form of matrix
multiplication:

a b c A B C Aa + Db + Gc Ba + Eb + Hc Ca + Fb + Ic
d e f D E F = Ad + De + Gf Bd + Ee + Hf Cd + Fe + If�g h i� �G H I� �Ag + Dh + Gi Bg + Eh + Hi Cg + Fh + Ii �

Using this method we can combine the H, P and B rotation matrices:

cos(h)cos(b) – sin(h)sin(p)sin(b) cos(h)sin(b) + sin(h)sin(p)cos(b) sin(h)cos(p)

HPB = –cos(p)sin(p) cos(p)cos(b) –sin(p)�–sin(h)cos(b) – cos(h)sin(p)sin(b) –sin(h)sin(b) + cos(h)sin(p)cos(b) cos(h)cos(p)�
Matrix multiplication is non-commutative, so HPB, HBP, PHB, PBH, BHP
and BPH all give different results.

Now, to translate the object vertices to world space we multiply all the
vertices as vectors by the rotation matrix above. Vector and matrix
multiplication is done in this way:

a b c x ax + by + cz
R = d e f v = y Rv = dx + ey + fz� g h i� � z� �gx + hy + iz�

So the vertex (x, y, z) maps to the vertex (ax + by + cz, dx + ey + fz, gx
+ hy + iz). If the object also moves in the 3D world by T = (tx, ty, tz), then
the new position of the vertex should include this mapping. That is, the
vertex maps to Rv + T, giving the world location

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

3D basics 9

(x, y, z) → (ax + by + cz + tx, dx + ey + fz + ty, gx + hy + iz + tz)

Euler angle rotation suffers from a problem that is commonly called
gimbal lock. This problem arises when one axis is mapped to another by
a rotation. Suppose that the heading rotates through 90°, then the x- and
z-axes become aligned to each other. Now
pitch and bank are occurring along the same
axis. Whenever one rotation results in a map-
ping of one axis to another, one degree of
freedom is lost. To avoid this problem, let’s
consider another way of describing rotations
which uses four values.

Angle and axis rotation

The values used are an angle � and a vector A
= [x, y, z]T that represents the axis of rotation.
When the orientation of the box is described in
this way the rotation matrix is given by:

1 + (–z2 – y2)(1 – cos(�)) –z sin(�) + yx(1 – cos(�)) y sin(�) + zx(1 – cos(�))

R = z sin(�) + yx(1 – cos(�)) 1 + (–z2 – x2)(1 – cos(�)) –x sin(�) + zy(1 – cos(�))�–y sin(�) + zx(1 – cos(�)) x sin(�) + zy(1 – cos(�)) 1 + (–y2 – z2)(1 – cos(�))�
We can use this rotation matrix in the same way as described for Euler
angles to map vertices in the object to a 3D world space location.

Quaternion rotation

Yet another way to consider an object’s orientation uses quaternions.
Devised by W. R. Hamilton in the eighteenth century, quarternions are
used extensively in games because they provide a quick way to
interpolate between orientations. A quaternion uses four values. One
value is a scalar quantity w, and the remaining three values are combined
into a vector v = (x, y, z). When using quaternions for rotations they must
be unit quaternions.

If we have a quaternion q = w + x + y + z = [w, v], then:

The norm of a quaternion is N(q) = w2 + x2 + y2 + z2 = 1
A unit quaternion has N(q) = 1

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 1.6 Angle and
axis rotation.

10 3D basics

The conjugate of a quaternion is q* = [w, –v]
The inverse is q–1 = q*/N(q). Therefore, for unit quaternions the
inverse is the same as the conjugate.
Addition and subtraction involves q0 ± q1 = [w0 + w1, v0 + v1]
Multiplication is given by q0q1 = [w0w1 – v0v1, v0 × v1 + w0v1 + w1v0];
this operation is non-commutative, i.e. q0q1 is not the same as q1q0.
The identity for quaternions depends on the operation; it is [1, 0] (where
0 is a zero vector (0, 0, 0)) for multiplication and [0, 0] for addition and
subtraction.

Rotation involves v� = qvq*, where v = [0, v].
Turning a unit quaternion into a rotation matrix results in

1 – 2y2 – 2x2 2xy + 2wz 2xz – 2wy
R = 2xy – 2wz 1 – 2x2 – 2z2 2yz – 2wx�2xz + 2wy 2yz – 2wx 1 – 2x2 – 2y2�

We will consider the uses of quaternions for smooth interpolation of
camera orientation and techniques for converting quickly between the
different representations of rotation in Chapter 8.

Rotation about a point other than
the origin

To rotate about an arbitrary point, which in
many CGI applications is called the pivot
point, involves first translating a vertex to
the origin, doing the rotation then translating
it back. If the vertex [1, 1, 1]T were rotated
about the point (2, 0, 0), then we want to
consider the point (2, 0, 0) to be the origin.
By subtracting (2, 0, 0) from [1, 1, 1]T we
can now rotate as though this is the origin
then add (2, 0, 0) back to the rotated
vertex.

Scaling the object

The size of the object has so far been unaffected by the operations
considered. If we want to scale the object up or down we can use another

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 1.7 Rotation about a
pivot point.

3D basics 11

matrix. The scaling in the x-axis is Sx, scaling in the y-axis is Sy and
scaling in the z-axis is Sz. This results in the matrix

Sx 0 0
S = 0 Sy 0� 0 0 Sz�

Scaling should be applied before any other operations. We can
concatenate our rotation matrix to ensure that scaling occurs first. If R is
our rotation matrix from either Euler angles or from the angle/axis method,
then the matrix becomes:

a b c Sx 0 0 aSx bSy cSz
R = d e f S = 0 Sy 0 RS = dSx eSy fSz�g h i � �0 0 Sz� �gSx nSy iSz �

The full operation to translate a vertex in the object to a location in world
space including pivot point consideration becomes

RS(v – p) + t + p, where R is the rotation matrix, S the scaling matrix,
v is the vertex, p is the pivot point and t is the translation vector.

For every vertex in a solid object, t + p and RS will be the same. Pre-
calculating these will therefore speed up the transformation operations. It is
highly likely that the pivot point of an object will remain constant throughout
an animation, so the object could be stored already transformed to its pivot
point. If this is the case then the equation becomes

RSv + t

So now we can move and rotate our box. We are now ready to transfer
this to the screen.

Perspective transforms

Converting 3D world space geometry to a 2D screen is surprisingly easy.
Essentially we divide the x and y terms by z to get screen locations (sx,
sy). The technique uses similar triangles to derive the new value for (sx,
sy) from the world coordinates. Referring to Figure 1.8, here we indicate
the position of the camera, the screen and the object. Following the vertex
P to the image of this on the screen at P�, we get two similar triangles,
CPP•z and CP�d, where d is the distance from the camera to the screen.
We want to know the position of P�:

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

12 3D basics

(Px – Cx)/(Pz – Cz) = (P�x – Cx)/d

(Py – Cy)/(Pz – Cz) = (P�y – Cy)/d

which can be rearranged to become

P�x = ((Px – Cx)*d)/(Pz – Cz) + Cx

P�y = ((Py – Cy)*d)/(Pz – Cz) + Cy

The value for d, the distance from the camera to the screen, should be of
the order of twice the pixel width of the 3D display window to avoid serious
distortion.

The above equations assume that the centre of the display window is
(0, 0) and that y values increase going up the screen. If (0, 0) for the
display window is actually in the top left corner, then the y values should
be subtracted from the height of the display window and half the width and
height if the display is added to the result.

sx = ((Px – Cx)*d)/(Pz – Cz) + Cx + screen width/2

sy = screen height/2 – (((Py – Cy)*d)/(Pz – Cz) + Cy)

Using 4 × 4 matrix representations

Although rotation and scaling of an object can be achieved using 3 × 3
matrices, translation cannot be included. To get around this problem it is
usual to add a row and column to the matrix. We move from

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 1.8 Perspective transform.

3D basics 13

a b c
d e f� g h i �

to

a b c 0
d e f 0
g h i 0� tx ty tz 1 �

where (tx, ty, tz) is the translation in the x-, y- and z-axes respectively.
This technique requires us to add a component to the vector

representation of a vertex. Now a vertex is defined as [x, y, z, 1]T. Such
coordinates are often referred to as homogeneous coordinates. The
matrix can now include the perspective transform that converts world
coordinates into the 2D screen coordinates that the viewer ultimately
sees. By concatenating the above matrix with a matrix that achieves this
perspective transform, all the calculations necessary to take a vertex from
model space through world space to camera space and finally to screen
space can be achieved by a single matrix.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Summary

The basic operations presented here will act as building blocks as we
develop the character animation engine. To get the most out of this book,
you need to be confident of the use of vectors, matrix multiplication and
the simple algebra manipulation we used in this chapter. I have tried to
present the material in a form that is suitable for those who are unfamiliar
with mathematical set texts. If the reader wishes to explore the
mathematics presented in this chapter in more depth, then please check
Appendix C, where further references are mentioned.

2 Drawing points and
polygons the hard way

Some people like to climb mountains, others prefer to fly over them
sipping a chilled wine. If you are a climber then this chapter is for you.
Most of this book uses the OpenGL library, which originated on the SGI
platform and is now available for Windows, Mac and Unix boxes. The
advantage of using such a library is that it shields much of the complexity
of displaying the 3D characters we create. Another very definite benefit is
that the library takes advantage of any hardware the user may have
installed. The disadvantage to the climbers is that we have no
understanding of how the display is actually generated at the individual
pixel level. This chapter takes you through this process; if you are a
climber then read on, if you are a flyer then feel free to skip this chapter,
no one will ever know!

Creating memory for a background display

In this chapter we are trying to avoid using Windows-specific code
wherever possible. For this reason we use a class library that deals with
a memory-based bitmap. This class library, which is supplied as part of
the sample code for this chapter on the CD, is called CCanvas. CCanvas
has a constructor that can be supplied with a width and a height in pixels,
together with the bit depth.

A colour can be specified in many ways. Generally you will need a red
value, a green value and a blue value. Many applications allow for 256
levels of red, 256 levels of green and 256 levels of blue. Zero to 255 is the
range of values available in 1 byte. One byte contains 8 bits of
information. Hence with 8 bits for red, 8 bits for green and 8 bits for blue,
we have a 24-bit colour value, 8 + 8 + 8.

When colour is specified using 3 bytes in this book, it is called an RGB
value. If we define the colour value for an array of pixels then we can
display this as a bitmap. If the value for each pixel were the same, then

Drawing points and polygons the hard way 15

the display would simply show a flat coloured rectangle. If we carefully
choose the value for each pixel then we can display a photograph. If the
range of colours in the displayed bitmap is limited then we could choose
to store the bitmap as a combination of all the different colours used,
followed by a list of where to use these colours. This type of display is
called a palletized display and we are not supporting palletized displays in
this book. Usually, palletized displays are limited to 256 colours. Creating
an optimized palette for each frame of animation is time consuming. The
alternative is to use a master palette, which has definite restrictions on the
way that the display can handle lighting. Imagine the simplest of scenes
with three bouncing balls all lit from above. Ball A is red, B is blue and C
is green. If the master palette has about 80 levels of red, green and blue,
then 240 slots in the palette have been used. Now in comes a purple,
yellow and orange cube. Somehow, this has to be displayed using the
remaining 16 colours; the results, while acceptable on desktop computer
platforms 10 years ago, simply do not cut it by today’s standards.

Another type of display uses 16 bits for the colour value of each pixel.
This gives just 32 levels of red, 32 levels of green and 32 levels of blue.
This standard is often used in computer games, resulting in faster frame
rates with most hardware than 24-bit displays. A 32-bit display can use the
additional 8 bits for alpha or stencil use or it can be used by the display
driver to ensure all colour calculations use 32-bit integers. This results in
fewer instructions for the processor to handle and consequently faster
image transfers.

The code for the creation of the buffer is:

// Create a new empty Canvas with specified bitdepth

BOOL CCanvas::Create(int width, int height, int bitdepth)

{

// Delete any existing stuff.

if (m_bits)) delete m_bits;

// Allocate memory for the bits (DWORD aligned).

if (bitdepth==16) m_swidth =width*2;

if (bitdepth==24) m_swidth =width*3;

if (bitdepth==32) m_swidth =width*4;

m_swidth =(m_swidth + 3) & ~3;

m_size= m_swidth *height;

m_bits = new BYTE[m_size];

if (!m_bits) {

TRACE(”Out of memory for bits”);

return FALSE;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

16 Drawing points and polygons the hard way

}

// Set all the bits to a known state (black).

memset(m_bits, 0, m_size);

m_width=width; m_height=height; m_bitdepth=bitdepth;

CreateBMI();

return TRUE;

}

Two things to notice here. First, the code to ensure that our line widths are
exact multiples of 4.

m_swidth =(m_swidth + 3) & ~3;

We do this by adding 3 to the storage width and then bitwise And-ing this
with the bitwise complement of 3. A bitwise complement has every bit in
the number inverted. If we take an example, suppose that the width of the
bitmap is 34 pixels and it is stored as a 24-bit image. A 24-bit image uses
3 bytes of information for each pixel, so if the storage width was simply the
width times 3 then it would be 102. However, 102 is not a multiple of 4. We
need to find the next multiple of 4 greater than 102. Three as a byte wide
binary value is 00000011. The bitwise complement is 11111100. The
algorithm adds 3 to the storage width, making it 105. Now 105 as a binary
value is 01101001; note here that one of the lowest 2 bits is set, which
means it cannot be a multiple of 4. 01101001 And 11111100 = 01101000,
which is 104. This is divisible by 4 as required. The effect of the operation
is to clear the last 2 bits of the number. This kind of alignment is used
regularly in such buffers because it allows a pixel location in memory to be
found with fewer instructions. The memory variable, m_swidth, holds the
storage width of a single line and m_size keeps a check on the buffer size,
so that we can easily check for out of bounds memory errors.

The other curiosity is the call to CreateBMI. Our canvas uses a
Windows structure called BITMAPINFO, so that ultimately we can display
the canvas on the user’s screen using a simple Windows API call.
A BITMAPINFO contains a BITMAPINFOHEADER and a single
RGBQUAD. We are only interested in the BITMAPINFOHEADER, so we
cast our member variable to a header to fill in the appropriate details. By
keeping it in a function call, this minimizes the changes necessary to port
this code to another platform.

BOOL CCanvas::CreateBMI(){

// Clear any existing header.

If (m_pBMI) delete m_pBMI;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Drawing points and polygons the hard way 17

// Allocate memory for the new header.

m_pBMI = new BITMAPINFO;

if (!m_pBMI) {

TRACE(”Out of memory for header”);

return FALSE;

}

// Fill in the header info.

BITMAPINFOHEADER *bmi=(BITMAPINFOHEADER*)m_pBMI;

bmi->biSize = sizeof(BITMAPINFOHEADER);

bmi->biWidth = m_width;

bmi->biHeight = -m_height;

bmi->biPlanes = 1;

bmi->biBitCount = m_bitdepth;

bmi->biCompression = BI_RGB;

bmi->biSizeImage = 0;

bmi->biXPelsPerMeter = 0;

bmi->biYPelsPerMeter = 0;

bmi->biClrUsed = 0;

bmi->biClrImportant = 0;

Return TRUE;

}

Blitting the display to the screen

My rule about not using Windows code falls down again here, since at
some stage we need to display the result of our labours. Windows uses
device contexts in such operations. This book does not go into any detail
in this regard. There are many other books that explain graphics operation
for Windows; the Appendix lists some of the author’s favourites. We use
a simple blit to get our memory-based bitmap onto the screen. Now you
will realize why the BITMAPINFO structure was needed.

// Draw the DIB to a given DC.

void CCanvas::Draw(CDC *pdc)

{

::StretchDIBits(pdc->GetSafeHdc(),

0, // Destination x

0, // Destination y

m_width, // Destination width

m_height, // Destination height

0, // Source x

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

18 Drawing points and polygons the hard way

0, // Source y

m_width, // Source width

m_height, // Source height

m_bits, // Pointer to bits

m_bmi, // BITMAPINFO

DIB_RGB_COLORS, // Options

SRCCOPY); // Raster operation code (ROP)

}

So that is it for the Windows stuff. Now we can get down to the actual
code.

Drawing a line with Bresenham’s algorithm

We now have in memory a BYTE buffer. We can draw on this by setting
the RGB values at a particular memory location. For convenience, the
class includes a private function GetPixelAddress(x, y), which returns a

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 2.1 PolyDraw Sample drawing lines.

Drawing points and polygons the hard way 19

pointer to the pixel or NULL if it is out of range. The function includes a
simple clip test. If either x is greater than the bitmap’s width or y is
greater than the bitmap’s height, then it is out of range. Similarily, if x or
y are less than 0 then they are out of range. To indicate this fact, the
function returns a null pointer. The bitmap is stored in memory one line
following another. We know how many bytes are required for a single
line; this is the information that we ensured was divisible by 4, the
storage width. To access the appropriate line, we simply need to
multiply the storage width by the value for y. The distance along the line
is dependent on whether we are using a 24-bit pixel or a 32-bit pixel. If
we are using a 24-bit pixel then we need to multiply the x value by the
number of bytes in a 24-bit pixel, that is 3. A 32-bit pixel needs 4 bytes
for each pixel, hence the x value needs to be multiplied by 4. Having
calculated the offset from the start of the bitmap in memory, all that
remains is to add this to the start of the bitmap ‘bits’ memory to return
the memory location of the pixel (x, y).

BYTE* CCanvas::GetPixelAddress(int x, inty)

{

// Make sure it’s in range and if it isn’t return zero.

if ((x >= m_width)|| (y >= m_height())||(x<0)||(y<0)) return↵
NULL;

// Calculate the scan line storage width.

if (m_bitDepth()==24) x*=3;

if (m_bitDepth()==32) x*=4;

return m_pBits +y * m_swidth + x;

}

We want to create a function that will draw an arbitrary line that is defined
by the starting and ending points. Before we go any further with such a
function, we need to ensure that the start and end of the line are actually
within the boundaries of the off-screen buffer we are using as a canvas.
For this we will create a ClipLine function. The aim of the ClipLine function
is to adjust the (x, y) values of each end of the line so that they are within
the canvas area. That is 0 ≤ x < width, where width is the CCanvas width,
and 0 ≤ y < height, where height is the CCanvas height.

The ClipLine function creates a code value for the start point, cs, and
the end point, ce. This code value determines whether the point is within
the canvas area, off to the left, right, above or below, or a combination of
these. This is done using the code:

cs=((xs<0)<<3)|((xs>=m_width)<<2)|((ys<0)<<1)|(ys>=m_height);

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

20 Drawing points and polygons the hard way

Here, xs and ys are the x, y values of the starting point for the line. If xs
is less than 0, then cs is given the value 1 shifted three places to the left,
which is 8. If xs is greater than or equal to the width of the canvas, then
4 is added to the code value. If the y value is less than 0, then 2 is added
to the code value, and finally if ys is greater or equal to the height of the
canvas, then 1 is added to the code value. This places the point in one of
the number sections of Figure 2.2, the number being the code value for a
point in that section. For example, if we have the point (–3, 16) on a
canvas that is 200 pixels square, then

cs = ((-3<0)<<3)|(-3>=200)<<2)|((16<0)<<1)|(16>=200)

cs = (1<<3)|(0<<2)|(0<<1)|0

cs = 8|0|0|0

cs = 8

From the code value, we know that the point (–3, 16) with respect to our
canvas is to the left in the section labelled 8 in the diagram.

The next step is to determine the slope of the line. This is done using
the y distance divided by the x distance. The x distance is the end x value
minus the start x value. The y distance is the end y value minus the start
y value. The slope of this line is a floating point value; since the values for
x and y are all integer values, we must remember to cast the integer
values as doubles to get a meaningful result for the slope. Now we have
a point location and a slope. By doing a bitwise And-ing of the start and
end locations, we determine whether the line remains off-screen
throughout its length.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 2.2 Determining point location.

Drawing points and polygons the hard way 21

A table of values for a bitwise And-ing of the start and end point codes
will help in the understanding of the result of this operation (Table 2.1).

Looking at Table 2.1, we can see that if the start point is in section 1 and
the end point is in section 5, then the result of a bitwise And-ing is 1; since
this is not zero the function returns FALSE, indicating that there is nothing
to draw. If the bitwise test results in a zero value then the aim of the
remainder of the function is to determine where the line crosses the
canvas area and return both a TRUE to indicate that drawing is required
and revised values for xs, ys, xe and ye that are within the canvas
area.

To adjust the start and end points we use the slope or gradient of the
line that we have calculated and stored as the variable m. If the code
value for the point when And-ed with 8 does not equal zero, then the point
must be off to the left; in this case we aim to set x to 0, but what value
should we store for y? Here we use the fact that we have added –x to the
y value, so we must subtract x times the slope of the line to y. Similar
principles are adopted for each off-screen area. Having adjusted the line
the function loops, setting the code values for the start and end points.
This continues until the point is totally within the canvas area at which
point the function exits returning a TRUE value. This clever clipping
routine is known as Cohen–Sutherland after its creators.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Table 2.1

Codes 0 1 2 4 5 6 8 9 10

0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 1 0 0 1 0

2 0 0 2 0 0 2 0 0 2

4 0 0 0 4 4 4 0 0 0

5 0 1 0 4 5 4 0 1 0

6 0 0 2 4 4 6 0 0 2

8 0 0 0 0 0 0 8 8 8

9 0 1 0 0 1 0 8 9 8

10 0 0 2 0 0 2 8 8 10

22 Drawing points and polygons the hard way

BOOL CCanvas::Clip(int &xs, int &ys, int &xe, int &ye){

int cs, ce;

doublem;

//Calculate the slope of the line (xs,ys)-(xe,ye)

m = (double)(ye-ys)/(double)(xe-xs);

while (cs|ce){

cs=((xs<0)<<3)|((xs>=m_width)<<2)|((ys<0)<<1)|↵
(ys>=m_height);

ce=((xe<0)<<3)|((xe>=m_width)<<2)|((ye<0)<<1)|↵
(ye>=m_height);

if (cs & ce) return FALSE;

if (cs){

if (cs & 8) ys-=(int)((double)xs*m), xs=0; else

if (cs & 4) ys+=(int)((double)(m_width-xs)*m),↵
xs=m_width-1; else

if (cs & 2) xs-=(int)((double)ys/m), ys=0; else

if (cs & 1) xs+=(int)((double)(m_height-ys)/m),↵
ys=m_height-1;

}

if (ce){

if (ce & 8) ye+=(int)((double)(0-xe)*m), xe=0; else

if (ce & 4) ye+=(int)((double)(m_width-xe)*m),↵
xe=m_width-1; else

if (ce & 2) xe+=(int)((double)(0-ye)/m), ye=0; else

if (ce & 1) xe+=(int)((double)(m_height-ye)/m),↵
ye=m_height-1;

}

}

return TRUE;

}

Running this function with the values (–10, 100)–(150, 300) for a 200
pixel square canvas gives the following results:

Slope is 1.25

Loop 1 cs = 8 ce = 1 Starting point (-10, 100) End point (150,300)

Loop 2 cs = 0 ce = 0 Starting point (0, 112) End point (70,199)

We now know both the starting and ending points are on-screen. If neither
were on-screen then there is nothing to do, so we exit. Assuming we
actually have something to draw, we adjust the drawing width to the
canvas storage width. Remember a 24-bit file will have a storage width

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Drawing points and polygons the hard way 23

that is at least three times the pixel width, plus the extra up to 3 bytes to
ensure divisibility by 4. We set two variables x and y to the starting value.
Then we create two distance variables for the x distance, dx, and the y
distance, dy.

We set xinc and yinc to 1. The value for xinc indicates whether xe is
greater than xs. If so, then we will reach xe by 1 to xs, a dx number of
times. If, however, xs > xe, then we must subtract 1 from xs, dx number
of times. We check dx to indicate which direction we are working in. If dx
is less than 0, then the xinc is made to be –1 and the value for dx is
negated. A similar technique is used for the y values.

The COLORREF parameter passed to the function is simply a 32-bit
integer. The values for red, green and blue are embedded in this value,
and we retrieve them with the code:

red= col&0xFF;

green=(col&0xFF00)>>8;

blue=(col&0xFF0000)>>16;

Now we use a switch statement to select based on bit depth. In our code
we only support 24 bits, but it gives us flexibility for the future to support
alternative bit depths.

void CCanvas::DrawLine(int xs,int ys,int xe,int ye,COLORREF col){

int x, y, d, dx, dy, c,m, xinc, yinc, width;

BYTE red,blue,green;

if (!ClipLine(xs,ys,xe,ye)) return;

//If ClipLine returns false then start and end are out off the

//canvas so there is nothing to draw

//m_swidth is the DWORD aligned storage width

width=m_swidth;

//x and y are set to the starting point

x=xs; y=ys;

//dx and dy are the distances in the x and y directions

//respectively

dx=xe-xs; dy=ye-ys;

//ptr is the memory location of x,y

BYTE* ptr=GetPixelAddress(x,y);

xinc=1; yinc=1;

if (dx<0){xinc=-1; dx=-dx;}

if (dy<0){yinc=-1; dy=-dy; width=-width;}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

24 Drawing points and polygons the hard way

red =(BYTE)col&0xFF;

green=(BYTE)(col&0xFF00)>>8;

blue =(BYTE)(col&0xFF0000)>>16;

d=0;

switch (m_bitdepth){

case 24:

if (dy<dx){

c=2*dx; m=2*dy;

while (x!= xe){

*ptr++=blue; *ptr++=green; *ptr++=red; //Set↵
the pixel

x+=xinc; d+=m;

if (xinc<0) ptr-=6;

if (d>dx){y+=yinc; d-=c; ptr-=width;}

}

}else{

c=2*dy; m=2*dx;

while (y!=ye){

*ptr++=blue; *ptr++=green; *ptr=red; //Set the↵
pixel

y+=yinc; d+=m; ptr-=width; ptr-=2;

if (d>dy){ x+=xinc;↵
d-=c;ptr+=xinc;ptr+=xinc;ptr+=xinc;}

}

}

break;

}

}

When drawing the line we need to decide whether our principle increment
axis is going to be x or y. The test involves simply testing which is greater,
the y distance or the x. If x is greater, then we use the x-axis. For every
column in the x-axis, we need to colour a pixel. If the line were horizontal,
then simply incrementing along the x-axis would be sufficient. But we also
need to find the y position. For each column the y value can increment by
1 or decrement by 1. The maximum slope of a line where x is the principle
axis is a 45° slope. For this slope, y is incremented for each x increment.
So the question we need to ask as we move to the next x column is: Do
we need to alter our y value?

To answer this question we use three variables. Double the x distance,
c, double the y distance, m, and an incremental value d. For each x value,

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Drawing points and polygons the hard way 25

we add m to the incremental value d. If it tips over the value for dx then
we need to increase y. When we increase y we decrease the incremental
value d by c and adjust our memory pointer to point to another line. The
operation for the y-axis works in the same way. So now we can draw
arbitrary lines on our memory bitmap using integer arithmetic alone.

A simple class to implement a polygon
Now we have an off-screen buffer in the form of CCanvas and the ability
to draw an arbitrary line on this buffer defined by two points. The next step
is to implement a class to store and display a polygon. This class is
defined as:

class CPolygon

{

public:

//Member variables

POINT3D pts[4];//Stores the vertex data

CVector normal;//The unit length normal

int numverts;//Number of vertices in polygon

doubleh,p,b;//Euler angle rotation

COLOUR col;//RGB values for the unshaded colour of the polygon

BYTE red,green,blue;//Used for all drawing operations

CTexture *tex;//Bitmap texture pointer

CPolygon *next;//Used if the polygon is one of a list

//Functions

CPolygon();//Constructor

CPolygon(int total, CVector *pts);//Constructor

~CPolygon();//Standard destructor

BOOL Facing();//True if screen coordinates of vertices

//are in counter clockwise order

void SetColour(int red,int green, int blue);

void AveragePointNormal(CVector &norm);//Define normal from an

//average of the vertex

//normals

void SetNormal();//Calculates normal from vertex positions

void HorzLine(CCanvas &canvas, int x1, int x2,

int y, double light=1.0, double ambient=0.0);

BOOL SetPoints(int total, CVector *pts);//Set the vertex values

void SetColour(COLOUR col);//Set the colour value

void SetTexture(CString &filename);//Set texture from bitmap

//filename

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

26 Drawing points and polygons the hard way

void DrawOutline(CCanvas &buffer);//Draw outline version of

//polygon

void DrawFlat(CCanvas &buffer);//Draw flat coloured version

void DrawShaded(CCanvas &buffer, BOOL drawNormal=FALSE);↵
//Draw shaded

void DrawTextured(CCanvas &buffer);//Draw textured polygon

protected:

};

The POINT3D class is a structure defined as:

typedef struct stPOINT3D{

double x,y,z;//Untransfromed position

double nx,ny,nz;//Untransformed normal

double wx,wy,wz;//Transformed position

double wnx,wny,wnz;//Transformed normal

int sx,sy;//Screen location

int snx,sny;//Normal screen location

}POINT3D;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 2.3 An outline polygon.

Drawing points and polygons the hard way 27

Drawing an outline polygon

We can use this new class to draw an outline polygon simply by
connecting all the points in the polygon. Once the polygon has been
transformed to screen coordinates using the techniques from the previous
chapter, this involves just this simple code. Note that, once a polygon has
been transformed, the screen coordinates are stored in the sx and sy
members of the POINT3D structure points.

void CPolygon::DrawOutline(CCanvas &buf){

if (numverts<3) return;

for (int i=0;i<numverts-1;i++){

buf.DrawLine(pts[i].sx, pts[i].sy, pts[i+1].sx,↵
pts[i+1].sy,col);

}

//Finally join the last point to the first

buf.DrawLine(pts[numverts-1].sx, pts[numverts-1].sy,↵
pts[0].sx, pts[0].sy,col);

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 2.4 A flat coloured polygon.

28 Drawing points and polygons the hard way

Drawing a flat coloured polygon

In order to paint a filled polygon we need to raster scan the polygon. That
is, we need to break up the polygon into horizontal lines and draw each of
these in turn. To keep things simple we will work only with triangles. If the
polygon has four sides then we draw one half first and then the next. A
triangle can sometimes be orientated so that one of its sides is horizontal,
but an arbitrary triangle can be split into two triangles, each with one
horizontal side.

To determine the starting point of each horizontal line in the traingle we
need the slope of all three lines. In our code we first order the points by
height; to create variables y[max], y[mid] and y[min]. The slope of each
side is the y distance divided by the x distance. Using this information, we
can determine the start and end points of each horizontal line and draw
the line for each y value. The starting point for each horizontal line is given
by the starting point for this slope, the slope of the line and the current y
value.

If we look at an example then it will be clearer. The vertices of the
triangle in Figure 2.5 are

A(28, 16) B(268, 76) C(150, 291)

Taking the line AC, we can calculate point D using the following technique.
First determine the slope of line AC.

The slope of the line is the y distance divided by the x distance:

(291 – 16)/(150 – 28) = 275/122 = 2.254

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 2.5 Dividing a triangle into two, each with a horizontal line.

Drawing points and polygons the hard way 29

Now we want the x value when the y value on this line is 76, i.e. the y
value for vertex B. A line is defined as

y = mx + c

where m is the slope and c is a constant.
Since we know that the vertex (28, 16) is on the line, we can calculate

c as

c = y – mx = 16 – 2.254 × 28 = –47.112

We also know that the vertex (150, 291) is on this line, so a quick check
gives

y = mx + c = 2.254 × 150 – 47.112 = 290.98

which rounded up is the 291 y value of this vertex.
Having calculated this constant, we can rearrange the equation for a

line to derive the x value:

x = (y – c)/m

For our line we know that y is 76 and the slope is 2.254, so the x value on
the line AC when y is 76 is

(76 – (–47.112))/2.254 = 54.62

So the point D is (54.62, 76).
When we draw the triangle, we use the same technique that we have

used to determine the point D to determine the horizontal values for the
start and end of each horizontal line. To calculate the end points of each
horizontal line in the triangle ABD we will also need to know the slope and
constant value for the line AB. Using this information, we know the start
and end x values for each integer y value in the triangle ABD. Having
drawn the upper triangle ABD, we go on to draw the lower triangle DBC.
For this triangle we need to know the slope and constant value for the line
BC. We can then go on to draw each horizontal line in the triangle
DBC.

One end of the line will be the slope from y[min] to y[max] and the other
end will change when the y value reaches the mid value. The code works
through each section in turn.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

30 Drawing points and polygons the hard way

void CPolygon::DrawFlat(CCanvas &buf){

//This function will draw a triangle to the off screen buffer

//class CCanvas

//Only 24 bit supported a the moment

if (buf.GetBitDepth()!=24) return;

//The polygon is facing away from camera

if (!Facing()) return;

int count,min,max,mid,i;

int x[c],y[c];

double m1, d1, m2, d2, q, u, v;

count=1;

//Set the values for red, green and blue directly. No shading

red=col.red; green=col.green; blue=col.blue;

while(count<(numverts-1)){

x[0]=pts[0].sx; x[1]=pts[count].sx; x[2]=pts[count+1].sx;

y[0]=pts[0].sy; y[1]=pts[count].sy; y[2]=pts[count+1].sy;

//Sort points by height

max=(y[0]<y[1])?1:0;

max=(y[max]<y[2])?2:max;

min=(y[0]<y[1])?0:1;

min=(y[min]<y[2])?min:2;

mid=3-(max+min);

//x distance

q=(double)(x[max]-x[min]);

//Avoid division by zero

q=(q)?q:EPSILON;

m2=(double)(y[max]-y[min])/q;

d2=y[max]-m2*x[max];

//Now we know the highest. middle and lowesty positions

//Draw horizontal lines from highest to middle position

if (y[max]!=y[min]){

q=(double)(x[mid]-x[max]);

q=(q)?q:EPSILON;

m1=(double)(y[mid]-y[max])/q;

d1=(double)y[mid]-m1*x[mid];

for (i=y[max];i>y[mid];i–){

u=((double)i-d1)/m1; v=((double)i-d2)/m2;

HorzLine(buf, (int)u, (int)v, i);

}

}

//Reached the mid point

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Drawing points and polygons the hard way 31

if (y[mid]!=y[min]){

q=(double)(x[mid]-x[min]);

q=(q)?q:EPSILON;

m1=(double)(y[mid]-y[min])/q;

d1=(double)y[mid]-m1*x[mid];

for (i=y[mid];i>y[min];i–){

u=((double)i-d1)/m1; v=((double)i-d2)/m2;

HorzLine(buf, (int)u, (int)v, i);

}

}

count++;

}

}

The function to draw a horizontal line is quite simple. We do some simple
clipping to ensure we stay within memory, get a memory pointer and paint
the pixels one after the other. Notice the class CPolygon has colour
values red, green and blue defined by member variables.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 2.6 Drawing a shaded polygon.

32 Drawing points and polygons the hard way

void CPolygon::HorzLine(CCanvas &canvas, int x1, int x2, inty){

//Put x1 and x2 in the right order

int i;

if (x1>x2){ i=x1; x1=x2; x2=i; }

if (x1<0) x1=0;

i=canvas.GetWidth()-1;

if (x2>i) x2=i;

BYTE* ptr=canvas.GetPixelAddress(x1,y);

if (!ptr) return;//Off screen point

//24 bit only at the moment

for (i=x1;i<x2;i++) *ptr++=blue; *ptr++= green; *ptr++= red;

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Painting a shaded polygon
So far, the choice of colour is determined simply by a predetermined value.
More realistic computer graphics uses lighting. As the model moves
through the light, its on-screen colour changes. The simplest example of
this involves painting a single polygon. The most basic lighting model
varies the strength of a polygon’s colour, based on its angle towards the
light. This is called Lambertian reflection. A light can be defined simply by
direction. This is a difficult concept for any photographers out there, since
intuitively they will think a light needs a position as well as a strength value.
Position is not necessary to create a convincing render. But this still leaves
the problem of angle. If we define a light by direction only, then we need to
track this direction. The angle of a polygon is described using its normal, as
we know from Chapter 1. We need to work out a value from the light vector
and each polygon normal that gives us a value for the current angle.
Following on from Chapter 1, we can determine the angle between two
vectors using the dot product of the two vectors.

cos(�) =
L•N

�L � �N �

If each vector has magnitude 1, then this simplifies to

cos(�) = L•N

Using the inverse function acos, we can calculate the angle:

� = acos(L•N)

Drawing points and polygons the hard way 33

Often, we need a lighting level even when no light is present. In computer
graphics models this is the ambient level. In our very simple model we
define ambient to be 0.12. The result of the angle calculation will be a
value between 0 and � radians. We require a value between 0 and 1 so
the result of the calculation is divided by �.

void CPolygon::DrawShaded(CCanvas &buf, BOOL drawNormal){

//Only 24 bit supported a the moment

if (buf.GetBitDepth()!=24) return;

//The polygon is facing away from camera

if (!Facing()) return;

int count,min,max,mid,i;

int x[3],y[3],tri=0;

double m1, c1, m2, c2, q, xs, xe, light;

//Create a unit length lighting vector

CVector lvec(0.707,-0.707,0.0);

//We are using an ambient of 0.12 so we scale the light level

//to 1.0-ambient level=0.88 then add the ambient level

light=acos(lvec*normal)/PI*0.88+0.12;

//Set shaded colour value these values are used by HorzLine

//col stores the unshaded value of the polygon

red=(BYTE)((double)col.red*light);

green=(BYTE)((double)col.green*light);

blue=(BYTE)((double)col.blue*light);

count=1;

//Repeat for each triangle using vertices

//(0,1,2) (0,2,3) . . . (0,n-2,n-1) where n is the number

//vertices in the triangle

//This technique is fast but will paint concave polygons

//incorrectly

while(count<(numverts-1)){

x[0]=pts[0].sx; x[1]=pts[count].sx; x[2]=pts[count+1].sx;

y[0]=pts[0].sy; y[1]=pts[count].sy; y[2]=pts[count+1].sy;

//Sort points by screen height

max=(y[0]<y[1])?1:0;

max=(y[max]<y[2])?2:max;

min=(y[0]<y[1])?0:1;

min=(y[min]<y[2])?min:2;

mid=3-(max+min);

q=(double)(x[max]-x[min]);

//Use EPSILON, a very small value, to avoid division by zero

//errors

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

34 Drawing points and polygons the hard way

q=(q)?q:EPSILON;

//m2 is slope of one line, c2 is constant value for y=mx+c

//line equation

m2=(double)(y[max]-y[min])/q;

c2=y[max]-m2*x[max];

//Now we know the highest. middle and lowesty positions

//Draw horizontal lines from highest to middle position

//Only draw the first section if they values differ

if (y[max]!=y[mid]){

q=(double)(x[mid]-x[max]);

q=(q)?q:EPSILON;

//m1 is slope of other line, c1 is constant value for line

//equation

m1=(double)(y[mid]-y[max])/q;

c1=(double)y[mid]-m1*x[mid];

for (i=y[max];i>y[mid];i–){

xs=((double)i-c1)/m1; xe=((double)i-c2)/m2;

HorzLine(buf, (int)xs, (int)xe, i);

}

}

//Reached the mid point, only draw ify values differ

if (y[mid]!=y[min]){

q=(double)(x[mid]-x[min]);

q=(q)?q:EPSILON;

m1=(double)(y[mid]-y[min])/q;

c1=(double)y[mid]-m1*x[mid];

for (i=y[mid];i>y[min];i–){

xs=((double)i-c1)/m1; xe=((double)i-c2)/m2;

HorzLine(buf, (int)xs, (int)xe, i);

}

}

//If a four point polygon then repeat for the second triangle

count++;

}

//If required paint the normals in red

if (drawNormal){

COLOUR normcol;

normcol.red=255;normcol.green=0;normcol.blue=0;

for (i=0;i<numverts;i++){

buf.DrawLine(pts[i].sx, pts[i].sy, pts[i].snx,↵
pts[i].sny, normcol);

}

}

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Drawing points and polygons the hard way 35

This is the simplest of lighting models. We have used a single normal
vector to calculate a lighting level for the entire polygon. An alternative
approach uses each vertex normal to get a lighting level for that vertex,
then interpolation between vertices when drawing the on-screen pixels.
This method is called Gouraud shading and gives a low polygon model
the illusion of a much denser mesh, where the polygons appear to be
much smoother than they really are. In our simplistic shading model we
have not considered the highlights resulting from a high level of
specularity. To achieve accurate highlights it is necessary to interpolate
between vertex normal vectors to calculate the vector for each on-screen
pixel. This model gives accurate highlights at the expense of additional
calculations and is called Phong shading.

Painting a textured polygon

When creating low polygon displays, textures play an important role.
Instead of very dense meshes, the illusion of complexity can be achieved
by replacing the diffuse colour value with the colour value of a pixel from

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 2.7 Drawing a textured polygon.

36 Drawing points and polygons the hard way

a bitmap. The simplest mapping between a polygon and a bitmap is to use
a four-vertex polygon where the corners of the bitmap map directly to the
vertices of the polygon. The challenge then becomes one of determining,
for each on-screen pixel from the polygon, which texture pixel (u, v) to
choose for the display.

There are many approaches to this and there are several references to
further information for the interested reader in the bibliography. In
essence, we need a function that goes from screen space to texture
space, via world space. In other words, an inverse function of the mapping
we use to transform a vertex in world space to screen space.

First we define vectors P, M and N. P is simply a vertex one. For
simplicity, P does not need to be on the polygon. It is, however, a point in
world space. Vectors M and N define the orientation of the texture in world
space. For simplicity here, we define them as vertices 0 and 2 of our
polygon. So vertex 0 is P + N, vertex 2 is P + M and vertex 3 is P + M +
N. This will stretch the texture over the whole polygon. Using different
values for P, M and N could stretch the texture over several polygons.

If we consider a point a on the plane defined by P, M and N, it can be
defined as

a = P + uM + vN

where u and v are values between 0 and 1.
We need functions that define u and v from screen coordinates. When

going from world space to screen space (sx, sy), we perform a mapping;
at its simplest this perspective transform is

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 2.8 Overview of position P and vectors M and N.

Drawing points and polygons the hard way 37

sx = ax/az

sy = ay/az

We actually need to make the origin the centre of screen space rather
than the top left corner, but to make for easy equations we will ignore that
for now. If you look through the code for this chapter you will see the
actual factors we need to consider. To go from screen space to world
space we manipulate the function to give

ax = sx*az

ay = sy*az

Expanding the equation for a we get:

ax = Px + u*Mx + v*Nx

ay = Py + u*My + v*Ny

az = Pz + u*Mz + v*Nz

Now if we substitute these values into

ax = sx*az

ay = sy*az

we get

Px + u*Mx + v*Nx = sx*[Pz + u*Mz + v*Nz]

Py + u*My + v*Ny = sy*[Pz + u*Mz + v*Nz]

With some careful algebra, we can transform these equations into

u =
sx*(Nz*Py – Ny*Pz) + sy*(Nx*Pz – Nz*Px) + (Ny*Px – Nx*Py)

sx*(Ny*Mz – Nz*My) + sy*(Nz*Mx – Nx*Mz) + (Nx*My – Ny*Mx)

v =
sx*(My*Pz – Mz*Py) + sy*(Mz*Px – Mx*Pz) + (Mx*Py – My*Px)

sx*(Ny*Mz – Nz*My) + sy*(Nz*Mx – Nx*Mz) + (Nx*My – Ny*Mx)

If we define three vectors A, B and C as the cross products of P × N, M
× P and N × M respectively, then the equations simplify further:

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

38 Drawing points and polygons the hard way

u =
sx*Ax + sy*Ay + Az

sx*Cx + sy*Cy + Cz

v =
sx*Bx + sy*By + Bz

sx*Cx + sy*Cy + Cz

To achieve the textured polygon we need to raster scan the polygon in
the same way that we have done for flat and shaded polygons. For each
screen pixel we calculate the texture coordinates (u, v), scale them by the
width and height of the texture, and paint to the screen the colour of the
texture for the coordinates calculated. You will see from the example that
this is a slow operation. To speed up the results, we can use interpolation
techniques, calculating texture coordinates for the start and end of a scan
line then interpolating between these. There are many other ways to
speed up the results.

Summary

We learnt a great deal in this chapter, but although this is fascinating stuff,
unless you want to rewrite the OpenGL graphics library you will not have
to deal with graphics operations at such a low level. But it is useful to know
how things are happening in the background if only to leave you with a
sense of awe that computers are able to deal with so many instructions to
display a real-time animation display.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

3 Drawing points and
polygons the easy way
with OpenGL

OpenGL is a graphics library that essentially takes lists of vertices in
world space, turns these into polygons and paints them to a 2D buffer
that can be displayed. The library includes the ability to shade and
texture (apply a section of a bitmap to) these polygons. OpenGL can be
used to display transparent polygons and can use fogging to facilitate
distance culling. If distance culling is used without some kind of fogging,
then it can result in an annoying popping on and off for distant objects.
The most important feature of OpenGL is that it uses hardware
wherever possible to speed up processor-intensive operations. Before
you can use OpenGL on a Windows machine you need to set up the
main display window so that it is suitable for OpenGL and direct
OpenGL to use this window for its display. In this chapter we will
concentrate on these set-up procedures and then use this newly
created window to display some very basic geometry. This is probably
the best time to check out the examples for this chapter, which you will
find on the CD in the folder ‘Examples\Chapter 03’.

Introducing the OpenGL library

First, let’s consider what OpenGL cannot do. The standard library
contains no methods for creating complex geometry or importing models
from leading CGI packages such as 3Dstudio Max or Lightwave 3D. That
is not to say that you cannot use OpenGL to display such content, you
can, but preparing the content in a way that is suitable for OpenGL will be
your job as a developer. OpenGL is designed to take a vertex list, turn this
into shaded and textured polygons, and rasterize (convert to a 2D screen
buffer) the result suitable for display on the computer screen. The basic
OpenGL library contains no hardware-specific window commands. It
deals exclusively with a hidden off-screen buffer. The display of this buffer
is where operating system-specific code is used. In this book we are only

40 Drawing points and polygons the easy way with OpenGL

considering the Windows platform, but most of the code will transfer
readily to other platforms. Only the short code stubs that deal with the final
display of a window will need revising for a different platform.

OpenGL is a state machine. You set a flag in the system to say how the
rendering engine should respond to subsequent commands. For
example,

glEnable(GL_LIGHTING);

Using this line in your code would ensure that the render engine would
use any active lights to determine the shading of a pixel:

glDisable(GL_LIGHTING);

This would deactivate any lighting calculations so that just the basic
colour or the direct pixels in a texture map would be painted without any
further calculations resulting from lights.

Using the different states of the render engine it is possible to display
the same geometry as:

� A wireframe model with no hidden lines.
� Flat shaded polygonal model with no textures and no lighting.
� Flat shaded polygonal model with no textures but lighting enabled.
� Smooth shaded polygonal model with no textures with lighting

enabled.
� Smooth shaded polygonal model with textures and lighting.
� Smooth shaded, depth-cued (fog) with textures and lighting.
� Smooth shaded, depth-cued, transparency enabled with textures and

lighting.
� Smooth shaded, depth-cued, transparency enabled with textures and

lighting using anti-aliasing.

The realism of the scene will increase as you work through the list, but this
occurs with an inevitable performance hit. As a developer you need to
decide between frame rate and visual realism.

All OpenGL commands begin with ‘gl’, then the name of the command
and finally an indication of the parameters being passed. As an example,
when indicating the colour to use the syntax can be one of the
following:

glColor3f(1.0, 0.0, 0.0);

Glfloat col[]={ 1.0, 0.0, 0.0};

glColor3fv(col);

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Drawing points and polygons the easy way with OpenGL 41

Here ‘3f’ indicates that three floating-point values are being passed to
the function. ‘3fv’ indicates that a floating-point array with three compo-
nents is being passed. Check the documentation with your compiler for
the full list of parameters that can be passed. If you are used to specifying
colours using byte wide arguments for red, green and blue, then you may
find it strange to specify a colour using floating-point values. Colour levels
vary between 0 and 1.0; a colour value of 1.0 compares with the byte wide
equivalent of 255.

On a Windows-based machine, all the OpenGL functions are provided
via a dynamic link library that is stored in the ‘System’ folder. This library
is called ‘OpenGL32.dll’ and it must exist on your computer in order to use
OpenGL. It is installed by default during Windows set-up. Along with this
file, another file is installed called ‘glu32.dll’; this is the OpenGL utility
library. The file contains some useful shortcuts for using OpenGL, it
simplifies view orientation set-ups and contains NURBS routines. All
OpenGL commands that begin with ‘gl’ use the main library and all
OpenGL commands beginning with ‘glu’ use the utility library. You can
achieve everything you want from OpenGL without using the utility library,
but your life will be that much more difficult.

Using the OpenGL Utility Toolkit

In addition to the main OpenGL files ‘OpenGL32.dll’ and ‘Glu32.dll’, there
is a useful library written by Mark Kilgard, called the GLUT, which stands
for the OpenGL Utility Toolkit. This library is particularly useful for quick
code examples and we will use it now to create a first window. You will find
the GLUT library and include file on the CD. If you intend to compile any
of the GLUT examples then you will need to tell your compiler where to
find the include file and the library. Other GLUT-related downloads are
available at http://reality.sgi.com/mjk/glut3/glut3.html

The example ‘GLUTExample’ is a simple application that displays a
coloured cube, which can be rotated with the movement of the mouse.
Here is the ‘main’ code for this application.

void main (void)

{

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);

glutInitWindowSize(width, height);

glutCreateWindow(appName);

glutDisplayFunc(display);

glutReshapeFunc(resize);

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

42 Drawing points and polygons the easy way with OpenGL

glutKeyboardFunc(keyboard);

glutMouseFunc(mouse);

glutMotionFunc(motion);

init();

glutMainLoop();

}

The declarations for each of these functions, along with a description of
the use of the function, are outlined below:

� void glutInitDisplayMode(unsigned int mode)
This specifies a display mode such as RGB or RGBA. The argument
‘mode’ is a bitwise Or-ed combination of the display colour depth,
whether single or double buffering and the additional buffers
required.

When animation is used it is best if the display is created off-screen
and then flipped to the foreground when all drawing is complete. This
technique is referred to as double buffering and eliminates the

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 3.1 GLUT Example program.

Drawing points and polygons the easy way with OpenGL 43

annoying flickering that can occur when a single buffer is used with
animated sequences.

OpenGL can use several buffers in addition to the actual display
buffer. In this example we use the depth buffer. The purpose of the
depth buffer is to ensure that foreground polygons appear to be in front
of more distant polygons. As each polygon is rasterized, the z distance
from the viewer is compared with the value stored in the depth buffer for
this pixel. If the z distance stored in the buffer is greater than that for the
pixel under consideration, then the new pixel is painted using the data
for the new polygon and this new z distance is stored in the depth
buffer. If the value in the buffer is less than the value under
consideration, then the current pixel is ignored because the polygon
being rasterized must be behind a polygon that has already been
painted.

� void glutInitWindowSize(int width, int height)
Requests windows created by the next function to have an initial size in
pixels indicated by the width and height arguments. The initial window
size is only a hint to the system and may be overridden.

� void glutCreateWindow(char *name)
Creates a window with the caption indicated by name appearing in the
title bar. The window is not actually displayed until the call to
glutMainLoop().

GLUT functionality comes from the use of callback functions. These
functions are called in response to a system event.

� void glutDisplayFunc(void (*func)(void))
This function is called whenever the contents of the window need to be
redrawn. This can happen because the window was hidden and is now
revealed or in response to a call to glutPostRedisplay().

� void glutReshapeFunc(void (*func)(int width, int height))
The reshape function is called whenever the window is resized. The
callback is usually used to adjust the projection matrix to accommodate
for the new aspect ratio. More on this later.

� void glutKeyboardFunc(void (*func)(unsigned int key, int x, int y))
When a key is pressed, the ASCII value for this key is passed to the
argument key and the mouse coordinates in window-relative pixel
coordinates are passed to x and y.

� void glutMouseFunc(void (*func)(int button, int state, int x, int y))
The mouse function is called in response to a press or release of a
mouse button. The button argument can be GLUT_LEFT_BUTTON,
GLUT_MIDDLE_BUTTON or GLUT_RIGHT_BUTTON. The state argu-
ment can be either GLUT_UP or GLUT_DOWN. The values for x and
y are window-relative pixel coordinates.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

44 Drawing points and polygons the easy way with OpenGL

� void glutMotionFunc(void (*func)(int x, int y))
This function is called as the mouse moves. The values for x and y are
the window-relative pixel coordinates of the mouse.

� void glutMainLoop(void)
Enters the GLUT processing loop, never to return. Now all registered
callbacks will be used as system events instigate them.

All the calls in the main function use GLUT functions except for one, the
call to ‘init’. This function is in the source file on the CD for the example.
We use ‘init’ to store set-up code that only needs to be called once. The
function is as follows:

void init (void)

{

glClearColor(0.0f, 0.2f, 0.3f, 0.0f);

glEnable(GL_DEPTH_TEST);

printf(”Realtime 3D Character Animation with Visual C++\n”);

printf(”www.toon3d.com/rt3d.html\n\n\n\n”);

printf(”Chapter 3 – GLUT Example01\n\n”);

printf(”Left Mouse Button – Rotate\n”);

printf(”Right Mouse Button – Zoom In and Out\n”);

printf(”Q – Quits\n”);

}

Using the OpenGL command ‘glClearColor’ we set the default back-
ground colour, which includes a value for the alpha. Usually, a redraw will
begin by completely clearing the existing buffer for the colour display and
the depth buffer. The value of the clear colour will be entered for every
pixel in the cleared buffer. To ensure that z-buffering is being considered
we use the OpenGL call ‘glEnable’ passing the constant ‘GL_DEPTH_
TEST’.

Setting up a projection

The ‘resize’ callback function is responsible for setting up how OpenGL
will convert from world space vertices to screen space. This involves a
projection from world to the flat plane of the screen. OpenGL uses
matrices to perform all mappings; once a matrix is created then
subsequent transformation commands modify it. OpenGL uses three
different matrices, the modelview, projection and the texture matrix. You

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Drawing points and polygons the easy way with OpenGL 45

direct OpenGL to use a particular matrix by specifying which matrix mode
is being used with a call to ‘glMatrixMode’. In the ‘resize’ function we use
the projection matrix. The first step in setting up a projection is to clear the
existing matrix, which we do by using the call to ‘glLoadIdentity’. If you are
confident with matrices then you will realize this sets the leading diagonal
of the matrix to all ones, while all other entries are zero. The effect of
multiplying a matrix by an identity matrix is to leave the original matrix
unchanged. Mathematical identities always have this form. They leave the
original unchanged under some operation.

The most complicated call in the function is the use of ‘gluPerspective’.
Since the function call begins with ‘glu’ this must come from the utility
library ‘glu32.dll’. The declaration of this function is:

� void gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble
zNear, GLdouble zFar)

Here fovy specifies the field of view in degrees in the y direction. If this is
set to more than around 100°, then the display will have a highly distorted
‘fish-eye’ look. In order to make sure that squares remain looking square,
the renderer needs to know the aspect ratio of the current viewport.
Simply dividing the window width by the window height specifies this. Just
as the edge of the screen is determined by the size of the window,
OpenGL sets a near and far distance clip, so that things extremely close
to camera or distant disappear from view. For simple demos, setting this
to a large range suffices. However, in order to make the maximum use
from the z-buffer it is important to set realistic values for the near and far
clipping planes. If you always use some default value of, for example, 0.1
for near and 1 000 000 for far, yet all the geometry you draw is in the range
10–12, then the accuracy of the z-buffer will plummet. Setting the near
and far clipping planes to 5 and 20 will ensure that the z-buffer
calculations are considerably more accurate and if you use fog then it will
blend much more subtly if the range for the near and far clipping planes
is relevant to your scene.

void resize(int w, inth)

{

if (!h) return;

width = w;

height =h;

glViewport(0, 0, width, height);

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

46 Drawing points and polygons the easy way with OpenGL

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(60, (double) width / height, 1, 1000);

glutPostRedisplay();

}

Using transformations

Drawing the display begins by clearing anything that is already there.
Since we are using a depth buffer it is quicker to tell OpenGL to clear both
the colour buffer and the depth buffer in a single command. This is done
by bitwise Or-ing the two constants ‘GL_COLOR_BUFFER_BIT’ and
‘GL_DEPTH_BUFFER_BIT’. This is followed by switching the matrix
mode to the modelview matrix and clearing this using the ‘glLoadIdentity’
function call. Now we come to the interesting bit; here we use
‘glTranslatef’ and ‘glRotatef’ to alter the contents of the modelview matrix.
‘glTranslate’ has the effect of moving the viewer in relation to any
geometry that is later going to be drawn. The parameters are the
movement along the x-, y- and z-axes respectively. In this example we
use the variable, zvalue; this is set with the mouse move callback function
‘motion’. Using this method we can adjust the z position of the object.

After translating the object we rotate it. ‘glRotatef’ has four parameters;
the first is an angle, the remaining three give the axis around which this
rotation operates. In this example we rotate the object using Euler angles
around the standard axes. When objects are transformed using the
modelview matrix, the effect is as though the first operation performed is
the last one specified. In this example all the rotations would be performed
before the translation.

In matrix notation, if T is the translation and P is the first rotation
specified, H the second and B the last, the overall result would be

TPHBv

if v is the vertex being operated on.
Having set up the matrix, we can now draw some geometry. In the

example we use a function that is part of the source code, to draw a
simple cube, ‘DrawCube’. Having drawn the cube, the off-screen buffer is
flipped to the front with the GLUT function ‘glutSwapBuffers’.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Drawing points and polygons the easy way with OpenGL 47

void display(void)

{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glTranslatef(0.0f, 0.0f, -zvalue);

glRotatef(rot[0], 1.0f, 0.0f, 0.0f);

glRotatef(rot[1], 0.0f, 1.0f, 0.0f);

glRotatef(rot[2], 0.0f, 0.0f, 1.0f);

DrawCube();

glutSwapBuffers();

}

Drawing some geometry

All OpenGL drawing is sandwiched between a ‘glBegin’ and a ‘glEnd’.
‘glBegin’ has a single constant parameter that tells the renderer how to
work with the data passed. In this example we are using four vertex
polygons or quads. OpenGL interprets each set of four vertices as a
polygon. We first give a new colour so that each face has a different
colour, then a list of four vertices using the OpenGL function ‘glVertex3f’.
Having drawn the six faces that make up the cube, we finish with a ‘glEnd’
call.

void DrawCube(void)

{

glBegin(GL_QUADS);

// front

glColor3f(1.0f, 0.0f, 0.0f);

glVertex3f(-10.0f, -10.0f, 10.0f);

glVertex3f(10.0f, -10.0f, 10.0f);

glVertex3f(10.0f, 10.0f, 10.0f);

glVertex3f(-10.0f, 10.0f, 10.0f);

// back

glColor3f(0.0f, 1.0f, 0.0f);

glVertex3f(10.0f, -10.0f, -10.0f);

glVertex3f(-10.0f, -10.0f, -10.0f);

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

48 Drawing points and polygons the easy way with OpenGL

glVertex3f(-10.0f, 10.0f, -10.0f);

glVertex3f(10.0f, 10.0f, -10.0f);

// left

glColor3f(0.0f, 0.0f, 1.0f);

glVertex3f(-10.0f, -10.0f, -10.0f);

glVertex3f(-10.0f, -10.0f, 10.0f);

glVertex3f(-10.0f, 10.0f, 10.0f);

glVertex3f(-10.0f, 10.0f, -10.0f);

// right

glColor3f(1.0f, 1.0f, 0.0f);

glVertex3f(10.0f, -10.0f, 10.0f);

glVertex3f(10.0f, -10.0f, -10.0f);

glVertex3f(10.0f, 10.0f, -10.0f);

glVertex3f(10.0f, 10.0f, 10.0f);

// top

glColor3f(1.0f, 0.0f, 1.0f);

glVertex3f(-10.0f, 10.0f, 10.0f);

glVertex3f(10.0f, 10.0f, 10.0f);

glVertex3f(10.0f, 10.0f, -10.0f);

glVertex3f(-10.0f, 10.0f, -10.0f);

// bottom

glColor3f(0.0f, 1.0f, 1.0f);

glVertex3f(-10.0f, -10.0f, -10.0f);

glVertex3f(10.0f, -10.0f, -10.0f);

glVertex3f(10.0f, -10.0f, 10.0f);

glVertex3f(-10.0f, -10.0f, 10.0f);

glEnd();

}

GLUT is a great way to experiment with OpenGL commands, but
sometimes you need a little more control over the runtime of your
application. For this reason you need to learn how to set up the windows
without using GLUT. On the Windows platform, most of the OpenGL-
related windows code is prefixed with ‘wgl’. Let’s look at how to set up a
window using these methods.

Creating a double buffered window using
PIXELFORMATDESCRIPTOR

Now we will look at another method for setting up an OpenGL application,
this time using Microsoft Foundation Classes (MFC). This book does not

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Drawing points and polygons the easy way with OpenGL 49

aim to teach MFC, you will need to get hold of an MFC book for further
information if you are not familiar with this Windows programming style.
Appendix B gives a very brief introduction to MFC. You will find the example
‘MFCExample’ on the CD, the basis for the code snippet in this section.
Many of the ideas from the GLUT example are repeated. There is a resize
event, a mouse move event and a paint event which is the equivalent of
‘display’. These echo similar callbacks in the GLUT example.

Working through the code example, we created a Dialog-based
OpenGL application. ‘OpenGL32.lib’ and ‘Glu32.lib’ were added to the
linker in the dialog box for ‘Program Settings’ and ‘gl.h’ and ‘glu.h’ are
added as include files. You could add these to ‘stdafx.h’ if you choose or
to all files that include OpenGL code. Where the code for this example
departs radically from the first is in window creation. Unlike the GLUT
example, you have to do considerably more work when creating a window
suitable for OpenGL. You will need to use class wizard to create a
‘PreCreateWindow’ method and an ‘OnCreate’ function.

OpenGL needs the window to have the styles WS_CLIPCHILDREN
and WS_CLIPSIBLINGS set. So we set these in the PreCreateWindow
function by bitwise Or-ing the CREATESTRUCT member ‘style’ with
these constants.

BOOL CWGLExampleDlg::PreCreateWindow(CREATESTRUCT& cs)

{

cs.style |= (WS_CLIPSIBLINGS | WS_CLIPCHILDREN);

return CDialog::PreCreateWindow(cs);

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 3.2 MFC Example program.

50 Drawing points and polygons the easy way with OpenGL

We must now add two member variables to the Dialog class for our
application CWGLExampleDlg:

HDC m_hDC;
HGLRC m_hRC.

If you have done much Windows programming then you will realize
that m_hDC is a handle to a device context. These are used extensively
in Windows programming to shield the programmer from the actual
hardware on which their software runs. m_hRC, however, may well be
new to you. This is a special rendering context used by OpenGL to
allow a single thread to use the OpenGL engine for several different
views. In this simple example we only have one view that contains an
OpenGL display; consequently, we have a single rendering context
which we store in the member variable, m_hRC. Before we can create
a rendering context we need to tinker with the way that our main device
context deals with pixels. For this there is a structure called a
PIXELFORMATDESCRIPTOR and that is exactly what it does, it
describes the pixel format. The full declaration of a PIXELFORMAT-
DESCRIPTOR is given below.

typedef struct tagPIXELFORMATDESCRIPTOR { // pfd

WORD nSize;

WORD nVersion;

DWORD dwFlags;

BYTE iPixelType;

BYTE cColorBits;

BYTE cRedBits;

BYTE cRedShift;

BYTE cGreenBits;

BYTE cGreenShift;

BYTE cBlueBits;

BYTE cBlueShift;

BYTE cAlphaBits;

BYTE cAlphaShift;

BYTE cAccumBits;

BYTE cAccumRedBits;

BYTE cAccumGreenBits;

BYTE cAccumBlueBits;

BYTE cAccumAlphaBits;

BYTE cDepthBits;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Drawing points and polygons the easy way with OpenGL 51

BYTE cStencilBits;

BYTE cAuxBuffers;

BYTE iLayerType;

BYTE bReserved;

DWORD dwLayerMask;

DWORD dwVisibleMask;

DWORD dwDamageMask;

} PIXELFORMATDESCRIPTOR;

We use a small fraction of the possible members in our example. First,
we set the size of the structure and the version number. In the example
we declare that our pixel format is suitable for OpenGL and that it is
double buffered using the bitwise Or-ed constants PFD_DRAW_TO_
WINDOW, PFD_SUPPORT_OPENGL and PFD_DOUBLEBUFFER.
Unfortunately, the use of double buffering means we cannot use any
GDI (Graphics Device Interface) methods to draw on this display in the
current Windows implementation of OpenGL. This means that we have
to use OpenGL to write text to the screen; the GDI function DrawText
will not work. You will see in a later chapter how the ‘glu’ functions can
be used to enable the use of multiple fonts in an OpenGL window. The
pixel format type is RGBA and the display window is 24 bit. The only
other member of the structure that we set is the depth buffer. For our
simple example we could actually get by without a depth buffer, since
just the use of backface culling ensures that the window paints
correctly. If you imagine a die, as you rotate it no more than three faces
are visible, all hidden faces are effectively back facing just using the
order of the points in the faces. See Chapter 1 for a more detailed
description of culling by the clockwise or counter-clockwise nature of
the vertices of a polygon.

Having set up the PIXELFORMATDESCRIPTOR structure, we then
choose this for our device context. The function ‘ChoosePixelFormat’
tries to get the best match for the format you want on the device you
are using. Then you can set this pixel format for the device using
‘SetPixelFormat’. If this fails then you cannot have an OpenGL window
on this device. If everything goes well then you can create a rendering
context using one of the ‘wgl’ functions, ‘wglCreateContext’. Before you
can use this new rendering context for any drawing, you need to make
it the current rendering context using another ‘wgl’ function, ‘wglMake-
Current’. Finally, we tell OpenGL to use a z-buffer by enabling the
depth test and that counter-clockwise-orientated polygons are the ones
that are front facing. The ‘OnCreate’ function is given in full below:

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

52 Drawing points and polygons the easy way with OpenGL

int CWGLExampleDlg::OnCreate(LPCREATESTRUCT lpCreateStruct)

{

if (CDialog::OnCreate(lpCreateStruct) == -1)

return -1;

int nPixelFormat;

m_hDC = ::GetDC(m_hWnd);

static PIXELFORMATDESCRIPTOR pfd = {

sizeof(PIXELFORMATDESCRIPTOR),

1,

PFD_DRAW_TO_WINDOW |

PFD_SUPPORT_OPENGL |

PFD_DOUBLEBUFFER,

PFD_TYPE_RGBA,

24, //Colour bits

0,0,0,0,0,0,0,0,0,0,0,0,0,

16, //Depth Buffer bits

0,0,0,0,0,0,0};

nPixelFormat = ChoosePixelFormat(m_hDC, &pfd);

VERIFY(SetPixelFormat(m_hDC, nPixelFormat, &pfd));

m_hRC = wglCreateContext(m_hDC);

VERIFY(wglMakeCurrent(m_hDC,m_hRC));

// Hidden surface removal

glEnable(GL_DEPTH_TEST);

// counter-clock-wise polygons face out

glFrontFace(GL_CCW);

// Do not calculate backfacing polygons

glEnable(GL_CULL_FACE);

// Turquoise background

glClearColor(0.0f, 0.2f, 0.3f, 0.0f);

return 0;

}

We must remember to tidy up when the window is destroyed, so we
override the OnDestroy event:

void CSomeGLView::OnDestroy()

{

if(wglGetCurrentContext()!=NULL){

// make the rendering context not current

wglMakeCurrent(NULL, NULL) ;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Drawing points and polygons the easy way with OpenGL 53

}

if (m_hRC!=NULL){

wglDeleteContext(m_hGLContext);

m_hRC = NULL;

}

if (m_hDC){

::ReleaseDC(m_hWnd,m_hDC);

m_hDC = NULL;

}

// Now the associated DC can be released.

CDialog::OnDestroy();

}

So now we can create a window with either GLUT or an MFC application.
A Win32 application would need to ensure that the window style
conformed to the WS_CLIPCHILDREN and WS_CLIPSIBLINGS styles
when the window is first being created and respond to WM_CREATE,
WS_DESTROY messages. Check out Win32Example on the CD for more
details. Most of the examples in this book use MFC as the basis because
the author finds it convenient to create menus and respond to events

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 3.3 Win32 Example program.

54 Drawing points and polygons the easy way with OpenGL

using MFC, rather than case statements the Win32 way. Now that we
have our window and can draw a cube, we will experiment with some
alternative ways of viewing the cube.

Highlighting the vertices

In all the examples so far we have drawn the cube using unshaded
polygons; OpenGL has the facility to draw in several different modes. It is
often useful to highlight aspects of an object so that it can be distinguished
from other objects in a scene. This technique is used extensively in
development engines. If we want to highlight the vertices that make up the
cube then we can append the ‘DrawCube’ function with the following
code:

if (m_drawVertices){

glPointSize(3.0f);

glColor3f(0.5f, 1.0f, 1.0f);

glBegin(GL_POINTS);

glVertex3f(-10.0f, -10.0f, 10.0f);

glVertex3f(10.0f, -10.0f, 10.0f);

glVertex3f(10.0f, 10.0f, 10.0f);

glVertex3f(-10.0f, 10.0f, 10.0f);

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 3.4 Cube with vertices highlighted.

Drawing points and polygons the easy way with OpenGL 55

glVertex3f(10.0f, -10.0f, -10.0f);

glVertex3f(-10.0f, -10.0f, -10.0f);

glVertex3f(-10.0f, 10.0f, -10.0f);

glVertex3f(10.0f, 10.0f, -10.0f);

glEnd();

}

In the example, pressing F2 toggles drawing the vertices by toggling the
Boolean value m_drawVertices. Notice how the glBegin call uses GL_
POINTS instead of GL_QUADS. When GL_POINTS is used each vertex
is drawn individually. The size of the vertex is a single pixel by default. In
this example, ‘glPointSize’ is used to set the vertex size to three pixels.

If the depth buffer is temporarily disabled before the vertices are drawn,
then the hidden vertex will be drawn. In the example F5 toggles the use
of the depth buffer.

Highlighting the object by drawing edge outlines

Another technique to highlight the object is to redraw the object edges.
Here we can use several different methods. OpenGL can use either lines,
in which case each pair of vertices is connected by a line in the current
colour, or line strips where the first two vertices indicate the first line. After
that, each subsequent vertex is connected by a line to the previous. The
final option is to use line loops which behave like line strips with the
addition that the first vertex is connected to the last. In the example I have
used line loops to draw the front and back faces, then used simple lines
to connect these faces. If you experiment with the code, changing the
method of drawing from line loops to line strips, you will see that the front
and back polygons have only three edges highlighted. Activating or
deactivating the depth buffer using F5 will give a clear idea of the effect of
depth testing when displaying even such a simple scene. The section of
code that enables the wireframe drawing is given below. The Boolean
variable m_drawWireframe is toggled using the F3 key.

if (m_drawWireframe){

glColor3f(1.0f, 1.0f, 0.5f);

glBegin(GL_LINE_LOOP);

glVertex3f(-10.0f, -10.0f, 10.0f);

glVertex3f(10.0f, -10.0f, 10.0f);

glVertex3f(10.0f, 10.0f, 10.0f);

glVertex3f(-10.0f, 10.0f, 10.0f);

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

56 Drawing points and polygons the easy way with OpenGL

glEnd();

glBegin(GL_LINE_LOOP);

glVertex3f(10.0f, -10.0f, -10.0f);

glVertex3f(-10.0f, -10.0f, -10.0f);

glVertex3f(-10.0f, 10.0f, -10.0f);

glVertex3f(10.0f, 10.0f, -10.0f);

glEnd();

glBegin(GL_LINES);

glColor3f(0.0f, 0.0f, 1.0f);

glVertex3f(-10.0f, -10.0f, -10.0f);

glVertex3f(-10.0f, -10.0f, 10.0f);

glVertex3f(-10.0f, 10.0f, 10.0f);

glVertex3f(-10.0f, 10.0f, -10.0f);

glVertex3f(10.0f, -10.0f, -10.0f);

glVertex3f(10.0f, -10.0f, 10.0f);

glVertex3f(10.0f, 10.0f, 10.0f);

glVertex3f(10.0f, 10.0f, -10.0f);

glEnd();

}

Summary
At the time of writing there are two competing APIs for getting access to
3D graphics hardware: OpenGL and DirectX. OpenGL is much easier to

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 3.5 Cube with edges highlighted and no depth buffer.

Drawing points and polygons the easy way with OpenGL 57

use and allows access to everything that is currently available in
hardware. It has remained consistent since it was developed in 1992.
DirectX changes radically with each new release. In this chapter you
began what we hope will be an exciting journey of discovery into the
capabilities of the OpenGL engine and how you can leverage it to develop
your own application. In the next chapter we will take these first steps a
stage further before we begin to look at how we can put these techniques
to use in the real-time display of character animation.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 3.6 Cube with edges highlighted with depth buffer.

4 OpenGL lighting and
textures

So far we have looked at the mathematics behind the basic geometry of
computer graphics, the way this geometry can be displayed on a
computer screen and using the standard graphics library, OpenGL, to put
some simple geometry on the screen. This chapter is where things start
to look so much more convincing. Animation that uses some kind of
lighting model has a realism that unshaded models can never match.
While realism may not be your goal in terms of the geometry that you are
displaying, your characters may be extreme caricatures, or have a cute
cartoon feel; the overall display will still benefit from the use of a lighting
model. OpenGL allows the developer a huge amount of flexibility in the
way that your characters and scenes are displayed. Much of this flexibility
stems from the intelligent use of the OpenGL lighting model, lights and
materials. In this chapter we will look first at how to set up a simple lighting
model and then how to set the surfaces of your geometry so that it uses
all the features that OpenGL offers. Finally, we will look at the way that
textures can be added to the surface of the geometry that you are
displaying. Along the way, we will introduce some new OpenGL drawing
techniques that help optimize the drawing routines.

Using lights in OpenGL

In order to use lights in OpenGL lighting calculations must be enabled.
This is done in the usual way by using

glEnable(GL_LIGHTING)

In each implementation of OpenGL there are at least eight lights
available. If you are at all familiar with a CGI program then you will find
these lights easy to understand. If you have ever done any studio
photography then you will find the lights highly desirable. OpenGL lights

OpenGL lighting and textures 59

do not have to be placed on stands, they are perfectly even in the
distribution of light and can be turned on and off at will. You can turn on
some lights while you are drawing some of the geometry in a scene and
other lights to draw different parts of the scene, or even change the
properties of the light halfway through doing a render of the current frame.
In addition to enabling lighting calculations, each light is enabled or
disabled using the following syntax:

glEnable(GL_LIGHTx) 0 ≤ x < 8

will turn the light on and

glDisable(GL_LIGHTx)

will turn the light off.
The lights come in three basic flavours, directional, positional and

spotlights.

Directional, positional and spotlights

A directional light shines on all polygons from the same direction. It does
not matter where the light is placed, it can even be behind the object. All
that matters is that if it points directly down then all polygons will be lit by
a light that appears to shine directly down; similiarily, if it shines to the
right, left or any other direction, all polygons are lit as though their surface
is hit by a light striking the surface at the same angle.

A positional light does not have a direction. It shines out in every
direction, but it does have a location. If the light is placed behind an object
it will look as though it is lit from the rear.

Spotlights have both a location and direction. Because of this they
require an angle that defines how wide the beam that shines from the light
appears; this is called the GL_SPOT_CUTOFF. If this is set to 180° then
effectively the spotlight is a positional light because the beam of light is
cast in a half circle in both directions. If the angle is set to 30° then the
beam of light is 60°. Figure 4.1 shows how this works. Spotlights behave
in a way that is much closer to the way that a real light would interact with
a studio lit scene. Moving a spotlight has an effect and rotating the light
also has an effect. We will look at how to set up positional lights and
spotlights later; for now we will concentrate on directional lights. In some
software, directional lights are called distant lights.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

60 OpenGL lighting and textures

Ambient, diffuse and specular are parameters that all OpenGL lights
share. Each of these parameters has four components, one each for the
red, green, blue and alpha. The ambient parameter sets the level of
illumination that the light throws out that is not connected with position or
direction. This lights all surfaces in the scene regardless of their
orientation to the light. If you want full blacks in your scene then this must
be set to zero. If the scene wants to have a general blue tinge, or orange
tinge, then the ambient level is the best place to start for illumination. The
level that is set for each component is a value between 0 and 1 in the
same way that colours are indicated. The diffuse level is the colour of the
light; if you have a blue light then the diffuse level may well be set to (0.0,
0.0, 0.7, 0.0), which will be a very blue light. The specular component
defines the colour of the beam that lights the highlighted part of a surface
that is shiny. If the material for a polygon is matt, then this parameter will
have no effect. If, however, the material is shiny then it will define the
colour of the specular highlights.

Before we go any further you are highly recommended to play with the
demonstration software for this chapter. Take a look on the CD and find
the GLLighting example in the Chapter04 folder. The software lets you
experiment by adjusting the ambient, diffuse and specular levels of the
light. You are also encouraged to adjust the material properties for the
surface of the sphere that is presented in the OpenGL display. The only
material properties that you can adjust in this demonstration software are
the emission level and the diffuse colour. In order to limit the number of
sliders in the control box, one slider controls all four values for the
ambient, diffuse and specular levels of the light. This is simply a restriction

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 4.1 Cone angle for spotlights.

OpenGL lighting and textures 61

of this software for demonstration purposes; please remember that as a
developer you have full control over all four components of the ambient,
diffuse and specular levels. If you take a moment to play with the
demonstration program then you will realize that it is the combination of
light properties and materials properties that controls the way that
polygons are rendered. Notice that by ramping up the emission level of a
material it acts as though it has its own internal lighting. Try turning the
diffuse level of the light right down but turning the emission level of the

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Table 4.1 OpenGL light parameters

Parameter name Default value Meaning

GL_AMBIENT (0.0, 0.0, 0.0, 1.0) Ambient RGBA levels
GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) Diffuse RGBA levels
GL_SPECULAR (1.0, 1.0, 1.0, 1.0) Specular RGBA levels
GL_POSITION (0.0, 0.0, 1.0, 0.0) (x, y, z, w) position of light
GL_SPOT_DIRECTION (0.0, 0.0, –1.0) (x, y, z) direction of spotlight
GL_SPOT_EXPONENT 0.0 Spotlight exponent
GL_SPOT_CUTOFF 180.0 Spotlight cut-off angle
GL_CONSTANT_ATTENUATION 1.0 Constant attenuation factor
GL_LINEAR_ATTENUATION 0.0 Linear attenuation factor
GL_QUADRATIC_ATTENUATION 0.0 Quadratic attenuation factor

Figure 4.2 GLLighting demo.

62 OpenGL lighting and textures

material up. At the extreme you will simply have a white disc. Before we
look in detail at how this demonstration program works we will have a
short introduction to material properties.

Using materials in OpenGL

Each material has parameters for ambient, diffuse, specular, shininess
and emission. By carefully setting these levels the material can be made
to ignore any ambient light or have a specular colour that combines with
a light’s specular colour in an interesting way. The emission parameter
sets whether the material is self-illuminating or luminous. Shininess has
just the effect you would expect; it can take a value between 0 and 128.
Table 4.2 lists the parameters together with their default values.

It is worth noting that, despite having an alpha setting for most values,
only the alpha value of diffuse is used in the calculations for the alpha
component.

How lights and materials are used in the rendering of a
frame update

Firstly, we use the following enables. In the sample program these are
never altered so are placed in the window creation function.

glEnable(GL_COLOR_MATERIAL);

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT0);

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Table 4.2 OpenGL material parameters

Parameter name Default value Meaning

GL_AMBIENT (0.2, 0.2, 0.2, 1.0) Ambient colour of material
GL_DIFFUSE (0.8, 0.8, 0.8, 1.0) Diffuse colour of material
GL_SPECULAR (0.0, 0.0, 0.0, 1.0) Specular colour of material
GL_SHININESS 0.0 Specular exponent
GL_EMISSION (0.0, 0.0, 0.0, 1.0) Emissive colour of material

OpenGL lighting and textures 63

If we need other lights, then these too must be enabled. If the lights need
to behave as spotlights then we would need to consider the cut-off angle
for the spotlight. If you have looked at any of the Toon3D demonstration
projects then you may be interested to know that I use the following for
spotlights:

glLightf(GL_LIGHTx, GL_SPOT_CUTOFF, coneAngle));

glLightf(GL_LIGHTx, GL_SPOT_EXPONENT, 2.0);

If a light that has been used as a spotlight is later used as a directional or
position light, then you must reset these values to the default, using this
code snippet:

glLightf(GL_LIGHTx, GL_SPOT_CUTOFF, 180.0f);

glLightf(GL_LIGHTx, GL_SPOT_EXPONENT, 1.0);

The code to draw the display is placed in the OnDraw event. MFC uses
this as standard when creating an application template. The window
where OpenGL drawing takes place is derived from an MFC CView class.
The first thing we do is clear the colour and depth buffers and reset the
modelview matrix. Next we set the ambient and diffuse levels for the light.
In this sample we have a single member variable of the document class
for each of these. This is used for all three components of the ambient and
diffuse RGB, with the alpha being set to 1.0. If this MFC style is unfamiliar
then take a quick look at Appendix B, where you can read a brief
introduction to MFC’s Document/View architecture.

Having set up the properties for the light, we move on to set up the
material properties. In this example we set the emission, specularity,
shininess and diffuse colour. Only the diffuse colour acts as a true RGB
value. Finally, before we set the position for the light, we translate and
move the scene, ensuring that the light moves with the object. If the light
position is set after the matrix is cleared and before the translation and
rotation, then the modelview matrix does not affect the values for the light,
since the identity matrix leaves data unchanged. The last manipulation is
to set a position for the light. Here we use a vector with four values, (x, y,
z, w). If w is 0.0 then lighting calculations regard the light as directional. If
w is any other value then lighting calculations assume the light to be
positional. If we were using a spotlight then now would be the time to set
the spotlight’s direction using the following code snippet:

Glfloat spot_rot[] = { -1.0, -1.0, 1.0};

glLightfv(GL_LIGHTx, GL_SPOT_DIRECTION, spot_rot);

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

64 OpenGL lighting and textures

So if we put this together we get the following code:

void CGLView::OnDraw(CDC* pDC)

{
GLfloat flt,v[4];

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

//Set the light properties

flt=GetDocument()->m_ambient;

v[0]=flt; v[1]=flt; v[2]=flt; v[3]=1.0f;

glLightfv(GL_LIGHT0, GL_AMBIENT, v);

flt=GetDocument()->m_diffuse;

v[0]=flt; v[1]=flt; v[2]=flt; v[3]=1.0f;

glLightfv(GL_LIGHT0, GL_DIFFUSE, v);

//Set the material properties

flt=GetDocument()->m_emission;

v[0]=flt; v[1]=flt; v[2]=flt; v[3]=1.0f;

glMaterialfv(GL_FRONT, GL_EMISSION, v);

flt=GetDocument()->m_specular;

v[0]=flt; v[1]=flt; v[2]=flt; v[3]=1.0f;

glMaterialfv(GL_FRONT, GL_SPECULAR, v);

flt=GetDocument()->m_shininess;

glMaterialf(GL_FRONT, GL_SHININESS, flt);

GetDocument()->GetColour(v);

glMaterialfv(GL_FRONT, GL_DIFFUSE, v);

glTranslatef(0.0f, 0.0f, -zvalue);

glRotatef(rot[0], 1.0f, 0.0f, 0.0f);

glRotatef(rot[1], 0.0f, 1.0f, 0.0f);

glRotatef(rot[2], 0.0f, 0.0f, 1.0f);

GetDocument()->GetPosition(v);

glLightfv(GL_LIGHT0, GL_POSITION, v);

DrawSphere(48,32,15.0);

SwapBuffers(m_hDC);

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

OpenGL lighting and textures 65

The call to DrawSphere is a little routine that is included with the code for
this example as a further example of using OpenGL drawing primitives.
The first parameter in the function call defines the number of segments
that will be used in drawing the sphere, the second the number of slices
and the last the radius of the sphere. Take a look at the code to see how
to use two other types of painting, GL_TRIANGLE_FAN and GL_QUAD_
STRIP.

A triangle fan uses the first vertex as a vertex in all subsequent
triangles. The next two vertices define the first triangle; after that, each
subsequent vertex defines a triangle which takes the first vertex and the
previously defined vertex as its three vertices. It is a little more efficient
because it uses fewer vertices in the definition. With quad strips, the first
four vertices define the first quad then each subsequent quad is defined
from the previously defined two vertices and two new vertices. In the
function, triangle fan is used to cap the top and bottom of a sphere and
quad strips form rings of latitude around the sphere. This is only one way
to draw a sphere, a simpler way is to use the GLUT library function:

glutSolidSphere(Gldouble radius, Glint slices, Glint stacks).

But this doesn’t help you create your own drawing functions. Yet another
way is to use all triangles. Hopefully, this short function will show you how
a little bit of trigonometry can go a long way. Any point on a circle centred
at the origin and of radius r is defined as (r cos �, r sin �), where � is an

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 4.3 Vertex numbering for triangle fans and quad strips.

66 OpenGL lighting and textures

angle defined in radians between 0 and 2� (recall that there are 2�
radians in a revolution just as there are 360°). In this function we start by
calculating the radius of the base of the first slice. To do this, imagine that
we are looking at the sphere down the z-axis. Next think of a line pointing
vertically up; we want to rotate this line around by half a revolution divided
by the number of slices. Using this angle we can calculate the distance
from the y-axis to the circle using the sine of the angle together with the
radius of the circle. The sine gives the length of the side opposite the
angle and the cosine gives the length of the side adjacent to the angle.

Having calculated the radius of the top slice, we can use a similar
technique to calculate the position of each vertex. We know the y position
of each vertex in the triangle fan, vertex 0 will have a y value of radius and
all subsequent vertices will have a y value of radius * cos(�/slices). When
considering the x and z values we can think in two dimensions. We simply
need the positions on a circle. This is just the same problem as calculating
the radius of the first slice; each position will be (radius * cos(angle),
radius * sin(angle)) for some value of angle. The angle parameter starts
at 0 and increments by 2�/segments for each subsequent vertex. When
drawing the remaining slices we need two radii and two y values, one for

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 4.4 Calculating the radius of a slice.

OpenGL lighting and textures 67

the top of the quad strip and one for the bottom. The bottom slice uses the
triangle fan method and is effectively the same as the top, only this time
flipped around the x-axis so that the y values are negative.

void CGLView::DrawSphere(int segments, int slices, double radius)

{

//Draw a sphere centred at the origin with radius=radius

//Seqments are the number of polygons around the main axis

//Slices are the number of polygons up and down

int i,j;

double theta,sliceradius, sliceradiusb;

CVector vertex, vertexb, norm;

GLfloat col[3];

GetDocument()->GetColour(col);

//Draw the top

glColor3d(col[0],col[1],col[2]);

glBegin(GL_TRIANGLE_FAN);

//First set vertex 0

vertex.Set(0.0, radius, 0.0);

norm.Set(0.0, 1.0, 0.0);

glNormal3d(norm.x, norm.y, norm.z);

glVertex3d(vertex.x, vertex.y, vertex.z);

//All subsequent vertices use the samey value

vertex.y = radius*cos(PI/(double)slices);

sliceradius = sqrt(radius*radius-vertex.y*vertex.y);

for(i=0;i<=segments;i++){

theta = PI2*((double)i/(double)segments);

vertex.x = sliceradius*cos(theta);

vertex.z = sliceradius*sin(theta);

norm = vertex;

norm.Normalize();

glNormal3d(norm.x, norm.y, norm.z);

glVertex3d(vertex.x, vertex.y, vertex.z);

}

glEnd();

//Draw the middle

glBegin(GL_QUAD_STRIP);

for(j=1;j<(slices-1);j++){

vertex.y = radius*cos(((double)j/(double)slices)*PI);

sliceradius = sqrt(radius*radius-vertex.y*vertex.y);

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

68 OpenGL lighting and textures

vertexb.y = radius*cos(((double)(j+1)/(double)↵
slices)*PI);

sliceradiusb = sqrt(radius*radius-vertexb.↵
y*vertexb.y);

for (i=0;i<=segments;i++){

theta = PI2*((double)i/(double)segments);

vertex.x = sliceradius*cos(theta);

vertex.z = sliceradius*sin(theta);

norm = vertex;

norm.Normalize();

glNormal3d(norm.x, norm.y, norm.z);

glVertex3d(vertex.x, vertex.y, vertex.z);

vertexb.x = sliceradiusb*cos(theta);

vertexb.z = sliceradiusb*sin(theta);

norm = vertexb;

norm.Normalize();

glNormal3d(norm.x, norm.y, norm.z);

glVertex3d(vertexb.x, vertexb.y, vertexb.z);

}

}

glEnd();

//Draw the bottom

glBegin(GL_TRIANGLE_FAN);

//First set vertex 0

vertex.Set(0.0, -radius, 0.0);

norm.Set(0.0, -1.0, 0.0);

glNormal3d(norm.x, norm.y, norm.z);

glVertex3d(vertex.x, vertex.y, vertex.z);

//All subsequent vertices use the same y value

vertex.y = radius*cos(((double)(slices-1)/(double)↵
slices)*PI);

sliceradius = sqrt(radius*radius-vertex.y*vertex.y);;

for(i=segments;i>=0;i–){

theta = PI2*((double)i/(double)segments);

vertex.x = sliceradius*cos(theta);

vertex.z = sliceradius*sin(theta);

norm = vertex;

norm.Normalize();

glNormal3d(norm.x, norm.y, norm.z);

glVertex3d(vertex.x, vertex.y, vertex.z);

}

glEnd();

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

OpenGL lighting and textures 69

Using textures with OpenGL

The last major part in the armoury of our 3D engine must be texture
mapping. When low polygon scenes use bitmaps on the surface of the
polygons they are transformed from ridiculously simplistic to at least
vaguely plausible, and as the polygon count goes up they can become
ever more realistic. Texture mapping is no black art and OpenGL makes
it quite easy to achieve. The main stages to placing textures on your
polygons are:

1 Loading the bitmaps into memory.
2 Informing OpenGL how the bitmaps are stored in memory.
3 Creating a texture ID number.
4 Binding the texture ID and setting up wrapping and filtering

parameters.
5 Generating the texture object.
6 Calculating texture coordinates for each vertex of each polygon that

uses a texture.
7 Choosing a texture rendering mode.
8 Enabling textures.

Let’s look at each of these in turn.

Loading the bitmaps into memory

In Chapter 6 we will explore the techniques necessary to load windows
bitmap files (bmp), Truevision Targa files (tga) and JPEG compliant files
(jpg). In all the loaders the result is converted to an uncompressed 24-bit
windows bitmap. Windows bitmaps are aligned in such a way that each
raster line is exactly divisible by 4 (DWORD aligned). But another aspect
of the loader is to ensure that the image stored in memory has sides that
are an exact power of 2. If the image was saved as (150 × 62), then it will
be loaded then resized to 128 × 32. Here the next power of 2 down is
used. The resizing method is simply to duplicate or delete pixels and does
not contain any intelligent filtering technique. If you do use the loading
source code provided, then I recommend resizing your bitmaps using a
good bitmap editor, such as Paint Shop Pro or Photoshop; the result will
be far better since good filtering algorithms are used in the resize. Space
prohibits going into great detail regarding bitmap loaders and file formats.
If you intend to write your own loader then get hold of a good book on
bitmap file formats. For most purposes the loaders that come with this

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

70 OpenGL lighting and textures

book will be sufficient. Having got the bitmap into memory it will be stored
so that the first pixel in memory is actually the first pixel of the last
rasterline; all the data of this last rasterline follow before it moves on to the
next to last rasterline and so on until the top line is read. The upside-down
nature is common to the Windows Bitmap format.

Informing OpenGL how the bitmaps are stored in memory

OpenGL is able to work with many different storage methods. Four-byte
alignment is just one method; 1-, 2- and 8-byte alignments are also
available. Because we are resizing the bitmap to a power of 2 for the width
and height, it is already aligned, so we can set the alignment to 1; now no
additional bytes are expected at the end of a rasterline regardless of the
size of the bitmap. Another setting that you may sometimes use is byte
ordering. This varies between processors. Some processors, notably
Intel, have the lower value byte before the higher value byte. In others, the
opposite is true. Setting up the way that pixels are stored can mean
setting the byte order. The native byte ordering for the computer on which
OpenGL is running is the default setting.

If you wish to extract a section of a bitmap then you will need to set
values for the row length, and the number of pixels and rows to skip. The
values for these three parameters define a small rectangle within the full

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 4.5 Parameters necessary for extracting a sub image.

OpenGL lighting and textures 71

bitmap. Figure 4.5 shows how these values define the rectangle within the
bitmap.

Table 4.3 lists a full set of possible values that can be used when setting
up the pixel storage parameters for unpacking a bitmap image into
OpenGL texture memory.

Creating a texture ID number

To use textures efficiently in OpenGL you need to use texture objects.
Some older cards may not be able to work with texture objects, but any
recent card handles them very efficiently, storing the pixel data on the
card rather than in main memory. Before OpenGL can handle these data
it needs to know which texture object you are dealing with. You need to
get a number for this object, then to use this texture object in future you
inform OpenGL that the texture with this ID is the texture object to be used
in subsequent texture operations. You use

void glGenTextures(Glsizei n, Gluint *texIDs)

to generate ‘n’ ID numbers. You must store these values because you will
need them when deleting the texture objects with the IDs you have just
generated.

Binding the texture ID and setting up wrapping and
filtering parameters

In order to use the texture objects they need to be bound using
glBindTexture(). The first call to glBindTexture() creates the texture object

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Table 4.3 glPixelStore() parameters

Parameter name Default value Range

GL_UNPACK_SWAP_BYTES FALSE TRUE/FALSE
GL_UNPACK_LSB_FIRST FALSE TRUE/FALSE
GL_UNPACK_ROW_LENGTH 0 Any non-negative integer
GL_UNPACK_SKIP_ROWS 0 Any non-negative integer
GL_UNPACK_SKIP_PIXELS 0 Any non-negative integer
GL_UNPACK_ALIGNMENT 4 1, 2, 4, 8

72 OpenGL lighting and textures

with the ID passed to the routine. You can have one- or two-dimensional
texture objects. We make no use of one-dimensional texture objects in
this book; however, you need to pass two parameters to the glBind-
Textures() function, the first declaring whether the texture object is one- or
two-dimensional.

glBindTexture operates in one of three ways. The first call using a
texture ID generated by glGenTextures() is to create the object;
subsequent calls make the texture the active texture. The final alternative
is to call glBindTexture with a value of 0. This clears the previously active
texture.

A texture object has many parameters other than simply the image
data. The most important of these is the method used to enlarge and to
shrink pixels in an image. The quickest way to enlarge a pixel is to copy
it to more than one pixel on the target screen. The quickest way to shrink
an image into a pixel is to delete unnecessary pixels and just choose the
pixel nearest to the target position. The smoothest way to do this is to
consider surrounding pixels in the calculation and derive a weighted
average of pixels around the target position for shrinking the pixel and
interpolation of surrounding pixels when enlarging. Since we are
concerned with performance we choose the quickest not the smoothest
solution in the examples in this book.

The other important parameter is how it handles painting the texture if
the calculation tries to look for a pixel outside the width and height of the
bitmap. The choice is to repeat the texture so that it tiles or to clamp the
value of the pixels around the edge of the bitmap. The full list of
parameters stored within a texture object are image data, width, height,
border width and height, internal format, resolution of the components,
minification and magnification filter wrapping modes, border colour and
texture priority. Their values are listed in Table 4.4.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Table 4.4 glTexParameter*() parameters

Parameter name Values

GL_TEXTURE_WRAP_S GL_CLAMP, GL_REPEAT
GL_TEXTURE_WRAP_T GL_CLAMP, GL_REPEAT
GL_TEXTURE_MAG_FILTER GL_NEAREST, GL_LINEAR
GL_TEXTURE_MIN_FILTER GL_NEAREST, GL_LINEAR
GL_TEXTURE_BORDER_COLOR RGBA component values
GL_TEXTURE_PRIORITY [0.0 to 1.0] for current texture object

OpenGL lighting and textures 73

Generating the texture object
Now we have set up all the necessary parameters, it is time to get the
pixel data from the memory store. This is done with the function
glTexImage2D. The details of this function call are

void glTexImage2D(Glenum target, Glint level, Glint internalFormat,
Glsizei width, Glsizei height, Glint border, Glenum
format, Glenum type, const Glvoid *pixels);

Nine parameters, aargh! But fear not, it is fairly easy to use. Target is
whether we are dealing with real data or a proxy. A proxy is used to enable
the developer to try to create a texture object and then check whether this
would work. Texture memory is a limited resource and the developer could
decide to size the texture down so that it will fit into memory or clear out
other textures that they may feel have a lower priority. A texture object is not
really created using a proxy and the value for the pixel data passed to it
should be NULL. The level parameter allows a single texture object to use
more than one bitmap; the base level is 0, subsequent levels scale the
bitmap down. OpenGL can then use a smaller version of the bitmap when
the texture object is more distant. More on using multiple levels of detail
later. The internalFormat can be one of 38 different constants that define
how the pixel data are stored when the texture object is created. In the
example we use GL_RGB to store the pixels as RGB values. Width and
height are self-explanatory. A texture can have a coloured border, turned on
or off using the border parameter, 0 for no border and 1 for a border. The
format dictates the way that pixel data are stored before unpacking; in the
sample we use GL_BGR_EXT, which is the way that standard windows
bitmaps are unpacked. The data type in our example is GL_UNSIGNED_
BYTE. Finally, the last parameter is the actual pixel data.

The final code snippet to create a texture object is:

glGenTextures(1,&m_texID);

glBindTexture (GL_TEXTURE_2D, m_texID);

glPixelStorei GL_UNPACK_ALIGNMENT, 1);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,↵
GL_NEAREST);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,↵
GL_NEAREST);

glTexImage2D(GL_TEXTURE_2D,0,GL_RGB,tex.GetWidth(),tex.↵
GetHeight(),0,GL_BGR_EXT,GL_UNSIGNED_BYTE,tex.↵
GetPixelAddress(0,0));

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

74 OpenGL lighting and textures

Calculating texture coordinates for each vertex of each
polygon that uses a texture

When we draw with textures we need to inform OpenGL which part of the
2D texture to use on a polygon. We do this at the vertex level; for each
vertex that we draw we need to give a value for the texture coordinates.
These coordinates are values between 0.0 and 1.0 for both the width and
the height. To pass the value of the lower right coordinate of a bitmap to
OpenGL you use (1.0, 1.0) rather than (bitmap_width, bitmap_height).
Using this method a single bitmap can be wrapped around a highly
complex object. Generating the values for these coordinates can involve
quite a complex interface and we will look at various techniques in
Chapter 6.

Choosing a texture rendering mode

There are many ways that you can tell OpenGL to use your texture
objects. The different methods are set using glTexEnv*(). In the software
in this book we always modulate the texture with a white polygon surface,
this is set up using:

glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

You are advised to look through the documentation available with Visual
C++, do a search for glTexEnf in the MSDN help engine, or via the
OpenGL website (www.opengl.org) to see how using different environ-
ment modes may work more effectively with your application.

Enabling textures

The last thing we need to do is enable textures using:

glEnable(GL_TEXTURE_2D);

The function that draws the cube combines textured and untextured
surfaces. It is in the folder ‘Chapter04’ on the CD and is called
GLTextures.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

OpenGL lighting and textures 75

void CWGLExampleDlg::DrawCube()

{

//Draw textrued faces

glEnable(GL_TEXTURE_2D);

glBegin(GL_QUADS);

// front

glColor3f(1.0f, 1.0f, 1.0f);

glTexCoord2f(1.0f,0.0f);

glVertex3f(-10.0f, -10.0f, 10.0f);

glTexCoord2f(0.0f,0.0f);

glVertex3f(10.0f, -10.0f, 10.0f);

glTexCoord2f(0.0f,1.0f);

glVertex3f(10.0f, 10.0f, 10.0f);

glTexCoord2f(1.0f,1.0f);

glVertex3f(-10.0f, 10.0f, 10.0f);

// back

glTexCoord2f(0.0f,1.0f);

glVertex3f(10.0f, -10.0f, -10.0f);

glTexCoord2f(1.0f,1.0f);

glVertex3f(-10.0f, -10.0f, -10.0f);

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 4.6 Using OpenGL textures.

76 OpenGL lighting and textures

glTexCoord2f(1.0f,0.0f);

glVertex3f(-10.0f, 10.0f, -10.0f);

glTexCoord2f(0.0f,0.0f);

glVertex3f(10.0f, 10.0f, -10.0f);

glEnd();

glDisable(GL_TEXTURE_2D);

//Now just draw coloured faces

glBegin(GL_QUADS);

// left

glColor3f(0.0f, 0.0f, 1.0f);

glVertex3f(-10.0f, -10.0f, -10.0f);

glVertex3f(-10.0f, -10.0f, 10.0f);

glVertex3f(-10.0f, 10.0f, 10.0f);

glVertex3f(-10.0f, 10.0f, -10.0f);

// right

glColor3f(1.0f, 1.0f, 0.0f);

glVertex3f(10.0f, -10.0f, 10.0f);

glVertex3f(10.0f, -10.0f, -10.0f);

glVertex3f(10.0f, 10.0f, -10.0f);

glVertex3f(10.0f, 10.0f, 10.0f);

// top

glColor3f(1.0f, 0.0f, 1.0f);

glVertex3f(-10.0f, 10.0f, 10.0f);

glVertex3f(10.0f, 10.0f, 10.0f);

glVertex3f(10.0f, 10.0f, -10.0f);

glVertex3f(-10.0f, 10.0f, -10.0f);

// bottom

glColor3f(0.0f, 1.0f, 1.0f);

glVertex3f(-10.0f, -10.0f, -10.0f);

glVertex3f(10.0f, -10.0f, -10.0f);

glVertex3f(10.0f, -10.0f, 10.0f);

glVertex3f(-10.0f, -10.0f, 10.0f);

glEnd();

}

Using multiple levels of detail

When sizing down a bitmap using the GL_NEAREST option, the results
can be a great distortion of the original bitmap. Since we have chosen to
skip pixels when a 64 × 64 texture is drawn at 8 × 8, it is using only an

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

OpenGL lighting and textures 77

eighth of the pixels across and an eighth of the pixels down. If it is
important that the image still looks like the original, then as a developer
you have a choice, you can sacrifice performance and use filtering to
create the shrunken image, or you can pre-filter a set of bitmaps and use
the most appropriately sized image from the pre-filtered set. This is what
mipmaps are about. They are created once using filtering techniques then
OpenGL uses the best size image from the set when it is drawing the
display. The GLU library has a function call that makes creating mipmaps
as easy as creating a single texture. Use

int gluBuild2DMipmaps(Glenum target, Glint internalFormat, Glsizei
width, Glsizei height, Glint border, Glenum
format, Glenum type, const Glvoid *pixels);

instead of glTexImage2D when creating the texture object and all the
levels of detail will be automatically created. OpenGL will know which
bitmap level to use and as a developer you use the texture object in the
same way as one with a single level. If you want more control then you
can create your own mipmaps using multiple calls to glTexImage2D with
different levels set.

Summary

So there we are, lights and textures, our armoury is complete. In the last
two chapters we have breezed through an introduction to OpenGL. If you
intend to develop your own engine then this should provide the
foundation. With space at a premium I have only included those parts of
OpenGL that we are going to use extensively in later chapters. Take a
look at the bibliography to see where to go for further information on using
OpenGL in different ways. The next thing we need is some geometry so
that we can start to create interesting real-time animations.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

5 Creating low polygon
characters

This chapter is something of a departure from the rest in that it deals with
the subject of real-time character animation from the artist’s perspective.
The reasoning behind this is entirely personal. I started life as a cartoon
animator and, as an artist that writes code, I think that sometimes it is
clear that code is written that pays scant regard to the user’s needs. Most
readers of this book will be interested in the code examples, but if you are
keen to excel at real-time character animation then you definitely need to
know the artist’s problems and concerns. If you decide to skip this chapter
then, at least as a result of the examples on the CD, you have two low poly
models to play with.

Modelling software

At the time of writing, January 2001, the leading CGI packages are
Softimage, Maya, Rhino, 3DS Max and Lightwave 3D. I choose to
illustrate the modelling process using my preferred software, Lightwave
3D. Lightwave 3D is a polygon modeller, unlike Softimage, which in the
latest version has no polygon tools at all. In fact, it ships with the old
version in order to provide polygon modelling tools. The other reason for
choosing Lightwave 3D is the excellent developer support that is available
free via the mailing list. See the back of the book for useful sources of
support. The final reason for choosing Lightwave 3D is the fact that the file
formats for models and animation are public domain and the available
documentation is both comprehensive and accurate. Some CGI software
developers have, in recent years, kept their file formats under wraps
unless you become part of a very expensive developer network.

Choosing a modelling package

Following the examples in this chapter we are going to create two
characters. One is the typically low polygon super woman, where an

Creating low polygon characters 79

alarming amount of polygons are devoted to the upper body! The other a
very cartoony character. As an animator of some 20 years’ experience, I
think it is at least disappointing that so much computer animation attempts
to create a realistic interpretation of the real world, some more
successfully than others. Animation allows the creators to develop fantasy
lands that no one will ever experience any other way. As a developer I
encourage you to develop content that provides a personal view of the
world rather than a faithful recreation of reality. But, with a view to sales,
I have chosen to take the well-trodden route of the sexy girl.

Modelling the head

When creating our model we are aiming at around 1000 polygons for the
central character. The supplied software gets 30 frames per second from
5000 poly scenes on a 800 MHz machine with a Nvidia GeForce 2 graphics
card. In no time at all that spec will seem ludicrously low, but you will learn in
later chapters how to scale your models for higher end platforms using
subdivision surfaces. Lightwave 3D has an option to use subdivision
surfaces, but the algorithm used is different from the interpolating one
discussed later in this book. If you do work through the tutorial in the
Lightwave package, then by all means use the Tab key to get a smoother
subdivided mesh, but bear in mind that this smoother mesh is inside the
cage rather than sitting on the cage. This has the effect of making the limbs
of the character particularly appear slimmer than they will appear if you
choose to display either the actual geometry modelled or a subdivided
mesh based on this geometry, but using an interpolating algorithm.

The principal tools we will use to create the mesh are:

� Point Creation Tool
Using the point creation tool and the three standard views, Top, Front
and Side, you can create a single vertex in 3D space.

� Polygon Creation Tool
By selecting points and then choosing this tool a polygon is created with
the selected vertices.

� Weld
Any vertex can be welded to any other vertex. An extension of this for
Lightwave 3D modeller is Multiweld, which is provided on the CD.
Multiweld is an LScript plug-in for Lightwave that welds points based on
their selection order. The first point selected is welded to the second
point selected, the third to the fourth, and in general point 2n – 1 is welded
to the point 2n. The result is, for 2n points, n welded points. This

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

80 Creating low polygon characters

technique is useful for joining heads to bodies, legs to hips and arms to
shoulders.

� Drag
This tool allows you to move a single point or a line of points.

� Move
This tool moves the current point or polygon selection.

� Rotate
This tool rotates the current point or polygon selection.

� Smooth Shift
This tool creates new geometry by taking a selected polygon(s) and
extruding it along the vertex normals by an amount specified.

� Bevel
This tool insets a polygon(s) by a specified amount.

� Knife
This slices through the geometry, creating new edges and dividing
polygons where they have been sliced.

� Magnet
By defining an area the user can move a set of points with fall-off.

We will look in more detail at each tool as we use it for the first time.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 5.1 Front, Side and Back view sketches of ‘Charlie’.

Creating low polygon characters 81

The importance of drawing

A sketch is very useful when creating low polygon models. By using the
sketch as a reference throughout the modelling process, the relative scale
of the polygons you use to define your character is constantly available.
The more accurate your drawing the easier you will find the modelling
process. I used the sketches shown in Figure 5.1 as a backdrop for the
Front and Side views when modelling ‘Charlie’.

In the sketch the pencil suggests the stretching of the fabric of the
costume. In low polygon modelling you make no attempt to recreate these
creases with your geometry; this detail will be left for texture mapping,
which is covered in detail in the next chapter. The aim of your modelling
is to define the main volume of the character. You might find it useful while
modelling to add some relevant surface colours to your polygons to help
when judging the results.

Triangles or quads

Ultimately, your character is going to be a mesh that deforms as the
character goes through her paces. As she deforms her vertices, any
polygons that have more than three vertices will become non-planar.
Figure 5.2 (see page 82) shows the problems associated with non-planar
polygons. The polygon at the top left appears to be planar. As it rotates,
however, it is clear that it is far from planar. This situation causes the
render engine great difficulty in determining whether a polygon is front or
back facing. As you will recall, this is done using the order in which the
vertices appear when rendered on in screen coordinates. The same
diagram illustrates the polygon split into two triangles. Now it is clear how
the geometry should be rendered.

The problem of non-planar polygons is that the rendering software will
be considering triangles. If you have a four-sided polygon, then the
renderer will effectively split this into two triangles. If one of these triangles
is angled in such a way as to appear to be back facing, then your model
will develop holes. For this reason your mesh must be triangular. But
modelling with a triangular mesh is hard. It is always easier to model with
a combination of quads and triangles. So what to do about those quads.
All CGI packages have the ability to change a mesh into a triangular
mesh, but this is done without regard to the overall geometry. With low
polygon models the direction in which a quad is split into two triangles
makes a great difference to how the deforming mesh will appear when
animating. There are intelligent triple engines available that attempt to put
the edge where you would choose. No intelligent triple will do as good a

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

82 Creating low polygon characters

job as an experienced artist, but when time is precious there is often no
alternative. The areas of particular concern with respect to the way a quad
mesh is tripled are where the mesh will be bent the most. These areas of
maximum deformation can often be treated independently. If a mesh
contains 1000 triangles, then it is probably important to make sure that
around 100 of these are tripled correctly. Around the armpit, elbow and
knee are the key areas. Polygon modelling software will have the ability to
make a new polygon from a point selection, then remove the old polygons
that have the wrong orientation. Figure 5.3 shows what can happen
around a knee joint if the polygon tripling chooses the wrong diagonal for
the division. Good tripling can make an enormous difference to the way
the silhouette of a mesh appears when deforming.

Making a start with the head

All modellers find their own methods. Some like to start with a ball or a box
and deform it into the shape they are aiming at. Others like to start with a
blank sheet. I chose one method for the head and another for the body.
When creating a head I prefer to build the polygons from scratch, but
when creating a body I like to start with a basic mesh. At this point all
generality falls over and we look at how to build this geometry with
Lightwave 3D. At the time of writing, the latest Lightwave version is 6.5.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 5.2 The problems of non-planar polygons.

Creating low polygon characters 83

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 5.3 How the tripling of quads can affect the rendering of a deformable mesh.

Figure 5.4 The modeller interface with Lightwave 6.5.

84 Creating low polygon characters

For basic low polygon mesh creation, all versions of Lightwave are just as
useful. Lightwave’s user interface is shown in Figure 5.4.

This is typical of a modeller, splitting the screen into four user views.
Three of the views are orthographic, showing no perspective foreshorten-
ing. The interface is very configurable but by default the top left view
shows a view looking down the y-axis from above. Left and right in this
view is the x-axis, and up and down represents the z-axis. Bottom left is
the front view looking straight down the z-axis. In this view left and right
are again the x-axis, but up and down is the y-axis. Bottom right shows the
side view with left and right representing the z-axis and up and down
again representing the y-axis. The final view in the top left is a perspective
view shown using OpenGL rendering. Clicking on the rotate icon for this
view can rotate this view and the position can be moved using the
transform icon. At any time, pressing the ‘g’ key in an orthographic view
centres the view over the position of the mouse. The less than and greater
than keys (‘<’ and ‘>’) zoom in and out. Pressing the ‘a’ key scales the
views so that the model is fully visible in all the views. When making a
model you will use both point selection and polygon selection modes,
which are activated by pressing the appropriate button at the bottom left
of the screen. In point selection mode, clicking on any point in the views
will select that point; if you keep the left button down then you can select
several points. Having released the left mouse button, clicking on any
selected point deselects it. To add to the selection press the shift key while
clicking on a point. To clear a selection click in the grey area to the bottom
left of the screen. Polygon selection is done in much the same way, but
instead of clicking on a point you click on an edge and any polygons that
share this edge are selected. By releasing the left mouse key and then
clicking on selected polygons in one of the three views, you can easily
select just the polygons that you want to work on. If you have a selection
then you can zoom in to this by pressing the ‘a’ key while pressing
shift.

We will start by loading a backdrop image. If you are working along with
this tutorial then you will find a side and back view for ‘Charlie’ in the
‘Chapter05\Charlie\Images’ folder on the CD. The images are called
‘FrontSketch.tga’ and ‘SideSketch.tga’. To load a backdrop image, press
‘d’ to open the display options dialog box. Select the ‘Backdrop’ tab. The
front view is number 4, so select 4 and from the image dropdown choose
‘Load image’. Navigate to the appropriate file and click open. Repeat for
view 4, only this time choose the side view. If you selected correctly then
you should have a view like that in Figure 5.5. To view close in on the face
use a combinaton of the ‘g’ key to centre the view over the mouse cursor
and the ‘>’ key to zoom in.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Creating low polygon characters 85

This rather simple sketch will help when creating the geometry for the
face. The first step is to create some polygons for the mouth. To do this,
select the point tool. This tool is available under the ‘Create’ tab at the top
of the screen. Having selected ‘Create’, the buttons on the left will include
‘Point’ near the bottom left. Select this tool. Using the point tool you can
create points by clicking with the right mouse key. Click around the
outside of the lips and again around the inside. Because we are aiming at
a symmetrical face, we can just build one side of the face and, having
accomplished this, we can mirror and weld the points where both sides
join to create the final result. Figure 5.6 shows the first few polygons in the
construction of the face.

To arrive at this result I first created the points that form the polygons
around the lips. I then selected four points in a clockwise direction. Then,
using the ‘Make polygon tool’, which can be found under the ‘Create’ tab
and is named ‘Make Pol’, we turn this selection of points into a single
polygon. Repeat this for all the points in the lips. Then choose ‘Polygon
Selection’, you should find that all your polygons are selected, having just
been created. If not, then select them by drawing a ring around them,
while pressing the right mouse button. Now press the ‘q’ key; this brings
up a basic surface dialog. Here you can give this set of polygons a surface
name. Type in ‘Lips’ and set the surface colour to red, set specularity to
60 per cent and click the smooth button. This will ensure that the lips
appear smoothed rather than faceted. At this stage the geometry for the
lips will be correct in the Front view only. In the Side view it will be totally
flat. Continue to build polygons until you arrive at the model in Figure 5.6
in the Front view. Now it is time to add depth to this geometry. To do this
select points using the ‘Point Selection Tool’ and then press the ‘t’ key,
which activates the ‘Move Tool’. This tool allows you to move the
selection, whether the selection is a point set or a polygon set. It is easy

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 5.5 Using a backdrop image in Lightwave 3D.

86 Creating low polygon characters

to get confused about which point in the Front view represents a point in
the Side view. If in doubt waggle the point about and check to see what is
moving in the Side view. Remember that to deselect a set of points
choose the ‘Point Selection Tool’ and then click in the grey area to the
bottom left of the screen. Hopefully you have been able to create this
geometry and colour the polygons using the ‘Surface’ dialog box. But, if
you feel like cheating, load ‘Chapter05\Charlie\Objects\Face01.lwo’,
which is the model that you can see in the screen grab. It is now time to
mirror this geometry and weld the points around the axis. The ‘Mirror Tool’
is activated using Shift-V or by choosing the ‘Multiply’ tab and selecting
the ‘Mirror’ button. Click to define the axis and drag the mouse. A mirrored
copy of the geometry is created. Deselect the tool and choose ‘Point
Selection’; click on a point around the join. If this point is indicated as a
single point then the ‘Mirror Tool’ has successfully welded the points
together. If you have any points that are not welded then weld them
together now using the ‘Weld Tool’, which can be found under the ‘Detail’
tab. An alternative to welding a pair of points at a time is to use the

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 5.6 Early work on Charlie’s face.

Creating low polygon characters 87

‘Multiweld.ls’, Lscript plug-in which is available on the CD under ‘Utilities’.
To use this, use the ‘Point Selection Tool’ to select a point on one side of
the join and a point on the other. Having selected several pairs of points
in this way, select the ‘Construct’ tab. Near the bottom left of the screen
choose the Lscript dropdown button and select LW_Lscript; from the file
open dialog box choose ‘Multiweld.ls’. This simple plug-in joins pairs of
points and welds them into a single point. At this stage you should have
the face shown in Figure 5.7.

Creating Charlie’s body

Now it is time to start on Charlie’s body. The Lightwave interface uses a
layer style, in much the same way as a Photoshop or Paint Shop Pro
bitmap file can use several layers in the creation of the final image. Having
created the face in layer one, we will now move to layer two to start work
on the body. The layer palette is in the top right corner of the screen. Here
you will see 10 rectangles cut through by a diagonal. If you click in the
lower part then you set this as the active background. A background in
Lightwave shows through as a black line image in all the views. It is useful
for aligning your geometry to existing models. This is precisely what we
wish to do now. So click on the upper part of layer two and the lower part

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 5.7 Stage 2 in creating Charlie’s face.

88 Creating low polygon characters

of layer one. You should be able to see the face as a black line in all the
views. If you have been working through the tutorial then you will have the
backdrop images as a useful guide. Use the ‘g’ and ‘<’ keys to zoom out
and recentre the views so that all of the guide backdrops are visible. Step
one is to create the waist. We will use the disc tool. This is accessed from
the ‘Create’ tab. Click on the ‘Disc’ button then drag an ellipse in the ‘Top’
view. The ellipse will define the size of Charlie’s waist. Before leaving this
tool, press the ‘n’ key. This brings up a numeric dialog box. This allows
you to set various parameters for the disc tool. Many of Lightwave’s tools
have numeric options that are all accessed via the ‘n’ key. In the option for
the number of sides, select 16. Drag again in the ‘Front’ view and you will
see an elliptical cylinder appear. This mesh has two polygons with 16
vertices. These two polygons are likely to cause havoc with any real-time
engines. So it is best to remove them. The problem polygons are the top
and bottom faces of the cylinder. Draw a ring around one of them using
the right mouse button in ‘Polygon Selection’ mode and when the polygon
goes yellow you can delete it by pressing the ‘delete’ key. An alternative
way to select polygons with more than four sides is to select the ‘Polygon
Statistics’ dialog box by pressing the ‘w’ key. Using this dialog box you can
quickly find geometry that may cause problems with the real-time engine.
The dialog box contains buttons to select ‘+’ or deselect ‘–’ polygons with
one, two, three, four or more than four sides. If you are working through
this tutorial then this dialog box should indicate one polygon with more
than four sides. Press the ‘+’ button next to this and the offending polygon
should be highlighted in yellow. Again, to delete the polygon press the
‘delete’ key. You should now have a cylinder with no top or bottom.

To add geometry we will knife through the upper part of the cylinder in
the ‘Front’ view. Select the ‘Knife Tool’ under the ‘Construct’ tab. Draw a
line in the front view by clicking on the ‘Front’ view and then dragging the
handles of the line. Press the ‘Space’ bar to confirm the knife action. You
should now have an additional row of points in the elliptical cylinder.
Because Charlie’s body is symmetrical we are going to delete the left half
so that we can concentrate on the right half for the construction. Once we
have got near to completing the right half, we will mirror it in just the same
way as we did with the face, welding the points along the mirroring axis.
To delete the left half, simply draw a ring around the polygons on the left
in ‘Polygon Selection’ mode and press the delete key. The highlighted
polygons will be deleted. Now select the upper row of points by switching
to ‘Point Selection’ mode and drawing a ring around these points using
the right mouse button. Press the ‘t’ key to activate the ‘Move’ tool and
drag these up until they are at shoulder height. Now knife through the
geometry just below the bust line. Highlight this latest row of points and

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Creating low polygon characters 89

use the ‘Stretch’ tool, which is accessed using the ‘Modify’ tab or by
pressing the ‘h’ key. The stretch tool allows you to move a group of points
or polygons. The first click defines the centre of the stretch. Dragging the
mouse then enlarges or shrinks the selection in the axis of the drag. You
want to stretch this row of points until the size of this section is
comparable to the sketch. It is now that you will realize the usefulness of
this simple sketch. Otherwise, adding geometry requires a very good eye
and lots of experience. Repeat the knifing and stretching until you have
four new rows of points. Take a look at the object called ‘Body01.lwo’ in
the Objects folder for Charlie to see where you need to have arrived at.

It is now time to cap the neck area. To do this, highlight the upper row
of polygons and press the ‘=’ key. This hides any geometry that is not
selected. This does not mean it is deleted; it is simply hidden from view.
Pressing the ‘\’ key at any time will restore the full geometry. To cap the
neck area we will make some polygons out of sets of four vertices in the
top row of points. The outer polygon will have just three vertices. By
selecting the newly created polygons and choosing the ‘Smooth Shift’ tool
we can extrude this set of polygons and create a new row. Smooth shift
is accessed from the ‘Multiply’. The selection of polygons will be shifted
along the vertex normals as you drag left and right. The neck is just 12
vertices in a row so we must weld some points together to achieve this.
Take a look at ‘Body02.lwo’ to see the stage we have arrived at.

To continue we need to ‘Smooth Shift’ polygons near the armpits to
create the geometry that will form the arms. This will be knifed to create
an indent for the elbow. Knife through the lower section and form the hips
in the same way that we have created the upper body. The lowest row of
points will be used to form an area in which to create the legs. Draw a ring
around this lowest row of points and press ‘=’ to show just this selection.
In the ‘Top’ view select just the front and back points for the points nearest
the middle and weld these together. Repeat this for the next points. Then,
using the ‘Drag’ tool reshape the remaining points so that they form a
hexagon. Select these points and choose ‘Make Pol’ to create a polygon
from these points. Press the ‘\’ key to show again the full geometry and
select just the newly created polygons. ‘Smooth Shift’ allows you to create
the beginnings of a leg. The ‘Knife’ and ‘Stretch’ tools will allow you to
shape this leg close to the geometry of the backdrop images. To get closer
to the final geometry you will need to use a combination of the ‘Drag’ tool
and the ‘Move’ tool with point selections to drag and move the points into
their final locations. This part of the process is all about judging which
points are which in the user views. Lightwave 6 allows you to select points
in the perspective view, which certainly makes a difficult to locate point
much easier to find. ‘Body03.lwo’ is the stage we have now reached.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

90 Creating low polygon characters

To add Charlie’s collar use the ‘Point Selection’ tool to select the points
where the base of the collar will be formed. Copy this point selection by
pressing the ‘c’ key. You can then paste this to another layer. Move these
new points to where the top of the collar will be. Then press ‘c’ again to
copy the new points. Move back to the original layer and paste the points.
Now use the ‘Point Selection’ tool to select the base points and the new
points. Press the ‘=’ key so that only the selection is visible and select sets
of four points and use ‘Make Pol’ to turn the point selection into a polygon.
If everything went correctly then ‘Charlie’ should be the proud owner of a
new collar.

Creating Charlie’s hands and feet

To form Charlie’s hand, we start with the last two polygons of her left arm
and select these. Using ‘Smooth Shift’, extend these polygons out to form
the area where Charlie’s palm will be. We need three polygons to create
the thumb, index finger and remaining fingers. To get three polygons

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 5.8 Creating Charlie’s upper body.

Creating low polygon characters 91

repeat the ‘Smooth Shift’. Use one side polygon and the two end polygons
to form the digits. Because ‘Smooth Shift’ moves a set of polygons
together we will use the ‘Bevel’ tool. This tool deals with each polygon in
isolation. In addition to being able to drag the mouse left and right to move
the new geometry along the vertex normals, ‘Bevel’ allows you to enlarge
or shrink the end polygon. Use this feature to shape the fingers. You
should by now have a roughly shaped hand. We are dealing with a low
polygon character so we cannot put very much detail into a hand, but it is
important that the shape is at least a rough representation of a hand. In
much the same way we arrived at the final geometry for the body, use
‘Drag’ and ‘Move’ with point selections to shape the hand. Having created
the left hand use the ‘Polygon Selection’ tool to highlight the left hand and
then use the ‘Mirror’ tool to duplicate a mirrored image of this polygon
selection. Now delete the end polygons from Charlie’s right arm and weld
the free-floating right hand to the end of her arm.

For the feet, we first ‘Smooth Shift’ the end polygons of the left leg to
form the left ankle. In the same manner as the hands we will create a
single foot. Having shaped the foot to our satisfaction, we highlight this

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 5.9 Creating low polygon feet and hands.

92 Creating low polygon characters

group of polygons and mirror them to create the right foot, welding the
right foot onto the polygons at the end of the right leg. Then change the
selection to the front face of these new polygons. Using ‘Smooth Shift’
again, this time the polygons will be created pointing forward rather than
down. Select the back lowest polygon and ‘Smooth Shift’ this to form the
heel. Knife through the forward-facing polygons twice. You now have all
the polygons necessary to shape a foot. The final shaping is done using
a combination of dragging and moving of point selections. The last task in
creating Charlie’s body is to add the top of her boots. This is done in the
same way we created her collar. Since we need to create two sets of
these polygons, one for the left boot and one for the right, it is best to
create a single set, mirror it and weld the new one in place.

Finishing Charlie

The final stage of creating Charlie is to weld her head onto her body and
shape her hair. Copy Charlie’s head to the body layer and weld the points
in her face to the neck. To form Charlie’s hair, highlight the points in the left
edge of Charlie’s face and copy these to a new layer. With Charlie
showing as a background layer, rotate the newly pasted points to the back
of Charlie’s head. Copy the points back to Charlie’s main layer. Create
polygons from the new points and the edge of Charlie’s face. Knife
through the new polygons twice. Select the points created through knifing
and use the ‘Move’ tool in the ‘Top’ view to make Charlie’s head more
round. Select, mirror and weld the polygons that form the side of Charlie’s
head to create the other side. Weld the back seam and weld these new
polygons onto Charlie’s neck. Select the top row of points. Press the ‘=’
key to hide all the other geometry. Use the point tool to create points for
the top of Charlie’s head. Highlight sets of four points and use ‘Make Pol’
to turn the selection into a polygon. Press the ‘\’ key to show the full
geometry again. Now highlight the polygons that will form Charlie’s hair.
Use ‘Smooth Shift’ to move this polygon set out. It only remains to use the
drag and move tools to create the final shape for the geometry.

If everything has worked out, then you should have the geometry
featured in Figure 5.11.

Creating a more cartoon style character

Although Charlie is a caricature she is quite lifelike. We are now going to
create a character that is much less realistic. The development of a

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Creating low polygon characters 93

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 5.10 Joining Charlie’s head to the body.

Figure 5.11 The Charlie model finished without textures.

94 Creating low polygon characters

character is a complex and highly personal exercise. I highly recommend
sketching before starting any modelling. Feeling for form with a pencil is
a much faster process than creating geometry.

In this chapter we have looked at the creation of two meshes using
Lightwave 6.5. With low polygon meshes, artists have to make a
compromise between the geometry they would like to use to create their
characters and the geometry that current computers can transform and
render at 25 frames per second. At the time of writing, the new
generation of games consoles and graphics cards is allowing 50k poly
scenes where previously we had 5k scenes. But even with 50k polys
there is still a huge compromise over TV or film rendered CGI. Here
500k scenes are usual and 1m plus poly scenes not that unusual. But
we still want our characters to look great. We can create the illusion of
much more geometry by using textures on our characters intelligently.
Figure 5.14 shows the Gerald mesh with textures added. Loading
‘Gerald.t3d’ into Toon3D Creator allows you see this textured mesh
animating. Gerald in full colour looks so much better than the simple

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 5.12 Creating Gerald’s head.

Creating low polygon characters 95

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 5.13 Gerald’s full mesh.

Figure 5.14 Gerald with textures.

96 Creating low polygon characters

smooth shaded mesh. In the next chapter we will look at how we can
create, load and use textures on our characters.

Summary

Most readers who will come at real-time 3D from a coder’s perspective
will find the content of this chapter provides an insight into the skills of the
artists who create the meshes that their code transforms and renders.
Hopefully you found the techniques interesting and are encouraged to
create your own meshes. The techniques described, although exclusively
from the Lightwave perspective, can be applied to other modelling
packages that focus on polygonal modelling.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

6 Texture mapping

Since we are exploring real-time animation we are limited in the number
of polygons we can draw in a scene fast enough to provide the illusion of
movement. Computers and graphics cards get faster and so this limit
rises steadily. Most computers on the market will cope easily with 5000
polygons, 50 times per second. Nevertheless, if you have three
characters and a set then 5000 is a difficult limit to work with, rarely
allowing more than 1500 polygons per character. Just to model a
convincing face will usually take at least 3000 polygons. So how do we
work around this limitation. The answer is texture mapping. By applying a
carefully produced bitmap to the polygons we can add the illusion of
considerably more detail. Figure 6.1 shows how the same mesh looks
when drawn as a wireframe, as a smooth shaded mesh and as a textured
mesh. The textured mesh looks much more convincing. To see the mesh
moving check out ‘Examples\Chapter06\Dancer.html’. Right click and
choose ‘smooth shaded’ to view the same animation without textures and
‘wireframe’ to view the animation in wireframe format. In this chapter we
are going to look at how to load the bitmaps into memory, how to copy this
pixel data to OpenGL in a format it will understand and how to map these
bitmaps onto the polygons in the mesh.

Loading a windows bitmap

There are many types of bitmap file; in the desktop publishing arena the
Tiff (Tagged Image File Format) is amongst the most common. On the
Internet, Jpeg (Joint Photographic Experts Group) and Gif (Compuserve
format) are used most because of the compression inherent in the
formats. Computer graphics experts often use Tga (Targa) files. But on
the Windows platform the most ubiquitous bitmap format is a ‘bmp’ file.
These files are sometimes called ‘Dibs’ (Device Independent Bitmaps) by
computer buffs. Bitmap files all provide a way of storing an array of pixel

98 Texture mapping

data. All bitmap files have some kind of header that describes how the
pixel data are stored in the file, the bitmap width, height and colour depth
being the most important information. Colour depth describes how the
colour data are presented. A ‘bmp’ file comes in six formats: 1 bit per pixel,
so the bitmap contains simply a black and white picture; 4 bits per pixel,
so the bitmap can contain at most 16 colours; 8 bits per pixel, allowing 256
colours; 16 bits per pixel, sometimes called High Color; 24 bits per pixel,
allowing a choice of up to 16.7 million colours; and 32 bits per pixel, where
the extra 8 bits of information per pixel are used to store an alpha (mask)
in greyscale format. In this explanation we will look at loading a 24 bits per
pixel image.

Windows bitmaps come in two flavours, RGB and RLE. The latter type
uses a simple kind of compression, Run Length Encoding. Instead of
saving the colour for each pixel, the file saves the colour for the pixel and
how many consecutive pixels in a line use this colour. If you are using
bitmaps with large areas of flat colour then RLE files can be quite a lot
smaller than RGB files. For real-time 3D animation purposes RLE is not

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 6.1 The improved rendering of a textured mesh.

Texture mapping 99

really worth the additional effort. Some bitmap editors allow the option to
save a ‘bmp’ file as either RGB or RLE and I advise choosing the RGB
alternative. I like Paint Shop Pro, which is fairly cheap but provides all the
tools you will need when manipulating bitmaps.

RGB bmp files are delightfully simple to use because the pixel data are
stored in as simple a way as possible. Before we examine the pixel data,
let’s look at the file header which describes how the pixel data are
stored.

typedef struct tagBITMAPFILEHEADER {

WORD bfType;

DWORD bfSize;

WORD bfReserved1;

WORD bfReserved2;

DWORD bfOffBits;

} BITMAPFILEHEADER;

‘bfType’ defines the file as a bitmap file if it contains the number 0x4D42,
which is ASCII for ‘BM’. Assuming this test is passed then we can check the
size of the file using ‘bfSize’ and how many bytes to skip to find the pixel
data using ‘bfOffBits’. Subtracting bfOffBits from ‘bfSize’ gives the total size
in bytes of the pixel data. If the checks are passed then we can be assured
that the next section of the file will be a BITMAPINFOHEADER.

typedef struct tagBITMAPINFOHEADER{

DWORD biSize;

LONG biWidth;

LONG biHeight;

WORD biPlanes;

WORD biBitCount

DWORD biCompression;

DWORD biSizeImage;

LONG biXPelsPerMeter;

LONG biYPelsPerMeter;

DWORD biClrUsed;

DWORD biClrImportant;

} BITMAPINFOHEADER;

We will use the ‘biWidth’, ‘biHeight’ and ‘biBitCount’ members. ‘biWidth’
and ‘biHeight’ give the sizes of the bitmap in pixels and ‘biBitCount’ gives
the colour depth in bits per pixel. Since ‘bmp’ files sometimes use a
palette to define colour values, our loader is designed to accommodate

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

100 Texture mapping

this by converting the BITMAPINFOHEADER into another structure called
a BITMAPINFO, which combines a BITMAPINFOHEADER with a palette
containing initially just a single palette entry. If we were creating a 256
colour bitmap then we would allocate memory for 256 entries in the
‘bmiColors’ array.

typedef struct tagBITMAPINFO {

BITMAPINFOHEADER bmiHeader;

RGBQUAD bmiColors[1];

} BITMAPINFO;

Since we are only loading 24-bit, uncompressed files, we only need to
read the pixel data directly into a buffer of the correct size. The code you
will need to load this type of file is as follows:

// Load a Windows bitmap from an open file.

BOOL CBmp::Load(Cfile &bmpFile)

{

BITMAPINFO *bmi = NULL;

BYTE* bits = NULL;

BITMAPINFOHEADER bmiHdr;

//Get the current file position.

DWORD fileStart = bmpFile.GetPosition();

BITMAPFILEHEADER bmpFileHdr;

int bytesRead;

bytesRead = bmpFile.Read(&bmpFileHdr,↵
sizeof(BITMAPFILEHEADER));

if (bytesRead != sizeof(BITMAPFILEHEADER)) {

TRACE(”CBmp::Load>> Failed to read file header”);

goto abortBmpLoad;

}

// Check that we have the magic ‘BM’ at the start.

if (bmpFileHdr.bfType != 0x4D42) {

TRACE(”CBmp::Load>> Not a bitmap file”);

goto abortBmpLoad;

}

bytesRead = bmpFile.Read(&bmiHdr, sizeof(BITMAPINFOHEADER));

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Texture mapping 101

if (bytesRead != sizeof(BITMAPINFOHEADER)) {

TRACE(”CBmp::Load>> Failed to read BITMAPINFOHEADER”);

goto abortBmpLoad;

}

// Check that we got a real Windows DIB file.

if (bmpInfoHdr.biSize != sizeof(BITMAPINFOHEADER)) {

TRACE(”CBmp::Load>> File is not Windows bitmap”);

goto abortBmpLoad;

}

}

// Check that the colour depth is 24 bit

if (bmpInfoHdr.biBitCount != 24) {

TRACE(”CBmp::Load>> Only 24 bit files are supported.”);

goto abortBmpLoad;

}

}

int bitsSize = bmpFileHdr.bfSize – bmpFileHdr.bfOffBits;

//Create a new BITMAPINFO and copy the file header to it

bmi = new BITMAPINFO;

memcpy(bmi, &bmpFileHdr, sizeof(BITMAPINFOHEADER));

//Set the one colour in the palette to black

memset(bmi.bmiColors, 0, sizeof(RGBQUAD));

// Allocate the memory for the bits

bits = new BYTE[bitsSize];

if (!bits) {

TRACE(”CBmp::Load>> Out of memory for DIB bits”);

goto abortBmpLoad;

}

// Seek to the bits in the file.

bmpFile.Seek(fileStart + bmpFileHdr.bfOffBits, CFile::begin);

// Read the bits.

bytesRead = bmpFile.Read(bits, bitsSize);

if (bytesRead != bitsSize) {

TRACE(”CBmp::Load>> Failed to read bits”);

goto abortBmpLoad;

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

102 Texture mapping

// Everything went OK.

if (m_BMI != NULL) delete m_BMI;

m_BMI = bmi;

if (m_bits != NULL) delete [] m_bits;

m_bits = bits;

return TRUE;

abortBmpLoad: // Something went wrong.

if (bmi) delete bmi;

if (bits) delete [] bits;

return FALSE;

}

That is all that is necessary to load a 24-bit uncompressed Windows
bitmap. To test the result of the load, use StretchDIBits:

int StretchDIBits(

HDC hdc, // handle to device context

int XDest, // x-coordinate of dest

int YDest, // y-coordinate of dest

int DWidth, // width of destination rectangle

int DHeight, // height of destination rectangle

int XSrc, // x-coordinate of source

int YSrc, // y-coordinate of source

int SWidth, // width of source rectangle

int SHeight, // height of source rectangle

CONST VOID *bits, // address of bitmap bits

CONST BITMAPINFO *bmi, // address of bitmap data

UINT usage, // usage flags

DWORD op // raster operation code

);

To display your bitmap, use the device context from the paint event for
your view and call StretchDIBits with destination and source parameters
set.

StretchDIBits(pDC->GetSafeHdc(), // Device context handle

0, 0, m_width, m_height, // Destination x, y, width,

// height

0, 0, m_width, m_height, // Source x, y, width, height

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Texture mapping 103

m_bits, // Pointer to bits

m_bmi, // BITMAPINFO

DIB_RGB_COLORS, // Options

SRCCOPY); // Raster operation code (ROP)

Loading a TGA file

TGA files are similar to Windows bitmaps in that the pixel data in an
uncompressed file are presented in a simple block. The header for a TGA
is given here:

typedef struct stTGAHEADER

{

BYTE IdLength; // Image ID Field Length

BYTE CmapType; // Color Map Type

BYTE ImageType; // Image Type

WORD CmapIndex; // First Entry Index

WORD CmapLength; // Color Map Length

BYTE CmapEntrySize; // Color Map Entry Size

WORD X_Origin; // X-origin of Image

WORD Y_Origin; // Y-origin of Image

WORD ImageWidth; // Image Width

WORD ImageHeight; // Image Height

BYTE PixelDepth; // Pixel Depth

BYTE ImagDesc; // Image Descriptor

} TGAHEADER;

We are interested mainly in the ‘ImageWidth’, ‘ImageHeight’ and
‘PixelDepth’ members. In this sample we are only considering the case of
loading an uncompressed 24-bit file. In the sample code for Toon3D you
will find details for loading 8- and 32-bit compressed and uncompressed
TGA files if you need this facility.

Given an open file, we start by reading the file header. A TGA file can
have a comment about the file following the header. The TGAHEADER
member IdLength gives the length in bytes of this comment and in the
sample code we simply skip over it. Because we are only supporting
24-bit uncompressed files, we check for this by referring to the
‘CmapType’, which should be 0 to indicate no colour palette; ‘PixelDepth’
should be 24 and the ‘ImageType’ should be TGA_RGB. The file could be
compressed in just the same way as a Windows bitmap is compressed,
i.e. by using run length encoding; if this was the case then the

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

104 Texture mapping

‘ImageType’ member of the header would be set to TGA_RLE. The values
for these constants are stored in the ‘tga.h’ file, which is part of the
Toon3D source code. The storage width of a TGA file is aligned so that the
number of bytes used to store a line is always divisible by 4. This is called
DWORD alignment. The simplest way to DWORD align the width is to add
3 to the width and zero out bits 0 and 1 of the value. Any number that is
divisible by 4 will have 0 in bits 0 and 1. We can zero bits 0 and 1 by
bitwise And-ing the number with the complement of 3, a number that has
every bit set apart from bits 0 and 1. Then we create a BYTE buffer to
store our pixel data and read the image data one scan line at a time.

BOOL CTGA::Load(CFile &tgaFile)

{

TGAHEADER tgaHdr;

int bytesRead;

bytesRead = tgaFile.Read(&tgaHdr, sizeof(TGAHEADER));

if (bytesRead != sizeof(BITMAPFILEHEADER)) {

TRACE(”CTGA::Load>> Failed to read file header”);

return FALSE;

}

// Skip image ID

f.Seek(tgaHdr.IdLength,CFile::current);

if (tgaHdr.CmapType != 0 || tgaHdr.PixelDepth!=24 ||

tgaHdr.ImageType != TGA_RGB){

TRACE(”CTGA::Load>> Only 24 bit RGB files are supported.”);

return FALSE;

}

int width = tgaHdr.ImageWidth * 3;

width = (width + 3) & ~3; //DWORD align

BYTE *bits = new BYTE[width * tgaHdr.ImageHeight];

if (!ReadImage(tgaFile, tgaHdr, bits)){

if (m_hdr) delete m_hdr;

m_hdr = NULL;

if (m_bits) delete [] m_bits;

m_bits = NULL;

delete [] bits;

return FALSE;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Texture mapping 105

}else{

if (m_hdr) delete m_hdr;

m_hdr = new TGAHEADER;

memcpy(m_hdr, &tgaHdr, sizeof(TGAHEADER));

if (m_bits) delete [] m_bits;

m_bits = bits;

}

return TRUE;

}

The Load function uses the call to ReadImage to actually access the
pixel data. The function is very simple, just moving through the data one
scan line at a time. A TGA file can have the x and y values reversed in
some cases and the function checks whether the y values are flipped. A
Windows bitmap is usually stored so that the last scan line is the first and
if you regularily work with such files then you may want to force the TGA
file to load flipped.

BOOL CTGA::ReadImage(CFile &f, BYTE *buffer, TGAHEADER &hdr)

{

int swidth = hdr.ImageWidth * 3;

// Bits 5 of the Image Descriptor byte control the ordering of

// the pixels we check whether we are upside down

BOOL yReversed = ((hdr.ImagDesc & 32) == 32);

BYTE *bits;

for (int y=0; y<hdr.ImageHeight; y++){

if (yReversed){

bits = GetPixelAddress(0, y, hdr, buffer);

}else{

bits = GetPixelAddress(0, Height-y-1, hdr, buffer);

}

if (tgaFile.Read(bits, swidth)!=swidth) return FALSE;

}

return TRUE;

}

The ‘ReadImage’ function uses a call to ‘GetPixelAddress’, which
returns the position in the BYTE array for a particular pixel address.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

106 Texture mapping

BYTE * CTGA::GetPixelAddress(int x, int y, TGAHEADER &hdr, BYTE↵
*bits)

{

int swidth,i;

// Make sure it’s in range and if it isn’t return zero.

if ((x >= hdr.ImageWidth)|| (y >= hdr.ImageHeight)||(x<0)||(y<0))

return NULL;

// Calculate the scan line storage width.

swidth = hdr.ImageWidth * 3;

swidth = (swidth + 3) & ~3; //DWORD align

return (BYTE*)(bits + (hdr.ImageHeight-y-1) * swidth + x*3);

}

Both Windows bitmaps and TGA files are simple to understand and
use.

Loading a Jpeg file

A Jpeg file is much more complicated and to load the file you must use a
library that provides the necessary code. Even then the techniques are
rather complex, but they are worth using when file size is an issue. In the
final chapter of the book we look at distributing real-time 3D character
animation on the Internet; if this is your aim then Jpeg files are the best
option for the texture maps that will be used in the animation. In the
sample code for loading Jpeg files I make use of some code that was
originally written by Chris Losinger and makes the loading and saving of
Jpeg files much simpler. As usual, the full source code is included as part
of the Toon3D source code. To load a Jpeg file we use many calls to the
Jpeglib library. This is provided in the Toon3D source code folder. It must
be added to your project along with the header file ‘jpeglib.h’ if you intend
to use this sample code. In the code Chris wrote, he breaks the job into
stages:

1 First, we must allocate and initialize a decompression object and the
error routines that the library is going to use.

2 We supply the source file to the decompression object.
3 Next we read the Jpeg file header.
4 If necessary, we could set various decompression options.
5 Now it is safe to start the decompression.
6 With the decompression object initialized, we can read the actual pixel

data into a scan line buffer and store the results of the decompression.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Texture mapping 107

7 Having read all the scan lines, we can finish the decompression.
8 Finally, we destroy the decompressor, which releases any allocated

memory.

There are many details that you need to be aware of if you intend to write
your own code and you would be advised to read the IPG docs carefully.
Alternatively, you could simply take the code presented here and use it
directly. It doesn’t give you as much control, but it will load most Jpeg files
and return an RGB buffer.

BYTE *CJpeg::Load(CString fileName, UINT &width, UINT &height)

{

// basic code from IJG Jpeg Code v6 example.c

width=0;

height=0;

// This struct contains the JPEG decompression parameters and

// pointers to working space (which is allocated as needed by

// the JPEG library).

struct jpeg_decompress_struct cinfo;

// We use our private extension JPEG error handler.

// Note that this struct must live as long as the main JPEG

// parameter struct, to avoid dangling-pointer problems.

struct my_error_mgr jerr;

FILE * infile=NULL; // source file

JSAMPARRAY buffer; // Output row buffer

int row_stride; // physical row width in output buffer

char buf[250];

// In this example we want to open the input file before doing

//anything else, so that the setjmp() error recovery below can

//assume the file is open.

//VERY IMPORTANT: use ”b” option to fopen() if you

//are on a machine that requires it in order to read binary files.

if ((infile = fopen(fileName, ”rb”)) == NULL) {

TRACE(”CJpeg::Load>> Can’t open jpeg file”);

return NULL;

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

108 Texture mapping

// Step 1: allocate and initialize JPEG decompression object

//We set up the normal JPEG error routines, then override

//error_exit.

cinfo.err = jpeg_std_error(&jerr.pub);

jerr.pub.error_exit = my_error_exit;

// Establish the setjmp return context for my_error_exit to use.

if (setjmp(jerr.setjmp_buffer)) {

// If we get here, the JPEG code has signaled an error.

// We need to clean up the JPEG object, close the input file,

//and return.

TRACE(”CJpeg::Load>> Problem with Jpeg file”);

jpeg_destroy_decompress(&cinfo);

if (infile!=NULL) fclose(infile);

return NULL;

}

// Now we can initialize the JPEG decompression object.

jpeg_create_decompress(&cinfo);

// Step 2: specify data source (eg, a file)

jpeg_stdio_src(&cinfo, infile);

// Step 3: read file parameters with jpeg_read_header()

(void) jpeg_read_header(&cinfo, TRUE);

// We can ignore the return value from jpeg_read_header since

//(a) suspension is not possible with the stdio data source, and

//(b) we passed TRUE to reject a tables-only JPEG file as an error.

// Step 4: set parameters for decompression

// In this example, we don’t need to change any of the defaults set by

//jpeg_read_header(), so we do nothing here.

// Step 5: Start decompressor

(void) jpeg_start_decompress(&cinfo);

// We can ignore the return value since suspension is not possible

//with the stdio data source.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Texture mapping 109

// We may need to do some setup of our own at this point before

//reading the data. After jpeg_start_decompress() we have the

//correct scaled output image dimensions available, as well as

//the output colormap if we asked for color quantization.

//In this example, we need to make an output work buffer of the right

//size.

// get our buffer set to hold data

BYTE *dataBuf;

//DWORD align the storage width

int swidth = (cinfo.output_width * cinfo.output_components + 3) &↵
~3;

//

// alloc and open our new buffer

dataBuf = new BYTE[swidth * cinfo.output_height];

if (dataBuf==NULL) {

TRACE(”Cjpeg::Load>> Out of memory”);

jpeg_destroy_decompress(&cinfo);

fclose(infile);

return NULL;

}

// how big is this thing gonna be?

width = cinfo.output_width;

height = cinfo.output_height;

//JSAMPLEs per row in output buffer

row_stride = cinfo.output_width * cinfo.output_components;

// Make a one-row-high sample array that will go away when done with

//image

buffer = (*cinfo.mem->alloc_sarray)

((j_common_ptr) &cinfo, JPOOL_IMAGE, row_stride, 1);

// Step 6: while (scan lines remain to be read)

// jpeg_read_scanlines(. . .);

// Here we use the library’s state variable cinfo.output_scanline

//as the loop counter, so that we don’t have to keep

//track ourselves.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

110 Texture mapping

BYTE *bits;

while (cinfo.output_scanline < cinfo.output_height) {

jpeg_read_scanlines(&cinfo, buffer, 1);

//Copy scan line to dataBuf

memcpy(&dataBuf[swidth * cinfo.output_scanline,

buffer, row_stride);

}

// Step 7: Finish decompression

(void) jpeg_finish_decompress(&cinfo);

// We can ignore the return value since suspension is not possible

//with the stdio data source.

//Step 8: Release JPEG decompression object

//This is an important step since it will release a good deal of

//memory.

jpeg_destroy_decompress(&cinfo);

// After finish_decompress, we can close the input file.

//Here we postpone it until after no more JPEG errors are possible,

//so as to simplify the setjmp error logic above.

fclose(infile);

// At this point you may want to check to see whether any corrupt-data

//warnings occurred (test whether jerr.pub.num_warnings is

//nonzero).

return dataBuf;

}

A Jpeg RGB buffer is not guaranteed to be DWORD aligned, so you
may want to copy each scan line into a DWORD aligned buffer if you are
using the buffer as a Windows bitmap type. Also, the pixel data will not be
provided last scan line first, so another useful utility will be code to flip the
buffer vertically. The final utility that you may use is to flip the red and blue
components, because again Windows stores the data the opposite way
round. All these utility functions are available in the Toon3D source code
and are very easy to write for yourself.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Texture mapping 111

Assigning pixel data to the OpenGL texture engine

We now have a DWORD aligned, vertically flipped BGR buffer. The next
step is to provide this pixel data to OpenGL. Texture images are defined
with glTexImage2D.

void glTexImage2D(GLenum target, GLint level, GLint components,

GLsizei width, GLsizei height, GLint border, GLenum format,

GLenum type, const GLvoid *pixels);

The arguments describe the parameters of the texture image, such
as height, width, width of the border and number of colour components
provided. The last three arguments describe the way the image is
represented in memory. For our purposes, we define the format as GL_
BGR_EXT and the type as GL_UNSIGNED_BYTE, which is the
way that a Windows bitmap is stored in memory. Data are read from
pixels as a sequence of unsigned bytes. These values are grouped into
sets of three values because we have chosen GL_BGR_EXT as the
format.

OpenGL can use several versions of a texture depending on the
scale of that texture on the screen. When using the function glTex-
Image2D, we define which level of detail we are supplying using the
level parameter. OpenGL uses textures that are exact powers of 2 in
width and height. If a bitmap is 128 × 64, then the potential levels of
detail are as shown in Table 6.1.

If you intend to use multiple levels of detail then you can create all these
in one go using the GLU function gluBuild2Dmipmaps.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Table 6.1

Level Width Height

0 128 64
1 64 32
2 32 16
3 16 8
4 f8 4
5 4 2
6 2 1

112 Texture mapping

int gluBuild2DMipmaps(GLenum target, GLint components,

GLint width, GLint height, GLenum format, GLenum type,

const void * data);

The parameters have the same effect as glTexImage2D.
When creating a texture we first get a texture ID number using

glGenTextures, so that we can restore this texture as the current
texture in OpenGL. glGenTextures simply creates an ID number, no
pixel data are created. We also use this ID to destroy the texture when
we have finished using it. Having created a texture ID we then make
this the current texture using glBindTexture. The next step is to set up
the pixel storage alignment and what we want to do if the texture does
not fit the area it is mapped to. Should we repeat the image up and
down and across, or should the edge of the image be used as a
colour? We also specify how OpenGL will scale the image. Since we
are writing a real-time application we want the fastest method of
scaling, which is to use the nearest pixel to the one we want. Another
method would be to blend pixels, but this takes longer and is not really
suited to real-time applications. The final option in the sample code
fragment is how to use the texture with the current lighting model.
I prefer to blend the texture with the existing surface colour. If you make
the colour for any textured surface white, then this gives you the lit
texture.

Having set up all the parameters, we can now exchange our pixel
buffer with OpenGL using either glTexImage2D or gluBuild2Dmipmaps
depending on your choice of levels of detail.

//Create a texture id and make it current

glGenTextures(1, &texID);

glBindTexture (GL_TEXTURE_2D, texID);

//Set DWORD alignment

glPixelStorei (GL_UNPACK_ALIGNMENT, 4);

//Set width repeat option

if (widthRepeat){

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

}else{

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Texture mapping 113

//Set height repeat option

if (heightRepeat){

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

}else{

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP);

}

//Set scaling functions to fastest possible

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,↵
GL_NEAREST);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,↵
GL_NEAREST);

//Set enviroment option to modulate with surface colour

glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

if (useMipMaps){

gluBuild2DMipmaps (GL_TEXTURE_2D, //target

GL_RGB, //components

pic.GetWidth(), //width

pic.GetHeight(), //height

GL_BGR_EXT, //format

GL_UNSIGNED_BYTE, //type

pic.GetBitsAddress());//data

}else{

glTexImage2D(GL_TEXTURE_2D, //target

0, //level

GL_RGB, //components

pic.GetWidth(), //width

pic.GetHeight(), //height

0, //border

GL_BGR_EXT, //format

GL_UNSIGNED_BYTE, //type

pic.GetBitsAddress());//data

}

When working with textures in OpenGL, you must delete any that you
have finished using. This is done using a call to

glDeleteTextures(1, &texID);

If your texture IDs are stored in an array of integers, then you can delete
several textures in one function call.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

114 Texture mapping

int texID[10], n;

.....

//Allocate all texture objects and store each id in the array

//texID, n defines the total

.....

//Use the textures

.....

//Clean up

glDeleteTextures(n, texID);

To ensure that your code is working, try mapping a single bitmap to a
single four-sided polygon. Use the technique above to create and assign
a texture object. Enable textures using glEnable(GL_TEXTURE_2D). In
the render event for your code simply draw the textured polygon using

glBegin(GL_QUAD)

glRGB(255, 255, 255);

glNormal3d(0, 0, 1);

//first vertex

glTexCoord2f(0.0f, 0.0f);

glVertex3d(-1.0, 1.0, 0,0);

//second vertex

glTexCoord2f(1.0f, 0.0f);

glVertex3d(1.0, 1.0, 0,0);

//third vertex

glTexCoord2f(1.0f, 1.0f);

glVertex3d(1.0, -1.0, 0,0);

//fourth vertex

glTexCoord2f(0.0f, 1.0f);

glVertex3d(-1.0, -1.0, 0,0);

glEnd

We are getting closer to being able to display a textured mesh. The next
step is to provide a way of mapping our pixel data onto our mesh. For this
we will need to create coordinates for each vertex in a textured polygon to
define what part of a bitmap the vertex uses.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Generating texture coordinates
Generating the texture coordinates can be done using the texture size,
centre and mapping type. Toon3D stores the texture coordinates in the
POLYGON structure, inside an indexed array of type TVEC.

Texture mapping 115

typedef struct stTEXVEC{

float u,v;

}TEXVEC;

typedef struct stPOLYGON{

int numverts;

double normal[3];

double nx, ny, nz;//Rotated normal

int p[4];

TEXVEC tc[4];//texture coordinates

int srf;

}POLYGON;

It is common practice to refer to texture coordinates as (u, v), where u
is a number from 0 to 1 that defines a position across the bitmap texture
from 0 to texture width in pixels, and v is a number between 0 and 1 that
defines a position down the bitmap texture from 0 to texture height in
pixels. The first step in creating the texture coordinates involves choosing
the mapping type. Let’s look at the principal texturing methods.

Planar mapping

Planar mapping takes an image and projects it parallel down one of the
axes. If the axis is z, then the coordinates are applied with the x-axis
running left to right and the y-axis running up and down. One method of
defining a mapping is to iterate through all the polygons in a mesh that use
the current textured surface and store a vector which defines the bottom,
left, near position, and another vector that stores the top, right, distant
position. The first vector stores all the minimum values for the texture
coordinates and the second the maximum values. The two vectors define
a bounding box for the texture. A third vector is used to define the overall
size by subtracting the minimum values from the maximum.

If we are mapping down the z-axis, then we need to take each vertex in
each polygon in turn and derive a (u, v) value for this vertex based on the
x and y values of the vertex. Since we know the overall size of the textured
area, we can scale the current coordinates by subtracting the minimum
vector from the current vertex coordinates and dividing the result by the
texture size vector. With a z-axis mapping we only need to work with the
x and y components of the vectors. With a y-axis mapping we would work
with the x and z components, and an x-axis mapping would use the y and
z components. Here is a code snippet that deals with a single polygon.
You will need to call this function for each polygon.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

116 Texture mapping

switch (tex->axis){

case MAP_X_AXIS:

for (i=0; i<ply->numverts; i++){

pt=&pts[ply->p[i]];

ply->tc[i].u = (pt->z - tex->min.z)/tex->size.z;

ply->tc[i].v = (pt->y – tex->centre.y)/tex->size.y;

}

break;

case MAP_Y_AXIS:

for (i=0; i<ply->numverts; i++){

pt=&pts[ply->p[i]];

ply->tc[i].u = (pt->x – tex->min.x)/tex->size.x;

ply->tc[i].v = (pt->z – tex->centre.z)/tex->size.z;

}

break;

case MAP_Z_AXIS:

for (i=0; i<ply->numverts; i++){

pt=&pts[ply->p[i]];

ply->tc[i].u = (pt->x – tex->min.x)/tex->size.x;

ply->tc[i].v = (pt->y - tex->centre.y)/tex->size.y;

}

break;

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 6.2 The image map used in the cylindrical and spherical mapping examples.

Texture mapping 117

Cylindrical mapping

Cylindrical mapping is a little more complex than planar mapping, since
we need to wrap a 2D image around on itself. Again, we first need to
know which axis we are using. Let us consider what happens when the
image is wrapped around the y-axis. First, we need to know where this
vertical line is centred in the x and z directions. In the same manner as
the planar example, we step through each polygon in the object that
uses this surface, and for each polygon we step through the vertices
one by one.

To determine the centre we interate through all the polygons and
create a minimum and maximum vector defining a bounding box. The
size is found by deleting the minimum from the maximum and the centre
is found by halving the size and adding it to the minimum vector.

The first step in determining the texture coordinates is to create a
vector from the texture’s centre to the current vertex. Viewing the object
from above and looking down, we need to determine a value from the
texture image for each vertex in the object. The problem is principally a
2D one; from the x and z values we need to create a value between 0
and 1 that chooses a point from the image between 0 and the width in
pixels of the image. In order to decide this value we will need to
determine the angle, looking straight down from above, between the
z-axis and the vector we have created. The trigonometric function tan is
a ratio of the length of the opposite side over the adjacent side to an
angle. Imagine a right angled triangle with the x value of the vector as
one side and the z value as another. In this case the tangent of the
angle is given by the length along the z-axis divided by the length along
the x-axis. If we know the value of the tangent of an angle, then we can
calculate the angle by using the inverse function arctan. The arctan
function gives values from 0 to 2 × �. We need values from 0 to 1, so
we must scale the result by dividing by 2�. Therefore, in order to
calculate the u value from the texture, that is how far across the bitmap,
we need to determine the angle from the length of the two known sides
of the triangle using the arctan function.

A simple cylindrical map will wrap a texture once around the object.
Toon3D allows this wrap to be tiled so that a single image maps an
arbitrary number of times around the object. If the image should only
map to 60° then repeat, then the wrap would be six times, 360/60.
Equally, the wrap could be less than one; if the wrap was 0.5, then in a
full wrap around the object, only half the texture image width would be
used. We need to take this width wrap into consideration when
determining the texture coordinate. All trig functions use radians, where

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

118 Texture mapping

2� radians are equivalent to 360°. The distance across the texture map
is given by the product of the width wrap and the current angle, �,
divided by 2�. This is capped to between 0 and 1.0 using a while
loop.

Calculating the v value is the same as planar mapping, although in
this sample we use the centre of the texture as the origin point not the
minimum vector, so we need to add 0.5 back to the v value to centre the
result. Here is a code snippet that shows how to generate the
coordinates for a cylindrical image mapping around the y-axis:

for (i=0; i<ply->numverts; i++){

pt=&oi->pts[ply->p[i]];

vec.x = pt->x – tex->centre.x;

vec.y = pt->y – tex->centre.y;

vec.z = pt->z – tex->centre.z;

//Calculate the u coordinate

u = (float)(atan2(vec.x,vec.z)/PI2);

u *= tex->widthwrap;

//Cap to 0 < u < 1

while (u>=1.0) u-=1.0;

while (u<0) u+=1.0;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 6.3 Calculating the u values for a cylindrical texture map.

Texture mapping 119

//Calculate the v coordinate

v = vec.y/tex->size.y + 0.5;

ply->tc[i].u = u;

ply->tc[i].v = v;

}

Figure 6.4 shows the result of wrapping the texture shown in Figure 6.2
twice around a cylinder in the y-axis.

Spherical mapping

The final type of basic mapping is spherical. In this type of mapping we
need to wrap the image in two directions. Calculations for the principal
axis are exactly the same as for cylindrical mapping. Wrapping around
towards the poles of the sphere is handled differently. We need to
consider another angle. Using the vector we have created from the
texture centre to the current vertex, we normalize this vector to unit length.
We now effectively have a hypotenuse that is of length 1. That means the
y value is the sine of the angle �. Using the inverse function arcsin will
return the angle from the y value of the vector.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 6.4 Example of cylindrical image mapping.

120 Texture mapping

Toon3D allows for the width wrapping and the height wrapping to be
set. In this way, a single texture can be tiled around the sphere’s principal
and minor axes.

This code snippet shows how to generate spherical texture coordinates
having previously defined the texture centre and size as described for the
planar and cylindrical examples:

for (i=0;i<ply->numverts;i++){

pt=&oi->pts[ply->p[i]];

vec.x=pt->x-tex->centre.x;

vec.y=pt->y-tex->centre.y;

vec.z=pt->z-tex->centre.z;

//Calculate the u coordinate

u = (float)(atan2(vec.x,vec.z)/PI2);

u*=tex->widthwrap;

while (u>=1.0) u-=1.0;

while (u<0) u+=1.0;

//Calculate the v coordinate

vec.y /= sqrt(vec.x*vec.x + vec.y*vec.y +

vec.z*vec.z);

v = (asin(vec.y)*tex->heightwrap)/PI + 0.5;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 6.5 Generating spherical coordinates.

Texture mapping 121

while (v>=1.0) v-=1.0;

while (v<0) v+=1.0;

ply->tc[i].x=(float)u;

ply->tc[i].y=(float)v;

}

Figure 6.6 shows an example of this mapping.
Figure 6.7 illustrates a potential problem. When generating coordinates

this way, it is possible to have a polygon that has a high value, say 0.87
for one side, and a value for the other side that is very low, say 0.0. The
left image in the diagram shows the result of this. The entire texture image
is mapped to the central polygons. In reality, we want the polygon to map

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 6.6 Example of spherical image mapping.

Figure 6.7 Problems with mapping.

122 Texture mapping

from 0.87 to 1.0. The simplest solution to this is to test polygons for a high
range and to add one to the low value if a high range is found. The right
image in the diagram shows the result of this simple fix.

UV mapping

The final option for texture mapping is to allow the artist total control over
how to map the vertices. Many CGI packages provide a way to achieve
this end and it is the user interface that is the complex issue. As you have
learned, any form of mapping generates (u, v) coordinates. You may wish
to create your own interface to allow the generation of mapping data. One
technique is to start with a basic mapping and then to draw the mesh flat
over the texture and allow the artist to move vertices with point
manipulation tools. If you had a split screen then you could show the
results of the mapping as the artist edits the vertices.

Displaying the result

Then we can either blend the texture with the current colour or apply it
directly. If we are blending with the current colour then it is usually best to
set the colour to plain white. When painting a polygon we must inform
OpenGL of the current vertex location, the normal and the texture
coordinates for this vertex. Remember that a vertex can be shared in
several polygons. One of the polygons that shares the vertex may have a
different texture. For this reason it is the polygon that is used as the
storage medium for texture coordinates, not the vertex.

A short code snippet that will paint a textured polygon stored in the
previously created texture object defined by the number ‘texID’ is as
follows:

texID = ply->tex;

glBindTexture(GL_TEXTURE_2D, texID);

glRGB(255,255,255);

glMaterialfv(GL_FRONT, GL_SPECULAR, ply->srf.spec);

glBegin(GL_TRIANGLES);

while(ply->tex == texID){

pt=&pts[ply->p[0]];

glNormal3d(pt->mx, pt->my, pt->mz);

glTexCoord2f(ply->tc[0].u, ply->tc[0].v);

glVertex3d(pt->wx, pt->wy, pt->wz);

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Texture mapping 123

//second vertex

pt=&pts[ply->p[1]];

glNormal3d(pt->mx, pt->my, pt->mz);

glTexCoord2f(ply->tc[1].u, ply->tc[1].v);

glVertex3d(pt->wx, pt->wy, pt->wz);

//third vertex

pt=&oi->pts[ply->p[2]];

glNormal3d(pt->mx, pt->my, pt->mz);

glTexCoord2f(ply->tc[2].u, ply->tc[2].v);

glVertex3d(pt->wx, pt->wy, pt->wz);

ply++;

}

glEnd();

Now you have the armoury to display fully textured meshes.

Summary

There are many details to consider in this chapter, and if any of them are
handled incorrectly in your code then you are likely to experience the
frustration of no texturing on your meshes. You are advised to work
through the code samples carefully. Create a Windows bitmap loader first
and then make sure it works by displaying the results of the load using a
Windows API call such as StretchDIBits. Once your bitmap loader is
working, try mapping it directly to a single four-sided polygon as
suggested. This proves that the pixel storage and unpacking methods are
correctly set and that the texture environment parameters are defined.
Then try mapping a single planar texture to a mesh by using the code
fragments to define the texture coordinates; if everything is working
correctly then you should have a textured mesh. The texture will move
with your mesh as it moves.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

7 Setting up a single
mesh character

If your character was a jointed robot then you could set it up so that each
individual part that moves is a separate object. Then you will need some
way of informing your transformation code that a bicep is connected to a
shoulder, a forearm is connected to the bicep and a hand is connected to
the forearm. In this chapter we will consider how you can set up
hierarchies of objects so that rotating and transforming the object will
affect not only the object itself, but also those other objects that are
connected to it. But we need to go further than this; we want to be able to
deform a character so that the rendered result will appear as a single
mesh. If we attempt to display an organic character using separate
objects for each section, the result will either appear as though the
sections overlap, or that the sections appear to be separated. To display
organic characters effectively in your real-time render engine, we need to
be able to move certain vertices in a mesh and not others.

Whatever deformation system we use we need to be able to rotate and
transform a section of a mesh using some form of control object. There
are several ways in which this can be achieved; this chapter looks at
some possible methods. One method described takes a complete mesh
that is the render target, and then uses sections cut from the object as
controls. These controls will affect how the animation engine deforms the
full mesh. The render engine will not display the controls, just the full
mesh. Before we consider this option we will look at the leading
alternative method, bones, and discuss why some implementations of
bones have severe performance penalties when applied to real-time
rendering engines. We will consider how we can implement a bones-
based system using control objects, which can be readily imported from
key modelling software. We will consider hierarchies of objects where the
parent of an object affects its animation. Finally, as hardware develops
apace we will look at how the single mesh deformations we are
considering are suitable for real-time rendering systems that use some
form of subdivision.

Setting up a single mesh character 125

How bone deformation systems work
If you are aware of CGI developments over the last 10 years, then you will
know that bone deformation systems have been a key feature of the
leading 3D animation packages. The real-time industry has until very
recently looked on in awe as these rendering-based packages provided
more and more sophisticated tools for single mesh deformation. What we
want for our render engine is something that allows us to deform certain
vertices in a mesh using a control object. In other words, something rather
like the way a modeller application lets us select a bunch of points from a
mesh and deform just that set of points. Bones are one way of doing just
that. First, you create a single mesh that you wish to deform, and then you
add some kind of skeleton to this mesh. Some software requires you to
assign certain vertices in the mesh to each bone in the skeleton. Other
software uses the location of the bone and its strength to influence how
each vertex in a mesh is deformed by each bone.

The problems behind bone deformation
All calculations that your engine performs take some processor time. The
ideal deformation system only considers each vertex once. In a bone
deformation system that uses weights, a single bone has a zone of
influence that has a blurred edge. In a central area vertices are very
influenced by this bone, in the outer area the influence falls off until it has
no influence at all. This type of system is great for rendering software
because it allows the animator maximum control over the way a single
mesh is deformed. Admittedly, this comes at the price of some major set-
up headaches! In a real-time engine this method is not great because it
can and often does result in an engine that has to consider every point in
a mesh for every bone. A fairly simple but common hierarchy for a biped
is as follows:

Hips
Torso

Neck
Head
Hair

Left Shoulder
Left Bicep

Left Forearm
Left Wrist

Left Hand

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

126 Setting up a single mesh character

Right Shoulder
Right Bicep

Right Forearm
Right Wrist

Right Hand
Left Thigh

Left Calf
Left Ankle

Left Foot
Left Toe

Right Thigh
Right Calf

Right Ankle
Right Foot

Right Toe

In this hierarchy there are 25 possible bones. In a simple low polygon
single mesh character you may have 1000 vertices. If each of these 1000
vertices is acted on by 25 bones, then there are 25 000 calculations to
perform rather than just 1000. This is 25 times as many calculations to do
than we would prefer. Our real-time engine needs much more focus over
which vertices are deformed by which bone. But, suppose that no vertex
is acted on by more than one bone. This can lead to some very unwanted
artefacts. Let’s consider how the mesh at a knee joint may behave if each
vertex in the mesh is controlled by a single bone. As the joint rotates, the
vertices at the back of the knee that influence the calf can end up
overlapping the vertices for the thigh (see Figure 7.1). This can lead to
very bad nipping. At a distance this may be acceptable, but close up to

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 7.1 How vertex selection can result in poor quality rendering.

Setting up a single mesh character 127

camera this technique definitely lacks the finesse that customers expect.
Therefore, our system wants the ability for vertices to be influenced by
more than one bone, without suffering a significant performance
penalty.

Figure 7.2 illustrates how point blending can eliminate the unwanted
nipping when deforming a single mesh character. If you look closely you
will see that vertex B from the leg mesh is created from a combination of
the vertex location of vertex A from the thigh control and vertex C from the
calf control. This very focused control over vertex locations using controls,
where more than one control can affect a single vertex, is the aim of our
deformation system. Then it becomes the job of the artist to minimize the
number of vertices that are deformed by more than one control.

One possible solution to bone deformation systems

One way to achieve this level of control is to dynamically create a set of
vertices from a list of point indices that relate to your target mesh. An
example may help (see Figure 7.3).

Here we have a very simple mesh, with just 12 vertices. We want a
bone deformation system that allows Bone01 to deform vertices 1–8 and
Bone02 to deform vertices 5–12. In this system both bones deform
vertices 5–8, Bone01 alone deforms vertices 1–4 and Bone02 alone

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 7.2 Using point blending.

128 Setting up a single mesh character

deforms vertices 9–12. So the list of point indices for Bone01 is simply {1,
2, 3, 4, 5, 6, 7, 8} and the list for Bone02 is {5, 6, 7, 8, 9, 10, 11, 12}. In
a more complex example, the vertex numbers would not be so obvious
and the list could easily be {2, 34, 72, 123, 125, 212, 216, 321, 322, 333,
469} or any other arbitrary list from the mesh; nevertheless, the principle
of the system remains the same. As the program initializes the data,
Bone01 is created in memory. The software creates an array of eight
pointers to vertices 1–8 from the single mesh. Bone02 dynamically
creates the set of vertices that point to vertices 5–12 from the single
mesh. The single mesh is informed that it is no longer responsible for its
own deformations using a weight flag for each vertex. A possible type
definition for the vertices in the single mesh is:

typedef stMESHVERTEX{

double ox,oy,oz; //Original vertex location

double wx,wy,wz; //World transformed vertex location

int weight; //0 = vertex transformed by mesh

//n = vertex transformed by n

// controls

}MESHVERTEX;

We ensure that the weight parameter is set to zero on creation of the
single mesh, indicating that the mesh itself is responsible for the

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 7.3 A two bone set-up with some basic overlapping.

Setting up a single mesh character 129

deformation of each vertex. As each bone is created, if it is going to
influence a vertex from the single mesh then it adds one to the weight for
this vertex. When we are deforming the single mesh object and find that
the weight parameter is greater than zero, then a bone must be deforming
the vertex. If the weight parameter is 2 then two bones are deforming the
vertex, if the weight parameter is 3 then three bones are deforming the
vertex, and so on.

Now, in our transformation loop, we first need to zero the world vertex
locations for each vertex in the single mesh object. Then we deform the
vertices pointed to by Bone01 summing the value with the existing world
value of the vertex. Because this is the first bone the existing value will
have each component (wx, wy, wz) set to 0.0. Having set the vertex
locations for Bone01, the software moves on to Bone02. If the scene was
more complex then we would simply iterate through all the bones in the
scene until all transformations were complete. At this stage, vertices 1–4
and 9–12 are already in their correct location because they have weights
of one. Vertices 5–8 are now set to the sum of the location of the vertex
in Bone01 and the vertex in Bone02. What we actually require is the
average of these two, which we can simply derive by dividing the x, y and
z values for the vertex by its weight; in this simple example the weight will
be 2. We need to check whether a vertex has a weight greater than 1 and
if so divide by its weight to get the correct location for all vertices in an
object that are being controlled in this way. This simple bone deformation
system has the merit that it has very little redundancy; all the calculations
performed are necessary for the required display. The problem with the
system is that as a developer you need to be able to import geometry from
a modeller package such as 3DS, Maya or Lightwave into your application
while retaining point index references for your bone assignments. This is
not easily achieved. How do you decide which vertices are those in the
arm and which in the neck, etc.? One way would be to write your own
plug-in for Lightwave or 3DS that creates a list of point indices from a point
selection and use this when creating your bones. See Chapter 10 for how
you could do just this for Lightwave. But there is an alternative that shares
the benefits of performance while allowing you to continue to use just
simple geometry for import and export, rather than requiring you to
familiarize yourself with yet another SDK.

An alternative to bone deformation

This alternative works in just the same way as the previously suggested
bone deformation system, the difference being the way that the point

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

130 Setting up a single mesh character

selection from the target mesh is defined. Going back to the 12 vertices
example, we create three objects in the modelling program, as shown in
Figure 7.4.

Here ObjectA is the target mesh, ObjectB is an object made up of the
polygons formed from vertices 1–8 of ObjectA and ObjectC is made up of
the polygons formed from vertices 5–12 of ObjectA. Each of these is a
simple object so can obviously be saved to disk if you are using
Lightwave, or will appear as a mesh object in a scene file when exported
in ASCII format in 3DS. We will look in later chapters at how to get access
to this geometry, but suffice it to say that it is possible. When we set up a
scene in our development engine we want to be able to say that objects
B and C are actually control objects for A and do not need to be displayed.
Similarly, since every vertex in A is being controlled by another object,
there is no requirement to transform mesh A itself, since this will only be
overridden by the control objects. In the application program Toon3D
Creator provided on the CD we can set up this simple scene. But before
we do, let’s look at the way that Toon3D creates the linkage between the
control vertices and the target mesh vertices by point location.

typedef struct stPOINT3D{

double ox,oy,oz; //Modelled points

double nx,ny,nz; //Original normal

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 7.4 Objects required for the Bendypoints system.

Setting up a single mesh character 131

double mx,my,mz; //Rotated normal

double wx,wy,wz; //Rotated points

int weight; //0 vertex transformed by mesh

//n vertex transformed by n controls

}POINT3D;

//===

//AssignControlPoints

//bobj is the target single mesh object

//This function looks for a link between the vertex locations in this

//object and those in the target mesh bobj. It creates an array of

//m_numpoints POINT3D pointers which can be used to deform the target

//mesh.

//===

BOOL CToon3DObject::AssignControlPoints(CToon3DObject *bobj)

{

//Delete any existing m_vptr array

if (m_vptr) delete [] m_vptr;

//Creates m_numpoints POINT3D pointers

m_vptr=new POINT3D*[m_numpoints];

if (!m_vptr) return FALSE; //Probably means a memory error

POINT3D *pt; //pt is used to step through this controls points

POINT3D *bpt;// bpt is used to step through the target points

int count=0; //Incremented as point assignment occurs

pt = m_pts; //m_pts is the point array for this control

//Step through control points

for (int i=0;i<m_numpoints;i++){

bpt = bobj->m_pts;

for (int j=0;j<bobj->m_numpoints;j++){

if (pt->x==bpt->x && pt->y==bpt->y &&

pt->z==bpt->z){

//Control and target points match

bpt->weight++;

ptindex[i]=bpt;

count++;

break;

}

//Step on to next target point

bpt++;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

132 Setting up a single mesh character

}

//Step on to next control point

pt++;

}

if (count!=m_numpoints){

//If all control points are not found in the target mesh

//then this function returns FALSE

TRACE(”CLWScene::AssignControlPoints>>

Not all points in control object found in Bendy

target\n”);

delete [] ptindex;

ptindex=NULL;

return FALSE;

}

return TRUE;

}

This function is designed to fail if all the vertices in the control are not
found in the target. This is not essential and you could have a situation
where the same control deforms points in two different meshes, but this
gets rather complicated to set up and usually simple solutions are the
best.

If you are near your computer and have installed the CD software, then
run Toon3D Creator and open the project file Chapter07/Bendy-
points01.t3d. This contains the objects illustrated. These are ridiculously
simple so that the concept is conveyed; the mesh can be as complex as
the target hardware can cope with.

Creating a hierarchy for controlling your single mesh
character
The first thing to do is to notice that ObjectC is parented to ObjectB. This
is achieved by right clicking on the object in the tree control on the left of
the main application window. In the pop-up menu that is displayed select
‘properties’. In the dialog box that is generated select the parent object by
name from the combo box list. When an object is parented to another
object it takes on the world position, rotation and scale of the parent. The
object can then be animated from this new position and orientation, but
will move with respect to the parent. The location and orientation of the
parent becomes the new origin for the object. An object can have just one
parent, but an object can be the parent of many other objects.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Setting up a single mesh character 133

We will look now at how the object is transformed and rotated in
Toon3D. The first thing to be aware of is that the parent of an object must
have already been rotated in order for the code to work. So the overall
transformation loop must begin by iterating through all objects in the
scene that have no parent. In the transformation loop for these parentless
objects, we need to transform any objects that have the current object as
a parent. As an example, let’s take part of the hierarchy that we
considered earlier:

Torso
Neck

Head
Left Shoulder

Left Bicep
Left Forearm

Left Hand
Right Shoulder

Right Bicep
Right Forearm

Right Hand

In our scene we need to be able to individually control each of these
objects. All code examples use a C++ class called CToon3DObject. (The

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 7.5 Selecting the parent object in Toon3D Creator.

134 Setting up a single mesh character

Microsoft convention of adding a C to the class name is adopted
throughout this book, for the principle of adding ‘m_’ member variable is
sometimes used.) For editing convenience we use a linked list for the
object class. Each object has a pointer to a CToon3DObject called
‘m_next’. In the constructor for the object this is set to NULL, indicating
that the object is the last in the list. We also use a class called
CToon3DScene that has a member variable called m_ObjectList, which is
a CToon3DObject. We use a CToon3DObject rather than a pointer to an
object so that the list is always valid. The first member in the list is only
used as a place holder, it contains no geometry. A scene is effectively
empty if m_ObjectList.next is NULL. Referring back to the hierarchy, there
is no requirement that this appears in the order of the hierarchy, i.e. ‘Torso’
does not have to be first, followed by ‘Neck’. The list of objects in the
scene may well appear as shown in Table 7.1.

Our transformation code starts with a function called ‘UpdateAllOb-
jects’. A pointer to m_ObjectList.m_next is created if this is NULL, then the
list is empty and we have nothing to transform. In this example
m_ObjectList.next points to the object called ‘Left Shoulder’; this object
has ‘Torso’ as a parent so we can skip this object for the time being, since
we are looking for objects with no parent. We skip past ‘Left Bicep’ and
‘Neck’ also until we get to ‘Torso’. This object has no parent. So we
transform this object and then call a function called ‘UpdateChildObjects’
passing the ‘Torso’ object as a parameter. ‘UpdateChildObjects’ has

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Table 7.1 Object list and parents

Object Parent Next pointer

m_ObjectList NULL Left Shoulder
Left Shoulder Torso Left Bicep
Left Bicep Left Shoulder Neck
Neck Torso Torso
Torso NULL Right Shoulder
Right Shoulder Torso Right Bicep
Right Bicep Right Shoulder Head
Head Neck Left Forearm
Left Forearm Left Bicep Left Hand
Left Hand Left Forearm Right Forearm
Right Forearm Right Bicep Right Hand
Right Hand Right Forearm NULL

Setting up a single mesh character 135

another pointer to the object list. Starting again at the beginning of the
list, we are now looking for objects that have ‘Torso’ as a parent. In this
example the first object in the list, ‘Left Shoulder’, has ‘Torso’ as a
parent. The next step is to transform ‘Left Shoulder’ and then from this
function call ‘UpdateChildObjects’, only this time with ‘Left Shoulder’ as
the parameter. In this next call to ‘UpdateChildObjects’, ‘Left Bicep’ has
‘Left Shoulder’ as a parent. So we transform ‘Left Bicep’ and call
‘UpdateChildObjects’ with ‘Left Bicep’ as the parameter. This is
repeated for ‘Left Forearm’ and ‘Left Hand’. At this stage the nested
function calls are:

UpdateAllObjects()
UpdateChildObjects(‘Torso’)

UpdateChildObjects(‘Left Shoulder’)
UpdateChildObjects(‘Left Bicep’)

UpdateChildObjects(‘Left Forearm’)
UpdateChildObjects(‘Left Hand’)

The key to using recursive functions is to ensure they return, otherwise
your code will hang in an endless loop. The function ‘UpdateChildObjects’
returns when the entire scene list has been searched and the next
pointer is ‘NULL’. In the example, ‘UpdateChildObjects’ for ‘Left Hand’
the entire scene list will be searched and no children of ‘Left Hand’
found. Having got to the object ‘Right Hand’ in the list, the function
returns because the ‘next’ pointer for ‘Right Hand’ is NULL. The function
call ‘UpdateChildObjects’ using ‘Left Forearm’ as a parameter having
found the child object ‘Left Hand’ and ensured that it is updated
continues looking at the object list by examining ‘Right Forearm’ and
‘Right Hand’, at which stage the list has been traversed and now this
function returns. Ultimately, all the calls to ‘UpdateChildObjects’ return
and the function pointer is back in ‘UpdateAllObjects’, where the
remainder of the object list is traversed, finding no other objects with no
parent. In this way, we ensure that all objects are transformed, but that
the parent of an object is transformed first.

The order of updating for the list described in Table 7.1 will be

UpdateAllObjects()
UpdateChildObjects(‘Torso’)

UpdateChildObjects(‘Left Shoulder’)
UpdateChildObjects(‘Left Bicep’)

UpdateChildObjects(‘Left Forearm’)
UpdateChildObjects(‘Left Hand’)

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

136 Setting up a single mesh character

UpdateChildObjects(‘Neck’)
UpdateChildObjects(‘Head’)

UpdateChildObjects(‘Right Shoulder’)
UpdateChildObjects(‘Right Bicep’)

UpdateChildObjects(‘Right Forearm’)
UpdateChildObjects(‘Right Hand’)

Only the call to UpdateChildObjects with ‘Torso’ as the parameter finds
more than one object in the object list that needs updating. The remainder
of the objects are the parents of at most one object. If the hierarchies of
objects in your scene remain constant after loading, then you could
eliminate some of the function call overheads by changing the order of
objects in the scene so that a parent is transformed before a child simply
by traversing the object list once. In this simple example, this would be
achieved by ordering the list as in Table 7.2.

A development engine with objects being added and moved around
would probably lend itself to the recursive ‘UpdateChildObjects’ option,
whilst a runtime engine where speed of execution is the highest priority
would be more suited to the once-through list that is guaranteed to be in
a suitable ordering.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Table 7.2 Object list and parents suitable for once-through transformations

Object Parent Next pointer

m_ObjectList NULL Torso
Torso NULL Left Shoulder

Left Shoulder Torso Left Bicep
Left Bicep Left Shoulder Left Forearm

Left Forearm Left Bicep Left Hand
Left Hand Left Forearm Neck

Neck Torso Head
Head Neck Right Shoulder
Right Shoulder Torso Right Bicep

Right Bicep Right Shoulder Right Forearm
Right Forearm Right Bicep Right Hand

Right Hand Right Forearm NULL

Setting up a single mesh character 137

void CToon3DDoc::UpdateAllObjects()

{

if (!m_selScene) return;

CToon3DObject *obj=m_selScene->m_ObjectList.m_next;

POINT3D *pt;

//Zero any bendy objects world points

while(obj){

if (obj->m_type == OBJECT_TYPE_TARGET){

pt=&obj->m_pts;

for (int i=0;i<obj->m_numpoints;i++){

pt->mx=0.0; pt->my=0.0; pt->mz=0.0;

pt->wx=0.0; pt->wy=0.0; pt->wz=0.0;

}

pt++;

}

obj=obj->m_next;

}

//Do the real transforming

obj=m_selScene->m_ObjectList.next;

while(obj){

if (obj->m_parent==NULL){

obj->SetTime(m_selScene->m_curtime);

obj->Transform();

UpdateChildObjects(obj, m_selScene->m_curtime);

}

obj=obj->m_next;

}

//Divide any bendy point objects vertices by vertex weights

obj=m_selScene->m_ObjectList.next;

while(obj){

if (obj->m_type == OBJECT_TYPE_TARGET){

pt=&obj->m_pts;

for (int i=0;i<obj->m_numpoints;i++){

if (pt->w){

pt->wx/=pt->w; pt->mx/=pt->w;

pt->wy/=pt->w; pt->my/=pt->w;

pt->wz/=pt->w; pt->mz/=pt->w;

}

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

138 Setting up a single mesh character

pt++;

}

obj=obj->m_next;

}

}

void CToon3DDoc::UpdateChildObjects(CToon3DObject *parent,↵
double time)

{

if (!m_selScene) return;

CToon3DObject *obj=m_selScene->objList.m_next;

while(obj){

if (obj->m_parent==parent){

obj->SetTime(time);

obj->Transform();

UpdateChildObjects(obj, time);

}

obj=obj->m_next;

}

}

A CToon3DObject has an integer value called m_type that sets the type
of the object. It can be:

OBJECT_TYPE_NULL An object with a single vertex used as
a type of simple control

OBJECT_TYPE_NORMAL A standard object
OBJECT_TYPE_CONTROL A control object for a bendy object
OBJECT_TYPE_MORPH A morph object used to deform a mesh
OBJECT_TYPE_TARGET A target object deformed by control

objects

Notice in the code how the world vertex and normal positions for each
vertex in an object that is being deformed by controls are zeroed at the
beginning of the transformations and divided through by weights at the
end. This ensures the correct display with the minimum of redundancy.
Notice also that the code includes a call to the member function of
‘CToon3DObject’, ‘SetTime’. This is where the animation data for an
object are used to set the position, orientation and scale at a certain time
in a scene or action. In the next chapter on keyframe animation, we will
look at this function call in detail.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Setting up a single mesh character 139

How pivot point locations affect the animation

Parent objects are important in the way that a complex set of geometry is
animated and deformed. Another important consideration is the location
around which the object rotates. By default, an object rotates about the
origin {0.0, 0.0, 0.0}. But we may wish an object to rotate about another
location. See Figure 7.6 to see how the pivot point of an object influences
how a 30° rotation of the pitch affects the object’s position with respect to
its parent. Rotating the calf with the pivot at the ankle has an undesirable
effect of distorting the thigh.

To ensure that a child object is located in the correct position and
orientation with respect to its parent, we must first ensure that its pivot
point is in the correct location. Then we must rotate and transform the
pivot point location using the parent’s transformation matrix. The rotation
matrix for the parent must have been previously calculated and stored in
the m_right, m_up and m_forward member variables of the parent object.
Each of these member variables is a VECTOR, the declaration of which
is shown in the code segment below. The rotation matrix is

M = �
Rx Ux Fx

Ry Uy Fy

Rz Uz Fz � v = �
x

y

z �
where R is shorthand for m_right, U is shorthand for m_up and F relates
to m_forward.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 7.6 The effect of varying the pivot location of an object.

140 Setting up a single mesh character

A vertex is transformed using this matrix as follows:

Mv = {Rx*x + Ux*y + Fx*z, Ry*x + Uy*y + Fy*z, Rz*x + Uz*y + Fz*z}

The full code to align the object to its parent involves subtracting the
parent’s pivot point from the current position for the object, then scaling
this vector by the parent’s scale. This vector is rotated and transformed
using the parent’s rotation matrix and location. Finally, the object’s scale
is multiplied by the parent’s scale.

typedef struct stVECTOR{

double x,y,z;

}VECTOR;

void CToon3DObject::AlignToParent(){

VECTOR pp;

//Store the simple position before alignment for editing

//purposes

StorePos();

if (m_parent){

//Transform position if the object has a parent:

//Note parent must have been transformed first

pp.x=(m_pos.x - m_parent->m_piv.x) *

m_parent->m_scale.x;

pp.y=(m_pos.y – m_parent->m_piv.y) *

m_parent->m_scale.y;

pp.z=(m_pos.z – m_parent->m_piv.z) *

m_parent->m_scale.z;

m_pos.x = m_parent->m_right.x * pp.x +

m_parent->m_up.x * pp.y +

m_parent->m_forward.x * pp.z + m_parent->m_pos.x;

m_pos.y = m_parent->m_right.y * pp.x +

m_parent->m_up.y * pp.y +

m_parent->m_forward.y * pp.z + m_parent->m_pos.y;

m_pos.z = m_parent->m_right.z * pp.x +

m_parent->m_up.z * pp.y +

m_parent->m_forward.z * pp.z + m_parent->m_pos.z;

//Adjust scale

m_scale.x *= m_parent->m_scale.x;

m_scale.y *= m_parent->m_scale.y;

m_scale.z *= m_parent->m_scale.z;

}

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Setting up a single mesh character 141

Having considered such a simple object and how it can be
deformed using just two control objects, let us look at how the character
we created in Chapter 5 can be set up using this methodology. Figure 7.7
shows both the final mesh and the control objects that are used to
deform it.

The full hierarchical list for this mesh and its controls is:

Hips
Torso

Neck
Head

Hairbit1
Hairbit2
Hairbit3
Hairbit4

Left Shoulder
Left Bicep

Left Forearm
Left Wrist

Left Hand
Left Index Finger
Left Fingers
Left Thumb

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 7.7 Single character mesh and control objects.

142 Setting up a single mesh character

Right Shoulder
Right Bicep

Right Forearm
Right Wrist

Right Hand
Right Index Finger
Right Fingers
Right Thumb

Left Thigh
Left Calf

Left Ankle
Left Foot

Left Toe
Right Thigh

Right Calf
Right Ankle

Right Foot
Right Toe

This extends the original hierarchy to give control over the fingers in
the hand and to allow for the girl’s long hair to swing as she dances. All
the control objects are carefully parented and the positions of their
pivot points chosen to reflect the body part they represent. Low
polygon characters are the norm at the time of writing, but many real-
time developers are starting to look at how to use the next generation
of graphics cards and consoles to better effect. Some computers are
capable of transforming and displaying just 2000 textured polygons the
15 times a second minimum you need to give smooth animation. Other
computers can display 20 000 textured polygons 50 times a second.
We need a scalable solution so that those with better hardware get a
better looking display, while not excluding those many customers using
last year’s model graphics cards or consoles.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Looking ahead to subdivision surfaces

One way we can do just this is to use subdivision surfaces. In a later
chapter we will look at how we can implement subdivision surfaces. For
now we will simply look at the concept. We have an engine that can
deform a mesh, but what if we regard that mesh as simply a control
mesh? This mesh is not intended to be displayed; the vertices and

Setting up a single mesh character 143

edges it contains represent the basis of how to make a model, not the
model itself. In code we can take each triangle and split it into four
triangles by dividing each edge into two, or split the triangle into nine
by dividing each edge by 3, or divide each triangle into n2 triangles by
dividing each edge by n, using an algorithm to position the new
vertices to result in a smoother looking mesh. Figure 7.8 shows the
effect of doing just this using the Lightwave 6.5 subdivision option.

There are many options to subdivision. Some methods retain the
shape of the control mesh with better accuracy than others. You can
see from the diagram that the method adopted by Lightwave has the
effect of shrinking the mesh so that the arms and legs appear slimmer.
The artist modelling the original cage can accommodate for this when
creating the original geometry, designing the cage so that the sub-
divided mesh looks correct at the expense of the control cage. In
Chapter 15 we explore the options for subdivision and look at the full
implementation of one system, butterfly subdivision. This method uses
interpolation, so the rendered subdivided mesh uses vertices from the
original cage in addition to the added vertices. Using butterfly subdivi-
sion with a subdivision of zero, the rendered mesh and the control
mesh are the same. With a subdivision of 1 it has a slight swelling
effect for a convex polygonal mesh, which can be controlled to a
certain degree using a weight parameter. Overall, butterfly subdivision
has the effect, with relatively low polygon cages, of retaining the shape
of the original more accurately.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 7.8 Smoothing the object with subdivision.

144 Setting up a single mesh character

Summary

If you have followed the text from the beginning then your real-time engine
has developed considerably. The engine has moved on from displaying a
single polygon so that now we are able to display a complex mesh with
textures. In this chapter we learned how to deform this mesh using control
objects defined in a hierarchical object list. The control can be created
using a list of point indices from the mesh object or using section objects
cut from the mesh. We learnt how important it is to have a logical
hierarchy of objects in a scene. When displaying characters it is essential
that moving the body has an effect on the head and arms. Moving the hips
should have an effect on every part of the body. Hierarchies are the way
that you can inform your transformation engine of the connection between
the motion of one object and that of objects that are connected to it.

We also considered how to display your characters on different displays
using subdivision surfaces so that a super deluxe computer has a
smoother, higher resolution display than a less capable machine, without
the requirement for the artists on a real-time project having to create
totally unique geometry for each level of computer.

We are beginning to consider how the structure of our code must be
formed to allow for object lists. Later, this will be extended to include lists
for lights, cameras, morph objects, images and surface attributes. With
this level of control and sophistication, we are at last ready to put some
motion into the characters. In the next chapter we will finally begin to
animate the characters we have so carefully created.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

8 Keyframe animation

Animation is magic. Creating static imagery by any means, drawing,
painting, sculpture or CGI, is interesting and the results can often be
arresting and full of emotion, but they are not magic. Animation is magic.
Seeing the results of your labours come to life, walking, talking or fighting,
as is the case with far too many computer games, generates the buzz of
excitement that is the real reward for the hard work. If you are new to
animation then seeing your character move for the first time will be a huge
kick. If you intend to do some animation of your own and you are starting
from scratch, I recommend using as much reference material as you can.
You will be particularly interested in the section about using live action.
This chapter covers essentially two topics. We look at animation from the
artist’s perspective and we look at it from the programmer’s viewpoint.
Since this book is essentially for programmers, you may be surprised at
the coverage of the artists’ concerns, but if you intend to write software
that will be used by artists then you need to know their problems before
you can provide the solutions. Otherwise, you provide solutions to non-
existent problems and no solution to their real problems.

Principles of animation

Most people know that animation is made up from a series of static
images that are changed rapidly before the viewer, who, being unable to
detect the change of image, reads the result as a moving sequence.
Animation uses a limitation of our eyes, persistence of vision. Our eyes
are terrific at detecting movement but there is a finite limit to how quickly
we can view a changing scene. In the nineteenth century, lots of toys were
invented that exploit this limitation. It was discovered that if you flash a
series of static images quickly enough then the result appears to our eyes
as a moving scene. These early devices included ‘Zoetropes’ and
‘Praxinoscopes’. A Zoetrope is a short, wide cylinder that has a series of

146 Keyframe animation

slots cut in the perimeter. A strip of images is placed inside the cylinder.
The cylinder is free to rotate about a central axis (see Figure 8.1). The
viewer looks through the slots. Since they can only see inside the cylinder
when a slot whizzes past the eye, they don’t see the strip of images inside
as a blur. The viewer sees the strip as a series of static pictures that
appear to change from one picture to the next as it is viewed first through
one slot then the next as the cylinder rotates. The slots have the effect of
freezing the rotational motion so that we don’t see as image one swings
around to the position of image two; instead, we seem to see image one
change into image two. This fast changing of the pictures gives the illusion
of movement.

A Praxinoscope uses mirrors to achieve the same result. The eye can
only see the pictures when they are aligned to the mirror. The result is that
the pictures do not seem to be rotating, they seem to be changing, giving
the illusion of movement.

These early Victorian parlour toys helped lead to the invention of
cinema. The illusion of movement when a film is projected comes from the
film having 24 separate pictures for every second of screen time. This
sequence of pictures is displayed in order by anchoring the film in a static
gate for around one fiftieth of a second. Then a shutter swings across
blocking the light; while the light is blocked the film is released from the
static gate, advanced a frame and re-anchored. Once the film is again
static, the shutter swings back allowing light to shine through the celluloid
again. If this flashing of the light is set at a speed below 12 times a second
then flickering is detected by most viewers. Early films were shot at low

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 8.1 A Zoetrope.

Keyframe animation 147

frame rates (pictures per second) and then projected manually, with the
projectionist responsible for hand cranking the projector. If the projection-
ist wound the handle too slowly then flickering would be very obvious and
led to films sometimes being called the ‘flicks’. When sound came to the
movies, the low frame rates of the silent films had to be increased. Movie
sound is recorded optically down the edge of the film as a waveform. In
order to be able to modulate the human voice, this waveform has to have
a large number of peaks and troughs in a short space. It was found that,
with the technology that existed in the late 1920s, a frame rate of 24 times
per second was the optimum. However, you will find that the illusion of
movement starts with frame rates around eight per second; the movement
looks ever smoother up to around 50 frames per second (fps). Above
50 fps, there is little improvement discerned by most viewers. TV
animation is often done on ‘twos’; that is, instead of displaying 30 fps they
use 15 and show each picture for two frames. In countries where the TV
system is PAL, the frame rate is 25 fps. Here, movies are shown slightly
speeded up over the original shooting speed of 24 fps. In the US, the TV
frame rate for NTSC is 30 fps. When showing a movie it is elaborately
converted from the original display rate of 24 fps to the transmission rate
of 30 fps using specialized telecine equipment.

For the real-time animation we are intent on producing, we will target a
display rate of 25 fps. To create the movement we want, we can create 25
new positions for the model for each second. If a character consists of 17
segments and the position, scale and orientation of these segments are
stored 25 times a second, that would be a lot of data, and a lot of work.
We want a system that lets us store an important position every, say, half
second interval and lets the computer work out where the model should
be in the intervening frames. That is exactly what keyframe animation
involves. In the next two chapters we will look at how to extract this
keyframe data from Lightwave and 3DS scene files. But in this chapter we
will look at how we will store the data in our application and how to
interpolate the result. Then we will look at how we can generate some
animation data ourselves using the supplied software, Toon3D Creator,
and the sample models.

How to store the animation data

We need the ability to animate the position, scale and orientation of an
object. The position is defined by three scalar values, x, y and z. The
scale is defined by three scalar values, which we will refer to as sx, sy
and sz, for the scale in the x-, y- and z-axes. The orientation of the

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

148 Keyframe animation

object can be stored in one of several ways including Euler angles,
angle axis or quaternions.

If the orientation is stored as Euler angles, then three scalar values are
used to hold the rotation of the object in the x-, y- and z-axes. We use
heading (h) to define the rotation in the y-axis, pitch (p) for the rotation
about the x-axis and bank (b) for the rotation about the z-axis. As we know
from Chapter 1, Euler angles describe a unique orientation only if we
know the order in which the rotations are applied. Euler angle rotation
suffers from the distinct disadvantage that gimbal lock occurs when a
rotation through 90° maps one axis onto another. If the order in which
rotations are applied is HPB, heading, pitch then bank problems can arise
with a rotation of 90° in the pitch. The effect of this rotation is to map the
z-axis onto the y-axis; consequently, heading rotations about y seem to be
the same as bank rotations about z. This problem is very frustrating for
animators. For much of the last 5 years I have been running a company
where we use Lightwave for TV animation. Lightwave up to version 5.6
used Euler angles to store and interpolate the orientation. Sometimes
animators can get very annoyed with their monitors when it seems
impossible to bend a character into the orientation that they want. At this
point they become very aware of the problems of gimbal lock. Thankfully,
this annoying problem can be avoided with version 6+ of Newtek’s
otherwise excellent software.

If the orientation is stored as angle axis, then four scalar values are
used. Three define a vector that describes the axis about which a rotation
takes place. The fourth value defines the angle of rotation about this axis.
This method has the advantage that it does not suffer from gimbal lock.
The final alternative is to use quarternions. This rather exotic mathemat-
ical device is the method of choice for interpolating orientation in many
computer games because it is computationally more efficient and gives
pleasing results.

As well as the ability to store the position, scale and orientation, we
need to store the time during the animation that we wish this to occur. We
could store the position, scale and orientation all together for a particular
time interval. But if we want total control over the way the character
animates, it is better that each channel of position, scale and orientation
is stored separately with its own time parameter. Using totally separate
channels ensures that interpolating a channel does not suffer from the
artefacts of another channel. Suppose that the x position moves smoothly
over the interval of 2 seconds. During this interval, the object rotates in a
complex fashion using keys at one third of a second intervals. If all
channels are stored for a key value, then the x position is stored at one
third of a second intervals. It will be more difficult to ensure a smooth

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Keyframe animation 149

movement in the x-axis with the six keyframes that will be created, rather
than using just two keys for the x movement.

Interpolating by frame and time

Every single one of our objects, whether they are in motion or not, will
need a keyframe defining for all motion channels at time zero. We will
define a key channel as

typedef struct stKEYCHANNEL{

float time;

float value; //Actual magnitude

float tn, bs, ct; //Tension, bias and continuity

int linear; //Flag to indicate that the key is linear

}KEYCHANNEL

If we can consider each channel independently then the code problem
becomes how to interpolate a single channel. Suppose a particular
channel has five key positions. We have five values for time and five
floating-point values. Figure 8.2 shows a plot of these five points; the
points are joined using straight lines. This method of linear interpolation is
extremely easy to do. Between any two keyframes, K1 and K2, the value
of a point P at time t is given by

P = K1.value + ((t – K1.time)/(K2.time – K1.time))*(K2.value – K1.value)

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 8.2 Linear interpolation of five key values against time.

150 Keyframe animation

But the results of this crude method will be very jerky. This is because
the curve joining the points is not smooth. The technical description of this
is that it lacks G1 and C1 continuity. A curve has G0 continuity if it is
connected at the key positions, Kn, and has G1 continuity if the tangent at
this point for both the segment Kn – 1 → Kn and segment Kn → Kn + 1 is in
the same direction but not necessarily of the same magnitude. For a curve
to have C1 continuity, the tangents must be in the same direction and of
the same magnitude. For the curve we are considering, we have a value
changing against time. If you are familiar with calculus then you will know
that differentiating a curve gives a new curve that represents the way the
slope of the original curve changes with time. For a smooth curve we need
C1 continuity as it bends through the key positions. There are many
possible contenders for such a curve. The standard technique is to use a
different curve between each pair of key positions. To ensure that the
curve is smooth through the key positions, we need to consider the slope
or tangent to the curve for the end of one segment and the beginning of
the next. The slopes must be in the same direction and of the same
magnitude to ensure a smooth transition. Figure 8.3 shows the result of
using piecewise cubic curves with and without the matching of tangents
for the curve leading up to the key position and the curve following the key
position.

That’s all well and good, but how do we define a cubic that is
guaranteed to go through the key positions. The problem comes down to
a familiar problem for computer graphics generally, one of curve fitting.
Some curve-fitting options do not go through the actual key positions so
would not be suitable. A curve that is guaranteed to go through the key

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 8.3 Key position tangents for piecewise cubic curves.

Keyframe animation 151

positions is described as interpolating. One curve that is suited to the
problem is a Hermite, named after the mathematician. Again, we need to
consider this in a piecewise fashion, joining just two key positions with
each curve. We want to have control over the key position tangents, so
the variant of a Hermite curve that we will use is the Kochanek–Bartels or
TCB form. TCB stands for tension, continuity and bias. Any readers
familiar with Lightwave 3D will know that this form was the only motion
curve available until version 6. Adjusting the TCB parameters has the
effect of altering the tangent for the curve at the key positions. Now to find
a point P at time t on the curve between key positions K1 and K2, we find
tangent vectors T1 for the beginning of the curve and T2 for the end of the
curve. To find these tangent vectors, we first calculate scale factors
relating the interval to the sum of the interval and the preceding interval
and the sum of the interval and the following interval.

S1 = (K2.time – K1.time)/(K2.time – K0.time)
S2 = (K2.time – K1.time)/(K3.time – K1.time)

T1 = S1*(1 – K1*tn)(1 + K1*bs)(1 + K1*ct)(K1.value – K0.value)
+ (1 – K1*tn)(1 – K1*bs)(1 – K1*ct)(K2.value – K1.value)

T2 = (1 – K2*tn)(1 + K2*bs)(1 – K2*ct)(K2.value – K1.value)
+ S2*(1 – K2*tn)(1 – K2*bs)(1 + K2*ct)(K3.value – K2.value)

If K1 is the first key position then K0 does not exist. In this case T1 is

T1 = (1 – K1*tn)(1 – K1*bs)(1 – K1*ct)(K2.value – K1.value)

If K2 is the last key position then T2 becomes

T2 = (1 – K2*tn)(1 + K2*bs)(1 – K2*ct)(K2.value – K1.value)

The next stage of our curve-fitting procedure is to calculate the Hermite
coefficients at the actual time. We are dealing here with a parametric
curve where the parameter t varies between 0 and 1. Now you may well
have two key positions with time values of 6.3 and 9.87. But we need to
scale this interval to 1.0. This is very easily done. Suppose we want to
know the value for t at time 7.8. First, we subtract the start time of the
interval and then calculate the segment duration.

t� = 7.8 – 6.3 = 1.5
dur = 9.87 – 6.3 = 3.57

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

152 Keyframe animation

Now we simply need to know what 1.5 is as a proportion of 3.57. When
the time is 6.3 this method will give t as 0 and when the time is 9.87, t will
be 1.0. But at time 7.8, t is given by

t = 1.5/3.57 = 0.42

The Hermite coefficients are defined as:

h0 = 2t3 – 3t2 + 1
h1 = –2t3 + 3t2

h2 = t3 – 2t2 + t
h3 = t3 – t2

Finally, we are able to calculate the actual value at time t:

Q(t) = h0*K1.value + h1*K2.value + h2*T1 + h3*T2

Notice that when t = 0, h0 = 1, h1 = 0, h2 = 0 and h3 = 0, and at t = 1, h0 = 0,
h1 = 1, h2 = 0 and h3 = 0. Hence at t = 0 the value for the curve is

Q(0) = 1*K1.value + 0*K2.value + 0*T1 + 0*T2 = K1.value

And at t = 1 the value for the curve is

Q(1) = 0*K1.value + 1*K2.value + 0*T1 + 0*T2 = K2.value

So the curve goes through the key positions just as we planned.
Having calculated the tangents at each end of a curve segment we can

interpolate the curve.
Now that we know the theory, let’s look at how to implement this. In the

source code for Toon3D Creator, you will see that all the key positions for
an object are stored as arrays in member variables of the CToon3DObject
class. We also use an array that stores the total number of keys in each
channel.

KEYCHANNEL *anim[9];

int keytotal[9];

void CToon3DObject::SetTime(double time, int channel)

{

//Test for parameters out of range

if (channel<0 || channel>8 || !anim[channel) return;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Keyframe animation 153

if (keytotal[channel] == 1){

//Set directly no interpolation require if only one key

SetChannel(channel, anim[channel][0].value);

return;

}

if (time < anim[channel][0].time){

//Set directly no interpolation require if time is before first

//key

SetChannel(channel, anim[channel][0].value);

return;

}

if (time > anim[channel][keytotal[channel] – 1].time){

//Set directly no interpolation required if time after last key

SetChannel(channel,

anim[channel][keytotal[channel] – 1]->value);

return;

}

//Must be within range lets find the section under consideration

int key=0;

for (int i = 0;i < keytotal[channel]; i++){

if (time <= anim[channel][i].time){

key = i;

break;

}

}

if (time == anim[channel][key].time){

//Set directly no interpolation require if at a key time

SetChannel(channel, anim[channel][key].value);

return;

}

--key;

//Interpolation required

double t, tt, ttt, h0, h1, h2, h3, T1, T2;

double dur, mag, S1, S2;

//Calculate the section duration and magnitude for key and key + 1

dur = anim[channel][key + 1].time – anim[channel][key].time;

mag = anim[channel][key + 1].value – anim[channel][key].value;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

154 Keyframe animation

if (anim[channel][key + 1].linear){

//Straight linear interpolation

result = anim[channel][key].value +t * mag;

}else{

//Hermite interpolation required

//Calculate 0 <=t <= 1

t=(time – anim[channel][key].time) / dur;

//Calculatet squared as tt, andt cubed as ttt

tt=t*t; ttt=t*tt;

//Calculate the Hermite coefficients

h0 = 2 * ttt – 3 * tt + 1.0;

h1 = -2 * ttt + 3 * tt;

h2 = ttt – 2*tt +t;

h3 = ttt – tt;

//Calculate tangents

if (key==0){

//First key

T1 = (1.0 – anim[channel][key].tn) *

(1.0 – anim[channel][key].ct) *

(1.0 – anim[channel][key].bs) * mag;

}else{

S1 = dur /

(anim[channel][key + 1].time – anim[channel][key –↵
1].time)

T1 = S1 * (1.0 – anim[channel][key].tn) *

(1.0 + anim[channel][key].ct) *

(1.0 + anim[channel][key].bs) *

(anim[channel][key].value – anim[channel[key – 1].value) +

(1.0 – anim[channel][key].tn) *

(1.0 – anim[channel][key].ct) *

(1.0 – anim[channel][key].bs) * mag;

}

if (key == (keytotal[channel] – 3)){

//last section

T2 = (1.0 – anim[channel][key + 1].tn) *

(1.0 + anim[channel][key + 1].ct) *

(1.0 – anim[channel][key + 1].bs) * mag;

}else{

S2 = dur /

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Keyframe animation 155

(anim[channel][key + 2].time – anim[channel][key].↵
time);

T2 = S2 * (1.0 – anim[channel][key + 1].tn) *

(1.0 + anim[channel][key + 1].ct) *

(1.0 – anim[channel][key + 1].bs) * mag +

(1.0 – anim[channel][key].tn) *

(1.0 – anim[channel][key].ct) *

(1.0 + anim[channel][key].bs);

(anim[channel][key + 2].value – anim[channel[key + 1].↵
value);

}

result = h0 * anim[channel][key] +

h1 * anim[channel][key + 1].value + h2 * T1 + h3 * T2;

}

SetChannel(channel,result);

}

Using quaternions to interpolate the orientation

If we choose to use Euler angles as the storage parameter for orientation
but we want to use quaternions for the interpolation, then we need a way
to swap between Euler angles and quaternions. The benefit is that this
type of interpolation results in a smoother animation of the orientation of
an object than using Hermite curve fitting, justifying the additional work.

The quaternion derived from Euler angles is given by:

q = qh qp qb

where

qh = [cos(h/2), (sin(h/2), 0, 0)]
qp = [cos(p/2), (0, sin(p/2), 0)]
qb = [cos(b/2), (0, 0, sin(b/2))]

Now we can create a function that converts Euler angles to a
quaternion. First we need to define a structure to hold a quaternion:

typedef struct stQUATERNION{

double w, x,y, z;

}QUATERNION;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

156 Keyframe animation

Recall that to multiply a quaternion we use the following rules:

q1q2 = [w1w2 – v1•v2, v1 × v2 + w1v2 + w2v1]

Therefore,

qhqpqb = [cos(h/2)cos(p/2)cos(b/2) – sin(h/2)sin(p/2)sin(b/2),
(cos(h/2)sin(p/2)sin(h/2)sin(p/2) + cos(b/2)cos(p/2)sin(h/2),
cos(b/2)cos(h/2)sin(p/2) – cos(p/2)sin(h/2)sin(h/2)sin(p/2),
cos(b/2)sin(h/2)sin(p/2) + cos(h/2)cos(p/2)sin(b/2))]

Leading to this function:

void EulerAnglesToQuaternion(double h, double p,

double b, QUATERNION &q){

double h, p, b, ch, cp, cb, sh, sp, sb;

h = euler.h / 2.0;

p = euler.p / 2.0;

b = euler.b / 2.0;

ch = cos(h);

cp = cos(p);

cb = cos(b);

sh = sin(h);

sp = sin(p);

sb = sin(b);

q.w = ch * cp * cb – sh * sp * sb;

q.x = ch * sp * sh * sp + cb * cp * sh;

q.y = cb * ch * sp – cp * sh * sh * sp;

q.z = cb * sh * sp + ch * cp * sb;

}

Now to interpolate a rotation we use spherical linear interpolation or
SLERP. The beauty of using quaternions is that the number of
calculations used for the interpolation of rotations is significantly reduced.
The code necessary to take the quaternions generated by Euler-
AnglesToQuaternions, and create an interpolated path, is as follows:

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Keyframe animation 157

//===

//SlerpQuaternions

//start and end are the quaternion key positions. t is a time factor

//between 0 and 1.The result is returned in result

//===

Void SlerpQuaternions(QUATERNION &start, QUATERNION &end,

double t, QUATERNION &result){

double theta, ct, st, scalestart, scaleend;

//Calculate the cosine using the vector dot product of start

//and end

ct = start.w * end.w + start.x * end.x +

start.y * end.y + start.z * end.z;

//If ct is less than 0 then we need to adjust the signs to

//ensure that we are taking the shortest route.

if (ct < 0.0){

theta = acos(-ct);

st = sin(theta);

startscale = sin((1.0 -t) * theta) / st;

endscale = sin(t * theta) / st;

result.w = startscale * start.w – endscale * end.w;

result.x = startscale * start.x – endscale * end.x;

result.y = startscale * start.y – endscale * end.y;

result.z = startscale * start.z – endscale * end.z;

}else{

theta = acos(ct);

st = sin(theta);

startscale = sin((1.0 -t) * theta) / st;

endscale = sin(t * theta) / st;

result.w = startscale * start.w + endscale * end.w;

result.x = startscale * start.x + endscale * end.x;

result.y = startscale * start.y + endscale * end.y;

result.z = startscale * start.z + endscale * end.z;

}

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

158 Keyframe animation

The only remaining task is to generate a matrix from the new
quaternion. For this we can use the knowledge that the rotation matrix will
look like this:

R = �
1 – 2y2 – 2z2

2xy + 2wz

2xz – 2wy

2xy – 2wz

1 – 2x2 – 2z2

2yz – 2wx

2xz + 2wy

2yz + 2wx

1 – 2x2 – 2y2 �
The code for converting a quaternion into a rotation matrix is therefore

given by this function:

//===

//QuaternionToMatrix

//Takes quaternion q and generates a rotation matrix stored in the

//three vectors right, up and forward

//===

void QuaternionToMatrix(QUATERNION &q,

VECTOR &right, VECTOR &up, VECTOR↵
&forward){

double xx, yy, zz, xy, wz, xz, wy, yz, wx;

xx = q.x * q.x; yy = q.y * q.y; zz = q.z * q.z;

xy = q.x * q.y; wz = q.w * q.z; xz = q.x * q.z;

wy = q.w * q.y; yz = q.y * q.z; wx = q.w * q.x;

right.x = 1 – 2 * yy – 2 * zz;

right.y = 2 * xy - 2 * wz;

right.z = 2 * xz + 2 * wy;

up.x = 2 * xy + 2 * wz;

up.y = 1 – 2 * xx – 2 * zz;

up.z = 2 * yz – 2 * wx;

forward.x = 2 * xz – 2 * wy;

forward.y = 2 * yz + 2 * wx;

forward.z = 1 – 2 * xx - 2 * yy;

}

Try out the sample for this chapter, which illustrates the difference
between a rotation done using Hermite interpolation of the Euler angles

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Keyframe animation 159

and the same rotation interpolated using quaternions. The Euler angle
rotation appears very messy by comparison with the quaternion rotation.
Pressing ‘q’ switches to quaternion calculations and pressing ‘e’ switches
to Euler angle interpolation. Pressing the ‘m’ key steps between the
possible alternatives for Euler angles, rotating through HPB, HBP, PHB,
PBH, BHP and BPH. Quaternions, in actual fact, represent a path across
a four-dimensional sphere, but if like me you find such concepts difficult to
visualize, then you will just have to accept the results of the maths rather
than the justification for its use. It is very difficult to specify a rotation
directly using quaternions, so many programs use either Euler angles or
angle axis for the interactive display in a development environment and
quaternions for interpolation.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+Using Toon3D Creator for keyframe animation

Now that we have the ability to create keyframes and are also able to
interpolate these key positions, we need some data. Run Toon3D Creator,
where you can experiment with animation paths. Selecting an object in
the tree control makes it the active selection. The buttons in the toolbar
allow you to switch between translation, rotation, scaling or sizing modes.
Moving the mouse while pressing the left mouse key will translate, rotate
or scale in the x- and z-axes. Moving the mouse and pressing the right
button allows you to translate, rotate or scale in the y-axis. Axes can be
excluded using the toolbar buttons. See Figure 8.4, where the toolbar

Figure 8.4 Toon3D Creator toolbar buttons.

160 Keyframe animation

buttons are named, and Appendix A for a more detailed description of how
to use Toon3D Creator.

The slider control moves through time. If under File/Preferences the
option for Autokey Create is chosen, then every translate, rotate or scale
will either create or adjust a keyframe. If this option is not checked then
you will need to press the Enter key to confirm an adjustment to an object.
We will go through the process of creating an action for the character we
developed in Chapter 5. Open the project ‘Chapter08/Walk01.t3d’. Here
you will find the character with no animation created. Select one of the
user views and adjust the view so that the character appears side on (see
Figure 8.5).

We are going to create a walk. Toon3D Creator uses frame values to
define time. By default the number of frames in a second is set to 25; you
can adjust this to a different setting in the properties for a scene, which is
reached by right clicking on the scene in the tree control. We want our
walk to loop, that is having moved the left leg and the right through a
single stride the action can be repeated indefinitely. In order to achieve a
loop, it is essential that the start and end orientations of all the objects that
make up our character are the same. Because of the hierarchy of this

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 8.5 Setting up a side view in Toon3D Creator.

Keyframe animation 161

character the top-level object is the hips. Select ‘CharlieHips’ in the tree
control and bank them slightly so that Charlie’s right hip is raised. We are
going to make frame 1 of this action the position where Charlie has her
right leg off the ground. Now make a keyframe at frame 12 with Charlie’s
hips banked so that Charlie’s left hip is raised. Finally, copy the position
from frame 1 to frame 25 by going to frame 1, pressing the Enter key and
typing 25 in the dialog box that is generated. If you use the play button you
should get Charlie twisting from side to side. But her legs and arms twist
in exactly the same way as her hips, not very convincing! The next step
is to create a user view that is close to directly overhead. Do this in user
view 2. Imagine Charlie walking, the principal keys are the stride when her
leg is extended forwards and the passing position when her leg is bent
and lifted. So far, we have put the rotation of the hips for the passing
position. But in order not to fall, at the passing position her body weight
should be more or less over the leg that will remain on the ground. To
achieve this, move Charlie’s hips slightly to her left when her right hip is
raised and slightly to her right when her left hip is raised. The next stage
is to add keyframes at 6 and 18 for the stride. As Charlie’s right leg swings
forward her hips will rotate, so their heading goes slightly clockwise
viewed from above. Put this rotation in on frame 6. As Charlie’s left leg
swings forward her hips will rotate, so their heading goes slightly
anticlockwise viewed from above. Put this rotation in at frame 18. The hips
are attached to the feet by bones that do not extend, so that as the leg
moves forward and the back leg stretches, the hips have to come down.
Move them down a little at frames 6 and 18. Test the playback by using
the play button. More movement but still nothing like a walk. You will find
that viewing an animation in its entirety rather than concentrating on a
single position will give better results. If you are having trouble then open
‘Chapter08/Walk02.t3d’, where this preliminary animation has already
been done.

At this stage, the animation of the hips is complete. Now we will
concentrate on the torso. As the hips move through their rotations the
torso aims to keep the body upright and facing in the direction of the walk.
An exaggerated walk can be created where the rotations of the torso are
the opposite of the hips. Because Charlie is so clearly not a realistic
character we will choose the exaggerated option. Rotate Charlie’s body at
frames 1, 6, 12 and 18 to be the opposite of the hips. When the hips are
banked left the torso banks right and when the hips are rotated clockwise
the hips are rotated anticlockwise. When frame 1 is complete remember
to copy it to frame 25. If you are regularly using the playback button then
feel free to change the frame range values to 1 to 24 so that after
displaying frame 24 the playback head skips back to 1. We are making 1

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

162 Keyframe animation

and 25 the same, so we do not want to display both frames as this will
result in the appearance of a slight hesitation in the action. Having sorted
the orientation of the hips and torso we can adjust the head. This needs
rotating at 1, 6, 12 and 18 so that it is always upright and facing forward.
You should now have a character that seems to have some bendiness.

It is now time to rotate the thighs. Starting with the right thigh rotate
it so that it is at about 30° to the horizontal at frame 1. Then it swings
slightly down to frame 6. It should be straight down at frame 12 and at
the maximum swing back at frame 18. Repeat with the left thigh, which
should be straight down on frame 1, maximum back on frame 6, 30° of
horizontal forward on frame 12 and slightly down from there on frame
18. Playback should now be looking more like a walk. Now we come to
the calves. Rotate the right calf so that it is pointing back and down on
frame 1, nearly in line with the thigh on frame 6, and pretty much in line
with the thigh on frames 12 and 18. A little extra bend on frame 18
should help. The left calf should be straight on frame 1, a little bent on
frame 6, pointing back and down on frame 18 and in line with the thigh
on frame 18. For all the objects in the legs make sure that you
remember to copy the leg positions from frame 1 to frame 25. For the
feet, make sure when they are on the floor they stay in line with the floor
for as much of the time interval as possible. You may find that on the
maximum stride if you have the foot tilted up a frame before the leg

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 8.6 Key positions in Charlie’s exaggerated walk.

Keyframe animation 163

goes down and then tilted down in line with the floor a frame after the
foot goes down, then it will give the walk a great deal of weight.

So we come to the shoulders and arms. They need to swing opposite
to the legs. When the right leg is forward and the left leg back, the left
arm should be forward and the right arm back. Just as putting the snap
movement in the feet gives it weight, you can embellish a walk by
putting some flipping wrist action into the hands. As the hand swings
forward the hands need to be rotated down from the forearm; when they
swing back they need to be rotated up in relation to the forearm. If you
put the key change a frame before the maximum swing and a frame
after, then the hands flip through the orientation quickly at the extremes
of rotation. This results in a more dynamic action. You should by now
have a fairly good walk. Walks are hard to get right; they need to be
symmetrical, the movement of the right side echoed exactly by the left.
If you get the timings or rotations of one side different from the other
then you will get a limp. The final walk described here can be seen by
opening ‘Chapter08\Walk03.t3d’.

Using live action reference

For animation to be effective, you need to ensure that the character’s
weight is in the right place and that the timing of an action is convincing.
One of the best ways to get this right is to refer to real life. Drawn
animators have used live action reference to assist in drawing and timing
problems since animation began. If you have access to a video camera,
then film yourself doing a character’s action. By repeatedly viewing the
result you will have a very good idea of the timings of an action and the
shapes that the character gets into throughout the action. Even better
than using just one camera is to use two. By positioning the video
cameras so that the front and side of an action can be seen, you will have
all the information about an action that you could desire. If you are in the
position to digitize your video, possibly you have used videocams to
generate the video, so it will already be on your computer. If you use a
camcorder then you will need to use a digitizing card. DV cameras are
increasingly common and Firewire cards that let you import DV into a PC
are relatively inexpensive. If you can get both video clips into your
computer then position two AVI windows on your desktop. You can then
match the orientation of the video clips in two user views in your animation
software. Having two views of the action helps you decide on an
orientation even if the rotation is in line with the camera view and so the
overall effect is difficult to judge. Now as you create an animation you can

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

164 Keyframe animation

scroll through the video clips at the same time. Check for details like the
orientation of the hands and the fingers; you may be surprised what you
discover from the video clips.

Setting up looping actions
When we created Charlie’s walk we were careful to ensure that the
orientation for the beginning of the action was repeated at the end. In
order for actions to loop effectively, the end must be almost exactly like
the start but not quite the same. The easiest way to achieve a seamless
loop is to copy the key position at frame 1 of an action to the frame after
the last frame of an action. Then exclude this frame from the loop. By so
doing, interpolation from the next to last key to the last is effectively the
same as interpolating between the next to last key and the first, so the
actions loop.

Interpolating between actions
Since real-time character animation is generated at runtime, there are
often instances where one action must blend seamlessly into another. You
can do this in two ways. You could have a common position that all actions
can go back to and ensure that a switch between actions only ever occurs
when the character is in this position. In practice, this is hard to achieve.
It is very difficult to have a keyframe from a walk appear as part of a swim
and vice versa. If every action has start from standing and return to
standing link sequences then you are adding to the development time.
The easiest way is to create an interpolation between two key positions as
required at runtime. One way to achieve this is to store the current
position of the object and the destination position and interpolate between
the two.

Two simple functions that do just that are given below. SetTweenKeys
stores the start position and end position and is used by Tween as the
source and target positions for the interpolation.

//===

//SetTweenKeys

//Used by Tween. It stores the current position, scale and↵
orientation

//and a target position, scale and orientation.

//===

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Keyframe animation 165

void CToon3DObject::SetTweenKeys(double targetTime,↵
CToon3DObject *objList)

{

SetTime(curtime);

//Use RestorePos because we need to store positions before

//AlignToParent

RestorePos();

tpos[0].x=pos.x; tpos[0].y=pos.y; tpos[0].z=pos.z;

trot[0].x=rot.x; trot[0].y=rot.y; trot[0].z=rot.z;

tscale[0].x=scale.x; tscale[0].y=scale.y; tscale[0].z=scale.z;

SetTime(time);

RestorePos();

tpos[1].x=pos.x; tpos[1].y=pos.y; tpos[1].z=pos.z;

trot[1].x=rot.x; trot[1].y=rot.y; trot[1].z=rot.z;

tscale[1].x=scale.x; tscale[1].y=scale.y; tscale[1].z=scale.z;

CToon3DObject *obj=objList;

//Recursively update all child objects

while(obj){

if (obj->parent==this) obj->SetTweenKeys(frame,objList);

obj=obj->next;

}

}

//===

//Tween

//Use the positions stored by SetTweenKeys in tpos[0] and tpos[1]

//and the tweenTime parameter to create a linear interpolation

//between the position, scale and orientation at tpos[0] and that

//at tpos[1]

//===

void CToon3DObject::Tween(double tweenTime, double duration,

CToon3DObject *objList,

VECTOR *toonpos, VECTOR *toonrot, VECTOR *toonscale)

{

double time = tweenTime / duration, oneminustime = 1.0 – time;

if (toonpos){

pos.x=tpos[0].x * oneminustime + tpos[1].x * time + toonpos->x;

pos.y=tpos[0].y * oneminustime + tpos[1].y * time + toonpos->y;

pos.z=tpos[0].z * oneminustime + tpos[1].z * time + toonpos->z;

}else{

pos.x=tpos[0].x * oneminustime + tpos[1].x * time;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

166 Keyframe animation

pos.y=tpos[0].y * oneminustime + tpos[1].y * time;

pos.z=tpos[0].z * oneminustime + tpos[1].z * time;

}

if (toonrot){

rot.x=trot[0].x * oneminustime + trot[1].x * time + toonrot->x;

rot.y=trot[0].y * oneminustime + trot[1].y * time + toonrot->y;

rot.z=trot[0].z * oneminustime + trot[1].z * time + toonrot->z;

}else{

rot.x=trot[0].x * oneminustime + trot[1].x * time;

rot.y=trot[0].y * oneminustime + trot[1].y * time;

rot.z=trot[0].z * oneminustime + trot[1].z * time;

}

if (toonscale){

scale.x=(tscale[0].x * oneminustime +

tscale[1].x * time)*toonscale->x;

scale.y=(tscale[0].y * oneminustime +

tscale[1].y * time)*toonscale->y;

scale.z=(tscale[0].z * oneminustime +

tscale[1].z * time)*toonscale->z;

}else{

scale.x=tscale[0].x * oneminustime + tscale[1].x * time;

scale.y=tscale[0].y * oneminustime + tscale[1].y * time;

scale.z=tscale[0].z * oneminustime + tscale[1].z * time;

}

AlignToParent();

Transform();

CToon3DObject *obj=objList;

while(obj){

if (obj->parent==this){

obj->Tween(tweenTime,duration,objList);

}

obj=obj->next;

}

}

Using this blending makes a huge difference to the way an interactive
game appears. Rather than jumping disconcertingly between actions,
they blend seamlessly.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Keyframe animation 167

Summary

Bringing your geometry to life with animation has a timeless appeal. In this
chapter we looked at various options for keyframe animation. First, we
considered how to store the data and then we looked at interpolating the
data. We looked in detail at one way to create smooth animations using
Kochanek–Bartels (TCB) curves. We also considered an alternative way
of interpolating the orientation of an object using quaternions. Finally, we
looked at putting this theory into practice with a tutorial on creating an
animated walk.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

9 Inverse kinematics

For many real-time applications the actions of the characters will be
created before the application is run and the interactive game code will
select the most suitable action for a particular stage of the game. This
provides an effective game style, but what happens when a character
needs to reach further than the stored action in order to pick up an item?
It would be good if the final position of the character’s hand could be
determined just by providing a world location for the hand and letting the
code determine the orientations of the hand, forearm, bicep, shoulder,
torso and hips, that are needed to achieve this goal. Inverse Kinematics
(IK) provide this solution and can be a useful addition to any game code
engine. Anchoring feet or any other part of the character can be done
using IK solutions. If a character has a fall action that relies on falling on
a flat floor, but instead because of the game location the floor is uneven,
then IK can be used with collision detection to ensure that the character’s
final position relates to the game location.

In this chapter we will look first at how IK developed out of robotics. In
the next section we will look at how to determine the orientation for a
single link and then a double link analytically. We will look at the problems
for calculating the position of an IK chain with more than two links.
Following on from the problems associated with analytical solutions, we
will look at how iterative or numerical solutions can be used to find IK
solutions for chains with more than two links. Finally, we will look at how
IK can be blended with forward kinematics so that pre-stored actions can
be used alongside IK solutions.

How IK developed out of robotics

The principle of an inverse kinematics solution to a motion problem is that,
given a position in world space and the end point of a linked chain (end
effector), determine the rotations that have to be applied to the linked

Inverse kinematics 169

chain in order that the end effector reaches the goal. Most of the study of
this problem stems from robotics. In the car industry, robot arms have
been used for many years to do repetitive jobs on a production line. Spot
welding is a good example. The position of a required weld is known to a
high degree of accuracy because the bodywork is on a conveyor belt and
the relationship between the car body and the robot arm can be carefully
measured. Since the car design is also known to a high degree of
accuracy, the location of, for example, 12 weld points along a seam can
be plotted in world locations. The problem the engineers were left with
was how to position the spot welder on the end of a robot arm in these 12
positions. This is just the same problem we have when positioning our
virtual characters, only this time the problem has a real world setting.
Robot arms can be moved using pneumatics, d.c. servos or stepper
motors. Each joint can be rotated in one or more directions. A single joint
that rotates in the heading, pitch and bank is described as having three
degrees of freedom (3 DOF). For an object to be completely free moving,
it must have six degrees of freedom (6 DOF). This is achieved by allowing
translations in addition to rotation. Most robot arms are fixed at the base,
so they have three degrees of freedom. For this reason they cannot
always achieve a goal. The engineers have to ensure that the relative
positioning of the car body in relation to the robot is such that the targets
can all be reached. There are numerous papers on techniques to derive
the orientation of the links in the chain based on a target location, a few
of which are mentioned in Appendix C.

Calculating the orientation for a single link IK chain
Before we explore more complex solutions we will look first at the simplest
possible case, an IK chain consisting of a single link. In the 2D version of

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 9.1 Using an IK solution to make a character’s hand reach a goal.

170 Inverse kinematics

this problem we have a target position indicated in Figure 9.2 using a
cross. We also have a single link object. We want to orientate the object
so that it points towards the cross. To achieve this we have only to
calculate the value of �, the rotation angle. This is an exercise in simple
trigonometry. We know the x distance to the target is target x minus object
x and the y distance can calculated the same way. The y distance divided
by the x distance gives the tangent of the angle, so the simple solution is
found by calculating the inverse of the tangent of the y distance divided by
the x distance.

The simple solution to this problem is

� = atan(ydistance/xdistance)

The demo for this can be run by selecting Chapter09/Ikdemo.exe and
selecting ‘Single Link’ from the menu.

Calculating the orientations for a double link IK chain

By adding a single extra link, the problem becomes much more complex.
Consider Figure 9.3; the intention is to calculate both � values based on
the position of the target. Assuming we know the length of each link
(Length1 and Length2), we can state that

Pivot2.x = Pivot1.x + Length1*cos(�1)
Pivot2.y = Pivot1.y + Length1*sin(�1)

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 9.2 A single link IK chain.

Inverse kinematics 171

Target.x = Pivot2.x + Length2*cos(�1 + �2)
Target.y = Pivot2.y + Length2*sin(�1 + �2)

which implies that

Target.x = Pivot1.x + Length1*cos(�1) + Length2*cos(�1 + �2)
Target.y = Pivot1.x + Length1*sin(�1) + Length2*sin(�1 + �2)

The aim is to invert this equation and express the � values using the
known values. Assuming we are keeping the pivot point of the first link
stationary, we already know the value of Pivot1.

Using the trigonometric identities

cos(�1 + �2) = cos(�1)cos(�2) – sin(�1)sin(�2)
sin(�1 + �2) = cos(�1)sin(�2) + sin(�1)cos(�2)

We can restate the equations as

Target.x = Pivot1.x + Length1*cos(�1) + Length2*(cos(�1)cos(�2)
– sin(�1)sin(�2))

Target.y = Pivot1.x + Length1*sin(�1) + Length2*(cos(�1)sin(�2)
+ sin(�1)cos(�2))

Another useful trigonometric identity is

cos2(�) + sin2(�) = 1

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 9.3 A double link IK chain.

172 Inverse kinematics

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 9.4 How to find �1.

By squaring both sides of the equations and adding them together, the
equation can be carefully rearranged to give

cos(�2) =
Target.x2 + Target.y2 – Length12 – Length22

2*Length1*Length2

Therefore,

�2 = acos�Target.x2 + Target.y2 – Length12 – Length22

2*Length1*Length2 �
So, all we have to do now is find �1. Looking at Figure 9.4, we can use two
additional angles to help to find �1.

�1 = �3 – �4

Finding �3 is the same problem as the single link solution given above

�3 = atan(ydistance/xdistance)

Looking at the triangle formed from the pivot of object 2, the target and the
right angle indicated, we can express the lengths of the two sides as

Length2*cos(�2) and Length2*sin(�2)

Inverse kinematics 173

Therefore, the triangle that includes �4 has sides

Length2*sin(�2) and Length2*cos(�2) + Length1

The angle �4 is found using the inverse tangent of the ratio of these
lengths:

�4 = atan � Length2*sin (�2)

Length1 + Length2*cos (�2) �
You could even reduce the number of trig function calls by using the tan
identity for tan(�1 – �2):

tan(�1 – �2) = (tan(�1) – tan(�2))/(1 + tan(�1)tan(�2))

If the target is beyond the reach of the current chain, the exercise reduces
to the single link one. The child object will have zero rotation or rotation
that orientates it to the direction of the parent in a more general solution.
The parent object can be rotated as in the single link solution.

The code for the double link solution is shown below. The code makes
use of a CLink class that stores the current orientation for a link and the
rotation matrix. The CLink class is a linked list with a parent member
variable.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 9.5 Rotating the objects with the target beyond reach.

174 Inverse kinematics

void CLink::CreateMatrix()

{

//HPB

double ch,sh,cp,sp,cb,sb;

ch = cos(rot.x); sh = sin(rot.x);

cp = cos(rot.y); sp = sin(rot.y);

cb = cos(rot.z); sb = sin(rot.z);

right.x = ch*cb-sh*sp*sb;

right.y = -cp*sb;

right.z = -sh*cb-ch*sp*sb;

up.x = ch*sb+sh*sp*cb;

up.y = cp*cb;

up.z = -sh*sb+ch*sp*cb;

forward.x= sh*cp;

forward.y= -sp;

forward.z= ch*cp;

if (parent){

//Concatentate the parents rotation matrix which must already

//have been calculated, otherwise the positions will be in

//error

double t1,t2,t3;

t1 = parent->right.x*right.x + parent->up.x*right.y

+ parent->forward.x*right.z;

t2 = parent->right.y*right.x + parent->up.y*right.y

+ parent->forward.y*right.z;

t3 = parent->right.z*right.x + parent->up.z*right.y

+ parent->forward.z*right.z;

right.x = t1; right.y = t2; right.z = t3;

t1 = parent->right.x*up.x + parent->up.x*up.y

+ parent->forward.x*up.z;

t2 = parent->right.y*up.x + parent->up.y*up.y

+ parent->forward.y*up.z;

t3 = parent->right.z*up.x + parent->up.z*up.y

+ parent->forward.z*up.z;

up.x = t1; up.y = t2; up.z = t3;

t1 = parent->right.x*forward.x + parent->up.x*forward.y

+ parent->forward.x*forward.z;

t2 = parent->right.y*forward.x + parent->up.y*forward.y

+ parent->forward.y*forward.z;

t3 = parent->right.z*forward.x + parent->up.z*forward.y

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Inverse kinematics 175

+ parent->forward.z*forward.z;

forward.x = t1; forward.y = t2; forward.z = t3;

pos.x = parent->length * parent->right.x + parent->pos.x;

pos.y = parent->length * parent->right.y + parent->pos.y;

pos.z = parent->length * parent->right.z + parent->pos.z;

}

for (int i=0; i<4; i++){

dispts[i].x = orgpts[i].x * right.x + orgpts[i].y * up.x

+ orgpts[i].z * forward.x + pos.x;

dispts[i].y = orgpts[i].x * right.y + orgpts[i].y * up.y

+ orgpts[i].z * forward.y + pos.y;

dispts[i].z = orgpts[i].x * right.z + orgpts[i].y * up.z

+ orgpts[i].z * forward.z + pos.z;

}

}

To solve the double link problem the demo uses the following function:

void CIKDemoDoc::SolveDoubleLink()

{

double sin2, cos2, totallength, x, y, tan1;

CLink *link1, *link2;

if (links.next->next){

link1 = links.next;

link2 = link1->next;

}else{

return;

}

//Check solution is possible

x = target.x – link1->pos.x;

y = -target.y – link1->pos.y;

totallength = sqrt(x*x + y*y);

if (totallength < (link1->length + link2->length)){

cos2 = (x * x +y *y - link1->length * link1->length –

link2->length * link2->length)/

(2 * link1->length * link2->length);

link2->rot.z = acos(cos2);

sin2 = sin(link2->rot.z);

tan1 = (-(link2->length * sin2 * x) + ((link1->length +

(link2->length * cos2)) *y))/

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

176 Inverse kinematics

((link2->length * sin2 *y) + ((link1->length +

(link2->length * cos2)) * x));

link1->rot.z = atan(tan1);

}else{

//Just use the single link solution

x = target.x – link1->pos.x;

y = -target.y – link1->pos.x;

link1->rot.z = atan(y/x);

if (x<0) link1->rot.z = PI + link1->rot.z;

link2->rot.z = 0.0;

}

link1->CreateMatrix();

link2->CreateMatrix();

CString str;

str.Format(”(%4.2f, %4.2f)”, x,y);

SetStatus(str);

}

Limitations for the analytical approach for multiple link
chains

In Figure 9.6, you can see that there are two valid ways of achieving the
orientations necessary to reach the target. This problem stems from using

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 9.6 IK problems often have more than one solution.

Inverse kinematics 177

the square of the equations in the solution. Whenever a square is used
the root has two solutions, one positive, the other negative. Each solution
is valid and leads to one or other of the solutions in the figure. The effect
of this in a double link chain is fairly minimal, but can still lead to a
disturbing snapping when the software analysis trips from one solution to
the other. You could attempt to minimize the rotation change and take the
minimum solution, and this can help. A fully general solution using
analysis that is robust in all circumstances can prove elusive even with a
double link chain. Adding a single additional link doubles the possible
solutions, a three-link chain having four possible valid solutions.

A four-link chain has eight solutions. A hips, torso, shoulder, bicep,
forearm, hand chain with six links will have 32 possible solutions. The
software is very likely to snap between solutions and this will lead to poor
quality animations. We need a way out of this dilemma.

Using an iterative technique to determine orientations
for a multiple link IK chain

The way we will study here was first presented by Chris Welman in his
masters thesis on IK as an extension to work developed by Li-Chun
Tommy Wang and Chih Cheng Chen in an IEEE paper ‘Transactions on
Robotics and Automation’. The technique is called Cyclic Coordinate
Descent. The principal algorithm is as follows:

1 Set a loop counter to zero.
2 Start with the last link in the chain.
3 Rotate this link to point towards the target.
4 Move down the chain and repeat step 2.
5 When the base object is reached, determine if the target has been

reached or a loop limit has been reached. If so exit, if not increment
loop counter and repeat from step 2.

This algorithm has the benefit of simplicity and can be easily
implemented.

To derive the angle �, we go back to the familiar methods of using
vectors. Remember that the dot product of vectors is given by

a•b = �a � �b �cos(�) where �a � = √(a•x2 + a•y2) and �b � = √(b•x2 + b•y2)

Therefore, the angle � is given by

� = acos(a•b/ �a � �b �)

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

178 Inverse kinematics

Unfortunately, the angle does not imply direction and we are interested in
both the angle and the direction. Since the cross product of two vectors
gives a perpendicular vector, we can use this to determine the direction.
By extending the vectors from two to three dimensions, we then have a z
value. The sign of this z value will give the direction in which to rotate.

If

a = (a.x, a.y, 0) and b = (b.x, b.y, 0)

then

a × b = (a.y*0 – 0*b.y, 0*b.x – a.x*0, a.x*b.y – a.y*b.x)

We are only interested in the sign of the third term. So the sign of

a.x*b.y – a.y*b.x

defines the direction of rotation.
When using the algorithm, we start by iterating through the link chain to

find the last link. We then create unit vectors from the pivot point of the link
to the chain end and from the pivot point to the target. The inverse cosine
of the dot product of these two vectors gives the angle of rotation and the
third term of the result of the three-value vector cross product gives the
direction of rotation. We generate a rotation matrix using this information
and record the current chain end position.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 9.7 Rotating the last link using the Cylic Coordinate Descent technique for IK
solutions.

Inverse kinematics 179

We then move one link down the chain and determine new vectors from
the pivot point of the new link to the chain end and target and repeat the
dot product and cross product calculations. We then create a rotation
matrix and calculate the new location for the chain end. This procedure is
repeated until the base object is rotated. At this point we determine if we
are close enough to the target to exit the function. If not, we must repeat
the procedure. It is possible that the target cannot be reached. The
function needs to ensure that under such circumstances the program
does not enter an infinite loop. A simple technique to avoid this is to limit
the looping to a certain number of times; if this is exceeded then the
function exits.

If the total length of the links is less than the distance to the target, then
the goal can never be achieved and it can be useful to add this condition
to the code. Under these circumstances we return to the problem of
orientating a single link, the base link, and setting all other links to zero
rotation.

The code for the Cyclic Coordinate Descent method is as follows:

void CIKDemoDoc::SolveMultiLink()

{

CLink *link = links.next, *lastlink, *tmplink;

int loopcount = 0;

double x, y, totallength, linkslength = 0.0, dotprod;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 9.8 Rotating the intermediate link using the Cylic Coordinate Descent
technique for IK solutions.

180 Inverse kinematics

double mag, theta, sign, sqdist;

VECTOR pe, pt;

//Check solution is possible

x = target.x - link->pos.x;

y = -target.y – link->pos.y;

totallength = sqrt(x*x + y*y);

//Find the last link and links length

while (link->next){

linkslength += link->length;

lastlink = link;

link = link->next;

}

if (totallength < linkslength){

//Calculate Cyclic Coordinate Descent solution

link = lastlink;

while(link && loopcount<20){

//Calculate current endeffector position

endeffector.x = lastlink->length * lastlink->right.x +

lastlink->pos.x;

endeffector.y = lastlink->length * lastlink->right.y +

lastlink->pos.y;

//Calculate the squared distance from end effector to

//target

x = target.x – endeffector.x;

y = target.y – endeffector.y;

sqdist = x*x + y*y;

if (sqdist < 0.1) break;

//Calculate pivot to target vector

pt.x = target.x – link->pos.x;

pt.y = target.y – link->pos.y;

pt.z = 0;

//Calculate pivot to end effector vector

pe.x = endeffector.x – link->pos.x;

pe.y = endeffector.y - link->pos.y;

pe.z = 0;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Inverse kinematics 181

//Convert to unit vectors

mag = sqrt(pt.x * pt.x + pt.y * pt.y);

pt.x/=mag; pt.y/=mag;

mag = sqrt(pe.x * pe.x + pe.y * pe.y);

pe.x/=mag; pe.y/=mag;

//Calculate dot product

dotprod = pe.x * pt.x + pe.y * pt.y;

//Calculate cross product for direction

sign = pe.x * pt.y – pe.y * pt.x;

if (sign > 0.0){

theta = -acos(dotprod);

}else{

theta = acos(dotprod);

}

link->rot.z += theta;

//Set matrices for current link and all children

tmplink = link;

while(link){

link->CreateMatrix();

link = link->next;

}

link = tmplink;

//Move on to next link

if (link==links.next){

loopcount++;

link = lastlink;

}else{

link = link->parent;

}

}

}else{

//Just use the single link solution

link = links.next;

x = target.x – link->pos.x;

y = -target.y – link->pos.x;

link->rot.z = atan(y/x);

if (x<0) link->rot.z = PI + link->rot.z;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

182 Inverse kinematics

while (link->next){

link = link->next;

link->rot.z = 0.0;

}

}

link = links.next;

while(link){

link->CreateMatrix();

link = link->next;

}

}

Setting joint limits and bending strengths

In the previous section, the ease of rotation at each joint was the same.
Because the algorithm starts at the end of the chain, this favours the
rotation of the later links. It may be that you would prefer most of the
rotation to come from the middle of the chain. If we only allow some links
to rotate by less than 100 per cent of the optimum rotation we can favour
certain links. In our four-link chain we could have a scale value for the
angle of rotation set to 0.3, 0.1, 0.5, 0.6 starting from the root object. In
this way, the second link up the chain has a greater influence on the way
the goal is reached.

Another technique to ensure that rotations are applied as intended is to
limit the maximum rotation. If a link is locked so that beyond certain
minimum and maximum rotation it cannot move, then this forces the
rotation of a chain to reach a goal, so it is handled in a way that feels
correct. A good example of this is our knee joints. The joint is capable of
rotating around 140° back from straight, but cannot rotate forward. If the
software allowed forward rotations then a walk would seem very awkward
to the viewer.

Blending IK solutions with forward kinematic animation

There are many times when you will want to switch from a forward
kinematic solution to a motion problem, to an IK solution. Suppose a
character places a hand temporarily on a fixed surface such as a table or
wall. The hand should appear to be stationary on the surface. If the body

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Inverse kinematics 183

continues to move then this is an ideal candidate for an IK solution. A few
seconds later the character may be running around. As soon as the hand
leaves the surface the animation will be better handled by a forward
kinematic solution. What we need to be careful about is that the two
solutions blend well visually. One technique is to calculate two solutions
until the hand is within bounds that could leave the wall.

By calculating both solutions we can determine when the hand would
move away using the forward kinematics solution. At this stage, we need
to blend the IK solution into the forward kinematic solution. We can use a
progressively changing weight to determine the final outcome. If we set
the blend to be over 1 second and blendtime is the number of seconds
that have elapsed during the blend, then the two solutions are based
on

IK * (1 – blendtime) + FK * blendtime

As soon as blendtime exceeds 1.0, we can stop calculating the IK
solution and rely solely on the forward kinematic animation.

Summary

IK solutions can be calculated in sufficient time to be applicable to real-
time engines for character animation. By using IK the stored animations
can be extended and do not represent as great a limitation on interactivity.
Using Cyclic Coordinate Descent, the IK solution is quite robust and
efficiently calculated. Combining forward and inverse kinematics gives the
maximum flexibilty. Using joint strengths allows the developer to make
some parts of the model appear more supple than others to the viewer.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

10
Importing geometry
and animation from
Lightwave 3D

No man is an island as the saying goes, and this is undoubtedly true of
real-time character animation. In order to produce effective real-time
character animation you are likely to need to use many application
programs as tools. The kinds of tools you will need are likely to include: a
good bitmap editor such as Paint Shop Pro to create the texture maps that
are so essential for the look of low polygon characters; a level editor to
create the real-time content; and a modelling program. In this chapter we
look in detail at how we can use data created by one important tool,
Lightwave 3D, in our own application.

Lightwave 3D scene files are simple text files that define how objects
appear and animate in a scene. In this chapter we look in detail at the
scene file and how to extract the animation data. Lightwave 3D object files
are binary files containing point, polygon and surface data. This chapter
covers in detail how to parse such a file and extract the information
necessary to display the geometry.

Lightwave overview

Lightwave splits the CGI animation process into two distinct stages:
modelling and animating. Because of this Lightwave has two main
application programs, ‘Modeler’ and ‘Layout’. The data created in
‘Modeler’ comprise a binary file that contains information about a model’s
vertices, polygons and surfaces. This file can contain other information
that a model may use that can be provided by plug-ins or extensions to
the Lightwave dataset that may appear later. Any parsing engine we
create must be able to skip this additional information.

A Lightwave scene file is a text file that contains a list of all objects used
in a scene, the animation they perform, any plug-ins they use, the lights
used and their animation, the camera and its animation, and finally user
display settings. Parsing a scene file involves reading the text file and

Importing geometry and animation from Lightwave 3D 185

loading any objects that are described along with the animation these
objects perform. In order to use a scene file we need to be able to load an
object file, so we will begin our examination of importing Lightwave data
by looking at how to read and load an object file.

Importing a Lightwave object file

First we are going to create a new class CLWObject; this class will
contain all the information about an object that we will use: points,
polygons and surface data. Initially, we will start with a stripped down
application that will load a single object and allow the user to rotate the
object. In terms of surface data we will simply load the colour of a
surface. Later we will look at the Toon3D source code to learn how to
extract texture information. The rationale behind splitting the process up
is that the more code in an application, the more difficult it is to learn
from this source in order to apply the techniques to your own
application. When loading the full data out of a Lightwave object file for
a low polygon application, the main complexity lies in the parsing of the
surface data. For this reason we look at the problem in two stages,
basic object geometry and then surface details.

One of the best features of Lightwave 3D is the documentation
available. Lightwave 3D has a free and very useful mailing list which I
encourage the interested reader to become a part of (see the information
at the end of the book for further details). A Lightwave 3D file uses the IFF
file format that was used extensively on the Commodore Amiga. This file
format uses a chunk format. A chunk starts with a four-letter code that
describes what the chunk is about, followed by an integer value that
defines the length of the code. A parser first reads the chunk ID and the
chunk length, checks whether it understands this chunk and if it does then
reads the chunk. If it does not understand the chunk, then the parser uses
the chunk length to tell the file pointer to skip the next section, where it can
then happily read the next chunk. So here is how the first chunk in a
Lightwave 6+ file looks:

F O R M 340 L W O 2
46 4F 52 4D 00 00 01 54 4C 57 4F 32

First we find four characters that define the file as an IFF ‘FORM’.
Then 4 bytes that are the length of the file minus 8 bytes. The final part
of the header chunk is the form type, which for a Lightwave 6 object
file will contain the four characters ‘LWO2’; the ‘O’ stands for object, it

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

186 Importing geometry and animation from Lightwave 3D

is not a number. The only thing we have to be careful of here is that
the byte ordering in a Lightwave file is in Motorola order. This is not the
same as the byte ordering on an Intel machine, so if you are creating a
parser on an Intel machine then you will have to change the byte
order.

The following shows three functions you can use when reading short,
int and floating-point values from a file that uses Motorola, sometimes
also called network, byte ordering. Each function uses the same strategy.
The function returns true or false depending on whether there was a file
read error. For a short we declare a 2-byte buffer, for an int or float we use
a 4-byte buffer. There are two parameters passed to the function: a file
pointer and a reference to a variable of the type we are reading. In
addition to creating an appropriately sized buffer, we also create a
character pointer that is initialized to the address of the variable reference
passed to the function. Then we read either 2 or 4 bytes from the file,
returning false if there was a read error. Finally, we flip the contents of the
buffer, storing the result in the passed variable using the character pointer
we created.

BOOL CLWObject::ReadShort(FILE *fp, unsigned short &s)

{

char buf[2], *cs = (char*)&s;

if (fread(&buf, 2, 1, fp)!=1) return FALSE;

cs[0]=buf[1]; cs[1]=buf[0];

return TRUE;

}

BOOL CLWObject::ReadInt(FILE *fp, int &i)

{

char rd[4], *ci = (char*)&i;

if (fread(rd,4,1,fp)!=1) return FALSE;

ci[0]=rd[3]; ci[1]=rd[2]; ci[2]=rd[1]; ci[3]=rd[0];

return TRUE;

}

BOOL CLWObject::ReadFloat(FILE * fp, float &f)

{

char rd[4], *cf = (char*)&f;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from Lightwave 3D 187

if (fread(rd,4,1,fp)!=1) return FALSE;

cf[0]=rd[3]; cf[1]=rd[2]; cf[2]=rd[1]; cf[3]=rd[0];

return TRUE;

}

Assuming that we have read the file header and the file is of suitable
format, we can start to read the chunk headers. To read a chunk header,
we read the 4-byte identifier and the chunk length. Below is a function that
will do just this. We pass a file pointer, a buffer that must be at least four
characters long, and an integer reference to the function. Again, the
function returns false if there was a file read error. We store the chunk
identifier and length in passed variables. When navigating a chunk we
need to read an additional byte from the file if the length of a chunk is odd,
because all chunks start on an even byte boundary.

BOOL CLWObject::ReadChunkHeader(FILE *fp, char *buf, int &i)

{

//Read header

if (!fread(buf,4,1,fp)) return FALSE;

//Read sub chunk length

if (!ReadInt(fp,i)) return FALSE;

return TRUE;

}

Lightwave also uses sub-chunks; these are read in exactly the same
way as reading a standard chunk, except that the length of the sub-chunk
is stored in a short integer. The function call for reading a sub-chunk
header is as follows:

BOOL CLWObject::ReadSubChunkHeader(FILE *fp, char *buf, USHORT &s)

{

//Read header

if (!fread(buf,4,1,fp)) return FALSE;

//Read sub chunk length

if (!ReadShort(fp,s)) return FALSE;

return TRUE;

}

Now that we have an armoury of function calls for navigating a
Lightwave object file, we will look at the structure of the parser. We want
to create a structure that is easily extendable. All Lightwave files have a

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

188 Importing geometry and animation from Lightwave 3D

certain format. Having read the initial header, we will read a TAGS chunk
where a list of string values are stored that can be referred to later in the
file. Following this chunk will be a LAYR chunk, defining the start of a
layer. The Lightwave object format can store several object layers, each
effectively a self-contained mesh. A single LAYR chunk will contain point,
polygon and surface data for that layer. So we can structure our reader to
have an overall function that will read an entire file. This function will
contain a switch statement that looks for a TAG or LAYR chunk. Any other
chunk can be ignored and skipped by seeking through the file by the
amount returned in the length variable passed to the ReadChunkHeader
function. The function is given below. The loop is exited when the function
call ReadChunkHeader returns false to indicate a file error.

BOOL CLWObject::ReadObjectFile(FILE *fp){

char buf[4];

int length;

while (1){

if (!ReadChunkHeader(fp, buf, length)) break;

if (strncmp(buf, “TAGS”, 4)==0){

if (!ReadTags(fp, length)) return FALSE;

continue;

}

if (strncmp(buf, “LAYR”, 4)==0){

if (!ReadLayer(fp)) return FALSE;

continue;

}

if (length%2){

//Skip one extra byte if odd length chunk

fseek(fp, length+1, SEEK_CUR);

}else{

fseek(fp, length, SEEK_CUR);

}

}

return TRUE;

}

Reading the tags chunk is simply a case of reading a series of zero
terminated strings until the read count reaches the length of the chunk. A
function call that will read a zero terminated string from a Lightwave object
file is shown below. The function takes a file pointer, a character buffer, a
reference to a count variable and the length of the passed buffer. If the

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from Lightwave 3D 189

function fails to read a full zero terminated string then it returns false. This
can be because of either a file read error or because the length of the
buffer passed to the function was insufficient to store the string being
read. The function returns the read string in the character buffer ‘buf’. If
the size of a string is odd then we need to read another byte from the file,
since all strings start on an even byte boundary.

BOOL CLWObject::ReadString(FILE *fp, char *buf, int &count,

int buflength){

count = 0;

while(1){

if (fread(&buf[count], 1, 1, fp)!=1) return FALSE;

if (buf[count++]==0) break;

if (count==buflength) return FALSE;

}

//Align to even byte boundary

if (count%2) fseek(fp, 1, SEEK_CUR);

//Don’t include final zero in count

count--;

return TRUE;

}

To read the tag chunk simply call ReadString repeatedly until the length
of the chunk is reached. The length of the string is returned in the passed
count variable. Store all the strings in an array. They will be needed when
reading a surface chunk.

Reading a layer section

The content of a layer is finished when the end of a file is reached or
another LAYR chunk is found. Let’s examine a simple unit cube file to see
how the data for a layer are stored.

FORM 340 LWO2
TAGS 8 "Default"
LAYR 18

0 0 0.0 0.0 0.0 ""
PNTS 96

–0.5 –0.5 –0.5
0.5 –0.5 –0.5

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

190 Importing geometry and animation from Lightwave 3D

0.5 –0.5 0.5
–0.5 –0.5 0.5
–0.5 0.5 –0.5
0.5 0.5 –0.5
0.5 0.5 0.5

–0.5 0.5 0.5
BBOX 24

–0.5 –0.5 –0.5
0.5 0.5 0.5

POLS 64
FACE
4 0 1 2 3
4 0 4 5 1
4 1 5 6 2
4 3 2 6 7
4 0 3 7 4
4 4 7 6 5

PTAG 28
SURF
0 0
1 0
2 0
3 0
4 0
5 0

SURF 42
"Default"
""
COLR 14

0.78431 0.78431 0.78431
0

DIFF 6
1.0 0

As can be seen from the above, a layer contains chunks that describe
the data for the points (PNTS), bounding box (BBOX), polygons (POLS),
polygon tag information (PTAG) and surfaces (SURF). For a layer section
we will use the following function; this returns if it finds another layer, so
in this simple application only the first layer in a file will return any object
geometry. If you wish to extend this then you will need to create a list of
objects and have the overall document do the reading, creating new
objects in the object list as new layer chunks are encountered.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from Lightwave 3D 191

BOOL CLWObject::ReadLayer(FILE *fp){

char buf[4];

int length;

while(1){

if (!ReadChunkHeader(fp, buf, length)) return FALSE;

if (strncmp(buf, “PNTS”, 4)==0){

if (!LoadPoints(fp, length)) return FALSE;

}

if (strncmp(buf, “POLS”, 4)==0){

if (!LoadPoints(fp, length)) return FALSE;

}

if (strncmp(buf, “PTAG”, 4)==0){

if (!LoadPTag(fp, length)) return FALSE;

}

if (strncmp(buf, “SURF”, 4)==0){

if (!LoadSurface(fp, length)) return FALSE;

}

if (strncmp(buf, “LAYR”, 4)==0) break;

}

return TRUE;

}

The point list always precedes the polygon list, so we will examine this
first.

A point chunk is identified with the chunk identifier ‘PNTS’; the length of
a point chunk gives the number of points, since each point is defined by
three floating-point values and a floating-point value uses 4 bytes. To get
the number of points in a chunk, divide the length of the PNTS chunk by
12. For convenience in the sample code, I have defined a VECTOR
structure:

typedef struct stVECTOR{

float x, y, z;

}VECTOR;

A CLWObject has a member variable ‘pts’ that is a pointer to a
VECTOR. The class also includes a member variable ‘numpoints’, which
is used to ensure that we do not try to use points outside the range of
those created. In the ‘LoadPoints’ function we create an array of VECTOR
quantities. Then up to the ‘length’ of the file we keep calling the
‘ReadFloat’ function to read each component of the VECTOR structure.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

192 Importing geometry and animation from Lightwave 3D

One slight surprise is that the z orientation for a Lightwave model is the
inverse of that expected by OpenGL, so we flip the z value to ensure
consistency between the Lightwave interface display and our OpenGL
display. As long as there are no file read errors, the function returns the
number of points read. If there is a file read error then the function returns
zero.

int CLWObject::LoadPoints(FILE *fp, int length)

{

int numpts, count;

VECTOR *pt;

numpts = length/12;

pts = new VECTOR[numpts];;

if (!pts) return 0;

count=0;

pt = pts;

while(count<length){

if (!ReadFloat(fp, pt->x)) return 0;

if (!ReadFloat(fp, pt->y)) return 0;

if (!ReadFloat(fp, pt->z)) return 0;

pt->z = -pt->z;

pt++;

count+=12;

}

numpoints=numpts;

//Align to even boundary

if (length%2) fseek(fp,1,SEEK_CUR);

//Must have gone OK

return numpts;

}

Having created an array of points we next create an array of polygons.
A polygon is defined as having a certain number of vertices; in our simple
application this value is restricted to three or four. Vertices are indicated
by the index into the point array. Surface information is stored as an index
into the surface array. Polygon chunks can also define sub-patch
polygons, so we check first that we are dealing with a regular polygon list

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from Lightwave 3D 193

by reading the first four characters after the chunk header. If this is ‘FACE’
then we are dealing with a conventional polygon; in this limited application
we return 0 to indicate an error if this is a subdivision patch list.

We then read the polygons one at a time. We cannot determine the
number of polygons from the length of the chunk because a polygon can
contain n number of vertices. A different number of vertices will use a
different amount of storage in the file. So we must allocate memory
dynamically. In the sample application memory is allocated as each
polygon is created. Then the contents of the existing polygon array are
copied and the old array deleted. Finally, the member variable ‘plys’ is set
to point to the new memory area. Another common way to allocate
memory dynamically is to double the storage each time, so that initially
you allocate enough for a single polygon, then 2, 4, 8, 16, 32, etc. This
saves time but is less efficient in terms of storage. Since a loader is called
infrequently, it seems that efficient memory storage wins out over
speed.

The definition of a polygon that we use in the application is as
follows:

typedef struct stPOLYGON{

int numverts; //Number of vertices

int p[4]; //Index into the point array of the vertices

int srfID; //Index into the surface array of the surface

float nx, ny, nz; //Normal for this polygon

}POLYGON;

For every polygon we store the normal in the three float values, nx, ny
and nz. The function to load all the polygons in a ‘POLS’ chunk is shown
below:

int CLWObject::LoadPolygons(FILE *fp, int length)

{

int r,count;

char buf[4];

numpolygons=0;

if (fread(buf, 1, 4, fp)!=1) return 0;

if (strncmp(buf, ”FACE”, 4)!=0) return 0;

count = 4; //bytes read so far

while(count<length){

r = AddPolygon(fp);

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

194 Importing geometry and animation from Lightwave 3D

if (r==0) return 0;

count+=r;

}

if (length%2) fseek(fp, 1, SEEK_CUR);

return numpolygons;

}

The ‘LoadPolygons’ function calls ‘AddPolygon’ every time it encoun-
ters a new polygon. A polygon is defined as a vertex total ‘n’ and then n
indices into the points list. The vertex total has to have the top 6 bits of a
16-bit short integer masked out, since these are reserved for flags used
by non-standard polygons. The only use currently defined for these is to
store curve information. In the function we use a bitwise ‘and’ to zero out
the top 6 bits. Then we create storage for the current number of polygons
plus one extra. The existing polygon array is copied if it exists and a
pointer to a polygon is set to point to the last one in the array. This last
polygon is where we will store the data for the polygon being read. We
read the number of vertices and read each vertex from the file. If the value
of the vertex index is less than 4 then we can store the value; if it exceeds
4 then in this simple application we simply ignore the higher vertices. In a
more sophisticated application you could choose to create a new polygon
for vertices above 4, but you need to create a versatile function if it is able
to cope with any polygon it receives. The problem stems from concave
polygons. If a polygon is convex then it can easily be tripled, turned into
triangles, by joining vertex 0 to n and n + 1, as n goes from 1 to the
number of vertices minus 2. If, however, a polygon is concave then this
technique can result in a group of triangles that draw outside the range of
a polygon. It is highly recommended that when exchanging data between
a CGI application and your own application you use just triangles. In this
way, non-planar polygons are avoided and you also avoid any problems
over concave polygons, since a triangle must be convex. In the function
we store the value of the number vertices if it is below 5. If it is above 5
then the result is capped to 4. Finally, the function returns the number of
bytes that have been read from the file while adding the current
polygon.

int CLWObject::AddPolygon(FILE * fp)

{

int j;

unsigned short s, numverts;

POLYGON *ply;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from Lightwave 3D 195

if (!ReadShort(fp, numverts)) return 0;

numverts &= 0x3FF; //Mask high 6 bits

//Update Polygon storage

ply = new POLYGON[numpolygons + 1];

if (!ply) return 0;

if (plys){

memcpy(ply, plys, sizeof(POLYGON) * numpolygons);

delete [] plys;

}

plys = ply;

ply = &ply[numpolygons];

for (j=0;j<numverts;j++){

if (!ReadShort(fp,s)) return 0;

if (j<4) ply->p[j]=(int)s;

}

ply->numverts = (numverts<5)?numverts:4;

ply->srfID = 0;

numpolygons++;

return numverts * 2 + 2; //Size of polygon

}

Notice that we zero the index for the surface when creating a polygon.
The actual value for the surface ID is found from the PTAG chunk. This
chunk can store several features of a polygon; in this stripped down
application we use only one, the SURF section. In the SURF section of a
PTAG chunk we read a polygon index and the surface index that this
polygon uses. The actual index points to the string variable we stored
from the TAGS chunk. To find the actual surface we load a surface and
check its name against the TAG chunk.

For example:

TAGS

“Default”

“BackFace”

“YellowPlastic”

“BlueMetal”

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

196 Importing geometry and animation from Lightwave 3D

SURF

“BlueMetal”

....

SURF

“YellowPlastic”

Despite finding ‘BlueMetal’ first, the index in the PTAG chunk for the
surface would be 3. A surface with the name ‘Default’ would have an index
of 0 in the PTAG chunk.

BOOL CLWObject::LoadPTags(FILE *fp, int length)

{

int count, length;

USHORT plyID, srfID;

char buf[4];

fread(buf, 4, 1, fp);

if (strncmp(buf, ”SURF”, 4)!=0){

fseek(fp, length, SEEK_CUR);

return TRUE;

}

count = 4;

while (count<length){

if (!ReadShort(fp, plyID)) return FALSE;

if (!ReadShort(fp, srfID)) return FALSE;

if (plyID<numpolygons){

plys[plyID].srfID = srfID;

}

count += 4;

}

return TRUE;

}

The surface chunk is by far the most complex chunk in most object files.
Many of the features of the surface chunk can be ignored by a real-time
application. In this simple application we use just two features, the colour
and the name of the surface. In common with the points list and the
polygon list, we declare a structure called SURFACE to store the data.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from Lightwave 3D 197

typedef struct stSURFACE{

BYTE red, green, blue;

char name[40];

}SURFACE;

A surface chunk contains many sub-chunks. We will read just the
COLR chunk that defines the base colour. After reading the name for the
surface and skipping the name of the parent of this surface, we go into a
loop reading through the sub-chunks until the length of the surface chunk
is reached.

BOOL CLWObject::LoadSurface(FILE* fp, int length)

{

char buf[4], name[80];

int i, length, count;

float f;

unsigned short sublength, e;

SURFACE *srf;

while(1){

srf = new SURFACE[numsurfaces+1];

if (srfs){

memcpy(srf, srfs, numsurfaces * sizeof(SURFACE));

delete [] srfs;

}

srfs = srf;

srf = &srfs[numsurfaces];

numsurfaces++;

//Read name

if (!ReadString(fp, srf->name, count, 39)) return FALSE;

//Read parent name

ReadString(fp, name, count, 79);

//Read sub-chunks

while (count<length){

if (!ReadSubChunk(buf, sublength, fp)) return FALSE;

count += 6; //Sizeof a subchunk header

if (strncmp(buf, ”COLR”, 4)==0){

//Found colour

if (!ReadFloat(fp, f)) return FALSE;

srf->red = (BYTE)(f * 255.0f);

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

198 Importing geometry and animation from Lightwave 3D

if (!ReadFloat(fp, f)) return FALSE;

srf->green = (BYTE)(f * 255.0f);

if (!ReadFloat(fp, f)) return FALSE;

srf->blue = (BYTE)(f * 255.0f);

if (!ReadShort(fp, e)) return FALSE;

if (e!=0){

AfxMessageBox(”Colour envelopes not supported”);

return FALSE;

}

count += sublength;

continue;

}

//If we got to here then the chunk was

// not found so skip by byte aligned sublength

if (sublength%2){

fseek(fp, sublength+1, SEEK_CUR);

count += (sublength+1);

}else{

fseek(fp, sublength, SEEK_CUR);

count += sublength;

}

}

}

return TRUE;

}

The simple application LWLoader in the examples for this chapter on
the CD should load most Lightwave 6 files. The application makes no
attempt to scale the view to the size of the object, so if the object is much
smaller than 5 units high or much bigger then it will appear either too small
or two big on the screen. A couple of suitably sized objects can be found
in the Objects folder for this chapter.

More about surfaces

Toon3D uses many more features of the surface chunk and we will look
now at how these are loaded and how we use the details stored in the
object file to assign complex textures to our polygons. This function call is
suitable for LWO1 objects created with Lightwave 5+. Many of the same
features are found in the surface sub-chunks in an LW02 file created with

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from Lightwave 3D 199

Lightwave 6+; for full documentation on LWO2 sub-chunks, see the
details at the end of this book.

COLR LWO1 files store colours as 1-byte integers for red, green and
blue.

VDIF A floating-point value that stores the diffuse level.
VLUM A floating-point value that stores the luminous level.
VSPC A floating-point value that stores the specular level.
VTRN A floating-point value that stores the transparency level.
CTEX A colour texture we read whether the mapping is planar,

cylindrical or spherical.
TIMG If we encountered a texture then we can read the filename for the

bitmap.
TWRP A flag indicating whether a texture tiles.
TSIZ The overall size of a texture used by planar and cylindrical

mapping.
TCTR The centre of the texture.
TFP0 Used to store special data about a texture, we use it simply for

the width repeat total.
TFP1 Used to store special data about a texture, we use it simply for

the height repeat total.

Using these sub-chunks we can create a fully textured object.
Lightwave until version 6 did not store any texture coordinates in an object
or scene file. Anyone parsing a pre 6 file has to generate the texture
coordinates themselves. The more detailed surface loader is as follows:

BOOL CLWObject::LoadSurface(FILE* fp, int length)

{

char buf[5], nm[128];

int r, count, index;

unsigned short s;

SURFACE *srf = &srfs[index];

float flt;

if (index>=numsurfaces) return FALSE; //Index out of range

//Read name

ReadString(fp, nm, count, 127);

index=0;

//Try to find the name

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

200 Importing geometry and animation from Lightwave 3D

while(strcmp(tag[index], nm)){

index++;

if (index>=numsurfaces) return FALSE; //Surface name not found

}

srf = &srfs[index];

//Set some default values

srf->diffuse=1.0f;

srf->transparency=0.0f;

//Read sub-chunks

while (count<length){

if (!ReadSubChunk(buf,s,fp)) return FALSE;

count+=(s + 6);

if (strcmp(buf,”COLR”)==0){

//Found colour

r=fread(buf,4,1,fp); if (r!=1) return FALSE;

srf->r=buf[0]; srf->g=buf[1]; srf->b=buf[2];

continue;

}

if (strcmp(buf,”VDIF”)==0){

ReadFloat(fp,srf->diffuse);

continue;

}

if (strcmp(buf,”VLUM”)==0){

ReadFloat(fp,flt);

if(flt>0.0f)srf->flag+=SRF_FLAG_LUMINOUS;

continue;

}

if (strcmp(buf,”VSPC”)==0){

ReadFloat(fp,srf->specular);

continue;

}

if (strcmp(buf,”SMAN”)==0){

ReadFloat(fp,flt);

continue;

}

if (strcmp(buf,”VTRN”)==0){

//Found transparency

ReadFloat(fp,srf->transparency);

continue;

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from Lightwave 3D 201

if (strcmp(buf,”FLAG”)==0){

//Found flag

ReadShort(fp,srf->flag);

continue;

}

if (strcmp(buf,”TFP0”)==0){

//Found algorithmic texture parameter 0

if (srf->tex) ReadFloat(fp,srf->tex->widthwrap);

continue;

}

if (strcmp(buf,”TFP1”)==0){

//Found algorithmic texture parameter 1

if (srf->tex) ReadFloat(fp,srf->tex->heightwrap);

continue;

}

if (strcmp(buf,”CTEX”)==0){

if (srf->tex==NULL) srf->tex=new TEXTURE;

if (!srf->tex) return FALSE;

srf->tex->texID=0;//Default

srf->tex->tiling=(2<<16)+2;//Default

srf->tex->centre.x=0.0;

srf->tex->centre.y=0.0;

srf->tex->centre.z=0.0;

srf->tex->size.x=1.0;

srf->tex->size.y=1.0;

srf->tex->size.z=1.0;

fread(nm,s,1,fp); nm[s]=0;

if (strcmp(nm,”Planar Image Map”)==0)

srf->tex->type=TEX_PLANAR;

if (strcmp(nm,”Cylindrical Image Map”)==0)

srf->tex->type=TEX_CYLINDRICAL;

if (strcmp(nm,”Spherical Image Map”)==0)

srf->tex->type=TEX_SPHERICAL;

continue;

}

if (strcmp(buf,”TIMG”)==0){

//Read name

fread(srf->tex->name,s,1,fp);

continue;

}

if (strcmp(buf,”TWRP”)==0){

ReadInt(fp,srf->tex->tiling);

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

202 Importing geometry and animation from Lightwave 3D

continue;

}

if (strcmp(buf,”TFLG”)==0){

ReadShort(fp,srf->tex->flag);

continue;

}

if (strcmp(buf,”TSIZ”)==0){

ReadFloat(fp,srf->tex->size.x);

ReadFloat(fp,srf->tex->size.y);

ReadFloat(fp,srf->tex->size.z);

srf->tex->size.z=-srf-tex->size.z;

continue;

}

if (strcmp(buf,”TCTR”)==0){

ReadFloat(fp,srf->tex->centre.x);

ReadFloat(fp,srf->tex->centre.y);

ReadFloat(fp,srf->tex->centre.z);

srf->tex->centre.z=-srf->tex->centre.z;

continue;

}

//If we got to here then the chunk was not found so skip by s

fseek(fp,s,SEEK_CUR);

}

return TRUE;

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Generating texture coordinates
Most CGI packages store texture coordinates in the file. Lightwave until
version 6 stored details about the texture coordinates but forced the
developer to recreate the texture coordinates from this information. In this
section we will look at how to generate texture coordinates from the
details that Lightwave provides.

Generating the texture coordinates can be done using the texture size,
centre and mapping type. Toon3D stores the texture coordinates in the
POLYGON structure, inside an indexed array of type TVEC. As we know
from the texture mapping chapter, it is common practice to refer to texture
coordinates as (u, v), where u is a number from 0 to 1 that defines a
position across the bitmap texture from 0 to texture width in pixels, and v
is a number between 0 and 1 that defines a position down the bitmap
texture from 0 to texture height in pixels. The first step in creating the

Importing geometry and animation from Lightwave 3D 203

texture coordinates involves checking the mapping type and using the flag
member of the surface variable to switch to the appropriate axis. Let’s
look at the principle texturing methods.

Planar mapping
As we know from Chapter 6, planar mapping takes an image and projects it
parallel down one of the axes. If the axis is z, for a planar texture then the
coordinates are applied with the x-axis running left to right and the y-axis
running up and down. For each polygon we loop through the vertices. The
actual texture coordinates are found by subtracting the texture centre from
the current point, then dividing by the size of the texture. This will result in
texture coordinates that run from –0.5 to 0.5 assuming that automatic sizing
was used in Lightwave to determine the texture size and centre. When
automatic sizing is used, Lightwave loops through all the polygons in a
scene that uses the current surface; for each vertex in a polygon it stores
the maximum and minimum values. Then it subtracts the minimum from the
maximum to get the size, divides this by 2 and adds back the minimum to
define the centre. OpenGL uses texture coordinates that run from 0.0 to
1.0, so we add 0.5 to the calculation to re-centre the texture suitable for
OpenGL.

switch (tex->flag & 0x07){

//Only axis bits are supported. Flag bits are

//7 NU

//6 AntiAlias

//5 PixelBlend

//4 Negative Image

//3 World Coord

//2 Z axis

//1 Y axis

//0 X axis

case 1://X axis

for (i=0; i<ply->numverts; i++){

pt=&pts[ply->p[i]];

ply->tc[i].u = ((float)pt->z - tex->centre.z)/

tex->size.z + 0.5f;

ply->tc[i].v = ((float)pt->y – tex->centre.y)/

tex->size.y + 0.5f;

}

break;

case 2://Y axis

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

204 Importing geometry and animation from Lightwave 3D

for (i=0; i<ply->numverts; i++){

pt=&pts[ply->p[i]];

ply->tc[i].u=((float)pt->x – tex->centre.x)/

tex->size.x + 0.5f;

ply->tc[i].v=((float)pt->z – tex->centre.z)/

tex->size.z + 0.5f;

}

break;

case 4://Z axis

for (i=0; i<ply->numverts; i++){

pt=&pts[ply->p[i]];

ply->tc[i].u=((float)pt->x – tex->centre.x)/

tex->size.x + 0.5f;

ply->tc[i].v=((float)pt->y – tex->centre.y)/

tex->size.y + 0.5f;

}

break;

}

Cylindrical and spherical mapping
For the principles of cylindrical and spherical mapping, refer to Chapter 6.

UV mapping
Beginning with Lightwave 6, an object file can contain UV texture
coordinates. UV mapped textures use vertex maps, defined in the object
file as a VMAP sub-chunk of type TXUV to hold the U and V texture
coordinates. TXUV VMAPs have a dimension of 2. A very simple VMAP
chunk that defines the u, v texture coordinates for one polygon of a cube.
Vertex 2 will use texture coordinates (0, 0), vertex 3 uses coordinates (1,
0), vertex 6 uses coordinates (0, 1) and vertex 7 uses coordinates (1, 1).
In this example the full texture is mapped to the polygon.

VMAP 58

TXUV

2

“UV Texture”

2 0.0 0.0

3 1.0 0.0

6 0.0 1.0

7 1.0 1.0

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from Lightwave 3D 205

This VMAP chunk is used by a SURF chunk which is defined as using
UV mapping. In the following example you can see the differences
between an LWO1 object and an LWO2 object. A SURF chunk still has
multiple sub-chunks, but these have changed subtly. First, we have a
name, followed by the name of the parent of the surface. COLR defines
the rgb colour of a surface; these values have changed for 1-byte integers
to floating-point values. DIFF gives the diffuse level and SPEC the
specularity. If a texture map is applied then it is defined in a BLOK
chunk.

The first field of the BLOK header (the IMAP sub-chunk) is called an
ordinal string. When multiple textures are applied to a surface channel,
the ordinal string determines the order in which they’re evaluated. Object
readers can sort BLOKs by using ‘strcmp’ to compare the ordinal
strings.

The rest of the BLOK header identifies which surface channel the
texture layer modifies, the layer’s opacity, whether it is enabled, whether
its output is inverted, and what the default axis is. The sub-chunks
following the TMAP are specific to IMAP layers. The AXIS sub-chunk
overrides the default in the IMAP header. The IMAG sub-chunk contains
a CLIP index that identifies the image. CLIP chunks work rather like TAGS
chunks in that they define an indexed list of string values. They are
formatted as follows:

CLIP 30

1

STIL 20

“Images/testbars.iff”

A full description of the UV SURF chunk follows:

SURF 348

“UVExample”

“”

COLR 14 0.78431 0.78431 0.78431 0

DIFF 6 1.0 0

SPEC 6 0.0 0

BLOK 286

IMAP 50

“\x80”

CHAN 4 COLR

OPAC 8 0 1.0 0

ENAB 2 1

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

206 Importing geometry and animation from Lightwave 3D

NEGA 2 0

AXIS 2 1

TMAP 104

CNTR 14 0.0 0.0 0.0

0

SIZE 14 1.0 1.0 1.0 0

ROTA 14 0.0 0.0 0.0 0

FALL 16 0 0.0 0.0 0.0 0

OREF 8 ”(none)”

CSYS 2 0

PROJ 2 5

AXIS 2 2

IMAG 2 1

WRAP 4 1 1

WRPW 6 1.0 0

WRPH 6 1.0 0

VMAP 12 “UV Texture”

AAST 6 1 1.0

PIXB 2 1

STCK 6 0.0 0

TAMP 6 1.0 0

Although most of these chunks can safely be ignored, we still have a
complete TMAP sub-chunk. A TMAP sub-chunk defines a texture’s
centre, size and rotation, which for a UV chunk is really unnecessary. The
value in PROJ (projection) has changed from 0 (planar) to 5 (UV), and a
VMAP sub-chunk identifies the TXUV VMAP by name.

Lightwave scene files

Lightwave stores everything to do with an object in the object file. We
have looked at how to read this binary file to get the geometry and surface
details. Lightwave uses scene files to store the hierarchy of objects, how
they animate, the lights used to display these objects and the movement
of the camera. A scene file is simply a text file.

We will look first at a Lightwave scene file that displays a single unit
cube, positioned at the origin and not rotated. The cube rotates through
360° between frame 1 and frame 50. The scene uses a single distant light
and the camera points down the z-axis towards the cube. The camera is
raised slightly above the ground and is pointing down towards the cube.
All scene files start with a configuration section.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from Lightwave 3D 207

Reading the configuration section

The first line defines this text file as a Lightwave Scene file and the
following line gives the version number. Lightwave 6 uses a scene file
version number of 3. A Lightwave scene file has a start frame and end
frame which are declared in the file as ‘FirstFrame’ and ‘LastFrame’.
When using the software it is possible to render every frame or every
second frame or skip more than one frame when moving through the
frames; the ‘FrameStep’ value gives the amount of frames to move on
by for each rendered frame. Previews in Lightwave can use a different
start and end frame, which are defined by ‘PreviewFirstFrame’ and
‘PreviewLastFrame’. When previews are created the renderer moves
on by ‘PreviewFrameStep’ amount as each frame is finished. ‘Current-
Frame’ defines the frame that was being viewed when the file was
saved. ‘FramesPerSecond’ gives the relationship between frame
values and time. For the sample file the configuration section is given
below:

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 10.1 Lightwave 6 – unit cube scene.

208 Importing geometry and animation from Lightwave 3D

LWSC

3

FirstFrame 1

LastFrame 60

FrameStep 1

PreviewFirstFrame 0

PreviewLastFrame 60

PreviewFrameStep 1

CurrentFrame 50

FramesPerSecond 25

Reading an object layer section

The objects that are used in a file are defined using ‘LoadObjectLayer’.
Since a single object can contain multiple layers, the integer value
following the ‘LoadObjectLayer’ declaration defines which of these layers
to load where multiple layers are present.

LoadObjectLayer 1 Objects/UnitCube.lwo

The remainder of the line is a path from the content directory to the
object file. When parsing the scene file you would now need to load and
parse this file to get at the object geometry and surface data. In the next
chapter we will look at the way 3DS approaches the same problem and
discover that 3DS chooses to store everything in a single file.

ShowObject 6 3

This next line declares the object visibility inside the application.
Lightwave allows the animator to view an object as wireframe, smooth
shaded or textured, or turn off the object’s visibility altogether. When
creating animations this is a useful feature since it improves update
performance and can remove some clutter from the display when editing.
The second of the two integer values defines the wireframe colour from a
limited set of colours that Lightwave uses for objects displayed in
wireframe format.

ObjectMotion

NumChannels 9

Channel 0

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from Lightwave 3D 209

{ Envelope

1

Key 0 0 0 0 0 0 0 0 0

Behaviors 1 1

}

Channel 1

{ Envelope

The next section when parsing an object layer involves reading the
‘ObjectMotion’. The first line after ‘ObjectMotion’ declares the number of
channels involved in the motion. Lightwave uses nine channels, three for
position, three for orientation and three for scale.

ObjectMotion

NumChannels 9

Channel 0

{ Envelope

nkeys

Key value time smoothing p1 p2 p3 p4 p5 p6

Behaviors pre post

Key ...

}

Channel 1

{ Envelope ...

When parsing a channel the values found are:

� nkeys – the number of keys.
� value – the key value.
� time – the time in seconds.
� smoothing – the curve type, an index into the pop-up list on the graph

editor, currently
0 TCB (Kochanek–Bartels)
1 Hermite
2 Bezier
3 Linear
4 Stepped

� Curve parameters
p1 Tension
p2 Continuity
p3 Bias
p4 Incoming tangent

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

210 Importing geometry and animation from Lightwave 3D

p5 Outgoing tangent
p6 Reserved

� pre, post – pre- and post-behaviours, an index into the graph editor
pop-up, currently
0 Reset
1 Constant
2 Repeat
3 Oscillate
4 Offset Repeat
5 Linear

The only remaining line guaranteed to be in an object layer section is

ShadowOptions 7

This defines whether the object receives and casts shadows. The
integer value is based on a combination of bit position flags.

Other sections can be present in an object layer section and one that is
often used is the value for Parent.

ParentItem 10000000

This is defined as a 32-bit hex value. The first character defines the
parent type. It could be

1 = object

2 = light

3 = camera

4 = bone

The remaining values are simply an index into the number of that type
in the scene file. In the example the parent would be the first object found
in the scene file.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Table 10.1

Bit position Description

0 Self shadow
1 Cast shadow
2 Receive shadow

Importing geometry and animation from Lightwave 3D 211

Reading the lights section

Lightwave uses a global ambient value which is defined in the lights
section using floating-point values for colour.

AmbientColor 1 1 1

AmbientIntensity 0.25

Each light that is found follows a line containing ‘AddLight’. The motion
of a light is read in the same way as the motion of an object.

AddLight

LightName Light

ShowLight 1 5

LightMotion

NumChannels 9

Channel 0

{ Envelope

1

Key -2 0 0 0 0 0 0 0 0

Behaviors 1 1

}

Channel 1

{ Envelope. . ..

Light colour and intensity are defined as floating-point values. The
‘LightType’ value is an index value that can be

LightColor 1 1 1

LightIntensity 1

AffectCaustics 1

LightType 0

ShadowType 1

Reading the camera section

The camera section uses motion that can be read in the same way as an
object; only six channels are present, the values for scale are not used.

AddCamera

CameraName Camera

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

212 Importing geometry and animation from Lightwave 3D

ShowCamera 1 2

CameraMotion

NumChannels 6

Channel 0

{ Envelope

1

Key 0 0 0 0 0 0 0 0 0

Behaviors 1 1

}

Channel 1

{ Envelope

To match the way a scene appears in Lightwave, you will need to take
into consideration the ‘ZoomFactor’ when creating a projection. ‘Zoom-
Factor’ defines the angle of view of a camera. In Toon3D the match is
made with this code. This was created in true trial and error fashion, but
has proved to be fairly representative of most values of ‘ZoomFactor’:

zf = camera->zoomFactor;

fAspect=(GLfloat)m_width/(GLfloat)m_height;

fovy=(GLfloat)((sin((90.0/zf)*DEG2RAD)*90.0+90.0/zf)/2.0);

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

//Field of view, near and far planes

gluPerspective(fovy,fAspect,0.1f,2000.0f);

}

ZoomFactor 3.2

MotionBlur 0

Rendering options

You may choose to use or ignore the rendering options. Backdrop colours
can be useful. Toon3D brings in the grid size values, since these are
useful in an interactive design environment.

ResolutionMultiplier 1.0

FrameSize 640 480

PixelAspect 1

MaskPosition 0 0 640 480

ApertureHeight 0.015

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from Lightwave 3D 213

Antialiasing 0

AdaptiveSampling 1

AdaptiveThreshold 0.1

FieldRendering 0

SolidBackdrop 1

BackdropColor 0 0 0

ZenithColor 0 0.1569 0.3137

SkyColor 0.4706 0.7059 0.9412

GroundColor 0.1961 0.1569 0.1176

NadirColor 0.3922 0.3137 0.2353

FogType 0

DitherIntensity 1

AnimatedDither 0

RenderMode 2

RayTraceEffects 0

DataOverlayLabel

FullSceneParamEval 0

ViewConfiguration 0

DefineView 0

ViewMode 5

ViewAimpoint 0 0 0

ViewRotation -17.2 18 0

ViewZoomFactor 4

GridNumber 80

GridSize 0.2

CameraViewBG 0

ShowMotionPath 1

ShowFogRadius 0

ShowFogEffect 0

ShowSafeAreas 0

ShowFieldChart 0

CurrentObject 0

CurrentLight 0

CurrentCamera 0

GraphEditorFavorites

{ GraphEd_Favorites

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

214 Importing geometry and animation from Lightwave 3D

Summary

Lightwave presents the developer with the best documentation of all the
leading CGI packages. It also has a very useful mailing list that affords
developers almost direct access to the key Lightwave programmers. For
these reasons, it is the author’s favourite development application. In this
chapter we looked at how we can read Lightwave object files to access
geometry and texture data, and at how to extract motion and hierarchy
information from a Lightwave scene file.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

11
Importing geometry
and animation from
3DS Max

Getting information about the file format for 3DS Max has proved very
difficult. No doubt once this book is published someone will point me in the
right direction, but I have tried many user groups without success. There
are some limited and unreliable documents available for the ‘3DS’ format,
but very little about Max. In the end, I decided to derive the information I
required from an ASCII export of a 3DS Max scene file. 3DS Max differs
from Lightwave by combining geometry, surface and motion into a single
file, and provides the option to export this as a plain text file. In this
chapter we will look at getting the geometry, surface and motion data out
of this file.

An ASCII export of a static cube scene

To export from Max in ASCII format choose ‘Export as text’ from the export
sub-menu.

Having saved the scene off, you will have created a scene with an ‘ASE’
extension. We will look at how to parse a scene containing a single cube.
Any ASE parser needs to check the file to make sure that this is in the
correct format. The first line of any ASE file contains the tag ‘*3DSMAX_
ASCIIEXPORT’. In a parser we first confirm this before moving on. If the
line does not contain this tag then it is not a suitable ASE file and your
parser can return FALSE, to indicate an import error or return a numerical
value indicating the type of error.

*3DSMAX_ASCIIEXPORT 200

The next line in any ASE file is a comment containing the export version
number and the date and time of exporting. If you want to retain this
information then you could store it; most parsers will simply ignore it.

216 Importing geometry and animation from 3DS Max

*COMMENT "AsciiExport Version 2.00 – Sun Apr 08 23:21:17 2001"

An ASE file is structured using opening and closing braces, { and }. At the
root level the tags you find are SCENE, MATERIAL_LIST, GEOM-
OBJECT and CAMERAOBJECT. Any section can contain an unlimited
number of subsections. Any parser must work within a section and not
read beyond it when parsing the file. The first section you will find in most
ASE files is the SCENE section.

The SCENE section

The SCENE section contains tags SCENE_FILENAME, SCENE_FIRST-
FRAME, SCENE_LASTFRAME, SCENE_FRAMESPEED, SCENE_
TICKSPERFRAME, SCENE_BACKGROUND_STATIC, SCENE_AMBI-
ENT_STATIC, SCENE_BACKGROUND_ANIM and SCENE_
AMBIENT_ANIM. The first three of these are self-explanatory. SCENE_
FRAMESPEED stores the frames per second value. SCENE_TICKSPER-
FRAME is unique to Max. In 3DS Max, time values are stored as integers,

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 11.1 Exporting a scene from Max.

Importing geometry and animation from 3DS Max 217

but instead of storing frame 20, for example, as the numerical value 20,
the value is stored as 20 * SCENE_TICKSPERFRAME. If SCENE_
TICKSPERFRAME is 160 then the stored value for frame 20 will be

20 × 160 = 3200

The tag SCENE_BACKGROUND_STATIC stores the background colour
in RGB format. Each value is stored as a floating-point value with the
maximum value of a colour component being represented by 1.0 and the
minimum value being represented by 0.0. The tag SCENE_AMBIENT_
STATIC stores the global ambient lighting level as an RGB value stored in
the same way as the background colour tag. Both the background colour
and the ambient level can change over time; if this is the case then the
tags SCENE_BACKGROUND_ANIM and SCENE_AMBIENT_ANIM will
be present. We will look at parsing an animation section later in this
chapter.

*SCENE {

*SCENE_FILENAME "Box.max"

*SCENE_FIRSTFRAME 0

*SCENE_LASTFRAME 100

*SCENE_FRAMESPEED 30

*SCENE_TICKSPERFRAME 160

*SCENE_BACKGROUND_STATIC 0.0000 0.0000 0.0000

*SCENE_AMBIENT_STATIC 0.0431 0.0431 0.0431

}

The MATERIAL_LIST section

As is so often the case with CGI data structures, the materials section is
the most complex to parse. It contains many subsections that need to be
individually handled. When parsing a MATERIAL_LIST section I did a lot
of guessing; if any reader is aware of errors then please contact me by
mailing nik@toon3d.com. An update will be available for readers at
toon3d.com/book; this will contain updated source code as it becomes
available and will address any errors that are pointed out.

When parsing the material list, the first tag is MATERIAL_COUNT. This
gives a numerical value of the total number of materials in the list. At the
root of the MATERIAL_LIST section the only other tag is MATERIAL,
followed by an integer giving the material number. The MATERIAL section
is a subsection of MATERIAL_LIST. A MATERIAL subsection uses a large

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

218 Importing geometry and animation from 3DS Max

number of tags; the ones we will examine are MATERIAL_NAME,
MATERIAL_CLASS, MATERIAL_AMBIENT, MATERIAL_DIFFUSE,
MATERIAL_SPECULAR, MATERIAL_SHINE, MATERIAL_SHINE-
STRENGTH, MATERIAL_TRANSPARENCY, MATERIALS_WIRESIZE,
MATERIAL_SELFILLUM, MAP_DIFFUSE, NUMSUBMTLS and SUB-
MATERIAL. MATERIAL_NAME is self-explanatory. MATERIAL_CLASS
indicates whether this material contains sub-materials or not. A value of
‘Multi/Sub-Object’ indicates sub-materials will be present, whilst a value of
‘Standard’ indicates that the material contains only the base values. When
we read the polygon list each polygon has an integer indicating which
material to use. In addition, an object is given a material integer. For a
material that contains no sub-materials, the integer defines the base
material and will be zero. For a material that contains sub-materials, the
integer defines the sub-material to use.

The material tags MATERIAL_AMBIENT, MATERIAL_DIFFUSE and
MATERIAL_SPECULAR define RGB values for the ambient, diffuse and
specular components. MATERIAL_SHINE and MATERIAL_SHINE-
STRENGTH are used along with the specular component to define the
glossiness of a surface. MATERIAL_TRANSPARENCY defines the
transparency, with 0.0 being opaque and 1.0 being totally transparent.
MATERIAL_WIRESIZE is used by the editor to indicate the wireframe line
width. MATERIAL_SELFILLUM indicates the luminance level for this
surface.

The tag MAP_DIFFUSE contains another subsection contained within
opening and closing braces. A map subsection contains a great deal of
information and we will look at this later in the chapter.

When a material contains sub-materials the total number is defined
using the NUMSUBMTLS tag. Each sub-material is defined using a
SUBMATERIAL tag containing a consecutively numbered integer starting
at zero. 3DS Max can contain an unlimited number of nested sub-
materials. When reading a sub-material the tags are the same as the base
MATERIAL.

*MATERIAL_LIST {

*MATERIAL_COUNT 1

*MATERIAL 0 {

*MATERIAL_NAME "Box"

*MATERIAL_CLASS "Multi/Sub-Object"

*MATERIAL_AMBIENT 0.1000 0.1000 0.1000

*MATERIAL_DIFFUSE 0.5000 0.5000 0.5000

*MATERIAL_SPECULAR 0.9000 0.9000 0.9000

*MATERIAL_SHINE 0.2500

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 219

*MATERIAL_SHINESTRENGTH 0.0500

*MATERIAL_TRANSPARENCY 0.0000

*MATERIAL_WIRESIZE 1.0000

*NUMSUBMTLS 6

*SUBMATERIAL 0 {

*MATERIAL_NAME "BoxTexture"

*MATERIAL_CLASS "Standard"

*MATERIAL_AMBIENT 0.1791 0.0654 0.0654

*MATERIAL_DIFFUSE 0.5373 0.1961 0.1961

*MATERIAL_SPECULAR 0.9000 0.9000 0.9000

*MATERIAL_SHINE 0.2500

*MATERIAL_SHINESTRENGTH 0.0500

*MATERIAL_TRANSPARENCY 0.0000

*MATERIAL_WIRESIZE 1.0000

*MATERIAL_SHADING Blinn

*MATERIAL_XP_FALLOFF 0.0000

*MATERIAL_SELFILLUM 0.0000

*MATERIAL_FALLOFF In

*MATERIAL_XP_TYPE Filter

*MAP_DIFFUSE { . . .

Reading a MAP subsection

A MAP subsection has several tags. We will only consider MAP_NAME
and BITMAP. Other values are available if you are using multi-texture
blends and u, v offsets from the stored texture coordinates. MAP_NAME
supplies a human readable name for this map. BITMAP defines the
bitmap source of this map. A map does not have to be bitmap based, it
can be procedural.

*MAP_DIFFUSE {

*MAP_NAME "BoxGridMap"

*MAP_CLASS "Bitmap"

*MAP_SUBNO 1

*MAP_AMOUNT 1.0000

*BITMAP "boxgridmap.tga"

*MAP_TYPE Screen

*UVW_U_OFFSET 0.0000

*UVW_V_OFFSET 0.0000

*UVW_U_TILING 1.0000

*UVW_V_TILING 1.0000

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

220 Importing geometry and animation from 3DS Max

*UVW_ANGLE 0.0000

*UVW_BLUR 1.0000

*UVW_BLUR_OFFSET 0.0000

*UVW_NOUSE_AMT 1.0000

*UVW_NOISE_SIZE 1.0000

*UVW_NOISE_LEVEL 1

*UVW_NOISE_PHASE 0.0000

*BITMAP_FILTER Pyramidal

}. . .

Reading a GEOMOBJECT section

The next root level tag to consider is GEOMOBJECT. The tags we will
look at are NODE_NAME, NODE_PARENT, NODE_TM, MESH and
MATERIAL_REF. The NODE_NAME tag is a simple string giving the
object name. NODE_PARENT indicates the parent of this object by
name reference. MATERIAL_REF is an integer value into the material
list. NODE_TM and MESH are subsections that we will look at
individually.

*GEOMOBJECT {

*NODE_NAME "Box"

*NODE_PARENT "BoxParent"

*NODE_TM {. . .

}

*MESH {. . .

}

*PROP_MOTIONBLUR 0

*PROP_CASTSHADOW 1

*PROP_RECVSHADOW 1

*MATERIAL_REF 0

}

Reading a NODE_TM section

The NODE_TM section defines the position of the object. The tags TM_
ROW0 to TM_ROW3 supply the matrix for the object in 4 × 4 format with
the last column missing. TM_ROW0 to TM_ROW2 give the 3 × 3 rotation
matrix and TM_ROW3 gives the translation. Orientations in 3DS Max are
provided as angle axis. TM_ROTAXIS supplies the rotational axis and

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 221

TM_ROTANGLE gives the angle in radians. Scale is provided as three
component values using the TM_SCALE tag.

*NODE_TM {

*NODE_NAME "Box"

*INHERIT_POS 0 0 0

*INHERIT_ROT 0 0 0

*INHERIT_SCL 0 0 0

*TM_ROW0 0.0000 1.0000 0.0000

*TM_ROW1 0.0000 0.0000 1.0000

*TM_ROW2 1.0000 0.0000 -0.0000

*TM_ROW3 -48.7847 -1.1912 2.4400

*TM_POS -48.7847 -1.1912 2.4400

*TM_ROTAXIS -0.5774 -0.5774 -0.5774

*TM_ROTANGLE 2.0944

*TM_SCALE 1.0000 1.0000 1.0000

*TM_SCALEAXIS 0.0000 0.0000 0.0000

*TM_SCALEAXISANG 0.0000

}

Reading the MESH section

The MESH section contains the tags MESH_NUMVERTEX,
MESH_NUMFACES, MESHVERTEX_LIST, MESH_FACE_LIST, MESH_
NUMTVERTEX, MESH_TVERTLIST, MESH_NUMCVERTEX,
MESH_CVERTLIST and MESH_NORMALS. MESH_NUMVERTEX,
MESH_NUMFACES, MESH_NUMTVERTEX and MESH_NUMCVER-
TEX are all single integer values giving the total number of vertices,
polygons, texture vertices and colour vertices respectively. The other
values are subsections defining the content of the lists.

*MESH {

*TIMEVALUE 0

*MESH_NUMVERTEX 8

*MESH_NUMFACES 12

*MESH_VERTEX_LIST {. . .

}

*MESH_FACE_LIST {. . .

}

*MESH_NUMTVERTEX 12

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

222 Importing geometry and animation from 3DS Max

*MESH_TVERTLIST {. . .

}

*MESH_NUMCVERTEX 0

*MESH_NORMALS {. . .

}

Reading the vertex list

There will be MESH_NUMVERTEX lines in a MESH_VERTEX_LIST
subsection. Each line contains a MESH_VERTEX tag, followed by an
index for the current vertex and then three values defining the (x, y, z)
value of the vertex.

*MESH_VERTEX_LIST {

*MESH_VERTEX 0 -48.7847 -51.1912 -47.5600

*MESH_VERTEX 1 -48.7847 48.8088 -47.5600

*MESH_VERTEX 2 -48.7847 -51.1912 52.4400

*MESH_VERTEX 3 -48.7847 48.8088 52.4400

*MESH_VERTEX 4 51.2153 -51.1912 -47.5601

*MESH_VERTEX 5 51.2153 48.8088 -47.5601

*MESH_VERTEX 6 51.2153 -51.1912 52.4399

*MESH_VERTEX 7 51.2153 48.8088 52.4399

}

Reading the face list

The MESH_FACE_LIST subsection contains MESH_NUMFACES lines.
Each line starts with a MESH_FACE tag followed by an index value for the
current face. The remainder of a line contains values for A, B, C, AB, BC,
CA, MESH_SMOOTHING, MESH_MTLID. A, B and C give indices into
the vertex list for this triangle. All polygons in 3DS are triangles. MESH_
SMOOTHING defines which sets of polygons are to be smoothed
together. MESH_MTLID defines an integer value. The full GEOMOBJECT
of which MESH_FACE_LIST is a subsection contains a MATERIAL_REF
tag. This is an index into the global level material list. If the material
referred to is of class ‘Multi/Sub Object’ then the value of MESH_MTLID
refers to the sub-material index. If the material is of class ‘Standard’ then
the index refers to the root of the material.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 223

*MESH_FACE_LIST {

*MESH_FACE 0: A: 0 B: 2 C: 3 AB: 1 BC: 1 CA:

0 *MESH_SMOOTHING 2 *MESH_MTLID 1

*MESH_FACE 1: A: 3 B: 1 C: 0 AB: 1 BC: 1 CA:

0 *MESH_SMOOTHING 2 *MESH_MTLID 1

*MESH_FACE 2: A: 4 B: 5 C: 7 AB: 1 BC: 1 CA:

0 *MESH_SMOOTHING 3 *MESH_MTLID 0

*MESH_FACE 3: A: 7 B: 6 C: 4 AB: 1 BC: 1 CA:

0 *MESH_SMOOTHING 3 *MESH_MTLID 0

*MESH_FACE 4: A: 0 B: 1 C: 5 AB: 1 BC: 1 CA:

0 *MESH_SMOOTHING 4 *MESH_MTLID 4

*MESH_FACE 5: A: 5 B: 4 C: 0 AB: 1 BC: 1 CA:

0 *MESH_SMOOTHING 4 *MESH_MTLID 4

*MESH_FACE 6: A: 1 B: 3 C: 7 AB: 1 BC: 1 CA:

0 *MESH_SMOOTHING 5 *MESH_MTLID 3

*MESH_FACE 7: A: 7 B: 5 C: 1 AB: 1 BC: 1 CA:

0 *MESH_SMOOTHING 5 *MESH_MTLID 3

*MESH_FACE 8: A: 3 B: 2 C: 6 AB: 1 BC: 1 CA:

0 *MESH_SMOOTHING 6 *MESH_MTLID 5

*MESH_FACE 9: A: 6 B: 7 C: 3 AB: 1 BC: 1 CA:

0 *MESH_SMOOTHING 6 *MESH_MTLID 5

*MESH_FACE 10: A: 2 B: 0 C: 4 AB: 1 BC: 1 CA:

0 *MESH_SMOOTHING 7 *MESH_MTLID 2

*MESH_FACE 11: A: 4 B: 6 C: 2 AB: 1 BC: 1 CA:

0 *MESH_SMOOTHING 7 *MESH_MTLID 2

}

Reading the texture vertex list

The MESH_TVERTLIST contains MESH_NUMTVERTS lines. Each line
begins with the tag MESH_TVERT followed by the index of the current
vertex. The next two values give (u, v) values for the vertex. Connecting
these data to a polygon is done using the MESH_TFACELIST.

*MESH_TVERTLIST {

*MESH_TVERT 0 0.0000 0.0000 0.0000

*MESH_TVERT 1 1.0000 0.0000 0.0000

*MESH_TVERT 2 0.0000 1.0000 0.0000

*MESH_TVERT 3 1.0000 1.0000 0.0000

*MESH_TVERT 4 0.0000 0.0000 0.0000

*MESH_TVERT 5 1.0000 0.0000 0.0000

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

224 Importing geometry and animation from 3DS Max

*MESH_TVERT 6 0.0000 1.0000 0.0000

*MESH_TVERT 7 1.0000 1.0000 0.0000

*MESH_TVERT 8 0.0000 0.0000 0.0000

*MESH_TVERT 9 1.0000 0.0000 0.0000

*MESH_TVERT 10 0.0000 1.0000 0.0000

*MESH_TVERT 11 1.0000 1.0000 0.0000

}

Reading the texture face list

The MESH_TFACELIST contains MESH_NUMTFACES lines. Each line
begins with the tag MESH_TFACE followed by the index of the current
vertex. The next three values give integer indices from the texture vertex
list. The integer value for a texture face and the integer value for a face
refer to the same polygon, so you can connect the texture coordinate
values to the actual polygon and vertex data.

*MESH_TFACELIST {

*MESH_TFACE 0 9 11 10

*MESH_TFACE 1 10 8 9

*MESH_TFACE 2 8 9 11

*MESH_TFACE 3 11 10 8

*MESH_TFACE 4 4 5 7

*MESH_TFACE 5 7 6 4

*MESH_TFACE 6 0 1 3

*MESH_TFACE 7 3 2 0

*MESH_TFACE 8 4 5 7

*MESH_TFACE 9 7 6 4

*MESH_TFACE 10 0 1 3

*MESH_TFACE 11 3 2 0

}

Reading the normals list

The MESH_NORMALS subsection contains MESH_NUMFACES mini-
sections that define the face and vertex normals for each face. To parse
this subsection read the MESH_FACENORMAL section; this contains an
index for the current face and a vector defining the unit length normal.
Three MESH_VERTEXNORMAL lines follow each MESH_FACENOR-
MAL. The MESH_VERTEXNORMAL line contains an index defining the
index of the vertex, followed by a vector defining the unit length normal.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 225

*MESH_NORMALS {

*MESH_FACENORMAL 0 0.0000 0.0000 -1.0000

*MESH_VERTEXNORMAL 0 0.0000 0.0000 -1.0000

*MESH_VERTEXNORMAL 2 0.0000 0.0000 -1.0000

*MESH_VERTEXNORMAL 3 0.0000 0.0000 -1.0000

*MESH_FACENORMAL 1 0.0000 0.0000 -1.0000

*MESH_VERTEXNORMAL 3 0.0000 0.0000 -1.0000

*MESH_VERTEXNORMAL 1 0.0000 0.0000 -1.0000

*MESH_VERTEXNORMAL 0 0.0000 0.0000 -1.0000

*MESH_FACENORMAL 2 0.0000 0.0000 1.0000

*MESH_VERTEXNORMAL 4 0.0000 0.0000 1.0000

*MESH_VERTEXNORMAL 5 0.0000 0.0000 1.0000

*MESH_VERTEXNORMAL 7 0.0000 0.0000 1.0000

*MESH_FACENORMAL 3 0.0000 0.0000 1.0000

*MESH_VERTEXNORMAL 7 0.0000 0.0000 1.0000

*MESH_VERTEXNORMAL 6 0.0000 0.0000 1.0000

*MESH_VERTEXNORMAL 4 0.0000 0.0000 1.0000

*MESH_FACENORMAL 4 0.0000 -1.0000 0.0000

*MESH_VERTEXNORMAL 0 0.0000 -1.0000 0.0000

*MESH_VERTEXNORMAL 1 0.0000 -1.0000 0.0000

*MESH_VERTEXNORMAL 5 0.0000 -1.0000 0.0000

*MESH_FACENORMAL 5 0.0000 -1.0000 0.0000

*MESH_VERTEXNORMAL 5 0.0000 -1.0000 0.0000

*MESH_VERTEXNORMAL 4 0.0000 -1.0000 0.0000

*MESH_VERTEXNORMAL 0 0.0000 -1.0000 0.0000

*MESH_FACENORMAL 6 1.0000 0.0000 0.0000

*MESH_VERTEXNORMAL 1 1.0000 0.0000 0.0000

*MESH_VERTEXNORMAL 3 1.0000 0.0000 0.0000

*MESH_VERTEXNORMAL 7 1.0000 0.0000 0.0000

*MESH_FACENORMAL 7 1.0000 0.0000 0.0000

*MESH_VERTEXNORMAL 7 1.0000 0.0000 0.0000

*MESH_VERTEXNORMAL 5 1.0000 0.0000 0.0000

*MESH_VERTEXNORMAL 1 1.0000 0.0000 0.0000

*MESH_FACENORMAL 8 0.0000 1.0000 0.0000

*MESH_VERTEXNORMAL 3 0.0000 1.0000 0.0000

*MESH_VERTEXNORMAL 2 0.0000 1.0000 0.0000

*MESH_VERTEXNORMAL 6 0.0000 1.0000 0.0000

*MESH_FACENORMAL 9 0.0000 1.0000 0.0000

*MESH_VERTEXNORMAL 6 0.0000 1.0000 0.0000

*MESH_VERTEXNORMAL 7 0.0000 1.0000 0.0000

*MESH_VERTEXNORMAL 3 0.0000 1.0000 0.0000

*MESH_FACENORMAL 10 -1.0000 0.0000 0.0000

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

226 Importing geometry and animation from 3DS Max

*MESH_VERTEXNORMAL 2 -1.0000 0.0000 0.0000

*MESH_VERTEXNORMAL 0 -1.0000 0.0000 0.0000

*MESH_VERTEXNORMAL 4 -1.0000 0.0000 0.0000

*MESH_FACENORMAL 11 -1.0000 0.0000 0.0000

*MESH_VERTEXNORMAL 4 -1.0000 0.0000 0.0000

*MESH_VERTEXNORMAL 6 -1.0000 0.0000 0.0000

*MESH_VERTEXNORMAL 2 -1.0000 0.0000 0.0000

}

}

When parsing a GEOMOBJECT, that covers the most important
subsections.

Reading a CAMERA section

A 3DS Max file can contain multiple cameras. A camera has a name and
type defined by NODE_NAME and CAMERA_TYPE. A camera has a
NODE_TM subsection which defines the default position, scale and
orientation. The NODE_TM subsection was described in the GEOM-
OBJECT section. A camera object also has a CAMERA_SETTINGS
subsection that contains the tags TIMEVALUE, CAMERA_NEAR, CAM-
ERA_FAR, CAMERA_FOV and CAMERA_TDIST. CAMERA_NEAR and
CAMERA_FAR describe the near and far clipping distances for OpenGL
renders. The most important tag is CAMERA_FOV, which describes the
field of view angle in radians.

*CAMERAOBJECT {

*NODE_NAME "Camera01"

*CAMERA_TYPE Free

*NODE_TM {. . .

}

*CAMERA_SETTINGS {

*TIMEVALUE 0

*CAMERA_NEAR 0.0000

*CAMERA_FAR 1000.0000

*CAMERA_FOV 0.7854

*CAMERA_TDIST 160.0000

}

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 227

Reading a LIGHT section

When reading the light section, we get the usual NODE_NAME and
NODE_TM tags to define the name and default position, orientation and
scale. A light has a type; the basic ones are ‘Directional’, ‘Position’ or
‘Spot’. A light section then has tags to indicate whether to use shadows,
whether the light is active, the shape of a spotlight cone and the source of
the light’s ambient level; these are defined by the tags LIGHT_
SHADOWS, LIGHT_USELIGHT, LIGHT_SPOTSHAPE and LIGHT_USE-
GLOBAL respectively. Most of the settings for a light are contained in the
subsection LIGHT_SETTINGS. This subsection will supply the colour of
the light via the LIGHT_COLOR tag and the intensity of the light using the
LIGHT_INTENS tag. The settings subsection provides many other details
for working with shadow maps or projection maps, which we will not be
using in the real-time parser.

*LIGHTOBJECT {

*NODE_NAME "FDirect01"

*LIGHT_TYPE Directional

*NODE_TM {. . .

}

*LIGHT_SHADOWS Off

*LIGHT_USELIGHT 1

*LIGHT_SPOTSHAPE Circle

*LIGHT_USEGLOBAL 0

*LIGHT_ABSMAPBIAS 0

*LIGHT_OVERSHOOT 0

*LIGHT_SETTINGS {

*TIMEVALUE 0

*LIGHT_COLOR 1.0000 1.0000 1.0000

*LIGHT_INTENS 1.0000

*LIGHT_ASPECT 1.0000

*LIGHT_HOTSPOT 43.0000

*LIGHT_FALLOFF 45.0000

*LIGHT_TDIST 240.0000

*LIGHT_MAPBIAS 1.0000

*LIGHT_MAPRANGE 4.0000

*LIGHT_MAPSIZE 512

*LIGHT_RAYBIAS 0.0000

}

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

228 Importing geometry and animation from 3DS Max

Reading an ANIMATION section
A GEOMOBJECT, CAMERAOBJECT and LIGHTOBJECT can all contain
a TM_ANIMATION subsection. This subsection contains tags CON-
TROL_POS_BEZIER, CONTROL_ROT_TCB and CONTROL_SCALE_
BEZIER. A bezier section describes a curve in bezier format and a TCB
section contains a curve in TCB format.

CONTROL_POS_BEZIER is itself a subsection; within this section are
lines that contain the tag CONTROL_BEZIER_POS_KEY followed by 11
values. The first value is the frame value multiplied by the value found in
the SCENE_TICKSPERFRAME tag in the SCENE section. To get this as
a frame value, simply divide by the SCENE_TICKEPERFRAME value.
The next three values are a vector giving the position of the object at this
frame. The next six values give the tangents at the start and end of a
curve section as a three-component vector. The last value always seems
to be zero, but is probably some type of control flag.

A CONTROL_ROT_TCB subsection describes a TCB curve. Each line
in this section contains a CONTROL_TCB_ROT_KEY tag followed by 10
values. The first value is the frame value multiplied by SCENE_
TICKSPERFRAME. Then three values that give the rotation axis. A single
value gives the rotation angle, leaving five values. Trials suggest that these
values are tension, continuity and bias and two values that remain a
mystery.

This leaves the CONTROL_SCALE_BEZIER subsection. In this sub-
section, each line begins with the tag CONTRL_BEZIER_SCALE_KEY
followed by no less than 15 values. The first value is the frame value
multiplied by SCENE_TICKSPERFRAME. Then a vector follows with the
x, y, z scale. Values 5–7 give the scale axis and value 8 the scale angle.
The incoming tangent is given by values 9–11 and the outgoing by values
12–14. The final value serves the same purpose as the last value in the
CONTROL_POS_BEZIER subsection, which I think is to provide some
kind of control flag.

*TM_ANIMATION {

*NODE_NAME "Sphere"

*CONTROL_POS_BEZIER {

*CONTROL_BEZIER_POS_KEY 0 0.4590 1.9079 48.0766 0.0000

*CONTROL_BEZIER_POS_KEY 4000 0.4590 94.4473 48.1007 0.0000

–0.0164 -0.0001 0.0000 0.0164 0.0001 0

*CONTROL_BEZIER_POS_KEY 4160 0.4590 97.0334 48.1247 0.0019

–0.0153 0.0015 -0.0019 0.0153 -0.0015 0

*CONTROL_BEZIER_POS_KEY 6880 -92.0482 97.0334 -31.8995

0.0196 0.0000 -0.0181 -0.0196 -0.0000 0.0181 0

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 229

*CONTROL_BEZIER_POS_KEY 9600 -106.2602 97.0334 146.6617

–0.0456 0.0000 -0.0301 0.0456 -0.0000 0.0301 0

*CONTROL_BEZIER_POS_KEY 12000 110.8874 97.0334 143.4107

–0.0460 -0.0000 0.0097 0.0460 0.0000 -0.0097 0

*CONTROL_BEZIER_POS_KEY 16000 -1.1630 97.0334 48.6045

0.1021 0.0000 0.0377 0.0000 0.0000 0.0000 0

}

*CONTROL_ROT_TCB {

*CONTROL_TCB_ROT_KEY 0 1.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000

*CONTROL_TCB_ROT_KEY 4000 -0.0000 1.0000 -0.0000 1.8309

0.0000 0.0000 0.0000 0.0000 0.0000

*CONTROL_TCB_ROT_KEY 12000 0.0000 -1.0000 0.0000 1.2898

0.0000 0.0000 0.0000 0.0000 0.0000

}

*CONTROL_SCALE_BEZIER {

*CONTROL_BEZIER_SCALE_KEY 0 1.1700 1.1700 1.1700 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

–0.0001 -0.0001 -0.0001 0

*CONTROL_BEZIER_SCALE_KEY 9600 0.6061 0.6061 0.6061 0.0000

0.0000 0.0000 0.0000 0.0001 0.0001 0.0001

0.0000 0.0000 0.0000 0

}

}

Implementing a 3DS ASCII parser

To parse a 3DS ASE file we will use a C3DSAscii class. Before getting into
the details of parsing individual sections, we will implement three useful
functions to help when reading the file. The file uses matching curly
braces to contain subsections. The purpose of the function GetSection-
End is to locate the file position of the closing brace. The function takes
an MFC class CStdioFile as the sole parameter. This class is a wrapper
for a standard text file. The function starts by initializing two variables,
start records the file position when the function is called and count is set
to one, indicating that one opening curly brace has been read. The
function is designed to be used after reading the opening curly brace.
After this initialization, the function enters an infinite loop with two exit
conditions. The first exit condition occurs if an attempt to read from the file
using ReadString returns FALSE. If this occurs then the matching end
curly brace is not present and so the data are not in a suitable format or

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

230 Importing geometry and animation from 3DS Max

the file is corrupted. Either way the function returns –1 to indicate an error
after showing a message box. The other exit condition occurs if the value
count reaches zero. The variable count is incremented if { is found in the
string read from the file and decremented if } is found. If count reaches
zero the variable end is used to record the file position. Then the loop is
exited and the file is returned to the original position using the variable
start.

int C3DSAscii::GetSectionEnd(CStdioFile &file)

{

CString line;

int end, start = file.GetPosition(), count=1; //First brace↵
assumed while(1){

if (!file.ReadString(line)){

AfxMessageBox("Matching brace not found in file,↵
wrong data format");

end = –1;

break;

}

if (line.Find("{")!=-1) count++;

if (line.Find("}")!=-1) count–;

if (!count){

end = file.GetPosition();

break;

}

}

//Return file position back to initial location

file.Seek(start,CFile::begin);

return end;

}

Each line in an ASE file contains tokens separated by either spaces or
tabs. The purpose of the utility function ParseTokens is to take a string
stored in an MFC CString and a string array defined as TOKENS and to
split the string up into substrings stored in the TOKEN array. Because we
could try to write to an index in the array out of bounds, the final parameter
used in the ParseTokens function is maxtokens, defining the TOKEN limit.
The first step is to clear any white space characters at the beginning or
end of the line string. Then the function enters a loop examining each
character in the line string in turn. If the character is a space or a tab then
we have found the end of a substring. The loop first gets the next
character to be examined. If this is not a space or a tab then it is added

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 231

to the current token string. If it is a space or tab then the current token
string has a terminating zero added to the end. Then we move through the
line string until no more spaces or tabs are found. The gap between
tokens can contain multiple spaces, which need to be removed. If some
spaces or tabs are removed in this loop then we need to back up the
character index, i, by one so that when the loop is incremented in the ‘for’
statement it points to the correct next character. Then the token count is
incremented and tested against the value for maximum tokens. If the
token count equals the maximum tokens then the function returns
because the token count is a zero index count. The loop uses a variable
string to bypass the parsing of spaces if this is a token nested between
inverted commas.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

int C3DSAscii::ParseTokens(CString &line, TOKEN *tokens, int↵
maxtokens)

{

char c;

int count = 0, index = 0, tmp;

BOOL string = FALSE;

line.TrimLeft();

line.TrimRight();

for(int i=0; i<line.GetLength(); i++){

c = line.GetAt(i);

if ((c==’ ‘&&!string)||c==’\t’){

if (index){

tokens[count].name[index]=0;

count++;

tmp = i;

while(line.GetAt(tmp)==’ ‘|| line.GetAt(tmp)==\t’)↵
tmp++;

if (tmp!=i) i=tmp-1;

if (count>=maxtokens) return count;

index = 0;

}

}else{

if (c==’"’){

string=(string)?FALSE:TRUE;

}else{

tokens[count].name[index++]=c;

}

232 Importing geometry and animation from 3DS Max

}

}

tokens[count].name[index]=0;

return count + 1;

}

A final utility function for parsing ASE files is the function FindToken that
iterates through the file looking for a specific token that is supplied.

BOOL C3DSAscii::FindToken(CStdioFile &file, CString &line, const↵
char *token, int start, int end)

{

if (start!=-1) file.Seek(start,CFile::begin);

while(1){

if (!file.ReadString(line)) return FALSE;

if (line.Find(token)!=-1) break;

if (end!=-1 && file.GetPosition()>(UINT)end) return FALSE;

}

return TRUE;

}

The top level loop for parsing an ASE file

When dealing with an ASE file we need to first open a text file, then check
the first line for the tag 3DSMAX_ASCIIEXPORT. If this is not present,
then this is not a suitable file and any parsing must be abandoned. If this
is an appropriate file then the function Load enters an infinite loop
checking for the tags SCENE, MATERIAL_LIST, GEOMOBJECT, CAM-
ERAOBJECT and LIGHTOBJECT. In the loop, a single line is read from
the file until the end of the file is reached; at this stage the loop is exited.
Each tag is handled by a separate function, which we will examine later.
If the loading is successful then the next part of this function is to set up
the parent pointers based on the parent name loaded in the ReadObject
function. An ASE file does not necessarily contain a light; if no light
is loaded then a default light is created using the function
CreateDefaultLight.

BOOL C3DSAscii::Load(CString &filename)

{

CStdioFile file;

CString line;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 233

try{

file.Open(filename,CFile::modeRead);

}

catch(CFileException e){

AfxMessageBox("3DS ASCII import error: problem opening↵
file");

return FALSE;

}

file.ReadString(line);

if (line.Find("3DSMAX_ASCIIEXPORT")==-1){

AfxMessageBox("3DS ASCII Import error: Unexpected header↵
line");

return FALSE;

}

while(1){

if (!file.ReadString(line)) break;

if (line.Find("SCENE ")!=-1){

if (!ReadSceneInfo(file)) return FALSE;

continue;

}

if (line.Find("MATERIAL_LIST")!=-1){

if (!ReadMaterialList(file)) return FALSE;

continue;

}

if (line.Find("GEOMOBJECT")!=-1){

if (!ReadObject(file)) return FALSE;

continue;

}

if (line.Find("CAMERAOBJECT")!=-1){

if (!ReadCamera(file)) return FALSE;

continue;

}

if (line.Find("LIGHTOBJECT")!=-1){

if (!ReadLight(file)) return FALSE;

continue;

}

}

//Assign parent pointers using loaded parent names

CToon3DObject *obj = objList.next, *tmpobj;

while(obj){

if (obj->parentname!="noparent"){

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

234 Importing geometry and animation from 3DS Max

tmpobj = objList.next;

while(tmpobj){

if (tmpobj->name == obj->parentname){

obj->parent = tmpobj;

break;

}

tmpobj = tmpobj->next;

}

if (!obj->parent){

line.Format("%s parent object %s not found in object↵
list",

LPCTSTR(obj->name), LPCTSTR(obj->parentname));

AfxMessageBox(line);

obj->parentname = "noparent";

}

}

obj = obj->next;

}

if (!lightList.next) CreateDefaultLight();

file.Close();

return TRUE;

}

Reading the SCENE section

When reading the SCENE section we first make use of the function
GetSectionEnd to find the matching end brace. Then the function enters
a loop which has the exit condition that the file position exceeds the value
returned by the GetSectionEnd function. The scheme for most of the
readers is the same, read the next line and search for certain expected
tags. If a tag is found then process it using ParseTokens; if it is a simple
single line tag or a subroutine or if it is a complex multi-line section. The
SCENE section contains no subsections unless background colour or
ambient animation is implemented.

BOOL C3DSAscii::ReadSceneInfo(CStdioFile &file)

{

CString line;

TOKEN tokens[5];

int start, end;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 235

start = file.GetPosition();

end = GetSectionEnd(file);

while(file.GetPosition()<(UINT)end){

file.ReadString(line);

if (line.Find("SCENE_FILENAME")!=-1){

if (ParseTokens(line,tokens,5)<2) return FALSE;

strcpy(name,tokens[1].name);

continue;

}

if (line.Find("SCENE_FIRSTFRAME")!=-1){

if (ParseTokens(line,tokens,5)<2) return FALSE;

firstframe = atoi(tokens[1].name);

continue;

}

if (line.Find("SCENE_LASTFRAME")!=-1){

if (ParseTokens(line,tokens,5)<2) return FALSE;

lastframe = atoi(tokens[1].name);

continue;

}

if (line.Find("SCENE_FRAMESPEED")!=-1){

if (ParseTokens(line,tokens,5)<2) return FALSE;

fps = atoi(tokens[1].name);

continue;

}

if (line.Find("SCENE_TICKSPERFRAME")!=-1){

if (ParseTokens(line,tokens,5)<2) return FALSE;

ticksperframe = (double)atoi(tokens[1].name);

continue;

}

if (line.Find("SCENE_BACKGROUND_STATIC")!=-1){

if (ParseTokens(line,tokens,5)<4) return FALSE;

bgCol.x = (float)atof(tokens[1].name);

bgCol.y = (float)atof(tokens[2].name);

bgCol.z = (float)atof(tokens[3].name);

}

if (line.Find("SCENE_AMBIENT_STATIC")!=-1){

if (ParseTokens(line,tokens,5)<4) return FALSE;

ambient.x = (float)atof(tokens[1].name);

ambient.y = (float)atof(tokens[2].name);

ambient.z = (float)atof(tokens[3].name);

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

236 Importing geometry and animation from 3DS Max

if (line.Find("SCENE_BACKGROUND_ANIM")!=-1){

AfxMessageBox("Background colour animation is not↵
supported in this importer");

}

if (line.Find("SCENE_AMBIENT_ANIM")!=-1){

AfxMessageBox("Ambient colour animation is not↵
supported in this importer");

}

}

return TRUE;

}

Reading the MATERIAL_LIST section

A MATERIAL_LIST section contains the tag MATERIAL_COUNT, which
gives the number of materials in the list, followed by MATERIAL_COUNT
materials. In the function to read the MATERIAL_LIST the start and end
of the section are stored in variables start and end. MATERIAL_COUNT
is found using the FindToken function. If MATERIAL_COUNT is found and
the ParseToken function returns at least two tokens when splitting the line
into tokens, then the current materials can be deleted and the material
count stored in the variable materialCount. The next step is to allocate
memory for the materials. We use a MATERIAL structure which is simply
a wrapper for a SURFACE structure. Then we use the function
ReadMaterial to read each of the materialCount materials.

BOOL C3DSAscii::ReadMaterialList(CStdioFile &file)

{

CString line;

int start,end,i;

TOKEN tokens[3];

start = file.GetPosition();

end = GetSectionEnd(file);

if (!FindToken(file, line, "MATERIAL_COUNT", start, end))↵
return FALSE;

if (ParseTokens(line, tokens, 3)<2) return FALSE;

DeleteMaterials();

materialCount = atoi(tokens[1].name);

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 237

if (materialCount){

materials = new MATERIAL[materialCount];

memset(materials, 0, sizeof(MATERIAL)*materialCount);

if (!materials) return FALSE;

for (i=0; i<materialCount; i++){

if (!ReadMaterial(file, i)) return FALSE;

}

}

return TRUE;

}

The ReadMaterial function takes two parameters, the ASE file and the
current material number. The first step is to build a string of the form
MATERIAL n, where n is the current material number. If the token is found
then we get the section end and enter a loop that is terminated when the
file position exceeds the section end. In the loop we read and parse the
tokens MATERIAL_NAME, MATERIAL_DIFFUSE, MATERIAL_SPEC-
ULAR, MATERIAL_TRANSPARENCY, MAP_DIFFUSE and NUM-
SUBMTLS. Most of these tags are easy to follow involving a call to
ParseTokens and then a conversion of the tokens to integers or floats.
MAP_DIFFUSE is itself a subsection, but since this parser only accesses
the BITMAP file name it is read directly. First, a new texture is created and
initialized to zero. Then a search is made for the token BITMAP. If the
token is found then the filename is stored in the TEXTURE structure. The
token NUMSUBMTLS gives the number of sub-materials in the current
material. If this is found then memory is allocated for these sub-materials
and then each sub-material is read using the ReadSubMaterial
function.

BOOL C3DSAscii::ReadMaterial(CStdioFile &file, int matnum)

{

CString line,tmp;

int start,end;

TOKEN tokens[5];

if (matnum>(materialCount-1)) return FALSE;

tmp.Format("MATERIAL %i",matnum);

if (!FindToken(file, line, (LPCTSTR)tmp)) return FALSE;

start = file.GetPosition();

end = GetSectionEnd(file);

while(file.GetPosition()<(UINT)end){

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

238 Importing geometry and animation from 3DS Max

file.ReadString(line);

if (line.Find("MATERIAL_NAME")!=-1){

if (ParseTokens(line, tokens, 5)<2) return FALSE;

strcpy(materials[matnum].mat.name,tokens[1].name);

continue;

}

if (line.Find("MATERIAL_DIFFUSE")!=-1){

if (ParseTokens(line, tokens, 5)<4) return FALSE;

strcpy(materials[matnum].mat.name,tokens[1].name);

materials[matnum].mat.diffuse=1.0;

materials[matnum].mat.r=(BYTE)(atof(tokens[1].name)*255.0);

materials[matnum].mat.g=(BYTE)(atof(tokens[2].name)*255.0);

materials[matnum].mat.b=(BYTE)(atof(tokens[3].name)*255.0);

continue;

}

if (line.Find("MATERIAL_SPECULAR")!=-1){

if (ParseTokens(line, tokens, 5)<4) return FALSE;

materials[matnum].mat.specular=(float)atof(tokens[1].name);

continue;

}

if (line.Find("MATERIAL_TRANSPARENCY")!=-1){

if (ParseTokens(line, tokens, 5)<2) return FALSE;

materials[matnum].mat.transparency=(float)atof(tokens[1].↵
name);

continue;

}

if (line.Find("MAP_DIFFUSE")!=-1){

materials[matnum].mat.tex = new TEXTURE;

if (!materials[matnum].mat.tex) return FALSE;

memset(materials[matnum].mat.tex, 0, sizeof(TEXTURE));

if (!FindToken(file, line, "BITMAP")) return FALSE;

if (ParseTokens(line, tokens, 5)<2) return FALSE;

strcpy(materials[matnum].mat.tex->name,tokens[1].name);

continue;

}

if (line.Find("NUMSUBMTLS")!=-1){

if (ParseTokens(line, tokens, 5)<2) return FALSE;

materials[matnum].numsubmtls = atoi(tokens[1].name);

materials[matnum].submat =

new SURFACE[materials[matnum].numsubmtls];

//Initialise the data

memset(materials[matnum].submat, 0,

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 239

sizeof(SURFACE) * materials[matnum].numsubmtls);

for(int i=0; i<materials[matnum].numsubmtls; i++){

if (!ReadSubMaterial(file, matnum, i)) return FALSE;

}

continue;

}

}

return TRUE;

}

Reading a sub-material is just the same as reading a material, except we
search for the tags SUBMATERIAL n, where n is the number of the current
sub-material. The MATERIAL structure contains the member submat that
is allocated memory for NUMSUBMTLS SURFACE structures. Sub-
materials nested into sub-materials are not allowed with this parser and will
force a message box to be displayed.

BOOL C3DSAscii::ReadSubMaterial(CStdioFile &file, int matnum, int↵
submatnum)

{

CString line,tmp;

int start,end;

TOKEN tokens[5];

SURFACE *srf = &materials[matnum].submat[submatnum];

tmp.Format("SUBMATERIAL %i", submatnum);

if (!FindToken(file, line, (LPCTSTR)tmp)) return FALSE;

start = file.GetPosition();

end = GetSectionEnd(file);

while(file.GetPosition()<(UINT)end){

file.ReadString(line);

if (line.Find("MATERIAL_NAME")!=-1){

if (ParseTokens(line, tokens, 5)<2) return FALSE;

strcpy(srf->name, tokens[1].name);

continue;

}

if (line.Find("MATERIAL_DIFFUSE")!=-1){

if (ParseTokens(line, tokens, 5)<4) return FALSE;

strcpy(materials[matnum].mat.name,tokens[1].name);

srf->diffuse=1.0;[1].name)*255.0);

srf->g = (BYTE)(atof(tokens[2].name)*255.0);

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

240 Importing geometry and animation from 3DS Max

srf->b = (BYTE)(atof(tokens[3].name)*255.0);

continue;

}

if (line.Find("MATERIAL_SPECULAR")!=-1){

if (ParseTokens(line, tokens, 5)<4) return FALSE;

srf->specular = (float)atof(tokens[1].name);

continue;

}

if (line.Find("MATERIAL_TRANSPARENCY")!=-1){

if (ParseTokens(line, tokens, 5)<2) return FALSE;

srf->transparency = (float)atof(tokens[1].name);

continue;

}

if (line.Find("MAP_DIFFUSE")!=-1){

srf->tex = new TEXTURE;

if (!srf->tex) return FALSE;

memset(srf->tex, 0, sizeof(TEXTURE));

if (!FindToken(file,line,"BITMAP")) return FALSE;

if (ParseTokens(line, tokens, 5)<2) return FALSE;

strcpy(srf->tex->name, tokens[1].name);

continue;

}

if (line.Find("NUMSUBMTLS")!=-1){

AfxMessageBox("3DS Loading error::

Only a single layer of sub materials allowed");

return FALSE;

}

}

file.Seek(start, CFile::begin);

return TRUE;

}

Reading the GEOMOBJECT section

We have read some basic details about the scene and the material list,
now we can read the geometry. In the class C3DSAscii, the function
ReadObject is used whenever the token GEOMOBJECT is found. This
function looks for the tokens NODE_NAME, NODE_PARENT, NODE_TM,
MESH, TM_ANIMATION, MATERIAL_REF and WIREFRAME_COLOR.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 241

The token NODE_NAME is followed by the name of the object. The
token NODE_PARENT is followed by the name of the parent. The token
NODE_TM is a subsection read with the separate function ReadNodeTM.
The token MESH is read with the function ReadMesh. The token TM_
ANIMATION is read with the function ReadAnimation. The token MATE-
RIAL_REF gives a single index into the MATERIAL_LIST for this object’s
surface data. The token WIREFRAME_COLOR provides a single colour
surface for objects with no surface data.

BOOL C3DSAscii::ReadObject(CStdioFile &file)

{

CString line, tmp;

int start, end, index;

TOKEN tokens[5];

CToon3DObject *obj = &objList;

while(obj->next) obj = obj->next;

obj->next = new CToon3DObject;

obj = obj->next;

if (!obj) return FALSE;

start = file.GetPosition();

end = GetSectionEnd(file);

while(file.GetPosition()<(UINT)end){

file.ReadString(line);

if (line.Find("NODE_NAME")!=-1){

if (ParseTokens(line,tokens,5)<2) return FALSE;

obj->name=tokens[1].name;

continue;

}

if (line.Find("NODE_PARENT")!=-1){

if (ParseTokens(line, tokens, 5)<2) return FALSE;

obj->parentname = tokens[1].name;

continue;

}

if (line.Find("NODE_TM")!=-1){

if (!ReadNodeTM(file, obj)) return FALSE;

continue;

}

if (line.Find("MESH ")!=-1){

if (!ReadMesh(file, obj)) return FALSE;

continue;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

242 Importing geometry and animation from 3DS Max

}

if (line.Find("TM_ANIMATION")!=-1){

if (!ReadAnimation(file,obj)) return FALSE;

continue;

}

if (line.Find("MATERIAL_REF")!=-1){

if (ParseTokens(line,tokens,5)<2) return FALSE;

index = atoi(tokens[1].name);

if (!AssignSurfaces(obj, index)) return FALSE;

}

if (line.Find("WIREFRAME_COLOR")!=-1){

if (ParseTokens(line,tokens,5)<4) return FALSE;

//Create a single coloured surface

if (obj->srfs) delete [] obj->srfs;

obj->srfs=new SURFACE;

obj->numsurfaces=1;

obj->srfs->diffuse=1.0;

obj->srfs->tex=NULL;

obj->srfs->transparency=0.0;

obj->srfs->flag=0;

strcpy(obj->srfs->name,"Colour");

obj->srfs->specular=0.0;

obj->srfs->r=(BYTE)atoi(tokens[1].name);

obj->srfs->g=(BYTE)atoi(tokens[2].name);

obj->srfs->b=(BYTE)atoi(tokens[3].name);

for (int i=0;i<obj->numpolygons;i++){

obj->plys[i].srf=0;

}

}

}

obj->hide = FALSE;

return TRUE;

}

The token MATERIAL_REF returns a single integer and when reading a
polygon we get a single integer that defines the surface. If an object
contains multiple surfaces then these will be represented by the sub-
materials of that object; if the material is a basic material then the material
can be set directly. The application Toon3D uses an object level surface list
rather than global level, so after reading the MATERIAL_REF the
appropriate surfaces are duplicated in a format expected by Toon3D.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 243

BOOL C3DSAscii::AssignSurfaces(CToon3DObject *obj, int index)

{

if (materials[index].numsubmtls){

obj->srfs = new SURFACE[materials[index].numsubmtls];

if (!obj->srfs) return FALSE;

obj->numsurfaces = materials[index].numsubmtls;

memcpy(obj->srfs, materials[index].submat,

sizeof(SURFACE)*obj->numsurfaces);

for (int i=0; i<materials[index].numsubmtls; i++){

//Copy any textures that we need

if (materials[index].submat[i].tex){

obj->srfs[i].tex = new TEXTURE;

memcpy(obj->srfs[i].tex,

materials[index].submat[i].tex,↵
sizeof(TEXTURE));

}

}

for (i=0; i<obj->numpolygons; i++){

if (obj->plys[i].srf>obj->numsurfaces) return FALSE;

}

}else{

obj->srfs = new SURFACE;

if (!obj->srfs) return FALSE;

if (materials[index].mat.tex){

obj->srfs->tex = new TEXTURE;

memcpy(obj->srfs->tex,

materials[index].mat.tex, sizeof(TEXTURE));

}

obj->numsurfaces = 1;

memcpy(obj->srfs, &materials[index].mat, sizeof(SURFACE));

for (int i=0; i<obj->numpolygons; i++){

obj->plys[i].srf=0;

}

}

return TRUE;

}

The default scale, position and orientation for the object is read from the
NODE_TM section by the function ReadNodeTM. The function is quite
straightforward except that the axes used in 3DS are different from those
used by Toon3D. To get the orientation back, the z and y components are

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

244 Importing geometry and animation from 3DS Max

flipped and the direction of the z component is inverted. Orientation in 3DS
is stored in angle axis format. Since Toon3D uses Euler angles we need to
convert angle axis to Euler using the function AngleAxisToEuler.

BOOL C3DSAscii::ReadNodeTM(CStdioFile &file, CToon3DObject *obj)

{

CString line;

int start,end;

TOKEN tokens[5];

VECTOR rotaxis;

double rotangle;

start = file.GetPosition();

end = GetSectionEnd(file);

while(file.GetPosition()<(UINT)end){

file.ReadString(line);

if (line.Find("TM_POS ")!=-1){

if (ParseTokens(line,tokens,5)<4) return FALSE;

//Swap z andy and flip the z

obj->spos.x = atof(tokens[1].name);

obj->spos.y = atof(tokens[3].name);

obj->spos.z =-atof(tokens[2].name);

}

if (line.Find("TM_SCALE ")!=-1){

if (ParseTokens(line,tokens,5)<4) return FALSE;

obj->sscale.x = atof(tokens[1].name);

obj->sscale.y = atof(tokens[3].name);

obj->sscale.z = atof(tokens[2].name);

}

if (line.Find("TM_ROTAXIS ")!=-1){

if (ParseTokens(line,tokens,5)<4) return FALSE;

rotaxis.x = atof(tokens[1].name);

rotaxis.y = atof(tokens[3].name);

rotaxis.z = atof(tokens[2].name);

}

if (line.Find("TM_ROTANGLE")!=-1){

if (ParseTokens(line,tokens,5)<2) return FALSE;

rotangle = atof(tokens[1].name);

}

}

AngleAxisToEuler(rotaxis, rotangle, obj->srot);

obj->CreateKey(0);

return TRUE;

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 245

The principle behind the AngleAxisToEuler function is to create a rotation
matrix, then use inverse trig functions to extract the Euler angles. Recall
that a rotation matrix formed from HPB rotations is defined as

cos(h)cos(b) – sin(h)sin(p)sin(b) cos(h)sin(b) + sin(h)sin(p)cos(b) sin(h)cos(p)

HPB = –cos(p)sin(p) cos(p)cos(b) –sin(p)�–sin(h)cos(b) – cos(h)sin(p)sin(b) –sin(h)sin(b) + cos(h)sin(p)cos(b) cos(h)cos(p)�
If each term of this is given a name based on the row and column, then

we get the matrix

�
m00

m10

m20

m01

m11

m21

m02

m12

m22 �
Comparing terms, we can see that m12 = –sin(p). Hence, p = asin(–m12).
From term m10 we have m10 = –cos(p)sin(p). Therefore, m10 =
m12cos(p). Hence, cos(p) = m10/m12.

We can use this to find the heading using term m02:

m02 = sin(h)cos(p); therefore, m02 = sin(h)*(m10/m12)
sin(h) = (m02*m12)/m10; hence, h = asin((m02*m12)/m10)

Using the same value for cos(p) and term m11, we can derive the b
value:

m11 = cos(p)cos(b); therefore, m11 = cos(b)*(m10/m12)
cos(b) = (m11*m12)/m10; hence, b = acos((m11*m12)/m10)

The function uses this derivation to get the appropriate values for H, P
and B.

void C3DSAscii::AngleAxisToEuler(const VECTOR &rotaxis, const↵
double &rotangle, VECTOR &euler)

{

double c = cos(rotangle);

doubles = sin(rotangle);

double omc = 1.0 – c;

double m02, m10, m11, m12;

m11 = c + rotaxis.y*rotaxis.y*omc;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

246 Importing geometry and animation from 3DS Max

double tmp1 = rotaxis.x*rotaxis.y*omc;

double tmp2 = rotaxis.z*s;

m10 = tmp1 - tmp2;

tmp1 = rotaxis.x*rotaxis.z*omc;

tmp2 = rotaxis.y*s;

m02 = tmp1 - tmp2;

m12 = tmp1 + tmp2;

if (m10==0.0) m10=0.00000001;// Avoid division by zero

tmp1 = m12/m10;

euler.x = asin(-m12);

euler.y = asin(m02 * tmp1);

euler.z = acos(m11 * tmp1);

}

Reading the MESH section

The MESH section contains the tags MESH_NUMVERTEX, MESH_
VERTEX_LIST, MESH_NUMFACES, MESH_FACE_LIST, MESH_NUMT-
VERTS, MESH_TVERTLIST, MESH_NUMTVFACES, MESH_TFACELIST
and MESH_NORMALS. MESH_NUMVERTEX, MESH_NUMFACES,
MESH_NUMTVERTS and MESH_NUMTVFACES are all single integer
values giving the number of vertices, faces, texture vertices and textured
faces respectively. Each of the lists is handled by a dedicated function call
that we will examine in turn. Reading the normals section is handled by the
function ReadNormals.

BOOL C3DSAscii::ReadMesh(CStdioFile &file, CToon3DObject *obj)

{

CString line;

int start,end, numtverts, numtvfaces;

TOKEN tokens[5];

TEXVEC *tvert = NULL;

start = file.GetPosition();

end = GetSectionEnd(file);

while(file.GetPosition()<(UINT)end){

file.ReadString(line);

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 247

if (line.Find("MESH_NUMVERTEX")!=-1){

if (ParseTokens(line,tokens,5)<2) goto meshabort;

obj->numpoints=atoi(tokens[1].name);

obj->pts=new POINT3D[obj->numpoints];

if (!obj->pts) return FALSE;

continue;

}

if (line.Find("MESH_VERTEX_LIST")!=-1){

if (!ReadVertexList(file,obj)) goto meshabort;

continue;

}

if (line.Find("MESH_NUMFACES")!=-1){

if (ParseTokens(line,tokens,5)<2) goto meshabort;

obj->numpolygons=atoi(tokens[1].name);

obj->plys=new POLYGON[obj->numpolygons];

if (!obj->plys) return FALSE;

continue;

}

if (line.Find("MESH_FACE_LIST")!=-1){

if (!ReadFaceList(file,obj)) goto meshabort;

continue;

}

if (line.Find("MESH_NUMTVERTEX")!=-1){

if (ParseTokens(line,tokens,2)<2) goto meshabort;

numtverts = atoi(tokens[1].name);

if (numtverts){

tvert = new TEXVEC[numtverts];

if (!tvert) return FALSE;

continue;

}

}

if (line.Find("MESH_TVERTLIST")!=-1){

if (!ReadTextureVertices(file, tvert, numtverts)) goto↵
meshabort;

continue;

}

if (line.Find("MESH_NUMTVFACES")!=-1){

if (ParseTokens(line,tokens,2)<2) goto meshabort;

numtvfaces = atoi(tokens[1].name);

}

if (line.Find("MESH_TFACELIST")!=-1){

if (!ReadTFaceList(file, obj, tvert, numtvfaces)) goto↵
meshabort;

continue;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

248 Importing geometry and animation from 3DS Max

}

if (line.Find("MESH_NORMALS")!=-1){

if (!ReadNormals(file, obj)) goto meshabort;

continue;

}

}

if (tvert) delete [] tvert;

return TRUE;

meshabort:

if (tvert) delete [] tvert;

return FALSE;

}

The vertex list contains MESH_NUMVERTEX lines each describing a
single vertex. The value read from MESH_NUMVERTEX is stored in the
variable obj → numponts. Before reading each line the entire vertex array
is set to zero values using a simple memset call. Then the function uses a
‘for’ loop to iterate through all the points in the object storing the values
read from the file. To orientate the values read from the ASE file to the
coordinate space used by Toon3D, the y and z values are flipped and the
z value inverted.

BOOL C3DSAscii::ReadVertexList(CStdioFile &file, CToon3DObject↵
*obj)

{

CString line,tmp;

int start,end;

TOKEN tokens[5];

start = file.GetPosition();

end = GetSectionEnd(file);

memset(obj->pts,0,sizeof(POINT3D)*obj->numpoints);

for (int i=0; i<obj->numpoints; i++){

if (!FindToken(file,line,"MESH_VERTEX ",-1,end)) return↵
FALSE;

if (ParseTokens(line,tokens,5)<5) return FALSE;

//Swap z and y and flip the z

obj->pts[i].x = atof(tokens[2].name);

obj->pts[i].y = atof(tokens[4].name);

obj->pts[i].z =-atof(tokens[3].name);

}

return TRUE;

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 249

The face list follows a similar pattern to the vertex list. First, the polygon
array is set to zero value then the function enters a ‘for’ loop reading obj →
numpolygons lines from the file. All 3DS polygons are triangles, so the
numverts member is set to 3 and the value of the fourth vertex set to –1.
The polygon order is flipped because Toon3D expects counter-clockwise
polygons to be forward facing and 3DS expects clockwise polygons. The
index of the vertices for the current polygon are read from the file.

BOOL C3DSAscii::ReadFaceList(CStdioFile &file, CToon3DObject *obj)

{

CString line,tmp;

int start,end;

TOKEN tokens[20];

start=file.GetPosition();

end=GetSectionEnd(file);

memset(obj->plys,0,sizeof(POLYGON)*obj->numpolygons);

for (int i=0;i<obj->numpolygons;i++){

if (!FindToken(file,line,"MESH_FACE ",-1,end)) return↵
FALSE;

if (ParseTokens(line,tokens,20)<17) return FALSE;

//Counter clockwise order

obj->plys[i].p[3] = -1;

obj->plys[i].numverts = 3;

obj->plys[i].p[0] = atoi(tokens[3].name);

obj->plys[i].p[2] = atoi(tokens[5].name);

obj->plys[i].p[1] = atoi(tokens[7].name);

obj->plys[i].srf = atoi(tokens[17].name);

}

return TRUE;

}

3DS stores the value of texture coordinates in a special list of texture
vertices. This list is read using the ReadTextureVertices function. Each line
in a MESH_TVERTLIST section contains a MESH_TVERT tag followed by
the index for this texture vertex and three floating-point values. Standard
2D bitmap textures only use the first two floating-point values. The first
value is the u component and the second the v.

*MESH_TVERTLIST {

*MESH_TVERT 0 0.0000 1.0000 0.0000

*MESH_TVERT 1 0.0625 1.0000 0.0000

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

250 Importing geometry and animation from 3DS Max

*MESH_TVERT 2 0.1250 1.0000 0.0000

*MESH_TVERT 3 0.1875 1.0000 0.0000

. . .

}

When reading the list the function enters a loop. The exit condition for the
loop is the file location exceeding the end of the list. For each iteration of
the loop we find the next MESH_TVERT token and then parse this line.
The token array will contain the index of the vertex in array value one, the
u component in array value two and the v component in array value
three.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

BOOL C3DSAscii::ReadTextureVertices(CStdioFile &file, TEXVEC↵
*tvert, int count)

{

CString line;

int start, end, index;

TOKEN tokens[5];

start = file.GetPosition();

end = GetSectionEnd(file);

while(file.GetPosition()<(UINT)end){

if (!FindToken(file,line,"MESH_TVERT",-1,end)) return↵
FALSE;

if (ParseTokens(line,tokens,5)<5) return FALSE;

index = atoi(tokens[1].name);

if (index > count) return FALSE; //Index out of range

tvert[index].u = (float)atof(tokens[2].name);

tvert[index].v = (float)atof(tokens[3].name);

}

return TRUE;

}

To make use of the texture vertices we have to read the textured face list.
Toon3D uses a POLYGON structure that includes texture coordinates.
When reading the textured face list we assign these coordinates
directly.

*MESH_TFACELIST {

*MESH_TFACE 00 17 18

*MESH_TFACE 11 18 19

Importing geometry and animation from 3DS Max 251

*MESH_TFACE 22 19 20

*MESH_TFACE 33 20 21

*MESH_TFACE 44 21 22

. . .

}

The MESH_TFACELIST section contains MESH_NUMTVFACES lines.
Each line starts with a MESH_TFACE tag, followed by four integer values.
The first is the face index, then the texture vertex indices for this face in
counter-clockwise order. To process this information, we read each vertex
in turn and apply the appropriate texture vertex from the passed texture
vertex array to the polygon’s texture vertices stored in the POLYGON
structure member tc.

BOOL C3DSAscii::ReadTFaceList(CStdioFile &file, CToon3DObject↵
*obj, TEXVEC *tverts, int count)

{

CString line;

int start, end, plyindex, p[3], index;

POLYGON *ply;

start = file.GetPosition();

end = GetSectionEnd(file);

while (file.GetPosition()<(UINT)end){

if (!FindToken(file,line,"MESH_TFACE",-1,end)) return↵
FALSE;

if (ParseTokens(line,tokens,5)<5) return FALSE;

plyindex = atoi(tokens[1].name);

if (plyindex>obj->numpolygons) return FALSE;

ply = &obj->plys[plyindex].

index = atoi(tokens[2].name);

ply->tc[0].u = tverts[index].u;

ply->tc[0].v = tverts[index].v;

index = atoi(tokens[3].name);

ply->tc[2].u = tverts[index].u;

ply->tc[2].v = tverts[index].v;

index = atoi(tokens[4].name);

ply->tc[1].u = tverts[index].u;

ply->tc[1].v = tverts[index].v;

}

return TRUE;

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

252 Importing geometry and animation from 3DS Max

The MESH_NORMAL section contains MESH_NUMFACES mini-sec-
tions. Each mini-section contains a MESH_FACENORMAL line and three
MESH_VERTEXNORMAL lines. The face normal defines the normal for
the face and the vertex normals the normals for the face vertices. Each
line follows the familiar pattern of tag, index, vector. When parsing the
function reads the index and applies the data to the normal stored in the
POLYGON and POINT3D structures.

*MESH_NORMALS {

*MESH_FACENORMAL 0 -0.0388 0.1949 0.9800

*MESH_VERTEXNORMAL 0 0.0000 0.0000 1.0000

*MESH_VERTEXNORMAL 1 -0.0225 0.4185 0.9079

*MESH_VERTEXNORMAL 2 -0.1809 0.3781 0.9079

*MESH_FACENORMAL 1 -0.1104 0.1653 0.9800

*MESH_VERTEXNORMAL 0 0.0000 0.0000 1.0000

*MESH_VERTEXNORMAL 2 -0.1809 0.3781 0.9079

*MESH_VERTEXNORMAL 3 -0.3118 0.2801 0.9079

. . .

}

BOOL C3DSAscii::ReadNormals(CStdioFile &file, CToon3DObject *obj)

{

CString line, tmp;

int i, j, start, end, index, plyindex;

TOKEN tokens[5];

start = file.GetPosition();

end = GetSectionEnd(file);

//Set default value

for (i=0;i<obj->numpoints;i++){

obj->pts[i].weight = 1;

obj->pts[i].nx = 0.0;

obj->pts[i].ny = 1.0;

obj->pts[i].nz = 0.0;

}

while (file.GetPosition()<(UINT)end){

if (!FindToken(file, line, "MESH_FACENORMAL", -1, end))↵
return FALSE;

if (ParseTokens(line,tokens,5)<5) return FALSE;

plyindex = atoi(tokens[1].name);

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 253

if (plyindex>obj->numpolygons){

tmp.Format("Face index %i(%i)

out of range when reading normals list.",

index,obj->numpolygons);

AfxMessageBox(tmp);

return FALSE;

}

//Set the face normal

obj->plys[plyindex].normal[0] = atof(tokens[2].name);

obj->plys[plyindex].normal[1] = atof(tokens[4].name);

obj->plys[plyindex].normal[2] =-atof(tokens[3].name);

//Now read the three vertex normals

for (j=0;j<3;j++){

if (!FindToken(file,line,"MESH_VERTEXNORMAL",-1,↵
end)) return FALSE;

if (ParseTokens(line,tokens,5)<5) return FALSE;

index = obj->plys[plyindex].p[atoi(tokens[1].name)];

if (index>obj->numpoints) return FALSE;

obj->pts[index].nx = atof(tokens[2].name);

obj->pts[index].ny = atof(tokens[4].name);

obj->pts[index].nz =-atof(tokens[3].name);

}

}

return TRUE;

}

All the animation in Toon3D uses TCB curves. ASE files include Bezier
curves. This simple animation reader makes no attempt to convert Bezier
curves to TCB, it simply takes the raw data. Curve smoothing is ignored.
Since Bezier curves are not interpolating, that is they do not usually go
through the control points, the results will be in error. I leave it for you to
create a good Bezier to TCB converter. It would probably be better to add
a flag to the interpolator in the engine to say whether the data are in TCB
or Bezier format and then interpolate using a different mechanism rather
than attempt to convert the curves. A full read would then need to handle
the incoming and outgoing tangents in the Bezier handler and the scale
axis and scale angle components in a scale key value.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

254 Importing geometry and animation from 3DS Max

A CONTROL_POS_BEZIER line consists of

Token Value
0 CONTROL_BEZIER_POS_KEY
1 Frame multiplied by TICKSPERFRAME
2–4 Control position
5–7 Incoming tangent
8–10 Outgoing tangent
11 Control flag

A CONTROL_ROT_TCB line consists of

Token Value
0 CONTROL_TCB_ROT_KEY
1 Frame multiplied by TICKSPERFRAME
2–5 Rotation axis
6 Rotation angle
7 Tension
8 Continuity
9 Bias
10–11 Unknown

A CONTROL_SCALE_BEZIER line consists of

Token Value
0 CONTROL_BEZIER_SCALE_KEY
1 Frame multiplied by TICKSPERFRAME
2–4 Control position
5–7 Scale axis
8 Scale angle
9–11 Incoming tangent
12–14 Outgoing tangent
15 Control flag

*TM_ANIMATION {

*NODE_NAME "Sphere"

*CONTROL_POS_BEZIER {

*CONTROL_BEZIER_POS_KEY 0 0.4590 1.9079 48.0766↵
0.0000 0.0000 0.0000 0.0000 0.0298 –0.0001 0

. . .

}

*CONTROL_ROT_TCB {

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 255

*CONTROL_TCB_ROT_KEY 0 1.0000 0.0000 0.0000↵
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

. . .

}

*CONTROL_SCALE_BEZIER {

*CONTROL_BEZIER_SCALE_KEY 0 1.1700 1.1700 1.1700↵
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000↵
0.0000 -0.0001 -0.0001 -0.00010

. . .

}

}

In this simplified parser we simply get at the main control values and store
these directly.

BOOL C3DSAscii::ReadAnimation(CStdioFile &file, CToon3DObject↵
*obj)

{

CString line;

int start,end, frame;

TOKEN tokens[5];

VECTOR rotaxis;

double rotangle;

start = file.GetPosition();

end = GetSectionEnd(file);

while (file.GetPosition()<(UINT)end){

if (!file.ReadString(line)) return FALSE;

if (line.Find("CONTROL_BEZIER_POS_KEY")!=-1){

if (ParseTokens(line,tokens,5)<5) return FALSE;

frame = (int)(atof(tokens[1].name)/ticksperframe);

obj->SetFrame(frame);

//Swap z andy and flip the z

obj->spos.x = atof(tokens[2].name);

obj->spos.y = atof(tokens[4].name);

obj->spos.z =-atof(tokens[3].name);

obj->CreateKey(frame);

}

if (line.Find("CONTROL_TCB_ROT_KEY")!=-1){

if (ParseTokens(line,tokens,5)<5) return FALSE;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

256 Importing geometry and animation from 3DS Max

frame = (int)(atof(tokens[1].name)/ticksperframe);

obj->SetFrame(frame);

rotaxis.x = atof(tokens[2].name);

rotaxis.y = atof(tokens[4].name);

rotaxis.z = atof(tokens[3].name);

rotangle = atof(tokens[5].name);

AngleAxisToEuler(rotaxis, rotangle, obj->srot);

obj->CreateKey(frame);

}

if (line.Find("CONTROL_BEZIER_SCALE_KEY")!=-1){

if (ParseTokens(line,tokens,5)<5) return FALSE;

frame = (int)(atof(tokens[1].name)/ticksperframe);

obj->SetFrame(frame);

obj->sscale.x = atof(tokens[2].name);

obj->sscale.y = atof(tokens[3].name);

obj->sscale.z = atof(tokens[4].name);

obj->CreateKey(frame);

}

}

return TRUE;

}

Reading the CAMERAOBJECT section

A camera section is easily read. The important elements are the NODE_
TM, which is the same as the data for an object, and the CAMERA_FOV
component that sets up whether this is a long lens or wide angle.

BOOL C3DSAscii::ReadCamera(CStdioFile &file)

{

CString line;

int start,end;

TOKEN tokens[5];

double fov;

start = file.GetPosition();

end = GetSectionEnd(file);

while(file.GetPosition()<(UINT)end){

file.ReadString(line);

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Importing geometry and animation from 3DS Max 257

if (line.Find("NODE_TM")!=-1){

if (!ReadCameraNodeTM(file)) return FALSE;

}

if (line.Find("CAMERA_FOV")!=-1){

if (ParseTokens(line, tokens, 5)<2){

fov = atof(tokens[1.name);

camera.zoomFactor = fov * 5;

}

}

}

camera.CreateKey(0);

return TRUE;

}

Reading the LIGHTOBJECT section

A light section contains the familiar NODE_NAME and NODE_TM tags. In
a simple parser you will probably want to read the LIGHT_TYPE tag,
LIGHT_COLOR, LIGHT_INTENS and the LIGHT_TDIST.

*LIGHTOBJECT {

*NODE_NAME "Fspot02"

*LIGHT_TYPE Target

*NODE_TM {

. . .

}

. . .

*LIGHT_SETTINGS {

*TIMEVALUE 0

*LIGHT_COLOR 1.0000 1.0000 1.0000

*LIGHT_INTENS 1.0000

*LIGHT_TDIST 240.0000

. . .

}

*TM_ANIMATION {

. . .

}

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

258 Importing geometry and animation from 3DS Max

Summary

This chapter and the source code should get you started on a more
comprehensive parser for 3DS ASE files. If you are using Bezier curves
for your animation then ASE files will provide the curve in the format you
want. You will almost certainly have to adjust your axes when coming out
of 3DS to suit OpenGL. One of the major differences between 3DS files
and Lightwave is the scale of objects. A default cube tends to have
dimensions around 100 per side, while Lightwave has a side dimension of
1.0. This is not a major problem, but it can be a little confusing at first. You
may import an object and be inside it because it is so big in relation to your
camera and scene. Similarly, you may find that the object is so small you
cannot find it.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

12 Motion capture
techniques

The early pioneers of animation spent a lot of time studying motion. Some
chose to film the actors performing the motions that they were intending
to animate. In this way, the complexity of the actions could be analysed
frame by frame. Some animators went even further and simply traced this
motion directly onto their animation paper. This technique, known as roto-
scoping, was the basis of the animation of both Snow White and Prince
Charming in the legendary Disney film.

Roto-scoping has a digital equivalent, motion capture or mocap for
short. Many animation purists dislike roto-scoping and for largely the
same reason they also dislike mocap. The reasoning behind their
prejudice is that a very well drawn animation scene has a dynamic that
roto-scoping can never achieve, simply because the human body is not
capable of the dynamics involved. Since mocap files are captured from
the performance of a real being, they can also suffer from this limitation.
When working with digital data like mocap files, however, animators can
be provided with tools that allow them to use their skills to enhance the
data. Using such tools the animator can enjoy all the benefits inherent in
mocap, which provides a plausible illusion of life, while not suffering from
the problems of stiffness that can be a disappointing side-effect of roto-
scoping. In this chapter we are going to look first at the principal methods
used to capture motion data. We will look at how with a little engineering

Figure 12.1 A drawn roto-scoped sequence.

260 Motion capture techniques

and some simple electronics it is possible to create a motion capture suit
very cheaply. Then we will look at a particular type of motion capture file,
the Biovision Hierarchy (BVH) file, which is often used as a means of
saving and exchanging motion files. We will look at creating a BVH viewer
and applying some sample BVH files to a single mesh character. Finally,
we will look at how to enhance motion capture files by using both Inverse
Kinematics and secondary animation channels. Mocap is regularly used
in games because it makes the low polygon digital actors seem very
lifelike. The techniques are quite simple and well worth studying.

Capturing motion

The principle behind all motion capture methods is essentially the same.
An actor is placed in a suit of some description and then they perform an
action. Throughout the actors’ performance, the position of their limbs is
scanned up to 50 times a second and recorded to a file. In order to assess
the effectiveness of the motion, it is often applied in real-time to a low-
resolution version of the target model using a suitable application
program. Filmbox from Kaydara is a popular tool for real-time viewing.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 12.2 Filmbox being used to provide real-time feedback of a mocap session.

Motion capture techniques 261

When trying to determine the location and orientation of an actor, there
are three basic techniques: optical, magnetic and mechanical.

Optical

Optical suits use two or more cameras and highly reflective markers on an
actor’s suit. The location of the cameras relative to each other is set to a
high degree of accuracy. Motion tracking software follows each marker
from a single camera viewpoint. Motion tracking is a form of pattern
recognition. Software scans the bitmap of a single frame from a video
camera. Then the next bitmap in the video sequence is scanned trying to
locate the same pattern. The location of the marker on the bitmap defines
a ray emanating from the camera, which goes through the marker and
then disappears off to infinity. Using the second and often a third camera,
the marker is tracked from other camera angles. Each camera provides a
line from the camera to infinity. Software can then determine the
intersection of these lines and using the knowledge of the camera world
position provide an x, y, z location in world space for a marker for each
frame of video. At certain times in the video sequences, markers will be
hidden due to the angle of the camera in relation to the performer; this is
described as occlusion. At such times knowledge of the topography of
markers on the performer helps the software to provide a best estimate of
marker location. This type of error checking can make optical motion
capture a very accurate form of analysis. Other benefits of optical capture
are the low cost of additional markers and the lack of restrictions to the

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 12.3 Optical motion capture.

262 Motion capture techniques

performer. A major disadvantage is the requirement for a dedicated studio
or a high set-up time and the high cost of the systems.

Magnetic
Magnetic motion capture uses the movement of a sensor in a magnetic
field. The sensors provide both position and orientation. An actor is
provided with a suit that houses several sensors, usually located on a
major body part (bicep, forearm, hand, etc.). The actor then performs
within the confines of three scanning devices. Software then calculates
the location and orientation of each sensor. If the software is also provided
with knowledge of the sensors’ hierarchy as applied to the actor, a very
effective motion capture solution can be determined. Magnetic motion
capture suffers because the actors are limited to the region between the
scanners and are encumbered by sensors and either cables or wireless
transmitters. The scanning region is significantly less than the area
available to optical capture. However, a major benefit of magnetic capture
over optical is the lack of occlusion. Each sensor can be relied on to
provide an uninterrupted stream of good data.

Mechanical
A mechanical suit is a rigid arrangement of joints that are located around
the actor. Unlike the previous optical and magnetic captures, which

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 12.4 Magnetic motion capture.

Motion capture techniques 263

determine the location of certain points in 3D space, mechanical motion
capture principally determines the orientation. When animating a charac-
ter using keyframe animation, an animator will spend most of the time
rotating joints. A mechanical suit works in much the same way. To record
the rotation in a single direction requires a potentiometer, a variable
resistor. This simple electronic device is used to control the volume of
your hi-fi. Varying the resistance has the effect of varying the voltage. We
can use an analogue to digital (A/D) converter to convert this changing
voltage into a numerical value. With a little simple scaling this can be
converted into an orientation value for this joint. To allow a joint to move
in all directions we need three potentiometers for each joint, one to record
the heading, pitch and bank. A full suit uses around 50 potentiometers,
which all have to be tracked around 25 times per second. The root of the
hierarchy of a character is usually the hips, and this single part of the
skeleton chain must be tracked for position and orientation. Unlike the
other parts of the skeleton, the position and orientation cannot be
calculated using a rigid outer skeleton and potentiometers. Instead, we
must use some form of sensor that calculates exact position and
orientation in world space. Absolute position and orientation of the hips is
often calculated using a digital inertial gyroscope. A major disadvantage
of mechanical capture is the weight of the suit, which can restrict the
motion of the actor. An important advantage is the range of capture
available. Mechanical suits usually have a
range more than ten times that of the pre-
viously described methods.

When deciding on an option it is a balance
between the cost of the capture and the current
requirements. A mechanical method over long
distances is likely to be the best option. If the
actor wants to feel the least encumbered then
optical will be the way to go. If fine accuracy
over short distances is required then magnetic
will provide the best option.

Making a simple mocap suit
The simplest and cheapest technique for
capturing data is to make your own mechan-
ical suit. Although a full body suit is compli-
cated to engineer, you can get some very
effective motion capture data using just upper
body movements.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 12.5 Mechanical
motion capture.

264 Motion capture techniques

Just as a puppet can be controlled with rods, so too can a CGI
character. The upper body capture device uses one axis of rotation at the
collar, three at the shoulder, one at the elbow, three at the wrist, three at
the base of the spine and three at the neck. Since we have two arms the
following hierarchy is created:

Hips
Torso (three potentiometers)

Left Shoulder (one potentiometer)
Left Bicep (three potentiometers)

Left Forearm (one potentiometer)
Left Wrist (three potentiometers)

Right Shoulder (one potentiometer)
Right Bicep (three potentiometers)

Right Forearm (one potentiometer)
Right Wrist (three potentiometers)

A total of 19 potentiometers. A simple
eight-channel A/D converter can be multi-
plexed to scan 32 channels if we use a
simple 4-to-1 selector. Such a selector is
fed by the PC using two output lines. The
output lines select one of four inputs to the
A/D converter. By using three four-input
multiplexers we can choose any of the
input channels. Creating the suit requires
a little engineering skill. The most com-
plex part is creating a joint with three
potentiometers. Figure 12.7 shows an
arrangement that has proven to work
effectively.

Once you have created the upper body
input device illustrated and connected the
electronics, you will need to set each
channel to the appropriate scale values.
First, you will need a simple application
program that can input a segmented
character that is divided into the same
hierarchy as the upper body input device.
For each segment you will need to record
the voltage derived from the A/D con-
verter at extremes of rotation.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 12.6 A simple upper
body capture device.

Motion capture techniques 265

For each joint, calibration
involves placing your model into
the default relaxed position and
then capturing the voltages for
each joint at this position. Store
both the current joint orientation
and the voltage. Now rotate the
upper body device to the max-
imum for a single Euler angle for a
single joint. If we think of the
shoulder and the amount this can
move in bank, then it would reach
a maximum when directly rotated
upwards. Move the digital model to
this position using mouse move-
ment inputs, then connect the
model’s orientation to the voltage being recorded for the shoulder bank
potentiometer. At this stage you have a direct link between the digital
output of a single potentiometer from the input device and the orientation
of the bank for the shoulder. If you repeat this for each potentiometer you
will have a full suit calibration. Having set this once, save it to a file that
can be reloaded.

Since the equipment you will use is likely to differ depending on
available resources, the presentation is deliberately an overview, but in
the following section we will look at how a particular A/D converter was
used to provide the continuously scanned input for an upper body real-
time character suitable for use at exhibitions and shows. It is possible to
link an upper body input device with jaw movers that are created in just
the same way.

By allowing two operators to provide the input you can capture in real-
time to a file or straight for display the motion of a dynamic character. This
type of input device, being relatively low cost and easy to set up, is ideally
suited for exhibition and show use.

Capturing data with your mocap suit
Potentiometers and voltage are linked by the important relation V = IR,
where V is voltage, I is current and R is resistance. The following section
is based on the low cost 12-bit A/D converter from Computer Boards (tel.:
+1–508–261–1123). The board CIO-DAS08/Jr-AO provides eight digital
inputs and outputs, eight analogue inputs and two analogue outputs.
Since we are using a multiplexer we can use the digital output lines to

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+Figure 12.7 A three-potentiometer joint.

266 Motion capture techniques

drive the multiplexer. A simple multiplexer that provides all the facilities we
need is a 4051 IC.

By setting the appropriate inputs to this device, we can cause the inputs
to the A/D converter to be directed from one of eight different sources. For
an eight-channel device, this gives a potential 64 inputs, sufficient for a full
body suit if required.

An A/D converter card is often set to port 0x300 on a PC. Ports
0x300–0x31F are designated for prototype cards and this type of card fits
into this description. The base address of the card can be set using DIP
switches if this address is unsuitable. The card has the address registers
shown in Table 12.1.

By connecting each potentiometer as shown in Figure 12.8, we can
send a signal between –5 V and +5 V to one channel of the A/D converter.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 12.8 Pinout for a 4051 multiplexer.

Table 12.1 Registers on the CIO-DAS08/Jr-AO card

Address Read function Write function

Base A/D bits 9–12 (LSB) None
Base + 1 A/D bits 1 (MSB)–8 Start 12-bit A/D conversion
Base + 2 A/D status and MUX address Set A/D channel
Base + 3 Digital input, 8 bits Digital output, 8 bits
Base + 4 D/A 0 LSB
Base + 5 D/A 0 MSB
Base + 6 D/A 1 LSB
Base + 7 D/A 1 MSB

Motion capture techniques 267

To read a single potentiometer we need to ensure that the multiplexer is
scanning the appropriate inputs by setting the digital output using port
Base + 3. Because the A/D converter is much slower than most PCs, we
need to ensure that the port is correctly set before continuing. We do this
using a very simple delay routine. The variable writedelay is user settable
to suit a particular machine.

void CADConvert::SetMultiplexer(short value)

{

value &= 0xFF;

_outp(baseaddress + 3, value);

int delay = writedelay;

while(delay) delay–;

}

Having set the appropriate input scanner, we can get the value of a
channel by first writing the channel we require to the output port Base
+ 2. Then we wait to see if the channel is correctly set by scanning the
A/D status at the input port Base + 2. The highest bit of this input
indicates that the card is ready for a conversion to take place. Since
the card could be offline, we check that this is not the case using a
simple counter. If a count is exceeded then it is presumed that a
hardware error has occurred.

If all is well, then we start a conversion using the output register
(Base + 1). Then we wait again for conversion to complete with the
same precaution in case the card goes offline. When the conversion is
complete, the two input registers (Base and Base + 1) contain the full
12-bit A/D value. To form the 12-bit value, we have to combine the two
values. The most significant 8 bits are in register Base + 1; if we shift
these four to the left and bitwise and them with the contents of register
Base shifted four right because the high order bits are stored in bits
4–7, then we will have the full 12 bits in a single short variable
advalue.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Table 12.2 Analogue to digital input registers

Bits 7 6 5 4 3 2 1 0

Base A/D 9 A/D 10 A/D 11 A/D 12 X X X X
Base + 1 A/D 8 A/D 7 A/D 6 A/D 5 A/D 4 A/D 3 A/D 2 A/D 1

268 Motion capture techniques

short CADConvert::GetChannel(int index)

{

BYTE hb,lb,res;

int i;

short advalue;

//Write channel

_outp(baseaddress + 2, index);

//Wait for convert ready

i=0;

res=1;

while (res){

res = _inp(baseaddress + 2) & 0x80;

i++;

if (i>1000){

AfxMessageBox(”A/D card not ready. Timed out.”);

return -1;

}

}

//Start conversion

_outp(baseaddress + 1, 1);

//Wait for conversion to complete

i=0;

res=1;

while (res){

res = _inp(baseaddress + 2) & 0x80;

i++;

if (i>1000){

AfxMessageBox(”A/D card not ready. Timed out.”);

return -1;

}

}

//Read high and low bytes

hb = _inp(baseaddress + 1);

lb = _inp(baseaddress);

advalue =((short)hb << 4) + (lb>>4);

return advalue;

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Motion capture techniques 269

To use the input device to drive a model requires the calibration
previously outlined. In this code segment we use the following variables to
define the rotation limits:

AdminH numerical value from the A/D conversion when the suit is at
minimum heading

minH numerical minimum rotation value for the Euler angle
heading for the current object

AdminP numerical value from the A/D conversion when the suit is at
minimum pitch

minP numerical minimum rotation value for the Euler angle pitch
for the current object

AdminB numerical value from the A/D conversion when the suit is at
minimum bank

minB numerical minimum rotation value for the Euler angle bank
for the current object

AdmaxH numerical value from the A/D conversion when the suit is at
maximum heading

maxH numerical maximum rotation value for the Euler angle
heading for the current object

AdmaxP the numerical value from the A/D conversion when the suit
is at maximum pitch

maxP numerical maximum rotation value for the Euler angle pitch
for the current object

AdmaxB the numerical value from the A/D conversion when the suit
is at maximum bank

maxB numerical maximum rotation value for the Euler angle bank
for the current object

mcChannelH lowest 4 bits A/D channel, highest 4 bits multiplexer
channel for heading

mcChannelP lowest 4 bits A/D channel, highest 4 bits multiplexer
channel for pitch

mcChannelB lowest 4 bits A/D channel, highest 4 bits multiplexer
channel for bank

Using these values we can determine the current orientation by setting
the multiplexer and A/D channel. We then read the value from the current
channel. If the A/D minimum value is less than the maximum value, the
orientation will be given by first setting the limits to with bounds. Then the
current channel orientation is

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

270 Motion capture techniques

rot =
(ADvalue – Admin)

(ADmax – ADmin)
* (max – min) + min

In the following function, we calculate this value for each channel for an
object:

void CToonObject::ADRotate()

{

CADConvert adcon;

short s,c,m;

if (mcChannelH > -1){

c = mcChannelH & 0xF;

m = (mcChannelH & 0xF0)>>4;

adcon.SetMultiplexer(m);

s = adcon.GetChannel(c);

if (ADminH<ADmaxH){

if (s<ADminH) s=ADminH;

if (s>ADmaxH) s=ADmaxH;

rot.x=((double)(s-ADminH)/(double)(ADmaxH-

ADminH))*(maxH-minH) + minH;

}else{

if (s>ADminH) s=ADminH;

if (s<ADmaxH) s=ADmaxH;

rot.x=((double)(ADminH-s)/(double)(ADminH-

ADmaxH))*(maxH-minH) + minH;

}

}

if (mcChannelP>-1){

c=mcChannelP & 0xF;

m=(mcChannelP & 0xF0)>>4;

adcon.SetMultiplexer(m);

s=adcon.GetChannel(c);

if (ADminP<ADmaxP){

if (s<ADminP) s=ADminP;

if (s>ADmaxP) s=ADmaxP;

rot.y=((double)(s-ADminP)/(double)(ADmaxP-

ADminP))*(maxP-minP) + minP;

}else{

if (s>ADminP) s=ADminP;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Motion capture techniques 271

if (s<ADmaxP) s=ADmaxP;

rot.y=((double)(ADminP-s)/(double)(ADminP-

ADmaxP))*(maxP-minP) + minP;

}

}

if (mcChannelB>-1){

c=mcChannelB & 0xF;

m=(mcChannelB & 0xF0)>>4;

adcon.SetMultiplexer(m);

s=adcon.GetChannel(c);

if (ADminB<ADmaxB){

if (s<ADminB) s=ADminB;

if (s>ADmaxB) s=ADmaxB;

rot.z=((double)(s-ADminB)/(double)(ADmaxB-

ADminB))*(maxB-minB) + minB;

}else{

if (s>ADminB) s=ADminB;

if (s<ADmaxB) s=ADmaxB;

rot.z=((double)(ADminB-s)/(double)(ADminB-

ADmaxB))*(maxB-minB) + minB;

}

}

}

A few cheap components and a little hard work and you will have a
simple input device for real-time performance. If you extend the software
to store the inputs during a capture session, then you will be able to replay
the capture later.

The same principles used for input on this real-time suit can be used in
tandem with keyframe animation. When setting the pose for a CG
character, it can sometimes be useful to have a real mannequin that you
can pose, then capture the joint angles. If we use friction joints on the suit
described, then this can form the basis of a mannequin input device for
setting model poses. Mannequin model input devices of this type were
used on the CGI mould-breaking film Jurassic Park.

Exchanging motion capture data

Any motion captured from a motion capture input device will need to be
supplied in a form suitable for your application. If you are using one of the
major CGI packages then you may find that you are able to input certain

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

272 Motion capture techniques

motion types. The program ‘Filmbox’ from Kaydara allows you to input
several mocap formats, edit the data and then output to a standard CG
package format such as 3DS, Soft, Maya or Lightwave. One of the
standard formats for mocap data is the Biovision Hierarchy (BVH) file. In
the next section we will look at the way the file is presented and then look
at creating a simple viewer for these raw motion files.

Understanding a BVH file

A Biovision Hierarchy file comes in two sections. First, the hierarchy, the
structure and size of the object. Then the motion data. Here is a typical
short file.

HIERARCHY

ROOT Hips

{

OFFSET 0.00 0.00 0.00

CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation↵
Yrotation

JOINT Chest

{

OFFSET 0.00 5.21 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT Neck

{

OFFSET 0.00 18.65 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT Head

{

OFFSET 0.00 5.45 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.00 3.87 0.00

}

}

}

JOINT LeftCollar

{

OFFSET 1.12 16.23 1.87

CHANNELS 3 Zrotation Xrotation Yrotation

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Motion capture techniques 273

JOINT LeftUpArm

{

OFFSET 5.54 0.00 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftLowArm

{

OFFSET 0.00 -11.96 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftHand

{

OFFSET 0.00 -9.93 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.00 -7.00 0.00

}

}

}

}

}

JOINT RightCollar

{

OFFSET -1.12 16.23 1.87

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightUpArm

{

OFFSET -6.07 0.00 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightLowArm

{

OFFSET 0.00 -11.82 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightHand

{

OFFSET 0.00 -10.65 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.00 -7.00 0.00

}

}

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

274 Motion capture techniques

}

}

}

JOINT LeftUpLeg

{

OFFSET 3.91 0.00 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftLowLeg

{

OFFSET 0.00 -18.34 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT LeftFoot

{

OFFSET 0.00 -17.37 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.00 -3.46 0.00

}

}

}

}

JOINT RightUpLeg

{

OFFSET -3.91 0.00 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightLowLeg

{

OFFSET 0.00 -17.63 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

JOINT RightFoot

{

OFFSET 0.00 -17.14 0.00

CHANNELS 3 Zrotation Xrotation Yrotation

End Site

{

OFFSET 0.00 -3.75 0.00

}

}

}

}

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Motion capture techniques 275

MOTION

Frames: 22

Frame Time: 0.033333

-5.59 39.43 -41.18 1.01 -1.24 -4.17 -9.62 30.14 . . .

-5.59 40.23 -37.53 1.89 -0.09 -5.66 -13.75 28.31 . . .

-5.52 40.60 -33.76 1.68 0.88 -5.73 -15.61 26.12 . . .

-5.41 40.36 -29.91 0.34 1.12 -4.58 -15.14 24.38 . . .

-5.23 39.50 -26.02 -1.42 0.26 -3.17 -13.66 23.81 . . .

-5.00 38.27 -22.20 -2.25 -1.38 -2.35 -13.14 24.44 . . .

-4.76 37.16 -18.58 -1.42 -2.91 -2.23 -14.53 25.73 . . .

-4.54 36.51 -15.17 0.14 -3.53 -2.53 -16.24 26.61 . . .

-4.35 36.41 -11.82 0.93 -3.37 -2.82 -16.31 27.12 . . .

-4.22 36.67 -8.40 0.81 -3.23 -2.67 -14.83 28.41 . . .

-4.15 36.82 -4.88 0.50 -3.26 -2.33 -12.87 29.56 . . .

-4.16 36.86 -1.27 0.09 -3.43 -1.89 -10.65 30.58 . . .

-4.23 36.81 2.40 -0.38 -3.68 -1.39 -8.32 31.45 . . .

-4.34 36.72 6.11 -0.85 -3.98 -0.88 -6.02 32.13 . . .

-4.49 36.62 9.85 -1.29 -4.28 -0.42 -3.89 32.59 . . .

-4.66 36.55 13.59 -1.66 -4.54 -0.05 -2.07 32.83 . . .

-4.85 36.55 17.31 -1.92 -4.68 0.18 -0.69 32.85 . . .

-5.03 36.64 20.98 -2.03 -4.67 0.22 0.12 32.71 . . .

-5.20 36.88 24.60 -1.95 -4.43 0.01 0.21 32.43 . . .

-5.35 37.30 28.14 -1.65 -3.91 -0.48 -0.60 32.05 . . .

-5.47 37.93 31.57 -1.05 -3.06 -1.31 -2.53 31.62 . . .

-5.55 38.75 35.00 0.01 -2.04 -2.72 -6.05 31.01 . . .

Following the token HIERARCHY we read the ROOT object for the file.
When parsing the file we can retain the name of this element by reading
the string that follows ROOT. Everything that follows belonging to ROOT
is contained within matching braces. The first line after the opening brace
gives the offset for this element and then the next line gives the channels
for this element. In my experience this will be six channels for a ROOT
element and three for a JOINT element, but this is from files I have worked
with rather than from a full specification for the data format. The order of
the rotation channels can differ and should be checked. Within the braces
of the ROOT element can be any number of JOINT elements, which in
turn have a name, OFFSET and CHANNEL specification. JOINT
elements can contain an unlimited number of nested sub JOINT
elements.

After the HIERARCHY section you will find the MOTION section. The
token MOTION is followed immediately by the number of frames in the

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

276 Motion capture techniques

motion and the increment for a single frame expressed in seconds. The
remainder of the file contains the actual motion. Each subsequent line in
the file gives the channel value for every channel in the order that they
were given in the HIERARCHY section of the file. In this instance with
six channels of Hips being given first followed by three channels for the
Chest, the first nine values for each motion line will give the Xposition,
Yposition, Zposition, Zrotation, Xrotation and Yrotation for the Hips
followed by the Zrotation, Xrotation and Yrotation for the Chest.
Remember that when orientation is defined using Euler angles, it is
important that the order of rotation is maintained. If the order of rotation
channels is X, Y, Z, then rotation order must be X, Y, Z. Similarly, if
the order of rotation channels is Z, X, Y, then rotation order must be
Z, X, Y.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Creating a BVH viewer

In creating any parser there are two parts. First, we must read and create
a skeleton. In the sample code we use a CBone class to hold the data for
each element. Since the sample code is an MFC application it used the
Document/View architecture. The Document contains a CBone variable
called bones. The CBone class is a singly linked list. Each member of the
class contains a next member variable that is a pointer to a CBone
element and a parent member variable is also a CBone pointer. Both
these pointers are initialized to NULL by the constructor. When parsing a
file for each ROOT or JOINT, a bone is added and the offset and channels
are initialized. When dealing with a hierarchical file a recursive function is
the best solution. Since any bone can have only a single parent, we need
only to set the parent in the recursive function call. When using a
recursive function there has to be an exit condition otherwise the function
will never return. In the following function which sets the hierarchy the exit
condition is the file position of the closing brace for the current ROOT or
JOINT section. Once this point is reached the function returns.

BOOL CBVHViewerDoc::LoadBVHHierarchy(CBone *parent, CStdioFile↵
&bvhfile, int endpos)

{

//This function is called recursively

//The function returns when the current file position for the

//bvhfile exceeds the supplied parameter endpos

CBone *bone;

Motion capture techniques 277

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

CString braceline, line, name;

int filepos, strpos;

//If the function is called with a zero value for endpos then

//this value is set to the file length of bvhfile

if (!endpos) endpos = bvhfile.GetLength();

//The file is scanned to find the next ROOT or JOINT element

//If ROOT or JOINT is not found then the funciton returns FALSE

while(1){

if (!bvhfile.ReadString(line)) return FALSE;

filepos = bvhfile.GetPosition();

if (filepos > endpos) return TRUE;

strpos = line.Find(”ROOT”);

if (strpos!=-1){

name = line.Right(line.GetLength() – 5 – strpos);

break;

}

strpos = line.Find(”JOINT”);

if (strpos!=-1){

name = line.Right(line.GetLength() - 6 – strpos);

break;

}

}

//Add the new item

bone = bones.AddBone(name, parent);

if (!bone) return FALSE;

//Allow for finding end brace by storing current brace line and

//Altering the opening brace to a closing brace

bvhfile.ReadString(braceline);

strpos = braceline.Find(‘{’);

if (strpos==-1) return FALSE;

braceline.SetAt(strpos, ‘}’);

bone->SetOffset(bvhfile);

bone->SetChannels(bvhfile);

filepos = bvhfile.GetPosition();

278 Motion capture techniques

//Find matching brace

while (1){

if (!bvhfile.ReadString(line)) return FALSE;

if (line == braceline) break;

}

endpos = bvhfile.GetPosition();

bvhfile.Seek(filepos, CFile::begin);

while (filepos<endpos){

//Recusrsively call this function using new endpos and with

//current bone as parent

LoadBVHHierarchy(bone, bvhfile, endpos);

filepos = bvhfile.GetPosition();

}

return TRUE;

}

The first call to LoadBVHHierarchy with the ROOT object uses a NULL
pointer as the parent parameter and sets the ‘endpos’ to zero. The
function recognizes a zero value for ‘endpos’ as indicating that the entire
file should be searched. When this occurs ‘endpos’ is set to the current file
length.

Having loaded a set of bones and initialized the hierarchy, offset and
number and type of motion channels, we can go on to load the motion. As
we learnt in the previous section, the motion section is preceded by a
single line that contains the upper case word MOTION. The following
function goes on to read the number of frames and the frame duration,
and store these values in member variables of the document class.
Assuming all went well to this stage, we are ready to create storage for the
key values. We leave this task to the bones themselves. Each bone
knows how many channels are used for the bone and so can assign the
appropriate key storage. In the BVHViewer project we have both position
keys represented as vectors and rotation keys represented as vectors. A
bone can have just position, just rotation or both position and rotation. If
any problems occurred allocating storage, then the current bones are
cleared and the function returns.

Finally, we have the data structure and storage to read in the motion
capture data. Each line of the file contains one set of key values. To
allocate the correct value to the appropriate bone and channel we go

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Motion capture techniques 279

through the bones in the order in which they were allocated by using the
next member variable. We first read the next line and create a character
pointer to this line. The CBone class contains a member function SetKey
that takes the current frame and the character pointer as parameters. It
returns the position of the character pointer after the appropriate number
of channel values for the current bone have been read from the file. If the
returned pointer is NULL then the current bones are cleared and the
function returns. At this stage we have loaded all the data from the file and
it can be closed.

void CBVHViewerDoc::OnFileOpen()

{

//Initialise an open file dialog box

CFileDialog dlg(TRUE, ”bvh”, NULL, OFN_HIDEREADONLY |↵
OFN_OVERWRITEPROMPT,

”Biovision Hierarchy Files (*.bvh)|*.bvh|All Files↵
(*.*)|*.*||”);

CString str = AfxGetApp()->GetProfileString(”Settings”,↵
”BVHLoad”,”C:\\”);

dlg.m_ofn.lpstrInitialDir = str;

dlg.m_ofn.lpstrTitle=”Load a Biovision file”;

if (dlg.DoModal()==IDCANCEL) return;

int pos;

//Clear any existing animation

frames = 0;

bones.ClearAll();

CStdioFile file(dlg.GetPathName(), CFile::modeRead);

//Recursively load the file

if (LoadBVHHierarchy(NULL, file, 0)){

//Store new path

str = dlg.GetPathName();

pos = str.ReverseFind(‘\\’);

if (pos!=-1) str=str.Left(pos);

AfxGetApp()->WriteProfileString(”Settings”,↵
”BVHLoad”,str);

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

280 Motion capture techniques

//Load the motion

//Look for the MOTION key word if it is not found before the end

//of the file then the current bone hierarchy is cleared and the

//function returns.

while (1){

if (!file.ReadString(str)){

bones.ClearAll();

return;

}

if (str.Find(”MOTION”)!=-1) break;

}

//Read frame total and frame time

file.ReadString(str);

str = str.Right(str.GetLength()-7);

frames = atoi(LPCTSTR(str));

file.ReadString(str);

str = str.Right(str.GetLength()-11);

frametime = atof(LPCTSTR(str));

CBone *bone = bones.next;

char *cp;

//For each bone create storage for the key values

while(bone){

if (!bone->CreateKeys(frames)){

bones.ClearAll();

return;

}

bone = bone->next;

}

//Store the keys into all active channels available

for (int i=0; i<frames; i++){

file.ReadString(str);

cp = str.GetBuffer(0);

bone = bones.next;

while (bone){

cp = bone->SetKey(i, cp);

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Motion capture techniques 281

if (!cp && bone->next){

bones.ClearAll();

return;

}

bone = bone->next;

}

}

SetTitle(dlg.GetFileTitle());

}

The next step is to display the file contents moving. We start a timer that
has an increment defined by the member variable frametime. Since
windows timers use a millisecond parameter, we convert the floating-point
value into an integer millisecond value by multiplying the value by 1000
and taking the integer part. The purpose of the timer function call is to
transform the object. We can achieve this by updating the current frame
value. If this exceeds the total number of frames then frame is reset to
zero. Then each bone is transformed starting with the top level parent. A
parent object updates all its children using a recursive function call, until

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 12.9 The BVHViewer application displaying a walk action.

282 Motion capture techniques

all the bones have been repositioned. The skeleton is then drawn by
drawing a line from the child to its parent.

Applying BVH files to your single mesh characters

A BVH file stores most data via Euler angle orientations. If you want to
apply these data to your own model then you need top know the default
position of the character. In many instances this will be standing upright
with arms outstretched. Some files, however, record the default position
as arms down to the side. If you are going to apply the motion to your own
object, then you must either model the character to suit the default
location of the mocap data or alternatively be able to conform your model
at frame zero to the mocap position and then apply the rotational motion
on top of the current orientation.

If the rotation matrix for an object at position zero is A and the rotation
matrix for the motion capture data at frame n is B, then the combination
of the two matrices will be AB. To record this to your scene file as Euler
angles you will need to extract the rotation angles from this matrix. If in
your application you normally apply the rotations in HPB order then in
BVH terms this is Zrotation followed by Xrotation and finally Yrotation.
This leads to the following matrix:

AB = �
aa ab ac

ba bb bc

ca cb cc �
cos(h)cos(b) – sin(h)sin(p)sin(b) cos(h)sin(b) + sin(h)sin(p)cos(b) sin(h)cos(p)

HPB = –cos(p)sin(p) cos(p)cos(b) –sin(p)�–sin(h)cos(b) – cos(h)sin(p)sin(b) –sin(h)sin(b) + cos(h)sin(p)cos(b) cos(h)cos(p)�
Notice that the final term of the second row is –sin(p). So we can find

the pitch by looking at the arcsin of this value:

p = asin(–bc)

Since we know –sin(p), we know that –bc = sin(p). Using this
information with term ba gives

ba = bc × cos(p)

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Motion capture techniques 283

Hence,

cos(p) = ba/bc

Using this information, term ac can supply the heading value:

[ac = (ba/bc)sin(h)]

Hence,

�sin(h) =
ac*bc

ba �
Therefore,

�h = asin � ac*bc

ba ��
Finally, we can use the fact that bb = cos(p)cos(b) to find the value of
bank. Substituting ba/bc for cos(p), we have

[bb = (ba/bc)cos(b)]

Hence,

�cos(b) =
bb*bc

ba �
Therefore,

�b = acos � bb*bc

ba ��
Now to apply the data to your model you simply need to create a dialog
box that will map the elements in the mocap file to the segments in your
character. By reorientating the data with respect to frame zero for your
model the alignment can be achieved. This is often a trial and error task.
You may find that the data give a bow-legged character, in which case

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

284 Motion capture techniques

rotate the character at frame zero so the legs are not as splayed. When
the mocap data are applied the character’s legs will appear more
upright.

Enhancing mocap

There are two fundamental problems with mocap data. First, mocap data
are difficult to edit. The other fundamental problem is that the data are
restricted by the ability of a human to perform an action. We will look at
solutions to both these problems.

Working with mocap data

With a key value every frame the data are very dense. If you want to
adjust a keyframe then you will create a sudden jolt because there is a key
value on the preceding and following frames. One way out of this problem
is to use curve-fitting techniques. This subject is very dense in terms of

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 12.10 Using a dialog box to connect mocap data with a segmented model.

Motion capture techniques 285

the mathematical presentation and is unfortunately beyond the scope of
this book. However, with the emphasis on providing useful tools for
animators, one way out is to let the user recreate the curve visually. If the
data for a single channel are presented as a graph and the user can
create an approximation to this graph by clicking and dragging keyframe
markers on the graph, then in a large majority of cases this will provide
just the method required to simplify the data sufficiently to allow them to
edit the animation.

Avoiding human limitations

The restrictions on the data that are the natural consequence of
environment of the capture can be eliminated in two ways. First, the
timings of certain sections can be adjusted. By setting a starting time, an
end time and a new target end time, the data can either be spaced out or
compressed. This can add considerably to the dynamics of a scene. The
other method to enhance a human performance is to add extended
targets on top of the existing action. Suppose the position of the hips is
driven not only by the mocap data, but also by a secondary animation
layer. In this secondary layer you can add keyframes in just the same way
you would with straightforward keyframing and these keys can be
interpolated using the techniques described in Chapter 8. Now your
character can jump higher and faster than any human ever could. This
dynamism greatly improves mocap scenes and is well worth adding to
any animation tools.

Blending motions

You may have a mocap scene that is a great walk and another that is a
stop and turn. You can easily blend these actions by setting a start frame
and a blend length, then iterating through the data slowly blending one
action into the next.

Implement IK

The motion of your character and the actual mocap data may be in some
ways incompatible. The length of legs and arms may mean that certain
restrictions have to be set in order to map the data effectively to your
character. IK offers the best solution to most of these problems. If the

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

286 Motion capture techniques

rotations in the mocap data are not sufficient for your character to walk
because they have very short stubby legs that rotate in a very
exaggerated way to achieve the goals, then by forcing them to conform to
an IK target the data are tweaked to suit your model. Most mocap data are
suitable in their raw form only for characters that are similar in limb lengths
to humans. IK can provide a way out of this dilemma.

Summary

Mocap is a great way to create realistic actions. By enhancing the data the
restrictions can easily be removed from the motion and animators given
free rein to create the scenes they desire. Mocap data provide an
excellent raw resource for the animator and if handled as valuable
reference rather than always used in their raw form then these data
should be an essential part of any CG animator’s armoury.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

13 Collision detection

If you are simply creating animated demos then collision detection is
not an issue. But as soon as your characters are under user control
they can easily walk through walls. It is your job as the programmer to
stop this happening without interrupting the flow of the game. Collision
detection can be handled in very complex ways using particularly
heavy going mathematical approaches. In this chapter we are going to
look at some of the simpler ways of handling collisions. First, we will
look at a real world problem and some simple solutions to it using easy
to code bounding boxes. Next we will look at how basic bounding
boxes can introduce errors and how we can deal with these. Then we
will look at how many collision detection problems can be reduced from
a 3D to a 2D problem, greatly simplifying the code and speeding up the
implementation. If you are dealing with a fighting game then basic
bounding box collision detection with the two full figure fighting charac-
ters is not going to give enough information for your game logic; we will
look at how the full mesh can be handled in sections to get finer control
over collision detection. Finally, we will look at how to handle basic
collisions with the background. When a character is running near a
wall, it is better to align the character to run along the wall than to stop
the character when the angle of collision between the character and
the wall is very small.

A real world problem

To introduce the problems involved in collision detection, let’s look at a
real world problem. Figure 13.1 shows a single mesh character running
down a tunnel. The scene character contains 994 polygons and the set
contains 529 polygons. The aim is to avoid the character running
through the walls. The most complex approach would be to get down to
the individual polygon level and calculate any intersections between

288 Collision detection

polygons. This would be very time consuming and for much of the time
totally unnecessary. The first stab at a solution to this problem involves
using axis-aligned bounding boxes (AABBs). The advantage of AABBs
is that they are easily handled. The screen grab is from the supplied
Toon3D application; the example can be found in Examples/Chapter13
as file Bug01.t3d. In Toon3D the developer can position and create
axis-aligned collision boxes and then set up actions to handle the
response when a collision occurs between two bounding boxes. The
bounding boxes for the set are static, while the bounding box for the
character is created from the minimum and maximum vertices for the
mesh at each time increment. Since the processor handles the trans-
formation of the character it is easy to determine which are the
minimum and maximum vertices in a mesh. Set the minimum and
maximum vertices to the first vertex values for x, y and z. As you
iterate through the vertices, if a component value is less than the
current minimum, then update the minimum, and if a component value
is greater than the maximum, then update the maximum.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 13.1 A single mesh character running down a tunnel.

Collision detection 289

...

//Get first vertex

pt = obj->pts;

//Initialise the bounding box

obj->bbmin.x = pt.x;

obj->bbmin.y = pt.y;

obj->bbmin.z = pt.z;

obj->bbmax.x = pt.x;

obj->bbmax.y = pt.y;

obj->bbmax.z = pt.z;

for (i=0; i<obj->numpoints; i++){

//Transformation code

...

//Update bounding box min and max

if (pt.x<obj->bbmin.x) obj->bbmin.x = pt.x;

if (pt.y<obj->bbmin.y) obj->bbmin.y = pt.y;

if (pt.z<obj->bbmin.z) obj->bbmin.z = pt.z;

if (pt.x>obj->bbmax.x) obj->bbmax.x = pt.x;

if (pt.y>obj->bbmax.y) obj->bbmax.y = pt.y;

if (pt.z>obj->bbmax.z) obj->bbmax.z = pt.z;

pt++;

}

...

Once you have your bounding boxes you can check if one bounding
box is inside another. Since the bounding boxes are aligned along their
axes this is very simply done. If the character’s bounding box, defined by
bbmin, bbmax, is inside the test bounding box, defined by testbbmin,
testbbmax, then the following conditional evaluates to true:

if (bbmin.x<testbbmax.x && bbmax.x>testbbmin.x &&

bbmin.y<testbbmax.y && bbmax.y>testbbmin.y &&

bbmin.z<testbbmax.z && bbmax.z>testbbmin.z)

An alternative to testing for intersections is to force a bounding box to
remain totally inside another. If a contained bounding box goes outside
another, then the following conditional evaluates to true:

if (bbmin.x>testbbmin.x || bbmax.x>testbbmax.x ||

bbmin.y>testbbmin.y || bbmax.y>testbbmax.y ||

bbmin.z>testbbmin.z || bbmax.z>testbbmax.z)

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

290 Collision detection

With this simple checking we can
contain our character within an area
and test for more specific collisions
within that zone. If you set up each
collision box to have a specific numer-
ical value, then your code can easily
determine how to react. We add a box
that the character can jump onto and
give this a collision box that returns, for
example, 12. Then in code we can tell
that the character has bumped into the
box if a 12 is returned from a collision
testing routine. But which side was hit?
You may want your character to react
differently if the box is hit from the side,
the top or the bottom. A side hit could

result in a character falling over if the speed of the hit reaches a certain
value or the character may simply have to enter a stationary animation
cycle. A hit on the top may result in a bounce, again depending on the hit
vector. To decide, we can use a vector from the character centre to the
collision box centre. The component with the greatest absolute magnitude
will give the collision direction that is the most marked visually. When an
intersection of two bounding boxes occurs, one vertex must be completely
inside the other bounding box; hence, all the axes are affected, but if we
want to get the general feel of the collision the absolute biggest
component of the collision vector gives a good starting point.

VECTOR bbcen, bbtestcen, a, tmp;

//Find the bounding box centres

bbcen.x = (bbmax.x – bbmin.x)/2 + bbmin.x;

bbcen.y = (bbmax.y – bbmin.y)/2 + bbmin.y;

bbcen.z = (bbmax.z – bbmin.z)/2 + bbmin.z;

bbtestcen.x = (bbtestmax.x – bbtestmin.x)/2 + bbtestmin.x;

bbtestcen.y = (bbtestmax.y – bbtestmin.y)/2 + bbtestmin.y;

bbtestcen.z = (bbtestmax.z – bbtestmin.z)/2 + bbtestmin.z;

//Calculate vector from testbb to bb

a.x = bbtestcen.x – bbcen.x;

a.y = bbtestcen.y – bbcen.y;

a.z = bbtestcen.z – bbcen.z;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 13.2 Simple axis-aligned
collision detection.

Collision detection 291

//Find component with greatest magnitude

tmp.x = a.x*a.x;

tmp.y = a.y*a.y;

tmp.z = a.z*a.z;

if (tmp.x > tmp.y){

if (tmp.x>tmp.z){

if (a.x>0){

//Hit on right of bounding box

...

}else{

//Hit on left of bounding box

...

}

}else{

if (a.z>0){

//Hit on front of bounding box

...

}else{

//Hit on rear of bounding box

...

}

}

}else{

if (tmp.y>tmp.z){

if (a.y>0){

//Hit on top of bounding box

...

}else{

//Hit on base of bounding box

...

}

}else{

if (a.z>0){

//Hit on front of bounding box

...

}else{

//Hit on rear of bounding box

...

}

}

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

292 Collision detection

Your scene will have bounding boxes that will never collide. The first
rule of real-time applications is only calculate what is essential. If a
bounding box can never collide with another, then do not test them for
collisions. The axis-aligned bounding box approach gives a good first
check for a collision. It is fairly low in the computational hit apart from one
major flaw; graphics cards are increasingly able to do all the transforma-
tions, relieving the processor of this computationally expensive work. The
maximum and minimum vertex bounding box approach is rather reliant on
the processor doing the transformation work, so that you can derive the
world values for maximum and minimum values for the character’s
bounding box in world coordinates. You can get around this problem by
having a fixed bounding box that you transform using the graphics
hardware matrix which you can get from OpenGL after setting up the
camera location. You can then use this matrix to transform just the two
vertices in the fixed bounding box.

An alternative approach to using bounding boxes for the basic collision
testing is to use spheres centred on the collision targets.

To get a basic test for a collision you need only check that the distance
from the character’s bounding sphere centre to the centre of each
collision sphere in the set is less than the combined radii of the two

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 13.3 Using bounding spheres.

Collision detection 293

spheres. The distance between any two points in 3D space is found by
calculating a vector from one point to the next, starting at either end, then
finding the square root of the sum of the squares of components of this
vector.

double CalcDistance(VECTOR a, VECTOR b){

VECTOR ab;

ab.x = a.x – b.x;

ab.y = a.y – b.y;

ab.z = a.z – b.z;

return sqrt(ab.x*ab.x + ab.y*ab.y + ab.z*ab.z);

}

Unfortunately, square root operations are computationally expensive.
But, wait a minute, we don’t actually need a distance, we are only
interested in a condition, namely is sphere A intersecting with sphere B.
For this we can use the squared distance and the combined radii squared,
avoiding any use of square roots.

//a and b give the sphere centres, R and r give the sphere radii

typedef struct stSPHERE{

double x,y, z; //Centre

double r; //radius

}SPHERE;

BOOL DoSpheresIntersect(SPHERE a, SPHERE b){

VECTOR ab;

double sqdist, sqrad;

//Vector from b to a

ab.x = a.x – b.x;

ab.y = a.y – b.y;

ab.z = a.z – b.z;

sqdist = ab.x*ab.x + ab.y*ab.y + ab.z*ab.z;

//Combined radii squared

sqrad = a.r*a.r + b.r*b.r;

return (sqdist<sqrad);

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

294 Collision detection

Problems with axis-aligned bounding boxes and
bounding spheres

The problem with axis-aligned bounding boxes and spheres is easily
identified: accuracy. Collision detection accuracy is poor because the test
areas do not conform accurately to the target geometry.

Figure 13.4 illustrates the problem. The bounding box between the
character and the set is going to report a collision when clearly none has
occurred. Now one approach is to have more and more bounding boxes,
but at some stage you will be adding to the problem rather than simplifying
it. Another approach is to use bounding boxes to get an indication whether
a collision has occurred and if this is the case to analyse the collision in
more detail. We will look at this further in a later section.

Another problem involves the fourth dimension of time. If the movement
vector on a character is large, then it is possible that in a single move the
character has hit and gone through an obstacle yet no collision is reported
because at both the time positions calculated, no collision occurred.

Fortunately, this problem is easy to fix. If your character has a
movement vector then this can be used to create a combined bounding
box for the current time increment and the previous time increment.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 13.4 Problems with AABBs.

Collision detection 295

if (move.x>0){

bbmin.x -= move.x;

}else{

bbmax.x += move.x;

}

if (move.y>0){

bbmin.y -= move.y;

}else{

bbmax.y += move.y;

}

if (move.z){

bbmin.z -= move.z;

}else{

bbmax.z += move.z;

}

This is such a simple fix that it is recommended that time is always
considered. We will explore techniques for getting more accurate collision
results in more detail in a later section.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 13.5 How time can affect collision detection.

296 Collision detection

Simplifying the problem

Surprisingly, many collision detection problems in 3D can be simplified to
a 2D solution. If your character is wandering around a set where the floor
is flat and the walls are fairly vertical, then collision detection can be
reduced to detecting whether a single 2D polygon intersects another 2D
polygon. Before we look at this general case, we can simplify the problem
still further by looking at a single point inside a polygon. If the polygon is

convex, then a point is inside this
polygon if the dot product of a
unit length vector from the point
to each corner vertex in the
polygon and a unit length vector
from the same corner vertex to
the adjacent vertex returns a
value under 1.0. A dot product of
two normalized vectors gives the
cosine of the angle between the
two vectors. The cosine curve
runs from 1.0 to 0.0 for angle
values of 0–90°.

Unfortunately, normalized
vectors require a square root
operation, which is computa-
tionally expensive. Another flaw

in using this method is that the technique only works on convex
polygons. An alternative approach that works with any arbitrary polygon
uses the quadrant technique.

Divide the polygon into four quadrants centred on the test point. Start
at the first edge in the polygon; if this edge crosses a quadrant
boundary in a clockwise direction add 1 to a count, if the edge crosses
a quadrant boundary in an anticlockwise direction then subtract 1 from
your count. If the value of the count after iterating through all the edges
in the polygon is either 4 or –4 then the point is inside the polygon.
Figure 13.7 illustrates the concept; of points A–E, only point A gives a
result of 4.

If the quadrants are labelled as in Figure 13.7 then the truth table for
the updating of the count variable is as in Table 13.1.

Notice that the leading diagonal, where both ends of the edge are in
the same quadrant, has no effect on the count and that quadrants
cannot be reached across the diagonals. We can use the truth table to
calculate the count value for vertex A:

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 13.6 Determining whether a point
is inside a polygon using the dot product
method.

Collision detection 297

Edge Count
P1P2 1
P2P3 2
P3P4 2
P4P5 2
P5P6 3
P6P7 2
P7P8 3
P8P9 4
P9P10 5
P10P1 4

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 13.7 Using the quadrant method to determine whether a point is inside a
polygon.

Table 13.1 Truth table of points inside a polygon
using the quadrant method

q1\q2 0 1 2 3

0 0 –1 X 1

1 1 0 –1 X

2 X 1 0 –1

3 –1 X 1 0

298 Collision detection

Vertex A returns 4 as stated. But, if we try the same thing for vertex B we
get a count of 3, so the vertex is not inside the polygon.

BOOL PointInPolygon(POINT &p, POLYGON &ply){

int count = 0, q1, q2;

EDGE *e;

for (i=0; i<ply.numedges; i++){

e = &ply.edge[i];

//Get quadrant for first edge vertex

if (e->a.y>p.y){

q1 = (e->a.x>p.x)?0:1;

}else{

q1 = (e->a.x<p.x)?2:3;

}

//Get quadrant for second edge vertex

if (e->b.y>p.y){

q2 = (e->b.x>p.x)?0:1;

}else{

q2 = (e->b.x<p.x)?2:3;

}

if (q1!=q2){

switch(q1){

case 0:

if (q2==1){

count–;

}else{

count++;

}

break;

case 1:

if (q2==2){

count–;

}else{

count++;

}

break;

case 2:

if (q2==3){

count–;

}else{

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Collision detection 299

count++;

}

break;

case 3:

if (q2==0){

count–;

}else{

count++;

}

break;

}

}

}

return (count==4 || count==-4);

}

Another useful 2D technique is finding the nearest point on a line
segment to an arbitrary point.

The two triangles AP�P and BP�P define the position of the point P� on
the line segment AB. A simple technique to calculate the position of P� is
to use the old favourite the dot product. If we are trying to get the angle at
A then we can use two vectors. First, the line segment AB and, second,
the vector AP. If we set these two vectors to unit length then the dot
product AP� • AP returns the cosine of the angle between them. If this
value is negative then the angle is greater than 90° and so the nearest
point to the line segment AB is the point A itself. Similarly, at B, if the
returned cosine is negative then the point P must be to the right of the line

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 13.8 Finding the nearest point on a line segment to an arbitrary point.

300 Collision detection

segment and so B is the nearest point on the line segment to P. If both
ends have positive cosines then we can use these cosines to return a
linear ratio. If the cosine at A is large, then the angle is small and the angle
at B nears 90°, then the nearest point to P on the line segment AB must
be near the B end. We sum the two cosine values and set this as the
denominator of a fraction; the numerator becomes the cosine of the start
end. The point P is therefore found as follows.

Assuming that the unit vector in the direction AB is A and the unit vector
in direction BA is B, unit vectors in the direction AP and BP are N and M
respectively. Then

P� = A + AB * � A • N

A • N + B • M�
Not a square root in sight, so computationally inexpensive!

Getting down to detail
If the basic bounding box test returns a likely collision, then you may need
to determine whether the collision is actually taking place more precisely.
One technique involves splitting up the mesh into smaller segments. If
you are using a single mesh character driven by animated point sets, then
you are already close to the segmenting you need. Simply check the axis-

aligned bounding boxes for each
segment in the character to see if a
collision is taking place. If this level
of accuracy is still not enough for
your purposes, then you may want,
finally, to get down to the polygon
level to determine if a collision has
occurred.

The standard technique at the
polygon level is to attempt to find a
separating plane between two
objects. If there is a plane between
two objects then clearly they do not
intersect. The first stage in finding
such a plane is to use all the faces
in the collision target as the possi-
ble separating planes. To test
whether a face can act as a sepa-
rating plane, use the dot product of

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 13.9 Using segment bounding
boxes.

Collision detection 301

the face unit normal and a vector from a vertex on the face to each vertex
on the colliding mesh. If this test is positive for every vertex then the face
is a separating plane. If no face conforms to this test then a collision is
unlikely but can still have occurred if, instead of a vertex from the colliding
mesh being inside the collision object, an edge is.

To check this, we create a plane out of every edge in the collision target
and every vertex in the colliding mesh. Having created this plane, we then
check every other vertex in the colliding mesh with a normal of this test
plane; if the dot product is consistently positive then no collision has
occurred.

Unfortunately, the number of tests to confirm face level accuracy is
huge and involves a large number of normalized vectors, using the
computationally expensive square root operation. Also, the techniques
only work on convex meshes. A way to reduce the calculations is to flag

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 13.10 Finding a separating plane using object faces.

Figure 13.11 Finding a separating plane using object edges.

302 Collision detection

the collision so that it can be easily checked in the next time increment.
Since the topology of a scene ensures that a collision is likely to occur
over several time increments, this can make a huge difference to the
number of tests required to confirm collisions. Another useful technique is
to model a low resolution collision mesh that provides the accuracy
required at a much reduced face, vertex count. As polygon meshes start
to hit the 10 000 face level in a single character, it is usually unnecessary
to calculate collisions to this level of refinement and a 300 face collision
mesh will provide the necessary accuracy at a greatly reduced computa-
tional level.

Reacting to a collision

Most applications will handle collisions differently. The first thing to
remember is that if your code starts an action as a collision occurs it does
not want to be allowed to restart this action if the collision test is confirmed
in the next time increment. If this is allowed to happen, then the character
enters a jitter phase where it bounces between two positions. Better to let
a collision-provoked action complete before testing collisions again. A

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 13.12 Aligning a character’s action to a wall.

Collision detection 303

common condition in a game involves a character running close to a
collision boundary. If the character hits the wall at a glancing angle then
it is better to rotate the character to align to the collision boundary than to
stop the character abruptly as though it has hit the collision object straight
on. To use these alignment techniques we need to know a movement
vector. If we think of this as a 2D problem viewed from above then we can
calculate how to conform the character to the collision object quite
easily.

Summary

Collision detection can be a very complex subject. In this chapter we have
concentrated on the simpler techniques using axis-aligned bounding
boxes and bounding spheres. For most applications this, combined with
segment level bounding box checks, will suffice. If your application
requires a higher degree of accuracy then you must get down to the
polygon level. The principal technique of checking for collisions to polygon
accuracy involves finding a separating plane between two objects. The
separating plane technique was covered in this chapter.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

14 Using morph objects

In the preceding chapters we have looked at how to create and animate
a single mesh character. The techniques described are adequate for body
animation but using the same methods to animate facial animation can be
difficult to set up and often involves repetition. If only we could model a
frown, a smile and a scowl once and use this whenever the animation
required it. Model once and use many times means we need a way to
blend a mesh from one geometry to another. In many applications this
involves using morph targets. Morph objects are the easiest solution to
this complex geometrical problem.

Creating morph targets

You should have realized by now that my preferred CGI application
program is Lightwave. Version 5 came with a tool called ‘Morph Gizmo’
that allowed the animator to create multiple versions of an object and
blend between them. Each version of an object must have exactly the
same number of points and if a point with index 100 was the left of the
mouth then the point with index 100 in any morph target must also be
the left of the mouth. The actual position of the point may change, but
its position in the topology of the mesh must be the same.

Lightwave 6 allows the animator to store multiple morph targets within
the same object file. These morph targets can be stored in groups,
perhaps a group for the Left Eye, Right Eye, Mouth and Nose. Each group
acts as a separate channel that can be handled independently. A real-time
application must be aware of the time taken to calculate the locations of
the target mesh. If you test the time taken to transform geometry and the
time taken to paint it, you will probably find that transforming takes only 10
per cent of the time while the final painting and rasterizing takes about 90
per cent of the time. This means that if transforming takes even twice as
long, it is only at most a 10 per cent hit in performance. As long as we do

Using morph objects 305

not use too many polygons then we should be able to use several morph
target channels. In this chapter we will look first at how to extract the
morph target data from a Lightwave object file. To test the samples run
Toon3D and load ‘Examples/Chapter14/Girl.t3d’.

Any object in Toon3D can have morph targets. To use morph targets
you first create a morph controller. Click on the object that is to have
morph targets in the tree view. Then right click to bring up the ‘Objects’
menu. From the objects menu select ‘Create morph controller’. Select the
morph controller in the tree view, right click and select Add Morph target.
After adding the morph targets you can adjust the level of a target by
selecting it and left dragging in the OpenGL view.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 14.1 Morph targets for Girl mesh.

Figure 14.2 Using morph objects in Toon3D.

306 Using morph objects

Alternatively, if you are loading a Lightwave 6 file that has embedded
Endomorphs then the loader will automatically create a morph controller
and assign each Endomorph as a new morph target.

Figure 14.3 shows the morph targets available in the head from the low
resolution mesh created in Chapter 5. Even with a very low resolution
mesh it is possible to convey some facial animation.

Extracting morph objects from a Lightwave 6 file
Lightwave stores morph targets as VMAP chunks within a LAYR chunk. If
the basic structure of a Lightwave file is unfamiliar, then now may be a
good time to review Chapter 10, which goes into Lightwave object files in
much greater depth. VMAP chunks are used to store many different types
of data that are attributable at the vertex level. Another VMAP chunk that
is very useful in real-time applications gives the UV data for a texture. To
accommodate using the same chunk for many different types of data, a
VMAP chunk has a header that gives the type of the file and the
dimension of the data applied to each vertex. If the VMAP chunk stores a
morph target then the type will be either ‘SPOT’ or ‘MORF’. The VMAP
chunk has a dimension of 3; this means for each vertex there will be three
floating-point values representing the (x, y, z) location of the vertex as
used in the morph target. The vertex locations can be relative to the
original vertex location if the chunk is of type ‘MORF’ or world locations if
the chunk type is ‘SPOT’. Since any morph target chunk is guaranteed to
follow the base point list, we already know how many vertices an object
has and the sample code stores this information in a member variable
called ‘numpoints’. The sample code makes use of a very simple structure
called a ‘MORPHITEM’, which in turn uses a ‘VECTORF’ structure.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 14.3 Charlie’s head morph objects.

Using morph objects 307

//A float type vector

typedef struct stVECTORF{

float x,y, z;

}VECTORF;

//Used by the Cmorph class

typedef struct stMORPHITEM{

char name[30]; //Used to store a user friendly name for the target

VECTORF *pts; //Vertex locations

double level; //Stores current level of morph target

}MORPHITEM;

The level member stores the currently used level for the morph target.
This will be used when we look at blending the morph targets and
interpolating across keyframes.

To load a morph target we allocate memory for the vertex locations to
the ‘pts’ member of the ‘MORPHITEM’ structure. Then we read each
vertex in turn. Each vertex uses a short to store the vertex index, and a
float for the x, y and z values. If the chunk is of ‘MORF’ type, then we add
the base value of the vertex to the read value. Lightwave uses Motorola
or Network byte ordering and so we use the utility functions ReadShort
and ReadFloat to read the actual data. These functions, described in
Chapter 10, flip the byte ordering to Intel native.

BOOL CLW2Object::LoadVmap(FILE *fp, int length){

char type[4];

BOOL relative, ok = FALSE;

float x, y, z;

unsigned short dimension, vindex;

//Check Vmap type only SPOT and MORF supported

if (fread(type, 4, 1, fp) != 1) return FALSE;

if (strncmp(type, ”SPOT”, 4) == 0){

relative = FALSE;

ok = TRUE;

}

if (strncmp(type, ”MORF”, 4) == 0){

relative = TRUE;

ok = TRUE;

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

308 Using morph objects

if (!ok || !pts){

//Skip over chunk

fseek(fp, length – 4, SEEK_CUR);

return TRUE;

}

//OK to load

if (!ReadShort(fp, dimension)) return FALSE;

int index, bytesread = 6;

char name[128];

//Read name of morph target

ReadString(fp, name, index, 127);

bytesread += index;

MORPHITEM mi;

//Allocate memory for the vertex locations

mi.pts = new VECTOR[numpoints];

//If object doesn’t have a morph controller then create one

if (!morph){

for (int i=0; i<numpoints; i++){

mi.pts[i].x = pts[i].x;

mi.pts[i].y = pts[i].y;

mi.pts[i].z = pts[i].z;

}

morph = new CMorph(mi);

}

//Read each vertex until the length of the chunk is reached

while(bytesread < length){

//Read vertex index

if (!ReadShort(fp, vindex)) return FALSE;

//Abort if vertex index is out of range

if (vindex < 0 || vindex >= numpoints) return FALSE;

//Read x,y, z values

if (!ReadFloat(fp, x)) return FALSE;

if (!ReadFloat(fp,y)) return FALSE;

if (!ReadFloat(fp, z)) return FALSE;

//Store value

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using morph objects 309

mi.pts[vindex].x = x;

mi.pts[vindex].y =y;

mi.pts[vindex].z = z;

//If value is relative then add base value

if (relative){

mi.pts[vindex].x += pts[vindex].x;

mi.pts[vindex].y += pts[vindex].y;

mi.pts[vindex].z += pts[vindex].z;

}

//Each vertex uses 14 bytes = 2 (index) + 4(x) + 4(y) + 4(z)

bytesread += 14;

}

//Add to morph controller

morph->AddMorph(mi, name);

delete [] oi.pts;

return TRUE;

}

The final part of the code above uses a call to a CMorph class to store
the actual read data within the morph member variable of the object class.
We will look at how this class works in the next section.

Storing a morph target

The CMorph class stores the base object vertex locations and up to MAX_
MORPH_TARGETS morph targets. Each morph target is stored inside a
‘MORPHITEM’ structure, which is used to access the vertex locations and
also to offer a friendly user name for a development interface and a
current blend level. The function ‘AddMorph’ is used to allocate the vertex
data. The member variable ‘objcount’ stores the number of morph targets
that have been added. A call to ‘AddMorph’ will fail if a controller has not
been created first. A controller stores the base level vertex locations and
points to the vertices that define the object, so the morph object can alter
these base vertices; this means that a morph object can deform the mesh
before any other transformations are executed. As far as the object is
concerned, the new vertex locations are as modelled. A controller is
created using the constructor shown in the code below. After a controller
is created, ‘AddMorph’ ensures that new memory is allocated for existing
morph targets and one additional. The previous targets are copied to the

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

310 Using morph objects

new array of ‘MORPHITEM’s and the new one is tagged on the end. If at
some stage it is decided to remove the morph targets or maybe replace
them with alternative targets, then the vertex locations stored in
morphitem[0] should be copied back to the object. This restores the object
as it was before the morph controller was added. Then the new morph
controller can be added as required.

//The object info structure stores the geometry and surface data

//for the object

typedef struct stOBJECTINFO{

int numpoints;

int numpolygons;

int numsurfaces;

POINT3D *pts;

POLYGON *plys;

SURFACE *srfs;

}OBJECTINFO;

CMorph::CMorph(OBJECTINFO &oi){

if (oi.numpoints){

basepts = oi.pts;

numpoints = oi.numpoints;

morphitem[0].pts = new VECTORF[numpoints];

if (morphitem.pts){

for (int i=0; i<numpoints; i++){

}

memcpy(morphitem[0].pts, mi.pts,

sizeof(VECTORF)*pointTotal);

}

}else{

numpoints = 0;

basepts = NULL;

morphitem[0].pts = NULL;

}

strcpy(morphitem[0].name, “Controller”);

morphitem[0].level = 1.0;

objcount = 1;

}

BOOL CMorph::AddMorph(MORPHITEM &mi, char *name)

{

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using morph objects 311

if (!basepts){

AfxMessageBox(”Error: either no morph controller or base

object has no vertex data.”);

return FALSE;

}

if (objcount == MAX_MORPH_TARGETS){

AfxMessageBox(”Error: Maximum number of morph objects

reached”);

return FALSE;

}

//Create storage for existing and new meshes

MORPHITEM *mitem = new MORPHITEM[objcount + 1];

if (!mitem){

AfxMessageBox(”Error: No memory for morph target”);

return FALSE;

}

if (objcount){

//Copy existing data

memcpy(mitem, morphitem, sizeof(MORPHITEM)*objcount);

delete [] morphitem;

morphitem = mitem;

mitem = &morphitem[objcount];

}

mitem->level = 0.0;

mitem->pts = new VECTOR[numpoints];

if (!mitem->pts) return FALSE;

memcpy(mitem->pts, mi.pts, sizeof(VECTOR)*numpoints);

strncpy(mitem->name, name, 29);

//Do we have any keyframes

if (keys) for (i=0;i<keytotal;i++) keys[i].level[objcount-↵
1]=0.0;

++objcount;

return TRUE;

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

312 Using morph objects

Creating keyframes for the morph targets

To be useful we need a way to blend the targets together. One method
involves assigning a blend level to each of the morph targets. If we have
five targets and the blend level for each is set to zero, then we will have
the base geometry displayed. If target A is ramped up to 100 per cent and
all the other targets are set to zero blend, then we want the displayed
geometry to be entirely as described by target A. If, however, target A is
at 50 per cent and B is at 50 per cent, then we want to display a mesh that
is part A and part B. Since each ‘MORPHITEM’ has a level member in the
structure, we can set this level for each morph target. Suppose we have
the situation given in Table 14.1.

We would expect to see a mesh that was mainly influenced by the
vertex locations in the ‘Angry’ target, but a little influenced by the vertex
locations in the ‘Sad’ target. The method adopted is to sum the current
levels. If the sum is greater than 1.0 or 100 per cent, then we ignore the
base mesh position and divide all the current levels by the total, so that
the value of all the levels combined will represent a sum to 1.0 or 100 per
cent. If the value is less than 1.0, then we give a value to the base mesh
that pulls the total level up to 1.0. To show the mesh as influenced by the
values given in Table 14.1, we calculate the total level as 0.3 + 0.8 = 1.1.
Since this value is greater than 1.0, we divide each morph target level by

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 14.4 A morph target set.

Table 14.1 Sample morph levels

Target Level MORPHITEM index

Smile 0.0 1
Sad 0.3 2
Angry 0.8 3
Surprised 0.0 4

Using morph objects 313

this total. Now to calculate the placement of a vertex we sum the products
of target level and current vertex for each target with a level greater than
zero. In the current example, only morphitems 2 (‘Sad’) and morphitems
3 (‘Angry’) have a level greater than zero, so the final placement of a
vertex is given by:

pts[i]•x = morphitem[2].pts[i]•x*morphitem[2].level +↵
morphitem[3].pts[i]•x*morphitem[3].level

pts[i]•y = morphitem[2].pts[i]•y*morphitem[2].level +↵
morphitem[3].pts[i]•y*morphitem[3].level

pts[i]•z = morphitem[2].pts[i]•z*morphitem[2].level +↵
morphitem[3].pts[i]•z*morphitem[3].level

The function used to execute the blending is called ‘Transform’.

BOOL CMorph::Transform()

{

if (!basepts || !morphitem) return FALSE;

int i, j, n = 0;

VECTOR *pts = basepts;

double morphlevel[MAX_MORPH_TARGETS], totallevel = 0.0;

for (i=1; i<objcount; i++){

totallevel += morphitem[i].level;

}

if (totallevel>1.0){

//No influence from base object

morphlevel[0] = 0.0;

for (i=1;i<objcount;i++){

morphlevel[i] = morphitem[i].level/totallevel;

}

}else{

//Influence of base object

morphlevel[0] = 1.0-totallevel;

for (i=1; i<objcount; i++){

morphlevel[i] = morphitem[i].level;

}

}

//Amend with objcount morph objects

//basepts is a pointer to the vertices that will be rendered

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

314 Using morph objects

pts = basepts;

for(j=0; j<numpoints; j++){

//Reset current vertex

pts->x = 0.0; pts->y = 0.0; pts->z = 0.0;

for (i=0; i<objcount; i++){

//Sum product of vertex and level

if (morphlevel[i] > 0.0){

pts->x += morphitem[i].pts[j].x * morphlevel[i];

pts->y += morphitem[i].pts[j].y * morphlevel[i];

pts->z += morphitem[i].pts[j].z * morphlevel[i];

}

}

//Move on to next vertex

++pts;

}

return TRUE;

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 14.5 Setting keyframes using Toon3D.

Using morph objects 315

Keyframing morph targets

Now that we can blend our morph targets, the next stage is to store the
result of the blending so that we can interpolate the result. The
interpolation will use TCB curves, so any new keyframe must store the
current levels for all the morph targets along with a time or frame value for
the position. The flow of a TCB curve is adjusted by altering the tension,
bias and continuity parameters, which are stored for each keyframe. Full
details of TCB curves are given in Chapter 8. Because TCB curves
attempt to smooth the flow of the curve around each key value, this can
sometimes result in movement where no movement is intended. The
linear flag informs the code that the movement between two key positions
should be linear rather than smoothed. The main benefit of this flag is to
ensure that static sections are static.

typedef struct stMORPHKEY{

int frame;

float time;

float level[MAX_MORPH_TARGETS];

int linear;

float tn, bs, ct;//tension, bias and continuity

}MORPHKEY;

When creating a key value we need to take the current morph levels
and a supplied frame or time value and amend, insert or add a keyframe.
We amend a keyframe if there is already a key defined for this frame
value. The development software Toon3D uses a combination of an
integer value ‘frame’ and an integer value ‘fps’ to define the time value.
Time is defined as frame/fps. Why not simply use time in seconds? The
reason is that comparing floating-point values is not nearly as reliable as
comparing integer values. It is easy in practice to end up creating a key at
1.04 seconds and another at 1.0401 seconds when the intention was to
amend the key at 1.04 seconds. If the frames per second (fps) is 25 and
the current frame is 26, then the time value is 1.04. If the intention is to
amend the values at frame 26, then comparing 26 with a keyframe with
the frame value set to 26 will ensure a one-to-one comparison. In the
supplied code, a loop is used to check the current frame value against the
current keyframes; if the current frame is less than a current keyframe
then we need to insert the key before this existing keyframe. Since we are
inserting a key we must allocate memory for the existing keyframes and
one extra. Before inserting the key, the previous keys are copied to the
new keyframe array. Then the keyframe is added and any keyframes that

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

316 Using morph objects

follow are copied on the end. The final alternative for adding keyframes is
to insert the key at the end of the current array. Here again memory is
allocated for all the existing keyframes plus one extra. All the existing
keyframes are copied to the new array and the new data are inserted on
the end.

Suppose there are existing keyframes at frames 0, 20, 52, 64 and 78.
If the function is called with frame value 20, then the existing keyframe
that has a frame value of 20 is adjusted. If the function is called with the
value 34 then it must be inserted between the keyframes at 0 and 20 and
the keyframes at 52, 64 and 78. First, we allocate an array of six
MORPHKEY values. The first two MORPHKEYS in the existing array are
copied to the new array. Then the new data are assigned to MORPH-
KEY[2]. Finally, the remaining MORPHKEYS are copied into the new
array. The new array has keyframes at 0, 20, 34, 52, 64 and 78.

If the function is called with a frame value of 89, then the new keyframe
must be added to the end of the array. Again, an array of six
MORPHKEYS is created. This time, all the existing array is copied across
and the new data are assigned to the last member of the array. The new
array has keyframes at 0, 20, 52, 64, 78 and 89. The code for this function
is as follows:

MORPHKEY *CMorph::CreateKey(int frame)

{

if (keytotal==0){

keys = new MORPHKEY;

if (!keys){

TRACE(”CMorph::CreateKey>>Problem creating key zero\n”);

return NULL;

}

keytotal = 1;

for (int i=0; i<objcount; i++) keys->level[i] = 0.0;

//There must be a key at frame zero

keys->time = 0.0f;

keys->linear = 0;

keys->tn = 0.0;

keys->bs = 0.0;

keys->ct = 0.0;

}

//Does the object have a key for this frame?

MORPHKEY *key = keys,*ikey = NULL;

int i;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using morph objects 317

for(i=0; i<keytotal; i++){

if (key[i].frame == frame){

//Adjust keyframe to new value

for (i=0; i<objcount; i++)

key->level[i] = morphitem[i].level;

return &key[i];

}

if (key[i].frame>frame){

//Create memory for existing keys plus one

ikey = new MORPHKEY[keytotal + 1];

if (!ikey){

TRACE(”CLight::CreateKey>>

Problem creating keys\n”);

return NULL;

}

//Copy earlier keys

if (i) memcpy(ikey, keys, sizeof(MORPHKEY)*i);

ikey[i].frame = frame;

//Insert new key

for (i=0; i<objcount; i++)

key->level[i] = morphitem[i].level;

//Assign default parameters

ikey[i].linear = 0;

ikey[i].tn = 0.0;

ikey[i].ct = 0.0;

ikey[i].bs = 0.0;

//Copy following keys

if (i<keytotal){

memcpy(&ikey[i+1], &keys[i],

sizeof(MORPHKEY)*(keytotal-i));

}

keytotal++;

//Clear old keys

delete [] keys;

//Point keys at new array

keys = ikey;

return &keys[i];

}

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

318 Using morph objects

//Must need a key at the end of the current list

ikey = new MORPHKEY[keytotal + 1];

if (!ikey){

TRACE(”CMorph::CreateKey>>Problem creating keys\n”);

return NULL;

}

memcpy(ikey, keys, sizeof(MORPHKEY)*keytotal);

ikey[keytotal].frame = frame;

for (i=0; i<objcount; i++) key->level[i] = morphitem[i].level;

ikey[keytotal].linear = 0;

ikey[keytotal].tn = 0.0;

ikey[keytotal].ct = 0.0;

ikey[keytotal].bs = 0.0;

keytotal++;

if (keys) delete [] keys;

keys = ikey;

return &keys[keytotal-1];

}

Interpolating the morph targets

The only remaining task is to interpolate between two morph keys. This is
done in exactly the same way as the motion curves are handled for
keyframe animation. Instead of interpolating three position values, three
rotation values and three scale values, objcount morph level values are
interpolated. To check out the interpolation method, refer to Chapter 8 on
keyframing. Each morphitem represents a different channel and is
handled independently. When keyframing you must make a choice with
the way you handle your code. You could have a keyframe value and
store levels for each morph target at this keyframe. Alternatively, you
could assign a frame value and level to each channel. Independent
channels are a little more awkward to handle and when animating the
channels can sometimes seem more trouble than they are worth, but for
maximum flexibility this method is obviously preferable. You pays your
money and you takes your choice. If you want the flexibility that
independently interpolated channels allow without the hassle, then
another technique is to use morphing groups. This technique has a lot to
recommend it.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using morph objects 319

Using multiple channels

If you want a character to say lines that synchronize to a soundtrack, then
you must first record the dialogue, then use a sound editor to analyse the
sound, calculating at what time the mouth must form the shapes that
apply to particular phrases. If you have carefully modelled the mouth
positions and are ready to create some breathtaking character animation,
then it will be frustrating to know that if you want to raise the character’s
eyebrow or shut their eyes, you will have to model an entire set of heads
with the eyes shut and all the different mouth positions. Without this set
your model cannot both talk and blink at the same time. Not a very
satisfactory state of affairs. This is when groups come to the rescue.

If you move a set of points around the mouth but make no movement
at all to the eyes, then dealing with this set of targets independently of the
eyes will have no effect on the eye movement. Similarly, a set of targets
that move the vertex locations in the eyes and no other points can be
handled independently. One way to achieve this is to create a subset of
the mesh that includes point indices into the target mesh or pointers to
vertices in the target mesh along with the morph targets’ vertex locations.
The vertex locations of the final mesh are a combination of the original
vertex locations and the deformations created from interpolating the key
positions for each group. This technique has much to commend it, since
it gives the animator a great deal of control in a very intuitive way without
any significant performance hit.

Summary

In this chapter we learned how to allow the animator to use carefully
modelled shape animation within a real-time engine. Using morph targets
allows animation at the vertex level in a highly controlled way and allows
for the repetition of regularly used shapes. It doesn’t suffer from a great
performance hit, since we are dealing with transformations at the vertex
level rather than the pixel level. A 2000-polygon character rarely uses
more than 300 vertices in a face. The transformation of these 300 vertices
takes a small fraction of the time it takes to paint a 640 × 480 pixel display.
It is worth adding morph facilities to any character animation engine for no
other reason than to allow for the manipulation of faces and hands.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

15 Using subdivision
surfaces

Real-time 3D applications are limited to relatively few polygons to
describe a model. On some machines displaying 5000 triangles, 25–30
times a second is the limit of the processor and graphic card capabilities;
on other systems, a 50 000-polygon limit could be achieved. How do we
scale the display to suit the hardware? One popular technique is to use
subdivision surfaces. Using this method the original polygonal mesh is
used as the basis for the model. With one pass of subdivision every edge
is divided in two, so that each triangle is replaced with four triangles. If the
new vertices are placed simply at the mid-point of the edge then the
surface would not be smoothed, but if we could devise a way of placing
the vertices at the optimum place to smooth the mesh then the effect is a
smoothly refined mesh. It is equally possible to subdivide the new mesh
again, thereby replacing the original triangle with 16 new triangles. As you
can see, each level of subdivision replaces the original triangles with four
times the number of triangles, so the polygon count ramps up at a rate of
4n, where n is the subdivision count. Subdividing four times gives 44 = 256
times the original polygon count. A 1000-polygon character now has a
staggering 256 000 polygons. For most real-time applications, one level of
subdivision, or two at the most, will be the limit. So that is the principle, but
the real cunning of any subdivision scheme is deciding where to place the
new vertices. Let’s look at the options.

An overview of subdivision

We must decide first whether the original vertices feature in the
subdivided mesh or not. If we choose a scheme that retains the original
vertices, then we know that the new surface will go through the original
mesh. A scheme that retains the original vertices and adds to the vertex
list is described as interpolating, while a scheme that creates all new
vertices is called approximating. For low resolution meshes, this decision

Using subdivision surfaces 321

can be very important. Figure 15.2 shows the effect of subdivision on a
very low resolution mesh. The sample on the left uses butterfly
subdivision, which is interpolating, while the sample on the right uses
exactly the same control mesh, but this time the subdivision scheme is
approximating. Interpolating subdivision has the effect of slightly swelling
the original mesh if the original mesh is principally convex. Approximating
subdivision shrinks the mesh; the fewer polygons in the original mesh, the
more exaggerated this result. With a very low polygon control mesh, the
subdivided mesh can differ greatly in volume and shape from the base.
Approximating subdivision is the scheme used by Pixar for most of their

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 15.1 Subdivision using a linear model, the butterfly model and the
Catmull–Clark scheme.

Figure 15.2 Using interpolating and approximating subdivision on a low polygon
head.

322 Using subdivision surfaces

animated characters. They subdivide the mesh until the size of a polygon
is half a pixel, not a technique that real-time applications are likely to be
capable of performing in the near future at rates of 25 times a second. In
such high-end examples, the original source meshes will be denser than
those used for real-time character animation. With a denser mesh the
effect of shrinking is not as pronounced. The mesh created from
approximating schemes tends to be smoother than that from interpolating
and so it is suited to pre-rendered animation, but an interpolating scheme
is more suited to a real-time application.

Triangles or quadrilaterals

For some schemes the algorithms can work on three- or four-sided
polygons. Meshes with polygons containing more than four sides can be
converted into a triangular mesh or a mesh that contains triangles and

quadrilaterals. When subdividing a triangle, each edge has a new vertex
added; consequently, three additional vertices are added and each
triangle is converted to four triangles. When subdividing a quadrilateral,
each edge has a new vertex added and an additional vertex is added to
the centre of the mesh. Again, four polygons replace the original single
quadrilateral. Figure 15.3 shows how polygons are added using triangles
and quadrilaterals.

Catmull–Clark – an approximating scheme

Catmull–Clark surfaces use a quadrilateral control mesh and are
approximating. Pixar uses Catmull–Clark surfaces for animated charac-
ters and variants of this subdivision are used in high-end CGI packages.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 15.3 Subdividing triangles and quadrilaterals.

Using subdivision surfaces 323

The scheme is quite simple to implement. Step 1: for each polygon, add
a centre vertex that is the average of the four vertices in the polygon. Step
2: for each edge, add a new vertex that is positioned at the average of the
edge end-points and the adjacent polygon vertices (see Figure 15.4 for an
illustration of the vertices to consider).

The final step is to move the original vertices in the mesh using the
following rule:

V =
N – 2v

N
+

1

N2 � �
N–1

i=0
(ei + fi)�

where V is new vertex location, v is the old vertex location, N is the vertex
valence, ei is the vertex in the original mesh indicated in Figure 15.5 and
fi is the vertex in the new mesh indicated in Figure 15.5.

This step introduces a new term, valence. The valence of a vertex is
simply the number of edges that use that vertex. For a regular
quadrilateral mesh the valence of each vertex will be four.

Because the original vertices are not part of the final mesh in a
Catmull–Clark scheme, there are significantly more calculations to
perform when subdividing. This computational expense and a resultant
mesh that can be very different from the control mesh encourage us to
use an interpolating scheme rather than an approximating scheme like
Catmull–Clark.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 15.4 Adding a vertex edge using the Catmull–Clark subdivision scheme.

324 Using subdivision surfaces

Butterfly subdivision – an interpolating scheme

The subdivision scheme we are going to explore in detail is the so-called
modified butterfly scheme. This scheme works only on triangular meshes,
so you must work with a triangular mesh or create a function to triple your
mesh. Butterfly subdivision only works on a regular triangular mesh where
each vertex is of valence six. This limitation would be beyond even the
best low polygon modeller. The modified scheme works with vertices of
any valence. The scheme was devised and presented at Siggraph in 1996
by Zorin, Schröder and Sweldens.

The first step in the subdivision is to add a new vertex for an edge.
Since the scheme is interpolating, the end-points of the edge are going to
be part of the final mesh and do not need repositioning. The location of the
new vertex is affected by the valences of the end-points for the current
edge. If both end-points have valence six, then the location of the new
vertex is calculated using the following method.

The weighting of effect of each vertex is

a: 1
2 – w; b: 1

8 + 2w; c: – 1
16 – w; d: w

where w is a weighting value. Subdivision in Toon3D uses a value for w
of 0.0125.

A vertex with valence other than six in this scheme is described as an
extraordinary vertex. If one of the end-points of the edge is an
extraordinary vertex and the other vertex has valence six, then we

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 15.5 The vertices used to calculate a new vertex location using Catmull–Clark
subdivision.

Using subdivision surfaces 325

calculate the location of the added vertex based solely on this
extraordinary vertex. This seems intuitively strange, but the result is very
effective. One of the authors of the original paper, Denis Zorin, justifies the
choice of weighting on his website at www.mrl.nyu.edu/dzorin. If both end-
points are extraordinary, then we calculate the location of the added
vertex as the average of the position calculated using each extraordinary
vertex.

The scheme used is:

Valence 3: v: 3
4; e0: 5

12; e1: – 1
12; e2: – 1

12

Valence 4: v: 3
4; e0: 3

8; e1: 0, e2: –1
8; e3: 0

Valence 5 and 7 or more: v: 3
4; ei:

1
4 + cos(2�i/N) + 1

2 cos(4�i/N)

N

where N is the valence.
Border vertices are handled differently from other vertices, taking all the

weighting from adjacent border points. The new edge vertex is calculated
using

V = 9
16a + 9

16b – 1
16c – 1

16d

Using this technique for border vertices ensures that the mesh doesn’t
pull away from any boundary edges.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 15.6 Ten-vertex stencil for new vertex assuming end-points have valence six.

326 Using subdivision surfaces

Implementing modified butterfly subdivision

Having explained the theory, now for a practical guide to implementation.
First, we need to know more about our mesh than just the vertices and
polygons. We need to know about the edges in the mesh and we need to
know how the vertices connect to other vertices. For this purpose we
create two new structures, EDGE and POINTCON. EDGE stores both the
indices of the end-points and the index of an added mid-point vertex.
POINTCON stores the valence of the vertex, an ordered array of vertex
indices stored in anticlockwise order and a flag to indicate whether this
vertex is a border vertex. If the flag is set then this is a boundary vertex;
if the border flag is set for both vertices in an edge then the edge must be

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 15.7 Identification of vertices in an extraordinary vertex in the modified
butterfly scheme.

Figure 15.8 Identification of border vertices in the modified butterfly scheme.

Using subdivision surfaces 327

a boundary edge and so a mid-point must be added using the border edge
equation given above, regardless of the vertex valences.

typedef struct stEDGE{

unsigned short a,b; //Indices of existing vertices

unsigned short v; //Index of the middle vertex

}EDGE;

typedef struct stPOINTCON{

unsigned char valence;

unsigned short p[MAX_VALENCE];

unsigned char border;

}POINTCON;

The first step in any subdivision is to store the original mesh topology.
This is stored in a new PATCHINFO structure.

typedef struct stPATCHINFO{

POINT3D *pts;

POLYGON *pchs;

int numpoints;

int numpatches;

}PATCHINFO;

This ensures that we can restore the original topology at any time.

//===

//CreatePatchInfo

//Copies the original vertex and polygon information into a

//new data structure PATCHINFO. This is the same as a OBJECTINFO

//without any surface information. The purpose of the function

//is to allow the transformation engine to restore the original

//vertex and polygon structure after having rendered the subdivided

//mesh

//===

BOOL CT3DObject::CreatePatchInfo()

{

if (pi.pts) delete [] pi.pts;

if (pi.pchs) delete [] pi.pchs;

pi.pts = new POINT3D[oi.numpoints];

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

328 Using subdivision surfaces

if (!pi.pts) return FALSE;

memcpy(pi.pts, oi.pts, sizeof(POINT3D) * oi.numpoints);

pi.numpoints = oi.numpoints;

pi.pchs = new POLYGON[oi.numpolygons];

if (!pi.pchs) return FALSE;

memcpy(pi.pchs, oi.plys, sizeof(POLYGON) * oi.numpolygons);

pi.numpatches = oi.numpolygons;

return TRUE;

}

Having stored the original topology we now want to analyse the
topology of the mesh. To this end, the code used to examine the mesh is
given below. For each vertex in the mesh we scan all the polygons in the
mesh and if the current vertex, v, is used then we add a pointer to this
polygon to the local array plyscan and update a counter of added
polygons. Having traversed all the polygons in the mesh, we have an
array of plycount POLYGON pointers called plyscan. The next stage in
the process is to attempt to create an ordered list of vertices using just the
plycount polygons in the plyscan array. Regarding the current vertex as a
central point, we can store the vertices in the first polygon in the plyscan
array.

The vertex indices are stored in the POINTCON members p[0] and
p[1]. Now that the first polygon has been added plyscan[0] can be set to
NULL, to indicate that this polygon has been considered. The next step is

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 15.9 Identifying the appropriate vertices to create an anticlockwise ordering.

Using subdivision surfaces 329

to find a polygon in the plyscan array that has the edge (v, p[1]), where v
is the current vertex index (‘ptindex’ in the sample code) and p[1] is the
index shown in the code as ‘vindex’. If this edge is found, then we can add
the remaining vertex in the triangle as the next member of our connectivity
array and update the search edge. If it is not found, then we can assume
that this is a boundary vertex. We store the current count so that we can
reorder the array later. A border vertex must have two edges that do not
form a continuous link; Figure 15.10 indicates how this must be so. If we
have found the gap, then setting our search to any other polygon in the
scanned array should result in a continuous link. Then we place the
vertices we found before restarting at the end of the newly found vertices.
In this way, the edges defined by (v, p[0]) and (v, p[N – 1]), where N is the
valence, must be boundary edges.

//===

//CreateConnectivityArray

//Used by SubDivide.

//===

BOOL CT3DObject::CreateConnectivityArray(POINTCON *con){

POLYGON *plyscan[MAX_VALENCE],*ply;

int i, ptindex, plyindex, plycount, count, vindex;

unsigned short p[MAX_VALENCE];

POINTCON *ptcon = con;

BOOL found,rev;

for(ptindex=0; ptindex<oi.numpoints; ptindex++){

//Scan through all polygons to find ones that

//have a point index with value ptindex and

//store them in the plyscan array.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 15.10 Identifying boundary vertices.

330 Using subdivision surfaces

ply = oi.plys;

plycount = 0;

for(i=0;i<oi.numpolygons;i++){

if (ply->numverts!=3){

AfxMessageBox(”Sub division can only be

applied to triangular meshes”);

ClearPatchInfo();

return FALSE;

}

if (ply->p[0]==ptindex || ply->p[1]==ptindex || ply->p[2]==↵
ptindex){

plyscan[plycount++] = ply;

}

ply++;

}

if (plycount){

//Add first scanned polygon

if (plyscan[0]->p[0]==ptindex){

ptcon->p[0] = plyscan[0]->p[2];

ptcon->p[1] = plyscan[0]->p[1];

}

if (plyscan[0]->p[1]==ptindex){

ptcon->p[0] = plyscan[0]->p[0];

ptcon->p[1] = plyscan[0]->p[2];

}

if (plyscan[0]->p[2]==ptindex){

ptcon->p[0] = plyscan[0]->p[1];

ptcon->p[1] = plyscan[0]->p[0];

}

ptcon->valence = 2;

ptcon->border = 1;

vindex = ptcon->p[1];

plyscan[0] = NULL;

count = plycount-1;

while(count){

//Scan for edge ptindex>>vindex

found = FALSE;

for(plyindex=1; plyindex<plycount; plyindex++){

ply = plyscan[plyindex];

if (!ply) continue;

if (ply->p[0] == ptindex){

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using subdivision surfaces 331

if (ply->p[2] == vindex){

if (ply->p[1]!=ptcon->p[0]){

ptcon->p[ptcon->valence++] = ply->p[1];

}else{

ptcon->border = 0;

}

vindex = ptcon->p[ptcon->valence-1];

plyscan[plyindex] = NULL;

found = TRUE;

break;

}

}

if (ply->p[1] == ptindex){

if (ply->p[0]==vindex){

if (ply->p[2]!=ptcon->p[0]){

ptcon->p[ptcon->valence++] = ply->p[2];

}else{

ptcon->border = 0;

}

vindex = ptcon->p[ptcon->valence-1];

plyscan[plyindex] = NULL;

found = TRUE;

break;

}

}

if (ply->p[2] == ptindex){

if (ply->p[1] == vindex){

if (ply->p[0]!=ptcon->p[0]){

ptcon->p[ptcon->valence++] = ply->p[0];

}else{

ptcon->border = 0;

}

vindex = ptcon->p[ptcon->valence-1];

plyscan[plyindex] = NULL;

found = TRUE;

break;

}

}

}

if (!found){

//Must be a border vertex store the current count so we can

//order the list later

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

332 Using subdivision surfaces

ptcon->border = count;

//Reset search with next unused polygon

for (plyindex = 1; plyindex < plycount; plyindex++){

//Find next polygon

if (plyscan[plyindex]{

if (plyscan[plyindex]->p[0] == ptindex){

ptcon->p[count++] = plyscan[0]->p[2];

ptcon->p[count] = plyscan[0]->p[1];

}

if (plyscan[plyindex]->p[1] == ptindex){

ptcon->p[count++] = plyscan[0]->p[0];

ptcon->p[count] = plyscan[0]->p[2];

}

if (plyscan[plyindex]->p[2] == ptindex){

ptcon->p[count++] = plyscan[0]->p[1];

ptcon->p[count] = plyscan[0]->p[0];

}

ptcon->valence += 2;

vindex = ptcon->p[count++];

plyscan[plyindex] = NULL;

break;

}

}

}

}

}else{

//Point index not found must be a point with

//no polygons so ignore it.

ptcon->valence = 0;

}

if (ptcon->border && ptcon->border!=plycount){

memcpy(p, ptcon->p, sizeof(USHORT)*ptcon->valence);

memcpy(ptcon->p, &p[ptcon->border],

sizeof(USHORT)*(plycount – ptcon->border);

memcpy(&ptcon->p[plycount – ptcon->border], p,

sizeof(USHORT) * ptcon->border);

}

ptcon++;

}

return TRUE;

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using subdivision surfaces 333

At this stage we have all the information we need to apply modified
butterfly subdivision. The purpose of subdivision is to add polygons to the
mesh, so we include a utility function for this purpose. This function is
passed a reference to the new polygon and sets the vertex indices and
texture coordinates. Texture coordinates are calculated as simply the mid-
point of an edge. If the end-points of the edge have texture coordinates
tc1 and tc2 then the mid-point for this edge will have texture
coordinates:

u = (tc1*u + tc2*u)/2
v = (tc1*v + tc2*v)/2

These coordinates are calculated by the caller to the CreatePolygon
function.

BOOL CT3DObject::CreatePolygon(POLYGON &sdply, int srfID,

int v1, int v2, int v3, TEXVEC &tv1, TEXVEC &tv2, TEXVEC &tv3){

sdply.numverts = 3;

sdply.p[0] = v1;

sdply.p[1] = v2;

sdply.p[2] = v3;

sdply.srf = srfID;

if (oi.srfs[srfID].tex){

sdply.tc[0].u = tv1.u;

sdply.tc[0].v = tv1.v;

sdply.tc[1].u = tv2.u;

sdply.tc[1].v = tv2.v;

sdply.tc[2].u = tv3.u;

sdply.tc[2].v = tv3.v;

}else{

memset(sdply.tc, 0, sizeof(TEXVEC)*3);

}

return TRUE;

}

The actual function call to subdivide a mesh iterates through all the
polygons in the mesh and replaces a single polygon with four polygons.
The first step in creating the new polygons is to add the three edges in the
triangle to an edge array. This is achieved using the AdgeEdge function
call, which has seven parameters.

int CT3DObject::AddEdge(EDGE *edges, POINT3D *pts, POINTCON *con,

int &pointcount, int &edgecount, int v1, int v2)

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

334 Using subdivision surfaces

� edges – the current edge array;
� pts – the point list for the mesh;
� con – the connectivity array for the mesh;
� pointcount – the number vertices in the pts, point list;
� edgecount – the number of edges in the edges, edge list;
� v1 – end-point index;
� v2 – end-point index;
� return value – the index of the mid-point for this edge.

The AddEdge function first checks if the edge already exists. If it does,
then it simply returns the index of the mid-point of the existing edge. If it
does not exist, then a new edge is added to the edge array and the value
edgecount is updated. The mid-point of the edge is calculated using the
POINTCON array for the end-points. Vertices are passed using indices
into the pts array and the con array. The calculation uses the valence of
one end-point in the array to calculated a new vertex location pt1. Then
the function looks at the other end-point and calculates a new vertex
location pt2. If both end-points are extraordinary, then the average of the
two points is used. When using the POINTCON for the current vertex, it
is important to get the correct orientation, that is p[0] must be the opposite
edge vertex. This is done by iterating through the vertex indices in the
point array to find the opposite edge vertex index and then constructing a
new POINTCON structure using this information. When a vertex is a
border edge this simply means moving the end of the array to the
beginning and placing the beginning of the array on the end of the new

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 15.11 Identifying vertices as named in the AddEdge function.

Using subdivision surfaces 335

list. An example may help. If the vertex indices for each end of an edge
are (10, 23) and the connectivity array for the vertex with index 10 is (2,
34, 56, 23, 12, 14), then we need to adjust the connectivity array so that
it reads (23, 12, 14, 2, 34, 56). Now the vertex with index 23, the opposite
edge vertex, is first in the connectivity array. The same work must be done
to the connectivity array for the vertex with index 23. This time the first
member of the connectivity array must be the vertex with index 10. Figure
15.11 shows how the vertices relate to the code naming.

//===

//AddEdge

//Takes an array of count edges and tests to see if vertex indices

//v1 and v2 have already been assigned an edge if so function returns

//the index of the edge. If not it creates a new edge, updates the

//count value, assigns the connectivity of end vertices, sets

//the valences and returns the index of this edge

//The connectivity array must have been pre calculated

//===

int CT3DObject::AddEdge(EDGE *edges, POINT3D *pts, POINTCON *con,

int &pointcount, int &edgecount, int v1, int v2)

{

EDGE *edge = edges;

for (int i=0; i<edgecount; i++){

if (edge->a == v1 && edge->b == v2) return edge->v;

if (edge->a == v2 && edge->b == v1) return edge->v;

edge++;

}

//If we get here then the edge has not been found

edge = &edges[edgecount];

edge->a = v1;

edge->b = v2;

edge->v = pointcount;

edgecount++;

pointcount++;

POINT3D *v = &pts[edge->v], pt1, pt2;

double w=0.0125,weight,valence;

int index,j;

POINTCON pc1, pc2;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

336 Using subdivision surfaces

pc1.p[0] = -1;

pc1.valence = con[v1].valence;

//Set pc1 so that the opposite vertex is v2

for (i=0; i<con[v1].valence; i++){

if (con[v1].p[i]==v2){

index = 0;

for (j=i; j<con[v1].valence; j++){

pc1.p[index++] = con[v1].p[j];

}

for (j=0; j<i; j++){

pc1.p[index++] = con[v1].p[j];

}

}

}

if (pc1.p[0]==-1) return -1; //Error

pc2.p[0] = -1;

pc2.valence = con[v2].valence;

//Set pc2 so that the opposite vertex is v1

for (i=0; i<con[v2].valence; i++){

if (con[v2].p[i]==v1){

index = 0;

for (j=i; j<con[v2].valence; j++){

pc2.p[index++] = con[v2].p[j];

}

for (j=0; j<i; j++){

pc2.p[index++] = con[v2].p[j];

}

}

}

if (pc2.p[0]==-1) return -1; //Error

if (con[v1].border && con[v2].border){

//Must be boundary edge

//Based on 9/16 * v1 + 9/16 * v2 -

//1/16 * ca[valence-1] – 1/16 * cb[0]

v->x = 0.5625 * pts[v1].x +

0.5625 * pts[v2].x -

0.0625 * pts[pc1.p[pc1.valence-1]].x -

0.0625 * pts[pc2.p[0]].x;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using subdivision surfaces 337

v->y = 0.5625 * pts[v1].y +

0.5625 * pts[v2].y -

0.0625 * pts[pc1.p[pc1.valence-1]].y -

0.0625 * pts[pc2.p[0]].y;

v->z = 0.5625 * pts[v1].z +

0.5625 * pts[v2].z -

0.0625 * pts[pc1.p[pc1.valence-1]].z -

0.0625 * pts[pc2.p[0]].z;

return edge->v;

}

//Calculate the location of the new vertex based on

//modified Butterfly

switch(pc1.valence){

case 3:

//v1=3/4,ca[0]=5/12, ca[1],ca[2]=-1/12

pt1.x = pts[v1].x * 0.75 +

pts[pc1.p[0]].x * 0.4167 -

pts[pc1.p[1]].x * 0.0833 -

pts[pc1.p[2]].x * 0.0833;

pt1.y = pts[v1].y * 0.75 +

pts[pc1.p[0]].y * 0.4167 -

pts[pc1.p[1]].y * 0.0833 -

pts[pc1.p[2]].y * 0.0833;

pt1.z = pts[v1].z * 0.75 +

pts[pc1.p[0]].z * 0.4167 -

pts[pc1.p[1]].z * 0.0833 -

pts[pc1.p[2]].z * 0.0833;

break;

case 4:

//v1=3/4,ca[0]=3/8, ca[1]=0, ca[2],=-1/8,ca[3]=0

pt1.x = pts[v1].x * 0.75 +

pts[pc1.p[0]].x * 0.375 -

pts[pc1.p[2]].x * 0.125;

pt1.y = pts[v1].y * 0.75 +

pts[pc1.p[0]].y * 0.375 -

pts[pc1.p[2]].y * 0.125;

pt1.z = pts[v1].z * 0.75 +

pts[pc1.p[0]].z * 0.375 -

pts[pc1.p[2]].z * 0.125;

break;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

338 Using subdivision surfaces

case 6:

//We can leave this to be calculated in the next switch

//statement. It only applies to valence 6 for both vertices

break;

case 5:

default:

//v1=3/4,ca[n]=(1/4+cos(2pi*n/valence)+1/2(cos(4pi*n/↵
valence))/valence

valence = pc1.valence;

pt1.x = pts[v1].x * 0.75;

pt1.y = pts[v1].y * 0.75;

pt1.z = pts[v1].z * 0.75;

for (i=0; i<pc1.valence; i++){

weight = (0.25 + cos((PI2 * (double)i)/valence) +

0.5 * cos((PI2 * 2 * (double)i)/valence))/valence;

pt1.x += pts[pc1.p[i]].x * weight;

pt1.y += pts[pc1.p[i]].y * weight;

pt1.z += pts[pc1.p[i]].z * weight;

}

break;

}

switch(pc2.valence){

case 3:

//v2=3/4,cb[0]=5/12, cb[1],cb[2]=-1/12

pt2.x = pts[v2].x * 0.75 +

pts[pc2.p[0]].x * 0.4167 -

pts[pc2.p[1]].x * 0.0833 -

pts[pc2.p[2]].x * 0.0833;

pt2.y = pts[v2].y * 0.75 +

pts[pc2.p[0]].y * 0.4167 -

pts[pc2.p[1]].y * 0.0833 -

pts[pc2.p[2]].y * 0.0833;

pt2.z = pts[v2].z * 0.75 +

pts[pc2.p[0]].z * 0.4167 -

pts[pc2.p[1]].z * 0.0833 -

pts[pc2.p[2]].z * 0.0833;

if (pc1.valence==6){

v->x = pt2.x; v->y = pt2.y; v->z = pt2.z;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using subdivision surfaces 339

}else{

v->x = (pt1.x + pt2.x)/2.0;

v->y = (pt1.y + pt2.y)/2.0;

v->z = (pt1.z + pt2.z)/2.0;

}

break;

case 4:

//v2=3/4,cb[0]=3/8, cb[1]=0, cb[2],=-1/8,cb[3]=0

pt2.x = pts[v2].x * 0.75 +

pts[pc2.p[0]].x * 0.375 -

pts[pc2.p[2]].x * 0.125;

pt2.y = pts[v2].y * 0.75 +

pts[pc2.p[0]].y * 0.375 -

pts[pc2.p[2]].y * 0.125;

pt2.z = pts[v2].z * 0.75 +

pts[pc2.p[0]].z * 0.375 -

pts[pc2.p[2]].z * 0.125;

if (pc1.valence==6){

v->x = pt2.x; v->y = pt2.y; v->z = pt2.z;

}else{

v->x = (pt1.x + pt2.x)/2.0;

v->y = (pt1.y + pt2.y)/2.0;

v->z = (pt1.z + pt2.z)/2.0;

}

break;

case 6:

//ca[0],cb[0] = 1/2-w, ca[1],cb[1] = 1/8+2w,

//ca[2],ca[4],cb[2],cb4[]=-1/16-w

//ca[3],cb[3] = w;

if (pc1.valence==6){

v->x = pts[v1].x * (0.5-w) +

pts[v2].x * (0.5-w) +

pts[pc1.p[1]].x * (0.125 + 2*w) +

pts[pc1.p[5]].x * (0.125 + 2*w) +

pts[pc1.p[2]].x * (-0.0625 – w) +

pts[pc2.p[2]].x * (-0.0625 – w) +

pts[pc1.p[4]].x * (-0.0625 - w) +

pts[pc2.p[4]].x * (-0.0625 – w) +

pts[pc1.p[3]].x * w +

pts[pc2.p[3]].x * w;

v->y = pts[v1].y * (0.5-w) +

pts[v2].y * (0.5-w) +

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

340 Using subdivision surfaces

pts[pc1.p[1]].y * (0.125 + 2*w) +

pts[pc1.p[5]].y * (0.125 + 2*w) +

pts[pc1.p[2]].y * (-0.0625 – w) +

pts[pc2.p[2]].y * (-0.0625 – w) +

pts[pc1.p[4]].y * (-0.0625 – w) +

pts[pc2.p[4]].y * (-0.0625 – w) +

pts[pc1.p[3]].y * w +

pts[pc2.p[3]].y * w;

v->z = pts[pc1.p[0]].z * (0.5-w) +

pts[pc2.p[0]].z * (0.5-w) +

pts[pc1.p[1]].z * (0.125 + 2*w) +

pts[pc1.p[5]].z * (0.125 + 2*w) +

pts[pc1.p[2]].z * (-0.0625 – w) +

pts[pc2.p[2]].z * (-0.0625 – w) +

pts[pc1.p[4]].z * (-0.0625 – w) +

pts[pc2.p[4]].z * (-0.0625 – w) +

pts[pc1.p[3]].z * w +

pts[pc2.p[3]].z * w;

}else{

//Already calculated

v->x=pt1.x; v->y=pt1.y; v->z=pt1.z;

}

break;

case 5:

default:

//v2=3/4,cb[n]=(1/4+cos(2pi*n/valence)+1/2(cos(4pi*n/↵
valence))/valence

valence = pc2.valence;

pt2.x = pts[v2].x * 0.75;

pt2.y = pts[v2].y * 0.75;

pt2.z = pts[v2].z * 0.75;

for (i=0; i<pc2.valence; i++){

weight = (0.25 + cos((PI2 * (double)i)/valence) +

0.5 * cos((PI2 * 2 * (double)i)/valence))/valence;

pt2.x += pts[pc2.p[i]].x * weight;

pt2.y += pts[pc2.p[i]].y * weight;

pt2.z += pts[pc2.p[i]].z * weight;

}

if (pc1.valence==6){

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using subdivision surfaces 341

This leaves just the main function call to the function SubDivide. The
passed parameter indicates how many times to subdivide the mesh. The
first step in the subdivision is restoring the original mesh. Then we create
a connectivity array and iterate through the base polygons, adding the
new polygons to the subdivided polygons’ array. The subdivided mesh
uses all new polygons, but it uses the original vertex list. The new
polygons are formed from the existing and new vertices using the
following stencil:

p[0], v1, v3
p[1], v2, v1
p[2], v3, v2
v1, v2, v3

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

v->x=pt2.x; v->y=pt2.y; v->z=pt2.z;

}else{

v->x = (pt1.x + pt2.x)/2.0;

v->y = (pt1.y + pt2.y)/2.0;

v->z = (pt1.z + pt2.z)/2.0;

}

break;

}

return edge->v;//Zero start for the indices

}

Figure 15.12 Indices of added polygons.

342 Using subdivision surfaces

//===

//SubDivide

//Sub divides the mesh pointed to by the OBJECTINFO data structure

//The results of the subdivision are stored in the OBJECTINFO

//data structure.

//===

BOOL CT3DObject::SubDivide(int subDivIndex)

{

if (subDivIndex<1) return FALSE;

//The PATCHINFO structure stores the original mesh

if (pi.numpoints==0) CreatePatchInfo();

//Start by copying original mesh

//We are using Butterfly subdivsion so the existing vertices

//must be part of the cage information

delete [] oi.pts;

delete [] oi.plys;

oi.pts = new POINT3D[pi.numpoints];

oi.plys = new POLYGON[pi.numpatches];

memcpy(oi.pts, pi.pts, sizeof(POINT3D) * pi.numpoints);

memcpy(oi.plys, pi.pchs, sizeof(POLYGON) * pi.numpatches);

oi.numpoints = pi.numpoints;

oi.numpolygons = pi.numpatches;

int numpolygons, numedges, numpoints, edgecount, pointcount;

int i,k,v1,v2,v3;

EDGE *edges;

POLYGON *ply, *sdply, *plys;

POINT3D *pts;

POINTCON *con;

for (i=0; i<subDivIndex; i++){

numpolygons = oi.numpolygons * 4; //Accurate

numedges = (numpolygons * 3); // Worst case

numpoints = oi.numpoints + numedges;

plys = new POLYGON[numpolygons];

pts = new POINT3D[numpoints];

con = new POINTCON[oi.numpoints];

edges = new EDGE[numedges];

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using subdivision surfaces 343

if (!edges||!plys || !pts || !con) goto subdivabort;

//Create an array of vertex connectivity

CreateConnectivityArray(con);

edgecount = 0;

pointcount = oi.numpoints;

ply = oi.plys;

sdply = plys;

TEXVEC tv[3];

//Copy base points

memcpy(pts, oi.pts, sizeof(POINT3D)*oi.numpoints);

for(k=0;k<oi.numpolygons;k++){

v1 = AddEdge(edges, pts, con, pointcount, edgecount,

ply->p[0], ply->p[1]);

v2 = AddEdge(edges, pts, con, pointcount, edgecount,

ply->p[1], ply->p[2]);

v3 = AddEdge(edges, pts, con, pointcount, edgecount,

ply->p[2], ply->p[0]);

//Create the polygons and interpolate the texture coordinates

if (oi.srfs[ply->srf].tex){

tv[0].u = (float)(ply->tc[0].u + ply->tc[1].u)/2.0f;

tv[0].v = (float)(ply->tc[0].v + ply->tc[1].v)/2.0f;

tv[1].u = (float)(ply->tc[1].u + ply->tc[2].u)/2.0f;

tv[1].v = (float)(ply->tc[1].v + ply->tc[2].v)/2.0f;

tv[2].u = (float)(ply->tc[0].u + ply->tc[2].u)/2.0f;

tv[2].v = (float)(ply->tc[0].v + ply->tc[2].v)/2.0f;

}

if (!CreatePolygon(sdply++, ply->srf,

ply->p[0], v1, v3, ply->tc[0], tv[0], tv[2])) goto↵
subdivabort;

if (!CreatePolygon(sdply++, ply->srf,

ply->p[1], v2, v1, ply->tc[1], tv[1], tv[0])) goto↵
subdivabort;

if (!CreatePolygon(sdply++, ply->srf,

ply->p[2], v3, v2, ply->tc[2], tv[2], tv[1])) goto↵
subdivabort;

if (!CreatePolygon(sdply++, ply->srf,

v1, v2, v3, tv[0], tv[1], tv[2])) goto subdivabort;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

344 Using subdivision surfaces

if (edgecount > numedges){

//Not sure if we need this but I’ll put it in for safety

AfxMessageBox(”Edge count exceeds memory limit”);

goto subdivabort;

}

ply++;

}

//Now we know the actual number of edges

delete [] edges;

delete [] oi.pts;

delete [] oi.plys;

delete [] con;

oi.pts = new POINT3D[pointcount];

memcpy(oi.pts, pts, sizeof(POINT3D) * pointcount);

delete [] pts;

pts = NULL;

oi.numpoints = pointcount;

oi.plys = plys;

oi.numpolygons = numpolygons;

}

CalcNormals();

return TRUE;

subdivabort:

if (pts) delete [] pts;

if (plys) delete [] plys;

if (con) delete [] con;

return FALSE;

}

Optimization

If you intend to use subdivision for character animation, then the vertex
placement must be calculated for every change in the base mesh.
Connectivity will not alter throughout the animation, however, so it will
improve the performance to calculate the connectivity values only once. If
the maximum subdivision is order three, then calculate and store three
connectivity arrays. You could also store the number edges and points in
the subdivision after the first call, thereby reducing the memory

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using subdivision surfaces 345

allocations, which by default use the worst case scenario. If a mesh has
100 triangles, then the maximum number of edges is 100 × 3 = 300. This
implies that every triangle is a separate item and no triangles share any
edges. Clearly, in a character mesh this is not going to happen. If a mesh
has no deformations then subdivision needs to be called only once, after
which the subdivided mesh is used for all screen paints. Character
animation, however, involves mesh deformation and needs to be called
for each deformation of the mesh. Since this could be 50 times a second,
any optimizations will pay dividends in performance. It is possible to
subdivide a mesh an arbitrary number of times in a single pass with no
iteration. One technique was presented at Siggraph 1998 by Jos Stam.
The method uses the invariance of eigenvectors and eigenvalues. It is a
fairly mathematical presentation, but you are advised to refer to Appendix
C for a link to his paper.

Summary

Subdivision allows the modeller to use all the low polygon methods that
they have used in the past with the benefit that the final rendered mesh
can be as smooth as you choose. Subdivision addresses the increasing
sophistication of computer hardware while not excluding users with less
capable machines. It is fairly easy to implement and can greatly improve
the appearance of low polygon meshes. As the gap between low- and
high-end computer hardware grows wider, the requirement of scalable
solutions becomes increasingly important.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

16 Using
multi-resolution
meshes

In this chapter we will look at how to reduce polygons from your mesh. In
essence this is the opposite of the previous chapter. Whereas in the
previous chapter we were concerned with smoothing the display of a low
polygon mesh by using progressive refinement of the mesh, in this
chapter we will look at a technique for reducing the polygons in a mesh.
The aim is to gradually reject polygons until a target polygon total is
achieved. There are many options for polygon reduction and we will look
briefly at these alternatives before examining one technique in detail.
Michael Garland and Paul S. Heckbert first introduced the one method
that I felt gave the best results for low polygon meshes. Their method is
known as Quadric Error Metrics and is discussed in detail in this
chapter.

Overview

Painting polygons is the most time-consuming aspect of generating real-
time computer graphic displays. If instead of painting 10 000 polygons we
can paint just 1000, then the display update time will improve dramatically.
As a character heads off into the distance, the area of the screen display
occupied by this character will be reduced. Suppose your key character
uses 2000 polygons. At some stages in the game her on-screen height is
500 pixels. At another stage her height occupies just 50 pixels. If she
looks good using 2000 polygons when 500 pixels high, then using 2000
polygons for the 50 pixels high version is unnecessarily complex. The
purpose of this chapter is to show how to create several versions of the
character that are suited for use at different distances from the camera.

Most modelling software will include tools for polygon reduction. One
option would be to include the different resolution meshes in the
application. While this approach would be suitable for CD-ROM distribu-
tion, it does not suit low bandwidth Internet applications. For the latter, we

Using multi-resolution meshes 347

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 16.1 A 2000-, 500- and 250-polygon character.

Figure 16.2 The same model viewed at different camera distances.

348 Using multi-resolution meshes

want as little data in the file as possible and to let the transformation and
rendering engine look after the creation of the different resolution meshes.
Another problem of storing the data within the file will be the use of a
single mesh deformation engine. The approach we will adopt for the
movement of characters is to have a key resolution that is deformed using
some kind of bones system, as outlined earlier. Having deformed the
mesh we then create a display resolution version of this mesh. If the
character is close to the camera, then we may use subdivision to smooth
the mesh. If the character is further away, then we can use polygon
reduction.

The options for polygon reduction

When reducing the number of polygons in a mesh there are fundamen-
tally three alternative routes.

Removing vertices

An algorithm is adopted to scan a mesh and determine the vertex which,
if removed, would make the least difference to the mesh. This vertex is
removed leaving a hole. The hole is re-triangulated and the iteration
process continues until a target number of polygons is in the mesh or a
limiting error is reached. Most algorithms that take this approach cannot
work on arbitrary meshes, so this approach is not really suited to the multi-
resolution meshes we intend to create.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 16.3 Removing a vertex and re-triangulating the hole.

Using multi-resolution meshes 349

Cell analysis

The idea behind this algorithm, introduced by Rossignac and Borrel, is to
encase the mesh inside a bounding box. This bounding box is divided into
an even array of cells. The cells are scanned to see if any vertices from
the original mesh are contained within the cell. In the resulting model, a
single vertex will be used for each cell that contains vertices from the
source model. Merging all the vertices that are found in a single cell
creates the resulting mesh. This algorithm has the benefit of speed but the
resulting models can be improved upon.

Removing edges

The final option is to scan all the edges in the mesh using an algorithm to
determine the edge that will be least missed. Having decided on the edge
to remove, this is achieved by merging the end-points of this edge into a
single vertex. It is this approach that is used in Quadric Error Metric
polygon reduction.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 16.4 Using cell-based analysis.

350 Using multi-resolution meshes

There is a limitation to the edge contraction-based technique where an
unconnected mesh is involved. Because we only allow for edge
contraction, the model can change dramatically in the volumes perceived.
In a low polygon game, the perceived volumes are the most important
aspect of the display. A useful way to avoid the problem of changing
volume when reducing polygons is to allow for two vertices that are close
together to be regarded in the same way as an edge. The human eye
works in much the same way, with distant detail merging together.
Determining the limiting distance for such vertex pairs has to be handled
with care, but the resulting models hold their volume much more
effectively.

Deciding who can stay and who must go

The algorithm we use must determine an error for the removal of an edge.
If by removing the edge we retain a similar shape to the original, after this
contraction then this edge can be safely removed. We do this by
calculating a quadric matrix, Q, for each vertex. The error at a vertex is
then given by vTQv. When calculating the effect of merging two vertices,
we create a new matrix by using the sum of the matrices for each
vertex:

Q� = Q1 + Q2

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 16.5 Removing an edge.

Using multi-resolution meshes 351

The location of the merged vertex can be found using the inverse of this
matrix if it is invertible or some point along the current edge if it is not. The
effect of merging a vertex pair is found using this vertex location and the
sum of the two vertex quadrics:

vT�Q�v�

In their paper, Garland and Heckbert summarized the algorithm as:

1 Compute the Q matrices for all the vertices in the mesh.
2 Select all valid pairs, edges and unconnected vertices that are within

the distance parameter.
3 Compute the position of the vertex when a vertex pair is merged.
4 Compute the error for these new vertices using vT(Q1 + Q2)v.
5 Place the pairs on a heap based on the error calculated in step 4.
6 Iteratively merge a pair and update the costs of any other vertices

affected by this change.
7 Repeat until the desired polygon total is reached.

Deriving the quadric matrix

Each vertex in the mesh is one corner of a number of triangles. If we think
of the triangles as planes, then the vertex represents the intersection of a
group of planes. If these planes are almost in line with each other, then the
effect of removing this vertex will be minimal. If the planes are at a sharp

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 16.6 The benefits of allowing merging of close vertex pairs in addition to edge
contraction.

352 Using multi-resolution meshes

angle to each other, then the effect of removing the vertex will be
dramatic. For any vertex we can define the error with respect to the
current vertex as the sum of the distance to planes. To find a distance will
require us to use a square root, which is a computationally expensive
procedure. Since we are concerned with the error rather than the
distance, we can just use the squared distance.

If we describe each of the n planes using p and a vertex as v, then the
error becomes

�
n

p=1
(pTv)2

A plane p is defined by the equation

ax + by + cy + d = 0

where

a2 + b2 + c2 = 1

Deriving the values for a, b, c and d using the three vertices of a triangle
requires some careful algebra. The exercise becomes one of solving four
simultaneous equations in four unknowns. If we define the three vertices
of the triangle as p, q and r, then the equations are:

apx + bpy + cpz + d = 0 (1)
aqx + bqy + cqz + d = 0 (2)
arx + bry + crz + d = 0 (3)
a2 + b2 + c2 = 1 (4)

Let

k = rx /qx

Therefore, we can create E5 using E2 – k(E3) (where E represents
equation):

b(qy – kry) + c(qz – krz) + d + kd = 0 (5)

Let

m = px/qx

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using multi-resolution meshes 353

Therefore, we can create E6 using E1 – m(E2):

b(py – mqy) + c(pz – mqz) + d + md = 0 (6)

Let

n = (py – mqy)/(qy – kry)

We can create E7 using E6 – n(E5):

c(pz – mqz – n) (qz – krz) + d(1 – m – n + kn) = 0 (7)

Let

s =
pz – mqz – n(qz – krz)

n + kn – 1 + m

v =
(m – 1)s – pz + mqz

Py – mqy

w =
vpy + pz + s

px

With some careful manipulation, we get

c = √(1/(1 + w2 + v2))
d = cs
b = cv
a = –cw

A quadric matrix for a single plane is defined from these values using

Kp = �
a2

ab

ac

ad

ab

b2

bc

bd

ac

bc

c2

cd

ad

bd

cd

d2
�

Since this matrix is symmetrical about the leading diagonal (top left to
bottom right), we do not need to store 16 values, we can make do with just
10:

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

354 Using multi-resolution meshes

Kp = �
q11

q12

q13

q14

q12

q22

q23

q24

q13

q23

q33

q34

q14

q24

q34

q44
�

The quadric matrix for the vertex is defined as the sum of each plane
quadric.

Implementation

Now we will look at how this algorithm can be implemented. We start by
creating a structure to store the information we need for a vertex pair.
Since the rest of our code uses point indices into a point list to describe
each vertex, we use two indices to indicate the number of each vertex in
the vertex pair. The next member is a VECTOR storing the (x, y, z)
location of the contraction target for this pair. Finally, we store the
numerical value for the error for this vertex pair.

typedef struct stQUADRICPAIR{

unsigned short v1, v2; //point indices

VECTOR v; //location for contraction target

double error; //Stores quadric error

}QUADRICPAIR;

The function call to reduce polygons takes a single parameter, which is
the target total polygons. The purpose of the function is to take an
arbitrary mesh containing more polygons than the target and reduce the
polygon total to that passed as a parameter. If you examine the function,
you will see that after checking whether the target polygon total is less
than the current total and marking any morph targets as invalid, a copy of
the original mesh is created using the function call CreatePatchInfo.

The function proceeds by creating quadric matrices for each vertex in
the mesh. We do this using a CQuadric class. This class has member
variables to represent the quadric matrix and constructors to create a
quadric matrix from the plane variables a, b, c and d. Member functions
are available to create the matrix from three points or three quadrics. A
member function, QEM, returns the error for a vertex and a member
function, CreateValidPairsArray, can create an array of quadric pairs that
forms the basis of the algorithm.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using multi-resolution meshes 355

The ReducePolygons function creates an array of quadric pairs using
the CreateValidPairsArray function and then calculates the optimum
location for the contraction target using CalculateVDash. At this stage, the
list of QUADRICPAIRS is sorted into a new list based on the calculated
error. Then the function enters a loop where an edge is removed at each
iteration until the target polygon total is achieved. The removal of an edge
may delete one or more polygons. The RemoveEdge function returns the
number of polygons that have been removed from the mesh. When a
vertex is removed, we set the valid flag for the quadric with the same
index to false to indicate that it is no longer used in the target mesh. On
completion of the algorithm, we must tidy up the data, because we have
a vertex list that now contains gaps indicated by the invalid flag. The
function call StreamlineMesh takes the quadric list and recreates a mesh
based on the current state of the vertex list.

BOOL CToon3DObject::ReducePolygons(int polyTotal){

if (polyTotal >= oi.numpoints) return FALSE;

if (morph) usemorph = FALSE;

//Save original mesh data so we can restore the original

if (pi.numpoints==0) CreatePatchInfo();

CQuadric *q = new CQuadric[oi.numpoints], k;

if (!q) return FALSE;

POLYGON *ply;

int i, j, n, pTotal, qpTotal, count, vTotal;

QUADRICPAIR *qp = NULL, *qparray;

//Calculate the Quadric matrices for each vertex

for (int ptindex=0; ptindex < oi.numpoints; ptindex++){

ply = oi.plys;

q[ptindex].SetVertex(oi.pts[ptindex]);

for(i=0; i<oi.numpolygons; i++){

if (ply->p[0] == ptindex || ply->p[1] == ptindex ||

ply->p[2] == ptindex || ply->p[3] == ptindex){

k.CreateFromPoints(oi.pts[ply->p[0]],

oi.pts[ply->p[1]],

oi.pts[ply->p[2]]);

q[ptindex]+=k;

}

ply++;

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

356 Using multi-resolution meshes

}

//Create array of valid pairs

qp = k.CreateValidPairsArray(oi, qpTotal);

if (qpTotal<1) return FALSE;

for (i=0; i<qpTotal; i++) k.CalculateVDash(qp[i], q);

qparray = SortQuadricPairs(qp, qpTotal);

delete [] qp;

qp = qparray;

pTotal = oi.numpolygons;

vTotal = oi.numpoints;

//Now remove the edges

while(pTotal > polyTotal){

n = RemoveEdge(q, qp, qpTotal);

if (!n){

AfxMessageBox(”Unsuitable mesh for polygons↵
reduction”);

RestoreMesh();

return FALSE;

}

pTotal -= n;

vTotal–;

}

StreamlineMesh(q);

delete [] qparray;

delete [] q;

Transform();

return TRUE;

}

Having got an overview of the method, we will look in more detail at the
CQuadric class. The class contains a constructor that can be used to
create a quadric from the plane coefficients.

CQuadric::CQuadric(double a, double b, double c, double d)

{

q11 = a*a;

q12 = a*b;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using multi-resolution meshes 357

q13 = a*c;

q14 = a*d;

q22 = b*b;

q23 = b*c;

q24 = b*d;

q33 = c*c;

q34 = c*d;

q44 = d*d;

v.x = 0.0; v.y = 0.0; v.z = 0.0;

valid = TRUE;

deleted = FALSE;

}

The function that is used in the ReducePolygons function to create plane
quadrics is the member function CreateFromPoints. This function will
create the quadric directly from any three points in the plane. The algebra
was shown earlier in the chapter. By passing the three points in the
triangular polygon we can construct a plane quadric. Summing these
plane quadrics for the polygons meeting at a vertex gives the vertex
quadric. Since we are interested in vertex quadrics, we must build these
from plane quadrics. The speed of the ReducePolygons function could be
improved by creating an array of plane quadrics so that the fundamental
quadric is calculated only once.

BOOL CQuadric::CreateFromPoints(POINT3D &p1, POINT3D &p2, POINT3D↵
&p3)

{

double a, b, c, d, k,m, n,s, v, w;

k = p2.x/p3.x;

m = p1.x/p2.x;

n = (p1.y – m*p2.y)/(p2.y – k*p3.y);

s = (p1.z – m*p2.z – n*(p2.z – k*p3.z))/(n + k*n – 1 +m);

v = (s*(m – 1) – p1.z + m*p2.z)/(p1.y – m*p2.y);

w = (v*p1.y + p1.z +s)/p1.x;

c = sqrt(1.0/(1 + w*w + v*v));

a = -c*w;

b = c*v;

d = c*s;

q11 = a*a;

q12 = a*b;

q13 = a*c;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

358 Using multi-resolution meshes

q14 = a*d;

q22 = b*b;

q23 = b*c;

q24 = b*d;

q33 = c*c;

q34 = c*d;

q44 = d*d;

valid = TRUE;

v.x = 0.0; v.y = 0.0; v.z = 0.0;

deleted = FALSE;

return TRUE;

}

To return the quadric error metric of a pair, we take the sum of the vertex
quadrics and multiply by the contraction target and its transpose. This
utility function assumes that the sum of the vertex quadrics is stored in the
member variables. We pass the contraction target as a VECTOR
reference.

double CQuadric::QEM(VECTOR &v)

{

double vx, vy, vz;

vx = q11*v.x + q12*v.y + q13*v.z + q14;

vy = q12*v.x + q22*v.y + q23*v.z + q24;

vz = q13*v.x + q23*v.y + q33*v.z + q34;

return (vx*v.x + vy*v.y + vz*v.z + 1.0);

}

When creating an array of valid pairs we first assign every edge. This is
done by iterating through each polygon and adding each edge of a polygon
to the valid pairs array. If the pair is already present in the array then the
algorithm moves on without adding this pair. If the pair is not present then
the current pair is added to the valid pairs array. After adding the pair a
counter qpTotal is incremented. If this value exceeds the array size, which
is stored in the variable qpMax, then the array is doubled in size and the
original array copied to the new memory allocation. This dynamic allocation
of memory can provide a useful technique for array expansion. Valid pairs
include vertices whose distance apart is within a certain boundary. One of
the parameters used for the function CreateValidPairsArray is distance.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using multi-resolution meshes 359

The distance between two points in 3D space is easily calculated from an
extension to Pythagoras’ theorem.

double x,y, z;

x = (x1 – x2);

y = (y1 – y2);

z = (z1 – z2);

dist = sqrt(x * x +y *y + z * z);

Unfortunately, square roots are computationally expensive. But we are
only interested in staying inside a parameter, so we can use the squared
distance (see Table 16.1).

QUADRICPAIR *CQuadric::CreateValidPairsArray(OBJECTINFO &oi,↵
int &qpTotal, double distance)

{

POLYGON *ply = oi.plys;

int qpMax = oi.numpolygons*4, i, n,m, j;

QUADRICPAIR *qp = new QUADRICPAIR[qpMax], *qptmp;

BOOL found;

double vsqdist, sqdist = distance * distance;

qpTotal = 0;

if (!qp) return NULL;

for(i=0; i<oi.numpolygons; i++){

found = FALSE;

for(n=0; n<ply->numverts; n++){

m = (n==(ply->numverts-1))?0:n+1

for (j=0; j<qpTotal; j++){

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Table 16.1 Distances and squared distances

Distance Distance squared

0.01 0.0001
0.1 0.01
1 1
10 100
100 10 000

360 Using multi-resolution meshes

if (qp[j].v1==ply->p[n] && qp[j].v2==ply->p[m]){

found=TRUE;

break;

}

if (qp[j].v1==ply->p[m] && qp[j].v2==ply->p[n]){

found=TRUE;

break;

}

}

if (!found){

//Add edge

qp[qpTotal].v1 = ply->p[n];

qp[qpTotal].v2 = ply->p[m];

qp[qpTotal].deleted = FALSE;

qpTotal++;

if (qpTotal>=qpMax){

//Enlarge the array

qptmp = new QUADRICPAIR[qpMax * 2];

if (!qptmp) return FALSE;

qpMax *= 2;

memcpy(qptmp, qp, sizeof(QUADRICPAIR)*qpTotal);

delete [] qp;

qp = qptmp;

}

}

}

ply++;

}

if (sqdist>0.0){

//Add any vertex pairs closer than distance

for (i=0; i<oi.numpoints; i++){

for (j=0; j<oi.numpoints; j++){

vsqdist = (i.x – j.x)*(i.x – j.x) + (i.y – j.y)*

(i.y – j.y) + (i.z – j.z)*(i.z – j.z);

if (vsqdist < sqdist){

//Add this pair

qp[qpTotal].v1 = i;

qp[qpTotal].v2 = j;

qpTotal++;

if (qpTotal>=qpMax){

//Enlarge the array

qptmp = new QUADRICPAIR[qpMax * 2];

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using multi-resolution meshes 361

if (!qptmp) return FALSE;

qpMax *= 2;

memcpy(qptmp, qp,

sizeof(QUADRICPAIR)*qpTotal);

delete [] qp;

qp = qptmp;

}

}

}

}

qutmp = new QUADRICPAIR[qpTotal];

memcpy(qptmp, qp, sizeof(QUADRICPAIR)*qpTotal);

delete [] qp;

return qptmp;

}

When creating the contraction target we attempt to invert the matrix
created from the sum of the end vertex quadrics. Matrices are not always
invertible; it depends on the determinant of the matrix not being zero. If
the current matrix is not invertible, then we use the vertex that gives the
least error from the end-points and the mid-point as the contraction
target.

BOOL CQuadric::CalculateVDash(QUADRICPAIR &qp, CQuadric *q)

{

CQuadric vq, vqInv;

VECTOR v;

double err[3];

vq = q[qp.v1] + q[qp.v2];

if (vq.Invert()){

qp.v.x = vq.q14;

qp.v.y = vq.q24;

qp.v.z = vq.q34;

qp.error = vq.QEM(qp.v);

}else{

//vq is not invertable so select v dash as lowest error

//from the mid point and endpoints

v.x = (q[qp.v1].v.x + q[qp.v2].v.x)/2.0;

v.y = (q[qp.v1].v.y + q[qp.v2].v.y)/2.0;

v.z = (q[qp.v1].v.z + q[qp.v2].v.z)/2.0;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

362 Using multi-resolution meshes

err[0] = vq.QEM(q[qp.v1].v);

err[1] = vq.QEM(q[qp.v2].v);

err[2] = vq.QEM(v);

if (err[0]<err[1] && err[0]<err[2]){

qp.v.x = q[qp.v1].v.x;

qp.v.y = q[qp.v1].v.y;

qp.v.z = q[qp.v1].v.z;

qp.error = err[0];

}

if (err[1]<err[0] && err[1]<err[2]){

qp.v.x = q[qp.v2].v.x;

qp.v.y = q[qp.v2].v.y;

qp.v.z = q[qp.v2].v.z;

qp.error = err[1];

}

if (err[2]<err[0] && err[2]<err[0]){

qp.v.x = v.x;

qp.v.y = v.y;

qp.v.z = v.z;

qp.error = err[2];

}

}

return TRUE;

}

Using single mesh deformation

It is certainly possible to transform a single key mesh and then choose an
appropriate rendering level using either subdivision to enhance the mesh
or polygon reduction to decimate the mesh. Another strategy when using
polygon reduction techniques is to pre-calculate several versions of your
model and choose the appropriate model depending on the viewing
angle. If you choose to adopt this strategy, which will involve less work at
display time, then you will need some way of deforming a single mesh
based on some kind of bones system. Identifying which vertices belong to
which control sets can be hard under these circumstances. If your original
mesh is split into point sets that are controlled by individual controls, then
you need to track the control sets as the vertex contraction takes place.
You will need some kind of strategy when contracting an edge that
belongs to two control sets. Which control set should the contraction
target belong to? One technique is to calculate the distance from the

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using multi-resolution meshes 363

vertex to the pivot point of its control and choose the vertex that is closest
to its pivot.

Summary

Polygon reduction and its sister technique subdivision are very important
in games intended for a PC platform. They offer the key to scalable
displays on hardware that can be very different. While pre-calculated
meshes of different polygon depths offer the tightest possible control, this
method does not lend itself to the important area of Internet distribution.
The dawn of 3D distribution via the Internet is always just around the next
corner. But it has so much to offer that it seems certain to eventually
dominate. Using the methods outlined in this chapter and the previous
one, you will have a head start in awareness of the techniques you should
use to enhance your games and demos.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

17 The scene graph

A simple game may include an intro, a configuration screen, two or three
game levels, a successful end, an unsuccessful end and a play again
selection screen. Trying to manage all this in a single scene can be
complex and wasteful in terms of memory resources. In this chapter we
will look at how to break a project down into manageable sections so that
we can deal with one thing at time. We will look at how to manage texture
resources across scenes and how using shared libraries can prove
useful.

What are we going to store in a scene?

In true OOP style, we are going to create a class called CToon3DScene
that will contain all the data that will constitute a scene. A project may
contain several scenes and data that are stored globally, so that all
scenes can access these resources conveniently. The simplest project,
however, will contain just a single scene and no global resources. For this
reason, our scene class must provide a data structure capable of storing
everything that is to be used in a simple animated demo. A list of
resources a scene requires is as follows:

1 Meshes
2 Morph targets
3 Surface data
4 Images
5 Motion files
6 Text objects
7 Buttons
8 Cameras

The scene graph 365

9 Scripts
10 User control
11 Texture objects
12 Sounds
13 Collision boxes
14 Interactive behaviours

The design of the data needs to be as flexible as possible. Let’s consider
the main data members.

Meshes and morph targets

A mesh must know about its own topology. The simplest way to store a
mesh is as a vertex list and a polygon list. The polygon list defines a
polygon using indices into the point list, together with a surface ID, which
is an index into the surface list. But a surface list could be global, scene
level or mesh level. If the surface ID is a 32-bit integer, then we could use
the top 2 bits to flag to which surface list the ID refers; a surface that uses
a bitmap texture is quite demanding of resources so should be shared
wherever possible. When dealing with character animation, complex and
repeated animations can be handled easily with morph targets. In the
accompanying software Toon3D Creator the morph targets are saved and
loaded by the mesh object. In a complex and involved game, the central
characters may require many morph targets for a face. Different targets
may be required as the player moves through the game. The scene class
needs the ability to use some targets and not others. A simple way to
provide this facility is to check the animation that has been created and
test for any targets that have zero level throughout the animations within
a scene. If this is the case then these targets are unnecessary within that
scene. But if the scene is then saved excluding these morph targets, it will
be more complicated for a developer to change the animations to use
them again. This leads to an interesting conclusion. The scene file that a
developer needs to save is different from the scene file that an end-user
needs to load. A developer needs the ability to change tack and revise the
animation and interactivity, while the end-user just needs the minimum
necessary to display the appropriate meshes, at the right time, with the
correct deformation. Toon3D Creator uses project files and published
files. In the next and final chapter we will look at how we can compress the
final end-user files using simple compression techniques. For now, we will
be more concerned with creating a structure to store everything and less
concerned with keeping the data size small.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

366 The scene graph

Images

Bitmap images are memory hungry. It
is essential that these resources be
used economically. Just as surface ID
can point to global, scene level and
mesh level surfaces, we can have
image lists that are global, scene level
and mesh level. The images that are
used for the central character are
likely to be used across scenes and
so would be a good choice for a
global library of images, while the
bitmaps used to texture a character
that appears in a single scene are
more suited to a scene level list. If
your project has characters that may
appear in a scene and yet could very
well not appear, then some type of
dynamic loading would be more suit-
able. The problem with dynamically
loading a character mesh and tex-
tures is that the user is likely to
experience a brief delay. For some
games this can easily be hidden by a
short tension-building animation.

Dynamic loading has the distinct benefit that it is the best use of
resources.

Motion files

Most animated characters have libraries of movements. For a biped
character, all parts of the body are connected to the hips in most cases.
The movement of these characters is created from a combination of the
transformation, scaling and orientation of the hips and the orientation of all
the other parts. In most cases the animation will be created using
rotations only; no transformation or scaling is used other than for the hips.
This means that a character with the same hierarchy could share the
same animation for all parts other than the hips. This makes the creation
of the animation quicker and the file sizes are going to be smaller as a
result. In common with surface and image lists, we can define a motion

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 17.1 Image list.

The scene graph 367

globally, at the scene level or at the mesh level. The mesh object knows
about its animation so we will include a flag that informs the transforma-
tion engine that the motion is coming from a mesh, scene or global level
motion file.

Text and buttons

No game or demo is going to be complete without at least some text and
the odd button. Buttons are usually best defined at the global level, since
they define a look and feel for a game that should remain consistent. Text,
however, is a scene level object. The displayed string of characters, the
font, colour, size and location will vary from scene to scene. Toon3D
defines a CGLText class to handle text objects. Because text can move on
the screen, the CGLText class uses a special format for key values. As
well as frame value, x and y position, scale and the smoothing factors
tension, bias and continuity, the actual string value to be displayed is part
of the key value.

typedef struct stTEXTKEY{

int frame;

GLfloat x,y,scale;

char str[80];

float tn,ct,bs;

BYTE linear;

}TEXTKEY;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+Figure 17.2 A three-channel motion file.

368 The scene graph

To use fonts within OpenGL, they need to be converted into a series of
OpenGL lists. OpenGL can use a series of commands in a single call by
storing them inside a list. The principle behind using fonts is to create a list
that describes to OpenGL how to draw each character within a font.
Thankfully we can use the Windows-specific function wglUseFontOut-
lines. Before we do this, we need to set the font we are intending to use
as the active font for the OpenGL window. We can easily display a font
selector using a font dialog box. The choice is stored as a LOGFONT
structure. The code used in Toon3D to display the font dialog box is as
follows:

void CGLTextDlg::OnTextSetfont()

{

CFontDialog dlg;

//Initialise the LOGFONT structure

dlg.m_cf.lpLogFont = &m_logfont;

//Tell the dialog box to use the LOGFONT member

dlg.m_cf.Flags |= CF_INITTOLOGFONTSTRUCT|CF_EFFECTS;

//Set the current colour

dlg.m_cf.rgbColors = m_clr;

//Display the dialog box

if (dlg.DoModal()==IDCANCEL) return;

//Store the new LOGFONT definition

dlg.GetCurrentFont(&m_logfont);

//Delete the old font

if (m_font.m_hObject) m_font.DeleteObject();

//Set the new one

m_fontready = m_font.CreateFontIndirect(&m_logfont);

//Update the colour value

m_clr = dlg.GetColor();

//Tell our dialog box to redraw itself

Invalidate(FALSE);

}

Using the MFC class CFontDialog involves initializing the member
variable m_cf, which is a CHOOSEFONT structure. When initializing this
member variable, we set the CF_INITTOLOGFONTSTRUCT and CF_
EFFECTS bits of the Flag member. CF_INITTOLOGFONTSTRUCT
informs the dialog box that the font is specified by the pointer to a logical
font, the lpLogFont member of the CHOOSEFONT structure. The CF_

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

The scene graph 369

EFFECTS bit tells the dialog box that colour and other effects such
as underline are to be used. We wish to specify colour so we use this
bit.

Having got a user choice for the LOGFONT we need to ensure that this
is the font used by the OpenGL window. First, we create a handle to a font
using CreateFontIndirect. Then we select this into the device context for
the OpenGL window. Now OpenGL knows which font to use when
creating the font outlines. At this stage we are ready to create the display
lists needed to display fonts. The parameters for wglUseFontOutlines
are:

BOOL wglUseFontOutlines(

HDC hdc, // device context of the outline font

DWORD first, // first glyph to be turned into a display

//list

DWORD count, // number of glyphs to be turned into

//display lists

DWORD listBase, // specifies the starting display list

FLOAT deviation, // specifies the maximum chordal deviation

FLOAT extrusion, // extrusion value in the negative z

//direction

int format, // specifies line segments or polygons in

//display lists

LPGLYPHMETRICSFLOAT lpgmf // address of buffer to receive

//glyph metric data

);

Having done some Windows programming, you should by now be
familiar with device contexts, so the hdc parameter should be clear. If we
look at an ANSI table for character values (Table 17.1), you will see that
the first displayable character is 32 (space) and that the standard set of
characters goes up to 126 (~). To display a standard string, we therefore
need to be able to display characters 32 through to 126. When creating
the display lists, we therefore set first to 32 and count to 126 – 31 = 95.
The parameter listbase refers to where in the display lists to store the
result. If this is the first use of display lists then we could set this value to
0. If we have several fonts then each font needs 95 display lists. It is the
responsibility of the scene to make sure that fonts being assigned in this
way use display lists appropriately.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

370 The scene graph

Since OpenGL draws polygons, all curves are approximations. The
parameter deviation indicates how precise the linear approximation needs
to be. Figure 17.3 shows how a small value for deviation can create a
large number of line segments, while a large value would create a cruder
version of a letter using fewer line segments. If you choose you can
extrude the font to make it have depth using the extrusion parameter. The
format parameter must be either WGL_FONT_POLYGONS or WGL_
FONT_OUTLINES. If polygons are selected, then the font will be painted
solid. If outlines are used then the outline of the font will be used.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Table 17.1 ANSI character set

0 � 32 64 @ 96 ` 128 e 160 192 À 224 à
1 � 33 ! 65 A 97 a 129 � 161 ¡ 193 Á 224 á
2 � 34 " 66 B 98 b 130 , 162 ¢ 194 Â 226 â
3 � 35 # 67 C 99 c 131 ƒ 163 £ 195 Ã 227 ã
4 � 36 $ 68 D 100 d 132 ,, 164 ¤ 196 Ä 228 ä
5 � 37 % 69 E 101 e 133 … 165 ¥ 197 Å 229 å
6 � 38 & 70 F 102 f 134 † 166 |- 198 Æ 230 æ
7 � 39 ' 71 G 103 g 135 ‡ 167 § 199 Ç 231 ç
8 � 40 (72 H 104 h 136 ˆ 168 ¨ 200 È 232 è
9 � 41) 73 I 105 i 137 ‰ 169 © 201 É 233 é

10 � 42 * 74 J 106 j 138 S̆ 170 a 202 Ê 234 ê
11 � 43 + 75 K 107 k 139 ‹ 171 « 203 Ë 235 ë
12 � 44 , 76 L 108 I 140 Œ 172 ¬ 204 Ì 236 ı̀
13 � 45 - 77 M 109 m 141 � 173 - 205 Í 237 ı́
14 � 46 . 78 N 110 n 142 Z̆ 174 ® 206 Î 238 ı̂
15 � 47 / 79 O 111 o 143 � 175 – 207 Ï 239 ı̈
16 � 48 0 80 P 112 p 144 � 176 ° 208 -D 240 ö
17 � 49 1 81 Q 113 q 145 ‘ 177 ± 209 Ñ 241 ñ
18 � 50 2 82 R 114 r 146 ’ 178 2 210 Ò 242 ò
19 � 51 3 83 S 115 s 147 “ 179 3 211 Ó 243 ó
20 � 52 4 84 T 116 t 148 ” 180 ´ 210 Ô 244 ô
21 � 53 5 85 U 117 u 149 • 181 μ 213 Õ 245 õ
22 � 54 6 86 V 118 v 150 – 182 ¶ 214 Ö 246 ö
23 � 55 7 87 W 119 w 151 — 183 · 215 × 247 ÷
24 � 56 8 88 X 120 x 152 ˜ 184 çc 216 Ø 248 ø
25 � 57 9 89 Y 121 y 153 ™ 185 1 217 Ù 249 ù
26 � 58 : 90 Z 122 z 154 s̆ 186 ° 218 Ú 250 ú
27 � 59 ; 91 [123 { 155 › 187 » 219 Û 251 û
28 � 60 < 92 \ 124 | 156 œ 188 1⁄4 220 Ü 252 ü
29 � 61 = 93] 125 } 157 � 189 1⁄2 221 Ý 253 ý
30 � 62 > 94 ^ 126 ~ 158 z̆ 190 3⁄4 222 |� 254 |�

31 � 63 ? 95 _ 127 � 159 Ÿ 191 ¿ 223 ß 255 ÿ

The scene graph 371

In this function call to create a GL font we pass the device context and
the listbase value, and the function creates a set of display lists.

BOOL CGLText::CreateGLFont(HDC hdc, int listbase)

{

HFONT hfont, sfont;

Hfont = CreateFontIndirect(&m_logfont);

if (!hfont){

AfxMessageBox(”Problem creating logical font”);

return FALSE;

}

sfont = (HFONT)SelectObject(hdc,hfont);

m_listinit = wglUseFontOutlines(hdc, 32, 95, listbase, 0.0f, 0.1f,

WGL_FONT_POLYGONS, NULL);

if (!m_listinit){

AfxMessageBox(”Problem creating font display list”);

}

m_listbase = listbase;

SelectObject(hdc, sfont);

return m_listinit;

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 17.3 The effect of altering the deviation parameter in function call
wglUseFontOutlines.

372 The scene graph

Now to display a string we can use a simple function. First, we set the
transformation matrix, disable lighting calculations, set the current colour
and set the base number for list use. To actually display the characters we
use the GL function glCallLists. This function takes three parameters: the
number of lists that are to be drawn, a type value which we set as an
unsigned byte and finally an array of numerical values that define the lists
to use. A string is actually an array of unsigned bytes. A string that reads
‘This is a string’ is stored in memory as

T h i s i s a

084 104 105 115 032 105 115 032 097 032

s t r i n g

115 116 114 105 110 103 000

Since for our list value 32 or space is actually the first list, we need to
make sure that when the value 32 is encountered we use the first list we
stored. This is achieved by setting the listbase to 32 less than the stored
value. Now when displaying the string above, list 52 is used to display ‘T’
and list 0 displays a space.

void CGLText::DrawText(int x, int y, int scale, CString str)

{

//Create a transformation matrix

glLoadIdentity();

glTranslatef(x, y, -5.0f);

glScalef(scale, scale, scale);

glDisable(GL_LIGHTING);

glRGB(m_red,m_green,m_blue);

// Display a string

glListBase(m_listbase – 32); // Indicates the start of display

// lists

// Draw the characters in a string

glCallLists(str.GetLength(), GL_UNSIGNED_BYTE, (LPCTSTR)str);

glEnable(GL_LIGHTING);

}

An alternative approach to text involves using a bitmap-based font. You
could create a bitmap which contains an array of an ANSI character set. If
the font is elaborate then this is often a good way to proceed. Since most

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

The scene graph 373

fonts are not evenly spaced, you need a way of being able to access the
correct character using this bitmap font. One way is to store each character
with a dot drawn beneath the letter that defines the right extent of the
character. If each line of the bitmap stores 32 characters and you want to
display character ‘T’, which is ANSI value 84, then your code must consider
the third line. The bitmap for this character is 20 characters across on this
row. By scanning the alignment line until 20 dots have been read, the code
now knows the top left of this character cell and the bottom right.

Another useful resource is buttons; your application will have its own
technique for button use. Whatever method you choose it is important to
be consistent. If you want to display a button simply by giving an ID value,
yet the button has a rollover highlighting method and a down location,
then each of these display differences can be easily handled using three
different bitmaps. Displaying buttons is simply a question of displaying the
correct bitmap.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+Figure 17.4 Bitmap-based text resources.

Figure 17.5 Buttons defined using bitmaps.

374 The scene graph

Cameras

Cameras come in two basic forms, the camera that moves with the action
and the camera that is fixed. One simple way to use the camera is to
attach it to the user’s character. Using this technique, the user always
gets the same view of the character. Another method is to let the camera
swing around as the player moves about the environment. While
considerably more complex to implement, this has a much more filmic
feel. If the game environment lends itself to a grid structure then the
camera direction can be stored in a three-dimensional array. As the player
moves from one block to the next, the transformation engine will probably
use quaternion interpolation to swing the camera orientation around. The
details of this are best stored in a scene level camera structure.

Scripts, user control and behaviours

Unless the scene is strictly linear, with no interaction, then a scene must
store the details about how the interaction occurs. This may include
scripts, how the user interacts with the scene resources. Often, a user will
control a central character and the scene must know how this control is
handled. Each character in an interactive scene will have a set of
behaviours. A character may have an animation loop for walking, running,
falling, jumping, etc. The behaviour policy will link the condition of the
game and the user control to an appropriate behaviour for the
character.

Texture objects

Real-time 3D character animation makes extensive use of textures to add
detail to a scene that cannot be achieved via more complex geometrical
models. Textures can be stored at the object level, the scene level or the
global level. Characters that appear infrequently and use unique textures
should use textures that are assigned at the object level, while the central
character if she appears in several scenes would be a good candidate for
a texture that is stored at the global level. Scene level texture storage
applies to characters that appear only in a specific scene and make use
of textures that appear only in that scene. Texture objects are stored in an
array and are accessed when rendering via the OpenGL texture ID. Each
polygon in a scene has a surface index into the surface list. The surface
list contains a pointer to a texture. The texture contains the OpenGL

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

The scene graph 375

texture ID. By using a pointer to a texture within the surface structure, we
ensure that a simple surface that defines only colour does not contain
unnecessary details about a texture.

Collision boxes

When handling interaction, collisions are always an important considera-
tion. A character may collide with the background elements of a scene
and collision boxes can be used to handle this. The developer sets up a
series of boxes that define the geometry of the background in the simplest
way possible, then a collision check will detect if the central character has
fallen off a wall, is trying to walk through a wall or is underwater. A
character may intersect with another simple object such as a box; in code
you may want to trigger a cut scene animation whenever this happens.
Again, using a collision box list it is possible to route the code to the
appropriate place. A collision box needs dimensions and it also needs to
store the information about what to do in the event of a collision. You may
simply want to reorient the central character so that they are not walking

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 17.6 Collision boxes defining background collisions.

376 The scene graph

through the wall, you may want the character’s action to switch, perhaps
this collision triggers another character’s action or it may cause program
navigation to switch.

The most complex collisions occur between two characters and you are
advised to read Chapter 13, which covers collisions in detail.

Application-dependent resources
There are other resources a scene may need to handle which are
application dependent. The use of physics in the real-time environment is
becoming more common. If you are using physics in a scene then the
most common use of physics is to have a value for gravity. The classic
definition of the location of a projectile under gravity is

x = utcos(�) y = utsin(�) – 1
2gt2

where u is the launch speed in m s–1 (metres per second), t is the time in
seconds since the launch began and g is a value for gravity that is
commonly set to 9.81 m s–2. To use this simple physics device in your
scene will involve defining a value for g in the scene and informing the
transformation engine that physics is active. When your central character
begins to fall, then gravity can kick in to take over the control. For the
effect to look realistic with the value for gravity indicated, the character’s
scale must be in metres; that is, the height of a human biped must be
around 1.8 m.

Physics can be as simple as this or complex enough to include flowing
hair. If you want to include physical simulations in your code then most
developers adopt some variant on a mass–spring network. The principle
here is to regard each vertex as a point mass. That is a mass that has no

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 17.7 Projectile motion.

The scene graph 377

real size. Then the edges in a mesh are defined as primary springs and
with a quad mesh secondary springs are defined that join the diagonals of
the mesh. The strength of the springs defines how the mesh will deform.
In general, part of the mesh will be defined as non-deforming, while some
of the mesh is given this physical behaviour.

Classical mechanics gives all the information we need to deal with a
damped spring. The extension of a spring is defined by Hooke’s law to be

Fs = –K(x – e)/e

where K is the spring constant defining the strength of the spring, x is the
actual length of the spring and e is the equlibrium length of the spring. In
our case, e is the length of the edge in the original model.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure 17.8 Mass–spring network.

Figure 17.9 A damped spring.

378 The scene graph

The damping of a spring is defined using

Fd = L(v1 – v2)

where L is the damping constant and v1 and v2 are the velocities of the
two point masses at each end of the spring.

Now at each time step the acceleration, velocity and position of each
point mass are calculated according to the classical laws of dynamics.
Each point mass is acted upon by a force which is a combination of the
effects of external forces, usually just gravity for a real-time application,
and internal forces due to the springs and dampers. The aim of a
simulation is to solve the location for each point mass effected in this way.
Since each point mass has an effect on the other masses, we need to use
numerical methods to solve what is called a differential equation. The
simplest method is called Euler’s method, after the famous mathema-
tician. Euler’s method is quick but prone to error unless the time interval
is very short. Creating robust physical simulations is beyond the scope of
this book, but some of the references at the end should provide a useful
starting point for those interested in extending their knowledge into this
cutting edge area.

Physics simulations are computationally demanding but can often be
effectively pre-calculated. This involves a slight delay on loading. The pre-
calculation stores the final position of a mesh at each time step.
Displaying the mesh is then just an exercise in displaying the correct
mesh for the current time.

Using globally shared resources

As we have seen, some resources should be available globally
throughout an application, while others can be set to object level. A
central character that appears in the same costume throughout an
application is ideally suited to be a global level resource. A single prop
that only ever appears if the animation arrives in a particular scene
under a certain combination of conditions is suited to be an object level
resource. Choosing which resource is available globally, which at the
scene level and which at the object level is something of an exercise in
guesswork. The aim is to cut down on load times and minimize memory
use from the main memory and from the graphics card. With today’s
(April 2000) graphics cards offering at least 32 MB of memory, such
considerations are proving less necessary than when graphics cards
had only 4 MB on offer. Nevertheless, careful use of such resources

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

The scene graph 379

speeds up the flow of a game or demo and so is well worth taking into
consideration. A useful strategy is to adopt a statistical approach. If
resources are used across more than 60 per cent of the game, then set
them as globally available resources. These are kept across scene
loads and are loaded just once as the program does the initial load and
initialization. If resources are used across more than 60 per cent of a
scene, then set them at scene level so they are loaded and initialized
on scene load. If resources are used less than 60 per cent of the time
within a scene, then load them dynamically. These are the hardest to
achieve and the most demanding because the load and initialization
have to be done seamlessly while the user is playing the game or
demo. Since processor time is scarce at such times, you may decide
that all resources are loaded at either initial load time or scene load
time. But this approach will only suit the smaller demos; at some stage
as a production becomes more sophisticated you will need to be
dynamically switching texture resources. One approach to this problem
is to keep overall scenes smaller, but this only means that the user
experiences more delays as scenes are switched. In the end, it is a
question of play testing across a range of machines and graphics cards
to see which is the best approach to the availability of resources.

Cloning mesh data within a scene

One of the best ways to achieve economy in the use of hardware
resources is to use clones. If you have six characters in the same uniform,
then they could have exactly the same mesh data. If a mesh has 2000
vertices and 2000 triangles, then we can calculate the memory require-
ment for a single use of this mesh.

A single vertex that stores origin position, transformation position,
original vertex normal and transformed vertex normal as 12-byte vectors
will be 48 bytes. Therefore, a 2000-vertex character will use 2000 × 48 =
96 000 bytes, nearly 94K. This may not seem a lot, but if the same
character uses 12 128 × 128 bitmaps as textures, then this adds another
576K to the total. So a single character is using nearly 700K of memory
before it starts moving. If we have six of these characters then we are
using around 4 MB for the internal storage. If, however, we clone the
characters, then we reference the original mesh data and textures. If the
characters are moving in a regimented fashion in synchronization with
each other, then we can use the same motion files and just apply a small
offset to ensure that they are not all sharing the same screen space. If
they need to move independently, then the storage system can use a

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

380 The scene graph

vertex structure that saves both the origin position and the transformed
position separately.

typedef struct stT3DPOINT{

float x, y, z;

float nx, ny, nz;

}T3DPOINT;

Using this method we can clone the original mesh and geometry while
tracking a uniquely transformed version of the mesh.

Cloning mesh data from scene to scene

It may well be that a character that is not available as a global resource
is nevertheless used across several scenes. We may want to use a
storage system that saves the character once and then references the
character from the original storage. The advantage of such an approach
is that if the character changes in one scene because it is decided that the
costume or mesh should be altered, then the change is seen across all
scenes. Cloning mesh data across scenes leads to a concern about what
part of a character you intend to clone. Potentially a character contains

� Mesh data
� Surface data
� Hierarchy
� Motion data

It is conceivable that any combination of these data is cloned. Tracking
this across a development environment becomes quite taxing. Things to
consider are deletions and replacements. Let’s consider an example. A
character is used in scene 2 and then cloned in scenes 5 and 7. In scene
5 just the mesh data are cloned, while in scene 7 the motion is cloned to
use on another character. A production decision is made to remove the
character from scene 2. If the character is deleted, then the mesh data in
scene 5 and the motion data in scene 7 will be lost. Since only part of the
resource is used in each scene, we cannot simply switch the main storage
from one scene to another. You will need to implement some kind of
strategy to offer the developer some replacement options. The simplest
option is to switch the character to a global resource, but then it is going
to be using lots of resources unnecessarily. Another method would be to
split the data between the two scenes and lose any information that is not

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

The scene graph 381

immediately required. A final method within the development environment
is to have a global resources library that is available only at development
time. Such resources are only added to the runtime if they are actually
used in the execution of the program. If you are concerned at all with the
development environment, then you will realize that giving the user the
options to retrace their steps is often one of the hardest parts of providing
development software.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Defining animation action libraries
If you followed the chapter on motion capture then you will realize just how
much data can be involved in a mocap character. A standard hierarchy
using nine channels for the top level bone and three for all the others
leads to 59 motion channels, each using 4 bytes. That is a minimum of
236 bytes per time step. If the time step is based on film rates of 24 per
second, then 2 minutes of animation stored in this way will use

59 (Channels) × 4 (bytes per channel) × 24 (keys per second) ×
60 (seconds per minute) × 2 (minutes) = 679 680 bytes (664K)

Motion capture is very popular in real-time applications because the
motion is very realistic and production costs tend to be lower, but internal
memory storage is huge. For this reason, if an action such as a walk can
be shared across several characters, then the resource implications are
minimized. Motion is very distinctive, however, and the viewer is likely to
see the similarities. One effective way to hide the similarities is to add a
secondary motion on top of the motion capture motion, perhaps a more
exaggerated swing to the hips or maybe a higher jump. Since this
secondary animation is keyframed it will be much smaller in memory use.
The chapter on motion capture gives advice on using secondary motion
channels.

Cloning surface attributes
With a real-time game the biggest consumer of hardware resources is the
display of bitmapped textures. If these scarce resources can be shared by
cloning then this is highly desirable. By using UV texturing methods it is
possible for the same rectangular bitmap to provide the texture for several
surfaces. This technique provides the most economical use of texture
memory. If all textures can be stored on the graphics card within the
memory resident there the frame rates are going to be significantly higher
than if main memory has to be used for such storage.

382 The scene graph

Switching scenes

Having set up the game or demo to use several scenes, we need to
consider the steps necessary to switch a scene. First, we must delete any
resources that are unique to the current scene. These include texture
objects and fonts. Then we create any new textures. In the source code
from Toon3D the user is offered three options for texture quality. At the
highest level the full texture size is used. If frame rates are suffering the
user can choose to show textures at half or quarter size. The bitmap that
supplies the texture to OpenGL is resized before being passed. Another
memory saving option is not to use MipMaps. You will know from the
OpenGL chapters that MipMaps are multiple sizes of bitmap texture that
can be created with better filtering at creation time and then used at
runtime to avoid the sparkling inherent in using the nearest pixel method
for filtering a scaled bitmap. For full details, refer to Chapter 4. OpenGL
uses a texture ID to reference a texture. We need to ensure that our
surfaces refer to the correct texture ID that is only determined at runtime.
For this reason, we iterate through all the surfaces and set the appropriate
texture ID by matching the texture name and the GL texture name. Scene
switching is finalized by the creation of any GL fonts that may be used and
the transformation of all objects in the scene by setting a starting frame.
Remember that GL fonts use display lists which, once created, are the
responsibility of the calling program to delete.

BOOL CToon3DDoc::SetScene(CToon3DScene *scn)

{

//Return if the choosen scene is already selected as active

if (scn==selScene) return FALSE;

//Deselect any object, surface, image etc;

SelectNone();

//Clear existing GL textures

if (selScene && selScene->texTotal){

for (int i=0;i<selScene->texTotal;i++){

glDeleteTextures(1,&selScene->gltextures[i].texID);

}

}

//Clear existing fonts

if (selScene) selScene->textList.ClearGLFonts();

glClearColor(scn->bgCol[0], scn->bgCol[1], scn->bgCol[2], 1.0f);

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

The scene graph 383

//Update variables

selScene = scn;

camera = &scn->camera;

CDIB pic;

CLWObject *obj;

TEXTURE *tex;

int i, j, srcwidth, srcheight, destwidth, destheight;

if (selScene->texTotal){

//Assign new textures. If texture quality is less than high

//then the bitmaps are sized down before being passed to OpenGL

for (i=0;i<selScene->texTotal;i++){

if (selScene->gltextures[i].pic){

srcwidth = selScene->gltextures[i].pic->GetWidth();

srcheight = selScene->gltextures[i].pic->GetHeight();

switch(selScene->m_texQuality){

case TEX_HIGH:

destwidth = srcwidth;

destheight = srcheight;

break;

case TEX_MED:

if (srcwidth > srcheight){

destwidth = srcwidth/2;

destheight = srcheight;

}else{

destwidth=srcwidth;

destheight=srcheight/2;

}

break;

case TEX_LOW:

destwidth=srcwidth/2;

destheight=srcheight/2;

break;

default:

destwidth=srcwidth/2;

destheight=srcheight/2;

break;

}

pic.Create(destwidth, destheight,

selScene->gltextures[i].pic->BitDepth());

selScene->gltextures[i].pic->CopyBits(&pic, 0, 0,

destwidth, destheight, 0,0,srcwidth,srcheight);

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

384 The scene graph

glGenTextures(1, &selScene->gltextures[i].texID);

glBindTexture (GL_TEXTURE_2D, selScene->gltextures[i].↵
texID);

glPixelStorei (GL_UNPACK_ALIGNMENT, 1);

if (selScene->gltextures[i].wrapS){

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,↵
GL_REPEAT);

}else{

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,↵
GL_CLAMP);

}

if (selScene->gltextures[i].wrapT){

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,↵
GL_REPEAT);

}else{

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,↵
GL_CLAMP);

}

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,↵
GL_NEAREST);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,↵
GL_NEAREST);

glTexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,↵
GL_MODULATE);

if (selScene->m_mipmaps){

gluBuild2DMipmaps (GL_TEXTURE_2D, GL_RGB,

pic.GetWidth(), pic.GetHeight(),

GL_BGR_EXT, GL_UNSIGNED_BYTE, pic.GetBitsAddress());

}else{

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,

pic.GetWidth(), pic.GetHeight(), 0,

GL_BGR_EXT, GL_UNSIGNED_BYTE, pic.GetBitsAddress());

}

}

}

//Now that textures have been created set the actual texture ID

//for all surfaces

obj = selScene->objList.next;

while (obj){

for (j=0; j<obj->oi.numsurfaces; j++){

tex = obj->oi.srfs[j].tex;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

The scene graph 385

if (tex){

tex->texID=0;//Zero existing value

for (i=0; i<selScene->texTotal; i++){

if (strcmp(tex->name, selScene->gltextures[i].↵
name)==0){

tex->texID = selScene->gltextures[i].texID;

}

}

ASSERT(tex->texID);//Was it found?

}

}

obj = obj->next;

}

}

glFinish();

if (m_glhdc) selScene->textList.CreateGLFonts(m_glhdc);

int tmp = selScene->curframe;

selScene->curframe=-1;

SetFrame(tmp);

UpdateAllViews(NULL, UPDATE_SCENE);

return TRUE;

}

Because this section of code comes from the development environment
for Toon3D, it includes the MFC call to UpdateAllViews. Refer to Appendix
B for more information about MFC.

Summary

That concludes our consideration of using scenes within your game. You
are probably left with more questions than answers. Should resources be
global or scene level? Should the scene use physics simulations? What
memory requirement for textures should be assumed? These questions
have no definite answers. The answers will depend both on your game
and the users. It is fair to expect hardware to improve at incredible rates,
but does that mean you should necessarily exclude those users with older
machines? At the beginning of a project you should set a minimum target
for the destination hardware and keep within this definition. If the project
is only going to take a week or so to create, a simple Web3D demo, then
this is easier to achieve than if the project lifetime is 2 years.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

18 Web3D, compression
and streaming

The Internet is an exciting way to get your work seen by a large audience.
If you intend to distribute your masterpiece on the Internet then you will
find this chapter particularly useful. There are many options available
when delivering 3D content across the web, but whatever option you
choose compression is an very important issue. A 56k dial-up connection
delivers around 4k per second; this is a huge restriction to developers who
have to be cunning to work within the limitations created by this narrow
bandwidth. In this chapter we will look first at how 3D data can be

Figure 18.1 Viewing 3D data in a browser window.

Web3D, compression and streaming 387

compressed. Then we will look at some alternative options to get some
content on to the user’s screen before they decide to leave your
production for another site that delivers content quicker. Finally, we will
look in detail at how Toon3D chooses to stream the content.

Options for 3D compression

Only save what you are going to use

An important first step in compressing 3D data is to analyse the game or
demo and to remove any resources that are not used. This may seem a
strange conclusion, but in an interactive environment it can sometimes be
difficult to predict what a user may see in their journey through the cyber
land you have created. Often, culling data resources is best handled by
the developer, but sometimes software can usefully highlight seemingly
unused resources. As we discovered in the previous chapter, the
developer often needs considerably more resources than the end-user.
We have looked at how project files will contain resources that are not
actually used within the project and are simply stored as a convenience
for further development. If a project uses extensive scripting and
interactivity, then some resources that appear unused at first glance are
used via interactive code and must be present within a compressed
project to allow for their display. If this display is only occasional, then you
may decide to split the compression between resources that are essential
and resources that are optional. Whichever approach is taken, it is
essential that only the resources necessary for the user are saved to any
file that is intended for Internet distribution.

Lossy or not lossy

A real-time game or demo is already only an approximation to the real
world. It is not essential to copy most of the project data to a byte level
accuracy; what is important is you retain the look and feel of the original
when the data are restored. In the arena of bitmap compression of
photographic pictures, the compression technology used by Jpeg files
provides a good example of lossy compression. When the picture is
restored you do not get a byte level copy of the original; nevertheless, the
representation gives a good impression of the original even though every
byte in the compressed picture may differ from the original. Using a lossy
compression gives the developer a great deal of freedom when

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

388 Web3D, compression and streaming

considering compression strategies. The table-based methods used by
LZW (Zip and gif) compression do not lend themselves to 3D, since it
would be useful if we could display content as it streams rather than wait
for the entire file to download before decompression takes place. We will
concentrate on looking at ways that we can compress and decompress as
each bit of information is set and received.

Compressing a mesh

To define a mesh we need a point list, a polygon list and a surface list. We
do not need to pass normal information since the program that we are
going to use to display the content can easily generate this. We will look
at techniques to compress each list in turn.

The vertex list contains an array of vector values, each vertex having an
x, y and z value. If we define a vertex using double values then each
vertex will take 24 bytes. If we use float values then each vertex will use
12 bytes. A considerable improvement, but can we do better? Since real-
time applications are relatively low polygon, we could choose to store a

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 18.2 Close-up of Jpeg file and source.

Web3D, compression and streaming 389

mesh using even fewer bytes. Suppose we scan a mesh and do some
analysis. When scanning the mesh we look for two things: the bounding
volume and the shortest edge. As an example, suppose that after such a
scan we find that the bounding volume is (0.835, 1.824, 0.234) >>
(–0.835, 0.000, –0.35) and the shortest edge is 0.002. If we use a 2-byte
integer value we can store 65 536 different values. Will this number of
values give sufficient accuracy to display the mesh without destroying the
overall look? The answer in most cases is yes. Given that the maximum
dimension of the bounding box is less than 2, if we represent 2 using
65 536 then we can represent 1 using 32 768. The maximum accuracy we
can therefore achieve is 1/32 768, approximately 0.00003. If we think of a
value of 1 as being 1 metre in world space, then we can resolve the
accuracy to 3/100 mm. For a real-time game that is more than enough
accuracy. Generally, you will find that a 2-byte integer will give enough
accuracy to display objects in the 3D environment. To use this method
effectively you will need a scaling factor that compares the stored integer
values with actual values in world coordinate space. In this example,
every value must be divided by 32 768 to give a close approximation to
the original vertex values. Therefore, the compression strategy would be
to precede each point list with a scaling value stored as a 4-byte floating-
point value. Since we save 2 bytes every vertex, this means that with a
point list containing just three values we have already experienced some
compression and as the point list increases in number the compression
gets nearer to 50 per cent over floats and 25 per cent over doubles. With
a real world example of around 5000 vertices per scene across six
scenes, Table 18.1 gives an approximation to the bytes needed to store
the point list.

The next list to consider is the polygon list. We allow three- and four-
sided polygons. A polygon contains either three or four indices into the
point list that must be byte accurate or the mesh will be deformed, plus a
polygon needs to know what surface it is using to define its appearance.
If we were content that the vertex list would not exceed 255, then we could
use 1 byte to define the vertex index. This is not likely and future proofing

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Table 18.1 Point list compression
using doubles, floats and shorts

Doubles 703K
Floats 351K
Two-byte integers 176K

390 Web3D, compression and streaming

tends to lead us to think that even a 2-byte integer value for the point
index is likely to be exceeded relatively quickly. A polygon list also needs
to store any texture coordinates that are used. The technique used is to
use the first byte in a polygon as a flag, with the following bit pattern:

Bit 7 Not used
6 Texture coordinates stored as short integer
5 Texture coordinates stored

4 and 3 Number of bytes used to store surface index
2 and 1 Number of bytes used to store point index

0 Quad if set

Bits 1 and 2 store the number of bytes used to store the point index. This
allows between 1 and 4 bytes for a point index. Using this technique the
current requirement of around 5000–10 000 vertices per scene is
accommodated using 2 bytes but future proofed to allow for over 16
million vertices!

A similar technique is used when dealing with the surface index for a
polygon. Some scenes are going to have less than 256 surfaces. By
reading bits 3 and 4 of the flag, we know whether to read 1, 2, 3 or 4 bytes
when reading the surface index.

Another aspect of the polygon list is the texture coordinates used by a
polygon. Texture coordinates are only used when a texture is present, so
we use bit 5 of the flag to indicate this. If we are storing texture
coordinates then we can use the method indicated for the point list for
storing a floating-point value. Texture coordinates are numbers between 0
and 1. By storing these as a 2-byte integer value, we save half the file size
we would use if floats were adopted. Again, because we are dealing with
relatively crude levels of detail, this loss of precision should not create any
major problems. For completeness we use a bit in our flag to indicate
whether texture coordinates are stored as short integers or floats.

Finally, we have the surface list. Here we have some potential for
compression. There are many reasons why object level surface lists are
to be recommended, but file size is not one of them. In a character with
many segments there could easily be many repetitions of the same
surface. When compressing surfaces it is best to create a scene level
surface list by iterating through all the objects in a scene and checking the
surface list against a global level list that is created on the fly. When
creating a global surface list we must ensure that the polygon surface
indices refer to the global list of surfaces, not the object level. By adding
a member to the object level surface structure that gives a global index for
the surface, this can be updated as the surfaces are checked. You should

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Web3D, compression and streaming 391

find that this technique makes the surface lists much smaller than object
level surface lists. The minimum surface detail that needs to be stored in
the surface list is the surface colour as 3-byte size integer values.
Transparency level is stored as a byte-sized integer, allowing for 256
levels of transparency. Specularity is handled in the same way as
transparency, taking the floating-point value, multiplying it by 255 and
storing the result as a single byte integer. The texture ID for a surface is
stored as an index into the OpenGL texture objects; once the actual
texture IDs are generated, this value can be replaced with the OpenGL
value. A surface also contains a flag giving information about whether the
surface is luminous, smoothed or double sided.

for (i=0; i<obj->m_numsurfaces; i++){

if (srf->tex){

for(j=0; j<textotal; j++){

//Save the texture index

if (strcmp(gltex[j].name, srf->tex->name)==0) texID=j+1;

}

}else{

texID = 0;

}

//Surface details without the name

ar.Write(&srf->r, sizeof(BYTE));

ar.Write(&srf->g, sizeof(BYTE));

ar.Write(&srf->b, sizeof(BYTE));

byt = (BYTE)(srf->transparency * 255.0f);

ar.Write(&byt, sizeof(BYTE));

byt = (BYTE)(srf->specular * 255.0f);

ar.Write(&byt, sizeof(BYTE));

ar.Write(&texID, sizeof(GLuint));

ar.Write(&srf->flag, sizeof(USHORT));

srf++;

}

Compressing motion files

The key to compressing a motion file is storing the channel value as a
2-byte integer value rather than an 8- or 4-byte floating-point value. To do
this, we need to iterate through a channel temporarily storing the
minimum and maximum values. Since key values can be both positive
and negative, we will be use signed integers as the storage medium. For

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

392 Web3D, compression and streaming

a 2-byte integer, this gives a range of ±32 767. The aim is to create a scale
value for a channel; using this scale value we will adjust each key value
so that instead of using floating-point values we can use integers. The
scale factor is found using the absolute maximum of the two values we
have temporarily stored. For example, if the minimum value for a channel
is –123.8 and the maximum value is 32.98, then the absolute maximum is
123.6. We need to scale 123.6 up to 32 767. This is done by taking

32 767/123.6 = 265.105

If the maximum and minimum were 124 932 and –234 578 respectively,
then the absolute maximum is 234 578 and the scale factor would be

32 767/234 578 = 0.14

We save the channel scales as floats at the start of the file. Although
saving channel scale values takes 36 bytes, each key value uses 18 bytes
rather than 36. A motion file with just three keyframes is already smaller
than one stored as straight floats.

When restoring the values we divide each integer value by the scale
value for the channel to get the correct world size for that channel as a
floating-point value.

Since the motion channels are stored as TCB curves, we need to save
the tension, continuity and bias. For most applications, restricting these
values to between –127 and +128 will give sufficient accuracy. This is
easily achieved by multiplying the values which range between +1 and –1
by 128.

if (obj->keytotal < 128){

byt = (BYTE)obj->keytotal;

ar.Write(&byt, sizeof(BYTE));

}else{

sht = ((obj->keytotal & 0xFF)<<8) | 0x80 | (obj->keytotal>>8);

ar.Write(&byt, sizeof(USHORT));

}

SetChannelScales(scales);

key = obj->keys;

for (i=0;i<obj->keytotal;i++){

//Write minimum keyframe data

//int frame mapped to USHORT, top level bit sets linear key

//double x, y, z mapped to short

//doubleh, p, b mapped to short

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Web3D, compression and streaming 393

//double sx, sy, sz mapped to short

//double tn, bs, ct mapped to byte

sht = key->frame;

if (key->linear) sht |= 0x8000;

ar.Write(&sht, sizeof(USHORT));

WriteShortVector(ar, key->x, scale[0], key->y, scale[1],

key->z, scale[2]);

WriteShortVector(ar, key->h, scale[3], key->p, scale[4],

key->b, scale[5]);

WriteShortVector(ar, key->sx, scale[6], key->sy, scale[7],

key->sz, scale[8]);

byt = (char)(key->tn * 128.0);

ar.Write(&byt, sizeof(char));

byt = (char)(key->bs * 128.0);

ar.Write(&byt, sizeof(char));

byt = (char)(key->ct * 128.0);

ar.Write(&byt, sizeof(char));

key++;

}

Strategies for delivering content quicker

If you have experienced the Internet via a dial-up modem, then you will
know it can be very frustrating.

For many users this is the way they will see your content. You owe it to
them to deliver this content as quickly as possible. We can approach this
in one of three ways.

Using loading scenes

The simplest technique is to use loading screens. By keeping loading
screens small, the browser will at least be able to display some content.
If the loading screen includes game play instructions, then this can keep
the user occupied while the actual content downloads. A useful method is
to load the main character while the user is reading game instructions.
When the main character is loaded you can switch to a scene where the
main character can be displayed, often including some animation. This
could be used to provide some background to the game while the first
environment loads. As the navigation through the 3D environment
evolves, you may need to return to the main character scene or the pre-
loader if your code detects that resources are not yet available. It is a very

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

394 Web3D, compression and streaming

good idea in the design of a game that is intended for Internet distribution
to provide cut scenes that use very little additional resources over and
above your central character. If you use the strategy of loading this
character early, then you can rely on it being there to at least play some
trailer-style animation, a few splash titles and the like while your central
character struts their stuff.

Displaying lower resolutions before full load

Gif files can be stored where a download adds progressive detail to an
image. The user sees a crude image first and as the file continues to load
detail is added. This strategy can be used with 3D imagery. If you store a
scene so that the first load is bounding boxes and a camera, then you
could start to display an indication of the scene with very few bytes of
data. The next element in the file could be motion files. Then your
bounding boxes can start to move. The human eye can detect form from
movement. Take a look at some of the motion capture scenes in Chapter
12; some of these are displayed using just null objects yet the character
still shines through. As the scene download continues, the next section
will bring in mesh detail, so that your character will have form. Then the
background meshes will arrive and finally textures and lights. Although
this approach will not work for every game, it does mean the player is
viewing animation almost instantly.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 18.3 Progressive refinement.

Web3D, compression and streaming 395

Using standard libraries

If you are developing a website that features the same characters in
several different settings, then you may benefit from the use of standard
libraries. Because website data can be cached on the local hard drive,
you can load a character once and then know that future loads are likely
to place from the cached version of the file. Separately loading
background and sound resources means that your character can be
involved in many locations without the requirement to download the same
data several times. A similar technique can be adopted for any regularly
used resources such as fonts, buttons and sounds. If such resources are
embedded into each file that uses them and the typical visitor to the site
visits three areas, then single file loads will force the user to download the
same data three times.

Providing the low bandwidth user with a web experience that is
entertaining and holds their attention places heavy demands on the
developer. It is well worth adopting some of the methods indicated,
otherwise your visitor will click the back button and all the work you have
done will never be seen.

Toon3D compression

Toon3D can make use of loading screens and if the user switches to a
scene that is not currently loaded then the developer has the option to
choose which pre-loading scene to display. Toon3D plays within the
browser via an ActiveX control, which takes its data from a single file. This
file has a header that informs the ActiveX about the remaining data.

T3DX
Number of scenes
[Number of scenes (only read if previous byte has bit 7 set)]
Version
Use scene 1 as load scene
Byte length of scenes (4 bytes * number of scenes)

Using this header, the control soon knows how to display the data. If the
first 4 bytes are not the ASCII characters ‘T3DX’, then this is not a
compressed Toon3D file suitable for Internet distribution. Byte 5 stores the
number of scenes. If bit 7 of this byte is set, then the total number of
scenes is calculated using the next byte as the low order byte and the
current byte with the bit 7 set to zero as the high order byte. The next byte

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

396 Web3D, compression and streaming

gives the version number, so that the code can react to the remaining
data. Following version number is a byte-sized flag that currently is only
used to indicate whether to use scene 1 as a loading scene. If this is the
case, then the control will display the frames in scene 1 proportional to the
load of the next scene. If the scene has 100 frames and the next scene is
50 per cent loaded then the control will display frame 50 of this scene. The
next bytes are an array of 4-byte integers storing the length of each
scene. The ActiveX control can check the size of the data file that is
loaded against this array. If the code requires a load of scene 4 and
current loading is perhaps only half way through scene 2, then Toon3D
calculates the bytes needed to load scene 4. If a load scene is used, then
this will display its current frame based on the length of the load scene
and the number of bytes remaining to be loaded against the total bytes to
load when the load scene was initialized.

Since Toon3D is an ActiveX control intended for use on a web page
development environment, Toon3D Creator allows the user to easily
create an html page that will embed the control and the data file that is
being created. The next section of the function that creates a compressed
file creates this html file using the MFC implementation of a text file. MFC
has several file types; a standard text file is created and written to using
CStdioFile.

void CToon3DDoc::OnFilePublish()

{

CMainFrame *pFrm = (CMainFrame*)AfxGetApp()->m_pMainWnd;

CStatusBar *pStatus = &pFrm->m_wndStatusBar;

CString str = GetPathName(), msg;

str = str.Left(str.GetLength()-3) + “t3x”;

CString filename = str;

CFile file(str, CFile::modeCreate|CFile::modeWrite);

CArchive ar(&file, CArchive::store);

CToon3DScene *scn = sceneList.next;

char buf[]={‘T’, ‘3’, ‘D’, ‘X’};

ar.Write(buf, 4);

int i, pos;

USHORT sht;

BYTE byt, byt2;

//Count how many scenes there are in the project

while(scn){ i++, scn = scn->next;}

//Store number of scenes as one byte integer if total less than 128

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Web3D, compression and streaming 397

//and two byte integer if total exceeds 128

if (i<128){

byt = (BYTE)i;

ar.Write(&byt, sizeof(BYTE));

}else{

if (i>32767){

AfxMessageBox(“Scene limit exceeded please use less

than 32000 scenes”);

return;

}

byt2 = i & 0xFF;

sht = 0x80 | (i>>8);

ar.Write(&sht, sizeof(USHORT));

}

BYTE ver = VERSION, useloadscene = (BYTE)m_loading;

ar.Write(&ver, sizeof(BYTE));

ar.Write(&useloadscene, sizeof(BYTE));

ar.Write(&i, sizeof(int)*i);//Will be used to store scene Total

scn = sceneList.next;

i = 0;

while(scn){

ar.Flush();

scn->Publish(ar, pStatus);

ar.Flush();

pos=file.GetPosition();

file.Seek(10 + sizeof(int)*i, CFile::begin);

ar.Flush();

file.Write(&pos, sizeof(int));

file.Seek(pos, CFile::begin);

i++;

scn=scn->next;

}

file.Close();

if (m_html){

//Now write an html file

CString name;

str=GetPathName();

pos=str.Find(‘.’);

if (pos==-1){

name=str;

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

398 Web3D, compression and streaming

}else{

name=str.Left(pos);

str=name+“.html”;

}

pos=name.ReverseFind(‘\\’);

if (pos!=-1) name=name.Right(name.GetLength()-pos-1);

CStdioFile htmlFile(str, CFile::modeCreate|CFile::modeWrite);

htmlFile.WriteString(“<html>\n<head>\n”);

htmlFile.WriteString(“<meta http-equiv=\“Content-Type\”

content=\“text/html; charset=iso-↵
8859-1\“>\n”);

htmlFile.WriteString(“<meta name=\“Author\” content=\“Nik

Lever\“>\n”);

htmlFile.WriteString(“<meta name=\“keywords\” content=\↵
“toon3d,

games, animation, multimedia, Catalyst Pictures\“>\n”);

htmlFile.WriteString(“<meta name=\“description\” content=\↵
“Toon3D is a 3D game creator. It is designed to enable \n”);

htmlFile.WriteString(“ animators to create 3D games

suitable for fast Internet downloads.\“>\n”);

str.Format(“<title>%s</title>\n”, name);

htmlFile.WriteString(str);

htmlFile.WriteString(“</head>\n”);

htmlFile.WriteString(“<body bgcolor=\“#000000\” text=\↵
“#FFFFFF\“>\n”);

str.Format(“<p><object id=\“%s\“\n”, name);

htmlFile.WriteString(str);

htmlFile.WriteString(“ classid=\”clsid:B65948FE-FB4B-11D3-↵
ABB2-0020186539CF\“\n”);

htmlFile.WriteString(“ codebase=\”http://toon3d.com/files/↵
toon3d.cab#version=1, 0, 1, 6\“\n”);

str.Format(“ align=\”baseline\“ border=\”0\“ width=\”%i\“↵
height=\”%i\“>\n”, m_width, m_height);

htmlFile.WriteString(str);

str.Format(“ <param name=\”ToonFile\“ value=\”%s.t3x\“>\n”, ↵
name);

htmlFile.WriteString(str);

htmlFile.WriteString(“ Toon3D is an ActiveX control suitable ↵
for Windows95/98/2000 and NT platforms.\n”);

htmlFile.WriteString(“ It works best with graphics cards that ↵
support OpenGL acceleration.\n”);

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Web3D, compression and streaming 399

htmlFile.WriteString(“ If you see this text then the control has ↵
not installed. This could be\n”);

htmlFile.WriteString(“ because you are not using Internet ↵
Explorer or because you have high\n”);

htmlFile.WriteString(“ security settings that exclude ActiveX ↵
controls. If this is set correctly\n”);

htmlFile.WriteString(“ and you still experience problems then ↵
check that the files OpenGL32.dll\n”);

htmlFile.WriteString(“ , Glu32.dll, and MFC42.dll are in your ↵
Windows\\System folder.\n”);

htmlFile.WriteString(“ </object>\n</p>\n</body>\n</html>”);

htmlFile.Close();

}

CPublishDlg dlg;

dlg.m_filename=filename;

dlg.m_html=m_html;

dlg.m_width=m_width;

dlg.m_height=m_height;

dlg.DoModal();

pStatus->SetPaneText(2, “Current movie published”);

}

Showing content in the browser

ActiveX controls provide a useful way of extending the functionality of the
browser. Using Visual C++, an ActiveX control is easily created by starting
a project using the appropriate settings. An MFC ActiveX control extends
the COleControl class to add specialist functionality. One feature of
ActiveX controls is that they can be provided with data from a URL. The
source code for Toon3D includes all the source for the ActiveX control that
can be embedded into an html page. There are many useful books and
Internet-based resources to help extend your knowledge regarding
ActiveX controls. In this section we will look at how ActiveX controls can
load data over an Internet connection.

The Toon3D ActiveX control uses an MFC class called CCachedData-
PathProperty. This class does most of the work for you. A member
variable of the Toon3D ActiveX control m_ToonFile is a CCachedData-
PathProperty class. This class can access the control that is using it by
referencing the member function GetControl. In this short code snippet,
we access the control in order to call functions that indicate to the control
the state of the loading process.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

400 Web3D, compression and streaming

A load is initialized when the bscfFlag has the BSCF_FIRST-
DATANOTIFICATION bit set. If this is true then the control is informed by
calling the control’s member function ToonFileAvailable. Intermediate
calls use ToonFileLoading and the final call ToonFileLoaded.

void CToonFileProperty::OnDataAvailable(DWORD dwSize, DWORD ↵
bscfFlag)

{

CToon3DAXCtrl *t3d=(CToon3DAXCtrl*)GetControl();

CCachedDataPathProperty::OnDataAvailable(dwSize, bscfFlag);

if ((bscfFlag & BSCF_FIRSTDATANOTIFICATION) != 0){

t3d->ToonFileAvailable();

}

if ((bscfFlag & BSCF_INTERMEDIATEDATANOTIFICATION) != 0){

t3d->ToonFileLoading();

}

if ((bscfFlag & BSCF_LASTDATANOTIFICATION) != 0){

t3d->ToonFileLoaded();

}

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure 18.4 Using a loading screen.

Web3D, compression and streaming 401

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

When a new ToonFile is available we must clear any existing data. The
control stores all the data inside a single variable, ‘m_toon3d’. This is a
CToon3Ddoc class, which has a Clear function that takes care of deleting
any existing data.

void CToon3DAXCtrl::ToonFileAvailable()

{

toon3d.Clear();

}

Most of the work of a data file load takes place within the function call
ToonFileLoading. The purpose of this call is to inform the control of the
current load status, so the user can be kept informed of the progress. If a
control has just cleared the document file, then the ‘m_init’ member
variable will return FALSE. The first section of this function tests for this.
If the document is not initialized then we send the current ToonFile back
to the start and attempt to initialize the document using this file.
Initialization will be successful if the entire file header is successfully
parsed, that is from ‘T3DX’ up to all the scene section lengths. If this is the
case, then the control will know how to handle the remaining data and can
be regarded as initialized. One feature of the Initialize call is the setting of
the scene that is currently loading. This information is stored in the
member variable m_sceneLoading.

The next section of the function is a loop that checks the current data
file position against the bytes required for the loading scene. If we have
sufficient bytes to initialize a scene then the current file position is set to
the start of the current scene and the scene is initialized. If the control
wants to display this scene then it is set as the current movie scene; if not,
then loading continues and the display scene remains set to the
previously displayed scene. If scene initialization was successful then the
member variable m_sceneLoading is incremented. If this exceeds the
total number of scenes in the file then we can set the fully loaded member
variable m_loaded to TRUE.

If the control cannot display the required scene then we update the load
screen using either scene 1 if this is a load screen or the internal load
screen. Toon3D has its own loader that is used if scene 1 is not set as the
load screen.

void CToon3DAXCtrl::ToonFileLoading()

{

//Set the progress bar

CToon3DScene *scn;

402 Web3D, compression and streaming

int pos = m_ToonFile.GetPosition();

TRACE(”CToon3DAXCtrl::ToonFileLoading %i\n”,pos);

//Attempt to initialise the document

if (!toon3d.m_init){

CArchive ar(&m_ToonFile.m_Cache, CArchive::load);

m_ToonFile.m_Cache.SeekToBegin();

if (!toon3d.Initialise(ar)){

m_ToonFile.m_Cache.SeekToEnd();

return;

}

m_ToonFile.m_Cache.SeekToEnd();

}

//Process the loading file

while (pos >= toon3d.m_sceneSize[toon3d.m_sceneLoading]){

scn = toon3d.sceneList.Index2Scene(toon3d.m_sceneLoading);

if (scn){

CArchive ar(&m_ToonFile.m_Cache, CArchive::load);

if (toon3d.m_sceneLoading){

m_ToonFile.m_Cache.Seek(

toon3d.m_sceneSize[toon3d.m_sceneLoading-1],↵
CFile::begin);

}else{

m_ToonFile.m_Cache.Seek(

10 + toon3d.m_sceneTotal * sizeof(int), CFile::begin);

}

if (scn->Load(ar,toon3d.m_ver)){

TRACE(”CToon3DAXCtrl::ToonFileLoading Scene %i loaded\n”,

toon3d.m_sceneLoading);

//Flush the Archive and the file to ensure that position is

//correctly set

m_ToonFile.m_Cache.SeekToEnd();

if (!playing && toon3d.m_sceneLoading >=↵
toon3d.m_sceneIndex){

TRACE(”CToon3DAXCtrl::ToonFileLoading Playing↵
initialised\n”);

scn=toon3d.sceneList.Index2Scene(toon3d.m_sceneIndex);

toon3d.SetMovieScene(scn);

if (toon3d.m_useloadscene && toon3d.m_sceneIndex==0){

playing=FALSE;

toon3d.m_sceneIndex=1;

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Web3D, compression and streaming 403

}else{

playing=TRUE;

}

InvalidateControl();

}

}

}

toon3d.m_sceneLoading++;

if (toon3d.m_sceneLoading == toon3d.m_sceneTotal){

toon3d.loaded=TRUE;

break;

}

}

//Update display as loading proceeds

if (!playing && toon3d.init){

if (toon3d.m_useloadscene){

if (toon3d.m_sceneLoading){

//Must have loaded scene 1

double loadpos = (double)(pos-toon3d.m_loadStart) /

(double)(toon3d.m_sceneSize[toon3d.m_sceneIndex] –

toon3d.m_loadStart);

int frame = (int)(loadpos *↵
(double)(toon3d.sceneList.m_sceneEnd –

toon3d.sceneList.m_sceneStart) +

toon3d.sceneList.m_sceneStart);

TRACE(”CToon3DAXCtrl::ToonFileLoading m_sceneIndex %i,↵
loadpos

%4.2f, frame %i (%i,%i)\n”,

toon3d.m_sceneIndex,loadpos,frame,

toon3d.sceneList.m_sceneStart,

toon3d.sceneList.m_sceneEnd);

toon3d.SetFrame(frame);

InvalidateControl();

}

}else{

//Use internal load screen

double newX = ((double)pos /

(double)toon3d.m_sceneSize[toon3d.m_sceneLoading])

* load_len + load_min;

bar_pts[1*3] = newX;

bar_pts[2*3] = newX;

InvalidateControl();

}

}

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

404 Web3D, compression and streaming

Toon3D embeds both content and interactive scripting into a single
document. This is one approach that can work effectively. Another
approach is to use compression for the content while using XML
(extended mark-up language) for the scripting. One benefit of using XML
is that the scripting is a text file that can be easily edited. XML provides all
the necessary tools to take the Internet to a higher level of interactivity and
if Web3D is an area of interest then it is well worth getting your head into
an XML primer to get up to speed on this technology.

Summary

At the time of writing, May 2001, Web3D promises to be the next big thing
on the Internet. Hopefully, armed with your new knowledge you can
contribute to supplying users with exciting new fast-moving images. The
keys to successful Internet distribution are good development tools and
bandwidth-friendly compression.

So that completes your initial journey through the wonderful world of
real-time character animation programming. I hope it has whetted your
appetite to learn more. I have tried to present the material in the most
approachable way possible. Unfortunately, there is a great deal to learn to
get even an overview of the subject. You should find the source code
supplied a useful place to learn more and the info section will provide links
to more information.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Appendix A:
Using Toon3D Creator

Overview

Toon3D is an interactive 3D development tool that enables you to create
games, interactive demos and animations for distribution on the web. It
can import 3D models and animation, letting you give models behaviours
so they can react to collisions and script commands. Toon3D also has
keyframing capabilities so you can develop all your animation within the
program, and it also supports multiple lights, 2D text, sound and camera
moves.

Figure A.1 The Toon3D Creator application.

406 Using Toon3D Creator

The most impressive thing about Toon3D is that it makes it possible to
produce 3D interactive content for the Internet at extremely low file sizes.
An example of this can be found on the demos page at toon3d.com,
where a 1-minute demonstration video showing how to replace a printer
cartridge has a file size of only 29K.

At present, Toon3D only supports Newtek Lightwave models and
scenes. If you develop your 3D models and animation in another package,
then you will need to export them in Lightwave format if available. Multiple
file type support is planned for future releases of Toon3D.

The basic philosophy behind how you would develop an interactive
movie in Toon3D is as follows:

� Develop all your models in Lightwave (or use existing ones).
� You could also create all your animation in Lightwave as well.
� Import all the models/animation into Toon3D.
� If you imported just models then you would set up parent hierarchy and

create your keyframe animation in Toon3D:
– If, for example, you were developing a game where you controlled a

walking character who could also fly, you would create an animation
loop for its walk (let’s say frames 1–16) and a loop for its flying
(frames 17–29). You would build up a ‘library’ of animations in this
way, which could then be called on by the user or events that happen
in the movie.

� You can also develop keyframe morphing in Toon3D.
� To develop realistic 3D characters you can use the Bendy Points plug-

in, which allows you to deform a seamless single mesh object with
control objects.

� You can introduce collision boxes which mark out collisions in your 3D
environment.

� Once your animations are complete you would convert your main
character object into a Toon. You could then assign them Toon Actions,
which relate to the animation segments you had developed. These
Actions can then have sounds attached to them.

� You could then set your Toon to be under user control so the user can
move, rotate and change their Action with keyboard and mouse clicks.

� Set up collisions so the Toon object would react when they collided with
other objects in your world.

� Write scripts so interactive gameplay could be developed.
� Set up lights, camera and text to enhance your 3D movie.
� Publish it to a web page so it can be viewed on the Internet.

This is just a basic framework of how you might develop an interactive 3D
movie or game.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using Toon3D Creator 407

As well as Toon3D’s power as a game development tool, it can also be
used to produce free-running 3D animations. The synchronized sound
facility in Toon3D means that you can effectively produce self-contained
videos that play back in time with their embedded sound. This can be
achieved at a fraction of the size of digital video at the comparative
resolution.

Layout and view

The Toon3D working environment is split into three main windows,
Control, Scripts and Stage.

Control Window

The Control Window contains all the
Objects, Toons, Text, Collision Boxes,
Sounds, Lights, Camera and User
Views in the current project. The view
works in the same way as the Win-
dows Explorer with expandable and
collapsable lists of controls. In the
objects lists, child objects appear
under their respective parents and in
the Toons list, each Toons action
appears under the respective Toon.

Left clicking on a control makes it
the active selection, and all changes
such as scale, position and rotation
made in the Stage Window will relate
only to the selected control.

Right clicking on an active control
will reveal an options menu that lists
all the possible actions and properties
that can be set to that particular control. All these options can also be
found under the main menu headings for the particular item (i.e. Object,
Toon, etc.).

Script Window

The Script Window is used as a debugging tool where you can send data
to it during testing of your project. This is done using Toon3D’s own scripts

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure A.2 The Control Window.

408 Using Toon3D Creator

library TScripts. Variables and Toon
property values, as well as plain text,
can be sent to the Script Window
using the Put method, enabling
debugging of your projects.

Stage Window

The Stage Window shows a real-time
solid OpenGL perspective view of the
current project. Up to three user
views can be set to make it easier to
work with models and animation,
and the view will switch from solid to

wireframe mode when manipulating pivot points.
Left and right clicking and dragging in the stage window will affect the

currently selected item according to whether scale, rotation or move are
selected on the toolbar.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure A.3 The Script Window.

Figure A.4 The Stage Window.

Using Toon3D Creator 409

You can view the Stage Window full screen:

To view full screen

1 View. . .Full Screen.

2 To return to normal viewing press Esc.

Toon3D allows you to test your movies as you develop:

To test Toon3D movie

1 Click on the Test Toonfile button on the Toolbar.

OR

1 View . . . Test ToonFile.

2 To stop testing click the Stop button.

Toolbar

Toon3D has all the tools for viewing your project and manipulating items
on the main toolbar. The toolbar is split into the File Tools, Player
Controls, Timeline and Modify Controls.

File Tools

The first three tools represent the standard windows functions of New,
Open and Save respectively.

The fourth icon is to Publish your movie to a web page. See
‘Preferences’ for more details.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure A.5 The toolbar.

Figure A.6 The file bar.

410 Using Toon3D Creator

Player Controls

Go to First Frame

Go to Previous Keyframe of selected object

Go to Previous Frame

Stop

Go to Next Frame

Go to Next Keyframe of selected object

Play

Go to Last Frame

Loop (toggle)

Timeline

The two values to the left of the timeline represent the global movie Start
and End frames. To set these go to File. . .Preferences.

Dragging the pointer along the timeline will go forwards and backwards,
the current frame being displayed immediately to the right of the bar.

You can also jump to a specific frame by pressing the f key, then
entering the frame number.

The two numbers to the right of the current frame display the Frame
Range Start and End frames. The timeline pointer extends to between
these two values, which default to the global scene length when the
program is first started. These frame range values are set to Toon Action
Start and End frames when the Toon is highlighted in the Control Window,
or can be set manually.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure A.7 The timeline.

Using Toon3D Creator 411

Setting the frame range

1 View. . .Set frame range

2 Enter Start and End frames.

Now, how do you modify Objects, Toons, Lights, Text and Camera and
Userviews?

Modify Controls

The modify controls allow you to move, rotate, scale and size items in the
Stage Window:

1 Select the item you wish to modify in the Control Window.

2 Click on a modify icon:

Move – deselect X, Y or Z to limit axis movement

Rotate – deselect H, P or B to limit rotational axes

Scale – deselect X, Y or Z to limit axis scaling

Size – modifies the size of the object in all axes

3 Click and drag the mouse in the Stage Window:

Left Mouse Button
Left and
Right

X axis or Heading

Up and Down
Z axis or Pitch
(Y axis for Text)

Right Mouse Button Up and Down
Y axis or Bank
(Size for Text)

You can also enter numerical values by pressing the n key when the
Stage Window has focus. This will bring up a dialog box where you can
enter individual values, depending on which modify icon is active.

Positioning and rotating objects accurately often involves regularly
changing your viewing angle. Find out how you can set up your user views
here.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

412 Using Toon3D Creator

Working on Toon Actions

You can work on a Toon Action in isolation:

1 Select the Toon Action to modify in the Control Window.

2 Click on the Action modify icon

Only the Toon is displayed in the Stage Window and all changes made will
affect the Toon Action.

Preferences

To set Toon3D Preferences

1 File. . .Preferences.

Publish Settings:

JPEG Quality – sets the quality of any JPEG surface textures used in
your project in the final movie. Setting the quality to a high level will result
in better reproduction of the image texture but at the expense of smoother
playback, and vice versa.

Create HTML doc – will generate an HTML file into which your movie will
be embedded when you publish your project. The HTML document will
include the codebase data needed so the ActiveX Toon3D plug-in
required to play back Toon3D files will be downloaded to the user’s
browser if it’s not already installed.

Other preferences you can set include:

� Set Background Colour – sets the colour displayed behind all the
objects in your project.

� Disable Textures – disables all image textures applied to objects in
your project. This is effective in both creation mode and in the final
published movie.

� Autokey Create – determines whether to create a key automatically at
the current frame when you modify an item in the Stage Window. With
Autokey Create turned off you must apply Create Keyframe to set a key
at a particular frame.

� Scene Start and End – sets the global scene start and end frames of
your project.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using Toon3D Creator 413

� Fps – the playback rate in frames per second of the movie. Toon3D will
attempt to play back the movie at this rate, but this is largely dependent
on the amount of polygons in your movie and the speed of the user’s
computer and graphics hardware.

� Sync Sound – setting this will force the movie to play back at the frame
specified in the Fps box. This is used so you can produce standalone
animations that have no interactive elements to them. Setting Sync
Sound will play the first sound file in the sounds list at the beginning of
the movie and will maintain a playback rate so the animation can be
synchronized accurately with the accompanying sound.

Grid size

1 World. . .Grid Size.

2 Grid Size – the X and Z size of each square on the grid.

3 Grid Number – the number of squares in the grid.

Setting the Grid Size affects the rate at which items move in the Stage
Window with the mouse. Increasing the grid size increases the distance
the item moves per mouse move, and vice versa.

Importing objects and animation into Toon3D

Importing Lightwave objects

File. . .Import Lightwave Object

At present, you can only import standard Lightwave objects (.lwo) into
Toon3D. Geometry and surface colour and image texture information for
the object are maintained. Procedural textures applied in Lightwave are
not supported, however.

Note: three-sided polygons will be smoothed in Toon3D, and four-sided
polygons not smoothed. With polygons that are more than four-sided,
Toon3D will only use the first four vertices to create the polygon. So, keep
your models’ polygons to four or less sides, and if you want your objects
to be smoothed triple them to three-sided polygons before importing to
Toon3D.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

414 Using Toon3D Creator

Importing Lightwave scenes

File. . .Import Lightwave Scene

When you import a Lightwave scene (.lwo) into Toon3D, all the objects
and parenting information, and keyframe animation are imported. If Bendy
Points has been applied in the scene, this is also imported and applied to
all relevant objects.

Object properties

Setting object properties

1 Select the object in the Control Window.

2 Right click and select Properties.

3 Select Use Textures to make image surface textures visible.

4 Select Hide to hide an object in the Stage Window. This is set
automatically when the object is assigned as a control to a Bendy
Point object.

5 Choose a ‘Parent’ for the object.

Pivot points

To position the pivot point of an object

1 Select the object in the Control Window.

2 Click on the Pivot Point icon on the Toolbar

The Stage Window changes to wireframe mode and the pivot point of the
selected object is centred in the view. It is generally good practice to set
up user views from the side and top to make it easier to accurately
position the pivot point.

3 Selecting the Move icon enables you to move the pivot point by
dragging in the stage window with the left mouse button for X and
Z, and the right mouse button for moving in the Y.

Limiting the axis by unchecking them on the toolbar will help control the
positioning of the pivot point. Selecting the rotation icon will rotate your
view only.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using Toon3D Creator 415

Parenting

To assign an object’s parent

1 Select the object in the Control Window.

2 Right click and select Properties.

3 Select the parent object from the Parent dropdown list.

Child objects will appear hierarchically under the Parent objects in the
Control Window.

Morphing

Toon3D allows you to morph between multiple objects that comprise the
same array and number of points. To do this you must assign a Morph
Controller to the object.

To create a Morph Controller

1 Select the object you wish to morph from in the Control Window.

2 Right click and select Create Morph Controller.

A morph controller can be thought of as a point displacement plug-in
which uses the selected object as the base control object. An object can
have only one morph controller. To be able to morph between other
objects we need to Add Morph Objects:

3 Select the Morph Controller and right click and select Add Morph
Object.

This brings up an Import Lightwave object dialog box where you can
select objects to act as morph targets. Each object must comprise the
same number of points or Toon3D will generate a warning.

To morph between objects

1 Select a morph object in the Control Window.

2 Click and drag to the right in the Stage Window and the morph
amount increases, the value being displayed in the status bar at
the bottom of the window.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

416 Using Toon3D Creator

Keyframes are created in the morph controller, not the morph object or the
base object. You can set the morph levels of multiple morph objects on a
keyframe.

Bendy Points

Bendy Points is a point manipulation tool that allows you to generate
single mesh objects that can be manipulated by a set of control objects,
thus enabling you to create realistic character animation. There is a
Lightwave plug-in for Bendy Points which you can download. Tutorials
and documentation come with the Bendy Points plug-in, which is worth
checking out before you use it extensively in Toon3D.

Bendy Points can either be applied in Lightwave and then imported as
part of the Lightwave scene file, or applied directly in Toon3D, the latter
method being a much simpler process. If you import a scene with Bendy
Points applied, then the affected objects are automatically assigned
correctly as either a control object or the target object – no user
intervention is required.

To set up Bendy Points in Toon3D

1 Set up the parenting for the control objects.

2 Select the target object which comprises the full mesh of control
objects.

3 Right click and select Make Bendy.

4 Select the base object. This is the parent of all the control
objects.

The target object is then assigned and all child objects below are set as
control objects. Only the target object comprising a single mesh will now
be visible, all the control objects become invisible.

Animation

Toon3D has all the tools you need to animate your objects. It uses the
standard method of creating keyframe splines for each object, with control
over the spline curves using Tension, Bias and Continuity at the
keyframe.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using Toon3D Creator 417

Before delving into how to create keyframe animation, it is worth getting
familiar with all the tools on the Toolbar and Modify Controls.

Keyframing

The first thing to decide before doing any keyframe animation is whether
to turn on Autokey Create or not. If Autokey Create is turned on then every
change performed to an object on a frame will be updated automatically
and the frame set as a keyframe. With it turned off, you must create a
keyframe manually.

Turning Autokey Create on

1 Select File. . .Preferences.

2 Click on Autokey Create.

Even with Autokey Create on, you can still opt to Create Keyframe, giving
you the flexibility of assigning keyframe characteristics, and creating the
key on other frames.

Creating keyframes

1 Set the current frame to the frame you wish to create a keyframe
on (this is essential if Autokey Create is on, not so if it’s off).

2 Select a control – i.e. an object, Toon, text object, light or camera.

3 Move, rotate, scale or size to desired position.

If Autokey Create is on, then you’ve created a keyframe at the current
frame for the selected control. If Autokey Create is off, or you wish to
adjust keyframe characteristics or create the keyframe on another frame,
go to step 4.

4 Select Create Keyframe from the item’s menu (right click on the
control, or press Enter when the Stage Window has focus).

5 Select a frame for the key – the default is the current frame.

6 Selecting linear will create a straight line characteristic at the
keyframe, i.e. the animation will go through the keyframe with
linear motion – no acceleration or deceleration at the keyframe.

7 Dragging the Tension, Continuity and Bias sliders will affect the
keyframe characteristic:

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

418 Using Toon3D Creator

Tension – speed at which an item approaches and travels through a
keyframe. High values slow it up to create an ease-in, and low values a
speed-up or ease-out.

Continuity – determines the shape of the transition at a keyframe. High
values give a wider transition and low values a sharper transition (sudden
change in motion).

Bias – makes the spline path lean to one side of the keyframe. Used to
give the feeling of anticipation at a keyframe.

8 Create key for all descendants will generate a keyframe in all the
child objects of the selected item.

That’s it for creating keyframe animation!

Deleting keyframes

1 Move the current frame to the keyframe you wish to delete.

2 Select the item you wish to delete the keyframe for.

3 Right click on the item and select delete keyframe (or press delete
when the Stage Window has focus).

If you use the delete key for deleting keyframes, ensure the Stage
Window has the focus by clicking in the window first.

Creating Toons

A Toon is basically an object controller that we can assign behaviours to
and can be under user control. This means that the object can react to
collisions and script commands, by triggering different animation sequen-
ces and manipulation of the object’s properties such as position, etc.

You can have multiple Toons in a project but only one can have user
control at any one time. This is selectable in script at runtime.

Creating a Toon

1 Select the Toon icon in the Control Window and right click and
select Create Toon.

2 Select the object you wish to control as a Toon from the drop-
down list.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using Toon3D Creator 419

If an object was a base level parent, or a Bendy Point target object, then
it would normally be the one assigned as a Toon. All child and control
objects would be assigned to the Toon.

To develop interactivity for a Toon you must assign it behaviours.

Collision boxes

Collision boxes are bounding rectangles that are used to trigger
behaviours in Toon when they intersect other collision boxes. They have
no orientation, only position and size.

There are two types of collision boxes in Toon3D, Toon collision
boxes and World collision boxes.

Toon collision boxes

When you create a Toon, a collision box that is the same size and position
as the bounding rectangle of the Toon base object is created by default.
A Toon’s collision box is always relative to the Toon’s position and scale
(i.e. it always moves and scales with the Toon).

The relative position and scale are set by selecting the collision box and
scaling and positioning in the Stage Window as you would an object or
any other control.

To reset the collision box to the default values, right click it and select
Reset.

World collision boxes

1 Select Collision box in the Control Window and right click and
select Create Collision box.

Positioning and scaling a world collision box follows the same process as
for objects. The usual use of a world collision box is to set a collision area
around a static object.

Deleting collision boxes

1 Select Collision box in the Control Window and right click and
select Delete Collision box.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

420 Using Toon3D Creator

To help you see where all the collision boxes you have in your movie are:

View. . .All collision boxes.

Actions

Actions are basically animation sequences of the Toon object combined
with a sound. By assigning segments of a Toon object’s keyframe
animation to an Action, you can build up a library of such Actions which
can then be called upon by collision detection and scripts.

Adding Actions

1 Right click on the Toon object and select Edit Behaviours.

2 The Actions tab is the first one displayed in the dialog box.

3 Click Insert to create a new Action.

4 Give the Action a Name, Start Frame and End Frame in the
boxes.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure A.8 Actions dialog.

Using Toon3D Creator 421

The Start and End frames relate to the Toon objects’ keyframe animation.
For example, if you had created a Toon object who had a walk animation
that ran from frames 1 to 24, then these would be the start and end frames
for the action you would probably call Walk.

5 Choose whether you want the Action to loop or not, and enter the
first frame of the loop in the Loop frame box.

If Loop action is selected the animation will play from the Start to the End
frame, then return to the Loop frame and continually loop between the
Loop and End frame. It will continue to loop unless stopped by script or
another behaviour.

6 Select a sound to play from the dropdown list if required.

The selected sound will play every time the Action is called, and will loop
with the Action if Loop action is selected.

7 Select Enable keyboard control to allow the Action to be
controlled by the user.

If you enable keyboard control, you must set the user control in the
Control tab.

8 Enter position and rotation vectors in the boxes provided if
required.

The values entered in these boxes will move or rotate the Toon by the
specified amount on each new frame in the movie when it is performing
this Action.

9 Click Apply to enable the Action.

You can delete an Action using the delete button, and move between
multiple actions using the Prev and Next buttons.

You can have multiple Actions that use the same frame segments. For
example, you might want to use the same walk cycle for an object but
change the sound file if it was walking on grass or snow.

User control

Toons in your project can be under user control via the keyboard. You can
control a Toon’s movement and rotation, as well as which Action to
perform upon a designated key press.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

422 Using Toon3D Creator

The basic theory behind controlling Toons with the keyboard is
assigning Actions to be called upon certain keys being pressed. As well as
Actions being called, you can also modify a Toon’s position and rotation
upon key presses.

You can set up control for a Toon then disable it by unchecking the Use
keyboard control. You can then switch user control on or off for a Toon
using scripts at runtime.

Controlling a Toon

1 Right click on the Toon object and select Edit Behaviours.

2 Select the Control tab and select Use keyboard control.

3 If you want the camera to follow the Toon’s movement then select
Move with Toon.

4 If you want the camera to follow the Toon’s rotation then select
Rotate with Toon.

Steps 3 and 4 effectively parent the camera to the Toon. The position
and orientation of the camera is defined by its position and orientation at

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure A.9 Control dialog.

Using Toon3D Creator 423

frame 0. All other keyframes in the camera are ignored when it is under
Toon control.

The Camera’s parenting can be switched by scripts at runtime. By
default, the last Toon in your Toon list that has user and camera control
is assigned initial control of the camera in your movie.

5 Click Insert to create a new Key control.

6 Select a Key by first pressing the Keycode button, then pressing
the selected key on the keyboard. To select a Key control for when
No key is pressed, click the No Key button instead of a key.

It’s a good idea to give a Toon a No Key pressed control, which can be
thought of as a default action which occurs when no key is currently
pressed.

7 Select an Action to call when the key is pressed from the drop-
down list of Actions available to the Toon.

If you choose No Action change then the Action of the Toon will remain
in its current state and will not change. This is useful when multiple keys
are pressed.

8 Next you can set how much to move and rotate the Toon when the
key is pressed. The values you enter in the boxes relate to
movement in the X, Y, Z axes and H, P, B rotation, and are based
on metres/degrees per frame.

If no movement is required then leave all values at 0. The Actions and
movement/rotation applied will occur only while the key is pressed. Thus,
to maintain the key control you must hold the key down.

If multiple keys are pressed then the movement and rotation of the
Actions called by the key presses are combined. This means if you were
to control a Toon’s movement using the arrow keys you could perform
movement in more than one axis by holding down two or even three keys.
If you do this then the Toon will perform the first Action in the Action’s
list.

9 To create the Key control click Apply.

You can delete a key control using the delete button, and move between
multiple actions using the Prev and Next buttons.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

424 Using Toon3D Creator

Collisions

In order for the Toon to react to the 3D environment around it, detection
of collisions can be set up. Collisions can occur between another Toon, a
static collision box, a specified value in the Y-axis or an invisible bounding
box. The collision is determined by the bounding boxes of the Toon
intersecting the bounding box of the collision item or values. The result of
a collision is to change the Action of the Toon.

There are two states for detecting collisions, Global collisions and
Action collisions. A Global collision can occur when the Toon is in any
Action state, i.e. at all times. An Action collision is only detected when the
Toon is performing a specified action. The process for adding both types
of collisions is the same.

Adding collision detection

1 Right click on the Toon object and select Edit Behaviours.

2 Select the Collisions tab.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure A.10 Collisions dialog.

Using Toon3D Creator 425

3 a. If you want the collision to be detected at all times leave the
Global Collision Box checked.

OR

3 b. If you want the collision to be detected only when a specific
Action is being performed, uncheck the Global Collision box
and then choose an Action from the dropdown list.

4 Click Insert to add the collision and give it a name in the box
provided.

5 Choose the type of collision to detect:

Y equals zero – detects whether the Toon’s Y position value is equal to
or less than zero.

Minimum position – minimum X, Y, Z values that the Toon can
reach.

Maximum position – maximum X, Y, Z values that the Toon can reach.
Toon – detects a collision with another Toon.
Collision Box – detects a collision with a static collision box.

6 Set the Glance angle.

The Glance angle can help prevent the scenario when you are travelling
almost parallel to a collision box and you keep generating an unwanted
collision. Setting a low Glance angle (typically 5–10°) will cause the Toon
to travel parallel to the collision box without generating the collision,
unless an Action is specified in the Less than glance angle box. Setting
the Glance angle to 0 will always generate a collision, setting it to 90 will
never generate a collision.

The Glance angle feature in Toon3D only works with objects travelling
in the –Z direction. If you wish to use the glance angle feature, orientate
your environment so the Toon using the glance angle collision moves
mainly in the –Z direction.

7 Select an Action to perform upon detection of the collision when
Less than the glance angle from the dropdown list, if required.

If you select an Action for a Less than glance angle collision then the Toon
will perform this Action and not be redirected to travel parallel with the
collision box.

8 Select an Action to perform upon detection of the collision when
Greater than the glance angle from the dropdown list.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

426 Using Toon3D Creator

This is the Action to perform when a normal collision occurs with the
collision box.

9 Click Apply.

You can delete a Collision using the delete button, and move between
multiple collisions using the Prev and Next buttons.

Text

Toon3D has the facility to create text objects in your project. You can
simply create a static text object or you can write values to the text object
using scripting. The text object can also be keyframed in its position, size,
text and colour.

Adding a text object

1 Right click on Text in the Control Window and select Add text
object.

2 Name the text object by left clicking it in the Control Window.

If you want to write information to the text object it is important that you
name it, as the name is how scripts identify and pass data to the
object.

A text object only appears as a 2D object so can only be positioned and
sized in the X- and Y-axes:

3 To position the text left click and drag it to the desired location.

4 To size the text right click and drag horizontally to desired size.

5 To reset the position and scale (0,0 and 100 per cent) right click
the text object and select reset.

Text Properties

1 Right click on Text object and select Properties.

2 In the dialog box you can type in the actual text required, select a
font and a colour for the text.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using Toon3D Creator 427

The font you select will need to be installed on the user’s machine in order
for it to be displayed correctly. It is thus a good idea to select common
fonts such as Arial, Courier or Times New Roman, etc.

You can add keyframes to a text object as you would a normal object.
You can also change the text and colour of the text object on a keyframe.
This will cause it to change text or colour when that keyframe is reached
– it won’t ‘tween’ these properties from the previous keyframe.

Sound

You can import sound into Toon3D in the Windows Wave format .wav. In
order for the sound files to publish they must be PCM with a sampling rate
of 44.1 kHz and 16-bit resolution. You can import sounds with other
sampling frequencies and they will play inside Toon3D Creator, but won’t
play in your published movie.

If you import stereo sound both channels are stored separately, so the
file size of the sound file is doubled. Unless it’s necessary for the movie,
it’s better to import sound in mono format to reduce the final movie
size.

Sounds can be linked to Toons via Toon actions and can also be
controlled by scripts.

Adding sound

1 Select Sounds in the Control Window and right click and select
Add Sound.

2 To play a sound right click on it and select Play, and similarly to
stop it select Stop.

3 If you want a sound to loop continuously select Loop from the
right click options.

When you set a sound to loop it will always loop when attached to a
Toon Action or played from scripts. If the Toon Action is set to loop
then the sound will be played on the first frame of the loop. If the sound
is set to loop then this will cause it to be interrupted when the Action
loops.

A Toon can play only one sound at a time. If you have different sounds
on Toon Actions then a change of Action will cause the outgoing Action
sound to stop and the incoming Action sound to play.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

428 Using Toon3D Creator

4 You can rename a sound by left clicking on the name then entering
the new name.

5 You can replace sounds by right clicking and selecting Replace.

If you rename or replace a sound file, all instances where it is attached to
a Toon Action are updated automatically. However, if you rename a
sound, or replace it with a sound of a different name, you will have to
update any script references to the sound.

Lights

You can set up multiple lights in a Toon3D movie. The three types of light
you can add are Distant, Spot and Point lights. You can also set a global
Ambient light level in the movie.

Lights can be parented and have keyframes in your lights position and
rotation, and you can also keyframe the diffuse level of a light to fade
between different colours.

Adding lights

1 Select Lights in the Control Window and right click and select Add
Light.

2 You can rename a Light by left clicking on the name then entering
the new name.

Setting the Ambient light level

1 Right click the light and select Properties.

2 Click on the Ambient button and choose a colour.

The Ambient level is global to the whole scene and represents the light
level where no light is being cast from the main movie lights. The default
colour that is set is usually fine for most scenarios.

Selecting a Light type and its Properties

1 Right click the light and select Properties.

2 Select either Distant, Point or Spot.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using Toon3D Creator 429

Distant – a distant light simply radiates light in a specific direction, like the
sun. The position of a distant light doesn’t alter its effect, only its
orientation is taken into account.

Point – a point light radiates light in all directions from its source, like a
light bulb.

Spot – a spot light radiates light in a specific direction from its source. You
can also set the ‘spread’ or cone angle of a spotlight.

3 To set the cone angle of a spotlight, type a value in degrees in the
box.

4 To set the Diffuse colour, click on the Diffuse button and choose
a colour.

The diffuse colour is the colour the light will cast in scene. This can be set
on keyframes so the colour can be ramped between different colours in
the movie.

5 If you wish the light to be parented, select a Parent from the list.

Lights’ positions and rotations can also be keyframed following the same
process as for keyframing objects.

Camera

Toon3D supports a single camera view which can be parented to a user
controlled Toon, or can be keyframed. In development mode you can also
assign three independent user views and a light view to aid you when
modifying items in the Stage Window.

User Views

1 Select a User View or Light View under Camera in the Control
Window.

The Stage Window automatically switches to the selected view which you
can then set using the move and rotate tools.

If you select Light View then select Light in the Control Window any
changes made in the Stage Window will affect the light’s position and
orientation, and create a keyframe if required.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

430 Using Toon3D Creator

Reset User Views

1 View. . .Set default user views.

This resets the user views 1, 2 and 3 to their default settings, which are
Face, Front and Top respectively.

Camera View

1 Select the Camera in the Control Window.

The Stage Window switches to Camera View. The position and
orientation of the camera can be keyframed as you would an object.

The Camera can also be parented to a Toon that is under user control.
This is explained in ‘User controls’.

Parenting the camera to a Toon will force the movie to ignore any
keyframes you put in the Camera. The parenting of the Camera can be
turned off or switched to other Toons using script. The position and
orientation of the Camera with respect to the Toon at frame 0 will dictate
the view the camera will show the user throughout the movie.

TScripts overview

Toon3D has its own built-in scripting language called TScript, which
allows you to use variables, read and write properties of items in your
movie, detect key presses, navigation, subroutines, conditional state-
ments and loops, plus lots more.

TScripts use a familiar syntax to many other programming languages
such as VB, C++ and Director Lingo, so will be quick and easy to learn for
people with some previous programming experience. There is also a
debugging facility during development in the Script Window.

TScripts are based at scene level and can appear in three places in the
movie, StartMovie, NewFrame and in a Subroutine.

Edit Scripts

1 World. . .Edit Scripts.

2 Click the Add Sub button.

3 Overwrite the name of the Sub and name it as follows.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using Toon3D Creator 431

StartMovie – the script between the On StartMovie and End StartMovie
tags will only be run when the movie first loads into the browser. You
would usually use the On StartMovie script to initialize variables and
arrays, and start any background music.

NewFrame – the script between the On NewFrame and End NewFrame
tags will be run on every frame in the movie. The NewFrame script is the
main movie script where you would develop all the main scripting in your
project.

You can also break up your scripts and make code reusable in multiple
areas by creating subroutines. The TScript dialog box also has the facility
to check the syntax of your script code.

Compiling scripts

In the TScript dialog box, click the Compile Button.

This will check through the current script and if any faults are found then
a compilation error will be generated and the offending code will be
highlighted. Scripts are automatically compiled when you click OK, but it
is often useful to compile them as you write.

Syntax and operators

TScripts uses a familiar syntax to many other programming languages
such as VB, C++ and Director Lingo.

Referencing variables, controls and strings

Controls within your movie, such as objects, Toons, Text objects and
Lights, etc., are referenced by their name, as are variables. Strings have
to be placed in quotation marks (“”), otherwise they will be read as
variables.

Examples
Set count = 0 “sets variable count equal to zero”
Set Text1 = “This is the text that will be displayed in the Text object
Text1”

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

432 Using Toon3D Creator

Case sensitivity

The names of controls (objects, Toons, Lights, etc.), subroutines and
variable names are case sensitive.

Command names and property arguments and parameters are not
case sensitive.

Colour, scale and size ranges

Colour levels for Red, Green and Blue in Lights and the Background
colour are measured as floating-point numbers from 0 (minimum
saturation) to 1 (maximum saturation).

Similarly, scale and size values are measured as floating-point
numbers from 0 (no size) to 1 (100 per cent or default size). A number
higher than 1 increases the scale and size from its default value (e.g. 2 is
equivalent to twice the size).

Comments

To place comments in your code for reference use ‘.

Operators
Numerical operators

+ Add
– Subtract
/ Divide
* Multiply
= Equals
<> Not equal to
> Greater than
< Less than
>= Greater than or equals
<= Less than or equals

String operators

"" String
+ Concatenate

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using Toon3D Creator 433

Logical operators

and Logical AND
or Logical OR

Grouping

The use of brackets () to group arithmetic and logical expressions is of
great importance.

Arithmetic expressions are calculated left to right, but it is generally
safer always to use brackets to group operations.

The rule for logical expressions is that expressions either side of the or
and and operators should always be grouped by brackets.

Examples
Set x = 6 + 2 * 3 'will yield x = 24
Set x = (6 + 2) * 3 'will yield x = 24
Set x = 6 + (2 * 3) 'will yield x = 12

If (x = 3 AND y = 2) 'would generate an error
If ((x = 3) AND (y = 2)) 'correct syntax

Properties

Most of the controls in Toon3D have properties that can be read and set
using scripts.

Reading property values

The syntax for reading a property is:

Get property (controlname, propertyname)

The control name is the name of an object, Toon, Text object or Light.
There are also pre-defined control names, which are:

� camera – main movie camera
� ambient – ambient light colour
� scene – see Table A.1 for scene properties

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

434 Using Toon3D Creator

Setting property values

All the property names in the list in Table A.1 can also be set using the Set
Property command with the following syntax:

Set property (controlname, propertyname) = value

Example
When the x position of the Toon Ball1 reaches the value 250m, Ball1 is
made invisible and the Action of Ball2 is set to Bounce.

On NewFrame
If (Get Property (Ball1, x)) >= 250

Set Property (Ball1, visible) = False
Set Property (Ball2, action) = Bounce

EndIf
End NewFrame

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Table A.1

propertyname Value Applies to

x x position (m) object, toon, text, camera, light
y y position (m) object, toon, text, camera, light
z z position (m) object, toon, camera, light
h Heading (degrees) object, toon, camera, light
p Pitch (degrees) object, toon, camera, light
b Bank (degrees) object, toon, camera, light
scalex x scale (0–1 (1 = 100%)) object, toon
scaley y scale (0–1 (1 = 100%)) object, toon
scalez z scale (0–1 (1 = 100%)) object, toon
size Size (0–1 (1 = 100%)) object, toon, text
drawwire Draw the object in wireframe

(true or false). Default is false.
object

frame Current frame at Toon level toon
action Current Toon action name toon
usekeys Whether the Toon is under user

control (true or false)
toon

visible Visibility (true or false) toon, object, text
parent Parent of object or light object, light
red Red colour value of light (0–1) light, ambient
green Green colour value of light (0–1) light, ambient
blue Blue colour value of light (0–1) light, ambient

Green colour value of light (0–1)
tooncam The user controlled toon with

camera control (toonname).
Set to none for no camera
control with toon.

camera

Using Toon3D Creator 435

Scene properties

The Toon3D movie has properties at global scene level which can be read
and set. These properties relate to frame navigation and the background
colour.

To set and get global scene properties the following syntax is used:

Set property (scene, propertyname) = propertyvalue
Get property (scene, propertyname)

Example
When the current frame of the movie reaches frame 50 it will go to play the
frames from 100 to 200 starting at 150, and set the background colour to
black.

On NewFrame
If (Get Property (scene, currentframe)) = 50

Set Property (scene, startframe) = 100
Set Property (scene, endframe) = 200
Set Property (scene, currentframe) = 150
Set Property (scene, bgRed) = 0
Set Property (scene, bgGreen) = 0
Set Property (scene, bgBlue) = 0

EndIf
End NewFrame

Variables and arrays

TScripts support the use of variables and arrays for storing and retrieving
numerical and string data.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Table A.2

propertyname propertyvalue

startframe Start frame of current play segment
endframe End frame of current play segment
currentframe Current frame of current play segment
bgRed Red value of background colour (0–1)
bgGreen Green value of background colour (0–1)
bgBlue Blue value of background colour (0–1)

436 Using Toon3D Creator

Variables do not have to be declared and can store strings and both
integers, longs and floating-point numbers. They act as global variables
so all other scripts in your project can access them.

Arrays must be declared, usually in the StartMovie script, and can only
be used for storing numerical data.

Setting variables

The syntax for setting a variable’s value is:

Set variablename = value

The variablename can be a combination of numbers and characters, but
must not start with a number and you can’t use any TScript command
names (key, set, call, etc.).

The variable value can be an integer, floating-point number, string, or
numerical or string expression.

Reading variable values

To read a variable’s value you simply reference it by the variablename.

Example
The integer variable score is incremented by 10 then concatenated to
some text and written to the text object ScoreText.

On NewFrame
Set score = score + 10
Set ScoreText = “Your current score is” + score

End NewFrame

Arrays

Toon3D supports the single dimension arrays for storing indexed values.
Arrays can only be used for storing numeric data and must be declared
before they can be set or read.

Declaring arrays

The syntax for declaring an array is:

Array arrayname (indextotal)

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using Toon3D Creator 437

The arrayname can be a combination of numbers and characters, but
must not start with a number and you can’t use any TScript command
names (key, set, call, etc.).

The indextotal is the maximum integer number of indexed values in the
array, up to a maximum of 255. The index values start at 0, so to declare
an array with 10 indices you would enter an indextotal of 9.

Arrays can be declared anywhere within your script, the most common
place being in the StartMovie script.

Using arrays

The syntax for setting an array is:

Set arrayname (index) = value

The index can be an integer or variable integer, and the value must be
numerical data.

To read an array’s value you reference it by the arrayname and
index.

Example
An array of eight game scores score(n) is declared then initialized in the
StartMovie script. Then, in the NewFrame script, all the game scores are
accumulated in the variable total when the movie reaches frame 100.

On StartMovie
Array score(7)
Set num = 0
Do

Set score(num) = 0
Set num = num + 1

Loop (num <= 7)
End StartMovie
On NewFrame

If (Get Property (scene, currentframe)) = 100
Set num = 0
Set total = 0
Do

Set total = total + score(num)
Set num = num + 1

Loop (num <= 7)
EndIf

End NewFrame

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

438 Using Toon3D Creator

Loops and conditional statements

TScripts supports the Do. . .Loop command, and the If. . .Else. . .EndIf
condition.

Do. . .Loop() command

The syntax for the Do. . .Loop command is:
Do

'script commands
break

Loop (condition)

The script commands inside the loop will be processed each time through
the loop while the condition in the Loop brackets equate to TRUE. Once
the condition equates to FALSE, the loop terminates. The condition must
be in brackets.

You can also terminate a loop by inserting the break statement.

Example
Each index of the array score is incremented by 10 until either all eight in
the array are incremented, or one the array values exceeds 100.

On NewFrame
Set num = 0
Do

Set score(num) = score(num) + 10
If (score(num) > 100)

break
EndIf
Set num = num+1

Loop (num <= 7)
End NewFrame

If. . .Else. . .EndIf command

The syntax for the If. . .Else. . .EndIf command is:

If (condition)
‘script commands to run if condition is TRUE

Else
‘script commands to run if condition is FALSE

EndIf

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using Toon3D Creator 439

If the condition in the brackets equates to TRUE, the script commands
immediately after the If statement will run. If FALSE, the script commands
immediately after the Else statement will run. The Else statement is
optional.

Multiple If statements can be nested to create an ElseIf condition.
The condition must be in brackets.

Example
This scripts tests the Action and X position of a Toon called player with
respect to a Toon called ball, and either kicks or throws the Toon ball
accordingly.

On NewFrame
Set playerAction = Get Property (player, action)
Set xdistance = Get Property (player, x) – Get Property (ball, x)
If ((playerAction = kick) and (xdistance < 1))

Set Property (ball, action) = kick
Else

If ((playerAction = throw) and (xdistance < 1.5))
Set Property (ball, action) = throw

EndIf
EndIf

End NewFrame

Detecting key presses

TScripts supports detection of key presses and left and right mouse
button clicks, using the Key command:

Key (keycode) <key>
‘script commands to run upon keypress

EndKey

The keypress argument is the keycode of the key, or mouse button, being
detected. The <key> is the actual key or mouse button pressed and must
be entered in the script by using the Keycode Button as follows:

1 Position the cursor in the script position where you want the Key
command.

2 Press the Keycode Button.

3 Hit the key or mouse button you wish to detect.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

440 Using Toon3D Creator

The Key command and all its parameters are inserted into your script.
Once entered, the Keycode becomes inactive and typing in the script
window returns to normal.

All the script commands inside the Key(). . .EndKey statement are run
upon the designated keypress.

Example
Each time the b key is pressed the sound bassnote is played.

On NewFrame
Key (66)

playsound bassnote
EndKey

End NewFrame

Playing sounds
You can play sounds contained within your Toon3D project directly from
TScripts:

playsound soundname

The soundname is the name given to the sound file in your project and
must be referenced exactly as it appears in the Control Window (case
sensitive).

The sound will be looped indefinitely until it is stopped, if it has its
properties set to loop.

To stop a sound:

stopsound soundname

To stop all sounds:

stopallsounds

Example
Each time the m key is pressed the sound music is played, and when the
n key is pressed the music is stopped.

On NewFrame
Key (m)

playsound music
EndKey
Key (n)

stopsound music
EndKey

End NewFrame

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using Toon3D Creator 441

Generating a random number

You can generate a random number using TScripts:

Random (maxvalue)

The maxvalue is an integer value of the range of numbers the Random
command will generate. The generated number will be an integer
between zero and the maxvalue – 1.

Example
The X position of the Toon Cheese is set to a random value between 0
and 99.

On NewFrame
Set Property (Cheese, x) = Random (100)

End NewFrame

Subroutines

You can create individual subroutine scripts in TScripts, making your
scripts reusable and more manageable.

Adding a subroutine

1 Click on the Add Sub button in the TScript dialog box.

A subroutine is created and given an indexed name SubN. To rename the
subroutine simply overwrite its default name.

Script that is written between the On SubName and End tags will be run
every time the subroutine is called. A subroutine can be called as many
times as you like from the StartMovie script, another subroutine and
anywhere in the NewFrame script.

Calling a subroutine

Call SubName

Debugging using the Script Window

You can debug your TScripts by writing information to the script window
from within your scripts:

Put argument

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

442 Using Toon3D Creator

The argument can either be a string value (“”) or the name of a variable.
You cannot Put arithmetic operations or script expressions to the Script
Window – you must write them into a temporary variable and then Put the
variable.

Each Put statement is written to a new line in the Script Window.

Example
The text “The Cheese X position is” is first written to the script window,
followed by the actual X position of the Toon called Cheese, stored in the
variable xpos.

On NewFrame
Set xpos = Get Property (Cheese, x)
Put “The Cheese X position is”
Put xpos

End NewFrame

If the Toon Cheese was at X value 125 then the output of the script
window would be:

The Cheese X position is
125

Publishing

When you’ve developed your Toon3D movie you can publish directly to a
web page. Before you publish there are a couple of preferences you can
set.

To set Publish preferences

1 File. . .Preferences.

Publish Settings:
JPEG Quality – sets the quality of any JPEG surface textures used in

your project in the final movie. Setting the quality to a high level will result
in better reproduction of the image texture but at the expense of smoother
playback, and vice versa.

Create HTML doc – will generate an HTML file into which your movie
will be embedded when you publish your project. The HTML document
will include the codebase data needed so the ActiveX Toon3D plug-in
required to play back Toon3D files will be downloaded to the user’s
browser if it’s not already installed.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Using Toon3D Creator 443

To publish your movie

1 File. . .Publish.

This will generate an HTML page (.html) and a Toon3D file (.t3x) in the
folder where your project is saved, and both with the same name as the
published project.

The HTML page uses the Object tag to include the Toon3D file in the
page. If the user doesn’t have the Toon3D plug-in installed, it will
download automatically when they load a Toon3D web page. The
download process is automated and is only 130 kB, so is relatively quick
to install.

The Toon3D player is set to a default size of width = 550, height = 400.
If you wish to modify the size or alignment of the Toon3D movie, then edit
the HTML file directly. To make the Toon3D movie size with the browser
window, then use width and height percentages (width = 100 per cent,
height = 100 per cent for full size).

At present, only Microsoft Internet Explorer running under a 32-bit
Windows operating system supports Toon3D.

Troubleshooting

System requirements for Toon3D

� PC running a 32-bit Windows operating system (currently Windows 95,
98, 2000 and NT).

� OpenGL supported graphics card (requires the file Opengl32.dll to be
installed in the Windows system directory).

� Microsoft Internet Explorer for viewing.

If you experience problems with the displaying of Toon3D, then the most
likely source of the problem will lie with your graphics card and OpenGL
drivers. If you go to the OpenGL website at www.opengl.org, you’ll find
utilities which can test and update your OpenGL installation.

If you have any specific problems running Toon3D you can contact our
support by email at support@toon3d.com

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Appendix B:
MFC Document/View
architecture – a short
introduction

Most of the source code in this book uses Microsoft Foundation Classes
(MFC). If you have never done any MFC programming then you may find
the approach strange. The purpose of this short appendix is to get you
started with MFC programming. If you intend to use MFC in your own
programs then I recommend getting a good MFC book (check Appendix
C for some suggestions); this is just a quick introduction.

Creating a Dialog-based application

When you start up Visual C++ and choose to create a new workspace,
you can select ‘MFC AppWizard (exe)’ to create an MFC application.
Having chosen your project’s name and selected OK, you are faced with
the first of several boxes in the application wizard.

An MFC application can be Single document, Multiple document or
Dialog based. The simplest case is the Dialog-based option.

Any MFC application is derived from the MFC class CWinApp. All MFC
classes use a prefix C to denote a class. A CWinApp class looks after the
basics of an application set-up. CWinApp is in turn derived from
CWinThread. All MFC applications can be made multi-threaded quite
easily by creating a new CWinThread object. In a simple Dialog-based
application the main window is created from a Dialog resource, which can
be visually created using the Visual C++ resource editor. The main
window is shown to the user via the InitInstance function, which is
automatically created in the derived application class by the application
wizard.

MFC Document/View architecture – a short introduction 445

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure B.1 Creating a new workspace with Visual C++.

Figure B.2 Selecting the MFC application type.

446 MFC Document/View architecture – a short introduction

BOOL CMFCDialogApp::InitInstance()

{

//Only use AfxEnableControlContainer if you intend to use ActiveX

//controls in the dialog

AfxEnableControlContainer();

#ifdef _AFXDLL

Enable3dControls(); // Call this when using MFC in a shared DLL

#else

Enable3dControlsStatic(); // Call this when linking to MFC

// statically

#endif

CMFCDialogDlg dlg;

m_pMainWnd = &dlg;

int nResponse = dlg.DoModal();

if (nResponse == IDOK)

{

// TODO: Place code here to handle when the dialog is

// dismissed with OK

}

else if (nResponse == IDCANCEL)

{

// TODO: Place code here to handle when the dialog is

// dismissed with Cancel

}

// Since the dialog has been closed, return FALSE so that we

// exit the application, rather than start the application’s

// message pump.

return FALSE;

}

Notice that the main window is the
Dialog class CMFCDialogDlg, which is
derived from CDialog. A dialog box is
shown using the member function
DoModal. When a dialog box is closed,
DoModal returns the ID of the control
that closed it. The default implementa-
tion uses the buttons OK and Cancel,
which return IDOK and IDCANCEL.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure B.3 A simple Dialog-based
application.

MFC Document/View architecture – a short introduction 447

Dialog boxes are easily handled by adding event handlers using class
wizard.

The dialog in Figure B.3 contains five added controls. You can access
the IDs of the controls by right clicking on the control and selecting
‘Properties’ from the pop-up menu. Working from left to right, the ID of the
controls are IDC_NUM1, IDC_STATIC, IDC_NUM2, IDC_STATIC and
IDC_NUM3. Notice here that more than one control has the ID, IDC_
STATIC. To connect a variable to a control you can use Class Wizard.

Select the Member Variables tab and highlight the control ID that you
wish to be attached to a variable. Click the ‘Add Variable’ button.

Set the variable name and type and press OK in the new dialog box.
Now select the message map tab to connect a function to an event. In

this case we will react to any change to the IDC_NUM1 control by
selecting this from the Object IDs. In the Messages list you will see an
EN_CHANGE message. Select this and click ‘Add Function’.

In the new dialog box, give the function a name or select the default
name. Now whenever a change to the text in the control with the ID IDC_

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure B.4 Using Class Wizard to connect a variable to a control.

448 MFC Document/View architecture – a short introduction

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure B.5 Setting the variable type and name.

Figure B.6 Connecting a function to an event.

MFC Document/View architecture – a short introduction 449

NUM1 occurs, this function gets called. In the ‘Examples/AppendixB/
MFCDialog’ folder on the CD you will find this project. This project has
functions for both IDC_NUM1 and IDC_NUM2. For each of these we will
look at how to get at the control data. If you have created member
variables for the controls then you can load the control data into these
member variables using the function UpdateData(TRUE). By passing
TRUE to this function you are transferring the control data to your
variables. In this simple example, we get the two numerical values, add
them together and store the result in the member variable m_result. In the
project m_result maps to the control IDC_NUM3, which we use to display
the result. To transfer the value in the variable m_result into the control
IDC_NUM3, we can use UpdateData(FALSE). By passing FALSE to this
function the tied variable value is transferred into the control.

void CMFCDialogDlg::OnChangeNum1()

{

//Get values of m_num1 and m_num2 from the controls

UpdateData(TRUE);

m_result = m_num1 + m_num2;

//Put the sum, m_result, into the control IDC_NUM3

UpdateData(FALSE);

}

If we had not used tied member variables we could still get the data out
of the control. All controls are derived from the class CWnd. This class has
a member function GetWindowText. The Dialog class CDialog has a
member function GetDlgItem. Passing the ID of the control to GetDlgItem
returns a pointer to a CWnd. We can use this pointer and the function
GetWindowText to retrieve the text in the control. We convert the text into
a number, repeat for the second number and then sum the result. We
convert the sum into a string using another MFC class, CString. This class

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure B.7 Setting the function name.

450 MFC Document/View architecture – a short introduction

has a member function Format that works like sprintf. We can then
transfer this string value into the control IDC_NUM3 using the CWnd
member function SetWindowText.

void CMFCDialogDlg::OnChangeNum2()

{

double a, b;

CString str;

GetDlgItem(IDC_NUM1)->GetWindowText(str);

a = atof((LPCTSTR)str);

GetDlgItem(IDC_NUM2)->GetWindowText(str);

b = atof((LPCTSTR)str);

str.Format(”%f”, a + b);

GetDlgItem(IDC_NUM3)->SetWindowText(str);

}

If you want to populate the dialog before displaying it then tied member
variables are the best way. You can create a dialog, then set the values of
the member variables before calling DoModal. The DoModal function that
displays the dialog looks after transferring the data from the variable into
the control.

Creating an SDI application

If your application is a little more complex, then a good choice is an SDI
application. For this type start a new MFC AppWizard (exe) workspace. In
the first AppWizard panel choose the Single document for the application
type.

A default single document application contains the following:

CMFCSingleDocApp derived from CWinApp
CMFCSingleDocDoc derived from CDocument
CMFCSingleDocView derived from CView
CMainFrame derived from CframeWnd

This type of approach is called the document view architecture. The idea
is that you store all your data in the document and you decide how this is
displayed using the view. The benefit of this is that you can display the
same data in several ways. Toon3D uses four views of the same data.
The view in the top left is a tree view of the document, allowing the user

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

MFC Document/View architecture – a short introduction 451

to select different parts of the document. Middle left is an image view, to
display bitmaps. Bottom left is a debug view for scripts. The biggest view
is the OpenGL window on the right. Each of these views is handled by a
completely different view class. This architecture structures the source
code in a logical and easy to use way.

The default implementation has just one view. The sample project
‘Examples\AppendixB\MFCSingleDoc’ is a very simple SDI application.
The document stores a rectangle and the view draws it. If you click on the
view and drag you can draw a new rectangle. The file menu allows you to
save the square or load another square. So how is this all achieved?

First, we add a CRect member variable to the document. A CRect is
an MFC class that stores a rectangle structure. We can use this class to
store the position on the view of the top left corner of a rectangle and
the bottom left. The default values for the rectangle are initialized in the
function OnNewDocument(), which is created for you by Visual C++ for
all CDocument derived classes. A CRect class has a member function
SetRect, which can set the left, top, right and bottom member
variables.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure B.8 Toon3D is an SDI application.

452 MFC Document/View architecture – a short introduction

BOOL CMFCSingleDocDoc::OnNewDocument()

{

if (!CDocument::OnNewDocument())

return FALSE;

rect.SetRect(100, 100, 300, 300);

return TRUE;

}

We draw the rectangle with the view shown in Figure B.9.

The view class has a function already created by Visual C++ that allows
you to implement any drawing necessary. The OnDraw function is passed
a point to a device context class CDC. You can use this function to do any
drawing of the document you require. First, get hold of a pointer to your
document. The default AppWizard implementation includes a member
function to access the document, GetDocument(). With the device context
and the document pointer you can use a simple GDI (Graphics Device
Interface) function to draw a rectangle.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure B.9 A simple MFC Single document application.

MFC Document/View architecture – a short introduction 453

void CMFCSingleDocView::OnDraw(CDC* dc)

{

CMFCSingleDocDoc* doc = GetDocument();

ASSERT_VALID(doc);

dc->FrameRect(&doc->rect, &CBrush(RGB(255, 0, 0)));

}

To reshape the rectangle we can use Class Wizard to add an event
handler. We select CMFCSingleDoc as the class we are dealing with in
the Message Maps tab. Then select WM_LBUTTONDOWN from the
message ID list. Select ‘Add Function’ and a message handling function
is created. You can add code to this function to handle your specific
needs.

void CMFCSingleDocView::OnLButtonDown(UINT nFlags, CPoint point)

{

GetDocument()->rect.left = point.x;

GetDocument()->rect.top = point.y;

CView::OnLButtonDown(nFlags, point);

}

We use the same technique to implement a mouse button release
function.

void CMFCSingleDocView::OnLButtonUp(UINT nFlags, CPoint point)

{

GetDocument()->rect.right = point.x;

GetDocument()->rect.bottom = point.y;

CView::OnLButtonUp(nFlags, point);

}

As the mouse moves, we redraw the view if the left mouse button is held
down, VK_LBUTTON.

void CMFCSingleDocView::OnMouseMove(UINT nFlags, CPoint point)

{

if (VK_LBUTTON & nFlags){

GetDocument()->rect.right = point.x;

GetDocument()->rect.bottom = point.y;

Invalidate();

}

CView::OnMouseMove(nFlags, point);

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

454 MFC Document/View architecture – a short introduction

The default implementation of a document includes a Serialize function.
This is called whenever the user chooses Save or Open from the default
menu. The function is passed a CArchive reference that takes care of
much of the complexity of saving and loading documents. Most MFC
classes have the operators << and >> overridden so that to save a class
you simply need to use << to save and >> to load. When using a CArchive
class the function IsStoring evaluates to TRUE if the user has chosen to
Save and FALSE if the user has chosen to Load.

void CMFCSingleDocDoc::Serialize(CArchive& ar)

{

if (ar.IsStoring())

{

ar<<rect;

}

else

{

ar>>rect;

}

}

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure B.10 Saving the document.

MFC Document/View architecture – a short introduction 455

Finally, we will add a new menu item using
the resource editor in Visual C++. This new
item has a unique ID.

If we again use Class Wizard we can add
a message map handler to the CMainframe
class to handle the new menu item. The
CMainframe class accesses the document
using GetActiveDocument. This function
returns a pointer to the document which must be cast to the specific
document type for your application. To make sure this is possible,
remember to add the header file for your document to the start of the
‘mainfrm.cpp’ file. This simple function gets the centre of the current frame
window and re-centres the document’s rectangle to this centre. Having
done this, it uses the CDocument function UpdateAllViews to tell the view
to redraw itself.

void CMainFrame::OnEditCentre()

{

CRect rect;

GetClientRect(&rect);

CPoint cen;

cen.x = rect.Width()/2;

cen.y = rect.Height()/2;

CMFCSingleDocDoc *doc =↵
(CMFCSingleDocDoc*)GetActiveDocument();

CSize size;

size.cx = doc->rect.Width()/2;

size.cy = doc->rect.Height()/2;

doc->rect.SetRect(cen.x – size.cx, cen.y – size.cy,

cen.x + size.cx, cen.y + size.cy);

doc->UpdateAllViews(NULL);

}

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

Figure B.11 Adding a new
menu item.

456 MFC Document/View architecture – a short introduction

Creating an MDI application

An MDI application has one additional file in the default implementation,
a class that is derived from CMDIWnd called CChildframe. When you
select New from the menu a new document and view are created,
allowing the user to work on multiple documents at the same time. MDI
applications are basically the same to work with except that where you
would use the CMainframe class in an SDI application you use the
CChildframe in an MDI application. The sample Examples\Appen-
dixB\MFCMultiDoc project gets you started with MDI applications.

So that concludes the whirlwind guide to MFC. Hopefully, this gives a
brief overview and will help when you work your way through the source
code for Toon3D. If you intend to work with MFC to any extent, then
please try one of the books mentioned in Appendix C.

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Figure B.12 An MFC Multiple document application.

Appendix C:
Further information

General

Book corrections and source code updates: toon3d.com/rt3d

Gamasutra programming index:
www.gamasutra.com/features/index_programming.htm

Game Developer Magazine – For the best source of up-to-the-minute
details about the games industry, check out
www.gdmag.com

Clapham, C. (1990). The Oxford Dictionary of Mathematics. Oxford
University Press. ISBN 0–19–866156–8.

Eberly, D. H. (2001). 3D Game Engine Design. Morgan Kaufmann. ISBN
1–55860–593–2. This book is not for the faint hearted; the mathematical
level is very high, but the material contained is worth the effort.

Farin, G. (1996). Curves and Surfaces for CAGD. Academic Press. ISBN
0–12–249054–1.

Flowers, B. H. (1995). An Introduction to Numerical Methods in C++.
Clarendon Press. ISBN 0–19–853863–4.

Muller, C. (1997). Mathematics in Video Games.
www.gamasutra.com/features/programming/061997/video_games.htm

Piegl, L. and Tiller, W. (1997). The Nurbs Book. Springer-Verlag. ISBN
3–540–61545–8.

458 Further information

Chapter 1

Baker, M. (1999). 3D World Simulation.
www.martinb.com/threed/index.htm

Bobick, N. (1998). Interpolating the Orientation of an Object.
www.gamasutra.com/features/programming/19980703/quaternions_
02.htm

Watt, A. and Watt, M. (1992). Advanced Animation and Rendering
Techniques. Pearson Education. ISBN 0–201–54412–1.

Chapters 3 and 4

The main OpenGL website at
www.opengl.org

Marques, A. OpenGL tutorial. http://arturnarques.com/tutorials/opengl/
lesson2/opengl_lesson2.htm

Woo, Neider and Davis (1997). OpenGL Programming Guide. Addison
Wesley. ISBN 0–201–46138–2.

Chapter 9

Lander, J. (1999). Oh My God I Inverted Kine: Inverse Kinematics for
Real-Time Games.
www.darwin3d.com

Baker, M. (1998). Kinematics.
www.martinb.com/threed/animation/kinematics/index.htm

Chapter 10

Ernie Wright’s website: http://members.home.net/erniew/

Newtek’s site:
www.newtek.com

A good source of Lightwave information is:
www.flay.com

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Further information 459

Chapter 12

Dyer, S. (1995). Motion Capture White Paper.
reality.sgi.com/jam_sb/mocap/MoCapWP_v2.0.html

Sample BVH files are available at Biovisions website:
www.biovision.com

Chapter 13

Bobic, N. (2000). Advanced Collision Detection Techiques.
www.gamasutra.com/features/20000330/bobic_01.htm

Lander, J. (2000). Crashing into the New Year.
www.gamasutra.com/features/20000210/lander_ptv.htm

Chapter 15

Sharp, B. (2000). Implementing subdivision surface theory. Game
Developer Magazine, February.

Jos Stam has several interesting papers, some involving subdivision
surfaces: http://reality.sgi.com/jstam_sea

Chapter 16

Garland, M. and Heckbert, P. S. (1997). Surface Simplification Using
Quadric Error Metrics.
www.graphics.cs.uluc.edu/~garland/research/thesis.htm

Lee, A. (2000). 3D Mesh Simplification.
www.gamasutra.com/features/20000908/lee_02.htm

Chapter 17

Howlett, P. (1997). Cloth Simulation Using Mass–Spring Networks.
University of Manchester Department of Computer Science, October.

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

460 Further information

Chapter 18

The Web3D Consortium:
www.web3d.org

Appendix A

Toon3D website:
www.toon3d.com

Appendix B

Wilkins, Garg and Meyyammai (2000). MFC Development Using Micro-
soft Visual C++ 6.0. Microsoft Press. mspress.microsoft.com

Links to MFC websites:
http://www.brunel.ac.uk/~empgamh/cpp_win.htm

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Index

A/D converters, 264, 266
2D:

collision detection, 296–300
screen, 3D space, 11–13
space, expanding, 37

3D space:
describing, 2–3
2D screen, 11–13

3DS Max, 215–58
Accuracy:

collision detection, 294
fonts, 370

Actions:
complexity, 259
libraries, 381
Toon3D, 420–1

ActiveX, 395–404
Actors, 260–3
AddEdge, 333–41
Algorithms:

Bresenham’s, 18–25
Cyclic Coordinate Descent, 177–82
Quadric Error Metrics, 350–4

Alignment, bitmaps, 69
Ambient lighting, 33, 60
Analytic techniques, multiple link

chains, 170–7
Angles:

axis rotation, 9
camera, 211–12
Euler, 7–9, 148, 155–9, 244–6,

265
lighting, 59
storing data, 148
vectors, 5

Animation:
3DS Max, 228–9
bones deformation, 124–9
facial, 304–19
frame rates, 147
keyframe, 145–67
storing data, 147–9
Toon3D, 416–17
walking, 160–3

ANSI character set, 369–70
Application:

dependent resources, 376–8
wizards, 444

Approximating subdivision, 321–2
Arbitrary points, 299–300
Arms:

animation, 163
modelling, 89

Arrays, Toon3D, 436–7
ASCII files, 215
ASE files, 215
Axes, 3D space, 2
Axis-aligned bounding boxes, 288–93

Backdrop image, Lightwave, 3D,
84–5

Background:
colour, 44
display, 14–17

Behaviour policies, 374
Bending strengths, 182
Bendypoints:

deformation, 129–32, 137–8
Toon3D, 416

462 Index

Bezier curves, 253–5
Bibliography, 457–60
Binding, texture objects, 71–2
Biovision Hierarchy files (BVH), 260,

272–84
BITMAPINFOHEADER, 16–17
Bitmaps, 14–17, 19

3DS Max, 219–20, 237
buttons, 373
fonts, 372–3
levels of detail, 111
loading, 97–103
storing, 366
textures, 35–8, 69–77

Blending:
actions, 164–6
IK solutions, 182–3
morph targets, 312
motion capture, 285
texture, 112, 122–3

Blitting, 17–18
BLOK chunks, 205
Boards, computer, 265–6
Bodies:

modelling, 87–90
motion capture, 263–4

Bones:
Biovision Hierarchy files, 276
deformation, 124–9

Border vertices, 325–6, 329, 333–41
Bounding boxes:

cell analysis, 349
collision detection, 288–93
compression, 389
layer data, 190
limitations, 294–300
segments, 300–3

Bounding spheres, collision detection,
292–3

Bresenham’s algorithm, 18–25
Browsers, 399–404
Buffers:

bitmaps, 100–2
creating, 15–16
GLUT, 43
IFF files, 186

Jpeg files, 109–10
OpenGL, 39

Butterfly subdivision, 143, 321,
324–44

Buttons, storing, 367–73
BVH see Biovision Hierarchy files

Calculations, bones deformation,
126

Cameras, 374
3DS Max, 226, 256–7
angle of view, 211–12
optical motion capture, 261
Toon3D, 429–30

Canvases, creating, 15–16
Case sensitivity, Toon3D, 432
Catmull-Clark subdivision, 321,

322–4
CCanvas, 14
Cell analysis, 349
Channels:

Biovision Hierarchy files, 275–6
compression, 392
morph targets, 318–19
motion:

capture, 267–8, 270–1
files, 367

object layers, 209–10
storing data, 147–50

Characters:
Biovision Hierarchy files, 282–4
Charlie, 79–93, 305–6
Gerald, 92, 94–6
hierarchies, 141–2
movement, 124–44, 160–3

Charlie character, 79–93
facial expressions, 305–6

Child objects, 134–5
Chunks, 185–9

morph objects, 306
UV mapping, 205–6

Cinema, 146–7
Class Wizard, 447–50
ClipLine function, 19–22
Cloning mesh data, 379–81

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Index 463

Cohen-Sutherland clipping, 21
Collision boxes:

storing, 375–6
Toon3D, 419–20, 424–6

Collision detection, 287–303
COLORREF, 23
Colours:

background, 44
bitmap depth, 98
OpenGL, 40–1
polygons, 28–38
RGB, 98–9
specifying, 14–16
Toon3D, 432

Comments, Toon3D, 432
Compiling scripts, Toon3D, 431–3
Compression, 386–404

bitmaps, 98–9
Concave polygons, 194
Conditional statements, Toon3D,

438–9
Connectivity array, 329–32, 344–5
Contraction targets, 354, 361
Control meshes, 142–3
Controls:

ASE files, 255–6
curves, 254
deformation, 124, 127, 130–2
morph targets, 309–11
Toons, 418–19, 422–3
window, Toon3D, 407

Coordinates:
spherical, 120
texture, 114–15, 199, 202–6, 333,

390
UV mapping, 122

Cos vectors, 5
CQuadric class, 356–62
CreateBMI, 16–17
Creating:

buffers, 15–16
canvases, 15–16
connectivity array, 329–32
headers, 16–17
key values, 315–18
mocap suits, 263–71

new classes, 185
polygon mesh, 79–80
polygons, 25–38
texture coordinates, 202–6
windows, GLUT, 43

Cross product, 6–7
Cubes, OpenGL, 47–8
Cubic curves, 150–5
Curves, 253–5

cubic, 150–5
interpolation, 150–5
morph targets, 315

Cyclic Coordinate Descent, 177–82
Cylindrical mapping, 117–19

Dampers, 377–8
Data, motion capture, 271–2, 284–6
Debugging, Toon3D, 441–2
Decompression, Jpeg files, 106–8
Default position, characters, 282
Deforming:

characters, 124–44
movement, 80–1
subdivision, 345

Degrees of freedom, 169
Deleting data, 387, 401
Deleting texture IDs, 113–14
Depth, modelling, 85
Detail, levels of, 111
Determinants, 6
Deviation parameters, fonts, 370–1
Device contexts, 17–18
Dialog based applications, 444–50
Dialog boxes, 446–7
Diffuse lighting, 60
Digital models, motion capture, 265
Direction:

faces, 3
lighting, 32, 59–62

DirectX, 56–7
Displaying:

Biovision Hierarchy files, 281–2
bitmaps, 102–3
fonts, 369–72
GLUT, 42

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

464 Index

Distance:
calculations, 293
culling, 39
vertex pairs, 359

Distortion, pivot points, 139
Dot product, 4–5
Double buffering, 42–3, 51
Double link IK chain, 170–6
Download time, 393–5
Drawing:

characters, 80
device contexts, 17–18
horizontal lines, 28–31
lines, 18–25
OpenGL, 46–8, 54–7
polygons, 27–32
SDI applications, 452–3
spheres, 65–8

DWORD alignment, 104, 109–10

EDGE, 326
Edges:

outlines, 55–6
removing, 349–50

Enable:
lighting, 59
textures, 74–6

Endpos, Biovision Hierarchy files, 278
Errors:

calculation, 351–4
file read, 185–9

Euler angles, 7–9, 148, 155–9,
244–6, 265

Events, Class Wizard, 447–50
Examples:

GLUT, 41–2
lighting, 60–2

Exporting, 3DS Max, 215
Expressions, facial, 305–6
Extraordinary vertices, 324–6

Faces:
3DS Max, 222–3, 251–2
animation, 304–19
modelling, 85

Feet:
animation, 162
modelling, 90–2

File sizes, Toon3D, 406
File tools, Toon3D, 409
Filmbox, 260–1, 272
Fingers, modelling, 90–1
Flat coloured polygons, 28–32
Flattening, 3D space, 11–13
Fogging, 39
Fonts, 368–9
Formats, motion capture, 272
Frames:

Lightwave, 3D scene files, 207
rates, 146–7
updates, 62–8

Functions:
Class Wizard, 447–50
GLUT, 42–4

Games, collision detection, 287
GDI see graphics device interface
Generating texture objects, 73
Geometry, OpenGL, 40
GEOMOBJECT, 3DS Max, 220, 240–6
Gerald character, 92, 94–6
GetPixelAddress, 18–19, 105–6
GetSectionEnd, 3DS Max, 229–30
Gimbal lock, 9, 148
Global libraries, 364, 378–81
GLUT, 41–4
Gouraud shading, 35
Graphics:

cards, 292
device interface (GDI), 51
libraries, 1

Grid size, Toon3D, 413
Groups:

morph targets, 319
Toon3D, 433

Hands, modelling, 90–2
Headers:

ActiveX, 395–6, 401
bitmaps, 99–100

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Index 465

creating, 16–17
Lightwave files, 185–7
TGA files, 103

Heads:
animation, 162
modelling, 79, 82–7

Hermite curves, 151–2
Hierarchies:

Biovision Hierarchy files, 272–4
characters, 141–2
motion capture, 264
objects, 124, 125–6, 132–8

Highlighting, 35
edge outlines, 55–6
vertices, 54–5

Hips:
animation, 161
modelling, 89
potentiometers, 263

Homogeneous coordinates, 13
html pages, 399
Human limitations, motion capture, 285

ID numbers, textures, 71, 112–13
IFF files, 185
IK see inverse kinematics
Images:

storing, 366
wrapping, 117

Importing, Toon3D, 413–14
Indices, added polygons, 341
Init function, 44
Input registers, A/D, 267
Interface, Lightwave, 6.5, 83
Interlacing, 394
Internet, 106, 386
Interpolation, 9–10

frame and time, 149–55
key positions, 164–6
morph targets, 318
quarternions, 155–9
subdivision surfaces, 320–1

Inverse kinematics (IK), 168–83,
285–6

Iteration, multiple link chains, 177–82

Joints:
limits, 182
motion capture, 264–5
tripling, 82, 83

Jpegs:
loading, 106–11
lossy compression, 387

Key:
channels, 149
controls, Toon3D, 422–3
presses, Toon3D, 439–40
values:

morph targets, 315–18
motion capture, 284–5

Keyboards, GLUT, 43
Keyframe animation, 145–67

morph targets, 312–18
Toon3D, 417–18

Knifing, modelling, 88–9

Lambertian reflection, 32
Layers:

Lightwave files, 188, 189–98
modelling, 87

Layout:
application wizards, 445
SDI applications, 451
Toon3D, 407–13

Legs:
animation, 161, 162
modelling, 89

Libraries:
action, 381
global, 364, 378–81
graphics, 1
standard, 395

Lighting:
3DS Max, 227, 257
ambient, 211
OpenGL, 40, 58–77
polygons, 32–5
texture, 112
Toon3D, 428–9

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

466 Index

Lightwave, 3D, 78, 83–7, 184–214
development, 406
morph objects, 304–19
objects, 413–14

Limitations:
bounding boxes/spheres, 294–300
multiple link chains, 176–7
OpenGL, 39

Line segments, 299–300
Linear interpolation, 149–50
Linear subdivision, 321
Lines, drawing, 18–25
Linked chain actions, 168–9
Links, Cyclic Coordinate Descent,

178–9
Lists:

meshes, 365
point, 388–9
vertices, 39

Live action references, 163–4
Loading:

bitmaps, 97–103
Jpeg files, 106–11
morph objects, 307–9
object layers, 208–10
screens, 393–4, 400
TGA files, 103–6

Loops:
animation, 160–3, 164
ASE files, 232–4, 250
Toon3D, 438–9

Lossy compression, 387–8
Low polygon characters, 78–96
LZW compression, 388

Magnetic motion capture, 262
Mapping:

Biovision Hierarchy files, 283–4
bitmaps, 114
cylindrical, 117–19
planar, 115–16, 203–4
spherical, 119–22
UV, 122, 204–6

MAPS, 3DS Max, 219–20

Materials:
3DS Max, 217–19, 236–40,

242–3
OpenGL, 62

Matrices:
3 � 3 representations, 6–7
4 � 4 representations, 12–13
cross product, 6–7
modes, OpenGL, 45
quadric, 354–6
rotation, 158
scaling, 10–11

MDI applications, 456
Mechanics, 377

motion capture, 262–3
Memory:

background display, 14–17
bitmaps, 18–19, 69–70
layer data, 193
size, 378

Menu items, SDI applications, 455
Meshes:

3DS Max, 221–2, 246–53
cloning, 380–1
compression, 388–91
multi-resolution, 346–63
storing, 365
triangular, 81–2

Methods, storage, 70–1
MFC see Microsoft Foundation

Classes
Microsoft Foundation Classes (MFC),

444–56
OpenGL setup, 48–54

Mipmaps, 77, 382
Mirroring, modelling, 86
Mocap files, 259
Modelling software, 78
Modify controls, Toon3D, 411
Morph objects, 304–19
Morph targets, storing, 365
Morphing, Toon3D, 415–16
Motion:

capture, 259–86
see also movement

Motorola byte ordering, 186

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Index 467

Mouse:
GLUT, 43–4
Toon3D, 439–40

Mouth, modelling, 85
Movement:

Biovision Hierarchy files, 275–6,
278–82

characters, 124–44
cloning, 380–1
compression, 391–3
files, storing, 366–7
lighting, 63
object layers, 209
stationary objects, 182–3

MSWindows, OpenGL, 41
Multi-resolution meshes, 346–63
Multiple channels, morph targets, 319
Multiplexers, 266

Necks, modelling, 89
NODE TM, 3DS Max, 220–1, 241, 243
Non-planar polygons, 81–2
Normals, 3DS Max, 224–6, 246, 252–3

Objects:
3D space, 2–3
collisions with, 290–1
describing, 3–4
files, 206
hierarchies, 124, 125–6, 132–8
layers, 208–10
properties, 414
rotating, 177–82
scaling, 10–11
sub division, 342–4
types, 138

Once-through transformations, 136
OnCreate, 51–2
OnDestroy, 52–3
OnDraw, lighting, 63–4
OpenGL, 1, 14, 39–57

collision detection, 292
texture engine, 111–14

Operators, Toon3D, 431, 432–3
Optical motion capture, 261–2

Optimizing, connectivity arrays, 344–5
Orientation:

loops, 160
mechanical motion capture, 263
motion capture, 269
storing data, 147–8

Orthographic views, Lightwave, 3D, 84
Outline polygons, 27
Overview, Lightwave, 3D, 184–5

Painting, polygons, 28–38
Pairs, vertex, 351, 358–62
Palettes, 15
Parameters:

generating texture objects, 73
lighting, 60
materials, 62
texture objects, 72
wrapping, 72

Parenting:
Biovision Hierarchy files, 276
objects, 132
Toon3D, 415

Parsing:
3DS ASCII, 229–57
3DS Max, 215
text files, 184–214

Persistence of vision, 145
Perspective:

Lightwave, 3D, 84
OpenGL, 45
transforms, 11–13

Phong shading, 35
Physics, 376
Pivot points:

locations, 139–42
rotation, 10
single mesh deformation, 362–3
Toon3D, 414

PIXELFORMATDESCRIPTOR, 48–54
Pixels:

bytes, 19
size, 72

Planar mapping, 115–16
texture coordinates, 203–4

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

468 Index

Planes:
collision detection, 300–2
quadrics, 357
removing edges, 351–4

Player controls, Toon3D, 410
Plyscan, 328
POINT3D, 26
Point:

indices, deformation, 127–9
layer data, 189–90, 191
lists, compression, 388–9
location, 19–21
mass, 377–8
rotation, 10

POINTCON, 326
Pointers, hierarchies, 133–8
PointInPolygon, 296–9
Polygons, 3

3DS Max, 218, 249
collision detection, 296, 301–2
compression, 389–90
creating, 25–38
layer data, 190, 192–5
modelling, 78–96
non-planar, 81–2
normals, 4–7
OpenGL, 47–8
reduction of, 346–63
subdivision surfaces, 320–45

Position, storing data, 147–8
Positional lighting, 59–62
Potentiometers, 263

motion capture, 265–71
Praxinoscopes, 146
PreCreateWindow, 49–50
Preferences, Toon3D, 412–13
Previews, Lightwave, 3D scene

files, 207
Projectiles, 376
Projections, OpenGL, 44–6
Properties, Toon3D, 433–5
Publishing, Toon3D, 442–3

Quad strips, 65
Quadric Error Metrics, 349–62

Quadrilaterals, subdivision, 322
Quads, mesh, 81–2
Quarternions:

interpolation, 155–9
rotation, 9–10
storing data, 148

Random numbers, Toon3D, 441
Rasterizing, 28, 38
Re-triangulation, 348
Reactions, collisions, 290–1, 302–3
Readers, Lightwave files, 188–98
ReadImage, 105
References, live action, 163–4
Refresh rates, 97
Rendering, 40, 212–13

frame updates, 62–8
OpenGL, 50, 74

Replaying, motion capture, 271
Resizing, bitmaps, 69–70, 76–7
Resolution, download time, 394
Resources, storing, 364–85
RGB colour, 14–16, 31, 98–9
Robotics, 168–9
ROOT objects, Biovision Hierarchy

files, 275
Rotation:

Cyclic Coordinate Descent, 177–82
Lightwave 3D scene files, 206–8
limits, 269
matrix, Biovision Hierarchy files,

282–4
objects, 4, 7–10
OpenGL, 46
parented objects, 133
pivot point locations, 139

Roto-scoping, 259

Saving, SDI applications, 454
Scaling, 10–11, 112–13

3DS Max, 258
compression, 389
multi-resolution meshes, 346–8
storing data, 147–8

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Index 469

Scanning, motion capture, 260, 261,
267

Scenes:
3DS Max, 216–17, 234–6
files, 184–214
graphs, 364–85
properties, Toon3D, 435

Scripting languages, Toon3D, 430–1
Scripts, 374

window, Toon3D, 407–8
SDI applications, 450–5
Segment bounding boxes, 300–3
Selectors, motion capture, 264
Sensors, magnetic motion capture,

262
Setting up OpenGL, 39–41
SetTweenKeys, 164–6
Shaded polygons, 32–5
Shadows, object layers, 210
Shoulders, animation, 163
Shrinking, subdivision, 143, 321–2
Single:

link IK chain, 169–70
mesh deformation, 362–3

Skeletons, Biovision Hierarchy files,
276–8

Slices, radius, 66
Slopes:

cubic curves, 150
lines, 20, 21, 24, 28–9

Smoothing, subdivision, 143, 320
Software, modelling, 78
Solutions, multiple link chains, 176–7
Sound, Toon3D, 427–8, 440
Space, measuring, 2
Speaking, morph targets, 319
Specular lighting, 60
Speed:

computers, 94
Internet, 393
transformations, 142

Spheres, drawing, 65–8
Spherical mapping, 119–22
Spotlights, 59–62
Springs, 377–8
Stage window, Toon3D, 408–9

Standard libraries, 395
Stationary objects, 182–3
Storage width, 16
Storing:

actions, 168
animation data, 147–9
bitmaps, 69–70
code, 44
key values, 278–81
layer data, 189–90
mesh topology, 327–8
morph targets, 309–11
resources, 364–85

Streaming, 386–404
StretchDIBits, 102
Stretching, modelling, 88–9
Strings, fonts, 372
Sub-chunks, 187, 197, 198–9, 206
Sub-materials, 218, 239–40
Subdivision surfaces, 142–3,

320–45
Subroutines, Toon3D, 441
Suits, mechanical motion capture,

263–71
Surfaces:

compression, 390–1
layer data, 190, 195–202, 205
subdivision, 320–45

Switching scenes, 382–5
Synchronized characters, 379–80
Syntax, Toon3D, 431

Tables, point location, 21
Tags:

chunk, 188
information, layer data, 190,

195–6
Tangents, cubic curves, 150–1
Targets:

beyond reach, 173
inverse kinematics, 170
morph, 305
polygon total, 354, 361

TCB curves, 253–5
morph targets, 315

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

470 Index

Tests, collision detection, 289, 292
Text:

storing, 367–73
Toon3D, 426–7

Texture:
3DS Max, 223–4, 250–1
coordinates, 199, 202–6, 333,

390
mapping, 97–123
objects, 71–3, 374–5
OpenGL, 69–77
polygons, 35–8
storing, 366, 390
switching scenes, 382

TGA files, loading, 103–6
TICKSPERFRAME, 216–17
Time:

Biovision Hierarchy files, 281
blending, 183
bones deformation, 125–6
collision detection, 294–5
morph targets, 315
scene loading, 379
storing data, 148–55

Timeline, Toon3D, 410–11
Timing of actions, 163
TMAP sub-chunks, 206
Tokens, 3DS Max, 230–2
Toolbar, Toon3D, 409
Toon3D, 405–43

collision detection, 288
compression, 395–9
deformation, 130–2
hierarchies, 133–8
key channels, 152–5
keyframe animation, 159–63
loading, 399–404
surfaces, 198–202

Toons, 418–19
Torso, animation, 161
Transformations:

blending morph targets, 312–14
once-through, 136
OpenGL, 46–7
perspective, 11–13
pivot point locations, 140

Triangles:
movement, 81–2
subdivision, 322

Tripling, joints, 82, 83
Troubleshooting, Toon3D, 443
Truth tables, quadrant method, 296–7

Updating, object hierarchies, 135–6
User control, 374

Toon3D, 421–3
Utility toolkit, OpenGL, 41–4
UV mapping, 122

texture coordinates, 204–6

Valences, 323
Valid pairs array, 357–62
Variable width fonts, 373
Variables:

Class Wizard, 447–50
motion capture, 269
Toon3D, 435

Vectors:
3D space, 2–3
collision detection, 296
layer data, 191
multiplying, 4–7, 8

Vertices, 3
2D screen, 13
3DS Max, 222, 248–9
bounding boxes, 288–9, 290
butterfly subdivision, 324–6
Catmull-Clark subdivision, 323–4
deformation, 125–7, 128–9
highlighting, 54–5
layer data, 194
merging, 350–4
morph:

objects, 306–7
targets, 312–14

OpenGL lists, 39
quadrics, 357–62
removing, 348
scaling, 11
subdivision surfaces, 320–2
texture coordinates, 74

Re
a

l-t
im

e
 3

D
 C

ha
ra

c
te

r A
ni

m
a

tio
n

w
ith

 V
isu

a
l C

+
+

Index 471

Video clips, animation, 163–4
Viewers, Biovision Hierarchy files,

276–82
Views:

application wizards, 445
SDI applications, 451
Toon3D, 407–13

Volume, removing edges, 350

Waists, modelling, 88
Walking, animation, 160–3
Walls, collision detection, 302–3
Websites, 458–60

Welding, 86
layers, 92, 93

Win32, creating windows, 53–4
Windows:

size, GLUT, 43
Toon3D, 407–9

Wireframes:
drawing, 55–6
object layers, 208

Wrapping images, 117
Wrapping parameters, 72

Zoetropes, 145–6
ZoomFactor, 212

Re
a

l-tim
e

 3D
 C

ha
ra

c
te

r Anim
a

tio
n w

ith Visua
l C

+
+

The Animator’s Guide to 2D
Computer Animation

Hedley Griffin

• A practical step-by-step manual written from the animator’s point of view
• Foreword by Tony White, international animation director and author
• Will save you hours of frustration with complicated computer manuals!
• International coverage of all leading software: including Animo and Toonz
• Free CD-ROM with animation clips and demo PC software
• Highly illustrated, practical and easy to follow

“I thoroughly recommend that all those who aspire to making better and more
efficiently produced animated movies should get this book as their starting place
for their journey, or as renewed inspiration for those already journeying.”
Tony White

“This book is an essential read for any person wishing to enter into media
studies”
Bob Godfrey

December 2000 • 192pp • 246 x 189mm • 160 illustrations • Paperback
ISBN: 0 240 51579 X

To order your copy call +44 (0)1865 888180 (UK) or +1 800 366 2665 (USA)
or visit the Focal Press website – www.focalpress.com

FOCAL PRESS VISUAL EFFECTS AND ANIMATION SERIES

A Guide to Computer Animation
for tv, games, multimedia and web

Marcia Kuperberg
Deputy Head of the School of Media Arts & Technology,
West Herts College, UK

With contributions from Martin Bowman,
Rob Manton and Alan Peacock

• Clear overall coverage of the principles and techniques of digital
animation to put you ahead of the rest with step-by-step illustrations

• Get the best from your software and hardware ¯ understand the
constraints and demands when creating for different media

• Expert advice and huge range of resources to help you make the
most of animation opportunities in TV, video, online, multimedia and
games

Any questions you have about animation in this new digital age are answered in
this new comprehensive text for all budding digital animators and media
production students. Whether you want to move into creating moving digital
imagery for TV, video, or new media you need to understand the production
processes as well as the constraints of each and how they fit together.

March 2002 • 272pp • 246 x 189mm • 326 colour photos • 40 line illustrations • Book with Website
ISBN: 0 240 51671 0

To order your copy call +44 (0)1865 888180 (UK) or +1 800 366 2665 (USA)
or visit the Focal Press website – www.focalpress.com

FOCAL PRESS VISUAL EFFECTS AND ANIMATION SERIES

Producing Animation

Catherine Winder and Zahra Dowlatabadi

• Complete guide to identifying, pitching, selling,
developing and producing an animated show

• Includes a detailed description and flow charts
of the production process for traditional (2D) and
3D CGI

“This is a bridge book between the fiscal and creative forces of animation… It ought to be
required reading in animation schools for students and teachers, to show how much there
is to learn and is needed to do to bring out the best in animation.” TAISzine

“While there’s a useful library of books covering the tools, techniques and aesthetics of
animation, until now there’s been scant coverage of the highly refined skill sets needed to
produce animation… ” Kit Laybourne, Head of Animation at Oxygen Media and
author of The Animation Book

“Producing an animated film is a mind boggling confluence of art, business, frustration, and
elation. This book is a veritable treasure of information and inspiration on one of the tough-
est, most rewarding jobs in the film industry.” Don Hahn, Producer (Beauty and the
Beast, The Lion King, Atlantis: The Lost Empire)

“Producing Animation is an indispensable book for anyone working or thinking of working in
animation. Covering features, direct-to-video and television - so few [producers] have
experience in all mediums, it provides comprehensive information on the nuts and bolts of
the business.” Bonnie Arnold, Producer (Tarzan, Toy Story)

June 2001 • 324pp • 234 x 180 mm • 60 line illustrations • Paperback
ISBN: 0 240 80412 0

To order your copy call +44 (0)1865 888180 (UK) or +1 800 366 2665 (USA)
or visit the Focal Press website – www.focalpress.com

FOCAL PRESS VISUAL EFFECTS AND ANIMATION SERIES

This Page Intentionally Left Blank

www.focalpress.com

Join Focal Press on-line

As a member you will enjoy the following benefits:

· an email bulletin with information on new books

· a regular Focal Press Newsletter:

o featuring a selection of new titles

o keeps you informed of special offers, discounts and freebies

o alerts you to Focal Press news and events such as author signings and

seminars

· complete access to free content and reference material on the focalpress site, such as the

focalXtra articles and commentary from our authors

· a Sneak Preview of selected titles (sample chapters) *before* they publish

· a chance to have your say on our discussion boards and review books for other Focal

readers

Focal Club Members are invited to give us feedback on our products and services.
Email: worldmarketing@focalpress.com – we want to hear your views!

Membership is FREE. To join, visit our website and register. If you require any further information
regarding the on-line club please contact:

Emma Hales, Marketing Manager
Email: emma.hales@repp.co.uk
Tel: +44 (0) 1865 314556
Fax: +44 (0)1865 314572
Address: Focal Press, Linacre House,
Jordan Hill, Oxford, UK, OX2 8DP

Catalogue
For information on all Focal Press titles, our full catalogue is available online at www.focalpress.com
and all titles can be purchased here via secure online ordering, or contact us for a free printed version:

USA Europe and rest of world
Email: christine.degon@bhusa.com Email: jo.coleman@repp.co.uk
Tel: +1 781 904 2607 Tel: +44 (0)1865 314220

Potential authors
If you have an idea for a book, please get in touch:

USA Europe and rest of world
editors@focalpress.com focal.press@repp.co.uk

Focal Press

Real-time 3D Character
Animation with Visual C++ –
CD Contents

At the root of the CD you will find two folders. To make the most of the CD
please follow the advice below.

Examples
All test programs referred to in the text and source code are in this folder.
Within this folder is a sub-folder for each chapter in the book that includes
samples. All C++ examples include a Visual C++ 6 workspace. If you intend
to play with the source then transfer it to your computer and remove the read-
only attribute from the files by selecting the files in ‘Explorer’, right clicking,
choose ‘Properties’ and click the tab ‘Attributes/Read-only’. Do this for the
source files and the files in the ‘res’ folder. You do not need to copy across the
‘Release’ folder as it will be created when you compile; if you do copy it you
will need to remove the read-only attribute from the ‘exe’ file, otherwise Visual
C++ will not be able to recreate this file. Read-only attributes are inevitable for
files that originate from a CD.

Toon3D
Toon3D is a game creator application that can take Lightwave content and
allows you to package it for the Web along with interactivity. The full source
for Toon3D is available in the ‘Toon3D1_7_SourceCode’ sub-folder. The
executable ‘Toon3Dcreator’ is included in this folder along with sample
content in the ‘Content’ sub-folder. In the ‘Content’ sub-folder you will see
project files ‘*.t3d’ that can be opened in Toon3D Creator 1.7 and web-based
runtime versions that can be viewed in a browser by running the ‘*.html’ file.
This will install an ‘*.ocx’ the first time it is run so you must use Internet
Explorer to view the content in a browser. Toon3D Creator is fully functional,
however, for licensing reasons the ‘Publish’ option is disabled. Full details are
given in Appendix A.

Minimum specification for CD: P400 64 Mb 3D accelerated graphics card.

	Real-time 3D Character Animation with Visual C++
	Copyright page
	Contents at a glance
	Contents in summary
	About the author
	Introduction
	Chapter 1. 3D basics
	Chapter 2. Drawing points and polygons the hard way
	Chapter 3. Drawing points and polygons the easy way with OpenGL
	Chapter 4. OpenGL lighting and textures
	Chapter 5. Creating low polygon characters
	Chapter 6. Texture mapping
	Chapter 7. Setting up a single mesh character
	Chapter 8. Keyframe animation
	Chapter 9. Inverse kinematics
	Chapter 10. Importing geometry and animation from Lightwave 3D
	Chapter 11. Importing geometry and animation from 3DS Max
	Chapter 12. Motion capture techniques
	Chapter 13. Collision detection
	Chapter 14. Using morph objects
	Chapter 15. Using subdivision surfaces
	Chapter 16. Using multi-resolution meshes
	Chapter 17. The scene graph
	Chapter 18. Web 3D, compression and streaming
	Appendix A. Using Toon3D Creator
	Appendix B. MFC Document/View architecture – a short introduction
	Appendix C. Further information
	Index
	Focal Press Visual Effects and Animation Series

