
DRAFT (4 November 2003) — Do Not Distribute

� � � ����� � 	
	�� �� � ��� �
��� � � � ��� � � � � �������
� � � � � � � � � � � �
��� � 	
� � � � � � � � � �

� ��� �"!�#$��%&%"�('*) +,%&-/.10,243 5*#4%6-87:9

c
;

2003 Matt Pharr and Greg Humphreys

���

� � ��� � ���

1 Introduction 1

1.1 Approaching the System 1
1.2 Rendering and the Ray–Tracing Algorithm 5
1.3 System Overview 5
1.4 How To Proceed Through This Book 21

2 Geometry and Transformations 25

2.1 Vectors 27
2.2 Points 33
2.3 Normals 34
2.4 Rays 35
2.5 Three-dimensional bounding boxes 38
2.6 Transformations 41
2.7 Applying Transforms 52
2.8 Differential Geometry 57

3 Shapes 63

�����

iv Contents

3.1 Basic Shape Interface 63
3.2 Spheres 68
3.3 Cylinders 78
3.4 Disks 82
3.5 Other Quadrics 85
3.6 Triangles and Meshes 87
3.7 ***ADV***: Subdivision Surfaces 98

4 Primitives and Intersection Acceleration 129

4.1 Geometric Primitives 130
4.2 Aggregates 135
4.3 Grid Accelerator 138
4.4 Kd-Tree Accelerator 152

5 Color and Radiometry 177

5.1 Spectral Representation 177
5.2 Basic Radiometry 185
5.3 Working with Radiometric Integrals 190
5.4 Surface Reflection 194

6 Camera Models 201

6.1 Camera Model 201
6.2 Projective Camera Models 205
6.3 Environment Camera 217

7 Sampling and Reconstruction 221

7.1 Fourier Theory 222
7.2 Sampling Theory 225
7.3 Image Sampling Interface 236
7.4 Stratified Sampling 242
7.5 ***ADV***: Low-Discrepancy Sequences 252
7.6 ***ADV***: Best-Candidate Sampling Patterns 265
7.7 Image Reconstruction 279

8 Film and the Imaging Pipeline 293

8.1 Film Interface 294
8.2 Image Film 295
8.3 ***ADV***: Perceptual Issues and Tone Mapping 303
8.4 Device RGB Conversion and Output 322

Contents v

9 Reflection Models 329

9.1 Basic Interface 334
9.2 Specular Reflection and Transmission 337
9.3 Lambertian Reflection 351
9.4 Microfacet Models 352
9.5 Lafortune Model 362
9.6 Fresnel Incidence Effects 364

10 Materials 369

10.1 BSDFs 369
10.2 Material Interface and Bump Mapping 374
10.3 Matte 381
10.4 Plastic 382
10.5 Translucent 383
10.6 Glass 384
10.7 Mirror 385
10.8 Shiny Metal 386
10.9 Diffuse Substrate 387

10.10 Measured Data 388
10.11 Uber Material 390

11 Texture 393

11.1 Texture Interface and Basic Textures 394
11.2 Sampling and Anti-Aliasing 397
11.3 Texture Coordinate Generation 405
11.4 Interpolated Textures 410
11.5 Image Texture 412
11.6 Solid and Procedural Texturing 431
11.7 Noise 440

12 ***ADV***: Volume Scattering 457

12.1 ***ADV***: Volume Scattering Processes 458
12.2 ***ADV***: Phase Functions 463
12.3 ***ADV***: Volume Interface and Homogeneous Volumes 465
12.4 ***ADV***: Varying-Density Volumes 468
12.5 ***ADV***: Volume Aggregates 472

vi Contents

13 Light Sources 477

13.1 Light Interface 478
13.2 Point Lights 480
13.3 Distant Lights 489
13.4 Area Lights 490
13.5 Infinite Area Lights 493

14 Monte Carlo Integration: Basic Concepts 497

14.1 Background and Probability Review 498
14.2 The Monte Carlo Estimator 501
14.3 The Inversion Method for Sampling Random Variables 503
14.4 Transforming Between Different Distribution Functions 506
14.5 The Rejection Method 507
14.6 Transformation in Multiple Dimensions 509
14.7 2D Sampling with Multi-Dimensional Transformation 511

15 Monte Carlo Integration II: Variance Reduction 521

15.1 Analytic Integration Techniques 522
15.2 Careful Sample Placement 526
15.3 Sampling Reflection Functions 531
15.4 Sampling Light Sources 542
15.5 Sampling Volume Scattering 556
15.6 Russian Roulette 558

16 Light Transport 561

16.1 Direct Lighting 563
16.2 The Light Transport Equation 573
16.3 Path Tracing 582
16.4 ***ADV***: Bidirectional Path Tracing 589
16.5 Irradiance Caching 596
16.6 Particle Tracing and Photon Mapping 608
16.7 ***ADV***: Volume Integration 628

17 Summary and Conclusion 645

17.1 Design Retrospective 645
17.2 Major Projects 649

Contents vii

A Utilities 657

A.1 The C++ Standard Library 657
A.2 Communicating with the User 659
A.3 Memory Management 662
A.4 Mathematical Routines 674
A.5 Octrees 680
A.6 Kd-Trees 686
A.7 Image Input Output 693
A.8 Main Include File 693

B Scene Description Interface 697

B.1 Parameter Sets 699
B.2 Global Options 706
B.3 Scene Definition 712
B.4 Scene Object Creation 720

C Input File Format 721

C.1 Parameter Lists 722
C.2 Statement Types 723
C.3 Standard Plug-ins 725

D Dynamic Object Creation 737

D.1 Reading Dynamic Libraries 738
D.2 Object Creation Functions 743

E Index of Classes 773

F Index of Non-Classes 777

G Index of Members 1 783

H Index of Members 2 803

I Index of Code Chunks 823

�
�����

[Just as] other information should be available to those who want
to learn and understand, program source code is the only means for
programmers to learn the art from their predecessors. It would be
unthinkable for playwrights not to allow other playwrights to read
their plays [and] only be present at theater performances where they
would be barred even from taking notes. Likewise, any good author
is well read, as every child who learns to write will read hundreds
of times more than it writes. Programmers, however, are expected to
invent the alphabet and learn to write long novels all on their own.
Programming cannot grow and learn unless the next generation of
programmers have access to the knowledge and information gathered
by other programmers before them.

— Erik Naggum

� �

�

� � ��� � �

Rendering is a fundamental component of computer graphics. At the highest level of abstrac-
tion, rendering describes the process of converting a description of a three-dimensional scene into
an image. Algorithms for animation, geometric modeling, texturing, and other areas of computer
graphics all must feed their results through some sort of rendering process so that the results of their
work are made visible in an image. Rendering has become ubiquitous; from movies to games and
beyond, it has opened new frontiers for creative expression, entertainment, and visualization.

In the early years of the field, research in rendering focused on solving fundamental problems
such as determining which objects are visible from a given viewpoint. As these problem have been
solved and as richer and more realistic scene descriptions have become available, modern rendering
has grown to be built on ideas from a broad range of disciplines, including physics and astrophysics,
astronomy, biology, psychology and the study of perception, and pure and applied mathematics. The
interdisciplinary nature is one of the reasons rendering is such a fascinating area to study.

This book presents a selection of modern rendering algorithms through the documented source
code for a complete rendering system. All of the images in this book, including the ones on the front
and back covers, were rendered by this software. The system, lrt, is written using a programming
methodology called literate programming that mixes prose describing the system with the source
code that implements it. We believe that the literate programming approach is a valuable way to
introduce ideas in computer science and computer graphics. Often, some of the subtleties of an

� �

xii Preface

algorithm can be missed until it is implemented; seeing someone else’s implementation is a good
way to acquire a solid understanding of an algorithm’s details. Indeed, we believe that deep under-
standing of a smaller number of algorithms provides a stronger base for further study of graphics
than superficial understanding of many.

Not only does reading an implementation help clarify how an algorithm is implemented in prac-
tice, but by showing these algorithms in the context of a complete and non-trivial software system
we are also able to address issues in the design and implementation of medium-sized rendering
systems. The design of the basic abstractions and interfaces of such a system has substantial impli-
cations for how cleanly algorithms can be expressed in it as well as how well it can support later
addition of new techniques, yet the trade-offs in this design space are rarely discussed.

lrt and this book focus exclusively on so-called photorealistic rendering, which can be defined
variously as the task of generating images that are indistinguishable from those that a camera would
capture taking a photograph of the scene, or as the task of generating an image that evokes the same
response from a human observer when displayed as if the viewer was looking at the actual scene.
There are many reasons to focus on photorealism. Photorealistic images are necessary for much of
the rendering done by the movie special effects industry, where computer generated imagery must
be mixed seamlessly with footage of the real world. For other entertainment applications where all
of the imagery is synthetic, photorealism is an effective tool to make the observer forget that he
or she is looking at an environment that may not actually exist. Finally, photorealism gives us a
reasonably well-defined metric for evaluating the quality of the output of the rendering system.

A consequence of our approach is that this book and the system it describes do not exhaustively
cover the state-of-the-art in rendering; many interesting topics in photorealistic rendering will not
be covered either because they didn’t fit well with the architecture of the software system (e.g. finite
element radiosity algorithms), or because we believed that the pedagogical value of explaining the
algorithm was outweighed by the complexity of its implementation (e.g. Metropolis light transport).
We will note these decisions as they come up and provide pointers to further resources so the reader
can follow up on topics that are of interest. Many other areas of rendering, such as interactive
rendering, visualization, and illustrative forms of rendering (e.g. pen-and-ink styles) aren’t covered
in this book at all.
���������	�
������	�������	���

Our primary intended audience is students in upper-level undergraduate or graduate-level com-
puter graphics classes. This book assumes existing knowledge of computer graphics at the level
of an introductory college-level course, though certain key concepts from such a course will be
presented again here, such as basic vector geometry and transformations. For students who do not
have experience with programs that have tens of thousands of lines of source code, the literate pro-
gramming style gives a gentle introduction to this complexity. We have paid special attention to
explaining the reasoning behind some of the key interfaces and abstractions in the system in order
to give these readers a sense of why the system was structured the way that it was.

Our secondary, but equally important, audiences are advanced graduate students and researchers,

Overview and Goals xiii

software developers in industry, and individuals interested in the fun of writing their own rendering
systems. Though many of the ideas in this manuscript will likely be familiar to these readers, read-
ing explanations of the algorithms we describe in the literate style may provide new perspectives.
lrt also includes implementations of a number of newer and/or difficult-to-implement algorithms
and techniques, including subdivision surfaces, Monte Carlo light transport, and volumetric scatter-
ing models; these should be of particular interest even to experienced practitioners in rendering. We
hope that it will also be useful for this audience to see one way to organize a complete non-trivial
rendering system.
��� ��� � ������� �	�
	�������

lrt is based on the ray tracing algorithm. Ray tracing is an elegant technique that has its origins
in lens-making; Gauss traced rays through lenses by hand in the 1800s. Ray tracing algorithms on
computers follow the path of infinitesimal rays of light through the scene up to the first surface that
they intersect. This gives a very basic method for finding the first visible object as seen from any
particular position and direction. It is the basis for many rendering algorithms.

lrt was designed and implemented with three main goals in mind: it should be complete, it
should be illustrative, and it should be physically based.

Completeness implies that the system should not lack important features found in high-quality
commercial rendering systems. In particular, it means that important practical issues, such as anti-
aliasing, robustness, and the ability to efficiently render complex scenes should be addressed thor-
oughly. It is important to face these issues from the start of the system’s design, since it can be quite
difficult to retrofit such functionality to a rendering system after it has been implemented, as these
features can have subtle implications for all components of the system.

Our second goal means that we tried to choose algorithms, data structures, and rendering tech-
niques with care. Since their implementations will be examined by more readers than those in most
rendering systems, we tried to select the most elegant algorithms that we were aware of and imple-
ment them as well as possible. This goal also implied that the system should be small enough for
a single person to understand completely. We have implemented lrt with a plug-in architecture,
with a core of basic glue that pushes as much functionality as possible out to external modules. The
result is that one doesn’t need to understand all of the various plug-ins in order to understand the
basic structure of the system. This makes it easier to delve in deeply to parts of interest and skip
others, without losing sight of how the overall system fits together.

There is a tension between the goals of being both complete and illustrative. Implementing
and describing every useful technique that would be found in a production rendering system would
not only make this book extremely long, but it would make the system more complex than most
readers would be interested in. In cases where lrt lacks such a useful feature, we have attempted
to design the architecture so that feature could be easily added without altering the overall system
design. Exercises at the end of each chapter suggest programming projects that add new features to
the system.

xiv Preface

The basic foundations for physically-based rendering are the laws of physics and their mathe-
matical expression. lrt was designed to use the correct physical units and concepts for the quanti-
ties that it computes and the algorithms it is built from. When configured to do so, lrt can compute
images that are physically correct; they accurately reflect the lighting as it would be in a real-world
scene corresponding to the one given to the renderer. One advantage of the decision to use a phys-
ical basis is that it gives a concrete standard of program correctness: for simple scenes, where the
expected result can be computed in closed-form, it lrt doesn’t compute the same result, we know
that it must have a bug. Similarly, if different physically-based lighting algorithms in lrt give
different results for the same scene, or if lrt doesn’t give the same results as another physically
based renderer, there is certainly an error in one of them. Finally, we believe that this physically-
based approach to rendering is valuable because it is rigorous. When it is not clear how a particular
computation should be performed, physics gives an answer that guarantees a consistent result.

Efficiency was secondary to these three goals. Since rendering systems often run for many
minutes or hours in the course of generating an image, efficiency is clearly important. However, we
have mostly confined ourselves to algorithmic efficiency rather than low-level code optimization. In
some cases, obvious micro-optimizations take a back seat to clear, well-organized code, though we
did make some effort to optimize the parts of the system where most of the computation occurs. For
this reason as well as portability, lrt is not presented as a parallel or multi-threaded application,
although parallelizing lrt would not be very difficult.

In the course of presenting lrt and discussing its implementation, we hope to convey some
hard-learned lessons from some years of rendering research and development. There is more to
writing a good renderer than stringing together a set of fast algorithms; making the system both
flexible and robust is the hard part. The system’s performance must degrade gracefully as more
geometry is added to it, as more light sources are added, or as any of the other axes of complexity
are pushed. Numeric stability must be handled carefully; stable algorithms that don’t waste floating-
point precision are critical.

The rewards for going through the process of developing a rendering system that addresses all
of these issues are enormous–writing a new renderer or adding a new feature to an existing renderer
and using it to create an image that couldn’t be generated before is a great pleasure. Our most
fundamental goal in writing this book was to bring the opportunity to do this to a wider audience.
You are encouraged to use the system to render the example scenes on the companion CD as you
progress through the book. Exercises at the end of each chapter suggest modifications to make to
the system that will help you better understand its inner workings and more complex projects to
extend the system to add new features.

We have also created a web site to go with this book, located at www.pharr.org/lrt. There you
will find errata and bug fixes, updates to lrt’s source code, additional scenes to render, supplemental
utilities, and new plug-in modules. If you come across a bug in lrt or an error in this text that is
not listed at the web site, please report it to the e-mail address lrtbugs@pharr.org.
� ����� � � ������� ����� �

Additional Reading xv

� � � ��� � � � � �� � ��� � � �

Donald Knuth’s article Literate Programming (Knuth 1984) describes the main ideas behind
literate programming as well as his web programming environment. The seminal TEX typeset-
ting system was written with this system and has been published as a series of books (Knuth
1993a; Knuth 1986). More recently, Knuth has published a collection of graph algorithms in
The Stanford Graphbase (Knuth 1993b). These programs are enjoyable to read and are respec-
tively excellent presentations of modern automatic typesetting and graph algorithms. The website
www.literateprogramming.com has pointers to many articles about literate programming, literate
programs to download as well as a variety of literate programming systems; many refinements have
been made since Knuth’s original development of the idea.

The only other literate program that we are aware of that has been published as a book is the
implementation of the lcc C compiler, which was written by Fraser and Hansen and published as A
Retargetable C Compiler: Design and Implementation (Fraser and Hanson 1995). Say something
nice about this book

�
�

�

� ��� � � � � � � ��� � �

This chapter provides a high-level top-down description of lrt’s basic archi-
tecture. It starts by explaining more about the literate programming approach and
how to read a literate program. We then briefly describe our coding conventions
before moving forward into the high-level operation of lrt, where we describe
what happens during rendering by walking through the process of how lrt com-
putes the color at a single point on the image. Along the way we introduce some of
the major classes and interfaces in the system. Subsequent chapters will describe
these and other classes and their methods in detail.�	�
� ���	� � ������
� � � �������������� �
1.1.1 Literate Programming

In the course of the development of the TEX typesetting system, Donald Knuth
developed a new programming methodology based on the simple (but revolution-
ary) idea that programs should be written more for people’s consumption than for
computers’ consumption. He named this methodology literate programming. This
book (including the chapter you’re reading now) is a long literate program.�

2 Introduction [Ch. 1

Literate programs are written in a meta-language that mixes a document for-
matting language (e.g. LATEX or HTML) and a programming language (e.g. C++).
The meta-language compiler then can transform the literate program into either a
document suitable for typesetting (this process is generally called weaving, since
Knuth’s original literate programming environment was called web), or into source
code suitable for compilation (so-called tangling, since the resulting source code
is not generally as comprehensible to a human reader than the original literate pro-
gram was).

The literate programming meta-language provides two important features. The
first is a set of mechanisms for mixing English text with source code. This makes
the description of the program just as important as its actual source code, encour-
aging careful design and documentation on the part of the programmer. Second,
the language provides mechanisms for presenting the program code to the reader in
an entirely different order than it is supplied to the compiler. This feature makes it
possible to describe the operation of the program in a very logical manner. Knuth
named his literate programming system web since literate programs tend to have
the form of a web: various pieces are defined and inter-related in a variety of ways
such that programs are written in a structure that is neither top-down nor bottom-
up.

As a simple example, consider a function InitGlobals() that is responsible for
initializing all of the program’s global variables. If all of the variable initializations
are presented to the reader at once, InitGlobals() might be a large collection
of variable assignments the meanings of which are unclear because they do not
appear anywhere near the definition or use of the variables. A reader would need to
search through the rest of the entire program to see where each particular variable
was declared in order to understand the function and the meanings of the values
it assigned to the variables. As far as the human reader is concerned, it would be
better to present the initialization code near the code that actually declares and uses
the global.

In a literate program, then, one can instead write InitGlobals() like this:�
Function Definitions ���
void InitGlobals() {�

Initialize Global Variables �
}

Here we have added text to a fragment called
�
Function Definitions � . (This frag-

ment will be included in a C++ source code file when the literate program is tan-
gled for the compiler.) The fragment contains the definition of the InitGlobals()
function. The InitGlobals() function itself includes another fragment,

�
Initialize

Global Variables � . At this point, no text has been added to the initialization frag-
ment. However, when we introduce a new global variable ErrorCount somewhere
later in the program, we can now write:�
Initialize Global Variables ���
ErrorCount = 0;

Here we have started to define the contents of
�
Initialize Global Variables � .

When our literate program is turned into source code suitable for compiling, the
literate programming system will substitute the code ErrorCount = 0; inside the

Sec. 1.1] Approaching the System 3

definition of the InitGlobals() function. Later on, we may introduce another
global FragmentsProcessed, and we can append it to the fragment:�
Initialize Global Variables ��� �
FragmentsProcessed = 0;

The � � symbol after the fragment name shows that we have added to a previ-
ously defined fragment. When tangled, the result of the above fragment definitions
is the code:

void InitGlobals() {
ErrorCount = 0;
FragmentsProcessed = 0;

}

By making use of the text substitution that is made easy by fragments, we can
decompose complex functions into logically-distinct parts. This can make their
operation substantially easier to understand. We can write a function as a series of
fragments:�
Function Definitions ��� �
void func(int x, int y, double *data) {�

Check validity of arguments �
if (x < y) {�

Swap parameter values �
}�
Do precomputation before loop ��
Loop through and update data array �

}

The text of each fragment is then expanded inline in func() for the compiler.
In the document, we can introduce each fragment and its implementation in turn–
these fragments may of course include additional fragments, etc. This style of
decomposition lets us write code in collections of just a handful of lines at a time,
making it easier to understand in detail. Another advantage of this style of pro-
gramming is that by separating the function into logical fragments, each with
a single and well-delineated purpose, each one can then be written and verified
independently–in general, we will try to make each fragment less than ten lines or
so of code, making it easier to understand its operation.

Of course, inline functions could be used to similar effect in a traditional pro-
gramming environment, but using fragments to decompose functions has a few
important advantages. The first is that all of the fragments can immediately refer
to all of the parameters of the original function as well as any function-local vari-
ables that are declared in preceeding fragments; it’s not necessary to pass them all
as parameters, as would need to be done with inline functions. Another advantage
is that one generally names fragments with more descriptive and longer phrases
than one gives to functions; this improves program readability and understandabil-
ity. Because it’s so easy to use fragments to decompose complex functions, one
does more decomposition in practice, leading to clearer code.

In some sense, the literate programming language is just an enhanced macro sub-
stitution language tuned to the task of rearranging program source code provided

4 Introduction [Ch. 1

by the user. The simplicity of the task of this program can belie how different
literate programming is from other ways of structuring software systems.

1.1.2 Coding Conventions

We have written lrt in C++. However, we have used a subset of the language,
both to make the code easier to understand, as well as to improve the system’s
portability. In particular, we have avoided multiple inheritance and run-time ex-
ception handling and have used only a subset of C++’s extensive standard library.
Appendix A.1 reviews the parts of the standard library that lrt uses in multiple
places; otherwise we will point out and document unusual library routines as they
are used.

Types, objects, functions, and variables are named to indicate their scope; classes
and functions that have global scope all start with capital letters. (The system uses
no global variables.) The names of small utility classes, module-local static vari-
ables, and private member functions start with lower-case letters.

We will occasionally omit short sections of lrt’s source code from this docu-
ment. For example, when there are a number of cases to be handled, all with nearly
identical code, we will present one case and note that the code for the remaining
cases has been elided from the text.

1.1.3 Code Optimization

As mentioned in the preface, we have tried to make lrt efficient by using well-
chosen algorithms rather than by having many low-level optimizations. However,
we have used a profiler to find which parts of it account for most of the execution
time and have performed local optimization of those parts when doing so didn’t
make the code confusing. We kept a handful of basic optimization principles in
mind while doing so:

� On current CPU architectures, the slowest mathematical operations are di-
vides, square-roots, and trigonometric functions. Addition, subtraction, and
multiplication are generally ten to fifty times faster than those operations.
Code changes that reduce the number of the slower mathematical operations
can help performance substantially; for example, replacing a series of di-
vides by a value v with the computing the value 1

�
v and then multiplying by

that value.

� Declaring short functions as inline can speed up code substantially, both
by removing the run-time overhead of performing a function call (which
may involve saving values in registers to memory) as well as by giving the
compiler larger basic blocks to optimize.

� As the speed of CPUs continues to grow more quickly than the speed at
which data can be loaded from main memory into the CPU, waiting for
values from memory is becoming a major performance barrier. Organiz-
ing algorithms and data structures in ways that give good performance from
memory caches can speed up program execution much more than reducing

Sec. 1.2] Rendering and the Ray–Tracing Algorithm 5

the total number of instructions to be executed. Appendix ?? discusses gen-
eral principles for memory-efficient programming; these ideas are mostly
applied in the ray–intersection acceleration structures of Chapter 4 and the
image map representation in Section 11.5.2, though they influence many of
the design decisions throughout the system.

1.1.4 Indexing and Cross-Referencing

There are a number of features of the text designed to make it easier to navigate.
Indices in the page margins give the page number where the functions, variables,

and methods used in the code on that page are defined (if not on the current or
facing page). This makes it easier to refer back to their definitions and descriptions,
especially when the book isn’t read fromt-to-back. Indices at the end of the book
collect all of these identifiers so that it’s possible to find definitions starting from
their names. Another index at the end collects all of the fragments and lists the
page they were defined on and the pages where they were used.

XXX Page number of definition(s) and use in fragments XXX

�	��� � �����
� � � � � � �	� ���� � � ����� � ��� � � ��� ����� � ����
What it is, why we’re doing it, why you care.

�	��� � ��� ��� � ��� � � � � ���

lrt is written using an plug-in architecture. The lrt executable consists of the
core code that drives the main flow of control of the system, but has no imple-
mentation of specific shape or light representations, etc. All of its code is written
in terms of the abstract base classes that define the interfaces to the plug-in types.
At run-time, code modules are loaded to provide the specific implementations of
these base classes needed for the scene being rendered. This method of organiza-
tion makes it easy to extend the system; substantial new functionality can be added
just by writing a new plug-in. We have tried to define the interfaces to the various
plug-in types so that they make it possible to write many interesting and useful ex-
tensions. Of course, it’s impossible to forsee all of the ways that a developer might
want to extend the system, so more far-reaching projects may require modifications
to the core system.

The source code to lrt is distributed across a small directory hierarchy. All
of the code for the lrt executable is in the core/ directory. lrt supports twelve
different types of plug-ins, summarized in the table in Figure 1.1 which lists the
abstract base classes for the plug-in types, the directory that the implementaitions
of these types that we provide are stored in, and a reference to the section where
each interface is first defined. Low-level details of the routines that load these
modules are discussed in Appendix D.1.

1.3.1 Phases of Execution

lrt has three main phases of execution. First, it reads in the scene description text
file provided by the user. This file specifies the geometric shapes that make up the

Camera 202
Film 294

Filter 281
Light 478

Material 375
Primitive 130

Sampler 237
Shape 63

SurfaceIntegrator 563
ToneMap 310

VolumeIntegrator 630
VolumeRegion 465

6 Introduction [Ch. 1

Base Class Directory Section
Shape shapes/ 3.1
Primitive accelerators/ 4.1
Camera cameras/ 6.1
Film film/ 8.1
Filter filters/ 7.7
Sampler samplers/ 7.3
ToneMap tonemaps/ 8.3
Material materials/ 10.2
Light lights/ 13.1
SurfaceIntegrator integrators/ 16
VolumeIntegrator integrators/ 16
VolumeRegion volumes/ 12.3

Figure 1.1: lrt supports twelve types of plug-in objects that are loaded at runtime
based on which implementations of them are in the scene description file. The
system can be extended with new plug-ins, without needing to be reocmpiled itself.

scene, their material properties, the lights that illuminate them, where the virtual
camera is positioned in the scene, and parameters to all of the other algorithms
that specify the renderer’s basic algorithms. Each statement in the input file has
a direct mapping to one of the routines in Appendix B that comprise the interface
that lrt provides to allow the scene to be described. A number of example scenes
are provided in the examples/ directory in the lrt distribution and Appendix C
has a reference guide to the scene description format.

Once the scene has been specified, the main rendering loop begins. This is
the second main phase of execution, and is the one where lrt usually spends the
majority of its running time. Most of the chapters in this book describe code that
will execute during this phase. This step is managed by the Scene::Render()
method, which will be the focus of Section 1.3.3. lrt uses ray tracing algorithms
to determine which objects are visible at particular sample points on the image
plane as well as how much light those objects reflect back to the image. Computing
the light arriving at many points on the image plane gives us a representation of the
image of the scene.

Finally, once the second phase has finished computing the image sample contri-
butions, the third phase of execution handles post-processing the image before it is
written to disk (for example, mapping pixel values to the range � 0 � 255 � if necessary
for the image file format being used.) Statistics about the various rendering algo-
rithms used by the system are then printed, and the data for the scene description
in memory is de-allocated. The renderer will then resume procesisng statements
from the scene description file until no more remain, allowing the user to specify
another scene to be rendered if desired.

The cornerstone of the techniques used to do this is the ray tracing algorithm.
Ray tracing algorithms take a geometric representation of a scene and a ray, which
can be described by its 3D origin and direction. There are two main tasks that ray
tracing algorithms perform: to determine the first geometric object that is visible
along a determine whether any geometric objects intersect a ray. The first task

Sec. 1.3] System Overview 7

8 Scene

Figure 1.2: Basic ray tracing algorithm: given a ray starting from the image plane,
the first visible object at that point can be found by determining which object first
intersects the ray. Furthermore, visibility tests between a point on a surface and a
light source can also be performed with ray tracing, givng an accurate method for
computing shadows.

is useful for solving the hidden-surface problem; if at each pixel we trace a ray
into the scene to find the closest object hit by a ray starting from that pixel, we
have found the first visible object in the pixel. The second task can be used for
shadow computations: if no other object is between a point in the scene and a point
on a light source, then illumination from the light source at that point reaches the
receiving point; otherwise, it must be in shadow. Figure 1.2 illustrates both of these
ideas.

The ability to quickly perform exact visibility tests between arbitrary points in
the scene, even in complex scenes, opens the door to many sophisticated rendering
algorithms based on these queries. Because ray tracing only requires that a particu-
lar shape representation be able to determine if a ray has intersected it (and if so, at
what distance along the ray the intersection occured), a wide variety of geometric
representations can naturally be used with this approach.

1.3.2 Scene Representation

The main() function of the program is in the core/lrt.cpp file. It uses the
system-wide header lrt.h, which defines widely useful types, classes, and func-
tions, and api.h, which defines routines related to processing the scene descrip-
tion.�
lrt.cpp* ���
#include "lrt.h"
#include "api.h"�
main program �
lrt’s main() function is pretty simple; after calling lrtInit(), which does

system-wide initialization, it parses the scene input files specified by the filenames
given as command-line arguments, leading to the creation of a Scene object that
holds representations of all of the objects that describe the scene and rendering an
image of the scene. After rendering is done, lrtCleanup() does final cleanup
before system exits.

lrtCleanup() 706
lrtInit() 706

8 Introduction [Ch. 1

�
main program ���
int main(int argc, char *argv[]) {�

Print welcome banner �
lrtInit();�
Process scene description �
lrtCleanup();
return 0;

}

If the user ran lrt with no command-line arguments, then the scene description
is read from standard input. Otherwise we loop through the command line argu-
ments, processing each input filename in turn. No other command line arguments
are supported.�
Process scene description ���
if (argc == 1) {�

Parse scene from standard input �
} else {�

Parse scene from input files �
}

The ParseFile() function parses a text scene description file, either from stan-
dard input or from a file on disk; it returns false if it was unable to open the file.
The mechanics of parsing scene description files will not be described in this book
(it is done with straightforward lex and yacc files.)�
Parse scene from standard input ���
ParseFile("-");

If a particular input file can’t be opened, the Error() routine reports this infor-
mation to the user. Error() is like the printf() function in that it first takes a
format string that can include escape codes like %s, %d, %f, etc., which have values
supplied for them via a variable argument list after the format string.�
Parse scene from input files ���
for (int i = 1; i < argc; i++)

if (!ParseFile(argv[i]))
Error("Couldn’t open scene description file \"%s\"\n",

argv[i]);

As the scene file is parsed, objects are created that represent the camera, lights,
and the geometric primitives in the scene. Along with other objects that manage
other parts of the rendering process, these are all collected together in the Scene ob-
ject, which is allocated by the GraphicsOptions::MakeScene() method in Sec-
tion B.4. The Scene class is declared in core/scene.h and defined in core/scene.cpp.�
Scene Declarations ���
class Scene {
public:�

Scene Public Methods ��
Scene Data �

};

Sec. 1.3] System Overview 9

202 Camera
478 Light
375 Material
130 Primitive
63 Shape

563 SurfaceIntegrator
658 vector
630 VolumeIntegrator
465 VolumeRegion

We don’t include the implementation of the Scene constructor here; it mostly
just copies the pointers to these objects that were passed into it.

Each geometric object in the scene is represented by a Primitive, which col-
lects a lower-level Shape that strictly specifies its geometry, and a Material that
describes how light is reflected at points on the surface of the object (e.g. the ob-
ject’s color, whether it has a dull or glossy finish, etc.) All of these geometric
primitives are collected into a single aggregate Primitive, aggregate, that stores
them ina a 3D data structure that makes ray tracing faster by substantially reducing
the number of unnecessary ray intersection tests.�
Scene Data ���
Primitive *aggregate;

Each light source in the scene is represented by a Light object. The shape
of a light and the distribution of light that it emits has a substantial effect on the
illumination it casts into the scene. lrt supports a single global light list that holds
all of the lights in the scene using the vector class from the standard library. While
some renderers support light lists that are specified per-geometric object, allowing
some lights to illuminate only some of the objects in the scene, this idea doesn’t
map well to the physically-based rendering approach taken in lrt, so we only have
this global list.�
Scene Data ��� �
vector<Light *> lights;

The camera object controls the viewing and lens parameters such as camera
position and orientation and field of view. A Film member variable inside the
camera class handles image storage. The Camera and classes are described in
Chapter 6 and film is described in Chapter 8. After the image has been computed,
a sequence of imaging operations is applied by the film to make adjustments to the
image before writing it to disk.�
Scene Data ��� �
Camera *camera;

describe this...�
Scene Data ��� �
VolumeRegion *volumeRegion;

Integrators handle the task of simulating the propagation of light in the scene
from the light sources to the primitives in order to compute how much light arrives
at the film plane at image sample positions. Their name comes from the fact that
their task is to evaluate the value of an integral equation that describes the distri-
bution of light in an environment. SurfaceIntegrators compute reflected light
from geometric surfaces, while VolumeIntegrators handle the scattering from
participating media–particles like fog or smoke in the environment that interact
with light. The properties and distribution of the participating media are described
by VolumeRegion objects, which are defined in Chapter 12. Both types of integra-
tors are described and implemented in Chapter 16.�
Scene Data ��� �
SurfaceIntegrator *surfaceIntegrator;
VolumeIntegrator *volumeIntegrator;

Camera 202
Film 294

Integrator 562
Sampler 237

SurfaceIntegrator 563
VolumeIntegrator 630

10 Introduction [Ch. 1

Figure 1.3: Class relationships for main rendering loop, which is in the
Scene::Render() method in core/scene.cpp. The Sampler provides a se-
quence of sample values, one for each image sample to be taken. The Camera
turns a sample into a corresponding ray from the film plane and the Integrators
compute the radiance along that ray arriving at the film. The sample and its ra-
diance are given to the Film, which stores their contribution in an image. This
process repeats until the Sampler has provided as many samples as are necessary
to generate the final image.

The goals of the Sampler are subtle, but its implementation can substantially
affect the quality of the images that the system generates. First, the sampler is
repsonsible for choosing the points on the image plane from which rays are traced
into the scene to compute final pixel values. Second, it is responsible for supplying
sample positions that are used by the integrators in their light transport computa-
tions. For example, some integrators need to choose sample points on light sources
as part of the process of computing illumination at a point. Generating good dis-
tributions of samples is an important part of the rendering process and is discussed
in Chapter 7.�
Scene Data ��� �
Sampler *sampler;

1.3.3 Main Rendering Loop

After the Scene has been allocated and initialized, its Render() method is invoked,
starting the second phase of lrt’s execution, the main rendering loop. For each of a
series of positions on the image plane, this method uses the camera and the sampler
to generate a ray out into the scene and then uses the integrators to compute the
light arriving along the ray at the image plane. This value is passed along to the
film, which records its contribution. Figure 1.3 summarizes the main classes used
in this method and the flow of data among them.

Sec. 1.3] System Overview 11

563 Integrator::Preprocess()
611 PhotonIntegrator
660 ProgressReporter
237 Sampler
238 Sampler::GetNextSample()

8 Scene

�
Scene Methods ���
void Scene::Render() {�

Allocate and initialize sample ��
Allow integrators to do pre-processing for the scene ��
Get all samples from Sampler and evaluate contributions ��
Clean up after rendering and store final image �

}

Before rendering starts, this method allocates a Sample object for the Sampler
to use to store sample values for each image sample. Because the number and
types of samples that need to be generated for each image sample are partially
dependent on the integrators, Sample constructor takes pointers to them so that
they can inform the Sample object about their sample needs. See Section 7.3.1 for
more information about how integrators request particular sets of samples at this
point.�
Allocate and initialize sample ���
Sample *sample = new Sample(surfaceIntegrator, volumeIntegrator, this);

The only other task to complete before rendering can begin is to call the Preprocess()
methods of the integrators, which gives them an opportunity to do any scene-
dependent precomputation that thay may need to do. Because information like the
number of lights in the scene, their power and the geometry of the scene aren’t
known when the integrators are originally created, the Preprocess() method
gives them an opportunity to do final initialization that depends on this informa-
tion. For example, the PhotonIntegrator in Section 16.6 uses this opportunity to
create data structures that hold a representation of the distribution of illumination
in the scene.�
Allow integrators to do pre-processing for the scene ���
surfaceIntegrator->Preprocess(this);
volumeIntegrator->Preprocess(this);

The ProgressReporter object tells the user how far through the rendering pro-
cess we are as lrt runs. It takes the total number of work steps as a parameter,
so that it knows the total amount of work to be done. After its creation, the main
render loop begins. Each time through the loop Sampler::GetNextSample() is
called and the Sampler initializes sample with the next image sample value, re-
turning false when there are no more samples. The fragments in the loop body
find the corresponding camera ray and hand it off to the integrators to compute its
contribution, and finally updating the image with the result.�
Get all samples from Sampler and evaluate contributions ���
ProgressReporter progress(sampler->TotalSamples(), "Rendering");
while (sampler->GetNextSample(sample)) {�

Find camera ray for sample ��
Evaluate radiance along camera ray ��
Add sample contribution to image ��
Free BSDF memory from computing image sample value ��
Report rendering progress �

}

Camera 202
Camera::GenerateRay() 202

Integrator 562
Ray 36

RayDifferential 37
RayDifferential::hasDifferentials 38

RayDifferential::rx 38
RayDifferential::ry 38

Sample::imageX 239
Sample::imageY 239

Spectrum 181

12 Introduction [Ch. 1

The main function of the Camera class is to provide a GenerateRay() method,
which determines the appropriate ray to trace for a particular sample position on the
image plane given the particular image formation process that it is simulating. The
sample and a ray are passed to this method, and the fields of the ray are initialized
accordingly. An important convention that all Cameras must follow is that the
direction components of the rays that they return must be normalized. Most of the
Integrators depend on this fact.

The camera also returns a floating-point weight with the ray can be used by
Cameras that simulate realistic models of image formation where some rays through
a lens system carry more energy than others; for example, in a real camera, less
light typically arrives at the edges of the film plane than at the center. This weight
will be used later as a scale factor to be applied to this ray’s contribution to the
image.�
Find camera ray for sample ���
RayDifferential ray;
Float rayWeight = camera->GenerateRay(*sample, &ray);�
Generate ray differentials for camera ray �
In order to get better results from some of the texture functions defined in Chap-

ter 11, it is useful to determine the rays that the Camera would generate for samples
offset one pixel in the x and y direction on the image plane. This information will
later allow us to compute how quickly a texture is varying with respect to the pixel
spacing when projected onto the image plane, so that we can remove detail from it
that can’t be represented in the image being generated. Doing so eliminates a wide
class of image artifacts due to aliasing. While the Ray class just holds the origin
and direction of a single ray, RayDifferential inherits from Ray so that it also
has those member variables, but it also holds two additional Rays, rx and ry to
hold these neighbors.�
Generate ray differentials for camera ray ���
++sample->imageX;
camera->GenerateRay(*sample, &ray.rx);
--sample->imageX;
++sample->imageY;
camera->GenerateRay(*sample, &ray.ry);
ray.hasDifferentials = true;
--sample->imageY;

Given a ray, the Scene::Render() method calls Scene::L(), which returns
the amount of light arriving at the image along the ray. The implementation of
this method will be shown in the next section. The physical unit that describes
the strength of this light is radiance; it is described in detail in Section 5.2. The
symbol for radiance is L, thus the name of the method. These radiance values are
represented with the Spectrum class, the abstraction that defines the representation
of general energy distributions by wavelength–in other words, color.

In addition to returning the ray’s radiance, Scene::L() sets the alpha variable
passed to it to the alpha value for this ray. Alpha is an extra component beyond
color that encodes opacity. If the ray hits an opaque object, alpha will be one,
indicating that nothing behind the intersection point is visible. If the ray passed

Sec. 1.3] System Overview 13

370 BSDF
374 BSDF::FreeAll()
203 Camera::film
294 Film::AddSample()
670 MemoryArena
660 ProgressReporter
15 Scene::L()

181 Spectrum
661 StatsCounter

through something partially transparent, like fog, but never hit an opaque object
alpha will be between zero and one. If the ray didn’t hit anything, alpha is zero.
Computing alpha values here and storing an alpha value with each pixel can be
useful for a variety of post-processing effects; for example, we can composite a
rendered object on top of a photograph, using the pixels in the image of the pho-
tograph wherever the rendered image’s alpha channel is zero, using the rendered
image where its alpha channel is one, and using a mix of the two for the remaining
pixels.

Finally, an assertion checks that the returned spectral radiance value doesn’t
have any floating-point “not a number” components; these are a common side-
effect of bugs in other parts of the system, so it’s helpful to catch them immediately
here.�
Evaluate radiance along camera ray ���
Float alpha;
Spectrum Ls = 0.f;
if (rayWeight > 0.f) Ls = rayWeight * L(ray, sample, &alpha);�
Issue warning if unexpected radiance value returned �

�
Issue warning if unexpected radiance value returned ���
if (Ls.IsNaN())

Error("Not-a-number radiance value returned for image sample");
else if (Ls.y() < 0)

Error("Negative luminance value, %f, returned for image sample",
Ls.y());

After we have the ray’s contribution, we can update the image. The Film::AddSample()
method updates the pixels in the image given the results from this sample. The de-
tails of this process are explained in Section 7.7.�
Add sample contribution to image ���
camera->film->AddSample(*sample, ray, Ls, alpha);

BSDFs describe material properties at a single point on a surface; they will be
described in more detail later in this section. In lrt, it’s necessary to dynamically
allocate memory to store the BSDFs used to compute the contribution of sample
value here. In order to avoid the overhead of calling the system’s memory allo-
cation and freeing routines multiple times for each of them, the BSDF class uses
the MemoryArena class to manage pools of memory for BSDFs. Section 10.1.1
describes this in more detail. Now that the contribution for this sample has been
computed, it’s necessary to tell the BSDF class that all of the BSDF memory allo-
cated for the sample we just finished is no longer needed, so that it can be reused
for the next sample.�
Free BSDF memory from computing image sample value ���
BSDF::FreeAll();

So that it’s easy for various parts of lrt to gather statistics on things that may
be meaningful or interesting to the user, a handful of statistics-tracking classes are
defined in Appendix A.2.3. StatsCounter overloads the ++ operator for indicating
that the counter should be incremented. The ProgressReporter class indicates
how many steps out of the total have been completed with a row of plus signs

BBox 38
Camera 202

Camera::film 203
Film::WriteImage() 294

Intersection 131
Primitive::Intersect() 131
Primitive::IntersectP() 131

ProgressReporter::Update() 660
Ray 36

Scene::aggregate 9
StatsCounter 661

SurfaceIntegrator 563

14 Introduction [Ch. 1

printed to the screen; a call to its Update() method indicates that one of the total
number of steps passed to its constructor has been completed.�
Report rendering progress ���
static StatsCounter cameraRaysTraced("Camera",

"Camera Rays Traced");
++cameraRaysTraced;
progress.Update();

At the end of the main loop, Scene::Render() frees the sample memory and
begins the third phase of lrt’s execution with the call to Film::WriteImage(),
where the imaging pipeline prepares a final image to be stored.�
Clean up after rendering and store final image ���
delete sample;
camera->film->WriteImage();

1.3.4 Scene Methods

The Scene only has a handful of additional methods; it mostly just holds the vari-
ables that represent the scene. The methods it does have generally have little com-
plexity and forward requests on to methods of the Scene’s member variables.

First is the Scene::Intersect() method, which traces the given ray into the
scene and returns a boolean value indication whether it intersected any of the
primitives. If so, it returns information about the closest intersection point in the
Intersection structure defined in Section 4.1.�
Scene Public Methods ��� �
bool Intersect(const Ray &ray, Intersection *isect) const {

return aggregate->Intersect(ray, isect);
}

A closely-related method is Scene::IntersectP(), which checks for any in-
tersection along a ray, again returning a boolean result. Because it doesn’t return
information about the geometry at the intersection point and because it doesn’t need
to search for the closest intersection, it can be more efficient than Scene::Intersect()
for rays where this additional information isn’t needed.�
Scene Public Methods ��� �
bool IntersectP(const Ray &ray) const {

return aggregate->IntersectP(ray);
}

Another useful geometric method, Scene::WorldBound(), returns a 3D box
that bounds the extent of the geometry in the scene. We won’t include its straight-
forward implementation here.�
Scene Public Methods ��� �
const BBox &WorldBound() const;

The Scene’s method to compute the radiance along a ray, Scene::L(), uses a
SurfaceIntegrator to compute reflected radiance from the first surface that the
given ray intersects and stores the result in Ls. It then uses the volume integrator’s

Sec. 1.3] System Overview 15

36 Ray
37 RayDifferential
8 Scene

181 Spectrum
630 VolumeIntegrator
630 VolumeIntegrator::Transmittance()
16 WhittedIntegrator

Transmittance() method to compute how much of that light is extinguished be-
tween the point on the surface and the camera due attenuation and scattering of
light by participating media, if any. Participating media may also increase light
along the ray; the VolumeIntegrator’s L() method computes how much light is
added along the ray due to volumetric light sources and scattering from particles
in the media. Section 16.7 describes the theory of attenuation and scattering from
participating media in detail. The net effect of these interactions is returned by this
method.�
Scene Methods ��� �
Spectrum Scene::L(const RayDifferential &ray,

const Sample *sample, Float *alpha) const {
Spectrum Ls = surfaceIntegrator->L(this, ray,

sample, alpha);
Spectrum T = volumeIntegrator->Transmittance(this, ray,

sample, alpha);
Spectrum Lv = volumeIntegrator->L(this, ray,

sample, alpha);
return T * Ls + Lv;

}

It’s also useful to compute the attenuation of a ray in isolation; the Scene’s
Transmittance() method returns the reduction in radiance along the ray due to
participating media.�
Scene Methods ��� �
Spectrum Scene::Transmittance(const Ray &ray) const {

return volumeIntegrator->Transmittance(this, ray,
NULL, NULL);

}

1.3.5 Whitted Integrator

Chapter 16 has the implementations of many different surface and volume integra-
tors, giving differing levels of accuracy using a variety of algorithms to compute
the results. Here we will present a classic surface integrator based on Whitted’s
ray tracing algorithm. This integrator accurately computes reflected and transmit-
ted light from specular surfaces like glass, mirrors, and water, though it doesn’t
account for indirect lighting effects. The more complex integrators later in the
book build on the ideas in this integrator to implement more sophisticated light
transport algorithms.

The WhittedIntegrator is in the whitted.cpp file in the integrators/ di-
rectory.�
whitted.cpp* ���
#include "lrt.h"
#include "transport.h"
#include "scene.h"�
WhittedIntegrator Declarations ��
WhittedIntegrator Method Definitions �

BSDF 370
Intersection 131

Light 478
Primitive 130

RayDifferential 37
Scene 8

Scene::Intersect() 14
Spectrum 181

SurfaceIntegrator 563

16 Introduction [Ch. 1

Figure 1.4: Class relationships for surface integration: the main render loop passes
a camera ray to the SurfaceIntegrator, which has the task of returning the ra-
diance along that ray arriving at the ray’s origin on the film plane. The integrator
calls back to the Scene::Intersect() method fo find the first surface that the
ray intersects; the scene in turn passes the request on to an accelerator (which
is itself a Primitive). The accelerator will perform ray–primitive intersection
tests with the Primitives that the ray potentially intersects, and these will lead
to the Shape::Intersect() routines for the corresponding shapes. Once the
Intersection is returned to the integrator, it gets the material properties at the
intersection point in the form of a BSDF and uses the Lights in the Scene to deter-
mine the illumination there. This gives the information needed to compute reflected
radiance at the intersection point back along the ray.

�
WhittedIntegrator Declarations ���
class WhittedIntegrator : public SurfaceIntegrator {
public:�

WhittedIntegrator Public Methods �
private:�

WhittedIntegrator Private Data �
};

The key method that all integrators must provide is L(), which returns the ra-
diance along a ray. Figure 1.4 summarizes the data-flow among the main classes
used during integration at surfaces.�
WhittedIntegrator Method Definitions ���
Spectrum WhittedIntegrator::L(const Scene *scene,

const RayDifferential &ray, const Sample *sample,
Float *alpha) const {

Intersection isect;
Spectrum L(0.);
if (scene->Intersect(ray, &isect)) {

if (alpha) *alpha = 1.;�
Compute emitted and reflected light at ray intersection point �

}
else {�

Handle ray with no intersection �
}
return L;

}

For the integrator to determine what primitive is hit by a ray, it calls the Scene::Intersect()

Sec. 1.3] System Overview 17

370 BSDF
16 WhittedIntegrator

method,
If the ray passed to the integrator’s L() method intersects a geometric primitive,

the reflected radiance is given by the sum of directly emitted radiance from the
object if it is itself emissive, and the reflected radiance due to reflection of light
from other primitives and light sources that arrives at the intersection point. This
idea is formalized by the equation below, which says that outgoing radiance from
a point p in direction ωo, Lo � p � ωo � , is the sum of emitted radiance at that point
in that direction, Le � p � ωo � , plus the incident radiance from all directions on the
sphere S 2 around p scaled by a function that describes how the surface scatters
light from the incident direction ωi to the outgoing direction ωo, f � p � ωo � ωi � , and
a cosine term. We will show a more complete derivation of this equation later, in
Sections 5.4.1 and 16.2.

Lo � p � ωo ��� Le � p � ωo � ���
S2

Li � p � ωi � f � p � ωo � ωi ��� cosθi � dωi

Solving this integral analytically is in general not possible for anything other
than the simplest of scenes, so integrators must either make simplifying assump-
tions or use numerical integration techniques. The WhittedIntegrator ignores
incoming light from most of the directions and only evaluates Li � p � ωi � for the di-
rections to light sources and for the directions of specular reflection and refraction.
Thus, it turns the integral into a sum over a small number of directions.

The Whitted integrator works by recursively evaluating radiance along reflected
and refracted ray directions. We keep track of the depth of recursion in the vari-
able rayDepth and after a predetermined recursion depth, maxDepth, we stop trac-
ing reflected and refracted rays. By default the maximum recursion depth is five.
Otherwise, in a scene like a box where all of the walls were mirrors, the recur-
sion might never terminate. These member variables are initialized in the trivial
WhittedIntegrator constructor, which we will not include in the text.�
WhittedIntegrator Private Data ���
int maxDepth;
mutable int rayDepth;

The
�
Compute emitted and reflected light at ray intersection point � fragment is

the heart of the Whitted integrator.�
Compute emitted and reflected light at ray intersection point ����

Evaluate BSDF at hit point ��
Initialize common variables for Whitted integrator ��
Compute emitted light if ray hit an area light source ��
Compute reflection by integrating over the lights �
if (rayDepth++ < maxDepth) {�

Trace rays for specular reflection and refraction �
}
--rayDepth;

To compute reflected light, the integrator must have a representation of the local
light scattering properties of the surface at the intersection point as well as a way
to determine the distribution of illumination arriving at that point.

To represent the scattering properties at a point on a surface, lrt uses a class
called BSDF, which stands for “Bidirectional Scattering Distribution Function”.

BSDF 370
BSDF::dgShading 370

DifferentialGeometry::nn 58
DifferentialGeometry::p 58
Intersection::GetBSDF() 375

Normal 34
Point 33

Ray::d 35
Spectrum 181
Texture 394
Vector 27

18 Introduction [Ch. 1

Figure 1.5: Basic setting for the Whitted integrator: p is the ray intersection point
and n is the surface normal there. The direction in which we’d like to compute
reflected radiance is ωo; its is the vector pointing in the opposite direction of the
ray, -ray.d.

These functions take an incoming direction and an outgoing direction and return a
value that indicates the amount of light that is reflected from the incoming direc-
tion to the outgoing direction (actually, BSDF’s usually vary as a function of the
wavelength of light, so they really return a Spectrum). lrt provides built-in BSDF
classes for several standard scattering functions used in computer graphics. Exam-
ples of BSDFs include Lambertian reflection and the Torrance-Sparrow microfacet
model; these and other BSDFs are implemented in Chapter 9.

The BSDF at a surface point provides all information needed to shade that point,
but BSDFs may vary across a surface. Surfaces with complex material properties,
such as wood or marble, have a different BSDF at each point. Even if wood is
modelled as perfectly diffuse, for example, the diffuse color at each point will
depend on the wood’s grain. These spatial variations of shading parameters are
described with Textures, which in turn may be described procedurally or stored
in image maps; see Chapter 11.

The Intersection::GetBSDF() method returns a pointer to the BSDF at the
intersection point on the object.�
Evaluate BSDF at hit point ���
BSDF *bsdf = isect.GetBSDF(ray);

There are a few quantities that we’ll make use of repeatedly in the fragments to
come. Figure 1.5 illustrates them. p the world-space position of the ray–primitive
intersection and n is the surface normal at the intersection point. The normalized
direction from the hit point back to the ray origin is stored in wo; because Cameras
are responsible for normalizing the direction component of the rays they generate,
there’s no need to re-noralize it here. (Normalized directions in lrt are generally
denoted by the ω symbol, so wo is a shorthand we will commonly use for ωo, the
outgoing direction of scattered light.)�
Initialize common variables for Whitted integrator ���
const Point &p = bsdf->dgShading.p;
const Normal &n = bsdf->dgShading.nn;
Vector wo = -ray.d;

Sec. 1.3] System Overview 19

373 BSDF::f()
131 Intersection
132 Intersection::Le()
479 Light::dE()

9 Scene::lights
181 Spectrum
182 Spectrum::Black()
27 Vector

479 VisibilityTester

If the ray happened to hit geometry that is itself emissive, we compute its emitted
radiance by calling the Intersection’s Le() method. This gives us the first term
of the outgoing radiance equation above. If the object is not emissive, this method
will return a black spectrum.�
Compute emitted light if ray hit an area light source ���
L += isect.Le(wo);

For each light, the integrator computes the amount of illumination falling on the
surface at the point being shaded by calling the light’s dE() method, passing it
the position and surface normal for the point on the surface. E is the symbol for
the physical quantity irradiance, and differential irradiance, dE , is the appropriate
measure of incident illumination here–radiometric concepts such as energy and
differential irradiance are discussed in Chapter 5. This method also returns the
direction vector from the point being shaded to the light source, which is stored in
the variable wi.

The Light::dE() method also returns a VisibilityTester object, which is a
closure representing additional computation to be done to determine if any prim-
itives block the light from the light source. Specifically, the Spectrum that is re-
turned from Light::dE() doesn’t account for any other objects blocking light
between the light source and the surface. To verify that there are no such occlud-
ers, a shadow ray must be traced between the point being shaded and the point on
the light to verify that the path is clear. Because ray tracing is relatively expensive,
we would like to defer tracing the ray until we are sure that the BSDF indicates that
some of the light from the direction ωo will be scattered in the direction ωo. For
example, if the surface isn’t transmissive, then light arriving at the back side of the
surface doesn’t contribute to reflection. The VisibilityTester encapsulates the
state needed to record which ray needs to be traced to do this check. (In a similar
manner, the attenuation along the ray to the light source due to participating media
is ignored until explicitly evaluated via the Transmittance() method.)

To evaluate the contribution to the reflection due to the light, the integrator mul-
tiplies dE by the value that the BSDF returns for the fraction of light that is scattered
from the light direction to the outgoing direction along the ray. This represents this
light’s contribution to the reflected light in the integral over incoming directions,
which is added to the total of reflected radiance stored in L. After all lights have
been considered, the integrator has computed total reflection due to direct lighting:
light that arrives at the surface directly from emissive objects (as opposed to light
that has reflected off other objects in the scene before arriving at the point.)�
Compute reflection by integrating over the lights ���
Vector wi;
for (u_int i = 0; i < scene->lights.size(); ++i) {

VisibilityTester visibility;
Spectrum dE = scene->lights[i]->dE(p, n, &wi, &visibility);
if (dE.Black()) continue;
Spectrum f = bsdf->f(wo, wi);
if (!f.Black() && visibility.Unoccluded(scene))

L += f * dE * visibility.Transmittance(scene);
}

BSDF 370
Scene 8

WhittedIntegrator 16

20 Introduction [Ch. 1

Figure 1.6:

Before we finish, the integrator also accounts for the contribution of light scat-
tered by perfectly specular surfaces like mirrors or glass. Consider a mirror, for
example. The law of mirror reflection says that the angle the reflected ray makes
with the surface normal is equal to the angle made by the incident ray (see Fig-
ure 1.6). Thus, to compute reflected radiance from a mirror in direction ωo, we
need to know the incident radiance at the surface point p in the direction ω i. The
key insight that Whitted had was that this could be found with arecursive call to the
ray tracing routine with a new ray from p in the direction ωi. Therefore, when a
specularly reflective or transmissive object is hit by a ray, new rays are also traced
in the reflected and refracted directions and the returned radiance values are scaled
by the value of the surface’s BSDF and added to the radiance scattered from the
original point.

The BSDF has a method that returns an incident ray direction for a given outgoing
direction and a given mode of light scattering at a surface. Here, we are only inter-
ested in perfect specular reflection and transmission, so we use the BSDF * flags to
BSDF::Sample f() to indicate that glossy and diffuse reflection should be ignored
here. Thus, the two calls to Sample f() below check for specular reflection and
transmission and initialize wi with the appropriate direction and return the BSDF’s
value for the directions � ωo � ωi � . If the value of the BSDF is non-zero, the inte-
grator calls the Scene’s radiance function L() to get the incoming radiance along
the ray, which leads to a call back to the WhittedIntegrator’s L() method. By
continuing this process recursively multiple reflection and refraction are accounted
for.

One important detail in this process is how ray differentials for the reflected and
transmitted rays are found; just as having an approximation to the screen-space area
of a directly-visible object is cruicial for anti-aliasing textures on the object, if we
can approximate the screen-space area of objects that are seen through reflection
or refraction, we can reduce aliasing in their textures as well. The fragments that
implement the computations to find the ray differentials for these rays are described
in Section 10.2.2.

To compute the cosine term of the reflection integral, the integrator calls the
Dot() function, which returns the dot product between two vectors. If the vectors
are normalized, as both wi and n are here, this is equal to the cosine of the angle
between them.

Sec. 1.4] How To Proceed Through This Book 21

38 BBox
540 BSDF::Sample f()
334 BSDF REFLECTION
334 BSDF SPECULAR
334 BSDF TRANSMISSION
334 BxDFType
202 Camera
33 Point
36 Ray

237 Sampler
15 Scene::L()
63 Shape

181 Spectrum

�
Trace rays for specular reflection and refraction ���
Spectrum f = bsdf->Sample_f(wo, &wi,

BxDFType(BSDF_REFLECTION | BSDF_SPECULAR));
if (!f.Black()) {�

Compute ray differential rd for specular reflection �
L += scene->L(rd, sample) * f * AbsDot(wi, n);

}
f = bsdf->Sample_f(wo, &wi,

BxDFType(BSDF_TRANSMISSION | BSDF_SPECULAR));
if (!f.Black()) {�

Compute ray differential rd for specular transmission �
L += scene->L(rd, sample) * f * AbsDot(wi, n);

}
�
Handle ray with no intersection ���
if (alpha) *alpha = 0.;
return L;

And this concludes the WhittedIntegrator’s implementation.�	����� � � � ��� � � ��� ��� � �� � � � � �� ��� � � �
We have written this text assuming it will be read in roughly front-to-back order.

We have tried to minimize the number of forward references to ideas and interfaces
that haven’t yet been introduced, but assume that the reader is acquianted with the
content before any particular point in the text. Because of the modular nature
of the system, the most improtant thing to be able to understand an individual
section of code is that the reader be familiar with the low-level classes like Point,
Ray, Spectrum, etc., the interfaces defined by the abstract base classes listed in
Figure 1.1, and the main rendering loop in Scene::Render().

Given that knowledge, for example, the reader who doesn’t care about precisely
how a camera model based on a perspective projection matrix maps samples to
rays can skip over the implementation of that camera and can just remember that
the Camera::GenerateRay() method somehow turns a Sample into a Ray. Fur-
thermore, some sections go into depth about advanced topics that some readers
may wish to skip over (particularly on a first reading); these sections are denoted
by an asterisk.

The book is divdided into four main sections of a few chapters each. First,
chapters two through four define the main geometric functinoality in the system.
Chapter two has the low-level classes like Point, Ray, and BBox; chapter three de-
fines the Shape interface, has implementations of a number of shapes, and shows
how to perform ray–shape intersection tests; and chapter four has the implemen-
tations of the acceleration structures for speeding up ray tracing by avoiding tests
with primitives that a ray can be shown to definitely not intersect.

The second main section covers the image formation process. First, chapter five
introduces the physical units used to measure light and the Spectrum class that
represents wavelength-varying distributions (i.e. color). Chapter six defines the
Camera interface and has a few different camera implementations. The Sampler
classes that place samples on the image plane are the topic of chapter seven and

WhittedIntegrator 16

22 Introduction [Ch. 1

the overall process of turning the radiance values from camera rays into images
suitable for display are explained in chapter eight.

The third section is about light and how light scatters from surfaces and par-
ticipating media. Chapter nine defines a set of building-block classes that define a
variety of types of reflection from surfaces. Materials, described in chapter ten, use
these reflection functions to implement a number of different types of surface ma-
terials, such as plastic, glass, and metal. Chapter eleven introduces texture, which
describes variation in material properties (color, roughness, etc.) over surfaces,
and chapter twelve has the abstractions used to describe how light is scattered and
absorbed in participating media. Finally, chapter thirteen has the interface for light
sources and light source implementations.

The last section brings all of the ideas of the rest of the book together to imple-
ment a number of integrators. Chapters fourteen and fifteen introduce the theory of
Monte Carlo integration, a statistical technique for estimating the value of complex
integrals, and have low-level routines for applying Monte Carlo to illumination and
light scattering. The surface and volume integrators of chapter sixteen use Monte
Carlo integration to compute more accurate approximations of the light reflection
equation defined above than the WhittedIntegrator did, using techniques like
path tracing, bidirectional path tracing, irradiance caching, and photon mapping.
The last chapter of the book has a brief retrospective and discussion of system de-
sign decisions along with a number of suggestions for more far-reaching projects
than those in the exercises in previous chapters.
� � � � � � � � �� � � ��� � � �

In a seminal early paper, Arthur Appel first described the basic idea of ray trac-
ing to solve the hidden surface problem and to compute shadows in polygonal
scenes (Appel 1968). Goldstein and Nagle later showed how ray tracing could be
used to render scenes with quadric surfaces (Goldstein and Nagel 1971). (XXX
first direct rendering of curved surfaces? XXX) Kay and Greenberg described
a ray tracing approach to rendering transparency (Kay and Greenberg 1979), and
Whitted’s seminal CACM paper described the general recursive ray tracing algo-
rithm we have outlined in this chapter, accurately simulating reflection and refrac-
tion from specular surfaces and shadows from point light sources (Whitted 1980).

Notable books on physically-based rendering and image synthesis include Co-
hen and Wallace’s Radiosity and Realistic Image Synthesis (Cohen and Wallace
1993) and Sillion and Puech’s Radiosity and Global Illumination (Sillion and Puech
1994) which primarily describe the finite-element radiosity method; Glassner’s
Principles of Digital Image Synthesis (Glassner 1995), an encyclopediac two-volume
summary of theoretical foundations for realistic rendering; and Illumination and
Color in Computer Generated Imagery (Hall 1989), one of the first books to present
rendering in a physically-based framework. XXX Advanced Globillum Book
XXX

Many papers have been written that describe the design and implementation of
other rendering systems. One type of renderer that has been written about is ren-
derers for entertainment and artistic applications. The REYES architecture, which
forms the basis for Pixar’s RenderMan renderer, was first described by Cook et
al (Cook, Carpenter, and Catmull 1987); a number of improvements to the original
algorithm are summarized in (Apodaca and Gritz 2000). Gritz and Hahn describe

Additional Reading 23

the BMRT ray tracer (Gritz and Hahn 1996), though mostly focus on the details
of implementing a ray tracer that supports the RenderMan interface. The renderer
in the Maya modeling and animation system is described by Sung et al (Sung,
Craighead, Wang, Bakshi, Pearce, and Woo 1998).

Kirk and Arvo’s paper on ray tracing system design was the first to suggest
many design principles that have now become classic in renderer design (Kirk and
Arvo 1988). The renderer was implemented as a core kernel that encapsulated the
basic rendering algorithms and interacted with primitives and shading routines via
a carefully-constructed object-oriented interface. This approach made it easy to
extend the system with new primitives and acceleration methods.

The Introduction to Ray Tracing book, which describes the state-of-the-art in
ray tracing in 1989, has a chapter by Heckbert that sketches the design of a basic
ray tracer (?). Finally, Shirley’s recent book gives an excellent introduction to ray
tracing and includes the complete source code to a basic ray tracer. XXX cite XXX

Researchers at Cornell university have developed a rendering testbed over many
years; its overall structure is described by Trumbore et al (Trumbore, Lytle, and
Greenbert 1993). Its predecessor was described by Hall and Greenberg (Hall and
Greenberg 1983). This system is a loosely-coupled set of modules and libraries,
each designed to handle a single task (ray–object intersection acceleration, image
storage, etc), and written in a way that makes it easy to combine appropriate mod-
ules together to investigate and develop new rendering algorithms. This testbed has
been quite successful, serving as the foundation for much of the rendering research
done at Cornell.

Another category of renderer focuses on physically-based rendering, like lrt.
One of the first renderers based fundamentally on physical quantities is Radiance,
which has been used widely in lighting simulation applications. Ward describes its
design and history in a paper and a book (Ward 1994b; Larson and Shakespeare
1998). Radiance is designed in the Unix style, as a set of interacting programs, each
handling a different part of the rendering process. (This type of rendering architec-
ture, interacting separate programs, was first described by Duff (Duff 1985).).

Glassner’s Spectrum rendering architecture also focuses on physically-based
rendering (Glassner 1993), appraoched through a signal-processing based formu-
lation of the problem. It is an extensible system built with a plug-in architecture;
lrt’s approach of using parameter/value lists for initializing plug-in objects is sim-
ilar to Spectrum’s. One notable feature of Spectrum is that all parameters that de-
scribe the scene can be animated in a variety of ways.

Slusallek and Seidel describe the architecture of the Vision rendering system,
which is also physically based and was designed to be extensible to support a wide
variety of light transport algorithms (Slusallek and Siedel 1995; Slusallek and Sei-
del 1996; Slusallek 1996). In particular, it has the ambitious goal of supporting
both Monte Carlo and finite-element based light transport algorithms. Because
lrt was designed with the fundamental expectation that Monte Carlo algorithms
would be used, its design could be substantially more straightforward.

The RenderPark rendering system also supports a variety of physically-based
rendeirng algorithms, including both Monte Carlo and finite element approaches.
It was developed by by Philippe Bekaert, Frank Suykens de Laet, Pieter Peers, and
Vincent Masselus, and is available from http://www.cs.kuleuven.ac.be/cwis/research/graphics/RENDERPARK/.

The source code to a number of other ray tracers and renderers is available on

24 Introduction [Ch. 1

the web. Notable ones include Mark VandeWettering’s MTV, which was the first
widely-distributed freely-available ray tracer; it was posted to the comp.sources.unix
newsgroup in 1988. Craig Kolb’s rayshade had a number of releases during the
1990s; its current homepage is http://graphics.stanford.edu/ cek/rayshade/rayshade.html.
The radiance system is available from http://radsite.lbl.gov/radiance/HOME.html.
POV-Ray is used by a large number of individuals, primarily for personal purposes;
it is available from http://www.povray.org. XXX Photon, 3Dlight, Aqusis.
XXX

A good introduction to the C++ programming language and C++ standard li-
brary is the third edition of Stroustroup’s The C++ Programming Language(Stroustrup
1997).�

� � � � � � � �

1.1 A good way to gain understanding of the system is to follow the process of
computing the radiance value for a single ray in the debugger. Build a version
of lrt with debugging symbols and set up your debugger to run lrt with
the XXXX.lrt scene. Set a breakpoint in the Scene::Render() method and
trace through the process of how a ray is generated, how its radiance value
is computed, and how its contribution is added to the image.

As you gain more understanding of how the details of the system work, re-
turn to this and more carefully trace through particular parts of the process.

� � � � � ��� � � � � � � � � � � ��� � � �

We now present the fundamental geometric primitives around which lrt is
built. Our representation of actual scene geometry (triangles, etc.) is presented
in Chapter 3; here we will discuss fundamental building blocks of 3D graphics,
such as points, vectors, rays, and transformations. Most of this code is stored in
core/geometry.h and core/geometry.cpp, though transformation matrices, de-
fined in Section 2.6 will be implemented in separate source files.

2.0.1 Affine Spaces

As is typical in computer graphics, lrt represents 3D points, vectors, and normal
vectors with three floating-point coordinate values: x, y, and z. Of course, these
values are meaningless without a coordinate system that defines the origin of the
space and gives three non-parallel vectors for the x, y, and z axes of the space.
Together, the origin and three vectors are called the frame that defines the coor-
dinate system. Given an arbitrary point or direction in 3D, its � x � y � z � coordinate
values depend on its relationship to the frame. Figure 2.1 shows an example that
illustrates this idea in 2D.

A frame’s origin Po and its n linearly independent basis vectors define an n-
dimensional affine space. All vectors v in the space can be expressed as a linear
combination of the basis vectors. Given a vector v and the basis vectors v i, we can
compute scalar values si such that

v � s1v1 ��������� snvn �
The scalars si are the representation of v with respect to the basis � v1 � v2 � ����� � vn � ,
and are the coordinate values that we store with the vector. Similarly, for all points

�	�

26 Geometry and Transformations [Ch. 2

Figure 2.1: In 2D, the � x � y � coordinates of a point p are defined by the relationship
of the point to a particular 2D coordinate system. Here, two coordinate systems
are shown; the point might have coordinates � 8 � 8 � with respect to the coordinate
system with its coordinate axes drawn in solid lines, but have coordinates � 2 ��� 4 �
with respect to the coordinate system with dashed axes. In either case, the 2D point
p is at the same “absolute” position in space.

p, we can compute scalars si such that

p � Po � s1v1 ������� � snvn �
Thus, although points and vectors are both represented by x, y, and z coordinates
in 3D, they are clearly distinct mathematical entities, and are not freely inter-
changable.

This definition of points and vectors in terms of coordinate systems reveals a
paradox: to define a frame we need a point and a set of vectors. But we can
only meaningfully talk about points and vectors with respect to a particular frame.
Therefore, we need a standard frame with origin � 0 � 0 � 0 � and basis vectors � 1 � 0 � 0 � ,� 0 � 1 � 0 � , and � 0 � 0 � 1 � . All other frames will be defined with respect this canonical
coordinate system. We will call this coordinate system world space.

2.0.2 Coordinate System Handedness

XXX Left and right handed coordinate systems: basic idea of what the differ-
ence is. lrt uses left handed. XXX

There are two different ways that the three coordinate axes can be arranged–
having chosen perpindicular x and y, perpindicular z can go in one of two direc-
tions. These Two choices have been called left-handed and right-handed. Figure
XXX shows the two possibilities. Idea is that if you take your thumb, index, and
middle finger, arrange them as shown in figure XXX, then for a left-handed coor-
dinate system, XXX. This choice has a number of implications in how some of the
geometric operations in this chapter are defined...

Sec. 2.1] Vectors 27

� �
��� ��� � ��� �
�
Geometry Declarations ���
class COREDLL Vector {
public:�

Vector Methods ��
Vector Public Data �

};

A Vector in lrt represents a direction in 3D space. As described above, we
represent vectors with a three-tuple of components that give its representation in
terms of the x, y, and z axes of the space it is defined in. The individual components
of a vector v will be written vx, vy, and vz.�
Vector Public Data ���
Float x, y, z;

Readers who are experienced in object-oriented design might object to our de-
cision to make the Vector data publicly accessible. Typically, data members are
only accessible inside the class, and external code that wishes to access or mod-
ify the contents of a class must do so through a well-defined API of selector and
mutator functions. While we generally agree with this design principle, it is not ap-
propriate here. The purpose of selector and mutator functions is to hide the class’s
internal implementation details. In the case of Vectors, this hiding gains nothing,
and adds bulk to the class usage.

By default, the � x � y � z � values are set to zero.�
Vector Methods ���
Vector(Float _x=0, Float _y=0, Float _z=0)

: x(_x), y(_y), z(_z) {
}

2.1.1 Arithmetic

Adding and subtracting vectors is done component-wise. The usual geometric in-
terpretation of vector addition and subtraction is shown in Figures 2.2 and 2.3.�
Vector Methods ��� �
Vector operator+(const Vector &v) const {

return Vector(x + v.x, y + v.y, z + v.z);
}

Vector& operator+=(const Vector &v) {
x += v.x; y += v.y; z += v.z;
return *this;

}

The code for subtracting two vectors is similar, and therefore not shown here.

2.1.2 Scaling

We can also multiply a vector component-wise by a scalar, thereby changing its
length. Three functions are needed in order to cover all of the different ways that

28 Geometry and Transformations [Ch. 2

v

w

v+w

(a) v � w

v

w

v+w

w

v

(b) v � w � w � v

Figure 2.2: Vector addition. Notice that the sum v � w forms the diagonal of
the parallelogram formed by v and w. Also, the figure on the right shows the
commutativity of vector addition.

v

w-w

v-w

(a)

v

w

v-w

(b)

Figure 2.3: Vector subtraction. The difference v � w is the other diagonal of the
parallelogram formed by v and w.

Sec. 2.1] Vectors 29

27 Vector

this operation may be written in source code (i.e. v*s, s*v, and v *= s.)�
Vector Methods ��� �
Vector operator*(Float f) const {

return Vector(f*x, f*y, f*z);
}

Vector &operator*=(Float f) {
x *= f; y *= f; z *= f;
return *this;

}
�
Geometry Inline Functions ��� �
inline Vector operator*(Float f, const Vector &v) { return v*f; }

Similarly, a vector can be divided component-wise by a scalar. The code for
scalar division is similar to scalar multiplication, though division of a scalar by a
vector is not well-defined, so is not permitted.

In these methods, we use a single division to compute the scalar’s reciprocal,
then perform three component-wise multiplications. This is a useful trick for avoid-
ing expensive division operations. It is a common misconception that these sorts
of optimizations are unnecessary because the compiler will perform the necessary
analysis. Compilers are frequently unable to perform optimizations that require
symbolic manipulation of expressions. For example, given two floating point num-
bers, the quantities a+b and b+a are not candidates for common subexpression
elimination, because the IEEE floating point representation cannot guarantee that
the two sums will be identical. In fact, some programmers carefully order their
floating point addition so as to minimize roundoff error, and it would be a shame
for the compiler to undo all that hard work by rearranging a summation.�
Vector Methods ��� �
Vector operator/(Float f) const {

Float inv = 1.f / f;
return Vector(x * inv, y * inv, z * inv);

}

Vector &operator/=(Float f) {
Float inv = 1.f / f;
x *= inv; y *= inv; z *= inv;
return *this;

}

The Vector class also provides a unary negation operator. This returns a new
vector pointing in the opposite direction of the original one.�
Vector Methods ��� �
Vector operator-() const {

return Vector(-x, -y, -z);
}

Some routines will find it useful to be able to easily loop over the components of
a Vector; the Vector class also provides a C++ operator so that given a vector v,

Vector 27

30 Geometry and Transformations [Ch. 2

then v[0] == v.x and so forth. For efficiency, it doesn’t check that the offset i is
within the range � 0 � 2 � , but will trust calling code to get this right. This non-check
is an example of a tradeoff between convenience and performance. While it places
an additional burden on the caller, correct code will run faster. One possibility to
avoid having to make this tradeoff would be to wrap the range check in a macro
that disables the check when lrt is compiled with optimizations enabled.

Why not just use assert() here? These get turned off when you compile in
optimized mode. Seems wrong. Thoughts?�
Vector Methods ��� �
Float operator[](int i) const { return (&x)[i]; }
Float &operator[](int i) { return (&x)[i]; }

2.1.3 Normalization

It is often necessary to normalize a vector; that is, to compute a new vector point-
ing in the same direction but with unit length. A normalized vector is often called
a unit vector. The method to do this is called Vector::Hat(), which is a com-
mon mathematical notation for a normalized vector: v̂ is the normalized version
of v. Vector::Hat() simply divides each component by the length of the vector,
denoted in text by

�
v
�
.

Note that Vector::Hat() returns a new vector; it does not normalize the vector
in place.�
Vector Methods ��� �
Float LengthSquared() const { return x*x + y*y + z*z; }
Float Length() const { return sqrtf(LengthSquared()); }
Vector Hat() const { return (*this)/Length(); }

2.1.4 Dot and Cross Product

Two other useful operations on vectors are the dot product (also known as the scalar
or inner product) and the cross product. For two vectors v and w, their dot product� v � w � is defined as

vxwx � vywy � vzwz

�
Geometry Inline Functions ��� �
inline Float Dot(const Vector &v1, const Vector &v2) {

return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}

The dot product has a simple relationship to the angle between the two vectors
maybe a figure here?: � v � w � � �

v
���

w
�
cosθ � (2.1.1)

where θ is the angle between v and w. It follows from this that � v � w � is zero if
and only if v and w are perpendicular, provided that neither v nor w is degenerate–
equal to � 0 � 0 � 0 � . A set of two or more mutually-perpendicular vectors is said to be
orthogonal. An orthogonal set of unit vectors is called orthonormal.

Sec. 2.1] Vectors 31

27 Vector

It immediately follows from equation 2.1.1 that if v and w are unit vectors, their
dot product is exactly the cosine of the angle between them. As the cosine of the
angle between two vectors often needs to be computed in computer graphics, we
will frequently make use of this property.

A few basic properties directly follow from the definition. If u, v, and w are
vectors and s is a scalar value, then

� u � v � � � v � u �� su � v � � s � v � u �� u � � v � w � � � � u � v � � � u � w �
We will frequently need to compute the absolute value of the dot product as

well; the AbsDot() function does this for us so that we don’t need a separate call
to fabsf().�
Geometry Inline Functions ��� �
inline Float AbsDot(const Vector &v1, const Vector &v2) {

return fabsf(v1.x * v2.x + v1.y * v2.y + v1.z * v2.z);
}

The cross product is another useful vector operation. Given two vectors in 3D,
the cross product v � w is a vector that is perpendicular to both of them. Note that
this new vector can point in one of two directions; the coordinate system’s hand-
edness decides which is appropriate (recall the discussion in Section 2.0.2.) Given
orthogonal vectors v and w, then v � w should return a vector such that � v � w � v � w �
form a coordinate system of the appropriate handedness.

In a left-handed coordinate system, the cross product is defined as:

� v � w � x � � vywz � � � vzwy �� v � w � y � � vzwx � � � vxwz �� v � w � z � � vxwy � � � vywx �
An easy way to remember this is to compute the determinant of the matrix:

v � w �
�
�
�
�
�
�

i j k
vx vy vz

wx wy wz

�
�
�
�
�
�

where i, j, and k represent the axes � 1 � 0 � 0 � , � 0 � 1 � 0 � , and � 0 � 0 � 1 � , respectively.
Note that this equation is merely a memory aid and not a rigorous mathematical
construction, since the matrix entries are a mix of scalar and vector entries.�
Geometry Inline Functions ��� �
inline Vector Cross(const Vector &v1, const Vector &v2) {

return Vector((v1.y * v2.z) - (v1.z * v2.y),
(v1.z * v2.x) - (v1.x * v2.z),
(v1.x * v2.y) - (v1.y * v2.x));

}

From the definition of the cross product, we can derive:
�
v � w

� � �
v
���

w
�
sin θ � (2.1.2)

Vector 27

32 Geometry and Transformations [Ch. 2

h

v1

v2

θ

Figure 2.4: The area of a parallelogram with edges given by vectors v1 and v2 is
equal to v2h. The cross product can easily compute this value as v1 � v2.

where θ is the angle between v and w. An important implication of this is that the
cross product of two perpendicular unit vectors is itself a unit vector. Note also that
the result of the cross product is a degenerate vector if v and w are parallel.

This definition also shows a convenient way to compute the area of a parallelogram–
see Figure 2.4. If the two edges of the parallelogram are given by vectors v1 and
v2, and has height h, the area is given by

�
v2
�
h. Since h � sinθ

�
v1
�
, we can use

Equation 2.1.2 to see that the area is v1 � v2.

2.1.5 Coordinate system from a vector

We will frequently want to construct a local coordinate system given only a single
vector. Because the cross product of two vectors is orthogonal to both, we can
simply apply it twice to get a set of three orthogonal vectors for our coordinate
system. Note that the two vectors generated by this technique are only unique up
to a rotation about the given vector. This function assumes that the vector passed
in, v1, has already been normalized.

We first construct a perpendicular vector by zeroing one of the two components
of the original vector and swapping the remaining two. Inspection of the two cases
should make clear that v2 will be normalized and that the dot product � v1 � v2 � will
be equal to zero. Given these two perpendicular vectors, a single cross product
gives us the third, which by definition will be be perpendicular to the first two.�
Geometry Inline Functions ��� �
inline void CoordinateSystem(const Vector &v1, Vector *v2,

Vector *v3) {
if (fabsf(v1.x) > fabsf(v1.y)) {

Float invLen = 1.f / sqrtf(v1.x*v1.x + v1.z*v1.z);
*v2 = Vector(-v1.z * invLen, 0.f, v1.x * invLen);

}
else {

Float invLen = 1.f / sqrtf(v1.y*v1.y + v1.z*v1.z);
*v2 = Vector(0.f, v1.z * invLen, -v1.y * invLen);

}
*v3 = Cross(v1, *v2);

}

Sec. 2.2] Points 33

27 Vector

Figure 2.5: Obtaining the vector between two points. The vector p � q is the
component-wise subtraction of the points p and q.

� ��� � � � ��� �
�
Geometry Declarations ��� �
class COREDLL Point {
public:�

Point Methods ��
Point Public Data �

};

A point is a zero-dimensional location in 3D space. The Point class in lrt
represents points in the obvious way: using x, y, and z coordinates with respect
to their coordinate system. Although the same � x � y � z � representation is used for
vectors, the fact that a point represents a position, whereas a vector represents a
direction, leads to a number of important differences in how they are treated.�
Point Public Data ���
Float x,y,z;

�
Point Methods ���
Point(Float _x=0, Float _y=0, Float _z=0)

: x(_x), y(_y), z(_z) {
}

There are certain Point methods which either return or take a Vector. For
instance, one can add a vector to a point, offsetting it in the given direction and ob-
taining a new point. Alternately, one can subtract one point from another, obtaining
the vector between them, as shown in Figure 2.5.�
Point Methods ��� �
Point operator+(const Vector &v) const {

return Point(x + v.x, y + v.y, z + v.z);
}

Point &operator+=(const Vector &v) {
x += v.x; y += v.y; z += v.z;
return *this;

}

Point 33
Vector 27

34 Geometry and Transformations [Ch. 2

�
Point Methods ��� �
Vector operator-(const Point &p) const {

return Vector(x - p.x, y - p.y, z - p.z);
}

Point operator-(const Vector &v) const {
return Point(x - v.x, y - v.y, z - v.z);

}

Point &operator-=(const Vector &v) {
x -= v.x; y -= v.y; z -= v.z;
return *this;

}

The distance between two points is easily computed by subtracting to compute
a vector and then finding the length of that vector.�
Geometry Inline Functions ��� �
inline Float Distance(const Point &p1, const Point &p2) {

return (p1 - p2).Length();
}
inline Float DistanceSquared(const Point &p1, const Point &p2) {

return (p1 - p2).LengthSquared();
}

Although it doesn’t make sense mathematically to weight points by a scalar or
add two points together, the Point class still allows these operations in order to
be able to compute weighted sums of points, which is mathematically meaningful
as long as the weights used all sum to one. The code for scalar multiplication and
addition with Points is identical to Vectors, so it is not shown here.

� ����� ��� � � �
�
Geometry Declarations ��� �
class COREDLL Normal {
public:�

Normal Methods ��
Normal Public Data �

};

A surface normal (or just normal) is a vector that is perpendicular to a surface
at a particular position. It can be defined as the cross product of any two non-
parallel vectors that are tangent to the surface at a point. Although normals are
superficially similar to vectors, it is important to distinguish between the two of
them: because normals are defined in terms of their relationship to a particular
surface, they behave differently than vectors in some situations, particularly when
applying transformations. This difference is discussed in Section 2.7.

The implementations of Normals and Vectors are very similar: like vectors,
normals are represented by three Floats x, y, and z, they can be added and sub-
tracted to compute new normals and they can be scaled and normalized. However,

Sec. 2.4] Rays 35

34 Normal
33 Point
36 Ray
27 Vector

a normal cannot be added to a point and one cannot take the cross product of two
normals. Note that in an unfortunate turn of terminology normals are not necessar-
ily normalized.

The Normal provides an extra constructor that initializes a Normal from a Vector.
Because Normals and Vectors are different in subtle ways, we want to make sure
that this conversion doesn’t happen when we don’t intend it to. Fortunately, the
C++ explicit keyword ensures that conversion between two compatible types
only happens when that is the intent. The Vector also provides a constructor that
converts the other way.�
Normal Methods ��� �
explicit Normal(const Vector &v)

: x(v.x), y(v.y), z(v.z) {}
�
Vector Methods ��� �
explicit Vector(const Normal &n);

�
Geometry Inline Functions ��� �
inline Vector::Vector(const Normal &n)

: x(n.x), y(n.y), z(n.z) { }

Thus, given the declarations Vector v; Normal n;, the assignment n = v is
illegal, so it is necessary to explicitly convert the vector, as in n = Normal(v).

The Dot() and AbsDot() functions are also overloaded to compute dot prod-
ucts between the various possible combinations of normals and vectors. This code
won’t be included in the text.

We won’t include implementations of all of the various other Normal methods
here, since they are otherwise similar to those for vectors.

� ��� � � ���
�
Geometry Declarations ��� �
class COREDLL Ray {
public:�

Ray Public Methods ��
Ray Public Data �

};

A ray is a semi-infinite line specified by its origin and direction. We represent a
Ray with a Point for the origin, and a Vector for the direction. A ray is denoted
as r; it has origin o � r � and direction d � r � , as shown in Figure 2.6.

Because we will be referring to these variables often throughout the code, the
origin and direction members of a Ray are named simply o and d.�
Ray Public Data ���
Point o;
Vector d;

Notice that we again choose to make the data publicly available for convenience.
The parametric form of a ray expresses it as a function of a scalar value t, giving

the set of points that the ray passes through:

r � t � � o � r � � td � r � 0 � t � ∞ (2.4.3)

Point 33
RAY EPSILON 37

Vector 27

36 Geometry and Transformations [Ch. 2

d

x

y

z

O

Figure 2.6: A ray is a semi-infinite line defined by its origin o � r � and its direction
d � r � .

The Ray also includes fields to restrict the ray to a particular segment along its
infinite extent. These fields, called mint and maxt, allow us to restrict the ray to a
potentially finite segment of points � r � mint � � r � maxt � � . Notice that these fields are
declared as mutable, meaning that they can be changed even if the Ray structure
that contains them is const. why is this useful?�
Ray Public Data ��� �
mutable Float mint, maxt;

For simulating motion blur, each ray may have a unique time value associated
with it. The rest of the renderer is responsible for constructing a representation of
the scene at the appropriate time for each ray.�
Ray Public Data ��� �
Float time;

Constructing Rays is straightforward. The default constructor relies on the Point
and Vector constructors to set the origin and direction to � 0 � 0 � 0 � . Alternately, a
particular point and direction can be provided. Also note that mint is initialized to
a small constant rather than 0. The reason for this is discussed in Section XXX–it
is a classic ray tracing hack to avoid false self-intersections due to floating point
precision limitations.

It’s weird that the default ray constructor makes a degenerate ray with
direction (0,0,0). Should we either fix this or say something?�
Ray Public Methods ���
Ray(): mint(RAY_EPSILON), maxt(FLT_MAX), time(0.f) {}
Ray(const Point &origin, const Vector &direction,

Float start = RAY_EPSILON, Float end = FLT_MAX, Float t = 0.f)
: o(origin), d(direction), mint(start), maxt(end), time(t) {

}

The constant to use for the initial mint is arbitrary; no single constant will solve
the false self-intersection problem. It needs to be small enough to not miss true
intersections, but large enough to overcome most precision errors. For any given

Sec. 2.4] Rays 37

33 Point
36 Ray

394 Texture
27 Vector

constant, it is easy to construct a scene that will not work. There are more sophis-
ticated techniques for solving the false self-intersection problem; see BLAH AND
BLAH.�
Global Constants ���
#define RAY_EPSILON 1e-3f

Because a ray can be thought of as a function of a single parameter t, the Ray
class overloads the function application operator for rays. This way, when we need
to find the point at a particular position along a ray, we can write code like:

Ray r(Point(0,0,0), Vector(1,2,3));
Point p = r(1.7);

�
Ray Public Methods ��� �
Point operator()(Float t) const { return o + d * t; }

2.4.1 Ray differentials

In order to be able perform better anti-aliasing with the texture functions defined in
Chapter 11, lrt keeps track of some additional information with each camera ray
that it traces. In Section 11.2, this information will be used by the Texture class
to estimate the projected area on the image plane of a part of the scene. From this,
the Texture can compute the texture’s average value over that area, leading to a
better final image.

A RayDifferential is a subclass of Ray that merely carries along additional
information about two auxiliary rays. These two extra rays represent camera rays
offset one pixel in the x and y direction from the main ray. By determining the area
that these three rays project to on an object being shaded, the Texture can estimate
an area to average over for proper anti-aliasing.

Because the RayDifferential class inherits from Ray, geometric interfaces
in the system are written to take const Ray & values, so that either a Ray or
RayDifferential can be passed to them and the routines can just treat either as a
Ray. Only the routines related to anti-aliasing and texturing require RayDifferential
parameters.�
Geometry Declarations ��� �
class COREDLL RayDifferential : public Ray {
public:�

RayDifferential Methods ��
RayDifferential Public Data �

};
�
RayDifferential Methods ���
RayDifferential() { hasDifferentials = false; }
RayDifferential(const Point &org, const Vector &dir) : Ray(org, dir) {

hasDifferentials = false;
}

Note that we again use the explicit keyword to prevent Rays from accidentally
being converted to RayDifferentials. The constructor sets hasDifferentials

Ray 36
RayDifferential 37

38 Geometry and Transformations [Ch. 2

to false initially, because the neighboring rays are not yet known. These fields
are initialized by the renderer’s main loop, in the code fragment

�
Generate ray

differentials for camera ray � , on page 12.
�
RayDifferential Methods ��� �
explicit RayDifferential(const Ray &ray) : Ray(ray) {

hasDifferentials = false;
}

�
RayDifferential Public Data ���
bool hasDifferentials;
Ray rx, ry;

� ��� � �� � ��� ��� � �
� � � � � ������ � ��� � � ����� � � �

Why isn’t the naming in 3D consistent with the naming in 2D? We should
fix this.�
Geometry Declarations ��� �
class COREDLL BBox {
public:�

BBox Public Methods ��
BBox Public Data �

};

The scenes that lrt will render will often contain objects that are computa-
tionally expensive to process. For many operations, it is often useful to have a
three-dimensional bounding volume that encloses an object. If a ray does not pass
through a particular bounding volume, lrt can avoid processing all of the objects
inside of it.

The measurable benefit of this technique is related to two factors: the expense
of processing the bounding volume compared to the expense of processing the
objects inside of it, and the tightness of the fit. If we have a very loose bound
around an object, we will often incorrectly determine that its contents need to be
examined further. However, in order to make the bounding volume a closer fit, it
may be necessary to make the volume a complex object itself, and the expense of
processing it increases.

There are many choices for bounding volumes; we will be using axis-aligned
bounding boxes (AABBs). Other popular choices are spheres and oriented bound-
ing boxes (OBBs). An AABB can be described by one of its vertices and three
lengths, each representing the distance spanned along the x, y, and z coordinate
axes. Alternatively, two opposite vertices of the box describe it. We chose the
two-point representation for lrt’s BBox class (WHY); it stores the positions of the
vertex with minimum x, y, and z values, and the one with maximum x, y, and z. A
2D illustration of a bounding box and its representation is shown in Figure 2.7.

The default BBox constructor sets the extent to be degenerate; by violating the
invariant that pMin.x <= pMax.x, etc., it ensures than any operations done with
this box will have the correct result for a completely empty box.

Sec. 2.5] Three-dimensional bounding boxes 39

38 BBox
678 INFINITY
33 Point

A
pMin

pMax

x

y

Figure 2.7: An example axis-aligned bounding box. The BBox stores only the
coordinates of the minimum and maximum points of this box; all other box corners
are implicit in this representation.

�
BBox Public Methods ���
BBox() {

pMin = Point(INFINITY, INFINITY, INFINITY);
pMax = Point(-INFINITY, -INFINITY, -INFINITY);

}
�
BBox Public Data ���
Point pMin, pMax;

It is also useful to be able to initialize a BBox to enclose a single point.�
BBox Public Methods ��� �
BBox(const Point &p) : pMin(p), pMax(p) { }

If the caller passes two corner points (p1 and p2) to define the box, since p1
and p2 are not necessarily chosen so that p1.x <= p2.x etc, we need to find their
minimum and maximum values component-wise.�
BBox Public Methods ��� �
BBox(const Point &p1, const Point &p2) {

pMin = Point(min(p1.x, p2.x),
min(p1.y, p2.y),
min(p1.z, p2.z));

pMax = Point(max(p1.x, p2.x),
max(p1.y, p2.y),
max(p1.z, p2.z));

}

Given a bounding box and a point, the BBox::Union() methods computes and
returns a new bounding box that encompasses that point as well as the space that
the original box encompassed.

BBox 38
BBox::pMax 39
BBox::pMin 39

Point 33
Vector 27

40 Geometry and Transformations [Ch. 2

�
BBox Method Definitions ���
BBox Union(const BBox &b, const Point &p) {

BBox ret = b;
ret.pMin.x = min(b.pMin.x, p.x);
ret.pMin.y = min(b.pMin.y, p.y);
ret.pMin.z = min(b.pMin.z, p.z);
ret.pMax.x = max(b.pMax.x, p.x);
ret.pMax.y = max(b.pMax.y, p.y);
ret.pMax.z = max(b.pMax.z, p.z);
return ret;

}

We can similarly construct a new box that bounds the space encompassed by
two other bounding boxes. The definition of this function is similar to the Union()
method above that takes a Point; the difference is the pMin and pMax of the second
box are used for the min() and max() tests, respectively.�
BBox Public Methods ��� �
friend BBox Union(const BBox &b, const BBox &b2);

We can easily determine if two BBoxes overlap by seeing if their extents overlap
in x, y, and z.�
BBox Public Methods ��� �
bool Overlaps(const BBox &b) const {

bool x = (pMax.x >= b.pMin.x) && (pMin.x <= b.pMax.x);
bool y = (pMax.y >= b.pMin.y) && (pMin.y <= b.pMax.y);
bool z = (pMax.z >= b.pMin.z) && (pMin.z <= b.pMax.z);
return (x && y && z);

}

Three simple 1D containment tests tell us if a given point is inside the bounding
box.�
BBox Public Methods ��� �
bool Inside(const Point &pt) const {

return (pt.x >= pMin.x && pt.x <= pMax.x &&
pt.y >= pMin.y && pt.y <= pMax.y &&
pt.z >= pMin.z && pt.z <= pMax.z);

}

The BBox::Expand() method pads the bounding box by a constant factor, and
BBox::Volume() returns the volume of the space inside the box.�
BBox Public Methods ��� �
void Expand(Float delta) {

pMin -= Vector(delta, delta, delta);
pMax += Vector(delta, delta, delta);

}
�
BBox Public Methods ��� �
Float Volume() const {

Vector d = pMax - pMin;
return d.x * d.y * d.z;

}

Sec. 2.6] Transformations 41

38 BBox
39 BBox::pMax
39 BBox::pMin
33 Point
27 Vector

The Bbox::MaximumExtent() method tells the caller which of the three axes
is longest. This is very useful, for example, when deciding along which axis to
subdivide when building a k-D tree.�
BBox Public Methods ��� �
int MaximumExtent() const {

Vector diag = pMax - pMin;
if (diag.x > diag.y && diag.x > diag.z)

return 0;
else if (diag.y > diag.z)

return 1;
else

return 2;
}

Finally, the BBox provides a method that returns the center and radius of a sphere
that bounds the bounding box. In general, this may give a far looser fit than a sphere
that bounded the original contents of the BBox directly, though it’s a useful method
to have available. For example, in chapter 15, we use this method to get a sphere
that completely bounds the scene in order to generate a random ray that is likely to
intersect the scene geometry.

Maybe this method should move to that chapter?�
BBox Method Definitions ��� �
void BBox::BoundingSphere(Point *c, Float *rad) const {

*c = .5f * pMin + .5f * pMax;
*rad = Distance(*c, pMax);

}

� ��� � � � � ��� ��� � ��� � � � �

In general, a transformation T can be described as a mapping from points to
points and from vectors to vectors:

p � � T � p � v � � T � v �
The transformation T may be an arbitrary procedure. However, we will consider a
subset of all possible transformations in this chapter. In particular, they will be:

� Linear: If T is an arbitrary linear transformation and s is an arbitrary scalar,
then T � sv � � sT � v � and T � v1 � v2 � � T � v1 � � T � v2 � . These two properties
can greatly simplify reasoning about transformations.

� Continuous: roughly speaking, T maps the neighborhoods around p and v to
ones around p � and v � .

� One-to-one and invertible: for each p, T maps p to a single unique p � . Fur-
thermore, there exists an inverse transform T � 1 that maps p � back to p.

We will often want to take a point, vector, or normal defined with respect to
one coordinate frame and find its coordinate values with respect to another frame.

42 Geometry and Transformations [Ch. 2

Using basic properties of linear algebra, a 4x4 matrix can express the linear trans-
formation of a point or vector from one frame to another. Furthermore, such a 4x4
matrix suffices to express all linear transformations of points and vectors within
a fixed frame, such as translation in space or rotation around a point. Therefore,
there are two different (and incompatible!) ways that a matrix can be interpreted:

1. Transformation of the frame: given a point, the matrix could express how to
compute a new point in the same frame that represents the transformation of
the original point (e.g. by translating it in some direction.)

2. Transformation from one frame to another: a matrix can express how a point
in a new frame is computed given a point in an original frame.

In general, transformations make it possible to work in the most convenient
coordinate space. For example, we can write routines that define a virtual camera
assuming that the camera is located at the origin, looks down the z axis, and has
the y axis pointing up and the x axis pointing right. These assumptions greatly
simplify the camera implementation. Then to place the camera at any point in the
scene looking in any direction, we just construct a transformation that maps points
in the scene’s coordinate system to the camera’s coordinate system.

2.6.1 Homogeneous coordinates

Given a frame defined by � p � v1 � v2 � v3 � , there is ambiguity between the represen-
tation of a point � px � py � pz � and a vector � vx � vy � vz � with the same � x � y � z � coordi-
nates. Using the representations of points and vectors introduced at the start of the
chapter, we can write the point as the inner product � s1 s2 s3 1 � � v1 v2 v3 p � T and the
vector as the inner product � s �1 s �2 s �3 0 � � v1 v2 v3 p � T These four-vectors of three si val-
ues and a zero or one are homogeneous representations of the point and the vector.
The fourth coordinate of the homogeneous representation is sometimes called the
weight. For a point, its value can be any scalar other than zero: the homogeneous
points � 1 � 3 ��� 2 � 1 � and � � 2 ��� 6 � 4 ��� 2 � describe the same Cartesian point � 1 � 3 ��� 2 � .
In general, homogeneous points obey the identity:

� x � y � z � w � � � x
w

� y
w

� z
w �

We will use these facts to see how a transformation matrix can describe how
points and vectors in one frame can be mapped to another frame. Consider a matrix
M that describes the transformation from one coordinate system to another:

M �
���� m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m23 m33

�����
Then if the transformation represented by M is applied to the x axis � 1 � 0 � 0 � , we
have:

M � 1000 � T � � m00 m10 m20 m30 � T �

Sec. 2.6] Transformations 43

675 Matrix4x4

Directly reading the columns of the matrix shows how the basis vectors and the
origin of the current coordinate system are transformed by the matrix.

x � � 1000 � T

y � � 0100 � T

z � � 0010 � T

p � � 0001 � T

In general, by characterizing how the basis is transformed, we know how any point
or vector specified in terms of that basis is transformed. Because points and vectors
in the current coordinate system are expressed in terms of the current coordinate
system’s frame, applying the transformation to them directly is equivalent to ap-
plying the transformation to the current coordinate system’s basis and finding their
coordinates in terms of the transformed basis.

We will not use homogeneous coordinates explicitly in our code; there is no
Homogeneous class. However, the various transformation routines in the next sec-
tion will implicitly convert points, vectors, and normals to homogeneous form,
transform the homogeneous points, and then convert them back before return-
ing the result. This isolates the details of homogeneous coordinates in one place
(namely, the implementation of transformations), and leaves the rest of the system
clean.�
Transform Declarations ���
class COREDLL Transform {
public:�

Transform Public Methods �
private:�

Transform Private Data �
};

A transformation is represented by the elements of the matrix m[4][4], a Reference<>
to a Matrix4x4 object. The automatic reference-counting template class Reference<>
is described in Appendix A.3.2; it tracks how many objects hold a reference to the
reference-counted object and automatically frees its memory when no more refer-
ences are held.

The low-level Matrix4x4 class is defined in Appendix A.4.2. m is stored in row-
order form, so element m[i][j] corrsponds to mi � j, where i is the row number and
j is the column number. For convenience, the Transform also stores the inverse
of the matrix m in the Transform::m_inv member; it will be handy to have the
inverse easily available. Note that it would be possible to compute the inverse of
the matrix lazily, in case it is not needed. We don’t do this because in practice
we find that the inverse of the matrix is almost always needed. Also, most of the
transformations in lrt explicitly provide their inverse, so actual matrix inversion
is rarely required.

Transform stores references to matrices rather than storing them directly, so that
multiple Transforms can point to the same matrices. This means that any instance
of the Transform class takes up very little memory on its own. If a huge number of
shapes in the scene have the same object-to-world transformation, then they can all
have their own Transform objects but share the same Matrix4x4s. Since we only

Matrix4x4 675
Reference 664
Transform 43

44 Geometry and Transformations [Ch. 2

store a pointer to the matrices and a reference count, a second transform that can
re-use an existing matrix saves 72 bytes of storage over an implementation where
each shape has its own Matrix4x4. This savings can be substantial in large scenes.

However, we lose a certain amount of flexibility by allowing matrices to be
shared between transformations. Specifically, the elements of a Matrix4x4 cannot
be modified after it is created. This isn’t a problem in practice, since the transfor-
mations in a scene are typically created when lrt parses the scene decscription file
and don’t need to change later at rendering time.�
Transform Private Data ���
Reference<Matrix4x4> m, m_inv;

2.6.2 Basic operations

When a new Transform is created, it will default to the identity transformation: the
transformation that maps each point and each vector to itself. This is represented
by the identity matrix:

I �
���� 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

�����
Note that we rely on the default Matrix4x4 constructor to fill in the identity

matrix.�
Transform Public Methods ���
Transform() {

m = m_inv = new Matrix4x4;
}

We can also construct a Transform from a given matrix. In this case, we must
explicitly invert the given matrix.�
Transform Public Methods ��� �
Transform(Float mat[4][4]) {

m = new Matrix4x4(mat[0][0], mat[0][1], mat[0][2], mat[0][3],
mat[1][0], mat[1][1], mat[1][2], mat[1][3],
mat[2][0], mat[2][1], mat[2][2], mat[2][3],
mat[3][0], mat[3][1], mat[3][2], mat[3][3]);

m_inv = m->Inverse();
}

�
Transform Public Methods ��� �
Transform(const Reference<Matrix4x4> &mat) {

m = mat;
m_inv = m->Inverse();

}

Finally, the most commonly used constructor will simply take a reference to the
transformation matrix along with an explictly provided inverse. This is far superior
to always computing the inverse in the constructor, because many geometric trans-
formations have very simple inverses and we can avoid the expense of computing a

Sec. 2.6] Transformations 45

675 Matrix4x4
664 Reference
43 Transform

x

y

,
,

x
y

z

∆
∆

∆

Figure 2.8: Translation in 2D.

generic 4 � 4 matrix inverse. Of course, this places the burden on the caller to make
sure that the supplied inverse is correct.�
Transform Public Methods ��� �
Transform(const Reference<Matrix4x4> &mat,

const Reference<Matrix4x4> &minv) {
m = mat;
m_inv = minv;

}

2.6.3 Translations

One of the simplest transformations is the translation T � ∆x � ∆y � ∆z � . When applied
to a point p, it translates p’s coordinates by ∆x, ∆y, and ∆z, as shown in Figure 2.8.
As an example, T � 2 � 2 � 1 � � x � y � z � � � x � 2 � y � 2 � z � 1 � .

The translation has some simple properties:

T � 0 � 0 � 0 � � I

T � x1 � y1 � z1 � � T � x2 � y2 � z2 � � T � x1 � x2 � y1 � y2 � z1 � z2 �
T � x1 � y1 � z1 � � T � x2 � y2 � z2 � � T � x2 � y2 � z2 � � T � x1 � y1 � z1 �

T � 1 � x � y � z � � T � � x ��� y ��� z �
Translation only affects points, leaving vectors unchaged. In matrix form, the

translation transformation is:

T � ∆x � ∆y � ∆z � �
���� 1 0 0 ∆x

0 1 0 ∆y
0 0 1 ∆z
0 0 0 1

�����
When we consider the operation of a translation matrix on a point, we see

the value of homogeneous coordinates. Consider the product of the matrix for

Matrix4x4 675
Transform 43

Vector 27

46 Geometry and Transformations [Ch. 2

T � ∆x � ∆y � ∆z � with a point p in homogeneous coordinates � xyz1 � :���� 1 0 0 ∆x
0 1 0 ∆y
0 0 1 ∆z
0 0 0 1

�����
���� x

y
z
1

����� �
���� x � ∆x

y � ∆y
z � ∆z

1

�����
As expected, we have computed a new point with its coordinates offset by� ∆x � ∆y � ∆z � . However, if we apply T to a vector v, we have:���� 1 0 0 ∆x

0 1 0 ∆y
0 0 1 ∆z
0 0 0 1

�����
���� x

y
z
0

����� �
���� x

y
z
0

�����
The result is the same vector v. This makes sense, because vectors represent direc-
tions, so a translation leaves them unchanged.

We will define a routine that creates a new Transform matrix to represent a
given translation–it is a straightforward application of the translation matrix equa-
tion. These routines fully initialize the Transform that is returned, also initializing
the matrix that represents the inverse of the translation.�
Transform Method Definitions ��� �
Transform Translate(const Vector &delta) {

Matrix4x4 *m, *minv;
m = new Matrix4x4(1, 0, 0, delta.x,

0, 1, 0, delta.y,
0, 0, 1, delta.z,
0, 0, 0, 1);

minv = new Matrix4x4(1, 0, 0, -delta.x,
0, 1, 0, -delta.y,
0, 0, 1, -delta.z,
0, 0, 0, 1);

return Transform(m, minv);
}

2.6.4 Scaling

Another basic transformation is the scale transform. This has the effect of taking
a point or vector and multiplying its components by scale factors in x, y, and z:
S � 2 � 2 � 1 � � x � y � z � � � 2x � 2y � z � . It has the following basic properties:

S � 1 � 1 � 1 � � I

S � x1 � y1 � z1 � � S � x2 � y2 � z2 � � S � x1x2 � y1y2 � z1 � z2 �
S � 1 � x � y � z � � S

�
1
x

� 1
y

� 1
z �

We can differentiate between uniform scaling, where all three scale factors have
the same value and non-uniform scaling, where they may have different values.

Sec. 2.6] Transformations 47

675 Matrix4x4
43 Transform

The general scale matrix is

S � x � y � z � �
���� x 0 0 0

0 y 0 0
0 0 z 0
0 0 0 1

�����
�
Transform Method Definitions ��� �
Transform Scale(Float x, Float y, Float z) {

Matrix4x4 *m, *minv;
m = new Matrix4x4(x, 0, 0, 0,

0, y, 0, 0,
0, 0, z, 0,
0, 0, 0, 1);

minv = new Matrix4x4(1.f/x, 0, 0, 0,
0, 1.f/y, 0, 0,
0, 0, 1.f/z, 0,
0, 0, 0, 1);

return Transform(m, minv);
}

2.6.5 X, Y, and Z axis rotations

Another useful type of transformation is rotation. In general, we can define an
arbitrary axis from the origin in any direction and then rotate around that axis by
a given angle. The most common rotations of this type are around the x, y, and z
coordinate axes. We will write these rotations as Rx � θ � , or Ry � θ � , etc. The rotation
around an arbitrary axis � x � y � z � is denoted by R � x � y � z � � θ � .

Rotations also have some basic properties:

Ra � 0 � � I
Ra � θ1 � � Ra � θ2 � � Ra � θ1 � θ2 �
Ra � θ1 � � Ra � θ2 � � Ra � θ2 � � Ra � θ1 �

R � 1
a � θ � � Ra � � θ � � RT

a � θ �
where RT is the matrix transpose of R. This last property, that the inverse of R is
equal to its transpose, stems from the fact that R is an orthonormal matrix; its upper
3 � 3 components are all normalized and orthogonal to each other. Fortunately, the
transpose is much easier to compute than a full matrix inverse.

For a left-handed coordinate system, the matrix for rotation around the x axis is:

Rx � θ � �
���� 1 0 0 0

0 cosθ � sinθ 0
0 sinθ cosθ 0
0 0 0 1

�����
Figure 2.9 gives an intuition for how this matrix works. It’s easy to see that it

leaves the x axis unchanged:

Rx � θ � � � 1000 � T � � 1000 �

Matrix4x4 675
Transform 43

48 Geometry and Transformations [Ch. 2

Figure 2.9: Rotation by an angle θ about the x axis leaves the x coordinate un-
changed. The y and z axes are mapped to the vertices given by the dashed lines; y
and z coordinates move accordingly.

It maps the y axis � 0 � 1 � 0 � to � 0 � cos θ � sin θ � and the z axis to � 0 ��� sin θ � cos θ � . In
general, by reading the columns of Rx � θ � we can easily find the vectors that the
original coordinate axes transform to. The y and z axes remain in the same plane,
perpendicular to the x axis, but are rotated by the given angle. An arbitrary point
in space is similarly rotated about x while staying in the same yz plane as it was
originally.

The implementation of the RotateX() creation function is straightforward.�
Transform Method Definitions ��� �
Transform RotateX(Float angle) {

Float sin_t = sinf(Radians(angle));
Float cos_t = cosf(Radians(angle));
Matrix4x4 *m = new Matrix4x4(1, 0, 0, 0,

0, cos_t, -sin_t, 0,
0, sin_t, cos_t, 0,
0, 0, 0, 1);

return Transform(m, m->Transpose());
}

Similarly, for rotation around y and z, we have

Ry � θ � �
���� cos θ 0 sinθ 0

0 1 0 0
� sinθ 0 cos θ 0

0 0 0 1

����� Rz � θ � �
���� cosθ � sinθ 0 0

sinθ cosθ 0 0
0 0 1 0
0 0 0 1

�����
The implementations of RotateY() and RotateZ() follow directly and are not

included here.

2.6.6 Rotation around an arbitrary axis

We also provide a routine to compute the transformation that represents rotation
around an arbitrary axis. The usual derivation of this matrix is based on computing

Sec. 2.6] Transformations 49

Figure 2.10: Rotation about an arbitrary axis a: ...

rotations that map the given axis to a fixed axis (e.g. z), performing the rotation
there, and then rotating the fixed axis back to the original axis. A more elegant
derivation can be constructed with vector algebra.

Consider a normalized direction vector a that gives the axis to rotate around
by angle θ, and a vector v to be rotated (see Figure 2.10). First, we can compute
the point p along the axis a that is in the plane through the end-point of v and is
perpendicular to a. Assuming v and a form an angle α, we have:

p � acos α � a
�
v � a ���

We now compute a pair of basis vectors v1 and v2 in this plane. Trivially, one of
them is

v1 � v � p

and the other can be computed with a cross product

v2 � �
v1 � a ���

Because a is normalized, v1 and v2 have the same length, equal to the distance
from v to p. To now compute the rotation by θ degrees about the point p in the
plane of rotation, the rotation formulas above give us

v �	� p
 v1 cosθ
 v2 sin θ �

To convert this to a rotation matrix, we apply this formula to the basis vectors
v1 � �

1 � 0 � 0 � , v2 � �
0 � 1 � 0 � , and v3 � �

0 � 0 � 1 � to get the values of the rows of the
matrix. The result of all this is encapsulated in the function below.

Should this say colums, not rows?

Matrix4x4 675
Transform 43

Vector 27

50 Geometry and Transformations [Ch. 2

�
Transform Method Definitions ��� �
Transform Rotate(Float angle, const Vector &axis) {

Vector a = axis.Hat();
Float s = sinf(Radians(angle));
Float c = cosf(Radians(angle));
Float m[4][4];

m[0][0] = a.x * a.x + (1.f - a.x * a.x) * c;
m[0][1] = a.x * a.y * (1.f - c) - a.z * s;
m[0][2] = a.x * a.z * (1.f - c) + a.y * s;
m[0][3] = 0;

m[1][0] = a.x * a.y * (1.f - c) + a.z * s;
m[1][1] = a.y * a.y + (1.f - a.y * a.y) * c;
m[1][2] = a.y * a.z * (1.f - c) - a.x * s;
m[1][3] = 0;

m[2][0] = a.x * a.z * (1.f - c) - a.y * s;
m[2][1] = a.y * a.z * (1.f - c) + a.x * s;
m[2][2] = a.z * a.z + (1.f - a.z * a.z) * c;
m[2][3] = 0;

m[3][0] = 0;
m[3][1] = 0;
m[3][2] = 0;
m[3][3] = 1;

Matrix4x4 *mat = new Matrix4x4(m);
return Transform(mat, mat->Transpose());

}

2.6.7 The look-at transformation

The look-at transformation is particularly useful for placing a camera in the scene.
The caller specifies the desired position of the camera, a point the camera is looking
at, and an “up” vector that orients the camera along the viewing direction implied
by the first two parameters. All of these values are given in world-space coordi-
nates. The look-at construction then gives a transformation between camera space
and world space (see Figure 2.11).

In order to find the entries of the look-at transformation, we use principles de-
scribed earlier in this section: the columns of a transformation matrix give the
effect of the transformation on the basis of a coordinate system.

Sec. 2.6] Transformations 51

675 Matrix4x4
676 Matrix4x4::Inverse()
33 Point
43 Transform
27 Vector

Figure 2.11: Given an camera position, the position being looked at from the cam-
era, and an “up” direction, the look-at transformation describes a transformation
from a viewing coordinate system where the camera is at the origin looking down
the � z axis and the � y axis is along the up direction.

�
Transform Method Definitions ��� �
Transform LookAt(const Point &pos, const Point &look,

const Vector &up) {
Float m[4][4];�
Initialize fourth column of viewing matrix ��
Initialize first three columns of viewing matrix �
Matrix4x4 *camToWorld = new Matrix4x4(m);
return Transform(camToWorld->Inverse(), camToWorld);

}

The easiest column is the fourth one, which gives the point that the camera-
space origin, � 0001 � T , maps to in world space. This is clearly just the coordinates
of the camera position, supplied by the user.�
Initialize fourth column of viewing matrix ���
m[0][3] = pos.x;
m[1][3] = pos.y;
m[2][3] = pos.z;
m[3][3] = 1;

The other three columns aren’t much more difficult. First, LookAt() computes
the normalized direction vector from the camera location to the look-at point; this
gives the vector coordinates that the z axis should map to and thus, the third column
of the matrix. (Camera space is defined with the viewing direction down the � z
axis.) The first column, giving the world space direction that the � x axis in camera
space maps to, is found by taking the cross product of the user-supplied “up”’ vec-
tor with the recently computed viewing direction vector. Finally, the “up” vector
is recomputed by taking the cross product of the viewing direction vector with the
x axis vector, thus ensuring that the y and z axes are perpendicular and we have an
orthonormal viewing coordinate system.

Cross() 31
Vector 27

Vector::Hat() 30

52 Geometry and Transformations [Ch. 2

�
Initialize first three columns of viewing matrix ���
Vector dir = (look - pos).Hat();
Vector right = Cross(dir, up.Hat());
Vector newUp = Cross(right, dir);
m[0][0] = right.x;
m[1][0] = right.y;
m[2][0] = right.z;
m[3][0] = 0.;
m[0][1] = newUp.x;
m[1][1] = newUp.y;
m[2][1] = newUp.z;
m[3][1] = 0.;
m[0][2] = dir.x;
m[1][2] = dir.y;
m[2][2] = dir.z;
m[3][2] = 0.;

� ��� ���	�� ��� � � � � � � � � ��� � �

We can now define routines that perform the appropriate matrix multiplications
to transform points and vectors. We will overload the function application operator
to describe these transformations; this lets us write code like:

Point P = ...;
Transform T = ...;
Point new_P = T(P);

2.7.1 Points

The point transformation routine takes a point � x � y � z � and implicitly represents it
as the homogeneous column vector � x � y � z � 1 � T . It then transforms the point by pre-
multiplying this vector with its transformation matrix. Finally, it divides by w to
convert back to a non-homogeneous point representation.

For efficiency, it skips the divide by the homogeneous weight w when w � 1,
which is common for most of the transformations that we’ll be using–only the
projective transformations defined in Chapter 6 will require this divide.

Sec. 2.7] Applying Transforms 53

33 Point
43 Transform

�
Transform Inline Functions ���
inline Point Transform::operator()(const Point &pt) const {

Float x = pt.x, y = pt.y, z = pt.z;

Float xp = m->m[0][0]*x + m->m[0][1]*y + m->m[0][2]*z +
m->m[0][3];

Float yp = m->m[1][0]*x + m->m[1][1]*y + m->m[1][2]*z +
m->m[1][3];

Float zp = m->m[2][0]*x + m->m[2][1]*y + m->m[2][2]*z +
m->m[2][3];

Float wp = m->m[3][0]*x + m->m[3][1]*y + m->m[3][2]*z +
m->m[3][3];

if (wp == 1.) return Point(xp, yp, zp);
else return Point(xp, yp, zp)/wp;

}

We also provide transformation methods that let the caller pass in a pointer to an
object for the result. This saves the expense of returning structures by value on the
stack. Note that we copy the original � x � y � z � coordinates to local variables in case
the result pointer points to the same location as pt. This way, these routines can
be used even if a point is being transformed in place. This is known as argument
aliasing.

why do we do this copy in the non-in-place version?�
Transform Inline Functions ��� �
inline void Transform::operator()(const Point &pt,

Point *ptrans) const {
Float x = pt.x, y = pt.y, z = pt.z;
ptrans->x = m->m[0][0]*x + m->m[0][1]*y + m->m[0][2]*z +

m->m[0][3];
ptrans->y = m->m[1][0]*x + m->m[1][1]*y + m->m[1][2]*z +

m->m[1][3];
ptrans->z = m->m[2][0]*x + m->m[2][1]*y + m->m[2][2]*z +

m->m[2][3];
Float w = m->m[3][0]*x + m->m[3][1]*y + m->m[3][2]*z +

m->m[3][3];
if (w != 1.) *ptrans /= w;

}

2.7.2 Vectors

We compute the transformations of vectors in a similar fashion. However, the
multiplication of the matrix and the row vector is simplified since the implicit ho-
mogeneous w coordinate is zero.

Point 33
Transform 43

Vector 27

54 Geometry and Transformations [Ch. 2

(a) Original object (b) Scaled object
with incorrect nor-
mal

(c) Scaled object
with correct normal

Figure 2.12: Transforming surface normals. The circle in (a) is scaled by 50% in
the y direction. Note that simply treating the normal as a direction and scaling it in
the same manner, as shown in (b), will lead to incorrect results.

�
Transform Inline Functions ��� �
inline Vector Transform::operator()(const Vector &v) const {

Float x = v.x, y = v.y, z = v.z;
return Vector(m->m[0][0]*x + m->m[0][1]*y + m->m[0][2]*z,

m->m[1][0]*x + m->m[1][1]*y + m->m[1][2]*z,
m->m[2][0]*x + m->m[2][1]*y + m->m[2][2]*z);

}

There is also a method allowing the caller to pass a pointer to the result object.
The code to do this has a similar design to the Point transformation code, and
is not shown here. This code will also be omitted for subsequent transformation
methods.

2.7.3 Normals

Normals do not transform in the same way that vectors do, as shown in Figure 2.12.
Although tangent vectors transform in the straightforward way, normals require
special treatment. Because the normal vector n and any tangent vector t are or-
thogonal by construction, we know that

n � t � nT t � 0 �
When we transform a point on the surface by some matrix M, the new tangent

vector t � at the transformed point is simply Mt. The transformed normal n � should
be equal to Sn for some 4 � 4 matrix S. To maintain the orthogonality requirement,
we must have:

0 � � n � � T t �

� � Sn � T Mt

� � n � T ST Mt

This condition holds if ST M � I, the identity matrix. Therefore, ST � M � 1, so
S � M � 1T

, and we see that normals must be transformed by the inverse transpose

Sec. 2.7] Applying Transforms 55

34 Normal
36 Ray
43 Transform
27 Vector

of the transformation matrix. This is the main reason why Transforms maintain
their inverses.�
Transform Public Methods ��� �
Transform GetInverse() const {

return Transform(m_inv, m);
}

Note that we do not explicitly compute the transpose of the inverse when trans-
forming normals; we simply iterate through the inverse matrix in a different order
(compare to the code for transforming Vectors).�
Transform Inline Functions ��� �
inline Normal Transform::operator()(const Normal &n) const {

Float x = n.x, y = n.y, z = n.z;
return Normal(m_inv->m[0][0] * x + m_inv->m[1][0] * y +

m_inv->m[2][0] * z,
m_inv->m[0][1] * x + m_inv->m[1][1] * y +

m_inv->m[2][1] * z,
m_inv->m[0][2] * x + m_inv->m[1][2] * y +

m_inv->m[2][2] * z);
}

2.7.4 Rays

Transforming rays is straightforward: we just transform the constituent origin and
direction.�
Transform Inline Functions ��� �
inline Ray Transform::operator()(const Ray &r) const {

Ray ret;
(*this)(r.o, &ret.o);
(*this)(r.d, &ret.d);
ret.mint = r.mint;
ret.maxt = r.maxt;
ret.time = r.time;
return ret;

}

2.7.5 Bounding Boxes

The easiest way to transform an axis-aligned bounding box is to transform all eight
of its corner vertices and then compute a new bounding box that encompasses those
points. We will present code for this method below; one of the exercises for this
chapter is to find a way to do this more efficiently.

BBox 38
Matrix4x4 675

Matrix4x4::Mul() 676
Point 33

Reference 664
Transform 43

56 Geometry and Transformations [Ch. 2

�
Transform Method Definitions ��� �
BBox Transform::operator()(const BBox &b) const {

const Transform &M = *this;
BBox ret(M(Point(b.pMin.x, b.pMin.y, b.pMin.z)));
ret = Union(ret, M(Point(b.pMax.x, b.pMin.y, b.pMin.z)));
ret = Union(ret, M(Point(b.pMin.x, b.pMax.y, b.pMin.z)));
ret = Union(ret, M(Point(b.pMin.x, b.pMin.y, b.pMax.z)));
ret = Union(ret, M(Point(b.pMin.x, b.pMax.y, b.pMax.z)));
ret = Union(ret, M(Point(b.pMax.x, b.pMax.y, b.pMin.z)));
ret = Union(ret, M(Point(b.pMax.x, b.pMin.y, b.pMax.z)));
ret = Union(ret, M(Point(b.pMax.x, b.pMax.y, b.pMax.z)));
return ret;

}

2.7.6 Composition of Transformations

Having defined how the matrices representing individual types of transformations
are constructed, we can now consider an aggregate transformation resulting from
a series of individual transformations. Finally, we can see the real value of repre-
senting transformations with matrices.

Consider a series of transformations ABC. We’d like to compute a new transfor-
mation T such that applying T gives the same result as applying each of A, B, and
C in order; i.e. A � B � C � p � � � � T � p � . Such a transformation T can be computed by
multiplying the matrices of the transformations A, B, and C together. In lrt, we
can write:

Transform T = A * B * C;

Then we can apply T to Points p as usual Point pp = T(p) instead of apply-
ing each transformation in turn: Point pp = A(B(C(p))).

We use the C++ * operator to compute the new transformation that results from
post-multiplying the current transformation with a new transformation t2. In ma-
trix multiplication, the � i � j � th element of the resulting matrix ret is the inner prod-
uct of the ith row of the first matrix with the jth column of the second.

The inverse of the resulting transformation is equal to the product of t2.m inv
* m inv; this is a result of the matrix identity

� AB � � 1 � B � 1A � 1 �
�
Transform Method Definitions ��� �
Transform Transform::operator*(const Transform &t2) const {

Reference<Matrix4x4> m1 = Matrix4x4::Mul(m, t2.m);
Reference<Matrix4x4> m2 = Matrix4x4::Mul(t2.m_inv, m_inv);
return Transform(m1, m2);

}

Sec. 2.8] Differential Geometry 57

63 Shape
43 Transform

2.7.7 Transformations and Coordinate System Handedness

Certain types of transformations change a left-handed coordinate system into a
right-handed one, or vice-versa. Some routines will need to know if the handedness
of the source coordinate system is different from that of the destination. In partic-
ular, routines that want to ensure that a surface normal always points “outside” of
a surface might need to invert the normal after transformation if the handedness
changes. See section 2.8 for an example.

Fortunately, it is easy to tell if handedness changes. This happens only when the
determinant of the transformation’s upper-left 3 � 3 submatrix is negative.�
Transform Method Definitions ��� �
bool Transform::SwapsHandedness() const {

Float det = ((m->m[0][0] *
(m->m[1][1] * m->m[2][2] -
m->m[1][2] * m->m[2][1])) -

(m->m[0][1] *
(m->m[1][0] * m->m[2][2] -
m->m[1][2] * m->m[2][0])) +

(m->m[0][2] *
(m->m[1][0] * m->m[2][1] -
m->m[1][1] * m->m[2][0])));

return det < 0.f;
}

� ����� ��� � � ����� � � 	 � � � � � � �
We will wrap up this chapter by developing a self-contained representation for

the geometry of a particular point on a surface (typically the point of a ray inter-
section). This abstraction needs to hide the particular type of geometric shape the
point lies on, allowing the shading and geometric operations in the rest of lrt to be
implemented generically, without the need to distinguish between different shape
types such as spheres and triangles.

The information needed to do this includes:

� The 3D point p.

� The surface normal n at the point.

� � u � v � coordinates from the parameterization of the surface.

� The parametric partial derivatives ∂p
�
∂u and ∂p

�
∂v.

� The partial derivatives of the change in surface normal ∂n
�
∂u and ∂n

�
∂v.

� A pointer to the Shape that the differential geometry lies on; the shape class
will be introduced in the next chapter. See Figure 2.13 for a depiction of
these values.

This representation assumes that shapes have a parametric description–i.e. that
for some range of � u � v � values, points on the surface are given by some function f

Normal 34
Point 33
Shape 63

Vector 27

58 Geometry and Transformations [Ch. 2

N

dPdu, S

dPdv T

P

Figure 2.13: The local differential geometry around a point p. The tangent vectors
s and t are orthogonal vectors in the plane that is tangent to the surface at p. The
parametric partial derivatives of the surface, ∂p � ∂u and ∂p � ∂v, also lie in the tan-
gent plane but are not necessarily orthogonal. The surface normal n, is given by
the cross product of ∂p � ∂u and ∂p � ∂v. The vectors ∂n � ∂u and ∂n � ∂v (not shown
here) record the differential change in surface normal as we move in u and v along
the surface.

such that P � f
�
u � v � . Although this isn’t true for all shapes, all of the shapes that

lrt supports do have at least a local parametric description, so we will stick with
the parametric representation since this assumption will be helpful to us elsewhere
(e.g. for anti-aliasing of textures in Chapter 11.)�
DifferentialGeometry Declarations ���
struct DifferentialGeometry {

DifferentialGeometry() { u = v = 0.; shape = NULL; }�
DifferentialGeometry Public Methods ��
DifferentialGeometry Public Data �

};

DifferentialGeometry::nn is a unit-length version of the same normal.�
DifferentialGeometry Public Data ���
Point p;
Normal nn;
Float u, v;
const Shape *shape;

We also need to store the partial derivatives of the surface parameterization and
the surface normal.�
DifferentialGeometry Public Data �
 �
Vector dpdu, dpdv;
Vector dndu, dndv;

The DifferentialGeometry constructor only needs a few parameters–the point

Sec. 2.8] Differential Geometry 59

31 Cross()
58 DifferentialGeometry
34 Normal
33 Point
63 Shape
27 Vector

of interest, the partial derivatives, and the � u � v � coordinates. It computes the nor-
mal as the cross product of the partial derivatives and initializes s to be the nor-
malized ∂p

�
∂u vector. It then computes t by crossing s with n, which gives us a

vector that is perpendicular to both of them and thus lies in the tangent plane.�
DifferentialGeometry Method Definitions ���
DifferentialGeometry::DifferentialGeometry(const Point &P,

const Vector &DPDU, const Vector &DPDV, const Vector &DNDU,
const Vector &DNDV, Float uu, Float vv,
const Shape *sh)

: p(P), dpdu(DPDU), dpdv(DPDV), dndu(DNDU), dndv(DNDV) {�
Initialize DifferentialGeometry from parameters ��
Adjust normal based on orientation and handedness �

}
�
Initialize DifferentialGeometry from parameters ���
nn = Normal(Cross(dpdu, dpdv)).Hat();
u = uu;
v = vv;
shape = sh;

The surface normal has special meaning to lrt; we assume that for closed
shapes, the normal is oriented such that it points to the “outside” of the shape.
For example, this assumption will be used later when we need to decide if a ray
is entering or leaving the volume enclosed by a shape. Furthermore, for geometry
used as an area light source, light is emitted only from the side of the two-sided
surface where the normal points; the other side is black.

Because normals have this special meaning, lrt provides a way for the user to
reverse the orientation of the normal, flipping it to point in the opposite direction.
The ReverseOrientation directive in lrt’s input file flips the normal to point in
the opposite, non-default direction. Therefore, we need to check if the given Shape
has this flag set, and switch the normal’s direction if so.

One other factor plays into the orientation of the normal and must be accounted
for here. If the Shape’s transformation matrix has switched the handedness of
the object coordinate system from lrt’s default left handed coordinate system to
a right handed one, we need to switch the orientation of the normal as well. To
see this, consider a scale matrix S � 1 � 1 ��� 1 � . We would naturally expect this scale
to switch the direction of the normal, though because we compute the normal by
n � ∂p

�
∂u � ∂p

�
∂v, it can be shown that

s � 1 � 1 ��� 1 � ∂p
�
∂u � s � 1 � 1 ��� 1 � ∂p

�
∂v � ∂p

�
∂u � ∂p

�
∂v � n �� s � 1 � 1 ��� 1 � n �

Therefore, we also need to manually flip the normal’s direction if the transfor-
mation switches the handedness of the coordinate system, since the flip won’t be
accounted for by the computation of the normal’s direction using the cross product.

We only swap the normal’s directon if one but not both of these two conditions
is met; if both were met, their effect would cancel out. The exclusive or operation
lets us easily test this condition.

Shape::reverseOrientation 64
Shape::transformSwapsHandedness 64

60 Geometry and Transformations [Ch. 2

�
Adjust normal based on orientation and handedness ���
if (shape->reverseOrientation ˆ

shape->transformSwapsHandedness)
nn *= -1.f;

The functionality described in the text below is gone. This explanation
needs to be moved to the BSDF code, which DOES do this stuff...

It is useful to be able to transform direction vectors from world space to the
coordinate frame defined by the three basis directions s, t, and n. This maps the
object’s surface normal to the direction � 0 � 0 � 1 � , and can help to simplify shading
computations by letting us think of them in a standard coordinate system. It is easy
to show that given three orthogonal vectors s, t, and n in world-space, the matrix
M that transforms vectors in world space to the local differential geometry space
is:

M �
�� sx sy sz

tx ty tz

nx ny nz

�� �
�� s

t
n

��
To confirm this yourself, consider the value of Mn � � s � n � t � n � n � n � . Since s,
t, and n are all orthonormal, the x and y components of Mn are zero. Since n
is normalized, n � n � 1. Thus, Mn � � 0 � 0 � 1 � . In this case, we don’t need to
compute the inverse transpose of M to transform normals (recall the discussion of
transforming normals in Section 2.7.3 on page 54.) Because M is an orthonormal
matrix (its rows and columns are mutually orthogonal and are normalized), its
inverse is equal to its transpose, so it is its own inverse transpose already.

The function that takes vectors back from local space to world space just imple-
ments the transpose to invert M and does the appropriate dot products:

����� ���� � � � ��� � � �
DeRose, Goldman, and their collaborators have argued for an elegant “coor-

dinate free” approach to describing vector geometry for graphics, where the fact
that positions and directions happen to be represented by � x � y � z � coordinates with
respect to a particular coordinate system is de-emphasized and where points and
vectors themselves record which coordinate system they are expressed in terms
of (Goldman 1985; DeRose 1989; Mann, Litke, and DeRose 1997). This makes
it possible for a software layer to ensure that common errors like adding a vector
in one coordinate system to a point in another coordinate system are transparently
handled by transforming them to a common coordinate system first.

Schneider and Eberly’s Geometric Tools for Computer Graphics is strongly in-
fluenced by the coordinate-free approach and covers the topics of this chapter in
much greater depth. It is also full of useful geometry for graphics (Schneider and
Eberly 2003).

A classic introduction to the topics of this chapter is Mathematical Elements for
Computer Graphics by Rogers and Adams (Rogers and Adams 1990). Note that
they use a row-vector representation of points and vectors, though, which means
that our matrices would be transposed when expressed in their framework, and that
they multiply points and vectors by matrices to transform them, pM, rather than
multiplying matrices by points as we do, Mp.

There are many excellent books on linear algebra and vector geometry. We have

Exercises 61

found Lang’s (Lang 1986) and Buck’s (Buck 1978) to be good references on these
respective topics.

Homogeneous coordinates lead to projective geometry, an elegant framework
for XXX. Stolfi’s book XXX (Stolfi 1991).

Akenine–Möller and Haines for graphics-based introduction to linear algebra (Akenine-
Möller and Haines 2002), lots of ray bounds stuff and ray–obb stuff.

The subtleties of how normal vectors are transformed were first widely under-
stood after articles by Wallis and Turkowski (Wallis 1990; Turkowski 1990c).�

� � � � � � � �

2.1 (Jim Arvo) Find a more efficient way to transform axis-aligned bounding
boxes by taking advantage of the symmetries of the problem: because the
eight corner points are linear combinations of three axis-aligned basis vec-
tors and a single corner point, their transformed bounding box can be found
much more efficiently than by the method we presented (Arvo 1990).

2.2 Instead of boxes, we could compute tighter bounds by using the intersections
of many non-orthogonal slabs. Extend our bounding box class to allow the
user to specify a bound comprised of arbitrary slabs.

Axis-aligned bounding box Non-axis-aligned bounding box Arbitrary bounding slabs

2.3 Derive the matrices for rotation in a right-handed coordinate system.

�	�

130 Primitive
663 ReferenceCounted

� � � � �

Shapes in lrt are the basic representations of geometry in a scene. Each spe-
cific shape in lrt (sphere, triangle, cone, etc.) is a subclass of the Shape base
class. Thus, we can provide a generic interface to shapes that hides details about
the specific type of shape. This abstraction makes extending the geometric capabil-
ities of the system quite straightforward; the rest of lrt doesn’t need to know what
specific shape it is dealing with. The Shape class is purely geometric; it contains
no information about the appearance of an object. The Primitive class, intro-
duced in Chapter 1, holds additional information about a shape such as its material
properties. The basic interface for Shapes is in the source file core/shape.h, and
various common shape function definitions are in core/shape.cpp.

� �
� � � � � � � � � �������� � � �	���

The Shape class in lrt is reference counted. This means that lrt keeps track of
the number of outstanding pointers to a particular shape, and only deletes the shape
when that reference count goes to zero. Although not foolproof or completely
automatic, this is a form of garbage collection which relieves us from having to
worry about freeing memory at the wrong time. The ReferenceCounted class
handles all of this for us; its implementation is presented in section A.3.2.�
Shape Declarations ���
class COREDLL Shape : public ReferenceCounted {
public:�

Shape Interface ��
Shape Public Data �

};

���

BBox 38
Shape 63

Transform 43
Transform::GetInverse() 55

Transform::SwapsHandedness() 57

64 Shapes [Ch. 3

All shapes are defined in object coordinate space; for example, all spheres are
defined in a coordinate system where the center of the sphere is at the origin. In or-
der to place a sphere at another position in the scene, a transformation that describes
the mapping from object space to world space must be provided. The Shape class
stores both this transformation and its inverse. Shapes also take a boolean param-
eter, reverseOrientation, that records whether their surface normal directions
should be reversed from their default orientations. This is useful because the orien-
tation of the surface normal is used to determine which side of a shape is “outside”.
Its value is set via the ReverseOrientation statement in lrt input files. Shapes
also store the result of the Transform::SwapsHandedness() call for their object
to world transformation; this value is needed by the DifferentialGeometry con-
structor each time a ray intersection is found, so lrt computes it once and stores
the result.�
Shape Method Definitions ���
Shape::Shape(const Transform &o2w, bool ro)

: ObjectToWorld(o2w), WorldToObject(o2w.GetInverse()),
reverseOrientation(ro),
transformSwapsHandedness(o2w.SwapsHandedness()) {

}
�
Shape Public Data ���
const Transform ObjectToWorld, WorldToObject;
const bool reverseOrientation, transformSwapsHandedness;

3.1.1 Bounding

Each Shape subclass must be capable of bounding itself with a bounding box.
There are two different bounding methods. The first, ObjectBound(), returns a
bounding box in the shape’s object space, and the second, WorldBound(), returns
a bounding box in world space. The implementation of the first method is left up to
each individual shape, but there is a default implementation of the second method
which simply transforms the object bound to world space. Shapes that can easily
compute a tighter world-space bound should override this method, however. An
example of such a shape is a triangle; see Figure 3.1.�
Shape Interface ��� �
virtual BBox ObjectBound() const = 0;

�
Shape Interface ��� �
virtual BBox WorldBound() const {

return ObjectToWorld(ObjectBound());
}

3.1.2 Refinement

Not every shape needs to be capable of determining whether a ray intersects it. For
example, a complex surface might first be tessellated into triangles, which can then
be intersected directly. Another possibility is a shape that is a place-holder for a
large amount of geometry that is stored on disk. We could store just the filename

Sec. 3.1] Basic Shape Interface 65

664 Reference
63 Shape

658 vector

Figure 3.1: If we compute a world-space bounding box of a triangle by transform-
ing its object-space bounding box to world space and then finding the bounding
box that encloses the resulting bounding box, a sloppy bound may result (top).
However, if we first transform the triangle’s vertices from object space to world
space and then bound those vertices (bottom), we can do much better.

of the geometry file and the bounding box of the geometry inside of it in memory,
and read the geometry in from disk only if a ray pierces the bounding box.

The default implementation of the Shape::CanIntersect() function indicates
that a shape can provide an intersection, so only shapes that are non-intersectable
need to override this method.�
Shape Interface ��� �
virtual bool CanIntersect() const { return true; }

If the shape can not be intersected directly, it must provide a Shape::Refine()
method that splits the shape into a group of new shapes, some of which may
be intersectable and some of which may need further refinement. The default
implementation of the Shape::Refine() method issues an error message; thus,
shapes that are intersectable (which is the common case) do not have to pro-
vide an empty instance of this method. lrt will never call Shape::Refine()
if Shape::CanIntersect() returns true.�
Shape Interface ��� �
virtual void Refine(vector<Reference<Shape> > &refined) const {

Severe("Unimplemented Shape::Refine() method called");
}

I think there should be more here, but not sure what to say.

3.1.3 Intersection

The Shape class provides two different intersection routines. The first, Shape::Intersect(),
returns information about a single ray–shape intersection corresponding to the
first intersection in the � mint � maxt � parametric range along the ray. The other,
Shape::IntersectP() is a predicate function that determines whether or not
an intersection occurs, without returning any details about the intersection itself.
Some shapes may be able to provide a very efficient implementation for IntersectP()
that can determine whether an intersection exists without computing it at all.

There are a few important things to keep in mind when reading (and writing)
intersection routines:

DifferentialGeometry 58
Ray 36

Shape 63

66 Shapes [Ch. 3

� The Ray structure contains Ray::mint and Ray::maxt variables which de-
fine a ray segment. Intersection routines should ignore any intersections that
do not occur along this segment.

� If an intersection is found, its parametric distance along the ray should be
stored in the pointer t hitp that is passed into the intersection routine. If
multiple intersections are present, the closest one should be returned.

� Information about an intersection position is stored in the DifferentialGeometry
structure, which completely captures the local geometric properties of a sur-
face. This type will be used heavily throughout lrt, and it serves to cleanly
isolate the geometric portion of the ray tracer from the shading and illumi-
nation portions. The differential geometry class was defined in Section 2.8
on page 57.1

� The rays passed into intersection routines will be in world space, so shapes
are responsible for transforming them to object space if needed for intersec-
tion tests. The differential geometry returned should be in world space.

Rather than making the intersection routines pure virtual functions, the Shape
class provides default implementations of the intersect routines that print an error
message if they are called. All Shapes that return true from Shape::CanIntersect()
must provide implementations of these functions; those that return false can de-
pend on lrt to not call these routines on non-intersectable shapes. If these were
pure virtual functions, then each non-intersectable shape would have to implement
a similar default function.

Why not the obvious default IntersectP that just calls Intersect and throws
away the resulting DifferentialGeometry?�
Shape Interface ��� �
virtual bool Intersect(const Ray &ray, Float *t_hitp,

DifferentialGeometry *dg) const {
Severe("Unimplemented Shape::Intersect() method called");
return false;

}

virtual bool IntersectP(const Ray &ray) const {
Severe("Unimplemented Shape::IntersectP() method called");
return false;

}

1Almost all ray tracers use this general idiom for returning geometric information about inter-
sections with shapes. As an optimization, many will only partially initialize the intersection infor-
mation when an intersection is found, storing just enough information so that the rest of the values
can be computed later when actually needed. This approach saves work in the case where a closer
intersection is later found with another shape. In our experience, the extra work to compute all the
information isn’t substantial, and for renderers that have complex scene data management algorithms
(e.g. discarding geometry from main memory when too much memory is being used and writing it
to disk), the deferred approach may fail because the shape is no longer in memory.

Sec. 3.1] Basic Shape Interface 67

58 DifferentialGeometry
63 Shape
43 Transform

3.1.4 Shading Geometry

Some shapes (notably triangle meshes) supports the idea of having two types of
differential geometry at a point on the surface: the true geometry, which accurately
reflects the local properties of the surface, and the shading geometry, which may
have normals and tangents that are different than the true differential geometry. For
triangle meshes, the user can provide normal vectors and tangents at the vertices of
the mesh which are interpolated to give normals and tangents at points across the
faces of triangles.

The GetShadingGeometry() method of the Shape returns the shading geome-
try for DifferentialGeometry returned by the Intersect() routine. By default,
the shading geometry matches the true geometry, so the default implementation just
copies the true geometry. One subtlety is that an object to world transformation is
passed to this routine; it is important that if it needs to transform data from its ob-
ject space to world space as part of computing the shading geometry, it must use
this transformation rather than the Shape::ObjectToWorld transformation. This
is an artifact from how object instancing is implemented in lrt (See Section 4.1.2.)�
Shape Interface ��� �
virtual void GetShadingGeometry(const Transform &obj2world,

const DifferentialGeometry &dg,
DifferentialGeometry *dgShading) const {

*dgShading = dg;
}

3.1.5 Surface Area

In order to properly use Shapes as area lights, we need to be able to compute the
surface area of a shape in object space. As with the intersection methods, this
method will only be called for intersectable shapes.�
Shape Interface ��� �
virtual Float Area() const {

Severe("Unimplemented Shape::Area() method called");
return 0.;

}

3.1.6 Sidedness

Many rendering systems, particularly those based on scan-line or z-buffer algo-
rithms, support the concept of shapes being “one-sided”; the shape is visible if seen
from the front, but disappears when viewed from behind. In particular, If a geo-
metric object is closed and always viewed from the outside, then the back-facing
shapes can be discarded without changing the resulting image. This optimization
can substantially improve the speed of these types of algorithms. The potential for
improved performance is substantially reduced when using this technique with ray
tracing, however, since we would need to perform the ray–object intersection be-
fore determining the surface normal to do the backfacing test. Furthermore, it can
lead to a physically inconsistent scene description if one-sided objects are not in

Shape 63

68 Shapes [Ch. 3

fact closed. (For example, a surface might block light when a shadow ray is traced
from a light source to a point on another surface, but not if the shadow ray is traced
in the other direction.) Therefore, lrt doesn’t support this feature.

� ��� � �		� � � �
�
Sphere Declarations ���
class COREDLL Sphere: public Shape {
public:�

Sphere Public Methods �
private:�

Sphere Private Data �
};

Spheres are a special case of a general type of surface called quadrics. Quadrics
are surfaces described by quadratic polynomials in x, y, and z. They are the sim-
plest type of curved surface that is useful to a ray tracer, and are an interesting
introduction to more general ray intersection routines. lrt supports six types of
quadrics: spheres, cones, disks (a special case of a cone), cylinders, hyperboloids,
and paraboloids.

Most mathematical surfaces can be described in one of two main ways: in im-
plicit form and in parametric form. An implicit function describes a 3D surface
as:

f � x � y � z � � 0

The set of all points (x, y, z) that fulfill this condition define the surface. For a unit
sphere at the origin, the familiar implicit equation is x2 � y2 � z2

� 1 � 0. Only the
set of � x � y � z � one unit from the origin satisfies this constraint, giving us the unit
sphere’s surface.

Many surfaces can also be described parametrically using a function to map the
2D plane to 3D points on the surface. For example, a sphere can be described as a
function of 2D spherical coordinates � θ � φ � where θ ranges from 0 to π and φ ranges
from 0 to 2π:

x � r sinθ cos φ
y � r sinθ sin φ
z � r cosθ

We can transform this function f � θ � φ � into a function f � u � v � over � 0 � 1 � 2 with the
substitution

φ � u � φmax

θ � θmin � v � � θmax � θmin �
This form is particularly useful for texture mapping, where we can directly use the� u � v � values to map a texture defined over � 0 � 1 � 2 to the sphere.

As we describe the implementation of the sphere shape, we will make use of
both the implicit and parametric descriptions of the shape, depending on which is
a more natural way to approach the particular problem we’re facing.

Sec. 3.2] Spheres 69

677 Clamp()
677 Radians()
63 Shape
68 Sphere
43 Transform

Figure 3.2: Basic setting for the sphere shape. It has a radius of r and XXX. A
partial sphere may be described by specifying a maximum φ value.

3.2.1 Construction

Our Sphere class specifies a shape that is centered at the origin in object space; to
place it elsewhere in the scene, the user must apply an appropriate transformation
when specifying the sphere in the input file.

The radius of the sphere can have an arbitrary value, and the sphere’s extent
can be truncated in two different ways. First, minimum and maximum z values
may be set; the parts of the sphere below and above these, respectively, are cut off.
Second, if we consider the parameterization of the sphere in spherical coordinates
we can set a maximum φ value. The sphere sweeps out φ values from 0 to the given
φmax such that the section of the sphere with spherical φ values above this φ is also
removed.�
Sphere Method Definitions ���
Sphere::Sphere(const Transform &o2w, bool ro, Float rad,

Float z0, Float z1, Float pm)
: Shape(o2w, ro) {
radius = rad;
zmin = Clamp(min(z0, z1), -radius, radius);
zmax = Clamp(max(z0, z1), -radius, radius);
thetaMin = acosf(zmin/radius);
thetaMax = acosf(zmax/radius);
phiMax = Radians(Clamp(pm, 0.0f, 360.0f));

}
�
Sphere Private Data ���
Float radius;
Float phiMax;
Float zmin, zmax;
Float thetaMin, thetaMax;

BBox 38
DifferentialGeometry 58

Point 33
Ray 36

Shape::WorldToObject 64
Sphere 68

Sphere::radius 69
Sphere::zmax 69
Sphere::zmin 69

70 Shapes [Ch. 3

3.2.2 Bounding

Computing a bounding box for a sphere is straightforward. We will use the values
of zmin and zmax provided by the user to tighten up the bound when less than an
entire sphere is being rendered. However, we won’t do the extra work to look at
θmax and see if we can compute a tighter bounding box when that is less than 2π.
This is left as an exercise.�
Sphere Method Definitions ��� �
BBox Sphere::ObjectBound() const {

return BBox(Point(-radius, -radius, zmin),
Point(radius, radius, zmax));

}

3.2.3 Intersection

The task of deriving an intersection test is simplified by the fact that the sphere
is centered at the origin. However, if the sphere has been transformed to another
position in world space, then we need to transform rays to object space before in-
tersecting them with the sphere, using the world to object transformation. Once we
have a ray in object space, we can go ahead and perform the intersection computa-
tion in object space.2

The entire intersection method is shown below.�
Sphere Method Definitions ��� �
bool Sphere::Intersect(const Ray &r, Float *t_hitp,

DifferentialGeometry *dg) const {
Float phi;
Point phit;�
Transform Ray to object space ��
Compute quadratic sphere coefficients ��
Solve quadratic equation for t values ��
Compute sphere hit position and φ ��
Test sphere intersection against clipping parameters ��
Find parametric representation of sphere hit ��
Initialize DifferentialGeometry from parametric information ��
Update t hitp for quadric intersection �
return true;

}

We start by transforming the given world-space ray to the sphere’s object space.
The remainder of the intersection test will take place in that coordinate system.�
Transform Ray to object space ���
Ray ray;
WorldToObject(r, &ray);

2This is something of a classic theme in computer graphics: by transforming the problem to a
particular restricted case, we can more easily and efficiently do an intersection test (i.e. lots of math
cancels out since the sphere is always at � 0 � 0 � 0 � . No overall generality is lost, since we can just
apply an appropriate translation to the ray to account for spheres at other positions.

Sec. 3.2] Spheres 71

69 Sphere::radius

If we have a sphere centered at the origin with radius r, its implicit representation
is

x2 � y2 � z2
� r2 � 0 �

By substituting the parametric representation of the ray (Equation 2.4.3) into the
implicit sphere equation, we have:

� o � r � x � td � r � x � 2 �
�
o � r � y � td � r � y � 2

��� o � r � z � td � r � z � 2 � r2 �
Note that all elements of this equation besides t are known values. The t values

where the equation holds give the parametric positions along the ray where the
implicit sphere equation holds and thus the points along the ray where it intersects
the sphere.

We can expand this equation and gather the coefficients for a general quadratic
in t:

At2 � Bt � C � 0 �
where3

A � d � r � 2x � d � r � 2y � d � r � 2z
B � 2 � d � r � xo � r � x � d � r � yo � r � y � d � r � zo � r � z �
C � o � r � 2x � o � r � 2y � o � r � 2z � r2

This directly translates to this fragment of source code.�
Compute quadratic sphere coefficients ���
Float A = ray.d.x*ray.d.x + ray.d.y*ray.d.y + ray.d.z*ray.d.z;
Float B = 2 * (ray.d.x*ray.o.x + ray.d.y*ray.o.y +

ray.d.z*ray.o.z);
Float C = ray.o.x*ray.o.x + ray.o.y*ray.o.y +

ray.o.z*ray.o.z - radius*radius;

We know there are two possible solutions to this quadratic equation, giving zero,
one, or two non-imaginary t values where the ray intersects the sphere:

t0 � � B ��� B2
� 4AC

2A

t1 � � B � � B2
� 4AC

2A

We provide a Quadratic() utility function that solves a quadratic equation,
returning false if there are no real solutions and returning true and setting t0
and t1 appropriately if there are solutions.

3Some raytracers require that the direction vector of a ray be normalized, meaning A � 1 This can
lead to subtle errors, however, if the caller forgets to normalize the ray direction. Of course, these
errors can be avoided by normalizing the direction in the ray constructor, but this wastes effort when
the provided direction is already normalized. To avoid this needless complexity, lrt never insists on
vector normalization unless it is mathematically necessary.

72 Shapes [Ch. 3

�
Solve quadratic equation for t values ���
Float t0, t1;
if (!Quadratic(A, B, C, &t0, &t1))

return false;�
Compute intersection distance along ray �

�
Global Inline Functions ���
inline bool Quadratic(Float A, Float B, Float C, Float *t0,

Float *t1) {�
Find quadratic discriminant ��
Compute quadratic t values �

}

If the discriminant (B2
� 4AC) is negative, then there are no real roots and the

ray must miss the sphere.�
Find quadratic discriminant ���
Float discrim = B * B - 4.f * A * C;
if (discrim < 0.) return false;
Float rootDiscrim = sqrtf(discrim);

The usual version of the quadratic equation can give poor numeric precision
when B � � � B2

� 4AC due to cancellation error. It can be rewritten algebraically
to a more stable form:

t0 � q
A

t1 � C
q

where

q � �
� � 5 � B � � B2

� 4AC � : B � 0
� � 5 � B � � B2

� 4AC � : otherwise

�
Compute quadratic t values ���
Float q;
if (B < 0) q = -.5f * (B - rootDiscrim);
else q = -.5f * (B + rootDiscrim);
*t0 = q / A;
*t1 = C / q;
if (*t0 > *t1) swap(*t0, *t1);
return true;

Given the two intersection t values, we need to check them against the ray seg-
ment from mint to maxt. Since t0 is guaranteed to be less than t1 (and mint less
than maxt), if t0 is greater than maxt or t1 is less than mint, then it is certain that
both hits are out of the range of interest. Otherwise, t0 is the tentative hit distance.
If may be less than mint, however, in which case we ignore it and try t1. If that is
also out of range, we have no valid intersection. If there is an intersection, thit
holds the distance to the hit.

Sec. 3.2] Spheres 73

58 DifferentialGeometry
678 M PI
69 Sphere::phiMax
69 Sphere::zmax
69 Sphere::zmin

�
Compute intersection distance along ray ���
if (t0 > ray.maxt || t1 < ray.mint)

return false;
Float thit = t0;
if (t0 < ray.mint) {

thit = t1;
if (thit > ray.maxt) return false;

}

3.2.4 Partial Spheres

Now that we have the distance along the ray to the intersection with a full sphere,
we need to handle partial spheres, specified with clipped z or φ ranges. Intersections
that are in clipped areas need to be ignored.

We start by computing the object space position of the intersection, phit and
the φ value for the hit point. Taking the parametric equations for the sphere,

y
x � r sinθ sin φ

r sinθcos φ � tanφ

so φ � arctan y
x .

�
Compute sphere hit position and φ ���
phit = ray(thit);
phi = atan2f(phit.y, phit.x);
if (phi < 0.) phi += 2.f*M_PI;

We remap the result of the C standard library’s atan2f function to a value be-
tween 0 and 2π, to match the sphere’s original definition.

We can now test the hit point against the specified minima and maxima for z and
φ. If the t0 intersection wasn’t actually valid, we try again with t1.�
Test sphere intersection against clipping parameters ���
if (phit.z < zmin || phit.z > zmax || phi > phiMax) {

if (thit == t1) return false;
if (t1 > ray.maxt) return false;
thit = t1;�
Compute sphere hit position and φ �
if (phit.z < zmin || phit.z > zmax || phi > phiMax)

return false;
}

At this point, we are sure that the ray hits the sphere, and we can fill in the
DifferentialGeometry structure. We compute parametric u and v values by
scaling the previously-computed φ value for the hit to lie between 0 and 1 and
by computing a θ value between 0 and 1 for the hit point, based on the range of θ
values for the given sphere. Then, we compute the parametric partial derivatives
∂p

�
∂u and ∂p

�
∂v

Sphere::phiMax 69
Sphere::radius 69

Sphere::thetaMax 69
Sphere::thetaMin 69

Vector 27

74 Shapes [Ch. 3

�
Find parametric representation of sphere hit ���
Float u = phi / phiMax;
Float theta = acosf(phit.z / radius);
Float v = (theta - thetaMin) / (thetaMax - thetaMin);�
Compute sphere ∂p

�
∂u and ∂p

�
∂v ��

Compute sphere ∂n
�
∂u and ∂n

�
∂v �

Computing the partial derivatives of a point on the sphere is a short exercise in
algebra. Using the parametric definition of the sphere, we have:

x � r sin θ cosφ

� r sin � θmin � v � θmax � θmin � � cos � φmaxu �
Consider the first component of ∂p

�
∂u, ∂x

�
∂u: These equations could use a

bit more explanation at each step, like what variable depends on what, which
ones can be pulled out of the partial, etc

∂x
∂u � ∂

∂u � r sinθ cosφ �
� r sinθ

∂
∂u � cos φ �

� r sinθ � � φmax sin φ �
Using a substitution based on the parametric definition of the sphere’s y coordinate,
this simplifies to

∂x
�
∂u � � φmaxy �

Similarly
∂y

�
∂u � φmaxx �

and
∂z

�
∂u � 0 �

A similar process gives us ∂p
�
∂v.

∂p
∂u � � � φmaxy � φmaxx � 0 �
∂p
∂v � � θmax � θmin � � z cos φ � z sinφ ��� r sinθ �

�
Compute sphere ∂p

�
∂u and ∂p

�
∂v ���

Float invzradius = 1.f / sqrtf(phit.x*phit.x + phit.y*phit.y);
Float cosphi = phit.x * invzradius, sinphi = phit.y * invzradius;
Vector dpdu(-phiMax * phit.y, phiMax * phit.x, 0);
Vector dpdv = (thetaMax-thetaMin) *

Vector(phit.z * cosphi, phit.z * sinphi,
-radius * sinf(thetaMin + v * (thetaMax - thetaMin)));

Sec. 3.2] Spheres 75

3.2.5 ***ADV***: Partial Derivatives of Normal Vectors

It is useful to determine how the normal changes as we move along the surface
in the u and v directions. For example, some of the anti-aliasing techniques in
Chapter 10 will use this information. The differential changes in normal ∂n

�
∂u

and ∂n
�
∂v are given by the Weingarten equations from differential geometry. They

are:

∂n
∂u � f F � eG

EG � F2

∂p
∂u

�
eF � f E
EG � F2

∂p
∂v

∂n
∂v � gF � f G

EG � F2

∂p
∂u

�
f F � gE
EG � F2

∂p
∂v

where E , F , and G are coefficients of the first fundamental form and are given by

E �
�
�
�
�
∂p
∂u

�
�
�
�

2

F � �
∂p
∂u

� ∂p
∂v �

G �
�
�
�
�
∂p
∂v

�
�
�
�

2

�
These are easily computed with the ∂p

�
∂u and ∂p

�
∂v values found above. e, f , and

g are coefficients of the second fundamental form,

e � �
N � ∂2p

∂u2 �
f � �

N � ∂2p
∂u∂v �

g � �
N � ∂2p

∂v2 � �
The two fundamental forms have basic connections with the local curvature of

a surface; see a differential geometry textbook such as Gray’s (Gray 1993) for
details. To find e, f , and g, we need to compute the second order partial derivatives
∂2p

�
∂u2 etc.

For spheres, a little more algebra gives the required second derivatives:

∂2p
∂u2 � � φ2

max � x � y � 0 �
∂2p

∂u∂v � � zmax � zmin � zφmax � sin φ ��� cos φ � 0 �
∂2p
∂v2 � � � θmax � θmin � 2 � x � y � z �

DifferentialGeometry 58
Dot() 30

Shape::ObjectToWorld 64
Sphere::phiMax 69

Sphere::thetaMax 69
Sphere::thetaMin 69

Sphere::zmax 69
Sphere::zmin 69

Vector 27

76 Shapes [Ch. 3

�
Compute sphere ∂n

�
∂u and ∂n

�
∂v ���

Vector d2Pduu = -phiMax * phiMax * Vector(phit.x, phit.y, 0);
Vector d2Pduv = (zmax - zmin) * phit.z * phiMax *

Vector(sinphi, -cosphi, 0.);
Vector d2Pdvv = -(thetaMax - thetaMin) * (thetaMax - thetaMin) *

Vector(phit.x, phit.y, phit.z);�
Compute coefficients for fundamental forms ��
Compute ∂n

�
∂u and ∂n

�
∂v from fundamental form coefficients �

�
Compute coefficients for fundamental forms ���
Float E = Dot(dpdu, dpdu);
Float F = Dot(dpdu, dpdv);
Float G = Dot(dpdv, dpdv);
Vector N = Cross(dpdu, dpdv);
Float e = Dot(N, d2Pduu);
Float f = Dot(N, d2Pduv);
Float g = Dot(N, d2Pdvv);

�
Compute ∂n

�
∂u and ∂n

�
∂v from fundamental form coefficients ���

Float invEGF2 = 1.f / (E*G - F*F);
Vector dndu = (f*F - e*G) * invEGF2 * dpdu +

(e*F - f*E) * invEGF2 * dpdv;
Vector dndv = (g*F - f*G) * invEGF2 * dpdu +

(f*F - g*E) * invEGF2 * dpdv;

3.2.6 DifferentialGeometry Initialization

Now that we have computed the surface parameterization and all the relevant par-
tial derivatives, we can construct the DifferentialGeometry structure for this
intersection.�
Initialize DifferentialGeometry from parametric information ���
*dg = DifferentialGeometry(ObjectToWorld(phit), ObjectToWorld(dpdu),

ObjectToWorld(dpdv), ObjectToWorld(dndu), ObjectToWorld(dndv),
u, v, this);

Since there is an intersection, we update the ray’s t hitp value to hold the
hit distance along the ray, which was stored in thit. This will allow subsequent
intersection tests to terminate early if the potential hit would be farther away than
the existing intersection.�
Update t hitp for quadric intersection ���
*t_hitp = thit;

The sphere’s IntersectP() routine is almost identical to Sphere::Intersect(),
but it does not fill in the DifferentialGeometry structure. Because Intersect
and IntersectP are always so closely related, we will not show IntersectP for
the remaining shapes.

Sec. 3.2] Spheres 77

33 Point
36 Ray
68 Sphere
69 Sphere::phiMax
69 Sphere::radius
69 Sphere::zmax
69 Sphere::zmin

�
Sphere Method Definitions ��� �
bool Sphere::IntersectP(const Ray &r) const {

Float phi;
Point phit;�
Transform Ray to object space ��
Compute quadratic sphere coefficients ��
Solve quadratic equation for t values ��
Compute sphere hit position and φ ��
Test sphere intersection against clipping parameters �
return true;

}

3.2.7 Surface Area

To compute the surface area of quadrics, we use a standard formula from integral
calculus. If we revolve a curve y � f � x � from y � a to y � b around the x axis, the
surface area of the resulting swept surface is

2π � b

a
f � x ��� 1 � � f � � x � � 2 dx �

where f � � x � denotes the derivative d f
dx

4. Since most of our surfaces of revolution
are only partially swept around the axis, we will instead use the formula:

φmax � b

a
f � x � � 1 � � f � � x � � 2 dx �

Our sphere is a surface of revolution of a circular arc. So the function that
defines the profile curve of the sphere is

f � x � ��� r2
� x2 �

and its derivative is
f � � x � � �

x

� r2
� x2 �

Recall that the sphere is clipped at zmin and zmax. The surface area is therefore

A � φmax � z1

z0
� r2

� x2 1 �
x2

r2
� x2 dx

� φmax � z1

z0
� r2

� x2 � x2 dx

� φmax � z1

z0

r dx

� φmaxr � z1 � z0 �
For the full sphere φmax � 2π, zmin � � r and zmax � r, so we have the standard

formula A � 4πr2, showing that our formula is correct.�
Sphere Method Definitions ��� �
Float Sphere::Area() const {

return phiMax * radius * (zmax-zmin);
}

4See Anton for a derivation (Anton, Bivens, and Davis 2001).

Shape 63

78 Shapes [Ch. 3

Figure 3.3: Basic setting for the cylinder shape. It has a radius of r and is covers a
range of heights along the z-axis. A partial cylinder may be swept by specifying a
maximum φ value.

� ����� � �� �	�
� � �
�
cylinder.cpp* ���
#include "shape.h"�
Cylinder Declarations ��
Cylinder Method Definitions �

�
Cylinder Declarations ���
class COREDLL Cylinder: public Shape {
public:�

Cylinder Public Methods �
protected:�

Cylinder Private Data �
};

3.3.1 Construction

Another useful quadric is the cylinder; lrt provides cylinder Shapes that are cen-
tered around the z axis. The user supplies a minimum and maximum z value for
the cylinder, as well as a radius and maximum φ sweep value (See figure 3.3). In
parametric form, a cylinder is described by the equations:

φ � uφmax

x � r cosφ
y � r sinφ
z � zmin � v � zmax � zmin �

Sec. 3.3] Cylinders 79

38 BBox
677 Clamp()
78 Cylinder
33 Point

677 Radians()
63 Shape
43 Transform

�
Cylinder Method Definitions ���
Cylinder::Cylinder(const Transform &o2w, bool ro, Float rad,

Float z0, Float z1, Float pm)
: Shape(o2w, ro) {
radius = rad;
zmin = min(z0, z1);
zmax = max(z0, z1);
phiMax = Radians(Clamp(pm, 0.0f, 360.0f));

}
�
Cylinder Private Data ���
Float radius;
Float zmin, zmax;
Float phiMax;

3.3.2 Bounding

As we did with the sphere, we compute a conservative bounding box for the cylin-
der using the z range but without taking into account the maximum φ.�
Cylinder Method Definitions ��� �
BBox Cylinder::ObjectBound() const {

Point p1 = Point(-radius, -radius, zmin);
Point p2 = Point(radius, radius, zmax);
return BBox(p1, p2);

}

3.3.3 Intersection

We can intersect a ray with a cylinder by substituting the ray equation into the
cylinder’s implicit equation, similarly to the sphere case. The implicit equation for
an infinitely long cylinder centered on the z axis with radius r is

x2 � y2
� r2 � 0 �

Substituting the ray equation, 2.4.3, we have:

� o � r � x � td � r � x � 2 �
�
o � r � y � td � r � y � 2 � r2

When we expand this and find the coefficients of the quadratic equation At 2 �
Bt � C, we get:

A � d � r � 2x � d � r � 2y
B � 2 � d � r � xo � r � x � d � r � yo � r � y �
C � o � r � 2x � o � r � 2y � r2

�
Compute quadratic cylinder coefficients ���
Float A = ray.d.x*ray.d.x + ray.d.y*ray.d.y;
Float B = 2 * (ray.d.x*ray.o.x + ray.d.y*ray.o.y);
Float C = ray.o.x*ray.o.x + ray.o.y*ray.o.y - radius*radius;

Cylinder 78
Cylinder::phiMax 79

Cylinder::zmax 79
Cylinder::zmin 79

DifferentialGeometry 58
M PI 678

Point 33
Ray 36

Sphere 68

80 Shapes [Ch. 3

The solution process for the quadratic equation is similar for all quadric shapes,
so some fragments from the Sphere intersection method will be re-used below.
The fragments that are re-used from Sphere::Intersect() are marked with an
arrow.�
Cylinder Method Definitions ��� �
bool Cylinder::Intersect(const Ray &r, Float *t_hitp,

DifferentialGeometry *dg) const {
Float phi;
Point phit;

-> �
Transform Ray to object space ��
Compute quadratic cylinder coefficients �

-> �
Solve quadratic equation for t values ��
Compute cylinder hit point and φ ��
Test cylinder intersection against clipping parameters ��
Find parametric representation of cylinder hit �

-> �
Initialize DifferentialGeometry from parametric information �

-> �
Update t hitp for quadric intersection �
return true;

}

3.3.4 Partial Cylinders

As with the sphere, we invert the parametric description of the cylinder to compute
a φ value by inverting the x and y parametric equations to solve for φ. In fact, the
result is the same as for the sphere.�
Compute cylinder hit point and φ ���
phit = ray(thit);
phi = atan2f(phit.y, phit.x);
if (phi < 0.) phi += 2.f*M_PI;

We now make sure that the hit is in the specified z range, and that the angle is
acceptable. If not, we reject the hit and try with t1, if we haven’t already.�
Test cylinder intersection against clipping parameters ���
if (phit.z < zmin || phit.z > zmax || phi > phiMax) {

if (thit == t1) return false;
thit = t1;
if (t1 > ray.maxt) return false;�
Compute cylinder hit point and φ �
if (phit.z < zmin || phit.z > zmax || phi > phiMax)

return false;
}

Again the u value is computed by scaling φ to lie between 0 and 1. Straightfor-
ward inversion of the parametric equation for the cylinder’s z value gives us the v
parametric coordinate.

Sec. 3.3] Cylinders 81

78 Cylinder
79 Cylinder::phiMax
79 Cylinder::radius
79 Cylinder::zmax
79 Cylinder::zmin
27 Vector

�
Find parametric representation of cylinder hit ���
Float u = phi / phiMax;
Float v = (phit.z - zmin) / (zmax - zmin);�
Compute cylinder ∂p

�
∂u and ∂p

�
∂v ��

Compute cylinder ∂n
�
∂u and ∂n

�
∂v �

The partial derivatives for a cylinder are quite easy to derive: they are

∂p
∂u � � � φmaxy � φmaxx � 0 �
∂p
∂v � � 0 � 0 � zmax � zmin �

�
Compute cylinder ∂p

�
∂u and ∂p

�
∂v ���

Vector dpdu(-phiMax * phit.y, phiMax * phit.x, 0);
Vector dpdv(0, 0, zmax - zmin);

We again use the Weingarten equations to compute the parametric change in
cylinder normal. The relevant partial derivatives are

∂2p
∂u2 � � φ2

max � x � y � 0 �
∂2p

∂u∂v � � 0 � 0 � 0 �
∂2p
∂v2 � � 0 � 0 � 0 �

�
Compute cylinder ∂n

�
∂u and ∂n

�
∂v ���

Vector d2Pduu = -phiMax * phiMax * Vector(phit.x, phit.y, 0);
Vector d2Pduv(0, 0, 0), d2Pdvv(0, 0, 0);�
Compute coefficients for fundamental forms ��
Compute ∂n

�
∂u and ∂n

�
∂v from fundamental form coefficients �

3.3.5 Surface Area

A cylinder is just a rolled up rectangle. If you unroll the rectangle, its height is
zmax � zmin, and its width is rφmax:
�
Cylinder Method Definitions ��� �
Float Cylinder::Area() const {

return (zmax-zmin)*phiMax*radius;
}

Shape 63

82 Shapes [Ch. 3

Figure 3.4: Basic setting for the disk shape. The disk has radius r and is located at
height h along the z-axis. A partial disk may be swept by specifying a maximum φ
value. figure should use h not “height”.

� ��� � � � � �

�
disk.cpp* ���
#include "shape.h"�
Disk Declarations ��
Disk Method Definitions �

�
Disk Declarations ���
class COREDLL Disk : public Shape {
public:�

Disk Public Methods �
private:�

Disk Private Data �
};

The disk is an interesting quadric since it has a particularly straightforward in-
tersection routine that avoids solving the quadratic equation. In lrt, a Disk is
a circular disk of radius r at height h along the z axis. In order to make partial
disks, the caller may specify a maximum φ value beyond which the disk is cut off
(Figure 3.4). In parametric form, it is described by:

φ � uφmax

x � r � 1 � v � cosφ
x � r � 1 � v � sinφ
z � h

3.4.1 Construction

Sec. 3.4] Disks 83

38 BBox
677 Clamp()
58 DifferentialGeometry
82 Disk
33 Point

677 Radians()
36 Ray
63 Shape
43 Transform

�
Disk Method Definitions ���
Disk::Disk(const Transform &o2w, bool ro, Float ht, Float r, Float tmax)

: Shape(o2w, ro) {
height = ht;
radius = r;
phiMax = Radians(Clamp(tmax, 0.0f, 360.0f));

}
�
Disk Private Data ���
Float height, radius, phiMax;

3.4.2 Bounding

The bounding method is quite straightforward; we create a bounding box centered
at the height of the disk along z, with extent of radius in both the x and y directions.�
Disk Method Definitions ��� �
BBox Disk::ObjectBound() const {

return BBox(Point(-radius, -radius, height),
Point(radius, radius, height));

}

3.4.3 Intersection

Intersecting a ray with a disk is also quite easy. We intersect the ray with the z � h
plane that the disk lies in and then see if the intersection point lies inside the disk.
Again, the re-used chunks are marked with an arrow.�
Disk Method Definitions ��� �
bool Disk::Intersect(const Ray &r, Float *t_hitp,

DifferentialGeometry *dg) const {
-> �

Transform Ray to object space ��
Compute plane intersection for disk ��
See if hit point is inside disk radius and φmax ��
Find parametric representation of disk hit �

-> �
Initialize DifferentialGeometry from parametric information �

-> �
Update t hitp for quadric intersection �
return true;

}

The first step is to compute the parametric t value where the ray intersects the
plane that the disk lies in. Using the same approach as we did for intersecting rays
with boxes, we want to find t such that the z component of the ray’s position is
equal to the height of the disk. Thus,

h � o � r � z � t � d � r � z

Disk::height 83
Disk::phiMax 83
Disk::radius 83

M PI 678
Point 33

Vector 27

84 Shapes [Ch. 3

and

t � h � o � r � z
d � r � z

We first check whether the ray is parallel to the disk’s plane, in which case we re-
port no intersection. We then see if t is inside the legal range of values � mint � maxt � .
If not, we can return false.

whasssup with this magic constant? Make a “CloseToZero” function?�
Compute plane intersection for disk ���
if (fabsf(ray.d.z) < 1e-7) return false;
Float thit = (height - ray.o.z) / ray.d.z;
if (thit < ray.mint || thit > ray.maxt)

return false;

We now compute the point phit where the ray intersects the plane. Once the
plane intersection is known, we return false if the distance from the hit to the
center of the disk is more than radius. We optimize this process by actually
computing the squared distance to the center, taking advantage of the fact that the
x and y coordinates of the center point � 0 � 0 � height � are zero, and the z coordinate
of phit is equal to height.�
See if hit point is inside disk radius and φmax ���
Point phit = ray(thit);
Float dist2 = phit.x * phit.x + phit.y * phit.y;
if (dist2 > radius * radius)

return false;�
Test disk φ value against φmax �
If the distance check passes, we perform the final test, making sure that the φ

value of the hit point is between zero and φmax specified by the caller. Inverting
the disk’s parameterization gives us the same expression for φ as the other quadric
shapes.�
Test disk φ value against φmax ���
Float phi = atan2f(phit.y, phit.x);
if (phi < 0) phi += 2. * M_PI;
if (phi > phiMax)

return false;

If we’ve gotten this far, we know that there is an intersection with the disk. The
parameter u is scaled to reflect the partial disk specified by φmax and v is computed
by inverting the parametric equation. The equations for the partial derivatives at the
hit point can be derived with a similar process to that used for the previous quadrics.
Because the normal of a disk is the same everywhere, the partial derivatives ∂n

�
∂u

and ∂n
�
∂v are both trivially � 0 � 0 � 0 � .�

Find parametric representation of disk hit ���
Float u = phi / phiMax;
Float v = 1.f - (sqrtf(dist2) / radius);
Vector dpdu(-phiMax * phit.y, phiMax * phit.x, 0.);
Vector dpdv(-phit.x / (1-v), -phit.y / (1-v), 0.);
Vector dndu(0,0,0), dndv(0,0,0);

Sec. 3.5] Other Quadrics 85

82 Disk
83 Disk::phiMax
83 Disk::radius

3.4.4 Surface Area

Disks have trivial surface area, since they’re just portions of a circle:

A � φmax
2

r2

�
Disk Method Definitions ��� �
Float Disk::Area() const {

return phiMax * 0.5f * radius * radius;
}

� ��� � �������� � �	� � � � �
lrt supports three more quadrics: cones, paraboloids, and hyperboloids. They

are implemented in the source files shapes/cone.cpp, shapes/paraboloid.cpp
and shapes/hyperboloid.cpp. We won’t include their full implementations here,
since the techniques used to derive their quadratic intersection coefficients, para-
metric coordinates and partial derivatives should now be familiar. However, we
will briefly describe the implicit and parametric forms of these shapes.

3.5.1 Cones

The implicit equation of a cone centered on the z axis with radius r and height h is�
hx
r � 2

�
�

hy
r � 2

� � z � h � 2 � 0 �
Cones are also described parametrically:

φ � uφmax

x � r � 1 � v � cosφ
y � r � 1 � v � sinφ
z � vh

The partial derivatives at a point on a cone are

∂p
∂u � � � φmax y � φmax x � 0 �
∂p
∂v � � � x

1 � v
� y
1 � v

� h �
and the partial second derivatives are

∂2p
∂u2 � � φ2

max � x � y � 0 �
∂2p

∂u∂v � φmax
1 � v � y ��� x � 0 �

∂2p
∂v2 � � 0 � 0 � 0 � �

86 Shapes [Ch. 3

3.5.2 Paraboloids

The implicit equation of a paraboloid centered on the z axis with radius r and height
h is:

hx2

r2 �
hy2

r2 � z � 0

and its parametric form is

φ � uφmax

z � v � zmax � zmin �
r � rmax � z

�
zmax

x � r cosφ
y � r sinφ

The partial derivatives are:

∂p
∂u � � � φmax y � φmax x � 0 �
∂p
∂v � � zmax � zmin � � x �

z � y �
z � 1 �

and

∂2p
∂u2 � � φ2

max � x � y � 0 �
∂2p

∂u∂v � φmax � zmax � zmin � � � y
�
z � x �

z � 0 �
∂2p
∂v2 � � 2 � zmax � zmin � 2 � x �

z2 � y �
z2 � 0 �

3.5.3 Hyperboloids

Finally, the implicit form of the hyperboloid is

x2 � y2
� z2 � � 1

and the parametric form is

φ � uφmax

xr � � 1 � v � x1 � vx2

yr � � 1 � v � y1 � vy2

x � xr cosφ � yr sinφ
y � xr sinφ � yr cosφ
z � � 1 � v � z1 � vz2

The partial derivatives are:

∂p
∂u � � � φmax y � φmax x � 0 �
∂p
∂v � � � x2 � x1 � cos φ � � y2 � y1 � sinφ � � x2 � x1 � sin φ � � y2 � y1 � cos φ � z2 � z1 �
and

Sec. 3.6] Triangles and Meshes 87

63 Shape

∂2p
∂u2 � � φ2

max � x � y � 0 �
∂2p

∂u∂v � φmax � � ∂y
�
∂v� ∂x

�
∂v� 0 �

∂2p
∂v2 � � 0 � 0 � 0 �

� ��� � � � � � � � � � ����� � � �� �
�
trianglemesh.cpp* ���
#include "shape.h"
#include "paramset.h"�
TriangleMesh Declarations ��
TriangleMesh Method Definitions �

�
TriangleMesh Declarations ���
class COREDLL TriangleMesh : public Shape {
public:�

TriangleMesh Public Methods �
protected:�

TriangleMesh Data �
};

The triangle is one of the most commonly used shapes in computer graphics.
lrt supports triangle meshes, where a number of triangles are stored together so
that their per-vertex data can be shared among multiple triangles. Single triangles
are simply treated as degenerate meshes.

The arguments to the TriangleMesh constructor are as follows:

� nt Number of triangles.

� nv Number of vertices.

� vi Pointer to an array of vertex indices. For the ith triangle, its three vertex
positions are P[vi[3*i]], P[vi[3*i+1]], and P[vi[3*i+2]].

� P Array of nv vertex positions.

� N An optional array of normal vectors, one per vertex in the mesh. If present,
these are interpolated across triangle faces to compute the triangles shading
differential geometry.

� S An optional array of tangent vectors, one per vertex in the mesh. These are
also used to compute shading geometry.

� uv An optional array of a parametric � u � v � value for each vertex.

Normal 34
Point 33
Shape 63

Transform 43
TriangleMesh 87

Vector 27

88 Shapes [Ch. 3

We just copy the relevant information and store it in the TriangleMesh object.
In particular, must make our own copies of vi and P, since the caller retains own-
ership of the data being passed in.

Triangles have a dual role among the primitives in lrt: not only are they a
user-specified primitive, but other primitives may tessellate themselves into trian-
gle meshes; for example, subdivision surfaces end up creating a mesh of triangles
to approximate the smooth limit surface. Ray intersections are performed against
these triangles, rather than directly against the subdivision surface.

Because of this second role, it’s important that a routine that is creating a tri-
angle mesh be able to specify the parameterization of the triangles. If a triangle
was created by evaluating the position of a parametric surface at three particular� u � v � coordinate values, for example, those � u � v � values should be interpolated to
compute the � u � v � value at ray intersection points inside the triangle; hence the uv
parameter.�
TriangleMesh Method Definitions ���
TriangleMesh::TriangleMesh(const Transform &o2w, bool ro,

int nt, int nv, const int *vi, const Point *P,
const Normal *N, const Vector *S, const Float *uv)

: Shape(o2w, ro) {
ntris = nt;
nverts = nv;
vertexIndex = new int[3 * ntris];
memcpy(vertexIndex, vi, 3 * ntris * sizeof(int));�
Copy uv, N, and S vertex data, if present ��
Transform mesh vertices to world space �

}

The
�
Copy uv, N, and S vertex data, if present � fragment just allocates the

appropriate amount of space and copies the data directly, if it is present. Its imple-
mentation isn’t included here.�
TriangleMesh Data ���
int ntris, nverts;
int *vertexIndex;
Point *p;
Normal *n;
Vector *s;
Float *uvs;

Unlike the other shapes that leave the primitive description in object space and
then transform incoming rays from world space to object space, triangle meshes
transform the shape into world space and save the work of transforming the in-
coming rays into the object space or the intersection’s differential geometry out to
world space. This is a good idea because this operation can be performed once at
startup, avoiding transforming rays many times during rendering. Taking this with
quadrics is be more complicated, though is possible—see the exercises for hints on
how to do it. (Normal and s tangent vectors for shading geometry are left in ob-
ject space, since the GetShadingGeometry() must transform them to world space
with the transformation matrix supplied to that method, which may not necessarily
be the one stored by the Shape.)

Sec. 3.6] Triangles and Meshes 89

38 BBox
664 Reference
63 Shape
64 Shape::ObjectToWorld
64 Shape::reverseOrientation
64 Shape::WorldToObject
90 Triangle
87 TriangleMesh
88 TriangleMesh::ntris
88 TriangleMesh::nverts
88 TriangleMesh::p
40 Union()

658 vector

�
Transform mesh vertices to world space ���
for (int i = 0; i < nverts; ++i)

p[i] = ObjectToWorld(P[i]);

The object-space bound of a triangle mesh is easily found by computing a
bounding box that encompasses all of the vertices of the mesh. Because the vertex
positions p were transformed to world space in the constructure, the implementa-
tion here has to transform them back to object space before computing their bound.�
TriangleMesh Method Definitions ��� �
BBox TriangleMesh::ObjectBound() const {

BBox bobj;
for (int i = 0; i < nverts; i++)

bobj = Union(bobj, WorldToObject(p[i]));
return bobj;

}

The TriangleMesh shape is one of the shapes that can usually compute a better
world space bound than can be found by transforming its object-space bounding
box to world space. Its world space bounce can be directly computed from the
world-space vertices.�
TriangleMesh Method Definitions ��� �
BBox TriangleMesh::WorldBound() const {

BBox worldBounds;
for (int i = 0; i < nverts; i++)

worldBounds = Union(worldBounds, p[i]);
return worldBounds;

}

The TriangleMesh shape does not directly compute intersections. Instead, it
splits itself into many separate Triangles, each representing a single triangle. All
of the individual reference the shared set of vertices in p, avoiding per-triangle
replication of the shared data. It overrides the Shape::CanIntersect() method
to indicate that TriangleMeshes cannot be intersected directly.�
TriangleMesh Public Methods ��� �
bool CanIntersect() const { return false; }

When lrt encounters a shape that cannot be intersected directly, it calls its
Refine() method. Shape::Refine() is expected to produce a list of simpler
shapes in the “refined” vector. The implementation here is simple; we just
make a new Triangle for each of the triangles in the mesh.�
TriangleMesh Method Definitions ��� �
void TriangleMesh::Refine(vector<Reference<Shape> > &refined) const
{

for (int i = 0; i < ntris; ++i)
refined.push_back(new Triangle(ObjectToWorld, reverseOrientation,

(TriangleMesh *)this, i));
}

BBox 38
Point 33

Reference 664
Shape 63

Shape::WorldToObject 64
Transform 43

TriangleMesh 87
TriangleMesh::p 88

90 Shapes [Ch. 3

3.6.1 Triangle
�
TriangleMesh Declarations ��� �
class COREDLL Triangle : public Shape {
public:�

Triangle Public Methods �
private:�

Triangle Data �
};

The Triangle doesn’t store much data; just a pointer to the parent TriangleMesh
that it came from and a pointer to its three vertex indices in the mesh.�
Triangle Public Methods ���
Triangle(const Transform &o2w, bool ro, TriangleMesh *m, int n)

: Shape(o2w, ro) {
mesh = m;
v = &mesh->vertexIndex[3*n];

}

Note that the implementation stores a pointer to the first vertex index, instead
of storing three pointers to the vertices themselves. This reduces the amount of
storage required for each Triangle significantly.�
Triangle Data ���
Reference<TriangleMesh> mesh;
int *v;

As with TriangleMeshes, it is possible to compute better world space bounding
boxes for individual triangles by bounding the world space vertices directly.�
TriangleMesh Method Definitions ��� �
BBox Triangle::ObjectBound() const {�

Get triangle vertices in p1, p2, and p3 �
return Union(BBox(WorldToObject(p1), WorldToObject(p2)),

WorldToObject(p3));
}

�
TriangleMesh Method Definitions ��� �
BBox Triangle::WorldBound() const {�

Get triangle vertices in p1, p2, and p3 �
return Union(BBox(p1, p2), p3);

}
�
Get triangle vertices in p1, p2, and p3 ���
const Point &p1 = mesh->p[v[0]];
const Point &p2 = mesh->p[v[1]];
const Point &p3 = mesh->p[v[2]];

3.6.2 Triangle Intersection

An algorithm for ray–triangle intersection can be computed using barycentric co-
ordinates. Barycentric coordinates provide a way to parameterize a triangle in

Sec. 3.6] Triangles and Meshes 91

O

v
0

v1

v2

O-v0

v2-v0

v1-v0

M-1[O-v0]

1

1
u

v

t

Figure 3.5: Transforming the ray into a more convenient coordinate system for
intersection. First, a translation is applied to make a corner of the triangle coincide
with the origin. Then, the triangle is rotated and scaled to a unit right-triangle. The
axis labels don’t match the text.

terms of two variables, b1 and b2:

p � b1 � b2 � � � 1 � b1 � b2 � p0 � b1p1 � b2p2

The conditions on b1 and b2 are that b1 � 0, b2 � 0, and b1 � b2 � 1. This is the
parametric form of a triangle. The barycentric coordinates are also a natural way to
interpolate across the surface of the triangle; given values defined at the vertices a0,
a1, and a2 and given the barycentric coordinates for a point on the triangle, we can
compute an interpolated value of a at that point as � 1 � b1 � b2 � a0 � b1a1 � b2a2.
(See Section ?? on page ?? for a texture that interpolates shading values over a
triangle mesh in this manner.)

To derive an algorithm for intersecting a ray with a triangle, we insert the para-
metric ray equation into the triangle equation.

o � r � � td � r � � � 1 � b1 � b2 � p0 � b1p1 � b2p2 (3.6.1)

Following the technique described by Möller and Trumbore(Möller and Trum-
bore 1997), we use the shorthand notation E1 � p1 � p0, E2 � p2 � p0, and T �
o � r � � p0. We can now rearrange the terms of Equation 3.6.1 to obtain the matrix
equation: �

� d � r � E1 E2 �
��

t
b1

b2

��
� T (3.6.2)

Solving this linear system will give us both the barycentric coordinates of the in-
tersection point (which can easily be used to compute the 3D intersection point) as
well as the distance along the ray.

Geometrically, we can interpret this system as a translation of the triangle to the
origin, and a transformation of the triangle to a unit triangle in y and z, keeping the
ray direction aligned with x, as shown in Figure 3.5.

We can easily solve equation 3.6.2 using Cramer’s rule. Note that we are intro-
ducing a bit of notation for brevity here; we write

�
� a b c

�
� to mean the determi-

nant of the matrix having a, b, and c as its columns. Cramer’s rule gives:

DifferentialGeometry 58
Ray 36

Triangle 90

92 Shapes [Ch. 3

��� t

b1

b2

�
��
� 1

�
�
� d � r � E1 E2

�
�

��� �
� T E1 E2

�
�

�
�
� d � r � T E2

�
�

�
�
� d � r � E1 T

�
�

�
��

(3.6.3)

This can be rewritten as
�
� A B C

�
� � � � A � C � � B � � � C � B � � A. We can

thus rewrite Equation 3.6.3 as:��
t

b1

b2

��
� 1� d � r � � E2 � � E1

�� � T � E1 � � E2� d � r � � E2 � � T� T � E1 � � d � r �
��

(3.6.4)

If we use the substitution s1 � d � r � � E2 and s2 � t � E1 we can make the common
subexpressions more explicit:��

t
b1

b2

��
� 1

s1 � E1

��
s2 � E2

s1 � T
s2 � d � r �

��
(3.6.5)

In order to compute E1, E2, and T we need 9 subtractions. To compute s1

and s2, we need two cross products, which is a total of 12 multiplications and
6 subtractions. Finally, to compute t, b1, and b2, we need 4 dot products (12
multiplications and 8 additions), 1 reciprocal, and 3 multiplications. Thus, the total
cost of ray–triangle intersection is 1 divide, 27 multiplies, and 17 adds (counting
adds and subtracts together). Note that some of these operations can be avoided if
it is determined mid-calculation that the ray does not intersect the triangle.�
TriangleMesh Method Definitions ��� �
bool Triangle::Intersect(const Ray &ray, Float *t_hitp,

DifferentialGeometry *dg) const {�
Compute s1 ��
Compute first barycentric coordinate ��
Compute second barycentric coordinate ��
Compute t to intersection point ��
Fill in DifferentialGeometry from triangle hit �
*t_hitp = t;
return true;

}

First, we compute the divisor from Equation 3.6.5. We find the three mesh
vertices that make up this particular Triangle, and then compute the edge vectors
and divisor. Note that if the divisor is zero, this triangle is degenerate and therefore
cannot intersect a ray.

Sec. 3.6] Triangles and Meshes 93

31 Cross()
58 DifferentialGeometry
30 Dot()
35 Ray::o
27 Vector

�
Compute s1 ����

Get triangle vertices in p1, p2, and p3 �
Vector E1 = p2 - p1;
Vector E2 = p3 - p1;
Vector S_1 = Cross(ray.d, E2);
Float divisor = Dot(S_1, E1);
if (divisor == 0.)

return false;
Float invDivisor = 1.f / divisor;

We can now compute the desired barycentric coordinate b1. Recall that barycen-
tric coordinates that are less than zero or greater than one represent points outside
the triangle, so those are non-intersections.�
Compute first barycentric coordinate ���
Vector T = ray.o - p1;
Float b1 = Dot(T, S_1) * invDivisor;
if (b1 < 0. || b1 > 1.)

return false;

The second barycentric coordinate, b2, is computed in a similar way:�
Compute second barycentric coordinate ���
Vector S_2 = Cross(T, E1);
Float b2 = Dot(ray.d, S_2) * invDivisor;
if (b2 < 0. || b1 + b2 > 1.)

return false;

Now that we know the ray intersects the triangle, we compute the distance along
the ray at which the intersection occurs. This gives us one last opportunity to exit
the procedure early, in the case where the t value falls outside our Ray::mint and
Ray::maxt bounds.�
Compute t to intersection point ���
Float t = Dot(E2, S_2) * invDivisor;
if (t < ray.mint || t > ray.maxt)

return false;

We now have all the information we need to compute the DifferentialGeometry
structure for this intersection. In contrast to previous shapes, we don’t need to
transform the partial derivatives to world-space, since the triangle’s vertices were
already transformed to world-space. Like the disk, the triangle’s normal partial
derivatves are also both � 0 � 0 � 0 � .�
Fill in DifferentialGeometry from triangle hit ����

Compute triangle partial derivatives ��
Interpolate � u � v � triangle parametric coordinates �
*dg = DifferentialGeometry(ray(t), dpdu, dpdv, Vector(0,0,0),

Vector(0,0,0), tu, tv, this);

In order to generate consistent tangent vectors over triangle meshes, it is neces-
sary to compute the partial derivatives ∂p

�
∂u and ∂p

�
∂v using the parametric � u � v �

values at the triangle vertices, if provided. Although the partial derivatives are the
same at all points on the triangle, the implementation here just recomputes them

94 Shapes [Ch. 3

each time an intersection is found. Although this results in redundant computation,
the storage savings for large triangle meshes can be substantial.

The triangle is the set of points

pP � u∂p
�
∂u � v∂p

�
∂v �

for some pP, where u and v range over the parametric coordinates of the triangle.
We also know the three vertex positions pi, i � 0 � 1 � 2 and the texture coordinates� ui � vi � at each vertex. From this it follows that

pi � pP � ui∂p
�
∂u � vi∂p

�
∂v �

This can be written in matrix form:�� p0

p1

p2

�� �
�� u0 v0 1

u1 v1 1
u2 v2 1

�� �� ∂p
�
∂u

∂p
�
∂v

pP

��
In other words, there is a unique affine mapping from the two-dimensional � u � v �

space to points on the triangle (such a mapping exists even though the triangle is
specified in 3D space, because it is planar.) To compute expressions for ∂p

�
∂u and

∂p
�
∂v, we just need to solve the matrix equation. We subtract the bottom row of

each matrix from the top two rows, giving:
What happens to pP from the previous equation?�

p0 � p2

p1 � p2 � � �
u0 � u2 v0 � v2

u1 � u2 v1 � v2 � �
∂p

�
∂u

∂p
�
∂v �

So �
∂p

�
∂u

∂p
�
∂v � � �

u0 � u2 v0 � v2

u1 � u2 v1 � v2 � � 1 �
p0 � p2

p1 � p2 �
Inverting a 2 � 2 matrix is straightforward; we just inline the computation di-

rectly in the code:
The points don’t match the math! It looks like we’ve rotated the triangle

here from the math. I don’t want to touch this; shorty can you fix this so it
matches the math and then test it?

Sec. 3.6] Triangles and Meshes 95

32 CoordinateSystem()
31 Cross()
90 Triangle
96 Triangle::GetUVs()
87 TriangleMesh
27 Vector
30 Vector::Hat()

�
Compute triangle partial derivatives ���
Vector dpdu, dpdv;
Float uvs[3][2];
GetUVs(uvs);�
Compute deltas for triangle partial derivatives �
Float determinant = du1 * dv2 - dv1 * du2;
if (determinant == 0) {�

Handle zero determinant for triangle partial derivative matrix �
}
else {

Float invdet = 1.f / determinant;
dpdu = Vector((dx1 * dv2 - dv1 * dx2) * invdet,

(dy1 * dv2 - dv1 * dy2) * invdet,
(dz1 * dv2 - dv1 * dz2) * invdet);

dpdv = Vector((du1 * dx2 - dx1 * du2) * invdet,
(du1 * dy2 - dy1 * du2) * invdet,
(du1 * dz2 - dz1 * du2) * invdet);

}

why don’t the points being subtracted match up with the math? Can we do
dx1, dx2, etc as Vectors here? Also need to fix up idrafted dndu/dndv code
equivalently.�
Compute deltas for triangle partial derivatives ���
Float du1 = uvs[1][0] - uvs[0][0];
Float du2 = uvs[2][0] - uvs[0][0];
Float dv1 = uvs[1][1] - uvs[0][1];
Float dv2 = uvs[2][1] - uvs[0][1];
Float dx1 = p2.x - p1.x;
Float dx2 = p3.x - p1.x;
Float dy1 = p2.y - p1.y;
Float dy2 = p3.y - p1.y;
Float dz1 = p2.z - p1.z;
Float dz2 = p3.z - p1.z;

Finally, it is necessary to handle the case when the matrix is singular and there-
fore cannot be inverted. Note that this only happens when the user-supplied per-
vertex parameterization values are degenerate. In this case, the Triangle just
chooses an arbitrary coordinate system, making sure that it is orthonormal:�
Handle zero determinant for triangle partial derivative matrix ���
CoordinateSystem(Cross(E2, E1).Hat(), &dpdu, &dpdv);

To compute the � u � v � parametric coordinates at the hit point, the barycentric
interpolation formula is applied to the � u � v � parametric coordinates at the vertices.�
Interpolate � u � v � triangle parametric coordinates ���
Float b0 = 1 - b1 - b2;
Float tu = b0*uvs[0][0] + b1*uvs[1][0] + b2*uvs[2][0];
Float tv = b0*uvs[0][1] + b1*uvs[1][1] + b2*uvs[2][1];

The utility GetUVs() routine returns the � u � v � coordinates for the three vertices
of the triangle, either from the TriangleMesh, if it has them, or returning defaults

Triangle 90
TriangleMesh::uvs 88

96 Shapes [Ch. 3

v1

v2

Figure 3.6: The area of a triangle with two edges given by vectors v1 and v2 is one
half of the area of the parallelogram. The parallelogram area is given by the length
of the cross product of v1 and v2.

if none were specified with the mesh.�
TriangleMesh Method Definitions ��� �
void Triangle::GetUVs(Float uv[3][2]) const {

if (mesh->uvs) {
uv[0][0] = mesh->uvs[2*v[0]];
uv[0][1] = mesh->uvs[2*v[0]+1];
uv[1][0] = mesh->uvs[2*v[1]];
uv[1][1] = mesh->uvs[2*v[1]+1];
uv[2][0] = mesh->uvs[2*v[2]];
uv[2][1] = mesh->uvs[2*v[2]+1];

} else {
uv[0][0] = 0.; uv[0][1] = 0.;
uv[1][0] = 1.; uv[1][1] = 0.;
uv[2][0] = 1.; uv[2][1] = 1.;

}
}

3.6.3 Surface Area

Recall from Section 2.1 that the area of a parallelogram is given by the length of
the cross product of the two vectors along its sides. From this, it’s easy to see
that given the vectors for two edges of a triangle, its area is 1

2 of the area of the
parallelogram given by those two vectors–see Figure 3.6.�
TriangleMesh Method Definitions ��� �
Float Triangle::Area() const {�

Get triangle vertices in p1, p2, and p3 �
return 0.5f * Cross(p2-p1, p3-p1).Length();

}

3.6.4 Shading Geometry

text here
need xrefs in the code here

Sec. 3.6] Triangles and Meshes 97

58 DifferentialGeometry
400 DifferentialGeometry::dudx
400 DifferentialGeometry::dudy
400 DifferentialGeometry::dvdx
400 DifferentialGeometry::dvdy
58 DifferentialGeometry::p
58 DifferentialGeometry::shape
58 DifferentialGeometry::u
58 DifferentialGeometry::v
43 Transform
90 Triangle
90 Triangle::mesh
88 TriangleMesh::n
88 TriangleMesh::s
27 Vector

�
Triangle Public Methods ��� �
virtual void GetShadingGeometry(const Transform &obj2world,

const DifferentialGeometry &dg,
DifferentialGeometry *dgShading) const {

if (!mesh->n && !mesh->s) {
*dgShading = dg;
return;

}�
Initialize Triangle shading geometry with n and s �

}
�
Initialize Triangle shading geometry with n and s ����

Compute barycentric coordinates for point ��
Use n and s to compute shading tangents for triangle, ss and ts �
Vector dndu, dndv;�
Compute ∂n

�
∂u and ∂n

�
∂v for triangle shading geometry �

*dgShading = DifferentialGeometry(dg.p, ss, ts,
dndu, dndv, dg.u, dg.v,
dg.shape, dg.dudx, dg.dvdx, dg.dudy,
dg.dvdy);

Recall that the � u � v � parametric coordinates in the DifferentialGeometry for
a triangle are computed with barycentric interpolation of parametric coordinates at
the triangle vertices.

u � b0u0 � b1u1 � b2u2

v � b0v0 � b1v1 � b2v2

Because bi are barycentric coordinates, b0 � 1 � b1 � b2. Here, u, v, ui and vi

are all known, u and v from the DifferentialGeometry and ui and vi from the
Triangle. We can substitue for the b0 term and rewrite the above equations, giving
a linear system in two unknowns b1 and b2.�

u1 � u0 u2 � u1

v1 � v0 v2 � v1 � �
b1

b2 � � �
u � u0

v � v0 �
This is a linear system of the basic form Ab � C. We can solve for b by inverting
A, giving the two barycentric coordinates

b � A � 1C �
The closed form solution for this is implemented in the utility routine SolveLinearSystem2x2().�
Compute barycentric coordinates for point ���
Float b[3];�
Initialize A and C matrices for barycentrics �
if (!SolveLinearSystem2x2(A, C, &b[1])) {�

Handle degenerate parametric mapping �
}
else

b[0] = 1.f - b[1] - b[2];

Cross() 31
DifferentialGeometry::u 58
DifferentialGeometry::v 58

Normal 34
SolveLinearSystem2x2() 675

Vector 27

98 Shapes [Ch. 3

�
Initialize A and C matrices for barycentrics ���
Float uv[3][2];
GetUVs(uv);
Float A[2][2] = { { uv[1][0] - uv[0][0], uv[2][0] - uv[0][0] },

{ uv[1][1] - uv[0][1], uv[2][1] - uv[0][1] } };
Float C[2] = { dg.u - uv[0][0], dg.v - uv[0][1] };

If the determinant of A is zero, the solution is undefined and SolveLinearSystem2x2()
returns false. This case happens if all three triangle vertices had the same texture
coordinates, for example. In this case, the barycentric coordinates are all set arbi-
trarily to 1

3 .
�
Handle degenerate parametric mapping ���
b[0] = b[1] = b[2] = 1.f/3.f;

�
Use n and s to compute shading tangents for triangle, ss and ts ���
Normal ns;
Vector ss, ts;
if (mesh->n) ns = (b[0] * mesh->n[v[0]] + b[1] * mesh->n[v[1]] +

b[2] * mesh->n[v[2]]).Hat();
else ns = dg.nn;
if (mesh->s) ss = (b[0] * mesh->s[v[0]] + b[1] * mesh->s[v[1]] +

b[2] * mesh->s[v[2]]).Hat();
else ss = dg.dpdu.Hat();
ts = obj2world(Cross(ss, ns)).Hat();
ss = obj2world(Cross(ts, ns)).Hat();

make sure not to include the heightfield on the CD.

� ��������� � � ��������� � � � ��� � � � � � � � � � � �	��� �
We will wrap up this chapter by defining a shape that implements subdivision

surfaces, which are particularly well-suited to describing complex smooth shapes.
The subdivision surface for a particular mesh is defined by repeatedly subdividing
the faces of the mesh into smaller faces, then changing the new vertex locations
using weighted combinations of the old vertex positions.

For appropriately chosen subdivision rules, this process converges to give a
smooth limit surface as the number of subdivision steps goes to infinity. In prac-
tice, just a few levels of subdivision typically suffice to give a good approximation
of the limit surface. Figure 3.7 shows the effect of applying one set of subdivision
rules to a tetrahedron; on the left is the original control mesh, and one, two, three,
and four levels of subdivision are shown moving from left to right.

Though originally developed in the 1970s, subdivision surfaces have recently
received a fair amount of attention in computer graphics thanks to some key advan-
tages over polygonal and spline-based representations of surfaces. The advantages
of subdivision include:

� Subdivision surfaces are smooth, as opposed to polygon meshes which ap-
pear faceted when viewed close up, regardless of how finely they are mod-
eled.

Sec. 3.7] ***ADV***: Subdivision Surfaces 99

Figure 3.7: tetra control mesh and 4 levels of subdivision.

� A lot of existing infrastructure in modeling systems can be retargeted to sub-
division. The classic toolbox of techniques for modeling polygon meshes
can be applied to modeling subdivision control meshes.

� Subdivision surfaces are well-suited to describing objects with complex topol-
ogy, since we can start with a control meshes of arbitrary (manifold) topol-
ogy. Parametric surface models generally don’t handle complex topology
well.

� Subdivision methods are often generalizations of spline-based surface repre-
sentations, so spline surfaces can often just be run through general subdivi-
sion surface renderers.

� It is easy to add detail to a localized region of a subdivision surface, simply
by adding faces to appropriate parts of the control mesh. This is much less
easily done with spline representations.

Here, we will describe an implementation of Loop subdivision surfaces5 . The
Loop rules are based on triangular faces in the control mesh; faces with more than
three vertices are just triangulated at the start. At each subdivision step, all faces
split into four child faces (Figure 3.8). New vertices are added along all of the
edges of the original mesh, with positions computed using weighted averages of
nearby vertices. Furthermore, the position of each original vertex is updated with
a weighted average of its position and its new neighbors’ positions.

3.7.1 Mesh Representation

5Don’t be fooled by the name. These surfaces are not “loopy”; they are named after the inventor
of the subdivision rules, Charles Loop.

Point 33
SDFace 102

SDVertex 101
Shape 63

Transform 43
TriangleMesh 87

100 Shapes [Ch. 3

Figure 3.8: Basic refinement process for Loop subdivision: the control mesh on the
left has been subdivided once to create the new mesh on the right. Each triangular
face of the mesh has been subdivided into four new faces by splitting each of the
edges and connecting the new vertices with new edges.

�
LoopSubdiv Declarations ���
class COREDLL LoopSubdiv : public Shape {
public:�

LoopSubdiv Public Methods �
private:�

LoopSubdiv Private Methods ��
LoopSubdiv Private Data �

};

We will start by describing the data structures used to represent the subdivision
mesh. These data structures need to be carefully designed in order to support all
of the operations necessary to cleanly implement the subdivision algorithm. The
parameters to the LoopSubdiv constructor specify a triangle mesh in exactly the
same format used in the TriangleMesh constructor (see Section 3.6 on page 87.):
each face is described by three integer vertex indices, giving offsets into the vertex
array P for the face’s three vertices. We will need to process this data to determine
which faces are adjacent to each other, which faces are adjacent to which vertices,
etc.�
LoopSubdiv Method Definitions ���
LoopSubdiv::LoopSubdiv(const Transform &o2w, bool ro, int nfaces,

int nvertices, const int *vertexIndices,
const Point *P, int nl)

: Shape(o2w, ro) {
nLevels = nl;�
Allocate LoopSubdiv vertices and faces ��
Set face to vertex pointers ��
Set neighbor pointers in faces ��
Finish vertex initialization �

}

We will shortly define SDVertex and SDFace structures, which hold data for
vertices and faces in the subdivision mesh. We start by allocating one instance of
the SDVertex class for each vertex in the mesh and an SDFace for each face. For
now, these are mostly uninitialized.

Sec. 3.7] ***ADV***: Subdivision Surfaces 101

100 LoopSubdiv
33 Point

102 SDFace
658 vector

�
Allocate LoopSubdiv vertices and faces ���
int i;
SDVertex *verts = new SDVertex[nvertices];
for (i = 0; i < nvertices; ++i) {

verts[i] = SDVertex(P[i]);
vertices.push_back(&verts[i]);

}
SDFace *fs = new SDFace[nfaces];
for (i = 0; i < nfaces; ++i)

faces.push_back(&fs[i]);

The LoopSubdiv destructor, which we won’t include here, just deletes all of the
faces and vertices allocated above.�
LoopSubdiv Private Data ���
int nLevels;
vector<SDVertex *> vertices;
vector<SDFace *> faces;

The Loop subdivision scheme, like most other subdivision schemes, assumes
that the control mesh is manifold, i.e. no more than two faces share any given
edge. Such a mesh may be closed or open: a closed mesh has no boundary, and all
faces have adjacent faces across each of their edges. An open mesh has some faces
that do not have all three neighbors. The LoopSubdiv implementation supports
both closed and open meshes.

In the interior of a triangle mesh, most vertices are adjacent to six faces and have
six neighbor vertices directly connected to them with edges. On the boundaries of
an open mesh, most vertices are adjacent to three faces and four vertices. The
number of vertices directly adjacent to a vertex is called the vertex’s valence. In-
terior vertices with valence other than six, or boundary vertices with valence other
than four are called extraordinary vertices; otherwise they are called regular. Loop
subdivision surfaces are smooth everywhere except at their extraordinary vertices.

Each SDVertex stores its position P, a boolean that indicates whether it is a
regular or extraordinary vertex, and a boolean that records if it lies on the boundary
of the mesh. It also holds a pointer to one of the faces adjacent to it; later we will
use this pointer to start an iteration over all of the faces adjacent to the vertex by
following pointers stored in each SDFace to record which faces are adjacent. ¡—
- This sentence is pretty garbled. Finally, we have a pointer to store the new
SDVertex for the next level of subdivision, if any.�
LoopSubdiv Local Structures ��� �
struct SDVertex {�

SDVertex Constructor ��
SDVertex Methods �
Point P;
SDFace *startFace;
SDVertex *child;
bool regular, boundary;

};

The constructor for SDVertex does the obvious initialization; note that SDVertex::startFace
is initialized to NULL.

Point 33
SDVertex 101

102 Shapes [Ch. 3

Figure 3.9: Each triangular face stores three pointers to SDVertex objects v[i] and
three pointers to neighboring faces f[i]. Neighboring faces are indexed using the
convention that the ith edge is the edge from v[i] to v[(i+1)%3], and the neighbor
across the ith edge is in f[i].

�
SDVertex Constructor ���
SDVertex(Point pt = Point(0,0,0))

: P(pt), startFace(NULL), child(NULL),
regular(false), boundary(false) {

}

The SDFace structure is where we maintain most of the topological information
about the mesh. Because all faces are triangular, we always store three pointers to
the vertices for this face and three pointers to the faces adjacent to this one. (The
face neighbor pointers will be NULL if the face is on the boundary of an open mesh.)

The face neighbor pointers are indexed such that if we label the edge from v[i]
to v[(i+1)%3] as the ith edge, then the neighbor face across that edge is stored in
f[i]–see Figure 3.9. This labeling convention is important to keep in mind; later
when we are updating the topology of a newly subdivided mesh, we will make
extensive use of it to navigate around the mesh. Similarly to the SDVertex class,
we also store pointers to child faces at the next level of subdivision.�
LoopSubdiv Local Structures ��� �
struct SDFace {�

SDFace Constructor ��
SDFace Methods �
SDVertex *v[3];
SDFace *f[3];
SDFace *children[4];

};

The SDFace constructor is straightforward–it simply sets pointers to NULL–so it
is not shown here.

Sec. 3.7] ***ADV***: Subdivision Surfaces 103

100 LoopSubdiv
102 SDFace

Figure 3.10: All of the faces in the input mesh must be specified so that each shared
edge is given once in each direction. Here, the edge from v0 to v1 is traversed from
v0 to v1 by face number one, and from v1 to v0 by face number two. Another way
to think of this is in terms of face orientation: all faces’ vertices should be given
consistently in either clockwise or counter-clockwise order, as seen from outside
the mesh.

In order to simplify navigation of the SDFace data structure, we’ll provide macros
that make it easy to determine the vertex and face indices before or after a partic-
ular index. These macros add appropriate offsets and compute the result modulus
three to handle cycling around. To compute the previous index, we add 2 instead
of subtracting 1, which avoids taking the modulus of a negative number, the result
of which is implementation-dependent in C++.�
LoopSubdiv Macros ���
#define NEXT(i) (((i)+1)%3)
#define PREV(i) (((i)+2)%3)

In addition to requiring a manifold mesh, the LoopSubdiv class expects that the
control mesh specified by the user will be consistently ordered–each directed edge
in the mesh can be present only once. An edge that is shared by two faces should
be specified in a different direction by each face. Consider two vertices, v0 and v1,
with an edge between them. We expect that one of the triangular faces that has this
edge will specify its three vertices so that v0 is before v1, and that the other face
will specify its vertices so that v1 is before v0 (Figure 3.10). A Möbius strip is one
example of a surface that cannot be consistently ordered, but such surfaces come
up rarely in rendering so in practice this restriction is not troublesome.

Given this assumption about the input data, we will initialize this mesh’s topo-
logical data structures. We first loop over all of the faces and set their v pointers
to point to their three vertices. We also set each vertex’s SDVertex::startFace
pointer to point to one of the vertex’s neighboring faces. It doesn’t matter which of
its adjacent faces we choose, so we just keep resetting it each time we come across
another face that it is incident to, ensuring that all vertices have some non-NULL
face pointer by the time we’re done.

SDFace 102
SDFace::v 102
SDVertex 101

SDVertex::startFace 101

104 Shapes [Ch. 3

�
Set face to vertex pointers ���
const int *vp = vertexIndices;
for (i = 0; i < nfaces; ++i) {

SDFace *f = faces[i];
for (int j = 0; j < 3; ++j) {

SDVertex *v = vertices[vp[j]];
f->v[j] = v;
v->startFace = f;

}
vp += 3;

}

Now we need to set each face’s f pointer to point to its neighboring faces. This
is a bit trickier, since face adjacency information isn’t directly specified by the user.
We’ll loop over the faces and store an SDEdge object for each of their three edges;
when we come to another face that shares the same edge, we can update both faces’
neighbor pointers.�
LoopSubdiv Local Structures ��� �
struct SDEdge {�

SDEdge Constructor ��
SDEdge Comparison Function �
SDVertex *v[2];
SDFace *f[2];
SDFace **fptr;

};

The constructor takes pointers to the two vertices at each end of the edge. It
orders them so that v[0] holds the one that is first in memory; This code may
seem strange, but we’re simply relying on the fact that pointers in C++ are really
just 32-bit numbers that can be manipulated like integers, and that the ordering of
vertices on an edge is arbitrary. By sorting vertices on the address of the pointer,
we guarantee that we properly recognize that the edge � va � vb � is the same as the
edge � vb � va � , regardless of what order the vertices are given in.

okay, so “fptr” is never used for anything meaningful. Can we get rid of it
please? Same for f[1].�
SDEdge Constructor ���
SDEdge(SDVertex *v0 = NULL, SDVertex *v1 = NULL) {

v[0] = min(v0, v1);
v[1] = max(v0, v1);
f[0] = f[1] = NULL;
fptr = NULL;

}

We also define an ordering operation for SDEdge objects so that they used by
other data structures that rely on ordering being well-defined.

Sec. 3.7] ***ADV***: Subdivision Surfaces 105

103 NEXT
104 SDEdge
104 SDEdge::f
104 SDEdge::fptr
104 SDEdge::v
102 SDFace
102 SDFace::f

�
SDEdge Comparison Function ���
bool operator<(const SDEdge &e2) const {

if (v[0] == e2.v[0]) return v[1] < e2.v[1];
return v[0] < e2.v[0];

}

Now we can get to work, looping over the edges in all of the faces and updating
the neighbor pointers as we go. We use an STL set<> to store the edges that have
only one adjacent face so far. The set<> allows us to search for a particular edge
in O � log n � , using the comparison function above.�
Set neighbor pointers in faces ���
set<SDEdge> edges;
for (i = 0; i < nfaces; ++i) {

SDFace *f = faces[i];
for (int edge = 0; edge < 3; ++edge) {�

Update neighbor pointer for edge �
}

}

For each edge in each face, we create an edge object and see if the same edge
was seen previously. If so, we initialize both faces’ neighbor pointers across the
edge. If not, we add the edge to the set of edges.

this variable naming is very confusing – you shouldn’t be seetting a vertex
(v0) to an edge (edge). I realize what’s going on, but the code is quite hard to
read. Also, NEXT(edge) sounds like the next edge. This needs some fixing.�
Update neighbor pointer for edge ���
int v0 = edge, v1 = NEXT(edge);
SDEdge e(f->v[v0], f->v[v1]);
if (edges.find(e) == edges.end()) {�

Handle new edge �
}
else {�

Handle previously-seen edge �
}

Given an edge that we haven’t seen before, we store the current face’s pointer
in the edge object’s f[0] member. When we come across the other face that shares
this edge (if any), we can thus know what the neighboring face is. We also store a
pointer to the location in the current SDFace that will point to the neighboring face
once we find it. this refers to fptr, right? It’s not used anywhere! Search for it,
you’ll see I’m right. Let’s delete all this crap.�
Handle new edge ���
e.f[0] = f;
e.fptr = &(f->f[edge]);
edges.insert(e);

When we find the second face on an edge, we can set the neighbor pointers for
each of the two faces. We then remove the edge from the edge set, since no edge
can be shared by more than two faces.

SDEdge::f 104
SDEdge::fptr 104

SDFace 102
SDFace::f 102
SDVertex 101

SDVertex::boundary 101
SDVertex::startFace 101

106 Shapes [Ch. 3

Figure 3.11: Given a vertex v[i] and a face that it is incident to, f, we define the
next face as the face adjacent to f across the edge from v[i] to v[NEXT(i)]. The
previous face is defined analogously.

�
Handle previously-seen edge ���
e = *edges.find(e);
*e.fptr = f;
f->f[edge] = e.f[0];
edges.erase(e);

What happens to the edges left in the edges set at the end? Are they deleted?
Could we use those to set the boundary flag? – Jessica wants to know.

Now that all faces have proper neighbor pointers, we can set the boundary and
regular flags in each of the vertices. In order to deterime if a vertex is a bound-
ary vertex, we’ll define an ordering of faces around a vertex (Figure 3.11). For a
vertex v[i] on a face f, we define the vertex’s next face as the face across the edge
from v[i] to v[NEXT(i)] and the previous face as the face across the edge from
v[PREV(i)] to v[i].

We will frequently need to know the valence of a vertex, so we provide the
method SDVertex::valence().�
LoopSubdiv Inline Functions ���
inline int SDVertex::valence() {

SDFace *f = startFace;
if (!boundary) {�

Compute valence of interior vertex �
}
else {�

Compute valence of boundary vertex �
}

}

To compute the valence of a non-boundary vertex, we count the number of the
adjacent faces starting by following each face’s neighbor pointers around the vertex
until we reach the starting face. The valence is equal to the number of faces visited.

Sec. 3.7] ***ADV***: Subdivision Surfaces 107

108 SDFace::nextFace()
108 SDFace::prevFace()

Figure 3.12: We can determine if a vertex is a boundry vertex by starting from the
adjacent face startFace and following next face pointers around the vertex. If we
come to a face that has no next neighbor face, then the vertex is on a boundary. If
we return to startFace, it’s an interior vertex.

�
Compute valence of interior vertex ���
int nf = 1;
while ((f = f->nextFace(this)) != startFace)

++nf;
return nf;

For boundary vertices we use the same approach, though in this case, the valence
is one more than the number of adjacent faces. The loop over adjacent faces is
slightly more complicated here: we follow pointers to the next face around the
vertex until we reach the boundary, counting the number of faces seen. We then
start again at startFace and follow previous face pointers until we encounter the
boundary in the other direction.�
Compute valence of boundary vertex ���
int nf = 1;
while ((f = f->nextFace(this)) != NULL)

++nf;
f = startFace;
while ((f = f->prevFace(this)) != NULL)

++nf;
return nf+1;

By successively going to the next face around v, we can iterate over the faces
adjacent to it. If we eventually return to the face we started at, then we are at an
interior vertex; if we come to an edge with a NULL neighbor pointer, then we’re at
a boundary vertex–see Figure 3.12. Once we’ve determined if we have a boundary
vertex, we compute to valence of the vertex and set the regular flag if the valence
is 6 for an interior vertex or 4 for a boundary vertex.

NEXT 103
PREV 103

SDFace 102
SDFace::f 102
SDFace::v 102
SDVertex 101

SDVertex::boundary 101
SDVertex::regular 101

SDVertex::startFace 101

108 Shapes [Ch. 3

�
Finish vertex initialization ���
for (i = 0; i < nvertices; ++i) {

SDVertex *v = vertices[i];
SDFace *f = v->startFace;
do {

f = f->nextFace(v);
} while (f && f != v->startFace);
v->boundary = (f == NULL);
if (!v->boundary && v->valence() == 6)

v->regular = true;
else if (v->boundary && v->valence() == 4)

v->regular = true;
else

v->regular = false;
}

Here is the utility function that finds the index of a given vertex for one of the
faces adjacent to it. It’s a fatal error to pass a pointer to a vertex that isn’t part of the
current face—this case would represent a bug elsewhere in the subdivision code.�
SDFace Methods ���
int vnum(SDVertex *vert) const {

for (int i = 0; i < 3; ++i)
if (v[i] == vert) return i;

Severe("Basic logic error in SDFace::vnum()");
return -1;

}

Since the next face for a vertex v[i] on a face f is over the ith edge (recall the
mapping of edge neighbor pointers from Figure 3.9), we can find the appropriate
face neighbor pointer easily given the index i for the vertex, which the vnum()
utility function provides. The previous face is across the edge from PREV(i) to i,
so we return f[PREV(i)] for the previous face.�
SDFace Methods ��� �
SDFace *nextFace(SDVertex *vert) {

return f[vnum(vert)];
}

�
SDFace Methods ��� �
SDFace *prevFace(SDVertex *vert) {

return f[PREV(vnum(vert))];
}

It will be very useful to be able to get the next and previous vertices around a
face starting at any vertex. The SDFace::nextVert() and SDFace::prevVert()
methods do just that (Figure 3.13).�
SDFace Methods ��� �
SDVertex *nextVert(SDVertex *vert) {

return v[NEXT(vnum(vert))];
}

Sec. 3.7] ***ADV***: Subdivision Surfaces 109

38 BBox
100 LoopSubdiv
103 PREV
102 SDFace::v
108 SDFace::vnum()
101 SDVertex
87 TriangleMesh

Figure 3.13: Given a vertex v on a face f, the method f->prevVert(v) returns
the previous vertex around the face from v and f->nextVert(v) returns the next
vertex.

�
SDFace Methods ��� �
SDVertex *prevVert(SDVertex *vert) {

return v[PREV(vnum(vert))];
}

3.7.2 Bounds

Loop subdivision surfaces have the convex hull property: the limit surface is guar-
anteed to be inside the convex hull of the original control mesh. Thus, for the
bounding methods, we can just bound the original control vertices. The bounding
methods are essentially equivalent to those in TriangleMesh, so we won’t include
them here.�
LoopSubdiv Public Methods ��� �
BBox ObjectBound() const;
BBox WorldBound() const;

3.7.3 Subdivison

Now we can show how subdivision proceeds with the Loop rules. The LoopSubdiv
shape doesn’t support intersection directly, but will apply subdivision a fixed num-
ber of times to generate a TriangleMesh for rendering. An exercise at the end of
the chapter discusses adaptive subdivision, where that each original face is subdi-
vided just enough so that the result looks smooth from a particular viewpoint.�
LoopSubdiv Method Definitions ��� �
bool LoopSubdiv::CanIntersect() const {

return false;
}

The Refine() method handles all of the subdivision. We repeatedly apply the
subdivision rules to the mesh, each time generating a new mesh to be used as
the input to the next step. After each subdivision step, the f and v arrays in the
Refine() method are updated to point to the faces and vertices from the level
of subdivision just computed. When we are done subdividing, a TriangleMesh
representation of the surface is created and returned to the caller.

LoopSubdiv 100
LoopSubdiv::faces 101

LoopSubdiv::nLevels 101
LoopSubdiv::vertices 101

ObjectArena 668
Reference 664

SDFace 102
SDVertex 101

Shape 63
vector 658

110 Shapes [Ch. 3

Figure 3.14: Basic Loop subdivision of a single face: four child faces are created,
ordered such that the ith child face is adjacent to the ith vertex of the original face
and the fourth child face is in the center of the subdivided face. Three edge vertices
need to be computed; they are numbered so that the ith edge vertex is along the ith
edge of the original face. This diagram could be clearer, in particular it should
show what the ”child” pointers do.

What is an ObjectArena? We should say something about this before using
it.�
LoopSubdiv Method Definitions ��� �
void LoopSubdiv::Refine(vector<Reference<Shape> > &refined) const {

vector<SDFace *> f = faces;
vector<SDVertex *> v = vertices;
ObjectArena<SDVertex> vertexArena;
ObjectArena<SDFace> faceArena;
for (int i = 0; i < nLevels; ++i) {�

Update f and v for next level of subdivision �
}�
Push vertices to limit surface ��
Compute vertex tangents on limit surface ��
Create TriangleMesh from subdivision mesh �

}

The main loop of a subdivision step proceeds as follows: We create vectors for
all of the vertices and faces at this level of subdivision and then proceed to compute
new vertex positions and update the topological representation for the refined mesh.
Figure 3.14 shows the basic refinement rules for faces in the mesh. Each face is
split into four child faces, such that the ith child face is next to the ith vertex of the
input face and the final face is in the center. Three new vertices are then computed
along the split edges of the original face.

Sec. 3.7] ***ADV***: Subdivision Surfaces 111

102 SDFace
102 SDFace::children
101 SDVertex
101 SDVertex::boundary
101 SDVertex::regular
658 vector

�
Update f and v for next level of subdivision ���
vector<SDFace *> newFaces;
vector<SDVertex *> newVertices;�
Allocate next level of children in mesh tree ��
Update vertex positions and create new edge vertices ��
Update new mesh topology ��
Prepare for next level of subdivision �
First, we allocate storage for the updated values of the vertices in the input mesh.

We also allocate storage for the child faces. We don’t yet do any initialization of
the new vertices and faces other than setting the regular and boundary flags for
the vertices. Subdivision leaves boundary vertices on the boundary and interior
vertices in the interior. Furthermore, it doesn’t change the valence of vertices in
the mesh.�
Allocate next level of children in mesh tree ���
for (u_int j = 0; j < v.size(); ++j) {

v[j]->child = new (vertexArena) SDVertex;
v[j]->child->regular = v[j]->regular;
v[j]->child->boundary = v[j]->boundary;
newVertices.push_back(v[j]->child);

}
for (u_int j = 0; j < f.size(); ++j)

for (int k = 0; k < 4; ++k) {
f[j]->children[k] = new (faceArena) SDFace;
newFaces.push_back(f[j]->children[k]);

}

Computing new vertex positions

Before we worry about the topology of the subdivided mesh, we compute po-
sitions for all of the vertices in the mesh. First, we will consider the problem of
computing updated positions for all of the vertices that were already present in
the mesh; these vertices are called even vertices. We will then compute the new
vertices on the split edges–these are called odd vertices.�
Update vertex positions and create new edge vertices ����

Update vertex positions for even vertices ��
Compute new odd edge vertices �
Different techniques are used to compute the updated positions for each of the

different types of even vertices–regular and extraordinary, boundary and interior.
This gives four cases to handle.�
Update vertex positions for even vertices ���
for (u_int j = 0; j < v.size(); ++j) {

if (!v[j]->boundary) {�
Apply one-ring rule for even vertex �

}
else {�

Apply boundary rule for even vertex �
}

}

LoopSubdiv::weightOneRing() 113
SDVertex::boundary 101

SDVertex::child 101
SDVertex::P 101

SDVertex::regular 101
SDVertex::valence() 106

112 Shapes [Ch. 3

Figure 3.15: The new position v � for a vertex v is computed by weighting the
adjacent vertices vi by a weight β and weighting v by � 1 � nβ � , where n is the
valence of v. The adjacent vertices vi are collectively referred to as the one ring
around v.

For both types of interior vertices, we take the set of vertices adjacent to each
vertex (called the one-ring around it, reflecting the fact that it’s a ring of neighbors)
and weight each of the neighbor vertices by a weight β (Figure 3.15.). The vertex
we are updating, in the center, is weighted by 1 � nβ, where n is the valence of the
vertex. Thus, the new position v � for a vertex v is:

v � � � 1 � nβ � v �
N

∑
i � 1

βvi �

This formulation ensures that the sum of weights is one, which guarantees the
convex hull property we used above for bounding the surface. The position of the
vertex being updated is only affected by vertices that are nearby; this is known as
local support. Loop subdivision is particularly efficient to implement because its
subdivision rules all have this property.

The particular weight β used for this step is a key component of the subdivision
method, and must be chosen carefully in order to ensure smoothness of the limit
surface among other desirable properties. The LoopSubdiv::beta() method be-
low computes a β value based on the vertex’s valence that ensures smoothness. For
regular interior vertices, LoopSubdiv::beta() returns 1

16 . Since this is a common
case, we use the number 1

16 directly instead of calling LoopSubdiv::beta() every
time.

either show why or direct the reader to a proof/derivation.�
Apply one-ring rule for even vertex ���
if (v[j]->regular)

v[j]->child->P = weightOneRing(v[j], 1.f/16.f);
else

v[j]->child->P = weightOneRing(v[j], beta(v[j]->valence()));

What the heck is 3/16 here? Explain shit like this.

Sec. 3.7] ***ADV***: Subdivision Surfaces 113

100 LoopSubdiv
33 Point

102 SDFace
108 SDFace::nextFace()
108 SDFace::nextVert()
101 SDVertex
101 SDVertex::boundary
101 SDVertex::P
101 SDVertex::startFace
106 SDVertex::valence()

�
LoopSubdiv Private Methods ���
static Float beta(int valence) {

if (valence == 3) return 3.f/16.f;
else return 3.f / (8.f * valence);

}

The LoopSubdiv::weightOneRing() function loops over the one-ring of adja-
cent vertices and applies the given weight to compute a new vertex position. It uses
the SDVertex::oneRing() function, defined below, which returns the positions of
the vertices around the vertex vert.�
LoopSubdiv Method Definitions ��� �
Point LoopSubdiv::weightOneRing(SDVertex *vert, Float beta) {�

Put vert one-ring in Pring �
Point P = (1 - valence * beta) * vert->P;
for (int i = 0; i < valence; ++i)

P += beta * Pring[i];
return P;

}

Jesus, we re-compute valence a lot. Could we either make this a variable or
thunk the damn function so we don’t walk all around the mesh like 20 times
per vertex?�
Put vert one-ring in Pring ���
int valence = vert->valence();
Point *Pring = (Point *)alloca(valence * sizeof(Point));
vert->oneRing(Pring);

�
LoopSubdiv Method Definitions ��� �
void SDVertex::oneRing(Point *P) {

if (!boundary) {�
Get one ring vertices for interior vertex �

}
else {�

Get one ring vertices for boundary vertex �
}

}

It’s relatively easy to get the one-ring around an interior vertex: we loop over
the faces adjacent to the vertex, and for each face grab the next vertex the center
vertex.�
Get one ring vertices for interior vertex ���
SDFace *face = startFace;
do {

*P++ = face->nextVert(this)->P;
face = face->nextFace(this);

} while (face != startFace);

The one-ring around a boundary vertex is a bit more tricky. We will carefully
store the one ring in the given Point array so that the first and last entries in the
array are the two adjacent vertices along the boundary. This requires that we first

SDFace 102
SDFace::nextFace() 108
SDFace::nextVert() 108
SDFace::prevFace() 108
SDFace::prevVert() 109

SDVertex::child 101
SDVertex::P 101

SDVertex::startFace 101

114 Shapes [Ch. 3

Figure 3.16: Subdivision on a boundary edge: the new position for the vertex in
the center is computed by weighting it and its two neighbor vertices by the weights
shown.

loop around neighbor faces until we reach a face on the boundary and then loop
around the other way, storing vertices one by one. if we’re just going to multiply
everything by β, why does the order matter? Say something here.�
Get one ring vertices for boundary vertex ���
SDFace *face = startFace, *f2;
while ((f2 = face->nextFace(this)) != NULL)

face = f2;
*P++ = face->nextVert(this)->P;
do {

*P++ = face->prevVert(this)->P;
face = face->prevFace(this);

} while (face != NULL);

For vertices on the boundary, the new vertex’s position is only based on the
two neighboring boundary vertices (Figure 3.16). By not depending on interior
vertices, we ensure that two abutting surfaces that share the same vertices on the
boundary will have abutting limit surfaces. The weightBoundary() utility func-
tion applies the given weighting on the two neighbor vertices v1 and v2 to compute
the new position v � as:

v � � �
1 � 2β � v
 βv1
 βv2 �

The same weight of 1
8 is used for both regular and extraordinary vertices.

�
Apply boundary rule for even vertex ���
v[j]->child->P = weightBoundary(v[j], 1.f/8.f);

The weightBoundary() function applies the given weights at a boundary ver-
tex. Because the oneRing() function orders the boundary vertex’s one ring such
that the first and last entries are the boundary neighbors, the implementation here
is particularly straightforward.

Sec. 3.7] ***ADV***: Subdivision Surfaces 115

100 LoopSubdiv
33 Point

104 SDEdge
102 SDFace
101 SDVertex
101 SDVertex::P

Figure 3.17: Subdivision rule for edge split: the position of the new odd vertex,
marked with an “x” (what?), is found by weighting the two vertices at the ends
of the edge and the two vertices opposite it on the adjacent triangles. On the left
are the weights for an interior vertex; on the right are the weights for a boundary
vertex.

�
LoopSubdiv Method Definitions ��� �
Point LoopSubdiv::weightBoundary(SDVertex *vert, Float beta) {�

Put vert one-ring in Pring �
Point P = (1-2*beta) * vert->P;
P += beta * Pring[0];
P += beta * Pring[valence-1];
return P;

}

Now we’ll compute the positions of the odd vertices, the new vertices along
the split edges of the mesh. We loop over each edge of each face in the mesh,
computing the new vertex that splits the edge (Figure 3.17). For interior edges, the
new vertex is found by weighting the two vertices at the ends of the edge (v0 and
v1) and the two vertices across from the edge on the adjacent faces (v2 and v3). We
loop through all three edges of each face, and each time we see an edge that hasn’t
been seen before, we compute and store the new odd vertex in the splitEdges
associative array.�
Compute new odd edge vertices ���
map<SDEdge, SDVertex *> splitEdges;
for (u_int j = 0; j < f.size(); ++j) {

SDFace *face = f[j];
for (int k = 0; k < 3; ++k) {�

Compute odd vertex on kth edge �
}

}

As we did when setting the face neighbor pointers in the original mesh, we
create an SDEdge object for the edge and see if it is in the set of edges we’ve
already visited. If it isn’t, we compute the new vertex on this edge and add it to the
map. The map is an associative array structure that performs efficient lookups. you
know this is O(log n) time, not constant, right? map is implemented as a tree.

NEXT 103
SDEdge 104

SDEdge::v 104
SDFace::children 102

SDFace::f 102
SDFace::otherVert() 117

SDFace::v 102
SDVertex 101

SDVertex::boundary 101
SDVertex::P 101

SDVertex::regular 101
SDVertex::startFace 101

116 Shapes [Ch. 3

�
Compute odd vertex on kth edge ���
SDEdge edge(face->v[k], face->v[NEXT(k)]);
SDVertex *vert = splitEdges[edge];
if (!vert) {�

Create and initialize new odd vertex ��
Apply edge rules to compute new vertex position �
splitEdges[edge] = vert;

}

In Loop subdivision, the new vertices added by subdivision are always regular.
This means that the proportion of extraordinary vertices to regular vertices will
decrease with each level of subdivision. We can therefore immediately initialize
the regular member of the new vertex. The boundary member can also be easily
initialized, by checking to see if there is a neighbor face across the edge that we’re
splitting. Finally, we’ll go ahead and set the vertex’s startFace pointer here. For
all odd vertices on the edges of a face, the center child (child face number three) is
guaranteed to be adjacent to the new vertex.�
Create and initialize new odd vertex ���
vert = new (vertexArena) SDVertex;
newVertices.push_back(vert);
vert->regular = true;
vert->boundary = (face->f[k] == NULL);
vert->startFace = face->children[3];

For odd boundary vertices, the new vertex is just the average of the two adja-
cent vertices. For odd interior vertices, the two vertices at the ends of the edge are
given weight 3

8 , and the two vertices opposite the edge are given weight 1
8 (Fig-

ure 3.17). These last two vertices can be found using the SDFace::otherVert()
utility, which returns the vertex opposite a given edge of a face.�
Apply edge rules to compute new vertex position ���
if (vert->boundary) {

vert->P = 0.5f * edge.v[0]->P;
vert->P += 0.5f * edge.v[1]->P;

}
else {

vert->P = 3.f/8.f * edge.v[0]->P;
vert->P += 3.f/8.f * edge.v[1]->P;
vert->P += 1.f/8.f *

face->otherVert(edge.v[0], edge.v[1])->P;
vert->P += 1.f/8.f *

face->f[k]->otherVert(edge.v[0], edge.v[1])->P;
}

The SDFace::otherVert() method is self-explanatory:

Sec. 3.7] ***ADV***: Subdivision Surfaces 117

102 SDFace::v
101 SDVertex

Figure 3.18: Each face is split into four child faces, such that the ith child is adja-
cent to the ith vertex of the original face, and such that the ith child face’s ith vertex
is the child of the ith vertex of the original face. The vertices of the center child are
oriented such that the ith vertex is the odd vertex along the ith edge of the parent
face.

�
SDFace Methods ��� �
SDVertex *otherVert(SDVertex *v0, SDVertex *v1) {

for (int i = 0; i < 3; ++i)
if (v[i] != v0 && v[i] != v1)

return v[i];
Severe("Basic logic error in SDVertex::otherVert()");
return NULL;

}

Updating mesh topology

In order to keep the details of the topology update as straightforward as pos-
sible, the numbering scheme for the subdivided faces and their vertices has been
chosen carefully–see Figure 3.18 for a summary. Review the figure carefully; these
conventions are key to the next few pages.

There are four main tasks required to update the topological pointers of the
refined mesh:

1. The odd vertices’ SDVertex::startFace pointers need to store a pointer to
one of their adjacent faces.

2. Similarly, the even vertices’ SDVertex::startFace pointers must be set.

3. The new faces’ neighbor f[i] pointers need to be set to point to the neigh-
boring faces.

4. The new faces’ v[i] pointers need to point to the incident vertices.

NEXT 103
SDFace 102

SDFace::children 102
SDFace::f 102

SDFace::vnum() 108
SDVertex 101

SDVertex::startFace 101

118 Shapes [Ch. 3

We already initialized the startFace pointers of the odd vertices when we first
created them; we’ll handle the other three tasks in order here.�
Update new mesh topology ����

Update even vertex face pointers ��
Update face neighbor pointers ��
Update face vertex pointers �
We will first set the startFace pointer for the children of the even vertices. If a

vertex is the ith vertex of its startFace, then it is guaranteed that it will be adjacent
to the ith child face of startFace. Therefore we just need to loop through all the
parent vertices in the mesh, and for each one find its vertex index in its startFace.
This index can then be used to find the child face adjacent to the new even vertex.�
Update even vertex face pointers ���
for (u_int j = 0; j < v.size(); ++j) {

SDVertex *vert = v[j];
int vertNum = vert->startFace->vnum(vert);
vert->child->startFace = vert->startFace->children[vertNum];

}

Next we update the face neighbor pointers for the newly-created faces. We break
this into two steps: one to update neighbors among children of the same parent, and
one to do neighbors across children of different parents. This involves some tricky
pointer manipulation.�
Update face neighbor pointers ���
for (u_int j = 0; j < f.size(); ++j) {

SDFace *face = f[j];
for (int k = 0; k < 3; ++k) {�

Update children f pointers for siblings ��
Update children f pointers for neighbor children �

}
}

For the first step, recall that the interior child face is always stored in children[3].
Furthermore, the k � 1st child face (for k � 0 � 1 � 2) is across the kth edge of the in-
terior face, and the interior face is across the k � 1st edge of the kth face.�
Update children f pointers for siblings ���
face->children[3]->f[k] = face->children[NEXT(k)];
face->children[k]->f[NEXT(k)] = face->children[3];

We’ll now update the childrens’ face neighbor pointers that point to children of
other parents. Only the first three children need to be addressed here; the interior
child’s neighbor pointers have already been fully initialized. Inspection of Fig-
ure 3.18 reveals that the kth and

������� � k � th edges of the ith child need to be set.
To set the kth edge of the kth child, we first find the kth edge of the parent face,
then the neighbor parent f2 across that edge. If f2 exists (meaning we aren’t on a
boundary), we find the neighbor paren’t index for the vertex v[k]. That index is
equal to the index of the neighbor child we are searching for. We then repeat this
process to find the child across the

������� � k � th edge.

Sec. 3.7] ***ADV***: Subdivision Surfaces 119

103 NEXT
103 PREV
104 SDEdge
102 SDFace
102 SDFace::children
102 SDFace::f
102 SDFace::v
108 SDFace::vnum()
101 SDVertex
101 SDVertex::child

�
Update children f pointers for neighbor children ���
SDFace *f2 = face->f[k];
face->children[k]->f[k] =

f2 ? f2->children[f2->vnum(face->v[k])] : NULL;
f2 = face->f[PREV(k)];
face->children[k]->f[PREV(k)] =

f2 ? f2->children[f2->vnum(face->v[k])] : NULL;

Finally, we handle the fourth step in the topological updates: setting the chil-
drens’ v[i] vertex pointers.�
Update face vertex pointers ���
for (u_int j = 0; j < f.size(); ++j) {

SDFace *face = f[j];
for (int k = 0; k < 3; ++k) {�

Update child vertex pointer to new even vertex ��
Update child vertex pointer to new odd vertex �

}
}

For the kth child face (for k � 0 � 1 � 2), the kth vertex corresponds to the even
vertex that is adjacent to it. (For the non-interior children faces, there is one even
vertex and two odd vertices; for the interior child face, there are three odd vertices).
We can find this vertex by following the child pointer of the parent vertex, available
from the parent face.�
Update child vertex pointer to new even vertex ���
face->children[k]->v[k] = face->v[k]->child;

To update the rest of the vertex pointers, we re-use the splitEdges associative
array to find the odd vertex for each split edge of the parent face. Three child
faces have that vertex as an incident vertex. Fortunately, the vertex indices for the
three faces are easily found, again based on the numbering scheme established in
Figure 3.18.�
Update child vertex pointer to new odd vertex ���
SDVertex *vert =

splitEdges[SDEdge(face->v[k], face->v[NEXT(k)])];
face->children[k]->v[NEXT(k)] = vert;
face->children[NEXT(k)]->v[k] = vert;
face->children[3]->v[k] = vert;

After the geometric and topological work has been done for a subdivision step,
we move the newly-created vertices and faces into the v and f arrays, deleting the
old ones, since we no longer need them. We only do these deletions after the first
time through the loop, however; the original faces and vertices of the control mesh
are left intact.

What is going on here

120 Shapes [Ch. 3

Figure 3.19: To push a boundary vertex onto the limit surface, we apply the weights
shown to the vertex and its neighbors along the edge.

�
Prepare for next level of subdivision ���
#if 0
if (i != 0) {

for (u_int j = 0; j < f.size(); ++j)
delete f[j];

for (u_int j = 0; j < v.size(); ++j)
delete v[j];

}
#endif
f = newFaces;
v = newVertices;

To the limit surface and output

One of the remarkable properties of subdivision surfaces is that there are special
subdivision rules that let us compute the positions that the vertices of the mesh
would have if we continued subdividing infinitely. We apply these rules here to
initialize an array of limit surface positions, Plimit. Note that it’s important to
temporarily store the limit surface positions somewhere other than in the vertices
while the computation is taking place. Because the limit surface position of each
vertex depends on the original positions of its surrounding vertices, the original
positions of all vertices must remain unchanged until the computation is done.

The limit rule for a boundary vertex weights the two neighbor vertices by 1
5 and

the center vertex by 3
5 (Figure 3.19 this figure doesn’t add very much); the rule

for interior vertices is based on a function gamma(), which computes appropriate
vertex weights based on the valence of the vertex.

Sec. 3.7] ***ADV***: Subdivision Surfaces 121

31 Cross()
115 LoopSubdiv::weightBoundary()
113 LoopSubdiv::weightOneRing()
34 Normal
33 Point

101 SDVertex
101 SDVertex::boundary
106 SDVertex::valence()
658 vector
27 Vector

�
Push vertices to limit surface ���
Point *Plimit = new Point[v.size()];
for (u_int i = 0; i < v.size(); ++i) {

if (v[i]->boundary)
Plimit[i] = weightBoundary(v[i], 1.f/5.f);

else
Plimit[i] = weightOneRing(v[i], gamma(v[i]->valence()));

}
for (u_int i = 0; i < v.size(); ++i)

v[i]->P = Plimit[i];
�
LoopSubdiv Private Methods ��� �
static Float gamma(int valence) {

return 1.f / (valence + 3.f / (8.f * beta(valence)));
}

In order to generate a smooth-looking triangle mesh with per-vertex surface nor-
mals, we’ll also compute a pair of non-parallel tangent vectors at each vertex. As
with the limit rule for positions, this is an analytic computation that gives the pre-
cise tangents on the actual limit surface.�
Compute vertex tangents on limit surface ���
vector<Normal> Ns;
Ns.reserve(v.size());
for (u_int i = 0; i < v.size(); ++i) {

SDVertex *vert = v[i];
Vector S(0,0,0), T(0,0,0);�
Put vert one-ring in Pring �
if (!vert->boundary) {�

Compute tangents of interior face �
}
else {�

Compute tangents of boundary face �
}
Ns.push_back(Normal(Cross(S, T)));

}

Figure 3.20 shows the setting for computing tangents in the mesh interior. The
center vertex is given a weight of zero and the neighbors are given weights w i. To
compute the first tangent vector S, the weights are

wi � cos

�
2πi
n � �

where n is the valence of the vertex. The second tangent T , is computed with
weights

wi � sin

�
2πi
n � �

M PI 678
Vector 27

122 Shapes [Ch. 3

Figure 3.20: To compute tangents for interior vertices, the one-ring vertices are
weighted with weights wi. The center vertex, where the tangent is being computed,
always has a weight of 0.

�
Compute tangents of interior face ���
for (int k = 0; k < valence; ++k) {

S += cosf(2.f*M_PI*k/valence) * Vector(Pring[k]);
T += sinf(2.f*M_PI*k/valence) * Vector(Pring[k]);

}

Tangents on boundary vertices are a bit trickier; Figure 3.21 shows the ordering
of vertices in the one ring expected in the discussion below.

The first tangent, known as the across tangent, is given by the vector between
the two neighboring boundary vertices:

S � vn � 1 � v0 �
The second tangent, known as the transverse tangent is computed based on the
vertex’s valence. The center vertex is given a weight wc which can be zero. The
one-ring vertices are given weights specified by a vector � w0 � w1 � ����� � wn � 1 � . The
transverse tangent rules we will use are:

valence wc wi

2 -2 (1, 1)
3 -1 (0,1,0)

4 (regular) -2 (-1, 2, 2, -1)

For valences of 5 and higher, wc � 0 and

w0 � wn � 1 � sinθ
wi � � 2cos θ � 2 � sin � θi �

where
θ � π

n � 1 �

Further Reading 123

678 M PI
27 Vector

Figure 3.21: Tangents at boundary vertices are also computed as weighted averages
of the adjacent vertices. However, some of the boundary tangent rules incorporate
the value of the center vertex.

�
Compute tangents of boundary face ���
S = Pring[valence-1] - Pring[0];
if (valence == 2)

T = Vector(Pring[0] + Pring[1] - 2 * vert->P);
else if (valence == 3)

T = Pring[1] - vert->P;
else if (valence == 4) // regular

T = Vector(-1*Pring[0] + 2*Pring[1] + 2*Pring[2] +
-1*Pring[3] + -2*vert->P);

else {
Float theta = M_PI / float(valence-1);
T = Vector(sinf(theta) * (Pring[0] + Pring[valence-1]));
for (int k = 1; k < valence-1; ++k) {

Float wt = (2 * cosf(theta) - 2) * sinf((k) * theta);
T += Vector(wt * Pring[k]);

}
T = -T;

}

Finally, the fragment
�
Create TriangleMesh from subdivision mesh � cre-

ates the triangle mesh object and adds it to the refined vector passed to the
LoopSubdiv::Refine() method. We won’t include it here, since it’s just a straight-
forward transformation of the subdivided mesh into an indexed triangle mesh.

����� ���� � � � ��� � � �
Introduction to Ray Tracing has an extensive survey of algorithms for ray–shape

intersection (?). Heckbert has written a technical report that discusses the mathe-
matics of quadrics for graphics applications in detail, with many citations to liter-
ature in mathematics and other fields (Heckbert 1984). Hanrahan describes a sys-
tem that automates the process of deriving a ray intersection routine for surfaces

124 Shapes [Ch. 3

defined by implicit polynomials; his system emits C source code to perform the
intersection test and normal computation for a surface described by a given equa-
tion (Hanrahan 1983). Other notable early papers include Kajiya’s work on com-
puting intersections with surfaces of revolution and procedurally-generated fractal
terrains (Kajiya 1983) and his technique for computing intersections with paramet-
ric patches (Kajiya 1982). More recently, Stürzlinger and others have done work
on more efficient techniques for direct ray intersection with patches (Stürzlinger
1998). The ray–triangle intersection test in Section 3.6 was developed by Möller
and Trumbore (Möller and Trumbore 1997).

The notion of shapes that repeatedly refine themselves into collections of other
shapes until ready for rendering was first introduced in the REYES renderer (Cook,
Carpenter, and Catmull 1987). Pharr et al applied a similar approach to a ray
tracer (Pharr, Kolb, Gershbein, and Hanrahan 1997).

An excellent introduction to differential geometry is Gray’s book (Gray 1993);
Section 14.3 of it presents the Weingarten equations. Turkowski’s technical report
has expressions for first and second derivatives of a handful of parametric primi-
tives (Turkowski 1990a).

The Loop subdivision method was originally developed by Charles Loop (Loop
1987). Our implementation uses the improved rules for subdivision and tangents
along boundary edges developed by Hoppe et al (Hoppe, DeRose, Duchamp, Hal-
stead, Jin, McDonald, Schweitzer, and Stuetzle 1994). There has been extensive
work in subdivision recently; the SIGGRAPH course notes give a good summary
of the state-of-the-art and also have extensive references (Zorin, Schröder, DeRose,
Kobbelt, Levin, and Sweldins 2000).

Procedural stochastic models Fournier et al (Fournier, Fussel, and Carpenter
1982).�

� � � � � � � �

3.1 One nice property of mesh-based shapes like triangle meshes and subdivision
surfaces is that we can transform the shape’s vertices into world space, so that
it isn’t necessary to transform rays into object space before performing ray
intersection tests. Interestingly enough, it is possible to do the same thing
for ray–quadric intersections.

The implicit forms of the quadrics in this chapter were all of the form

Ax2 � Bxy � Cxz � Dy2 � Eyz � Fz2 � G � 0 �
where some of the constants A ����� G were zero. More generally, we can define
quadric surfaces by the equation

Ax2 � By2 � Cz2 � 2Dxy � 2Eyz � 2Fxz � 2Gz � 2Hy � 2Iz � J � 0 �
where most of the parameters A ����� J don’t directly correspond to the A ����� G
above. In this form, the quadric can be represented by a 4 � 4 symmetric
matrix Q:

�
x y z 1 �

���� A D F G
D B E H
F E C I
G H I J

�
��� ���� x

y
z
1

�
��� � PT � Q � P � 0

Exercises 125

Given this representation, first show that the matrix Q � representing a quadric
transformed by the matrix M is:

Q � � � MT � � 1QM � 1 �
To do so, show that for any point p where pT Qp � 0, if we apply a transfor-
mation M to p and compute p � � Mp, we’d like to find Q � so that � p � � T Q � p � �
0 � .

Next, substitute the ray equation into the more general quadric equation
above to compute a, b, and c values for the quadratic equation in terms of
entries of the matrix Q to pass to the Quadratic() function.

Now implement this approach in lrt and use it instead of the original quadric
intersection routines. Note that you will still need to transform the resulting
world-space hit points into object space to test against θmax, if it is not 2π,
etc. How does performance compare to the original scheme?

3.2 Improve the object-space bounding box routines for the quadrics to properly
account for θmax �� 2π.

3.3 There is room to optimize the implementations of the various quadric prim-
itives in lrt in a number of ways. For example, for complete spheres (i.e.,
not partial spheres with limited z and φ ranges), some of the tests in the in-
tersection routine are unnecessary. Furthermore, many of the quadrics have
excess calls to trigonometric functions that could be turned into simpler ex-
pressions using insight about the geometry of the particular primitives. In-
vestigate ways to speed up these methods. How much does this improve the
overall runtime of lrt?

3.4 Currently lrt recomputes the partial derivatives ∂p
�
∂u and ∂p

�
∂v for tri-

angles every time they are needed, even though they are constant for each
triangle. Precompute these vectors and analyze the speed/storage tradeoff,
especially for large triangle meshes. How does the depth complexity of the
scene affect this tradeoff?

3.5 Implement a general polygon primitive. lrt currently transforms polygons
with more than three vertices into a collection of triangles by XXX. This is
actually only correct for convex polygons without holes. Support all kinds
of polygons as as first-class primitive. How to compute plane equation from
a normal and a point on the plane.... Then intersect ray with the plane the
polygon sits in. Project that point and the polygon vertices to 2D. Then apply
a 2D point in polygon test; easy one is to essentially ray trace in 2D–intersect
the ray with each of the edge segments, count how many it goes through. If
odd number, are inside the polygon and have an intersection. Figure 3.22.

Haines has written an article that surveys a number of approaches for effi-
cient point in polygon tests (Haines 1994); some of the techniques described
there may be helpful for optimizing this test.

Schneider and Eberly discuss strategies getting all the corner cases right, e.g.
for when the 2D ray is aligned precisely with an edge of the polygon (Schnei-
der and Eberly 2003, Section XX).

LoopSubdiv 100
Shape 63

126 Shapes [Ch. 3

Figure 3.22: Polygon projection onto plane for intersection.

3.6 subdiv extensions: ”crease”, n integer vertices to specify chain of edges, one
float, infinity, giving sharpness. for crease, use boundary subdivision rules
along the edges, giving a sharp feature there.

”hole” face property, inherit to children, just don’t output at end

3.7 Implement adaptive subdivision for the subdivision surface Shape. A weak-
ness of the basic implementation is that each face is always refined a fixed
number of times: this may mean that some faces are under-refined, leading to
visible faceting in the triangle mesh, and some faces are over-refined, lead-
ing to excessive memory use and rendering time. Instead, stop subdividing
faces once a particular error threshold has been reached.

An easy error threshold to implement computes the face normals of each
face and its directly adjacent faces. If they are sufficiently close to each
other (e.g. as tested via dot products), then the limit surface for that face will
be reasonably flat.

The trickiest part of this exercise is that some faces that don’t need subdivi-
sion due to the flatness test will still need to be subdivided in order to provide
vertices so that neighboring faces that do need to subdivide can get their ver-
tex one-rings. In particular, adjacent faces can differ by no more than one
level of subdivision.

3.8 Use the triangular face refinement infrastructure from the LoopSubdiv shape
to implement displacement mapping. Displacement mapping is a technique
related to bump mapping, where an offset function is defined over the entire
surface. Rather than just adjusting the surface normal as in bump mapping,
the actual surface shape is modified by displacement mapping. The usual
approach to displacement mapping is to finely tessellate the geometric shape
and to then evaluate the displacement function at its vertices, moving each
vertex the given distance along its normal.

Exercises 127

63 Shape
87 TriangleMesh

Because displacement mapping may make the extent of the shape larger, the
bounding box of the un-displaced shape will need to be expanded by the
maximum displacement distance that a particular displacement function will
ever generate.

Refine each face of the mesh until, when projected onto the image, it is
roughly the size of the separation between pixels. To do this, you will need to
be able to estimate the image pixel-based length of an edge in the scene when
it is projected onto the screen. After you have done this, use the texturing
infrastructure in Chapter 11 to evaluate displacement functions.

3.9 CSG!

3.10 Ray tracing point-sampled geometry: extending methods for rendering com-
plex models represented as a collection of point samples (Levoy and Whit-
ted 1995; Pfister, Zwicker, van Baar, and Gross 2000; Rusinkiewicz and
Levoy 2000), Schaufler and Jensen recently described a method for inter-
secting rays with collections of oriented point samples in space (Schaufler
and Jensen 2000). They probabilisticly determine that an intersection has
occurred when a ray approaches a sufficient local density of point samples
and compute a surface normal with a weighted average of the nearby sam-
ples. Read their paper and extend lrt to supoprt a point-sampled geometry
shape. Do any of lrt’s basic interfaces need to be extended or generalized
to support a shape like this?

3.11 Ray tracing ribbons: Hair is often modeled as a collection of generalized
cylinders, which are defined as the cylinder that results from sweeping a
disk along a given curve. Because there are often a large number of individ-
ual hairs, an efficient method for intersecting rays with generalized cylinders
is needed for ray tracing hair. A number of methods have been developed to
compute ray intersections with generalized cylinders (Bronsvoort and Klok
1985; de Voogt, van der Helm, and Bronsvoort 2000); investigate these al-
gorithms and extend lrt to support a fast hair primitive with one of them.
Alternatively, investigate the generalization of Schaufler and Jensen’s ap-
proach for probabilistic point intersection (Schaufler and Jensen 2000) to
probabilistic line intersection and apply this to fast ray tracing of hair.

3.12 Implicit functions. More general functions, sums of them to define complex
surface. Good for molecules, water drops, etc. Introduced by Blinn (Blinn
1982a). Wyvill and Wyvill give new falloff function with a number of ad-
vantages (Wyvill and Wyvill 1989). Kalra and Barr (Kalra and Barr 1989)
and Hart (Hart 1996) give methods for ray tracing them.

3.13 Procedurally-described parametric surfaces: write a Shape that takes an ex-
pression of the form f � u � v ��� � x � y � z � that describes a parametric surface as
a function of � u � v � position. Evaluate the given function at a grid of � u � v � po-
sitions to create a TriangleMesh that approximates the given surface when
the Shape::Refine() method is called.

3.14 Generative modeling: Snyder and Kajiya have described an elegant mathe-
matical framework for procedurally-described geometric shapes (Snyder and

128 Shapes [Ch. 3

Kajiya 1992; Snyder 1992); investigate this approach and apply it to proce-
dural shape description in lrt.

3.15 L-systems: A very successful technique for procedurally describing plants
was first introduced to graphics by Alvy Ray Smith (Smith 1984), who ap-
plied Lindenmayer systems (l-systems) to describing branching plant struc-
tures. L-systems describe the branching structure of these types of shapes
via a grammar. Prusinkiewicz and collaborators have generalized this ap-
proach to encompass XXX (Prusinkiewicz, Mündermann, Karwowski,
and Lane 2001; Deussen, Hanrahan, Lintermann, Mech, Pharr, and
Prusinkiewicz 1998; Prusinkiewicz, James, and Mech 1994; Prusinkiewicz
1986).

135 Aggregate
132 GeometricPrimitive
134 InstancePrimitive
375 Material
130 Primitive
63 Shape
43 Transform

� � � � ����� � � � � � � ��� � � � � � � � �
� � � � � � � ��� � �

The classes described in the last chapter focus exclusively on representing geo-
metric properties of 3D objects. Although the Shape class is a convenient abstrac-
tion for geometric operations such as intersection and bounding, it is insufficient
for direct use in a rendering system. To construct a scene, we must be able to place
individual primitives at specific locations in world coordinates. In addition, we
need to bind material properties to each primitive to we can specify their appear-
ance. To accomplish these goals, we introduce the Primitive class, and provide
three separate implementations.

Shapes to be rendered directly are represented by the GeometricPrimitive
class. This class, in addition to placing the shape within the scene, also contains a
description of the shape’s appearance properties. So that the geometric and shading
portions of lrt can be cleanly separated, these appearance properties are encapsu-
lated in the Material class, which is described in chapter 10.

Some scenes contain many instances of the same geometry at different locations.
Direct support for instancing can greatly reduce the memory requirements for such
scenes, since we only need to store a pointer to the geometry for each primitive.
lrt provides the InstancePrimitive class for this task; each InstancePrimitive
has a separate Transform to place it in the scene, but can share geometry with other
InstancePrimitives. This allows us to render extremely complex scenes such
as the one in figure ecosystem.

Finally, we provide the Aggregate class, which can hold many Primitives.
Although this can just be a convenient way to group geometry, lrt uses this class
to implement acceleration structures, which are techniques for avoiding the O � n �� ���

BBox 38
DifferentialGeometry 58

GridAccel 139
Intersection 131
KdTreeAccel 154

Reference 664
ReferenceCounted 663

Shape 63

130 Primitives and Intersection Acceleration [Ch. 4

linear complexity of testing a ray against all n objects in a scene. Since a ray
through a scene will typically only intersect a handful of the primitives and will
be nowhere near most of the others, there is substantial room for improvement
compared to naively performing a ray intersection test with each primitive. An-
other benefit to re-using the Primitive interface for these acceleration structures
is that lrt can support hybrid approaches where an accelerator of one type holds
accelerators of another types. This chapter will describe the implementation of two
accelerators, one (GridAccel) based on overlaying a uniform grid over the scene,
and the other (KdTreeAccel) based on recursive spatial subdivision.

� �
� 	 � � � � � � � � � � � � � � � � � �

The abstract Primitive base class is really the bridge between the geometry
processing and shading subsystems of lrt. In order to avoid complex logic about
when Primitives can be destroyed, it inherits from the ReferenceCounted base
class, which automatically tracks how many references there are to an object, free-
ing its storage when the last reference goes out of scope. Rather than storing point-
ers to these primitives, holding a Reference<Primitive> ensures that the refer-
ence counts are computed correctly. The Reference class otherwise behaves as if
it was a pointer to a Primitive.�
Primitive Declarations ���
class Primitive : public ReferenceCounted {
public:�

Primitive Interface �
};

Because the Primitive class connects geometry and shading, its interface con-
tains methods related to both. There are five geometric routines, of which all are
similar to a corresponding Shape method. The first, Primitive::WorldBound(),
returns a box that encloses the primitive’s geometry in world space. There are
many uses for such a bound; we use it to place the Primitive in the acceleration
data structures.�
Primitive Interface ��� �
virtual BBox WorldBound() const = 0;

Similarly to the Shape class, all primitives must be able to either determine if
a given ray intersects their geometry, or else refine themselves into one or more new
primitives. Like the Shape interface, we provide the Primitive::CanIntersect()
method so lrt can determine whether the underlying geometry is intersectable or
not.

One difference from the Shape interface is that the Primitive intersection
methods return Intersection structures rather than DifferentialGeometry.
These Intersection structures hold mor information about the intersection than
just the local coordinate frame, such as a pointer to the material properties at the
hit point.

Another difference is that Shape::Intersect() returns the parametric distance
along the ray to the intersection in a Float * output variable, while Primitive::Intersect()
is responsible for updating Ray::maxt with this value if an intersection is found.

Sec. 4.1] Geometric Primitives 131

491 AreaLight
58 DifferentialGeometry

130 Primitive
36 Ray

664 Reference
43 Transform

658 vector

In this way, the geometric routines from the last chapter do not need to know how
the parametric distance will be used by the rest of the system.�
Primitive Interface ��� �
virtual bool CanIntersect() const;
virtual bool Intersect(const Ray &r, Intersection *in) const = 0;
virtual bool IntersectP(const Ray &r) const = 0;
virtual void Refine(vector<Reference<Primitive> > &refined) const;

The Intersection structure holds information about a ray–primitive intersec-
tion, including information about the differential geometry of the point on the sur-
face, and a pointer to the Primitive that the ray hit, and its world to object space
transformation.�
Primitive Declarations ��� �
struct Intersection {�

Intersection Public Methods �
DifferentialGeometry dg;
const Primitive *primitive;
Transform WorldToObject;

};

It may be necessary to repeatedly refine a primitive until all of the primitives
it has returned are themselves intersectable. The Primitive::FullyRefine()
utility method handles this task. Its implementation is straightforward; we maintain
a queue of primitives to be refined (called todo in the code below), and invoke the
Primitive::Refine() method repeatedly on entries in that queue. Intersectable
Primitives returned by Primitive::Refine() are placed on the output queue,
while non-intersectable ones are placed on the todo list.�
Primitive Interface ��� �
void FullyRefine(vector<Reference<Primitive> > &refined) const;

�
Primitive Method Definitions ��� �
void Primitive::FullyRefine(

vector<Reference<Primitive> > &refined) const {
vector<Reference<Primitive> > todo;
todo.push_back(const_cast<Primitive *>(this));
while (todo.size()) {�

Refine last primitive in todo list �
}

}
�
Refine last primitive in todo list ���
Reference<Primitive> prim = todo.back();
todo.pop_back();
if (prim->CanIntersect())

refined.push_back(prim);
else

prim->Refine(todo);

In addition to the geometric methods, a Primitive object has two methods
related to their material properties. The first, Primitive::GetAreaLight(), re-
turns a pointer to the AreaLight that describes the primitive emission distribution,

AreaLight 491
AreaLight::L() 492

BSDF 370
DifferentialGeometry 58

DifferentialGeometry::p 58
InstancePrimitive 134

Intersection 131
Intersection::dg 131

Material 375
Primitive 130
Reference 664

Shape 63
Spectrum 181

Transform 43
Vector 27

132 Primitives and Intersection Acceleration [Ch. 4

if the primitive is itself a light source. If the primitive is not emissive, this method
returns NULL.

The second method, Primitive::GetBSDF(), returns a representation of the
light scattering properties of the material at the given point on the surface in a BSDF
object. In addition to the differential geometry at the hit point, it takes the world to
object space transformation as a parameter. This information will be required by
the InstancePrimitive class, described later in this chapter.�
Primitive Interface ��� �
virtual const AreaLight *GetAreaLight() const = 0;
virtual BSDF *GetBSDF(const DifferentialGeometry &dg,

const Transform &WorldToObject) const = 0;

Whoa – this should be somewhere else, like in the lighting chapter
Given the Primitive::GetAreaLight() method, we will add a method to the

Intersection class that makes it easy to compute the emitted radiance at a surface
point.�
Intersection Method Definitions ���
Spectrum Intersection::Le(const Vector &w) const {

const AreaLight *area = primitive->GetAreaLight();
return area ? area->L(dg.p, dg.nn, w) : Spectrum(0.);

}

4.1.1 Geometric Primitive

The GeometricPrimitive class represents a single shape (e.g. a sphere) in the
scene. One GeometricPrimitive is allocated for each shape in the scene descrip-
tion provided by the user.�
Primitive Declarations ��� �
class GeometricPrimitive : public Primitive {
public:�

GeometricPrimitive Public Methods �
private:�

GeometricPrimitive Private Data �
};

Each GeometricPrimitive holds a reference to a Shape and its Material. In
addition, because primitives in lrt may be area light sources, we store a pointer to
an AreaLight object that describes its emission characteristics (this pointer is set
to NULL if the primitive does not emit light).�
GeometricPrimitive Private Data ���
Reference<Shape> shape;
Reference<Material> material;
AreaLight *areaLight;

The GeometricPrimitive constructor just initializes these variables from the
parameters passed to it; its implementation is omitted.�
GeometricPrimitive Public Methods ��� �
GeometricPrimitive(const Reference<Shape> &s, const Reference<Material> &m,

AreaLight *a);

Sec. 4.1] Geometric Primitives 133

135 Aggregate
491 AreaLight
370 BSDF
132 GeometricPrimitive
134 InstancePrimitive
131 Intersection
131 Intersection::dg
131 Intersection::primitive
131 Intersection::WorldToObject
375 Material
130 Primitive
36 Ray
36 Ray::maxt

664 Reference
63 Shape
64 Shape::WorldToObject

394 Texture

Most of the methods of the Primitive interface related to geometric processing
are simply forwarded the corresponding Shape method. For example, GeometricPrimitive::Intersect()
calls the Shape::Intersect() method of its enclosed Shape to do the actual ge-
ometric intersection, and initializes an Intersection object to describe the hit
found, if any. We also use the returned parametric hit distance to update the
Ray::maxt member. The primary advantage of storing the distance to the clos-
est hit in Ray::maxt is that we may be able to quickly reject any intersections that
lie farther along the ray than any already found.�
GeometricPrimitive Method Definitions ��� �
bool GeometricPrimitive::Intersect(const Ray &r,

Intersection *isect) const {
Float thit;
if (shape->Intersect(r, &thit, &isect->dg)) {

isect->primitive = this;
isect->WorldToObject = shape->WorldToObject;
r.maxt = thit;
return true;

}
return false;

}

We won’t include the implementations of GeometricPrimitive::WorldBound(),
GeometricPrimitive::IntersectP(), GeometricPrimitive::CanIntersect(),
or GeometricPrimitive::Refine() here; they just forward these requests on to
the Shape in a similar manner.

GeometricPrimitive::GetAreaLight() just returns the GeometricPrimitive::areaLight
member. GeoemtricPrimitive::GetBSDF() is implemented in Section 10.2, af-
ter the Texture BSDF classes have been described.

4.1.2 Object Instancing

Object instancing is a classic technique in rendering that re-uses multiple trans-
formed copies of a single collection of geometry at multiple positions in a scene.
For example, in a model of a concert hall with thousands of identical seats, the
scene description can be effectively compressed by a large amount if all of the seats
refer to a shared geometric representation of a single seat. The ecosystem scene in
Figure ?? has over four thousand individual plants of various types, though only
sixty one unique plant models. Because each plant model is instanced multiple
times, the complete scene has 19.5 million triangles total, though only 1.1 million
triangles are stored in memory. Thanks to primitive reuse though object instancing,
lrt uses only approximately 300 MB for rendering this scene.

Object instancing is handled by the InstancePrimitive class. It takes a refer-
ence to the shared Primitive that represents the instanced model, and the instance-
to-world-space transformation that places it in the scene. If the geometry to be
instanced is contained in multiple Primitives, the calling code responsible for
placing them in an Aggregate class.

The InstancePrimitive similarly requries that the primitive be intersectable;
it would be a waste of time and memory for all of the instances to individually

InstancePrimitive::IntersectP() 134
Intersection 131

Intersection::WorldToObject 131
Primitive 130

Primitive::Intersect() 131
Ray 36

Ray::maxt 36
Reference 664
Transform 43

134 Primitives and Intersection Acceleration [Ch. 4

refine the primitive. Seems like there should be some mechanism for hiding this
cleanly, but I’m not sure. It’s annoying that we can’t do lazy refinement just
because there are multiple instances of something. What if they’re all hidden?
(See the lrtObjectInstance() function in Appendix B.3.5 for the code that cre-
ates instances based on the scene description file, refining and creating aggregates
as described here.)�
Primitive Declarations ��� �
class InstancePrimitive : public Primitive {
public:�

InstancePrimitive Public Methods �
private:�

InstancePrimitive Private Data �
};

�
InstancePrimitive Public Methods ���
InstancePrimitive(Reference<Primitive> &i, const Transform &i2w) {

instance = i;
InstanceToWorld = i2w;
WorldToInstance = i2w.GetInverse();

}
�
InstancePrimitive Private Data ���
Reference<Primitive> instance;
Transform InstanceToWorld, WorldToInstance;

need a clearer description of ”instance space”. I think this paragraph could
use more work. The InstancePrimitive::Intersect() and InstancePrimitive::IntersectP()
methods transform the ray from world space to instance space before passing it
along to the primitive. If an intersection is found, the routines transform the re-
turned differential geometry back out into “true” world space and updates the
Intersection::WorldToObject transformation to be the correct full transfor-
mation from world space to object space. This way, the instanced primitive in un-
aware that its concept of “world space” is actually not the real scene world space;
the InstancePrimitive does the necessary work so that instances behave as ex-
pected.�
InstancePrimitive Method Definitions ���
bool InstancePrimitive::Intersect(const Ray &r, Intersection *isect) const {

Ray ray = WorldToInstance(r);
if (instance->Intersect(ray, isect)) {

r.maxt = ray.maxt;
isect->WorldToObject = isect->WorldToObject *

WorldToInstance;�
Transform instance’s differential geometry to world space �
return true;

}
return false;

}
�
InstancePrimitive Public Methods ��� �
BBox WorldBound() const { return InstanceToWorld(instance->WorldBound()); }

Sec. 4.2] Aggregates 135

38 BBox
139 GridAccel
134 InstancePrimitive
135 InstancePrimitive::GetAreaLight()
135 InstancePrimitive::GetBSDF()
134 InstancePrimitive::instance
134 InstancePrimitive::InstanceToWorld
154 KdTreeAccel
130 Primitive
130 Primitive::WorldBound()

Finally, the InstancePrimitive::GetAreaLight() and InstancePrimitive::GetBSDF()
methods should never be called; these methods in the primitive that the ray actually
hit will be called instead. Their implementations (not shown here) simply result in
a runtime error.

� ��� � ��� � ��������� �

Only the most trivial ray tracing systems do not contain some sort of acceleration
structure. Without one, tracing a ray through a scene would take O � n � time, since
the ray would need to be tested against each primitive in turn, looking for the
closest intersection. However, it most scenes, this is extremely wasteful, since the
ray passes nowhere near the vast majority of primitives. The goal of acceleration
structures is to allow the quick, simultaneous rejection of groups of primitives, and
also to order the search process so that nearby intersections are likely to be found
first.

The Aggregate class provides an interface for grouping multiple Primitive
objects together. Because Aggregates themselves support the Primitive inter-
face, no special support is required elsewhere in lrt for acceleration. In fact, by
implementing acceleration in this way, it is easy to experiment with new accelera-
tion techniques by simply adding a new Aggregate primitive to lrt.

Like InstancePrimitives, the Aggregate intersection routines set the Intersection::primitive
pointer to the primitive that the ray actually hit, not the aggregate that holds the
primitive. Because lrt will use this pointer to obtain information about the primi-
tive being hit (its reflection and emission properties), the Aggregate::GetAreaLight()
and Aggregate::GetBSDF() methods should never be called, so those methods
(not shown here) will simply cause a runtime error.

have some brief discussion of object subdivision (e.g. HBV) versus spatial
subdivision approaches

Also mention general trade-off of time spent builting the hierarchy to im-
prove its quality versus number of ray intersection tests.�
Primitive Declarations ��� �
class Aggregate : public Primitive {
public:�

Aggregate Public Methods �
};

4.2.1 Ray–Box Intersections

Both the GridAccel and the KdTreeAccel in the next two sections store a BBox
that surrounds all of their primitives. This box can be used to quickly determine if
a ray doesn’t intersect any of the primitives; if the ray misses the box, it also must
miss all of the primitives inside it. Furthermore, both of these accelerators use the
point at which the ray enters the bounding box and the point at which it exits as
part of the input to their traversal algorithms.

Therefore, we will add a BBox method, BBox::IntersectP(), that checks for
a ray–box intersection and returns the two parametric t values of the intersection if
there is one. Note that BBox is not a Primitive, which is a benefit here, since we
want two t values from its IntersectP() method instead of none.

BBox 38

136 Primitives and Intersection Acceleration [Ch. 4

Figure 4.1: Intersecting a ray with an axis-aligned bounding box: we compute in-
tersection points with each pair of slabs in turn, progressively narrowing the para-
metric interval. Here in 2D, the intersection of the x and y extents along the ray
gives the extent where the ray is inside the box.

tnear

t far

N = (1,0,0)

Figure 4.2: Intersecting a ray with a pair of axis-aligned slabs: the two slabs shown
here are planes described by x � c, for some constant value c. The normal of each
slab is � 1 � 0 � 0 � .

Finding these intersections is fairly simple. One way to think of bounding boxes
is as the intersection of three slabs, where a slab is simply the region of space
between two parallel planes. To intersect a ray against a box, we intersect the ray
against each of the box’s three slabs in turn. Because the slabs are aligned with the
three coordinate axes, a number of optimizations can be made in the ray–slab tests.

The basic ray–bounding box intersection algorithm works as follows: we start
with a parametric interval that covers that range of positions t along the ray where
we’re interested in finding intersections; typically, this is � 0 � ∞ � . We will then suc-
cessively compute the two parametric t positions where the ray intersects each pair
of axis-aligned slabs. We compute the set-intersection of the per-slab intersection
interval with our BBox intersection interval, returning failure if we find that the
resulting interval is degenerate. If, after checking all three slabs, the interval is
non-degenerate, we have the parametric range of the ray that is inside the box.
Figure 4.1 illustrates this process.

Finding the intersection of a ray with an axis-aligned plane only requires a few
computations; see the discussion of ray–disk intersections in Section 3.4.3 for a
review of this process. Figure 4.2 shows the basic geometry of a ray and a pair of
slabs.

If the BBox::IntersectP() method returns true, the intersection’s parametric

Sec. 4.2] Aggregates 137

38 BBox
39 BBox::pMax
39 BBox::pMin
36 Ray
35 Ray::d
36 Ray::maxt
36 Ray::mint
35 Ray::o

range is returned in the optional arguments hitt0 and hitt1. Intersections outside
of the Ray::mint/Ray::maxt range of the ray are ignored.�
BBox Method Definitions ��� �
bool BBox::IntersectP(const Ray &ray, Float *hitt0,

Float *hitt1) const {
Float t0 = ray.mint, t1 = ray.maxt;
for (int i = 0; i < 3; ++i) {�

Update interval for ith bounding box slab �
}
if (hitt0) *hitt0 = t0;
if (hitt1) *hitt1 = t1;
return true;

}

For each pair of slabs, this routine needs to compute two ray–plane intersections,
giving the parametric t values where the intersections occur. Consider the pair of
slabs along the x axis: they are can be described by the two planes through the
points � x1 � 0 � 0 � and � x2 � 0 � 0 � , each with normal � 1 � 0 � 0 � . There are two t values
to compute, one for each plane. Consider the first one, t1. From the ray–plane
intersection equation, we have:

t1 � �

� � o � r � � � x1 � 0 � 0 � � � � 1 � 0 � 0 � �� d � r � � � 1 � 0 � 0 � �
Because the y and z components of the normal are zero, we can use the definition
of the dot product to simplify this substantially:

t1 � �

o � r � x � x1

d � r � x � x1 � o � r � x
d � r � x

The code to compute these values starts by computing the reciprocal of the cor-
responding component of the ray direction so that it can multiply by this factor
instead of performing multiple expensive divisions. Note that although we are di-
viding by this component, it is not necessary to verify that it is non-zero! If it is,
then invRayDir will hold an infinite value, either � ∞ or ∞, and the rest of the
algorithm still works correctly.1�
Update interval for ith bounding box slab ���
Float invRayDir = 1.f / ray.d[i];
Float tNear = (pMin[i] - ray.o[i]) * invRayDir;
Float tFar = (pMax[i] - ray.o[i]) * invRayDir;�
Update parametric interval from slab intersection ts �
The two distances are reordered so that tnear holds the closer intersection and tfar

the farther one. This gives a parametric range � tnear � tfar � which is used to compute
the set intersection with the current range � t0 � t1 � to compute a new range. If this new

1This assumes that the architecture being used supports IEEE floating-point arithmetic, which is
universal on modern systems. The relevant properties of IEEE floating-point arithmetic are that for
all v � 0, v � 0 � ∞ and for all w � 0, w � 0 ��� ∞, where ∞ is a special value such that any positive
number multiplied by ∞ gives ∞, any negative number multiplied by ∞ gives � ∞, etc. See XXX for
information about IEEE floating point.

GridAccel 139
KdTreeAccel 154

138 Primitives and Intersection Acceleration [Ch. 4

We seem to be missing this figure.

Figure 4.3: The grid setting caption.

range is empty (i.e. t0 � t1), then the code can immediately return failure. There
is another floating-point related subtlety here, pointed out to us by Evan Parker:
in the case where the ray origin is in the plane of one of the bounding box slabs
and the ray lies in the plane of the slab, it is possible that tNear or tFar will be
computed by an expression of the form 0

�
0, which results in a IEEE floating-point

“not a number” (NaN) value. Like infinity values, NaNs are have well-specified
semantics: for example, any logical comparison involving a nan always evaluates
to false. Therefore, the code that updates the values of t0 and t1 was carefully
written so that if tNear or tFar is NaN, then t0 or t1 won’t ever take on a NaN
value but will always remain unchanged. When we first wrote this code, we wrote
t0 = max(t0, tNear), which might assign NaN to t0 depending on how max()
was implemented.�
Update parametric interval from slab intersection ts ���
if (tNear > tFar) swap(tNear, tFar);
t0 = tNear > t0 ? tNear : t0;
t1 = tFar < t1 ? tFar : t1;
if (t0 > t1) return false;

� ��� 	 � � � � ����� � � ��� ���

The GridAccel class is an accelerator that divides an axis-aligned region of
space into equal-sized chunks (called “voxels”). Each voxel stores references to
the primitives that overlap it (see Figure 4.3). Given a ray, it steps through each of
the voxels that the ray passes through in order, checking for intersections with only
the primitives in each voxel Useless ray intersection tests are reduced substantially
because primitives far away from the ray aren’t considered at all. Furthermore,
because the voxels are considered from near to far along the ray, it is possible to
stop performing intersection tests once we have found an intersection and know
that it is not possible for any closer intersections to exist.

The GridAccel structure can be initialized quickly, and it takes only a simple
computation to determine the sequence of voxels through which a given ray will
pass. However, this simplicity is a doubled-edged sword; GridAccel can suf-
fer from poor performance when the data in the scene aren’t distributed evenly
throughout space. If there’s a small region of space with a lot of geometry in it,
all that geometry might fall in a single voxel, and performance will suffer when a
ray passes through that voxel, as many intersection tests will be performed. This
is sometimes referred to as the “teapot in a stadium” problem. The basic problem
is that the data structure cannot adapt well to the distribution of the data: if we use
a very fine grid we spend too much time stepping through empty space, and if our
grid is too coarse we gain little benefit from the grid at all. The KdTreeAccel in
the next section adapts to the distribution of geometry such that it doesn’t suffer
from this problem.

we’re not consistent about saying stuff like this. lrt’s grid accelerator is
defined in accelerators/grid.cpp.

Sec. 4.3] Grid Accelerator 139

135 Aggregate
130 Primitive
664 Reference
658 vector

�
GridAccel Declarations ���
class GridAccel : public Aggregate {
public:�

GridAccel Public Methods �
private:�

GridAccel Private Public Methods ��
GridAccel Private Data �

};

4.3.1 Creation

The GridAccel constructor takes a vector of Primitives to be stored in the grid.
It automatically determines the number of voxels to store in the grid based on the
number of primitives.

One factor that adds to the complexity of the grid’s implementation is the fact
that some of these primitives may not be directly intersectable (they may return
false from Primitive::CanIntersect()), and need to refine themselves into
sub-primitives before intersection tests can be performed. This is a problem be-
cause when we building the grid, we might have a scene with a single primitive in
it and choose to build a coarse grid with few voxels. However, if the primitive is
later refined for intersection tests, it might turn into millions of primitives and the
original grid resolution would be far too small to efficiently find intersections. lrt
addresses this problem in one of two ways:

� If the refineImmediately flag to the constructor is true, all of the Primitives
are refined until they have turned into intersectable primitives. This may
waste time and memory for scenes where some of the primitives wouldn’t
have ever been refined since no rays approached them.

� Otherwise, primitives are refined only when a ray enters one of the voxels
they are stored in. If they create multiple Primitives when refined, the
new primitives are stored in a new instance of a GridAccel that replaces the
original Primitive in the top-level grid. This allows us to handle primi-
tive refinement without needing to re-build the entire grid each time another
primitive is refined. We keep track of whether a grid was constructed explic-
itly by lrt or implicitly by a Refine() method for bookkeeping purposes.

�
GridAccel Method Definitions ���
GridAccel::GridAccel(const vector<Reference<Primitive> > &p,

bool forRefined, bool refineImmediately)
: gridForRefined(forRefined) {�
Initialize prims with primitives for grid ��
Initialize mailboxes for grid ��
Compute bounds and choose grid resolution ��
Compute voxel widths and allocate voxels ��
Add primitives to grid voxels �

}

AllocAligned() 667
GridAccel 139

MailboxPrim 141
Primitive 130

Primitive::FullyRefine() 131
Reference 664

vector 658

140 Primitives and Intersection Acceleration [Ch. 4

We seem to be missing this figure.

Figure 4.4: This is why we need mailboxing.

�
GridAccel Private Data ���
bool gridForRefined;

First, the constructor determines the final set of Primitives to store in the grid,
either directly using the primitives passed in or refining all of them until they are
intersectable.�
Initialize prims with primitives for grid ���
vector<Reference<Primitive> > prims;
if (refineImmediately)

for (u_int i = 0; i < p.size(); ++i)
p[i]->FullyRefine(prims);

else
prims = p;

Because primitives may overlap multiple grid voxels, there is the possibility that
a ray will be tested multiple times against the same primitive as it passes through
those voxels (Figure 4.4). A technique called mailboxing makes it possible to
quickly determine if a ray has already been tested against a particular primitive, so
these extra tests can be avoided. In this technique, each ray is assigned a unique
integer id. The id of the most recent ray that was tested against that primitive
is stored along with the primitive itself. As the ray passes through voxels in the
grid, the ray’s id is compared with the primitives’ ids–if they are different, the ray–
primitive intersection test is performed and the primitive’s id is updated to match
the ray’s. If the ray encounters the same primitive in later voxels, the ids will match
and the test is trivially skipped.2

The GridAccel constructor creates a MailboxPrim structure for each primi-
tive. Grid voxels store pointers to the MailboxPrims of the primitives that overlap
them. The MailboxPrim stores both a reference to the primitive as well as the in-
teger tag that identifies the last ray that was tested against it. All of the mailboxes
are allocated in a single contiguous cache-aligned block for improved memory per-
formance.�
Initialize mailboxes for grid ���
nMailboxes = prims.size();
mailboxes = (MailboxPrim *)AllocAligned(nMailboxes *

sizeof(MailboxPrim));
for (u_int i = 0; i < nMailboxes; ++i)

new (&mailboxes[i]) MailboxPrim(prims[i]);

2This approach depends on the fact that the grid finds the intersection for a ray and returns before
any other rays are passed to GridAccel::Intersect(); if this was not the case, the grid would still
find the right ray–primitive intersections, though unecessary tests might be performed as multiple
rays overwrote the mailbox ids in primitives that they passed by. In particular, if lrt was multi-
threaded, the mailboxing scheme would need to be revisited as rays from different threads would
sometimes be passing through the grid simultaneously. In general, parallel raytracing makes mail-
boxing much more complicated.

Sec. 4.3] Grid Accelerator 141

38 BBox
39 BBox::pMax
39 BBox::pMin

677 Clamp()
130 Primitive
130 Primitive::WorldBound()
664 Reference
40 Union()
27 Vector

�
MailboxPrim Declarations ���
struct MailboxPrim {

MailboxPrim(const Reference<Primitive> &p) {
primitive = p;
lastMailboxId = -1;

}
Reference<Primitive> primitive;
int lastMailboxId;

};
�
GridAccel Private Data ��� �
u_int nMailboxes;
MailboxPrim *mailboxes;

After the overall bounds have been computed, the grid needs to determine how
many voxels to create along each of the x, y, and z axes. The voxelsPerUnitDist
variable is set in the fragment below, giving the average number of voxels that
should be created per unit distance in each of the three directions. Given that
value, multiplication by the grid’s extent in each direction gives the number of
voxels to make. We cap the number of voxels in any direction to 64, to avoid
creating enormous data structures for complex scenes.�
Compute bounds and choose grid resolution ���
for (u_int i = 0; i < prims.size(); ++i)

bounds = Union(bounds, prims[i]->WorldBound());
Vector delta = bounds.pMax - bounds.pMin;�
Find voxelsPerUnitDist for grid �
for (int axis = 0; axis < 3; ++axis) {

NVoxels[axis] = Round2Int(delta[axis] * voxelsPerUnitDist);
NVoxels[axis] = Clamp(NVoxels[axis], 1, 64);

}
�
GridAccel Private Data ��� �
int NVoxels[3];
BBox bounds;

As a first approximation to choosing a grid size, the total number of voxels
should be be roughly proportional to the total number of primitives; if the primi-
tives were uniformly distributed, this would mean that a constant number of prim-
itives were in each voxel. Though the primitives won’t be uniformly distributed
in general, this is a reasonable approximation. While increasing the number of
voxels improves efficiency by reducing the average number of primitives per voxel
(and thus reducing the number of ray–object intersection tests that need to be per-
formed), doing so also increases memory use, hurts cache performance, and in-
creases the time spent tracing the ray’s path through the greater number of voxels it
overlaps. On the other hand, too few voxels obviously leads to poor performance,
due to an increased number of ray–primitive intersections tests to be performed.

Given the goal of having the number of voxels be proportional to the number of
primitives, the cube root of the number of objects is an appropriate starting point
for the grid resolution in each direction. In practice, this value is typically scaled
by an empirically-chosen factor; in lrt we use a scale of three. Whichever of

AllocAligned() 667
BBox::MaximumExtent() 41

GridAccel 139
GridAccel::NVoxels 141

MailboxPrim 141
Vector 27
Voxel 144

142 Primitives and Intersection Acceleration [Ch. 4

the x, y or z dimensions has the largest extent will have exactly 3 3� N voxels for
a scene with N primitives. The number of voxels in the other two directions are
set in an effort to create voxels that are as close to regular cubes as possible. The
voxelsPerUnitDist variable is the foundation of these computations; it gives
the is the number of voxels to create per unit distance. Its value is set such that
cubeRoot voxels will be created along the axis with the largest extent.�
Find voxelsPerUnitDist for grid ���
int maxAxis = bounds.MaximumExtent();
Float invMaxWidth = 1.f / delta[maxAxis];
Float cubeRoot = 3.f * powf(Float(prims.size()), 1.f/3.f);
Float voxelsPerUnitDist = cubeRoot * invMaxWidth;

Given the number of voxels in each dimension, the constructor next sets the
GridAccel::Width vector, which holds the world-space widths of the voxels in
each direction. It also precomputes the GridAccel::InvWidth values, so that rou-
tines that would otherwise divide by the Width value can perform a multiplication
rather than dividing. Finally, it allocates an array of pointers to Voxel structures
for each of the voxels in the grid. These pointers are set to NULL initially and will
only be allocated for any voxel with one or more overlapping primitives.3

�
Compute voxel widths and allocate voxels ���
for (int axis = 0; axis < 3; ++axis) {

Width[axis] = delta[axis] / NVoxels[axis];
InvWidth[axis] = (Width[axis] == 0.f) ? 0.f : 1.f / Width[axis];

}
int nVoxels = NVoxels[0] * NVoxels[1] * NVoxels[2];
voxels = (Voxel **)AllocAligned(nVoxels * sizeof(Voxel *));
memset(voxels, 0, nVoxels * sizeof(Voxel *));

�
GridAccel Private Data ��� �
Vector Width, InvWidth;
Voxel **voxels;

Once the voxels themselves have been allocated, primitives can be added to
the voxels that they overlap. The GridAccel constructor adds each primitive’s
corresponding MailboxPrim to the voxels that its bounding box overlaps.�
Add primitives to grid voxels ���
for (u_int i = 0; i < prims.size(); ++i) {�

Find voxel extent of primitive ��
Add primitive to overlapping voxels �

}

First, the world-space bounds of the primitive are converted to the integer voxel
coordinates that contain that its two opposite corners. This is done by the utility
function GridAccel::PosToVoxel(), which turns a world space � x � y � z � position
into the voxel that contains that point.

3Some grid implementations try to save even more memory by using a hash table from � x � y � z �
voxel number to voxel structures. This saves the memory for the voxels array, which may be
substantial if the grid has very small voxels, and the vast majority of them are empty. However, this
approach increases the computational expense of finding the Voxel structure for each voxel that a
ray passes through.

Sec. 4.3] Grid Accelerator 143

38 BBox
39 BBox::pMax
39 BBox::pMin

677 Clamp()
142 GridAccel::InvWidth
141 GridAccel::NVoxels
144 GridAccel::Offset()
142 GridAccel::voxels
33 Point

Figure 4.5: Two examples of cases where using the bounding box of a primitive
to determine which grid voxels it should be stored in will cause it to be stored in
a number of voxels unnecessarily: on the left, a long skinny triangle has a lot of
empty space inside its axis-aligned bounding box and it is inaccurately added to
the shaded voxels. On the right, the surface of the sphere doesn’t intersect many of
the voxels inside its bound, and they are also inaccurately included in the sphere’s
extent. While this error slightly degrades the grid’s performance, it doesn’t lead to
incorrect ray-intersection results.

�
Find voxel extent of primitive ���
BBox pb = prims[i]->WorldBound();
int vmin[3], vmax[3];
for (int axis = 0; axis < 3; ++axis) {

vmin[axis] = PosToVoxel(pb.pMin, axis);
vmax[axis] = PosToVoxel(pb.pMax, axis);

}
�
GridAccel Private Public Methods ���
int PosToVoxel(const Point &P, int axis) const {

int v = Float2Int((P[axis] - bounds.pMin[axis]) * InvWidth[axis]);
return Clamp(v, 0, NVoxels[axis]-1);

}

The primitive is now added to all of the voxels that its bounds overlap. This is a
conservative test for voxel overlap–at worst it will overestimate the voxels that the
primitive overlaps. Figure 4.5 shows an example of two cases where this method
leads to primitives being stored in more voxels than necessary. An exercise at the
end of this chapter describes a more accurate method for associating primitives
with voxels.�
Add primitive to overlapping voxels ���
for (int z = vmin[2]; z <= vmax[2]; ++z)

for (int y = vmin[1]; y <= vmax[1]; ++y)
for (int x = vmin[0]; x <= vmax[0]; ++x) {

int offset = Offset(x, y, z);
if (!voxels[offset]) {�

Allocate new voxel and store primitive in it �
}
else {�

Add primitive to already-allocated voxel �
}

}

GridAccel::NVoxels 141
GridAccel::voxels 142

MailboxPrim 141
ObjectArena 668

Voxel::AddPrimitive() 145

144 Primitives and Intersection Acceleration [Ch. 4

The GridAccel::Offset() utility functions give the offset into the voxels
array for a particular � x � y � z � voxel. This is a standard technique for encoding a
multi-dimensional array in a 1D array.�
GridAccel Private Public Methods ��� �
inline int Offset(int x, int y, int z) const {

return z*NVoxels[0]*NVoxels[1] + y*NVoxels[0] + x;
}

To further reduce memory used for dynamically-allocated voxels and to im-
prove their memory locality, the grid constructor uses an ObjectArena to hand out
memory for voxels. This is the first time we’ve talked about arenas, isn’t it?
Obviously this needs to be beefed up.�
Allocate new voxel and store primitive in it ���
voxels[offset] = new (voxelArena) Voxel(&mailboxes[i]);

�
GridAccel Private Data ��� �
ObjectArena<Voxel> voxelArena;

If this isn’t the first primitive to overlap this voxel, the Voxel has already been
allocated and the primitive is handed off to the Voxel::AddPrimitive() method.�
Add primitive to already-allocated voxel ���
voxels[offset]->AddPrimitive(&mailboxes[i]);

Now we will define the Voxel structure, which records the primitives that over-
lap its extent. Because many Voxels may be allocated for a grid, we use a few
simple techniques to keep the size of a Voxel small: variables that record its basic
properties are packed into a single 32 bit word, and we use a union to overlap a
few pointers of various types, only one of which will actually be used depending
on the number of overlapping primitives.�
Voxel Declarations ���
struct Voxel {�

Voxel Public Methods �
union {

MailboxPrim *onePrimitive;
MailboxPrim **primitives;

};
u_int allCanIntersect:1;
u_int nPrimitives:31;

};

When a Voxel is first allocated, only a single primitive has been found that
overlaps it, so Voxel::nPrimitives is one, and Voxel::onePrimitive is used
to store a pointer to its MailboxPrim. As more primitives are found to overlap,
Voxel::nPrimitives will be greater than one, and Voxel::primitives is set
to point to a dynamically-allocated array of pointers to MailboxPrim structures.
Because these conditions are mutually-exclusive, the pointer to the single primitive
and pointer to the array of pointers to primitives can share the same memory by
being stored in a union. Voxel::allCanIntersect is used to record if all of the
primitives in the voxel are intersectable or if some need refinement. For starters, it
is conservatively set to false.

Sec. 4.3] Grid Accelerator 145

667 AllocAligned()
678 IsPowerOf2()
141 MailboxPrim
144 Voxel
144 Voxel::allCanIntersect
144 Voxel::nPrimitives
144 Voxel::onePrimitive
144 Voxel::primitives

�
Voxel Public Methods ���
Voxel(MailboxPrim *op) {

allCanIntersect = false;
nPrimitives = 1;
onePrimitive = op;

}

When Voxel::AddPrimitive() is called, this must mean that two or more
primitives overlap the voxel, so the primitives’ MailboxPrim pointers will be
stored in its Voxel::primitives array. Memory for this array must be allocated
in two cases: if the voxel currently holds a single primitive and we need to store
a second, or if the allocated array is full. Rather than using more space in the
voxel structure to store the current size of the array, the code here follows the con-
vention that the array size will always be a power of two. Thus, whenever the
Voxel::nPrimitives count is a power of two, the array has been filled and more
memory is needed.�
Voxel Public Methods ��� �
void AddPrimitive(MailboxPrim *prim) {

if (nPrimitives == 1) {�
Allocate initial primitives array in voxel �

}
else if (IsPowerOf2(nPrimitives)) {�

Increase size of primitives array in voxel �
}
primitives[nPrimitives] = prim;
++nPrimitives;

}

Recall that Voxel::onePrimitive and Voxel::primitives are stored in a
union. Therefore, it is important to store the memory for the array of pointers in a
local variable on the stack and initialize its first entry from Voxel::onePrimitive
before Voxel::primitives is initialized with the array pointer. Otherwise, the
value of Voxel::onePrimitive would be clobbered before it was added to the
new array, since Voxel::onePrimitive and Voxel::primitives share the same
memory.�
Allocate initial primitives array in voxel ���
MailboxPrim **p = (MailboxPrim **)AllocAligned(

2 * sizeof(MailboxPrim *));
p[0] = onePrimitive;
primitives = p;

Similarly, it’s necessary to be careful with setting Voxel::primitives to the
pointer to the expanded array of MailboxPrim pointers.

BBox::Inside() 40
BBox::IntersectP() 137

GridAccel 139
GridAccel::CanIntersect() 146

GridAccel::WorldBound() 146
Intersection 131
MailboxPrim 141

Point 33
Ray 36

Ray::mint 36
Voxel::nPrimitives 144
Voxel::primitives 144

146 Primitives and Intersection Acceleration [Ch. 4

�
Increase size of primitives array in voxel ���
int nAlloc = 2 * nPrimitives;
MailboxPrim **p = (MailboxPrim **)AllocAligned(nAlloc *

sizeof(MailboxPrim *));
for (u_int i = 0; i < nPrimitives; ++i)

p[i] = primitives[i];
FreeAligned(primitives);
primitives = p;

We won’t show the straightforward implementations of the GridAccel::WorldBound()
or GridAccel::CanIntersect() methods or its destructor.

4.3.2 Traversal

The GridAccel::Intersect() method handles the task of determining which
voxels a ray passes through and calling the appropriate ray–primitive intersection
routines.�
GridAccel Method Definitions ��� �
bool GridAccel::Intersect(const Ray &ray, Intersection *isect) const {�

Check ray against overall grid bounds ��
Get ray mailbox id ��
Set up 3D DDA for ray ��
Walk ray through voxel grid �

}

The first task is to determine where the ray enters the grid, which gives the
starting point for traversal through the voxels. If the ray’s origin is inside the grid’s
bounding box, then clearly it begins there. Otherwise the GridAccel::Intersect()
method finds the intersection of the ray with the grid’s bounding box. If it hits, the
first intersection along the ray is the starting point. If the ray misses the grid’s
bounding box, there can be no intersection with any of the geometry in the grid so
GridAccel::Intersect() returns immediately.�
Check ray against overall grid bounds ���
Float rayT;
if (bounds.Inside(ray(ray.mint)))

rayT = ray.mint;
else if (!bounds.IntersectP(ray, &rayT))

return false;
Point gridIntersect = ray(rayT);

Once we know that there is work to do, the next task is to find a unique ray
identifier for mailboxing. We simply use a monotonic sequence of ray identifiers
sorted in the GridAccel::curMailboxId member.�
Get ray mailbox id ���
int rayId = ++curMailboxId;

�
GridAccel Private Data ��� �
static int curMailboxId;

We now compute the initial � x � y � z � integer voxel coordinates for this ray as well
as a number of auxiliary values that will make it very efficient to incrementally

Sec. 4.3] Grid Accelerator 147

35 Ray::d

compute the set of voxels that the ray passes through. The ray–voxel traversal
computation is similar in spirit to Bresenhamn’s classic line drawing algorithm,
where the series of pixels that a line passes through are found incrementally using
just addition and comparisons to step from one pixel to the next. The main differ-
ence between the ray marching algorithm and Bresenham’s are that we would like
to find all of the voxels that the ray passes through, while Bresenham’s algorithm
does not provide this guarantee.

The values the ray–voxel stepping algorithm needs to keep track of are:

1. The coordinates of the voxel currently being considered, Pos.

2. The parametric t position along the ray where it makes its next crossing into
another voxel in each of the x, y, and z directions, NextCrossingT (Fig-
ure 4.6). For example, for a ray with a positive x direction component,
the parametric value along the ray where it crosses into the next voxel in
x, NextCrossingT[0] is the parametric starting point rayT plus the x dis-
tance to the next voxel divided by the ray’s x direction component. (This is
similar to the ray–plane intersection formula.)

3. The change in the current voxel coordinates after a step in each direction (1
or -1), stored in Step.

4. The distance along the ray between voxels in each direction, DeltaT. These
values are found by dividing the width of a voxel in a particular direction by
the ray’s corresponding direction component, giving the parametric distance
along the ray that we have to travel to get from one side of a voxel to the
other in the particular direction.

5. The coordinates of the last voxel the ray passes through before it exits the
grid, Out.

The first two items will be updated as we step through the grid, while the last
three are constant per ray.�
Set up 3D DDA for ray ���
Float NextCrossingT[3], DeltaT[3];
int Step[3], Out[3], Pos[3];
for (int axis = 0; axis < 3; ++axis) {�

Compute current voxel for axis �
if (ray.d[axis] >= 0) {�

Handle ray with positive direction for voxel stepping �
}
else {�

Handle ray with negative direction for voxel stepping �
}

}

Computing the voxel address that the ray starts out in is easy since this method
has already determined the position where the ray enters the grid. We simply use
the utility routine GridAccel::PosToVoxel defined earlier.

BBox::pMin 39
GridAccel::NVoxels 141

GridAccel::PosToVoxel() 143
GridAccel::Width 142

Ray::d 35

148 Primitives and Intersection Acceleration [Ch. 4

Figure 4.6: Stepping a ray through a voxel grid: rayT is the distance along the ray
to the first intersection with the grid. The distance along the ray to the next distance
we cross into the next voxel in the x direction is stored in NextCrosing[0], and
similarly for the y and z (not shown) directions. When we cross into the next x
voxel, for example, we can immediately update the value of NextCrossingT[0]
by adding a fixed value, the voxel width in x divided by the ray’s x direction,
DeltaT[0].

�
Compute current voxel for axis ���
Pos[axis] = PosToVoxel(gridIntersect, axis);

If the ray’s direction component is zero for a particular axis, then the NextCrossingT
value for that axis will be initialized to the IEEE floating point ∞ value by the com-
putation below. The voxel stepping logic later in this section will always decide to
step in one of the other directions and we will correctly never step in this direction.
This is convenient because we can handle rays that are perpendicular to any axis
without any special code to test for division by zero.�
Handle ray with positive direction for voxel stepping ���
NextCrossingT[axis] = rayT +

(VoxelToPos(Pos[axis]+1, axis) - gridIntersect[axis]) /
ray.d[axis];

DeltaT[axis] = Width[axis] / ray.d[axis];
Step[axis] = 1;
Out[axis] = NVoxels[axis];

This comes out of nowhere; maybe it should be presented alongsided Pos-
ToVoxel?

The GridAccel::VoxelToPos() method is the opposite of GridAccel::PosToVoxel();
it returns the position of a particular voxel’s lower corner.�
GridAccel Private Public Methods ��� �
Float VoxelToPos(int p, int axis) const {

return bounds.pMin[axis] + p * Width[axis];
}

Sec. 4.3] Grid Accelerator 149

39 BBox::pMin
144 GridAccel::Offset()
142 GridAccel::voxels
148 GridAccel::VoxelToPos()
142 GridAccel::Width
131 Intersection
141 MailboxPrim
33 Point
36 Ray
35 Ray::d
27 Vector

144 Voxel

�
GridAccel Private Public Methods ��� �
Point VoxelToPos(int x, int y, int z) const {

return bounds.pMin +
Vector(x * Width[0], y * Width[1], z * Width[2]);

}

Similar computations compute these values for rays with negative direction
components:�
Handle ray with negative direction for voxel stepping ���
NextCrossingT[axis] = rayT +

(VoxelToPos(Pos[axis], axis) - gridIntersect[axis]) /
ray.d[axis];

DeltaT[axis] = -Width[axis] / ray.d[axis];
Step[axis] = -1;
Out[axis] = -1;

Once all the preprocessing is done for the ray, we can step through the grid.
Starting with the first voxel that the ray passes through, we check for intersec-
tions with the primitives inside that voxel. If we find a hit, the boolean flag
hitSomething is set to true. We must be careful, however, because the intersec-
tion point may be outside the current voxel since primitives may overlap multiple
voxels. Therefore, the method doesn’t immediately return when done processing a
voxel where an intersection was found. Instead, we use the fact that the primitive’s
intersection routine will update the Ray::maxt member. When stepping through
voxels, we will return only when we enter a voxel at a point that is beyond the
closest found intersection.�
Walk ray through voxel grid ���
bool hitSomething = false;
for (;;) {

Voxel *voxel =
voxels[Offset(Pos[0], Pos[1], Pos[2])];
if (voxel != NULL)

hitSomething |= voxel->Intersect(ray, isect, rayId);�
Advance to next voxel �

}
return hitSomething;

perhaps a transition saying that we have a Voxel::Intersect routine�
GridAccel Method Definitions ��� �
bool Voxel::Intersect(const Ray &ray, Intersection *isect, int rayId) {�

Refine primitives in voxel if needed ��
Loop over primitives in voxel and find intersections �

}

The boolean Voxel::allCanIntersect member tells us whether all of the
primitives in the voxel are known to be intersectable. If this value is false, we
loop over all primitives, calling their refinement routines as needed until only in-
tersectable geometry remains. The logic for finding the ith MailboxPrim in the
loop over primitives is slightly complicated by a level of pointer indirection, since
a single primitive and multiple primitives are stored differently in voxels. Handling

GridAccel 139
MailboxPrim 141

MailboxPrim::primitive 141
Primitive 130

Primitive::CanIntersect() 131
Primitive::FullyRefine() 131

Reference 664
vector 658

Voxel::allCanIntersect 144
Voxel::nPrimitives 144
Voxel::onePrimitive 144

Voxel::primitives 144

150 Primitives and Intersection Acceleration [Ch. 4

this case in the way done below is worthwhile since it moves the test for whether
we should be using the Voxel::onePrimitive item for a single primitive or the
Voxel::primitives array for multiple primitives outside the body of the loop.�
Refine primitives in voxel if needed ���
if (!allCanIntersect) {

MailboxPrim **mpp;
if (nPrimitives == 1) mpp = &onePrimitive;
else mpp = primitives;
for (u_int i = 0; i < nPrimitives; ++i) {

MailboxPrim *mp = mpp[i];�
Refine primitive in mp if it’s not intersectable �

}
allCanIntersect = true;

}

Primitives that need refinement are refined until only intersectable primitives re-
main, and a new GridAccel is created to hold the returned primitives if more than
one was returned. One reason to always make a GridAccel for multiple reifined
primitives is that doing so simplifies primitive refinement; a single Primitive al-
ways turns into a single object that represents all of the new Primitives, so it’s
never necessary to increase the number of primitives in the voxel. If this primi-
tive overlaps multiple voxels, then because all of them hold a pointer to a single
MailboxPrim for it, it suffices to just update the primitive reference in the the
shared MailboxPrim directly, and there’s no need to loop over all of the voxels.4

�
Refine primitive in mp if it’s not intersectable ���
if (!mp->primitive->CanIntersect()) {

vector<Reference<Primitive> > p;
mp->primitive->FullyRefine(p);
if (p.size() == 1)

mp->primitive = p[0];
else

mp->primitive = new GridAccel(p, true, false);
}

Once we know that we have only intersectable primitives, the loop over MailboxPrims
for performing intersection tests here again has to deal with the difference between
voxels with one primitive and voxels with multiple primitives in the same manner
that the primitive refinement code did.

4The bounding box of the original unrefined primitive must encompass the refined geometry as
well, so there’s no danger that the refined geometry will overlap more voxels than before. On the
other hand, it also may overlap many fewer voxels, which would lead to unnecessary intersection
tests.

Sec. 4.3] Grid Accelerator 151

141 MailboxPrim
141 MailboxPrim::lastMailboxId
131 Primitive::Intersect()
144 Voxel::nPrimitives
144 Voxel::onePrimitive
144 Voxel::primitives

�
Loop over primitives in voxel and find intersections ���
bool hitSomething = false;
MailboxPrim **mpp;
if (nPrimitives == 1) mpp = &onePrimitive;
else mpp = primitives;
for (u_int i = 0; i < nPrimitives; ++i) {

MailboxPrim *mp = mpp[i];�
Do mailbox check between ray and primitive ��
Check for ray–primitive intersection �

}
return hitSomething;

Here now is the mailbox check; if this ray was previously intersected against this
primitive in another voxel, the redundant intersection test can be trivially skipped.�
Do mailbox check between ray and primitive ���
if (mp->lastMailboxId == rayId)

continue;

Finally, if we determine that a ray–primitive intersection test is necessary, the
primitive’s mailbox needs to be be updated.�
Check for ray–primitive intersection ���
mp->lastMailboxId = rayId;
if (mp->primitive->Intersect(ray, isect)) {

hitSomething = true;
}

After doing the intersection tests for the primitives in the current voxel, it is
necessary to step to the next voxel in the ray’s path. We need to decide whether
to step in the x, y, or z direction. Fortunately, the NextCrossingT variable tells
us the distance to the next crossing for each direction, and we can simply choose
the smallest one. Traversal can be terminated if this step goes outside of the voxel
grid, or if the selected NextCrossingT value is beyond the t distance of an already-
found intersection. Otherwise, we step to the chosen voxel, and increment the
chosen direction’s NextCrossingT by its DeltaT value, so that future traversal
steps will know how far to go before stepping in this direction again.�
Advance to next voxel ����

Find stepAxis for stepping to next voxel �
if (ray.maxt < NextCrossingT[stepAxis])

break;
Pos[stepAxis] += Step[stepAxis];
if (Pos[stepAxis] == Out[stepAxis])

break;
NextCrossingT[stepAxis] += DeltaT[stepAxis];

Choosing the axis along which to step basically requires finding the smallest of
three numbers, an extremely straightforward task. However, in this case an opti-
mization is possible because we don’t care about the value of the smallest number,
just its index in the NextCrossingT array. We can compute this index without any
branching, which can lead to substantial performance improvements on a modern
CPU.

KdTreeAccel 154
Ray 36

152 Primitives and Intersection Acceleration [Ch. 4

The tricky bit of code below determines which of the three NextCrossingT val-
ues is the smallest and sets stepAxis accordingly. It encodes this logic by setting
each of the three low-order bits in an integer to the results of three comparisons be-
tween pairs of NextCrossingT values. We then use a table (cmpToAxis) to map
the resulting integer to the direction with the smallest value.

This kind of optimization is frequently available when trying to find the mini-
mum or maximum of a very small group of numbers. An exercise at the end of the
chapter asks you to explore the benefits of this approach.�
Find stepAxis for stepping to next voxel ���
int bits = ((NextCrossingT[0] < NextCrossingT[1]) << 2) +

((NextCrossingT[0] < NextCrossingT[2]) << 1) +
((NextCrossingT[1] < NextCrossingT[2]));

const int cmpToAxis[8] = { 2, 1, 2, 1, 2, 2, 0, 0 };
int stepAxis = cmpToAxis[bits];

The grid also provides a special GridAccel::IntersectP() method that is
optimized for checking for intersection along shadow rays, where we are only in-
terested in the presence of an intersection, rather than the details of the intersec-
tion itself. It is almost identical to the GridAccel::Intersect() routine, except
that it calls the Primitive::IntersectP() method of the primitives rather than
Primitive::Intersect(), and it immediately stops traversal when any intersec-
tion is found. Because of the small number of differences, we won’t include the
implementation here.�
GridAccel Public Methods ��� �
bool IntersectP(const Ray &ray) const;

� ����� � � � � � � � � ��� � � ��� ���

Binary space partitioning (BSP) trees adaptively subdivide space into irregularly-
sized regions. The most important consequence of this design is that they can be
much more effective than a regular grid for irregular collections of geometry. A
BSP tree starts with a bounding box that encompasses the entire scene. If the num-
ber of primitives in the box is greater than some threshold, the box is split in half
by a plane. Primitives are then assigned to whichever half they overlap. Primitives
that lie in both halves are assigned twice. This process continues recursively un-
til either each sub-region contains a sufficiently small number of primitives, or a
maximum splitting depth is reached. Because the splitting planes can be placed at
arbitrary positions inside the overall bound and because different parts of 3D space
can be refined to different degrees, BSP trees can easily handle uneven distributions
of geometry.

Two variations of BSP trees are kd-trees and octrees. A kd-tree simply restricts
the splitting plane to be perpendicular to one of the coordinate axes; this makes
traversal and construction of the tree more efficient. The octree uses three axis-
perpendicular planes simultaneously, splitting the box into eight regions at each
step. In this section, we will implement a kd-tree for ray intersection acceleration
in the KdTreeAccel class. Source code for this class can be found in the file
accelerators/kdtree.cpp.

Sec. 4.4] Kd-Tree Accelerator 153

Figure 4.7: The kd-tree is built by recursively splitting the bounding box of the
scene geometry along one of the coordinate axes. Here, the first split is along the
x axis; it is placed so that the triangle is precisely alone in the right region and the
rest of the primitives end up on the left. The left region is then refined a few more
times with axis-aligned splitting planes. The details of the refinement criteria–
which axis is used to split space at each step, at which position along the axis the
plane is placed, and at what point refinement terminates–can all substantially affect
the performance of the tree in practice.

Aggregate 135
AllocAligned() 667

GridAccel 139
MailboxPrim 141

Primitive 130
Primitive::FullyRefine() 131

Reference 664
vector 658

154 Primitives and Intersection Acceleration [Ch. 4

�
KdTreeAccel Declarations ��� �
class KdTreeAccel : public Aggregate {
public:�

KdTreeAccel Public Methods �
private:�

KdTreeAccel Private Data �
};

In addition to the primitives to be stored, the KdTreeAccel constructor takes a
few values that will be used to guilde the decisions that will be made as the tree
is built; these parameters are just stored in member variables for later use. For
simplicity of implementation, the KdTreeAccel requires that all of the primitives
it stores are intersectable. We leave as an exercise the task of improving the imple-
mentation to do lazy refinement like the GridAccel does. Therefore, the construc-
tor starts out by refining all primitives until all are intersectable before bulding the
tree; see Figure 4.7 for an overview of how the tree is built.�
KdTreeAccel Method Definitions ���
KdTreeAccel::KdTreeAccel(const vector<Reference<Primitive> > &p,

int icost, int tcost, Float ebonus, int maxp, int maxDepth)
: isectCost(icost), traversalCost(tcost),
emptyBonus(ebonus), maxPrims(maxp)

{
vector<Reference<Primitive > > prims;
for (u_int i = 0; i < p.size(); ++i)

p[i]->FullyRefine(prims);�
Initialize mailboxes for KdTreeAccel ��
Build kd-tree for accelerator �

}
�
KdTreeAccel Private Data ���
int isectCost, traversalCost, maxPrims;
Float emptyBonus;

As with GridAccel, the kd-tree uses mailboxing to avoid repeated intersections
with primitives that straddle splitting planes and overlap multiple regions of the
tree. In fact, it uses the exact same MailboxPrim structure.�
Initialize mailboxes for KdTreeAccel ���
curMailboxId = 0;
nMailboxes = prims.size();
mailboxPrims = (MailboxPrim *)AllocAligned(nMailboxes *

sizeof(MailboxPrim));
for (u_int i = 0; i < nMailboxes; ++i)

new (&mailboxPrims[i]) MailboxPrim(prims[i]);

�
KdTreeAccel Private Data ��� �
u_int nMailboxes;
MailboxPrim *mailboxPrims;
mutable int curMailboxId;

Sec. 4.4] Kd-Tree Accelerator 155

139 GridAccel
141 MailboxPrim

4.4.1 Tree Representation

The kd-tree is a binary tree, where each interior node always has two children and
where leaves of the tree store the primitives that overlap them. Each interior node
must provide access to three pieces of information:

� Split axis: which of the x, y, or z axes we split along at this node

� Split position: the position of the splitting plane along the axis

� Children: information about how to reach the two child nodes beneath it

Each leaf node needs only to record which primitives overlap it.
It is worth going through a bit of trouble to ensure that all interior leaf nodes and

many leaf notes use just 8 bytes of memory (assuming 4 byte Floats and pointers),
because doing so ensures that four nodes will fit into a 32 byte cache line. Because
there are many nodes in the tree and because many nodes are accessed for each
ray, minimizing the size of the node representation substantially improves cache
performance. Our initial implementation used a 16 byte node representation; when
we reduced the size to 8 bytes we obtained an almost 20% speed increase. Both
leaves and interior nodes types of node are represented by the KdAccelNode struc-
ture below; the comments after each union member indicate whether a particular
field is used for interior nodes, leaf nodes, or both.�
KdAccelNode Declarations ��� �
struct KdAccelNode {�

KdAccelNode Methods �
union {

u_int flags; // Both
Float split; // Interior
u_int nPrims; // Leaf

};
union {

u_int aboveChild; // Interior
MailboxPrim *onePrimitive; // Leaf
MailboxPrim **primitives; // Leaf

};
};

The two low order bits of the KdAccelNode::flags variable are used to dif-
ferentiate between interior nodes with x, y, and z splits (where these bits hold the
values 0, 1, and 2, respectively), and leaf nodes (where these bits hold the value 3.)

It is relatively easy to store leaf nodes in 8 bytes: since the low two bits of
KdAccelNode::flags are used to indicate that this is a leaf, the upper 30 bits of
KdAccelNode::nPrims are available to record how many primitives overlap it.
This should be plenty, because if the tree was built properly there should be just
a handful of primitives in each leaf. As with GridAccel, if just a single primi-
tive overlaps a KdAccelNode leaf, its MailboxPrim pointer is stored directly in the
KdAccelNode::onePrimitive field. If more primitives overlap, memory is dy-
namically allocated for an array of them pointed to by KdAccelNode::primitives.

KdAccelNode 155
KdAccelNode::flags 155
KdAccelNode::nPrims 155

KdAccelNode::onePrimitive 155
KdAccelNode::primitives 155

MailboxPrim 141
MemoryArena 670

156 Primitives and Intersection Acceleration [Ch. 4

Leaf nodes are easy to initialize; the number of primitives must be shifted two
bits to the left before being stored so that the low two bits of KdAccelNode::flags
can be set to 11 to indicate that this is a leaf node.�
KdAccelNode Methods ���
void initLeaf(int *primNums, int np,

MailboxPrim *mailboxPrims, MemoryArena &zone) {
nPrims = np << 2;
flags |= 3;�
Store MailboxPrim *s for leaf node �

}

For leaf nodes with zero or one overlapping primitives, no dynamic memory
allocation is necessary thanks to the KdAccelNode::onePrimitive field. For the
case where multiple primitives overlap, the caller passes in a MemoryArena for
allocating memory for the arrays of MailboxPrim pointers. This helps to reduce
wasted space for these allocations and improves cache efficiency by placing all of
these arrays together in memory.�
Store MailboxPrim *s for leaf node ���
if (np == 0)

onePrimitive = NULL;
else if (np == 1)

onePrimitive = &mailboxPrims[primNums[0]];
else {

primitives = (MailboxPrim **)zone.Alloc(np *
sizeof(MailboxPrim *));

for (int i = 0; i < np; ++i)
primitives[i] = &mailboxPrims[primNums[i]];

}

Getting interior nodes down to 8 bytes takes a bit more work. As explained
above, the lowest two bits of KdAccel::flags are used to record which axis the
node was split along. Yet the split position along that axis is stored in KdAccelNode::split,
a Float value that occupies the same memory as KdAccelNode::flags. This
seems impossible—we can’t just ask the compiler to use the top 30 bits of KdAccelNode::split
as a Float.

It turns out that as long as the lowest two bits of KdAccelNode::flags are set
after KdAccelNode::split, this technique works thanks to the layout of Floats
in memory. For IEEE floating point, the two bits used by KdAccelNode::flags
are the least-significant bits of the floating-point mantissa value, so changing their
original value only minimally affects the floating-point value that is stored. Fig-
ure 4.8 illustrates the layout in memory.

Although this trick is fairly complicated, it is worth it for the performance
benefits. In addition, all of the complexity is hidden behind a small number of
KdAccelNode methods, so the rest of the system is insulated from our special rep-
resentation.

So that we don’t need memory to store pointers to the two child nodes of an
interior node, all of the nodes are allocated in a single contiguous block of memory,
and the child of an interior node that is responsible for space “below” the splitting
plane is always stored in the array position immediately after its parent (this also

Sec. 4.4] Kd-Tree Accelerator 157

155 KdAccelNode
155 KdAccelNode::flags
155 KdAccelNode::nPrims
155 KdAccelNode::split

Figure 4.8: Layout of floats and ints in memory...

improves cache performance, by keeping at least one child close to its parent in
memory.) The other child, representing space above the splitting plane will end up
at somewhere else in the array; KdAccelNode::aboveChild stores its position.

Given all those conventions, the code to initialize an interior node is straightfor-
ward. The split position is stored before the split axis is written in KdAccelNode::flags.
Rather than directly assigning the axis to KdAccelNode::flags, which would
clobber KdAccelNode::split as well, it’s necessary to carefully set just the low
two bits of the flags with the axis’s value.�
KdAccelNode Methods ��� �
void initInterior(int axis, Float s) {

split = s;
flags &= ˜3;
flags |= axis;

}

Finally, we’ll provide a few methods to extract various values from the node, so
that callers don’t have to be aware of the admittedly complex details of its repre-
sentation.�
KdAccelNode Methods ��� �
Float SplitPos() const { return split; }
int nPrimitives() const { return nPrims >> 2; }
int SplitAxis() const { return flags & 3; }
bool IsLeaf() const { return (flags & 3) == 3; }

4.4.2 Tree construction

The kd-tree is built with a recursive top-down algorithm. At each step, we have an
axis-aligned region of space and a set of primitives that overlap that region. Each
region is either split into two sub-regions and turned into an interior node, or a leaf
node is created with the overlapping primitives, terminating the recursion.

As mentioned in the discussion of KdAccelNodes, all tree nodes are stored in
a contiguous array; KdTreeAccel::nextFreeNode records the next node in this
array that is available, and KdTreeAccel::nAllocedNodes records the total num-
ber that have been allocated. By setting both of them to zero and not allocating any
nodes at startup, we ensure that an allocation will be done immediately when the
first node of the tree is initialized.

BBox 38
KdAccelNode 155

Primitive::WorldBound() 130
prims0 166
prims1 166
Union() 40
vector 658

158 Primitives and Intersection Acceleration [Ch. 4

It is also necessary to determine a maximum tree depth if one wasn’t given to the
constructor. Though the tree construction process will normally terminate naturally
at a reasonable depth, we cap the maximum depth so that the amount of memory
used for the tree cannot grow without bound in pathological cases. We have found
that the expression 8 � 1 � 3log � N � gives a good maximum depth for a variety of
scenes.�
Build kd-tree for accelerator ���
nextFreeNode = nAllocedNodes = 0;
if (maxDepth <= 0)

maxDepth = Round2Int(8 + 1.3f * Log2Int(prims.size()));�
Compute bounds for kd-tree construction ��
Allocate working memory for kd-tree construction ��
Initialize primNums for kd-tree construction ��
Start recursive construction of kd-tree ��
Free working memory for kd-tree construction �

�
KdTreeAccel Private Data ��� �
KdAccelNode *nodes;
int nAllocedNodes, nextFreeNode;

Because the construction routine will be repeatedly using the bounding boxes of
the primitives along the way, we store them in a vector so that the potentially-slow
Primitive::WorldBound() methods don’t need to be called repeatedly.�
Compute bounds for kd-tree construction ���
vector<BBox> primBounds;
primBounds.reserve(prims.size());
for (u_int i = 0; i < prims.size(); ++i) {

BBox b = prims[i]->WorldBound();
bounds = Union(bounds, b);
primBounds.push_back(b);

}
�
KdTreeAccel Private Data ��� �
BBox bounds;

One of the parameters to the tree construction routine is an array of integers
indicating which primitives overlap the current node. For the root node, we just
need an array with prims.size() entries set up such that the ith entry has the
value i.�
Initialize primNums for kd-tree construction ���
int *primNums = new int[prims.size()];
for (u_int i = 0; i < prims.size(); ++i)

primNums[i] = i;

KdTreeAccel::buildTree() is called for each tree node; it is responsible for
deciding if the node should be an interior node or leaf and updating the data struc-
tures appropriately. The last three parameters, edges, prims0, and prims1, are
pointers to data from the

�
Allocate working memory for kd-tree construction � frag-

ment, which will be defined in a few pages.

Sec. 4.4] Kd-Tree Accelerator 159

667 AllocAligned()
38 BBox

162 BoundEdge
155 KdAccelNode
156 KdAccelNode::initLeaf()
154 KdTreeAccel
158 KdTreeAccel::nAllocedNodes
158 KdTreeAccel::nextFreeNode
158 KdTreeAccel::nodes
166 prims0
166 prims1
658 vector

�
Start recursive construction of kd-tree ���
buildTree(0, bounds, primBounds, primNums, prims.size(), maxDepth,

edges, prims0, prims1);

This destructor is out of nowhere...�
Free working memory for kd-tree construction ���
delete[] primNums;

The main parameters to KdTreeAccel::buildTree are the offset into the array
of KdAccelNodes to use for the node that it creates, the bounding box that gives
the region of space that the node covers, and the indices of primitives that overlap
it.�
KdTreeAccel Method Definitions ��� �
void KdTreeAccel::buildTree(int nodeNum, const BBox &nodeBounds,

const vector<BBox> &allPrimBounds, int *primNums,
int nPrims, int depth, BoundEdge *edges[3], int *prims0,
int *prims1, int badRefines) {�

Get next free node from nodes array ��
Initialize leaf node if termination criteria met ��
Initialize interior node and continue recursion �

}

If all of the allocated nodes have been used, node memory is reallocated with
twice as many entries and the old values are copied over. The first time KdTreeAccel::buildTree()
is called, KdTreeAccel::nAllocedNodes will be zero and an initial block of tree
nodes will be allocated.�
Get next free node from nodes array ���
if (nextFreeNode == nAllocedNodes) {

int nAlloc = max(2 * nAllocedNodes, 512);
KdAccelNode *n = (KdAccelNode *)AllocAligned(nAlloc *

sizeof(KdAccelNode));
if (nAllocedNodes > 0) {

memcpy(n, nodes, nAllocedNodes * sizeof(KdAccelNode));
FreeAligned(nodes);

}
nodes = n;
nAllocedNodes = nAlloc;

}
++nextFreeNode;

A leaf node is created (stopping the recursion) either if there are a sufficently
small number of primitives in the region, or if the maximum depth has been reached.
The depth parameter starts out as the tree’s maximum depth and is decremented
at each level.�
Initialize leaf node if termination criteria met ���
if (nPrims <= maxPrims || depth == 0) {

nodes[nodeNum].initLeaf(primNums, nPrims, mailboxPrims, zone);
return;

}

KdTreeAccel 154
MemoryArena 670

Primitive 130

160 Primitives and Intersection Acceleration [Ch. 4

As described above, KdAccelNode::initLeaf() uses a memory zone to allo-
cate space for variable-sized arrays of primitives. Because the zone used here is
a member variable, the memory it allocates will naturally all be freed when the
KdTreeAccel is destroyed.�
KdTreeAccel Private Data ��� �
MemoryArena zone;

If we are building an internal node, it is necessary to choose a splitting plane,
classify the primitives with respect to that plane, and recurse.�
Initialize interior node and continue recursion ����

Choose split axis position for interior node ��
Create leaf if no good splits were found ��
Classify primitives with respect to split ��
Recursively initialize children nodes �
Our implementation chooses a split based on a cost model that estimates the

computational expense of performing ray intersection tests, including the time
spent traversing nodes of the tree and the time spent on ray–primitive intersec-
tion tests. Its goal is to minimize the total cost; we implement a greedy algorithm
that minimizes the cost for the node individually. The estimated cost is computed
for several candidate splitting planes in the node, and the split that gives the lowest
cost is chosen.

The idea behind the cost model is straightforward: at any node of the tree we
could just create a leaf node for the current region and geometry. In that case,
any ray that passes through this region will be tested against all of the overlapping
primitives and will incur a cost of

N

∑
i � 1

ti � i � �

where N is the number of primitives in the region and ti � i � is the time to compute a
ray–object intersection with the ith primitive.

The other option is to split the region. In that case, rays will incur the cost

tt � p0

Nb

∑
i � 1

ti � bi � � p1

Na

∑
i � 1

ti � ai � �

where tt is the time it takes to traverse the interior node and determine which of
the children the ray passes through, p0 and p1 are the probabilities that the ray
passes through each of the two regions, bi and ai are the indices of primitives below
and above the splitting plane, and and Nb and Na are the number of primitives that
overlap the regions below and above the splitting plane, respectively. The choice of
splitting plane affects both the two probabilities as well as the number of primitives
on each side of the split.

In our implementation, we will make the simplifying assumption that ti � i � is the
same for all of the primitives; this is probably not too far from reality, and any error
that it introduces doesn’t seem to affect the performance of this accelerator very
much. Another possibility would be to add a method to Primitive that returns an
estimate of the number of CPU cycles its intersection test requires. The intersection

Sec. 4.4] Kd-Tree Accelerator 161

162 BoundEdge

Figure 4.9: Split A into B and C...

cost ti and the traversal cost tt can be set by the user; their default values are 80
and 1, respectively. Ultimately, it is the ratio of these two values that primarily
determines the behavior of the tree-building algorithm.

Finally, it is worth giving a slight preference to choosing splits where one of the
children has no primitives overlapping it, since rays passing through these regions
can immediately advance to the next kd-tree node without any ray–primitive inter-
section tests. Thus, the revised costs for unsplit and split regions are respectively

tiN

tt � � 1 � be � � pbNbti � paNati � �

where be is a “bonus” value that is zero unless one of the two regions is completely
empty, in which case it takes on a value between zero and one.

The probabilities p0 and p1 are easily computed using ideas from geometric
probability. It can be shown that for a convex volume A contained in another convex
volume B, the conditional probability that a random ray passing through B will also
pass through A is the ratio of their surface areas, sA and sB:

p � A �B ��� sA

sB
�

Because we are interested in the cost for rays passing through the interior node, we
can use this result directly. Thus, given a split of a region A into two sub-regions B
and C (see Figure 4.9), the probability that a ray passing through A will also pass
through either of the subregions is easily computed.

The last problem to address is how to generate candidate splitting positions and
how to efficiently compute the cost for each candidate. It can be shown that the
minimum cost with this model will be attained at a split that is coincident with one
of the faces of one of the primitives bounding boxes–there’s no need to consider
splits at intermediate positions. (To convince yourself of this, consider what hap-
pens to the cost function between the edges of the faces). Here, we will consider
all bounding box faces inside the region for all three axes.

The cost for checking all of these candidates thus can be kept relatively low with
a carefully-structured algorithm. To compute these costs, we will sweep across the
projections of the bounding boxes onto each axis and keep track of which gives the
lowest cost (Figure 4.10.) Each bounding box has two edges on each axis, each of
which is represented by a BoundEdge structure. This structure records the position

162 Primitives and Intersection Acceleration [Ch. 4

Figure 4.10: Projections of bbox edges onto the axis...

of the edge along the axis, whether it represents the start or end of a bounding box
(going from low to high along the axis), and which primitive it is associated with.�
KdAccelNode Declarations ��� �
struct BoundEdge {�

BoundEdge Public Methods �
Float t;
int primNum;
enum { START, END } type;

};
�
BoundEdge Public Methods ��� �
BoundEdge(Float tt, int pn, bool starting) {

t = tt;
primNum = pn;
type = starting ? START : END;

}

We will need at most 2 * prims.size() BoundEdges when computing costs
for any tree node, so we allocate the memory for the edges for all three axes once
and then reuse it for each node that is created. The fragment

�
Free working memory

for kd-tree construction � , not included here, frees this space after the tree has been
built.�
Allocate working memory for kd-tree construction ���
BoundEdge *edges[3];
for (int i = 0; i < 3; ++i)

edges[i] = new BoundEdge[2*prims.size()];

After determining the estimated cost for creating a leaf, KdTreeAccel::buildTree()
loops over the three axes and computes the cost function for each candidate split.
bestAxis and bestOffset record the axis and bounding box edge index that gave
the lowest cost so far, bestCost. invTotalSA is initialized to the reciprocal of the
node’s surface area; its value will be used when computing the probabilities of rays
passing through each of the candidate children nodes.

Sec. 4.4] Kd-Tree Accelerator 163

38 BBox
162 BoundEdge
678 INFINITY
27 Vector

�
Choose split axis position for interior node ���
int bestAxis = -1, bestOffset = -1;
Float bestCost = INFINITY;
Float oldCost = isectCost * nPrims;
Vector d = nodeBounds.pMax - nodeBounds.pMin;
Float invTotalSA = 1.f / (2.f * (d.x*d.y + d.x*d.z + d.y*d.z));�
Choose which axis to split along ��
Initialize edges for axis ��
Compute cost of all splits for axis to find best �
text here
more than just text, we don’t loop over the axes any more. Some of the

previous discussion is therefore wrong.
Always split along the axis with the largest extent; works well in practice, saves

the work of checking all of them.�
Choose which axis to split along ���
int axis;
if (d.x > d.y && d.x > d.z) axis = 0;
else axis = (d.y > d.z) ? 1 : 2;

First the edges array for the current axis is initialized using the bounding boxes
of the overlapping primitives. The array is then sorted from low to high along the
axis so that we can sweep over the box edges from first to last.�
Initialize edges for axis ���
for (int i = 0; i < nPrims; ++i) {

int pn = primNums[i];
const BBox &bbox = allPrimBounds[pn];
edges[axis][2*i] = BoundEdge(bbox.pMin[axis], pn, true);
edges[axis][2*i+1] = BoundEdge(bbox.pMax[axis], pn, false);

}
sort(&edges[axis][0], &edges[axis][2*nPrims]);

The C++ standard library routine sort() requires that the structure being sorted
define an ordering; this is easily done with the BoundEdge::t values. However,
one subtlety is that if the BoundEdge::t values match, it is necessary to try to break
the tie by comparing the node’s types; this is necessary since sort() depends on
the fact that a < b and b < a is only true if a == b.�
BoundEdge Public Methods ��� �
bool operator<(const BoundEdge &e) const {

if (t == e.t)
return (int)type < (int)e.type;

else return t < e.t;
}

Given the sorted array of edges, we’d like to quickly compute the cost function
for a split at each one of them. The probabilities for a ray passing through each
child node are easily computed, and the number of primitives on each side of the
split is tracked by nBelow and nAbove. At the first edge, all primitives must be
above that edge by definition, so nAbove is initialized to nPrims and nBelow is
zero. When we encounter a starting edge of a bounding box, we know that the

BoundEdge 162

164 Primitives and Intersection Acceleration [Ch. 4

enclosed primitive will overlap the volume below the potential split at that edge.
When we encounter an ending edge, the enclosed primitive must be above the edge.
The tests at the start and end of the loop body update the primitive counts for these
cases.�
Compute cost of all splits for axis to find best ���
int nBelow = 0, nAbove = nPrims;
for (int i = 0; i < 2*nPrims; ++i) {

if (edges[axis][i].type == BoundEdge::END) --nAbove;
Float edget = edges[axis][i].t;
if (edget > nodeBounds.pMin[axis] &&

edget < nodeBounds.pMax[axis]) {�
Compute cost for split at ith edge �

}
if (edges[axis][i].type == BoundEdge::START) ++nBelow;

}

Given all of this information, the cost for a particular split is easily computed.
belowSA and aboveSA are hold the surface areas of the two candidate child bounds;
they are easily computed by adding up the areas of the six faces. Given an axis
number, we can use the otherAxis array to quickly compute the indices of the
other two axes without branching.�
Compute cost for split at ith edge ���
int otherAxis[3][2] = { {1,2}, {0,2}, {0,1} };
int otherAxis0 = otherAxis[axis][0], otherAxis1 = otherAxis[axis][1];
Float belowSA = 2 * (d[otherAxis0] * d[otherAxis1] +

(edget - nodeBounds.pMin[axis]) * (d[otherAxis0] + d[otherAxis1]));
Float aboveSA = 2 * (d[otherAxis0] * d[otherAxis1] +

(nodeBounds.pMax[axis] - edget) * (d[otherAxis0] + d[otherAxis1]));
Float pBelow = belowSA * invTotalSA, pAbove = aboveSA * invTotalSA;
Float eb = (nAbove == 0 || nBelow == 0) ? emptyBonus : 0.f;
Float cost = traversalCost + isectCost * (1.f - eb) *

(pBelow * nBelow + pAbove * nAbove);�
Update best split if this is lowest cost so far �

�
Update best split if this is lowest cost so far ���
if (cost < bestCost) {

bestCost = cost;
bestAxis = axis;
bestOffset = i;

}

It may happen that there are no possible splits found in the tests above (Fig-
ure 4.11 illustrates a case where this may happen). In this case, there isn’t a single
candidate position at which to split the node. Refining such a node doesn’t do any
good, since both children will still have the same number of overlapping primitives.
When we detect this condition, we give up and make a leaf node.

It is also possible that the best split will have a cost that is still higher than the
cost for not splitting the node at all. If it is substantially worse and there aren’t too
many primitives, a leaf node is made immeditately. Otherwise, badRefines keeps

Sec. 4.4] Kd-Tree Accelerator 165

162 BoundEdge
156 KdAccelNode::initLeaf()
166 prims0
166 prims1

Figure 4.11: No useful splits possible due to overlap. Three bounding boxes over-
lap the node, yet none of their edges are inside it.

track of how many bad splits have been made so far above the current node of the
tree. It’s worth allowing a few slighly poor refinements since later splits may be
able to find much better ones given a smaller subset of primitives to consider.�
Create leaf if no good splits were found ���
if (bestCost > oldCost) ++badRefines;
if ((bestCost > 4.f * oldCost && nPrims < 16) ||

bestAxis == -1 || badRefines == 3) {
nodes[nodeNum].initLeaf(primNums, nPrims, mailboxPrims, zone);
return;

}

Having chosen a split position, the edges can be used to quickly classify the
primitives as being above, below, or on both sides of the split in the same way as
was done to keep track of nBelow and nAbove in the code above.�
Classify primitives with respect to split ���
int n0 = 0, n1 = 0;
for (int i = 0; i < bestOffset; ++i)

if (edges[bestAxis][i].type == BoundEdge::START)
prims0[n0++] = edges[bestAxis][i].primNum;

for (int i = bestOffset+1; i < 2*nPrims; ++i)
if (edges[bestAxis][i].type == BoundEdge::END)

prims1[n1++] = edges[bestAxis][i].primNum;

Recall that the node number of the “below” child of this node is the current node
number plus one. After the recursion has returned from that side of the tree, the
nextFreeNode offset is used for the “above” child. The only other important de-
tail here is that the prims0 memory is passed directly for re-use by both children,
while the prims1 pointer is advanced forward first. This is necessary since the
current invocation of KdTreeAccel::buildTree() depends on its prims1 values
being preserved over the first recursive call to KdTreeAccel::buildTree() be-
low, since it must be passed as a parameter to the second call. However, there is no
corresponding need to preserve the edges values or to preserve prims0 beyond its
immediate used in the first recursive call.

BBox 38
BBox::IntersectP() 137

Intersection 131
KdAccelNode::aboveChild 155

KdAccelNode::initInterior() 157
KdTreeAccel 154

KdTreeAccel::buildTree() 159
KdTreeAccel::nextFreeNode 158

KdTreeAccel::nodes 158
Ray 36

166 Primitives and Intersection Acceleration [Ch. 4

�
Recursively initialize children nodes ���
Float tsplit = edges[bestAxis][bestOffset].t;
nodes[nodeNum].initInterior(bestAxis, tsplit);
BBox bounds0 = nodeBounds, bounds1 = nodeBounds;
bounds0.pMax[bestAxis] = bounds1.pMin[bestAxis] = tsplit;
buildTree(nodeNum+1, bounds0,

allPrimBounds, prims0, n0, depth-1, edges, prims0, prims1 + nPrims, badRefines);
nodes[nodeNum].aboveChild = nextFreeNode;
buildTree(nodes[nodeNum].aboveChild, bounds1, allPrimBounds,

prims1, n1, depth-1, edges, prims0, prims1 + nPrims, badRefines);

Thus, much more space for the prims1 array of integers for storing the overlap-
ping primitive numbers is needed than for the prims0 array, which only needs to
handle the primitives at a single level at a time.�
Allocate working memory for kd-tree construction ��� �
int *prims0 = new int[prims.size()];
int *prims1 = new int[(maxDepth+1) * prims.size()];

4.4.3 Traversal

Figure 4.12 shows the basic process of ray traversal through the tree. Intersecting
the ray with the tree’s overall bounds gives initial tmin and tmax values, marked
with “x”s in the figure. As with the grid accelerator, if the ray misses the scene
bounds, we can quickly return false. Otherwise, we begin to descend into the
tree, starting at the root. At each interior node, we determine which of the two
children the ray enters first, and process both children in order. Traversal ends
either when the ray exits the tree or when the closest intersection is found.�
KdTreeAccel Method Definitions ��� �
bool KdTreeAccel::Intersect(const Ray &ray,

Intersection *isect) const {�
Compute initial parametric range of ray inside kd-tree extent ��
Prepare to traverse kd-tree for ray ��
Traverse kd-tree nodes in order for ray �

}

The algorithm starts by finding the overall parametric range � tmin � tmax � of the
ray’s overlap with the tree, exiting immediately if there is no overlap.�
Compute initial parametric range of ray inside kd-tree extent ���
Float tmin, tmax;
if (!bounds.IntersectP(ray, &tmin, &tmax))

return false;

Before tree traversal starts, a new mailbox id is found for the ray and the the
reciprocals of the components of the direction vector are precomputed so that it
is possible to order to replace divides with multiplies in the main traversal loop.
The array of KdToDo structures is used to record the nodes yet to be processed for
the ray; it is ordered so that the last active entry in the array is the next node that
should be considered. The maximum number of entries needed in this array is

Sec. 4.4] Kd-Tree Accelerator 167

Figure 4.12: Traversal of a ray through the kd-tree: the ray is intersected with
the bounds of the tree, giving an initial parametric � tmin � tmax � range to consider.
Because this range is non-empty, we need to consider the two children of the root
node, here. The ray first enters the child on the right, labeled “near”, where it has
a parametric range � tmin � tsplit � . If the near node is a leaf with primitives in it,we
intersect the ray with the primitives; otherwise we process its children nodes. If
no hit is found, or if a hit is found beyond � tmin � tsplit � , then the far node, on the
left, is processed. This sequence continues–processing tree nodes in a depth-first,
front-to-back traversal–until the closest intersection is found or the ray exits the
tree.

KdAccelNode 155
KdAccelNode::IsLeaf() 157

KdTreeAccel::curMailboxId 154
KdTreeAccel::nodes 158

Ray::d 35
Ray::maxt 36

Vector 27

168 Primitives and Intersection Acceleration [Ch. 4

the maximum depth of the kd-tree; the array size used below should be more than
enough in practice.

XXX load ray.o into a Point here so compiler knows won’t be modified?
XXX�
Prepare to traverse kd-tree for ray ���
int rayId = curMailboxId++;
Vector invDir(1.f/ray.d.x, 1.f/ray.d.y, 1.f/ray.d.z);
#define MAX_TODO 64
KdToDo todo[MAX_TODO];
int todoPos = 0;

�
KdTreeAccel Declarations ��� �
struct KdToDo {

const KdAccelNode *node;
Float tmin, tmax;

};

The traversal continues through the nodes, processing a single leaf or interior
node each time through the loop.

XXX uncomment and do no book stats stuff XXX�
Traverse kd-tree nodes in order for ray ���
bool hit = false;
const KdAccelNode *node = &nodes[0];
while (node != NULL) {�

Bail out if we found a hit closer than the current node �
if (!node->IsLeaf()) {�

Process kd-tree interior node �
}
else {�

Check for intersections inside leaf node ��
Grab next node to process from todo list �

}
}
return hit;

An intersection may have been previously found in a primitive that overlaps
multiple nodes. If the intersection was outside the current node when first detected,
it is necessary to keep traversing the tree until we come to a node where tmin is
beyond the intersection; only then is it certain that there is no closer intersection
with some other primitive.�
Bail out if we found a hit closer than the current node ���
if (ray.maxt < tmin) break;

For interior tree nodes the first thing to do is to intersect the ray with the node’s
splitting plane and determine if one or both of the children nodes needs to be pro-
cessed and in what order the ray passes through them.�
Process kd-tree interior node ����

Compute distance along ray to split plane ��
Get node children pointers for ray ��
Advance to next child node, possibly enqueue other child �

Sec. 4.4] Kd-Tree Accelerator 169

155 KdAccelNode
157 KdAccelNode::SplitAxis()
157 KdAccelNode::SplitPos()
35 Ray::o

Figure 4.13: The position of the origin of the ray with respect to the splitting plane
can be used to determine which of the node’s children should be processed first. If
a ray like r1 is “below” side of the splitting plane, we should process the “below”
chilld before the “above” child, and vice versa.

The parametric distance to the split plane is computed in the same manner as
was done in computing the intersection of a ray and an axis-aligned plane for the
ray–bounding box test.�
Compute distance along ray to split plane ���
int axis = node->SplitAxis();
Float tplane = (node->SplitPos() - ray.o[axis]) * invDir[axis];

Now it is necessary to determine the order the ray encounters the children nodes,
so that the tree is traversed in front-to-back order along the ray. Figure 4.13 shows
the geometry of this computation. The position of the ray’s origin with respect to
the splitting plane is enough to distinguish between the two cases, ignoring for now
the case where the ray doesn’t actually pass through one of the two nodes.�
Get node children pointers for ray ���
const KdAccelNode *firstChild, *secondChild;
int belowFirst = ray.o[axis] <= node->SplitPos();
if (belowFirst) {

firstChild = node + 1;
secondChild = &nodes[node->aboveChild];

}
else {

firstChild = &nodes[node->aboveChild];
secondChild = node + 1;

}

It may not be necessary to process both children of this node. Figure 4.14 shows
some configurations where the ray only passes through one of the children that
need to be handled. The ray will never miss both children, since otherwise the
current interior node should never have been traversed.

The first if test in the code below corresponds to the left side of the figure:
only the near node needs to be processed if it can be shown that the ray doesn’t
overlap the far node because it faces away from the far node or doesn’t overlap it
because tsplit � tmax. The right side of the figure shows the similar case tested in the
second if test: the near node may not need processing if the ray doesn’t overlap it.

KdToDo::node 168
KdToDo::tmax 168
KdToDo::tmin 168

170 Primitives and Intersection Acceleration [Ch. 4

Figure 4.14: Two cases where both children of a node don’t need to be processed
because the ray doesn’t overlap them. On the left, the top ray intersects the splitting
plane beyond the ray’s tmax position and thus doesn’t enter the far child. The bottom
ray is facing away from the splitting plane, indicated by a negative tsplit value. On
the right, the ray intersects the plane before the ray’s tmin value, indicating that the
near plane doesn’t need processing.

Otherwise, the else clause handles the case of both children needing processing;
the near node will be processed next and the far node goes on the todo list.�
Advance to next child node, possibly enqueue other child ���
if (tplane > tmax || tplane < 0)

node = firstChild;
else if (tplane < tmin)

node = secondChild;
else {�

Enqueue secondChild in todo list �
node = firstChild;
tmax = tplane;

}
�
Enqueue secondChild in todo list ���
todo[todoPos].node = secondChild;
todo[todoPos].tmin = tplane;
todo[todoPos].tmax = tmax;
++todoPos;

If the current node is a leaf, intersection tests are performed against the prim-
itives in the leaf, though the mailbox test makes it possible to avoid re-testing
primitives that have already been considered for this ray.

Further Reading 171

139 GridAccel
157 KdAccelNode::nPrimitives()
155 KdAccelNode::onePrimitive
155 KdAccelNode::primitives
168 KdToDo::node
168 KdToDo::tmax
168 KdToDo::tmin
154 KdTreeAccel
141 MailboxPrim
141 MailboxPrim::lastMailboxId
131 Primitive::Intersect()
36 Ray

�
Check for intersections inside leaf node ���
u_int nPrimitives = node->nPrimitives();
if (nPrimitives == 1) {

MailboxPrim *mp = node->onePrimitive;�
Check one primitive inside leaf node �

}
else {

MailboxPrim **prims = node->primitives;
for (u_int i = 0; i < nPrimitives; ++i) {

MailboxPrim *mp = prims[i];�
Check one primitive inside leaf node �

}
}

Finally, we check the mailbox id of the ray, and call the Primitive::Intersect()
routine.�
Check one primitive inside leaf node ���
if (mp->lastMailboxId != rayId) {

mp->lastMailboxId = rayId;
if (mp->primitive->Intersect(ray, isect))

hit = true;
}

After doing the intersection tests at the leaf node, the next node to process is
loaded from the todo array. If no more nodes remain, then we know that the ray
passed through the tree without hitting anything.�
Grab next node to process from todo list ���
if (todoPos > 0) {

--todoPos;
node = todo[todoPos].node;
tmin = todo[todoPos].tmin;
tmax = todo[todoPos].tmax;

}
else

break;

Like the GridAccel, the KdTreeAccel has a specialized intersection method for
shadow rays which is not shown here. It is largely similar to the KdTreeAccel::Intersect()
method, just calling Primitive::IntersectP() method and returning true as
soon as it finds any intersection without worrying about finding the closest one.�
KdTreeAccel Public Methods ��� �
bool IntersectP(const Ray &ray) const;

KdTreeAccel 154

172 Primitives and Intersection Acceleration [Ch. 4

����� ���� � � � ��� � � �
After the introduction of the ray tracing algorithm, an enormous amount of re-

search was done to try to find effective ways to speed it up, primarily by devel-
oping improved ray tracing acceleration structures. Arvo and Kirk’s chapter in
An Introduction to Ray Tracing summarizes the state of the art as of 1989. Ray
Tracing News, www.acm.org/tog/resources/RTNews/, is an excellent resource
for general ray tracing information and has particularly useful discussion about
implementation issues and tricks of the trade.

Clark first suggested using bounding volumes to cull collections of objects for
standard visible-surface determination algorithms (Clark 1976). Building on this
work, Rubin and Whitted developed the first hierarchical data structures for scene
representation for fast ray tracing (Rubin and Whitted 1980). Weghorst et al’s pa-
per discussed the trade-offs of using various shapes for bounding volumes and sug-
gested projecting objects to the screen and using a z-buffer rendering to accelerate
eye rays (Weghorst, Hooper, and Greenberg 1984).

Fujimoto et al were the first to intorduce uniform voxel grids, similar to what
we describe in this chapter (Fujimoto, Tanaka, and Iwata 1986). Snyder and Barr
described a number of key improvements to this approach, and showed their use for
rendering extremely complex scenes (Snyder and Barr 1987). Hierarchical grids
were first described by Jevans and Wyvill (Jevans and Wyvill 1989). More recent
techniques for hierarchical grids were developed by Cazals et al and Klimaszewski
and Sederberg (Cazals, Drettakis, and Puech 1995; Klimaszewski and Sederberg
1997).

Glassner introduced the use of octrees for ray intersection acceleration (Glass-
ner 1984); this approach was more robust to scenes with non-uniform distribu-
tions of geometry. The kd-tree was first described by Kaplan (?). Kaplan’s tree
construction algorithm always split nodes down their middle. A better approach
for building trees and the basis for the method used in the KdTreeAccel was in-
truced by MacDonald and Booth (MacDonald and Booth 1990), who estimated
ray–node traversal probabilities using relative surface areas. Naylor has also writ-
ten on general issues of constructing good kd-trees (Naylor 1993). Havran and
Bittner (Havran and Bittner 2002) have recently revisited many of these issues and
introduced some useful improvements. Adding a bonus factor for tree nodes that
are completely empty was suggested by Hurley et al (Hurley, Kapustin, Reshetov,
and Soupikov 2002).

Jansen first described the efficient ray traversal algorithm for kd-trees (Jansen
1986); Arvo has also investigated these issues (Arvo 1988). Sung and Shirley de-
scribe a ray traversal algorithm’s implementation for a BSP-tree accelerator (Sung
and Shirley 1992); our KdTreeAccel traversal code is loosely based on theirs.

An early object subdivision approach was the hierarchial bounding volumes of
Goldsmith and Salmon (Goldsmith and Salmon 1987). They also were the first to
introduce techniques for estimating the probability of a ray intersecting a bounding
volume based on the volume’s surface area.

Arnaldi et al and Amanatides and Woo came up with mailboxing (Arnaldi, Priol,
and Bouatouch 1987; Amanatides and Woo 1987).

Kay Kajiya (Kay and Kajiya 1986).
Arvo and Kirk 5D position direction subdivision (Arvo and Kirk 1987).

Exercises 173

Figure 4.15: If a bounding box of the overlapping geometry is stored in each voxel
for fast rejection of unnecessary ray–primitive intersection tests, an alternative to
checking for ray–bounding box intersection is to find the bounding box of the ray
inside the voxel (shown here with a dashed line) and test to see if that overlaps the
geometry bound.

Kirk and Arvo introduced the unifying principle of meta-hierarchies (Kirk and
Arvo 1988); they showed that by implementing acceleration data structures to con-
form to the same interface as is used for primitives in the scene, it’s easy to mix and
match multiple intersection schemes in a scene without needing to have particular
knowledge of it.

Smits on fast ray–box intersection, general issues of efficient ray tracing (Smits
1998).

Papers by Woo, Pearce, etc. with additional clever tricks�
� � � � � � � �

4.1 Try using bounding box tests to improve the grid’s performace: inside each
grid voxel, store the bounding box of the geometry that overlaps the voxel.
Use this bounding box to quickly skip intersection tests with geometry if the
ray doesn’t intersect the bound. Develop criteria based on the number of
primitives in a voxel and the size of their bound with respect to the voxel’s
bound to only do the bounding box tests for voxels where doing so is likely
to improve performance. When is this extra work worthwhile?

4.2 Rather than computing a ray–bounding box intersection for the technique
described in the previous exercise, it can be more efficient to check to see if
the bounding box of a ray’s implement ray bound in each voxel; then check
for overlap of ray bound with world bound of the objects first–very cheap
test...

4.3 Rewrite the
�
Find stepAxis for stepping to next voxel � fragment to com-

pute the stepping axis in the obvious way (with a few comparisons and
branches). Evaluate the performance benefit of lrt’s table-based approach
on several CPU’s. What do the results tell you about the architecture of each
CPU? How do your results vary if you compare 4 or 5 numbers instead of
just 3?

GridAccel 139
KdTreeAccel 154

174 Primitives and Intersection Acceleration [Ch. 4

4.4 Generalize the grid implementation in this chapter to be hierarchical: refine
voxels that have an excessive number of primitives overlapping them to in-
stead hold a finer sub-grid to store its geometry. (See for example Jevans
and Wyvill’s paper for a basic approach to this problem (Jevans and Wyvill
1989).)

4.5 Develop a more complex hierarchial grid implementation, following the ap-
proach of either Cazals et al (Cazals, Drettakis, and Puech 1995) or Kli-
maszewski and Sederberg (Klimaszewski and Sederberg 1997). How does it
compare to hierarchical grids based on Jevans and Wyvill’s approach?

4.6 Implement a primitive list “accelerator” that just stores an array that holds
all of the primitives and loops over all of them for every intersection test.
How much does using this accelerator make the system slow down? Is this
accelerator ever faster than the GridAccel or KdTreeAccel? Describe a
contrived example where the primitive list would be faster than a grid or
kd-tree even for a complex scene.

4.7 Implement smarter overlap tests for building accelerators. Using objects’
bounding boxes to determine which grid cells and which sides of a kd-tree
split they overlap can hurt the performance of the accelerators and cause un-
necessary intersection tests. (Recall Figure 4.5.) Add a bool Shape::Overlaps(const
BBox &) const method to the shape interface that takes a world-space bound-
ing box and determines if the shape truly overlaps the given bound. A default
implementation could get the world bound from the shape and use that for
the test and specialized versions could be written for frequently-used shapes.
Implement this method for Spheres and Triangles and modify the acceler-
ators to call it. Measure the change in lrt’s performance.

4.8 Fix the KdTreeAccel so that it doesn’t always immediately refine all prim-
itives before building the tree. For example, one approach is to build addi-
tional kd-trees as needed, storing these sub-trees in the hierarchy where the
original unrefined primitive was. Implement this approach, or come up with
a better technique to address this problem and measure the change in running
time and memory use for a variety of scenes.

4.9 Investigate alternative cost functions for building kd-trees for the KdTreeAccel.
How much can a poorly cost function hurt its performance? How much im-
provement can be had compared to the current one?

4.10 Geometry caching: hold limited amount in memory, discard as needed and
call Primitive::Refine() later if geometry is needed again. LRU scheme...

4.11 The grid and kd-tree accelerators both take a 3D region of space, subdivite
it into cells, and record which primitives overlap each cell. Hierarchical
bounding volumes (HBVs) appraoch the problem in a different way, starting
with all of the primitives and progressively partitioning them into smaller
spatially-nearby subsets. This process gives a hierarchy of primitives... XXX

The top node of the hierarchy holds a bound that encompasses all of the
primitives in the scene (see Figure 4.16). It has two or more children nodes,

Exercises 175

130 Primitive

We seem to be missing this figure.

Figure 4.16: The Hierarchical bounding figure?

each of which bounds a subset of the scene. This continues recursively until
the bottom of the tree, at which point the bound around a single primitive
is stored. Read Goldsmith and Salmon’s paper about building HBV hierar-
chies and implement their approach as an Accelerator in lrt. Compare its
performance against the grid and kd-tree accelerators.

4.12 Meta hierarchies: The idea of using spatial data structures can be general-
ized to include spatial data structures that themselves hold other spatial data
structures, rather than just primitives. Not only could we have a grid that
has sub-grids inside the grid cells that have many primitives in them (thus
partially solving the adaptive refinement problem), but we could also have
the scene organized into a HBV where the leaf nodes are grids that hold
smaller collections of spatially-nearby primitives. Such hybrid techniques
can bring the best of a variety of spatial data structure-based ray intersection
acceleration methods. In lrt, because both geometric primitives and inter-
section accelerators inherit from the Primitive base class and thus provide
the same interface, it’s easy to mix and match in this way.

4.13 Disable the mailbox test in the grid or kd-tree accelerator and measure how
much lrt slows down when rendering various scenes. How effective is mail-
boxing? How many redundant intersection tests are performed without it?
One alternative to mailboxing is to update the rays � tmin � tmax � range for the
accelerator cell that it is currently in, so that the primitives will ignore inter-
sections outside that range and may be able to avoid performing a complete
intersection test if no intersection is possible in the current range. How does
the performance of that approach compare to mailboxing?

4.14 There is a subtle bug in the mailboxing schemes for both the grid and the kd-
tree that may cause intersections to be missed after a few billion rays have
been traced. Describe a scenario where this might happen and suggest how
this bug could be fixed. How likely is this bug to cause an incorrect result to
be returned by the accelerator?

��� �

181 Spectrum

� � � � � � � � � � � � ���

In order to describe how light is represented and sampled to compute images,
we will first establish some background in radiometry. Radiometry is the area of
study of the propagation of electromagnetic radiation in environments. The wave-
lengths of electromagnetic radiation between (approximately) 370nm and 730nm
account for light visible to the human visual system and are of particular interest in
rendering. The lower wavelengths, λ � 400nm are the blue-ish colors, the middle
wavelengths λ � 550nm are the greens, and the upper wavelengths λ � 650nm are
the reds.

We will introduce four key radiometric quantities–flux, intensity, irradiance, and
radiance–that describe electromagnetic radiation. By evaluating the amount of ra-
diation arriving on the camera’s image plane, we can accurately model the pro-
cess of image formation. These radiometric quantities generally vary according
to wavelength, and are described by a spectral power distribution (SPD), which
is a function of wavelength, λ. This chapter starts by describing the Spectrum
class that lrt uses to represent SPDs. We will then introduce basic concepts of
radiometry and some theory behind light scattering from surfaces.

For now, we will ignore the effects of smoke, fog, and all other atmospheric
phenomena and assume that the scene is a collection of surfaces in a vacuum.
These restrictions will be relaxed in Chapter 12.

���
� � � ��� � � � � � � � � � ����� ��� � � �
�
color.h* ���
#include "lrt.h"�
Spectrum Declarations � ��� �

178 Color and Radiometry [Ch. 5

400 500 600 700
Wavelength

0

50

100

B
ri

gh
tn

es
s

400 500 600 700
Wavelength

0

0.2

0.4

0.6

B
ri

gh
tn

es
s

Figure 5.1: Spectral power distributions of a fluorescent light (top) and the re-
flectance of lemon skin (bottom). Wavelengths around 400nm are blue-ish colors,
greens and yellows are in the middle range of wavelengths, and reds have wave-
lengths around 700nm. The fluorescent light’s SPD is even spikier than shown
here, where the SPDs have been binned into 10nm ranges; it emits much of its illu-
mination at single frequencies.The y-axis of the lemon graph is labeled wrong,
and the text is REALLY small.

�
color.cpp* ���
#include "color.h"�
Spectrum Method Definitions �
The SPDs of real-world objects can be quite complicated; Figure 5.1 shows

a graph of the spectral distribution of emission from a fluorescent light and the
spectral distribution of the reflectance of lemon skin. Given such functions, we
would like a compact, efficient, and accurate way to represent them. A number of
approaches have been developed that are based on finding good basis functions to
represent SPDs. The idea behind basis functions is to map the infinite-dimensional
space of possible SPD functions to a low-dimensional space of coefficients c i ��� .
For example, a trivial basis function is the constant function B � λ �
	 1. An arbitrary
SPD would be represented by a single coefficient c equal to its average value, so
that its basis function approximation would be cB � λ ��	 c. This is obviously a poor
approximation, since it has no chance to account for the SPD’s possible complexity.

It is often convenient to limit ourselves to linear basis functions. This means that
the basis functions are pre-determined functions of wavelength and aren’t them-
selves parameterized. For example, if we were using Gaussians as basis functions

Sec. 5.1] Spectral Representation 179

and wanted to have a linear basis, we need to set their respective widths and central
wavelengths ahead of time. If we allowed the widths and center positions to vary
based on the SPD we were trying to fit, we would be performing non-linear approx-
imation. Though non-linear basis functions can naturally adapt to the complexity
of SPDs, they tend to be less computationally efficient. Also, the theory of non-
linear approximation is very difficult, and even an introduction would be beyond
the scope of this book. Because it is not a primary goal of lrt to provide the most
comprehensive spectral representations, we will only implement infrastructure for
linear basis functions.

Given a set of linear basis functions Bi, coefficients ci for a SPD S � λ � can be
computed by

ci � �
λ

Bi � λ � S � λ � dλ � (5.1.1)

so that
S � λ � � ∑

i
ciBi � λ � �

Measured SPDs of real-world objects are often given in 10nm increments; this
corresponds to a step-function basis:

B � λ � a � b � �
1 : a � λ � b
0 : otherwise

Another common basis function is the delta function that evaluates the SPD at
single wavelengths. Others that have been investigated include polynomials and
Gaussians.

Given an SPD and its associated set of linear basis function coefficients, a num-
ber of operations on the spectral distributions can be easily expressed directly in
terms of the coefficients. For example, to compute the coefficients c �i for the SPD
given by multiplying a scalar k with a SPD S � λ � , where the coefficients for S � λ �
are ci, we have:

c �i � �
λ

Bi � λ � � kS � λ � � dλ

c �i � k �
λ

Bi � λ � S � λ � dλ

c �i � kci

Such a multiplication might be used to adjust the brightness of a light source. Sim-
ilarly, for two SPDs S1 � λ � and S2 � λ � represented by coefficients c1

i and c2
i I don’t

like numerical superscripts; they’re too confusing and look like powers, the
sum S1 � λ � � S2 � λ � can be shown to be

c �i � ∑c1
i � c2

i �
Thus, by converting to a basis function representation, a number of otherwise
potentially-tricky operations with SPDs are made straightforward.

We will often need to multiply two SPDs together. For example, the product
of the SPD of light arriving at a surface with the SPD of the surface’s reflectance
gives the SPD of light reflected from the surface. In general, the coefficients for

Spectrum 181

180 Color and Radiometry [Ch. 5

the SPD representing the product of two SPDs doesn’t work out so cleanly, even
with linear basis functions:

ci � �
λ

Bi � λ � � S1 � λ � S2 � λ � � dλ

� �
λ

Bi � λ �
�
∑

j

c1
j B j � λ ��� �

∑
k

c2
kBk � λ ��� dλ

� ∑
j
∑
k

c1
jc

2
k �

λ
Bi � λ � B j � λ � Bk � λ � dλ

The integrals of the product of the three basis functions can be precomputed and
stored in n matrices of size n2 each, where n is the number of basis functions. Thus,
n3 multiplications are necessary to compute the new coefficients. Alternatively, If
one of the colors is known ahead of time (e.g. a surface’s reflectance), we can
precompute an matrix S defined so that the Si � j element is

Si � j � �
λ

S1 � λ � Bi � λ � B j � λ � �
Then, multiplication with another SPD is just a matrix-vector multiply with S and
the vector c2

i , requiring n2 multiplications.
In lrt, we will choose computational efficiency over generality and further limit

the supported basis functions to be orthonormal. This means that for i �� j,

�
λ

Bi � λ � B j � λ � dλ � 0

and �
λ

Bi � λ � Bi � λ � dλ � 1 �
Under these assumptions, the coefficients for the product of two SPDs is just the
product of their coefficients

ci � c1
i c2

i �
requiring only n multiplications.

XXX need to note, though, that the coefficients for the product of two SPDs
will not in general have the same values as the products of their coefficients:

Other than requiring that the basis functions used be linear and orthonormal, lrt
places no further restriction on them. In fact, lrt operates purely on basis function
coefficients: colors are specified in input files and texture maps as coefficients and
lrt can write out images of coefficients–almost no knowledge of the particular
basis functions being used is needed.

5.1.1 Spectrum Class

The Spectrum class holds a compile-time fixed number of basis function coeffi-
cients, given by COLOR_SAMPLES.�
Global Constants ��� �
#define COLOR_SAMPLES 3

Sec. 5.1] Spectral Representation 181

180 COLOR SAMPLES

�
Spectrum Declarations ���
class Spectrum {
public:�

Spectrum Public Methods ��
Spectrum Public Data �

private:�
Spectrum Private Data �

};
�
Spectrum Private Data ���
Float c[COLOR_SAMPLES];

Two Spectrum constructors are provided, one initializing a spectrum with the
same value for all coefficients, and one initializing it from an array of coefficients.�
Spectrum Public Methods ���
Spectrum(Float intens = 0.) {

for (int i = 0; i < COLOR_SAMPLES; ++i)
c[i] = intens;

}
�
Spectrum Public Methods ��� �
Spectrum(Float cs[COLOR_SAMPLES]) {

for (int i = 0; i < COLOR_SAMPLES; ++i)
c[i] = cs[i];

}

A variety of arithmetic operations on Spectrum objects are supported; the im-
plementations are all quite straightforward. First are operations to add pairs of
spectral distributions.�
Spectrum Public Methods ��� �
Spectrum &operator+=(const Spectrum &s2) {

for (int i = 0; i < COLOR_SAMPLES; ++i)
c[i] += s2.c[i];

return *this;
}

�
Spectrum Public Methods ��� �
Spectrum operator+(const Spectrum &s2) const {

Spectrum ret = *this;
for (int i = 0; i < COLOR_SAMPLES; ++i)

ret.c[i] += s2.c[i];
return ret;

}

Similarly, subtraction, multiplication and division of spectra is defined component-
wise. We won’t include all of the code for those cases, or for multiplying or divid-
ing them by scalar values, since there’s little additional value to seeing it all.

this text needs work
While this method is redundant given the operators defined so far, for perfor-

mance critical sections of code where one would like to update a Spectrum with

COLOR SAMPLES 180
Spectrum 181

Spectrum::c 181

182 Color and Radiometry [Ch. 5

a weighted value of another Spectrum, (s = w*s2;), the AddWeighted() method
can do the same computation more efficiently. Many compilers are not able to op-
timize the computation as well if it’s written using the operators above, since they
lead to the creation of a temporary Spectrum to hold the product, which is then
assigned to the result.�
Spectrum Public Methods ��� �
void AddWeighted(Float w, const Spectrum &s) {

for (int i = 0; i < COLOR_SAMPLES; ++i)
c[i] += w * s.c[i];

}

We also provide the obvious equality test.�
Spectrum Public Methods ��� �
bool operator==(const Spectrum &sp) const {

for (int i = 0; i < COLOR_SAMPLES; ++i)
if (c[i] != sp.c[i]) return false;

return true;
}

We frequently want to know if a spectrum is “black”. If, for example, a surface
has zero reflectance, we can avoid casting reflection rays that will eventually be
multiplied by zeroes.�
Spectrum Public Methods ��� �
bool Black() const {

for (int i = 0; i < COLOR_SAMPLES; ++i)
if (c[i] != 0.) return false;

return true;
}

Also useful are functions that take the square root of a spectrum or raise the
components of a Spectrum to a given power (note that the power is also given as a
Spectrum, to allow component-wise powers Pow() is not used, do we need it?).
Because the product of two spectra is computed with products of their coefficients,
taking the square root of the coefficients gives the square root of the SPD. The
square root of a spectrum is used to approximate Fresnel phenomena in Chapter 9.�
Spectrum Public Methods ��� �
Spectrum Sqrt() const {

Spectrum ret;
for (int i = 0; i < COLOR_SAMPLES; ++i)

ret.c[i] = sqrtf(c[i]);
return ret;

}
�
Spectrum Public Methods ��� �
Spectrum Pow(const Spectrum &e) const {

Spectrum ret;
for (int i = 0; i < COLOR_SAMPLES; ++i)

ret.c[i] = c[i] > 0 ? powf(c[i], e.c[i]) : 0.f;
return ret;

}

Sec. 5.1] Spectral Representation 183

677 Clamp()
180 COLOR SAMPLES
181 Spectrum
181 Spectrum::c

And for volume rendering...�
Spectrum Public Methods ��� �
Spectrum operator-() const;
friend Spectrum Exp(const Spectrum &s);

Some portions of the image-processing pipeline will want to clamp a spectrum
to ensure that its coefficients are within some allowable range.�
Spectrum Public Methods ��� �
Spectrum Clamp(Float low, Float high) const {

Spectrum ret;
for (int i = 0; i < COLOR_SAMPLES; ++i)

ret.c[i] = ::Clamp(c[i], low, high);
return ret;

}

Finally, we provide a useful debugging routine to check if any of the coefficients
of an SPD is NaN. This frequently happens when code accidentaly divides by zero.�
Spectrum Public Methods ��� �
bool IsNaN() const {

for (int i = 0; i < COLOR_SAMPLES; ++i)
if (isnan(c[i])) return true;

return false;
}

5.1.2 XYZ Color

A remarkable property of the human visual system makes it possible to repre-
sent colors with just three floating-point numbers. The tristimulus theory of color
perception says that all visible SPDs can be accurately represented for human ob-
servers with three values, xλ, yλ, and zλ. Given a SPD S � λ � , these values are com-
puted by convolving it with the spectral matching curves, X � λ � , Y � λ � and Z � λ � :

xλ � �
λ

S � λ � X � λ � dλ

yλ � �
λ

S � λ � Y � λ � dλ

zλ � �
λ

S � λ � Z � λ � dλ �
These curves were determined by the Commission Internationale de l’Éclairge
(CIE) standards body after a series of experiments with human test subjects. and
are graphed in Figure 8.5. It is believed that these matching curves are generally
similar to the responses of the three types of color-sensitive cones in the human
retina. Remarkably, SPDs with substantially different distributions may have very
similar xλ, yλ, and zλ values. To the human observer, such SPDs actually appear
the same visually. Pairs of such spectra are called metamers.

This brings us to a subtle point about color spaces and spectral power distribu-
tions. Most color spaces attempt to model colors that are visible to humans, and

COLOR SAMPLES 180
Spectrum 181

184 Color and Radiometry [Ch. 5

therefore use only three coefficients, exploiting the tristimulus theory of color per-
ception. Although XYZ works well to represent a given SPD to be displayed for
a human observer, it is not a particularly good set of basis functions for spectral
computation. For example, though XYZ values would work well to describe the
perceived color of lemon-skin or a fluorescent light individually (recall Figure 5.1,
which graphs these two SPDs), the product of their respective XYZ values is likely
to give a noticeably different XYZ color than the XYZ value computed by multi-
plying more accurate representations of their SPDs and then computing the XYZ
value.

With that in mind, we will add a method to the Spectrum class that returns the
XYZ values for its SPD. It turns out that when converting a spectrum described
by basis function coefficients in one basis to another basis, the new basis function
coefficients can be written as weighted sums of the old basis function coefficients.
For example, for xλ,

xλ � � S � λ � X � λ � dλ

� �
λ

�
∑

i

ciBi � λ ��� X � λ � dλ

� ∑
i

ci

� �
λ

Bi � λ � X � λ � dλ �
� ∑

i

ciwx � i �
Thus, the weight values wx � i, wy � i and wz � i can be precomputed and stored in an array
for whatever particular basis functions are being used. The Spectrum::XYZ()
method uses these arrays to return the spectrum’s XYZ representation.�
Spectrum Public Methods ��� �
void XYZ(Float xyz[3]) const {

xyz[0] = xyz[1] = xyz[2] = 0.;
for (int i = 0; i < COLOR_SAMPLES; ++i) {

xyz[0] += XWeight[i] * c[i];
xyz[1] += YWeight[i] * c[i];
xyz[2] += ZWeight[i] * c[i];

}
}

Therefore, we now finally need to settle on the default set of SPD basis functions
for lrt. Though not sufficient for high-quality spectral computations, an expedi-
ent choice is to use the spectra of standard red, green, and blue phosphors for
televisions and CRT display tubes. A standard set of these RGB spectra has been
defined for high-definition television; the weights to convert from these RGBs to
XYZ values are below:

this sucks. If the user changes COLOR SAMPLES, it should just work.
Should we actually go ahead and do spectral rendering? How much work
would that be? This is a pretty non-physically based part of LRT right here.
Also the LRT input should be able to convert any given input color data into
its own internal representation. Can the LRT input take RGB, XYZ, and/or
sampled spectral data and use it out of the box?

Sec. 5.2] Basic Radiometry 185

180 COLOR SAMPLES
181 Spectrum
181 Spectrum::c

�
Spectrum Method Definitions ��� �
Float Spectrum::XWeight[COLOR_SAMPLES] = {

0.412453f, 0.357580f, 0.180423f
};
Float Spectrum::YWeight[COLOR_SAMPLES] = {

0.212671f, 0.715160f, 0.072169f
};
Float Spectrum::ZWeight[COLOR_SAMPLES] = {

0.019334f, 0.119193f, 0.950227f
};

For convenience in computing values for XWeight, YWeight and ZWeight for
other spectral basis functions, we will also provide the values of the standard X � λ � ,
Y � λ � , and Z � λ � response curves sampled at 1nm increments from 360nm to 830nm.
�
Spectrum Public Data ���
static const int CIEstart = 360;
static const int CIEend = 830;
static const int nCIE = CIEend-CIEstart+1;
static const Float CIE_X[nCIE];
static const Float CIE_Y[nCIE];
static const Float CIE_Z[nCIE];

The y coordinate of the XYZ color is closely related to luminance, which mea-
sures the percieved brightness of a color. (Luminance is discussed in more detail
in Section 8.3.1.) For the convenience of methods there, we will provide a method
to compute it alone in a separate utility method.�
Spectrum Public Methods ��� �
Float y() const {

Float v = 0.;
for (int i = 0; i < COLOR_SAMPLES; ++i)

v += YWeight[i] * c[i];
return v;

}

The y coordinate also gives a convenient way to order Spectrum instances from
dark to bright.�
Spectrum Public Methods ��� �
bool operator<(const Spectrum &s2) const {

return y() < s2.y();
}

����� � � � � � � ��� � � � � � � �
Radiometry gives us a set of ideas and mathematical tools to describe light prop-

agation and reflection in environments; it forms the basis of the derivation of the
rendering algorithms that will be used throughout the rest of this book. Interest-
ingly enough, radiometry wasn’t originally derived from first principles using the
basic physics of light, but was based on an abstraction of light based on particle

186 Color and Radiometry [Ch. 5

flows. As such, effects like polarization of light do not naturally fit into radiome-
try, though connections have since been made between radiometry and Maxwell’s
equations, giving it a solid basis in physics.

Radiative transfer is the phenomenological study of the transfer of radiant en-
ergy. It is based on radiometric principles and operates at the geometrical optics
level, where macroscopic properties of light suffice to describe how light interacts
with objects much larger than the light’s wavelength. It is not uncommon to in-
corporate results from wave optics models, but these results need to be expressed
in the language of radiative transfer’s basic abstractions.1 In this manner, it is
possible to describe interactions of light with objects whose size is close to the
wavelength of the light and thereby model effects like dispersion and interference.
At an even finer level of detail, quantum mechanics is needed to describe light’s
interaction with atoms. Fortunately, direct simulation of quantum mechanical prin-
ciples is unnecessary for solving rendering problems in computer graphics, so the
intractability of such an approach is avoided.

In lrt, we will assume that geometric optics is an adequate model for the de-
scription of light and light scattering. This leads to a few assumptions about the
behavior of light:

� Linearity: the combined effect of two inputs to an optical system is always
equal to the sum of the effects of each of the inputs individually.

� Energy conservation: more energy is never produced by a scattering event
than there was to start with.

� No polarization: we will ignore polarization of the electromagnetic field;
as such, the only relevant property of light particles is their wavelength (or
frequency). While the radiative transfer framework has been extended to
include the effects of polarization, we will ignore this effect for simplicity.

� No fluorescence or phosphorescence: the behavior of light at one wavelength
is completely independent of light’s behavior at other wavelengths. As with
polarization, it is not too difficult to include these effects, but they would add
little practical value to our system.

� Steady state: light in the environment is assumed to have reached equlibrium,
so its radiance distribution isn’t changing over time. This happens nearly
instantaneously with light in realistic scenes.

The most significant loss from assuming geometric optics is that diffraction and
interference effects cannot easily be accounted for. As noted by Preisendorfer, this
is hard to fix given these assumptions because, for example, the total flux over two
areas isn’t necessarily equal to sum of flux over each individually (Preisendorfer
1965, p. 24).

1Preisendorfer has connected radiative transfer theory to Maxwell’s classical equations describ-
ing electromagnetic fields (Preisendorfer 1965, Chapter 14); his framework both demonstrates their
equivalence and makes it easier to apply results from one world-view to the other. More recent work
was done in this area by Fante (Fante 1981).

Sec. 5.2] Basic Radiometry 187

Figure 5.2: Radiant flux, Φ, measures energy passing through a surface or region
of space. Here, flux from a point light source is being measured at a sphere that
surrounds the light.

5.2.1 Basic quantities

There are four radiometric quantities that are central to rendering:

� Flux

� Irradiance

� Intensity

� Radiance

All of these quantities are generally functions of wavelength. For the remainder of
this chapter, we will not make this dependence explicit, but it is important to keep
in mind.

Radiant flux, also known as power, is the total amount of energy passing through
a surface or region of space per unit time. Its units are J

s (more commonly “Watts”)
and it is normally signified by the symbol Φ. Total emission from light sources is
generally described in terms of flux; Figure 5.2 shows flux from a point light mea-
sured by the total amount of energy passing through the imaginary sphere around
the light. Note that the amount of flux measured on either of the two spheres in
Figure 5.2 is the same–although less energy is passing through any local part of the
large sphere than the small sphere, the greater area of the large sphere accounts for
this.

Irradiance (E) is the area density of flux, W
m2 . For the point light example in

Figure 5.2, irradiance on the outer sphere is less than the irradiance on the inner
sphere, since the area on the outer sphere is larger. In particular, for a sphere in this
configuration that has radius r,

E � Φ
4πr2 �

This explains why received energy from a light falls off with the squared distance
from the light.

188 Color and Radiometry [Ch. 5

A

A1 A2

A

θ

Figure 5.3: Irradiance (E) arriving at a surface varies according to the cosine of
the angle of incidence of illumination, since illumination is over a larger area at
lower incident directions. This effect was first described by Lambert; it is known
as Lambert’s Law.

The irradiance equation can also help us understand the origin of Lambert’s Law,
which says that the amount of light arriving at a surface is related to the cosine
of the angle between the light direction and the surface normal–see Figure 5.3.
Consider a light source with area A and flux Φ that is shining on a surface. If the
light is shining directly down on the surface (left), then the area on the surface
receiving light A1 is equal to A and irradiance at any point inside A1 is

E1 � Φ
A
�

However, if the light is at an angle to the surface (right), the total area on the
surface receiving light is larger. If the area of the light source is small, then the
area receiving flux, A2, is roughly A � cos θ. For points inside A2, the irradiance is
therefore

E2 � Φ cos θ
A

�
This is the origin of the cosine law for radiance.

More formally, to cover the cases like when the emitted flux distribution isn’t
constant, irradiance at a point is actually defined as

E � dΦ
dA

� (5.2.2)

where the differential flux from the light is computed over a differential area re-
ceiving flux.

In order to define the radiometric quantity intensity, we first need to define the
notion of the solid angle. Solid angles are just the extension of two-dimensional
angles in a plane to angle on a sphere. The plane angle is the total angle subtended
by some object with respect to some position; see Figure 5.4. Consider the unit
circle around the point p; if we project the shaded object on to that circle, some

Sec. 5.2] Basic Radiometry 189

p s
c

Figure 5.4: The plane angle of an object c as seen from a point p is equal to the
angle it subtends as seen from p, or equivalently as the length of the arc s on the
unit sphere.

c

s

Figure 5.5: The solid angle s subtended by an object c in three dimensions is
similarly computed by projecting c onto the unit sphere and measuring its area
there.

length of the circle s will be covered by its projection. The arc-length of s (which is
the same as the angle θ) is the angle subtended by the object. Plane angle is given
the unit radians.

The solid angle extends the 2D unit circle to a 3D unit sphere (Figure 5.5). The
total area s is the solid angle subtended by the object. Solid angle is given the
unit steradians. The entire sphere subtends a solid angle of 4π and a hemisphere
subtends 2π.

We will use the symbol ω to describe directions on the unit sphere centered
around some point. (These directions can also be thought of as point on the unit
sphere around p. We will therefore use the convention that ω is always a normal-
ized vector). We can now define intensity, which is flux density per solid angle,

I � dΦ
dω � (5.2.3)

Intensity is generally only used when describing the distribution of light by direc-
tion from point light sources.

Finally, radiance (L) is the flux density per unit area, per unit solid angle. In
terms of flux, it is

L � d2Φ
dω dA �

(5.2.4)

190 Color and Radiometry [Ch. 5

dA
dA

dω

Figure 5.6: Radiance L is defined at a point by the ratio of the differential flux
incident along a direction ω to the differential solid angle dω times the differential
projected area of the receiving point.

x

N
Li

Figure 5.7: Irradiance at a point p is given by the integral of radiance times the
cosine of the incident direction over the entire upper hemisphere above the point.

where dA � is the projected area of dA on a hypothetical surface perpendicular to
ω–see Figure 5.6. All those differential terms don’t need to be as confusing as they
initially appear–just think of radiance as the limit of the measurement of incident
light at the surface as a small cone of incident directions of interest dω becomes
very small, and as the local area of interest on the surface dA also becomes very
small.

Now that we have defined these various units, it’s easy to derive relations be-
tween them. For instance, irradiance at a point p due to radiance over a set of
directions Ω is

E � p � � �
Ω

L � p � ω � cosθdω � (5.2.5)

where L � p � ω � denotes the arriving radiance at position p as seen along direction
ω (see Figure 5.7). (The cosθ term in this integral is due to the dA � term in the
definition of radiance.) We are often interested in irradiance over the hemisphere of
directions about a given surface normal n, H 2 � n � or the entire sphere of directions
S 2.

������� ��� ��� � � � � �� � �	� � � � � � � � � ��������� � �� �

One of the main tasks in rendering is integrating information about the values of
particular radiometric quantities to compute information about other radiometric

Sec. 5.3] Working with Radiometric Integrals 191

c

s

p

Figure 5.8: The projected solid angle subtended by an object c is the cosine-
weighted solid angle that it subtends. It can be computed by finding the object’s
solid angle s, projecting it down to the plane, and measuring its area there. Thus,
the projected solid angle depends on the surface normal where it is being measured,
since the normal orients the plane of projection.

quantities. There are a few important tricks that can be used to make this task
easier.

5.3.1 Integrals over projected solid angle

The various cosine terms in integrals for radiometric quantities can clutter things
up and distract from what is being expressed in the integral. There is an different
way that the integrals can be written that removes this distraction. The projected
solid angle subtended by an object is determined by projecting the object on to the
unit sphere, as is done for solid angle, but then projecting the resulting shape down
on to the unit disk–see Figure 5.8. Integrals over hemispheres of directions with
respect to solid angle can equivalently be written as integrals over projected solid
angles.

The projected solid angle measure is related to the solid angle measure by

dω � � cosθdω �

so the irradiance-from-radiance integral can be written more simply as

E
�
p � n � �

�
H 2 � n � L

�
ω � dω � �

For the rest of this book, we will write integrals over directions in terms of solid
angle, rather than projected solid angle. When reading rendering integrals in other
contexts, however, be sure to be aware of the measure of domain of integration.

Vector 27

192 Color and Radiometry [Ch. 5

z

y

x

φ

θ

Figure 5.9: A given direction vector can be written in terms of spherical coordinates� θ � φ � if the x, y, and z basis vectors are given as well. The spherical angle formulae
make it easy to convert between the two representations.

5.3.2 Integrals over spherical coordinates

It is often convenient to transform integrals over solid angle into integrals over
spherical coordinates � θ � φ � . Recall that an � x � y � z � direction vector can be alterna-
tively written in terms of spherical angles (see Figure 5.9):

x � sinθ cosφ
y � sinθ sinφ
z � cosθ

For convenience, we’ll define two functions that turn θ and φ values into � x � y � z �
direction vectors. The first applies the equations above directly. Notice that these
functions are passed the sine and cosine of θ, but the angle φ. This is because
the sine and cosine of θ are frequently available directly to the calling function
(through a vector dot product, for example).�
Geometry Inline Functions ��� �
inline Vector SphericalDirection(Float sintheta, Float costheta,

Float phi) {
return Vector(sintheta * cosf(phi),

sintheta * sinf(phi), costheta);
}

The second function takes three basis vectors to replace the x, y and z axes and
returns the appropriate direction vector with respect to the coordinate frame that
they define.

Sec. 5.3] Working with Radiometric Integrals 193

678 M PI
27 Vector

�
Geometry Inline Functions ��� �
inline Vector SphericalDirection(Float sintheta, Float costheta,

Float phi, const Vector &x, const Vector &y,
const Vector &z) {

return sintheta * cosf(phi) * x +
sintheta * sinf(phi) * y + costheta * z;

}

The spherical angles for a direction can be found by:

θ � arccos z

φ � arctan
y
z

Corresponding functions are below. Note that SphericalTheta() assumes that
the vector v has been normalized before being passed in.�
Geometry Inline Functions ��� �
inline Float SphericalTheta(const Vector &v) {

return acosf(v.z);
}

�
Geometry Inline Functions ��� �
inline Float SphericalPhi(const Vector &v) {

return atan2f(v.y, v.x) + M_PI;
}

In order to write an integral over solid angle in terms of an integral over � θ � φ � ,
we need to be able to express the relationship between the differential area of a
set of directions dω and the differential area of a � θ � φ � pair–see Figure 5.10. The
differential area dω is the product of the differential lengths of the sides of dω,
sinθdφ and dθ. Therefore,

dω � sin θdθ dφ �
We can thus see that the irradiance integral over the hemisphere (Equation 5.2.5

with Ω � H 2 � n �) can equivalently be written

E � p � n ��� � 2π

0
� π � 2

0
L � p � θ � φ � cos θ sin θdθ dφ

So if the radiance is the same from all directions, this simplifies to E � πL.
Just as we found irradiance in terms of incident radiance, we can also compute

the total flux emitted from some object over the hemisphere about the normal by
integrating over the object’s surface area A:

Φ � �
A
�

H 2 � n �
L � p � ω � cosθdω dA

5.3.3 Integrals over area

One last transformation of integrals that can simplify computation is to turn inte-
grals over directions into integrals over area. Consider the irradiance integral again
(Equation 5.2.5), where there is a quadrilateral with constant outgoing radiance and

194 Color and Radiometry [Ch. 5

z

y

x

φ

θ

φd

dθsin θ dA

sin θ dφ
dθ

Figure 5.10: The differential area dA subtended by a differential solid angle is the
product of the differential lengths of the two edges sinθdφ and dθ. The resulting
relationship, dω � sinθdθdφ, is the key to converting between integrals over solid
angles and integrals over spherical angles.

where we’d like to compute the resulting irradiance at a point p. The easiest way
to write this integral is over the area of the quadrilateral; writing it as an integral
over directions is less straightforward, since given a particular direction, the com-
putation to determine if the quadrilateral is visible in that direction is non-trivial.

Differential area is related to differential solid angle by

dω � dA cos θ
r2 (5.3.6)

where θ is the angle between the surface normal of dA and r is the distance from p
to dA (see Figure 5.11).

We will not derive this result here, but it can be understood intuitively: if dA
is at distance 1 from p and is aligned exactly so that it is facing down dω, then
dω � dA, θ � 0, and Equation 5.3.6 holds. As dA moves farther away from p, or
as it rotates so that it’s not aligned with the direction of dω, the r2 and cos θ terms
compensate accordingly to reduce dω.

Therefore, we can write the irradiance integral for the quadrilateral source as

E � p � � �
A

L cosθi
cos θo dA

r2

where θi is the angle between the surface normal at p and the direction from p to
the point p � on the light, and θo is the angle between the surface normal at p � on the
light and the direction from p � to p (see Figure 5.12.)

����� � ��� � �	��� � ��� ��� � � � �

When light in an environment is incident on a surface, the surface scatters the
light, re-reflecting some of it back into the environment. For example, the skin of a
lemon mostly absorbs light in the blue wavelengths, but reflects most of light in the

Sec. 5.4] Surface Reflection 195

x

θ
dA

dω

r

Figure 5.11: The differential solid angle subtended by a differential area dA is
equal to dA cos θ

�
r2, where θ is the angle between dA’s surface normal and the

vector to the point p and r is the distance from p to dA.

x

N

θi

oθ

Figure 5.12: To compute irradiance at a point p from a quadrilateral source, it’s
easier to integrate over the surface area of the source than to integrate over the
irregular set of directions that it subtends. The relationship between solid angles
and areas given by Equation 5.3.6 lets us go back and forth between the two ap-
proaches.

196 Color and Radiometry [Ch. 5

N

oω iω

Figure 5.13: The bidirectional reflectance distribution function (BRDF) is a four-
dimensional function over pairs of directions ωi and ωo that describes how much
incident light along ωi is scattered from the surface in the direction ωo.

red and green wavelengths (recall the lemon skin reflectance SPD in Figure 5.1.)
Therefore, when it is illuminated with white light, its color is yellow. The skin
has pretty much the same color no matter what direction it’s being observed from,
although for some directions a highlight is visible, where it is more white than
yellow.

In contrast, the color seen in a mirror depends almost entirely on the viewing
direction. At a fixed point on the mirror, as the viewing angle changes, the object
that is reflected in the mirror changes accordingly. Furthermore, mirrors generally
don’t change the color of the object they are reflecting.

5.4.1 The BRDF

There are a few concepts in radiometry that give formalisms for describing these
types of reflection. One of the most important is the bidirectional reflectance dis-
tribution function, (BRDF). Consider the setting in Figure 5.13: we’d like to know
how much radiance is leaving the surface in the direction ωo toward the viewer,
Lo � p � ωo � as a result of incident radiance along the direction ωi, Li � p � ωi � . The
reader is warned not to be misled by diagrams like Figure 5.13, however. These
kinds of diagrams frequently show the scattering situation from a side view, but we
always need to be aware that the vectors ωo and ωi are not always co-planar with
the surface normal N.

If the direction ωi is considered a differential cone of directions, we can compute
the resulting differential irradiance at p by

dE � p � ωi ��	 L � p � ωi � cosθi dωi � (5.4.7)

A differential amount of radiance will be reflected in the direction ωo. An im-
portant assumption made in radiometry is that the system is linear: doubling the
amount of energy going into it will lead to a doubling of the amount going out of
it. This is a reasonable assumption as long energy levels are not extreme.

Therefore, the reflected differential radiance is

dLo � p � ωo � ∝ dE � p � ωi � �

Sec. 5.4] Surface Reflection 197

The constant proportionality for the particular pair of directions ωi and ωo is de-
fined to be the surface’s BRDF:

fr � p � ωo � ωi ��� dL � p � ωo �
dE � p � ωi � � dL � p � ωo �

L � p � ωi � cosθidωi
(5.4.8)

Physically-based BRDFs have two important qualities:

1. Reciprocity: for all pairs of directions ωi and ωo, fr � p � ωi � ωo � � fr � p � ωo � ωi � .
2. Energy conservation: the total energy of light reflected is less than or equal

to the energy of incident light. For all directions ω,

�
S2

fr � p � ωo � ω � cosθdω � 1 �

The surface’s bidirectional transmittance distribution function (BTDF) can be
defined in a similar manner to the BRDF. The BTDF is generally denoted by
fr � p � ωo � ωi � , where ωi and ωo are in opposite hemispheres around p. Interestingly,
the BTDF does not obey reciprocity; we will discuss this in detail in Section 9.2.

For convenience in equations, we will denote the BRDF and BTDF considered
together as f � p � ωo � ωi � ; we will call this the bidirectional scattering distribution
function (BSDF). Chapter 9 is entirely devoted to describing BSDFs that are used
in graphics.

Using the definition of the BSDF, we have

dLo � p � ωo ��� Li � p � ωi � f � p � ωo � ωi � cos θidωi �
We can integrate this over the sphere of incident directions around p to compute
the outgoing radiance in direction ωo due to the incident illumination at p: explain
where the absolute value signs come from in this equation; they’re not in the
previous one...

Lo � p � ωo � � �
S2

Li � p � ωi � f � p � ωo � ωi ��� cos θi � dωi (5.4.9)

This is a fundamental equation in rendering; it describes how an incident distribu-
tion of light at a point is transformed into an outgoing distribution, based on the
scattering properties of the surface. It is often called the scattering equation when
the sphere S 2 is the domain (as it is here), or the reflection equation, when just the
upper hemisphere H 2 � n � is being integrated over.

Spectrum 181

198 Color and Radiometry [Ch. 5

����� ���� � � � ��� � � �
Hall’s book summarizes the state-of-the-art in spectral representations through

1989 (Hall 1989) and Glassner’s Principles of Digital Image Synthesis covers the
topic through the mid-90s (?). Meyer was the one of the first researchers to closely
investigate spectral representations in graphics; XXX. Later, Raso and Fournier
proposed a polynomial representation for spectra (Raso and Fournier 1991).

Our discussion of SPD representation with basis functions is based on Peercy’s
1993 SIGGRAPH paper (Peercy 1993). In that paper, Peercy chose particular basis
functions in a scene-dependent manner: by looking at the SPDs of the lights and
reflecting objects in the scene, a small number of basis functions that could accu-
rately represent the scene’s SPDs were found using characteristic vector analysis.

Another approach to spectral representation was investigated by Sun et al; they
partitioned SPDs into a smooth base SPD and a set of spikes (Sun, Fracchia, Drew,
and Calvert 2001). Each part was represented differently, using basis functions that
worked well for each particular type of function.

He and Stam have use wave optics stuff in graphics (He, Torrance, Sillion,
and Greenberg 1991; Stam 1999). Also cite appropriate part of Preisendorfer and
Chandrasekhar.

Non-linear approximation paper (cited in Ren’s paper...)XXX
Arvo has investigated the connection between rendering algorithms in graphics

and previous work in transport theory, which applies classical physics to parti-
cles and their interactions to predict their overall behavior and global illumination
algorithms (Arvo 1993; Arvo 1995).

XXX where to get real-world SPD data
McCluney’s book on radiometry (McCluney 1994) is an excellent introduction

to the topic. Preisendorfer also covers radiometry in an accessible manner and
delves into the relationship between radiometry and the physics of light (Preisendor-
fer 1965). Moon and Spencer’s books (Moon and Spencer 1936; Moon and Spencer
1948) and Gershun’s article (Gershun 1939) are classic early introductions to ra-
diometry. Lambert’s seminal early writings about photometry from the mid-18th
century were recently translated by DiLaura (Lambert 2001).�

� � � � � � � �

5.1 Experiment with different basis functions for spectral representation. How
many coefficients are needed for accurate rendering of tricky situations like
fluorescent lighting? How much does the particular choice of basis affect the
number of coefficients needed?

5.2 Generalize the Spectrum class so that it’s not limited to orthonormal basis
functions. Implement Peercy’s approach of choosing basis functions based
on the main SPDs in the scene. Does the improvement in accuracy make
up for the additional computational expense of computing the products of
spectra.

5.3 Generalize the Spectrum class further to support non-linear basis functions.
Compare the results to more straightforward spectral representations.

Exercises 199

5.4 Compute the irradiance at a point due to a unit-radius disk h units directly
above its normal with constant outgoing radiance of 10 J/m2 sr. Do the com-
putation twice, once as an integral over solid angle and once as an integral
over area. (Hint: if the results don’t match and you write the integral over
the disks’ area as an integral over radius r and an integral over angle θ, see
Section XXX in the Monte Carlo chapter for a hint about XXXXXX.)

5.5 Similarly, compute the irradiance at a point due to a square quadrilateral with
outgoing radiance of 10 J/m2 sr that has sides of length 1 and is 1 unit directly
above it along its surface normal.

�����

202 Camera

� � � � � � � � �

In addition to describing the objects that make up the scene, we also need to
describe how the scene is viewed and how its three-dimensional representation is
mapped to a two-dimensional image. This chapter describes the Camera class and
its implementations, which generate primary to sample the scene and generate the
image. By generating these rays in different ways, lrt can create many types of
images of the same 3D scene. We will show a few implementations of the Camera
interface, each of which generates rays in a different way.

� �
� � � � ��� � � � �
�

�
camera.h* ���
#include "lrt.h"
#include "color.h"
#include "sampling.h"
#include "geometry.h"
#include "transform.h"�
Camera Declarations �

�
camera.cpp* ���
#include "lrt.h"
#include "camera.h"
#include "film.h"
#include "mc.h"�
Camera Method Definitions �
We will define an abstract Camera base class that holds generic camera options

and defines an interface for all camera implementations to provide.��� �

Ray 36

202 Camera Models [Ch. 6

Figure 6.1: The camera’s clipping planes give the range of space along the z axis
that will be images; objects in front of the hither plane or beyond the yon plane will
not be visible in the image. Setting the clipping planes to tightly encompass the
objects in the scene is important for many scanline algorithms, but is less important
for ray-tracing.

�
Camera Declarations ���
class Camera {
public:�

Camera Interface ��
Camera Public Data �

protected:�
Camera Protected Data �

};

The main method that camera subclasses need to implement is Camera::GenerateRay(),
which generates a ray for a given image sample. It is important that the camera
normalize the direction component of the returned ray—many other parts of the
system will depend on this behavior.

This method also returns a floating-point value that gives a weight for the effect
that light arriving at the film plane along the generated ray will have on the final
image. Most cameras will always set this to one, although cameras that simulate
real physical lens systems might need to set this value based on the optics and
geometry of the lens system being simulated.�
Camera Interface ���
virtual Float GenerateRay(const Sample &sample,

Ray *ray) const = 0;

The base Camera constructor takes a number of parameters that are appropriate
for all camera types. They include the transformation that places the camera in the
scene, and the near and far clipping planes, which give distances along the camera
space z axis that delineate the scene being rendered1 . Any geometric primitives in
front of the near plane or beyond the far plane will not be rendered; see Figure 6.1.

Real-world cameras have a shutter that opens for a short period of time to expose
the film to light; one result of this non-zero exposure time is that objects that move
during the film exposure time are blurred; this effect is called motion blur. To

1Although the names “near” and “far” make clear intuitive sense for these planes, graphics sys-
tems frequently refer to them as “hither” and “yon”, respectively. Although there is probably a
historic reason for this WHAT MIGHT THAT BE?, a practiacal reason is that near and far are
reserved keywords in Microsoft’s C and C++ compilers.

Sec. 6.1] Camera Model 203

202 Camera
294 Film
43 Transform
55 Transform::GetInverse()

model this effect in lrt, each ray has a time value associated with it–by sampling
the scene over a range of times, motion can be captured. Thus, all Cameras store a
shutter open and shutter close time. Note, however, that lrt does not currently
support motion blur. We provide a properly sampled time value to allow for
this future expansion, however.

Finally, Cameras contain an instance of the Film class to represent the final
image to be computed. Film will be described in Chapter 8.�
Camera Method Definitions ��� �
Camera::Camera(const Transform &world2cam, Float hither, Float yon,

Float sopen, Float sclose, Film *f) {
WorldToCamera = world2cam;
CameraToWorld = WorldToCamera.GetInverse();
ClipHither = hither;
ClipYon = yon;
ShutterOpen = sopen;
ShutterClose = sclose;
film = f;

}
�
Camera Protected Data ���
Transform WorldToCamera, CameraToWorld;
Float ClipHither, ClipYon;
Float ShutterOpen, ShutterClose;

�
Camera Public Data ���
Film *film;

6.1.1 Camera Coordinate Spaces

We have already made use of two important modeling coordinate spaces, object
space and world space. We will now introduce three more useful coordinate spaces
that have to do with the camera and imaging. Including object and world space, we
now have the following. (See Figure 6.2.)

� Object space: This is the coordinate system in which geometric primitives
are defined. For example, spheres in lrt are defined to be centered at the
origin of object space.

� World space: While each primitive may have its own object space, there is
a single world space that the objects in the scene are placed in relation to.
Each primitive has an object to world transformation that determines how it
is located in world space. World space is the standard frame that all spaces
are defined in terms of.

� Camera space: A virtual camera is placed in the scene at some world-space
point with a particular viewing direction and “up” vector. This defines a new
coordinate system around that point with the origin at the camera’s location.
The z axis is mapped to the viewing direction, and the y axis mapped to the up
direction.(see Section ?? on page ??.) This is a handy space for reasoning

Camera 202

204 Camera Models [Ch. 6

Figure 6.2: A handful of camera-related coordinate spaces help to simplify the
implementation of Cameras. The camera class holds transformations between
them. Scene objects in world space are viewed by the camera, which sits at the
origin of camera space and looks down the � z axis. Objects between the hither
and yon planes are projected onto the image plane at z � hither in camera space.
The image plane is at z � 0 in raster space, where x and y range from � 0 � 0 � to� xResolution � 1 � yResolution � 1 � . Normalized device coordinate (NDC) space
normalizes raster space so that x and y range from � 0 � 0 � to � 1 � 1 � .

Sec. 6.2] Projective Camera Models 205

202 Camera
294 Film

about which objects are potentially visible to the camera. For example, if an
object’s camera-space bounding box is entirely behind the z � 0 plane (and
the camera doesn’t have a field of view wider than 180 degrees), the object
will not be visible to the camera.

� Screen space: Screen space is defined on the image plane. The camera
projects objects in camera space onto the image plane; the parts inside the
screen window are visible in the image that is generated. What are the x and
y extents of this space? This is confusing later I think. Depth z values in
screen space range from zero to one, corresponding to points at the near and
far clipping planes, respectively. Note that although this is called “screen”
space, it is still a 3D coordinate system, since z values are meaningful.

� NDC Normalized device coordinate space: This is the coordinate system for
the actual image being rendered. In x and y, this space ranges from � 0 � 0 � to� 1 � 1 � , with � 0 � 0 � being the upper left corner of the image. Depth values are
the same as in screen space and a linear transformation converts from screen
to NDC space.

� Raster space: This is almost the same as NDC space, except the x and y
coordinate range from � 0 � 0 � to � xResolution � 1 � yResolution � 1 � .

All cameras store a world space to camera space transformation; this can be used
to transform primitives in the scene into camera space. The origin of camera space
is the camera’s position, and the camera looks down the camera space z axis. The
projective cameras in the next section will use matrices to transform between all
of these spaces as needed, but cameras with unusual imaging characteristics can’t
necessarily represent these transformations with 4x4 matrices.

� ��� � � ��� ��� � � � � � � � ��� � � � �
� �

One of the fundamental parts of 3D computer graphics is the 3D viewing prob-
lem: how a three-dimensional scene is projected onto a two-dimensional image for
display. Most of the classic approaches can be expressed by a 4x4 projective trans-
formation matrix. Therefore, we will introduce a projection matrix camera class
and then define two simple camera models. The first implements an orthographic
projection, and the other implements a perspective projection–these are two classic
and widely-used projections.�
Camera Declarations ��� �
class ProjectiveCamera : public Camera {
public:�

ProjectiveCamera Public Methods �
protected:�

ProjectiveCamera Protected Data �
};

In addition to the world to camera transformation and the projective transfor-
mation matrix, the ProjectiveCamera takes the screen-space extent of the image,
clipping plane distances, a pointer to the Film class for the camera, and additional

Camera 202
Film 294

Film::xResolution 294
Film::yResolution 294
ProjectiveCamera 205

Scale() 47
Transform 43

Transform::GetInverse() 55
Translate() 46

Vector 27

206 Camera Models [Ch. 6

parameters for motion blur and depth of field. Depth of field, the implementation of
which will be shown at the end of this section, simulates blurriness of out-of-focus
objects in real lens systems.�
Camera Method Definitions ��� �
ProjectiveCamera::ProjectiveCamera(const Transform &w2c,

const Transform &proj, const Float Screen[4],
Float hither, Float yon, Float sopen,
Float sclose, Float lensr,
Float focald, Film *f)

: Camera(w2c, hither, yon, sopen, sclose, f) {�
Initialize depth of field parameters ��
Compute projective camera transformations �

}

The ProjectiveCamera implementations pass the projective transformation up
to the base class constructor here. This transformation gives us the camera to screen
projection; from that we can compute most of the others that we need.�
Compute projective camera transformations ���
CameraToScreen = proj;
WorldToScreen = CameraToScreen * WorldToCamera;�
Compute projective camera screen transformations �
RasterToCamera = CameraToScreen.GetInverse() * RasterToScreen;

�
ProjectiveCamera Protected Data ���
Transform CameraToScreen, WorldToScreen, RasterToCamera;

The only non-trivial one of the precomputed transformations is ProjectiveCamera::ScreenToRaster.
Note the composition of transformations where (reading from bottom to top), we
start with a point in screen space, translate so that the upper left corner of the
screen is at the origin, and then scale by the reciprocal of the screen width and
height, giving us a point with x and y coordinates between zero and one (these are
NDC coordinates). Finally, we scale by the raster resolution, so that we end up
covering the raster range from � 0 � 0 � up to the overall raster resolution.
�
Compute projective camera screen transformations ���
ScreenToRaster = Scale(film->xResolution, film->yResolution, 1.f) *

Scale(1.f / (Screen[1] - Screen[0]),
1.f / (Screen[2] - Screen[3]), 1.f) *

Translate(Vector(-Screen[0], -Screen[3], 0.f));
RasterToScreen = ScreenToRaster.GetInverse();

�
ProjectiveCamera Protected Data ��� �
Transform ScreenToRaster, RasterToScreen;

6.2.1 Orthographic Camera

Sec. 6.2] Projective Camera Models 207

294 Film
208 Orthographic()
205 ProjectiveCamera
43 Transform

Figure 6.3: The orthographic view volume is an axis-aligned box in camera space,
defined such that objects inside the region are projected onto the z � hither face of
the box.

�
orthographic.cpp* � �
#include "camera.h"
#include "film.h"
#include "paramset.h"�
OrthographicCamera Declarations ��
OrthographicCamera Definitions �

�
OrthographicCamera Declarations ���
class OrthoCamera : public ProjectiveCamera {
public:�

OrthoCamera Public Methods �
};

The orthographic transformation takes a rectangular region of the scene and
projects it onto the front face of the box that defines the region. It doesn’t give the
effect of foreshortening–objects becoming smaller on the image plane as they get
farther away–but it does leave parallel lines parallel and preserves relative distance
between objects. Figure 6.3 shows how this rectangular volume gives the visible
region of the scene.

The orthographic camera constructor generates the orthographic transformation
matrix with the Orthographic() transformation function, which will be defined
shortly.�
OrthographicCamera Definitions ���
OrthoCamera::OrthoCamera(const Transform &world2cam,

const Float Screen[4], Float hither, Float yon,
Float sopen, Float sclose, Float lensr,
Float focald, Film *f)

: ProjectiveCamera(world2cam, Orthographic(hither, yon),
Screen, hither, yon, sopen, sclose,
lensr, focald, f) {

}

The orthographic viewing transformation leaves x and y coordinates unchanged,
but maps z values at the hither plane to 0 and z values at the yon plane to 1. (See

Scale() 47
Transform 43

Translate() 46
Vector 27

208 Camera Models [Ch. 6

Figure 6.4: orthographic ray generation: raster space to ray...

Figure 6.3.) It is easy to derive: first, the scene is translated along the z axis so that
the near clipping plane is aligned with z � 0. Then, the scene is scaled in z so that
the far clipping plane maps to z � 1. The composition of these two transformations
gives the overall transformation.�
Transform Method Definitions ��� �
Transform Orthographic(Float znear, Float zfar) {

return Scale(1.f, 1.f, 1.f / (zfar-znear)) *
Translate(Vector(0.f, 0.f, -znear));

}

We can now write the code to take a sample point in raster space and turn it
into a camera ray. The Sample::imageX and Sample::imageY components of
the camera sample are raster-space x and y coordinates on the image plane (the
contents of the Sample structure are described in detail in chapter 7. We use fol-
lowing process: first, we transform the raster-space sample position into a point
in camera space; this gives us the origin of the camera ray–a point located on the
near clipping plane. Because the camera-space viewing direction points down the
z axis, the camera space ray direction is � 0 � 0 � 1 � . The ray’s maxt value is set so that
intersections beyond the far clipping plane will be ignored; this is easily computed
since the ray’s direction is normalized. Finally, the ray is transformed into world
space before this method returns.

If depth of field has been enabled for this scene, the fragment
�
Modify ray for

depth of field � takes care of modifying the ray so that depth of field is simulated.
Depth of field will be explained later in this section.

Need to ensure no scaling in camera to world...

Sec. 6.2] Projective Camera Models 209

203 Camera::CameraToWorld
203 Camera::ClipHither
203 Camera::ClipYon
203 Camera::ShutterClose
203 Camera::ShutterOpen
677 Lerp()
207 OrthoCamera
33 Point

206 ProjectiveCamera::RasterToCamera
36 Ray
35 Ray::d
36 Ray::maxt
36 Ray::mint
35 Ray::o
36 Ray::time

239 Sample::imageX
239 Sample::imageY
239 Sample::time
27 Vector

�
OrthographicCamera Definitions ��� �
Float OrthoCamera::GenerateRay(const Sample &sample, Ray *ray) const {�

Generate raster and camera samples �
ray->o = Pcamera;
ray->d = Vector(0,0,1);�
Set ray time value ��
Modify ray for depth of field �
ray->mint = 0.;
ray->maxt = ClipYon - ClipHither;
ray->d = ray->d.Hat();
CameraToWorld(*ray, ray);
return 1.f;

}

The Sample structure tells us what “time” this ray should be traced (again, this
is for a future motion blur expansion). The Sample’s time value ranges between
0 and 1, so we simply use it to linearly interpolate between the provided shutter
open and close times.�
Set ray time value ���
ray->time = Lerp(sample.time, ShutterOpen, ShutterClose);

Once all of the transformation matrices have been set up, we just set up the raster
space sample point and transform it to camera space.�
Generate raster and camera samples ���
Point Pras(sample.imageX, sample.imageY, 0);
Point Pcamera;
RasterToCamera(Pras, &Pcamera);

6.2.2 Perspective Camera
�
perspective.cpp* ���
#include "camera.h"
#include "film.h"
#include "paramset.h"�
PerspectiveCamera Declarations ��
PerspectiveCamera Method Definitions �
The perspective projection is similar to the orthographic projection in that it

projects a volume of space onto a 2D image plane. However, it includes the ef-
fect of foreshortening: objects that are far away are projected to be smaller than
objects of the same size that are closer. Furthermore, unlike the orthographic pro-
jection, the perspective projection also doesn’t preserve distances or angles in gen-
eral, and parallel lines no longer remain parallel. The perspective projection is a
reasonably close match for how the eye and camera lenses generate images of the
three-dimensional world.

Film 294
ProjectiveCamera 205

Transform 43

210 Camera Models [Ch. 6

Figure 6.5: The perspective transformation matrix projects points in camera space
onto the image plane. The x � and y � coordinates of the projected points are equal to
the unprojected x and y coordinates divided by the z coordinate. The projected z �
coordinate is computed so that z points on the hither plane map to z � � 0 and points
on the yon plane map to z � � 1.

�
PerspectiveCamera Declarations ���
class PerspectiveCamera : public ProjectiveCamera {
public:�

PerspectiveCamera Public Methods �
};

�
PerspectiveCamera Method Definitions ���
PerspectiveCamera::PerspectiveCamera(const Transform &world2cam,

const Float Screen[4], Float hither, Float yon,
Float sopen, Float sclose, Float lensr, Float focald,
Float fov, Film *f)

: ProjectiveCamera(world2cam, Perspective(fov, hither, yon),
Screen, hither, yon, sopen, sclose,
lensr, focald, f) {

}

The perspective projection describes perspective viewing of the scene. Points in
the scene are projected onto a viewing plane at z � 1; this is one unit away from
the virtual camera at z � 0)–see Figure 6.5.�
Transform Method Definitions ��� �
Transform Perspective(Float fov, Float n, Float f) {�

Perform projective divide ��
Scale to canonical viewing volume �

}

The process is most easily understood in two steps:

� First, points p in camera space are projected onto the viewing plane. A little
algebra shows that the projected x � and y � coordinates on the viewing plane

Sec. 6.2] Projective Camera Models 211

675 Matrix4x4
677 Radians()
47 Scale()
43 Transform

can be computed by dividing x and y by the point’s z coordinate value. The
projected z depth is remapped so that z values at the hither plane go to 0 and
z values at the yon plane go to 1. The computation we’d like to do is:

x � � x
�
z

y � � y
�
z

z � � f � z � n �
z � f � n � �

Fortunately, all of this can easily be encoded in a four-by-four matrix using
homogeneous coordinates: ���� 1 0 0 0

0 1 0 0
0 0 f

f � n �

f n
f � n

0 0 1 0

�
���

�
Perform projective divide ���
Matrix4x4 *persp =

new Matrix4x4(1, 0, 0, 0,
0, 1, 0, 0,
0, 0, f/(f-n), -f*n/(f-n),
0, 0, 1, 0);

� Second, we account for the angular field of view specified by the user and
scale the � x � y � values on the projection plane so that points inside the field of
view project to coordinates between � � 1 � 1 � on the view plane. (For square
images, both x and y will lie between � � 1 � 1 � in screen space. Otherwise, the
direction in which the image is narrower will map to � � 1 � 1 � and the wider
direction will map to an appropriately larger range of screen-space values.)
The scale that is applied after the projective transformation takes care of
this. (Recall that the tangent is equal to the ratio of the opposite side of a
right triangle to the adjacent side. Here the adjacent side is defined to have
a length of 1, so the opposite side has the length tan � fov

�
2 � . Scaling by the

reciprocal of this length this maps the field of view to range from � � 1 � 1 � .
�
Scale to canonical viewing volume ���
Float invTanAng = 1.f / tanf(Radians(fov) / 2.f);
return Scale(invTanAng, invTanAng, 1) *

Transform(persp);

this is confusing. Doesn’t ortho have the same rastertoscreen transforma-
tion as perspective? Where is the -1 � 1 transformation happening in the
ortho camera? Has anyone tested the ortho camera in a while?

For a perspective projection, rays originate from the sample position on the
hither plane and have the direction given by the vector from � 0 � 0 � 0 � through the
sample position. Therefore, we compute the ray’s direction by subtracting � 0 � 0 � 0 �
from the sample’s camera-space position. In other words, the ray’s vector direction

Camera::CameraToWorld 203
Camera::ClipHither 203

Camera::ClipYon 203
PerspectiveCamera 210

Ray 36
Ray::d 35

Ray::maxt 36
Ray::mint 36

Ray::o 35
Vector 27

212 Camera Models [Ch. 6

is component-wise equal to its point position. Rather than doing a useless subtrac-
tion to convert the point to a direction, we just component-wise initialize the vector
ray->d from the point Pcamera. Because the generated ray’s direction may be
quite short, we scale it up by the inverse of the near clip plane location; although
this isn’t strictly necessary (there’s no particular need for the ray direction to be
normalized), it can be more intuitive when debugging if the ray’s direction has a
magnitude somewhat close to one.

As with the OrthoCamera, the ray’s maxt value is set to lie on the far clipping
plane.�
PerspectiveCamera Method Definitions ��� �
Float PerspectiveCamera::GenerateRay(const Sample &sample,

Ray *ray) const {�
Generate raster and camera samples �
ray->o = Pcamera;
ray->d = Vector(Pcamera.x, Pcamera.y, Pcamera.z);�
Set ray time value ��
Modify ray for depth of field �
ray->d = ray->d.Hat();
ray->mint = 0.;
ray->maxt = (ClipYon - ClipHither) / ray->d.z;
CameraToWorld(*ray, ray);
return 1.f;

}

6.2.3 Depth of Field

Real cameras have lens systems that focus light through a finite-sized aperture onto
the film plane. Because the aperture has finite area, a single point in the scene may
be projected onto an area on the film plane. (And correspondingly, a single point
on the film plane may see different parts of the scene, depending on which part
of the lens it’s receiving light from.) Figure 6.6 shows this effect. The point p1

doesn’t lie on the plane of focus, so is projected through the lens onto an area p �1
on the film plane. The point p2 does lie on the plane of focus, so it projects to
a single point p �2 on the image plane. Therefore, p1 will be blurred on the image
plane while p2 will be in sharp focus.

To understand how to compute the proper ray through an arbitrary point on the
lens, we make the simplifying assumption that we are using a single spherical lens.
Figure 6.7 shows such a lens, as well as many quantities that we will refer to in the
following derivation. These quantities are summarized in the following table:

U Angle of the ray with respect to the lens axis
U � Angle of refracted ray with respect to the lens axis
Φ Angle of sphere normal at hit point with respect to the lens axis
I Angle of incidence of primary ray
I � Angle of incidence of refracted ray
Z distance from the ray’s sphere intersection to the ray’s axis intersection

Z � distance from the ray’s sphere intersection to the refracted ray’s axis intersection
h height of intersection
ε depth of intersection into sphere

Sec. 6.2] Projective Camera Models 213

Figure 6.6: Real-world cameras have a lens with finite aperture and lens controls
that adjust the lens position with respect to the film plane. Because the aperture is
finite, objects in the scene aren’t all imaged onto the film in perfect focus. Here,
the point p1 doesn’t lie on the plane of points in perfect focus, so it images to an
area p �1 on the film and is blurred. The point p2 does lie on the focal plane, so it
images to a point p �2 and is in focus. Both increasing aperture size and increasing
an object’s distance from the focal plane increase its blurriness.

Figure 6.7: Cross-section of a spherical lens.

214 Camera Models [Ch. 6

Note that I � Φ � U and I � = Φ � U � . Now, in order to determine the relationships
between these variables, we first make two simplifying assumptions: R is big, and
the incoming ray is nearly parallel to the lens axis. These assumptions are called
the paraxial assumptions. Two immediate consequences of these assumptions are
that ε � 0 and for most small angular quantities α, sinα � tanα � α.

Now, we simply apply Snell’s law and simplify with our approximations. Snell’s
law gives:

η � sin I � � ηsin I

But by the paraxial approximation, this is

η � I � � η
η � � Φ � U � � � η � Φ � U �

Now, we make use of some angular approximations:

U � tanU � h
z

U � � tanU � � �

h
z �

Φ � sinΦ � �

h
R

Substituting these approximations, we have

η �
�
�

h
R

�
h
z � � � η

�
�

h
R

�
h
z �

Cancelling h and rearranging terms gives

η �
z �

� η
z

�
η � � η

R

Notice that the form of this equation looks like 1
z

� � 1
z � C, which leads directly

to the perspective transformation. Also note that the relationship between z and z �
does not depend on the angle of incidence; all rays through z refract to z � . This is
how lenses are able to focus!

Of course, a real (thin) lens will have two spherical surfaces through which rays
refract. Each surface contributes a η � η

�

R term, so the refractive power of a thin lens
is given by

� η � η � �
�

1
R1

�

1
R2 � � 1

f

f is called the focal length of the lens, and is measured in units of 1
m , which are

sometimes called diopters.
Note that the focal length is not the same as the focal distance. Focal length is

an inherent property of a lens and does not change2 .

2Readers familiar with traditional photography have probably used a zoom lens; these are special
kinds of lenses that do in fact allow the focal length to change. This is accomplished by using
multiple glass lenses and moving them relative to each other. The full lens system then has a focal

Sec. 6.2] Projective Camera Models 215

Figure 6.8: To adjust a camera ray for depth of field, we first compute the distance
along the ray, ft, where it intersects the focal plane. We then shift the ray’s origin
from the center of the lens to the sampled lens position and construct a new ray
(dashed line) from the new origin that still goes through the same point on the
focal plane. This ensures that points on the focal plane remain in focus but that
other points are blurred appropriately.

Focal distance, however, is not fixed and can almost always be changed in any
camera system. A point in space will image through the lens to a finite area on the
film plane, as shown in figure ??. This area is typically circular, and is called the
circle of confusion. The size of the circle of confusion determines how out-of-focus
the point is. Note that this size depends on the size of the aperture; larger apertures
will yield larger circles of confusion. This is why pinhole cameras render the entire
scene perfectly in focus; the infinitessimally small aperture results in extremely
small circles of confusion.

The size of the circle of confusion is also affected by the distance between the
object and the lens. The focal distance is the distance from the lens to the plane
where objects project to a circle of confusion with zero radius. These points will
appear to be perfectly in focus. It is crucial to understand, however, that all types
of film (analog or digital) will tolerate a certain amount of blur. This means that
objects do not have to be exactly on the focal plane to appear in sharp focus. In
the case of computer graphics, this corresponds (roughly) to the circle of confusion
being smaller than a pixel. There will be some minimum and maximum distances
from the lens at which objects will appear in focus; this range is called the lenses
depth of field.

Projective cameras take two extra parameters for depth of field: one sets the size
of the lens aperture and the other sets the focal distance.�
Initialize depth of field parameters ���
LensRadius = lensr;
FocalDistance = focald;

�
ProjectiveCamera Protected Data ��� �
Float LensRadius, FocalDistance;

length that can be adjusted, even though the focal lengths of the individual glass elements remains
fixed.

Camera::ClipHither 203
ConcentricSampleDisk() 515

Point 33
ProjectiveCamera::FocalDistance 215

ProjectiveCamera::LensRadius 215
Ray::d 35

Sample::lensX 239
Sample::lensY 239

216 Camera Models [Ch. 6

The math behind computing circles of confusion and depth of field boundaries
is not difficult; it mostly involves repeated application of similar triangles. Even
so, we can simulate focus in a ray tracer without understanding any of these con-
structions, and in just a few lines of code:�
Modify ray for depth of field ���
if (LensRadius > 0.) {�

Sample point on lens ��
Compute point on plane of focus ��
Update ray for effect of lens �

}

To see why this is so simple, consider how the projective cameras simulate a
pinhole camera: The rays generated for a pinhole camera must all pass through
the pinhole (i.e., the center of the lens. However, for a lens of non-zero radius,
we would like the ray to be able to pass through an arbitrary point on the lens.
Since the camera is pointing down the z axis, we only need to modify the x and y
coordinates of the ray origin to accomplish this.

The ConcentricSampleDisk() function, defined in Chapter 14, takes a � u � v �
sample position in � 0 � 1 � 2 and maps it to the 2D disk with radius 1. To get a point
on the lens, we scale these coordinates by the lens radius. The Sample provides
the � u � v � lens-sampling parameters in the Sample::lensX and Sample::lensY
fields. can we rename these to lensU and lensV?�
Sample point on lens ���
Float lens_x, lens_y;
ConcentricSampleDisk(sample.lensX, sample.lensY, &lens_x, &lens_y);
lens_x *= LensRadius;
lens_y *= LensRadius;

Once we have adjusted the origin of the ray away from the center of the lens,
we need to determine the proper direction for the new ray. We could compute
this using Snell’s law, but the paraxial approximation and our knowledge of focus
makes this much simpler. We know that all rays from our given image sample
through the lens must converge somewhere on the focal plane. Finding this point of
convergence is extremely simple; we just compute it directly for the ray through the
center of the lens. Since rays through the lens center remain straight, no refraction
is required!

Since we know that the focal plane is perpendicular to the z axis and the ray
originates on the near clipping plane, intersecting the lens through the ray center
with the plane is particularly simple. The t value of the intersection is given by:

t � focalDistance � hither
d � r � z

�
Compute point on plane of focus ���
Float ft = (FocalDistance - ClipHither) / ray->d.z;
Point Pfocus = (*ray)(ft);

Now we can compute the ray. The origin is shifted to the sampled point on the
lens and the direction is set so that the ray still passes through the point on the plane
of focus, Pfocus.

Sec. 6.3] Environment Camera 217

202 Camera
205 ProjectiveCamera
35 Ray::d
35 Ray::o

�
Update ray for effect of lens ���
ray->o.x += lens_x;
ray->o.y += lens_y;
ray->d = Pfocus - ray->o;

� ��� �
� � � � � ��� ����� � ��� � � �

�
environment.cpp* ���
#include "camera.h"
#include "film.h"
#include "paramset.h"�
EnvironmentCamera Declarations ��
EnvironmentCamera Definitions �

�
EnvironmentCamera Declarations ���
class EnvironmentCamera : public Camera {
public:�

EnvironmentCamera Public Methods �
private:�

EnvironmentCamera Private Data �
};

One advantage of ray tracing compared to scanline or rasterization rendering
methods is that it’s easy to have unusual image projections; we have great freedom
in how the image sample positions are mapped into ray directions, since the ren-
dering algorithm doesn’t depend on properties such as straight lines in the scene
always projecting to straight lines in the image.

In this section, we will describe a camera model that traces rays in all directions
around a point in the scene, giving a two-dimensional view of everything that is
visible from that point. Consider a sphere around the camera position in the scene;
choosing points on that sphere gives directions to trace rays in. If we parameter-
ize the sphere with spherical coordinates, each point on the sphere is associated
with a � θ � φ � pair, where θ � � 0 � π � and φ � � 0 � 2π � . (See Section 5.3.2 on page 192
for more details on spherical coordinates.) This type of image is particularly use-
ful because it compactly captures a representation of all of the incident light at a
point on the scene. It will be useful later when we discuss environment mapping
and environment lighting: two rendering techniques that are based on image-based
representations of light in a scene.

Notice that the EnvironmentCamera derives directly from the Camera class,
not the ProjectiveCamera class. This is because the environmental projection is
non-linear and cannot be captured by a single 4 � 4 matrix. An image generated
with this kind of projection is shown in Figure 6.9. θ values range from 0 at the
top of the image to π at the bottom of the image, and φ values range from 0 to 2π,
moving from left to right across the image.

All rays generated by this camera have the same origin; for efficiency we com-
pute the world-space position of the camera once in the constructor.

Camera 202
Camera::CameraToWorld 203

Camera::ClipHither 203
Camera::ClipYon 203

EnvironmentCamera 217
Film 294
Point 33
Ray 36

Ray::maxt 36
Ray::mint 36

Ray::o 35
Transform 43

218 Camera Models [Ch. 6

Figure 6.9: An image rendered with the EnvironmentCamera, which traces rays in
all directions from the camera position. The resulting image gives a representation
of all light arriving at that point in the scene, and can be used for image-based
lighting techniques that will be described in Chapters 13 and 16.

�
EnvironmentCamera Definitions ���
EnvironmentCamera::EnvironmentCamera(const Transform &world2cam,

Float hither, Float yon, Float sopen, Float sclose,
Film *film)

: Camera(world2cam, hither, yon, sopen, sclose, film) {
rayOrigin = CameraToWorld(Point(0,0,0));

}
�
EnvironmentCamera Private Data ���
Point rayOrigin;

Note that the EnvironmentCamera still uses the near and far clipping planes to
restrict the value of the ray’s parameter t. In this case, however, these are really
clipping spheres, since all rays originate at the same point and radiate outward.

given the above, don’t we really want to ignore cliphither and clipyon if
we’re trying to sample the environment for lighting?�
EnvironmentCamera Definitions ��� �
Float EnvironmentCamera::GenerateRay(const Sample &sample,

Ray *ray) const {
ray->o = rayOrigin;�
Generate environment camera ray direction ��
Set ray time value �
ray->mint = ClipHither;
ray->maxt = ClipYon;
return 1.f;

}

To compute the � θ � φ � coordinates for this ray, we first compute NDC coodi-
nates from the raster image sample position. These are then scaled up to cover the� θ � φ � range and then the spherical coordinate formula is used to comupte the ray
direction.

Further Reading 219

203 Camera::CameraToWorld
294 Film::xResolution
294 Film::yResolution
678 M PI
35 Ray::d

239 Sample::imageX
239 Sample::imageY
27 Vector

�
Generate environment camera ray direction ���
Float theta = M_PI * sample.imageY / film->yResolution;
Float phi = 2 * M_PI * sample.imageX / film->xResolution;
Vector dir(sinf(theta) * cosf(phi), cosf(theta),

sinf(theta) * sinf(phi));
CameraToWorld(dir, &ray->d);

Our readers familiar with cartography will recognize this is the classic Mercator
projection.

����� ���� � � � ��� � � �
Akenine–Möller and Haines have a particularly well-written derivation of the or-

thographic and perspective projection matrices in Real Time Rendering (Akenine-
Möller and Haines 2002). Other good references for projections are Rogers and
Adams’ Mathematical Elements for Computer Graphics (Rogers and Adams 1990),
Watt and Watt (Watt and Watt 1992), Foley et al (Foley, van Dam, Feiner, and
Hughes 1990) and Eberly’s book on game engine design (Eberly 2001). (Origi-
nally Sutherland sketchpad stuff?)

Potmesil and Chakravarty did early work on depth of field and motion blur
in computer graphics (Potmesil and Chakravarty 1981; Potmesil and Chakravarty
1982; Potmesil and Chakravarty 1983). Cook and collaborators developed a more
accurate model for these effects based on distribution ray tracing; this is the ap-
proach we have implemented in this chapter (Cook, Porter, and Carpenter 1984;
Cook 1986).

Kolb et al investigated simulating complex camera lens systems with ray trac-
ing in order to model the imaging effects of real cameras (Kolb, Hanrahan, and
Mitchell 1995). Another unusual projection method was used by Greene and Heck-
bert for generating images for Omnimax theaters (Greene and Heckbert 1986a).
The EnvironmentCamera in this chapter is similar to the camera model described
by Musgrave (Musgrave 1992).

More about map projections... XXX�
� � � � � � � �

6.1 Moving camera

6.2 Kolb, Mitchell, and Hanrahan have described a camera model for ray tracing
based on simulating the lens system of a real camera, which is comprised
of a set of glass lenses arranged to form an image on the film plane (Kolb,
Hanrahan, and Mitchell 1995). Read their paper and implement a camera
model in lrt that implements theyr algorithm for following rays through
lens systems. Test your implementation with some of the lens description
data from their paper.

�	���

237 Sampler

� � � � � � � � � � � � � ��� � � � � � � �

We will now describe how the Sampler chooses the points at which the image
should be sampled, and how the pixels in the output image are computed from the
radiance values computed for the samples. We saw a glimpse of how these sample
points were used by lrt’s camera model in the previous chapter. The mathematical
background for this process is given by sampling theory: the theory of taking dis-
crete sample values from continuous signals and then reconstructing new signals
from those samples. Most of the previous development of sampling theory has
been for encoding and compressing audio (e.g. over the telephone), and for televi-
sion signal encoding and transmission. In rendering, we face the two-dimensional
instance of this problem, where we’re sampling an image at particular positions by
tracing rays into the scene and then using the reconstructed approximation of the
image function to compute values for the output pixels that form an image when
displayed. It is important to carefully address the sampling problem in a renderer;
a relatively small amount of work in improving sampling can substantially improve
the images that the system generates.

A closely related problem is reconstruction: how to use the samples and the
values that were computed for them to compute values for the pixels in the final
image. Many samples around each pixel may contribute to its final value; the way
in which they are blended together to compute the pixel’s value can also noticeably
affect the quality of the final image.

�	� �

222 Sampling and Reconstruction [Ch. 7

Include that famous Seurat painting with a blowup. Do we need permission?

Figure 7.1: Seurat’s painting blah blah frenchy something. Notice how the overall
painting appears to be a smoothly varying image, while the magnified inset reveals
the pointillistic style.

� �
� � � ��� ��� � � �� ��� �
What is an image? Although this might seem like a simple question, it belies

a rich field of theory called signal processing. Consider first the case of human
vision. The signal leaving the retina is a bunch of dots, one for each cone or rod1.
But we do not perceive the world as an up-close Seurat painting (see Figure ??; we
see a continuous signal! The rods and cones in the eye sample the world, and our
brain reconstructs the world from those samples.

Digital image synthesis is not so different. A renderer also produces a collection
of individual colored dots. These dots are a discrete approximation to a continuous
signal. Of course, this approximation can introduce errors, and the field of signal
processing helps us understand, quantify, and lessen this error.

Everyone would probably agree that we would like as much spatial resolution as
possible. However, in practice, our ability to generate ultra-high resolution images
is limited by things like screen resolution, computational expense, or in the case of
photography, film grain. At first glance, this situation seems pretty hopeless. How
can we hope to capture tiny phenomena in a coarse image?

Of course, we know that the situation is not hopeless; we look at images every
day without trouble. The answer lies in certain properties of the human visual sys-
tem, such as area-averaging and insensitivity to noise. We will not give an overview
of human vision in this book; see Glassner (Glassner 1995) for an introduction bet-
ter reference for human vision.

One simple way to make pictures look their best is just not to display anything
that is wrong. While this might seem obvious, it is not simple to define “wrong”
in this context. In practice, this goal is unattainable because of the aforementioned
discrete approximation. The sampling and reconstruction process introduces error
known as aliasing, which can manifest itself in a variety of ways including jagged
edges, strobing, flashing, flickering, or popping. These errors come up because
the sampling process discards information from the continuous domain. To make
matters worse, the visual system will tend to fill in data where there is none, so we
also need to worry about how the missing data will be interpreted by the viewer.

In the one dimensional case, consider a signal given by a function f � x � where
we can evaluate f at any x � value we choose. Each such x � is a sample position,
and the value of f � x � � is the sample value. The left half of Figure 7.2 shows a set
of samples taken with uniform spacing (indicated by black dots) of a smooth 1D
function. From a set of such samples, � x � � f � x � � � , we’d like to reconstruct a new
signal f̃ that approximates the original function f . On the right side of Figure 7.2 is
a piecewise-linear reconstructed function that approximates f � x � by linearly inter-
polating neighboring sample values (readers already familiar with sampling theory
will recognize this as reconstruction with a hat function). Because the only infor-
mation we have about f comes from the sample values at the positions x � , f̃ is likely

1Of course the human visual system is substantially more complex than this.

Sec. 7.1] Fourier Theory 223

Figure 7.2: By taking a set of point samples of f � x � , we determine its value at
those positions (left). From the sample values, we can reconstruct a function f̃ � x �
which is an approximation to f � x � (right). The sampling theorem, introduced in
Section ??, makes a precise statement about the conditions on f � x � and the num-
ber of samples taken under which f̃ � x � is exactly the same as f � x � . That the exact
function can sometimes be reconstructed exactly from mere point samples is re-
markable.

to not match f perfectly since we have no knowledge of f ’s behavior between the
sample values that we have.

We would like the reconstructed function to match the original function as
closely as possible. The tool we will use to understand the quality of the match
is Fourier analysis. Although we will review the basic concepts here, we hope that
most readers have had some exposure to Fourier analysis already, and we will not
present a full treatise on the subject here. Indeed, that would be a book in itself;
Glassner provides a few useful chapters with a computer graphics angle (Glassner
1995), and Bracewell has a more complete treatment (Bracewell 2000). Students
already very familiar with Fourier analysis are still encouraged to read this sum-
mary, since each presentation (unfortunately) seems to introduce its own notation.

Fourier analysis is based around the Fourier transform, which represents a sig-
nal in “frequency space”. This representation helps us underestand what happens
when a signal is turned into a bunch of samples. Basically, the Fourier transform
decomposes a signal into a weighted sum of sinusoids. Just as a vector in � n can
be projected onto an arbitrary basis, so too can functions be projected onto new
bases.

To understand what this means, first consider the example of vectors in � 3 . The
typical reference frame is some origin O, and three perpendicular unit vectors X,
Y, and Z. Vectors in this space are written as V � � Vx � Vy � Vz � . If we think of
these as weights, we can write V � VxX � VyY � VzZ. Notice, however, that Vx

is just the inner (dot) product of V and X, and so we can alternately write V �� V � X � X � � V � Y � Y � � V � Z � Z.
This idea of taking the inner product of your object and each basis member in

turn generalizes nicely to other spaces, such as the space of functions. For example,
assume we have a 1D function y � f � x � and we would like to represent it as a
weighted sum of basis functions φi � x � : f � x � � ∑i ciφi � x � . We would also like our
basis functions to have the same “perpendicular” property as our vector basis; for
functions the corresponding notion is called orthogonality.

Two functions φi � x � and φ j � x � are orthogonal over some interval Γ � � a � b � if:

� b

a
φi � x � φ j � x � dx �

�
0 i �� j

�� 0 otherwise

224 Sampling and Reconstruction [Ch. 7

Notice that we have taken the compliment of φi � x � , in case it is a complex function.
Should explain this – see PODIS for good explanation.

Now, suppose we want to project a function f � x � onto some given orthogonal
basis � φi � . That is, we would like to write f � x � � ∑i ciφi � x � . By minimizing the
mean squared error of the projection over the interval � a � b � , it can be shown that
the desired ci are:

ci ��� b
a f � x � φi � x �
�

b
a φi � x � φi � x �

7.1.1 Complex Exponentials

In Fourier analysis, the basis set we will chose are the complex exponentials e iωt ,
where i � � � 1. There are two important things to understand about the complex
exponentials. First, these functions are periodic! Euler’s formula is:

eiωt � cos � ωt � � isin � ωt �
From this formulation it is easy to see that the complex exponentials are periodic,
with period T � 2π

ω .
Second, complex exponentials form an orthogonal basis for the space of all 1D

functions! We take an infinite family of complex exponentials Ψn � t � � einωt , where
n

��� . These functions are orthogonal over a full period Γ � � t0 � t0 � 2π
ω � , which

can be seen from the definition of orthogonality:

�
Γ

Ψn � t � Ψm � t � dt � intΓe � inωt eimωt dt

� intΓeiωt � n � m � dt

If n � m, then this is just 2π
ω . If not,

� 1
i � m � n � ωei � m � n � ωt

�
�
�
�

t0 � 2π
ω

t0

� 1
i � m � n � ωei � m � n � ωt0

�
ei2π � m � n �

� 1 �
But the right hand term is zero because of the periodicity of the complex exponen-
tials, so we have orthogonality.

At this point we will skip some details regarding the projection of periodic vs.
aperiodic functions and simply assert that we can project any function x � t � onto the
complex exponentials with the formula:

X � ω ��� 1
2π
� ∞

� ∞
x � t � e � iωt dt (7.1.1)

This new function X is a function of frequency. It tells us how much of each
frequency ω is present in the original signal. For example, a sinusoid x � t � � sin2πt
contains a single frequency ω � 1, and the fourier transform of this x � t � is indeed
a delta function X � ω ��� δ � ω � 1 � sanity check on this.

Sec. 7.2] Sampling Theory 225

BOX SINC
GAUSSIAN GAUSSIAN
CONSTANT DELTA
SINUSOID TRANSLATED DELTA

SHAH SHAH

Table 7.1: Fourier pairs – need better captions and graphs and equations

Equation 7.1.1 is called the Fourier analysis equation, or sometimes just the
Fourier transform. We can also transform from the frequency domain back to the
spatial domain using the Fourier synthesis equation, or the inverse Fourier trans-
form:

x � t � � � ∞

� ∞
X � ω � eiωt dt (7.1.2)

The reader should be warned that the constants in front of these integrals are not
always the same in different derivations. Some authors (notably Glassner (Glassner
1995) and many in the physics community) prefer to multiply each integral by 1�

2π
to emphasize the symmetry between the two equations.

Table 7.1.1 shows some of the more important functions in rendering, and their
Fourier transforms.

� ��� � � � � �� � � � 	� ��� �
Representing general continuous functions in a computer is impossible. When

faced with this task, the typical solution is to carve the function domain into small
regions and associate a number with each region. Informally, this is the sampling
process.

In graphics, we could just choose a value for x, ω, t, and any other parameters we
need to trace a ray, and call that a sample. But this is not how the real world works;
sensors such as a CCD cell integrate over some finite area, they don’t sample. This
approximation can lead to many different kinds of errors.

Of course, this is only half the story. In order to produce something we can
see, we have to eventually recreate some continuous intensity function. This is
typically the job of the display. For example, in a CRT, each phosphor glows in
some distribution not unlike a Gaussian function in area. Pixel intensity has some
angular distribution as well; this is mostly uniform for CRT’s, but as anyone who
has tried to view a laptop from an angle knows, it can be quite directional on LCD
displays. Informally, the process of taking a collection of numbers and converting
them back to a continuous signal is the reconstruction process.

If you aren’t careful about each of these two processes, you can get all kinds of
artifacts. It is sometimes useful to distinguish between artifacts due to sampling
and those due to reconstruction; when we wish to be precise we will call sampling
artifacts “prealiasing”, and reconstruction artifacts “postaliasing”. Any attempt to
fix these errors is broadly classified as “antialiasing”, although the distinction of
“antiprealiasing” and “antipostaliasing” is typically not made. The best way to
understand, analyze, and eliminate these errors is through Fourier analysis.

226 Sampling and Reconstruction [Ch. 7

Figure, maybe like the one from the 2000 Subdivision notes?

Figure 7.3: The convolution operator.

7.2.1 Convolution

Formally, the convolution operation � is defined as:

f � t � � h � t � � � ∞

∞
f � τ � h � t � τ � dτ

The convolution of two functions is a new function. Intuitively, to evaluate this
new function at some value t, we center the function h (typically referred to as the
“kernel” or “filter”) at t, and integrate the product of this shifted version of h and
the function f . Figure 7.3 shows this operation in action.

This operation is crucial in sampling theory, mainly due to two important facts.
The first is that the convolution of a function f with a delta function is simply the
original function f (this is easy to prove — see exercise ??).

The other is the “Convolution Theorem”. This theorem gives us an easy way to
compute the Fourier transform of a convolved signal. In particular, the Convolution
Theorem answers the question: given two functions f and h with associated Fourier
transforms F and H , respectively, what is the Fourier transform Y � ω � of f � h?
From the definitions, we have:

Y � ω � � � ∞

� ∞
� f � h � e � iωtdt

� � ∞

� ∞

� � ∞

� ∞
f � τ � h � t � τ � dτ � e � iωt dt

Changing the order of integration, we get:

� � ∞

� ∞
f � τ �

� � ∞

� ∞
h � t � τ � e � iωtdt � dτ

A property of the Fourier transform is that F � g � t � t0 � � � e � iωt0 F � g � t � � , so:

� � ∞

� ∞
f � τ � e � iωτH � ω � dτ

� F � ω � H � ω �
This shows that convolution in the spatial domain is equivalent to multiplication

in the frequency domain. We leave it to the reader to prove the property of the
Fourier transform mentioned above (see exercise ??). We can similarly show that
multiplication in the spatial domain is equivalent to convolution in the frequency
domain.

7.2.2 Back to Sampling

What does this all have to do with sampling and reconstruction? Recall the infor-
mal definition of the sampling process is that we just evaluate a function at some

Sec. 7.2] Sampling Theory 227

Figure 7.4: Formalizing the sampling process. The function f
�
x � is multiplied by

the shah function IIIT
�
x � , leaving an infinite sequence of scaled delta functions.

regular interval and store the values. Formally, this corresponds to multiplying the
function by a “shah”, or “impulse train” function. The shah IIIT

�
x � is defined as:

IIIT
�
x � �

∞

∑�
∞

δ
�
x � nT �

where T defines the period, or sampling rate. This formal way of thinking about
sampling is shown in figure 7.4.

Of course, this multiplication is happening in the spatial domain. Let’s consider
what’s going on in the frequency domain. Furthermore, we will assume that the
function f

�
x � is bandlimited2 , so its Fourier transform will have compact support.

A representative spectrum for F
�
ω � is shown in figure 7.5.

We also know the spectrum of the shah function IIIT
�
x � , from table 7.1.1. The

Fourier transform of a shah function with period T is another shah function with
period 2π

T . This reciprocal period is crucial — it means that if the samples are
farther apart in the spatial domain, they are closer together in the frequency domain.

By the convolution theorem, we know that the fourier transform of our sampled
signal is just the convolution of F

�
ω � and this new shah function. But remember

that convolving a function with a delta function just yields a copy of that function.
Therefore, convolving with a shah function yeilds an infinite series of copies of the
original function, with spacing equal to the period of the shah. This is shown in
figure 7.6. This is the spectrum of our series of samples.

7.2.3 Reconstruction

So how do we get back to our original function? Looking at figure 7.6, the answer
is obvious: just throw away all but one of the copies of our spectrum, obtaining the

2A function f
�
x � is bandlimited if there exists some frequency ω0 such that f

�
x � contains no

frequencies greater than ω0.

228 Sampling and Reconstruction [Ch. 7

Figure 7.5: A representative bandlimited spectrum F � ω � . Notice that all bandlim-
ited functions must have spectra with compact support.

Figure 7.6: The convolution of F � ω � and our shah function, resulting in infinitely
many copies of the function F .

Sec. 7.2] Sampling Theory 229

Figure 7.7: Multiplying a series of copies of F � ω � by the appropriate box function
yields the original spectrum.

Figure 7.8: Undersampled 1D function: when the original function has undula-
tions at a higher frequency than half the sampling frequency, it’s not possible to
reconstruct the original function accurately. The result of under-sampling a high-
frequency function is aliasing, where low-frequency errors that aren’t present in
the original function appear. Here, the reconstructed function on the right has a
much larger value over much of the left side of the graph of f̃ � x � than the original
function f � x � did.had to take this out of ifdraft for a reference; might not make
sense anymore.

original curve F � ω � . Then we have the original spectrum, and can easily compute
the original function by means of the inverse Fourier transform.

In order to throw away all but the center copy of the spectrum, we just multiply
(in the frequency domain, remember) our copies by a box function of the appro-
priate width, as shown in figure 7.7. The box function acts as a perfect low-pass
filter.

This seems great! We started with F � ω � , but the sampling process yeilded an
infinite set of copies, so we throw all but one away with a low-pass filter, and
we’re back to the original function. Does this mean that we can always sample any
function and perfectly reconstruct it? Surely there must be a catch.

7.2.4 Aliasing

The key to succesful reconstruction is the ability to exactly recover the original
spectrum F � ω � by simply multiplying the sampled spectrum with a box function of
the appropriate width. Notice that in figure 7.6, the spectra are separated by empty
space, so perfect reconstruction is possible. Consider what happens, however, if

230 Sampling and Reconstruction [Ch. 7

Figure 7.9: Aliasing from point sampling the function cos � x2 � y2 � ; at the left side
of the image, the function has a low frequency–tens of pixels per cycle–so it is
represented accurately. Moving to the right, however, aliasing artifacts appear in
the top image since the sampling rate doesn’t keep up with the function’s highest
frequency. If high frequency elements of the signal are removed with filtering
before sampling, as was done in the bottom image, the right side of the image
takes on a constant grey color. (Example due to Don Mitchell.) Some aliasing
errors remain in both images, due to the book printing process.

the original function was sampled with a lower sampling rate.
Recall that the fourier transform of a shah function IIIT with period T is a new

shah function with period 2π
T . This means that if the spacing between samples

increases in the spatial domain, the sample spacing decreases in the frequency
domain, pushing the copies of our original spectrum F � ω � closer together. If the
copies get too close together, they actually overlap! Because we are actually adding
the copies together, the new spectrum no longer looks like many copies of the
original, as shown in figure ??. When we multiply this new spectrum by a box
function, we obtain a spectrum that is similar but not equal to our original F � ω � . In
particular high-frequency details in the original signal have manifested themselves
as low-frequency details in the new signal. These new low-frequency artifacts are
called aliases (because high frequencies are “masquerading” as low frequencies),
and the resulting signal is said to be aliased.

Figure 7.9 shows the effect of undersampling the two-dimensional function
f � x � y ��� cos � x2 � y2 � ; the origin � 0 � 0 � is at the center of the left edge of the image.
At the left side of the top image, the reconstructed image accurately represents the
original signal, though as we move farther to the right and f has higher and higher
frequency content, aliasing starts. The circular patterns that appear in the center
and right of the image are severe aliasing artifacts.

A naive solution to this problem would be to simply increase the sampling rate

Sec. 7.2] Sampling Theory 231

until the copies of the spectrum are sufficiently far apart as to not overlap, thereby
eliminating aliasing completely. In fact, the sampling theorem tells us exactly what
rate is required. This theorem says that as long as the frequency of uniform sample
points ωs is greater than twice the maximum frequency present in the signal ωm,
it is possible to reconstruct the original signal perfectly from the samples. This
minimum sampling frequency is called the Nyquist frequency.

Unfortunately, this assumes that ωm is finite, and therefore is only relevant for
bandlimited signals. Non-bandlimited signals have spectra with infinite support, so
no matter how far apart the copies of their spectra are (e.g., how high a sampling
rate we use) there will always be overlap. This naturally leads to the question:
“what signals are bandlimited”? Unfortunately, it turns out that in computer graph-
ics, there are almost no bandlimited signals that we would want to sample. In
particular, any function containing a discontinuity cannot be bandlimited, and we
can therefore not perfectly sample and reconstruct it. This makes sense, because
the function’s discontinuity will always fall between two samples, and the samples
provide no information about the location of the discontinuity.

If, in spite of all this, we still want to compute an un-aliased set of samples
that represent the function, but our sampling rate isn’t high enough to eliminate
aliasing, sampling theory offers two options:

� Sample the function at a higher-frequency (super-sample it). If we can
achieve a high enough sampling rate that the Nyquist limit is respected,
the resulting sample values can be used to perfectly reconstruct the origi-
nal function. Even if this is not possible and aliasing is still present, the error
is always less.

� Filter (e.g., blur) the function so that no high frequencies remain that can’t
be captured accuately by the original sampling rate.

While the filter process modifies the original function by blurring it, it is gener-
ally preferable to have an alias-free sampled representation of the blurred function
than an aliased representation of the original function. On the bottom of Figure 7.9,
high frequencies have been removed from the function before sampling. The result
is that the image takes on the average value of the function where previously there
was aliasing error.

For the functions we need to sample in rendering, it’s often either impossible or
very difficult to know the frequency content of the signal being sampled. Neverthe-
less, the sampling theorem is still useful. First, it tells us the effect of increasing the
sampling frequency: the point at which aliasing starts is pushed out to a higher fre-
quency. Second, given some particular sampling frequency, it tells us the frequency
beyond which we should try to remove high frequency data from the signal; if the
function can filter itself directly according to the rate at which it is being sampled,
aliasing can also be reduced. (This idea will be revisited in Chapter 11 when we
introduce texture filtering.)

7.2.5 Application to image synthesis

The basic application of these ideas to the two-dimensional case of sampling and
reconstructing images of rendered scenes is straightforward; we have an image,

Sampler 237

232 Sampling and Reconstruction [Ch. 7

which we can think of as a function of two-dimensional � x � y � image locations to
radiance values L:

f � x � y � � L �
The good news is that, with our ray tracer, we can evaluate this function at any� x � y � point that we choose. The bad news is that we can only point sample the
image function f : it’s not generally possible to pre-filter f to the high frequencies
from it before sampling3.

It is useful to generalize the definition of the scene function to be a higher-
dimensional function that also depends on the time t and � u � v � lens sample position
at which it is sampled. Because the rays from the Camera are based on these five
quantities, varying any of them gives a different potential ray and thus a potentially-
different value of f . For a particular image position, the radiance at that point will
generally vary across time and position on the lens (if there are moving objects in
the scene and a finite-aperture camera, respectively.)

Even more generally, because many of the integrators defined in Chapter 16 use
statistical techniques to estimate the radiance along a given ray, they may return a
different radiance value when repeatedly given the same ray. If we further extend
the scene radiance function to include sample values used by the integrator (e.g.
to choose points on area light sources for illumination computation), we have an
even-higher dimensional image function

f � x � y � t � u � v� i1 � i2 � ����� � � L �
Sampling all of these dimensions well is an important part of generating high-
quality imagery efficiently; for example, if we ensure that nearby � x � y � positions
on the image don’t tend to have similar � u � v � positions on the lens, we have better
coverage of the sample space and better images for a given number of samples.
The Sampler classes in the next few sections will address the issue of sampling all
of these dimensions as well as possible.

7.2.6 Sources of Aliasing in Rendering

Geometry is one of the biggest causes of aliasing in rendered images. When pro-
jected onto the image plane, an object’s boundary introduces a step function, where
the image function’s value discontinuously jumps from one value to another. A
one-dimensional example of a step function is shown in Figure 7.10. Unfortu-
nately, step functions have infinite frequency content, which means that no sam-
pling density is sufficiently high to correctly capture them. Even worse, the perfect
reconstruction filter causes artifacts when applied to aliased samples–ringing arti-
facts appear in the reconstructed image, an effect known as Gibbs phenomenon.
Figure 7.11 shows an example of this effect for a 1D function. Choosing an effec-
tive reconstruction filter in the face of aliasing requires a mix of science, artistry

3The pre-filtering approach to antialiasing in image synthesis has been tried. Given a filter F and
a signal S, the final pixel value can be written as � A δ � x � y � � S � F � dxdy. But we can rewrite this as
� A � δ � x � y ��� F � Sdxdy! Here we are pre-filtering the sampler’s delta function instead of the signal.
This leads to the idea of generalized rays (e.g. cone tracing or pyramid tracing), which was explored
in the mid 1980’s. Eventually this approach was abandoned due to the complexity of intersecting a
generalized ray with a primitive, and also due to the errors of repeated approximations introduced by
secondary rays.

Sec. 7.2] Sampling Theory 233

Figure 7.10: 1D step function: the function discontinuously jumps from one value
to another. Such functions have infinitely-high frequency content. As such, a finite
number of point samples can never adequately capture their behavior well enough
so that we can apply perfect reconstruction.

0 1 2 3 4

-1

0

1

Figure 7.11: Illustration of Gibbs phenomenon. When a set of aliased samples of
a function that hasn’t been sampled at the Nyquist rate is reconstructed with the
sinc reconstruction filter, the reconstructed function will have “ringing” artifacts,
where it oscillates around the true function. Here a 1D step function (dashed line)
has been sampled with a sample spacing of 0 � 125. When reconstructed with the
sinc, the ringing appears (solid line).

234 Sampling and Reconstruction [Ch. 7

and personal taste, as we will see later in this chapter. Another source of geomet-
ric aliasing is very small objects in the scene: if geometry is small enough that it
falls in between samples on the image plane, it can unpredictably disappear and
reappear over multiple frames of an animation.

Another source of aliasing can come from the texture and materials on an object.
Shading aliasing can come from texture maps on objects that haven’t been filtered
correctly (addressing this problem is the topic of much of Chapter 11), or from
small highlights on shiny surfaces; if the sampling rate is not high enough to sample
these features adequately, aliasing will result. Furthermore, a sharp shadow cast by
an object introduces another step function in the final image; while it is possible
to identify the position of step functions from geometric edges on the image plane,
detecting step functions from shadow boundaries is much more difficult. The key
insight is that we can never remove all sources of aliasing from our images, but we
must also develop techniques for mitigating their impact.

7.2.7 Non-uniform sampling

Although the image functions that we’ll be sampling are known to have infinite-
frequency components and thus can’t be perfectly reconstructed, not all is lost.
It turns out that varying the spacing between samples in a non-uniform way can
reduce the visual impact of aliasing. For a fixed sampling rate that isn’t sufficient
to capture the function, both uniform and non-uniform sampling produce incorrect
reconstructed signals. However, non-uniform sampling tends to turn the regular
aliasing artifacts into noise, which is less objectionable to the human visual system.

Figure 7.12 shows this effect with the same cosine function example as was used
as an example previously. On top, we have the function sampled at a fixed rate us-
ing uniform samples. Below, we have jittered each sample location, adding a small
random number to its position in x and y before evaluating the cosine function. The
aliasing patterns have been broken up and transformed into high-frequency noise
artifacts.

This is an interesting result, since it shows that the best sampling patterns ac-
cording to the signal processing view (which only argues for increasing the uniform
sample frequency) don’t always give the best results perceptually. In particular,
some image artifacts are more visually acceptable than others. This observation
will guide our development of good image sampling patterns through the rest of
this chapter.

7.2.8 Adaptive sampling

One approach that has been suggested to combat aliasing is adaptive super-sampling:
if we can identify the regions of the signal with frequencies higher than the Nyquist
limit, we can take additional samples in those regions without needing to incur the
computational expense of increasing the sampling frequency everywhere. It is hard
to get this approach to work well in practice, however, since it’s hard to find all of
the places where super-sampling is needed. Most schemes for doing so are based
on examining adjacent sample values and finding ones where there is a significant
change in sample value between the two; the hypothesis is that the signal may have
high frequencies in that region.

Sec. 7.2] Sampling Theory 235

Figure 7.12: Jittered sampling of the aliased cosine function (top) changes the
regular, low-frequency aliasing artifacts from under-sampling the signal into high-
frequency noise (bottom). I still see some ring-like structure near the right.
Why is that?

In general, adjacent sample values cannot tell us with certainty what is really
happening in between them: the function may have huge variation between the
two of them, but just happen to return to the same value at each. Or adjacent
samples may have substantially different values without aliasing being present.
For example, the texture filtering algorithms in Chapter 11 work hard to eliminate
aliasing due to image maps and procedural textures; we would not want an adaptive
sampling routine to take extra samples in an area where texture values are changing
quickly but not with excessively high frequencies present.

In general, some areas that need super-sampling will always be missed by adap-
tive approaches, leaving the only recourse to be increasing the basic sampling rate
anyway. Adaptive anti-aliasing works well to turn a very aliased image to a less
aliased image, but is usually not able to make a visually flawless image more effi-
ciently.

7.2.9 Understanding Pixels

There are two important subtleties related to the pixels that constitute a discrete
image that are important to keep in mind throughout the remainder of this chapter.
First, it is crucial to remember that pixels are point samples of the image function
at discrete points on the image plane; there is no “area” associated with a pixel. As
Alvy Ray Smith has emphatically pointed out, thinking of pixels as small squares
with finite area is an incorrect mental model that leads to a series of errors (Smith
1995). By introducing the topics of this chapter with a signal processing approach,
we have tried to lay the groundwork for the right mental model.

Sampler 237

236 Sampling and Reconstruction [Ch. 7

Figure 7.13: Discrete versus continuious representation of pixels...

The second issues is that there is a subtlety in how the pixel coordinates are
computed. The pixels in the final image are naturally defined at discrete integer� x � y � coordinates on a pixel grid but the Samplers in this chapter will be gen-
erating image samples at continuous floating-point � x � y � positions. Heckbert has
written a short note that explains possible pitfalls in the interaction between these
two domains. The natural way to map between them is to round continuous coordi-
nates to the nearest discrete coordinate; this is appealing since it maps continuous
coordinates that happen to have the same value as discrete coordinates to that dis-
crete coordinate. However, the result is that given a range of discrete coordinates
spanning a range � x0 � x1 � , then the set of continuous coordinates that covers that
range is � x0 � � 5 � x1 � � 5 � . Thus, code that generates continuous sample positions
for a given discrete pixel range is littered with 0 � 5 offsets. It easy to forget some of
these, leading to subtle errors.

If instead we truncate continuous coordinates c to discrete coordinates d by

d ��� c � �

and convert from discrete to continuous by

c � d � � 5 �

then the range of continuous coordinates for the discrete range � x0 � x1 � is naturally
� x0 � x1 � 1 � and our code is much simpler. This convention, which we will adopt in
lrt, is shown graphically in Figure 7.13.

� ��� � � � �
� � � � ���� � � � ������� � �	���

The core sampling declarations and functions are in the files sampling.h and
sampling.cpp. Each of the various specific sample generation plug-ins is in its
own source file in the samplers/ directory.�
sampling.h* ���
#include "lrt.h"
#include "geometry.h"�
Sampling Declarations ��
Sampling Inline Functions �

Sec. 7.3] Image Sampling Interface 237

�
sampling.cpp* ���
#include "lrt.h"
#include "sampling.h"
#include "transport.h"
#include "volume.h"�
Sampler Method Definitions ��
Sample Method Definitions ��
Sampling Function Definitions �
We can now start to describe the operation of a few classes that generate good

image sampling patterns. It may be surprising to see that some of them are have
a significant amount of complexity behind them. In practice, creating high-quality
sample patterns can substantially improve a ray tracer’s efficiency, allowing it to
create a high quality image with fewer rays than if a lower-quality pattern was
used. The run-time expense for using the best sampling patterns is approximately
the same as for lower-quality patterns, and because evaluating the value for each
image sample is not inexpensive, doing this work is pays dividends.

All of the sampler implementations inherit from an abstract Sampler class that
defines their interface. Samplers have two main tasks:

1. Generating a sequence of multi-dimensional sample positions. Two dimen-
sions give the raster-space image sample position and another gives the time
at which the sample should be taken; this ranges from zero to one, and is
scaled by the camera to cover the time period that the shutter is open. Two
more sample values give a � u � v � lens position to sample for depth of field;
these also vary from zero to one.

Just as we can conquer the complexity of the 2D image function, most of
the light transport algorithms in Chapter 16 use sample points to choose
positions on area light sources when estimating illumination from them. For
this and other tasks, they are most efficient then their sample points are also
well-chosen. We also make choosing these points the job of the Sampler,
since the best ways to select these points take into account the sample points
chosen for adjacent image samples.

2. Taking the radiance values computed for particular image samples, recon-
structing and filtering them, and computing the final values for the output
pixels, which are usually located at different positions than any of the sam-
ples taken. We will describe this part of their operation in Section 7.7.

�
Sampling Declarations ���
class Sampler {
public:�

Sampler Interface ��
Sampler Public Data �

};

All Samplers take a few common parameters in their constructors that must be
passed on to the base class’s constructor. They are the overall image resolution in
the x and y dimensions, the number of samples per pixel to take in each direction,
the image crop window in normalized device coordinates � 0 � 1 � 2, and a pointer to

Filter 281
Sampler 237

238 Sampling and Reconstruction [Ch. 7

a Filter to be used to filter the image samples to compute the final pixel values.
We store these values in member variables for later use.

The samples-per-pixel stuff is kind of annoying; it doesn’t always corre-
spond naturally to the sampler at hand. Thoughts? What’s up with the differ-
ent number per pixel in x and y?�
Sampler Method Definitions ��� �
Sampler::Sampler(int xstart, int xend,

int ystart, int yend,
int xs, int ys) {

xPixelSamples = xs;
yPixelSamples = ys;
xPixelStart = xstart;
xPixelEnd = xend;
yPixelStart = ystart;
yPixelEnd = yend;

}

The constructor just initializes variables that give the range of pixels in x and y
for which we need to generate samples. Samples for pixels ranging from xPixelStart
to xPixelEnd-1, inclusive, in x (and analogously in y) need to be generated by the
Sampler.�
Sampler Public Data ���
int xPixelSamples, yPixelSamples;
int xPixelStart, xPixelEnd, yPixelStart, yPixelEnd;

Samplers need to implement the Sampler::GetNextSample() method, which
is here declared as a pure virtual function. The Scene::Render() method calls
this function until it returns false; as long as it keeps returning true, it should fill
in the sample that is passed in with sample values for the next sample to be taken.
All of the dimensions of the sample values it generates have values in the range

� 0 � 1 � , except for imageX and imageY, which should be given with respect to the
image size in raster coordinates.�
Sampler Interface ��� �
virtual bool GetNextSample(Sample *sample) = 0;

So that it’s easy for the main rendering loop to figure out what percentage of the
scene has been rendered after some number of samples have been processed, the
Sampler::TotalSamples() method returns the total expected number of samples
that the Sampler will be returning.4�
Sampler Interface ��� �
int TotalSamples() const {

return xPixelSamples * yPixelSamples *
(xPixelEnd - xPixelStart) * (yPixelEnd - yPixelStart);

}

4The low discrepancy and best candidate samplers, described later in the chapter, may actually
return a few more or less samples than TotalSamples() reports. However, since computing the
actual number that they will generate can’t be done quickly, and since an exact number doesn’t need
to be known for this purpose, we just return the expected number.

Sec. 7.3] Image Sampling Interface 239

237 Sampler

7.3.1 Sample representation and allocation

The Sample structure is used by Samplers to store a single sample. A single
Sample is allocated in the Scene::Render() method. For each camera ray to be
generated, this Sample pointer is passed to the Sampler to have its values initial-
ized. It is then passed to the camera and integrators, which read values from it to
use to construct the camera ray and to do lighting calculations, respectively.

Cameras use the fixed fields in the Sample (imageX, imageY, etc.) to gener-
ate an appropriate camera ray, but various integrators have different needs from
the camera, depending on the details of the light transport algorithm they imple-
ment. For example, the basic Whitted integrator doesn’t do any random sampling,
so doesn’t need any sample values, but the direct lighting integrator uses sample
values to randomly choose which light source to sample as well as to randomly
choose positions on area light sources. Therefore, the integrators will be given an
opportunity to request various sample types. Information about what they ask for
is stored in the Sample object; when it is later passed to the particular Sampler
implementation, it is the Sampler’s responsibility to generate all of the requested
types of samples.�
Sampling Declarations ��� �
struct Sample {�

Sample Public Methods ��
Camera Sample Data ��
Integrator Sample Data �

};
�
Camera Sample Data ���
Float imageX, imageY;
Float lensX, lensY;
Float time;

The Sample constructor immediately calls the Integrator::RequestSamples()
methods of the surface and volume integrators asking them what samples they will
need. The integrators can ask for 1D and/or 2D patterns, each with an arbitrary
number of entries. For example, in a scene with two area light sources, where the
integrator wanted to trace four shadow rays to the first source and eight to the sec-
ond, the integrator would ask for two 2D sample patterns for each image sample,
with four and eight samples each. (It needs a 2D pattern since two dimensions are
needed to parameterize the surface of a light.)

If the integrator wanted to randomly select a single light source of out many, it
could request a 1D sample pattern for this purpose. By informing the Sampler of
as much of the random sampling that will be done during integration as possible,
the Integrator makes it possible for the Sampler to carefully construct sample
points that cover the high-dimensional sample space well. For example, if nearby
image samples tend to use different parts of the area lights for their illumination
ocmputations, the resulting images are generally better, since more information has
been discovered.

In lrt, we don’t allow the integrator to request three or higher dimensional
sample patterns; these are much less commonly needed for rendering than one and
two dimensional patterns. If necessary, the integrator can combine points from

Sample::n1D 241
Sample::n2D 241

Scene 8
SurfaceIntegrator 563
VolumeIntegrator 630

240 Sampling and Reconstruction [Ch. 7

lower-dimensional patterns to get higher-dimensional sample points (e.g. a 1D and
a 2D sample pattern to form a 3D pattern.) This may not be quite as good a set
of sample points as we could generate with a direct 3D sample generation process,
but the shortcomings aren’t too bad in practice. This is the reason we provide 2D
patterns instead of expecting integrators to request two 1D patterns.

The integrators’ implementations of Integrator::RequestSamples() will in
turn call the Sample::Add1D() and Sample::Add2D() methods below, which re-
quest another sample sequence in one or two dimensions, respectively, with a given
number of sample values. After they are done calling these methods, the Sample
constructor can continue, allocating storage for the requested sample values.�
Sample Method Definitions ���
Sample::Sample(SurfaceIntegrator *surf,

VolumeIntegrator *vol, const Scene *scene) {
surf->RequestSamples(this, scene);
vol->RequestSamples(this, scene);�
Allocate storage for sample pointers ��
Compute total number of sample values needed ��
Allocate storage for sample values �

}

The Sample::Add1D() and Sample::Add2D() methods let the integrators ask
for 1D and 2D sets of samples; the implementations of these methods just record
the number of samples asked for and return an integer tag that the integrator can
later use to access the sample values in the Sample.�
Sample Public Methods ��� �
u_int Add1D(u_int num) {

n1D.push_back(num);
return n1D.size()-1;

}
�
Sample Public Methods ��� �
u_int Add2D(u_int num) {

n2D.push_back(num);
return n2D.size()-1;

}

It is the Sampler’s responsibility to store the samples it generates for the in-
tegrators in the Sample::oneD and Sample::twoD arrays. For 1D sample pat-
terns, it needs to generate n1D.size() independent patterns, where the ith pat-
tern has n1D[i] sample values. These values are stored in oneD[i][0] through
oneD[i][n1D[i]-1].

To access the samples, the integrator stores the sample tag returned by Add1D()
in a member variable (for example, sampleOffset), and can then access the sam-
ple values in a loop like:

for (i = 0; i < sample->n1D[sampleOffset]; ++i) {
Float s = sample->oneD[sampleOffset][i];
...

}

Sec. 7.3] Image Sampling Interface 241

667 AllocAligned()
658 vector

In 2D, the process is equivalent, but where the ith sample is given by the two values
sample->twoD[offset][2*i] and sample->twoD[offset][2*i+1].�
Integrator Sample Data ���
vector<u_int> n1D, n2D;
Float **oneD, **twoD;

The Sample constructor first allocates memory to store the pointers. Rather than
allocating memory twice, we do a single allocation that gives enough memory for
both 1D and 2D pointers to the oneD and twoD sample arrays. twoD is then set
to point at an appropriate offset into this memory, after the last pointer for oneD.
Splitting up a single allocation like this is useful here because it ensures that oneD
and twoD point to nearby locations in memory, which is likely to reduce cache
misses.�
Allocate storage for sample pointers ���
int nPtrs = n1D.size() + n2D.size();
if (!nPtrs) {

oneD = twoD = NULL;
return;

}
oneD = (Float **)AllocAligned(nPtrs * sizeof(Float *));
twoD = oneD + n1D.size();

We then use the same trick for allocating memory for the actual sample values.
First we find the total number of Float values needed.�
Compute total number of sample values needed ���
int totSamples = 0;
for (u_int i = 0; i < n1D.size(); ++i)

totSamples += n1D[i];
for (u_int i = 0; i < n2D.size(); ++i)

totSamples += 2 * n2D[i];

And then we do a single allocation, handing it out in pieces to the various col-
lections of samples.�
Allocate storage for sample values ���
Float *mem = (Float *)AllocAligned(totSamples *

sizeof(Float));
for (u_int i = 0; i < n1D.size(); ++i) {

oneD[i] = mem;
mem += n1D[i];

}
for (u_int i = 0; i < n2D.size(); ++i) {

twoD[i] = mem;
mem += 2 * n2D[i];

}

The Sample destructor, not shown here, just frees the dynamically allocated
memory.

StratifiedSampler 244

242 Sampling and Reconstruction [Ch. 7

� ��� � � � ��� ��� ��� � � � � �� � �
The first sample generator that we will introduce divides the image plane into

rectangular regions and generates a single sample inside each region. These regions
are commonly called strata, and this sampler is called the StratifiedSampler.
The key idea behind stratification is that by subdividing the sampling domain into
non-overlapping regions and taking a single sample from each one, we are less
likely to miss important features of the image entirely, since the samples are guar-
anteed to not be all bunched together. Put another way, for a given number of
samples, it does us no good if multiple samples are taken from nearby points in the
sample space, since they don’t give us much new information about the behavior of
the image function that we didn’t have already. Better is to take samples far away
from the ones we’ve already taken; stratification improves this substantially. From
a signal processing viewpoint, we are implicitly defining an overall sampling rate,
where the smaller the strata are, the more of them we have, and thus the higher the
sampling rate. In chapter 15 we will develop the necessary mathematics to prop-
erly analyze the benefit of stratified sampling; for now we will simply assert that it
is better.

The stratified sampler places each sample by choosing a random point inside
each stratum; this is done by jittering the center point of the stratum by a random
amount up to half its width and height. The non-uniformity that results from this
jittering helps turn aliasing into noise, as described earlier in the chapter. This sam-
pler also offers a mode where this jittering is not done, giving uniform sampling in
the strata; this unjittered mode is mostly useful for comparisons between different
sampling techniques rather than rendering final images.

Figure 7.14 shows a comparison of a few sampling patterns. On the top is a
completely random sampling pattern: we have chosen a number of image samples
to take and have computed that many random image locations–not using the strata
at all. The result is a terrible sampling pattern; some regions of the image have
few samples and other areas have clumps of many samples. In the middle is a
stratified pattern without jittering (i.e. uniform super-sampling). On the bottom,
we have jittered the uniform pattern, adding a random offset to each sample’s lo-
cation but keeping it inside its cell. This gives a better overall distribution than the
purely random pattern while preserving the benefits of stratification, though there
are still some clumps of samples and some regions that are under-sampled. We
will present a more sophisticated image sampling methods in the next two sections
that ameliorate some of these remaining problems. Figure 7.15 shows images of
the StratifiedSampler in action and shows how jittered sample positions turn
aliasing artifacts into less-objectionable noise.�
stratified.cpp* ���
#include "sampling.h"
#include "paramset.h"
#include "film.h"�
StratifiedSampler Declarations ��
StratifiedSampler Method Definitions �

Sec. 7.4] Stratified Sampling 243

Random

Uniform

Jittered

Figure 7.14: Three 2D sampling patterns. The random pattern on the top is a poor
pattern, with many clumps of samples that leave large sections of the image poorly
sampled. In the middle is a uniform stratified pattern which is better distributed
but can exacerbate aliasing artifacts. On the bottom is a stratified jittered pattern,
which turns aliasing from the uniform pattern into high-frequency noise while still
maintaining the benefits of stratification.

AllocAligned() 667
Sampler 237

Sampler::xPixelSamples 238
Sampler::xPixelStart 238

Sampler::yPixelSamples 238
Sampler::yPixelStart 238

244 Sampling and Reconstruction [Ch. 7

�
StratifiedSampler Declarations ���
class StratifiedSampler : public Sampler {
public:�

StratifiedSampler Public Methods �
private:�

StratifiedSampler Private Data �
};

The StratifiedSampler generates samples by scanning over the pixels from
left-to-right and top-to-bottom, generating all of the samples for the strata in each
pixel before advancing to the next . The sampler holds the offset of the current
pixel in the xPos and yPos member variables, which are initialized to point at the
first pixel in the upper left of the image’s pixel extent to start out. (Both the crop
window and the sample filtering process can cause this corner to not necessarily be� 0 � 0 � .)�
StratifiedSampler Method Definitions ���
StratifiedSampler::StratifiedSampler(int xstart, int xend, int ystart,

int yend, int xs, int ys, bool jitter)
: Sampler(xstart, xend, ystart, yend, xs, ys) {
jitterSamples = jitter;
xPos = xPixelStart;
yPos = yPixelStart;�
Allocate storage for a pixel’s worth of stratified samples ��
Generate stratified camera samples for (xPos,yPos) �

}
�
StratifiedSampler Private Data ���
bool jitterSamples;
int xPos, yPos;

The StratifiedSampler computes image, time, and lens samples for an en-
tire pixel’s worth of image samples all at once; this allows us to compute better-
distributed patterns for the time and lens samples than we could if we compute
each sample’s values independently. Here we allocate enough memory to store all
of the sample values for a pixel.�
Allocate storage for a pixel’s worth of stratified samples ���
imageSamples = (Float *)AllocAligned(5 * xPixelSamples *

yPixelSamples * sizeof(Float));
lensSamples = imageSamples + 2 * xPixelSamples * yPixelSamples;
timeSamples = lensSamples + 2 * xPixelSamples * yPixelSamples;

�
StratifiedSampler Private Data ��� �
Float *imageSamples, *lensSamples, *timeSamples;

Naive application of stratification to high-dimensional sampling quickly leads to
an intractable number of samples. For example, if we divided the five-dimensional
image, lens, and time sample space into four strata in each dimension, the total
number of samples per pixel would be 45 � 1024. We could reduce this impact
by taking fewer samples in some dimensions (or not stratifying some dimensions,
corresponding to a single stratum), but we would then lose the benefit of having

Sec. 7.4] Stratified Sampling 245

Figure 7.15: Comparisons of image sampling methods with a checkerboard tex-
ture: this is a difficult image to render well, since the checkerboard’s frequency
with respect to the pixel sample spacing increases toward infinity as we approach
the horizon. On the top is a reference image, rendered with 256 samples per pixel,
showing something close to the best result that we could hope to achieve. Be-
low it is an image rendered with one sample per pixel, with no jittering; note the
jaggy artifacts at the edges of checkers in the foreground and the artifacts in the
distance where the checker function goes through many cycles between samples.
As expected from the signal processing theory, that detail reappears incorrectly as
lower-frequency aliasing. The third image shows the result of jittering the image
samples, still just taking one sample per pixel; the regular aliasing of the second
image has been replaced by less-objectionable noise artifacts. Finally, the bottom
image shows the result of four jittered samples per pixel; the result is still inferior
to the reference image, but is substantially better than a single sample per pixel.

BestCandidateSampler 275
LDSampler 258

246 Sampling and Reconstruction [Ch. 7

Figure 7.16: We can generate a good sample pattern for a pixel that reaps the
benefits of stratification without requiring that all of the sampling dimensions be
stratified simultaneously. Here, we have split � x � y � image position, time t, and
� u � v � lens position into independent strata with roug regions each. Each is sampled
independently. Then, a time sample and a lense sample is randomly associated with
each image sample. We retain the benefits of stratification in each of the individual
dimensions, without having to exponentially increase the total number of samples
as if we had stratified all five dimensions simultaneously.

well-stratified samples in those dimensions. This problem with stratification is
known as the curse of dimensionality.

We can reap most of the benefits of stratification without paying the price in
excessive total sampling by computing lower-dimensional stratified patterns for
subsets of the domain’s dimensions and then randomly associating samples from
each set of dimensions. Figure 7.16 shows the basic idea: we’d like to take just four
samples for a pixel, while still having them be stratified over all dimensions. We
independently generate four 2D stratified image samples, four stratified 1D time
samples, and four stratified 2D lens samples. Then, we randomly associate a time
and lens sample value with each image sample. The result of this is that each pixel
has samples that together have good coverage of the sample space.

Ensuring this good distribution property at the pixel level is a reasonable level of
granularity: we would like the samples that are close together on the image plane to
have dissimilar time and lens samples—that would mean that the sample positions
are not clumped together in the high-dimensional sampling space. If the samples
are more widely distributed, the images we generate will generally be better, since
they discover more about the values of the image function across the domain. If a
sample that is a few (or many) pixels away has similar time or lens sample values,
it doesn’t negatively affect the overall image quality, since the need for other pixels
to be computed from samples that cover the entire sample space well is far more
important than extending stratification over large areas.5

This fragement generates the camera samples for the current pixel using this
technique. As we hand out samples from GetNextSample(), the samplePos vari-
able tracks how far through these arrays we are.

5Of course, with this method, the time and lens sample positions of the image samples for any
particular output pixel are well-distributed, but the time and lens sample positions of image samples
for neighboring pixels are not known, and thus may be similar. The BestCandidateSampler and
the LDSampler in the next two sections are less succeptible to this problem.

Sec. 7.4] Stratified Sampling 247

679 RandomFloat()
238 Sampler::xPixelSamples
238 Sampler::yPixelSamples
244 StratifiedSampler::imageSamples
244 StratifiedSampler::jitterSamples
244 StratifiedSampler::lensSamples
244 StratifiedSampler::timeSamples

�
Generate stratified camera samples for (xPos,yPos) ���
StratifiedSample2D(imageSamples, xPixelSamples, yPixelSamples,

jitterSamples);
StratifiedSample2D(lensSamples, xPixelSamples, yPixelSamples,

jitterSamples);
StratifiedSample1D(timeSamples, xPixelSamples*yPixelSamples,

jitterSamples);�
Shift stratified image samples to pixel coordinates ��
Decorrelate sample dimensions �
samplePos = 0;

�
StratifiedSampler Private Data ��� �
int samplePos;

We will implement 1D and 2D stratified sampling routines as utility functions,
since they will be useful elsewhere in lrt. Both of them just loop over the given
number of strata and place a sample point in each one.�
Sampling Function Definitions ���
void StratifiedSample1D(Float *samp, int nSamples,

bool jitter) {
Float invTot = 1.f / nSamples;
for (int i = 0; i < nSamples; ++i) {

Float delta = jitter ? RandomFloat() : 0.5f;
*samp++ = (i + delta) * invTot;

}
}

�
Sampling Function Definitions ��� �
void StratifiedSample2D(Float *samp, int nx, int ny,

bool jitter) {
Float dx = 1.f / nx, dy = 1.f / ny;
for (int y = 0; y < ny; ++y)

for (int x = 0; x < nx; ++x) {
Float jx = jitter ? RandomFloat() : 0.5f;
Float jy = jitter ? RandomFloat() : 0.5f;
*samp++ = (x + jx) * dx;
*samp++ = (y + jy) * dy;

}
}

The StratifiedSample2D() utility function generates samples in the range
� 0 � 1 � 2. Image samples, however, need to be expressed in terms of continuous pixel
coordinates. Here we loop over all of the new stratified samples and add the � x � y �
pixel number, such that the samples for the discrete pixel � x � y � range from con-
tinuous coordinates � x � x � 1 � � � y � y � 1 � , following the convention for continuous
pixel coordinates described in Section 7.2.9. Figure 7.17 reviews the relationship
between discrete and continuous coordinates as relates to samples for a pixel.

Sampler::xPixelSamples 238
Sampler::yPixelSamples 238

StratifiedSampler 244
StratifiedSampler::imageSamples 244
StratifiedSampler::lensSamples 244
StratifiedSampler::timeSamples 244

StratifiedSampler::xPos 244
StratifiedSampler::yPos 244

248 Sampling and Reconstruction [Ch. 7

Figure 7.17: Review of sample placement–discrete and continuous...

�
Shift stratified image samples to pixel coordinates ���
for (int o = 0; o < 2 * xPixelSamples * yPixelSamples; o += 2) {

imageSamples[o] += xPos;
imageSamples[o+1] += yPos;

}

In order to randomly associate a time and lens sample with each image sample,
we shuffle the order of the time and lens arrays so that when we are initializing a
Sample with the ith precomputed sample value for this pixel, we can just return
the ith time and lens sample.�
Decorrelate sample dimensions ���
Shuffle(lensSamples, xPixelSamples*yPixelSamples, 2);
Shuffle(timeSamples, xPixelSamples*yPixelSamples, 1);

The Shuffle() utility function randomly permutes a sample pattern of count
samples in dims dimensions. More about this, how does Shuffle work? This
comes up all the time in lots of programs and I think people are confused
about how to randomly permute an array.�
Sampling Function Definitions ��� �
void Shuffle(Float *samp, int count, int dims) {

for (int i = 0; i < count; ++i) {
u_int other = RandomUInt() % count;
for (int j = 0; j < dims; ++j)

swap(samp[dims*i + j], samp[dims*other + j]);
}

}

We can now implement the GetNextSample() method of the StratifiedSampler.
It starts by checking to see if it needs to generate a new pixel’s worth of samples, or
if all the samples have already been generated. It generates new samples if needed
and then initializes the Sample pointer from the stored samples.�
StratifiedSampler Method Definitions ��� �
bool StratifiedSampler::GetNextSample(Sample *sample) {�

Compute new set of samples if needed for next pixel ��
Return next StratifiedSampler sample point �
return true;

}

Sec. 7.4] Stratified Sampling 249

239 Sample::imageX
239 Sample::imageY
239 Sample::lensX
239 Sample::lensY
239 Sample::time
238 Sampler::xPixelEnd
238 Sampler::xPixelStart
238 Sampler::yPixelEnd
247 StratifiedSampler::samplePos
244 StratifiedSampler::xPos
244 StratifiedSampler::yPos

When the samplePos variable that keeps track of the current offset into the
pixel-sized table of precomputed samples reaches the end of the table, we move
ahead to the next pixel. First we try moving one pixel in x, and only move in y
when we’ve reached the end of a scanline. Because the y strata counter yPos is
only advanced when we reach the end of a row of samples in the x direction, once
the y position counter has advanced past the bottom of the image, we’re done and
therefore return false.�
Compute new set of samples if needed for next pixel ���
if (samplePos == xPixelSamples * yPixelSamples) {�

Advance to next pixel for stratified sampling �
if (yPos == yPixelEnd)

return false;�
Generate stratified camera samples for (xPos,yPos) �

}

To advance to the next pixel, we first try to move one pixel over in the x direction.
If that takes us off of the end of the image, we reset the x position to the first pixel
in the next x row of pixels and advance the y position.�
Advance to next pixel for stratified sampling ���
if (++xPos == xPixelEnd) {

xPos = xPixelStart;
++yPos;

}

Since the camera samples have been computed at this point, initializing the cor-
responding Sample fields is easy; we just copy the appropriate values from the
sample tables. Generating samples for the integrators introduces some new sub-
tleties, that we will discuss below.�
Return next StratifiedSampler sample point ���
sample->imageX = imageSamples[2*samplePos];
sample->imageY = imageSamples[2*samplePos+1];
sample->lensX = lensSamples[2*samplePos];
sample->lensY = lensSamples[2*samplePos+1];
sample->time = timeSamples[samplePos];�
Generate stratified samples for integrators �
++samplePos;

Integrators introduce a new complication since they often use multiple samples
per image sample in some dimensions rather than a single sample value, as is the
case for lens position and time for cameras. As we have developed the topic of
sampling so far, this leaves us with a quandary: if an integrator asks for a set of
64 two-dimensional sample values for each image sample, we have two different
goals to try to fulfill:

� First, we would like each image sample’s 64 integrator samples to them-
selves be well-stratified in 2D (e.g. with an 8 by 8 stratified grid). Stratifica-
tion here will improve the quality of the integrator’s results by ensuring that
the computation that it does for each individual sample enjoys the benefits
of stratified samples for the quantity that the integrator is computing.

250 Sampling and Reconstruction [Ch. 7

Figure 7.18: Latin hypercube sampling (sometimes called n-rooks sampling)
chooses samples such that only a single sample is present in each row and each
column of a grid. Here, we do this by generating samples randomly in the cells
along the diagonal and then randomly permuting their coordinates. One advantage
of LHS is that it can generate any number of samples with this good distribution
property, not just a product of m � n samples, as with stratified patterns.

� Second, we would like to ensure that the set of integrator samples for one
image sample aren’t too similar to the samples for its neighboring samples.
As with time and lens samples, we’d like the points to well-distributed with
respect to their neighbors, so that over the region around a single pixel, we
have good overall coverage of the entire sample space.

Rather than trying to solve both of these problems simultaneously here, we will
only address the first one. The other samplers later in this chapter will revisit this
issue with more sophisticated techniques.

A second complication from integrators comes from the possibility that they
may ask for an arbitrary number of samples n per image sample, where stratifica-
tion may not be easily applied. (For example, how to easily generate a stratified 2D
pattern of 7 samples?) We could just generate an n by 1 or 1 by n stratified pattern,
though this only gives us the benefit of stratification in one dimension, leading to
no guarantee of a good poor pattern in the other dimension. Instead of trying to
stratify these samples in the way that we did for image and lens samples, we will
use an approach called Latin hypercube sampling (LHS), which can generate any
number of samples in any number of dimensions with reasonably good distribution.

LHS uniformly divides each dimension’s axis into n regions and generates a
jittered sample in each of the n regions along the diagonal, as shown on the left
side of Figure 7.18. These samples are then randomly shuffled in each dimension,
given a pattern like the one shown on the right side of Figure 7.18. An advantage
of LHS in comparison to stratified sampling is that it minimizes clumping of the
samples when projected to any of the axes of the sampling dimensions. This is
in contrast to stratified sampling, where 2n of the n by n samples in a 2D pattern
may project to essentially the same point on each of the axes. Figure 7.19 shows
this worst-case situation for a stratified sampling pattern, where the samples in the
eight strata in the right half of the pattern are all at essentially the same location on
the x axis.

Sec. 7.4] Stratified Sampling 251

679 RandomFloat()
241 Sample::n1D
241 Sample::n2D
241 Sample::oneD
241 Sample::twoD

Figure 7.19: A worst-case situation for stratified sampling: for a 2D n � n pattern,
up to 2n of the points may project down to essentially the same point on one of the
two axes. When “unlucky” patterns like this are generated, the quality of results
computed with them can suffer substantially.

LHS isn’t necessarily an improvement to stratified sampling, however; it’s easy
to construct cases where the sample positions are essentially colinear and large ar-
eas of � 0 � 1 � 2 have no samples near them (e.g. when the permutation of the original
samples is the identity, leaving them all where they started.) We will revisit this
issue in the next section, where we will discuss sample patterns that are simultane-
ously stratified and distributed in a Latin Hypercube pattern.�
Generate stratified samples for integrators ���
for (u_int i = 0; i < sample->n1D.size(); ++i)

LatinHypercube(sample->oneD[i], sample->n1D[i], 1);
for (u_int i = 0; i < sample->n2D.size(); ++i)

LatinHypercube(sample->twoD[i], sample->n2D[i], 2);

The general-purpose LatinHypercube() function generates an arbitrary num-
ber of LHS samples in an arbitrary dimension.�
Sampling Function Definitions ��� �
void LatinHypercube(Float *samples, int nSamples, int nDim) {�

Generate LHS samples along diagonal ��
Permute LHS samples in each dimension �

}
�
Generate LHS samples along diagonal ���
Float delta = 1.f / nSamples;
for (int i = 0; i < nSamples; ++i)

for (int j = 0; j < nDim; ++j)
samples[nDim * i + j] = (i + RandomFloat()) * delta;

To do the permutation, we loop over the samples, processing one dimension at a
time and randomly permuting the sample points in each of them. Note that this is
a different permutation than the Shuffle() routine above—that routine does one
permutation, keeping all nDim sample points in each sample together, while here
we do nDim-1 separate permutations, separately permuting each dimension in turn.
(It’s not necessary to permute the first dimension.)

LDSampler 258
RandomUInt() 248

StratifiedSampler 244

252 Sampling and Reconstruction [Ch. 7

�
Permute LHS samples in each dimension ���
for (int i = 1; i < nDim; ++i) {

for (int j = 0; j < nSamples; ++j) {
u_int other = RandomUInt() % nSamples;
swap(samples[nDim * j + i], samples[nDim * other + i]);

}
}

� ��� ����� � � ����������� � � � � � � � � � � � �	� � � ��� �����	��� �
The underlying goal of the StratifiedSampler is to generate a well-distributed

but not uniform set of sample points, where no two sample points are too close to-
gether and where there aren’t any excessively large regions of the sample space
with no samples in them. As Figure 7.14 showed, the jittered pattern does this
much better than a random pattern does, though its quality can suffer when sam-
ples in adjacent strata happen to be close to the shared boundary of their two strata.

Mathematicians have developed a concept called discrepancy that can be used to
evaluate the quality of a pattern of sample positions in a rigorous manner. Patterns
that are well-distributed (in a manner to be formalized shortly) have low discrep-
ancy values. One can thus consider the sample pattern generation problem to be
one of finding a suitable low-discrepancy pattern of points. A number of deter-
ministic techniques have been developed that generate low-discrepancy point sets,
even in high-dimensional spaces. This section will use a few of them as the basis
for a low-discrepancy sample generator.

7.5.1 Definition of Discrepancy

Before defining the LDSampler, we will first introduce a formal definition for dis-
crepancy. The basic idea behind it is that the “quality” of a set of points in an
n dimensional space � 0 � 1 � n can be evaluated by looking at regions of the domain

� 0 � 1 � n, counting the number of points inside the region, and comparing the volume
of these regions to the number of sample points inside them. In general, a given
fraction of the volume should have roughly the same fraction of the sample points
inside of it. While it’s not possible for this to always be the case, we can still try
to use patterns that minimize the difference between the volume estimated by the
points and the actual volume (the discrepancy.)

To compute the discrepancy of a set of points, we first pick a family of shapes
B that are subsets of � 0 � 1 � n. For example, boxes with one corner at the origin are
often used. This corresponds to:

B � � � 0 � v1 � � � 0 � v2 � � ����� � � 0 � vs � �
where 0 � vi � 1. Given a sequence of sample points P � x1 � ����� � xN , the discrep-
ancy of P with respect to B is6:

DN � B � P ��� sup
b � B

�
�
�
�

� � xi
� b �

N
� λ � b �

�
�
�
�

6The sup operator is the continuous analog of max. That is, sup f � x � is a constant-valued function
of x that passes through the maximum value taken on by f � x � .

Sec. 7.5] ***ADV***: Low-Discrepancy Sequences 253

where
� � xi

� b � is the number of points in b and λ � b � is the volume of b.
The intuition for why this is a reasonable measure of quality is that �

�
xi � b �
N is an

approximation of the volume of the box b. Therefore, the discrepancy is the worst
error over all possible boxes introduced by this way of approximating volume.
When the set of shapes B is the set of boxes with a corner at the origin (described
above), this is called the star discrepancy D �N � P � . (Other popular sets of shapes to
use to compute discrepancy include axis aligned boxes, where the restriction that
one corner be at the origin has been removed).

For a few particular point sets, the discrepancy can be computed analytically.
For example, consider the set of points in one dimension

xi � i
N �

We can see that the star discrepancy of xi is

D �N � x1 � ����� � xn � � 1
N �

For example, take the interval B � � 0 � 1
N � . Then λ � B � � 1

N , but
� � xi

� B � � 0. This
interval (and the intervals � 0 � 2

N � , etc.) is the interval where the largest differences
between volume and fraction of points inside the volume are seen.

We can improve on the star discrepancy of this sequence by modifying it slightly:

xi � i � 1
2

N �
Then

D �N � xi � � 1
2N �

The bounds for the star discrepancy of a sequence of points in 1D has been
shown to be

D �N � xi ��� 1
2N

� max
1 � i � N

�
�
�
� xi �

2i � 1
2N

�
�
�
� �

Thus, the modified sequence above has the lowest possible discrepancy for a se-
quence in 1D. In general, it is much easier to analyze and compute bounds for the
discrepancy of sequences in 1D than in higher dimensions. For less simple point
sequences, and for sequences in higher dimensions, the discrepancy often must
be estimated numerically, by constructing a large number of shapes B, computing
their discrepancy, and reporting the maximum.

The astute reader will notice that according to the low-discrepancy measure,
this uniform sequence in 1D is optimal, though earlier in this chapter, we had
determined that irregular jittered patterns were perceptually superior to uniform
patterns for image sampling in 2D since they replaced aliasing error with noise.
In that framework, uniform samples are clearly not optimal. Fortunately, low-
discrepancy patterns in higher dimensions are much less uniform than they are
in one dimension and thus usually work reasonably well as sample patterns in
practice. Nevertheless, their underlying uniformity is probably the reason why
low-discrepancy patterns can be more prone to aliasing than patterns with true
pseudo-random variation.

254 Sampling and Reconstruction [Ch. 7

7.5.2 Constructing low-discrepancy sequences

Given the goal of constructing a low-discrepancy sequence, we will now introduce
techniques that have been developed specifically to generate sequences of points
that have low discrepancy. The techniques that we will describe are built on top
of a construction called the radical inverse. It is based on the fact that a positive
integer value n can be expressed in base b with a sequence of digits dm ����� d2d1

uniquely determined by:

n � ∞

∑
i � 1

dib
i � 1 �

The radical inverse function Φb in base b takes an non-negative integer and converts
it to a floating-point value in � 0 � 1 � , by reflecting these digits about the decimal
point:

Φb � n � � 0 � d1d2 ����� am �
Thus, the contribution of the digit di to the radical inverse is

di � 1
bi �

The function RadicalInverse() computes the radical inverse for a given num-
ber n in the base base. It first computes the value of d1 by taking the remainder of
the number n when divided by the base and adds d1b � 1 to the radical inverse value.
It then divides n by the base, effectively chopping off the last digit so that the next
time through the loop, it can compute d2 by finding the remainder base base and
adding d2b � 2 to the sum, etc. This process continues until n is zero, at which point
we have found the last non-zero di value.�
Sampling Declarations ��� �
inline Float RadicalInverse(int n, int base) {

Float val = 0;
Float invBase = 1.f / base, invBi = invBase;
while (n > 0) {�

Compute next digit of radical inverse �
}
return val;

}
�
Compute next digit of radical inverse ���
int d_i = (n % base);
val += d_i * invBi;
n /= base;
invBi *= invBase;

Given the RadicalInverse() function, we can start constructing low discrep-
ancy sequences. One of the simplest low discrepancy sequences is the Van Der
Corput Sequence, which is a one-dimensional sequence given by the radical in-
verse function in base two.

xi � Φ2 � i �
Figure 7.20 shows the first few values of the Van Der Corput sequence; notice how
it recursively splits the intervals of the 1D line in half, generating a sample point at

Sec. 7.5] ***ADV***: Low-Discrepancy Sequences 255

n base 2 Φ2 (n)
1 1 .1 = 1

�
2

2 10 .01 = 1
�
4

3 11 .11 = 3
�
4

4 100 .001 = 1
�
8

5 101 .101 = 5
�
8

...
...

...

Figure 7.20: The radical inverse Φ2 (n) of the first few positive integers, computed
in base 2. Notice how successive values of Φ2 (n) are far from the previous values
of Φ2 (n).

the center of each interval. The discrepancy of this sequence is

D �N � P � � O

�
logN

N � �

which matches the best discrepancy that has been attained for infinite sequences of
d dimensions,

D �N � P ��� O

� � log N � d
N � �

Two well-known low-discrepency sequences that are defined in an arbitrary
number of dimensions are the Halton and Hammersley sequences. Both use the
radical inverse function as well. To generate an n dimensional Halton sequence,
we use the radical inverse base b, with a different base for each dimension of the
square and where the bases used are all relatively prime to each other. (A natural
choice is to use the first n prime numbers � p1 � ����� � pn).)

xi � � Φ2 � i � � Φ3 � i � � Φ5 � i � � ����� � Φpn � i � � �
One of the most useful characteristics of the Halton sequence is that it can be

used even if the total number of samples needed isn’t known in advance; all prefixes
of a given sequence are well-distributed, so thus as additional samples are added to
the sequence, the low-discrepancy property will be maintained. The discrepancy
of a d-dimensional Halton sequence is

D �N � xi � � O

� � log N � d
N � �

which is asymptotically optimal.
If the number of samples to be taken (N) is known in advance, the discrepancy

can be improved slightly. Hammersley point sets are defined by:

xi �
�

i � 1
2

N
� Φb1 � i � � Φb2 � i � � ����� � Φbn � i � � �

where N is the total number of samples to be taken and as before all of the bases
bi are relatively prime. The top half of Figure 7.21 shows plots of the first hundred
points of the 2D Hammersley and Halton sequences.

256 Sampling and Reconstruction [Ch. 7

The folded radical inverse function can be used in place of the original radical
inverse function to reduce the discrepancy of Hammersley and Halton sequences.
The folded radiacal inverse is defined by adding the offset i to the ith digit d i and
taking the result modulus b before adding the result to the next digit to the right of
the decimal point.

Ψb � n � � ∑
i
� � di � i � 1 � mod b � � 1

bi �

The FoldedRadicalInverse() function computes Ψb. It is generally similar to
the original RadicalInverse() function, with two modifications. First, it needs to
track which digit is currently being processed, so that the appropriate offset can be
added before the modulus computation; this is done with the modOffset variable.
Second, it needs to handle the fact that Ψb is actually an infinite sum. Even though
the digits di are zero after a finite number of terms, the offset that is added ensures
that most terms beyond the point where di � 0 will be non-zero. Fortunately, the
finite precision of computer floating-point numbers solves this problem: we can
conservatively stop adding digits to the folded radical inverse as soon as we detect
that invBi is small enough such that adding its contribution to val is certain to
leave val unchanged. The test in the while loop watches for this to happen.�
Sampling Declarations ��� �
inline Float FoldedRadicalInverse(int n, int base) {

Float val = 0;
Float invBase = 1.f/base, invBi = invBase;
int modOffset = 0;
while (val + base * invBi != val) {�

Compute next digit of folded radical inverse �
}
return val;

}
�
Compute next digit of folded radical inverse ���
int digit = ((n+modOffset) % base);
val += digit * invBi;
n /= base;
invBi *= invBase;
++modOffset;

When the folded radical inverse is used to generate the Hammersley and Halton
point sets, they are known as the Hammersley-Zaremba and Halton-Zaramba point
sets, after the inventor of the folded radical inverse function. Graphs of the first 100
Hammersley-Zaremba and Halton-Zaremba points are shown in the bottom half of
Figure 7.21. It’s possible to see visually that the Hammersley sequence has lower
discrepancy than the Halton sequence–there are far fewer clumps of nearby sample
points. Furthermore, one can see that the folded radical inverse function reduces
the discrepancy of the Hammersley sequence; its effect on the Halton sequence is
less visually obvious, however.

7.5.3 The Low-Discrepancy Sampler

Sec. 7.5] ***ADV***: Low-Discrepancy Sequences 257

Halton, Radical Inverse Hammersley, Radical Inverse

Halton, Folded Radical Inverse Hammersley, Folded Radical Inverse

Figure 7.21: Graphs of the first 100 points in the Halton (left) and Hammersley
(right) low-discrepancy point sequences, using the radical inverse Φb in the top
row, and the folded radical inverse Ψb in the bottom row. The Hammersley se-
quence has lower discrepancy than the Halton sequence, at the cost of requiring
that the number of samples to be taken be known in advance. The folded radical
inverse function improves the discrepancy of both sequences.

Sampler 237

258 Sampling and Reconstruction [Ch. 7

�
lowdiscrepancy.cpp* ���
#include "sampling.h"
#include "paramset.h"
#include "film.h"�
LDSampler Declarations ��
LDSampler Method Definitions �
The LDSampler uses one of the two radical inverse functions to generate a Ham-

mersley point set for sampling. It works by mapping the first two dimensions of the
Hammersley points from � 0 � 1 � 2 to a square region on the image plane, starting at
(xPixelStart, yPixelStart) and scaled by a constant amount in both directions
so that it covers the pixels up to (xPixelEnd, yPixelEnd), and possibly beyond in
one of the two dimensions (if the image is not square). Any generated samples that
are past (xPixelEnd, yPixelEnd) are discarded. The total number of samples to
be generated is determined by computing the total number of pixels in the extent
that is being sampled times the number of samples to be taken per pixel. Lens
and time sample value positions are found by taking additional dimensions from
the Hammersley point set, while the integrator samples again will require special
handling.

For non-square images, it’s important to use the approach described above for
image sampling, generating extra samples and rejecting those that are outside of the
image region, rather than scaling the Hammersley point set by different amounts
in the x and y directions. Scaling by different amounts would effectively cause the
samples to be more closely spaced in one direction than the other, which is certainly
not what one expects when rendering a non-square image. Figure 7.22 compares
results of using the low discrepancy sampler to using the stratified sampler of the
previous section to sample the checkerboard texture.�
LDSampler Declarations ���
class LDSampler : public Sampler {
public:�

LDSampler Public Methods �
private:�

LDSampler Private Data �
};

The LDSampler constructor computes the length of a side of the square region
samples are generated inside of, extent, the total number of samples to generate
(and its inverse), nSamples and invNSamples, and the sample number of the next
Hammersley point xi, to be computed by GetNextSample(), curSample.

Sec. 7.5] ***ADV***: Low-Discrepancy Sequences 259

Figure 7.22: Images comparing the stratified sampler to the low discrepancy sam-
pler. On top is the jittered stratified sampler with a single sample per pixel, and
beneath it is the low discrepancy sampler with a single sample per pixel. Next is
the stratified sampler with four samples per pixel and finally the low discrepancy
sampler with four samples per pixel. Note that although the low discrepancy pat-
tern is able to reproduce the checker pattern farther than the stratified pattern, there
is a regular structure to the error in the low discrepancy pattern that is visually
distracting.

FoldedRadicalInverse() 256
LDSampler 258

LDSampler::imageSamplesDone 264
LDSampler::scrambles 264

RadicalInverse() 254
Sample::imageX 239
Sample::imageY 239

Sampler 237
Sampler::xPixelEnd 238

Sampler::xPixelSamples 238
Sampler::xPixelStart 238
Sampler::yPixelEnd 238

Sampler::yPixelSamples 238
Sampler::yPixelStart 238

260 Sampling and Reconstruction [Ch. 7

�
LDSampler Method Definitions ���
LDSampler::LDSampler(int xstart, int xend, int ystart, int yend,

int xs, int ys, bool uf)
: Sampler(xstart, xend, ystart, yend, xs, ys) {
scale = max(xPixelEnd - xPixelStart, yPixelEnd - yPixelStart);
nSamples = xPixelSamples * yPixelSamples * scale * scale;
invNSamples = 1.f / nSamples;
curSample = 0;
useFolded = uf;
scrambles = imageSamplesDone = NULL;

}
�
LDSampler Private Data ���
int scale, nSamples, curSample;
Float invNSamples;
bool useFolded;

The LDSampler keeps generating points until a total of nSamples have been
returned, after which it returns false, indicating that it has no more to provide. In
the implementation below, we use either the FoldedRadicalInverse() function
(to give a Hammersley-Zaremba point set) or the RadicalInverse() function (to
give a Hammersley point set), based on the useFolded parameter.

I removed the goto here – please check that I didn’t mess this up.�
LDSampler Method Definitions ��� �
bool LDSampler::GetNextSample(Sample *sample) {

do {
++curSample;
if (curSample > nSamples) return false;�
Compute Hammersley � x � y � image sample location �

} while (Float2Int(sample->imageX) >= xPixelEnd ||
Float2Int(sample->imageY) >= yPixelEnd);�

Compute remaining dimensions of Hammersley sample �
return true;

}

We start by computing the raster-space � x � y � image sample position. We imme-
diately check to make sure that it is inside the region of pixels that need samples
generated for it, so that we can skip computing values for the remainder of the
dimensions in case it is out of bounds.�
Compute Hammersley � x � y � image sample location ���
Float x = (curSample - .5f) * invNSamples;
Float y = useFolded ? FoldedRadicalInverse(curSample, 2) :

RadicalInverse(curSample, 2);
sample->imageX = xPixelStart + x * scale;
sample->imageY = yPixelStart + y * scale;

Now that we know that we’ve got a valid image sample, we compute the sample
points for the rest of the dimensions. Time and lens samples use Hammersley
points in dimensions 3, 5, and 7.

Sec. 7.5] ***ADV***: Low-Discrepancy Sequences 261

256 FoldedRadicalInverse()
260 LDSampler::curSample
260 LDSampler::useFolded
254 RadicalInverse()
239 Sample::lensX
239 Sample::lensY
239 Sample::time
244 StratifiedSampler

Figure 7.23: some elementary intervals, base 2...

�
Compute remaining dimensions of Hammersley sample ���
if (useFolded) {

sample->time = FoldedRadicalInverse(curSample, 3);
sample->lensX = FoldedRadicalInverse(curSample, 5);
sample->lensY = FoldedRadicalInverse(curSample, 7);

}
else {

sample->time = RadicalInverse(curSample, 3);
sample->lensX = RadicalInverse(curSample, 5);
sample->lensY = RadicalInverse(curSample, 7);

}�
Compute low-discrepancy integrator samples �
To generate samples for the integrators, we can take advantage of a remarkable

property of certain low-discrepancy patterns that allows us to generate a set of
sample positions for a pixel’s worth of image samples such that each sample is
well stratified with respect not only to the other samples in the set but also to the
sample positions at neighboring image samples–both halves of the goal that we
only got one part of with the StratifiedSampler.

A useful low-discrepancy sequence in 2D can be constructed using the Van De
Corput sequence in one dimension and a sequence based on a radical inverse func-
tion due to Sobol’ in the other direction. The resulting sequence is a special type
of low-discrepancy sequence known as an � 0 � 2 � -sequence. � 0 � 2 � -sequences are
stratified in a very general way. For example, the first 16 samples in an � 0 � 2 � -
sequence satisfy the stratification constraint, such that there is just one sample in
each of the boxes of extent � 1 �

4 � 1 �
4 � . However, the also satisfy the LHS con-

straint, such that only one of them is in each of the boxes of extent � 1 �
16 � 1 � and� 1 � 1 �

16 � . Furthermore, there is only one sample in each of the boxes of extent� 1 �
2 � 1 �

8 � and � 1 �
8 � 1 �

2 � . Figure 7.23 shows all of the regions that the first 16
samples of an � 0 � 2 � -sequence simultaneously satisfy stratification properties with
respect to. Furthermore, each succeeding sequence of 16 additional samples from
the sequence satisfies this same distribution property.

In general, any sequence of length 2l1l2 (li � 0 an integer) from an � 0 � 2 � -sequence
satisfies a general stratification constraint. Define the set of elementary intervals in
2 dimensions, base two as

E � ���
a1

2l1
� a1 � 1

2l1 � �

�
a2

2l2
� a2 � 1

2l2 ��� �

where ai � 0 � ����� � 2li
� 1 and is an integer. Then, one sample from each of the first

2l1l2 values in the sequence will be in each of the elementary intervals. Further-
more, the same property is true for each subsequent set of 2l1l2 values.

Consider now how � 0 � 2 � -sequences can be applied to generating 2D samples for
the integrators: for example, consider a pixel with 2 by 2 image samples, each with

Sobol2() 263
VanDerCorput() 263

262 Sampling and Reconstruction [Ch. 7

4 by 4 integrator samples. The first 2 � 2 � 4 � 4 � 26 values of an � 0 � 2 � -sequence
are well-distributed with respect to each other according to the corresponding set
of elementary intervals. Furthermore, the first 4 � 4 � 24 samples are themselves
well-distributed according to their corresponding elementary intervals, as are the
next 24 of them, the subsequent ones, etc. Therefore, we can use the first 16 � 0 � 2 � -
sequence samples for the first image sample in the region around the pixel, and so
forth. The result is an extremely well-distributed set of sample points.

However, there a handful of details that must be addressed before � 0 � 2 � -sequences
can be used in practice. The first is that we need to generate multiple sets of 2D
sample values for each image sample, and we would like to generate different sam-
ple values in the areas around different pixels. One approach to this problem would
be to use carefully-chosen non-overlapping sub-sequences of the � 0 � 2 � -sequence
for each of these. Another approach, which we will use here is to randomly scram-
ble the � 0 � 2 � -sequence, giving a � 0 � 2 � -sequence built by randomly permuting the
base b digits of the values of the original net.

In two dimensions, the scrambling approach we will use repeatedly partitions
and shuffles the unit square � 0 � 1 � 2. In each of the dimensions, it first divides the
square in half at 0 � 5. It then swaps the two halves with 50% probability. Then, for
the intervals � 0 � 0 � 5 � and � 0 � 5 � 1 � , it splits each of them in half down the middle and
randomly exchanges each of those two halves. This process continues recursively
until floating-point precision intervenes and continuing the process would make no
difference to the values computed.

Two things make this process efficient: first, because we are scrambling two
sequences that are computed base 2, the digits ai of the sequences are all 0 or 1,
and scrambling a particular digit is equivalent to exclusive-or’ing it with 0 or 1.
Second, we make the simplification that at each level l of the recursive scrambling,
we make the same decision as to whether to swap each pair of the 2l � 1 pairs of
sub-intervals or not. The result of these two decisions is that the scrambling can
be encoded as a set of bits stored in an unsigned long and can be applied to the
original digits via exclusive-or operations.�
Sampling Inline Functions ���
inline void Sample02Net(u_int n, u_int scramble[2], Float sample[2]) {

sample[0] = VanDerCorput(n, scramble[0]);
sample[1] = Sobol2(n, scramble[1]);

}

check capitalization of Van Der Corput
Here are implementations of the Van Der Corput and Sobol’ low-discrepancy

sequences, specialized for the base 2 case. Each of them takes a u int value
scramble that encodes a random permutation to apply. It computes the nth value
from each of the sequences as it simultaneously applies the permutation.

This just reverses the bits, does the xor, turns it to a float...

Sec. 7.5] ***ADV***: Low-Discrepancy Sequences 263

264 LDSampler::scrambles
237 Sampler

�
Sampling Inline Functions ��� �
inline Float VanDerCorput(u_int n, u_int scramble) {

n = (n << 16) | (n >> 16);
n = ((n & 0x00ff00ff) << 8) | ((n & 0xff00ff00) >> 8);
n = ((n & 0x0f0f0f0f) << 4) | ((n & 0xf0f0f0f0) >> 4);
n = ((n & 0x33333333) << 2) | ((n & 0xcccccccc) >> 2);
n = ((n & 0x55555555) << 1) | ((n & 0xaaaaaaaa) >> 1);
n ˆ= scramble;
return (Float)n / (Float)0x100000000LL;

}
�
Sampling Inline Functions ��� �
inline Float Sobol2(u_int n, u_int scramble) {

for (u_int v = 1 << 31; n != 0; n >>= 1, v ˆ= v >> 1)
if (n & 0x1) scramble ˆ= v;

return (Float)scramble / (Float)0x100000000LL;
}

We can now define the fragment that computes integrator sample values for the
LDSmapler. For each local area around a pixel in the image, we will compute
the random u int values that will be used to scramble each of the 1D and 2D
integrator sample values that we will compute at that pixel. These are stored in the
scrambles array. We also keep a count of the number of samples that have been
generated for each pixel’s region so that we can choose the appropriate offsets into
the � 0 � 2 � -sequences for the current sample in the current pixel.
�
Compute low-discrepancy integrator samples ���
if (!scrambles) {�

Allocate and initialize arrays for per-pixel records �
}�
Get pointer to scramble values for current pixel ��
Compute low-discrepancy 1D samples ��
Compute low-discrepancy 2D samples �
The low-discrepancy Sampler doesn’t have an explicit notion of generating

samples for a particular image pixel, yet we need to use the same scramble val-
ues for all of the samples within the area around each pixel so that they are well-
distributed with respect to each other. Because all of the samples nearby a par-
ticular pixel aren’t generated at once, we will allocate memory to keep track of
the u int values used for scrambling each set of 1D and 2D sample values at each
pixel, as well as the number of samples generated for the pixel so far, imageSamplesDone
so that we know which subsequence of the � 0 � 2 � -sequence to use.

Assert() 659
RoundUpPow2() 678
Sample02Net() 262
Sample::imageX 239
Sample::imageY 239

Sample::n1D 241
Sample::n2D 241
Sample::twoD 241

Sampler::xPixelEnd 238
Sampler::xPixelStart 238
Sampler::yPixelEnd 238

Sampler::yPixelStart 238

264 Sampling and Reconstruction [Ch. 7

�
Allocate and initialize arrays for per-pixel records ���
int nPix = (1 + xPixelEnd - xPixelStart) * (1 + yPixelEnd - yPixelStart);
imageSamplesDone = new u_int[nPix];
for (int i = 0; i < nPix; ++i)

imageSamplesDone[i] = 0;
int nScrambles = nPix * (sample->n1D.size() + 2 * sample->n2D.size());
scrambles = new u_int[nScrambles];
for (int i = 0; i < nScrambles; ++i)

scrambles[i] = RandomUInt();
�
LDSampler Private Data ��� �
u_int *scrambles, *imageSamplesDone;

We can map the floating-point � x � y � image sample position to map to an integer
pixel value, and from that, an offset into the scramble and imageSamplesDone
arrays.�
Get pointer to scramble values for current pixel ���
int xPixel = Floor2Int(sample->imageX);
int yPixel = Floor2Int(sample->imageY);
int pixelNum = (xPixel - xPixelStart) +

(yPixel - yPixelStart) * (xPixelEnd - xPixelStart);
Assert(pixelNum < (xPixelEnd-xPixelStart)*(yPixelEnd-yPixelStart));
Assert(xPixel >= xPixelStart && xPixel < xPixelEnd);
Assert(yPixel >= yPixelStart && yPixel < yPixelEnd);
u_int *scramble = &scrambles[pixelNum *

(sample->n1D.size() + 2 * sample->n2D.size())];
int pixelSamples = imageSamplesDone[pixelNum]++;

We will omit the fragment that computes low-discrepancy 1D sample values;
it just uses a randomly scrambled Van Der Corput sequence and is analogous to
the 2D fragment, which is shown below. It loops over all of the sets of sam-
ples that need to be generated around the given pixel. For each one, it computes
nextPow2, the next power-of-two that is greater than or equal to the number of
samples needed–this tells us how far ahead in the sample sequence to jump for the
start of the next set of samples. Using this as a base, we compute the points of the
scrambled � 0 � 2 � -sequence in turn, using the appropriate shuffle. When done, the
scramble pointer is incremented, so that it points to the scramble values for the
next set of points.�
Compute low-discrepancy 2D samples ���
for (u_int i = 0; i < sample->n2D.size(); ++i) {

u_int nextPow2 = RoundUpPow2(sample->n2D[i]);
int sampStart = pixelSamples * nextPow2;
for (u_int j = 0; j < sample->n2D[i]; ++j) {

int sampNum = sampStart + j + 1;
Sample02Net(sampNum, scramble, &sample->twoD[i][2*j]);

}
scramble += 2;

}

Sec. 7.6] ***ADV***: Best-Candidate Sampling Patterns 265

275 BestCandidateSampler
244 StratifiedSampler

With the folded radical inverse functions in dimensions greater than two, such
that the implementations are not easily optimized, it is substantially more expensive
computationally to generate image samples than it is for the StratifiedSampler
of the previous section or the BestCandidateSampler that will be introduced in
the next section (roughly ten times slower.) For very simple scenes, where the
cost of tracing a camera ray and computing its contribution is low, it may be more
efficient to trace more rays generated by a lower-quality sample generation method
to render an image of a particular quality level than it is to trace fewer rays that are
“better”, since the cost of generating their samples may dominate overall running
time. For more complex scenes, however, where computing the contribution of a
camera ray is more expensive, we can afford to spend more time to compute very
good samples, since a reduction in the total number of samples that need to be
taken can make up for the expense of computing the samples.

� ��������� � � ��������� � � � � � � � �	� � ��������� ��� ���� � � � ��� ��� � � �
So far, we have two imperfect solutions to the sampling problem: jittered strati-

fied sampling, which has randomness that reduces the visual impact of undersam-
pling high-frequency image functions but suffers from bunching up of samples and
undersampling of some areas, and low-discrepancy sampling, which addresses the
sample distribution problem with carefully-constructed sample locations but can be
prone to aliasing. Ideally, both of these problems could be solved simultaneously;
the best candidate sampler in this section tries to do just this.

The Poisson disk pattern addresses both the issue of randomization as well as
the issue of well-separated sample placement; it has been shown to be an excellent
image sampling pattern. The Poisson disk pattern is a group of points such that
no two of them are closer than some specified distance. Studies have shown that
the rods and cones in the eye are distributed in a Poisson disk-like pattern, which
suggests that this pattern might be effective for imaging. Poisson disk patterns are
usually generated by dart throwing: we keep generating random samples, throwing
away all that are closer to a previous sample than a fixed threshold distance. This
can be a very expensive process, since many darts may need to be thrown before
one is accepted.

A related approach due to Don Mitchell is the best candidate algorithm. When a
new sample is to be computed, a large number of random candidates are generated;
all of these candidates are compared to the previous samples and the one that is
farthest away from all of the previous samples is added to the pattern. Although
this algorithm doesn’t guarantee the Poisson disk property, it usually does quite
well at finding well-separated points if enough candidates are generated. Another
advantage it has is that any prefix of the final pattern is itself a well-distributed
sampling pattern. Furthermore, it’s easier to generate a good pattern with a pre-
chosen number of samples with the best candidate algorithm than it is with a dart
throwing algorithm.

In this section we will present an implementation of the best-candidate algorithm
and its extension to computing sampling patterns that include good distributions
of samples in additional dimensions. Because generating the sample positions is
a computationally-intensive algorithm, we will compute a good sampling pattern

266 Sampling and Reconstruction [Ch. 7

Jittered

Poisson Disc

Best Candidate

Figure 7.24: Comparison of sampling patterns. On the top is a jittered pattern: note
clumping of samples and undersampling in some areas. In the middle is a Poisson
disk pattern generated by dart-throwing. No two samples are closer than a fixed
threshold, and although there is no guarantee that there will be one sample in each
of the strata, this is usually the case. On the bottom is a pattern generated with the
best-candidate algorithm; it is nearly as good as the Poisson disk pattern. (Due to
its toroidal topology, the two strata at the top left with no samples have samples
very close to them from the bottom left part, etc.)

Sec. 7.6] ***ADV***: Best-Candidate Sampling Patterns 267

once in a pre-process. The pattern can then be stored in a table and efficiently used
at rendering-time.

Rather than computing a sampling pattern large enough to sample the most enor-
mous image we’d ever render, we’ll compute a pattern that can be reused by tiling
it over the image plane by translating and scaling it appropriately. This means that
we must consider the pattern to have toroidal topology; when computing the dis-
tance between two samples, we must compute the distance between them as if the
square sampling region was rolled into a torus. Thus, for these purposes points at
the top of the region may have a very small distance to points at the bottom, etc.

7.6.1 Generating the best-candidate pattern

We will now show the program that generates the samples in an off-line computa-
tion.�
samplepat.cpp ���
#include "lrt.h"
#include "sampling.h"�
BestCandidate Sampling Constants ��
Sample Pattern Precomputation �
First we need to define the size of the table that we will be generating.�

BestCandidate Sampling Constants ���
#define SQRT_SAMPLE_TABLE_SIZE 64
#define SAMPLE_TABLE_SIZE (SQRT_SAMPLE_TABLE_SIZE * \

SQRT_SAMPLE_TABLE_SIZE)

We will generate sample points in a dive-dimensional space: two dimensions
for the image sample location, one for the time, and two more determine a point
on a lens. Because we don’t know ahead of time what types of sample patterns the
integrators will need, we will just use scrambled � 0 � 2 � -sequences for them, as in
the low-discrepancy sampler. When generating the samples we store each of these
sets of samples in a separate array.�
Pattern Precomputation Local Data ���
static Float imageSamples[SAMPLE_TABLE_SIZE][2];
static Float timeSamples[SAMPLE_TABLE_SIZE];
static Float lensSamples[SAMPLE_TABLE_SIZE][2];

Here is the main() function for the off-line sample computation program. We
compute sample values in a multi-stage process. First, we generate a well-distributed
set of image sample positions. Then, given the image samples, we generate a good
set of time samples, accounting for the positions of the time samples for nearby
image samples. Finally, we generate good samples for the lens, again taking into
account the positions of nearby lens samples.

ProgressReporter 660
ProgressReporter::Done() 660

ProgressReporter::Update() 660
SAMPLE TABLE SIZE 267

vector 658

268 Sampling and Reconstruction [Ch. 7

�
Sample Pattern Precomputation ��� �
int main() {�

Compute image sample positions ��
Compute time samples ��
Compute lens samples ��
Write sample table to disk �
return 0;

}

In order to speed up the candidate evaluation, we will store the accepted sam-
ples in a grid. This allows us to only check nearby samples when computing dis-
tances between samples. The grid splits up the 2D sample domain � 0 � 1 � 2 into
BC_GRID_SIZE strata in each direction and stores a list of the integer sample num-
bers of the samples that overlap each cell. The GRID() macro maps a position in

� 0 � 1 � to the corresponding grid cell. explain this better – the text makes it sound
like GRID goes from R2 to R1, which is not true.�
Global Forward Declarations ��� �
#define BC_GRID_SIZE 40
typedef vector<int> SampleGrid[BC_GRID_SIZE][BC_GRID_SIZE];
#define GRID(v) (int((v) * BC_GRID_SIZE))

To compute the image samples, we start by creating a sample grid and calling a
function to run the 2D best candidate algorithm.�
Compute image sample positions ���
SampleGrid pixelGrid;
BestCandidate2D(imageSamples, SAMPLE_TABLE_SIZE, &pixelGrid);

For the best candidate algorithm, the first image sample position is chosen com-
pletely arbitrarily and recorded in the grid. For all subsequent samples, we generate
a set of candidates that are compared to the already-computed samples.�
Sample Pattern Precomputation ��� �
void BestCandidate2D(Float table[][2], int totalSamples,

SampleGrid *grid) {
SampleGrid localGrid;
if (!grid) grid = &localGrid;
ProgressReporter progress(totalSamples-1, "Throwing Darts");�
Generate first 2D sample arbitrarily �
for (int currentSample = 1; currentSample < totalSamples;

++currentSample) {�
Generate next best 2D image sample �
progress.Update();

}
progress.Done();

}

To start off the process, we can choose any random point for the first sample;
only the second sample and beyond need to be checked against previous samples.

Sec. 7.6] ***ADV***: Best-Candidate Sampling Patterns 269

268 currentSample
268 GRID
679 RandomFloat()
268 SampleGrid
237 Sampler

�
Generate first 2D sample arbitrarily ���
table[0][0] = RandomFloat();
table[0][1] = RandomFloat();
addSampleToGrid(table, 0, grid);

A short utility function adds a particular item (given by offset) in the table of
samples to a SampleGrid.

why not pass a reference to the SampleGrid instead of a pointer?�
Pattern Precomputation Utility Functions ���
static void addSampleToGrid(Float sample[][2], int offset,

SampleGrid *grid) {
int u = GRID(sample[offset][0]), v = GRID(sample[offset][1]);
(*grid)[u][v].push_back(offset);

}

To generate the rest of the samples, we will use a dart throwing algorithm that
throws a number of candidate darts for each needed sample. The number of darts
thrown is proportional to the number of samples we have already; this ensures that
the quality of the samples as we go is in some sense consistent. After throwing
a dart, we see how close it is to all of the samples we’ve generated so far. If it’s
farther away from all of the accepted samples than the previous best candidate was,
we keep it. At the end of the loop, the remaining candidate is kept.�
Generate next best 2D image sample ���
Float maxDist2 = 0.;
int numCandidates = 500 * currentSample;
for (int currentCandidate = 0; currentCandidate < numCandidates;

++currentCandidate) {�
Generate a random candidate sample ��
Loop over neighboring grid cells and check distances ��
Keep this sample if it is the best one so far �

}
addSampleToGrid(table, currentSample, grid);

Candidate positions are chosen completely at random. Note that we’re com-
puting image sample locations in the range � 0 � 1 � ; it’ll be up to the Sampler that
uses the sampling pattern to scale and translate image samples into raster-space
appropriately.�
Generate a random candidate sample ���
Float candidate[2];
candidate[0] = RandomFloat();
candidate[1] = RandomFloat();

Now that we have a candidate, we see if it’s the best candidate we’ve come up
with so far. We compute the distances to all of the already-generated samples,
keeping track of the minimum of the distances to all of the previously accepted
samples. Whichever candidate that has the largest minimum distance is the best.
For efficiency, we will actually compute the squared distance, which gives the same
result for this test and saves us a lot of expensive square root computations.

We actually only compute distances to the eight neighboring grid cells and the
cell that the candidate is in; although this means that the first few samples are not

BC GRID SIZE 268
GRID 268

INFINITY 678
SQRT SAMPLE TABLE SIZE 267

270 Sampling and Reconstruction [Ch. 7

optimally distributed relative to each other, this doesn’t matter by the time we are
done computing samples, so long as BC_GRID_SIZE � SQRT_SAMPLE_TABLE_SIZE.�
Loop over neighboring grid cells and check distances ���
Float sampleDist2 = INFINITY;
int gu = GRID(candidate[0]), gv = GRID(candidate[1]);
for (int du = -1; du <= 1; ++du) {

for (int dv = -1; dv <= 1; ++dv) {�
Compute (u,v) grid cell to check ��
Update minimum squared distance from cell’s samples �

}
}

We do need to handle the toroidal topology here, though; if the grid cell we’d
like to consider is out of bounds, we wrap around to the other end of the grid.�
Compute (u,v) grid cell to check ���
int u = gu + du, v = gv + dv;
if (u < 0) u += BC_GRID_SIZE;
if (u >= BC_GRID_SIZE) u -= BC_GRID_SIZE;
if (v < 0) v += BC_GRID_SIZE;
if (v >= BC_GRID_SIZE) v -= BC_GRID_SIZE;

We now loop over the list of sample numbers for the samples in the grid cell
we’re considering. For each one, we compute the squared distance to the current
candidate, recording the lowest squared distance of all the ones we check.�
Update minimum squared distance from cell’s samples ���
for (u_int g = 0; g < (*grid)[u][v].size(); ++g) {

int s = (*grid)[u][v][g];
Float xdist = Wrapped1DDist(candidate[0], table[s][0]);
Float ydist = Wrapped1DDist(candidate[1], table[s][1]);
Float d2 = xdist*xdist + ydist*ydist;
sampleDist2 = min(sampleDist2, d2);

}

When we compute the 1D distance between two values in � 0 � 1 � , we need to
handle the wrap-around issue. Consider two samples with x coordinates of � 01
and � 99, respectively. Direct computation will find their distance to be � 98, though
with wrap-around, the actual distance should be � 02. Because we’re only checking
distances to samples in adjacent grid cells, we can easily detect this situation when
one of the distances is greater than 0 � 5. In that case, the true distance is just the
sum of the distance from the higher sample to one plus the distance from zero to
the lower sample.�
Pattern Precomputation Utility Functions ��� �
inline Float Wrapped1DDist(Float a, Float b) {

Float d = fabsf(a - b);
if (d < 0.5f) return d;
else return 1.f - max(a, b) + min(a, b);

}

Sec. 7.6] ***ADV***: Best-Candidate Sampling Patterns 271

268 currentSample
660 ProgressReporter
660 ProgressReporter::Update()
679 RandomFloat()
267 SAMPLE TABLE SIZE
270 sampleDist2

Finally, we see if this candidate has the highest squared distance to its neighbors.
If so, we record its distance and tentatively put it in the output table.�
Keep this sample if it is the best one so far ���
if (sampleDist2 > maxDist2) {

maxDist2 = sampleDist2;
table[currentSample][0] = candidate[0];
table[currentSample][1] = candidate[1];

}

Now that we’ve got all of the image samples that we want, we turn to comput-
ing the sample positions for the rest of the dimensions. One might think that a
good sample pattern could be computed by generalizing the Poisson disk concept
to a higher-dimensional Poisson sphere. Interestingly enough, we can do better
than this. (In the five-dimensional case in particular, a large number of candidate
samples would be needed to find good ones, anyway.)

Consider the problem of choosing time values for two nearby image samples:
not only do we want the time values to not be too close together, but in fact, it’s
even better if the time values are as far apart as possible—in any local 2D region of
the image, we’d like the best possible coverage of the complete three-dimensional
sample space.

An intuition for why this is the case comes from how the sampling pattern will
be used. Although we’re generating a five-dimensional pattern overall, what we’re
interested in is optimizing its distribution across local areas of the two-dimensional
image plane; optimizing its distribution over the five-dimensional space is at best a
secondary concern.

Therefore, we’ll use a two stage process for generating the sample positions.
First, we will generate a well-distributed sampling pattern for the time and lens
positions. Then, we will associate these samples with image samples in a way that
ensures that nearby image samples have sample values for the other dimensions
that are well spread-out.7

For time, we generate a set of one-dimensional stratified sample values over
� 0 � 1 � . When we’re done, we will rearrange the timeValues array so that the ith
time sample is a good one for the ith image sample.�
Compute time samples ���
ProgressReporter timeProgress(SAMPLE_TABLE_SIZE, "Time samples");
for (int i = 0; i < SAMPLE_TABLE_SIZE; ++i)

timeSamples[i] = (i + RandomFloat()) / SAMPLE_TABLE_SIZE;
for (int currentSample = 1; currentSample < SAMPLE_TABLE_SIZE;

++currentSample) {�
Select best time sample for current image sample �
timeProgress.Update();

}

7As if that wasn’t enough to worry about, we should also be considering correlation. Not only
should nearby image samples have distant sample values for the other dimensions, but we should
also make sure that, for example, the time and lens values aren’t correlated: if we somehow kept
choosing samples such that the time value was always similar to the lens u sample value, the sample
pattern is not as good as it would be if the two were uncorrelated. We won’t address this issue in our
approach here, though at least the technique we use isn’t prone to introducing correlation.

Assert() 659
currentSample 268

GRID 268
INFINITY 678

SAMPLE TABLE SIZE 267
Wrapped1DDist() 270

272 Sampling and Reconstruction [Ch. 7

�
Select best time sample for current image sample ���
int best = -1;�
Find best time relative to neighbors �
Assert(best != -1);
swap(timeSamples[best], timeSamples[currentSample]);

Given that we’re working on finding a good time for the sample number currentSample,
the elements of timeSamples from zero to currentSample-1 have already been
assigned to previous image samples and are unavailable to us. The rest of the times,
from currentSample to SAMPLE TABLE SIZE-1, are the ones we will choose from.�
Find best time relative to neighbors ���
Float maxMinDelta = 0.;
for (int t = currentSample; t < SAMPLE_TABLE_SIZE; ++t) {�

Compute min delta for this time ��
Update best if this is best time so far �

}

As when we were doing dart-throwing for image samples, we only look at the
samples in the adjoining few grid cells. Of these, we will select the one that is
most different than the time samples that have already been assigned to the nearby
image samples.�
Compute min delta for this time ���
int gu = GRID(imageSamples[currentSample][0]);
int gv = GRID(imageSamples[currentSample][1]);
Float minDelta = INFINITY;
for (int du = -1; du <= 1; ++du) {

for (int dv = -1; dv <= 1; ++dv) {�
Check distance from times of nearby samples �

}
}

We loop through the samples in each of the grid cells, though we need to be
careful to only consider the ones that already have time samples associated with
them. Therefore, we skip over the ones that have sample numbers greater than the
sample we’re currently working to find a time value for. For the remaining ones,
we compute the distance for their time sample to the current candidate time sample,
keeping track of the minimum difference.�
Check distance from times of nearby samples ����

Compute (u,v) grid cell to check �
for (u_int g = 0; g < pixelGrid[u][v].size(); ++g) {

int otherSample = pixelGrid[u][v][g];
if (otherSample < currentSample) {

Float dt = Wrapped1DDist(timeSamples[otherSample],
timeSamples[t]);

minDelta = min(minDelta, dt);
}

}

If the minimum distance from the current time sample is greater than the mini-
mum distance of the previous best time sample, we update our records.

Sec. 7.6] ***ADV***: Best-Candidate Sampling Patterns 273

659 Assert()
268 BestCandidate2D()
268 currentSample
660 ProgressReporter
660 ProgressReporter::Update()
267 SAMPLE TABLE SIZE
268 SampleGrid

�
Update best if this is best time so far ���
if (minDelta > maxMinDelta) {

maxMinDelta = minDelta;
best = t;

}

We now go ahead and take care of the lens positions. We generate good sampling
patterns using dart throwing and then associate these sample values with image
samples in the same manner that we assigned times to image samples, selecting
lens positions that are far away from the lens positions of nearby image samples.�
Compute lens samples ���
BestCandidate2D(lensSamples, SAMPLE_TABLE_SIZE);
Redistribute2D(lensSamples, pixelGrid);

After the BestCandidate2D() function generates a good set of 2D samples, the
Redistribute2D() utility function takes the set of samples to assign to the image
samples and reshuffles them like we reshuffled the time samples to give them a
good distribution with respect to their neighbors.�
Sample Pattern Precomputation ��� �
static void Redistribute2D(Float samples[][2],

SampleGrid &pixelGrid) {
ProgressReporter progress(SAMPLE_TABLE_SIZE, "Redistribution");
for (int currentSample = 1;

currentSample < SAMPLE_TABLE_SIZE; ++currentSample) {�
Select best sample for current image sample �
progress.Update();

}
fprintf(stderr, "\n");

}
�
Select best sample for current image sample ���
int best = -1;�
Find best 2D sample relative to neighbors �
Assert(best != -1);
swap(samples[best][0], samples[currentSample][0]);
swap(samples[best][1], samples[currentSample][1]);

As with time, we want to choose the sample from the available ones that maxi-
mizes the minimum distance to the sample values that have already been assigned
to the neighboring image samples.

There are four chunks in a row here, what’s up with that. More text.�
Find best 2D sample relative to neighbors ���
Float maxMinDist2 = 0.f;
for (int samp = currentSample; samp < SAMPLE_TABLE_SIZE;

++samp) {�
Check distance to nearby samples ��
Update best for 2D sample if it is best so far �

}

currentSample 268
GRID 268

INFINITY 678
Wrapped1DDist() 270

274 Sampling and Reconstruction [Ch. 7

�
Check distance to nearby samples ���
int gu = GRID(imageSamples[currentSample][0]);
int gv = GRID(imageSamples[currentSample][1]);
Float minDist2 = INFINITY;
for (int du = -1; du <= 1; ++du) {

for (int dv = -1; dv <= 1; ++dv) {�
Check 2D samples in current grid cell �

}
}

�
Check 2D samples in current grid cell ����

Compute (u,v) grid cell to check �
for (u_int g = 0; g < pixelGrid[u][v].size(); ++g) {

int s2 = pixelGrid[u][v][g];
if (s2 < currentSample) {

Float dx = Wrapped1DDist(samples[s2][0],
samples[samp][0]);

Float dy = Wrapped1DDist(samples[s2][1],
samples[samp][1]);

Float d2 = dx*dx + dy*dy;
minDist2 = min(d2, minDist2);

}
}

�
Update best for 2D sample if it is best so far ���
if (minDist2 > maxMinDist2) {

maxMinDist2 = minDist2;
best = samp;

}

When we’re all done, we open up a file and write out C++ code that initializes
the table. When lrt is compiled, it will #include this file to initialize its sample
table. since we’re including it, why not generate sampledata.h intead?

Sec. 7.6] ***ADV***: Best-Candidate Sampling Patterns 275

659 Assert()
267 SAMPLE TABLE SIZE
237 Sampler
267 SQRT SAMPLE TABLE SIZE
244 StratifiedSampler

�
Write sample table to disk ���
FILE *f = fopen("sampledata.cpp", "w");
Assert(f);
fprintf(f, "\n/* Automatically generated %dx%d sample "

"table (%s @ %s) */\n\n",
SQRT_SAMPLE_TABLE_SIZE, SQRT_SAMPLE_TABLE_SIZE,
__DATE__, __TIME__);

fprintf(f, "const Float BestCandidateSampler::sampleTable[%d][5] "
"= {\n", SAMPLE_TABLE_SIZE);

for (int i = 0; i < SAMPLE_TABLE_SIZE; ++i) {
fprintf(f, " { ");
fprintf(f, "%10.10ff, %10.10ff, ", imageSamples[i][0],

imageSamples[i][1]);
fprintf(f, "%10.10ff, ", timeSamples[i]);
fprintf(f, "%10.10ff, %10.10ff, ", lensSamples[i][0],

lensSamples[i][1]);
fprintf(f, "},\n");

}
fprintf(f, "};\n");

7.6.2 Using the best-candidate pattern
�
bestcandidate.cpp* � �
#include "sampling.h"
#include "paramset.h"
#include "film.h"�
BestCandidate Sampling Constants ��
BestCandidateSampler Declarations ��
BestCandidateSampler Method Definitions �
BestCandidateSampler, the Sampler that uses our sample table, is pretty

straightforward. A single copy of the sample table covers

SQRT SAMPLE TABLE SIZE / xPixelSamples

pixel separation extents in the x direction and analogously in y. As with the
StratifiedSampler, we scan across the image from the upper left of the crop
window, going left-to-right and then top-to-bottom. Here, we generate all samples
inside the sample table’s extent before advancing to the next region of the image
that it covers.�
BestCandidateSampler Declarations ���
class BestCandidateSampler : public Sampler {
public:�

BestCandidateSampler Public Methods �
private:�

BestCandidateSampler Private Data �
};

BestCandidateSampler 275
LDSampler 258

SAMPLE TABLE SIZE 267
Sampler 237

Sampler::xPixelSamples 238
Sampler::xPixelStart 238

Sampler::yPixelSamples 238
Sampler::yPixelStart 238

SQRT SAMPLE TABLE SIZE 267
StratifiedSampler 244

276 Sampling and Reconstruction [Ch. 7

We store our current raster-space pixel position in xTablePos and yTablePos
where xTableWidth and yTableWidth are the raster-space widths in pixel sepa-
rations that the precomputed sample table spans. tableOffset holds the current
offset into the sample table; when it is advanced to the point where we are at the
end of the table, we advance to the next region of the image that the table covers.

Figure 7.25�
BestCandidateSampler Method Definitions ���
BestCandidateSampler::BestCandidateSampler(int xstart, int xend,

int ystart, int yend, int xs, int ys)
: Sampler(xstart, xend, ystart, yend, xs, ys) {
xTablePos = xPixelStart;
yTablePos = yPixelStart;
xTableWidth = (Float)SQRT_SAMPLE_TABLE_SIZE / xPixelSamples;
yTableWidth = (Float)SQRT_SAMPLE_TABLE_SIZE / yPixelSamples;
tableOffset = 0;�
Update sample shifts �
scrambles = imageSamplesDone = NULL;

}
�
BestCandidateSampler Private Data ���
int tableOffset;
Float xTablePos, yTablePos;
Float xTableWidth, yTableWidth;
u_int *scrambles, *imageSamplesDone;

Here we incorporate the precomputed sample data.�
BestCandidateSampler Private Data ��� �
static const Float sampleTable[SAMPLE_TABLE_SIZE][5];

�
BestCandidateSampler Method Definitions ��� �
#include "sampledata.cpp"

One problem that sometimes comes up when using replicated precomputed sam-
ple patterns is that there may be subtle image artifacts aligned with the extent of
the pattern on the image plane due to the same values being used repeatedly for
time and lens position in each replicated sample region. Not only are the same
SAMPLE TABLE SIZE samples used and re-used (whereas the StratifiedSampler
and LDSampler will at least generate different time values and so forth for each
different image sample), but the upper left sample in each block of samples will
always have the same time value, etc.

On approach to this problem is to transform the set of sample values each time
before starting to re-use the pattern. Here, we use Cranley-Patterson rotations,
where we compute in each dimension

X �i � � Xi � ξi � mod 1 �

where Xi is the sample value and ξi is a random number between zero and one.
Because the various sampling patterns were computed with toroidal topology, the
resulting pattern is still well-distributed and seamless. The table of random offsets

Sec. 7.6] ***ADV***: Best-Candidate Sampling Patterns 277

Figure 7.25: Comparisons of the stratified sampling pattern with the best candidate
sampling pattern. The top image is the stratified pattern with a single sample per
pixel, and the best candidate pattern with a single sample per pixel is beneath it.
The third image shows the stratified pattern with four samples per pixel, with the
four sample best candidate pattern at the bottom. Though the differences are subtle,
note that the edges of the checks in the foreground aren’t less noisy when the best
candidate pattern is used, and it also does better at resolving the checks toward the
horizon, particularly on the sides. Furthermore, the noise from the best candidate
pattern tends to be higher-frequency, which is more visually acceptable.

BestCandidateSampler 275
BestCandidateSampler::sampleTable 276

BestCandidateSampler::xTablePos 276
BestCandidateSampler::xTableWidth 276

BestCandidateSampler::yTablePos 276
BestCandidateSampler::yTableWidth 276

RandomFloat() 679
Sample::imageX 239
Sample::imageY 239
Sample::lensX 239
Sample::lensY 239
Sample::time 239

Sampler::yPixelEnd 238
StratifiedSampler 244

278 Sampling and Reconstruction [Ch. 7

for time and lens position ξi is updated each time we are about to reuse the table
once again.�
Update sample shifts ���
for (int i = 0; i < 3; ++i)

sampleOffsets[i] = RandomFloat();

�
BestCandidateSampler Private Data ��� �
Float sampleOffsets[3];

The GetNextSample() has a similar structure to the one for StratifiedSampler�
BestCandidateSampler Method Definitions ��� �
bool BestCandidateSampler::GetNextSample(Sample *sample) {
again:�

Return false if BestCandidateSampler is done ��
Compute raster sample from table ��
Advance to next sample table position ��
Check sample against crop window, goto again if outside ��
Compute low-discrepancy integrator samples �
return true;

}

As with the StratifiedSampler, we are done generating samples when the
upper y coordinate of the region goes below the bottom of the crop window.�
Return false if BestCandidateSampler is done ���
if (yTablePos >= yPixelEnd)

return false;

It just takes some simple indexing and scaling to compute the raster-space sam-
ple position from the positions in the table. We don’t use the Cranley-Patterson
shifting technique on image samples: this would cause the sampling points at the
borders between repeated instances of the table to have a poor distribution; preserv-
ing good image-distribution is more important than reducing correlation. The rest
of the camera dimensions are sampled using the shifting method described above,
using the WRAP macro that ensures that the result stays between 0 and 1.

Would be nice to know if this made a difference; seems very subtle. Exam-
ple renderings with blowups? Can we even do that?�
Compute raster sample from table ���
#define WRAP(x) ((x) > 1 ? ((x)-1) : (x))
sample->imageX = xTablePos + xTableWidth *

sampleTable[tableOffset][0];
sample->imageY = yTablePos + yTableWidth *

sampleTable[tableOffset][1];
sample->time = WRAP(sampleOffsets[0] +

sampleTable[tableOffset][2]);
sample->lensX = WRAP(sampleOffsets[1] +

sampleTable[tableOffset][3]);
sample->lensY = WRAP(sampleOffsets[2] +

sampleTable[tableOffset][4]);

Sec. 7.7] Image Reconstruction 279

276 BestCandidateSampler::tableOffset
276 BestCandidateSampler::xTablePos
276 BestCandidateSampler::xTableWidth
276 BestCandidateSampler::yTablePos
276 BestCandidateSampler::yTableWidth
239 Sample::imageX
239 Sample::imageY
267 SAMPLE TABLE SIZE
238 Sampler::xPixelEnd
238 Sampler::xPixelStart
238 Sampler::yPixelEnd
238 Sampler::yPixelStart

The sampler now steps to the next precomputed sample value; if it’s hit the end
of the sample table, it tries to move xTablePos forward. If this leaves the raster
extent of the image, it moves yTablePos ahead.�
Advance to next sample table position ���
if (++tableOffset == SAMPLE_TABLE_SIZE) {�

Update sample shifts �
tableOffset = 0;
xTablePos += xTableWidth;
if (xTablePos >= xPixelEnd) {

xTablePos = xPixelStart;
yTablePos += yTableWidth;

}
}

The sample table may partially spill off the end of the image plane, so some
of the samples that we generate may be outside the necessary sample region. We
detect this case by checking the sample against the region of pixels to be sampled
and generating a new sample if it’s out of bounds.�
Check sample against crop window, goto again if outside ���
if (sample->imageX < xPixelStart ||

sample->imageX >= xPixelEnd ||
sample->imageY < yPixelStart ||
sample->imageY >= yPixelEnd)
goto again;

� ��� � � � �
� � ��� � � ��� � ��� � � � �

We now turn to the task of turning our carefully-chosen image samples and their
computed radiance values into pixel values for display or storage. Given the non-
uniformly distributed set of image samples, we need to compute a final value for
each of the pixels in the output image. According to the signal processing theory,
we need to do three things:

1. Reconstruct a continuous image function L̃ from the set of image samples.

2. Prefilter the function L̃ to remove any frequencies past the Nyquist limit for
the pixel spacing.

3. Sample L̃ at the pixel locations to compute the final pixel values.

Because we know that we will only be resampling the L̃ at the pixel locations,
we don’t need to construct an explicit representation of the function and can also
aggregate the first two steps into a single filter function.

Recall that if the original function had been uniformly sampled at a frequency
greater than the Nyquist frequency and reconstructed with the sinc filter, then the
reconstructed function in the first step would match the original image function
perfectly–quite a feat since we were only able to point-sample it. Because the
original image function has higher frequencies than we were able to sample (due
to edges, etc.), we chose to sample it non-uniformly, trading off noise for aliasing.

Film 294
Filter 281

280 Sampling and Reconstruction [Ch. 7

Figure 7.26: 2D image filtering: to compute a filtered pixel value for a pixel located
at � x � y � , all of the image samples inside the box around � x � y � with extent xWidth
and yWidth need to be considered. Each one, � xi � yi � is weighted by a 2D filter
function, f � x � xi � y � yi � ; the weighted average of all samples is the final pixel
value.

The theory behind reconstruction (Equation ??) depends on the samples being
uniformly spaced. While a number of approaches have been used to try to extend
the theory to non-uniform sampling, there is not yet as solid a footing for this.
The most widely used method in graphics to compute pixel values is based on
interpolation of the samples around a pixel. To compute a final value for a pixel
p � x � y � , this interpolation results in computing a weighted average:

p � x � y � 	 ∑i f � x � xi � y � yi � L � xi � yi �
∑i f � x � xi � y � yi � (7.7.3)

where L � xi � yi � is the radiance value of the i’th sample, located at � xi � yi � , and f is
a filter function. Figure 7.26 shows a pixel at location � x � y � , marked with an “x”,
that has a pixel filter with extent xWidth in the x direction and yWidth in the y
direction. Image samples are denoted by dots, and all of the samples inside the box
given by the filter extent may contribute to the pixel’s value, depending on the filter
function’s value for f � x � xi � y � y � i � .

Recall that the ideal sinc filter is prone to ringing when the underlying function
has frequencies beyond the Nyquist limit (Gibbs phenomenon)–where edges in the
image have faint replicated copies of the edge in nearby pixels. Furthermore, the
sinc filter is generally avoided for efficiency reasons because it has infinite support:
it doesn’t fall off to zero at a finite distance from its center, so all of the image
samples would need to be filtered for each output pixel. In practice, there is no
single best filter function. Choosing the best one for a particular problem takes a
mixture of quantitative evaluation and qualitative judgment.

7.7.1 Filter Functions

First we will define the abstract Filter class from which all our filter implemen-
tations will derive. Filter implements various functions f � x � y � for use in pixel
filtering (Equation 7.7.3). The Film object (described in the next chapter) stores a
pointer to a Filter object that it uses for filtering.

Sec. 7.7] Image Reconstruction 281

�
Sampling Declarations ��� �
class Filter {
public:�

Filter Interface ��
Filter Public Data �

};

All filters have widths beyond which they have a value of zero; these may be dif-
ferent in the x and y directions. The constructor takes values for these distances and
stores them (and related values) for use by the filter implementations. The filter’s
overall extent in each direction (its support) is twice the value of its corresponding
width.

this could really use a diagram; the fact that xw and yw are 1/2 the filter
width could be made clearer that way.�
Filter Interface ��� �
Filter(Float xw, Float yw)

: xWidth(xw), yWidth(yw), invXWidth(1.f/xw),
invYWidth(1.f/yw) {

}
�
Filter Public Data ���
const Float xWidth, yWidth;
const Float invXWidth, invYWidth;

The sole function that Filter implementations need to provide is the Evaluate()
method. It takes an x and y argument, which are the position of the sample point
relative to the center of the filter. The return value specifies the weight of the sam-
ple. We will never call the filter function with points outside of the filter’s extent;
therefore, individual filters don’t need to check for this case.�
Filter Interface ��� �
virtual Float Evaluate(Float x, Float y) const = 0;

Box Filter
�
box.cpp* ���
#include "sampling.h"
#include "paramset.h"�
Box Filter Declarations ��
Box Filter Method Definitions �
One of the most commonly used filters in graphics is the box filter (and in fact,

when filtering and reconstruction isn’t addressed explicitly, the box filter is the de
facto result). The box filter equally weights all samples within a square region
of the image. Though computationally efficient, it’s just about the worst filter
possible. In practice, it allows high frequency sample data to leak into the output
pixels, causing postaliasing, where even if the original sample values were at a
high enough frequency so that there was no aliasing, errors are introduced by poor
filtering. The left side of Figure 7.27 shows a graph of the box filter.

Figure 7.28 shows the performance of the box filter for reconstructing two 1D
functions. The top graph shows the step function we used previously to illustrate

Filter 281

282 Sampling and Reconstruction [Ch. 7

-1 0 1
0.0

0.2

0.4

0.6

0.8

1.0

-1 0 1
0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.27: Graphs of the box filter (left) and triangle filter (right). Though neither
of these is a particularly good filter, they are both computationally efficient, easy
to implement, and good baselines when evaluating other filters.

Gibbs phenomenon. For this function, the box does reasonably well. The bottom
graph shows the box used to reconstruct a sinusoidal function that has increas-
ing frequency along the x axis. Not only does it do a poor job of reconstruct-
ing the function when the frequency is low, giving a highly discontinuous result
even though the original function was smooth, but as the function’s frequency ap-
proaches and passes the Nyquist limit, it also does an extremely poor job of recon-
struction.�
Box Filter Declarations ���
class BoxFilter : public Filter {
public:

BoxFilter(Float xw, Float yw) : Filter(xw, yw) { }
Float Evaluate(Float x, Float y) const;

};

Because the evaluation function isn’t called with � x � y � values outside of the
filter’s extent, we can always return 1 for the filter function’s value.�
Box Filter Method Definitions ���
Float BoxFilter::Evaluate(Float x, Float y) const {

return 1.;
}

Triangle Filter
�
triangle.cpp* ���
#include "sampling.h"
#include "paramset.h"�
Triangle Filter Declarations ��
Triangle Filter Method Definitions �
The triangle filter gives slightly better results than the box: samples at pixel

centers have a weight of one, and the weight linearly falls off to the square extent
of the filter. See the right side of Figure 7.27 for a graph of the triangle filter.

Sec. 7.7] Image Reconstruction 283

0 1 2 3 4

-1

0

1

0 1 2 3 4

-1

0

1

Figure 7.28: The box filter in action, reconstructing samples of the step funciton
(top) and a sinusoidal function with increasing frequency as x increases. It does
reasonably well with the step function (as would be expected), but an extremely
poor job with the sinusoidal function.

Filter 281
Filter::xWidth 281
Filter::yWidth 281

284 Sampling and Reconstruction [Ch. 7

-1 0 1
0.0

0.2

0.4

0.6

0.8

1.0

-1 0 1
0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.29: Graphs of the Gaussian filter (left) and the Mitchell filter (right). The
Gaussian gives images that tend to be a bit blurry, while the negative lobes of the
Mitchell filter help to accentuate and sharpen edges in final images.

�
Triangle Filter Declarations ���
class TriangleFilter : public Filter {
public:

TriangleFilter(Float xw, Float yw) : Filter(xw, yw) { }
Float Evaluate(Float x, Float y) const;

};
�
Triangle Filter Method Definitions ���
Float TriangleFilter::Evaluate(Float x, Float y) const {

return max(0.f, xWidth - fabsf(x)) *
max(0.f, yWidth - fabsf(y));

}

Gaussian Filter
�
gaussian.cpp* ���
#include "sampling.h"
#include "paramset.h"�
Gaussian Filter Declarations ��
Gaussian Filter Method Definitions �
The Gaussian is the first filter in lrt that gives good performance in practice.

It applies a Gaussian bump which is centered at the output pixel and radially sym-
metric around it. We subtract the Gaussian’s value at the end of its extent from
the filter value; this makes the filter go to zero at its limit–see the left side of Fig-
ure 7.29. The Gaussian does tend to give blurrier images than the next two filters,
though its blurring tendencies can help mask any remaining aliasing in the image.�
Gaussian Filter Declarations ���
class GaussianFilter : public Filter {
public:�

GaussianFilter Public Methods �
private:�

GaussianFilter Private Data ��
GaussianFilter Utility Functions �

};

Sec. 7.7] Image Reconstruction 285

281 Filter

The 1D Gaussian filter function of width w is

f � x � � e � αx2
� e � αw2 �

where α controls the rate of falloff of the filter. Smaller values cause a slower
falloff, giving a blurrier image. For efficiency, the constructor precomputes the
constant term for e � αw2

in each direction.�
GaussianFilter Public Methods ���
GaussianFilter(Float xw, Float yw, Float a)

: Filter(xw, yw) {
alpha = a;
expX = expf(-alpha * xWidth * xWidth);
expY = expf(-alpha * yWidth * yWidth);

}
�
GaussianFilter Private Data ���
Float alpha;
Float expX, expY;

�
Gaussian Filter Method Definitions ���
Float GaussianFilter::Evaluate(Float x, Float y) const {

return Gaussian(x, expX) * Gaussian(y, expY);
}

�
GaussianFilter Utility Functions ���
Float Gaussian(Float d, Float expv) const {

return max(0.f, float(expf(-alpha * d * d) - expv));
}

Mitchell Filter
�
mitchell.cpp* ���
#include "sampling.h"
#include "paramset.h"�
Mitchell Filter Declarations ��
Mitchell Filter Method Definitions �
This whole section is lame – should show more of the math and say things

about the filter like they’re piecewise cubic. Also, Don told me that he wished
he had emphasized more that he intended his filters to really be a 1D family of
filters along the line B+2C=1 (or whatever); we should make sure to beat that
horse here. I’ll rewrite this text if I get back around to it, since I bothered to
do the derivation of the mitchell filter by hand a year ago.

Filter design is a notoriously difficult craft, mixing mathematical analysis and
perceptual experiments. Mitchell and Netravali have developed a family of param-
eterized filter functions in order to be able to explore this space in a systematic
manner. After analyzing test subjects’ subjective responses to images filtered with
a variety of parameter values, they developed a filter that tends to do a good job of
trading off between ringing–phantom edges next to actual edges in the image–and
blurring–overly blurred results–two common artifacts from poor reconstruction fil-
ters.

Filter 281

286 Sampling and Reconstruction [Ch. 7

0 1 2 3 4

-1

0

1

0 1 2 3 4

-1

0

1

Figure 7.30: The Mitchell–Netravali filter used to reconstruct the example func-
tions. It does a good job with both of these functions, introducing minimal ringing
with the step function, and accurately representing the sinusoid.

Figure/whatever showing experimental evaluation of B and C parameters...
Note that in the graph of this filter on the right side of Figure 7.29 that this filter

function takes on negative values out by its edges; it has negative lobes. In practice
these negative regions improve the sharpness of edges, giving crisper images (re-
duced blurring). If they become too large, however, ringing tends to start to enter
the image. Figure 7.30 shows this filter reconstructing our two test functions. It
does extremely well with both of them–there is minimal ringing with the step func-
tion, and it does a very good job with the sinusoidal function, up until the sampling
rate isn’t sufficient to capture the function’s detail.�
Mitchell Filter Declarations ���
class MitchellFilter : public Filter {
public:�

MitchellFilter Public Methods �
private:

Float B, C;
};

�
MitchellFilter Public Methods ���
MitchellFilter(Float b, Float c, Float xw, Float yw)

: Filter(xw, yw) { B = b; C = c; }

Sec. 7.7] Image Reconstruction 287

281 Filter::invXWidth
281 Filter::invYWidth
286 MitchellFilter
289 SincFilter

Like many 2D image filtering functions, the Mitchell-Netravali filter is the prod-
uct of two one-dimensional filter functions in the x and y directions. Such filters
are called separable. (In fact, all of the filters in lrt are separable, though this
wasn’t always made explicit in the previous ones.)�
Mitchell Filter Method Definitions ���
Float MitchellFilter::Evaluate(Float x, Float y) const {

return Mitchell1D(x * invXWidth) *
Mitchell1D(y * invYWidth);

}
�
MitchellFilter Public Methods ��� �
Float Mitchell1D(Float r) const {

r = fabsf(2.f * r);
if (r > 1.f)

return ((-B - 6*C) * r*r*r + (6*B + 30*C) * r*r +
(-12*B - 48*C) * r + (8*B + 24*C)) * (1.f/6.f);

else
return ((12 - 9*B - 6*C) * r*r*r +

(-18 + 12*B + 6*C) * r*r +
(6 - 2*B)) * (1.f/6.f);

}

Windowed Sinc Filter
�
sinc.cpp* ���
#include "sampling.h"
#include "paramset.h"�
Sinc Filter Declarations ��
Sinc Filter Method Definitions �
Finally, we provide the SincFilter class, which implements a filter based on

the sinc function. In practice, the sinc filter is often multiplied by another function
that goes to zero after some distance; this gives a filter function with finite extent,
which is necessary for an implementation with reasonable performance. An ad-
ditional parameter τ controls how many cycles the sinc function passes through
before it is clamped to a value of zero; the left side of Figure 7.31 shows a graph of
three cycles of the sinc function (solid line) and a graph of the windowing function
we use, which was developed by Lanczos (dashed line). The Lanczos window is
just the central lobe of the sinc function, scaled to cover the τ cycles:

w � x � � sinπx
�
τ

πx
�
τ �

The right side of Figure 7.31 shows the product of the sinc function and the win-
dowing function, giving the filter that we will implement here.

Figure 7.32 shows the windowed sinc’s reconstruction performance for uni-
form 1D samples. Thanks to the windowing, it exhibits far less ringing than the
infinite-extent sinc function when reconstructing the step function (compare to Fig-
ure 7.11), and it does extremely well with reconstructing the sinusoidal function
until prealiasing begins.

SincFilter 289

288 Sampling and Reconstruction [Ch. 7

-2 0 2
0.0

0.5

1.0

-2 0 2
0.0

0.5

1.0

Figure 7.31: Graphs of the sinc filter. On the left is the sinc function, truncated
after three cycles (solid line) and the Lanczos windowing function (dashed line).
On the right is the product of these two functions, which we implement in the
SincFilter.

0 1 2 3 4

-1

0

1

0 1 2 3 4

-1

0

1

Figure 7.32: Results of the windowed sinc being used to reconstruct the example
functions; here τ 	 3. Like the infinite sinc, it suffers from ringing with the step
function, though there is less ringing in the windowed version. The filter does quite
well with the sinusoid, however.

Further Reading 289

281 Filter
281 Filter::invXWidth
281 Filter::invYWidth
678 M PI

�
Sinc Filter Declarations ���
class SincFilter : public Filter {
public:

SincFilter(Float xw, Float yw, Float t) : Filter(xw, yw) {
tau = t;

}
Float Evaluate(Float x, Float y) const;
Float Sinc1D(Float x) const;

private:
Float tau;

};

Like the Mitchell-Netravali filter, the sinc filter is also separable.�
Sinc Filter Method Definitions ���
Float SincFilter::Evaluate(Float x, Float y) const{

return Sinc1D(x * invXWidth) * Sinc1D(y * invYWidth);
}

The implementation straightforward; we compute the value of the sinc function
and then multiply it by the value of the Lanczos windowing function.�
Sinc Filter Method Definitions ��� �
Float SincFilter::Sinc1D(Float x) const {

x = fabsf(x);
if (x < 1e-5) return 1.f;
if (x > 1.) return 0.f;
x *= M_PI;
Float sinc = sinf(x * tau) / (x * tau);
Float lanczos = sinf(x) / x;
return sinc * lanczos;

}

����� ���� � � � ��� � � �
One of the best books on signal processing, sampling, reconstruction, and the

Fourier transform is Bracewell(Bracewell 2000). Glassner’s Principles of Digital
Image Synthesis (Glassner 1995) has a series of chapters on the theory and applica-
tion uniform and non-uniform sampling and reconstruction to computer graphics.
For an extensive survey of the history of and techniques for interpolation of sam-
pled data, including the sampling theorem, see Meijering’s survey article (Meijer-
ing 2002).

Crow first identified aliasing as a major source of artifacts in computer generated
images (Crow 1977). Using non-uniform sampling to turn aliasing into noise was
introduced by Cook et al(Cook 1986) and Dippé and Wold(Dippé and Wold 1985);
this work was based on experiments by Yellot, who investigated the distribution of
photoreceptors in the eyes of monkeys (Yellot 1983). Dippé and Wold also first
introduced the pixel filtering equation to graphics and developed a Poisson sample
pattern with a minimum distance between samples. Lee et al developed a technique
for adaptive sampling based on statistical tests to compute images to a given error
tolerance (Lee, Redner, and Uselton 1985).

BestCandidateSampler 275
LDSampler 258

290 Sampling and Reconstruction [Ch. 7

Mitchell has extensively investigated sampling patterns for ray tracing; his 1987
and 1991 SIGGRAPH papers have many key insights, and the best candidate
approach described in this chapter is based on the latter paper (Mitchell 1987;
Mitchell 1991). Another efficient technique to generate Poisson disk patterns was
developed by McCool and Fiume (McCool and Fiume 1992) and Hiller et al ap-
plied a technique based on relaxation that takes a random point set and improves
its distribution (Hiller, Deussen, and Keller 2001).

Shirley first introduced the use of discrepancy to evaluate the quality of sam-
ple patterns in computer graphics (Shirley 1991). This work was built upon by
Mitchell (Mitchell 1992) and Dobkin and Mitchell (Dobkin and Mitchell 1993),
Dobkin et al (Dobkin, Eppstein, and Mitchell 1996).

Mitchell’s first paper on discrepancy introduced the idea of using deterministic
low-discrepancy sequences for sampler, removing all randomness in the interest of
lower-discrepancy (Mitchell 1992). Such quasi-random sequences are the basis of
Quasi Monte Carlo methods, which will be described in Chapter 14. The seminal
book on quasi-random sampling and algorithms for generating low-discrepancy
patterns was written by Niederreiter (Niederreiter 1992).

More recently, Keller and collaborators have investigated quasi-random sam-
pling patterns for a variety of applications in graphics (Keller 1996; Keller 1997;
Keller 2001). The � 0 � 2 � -sequence sampling techniques we have used in the LDSampler
and BestCandidateSampler are based on a paper by Köllig and Keller (Kollig
and Keller 2002). Some of their techniques are based on algorithms developed by
Friedel and Keller (Friedel and Keller 2000). Wong et al compared numeric er-
ror with various low-discrepancy sampling schemes (Wong, Luk, and Heng 1997),
though one of Mitchell’s interesting findings was that low-discrepancy sampling
sequences sometimes lead to visually-objectionable artifacts in images that aren’t
present with other sampling patterns.

Chiu et al suggested a multi-jittered 2D sampling technique that combined the
properties of stratified and Latin hypercube approaches, though their technique
doesn’t ensure good distributions across all elementary intervals as � 0 � 2 � -sequences
do.

Mitchell has recently investigated how much better stratified sampling patterns
are than random patterns in practice (Mitchell 1996); in general, the smoother the
function being sampled is, the more effective they are. For very quickly-changing
functions (e.g. pixel regions with complex geometry overlapping them), more so-
phisticated stratified patterns perform no better than unstratified random patterns.
As such, for complex scenes with complex variation in the high-dimensional image
function, the advantages of fancy sampling schemes compared to a simple stratified
pattern are likely to be minimal.

Cook first introduced the Gaussian filter to graphics (Cook 1986). Mitchell and
Netravali investigated a family of filters by doing experiments with human ob-
servers to find the most effective ones; the Mitchell filter in this chapter is the one
they chose as best (Mitchell and Netravali 1988). Kajiya and Ullner have investi-
gated image filtering methods that account for the effect of the reconstruction char-
acteristics of Gaussian falloff from pixels in CRTs (Kajiya and Ullner 1981), and
more recently, Betrisey et al describe Microsoft’s ClearType technology for display
of text on LCDs (Betrisey, Blinn, Dresevic, Hill, Hitchcock, Keely, Mitchell, Platt,
and Whitted 2000). However, we are not aware of any work that has investigated

Exercises 291

this issue for image display.
There has been quite a bit of research into reconstruction filters for image resam-

pling applications; while this application is slightly different than reconstructing
non-uniform samples for image synthesis, much of this experience is applicable.
Turkowski reports that the Lanczos-windowed sinc filter gives the best results for
image resampling (Turkowski 1990b). Meijering et al tested a variety of filters for
image resampling by applying a series of transformations to images such that if
perfect resampling had been done, the final image would be the same as the origi-
nal; they also found that the Lanczos window performed well (as did a few others),
and that truncating the sinc without a window gave some of the worst results (Mei-
jering, Niessen, Pluim, and Viergever 1999). Our figures comparing the results
of 1D reconstruction of samples of step functions and sinusoids were inspired by
Hoffman’s (Hoffman 2002).�

� � � � � � � �

7.1 incremental faster computation of folded radical inverse function

7.2 Rushmeier and Ward have suggested a non-linear filter function that works
well for reducing the visual impact of noise in images generated with Monte
Carlo light transport algorithms (Rushmeier and Ward 1994). Their obser-
vation was that if a single sample is substantially brighter than all of the
samples around it, then it is likely that the other nearby samples should also
have detected the bright feature that caused the spike of brightness. If the
standard filters described in this chapter are used to reconstruct the final im-
age, the spike contributes to a small number of pixels, resulting in a visually
unappealing bright area in the final image.

The filters in lrt are all linear: the value of the filter function is determined
solely by the position of the sample with respect to the pixel position; the
value of the sample has no impact on the value of the filter funciton. In an
effort to reduce noise without changing the overall brightness of the image,
the Rushmeier–Ward filter widens the extent of the filter function for a given
sample depending on the brightness of that sample compared to the bright-
ness of the nearby samples. For example, if the base filter being used was
a box filter with extent such that nine samples contributed to each pixel, if
any of the nine samples contributed more than 25% to the final pixel value,
it would be detected as a spike and a wider filter extent would be used for it,
dispersing its energy to a wider set of pixels in the final image.

Because lrt assumes that filters are linear, and because it doesn’t store sam-
ple values after adding their contribution to the image, implementing the
Rushmeier–Ward filter in lrt is not straightforward. Investigate approaches
for modifying lrt so that this filter can be used. Is it possible to add it
without storing all of the image samples (which may take a large amount of
memory for high-resolution images with many samples)?

7.3 Mitchell and Netravali note that there are reconstruction filters that use both
the value of a function and its derivative at the point to be able to do substan-
tially better reconstruction than if just the value of the function is known (Mitchell

292 Sampling and Reconstruction [Ch. 7

and Netravali 1988). Furthermore, they report that they have derived closed
form expressions for the screen-space derivatives of Lambertian and Phong
reflection models, though they do not include these expressions in their pa-
per. Investigate derivative-based reconstruction and extend lrt to support
this technique. Because it will likely be difficult to derive expressions for the
screen-space derivatives for general shapes and BSDF models, investigate
approximations based on finite-differencing. Techniques built on the ideas
behind the ray differentials of Section 11.2 may be fruitful for this effort.

294 Film

� �

As radiance values are found for image samples, they are passed to the Film
class, which is repsonsible for computing their weighted contributions to the pixels
around them. Just as the particular type of film in a (non-digital) camera determines
how light arriving at the film plane is transformed into color on the film, the Film
class models the response of a virtual sensing device in the simulated camera.

After the main rendering loop exits and radiance values have been computed for
all of the image samples, the film applies the imaging pipeline, which is the third
and last major phase of lrt’s execution. It is responsible for transforming the spec-
tral pixel values at each pixel into final output values for display or storage in a file.
All of the transformations it applies seek to reduce the impact of the limitations of
the display devices that are currently available for displaying digital images. For
example, computer displays generally expect an RGB color triplet to describe the
color of each pixel, not an arbitrary spectral power distribution. Spectra described
by general basis function coefficients must be converted to RGB before they can
be displayed. A related problem, which will be discussed in Section 8.3, is that
displays have substantially less dynamic range from the brightest to the darkest ra-
diance value that they can display than the range of radiance values that are present
in many realistic scenes. Therefore, the radiance values computed by lrt must be
compressed to the displayable range in a way that causes the final displayed image
to appear as close as possible to the way it would appear on an ideal display device
without this restriction. These and other issues are addressed by various phases of
the imaging pipeline.

�����

Ray 36
Sampler 237
Spectrum 181

294 Film and the Imaging Pipeline [Ch. 8

� �
� � � � ������� � � �	���

The Film base-class, defined in core/film.h, defines the abstract interface for
Film implementations.�
Film Declarations ���
class Film {
public:�

Film Interface ��
Film Public Data �

};

The Film constructor must be given the overall resolution of the image in the x
and y directions; these are stored in the public member variables xResolution and
yResolution since the Cameras in Chapter 6 need these values to compute some
of the camera-related transformations (e.g. the raster to camera space transforma-
tions).

Is there any reason not to have multiple films per camera? I think it would
be cleaner to have ColorFilm, BWFilm, DepthFilm, etc, and you might want to
generate multiple images for a single rendering. You could also set up multiple
films with different imaging parameters. Of course this would all go away if
we provided a way to run the film pipeline as a post-process, which we really
don’t. We can write out the SPD coefficients, but we don’t show how to use
those things.�
Film Interface ���
Film(int xres, int yres)

: xResolution(xres), yResolution(yres) {
}

�
Film Public Data ���
const int xResolution, yResolution;

The first key Film method is AddSample(), which takes a sample and corre-
sponding camera ray, radiance value, and alpha value, and updates the image.�
Film Interface ��� �
virtual void AddSample(const Sample &sample, const Ray &ray,

const Spectrum &L, Float alpha) = 0;

After the main rendering loop exits, Scene::Render() calls the film’s WriteImage()
method, which is the film’s cue to do any processing necessary to compute the final
image and display it or store it as appropriate.�
Film Interface ��� �
virtual void WriteImage() = 0;

The Film’s final responsibility is to be able to determine the range of integer
pixel values that the Sampler is responsible for generating samples for. While this
range would be from � 0 � 0 � to � xResolution � 1 � yResolution � 1 � for a basic film
implementation, in practice it is usually necessary to generate samples that extend
a bit beyond the edges of the final image. The ImageFilm’s implementation of this
method in the next section will make the reason for its existence more clear.

Sec. 8.2] Image Film 295

294 Film
301 ImageInfo

�
Film Interface ��� �
virtual void GetSampleExtent(int *xstart,

int *xend, int *ystart, int *yend) const = 0;

� ��� � � � �
� � � �

we should explain why there is a Film interface at all. What other kinds of
film are possible? Why are we only providing one? I like the idea of having
a color, black-and-white, and a depth film be separate, since this corresponds
more naturally to the concept of a film in a camera. However, since we’re
digital, we should show ways that you could do something really sweet with
the Film interface. Perhaps I’ll write an OpenGL previewer film – I think this
is the right place to do it.

We will provide only one specific Film implementation for lrt here, ImageFilm,
which is a general-purpose implementation with a highly configurable image pipeline.
It is in film/image.cpp. The exercises suggest a few other types of Film that are
useful for specialized applications.�
ImageFilm Declarations ���
class ImageFilm : public Film {
public:�

ImageFilm Public Methods �
private:�

ImageFilm Private Data �
};

The ImageFilm constructor takes three extra parameters beyond the overall im-
age resolution. First is a filter function that it uses to compute the weighted con-
tribution that each sample makes to the pixels around it. Next is crop, which
specifies a crop window that can be used to select a rectangular subset of pixels to
be rendered– the crop window can be useful for debugging as well as for breaking
a large image into chunks that can then be reassembled later. why isn’t crop in
the base Film class? The crop window is specified in NDC space, with each co-
ordinate ranging from zero to one–see Figure 8.1. The third extra parameter is an
ImageInfo structure that gathers all of the parameters used in the various stages
of the imaging pipeline. Because there are many such parameters, we’ve gath-
ered them up into this single structure rather than passing them individually here.
(This also allows us to defer describing these parameters until later in this chapter,
together with the image pipeline implementation.)

Film 294
Filter 281

ImageInfo 301

296 Film and the Imaging Pipeline [Ch. 8

Figure 8.1: The image crop window specifies a subset of the image to be rendered.
It is specified in NDC space, with coordinates ranging from � 0 � 0 � to � 1 � 1 � . The
Film class only allocates space for and stores pixel values in the region inside the
crop window.

�
ImageFilm Method Definitions ���
ImageFilm::ImageFilm(int xres, int yres, Filter *filt, const Float crop[4],

int wf, const ImageInfo &ii)
: Film(xres, yres) {
filter = filt;
memcpy(cropWindow, crop, 4 * sizeof(Float));
imageInfo = ii;
writeFrequency = sampleCount = wf;�
Compute film image extent ��
Allocate film image storage ��
Precompute filter weight table �

}
�
ImageFilm Private Data ���
Filter *filter;
ImageInfo imageInfo;
Float cropWindow[4];
int writeFrequency, sampleCount;

In conjunction with the overall image resolution, the crop window gives the ex-
tent of pixels that need to be actually stored and written to disk. xPixelStart and
yPixelStart store the pixel position of the upper left corner of the crop window,
and xPixelCount and yPixelCount give the total number of pixels in each di-
rection. Their values are easily computed from the overall resolution and the crop
window, though the calculations are done carefully such that if an image is ren-
dered in pieces with crop windows that cover the entire image, each final pixel will
be present in only one of the sub-images.�
Compute film image extent ���
xPixelStart = Ceil2Int(xResolution * cropWindow[0]);
xPixelCount = Ceil2Int(xResolution * cropWindow[1]) - xPixelStart;
yPixelStart = Ceil2Int(yResolution * cropWindow[2]);
yPixelCount = Ceil2Int(yResolution * cropWindow[3]) - yPixelStart;

Sec. 8.2] Image Film 297

672 BlockedArray
294 Film::xResolution
294 Film::yResolution
678 INFINITY
181 Spectrum

�
ImageFilm Private Data ��� �
int xPixelStart, yPixelStart, xPixelCount, yPixelCount;

Given the pixel resolution of the possibly-cropped image, the constructor next
allocates an array of Pixel structures, one for each pixel. Pixel radiance values
are stored in the L member variable, their alpha values are stored in alpha, their z
depths are stored in depth, and weightSum holds the sum of filter weight values for
the sample contributions to the pixel; it is used to perform pixel filtering (Equation
7.7.3).

Because small rectangular blocks of pixels need to be updated for each image
sample, the ImageFilm uses a BlockedArray to store the pixels in order to reduce
the number of cache misses as samples arrive and pixel values are updated.�
Allocate film image storage ���
pixels = new BlockedArray<Pixel>(xPixelCount, yPixelCount);

�
ImageFilm Private Data ��� �
struct Pixel {

Pixel() : L(0.f) {
alpha = 0.f;
depth = INFINITY;
weightSum = 0.f;

}
Spectrum L;
Float alpha, depth, weightSum;

};
BlockedArray<Pixel> *pixels;

With lrt’s default settings, each image sample ends up contributing to an av-
erage of sixteen pixels in the final image. Particularly for simple scenes, where
relatively little time is spent on ray intersection testing and shading computations,
the time spent updating the image for each sample can be significant. Therefore,
the ImageFilm precomputes a table of filter values for use in the AddSample()
method. Here we are making the assumption that the filter only varies accord-
ing to the absolute value of the offset from the filter kernel’s origin in the x and y
directions and only compute values for the positive quadrant of offsets.

This approach saves both the expense of the virtual function calls to the Filter::Evaluate()
method as well as the expense of evaluating the filter. The error introduced by not
evaluating the filter at each sample’s precise location generally isn’t noticeable in
practice.

Filter 281
Filter::Evaluate() 281

Filter::xWidth 281
Filter::yWidth 281

ImageFilm::filter 296
Ray 36

Spectrum 181

298 Film and the Imaging Pipeline [Ch. 8

�
Precompute filter weight table ���
#define FILTER_TABLE_SIZE 16
filterTable = new Float[FILTER_TABLE_SIZE * FILTER_TABLE_SIZE];
Float *ftp = filterTable;
for (int y = 0; y < FILTER_TABLE_SIZE; ++y) {

Float fy = ((Float)y + .5f) * filter->yWidth /
FILTER_TABLE_SIZE;

for (int x = 0; x < FILTER_TABLE_SIZE; ++x) {
Float fx = ((Float)x + .5f) * filter->xWidth /

FILTER_TABLE_SIZE;
*ftp++ = filter->Evaluate(fx, fy);

}
}

�
ImageFilm Private Data ��� �
Float *filterTable;

ImageFilm::AddSample() applies the ideas of image sampling and reconstruc-
tion theory to take image samples and filter them to compute pixel values. Recall
the pixel filtering equation:

p � x � y � � ∑i f � x � xi � y � yi � L � xi � yi �
∑i f � x � xi � y � yi �

which describes each final pixel radiance value p � x � y � as the weighted sum of
nearby samples’ radiance values, according to a filter function f . Because all of
the Filters in lrt have finite extent, this method starts by computing which pix-
els will be affected by the current sample. Then, turning the pixel filtering equation
inside out, it updates two running sums for each pixel � x � y � that is affected by the
sample. One sum accumulates for the numerator of the sample interpolation equa-
tion and the other the denominator. When all of the samples have been processed,
final pixel values will be computed by performing the division.�
ImageFilm Method Definitions ��� �
void ImageFilm::AddSample(const Sample &sample, const Ray &ray,

const Spectrum &L, Float alpha) {�
Compute sample’s raster extent ��
Loop over filter support and add sample to pixel arrays ��
Possibly write out in-progress image �

}

To find the raster-space bounds of the pixels that the sample potentially con-
tributes to, AddSample() converts the continuous sample coordinate to a discrete
coordinate by subtracting 0 � 5. It then offsets this value by the filter width in each
direction–this process is shown in Figure 8.2. The ceiling of the coordinates of the
extent is taken on its lower end and the floor on the upper end, since pixels outside
the bound of the extent are guaranteed to not be affected by the sample.

Sec. 8.2] Image Film 299

281 Filter::xWidth
281 Filter::yWidth
296 ImageFilm::filter
297 ImageFilm::xPixelCount
297 ImageFilm::xPixelStart
297 ImageFilm::yPixelCount
297 ImageFilm::yPixelStart
239 Sample::imageX
239 Sample::imageY

Figure 8.2: Sample Raster Extent Figure.

�
Compute sample’s raster extent ���
Float dImageX = sample.imageX - 0.5f, dImageY = sample.imageY - 0.5f;
int x0 = Ceil2Int (dImageX - filter->xWidth);
int x1 = Floor2Int(dImageX + filter->xWidth);
int y0 = Ceil2Int (dImageY - filter->yWidth);
int y1 = Floor2Int(dImageY + filter->yWidth);
x0 = max(x0, xPixelStart);
x1 = min(x1, xPixelStart + xPixelCount - 1);
y0 = max(y0, yPixelStart);
y1 = min(y1, yPixelStart + yPixelCount - 1);

Given the extent of pixels that are affected by this sample–(x0,y0) to (x1,y1),
inclusive–we can now loop over all of those pixels and then filter the sample value
appropriately.�
Loop over filter support and add sample to pixel arrays ���
Float depth = ray(ray.maxt).z;�
Precompute x and y filter table offsets �
for (int y = y0; y <= y1; ++y)

for (int x = x0; x <= x1; ++x) {�
Evaluate filter value at � x � y � pixel ��
Update pixel values with filtered sample contribution �

}

All of the pixels along each row in the x direction have the same y offset to the
sample position, and similarly all of the pixels in each column in y have the same
offset in x. Therefore, here it’s possible to precompute the indices into the filter
weight table needed for sample filtering before looping over the pixels, thus saving
repeated work in that loop.

note still need to do that min call due to floating point error...

Filter::invXWidth 281
Filter::invYWidth 281

Filter::xWidth 281
Filter::yWidth 281

FILTER TABLE SIZE 298
ImageFilm::filter 296

ImageFilm::filterTable 298
ImageFilm::pixels 297

ImageFilm::xPixelCount 297
ImageFilm::xPixelStart 297
ImageFilm::yPixelCount 297
ImageFilm::yPixelStart 297

Pixel 297
Pixel::alpha 297
Pixel::depth 297

Pixel::L 297
Pixel::weightSum 297

Sampler 237
Spectrum::AddWeighted() 182

300 Film and the Imaging Pipeline [Ch. 8

�
Precompute x and y filter table offsets ���
int *ifx = (int *)alloca((x1-x0+1) * sizeof(int));
for (int x = x0; x <= x1; ++x) {

Float fx = fabsf((x - dImageX) * filter->invXWidth * FILTER_TABLE_SIZE);
ifx[x-x0] = min(Floor2Int(fx), FILTER_TABLE_SIZE-1);

}
int *ify = (int *)alloca((y1-y0+1) * sizeof(int));
for (int y = y0; y <= y1; ++y) {

Float fy = fabsf((y - dImageY) * filter->invYWidth * FILTER_TABLE_SIZE);
ify[y-y0] = min(Floor2Int(fy), FILTER_TABLE_SIZE-1);

}

Each discrete integer pixel � x � y � has an instance of the filter function centered
around it. To compute the filter weight for a particular sample, it’s necessary to find
the offset from the pixel to the sample’s position in discrete coordinates and eval-
uate the filter function. If we were evaluating the filter explicitly, the appropriate
computation would be:

filterWt = filter->Evaluate(x - dImageX, y - dImageY);

Instead, we retrieve the appropriate filter weight from the table.�
Evaluate filter value at � x � y � pixel ���
int offset = ify[y-y0]*FILTER_TABLE_SIZE + ifx[x-x0];
Float filterWt = filterTable[offset];

explain why we don’t filter the depth samples.�
Update pixel values with filtered sample contribution ���
Pixel &pixel = (*pixels)(x - xPixelStart, y - yPixelStart);
pixel.L.AddWeighted(filterWt, L);
pixel.alpha += alpha * filterWt;
pixel.depth = min(pixel.depth, depth);
pixel.weightSum += filterWt;

Because the pixel reconstruction filter spans a number of pixels, the Sampler
must generate image samples a bit outside of the range of pixels that will actually
be output. In this manner, even pixels at the boundary of the image will have an
equal density of samples around them in all directions, not just toward the interior
of the image.�
ImageFilm Method Definitions ��� �
void ImageFilm::GetSampleExtent(int *xstart,

int *xend, int *ystart, int *yend) const {
*xstart = Floor2Int(xPixelStart - filter->xWidth);
*xend = Ceil2Int (xPixelStart + xPixelCount +

filter->xWidth);
*ystart = Floor2Int(yPixelStart - filter->yWidth);
*yend = Ceil2Int (yPixelStart + yPixelCount +

filter->yWidth);
}

Sec. 8.2] Image Film 301

296 ImageFilm::sampleCount
296 ImageFilm::writeFrequency

For images that take a long time to render, it can be helpful to the user if the
renderer periodically writes out the image that has been computed so far; this is
easily handled by calling the WriteImage() method periodically.�
Possibly write out in-progress image ���
if (--sampleCount == 0) {

WriteImage();
sampleCount = writeFrequency;

}

8.2.1 Image Output

After the main rendering loop finishes, Scene::Render() calls the Film’s WriteImage()
method. The simplest thing for it to do is to save the array of floating-point SPD
coefficients at each pixel for later processing or display by programs with knowl-
edge of the basis functions used. This case is handled by the

�
Write raw coefficient

image � fragment. More commonly, the user will want to store an image that can be
directly displayed on a CRT or LCD. In this case, the pixels pass through an imag-
ing pipeline that uses information about the particular display device to compute a
new image for that device. A number of tricky issues, ranging from limitations of
display devices to the behavior of the human visual system, need to be carefully
addressed during this process.

As mentioned above, the ImageInfo structure holds parameters used by the
imaging pieline that describe the characteristics of a particular display device.�
ImageInfo Declarations ���
struct ImageInfo {

ImageInfo() {�
ImageInfo Constructor Implementation �

}�
ImageInfo Public Data �

};
�
ImageFilm Method Definitions ��� �
void ImageFilm::WriteImage() {�

Allocate working imaging memory and compute normalized pixel values ��
Compute premultiplied alpha color values �
if (imageInfo.writeCoefficientImage) {�

Write raw coefficient image �
}
else {�

Apply display imaging pipeline �
}�
Release temporary image memory �

}
�
ImageInfo Public Data ���
bool writeCoefficientImage;

ImageFilm::xPixelCount 297
ImageFilm::yPixelCount 297

INFINITY 678
Pixel::alpha 297

Pixel::L 297
Pixel::weightSum 297

Spectrum 181
Spectrum::Clamp() 183

302 Film and the Imaging Pipeline [Ch. 8

�
ImageInfo Constructor Implementation ���
writeCoefficientImage = false;

In either case, this method starts by making a copy of the pixel values so that
changes to them during the image processing don’t change the film’s pixel values.
Thus, this method could be called multiple times during rendering to write partial
images.�
Allocate working imaging memory and compute normalized pixel values ���
int nPix = xPixelCount * yPixelCount;
Spectrum *Lout = new Spectrum[nPix];
Float *AlphaOut = new Float[nPix];
int offset = 0;
for (int y = 0; y < yPixelCount; ++y) {

for (int x = 0; x < xPixelCount; ++x) {
Lout[offset] = (*pixels)(x, y).L;
AlphaOut[offset] = (*pixels)(x, y).alpha;�
Normalize pixel with weight sum �
++offset;

}
}

As the pixels in this copy are being initialized, their final values based on the
pixel filtering equation arecomputed for each of them by dividing each pixel sample
value by the value of Pixel::weightSum that has been accumulated for that pixel.�
Normalize pixel with weight sum ���
Float weightSum = (*pixels)(x, y).weightSum;
if (weightSum != 0.f) {

Float invWt = 1.f / weightSum;
Lout[offset] *= invWt;
Lout[offset].Clamp(0, INFINITY);
AlphaOut[offset] *= invWt;

}

Each spectral pixel value is also optionally multiplied by its alpha value; pixel
colors scaled by alpha are known as having premultiplied alpha (also known as
associated alpha). This representation has a number of advantages if image com-
positing operations are being performed by a separate program using images from
lrt (see the further reading section for pointers.)�
Compute premultiplied alpha color values ���
if (imageInfo.premultiplyAlpha)

for (int i = 0; i < xPixelCount * yPixelCount; ++i)
Lout[i] *= AlphaOut[i];

�
ImageInfo Public Data ��� �
bool premultiplyAlpha;

�
ImageInfo Constructor Implementation ��� �
premultiplyAlpha = true;

Sec. 8.3] ***ADV***: Perceptual Issues and Tone Mapping 303

180 COLOR SAMPLES
294 Film::xResolution
294 Film::yResolution
297 ImageFilm::xPixelCount
297 ImageFilm::yPixelCount

Figure 8.3: There are four main stages in the ImageFilm’s display pipeilne. First
tone reproduction algorithms may be used to remap the wide range of pixel ra-
diance values to the more limited range that displays are capable of. Next, the
pixel colors are converted to the color representation used by the display–typically
red, green, and blue primary colors. Gamma correction then accounts for the non-
linear relationship between color values sent to the display and their brightness on
the display, and finally dithering adds a small amount of random noise to the pixel
values to help break up transitions between different colors in different regions of
the image.

If the raw per-pixel SPD coefficients are being stored directly, then no additional
work is necessary and the image can be written immediately.�
Write raw coefficient image ���
WriteImageFloat(imageInfo.filename, (Float *)Lout, AlphaOut,

xPixelCount, yPixelCount, COLOR_SAMPLES,
xResolution, yResolution);

After saving the image, the working memory is freed.�
Release temporary image memory ���
delete[] Lout;
delete[] AlphaOut;

If raw coefficients aren’t being written, the image is passed through a number
of stages of the image pipeline, summarized in Figure 8.3. to convert the spectral
image into a format suitable for display or printing while still creating the best
possible image. The fragment

�
Apply display imaging pipeline � applies each of

these stages in turn.�
Apply display imaging pipeline ����

Possibly apply bloom effect to image ��
Apply tone reproduction to image ��
Convert image to display RGB ��
Scale image and handle out-of-gamut RGB values ��
Apply gamma correction to image ��
Map image to display range ��
Dither image ��
Save display image to disk �

� ��������� � � ��������� � � � ��� ��� � �� � � � ��� � � �	� � � ��� � � �	��� � �
In the early days of computer graphics, typical shading models returned color

values between zero and one, with no pretense of being associated with actual
physical quantities. Thus, pixels had values in this range as well, and images could

304 Film and the Imaging Pipeline [Ch. 8

be directly displayed on a CRT with a framebuffer with RGB components from
0 to 255, just by scaling the pixel values. In the real-world, it is not unusual for
scenes to have radiance values with magnitudes ranging from 0 � 01 to 1 � 000, repre-
senting five orders of magnitude of variation from the brightest parts to the darkest
parts. Remarkably, the human visual system generally handles this extreme range
of brightness well, since the human eye is sensitive mostly to local constrast, not
absolute brightness. Not only do computer displays not take radiance values as
input, but they are unable to display very bright colors or very dim colors; they can
generally display only about two orders of magnitude of brightness variation under
ideal viewing conditions.

Because realisitic scenes rendered with physically-based rendering algorithms
suffer from this mismatch between scene brightness and the display device’s ca-
pabilities, it’s important to address the issue of displaying the image such that it
has as close an appearence to the actual scene as possible. It has recently been an
active area of research to find good methods to compress those extra orders of mag-
nitude for image display. This work has been broadly classified as tone mapping1;
it draws on research into the human visual system (HVS) to guide the development
of techniques for image display. By exploiting various properties of the HVS, tone
mapping algorithms have been developed that do remarkably well at compensating
for display device limitations. In this section, we will describe and implement a
few such algorithms. Our coverage of this area touches on representative a subset
of the possibilities, though the further reading section gives pointers to many recent
papers in this field.

8.3.1 ***ADV***: Luminance and photometry

Because tone mapping algorithms are generally based on human perception of
brightness, most tone mapping operators are based on the unit of luminance, which
gives a sense of how bright a spectral power distribution appears to a human ob-
server. For example, luminance accounts for the fact that a SPD with a particular
amount of energy in the green wavelengths will appear much brighter to a human
than a SPD with the same amount of energy in blue.

Luminance is closely related to radiance; given a spectral radiance value, a lu-
minance value can be computed with a simple conversion formula. In fact, all of
the radiometric quantities defined in Chapter 5 have analogs in the field of photom-
etry, which is the study of visible electromagnetic radiation and its perception by
the HVS. Each spectral radiometric quantity can be converted to its corresponding
photometric quantity by integrating with the spectral response curve V � λ � , which
describes the relative sensitivity of the human eye to various wavelengths.2

Luminance, which we will denote here by Y, is related to spectral radiance L � λ �
by

Y � �
λ

L � λ � V � λ � dλ �

1Jack Tumblin’s rant re: tone reproduction vs. tone mapping XXX
2The spectral response curve model is based on experiments done in a normally-illuminated in-

door environment. Because sensitivity to color decreases in dark environments, it doesn’t model
HVS response well under all lighting situations. Nonetheless, it forms the basis for the definition of
luminance and other related photometric properties.

Sec. 8.3] ***ADV***: Perceptual Issues and Tone Mapping 305

Figure 8.4: St. Peter’s Basilica in Rome: a high dynamic range of St. Peter’s
accurately encodes the lighting inside the Basilica, including the multiple orders of
magnitude of radiance values that are present. The standard approach of choosing
a fixed radiance value to map to the brightest displayable color does poorly with
this environment. Here, we have chosen three different maximum radiance values,
each greater than the last by a factor of ten. Observe that even in the darkest image,
the light from the windows is blown out. In the top and middle image, some areas
are too dark to make out details, while in the brightest image, large regions of the
image map to the maximum value, so that no detail remains. A human observer
inside St. Peter’s on the day these photographs were taken would have been able
to see detail throughout the environment. The tone reproduction operators in this
section will apply more sophisticated algorithms than simple scaling to map the
wide range of radiance values to the display device’s displayable range.

306 Film and the Imaging Pipeline [Ch. 8

400 500 600 700 800
Wavelength

0

0.5

1

1.5

x(lambda)
y(lambda)
z(lambda)

Figure 8.5: To compute the XYZ values for an arbitrary SPD, the SPD is convolved
with each of the three matching curves shown here.

Luminance (cd
�
m2, or nits)

600,000 Sun at horizon
120,000 60 Watt light bulb
8,000 Clear sky
100–1000 Typical office
1–100 Typical computer display
1–10 Street lighting
0.25 Cloudy moonlight

Figure 8.6: Representative luminance values for a number of lighting contitions.

Luminance and the spectral response curve V � λ � are closely related to the XYZ
representation of color (Section 5.1.2): the CIE Y � λ � tristimulus curve was chosen
to be proportional to V � λ � so that

Y � 683 �
λ

L � λ � Y � λ � dλ �
Thus, we already have the luminance of each pixel in the image within a scale
factor. The units of luminance are candelas per meter squared (cd

�
m2), where

the candela is the photometric equivalent of radiant intensity. The quantity cd
�
m2

is often referred to as a nit. Some representative luminance values are given in
Figure 8.6.

The human eye has two types of photoreceptor responsible for detecting light:
rods and cones. Rods help with perception in dark environments (scoptic light
levels), ranging from approximately 10 � 6 to 10 cd

�
m2. Rods give little information

about color and are not very good at resolving fine details. Cones handle light
ranging from approximately � 01 to 108 cd

�
m2 (photopic light levels.) There are

three types of cones, with sensitivity to different wavelengths of light. Computer
displays generally display luminances from about 1 to 100 cd

�
m2.

Sec. 8.3] ***ADV***: Perceptual Issues and Tone Mapping 307

Figure 8.7: Bloom makes brights brighter

8.3.2 ***ADV***: Bloom

Before describing tone mapping algorithms for remapping images to the displayable
range, we’ll describe a technique that helps fool the HVS into percieving that an
image on a display is brighter than it actually is. When part of an environment
being viewed by the human eye is substantially brigher than the rest of it, an effect
called “bloom” often causes a blurred glow in the area around the bright object.
The origins of this effect aren’t completely understood, but are largely believed
to be due to scattering of light inside the human eye. Researchers in computer
graphics have found that simulating this effect in rendered images can make im-
ages appear substantially more realistic; when this glow is present in part of an
image, the human visual system naturally perceives that that part of the image is
much brighter than the rest of it. Figure 8.7 shows an example of this effect applied
to an image with a number of bright specular highlights.

lrt optionally applies a bloom effect to images as they go through the imaging
pipeline. The filter used here is empirical and not directly based on a model of
the human visual system though it works well in practice (see the further reading
section for pointers to more physically-based glare effects). The basic idea is to
apply a very wide filter that falls off quickly to all of the pixels in the image.
Because the filter has a wide support, very bright pixels can contribute energy
to other pixels nearby them; because it quickly falls off, it doesn’t blur regions
of the image that have similar brightness values but extremely bright pixels are
able to overwhelm the low filter weight and spread out their contribution to other
pixels. This bloom image is then mixed into the original image with a user-supplied
weight.

This filter takes two parameters; bloomRadius, which gives the fraction of the
image that the filter covers, and bloomFraction, which gives the weight that the
blurred bloom image is given when mixed with the original image.�
ImageInfo Public Data ��� �
Float bloomRadius, bloomFraction;

By default, bloomRadius is zero, indicating that the filter is disabled. Values
around 0 � 1 or 0 � 2 are good starting points when using this filter in practice.

Film::xResolution 294
Film::yResolution 294

ImageInfo::bloomRadius 307

308 Film and the Imaging Pipeline [Ch. 8

�
ImageInfo Constructor Implementation ��� �
bloomRadius = 0.f;
bloomFraction = .2f;

If the user has set the bloom radius to be greater than zero, the filter is applied.�
Possibly apply bloom effect to image ���
if (imageInfo.bloomRadius > 0.f) {�

Compute image-space extent of bloom effect ��
Initialize bloom filter table ��
Apply bloom filter to image pixels ��
Mix bloom effect into each pixel ��
Free memory allocated for bloom effect �

}

First the width of the filter in pixels must be determined; this is just based on the
bloomRadius value times the larger of the x and y resolutions of the image.�
Compute image-space extent of bloom effect ���
int bloomSupport = Float2Int(imageInfo.bloomRadius *

max(xResolution, yResolution));
int bloomWidth = bloomSupport / 2;

Because the bloom filter function will be evaluated many times over the image,
it’s worth precomputing a table of its values. THe implementation here uses the
radially-symmetric filter function

f � x � y � �
�

1 �
� x2 � y2

d � 8

�

where d is the width of the filter. This filter was introduced by Chiu et al as an ad-
hoc model of bloom (Chiu, Herf, Shirley, Swamy, Wang, and Zimmerman 1993).
This filter is not separable, and thus the number of pixels that must be filtered for
each output pixel is quadratic in the filter’s width; this gives extra motivation for
tabularizing the filter values.�
Initialize bloom filter table ���
Float *bloomFilter = new Float[bloomWidth * bloomWidth];
for (int i = 0; i < bloomWidth * bloomWidth; ++i) {

Float dist = sqrtf(i) / bloomWidth;
bloomFilter[i] = powf(max(0.f, 1.f - dist), 8.f);

}

The filtering method computes the entries in a temporary image that holds the
bloom contribution. It is important to not update the original image as the bloom
values are computed, since this would result in errors due to feedback as pixel
values with bloom would incorrectly be used to determine bloom at nearby pixels.�
Apply bloom filter to image pixels ���
Spectrum *bloomImage = new Spectrum[nPix];
for (int y = 0; y < yPixelCount; ++y) {

for (int x = 0; x < xPixelCount; ++x) {�
Compute bloom for pixel (x,y) �

}
}

Sec. 8.3] ***ADV***: Perceptual Issues and Tone Mapping 309

297 ImageFilm::xPixelCount
297 ImageFilm::yPixelCount
307 ImageInfo::bloomFraction
181 Spectrum

To find a pixel in the bloom image, first it is necessary to find the range of pixels
that potentially contribute bloom to it. The filter is then applied to all of the relevant
pixels.�
Compute bloom for pixel (x,y) ����

Compute extent of pixels contributing bloom �
int offset = y * xPixelCount + x;
Float sumWt = 0.;
for (int by = y0; by <= y1; ++by)

for (int bx = x0; bx <= x1; ++bx) {�
Accumulate bloom from pixel � bx � by � �

}
bloomImage[offset] /= sumWt;

The extent of contributing pixels is found by offsetting by the filter width in each
direction and clamping to the overall image resolution, similar to how pixels that
an image sample contributes to are found.�
Compute extent of pixels contributing bloom ���
int x0 = max(0, x - bloomWidth);
int x1 = min(x + bloomWidth, xPixelCount - 1);
int y0 = max(0, y - bloomWidth);
int y1 = min(y + bloomWidth, yPixelCount - 1);

The current pixel isn’t included in the bloom computation, since the intent here
is to add contributions from other pixels to the current one. For all the others, the
bloom filter weights the pixel’s contribution to the bloom image.�
Accumulate bloom from pixel � bx � by � ���
int dx = x - bx, dy = y - by;
if (dx == 0 && dy == 0) continue;
int dist2 = dx*dx + dy*dy;
if (dist2 < bloomWidth * bloomWidth) {

int bloomOffset = bx + by * xPixelCount;
Float wt = bloomFilter[dist2];
sumWt += wt;
bloomImage[offset] += wt * Lout[bloomOffset];

}

Once the bloom image is computed, it’s mixed into the original image according
to the bloomFraction value.�
Mix bloom effect into each pixel ���
for (int i = 0; i < xPixelCount * yPixelCount; ++i)

Lout[i] = (1.f - imageInfo.bloomFraction) * Lout[i] +
imageInfo.bloomFraction * bloomImage[i];

�
Free memory allocated for bloom effect ���
delete[] bloomFilter;
delete[] bloomImage;

310 Film and the Imaging Pipeline [Ch. 8

8.3.3 ***ADV***: Tone mapping interface

The basic approach to tone reproduction is to derive a scaling function that maps
each pixel’s value to the display’s dynamic range. For simple tone reproduction
operators, a single function is often used for all pixels in the image. Such op-
erators are called spatially-uniform operators. They give a monotonic mapping
of image luminance to display luminance. More sophisticated approaches use a
function that varies based on each pixel’s brightness and the brightness of nearby
pixels; these are spatially-varying operators and they do necessarily guarantee a
monotonic mapping.

That it is possible (and often more effective) to have a spatially-varying operator
is interesting. This approach works well because the human eye is more sensitive
to local contrast than overall luminance. Because of this characteristic, it is often
possible to assign totally different pixel values to separate parts of the image that
started with the same absolute luminance, without the human observer noticing
that anything is amiss.

A key goal of many tone mapping operators is to preserve local contrast in the
displayed image rather than preserving absolute brightness. It’s more important to
make sure that enough distinct colors are used in all regions of the image–bright
and dim–so that different colors are seen, rather than mapping a wide range of im-
age intensities to the same pixel values. Thus, an object that is twice as bright as
another one in the scene doesn’t necessarily need to be twice as bright on the dis-
play. Again, local changes in contrast are the most important thing for the human
visual system.

The HVS’s overall sensitivity to luminance changes varies depending on the
adaptation luminance, which we will denote by Y a. The adaptation luminance may
vary over different parts of the image. In the methods below, we will use both the
display adaptation luminance Y a

d , which is the adaptation luminance of the human
observer looking at the computer display, and the world adaptation luminance, Y a

w ,
the adaptation luminance that the human would have if viewing the actual scene.

Because the rods in the human eye take over from the cones in very dim en-
vironments, the HVS has substantially different characteristics in the dark. For
example, color perception is reduced and everything appears to be varying shades
of dark gray. Furthermore, spatial acuity is reduced: at an adaptation luminance
of 1000 nits, the HVS can resolve about 50 cycles of spatial detail per degree of
vision, while at .001 nits, only about 2.2 cycles per degree can be made out. Tone
reproduction operators that account for scoptic light levels often introduce some
blurring to the image to account for this effect.

All of the tone mapping operators inherit from the ToneMap base class, which is
defined in core/tonemap.h and specifies the interface method ToneMap::Map().�
ToneMap Declarations ���
class ToneMap {
public:�

ToneMap Interface �
};

The ToneMap::Map() method takes a pointer to the array of the image’s pixel
luminance values, the resolution of the image, and the maximum luminance that the

Sec. 8.3] ***ADV***: Perceptual Issues and Tone Mapping 311

297 ImageFilm::xPixelCount
297 ImageFilm::yPixelCount
301 ImageInfo
185 Spectrum::y()
310 ToneMap

display device being used is capable of generating. It is responsible for computing
a scale-factor for each pixel with its tone mapping technique and storing the scale
in the scale array The scale should be such that the luminances of the scaled pixels
will be in the range [0, maxDisplayY].�
ToneMap Interface ��� �
virtual void Map(const Float *y, int xRes, int yRes,

Float maxDisplayY, Float *scale) const = 0;

For tone mapping, the ImageInfo structure holds a ToneMap pointer, initialized
to NULL by default. For the tone reproduction operators that make use of informa-
tion, it also holds a field that records the maximum luminance that the device is
capable of displaying, maxDisplayY.�
ImageInfo Public Data ��� �
ToneMap *toneMap;
Float maxDisplayY;

By default, no tone mapping is performed, and the maximum display luminance
is set to a reasonable value for common displays.�
ImageInfo Constructor Implementation ��� �
toneMap = NULL;
maxDisplayY = 100.f;

If a tone mapping operator was specified in the scene description, it is applied
here. First, luminance values are computed or each pixel, then the operator com-
putes a scale-factor for each pixel, and then the image is scaled.�
Apply tone reproduction to image ���
if (imageInfo.toneMap) {

Float *scale = new Float[nPix], *lum = new Float[nPix];�
Compute pixel luminance values �
imageInfo.toneMap->Map(lum, xPixelCount, yPixelCount,

imageInfo.maxDisplayY, scale);�
Apple scale to pixels for tone mapping and map to � 0 � 1 � �
delete[] scale;
delete[] lum;

}
�
Compute pixel luminance values ���
for (int i = 0; i < xPixelCount * yPixelCount; ++i)

lum[i] = 683.f * Lout[i].y();

Because the scale values returned by the tone mapping operator should leave
the pixel luminance values lum[i] in the range [0, maxDisplayY] but current
display devices don’t take luminance values as input, the results from the operator
now need to be scaled to the range � 0 � 1 � for the rest of the pipeline.
�
Apple scale to pixels for tone mapping and map to � 0 � 1 � ���
Float displayTo01 = 683.f / imageInfo.maxDisplayY;
for (int i = 0; i < xPixelCount * yPixelCount; ++i)

Lout[i] *= scale[i] * displayTo01;

ToneMap 310

312 Film and the Imaging Pipeline [Ch. 8

8.3.4 ***ADV***: Maximum to white

The most straightforward tone reproduction operator to apply (besides just hop-
ing that the image’s pixel values are already in a suitable range for the display)
is the maximum to white operator. It loops over all of the pixels to find the one
with the greatest luminance and computes the scale of the pixels so that the largest
luminance maps to the maximum luminance value of the display. Its trivial imple-
mentation is in tonemaps/maxwhite.cpp.�
MaxWhiteOp Declarations ���
class MaxWhiteOp : public ToneMap {�

MaxWhiteOp Public Methods �
};

�
MaxWhiteOp Public Methods ���
void Map(const Float *y, int xRes, int yRes,

Float maxDisplayY, Float *scale) const {�
Compute maximum luminance of all pixels �
Float s = maxDisplayY / maxY;
for (int i = 0; i < xRes * yRes; ++i)

scale[i] = s;
}

�
Compute maximum luminance of all pixels ���
Float maxY = 0.;
for (int i = 0; i < xRes * yRes; ++i)

maxY = max(maxY, y[i]);

There are two main disadvantages to this operator in practice (as its application
to the St. Peter’s image in Figure 8.4 showed). First, it doesn’t account for the
human visual system at all: if the lights in the scene are turned up to be 100 times
brighter and the scene is re-rendered, the maximum to white operator will give the
same displayed image as before. Second, a small number of very bright pixels
can cause the rest of the image to be too dark to be visible. Nonetheless, it can
work well for scenes without too much dynamic range in the image and serves as
a baseline that can show off the improvement that smarter operators offer.

8.3.5 ***ADV***: Contrast-based scale factor

The next tone reproduction operator focuses on preserving contrast in the displayed
image. It was developed by Greg Ward (Ward 1994a). Built upon work by re-
searchers who have studied the HVS and developed models that simulate it, this
operator is based on a model that describes the smallest change in luminance that
is noticeable to a human observer given a particular adaptation luminance (the just
noticeable difference, otherwise known as JND). The larger the adaptation lumi-
nance, the larger a change in luminance is needed to be noticeable. The operator
tries to set image luminances such that one JND in the displayed image corresponds
to one JND in the actual environment.

This uniform scale factor attempts to preserve contrast visibility–given a region
of the original image that would be is just noticeably different from its neighbor
to a human observer, it tries to scale display pixel values such that the person

Sec. 8.3] ***ADV***: Perceptual Issues and Tone Mapping 313

310 ToneMap

Figure 8.8: Application of the contrast-preserving scale factor to the image works
well in some parts of the image, though it doesn’t do well at preserving detail in the
very bright areas. Any operator that uses a single global scale factor is susceptible
to this problem.

looking at the display perceives that those two pixel values are just noticeably
different. In particular, a scale factor that increased JNDs would be a waste of
precious display dynamic range, while one that reduced JNDs would cause visually
detectible features to disappear.

Blackwell found that given an adaptation luminance in the photopic range Y a, a
reasonable model of the minimum change in luminance necessary to be visible is
given by

∆Y � Y a ��� 0 � 0594 � � 1 � 219 � � Y a � 0 � 4 � 2 � 5 �
Thus, this operator would like to determine a scale s such that

∆Y � Y a
d � � s � ∆Y � Y a

w � �

where Y a
d is the display adaptation luminance and Y a

w is the world adaptation lumi-
nance for someone observing the actual scene.

Substituting Blackwell’s model and solving for s, gives

s � �
1 � 219 � � Y a

d � 0 � 4

1 � 219 � � Y a
w � 0 � 4 � 2 � 5

� (8.3.1)

�
ContrastOp Declarations ���
class ContrastOp : public ToneMap {
public:

ContrastOp(Float day) { displayAdaptationY = day; }
void Map(const Float *y, int xRes, int yRes, Float maxDisplayY,

Float *scale) const;
Float displayAdaptationY;

};

ContrastOp 313

314 Film and the Imaging Pipeline [Ch. 8

�
ContrastOp Method Definitions ���
void ContrastOp::Map(const Float *y, int xRes, int yRes,

Float maxDisplayY, Float *scale) const {�
Compute world adaptation luminance, Ywa ��
Compute contrast-preserving scalefactor, s �
for (int i = 0; i < xRes*yRes; ++i)

scale[i] = s;
}

One unresolved issue is how to compute the world adaptation luminance Y a
w .

Ideally, this would be computed based on which part of the scene the viewer was
looking at and how long they had been looking at it (it takes some time for the eye
to adapt to luminace changes). Lacking this information, this operator computes
a log average of all of the luminances in the original image. Taking the log aver-
age, rather than an average of the original luminances, helps prevent small bright
regions from overwhelming luminance values in the rest of the image.�
Compute world adaptation luminance, Ywa ���
Float Ywa = 0.;
for (int i = 0; i < xRes * yRes; ++i)

if (y[i] > 0) Ywa += logf(y[i]);
Ywa = expf(Ywa / (xRes * yRes));

The scale is directly computed from Equation 8.3.1.�
Compute contrast-preserving scalefactor, s ���
Float s = powf((1.219f + powf(displayAdaptationY, 0.4f)) /

(1.219f + powf(Ywa, 0.4f)), 2.5f);

Figure 8.8 shows this operator in action; it does a reasonable job on the St.
Peter’s image, but has trouble maintaining detail in the bright areas. This isn’t
too surprising; any operator that uses the same scale factor at all pixels will have
trouble with images with many orders of magnitude of brightness variation. This
operator does work well on typical indoor scenes, however, and is computationally
efficient.

8.3.6 ***ADV***: Varying adaptation luminance

As mentioned earlier, it is often possible to make better use of the display’s dy-
namic range by using a scale factor that varies over the image. Here we will im-
plement a tone reproduction operator tailored for high-contrast scenes with many
orders of magnitude of brightness variation. It computes a local adaptation lu-
minance that smoothly varies over the image. The local adaptation luminance is
then used to compute a scale-factor using a contrast-preserving tone reproduction
operator, in a similar manner to the ContrastOp operator defined above.

The main difficulty with methods that compute a spatially-varying local adpata-
tion luminance is that they are prone to artifacts at boundaries between very bright
and very dim parts of the image. If the tone reproduction operator scales the dim
pixels using an adaptation luminance that includes the effects of the bright pixels,
the dim pixels will be mapped to black, causing a halo artifact at the boundary of
the final image. (An example of this effect is shown in Figure 8.9.)

Sec. 8.3] ***ADV***: Perceptual Issues and Tone Mapping 315

313 ContrastOp
310 ToneMap

Figure 8.9: When the adaptation luminance is computed using a fixed search ra-
dius at each pixel (here roughly ten pixels), there are often unsightly halo artifacts
at transitions between very bright and dimmer regions of the image. For example,
there are black borders around the bright light from the windows, where the adap-
tation luminance has been computed using the bright window light, such that the
tone mapping operator maps the adjacent, dimmer pixels to very low values.

Instead, it is better if we can make sure that the dim pixels have an adaptation
luminance based on just nearby dim pixels. This operator uses an image processing
technique to detect these boundaries in an effort to address this problem. Over
local regions of the image where the adaptation luminance is slowly changing, this
tone reproduction operator gives a local scale factor, which is tuned to preserve
contrast. However, since adaptation is allowed to vary over the image, details
are also preserved–bright regions aren’t blown out to be white, and dark regions
aren’t mapped down to black pixels. The approach implemented is based on a
tone reproduction operator developed by Ashikhmin (Ashikhmin 2002). Reinhard
et al simultaneously developed a different operator that uses the same technique
to comupte local adaptation (Reinhard, Stark, Shirley, and Ferwerda 2002). The
implementation is in tonemaps/highcontrast.cpp.

The results of applying this operator to the St. Peter’s image are shown in
Figure 8.10. It does substantially better than the contrast operator, thanks to its
spatially-varying scale factor.�
HighContrastOp Declarations ���
class HighContrastOp : public ToneMap {
public:

void Map(const Float *y, int xRes, int yRes, Float maxDisplayY,
Float *scale) const;

private:�
HighContrastOp Utility Methods �

};

The tone mapping function that HighContrastOp uses is based on the threshold
versus intensity (TVI) function, which gives the just noticable luminance difference
for given adaptation level TVI � Y a � . This is similar in spirit to the JND function
used in ContrastOp, but is based on a more complex model of the human visual
system, including a model of response to scoptic light levels.

316 Film and the Imaging Pipeline [Ch. 8

Figure 8.10: The high-contrast tone reproduction operator computes a spatially-
varying adaptation luminance while paying attention to boundaries between areas
with substantially different luminances. The result of its use on the St. Peter’s
image is shown at the top. It does an excellent job of remapping this image to a
small dynamic range. The middle image is a grey-scale visualization of the blur
radius that was used to compute adaptation luminance at each pixel; boundaries
with large luminance changes are successfully detected, indicated by small radii,
while areas with slower change in luminance compute adaptation luminance over
a wider area. The bottom image shows the local contrast computed at each pixel
with a blur radius of 1.5 and 3 pixels.

Sec. 8.3] ***ADV***: Perceptual Issues and Tone Mapping 317

From the TVI function, we define the perceptual capacity, which tells us, given
a particular adaptation level, how many JNDs a given luminance range covers:

Ya � Yb

TV I � Y a �
Later, we will use this to remap local regions of the image in a way that preserves
their perceptual capacity when displayed.

So that we can quickly compute the perceptual capacity of a given pair of lumi-
nance values, the auxilary capacity function C � Y � is defined as the integral

C � Y � � � Y

0

dY
TV I � Y � �

where the approximation is made that the adaptation level to compute the differen-
tial perceptual capacity at a given luminance is assumed to be equal to the lumi-
nance. Then C � Ya � � C � Yb � is the perceptual capacity from Ya to Yb.

Ashikhmin has made some simplifications to a widely-used TVI function in
order to be able to integrate it analytically to compute C � Y � , giving the function

C � Y � �
���� ���

Y
�
0 � 0014 Y � 0 � 0034

2 � 4483 � log � L �
0 � 0034 � �

0 � 4027 0 � 0034 � Y � 1
16 � 563 � � Y � 1 � �

0 � 4027 1 � Y � 7 � 2444
32 � 0693 � log � Y �

7 � 2444 � �
0 � 0556 otherwise

�
HighContrastOp Utility Methods ���
static Float C(Float y) {

if (y < 0.0034f) return y / 0.0014f;
else if (y < 1) return 2.4483f + log10f(y/0.0034f)/0.4027f;
else if (y < 7.2444f) return 16.563f + (y - 1)/0.4027f;
else return 32.0693f + log10f(y / 7.2444f)/0.0556f;

}

Given C � Y � , we can now take a given luminance value and determine how many
JND steps it is from the minimum luminance in the image,

C � Y � � C � Ymin �
and we can also compute, of all of the JND steps that the image goes through, what
fraction of the way through all of them it is:

C � Y � � C � Ymin �
C � Ymax � � C � Ymin �

This gives us a sense of how far through the range of display luminances this world
luminance should be mapped. Thus, the overall tone mapping operator, giving a
result in terms of display luminance, is

T � Y � � Y max
d

C � Y � � C � Ymin �
C � Ymax � � C � Ymin � �

HighContrastOp 315
HighContrastOp::C() 317

318 Film and the Imaging Pipeline [Ch. 8

�
HighContrastOp Utility Methods ��� �
static Float T(Float y, Float CYmin, Float CYmax,

Float maxDisplayY) {
return maxDisplayY * (C(y) - CYmin) / (CYmax - CYmin);

}

We can now define the main tone reproduction function. It compues the mini-
mum and maximum luminances of all pixels in the image so that Ymax and Ymin can
be computed. In order to be able to quickly do the searches to compute adapta-
tion luminances, it also builds an image pyramid data structure, where the original
image is progressively filtered down into lower-resolution copies of itself. This is
then used when the operator loops over all of the pixels and computes each pixel’s
scale factor.�
HighContrastOp Method Definitions ���
void HighContrastOp::Map(const Float *y, int xRes, int yRes,

Float maxDisplayY, Float *scale) const {�
Find minimum and maximum image luminances ��
Build luminance image pyramid ��
Apply high contrast tone mapping operator �

}
�
Find minimum and maximum image luminances ���
Float minY = y[0], maxY = y[0];
for (int i = 0; i < xRes * yRes; ++i) {

minY = min(minY, y[i]);
maxY = max(maxY, y[i]);

}
Float CYmin = C(minY), CYmax = C(maxY);

Most previous approaches to computing local adaptation luminance used a blurred
version of the original image, though this led to the halo artifact described previ-
ously. The insight behind the approach implemented here is that adaptation lumi-
nance shouldn’t be based on a constant-sized region of luminances around the pixel� x � y � , but should be based on a varying area: as long as the luminance is locally
roughly constant, the area can be expanded until a significant change in luminance
is reached. This gives us the best of both worlds: when luminance is changing
slowly, we compute adaptation luminance over a larger area, giving smooth vari-
ation of adaptation luminance when we are far from high contrast features. When
contrast is quickly changing, however, we detect this and avoid artifacts by com-
puting a more local adaptation luminance.

A standard technique from image processing is to define the local contrast
lc � x � y � of a pixel as the magnitude of the difference between that pixel’s value
and its value in two blurred versions of the image, one blurred with twice a wide a
filter than the other

lc � s � x � y � � Bs � x � y � � B2s � x � y �
Bs � x � y � �

Here s is the filter width used for blurring the image, expressed in pixels and
Bs � x � y � is pixel � x � y � ’s value in the blurred image. We would like to find the small-
est local extent around each pixel � x � y � of radius s such that � lc � s � x � y � � is less than

Sec. 8.3] ***ADV***: Perceptual Issues and Tone Mapping 319

417 MIPMap

some constant value–when it becomes greater than that value, we have passed the
amount of acceptable local contrast. Having found such an s, adaptation luminance
is computed by

Y a � x � y � � Bs � x � y � �
thus fulfilling the criteria above. The top image in Figure 8.10 shows this operator
applied to the St. Peter’s Basilica image, while the middle image shows the widths
used for computing local adaptation luminance at each pixel, where the brighter
the pixel, the wider a region was sampled, and the bottom image shows the local
contrast computed at each pixel for s � 1 � 5. Notice how edges where there are large
jumps in brightness in the original image are found by the local contrast function.

In order to be able to quickly find the value of pixels in the blurred image
Bs � x � y � , this operator creates an image pyramid with the MIPMap class, which will
be described in Section 11.5.2. For the purposes of this section, we will just make
use of the fact that it can accurately and efficiently compute values of Bs � x � y � for
arbitrary values of s.�
Build luminance image pyramid ���
MIPMap<Float> pyramid(xRes, yRes, y);

Next, the adaptation luminance is computed for each pixel and the scale factor
is computed. Note that it is necessary to convert from discrete to continuous pixel
coordinates in xc and yc to give the correct continuous position for the MIPMap
lookup.�
Apply high contrast tone mapping operator ���
for (int y = 0; y < yRes; ++y) {

Float yc = (Float(y) + .5f) / Float(yRes);
for (int x = 0; x < xRes; ++x) {

Float xc = (Float(x) + .5f) / Float(xRes);�
Compute local adaptation luminance at � x � y � ��
Apply tone mapping based on local adaptation luminance �

}
}

To compute the adaptation luminance, this method looks up the value of the pixel
in images with a given blur amount (specifically blurred by width and 2 � width)
to compute the value of the local contrast function, lc. If it’s above the value stored
in maxLocalContrast, 0 � 5 (an arbitrary constant, chosen after some experimen-
tation), the adaptation luminance is set as the average of a slightly smaller region
around the pixel and the loop terminates for this pixel. Otherwise, the blur radius
is increased by one pixel’s span–dwidth–and a new value of lc is computed. This
process eventually stops once it reaches a large blur without finding a sufficient
amount of contrast–at that point, just using the wide area to set adaptation lumi-
nance works well anyway.

Lerp() 677
MIPMap 417

MIPMap::Lookup() 427

320 Film and the Imaging Pipeline [Ch. 8

�
Compute local adaptation luminance at � x � y � ���
Float dwidth = 1.f / Float(max(xRes, yRes));
Float maxWidth = 32.f / Float(max(xRes, yRes));
Float width = dwidth, prevWidth = 0.f;
Float Yadapt;
Float prevlc = 0.f;
const Float maxLocalContrast = .5f;
while (1) {�

Compute local contrast at � x � y � ��
If maximum contrast is exceeded, compute adaptation luminance ��
Increase search region and prepare to compute contrast again �

}

The local contrast computation is made trivial with the MIPMap image pyramid;
the MIPMap::Lookup() method applies a filter of given width to the image at the
given pixel position.�
Compute local contrast at � x � y � ���
Float b0 = pyramid.Lookup(xc, yc, width, 0.f, 0.f, width);
Float b1 = pyramid.Lookup(xc, yc, 2.f*width, 0.f, 0.f, 2.f*width);
Float lc = fabsf((b0 - b1) / b0);

If the local contrast exceeds the maximum allowed contrast, an ad-hoc approxi-
mation determines the width s for which lc � s � x � y � � maxLocalContrast. Given the
local contrast that was computed the last time through the loop in prevlc and the
fact that

prevlc � maxLocalContrast � lc �
a value t is found such that linear interpolation t of the way between prevlc and
lc gives exactly maxLocalContrast. Under the assumption that contrast varies
linearly between the last width at which contrast was computed and the current
width, it’s easy to compute the width between them where we assume that the
contrast constraint was violated.�
If maximum contrast is exceeded, compute adaptation luminance ���
if (lc > maxLocalContrast) {

Float t = (maxLocalContrast - prevlc) / (lc - prevlc);
Float w = Lerp(t, prevWidth, width);
Yadapt = pyramid.Lookup(xc, yc, w, 0.f, 0.f, w);
break;

}
�
Increase search region and prepare to compute contrast again ���
prevlc = lc;
prevWidth = width;
width += dwidth;
if (width >= maxWidth) {

Yadapt = pyramid.Lookup(xc, yc, maxWidth, 0.f, 0.f, maxWidth);
break;

}

Sec. 8.3] ***ADV***: Perceptual Issues and Tone Mapping 321

318 HighContrastOp::T()
312 MaxWhiteOp

Figure 8.11: The ad-hoc non-linear scale factor works remarkably well on the im-
age of St. Peter’s Basilica, preserving detail over a wide range of image luminance
values.

Given the tone mapping function T � Y a � , the scale-factor at a given pixel � x � y �
is defined by

s � x � y � � T � Y a � x � y � �
Y a � x � y � �

As long as Y a � x � y � is slowly varying over the image, this is a essentially a locally-
linear mapping.�
Apply tone mapping based on local adaptation luminance ���
scale[x + y*xRes] = T(Yadapt, CYmin, CYmax, maxDisplayY) /

Yadapt;

8.3.7 ***ADV***: Spatially-varying non-linear scale

The last tone mapping approach implemented here is not at all grounded in the
perception literature, but works remarkably well in practice. It is based on an ad-
hoc formula that was chosen with perceptual issues in mind and was introduced by
Reinhard et al (Reinhard, Stark, Shirley, and Ferwerda 2002). Its implementation
is in the file tonemaps/nonlinear.cpp. A spatially varying factor is used to scale
each pixel:

s � x � y � �
�
1 � y � x � y �

y2
max �

1 � y � x � y � �
Note that this operator is not based on luminance Y, but the y component of XYZ
color (i.e. the scale of 683 is not included).

This scale factor maps black pixels to zero and the brightest pixels to one. In
between, darker pixels require relatively less change in brightness to cause a given
change in output pixel value than bright pixels do. This is in tune with properties
of the HVS, which has a generally logarithmic response curve, rather than a linear
one.

Like the MaxWhiteOp operator, it first computes the maximum luminance of all
pixels in the image.

ImageInfo 301
ToneMap 310

322 Film and the Imaging Pipeline [Ch. 8

�
NonLinearOp Declarations ���
class NonLinearOp : public ToneMap {�

NonLinearOp Public Methods �
};

The implementation of the operator is straightforward, made messy only by the
need to remove the scale of 683 from the luminance values.�
NonLinearOp Public Methods ���
void Map(const Float *y, int xRes, int yRes,

Float maxDisplayY, Float *scale) const {�
Compute world adaptation luminance, Ywa �
Ywa /= 683.f;
Float invY2 = 1.f / (Ywa * Ywa);
for (int i = 0; i < xRes * yRes; ++i) {

Float ys = y[i] / 683.f;
scale[i] = maxDisplayY / 683.f *

(1.f + ys * invY2) / (1.f + ys);
}

}

Figure 8.11 shows this operator in action. It does an excellent job of mapping
the St. Peter’s image to a reasonable range, preserving contrast over a wide range
of brightnesses.

� ��� � � � � ��� � 	 � � � � � � � � � � � � �	� � ����� ���
After the tone reproduction step, we should have pixels with SPDs that range

between zero and one. (Some tone reproduction operators don’t guarantee this, or
we may have not run the tone mapping step at all, so the values will be clamped to
this range later in the pipeline just to be sure.) Given additional information about
the particular display device being used, the device-independent XYZ pixel values
are converted to device-dependent RGB values. This is another change of spectral
basis, where the new basis is determined by the spectral response curves of the red,
green, and blue elements of the display device. As before, weights to convert from
XYZ to the device RGB can be precomputed. The ImageInfo structure holds the
weights for the particular display being used.�
ImageInfo Public Data ��� �
Float rWeight[3], gWeight[3], bWeight[3];

By default, these are initialized to the appropriate weights for the RGB primaries
as specified by the HDTV standard. This is a good match for most modern display
devices.

Sec. 8.4] Device RGB Conversion and Output 323

301 ImageInfo

�
ImageInfo Constructor Implementation ��� �
rWeight[0] = 3.240479f;
rWeight[1] = -1.537150f;
rWeight[2] = -0.498535f;
gWeight[0] = -0.969256f;
gWeight[1] = 1.875991f;
gWeight[2] = 0.041556f;
bWeight[0] = 0.055648f;
bWeight[1] = -0.204043f;
bWeight[2] = 1.057311f;

�
Convert image to display RGB ���
Float *rgb = new Float[3*nPix];�
Define RGB access macros �
for (int i = 0; i < nPix; ++i) {

Float xyz[3];
Lout[i].XYZ(xyz);
R(i) = imageInfo.rWeight[0]*xyz[0] + imageInfo.rWeight[1]*xyz[1] +

imageInfo.rWeight[2]*xyz[2];
G(i) = imageInfo.gWeight[0]*xyz[0] + imageInfo.gWeight[1]*xyz[1] +

imageInfo.gWeight[2]*xyz[2];
B(i) = imageInfo.bWeight[0]*xyz[0] + imageInfo.bWeight[1]*xyz[1] +

imageInfo.bWeight[2]*xyz[2];
}

�
Define RGB access macros ���
#define R(i) (rgb[3*(i)])
#define G(i) (rgb[3*(i)+1])
#define B(i) (rgb[3*(i)+2])

Unfortunately, there are many colors that modern displays cannot reproduce
(for example, saturated oranges and purples); such colors are called out of gamut.
Out of gamut colors will have values outside the range � 0 � 1 � after they have been
converted to the display’s RGB space. There aren’t any completely satisfactory
solutions to this problem, given that the display device can’t reproduce those colors
in the first place; it’s mostly a matter of trading off different kinds of error. In lrt,
we rescale out of gamut colors so that the maximum of the three components is
one and the others are scaled proportionally.�
ImageInfo Public Data ��� �
bool clampToGamut;
Float gain;

�
ImageInfo Constructor Implementation ��� �
clampToGamut = true;
gain = 1.f;

Before performing the this, a user-supplied scale is applied to the pixel val-
ues, allowing last minute brightness adjustment; the amount is controlled by the
ImageInfo’s gain value.

324 Film and the Imaging Pipeline [Ch. 8

�
Scale image and handle out-of-gamut RGB values ���
for (int i = 0; i < nPix; ++i) {

R(i) *= imageInfo.gain;
G(i) *= imageInfo.gain;
B(i) *= imageInfo.gain;

}
if (imageInfo.clampToGamut) {

for (int i = 0; i < nPix; ++i) {
Float m = max(R(i), max(G(i), B(i)));
if (m > 1.f) {

R(i) /= m;
G(i) /= m;
B(i) /= m;

}
}

}

Next it is necessary to adjust the color values for the non-linear change in dis-
played brightness that displays based on cathode ray tubes (CRTs) exhibit. With
these kinds of displays, the displayed brightness doesn’t vary linearly with the
pixel values: a pixel with value 100 isn’t usually twice as bright as a pixel with
value 50. (Although newer display technologies like LCD screens don’t naturally
have non-linear response like this, they are generally built with logic that mimics
this characteristic of CRTs. CHECK THIS) This non-linear response is generally
modeled with a power function

d � vγ �
where d is the display brightness, v is the voltage applied to the display’s electron
gun (which is directly proportional to the pixel value, unless the hardware or oper-
ating system also performs gamma correction.), and the gamma value γ is generally
2.2. Given a pixel value v, then, computing

v � � v1 � γ

and sending v � to the display will cause the displayed brightness to be linear.�
ImageInfo Public Data ��� �
Float invGamma;

�
ImageInfo Constructor Implementation ��� �
invGamma = 1.f / 2.2f;

�
Apply gamma correction to image ���
if (imageInfo.invGamma != 1.f) {

for (int i = 0; i < nPix; ++i) {
R(i) = powf(R(i), imageInfo.invGamma);
G(i) = powf(G(i), imageInfo.invGamma);
B(i) = powf(B(i), imageInfo.invGamma);

}
}

Sec. 8.4] Device RGB Conversion and Output 325

679 RandomFloat()

Given gamma corrected pixel values, we may need to map their values to the
range that the display expects (e.g. 0 to 255.) Some image file formats can store
floating-point pixel values, so it’s not always necessary to perform this step.�
ImageInfo Public Data ��� �
bool integerFormat;
int maxDisplayValue;

�
ImageInfo Constructor Implementation ��� �
integerFormat = true;
maxDisplayValue = 255;

�
Map image to display range ���
if (imageInfo.integerFormat) {

for (int i = 0; i < nPix; ++i) {
R(i) *= imageInfo.maxDisplayValue;
G(i) *= imageInfo.maxDisplayValue;
B(i) *= imageInfo.maxDisplayValue;
AlphaOut[i] *= imageInfo.maxDisplayValue;

}
}

Before converting these pixel values to integer values for the display, it is also
helpful to dither their values, adding a small random value to each pixel’s color
component. Introducing this very small amount of noise improves the visual qual-
ity of displayed images by making the transition between areas with one pixel to
another less well-delineated.�
ImageInfo Public Data ��� �
Float ditherAmount;

�
ImageInfo Constructor Implementation ��� �
ditherAmount = 0.5f;

�
Dither image ���
if (imageInfo.ditherAmount > 0) {

for (int i = 0; i < nPix; ++i) {
R(i) += 2.f * imageInfo.ditherAmount *

(RandomFloat() - .5f);
G(i) += 2.f * imageInfo.ditherAmount *

(RandomFloat() - .5f);
B(i) += 2.f * imageInfo.ditherAmount *

(RandomFloat() - .5f);
}

}

Finally, the image is saved. The image output routines take care of converting
the floating-point pixel values to integers, if appropriate for the file format being
used.�
ImageInfo Public Data ��� �
string filename;

Film::xResolution 294
Film::yResolution 294

ImageFilm::xPixelCount 297
ImageFilm::xPixelStart 297
ImageFilm::yPixelCount 297
ImageFilm::yPixelStart 297

326 Film and the Imaging Pipeline [Ch. 8

�
ImageInfo Constructor Implementation ��� �
filename = "lrt.tiff";

�
Save display image to disk ���
if (imageInfo.integerFormat)

WriteImage8Bit(imageInfo.filename, rgb, AlphaOut, xPixelCount,
yPixelCount, 3, xResolution, yResolution, xPixelStart,
yPixelStart);

else
WriteImageFloat(imageInfo.filename, rgb, AlphaOut, xPixelCount,

yPixelCount, 3, xResolution, yResolution, xPixelStart,
yPixelStart);

delete[] rgb;

����� ���� � � � ��� � � �
Porter and Duff’s paper on compositing digital images is the classic paper on

the uses of images with alpha channels and explains why pre-multiplied alpha
is a preferable preresentation for color (Porter and Duff 1984). (The first use of
an extra alpha channel in images in graphics dates to Smith and Catmull, how-
ever (Smith 1979). See also Wallace’s paper for a refinement of Smith and Cat-
mull’s approach (Wallace 1981).)

Gamma correction has a a long history in computer graphics; Poynton has writ-
ten comprehensive FAQs on issues related to color and gamma-correction in com-
puter graphics (Poynton 2002b; Poynton 2002a).

Display issues, mapping to reasonable RGB values, out of gamut colors, ... See
Rougeron and Péroche’s survey article for discussion and references (Rougeron
and Péroche 1998).

Malacara’s monograph gives a concise overview of color theory and basic prop-
erties of how the the human visual system processes color (Malacara 2002).

Wandell’s book?
wazczeki(?sp) and stiles
Glassner has written an article on the under-constrained problem of converting

RGB values (e.g. as selected by the user from a display) to a SPD (Glassner 1989).
Tone reproduction for computer graphics became an active area of research

around 1993 with the work of Tumblin and Rushmeier (Tumblin and Rushmeier
1993), Chiu et al (Chiu, Herf, Shirley, Swamy, Wang, and Zimmerman 1993), and
Ward (Ward 1994a). The bloom technique is based the one described in Chiu et
al’s paper. The non-linear mapping we presented was developed by Reinhard et
al (Reinhard, Stark, Shirley, and Ferwerda 2002).

Poynton gamma FAQ. Catmull color compensation tables paper?
Ward suggested an early technique for compactly storing floating-point image

data from realistic image synthesis (Ward 1991) and later developed an extention
to the TIFF image file format for accurate high dynamic range color represen-
taiton (Larson 1998).

Tumblin and Rushmeier first introduced a the first tone mapping algorithms to
computer graphics and sparked the recent focus on tone reproduction (Tumblin
and Rushmeier 1993). Other early work included Chiu et al’s spatially-varying
scale (Chiu, Herf, Shirley, Swamy, Wang, and Zimmerman 1993), and Ward’s

Exercises 327

294 Film
315 HighContrastOp

contrast-preservation scale (Ward 1994a), which we have implemented in Sec-
tion 8.3.5.

Since the initial work in tone reproduction, there has been an explosion of re-
search in this area. The survey article of Delvin et al summarizes most of the work
in this area through 2002, giving pointers to the original papers (Devlin, Chalmers,
Wilkie, and Purgathofer 2002). For background information on properties of the
human visual system, Wandell’s book on vision is an excellent starting point (Wan-
dell 1995).

The local contrast detection approach we implemented in the HighContrastOp
is based on Ashikhmin’s technique (Ashikhmin 2002). The same local contrast
operator was also introduced by Reinhard et al, who developed an operator based
on principles from photography, rather than the human visual system (Reinhard,
Stark, Shirley, and Ferwerda 2002; Reinhard 2002).

Chiu et al!!!
Simulating the scattering processes inside the human eye can also improve the

perceived quality of the image. Nakame et al (Nakamae, Kaneda, Okamoto, and
Nishita 1990) and Spencer et al (Spencer, Shirley, Zimmerman, and Greenberg
1995) both modeled glare, where very bright areas in an environment mask dimmer
areas next to them. Simulating this in displayed images (e.g. by blurring a bit
around very bright areas) can substantially increase the perceived brightness of
objects.

Another interesting application for knowledge of the characteristics of the HVS
is perceptually-driven rendering, where less work is done in areas of the image
that are known to be visually unimportant and more work is done in areas that
are known to be important. Bolin and Meyer paper (Bolin and Meyer 1998) and
Ramasubramanian et al (Ramasubramanian, Pattanaik, and Greenberg 1999) both
developed rendering algorithms using this approach.

misc: (Tumblin, Hodgins, and Guenter 1999), (Larson, Rushmeier, and Piatko
1997)

boundary preservation (Tumblin and Turk 1999)
Durand and Dorsey (Durand and Dorsey 2002)
vision overview (Ferwerda 2001)
Interactive Durand and Dorsey (Durand and Dorsey 2000)
complex/sophisticated (Pattanaik, Ferwerda, Fairchild, and Greenberg 1998)
adaptation and masking (Ferwerda, Pattanaik, Shirley, and Greenberg 1996)

extended Ward’s contrast-based method to handle scoptic lighting levels, including
reduced color sensitivity and spatial acuity. (Ferwerda, Pattanaik, Shirley, and
Greenberg 1997)

Time dependence (Pattanaik, Tumblin, Yee, and Greenberg 2000)
Frankle and McCann 83 retinex paper�

� � � � � � � �

8.1 Write a new Film implementation that opens a window and interactively
displays pixel values as the scene is rendered. What sort of modifications
(and simplifications) to the ImageFilm’s imaging pipeline are necessary to
make this film implementation be efficient?

328 Film and the Imaging Pipeline [Ch. 8

8.2 Image-based rendering is the general name for a set of techniques that use
one or more images of a scene to synthesize new images from viewpoints
different than the original ones. One such approach is lightfield rendering,
where a set of images from a densely-spaced set of positions is used (Levoy
and Hanrahan 1996; Gortler, Grzeszczuk, Szeliski, and Cohen 1996). Ex-
tend lrt to directly generate lightfields of scenes, without requiring that the
renderer be run multiple times, once for each camera position. It will prob-
ably be necessary to write a specialized Camera, Sampler, and Film to do
this. Also, write an interactive lightfield viewer that uses these lightfields to
generate new views of the scene.

8.3 Implement a tone reproduction operator for low-light environments (e.g. (Fer-
werda, Pattanaik, Shirley, and Greenberg 1996; Ferwerda, Pattanaik, Shirley,
and Greenberg 1997)) and compare its results to the tone reproduction op-
erators described in this chapter. (Rather than re-rendering a complex scene
multiple times in order to experiment with different tone mapping operators,
a faster approach is to start by rendering the scene once and storing the image
in a floating-point image format. Then, set up a new scene up with an ortho-
graphic camera pointing at a texture-mapped quadrilateral facing the camera
with the image of the scene mapped onto it. If this quadrilateral is illumi-
nated with a distant light source, then a rendered image of it will look almost
the same as the original scene. Because the texture has the full floating-point
representation of the scene’s radiance values, appropriate input is available
for the tone reproduction algorithm.)

8.4 Ward style histogram-based tone repro stuff: don’t waste dynamic range in
parts of the histogram where not many image samples lie

8.5 The bloom effect implemented in this chapter works well, but is completely
ad-hoc. Read Spencer et al’s paper, which describes glare and bloom al-
gorithms based on a more detailed model of how light scatters in the hu-
man eye and implement their algorithms as a tone reproduction operator in
lrt (Spencer, Shirley, Zimmerman, and Greenberg 1995).

8.6 darkroom: interactive dodge and burn

8.7 Deep framebuffers: rather than just storing spectral values and an alpha
channel in an image, it’s often useful to store additional information about
the objects in the scene that were visible at each pixel. See for example the
SIGGRAPH papers by Perlin (Perlin 1985) and Saito and Takahashi (Saito
and Takahashi 1990). For example, if the 3D position, surface normal, and
BRDF information about the object at a pixel is stored, then the scene can be
efficiently re-rendered after moving the light sources (Gershbein and Han-
rahan 2000). If each sample stores information about all of the objects vis-
ible along its camera ray, rather than just the first one, new images from
shifted viewpoints can be re-rendered (Shade, Gortler, wei He, and Szeliski
1998). Investigate representations for deep framebuffers and algorithms that
use them; extend lrt to support rendering and saving more complex images
and develop tools that operate on them.

� � � � ��� � � � � � �

This chapter defines a set of classes for describing light scattering at surfaces.
Recall that the bidirectional reflectance distribution function (BRDF) abstraction
was introduced in Section 5.4.1 to describe light scattering at surfaces, the BTDF
describes transmission at a surface, and the BSDF encompasses both of these ef-
fects. In this chapter, we will start by defining a generic interface to these surface
reflection and transmission functions. Scattering from realistic surfaces is often
best described as a mixture of multiple BRDFs and BTDFs; in Chapter 10, we will
introduce a BSDF object that combines multiple BRDFs and BTDFs to represent
overall scattering from the surface. This chapter also sidesteps the issue of reflec-
tion and transmission properties that vary over the surface; the texture classes of
Chapter 11 will address that problem.

Specific reflection models come from a number of sources:

1. Measured data: reflection distribution properties of a number of real-world
surfaces have been measured. These data may be presented in tabular form,
or as coefficients for a set of basis functions.

2. Phenomenological: equations that attempt to describe the qualitative prop-
erties of real-world surfaces can be remarkably effective at mimicking them.
These BSDFs can be particularly easy to use, since they tend to have intu-
itive parameters (e.g. “roughness”) that modify their behavior. The majority
of reflection functions used in computer graphics fall into this category.

3. Simulation: if low-level information is known about the composition of a
surface (e.g. that a paint is comprised of colored particles of some average
size suspended in a medium, or that a particular fabric is comprised from
two types of thread, each with known reflectance properties), light scattering

�	���

330 Reflection Models [Ch. 9

from micro-geometry with these reflectance properties can be simulated to
generate reflection data. This simulation can either be done during rendering
or as a pre-process, after which it may be fit to a set of basis functions for
use at rendering-time.

4. Geometric optics: as with simulation approaches, if the surface’s lower-level
scattering and geometric properties are known, then models can often be de-
rived directly from these descriptions. This approach is much more tractable
if geometric optics is used to model light’s interaction with the surface–this
is a much simpler model, ignoring wave effects like polarization, etc.

5. Physical (wave) optics: some reflection models have been derived using a
detailed model of light, treating it as a wave and computing the solution
to Maxwell’s equations to find how it scatters from a surface with known
properties. These models tend to be computationally expensive however, and
usually aren’t appreciably more accurate than models based on geometric
optics.

In this chapter, we will define implementations of reflection models based on
measured data, phenomenological models, and geometric optics. The further read-
ing section at the end of this chapter gives pointers to a variety of other models.

Before we define the reflection and transmission interfaces and classes, a brief
review of how they fit into the overall system and are used in the process of comput-
ing outgoing radiance at a point being shaded is in order1. The integrator classes,
defined in Chapter 16, are responsible for determining which surface is first visible
along a ray and computing the scattered radiance at that point. One the hit point
is found, the integrator runs the surface shader that was bound to the surface. The
surface shader is a short procedure that is responsible for deciding what the BSDF
is at a particular point on the surface (see Chapter 10); it returns a BSDF object
that holds BRDFs and BTDFs for that point. The integrators then use the BSDF to
compute the scattered light at the point, based on the incoming illumination from
the light sources in the scene.

9.0.1 Basic terminology

In order to be able to compare the visual appearance of different reflection models,
we will introduce some basic terminology for describing reflection from surfaces.
Although reflection from real surfaces often won’t cleanly fit into the categories
below, they offers a general framework to start out with.

Reflection from surfaces can be split into four broad categories: diffuse, glossy
specular, perfect specular, and retro-reflective (Figure 9.1). Most real surfaces
exhibit reflection that is a mixture of these four types. Diffuse surfaces scatter
light equally in all directions. Although a perfectly diffuse surface isn’t physically
plausible, examples of near-diffuse surfaces include dull chalkboards and matte
paint. Glossy specular surfaces (for example, gloss paint or plastic) scatter light
preferentially in a set of reflected directions–they show blurry reflections of other
objects. Specular surfaces reflect incident light in a single outgoing direction. Mir-
rors and glass are examples of specular surfaces. Finally, retro-reflective surfaces

1The reader may wish to revisit Chapter 1 at this point.

Ch. 9] Reflection Models 331

Figure 9.1: Four main types of reflection: diffuse, glossy specular, perfect specular,
retro-reflection.

mainly scatter light back along the incident direction; fabrics such as velvet and
the Earth’s moon are two examples of retro-reflective surfaces.

Given a particular general type of reflection, the reflectance distribution function
may be isotropic or anisotropic. Most objects are isotropic: if you choose a point
on the surface and rotate it around its normal axis around that point, the amount
of light reflected doesn’t change. In contrast, anisotropic materials reflect different
amounts of light as you rotate them in this way. Examples include brushed metal,
phonographic records, and compact disks.

XXX image showing these differences.

9.0.2 Geometric Setting

Reflection computations in lrt are evaluated in a reflection coordinate system
where two tangent vectors and the normal vector at the point being shaded are
aligned with the x, y, and z axes, respectively (Figure 9.2). All direction vectors
passed to and returned from the BRDF and BTDF routines will be defined with
respect to this coordinate system. This is a natural coordinate system for imple-
menting reflection computations; doing all BSDF calculations in this coordinate
system helps make some of the ideas more clear. It is important to understand
this coordinate system in order to understand the BSDF implementations in this
chapter.

This coordinate system also gives us a frame for expressing directions in spheri-
cal coordinates � θ � φ � ; the angle θ is measured from the given direction to the z axis,
and φ is the angle formed with the x axis after projection of the direction onto the
xy plane. Given a direction vector ω in this coordinate system, it is easy to compute
quantities like the cosine of the angle that it forms with the normal direction:

cosθ � � n � ω ��� � � 0 � 0 � 1 � � ω ��� ωz �

Vector 27

332 Reflection Models [Ch. 9

Figure 9.2: basic BSDF interface setting: the shading coordinate system is defined
by the orthonormal basis vectors � s � t � n � . We will orient these vectors such that
they lie along the x, y, and z axes in this coordinate system. Direction vectors ω in
world space are transformed into the shading coordinate system before any of the
BRDF or BTDF methods are called.

We will provide a utility function to compute this value; this mostly serves to make
the intent of BSDF code more clear.�
BSDF Inline Functions ���
inline Float CosTheta(const Vector &w) { return w.z; }

Some additional algebra shows that the absolute value of sinθ is

� sinθ � � � 1 � ω2
z

�
BSDF Inline Functions ��� �
inline Float AbsSinTheta(const Vector &w) {

return sqrtf(max(0.f, 1.f - w.z*w.z));
}

The signed value of sinθ can be determined by examining the sign of ωz.�
BSDF Inline Functions ��� �
inline Float SinTheta(const Vector &w) {

Float s = sqrtf(max(0.f, 1.f - w.z*w.z));
if (w.z < 0.f) s *= -1.f;
return s;

}

The value of sin2 θ can be computed more efficiently using the identity ω2
x �

YCOMPω2 � ZCOMPω2 � 1:�
BSDF Inline Functions ��� �
inline Float SinTheta2(const Vector &w) {

return w.x*w.x + w.y*w.y;
}

We can similarly use the shading coordinate system to simplify the calculations
for the sine and cosine of the φ angle (Figure 9.3). In the plane of the point being

Ch. 9] Reflection Models 333

334 BxDF
332 SinTheta()
348 SpecularTransmission
27 Vector

z

y

x

φ

θ

sin θ

Figure 9.3: As was done for the SpecularTransmission BTDF, the sinθ term is
found by computing the length of the dashed line, which is the magnitude of the
xy components of the vector. The sin φ and cosφ terms can be computed using the
circular coordinate equations x � r cos φ and y � r sin φ, where r, the length of the
dashed line, was already computed for sin θ.

shaded, the vector ω has coordinates � x � y � , which are given by r cos φ and r sin φ,
respectively. The radius r is just sinθ, so

cosφ � x
r � x

sinθ
sinφ � y

r � y
sin θ �

�
BSDF Inline Functions ��� �
inline Float CosPhi(const Vector &w) {

return w.x / SinTheta(w);
}
inline Float SinPhi(const Vector &w) {

return w.y / SinTheta(w);
}

Another convention we will follow is that the incident light direction, ω i, and
the outgoing viewing direction, ωo, will be normalized and outward facing after
being transformed into the local coordinate system at the surface. By convention,
the surface normal n always points to the “outside” of the object, which helps us
determine if light is entering or exiting transmissive objects: if the incident light
direction ωi is in the same hemisphere as n, then light is entering; otherwise it is
exiting.

Note that the local coordinate system used for shading may not be exactly the
same as the coordinate system returned by the Shape::Intersect() routines
from Chapter 3; they can be modified between intersection and shading to achieve
effects like bump-mapping. See Chapter 10 for examples of this kind of modifica-
tion.

The BxDF implementations do not need to concern themselves with whether ωi

and ωo lie in the same hemisphere. For example, although a reflective BxDF should,
in principle, return zero reflection if the incident direction is above the surface and

BSDF 370

334 Reflection Models [Ch. 9

the outgoing direction is below, we will expect the BxDF to compute and return
the amount of light reflected as if they were in the same hemisphere. Higher-
level code in lrt will ensure that only reflective or transmissive scattering routines
are evaluated as appropriate. (The need for this convention will be explained in
Section 10.1.)

� �
� � � � � � ������� � � �����

We will first define the interface for the individual BRDF and BTDF functions.
BRDFs and BTDFs share a common base-class, BxDF, which defines the basic
interface that they adhere to. Because both have the exact same interface, this
reduces repeated code and allows some parts of the system to work with BxDFs
generically without distinguishing between BRDFs and BTDFs.

We assume that light in different wavelengths is decoupled; energy at one wave-
length will not be reflected at a different wavelength. Thus, fluorescent materials
are not supported.�
BxDF Declarations ���
class BxDF {
public:�

BxDF Interface ��
BxDF Public Data �

};

The BSDF class, which will be introduced in Section 10.1, holds a collection of
BxDF objects that together describe the scattering at a point on a surface. Although
we are hiding the implementation details nature of the BxDF behind a common
interface for reflective and transmissive materials, some of the light transport algo-
rithms in Chapter 16, will need to distinguish between these two types. Therefore,
all BxDFs have a BxDF::type member that holds the bitwise and of flags from
BxDFType. For each BxDF, the flags should have exactly one of BSDF_REFLECTIVE
or BSDF_TRANSMISSIVE set, and exactly one of the diffuse, glossy, and specular
flags.�
BSDF Declarations ���
enum BxDFType {

BSDF_REFLECTION = 1<<0,
BSDF_TRANSMISSION = 1<<1,
BSDF_DIFFUSE = 1<<2,
BSDF_GLOSSY = 1<<3,
BSDF_SPECULAR = 1<<4,
BSDF_ALL_TYPES = BSDF_DIFFUSE | BSDF_GLOSSY | BSDF_SPECULAR,
BSDF_ALL_REFLECTION = BSDF_REFLECTION | BSDF_ALL_TYPES,
BSDF_ALL_TRANSMISSION = BSDF_TRANSMISSION | BSDF_ALL_TYPES,
BSDF_ALL = BSDF_ALL_REFLECTION | BSDF_ALL_TRANSMISSION,

};
�
BxDF Public Data ���
const BxDFType type;

Sec. 9.1] Basic Interface 335

334 BxDF
334 BxDFType
181 Spectrum
27 Vector

�
BxDF Interface ��� �
BxDF(BxDFType t) : type(t) { }

The key method that BxDFs provide is the BxDF::f() method that returns the
value of the distribution function for the given pair of directions.�
BxDF Interface ��� �
virtual Spectrum f(const Vector &wo, const Vector &wi) const = 0;

Not all BxDFs can be easily evaluated in this manner. For example, perfectly
specular objects like mirror, glass, or water only scatter light from a single incident
direction in a single outgoing direction. Such BxDFs are best described with delta
distributions that are zero except for the single direction where light is scattered.

These BxDFs need special handling in lrt, so we will also provide method:
BxDF::Sample_f(). This method is used both for handling scattering that is
described by delta functions as well as for randomly sampling directions from
BxDFs that scatter light along multiple directions–this second application will be
explained in Chapter 14.

BxDF::Sample_f() computes the direction of incident light ωi given an outgo-
ing direction ωo and returns the value of the BxDF for the given pair of directions.
For delta distributions, it is necessary for the BxDF to choose the direction, since the
caller has no chance of generating the appropriate ωi direction.2 When this method
is used for sampling random directions of non-specular BxDFs for Monte Carlo
integration, two random numbers from zero to one, u1 and u2, are used to help
choose the direction. The pdf parameter is used to return the value of the proba-
bility density function for the sampled direction. These parameters aren’t needed
for delta distribution BxDFs, so they will be explained in the Monte Carlo chap-
ter, when we provide implementations of this method for non-specular reflection
functions.�
BxDF Interface ��� �
virtual Spectrum Sample_f(const Vector &wo, Vector *wi,

Float u1, Float u2, Float *pdf) const;

9.1.1 Reflectance

It can be useful to take the aggregate behavior of the 4D BxDF, defined as a function
over pairs of directions, and reduce it to a 2D function over a single direction, or
even to a constant value that describes its overall scattering behavior.

The hemispherical-directional reflectance is a 2D function that gives the total
reflection in a given direction due to constant illumination over the hemisphere, or,
equivalently, total reflection over the hemisphere due to light from a given direc-
tion3. It is defined as:

ρdh � ωo � � 1
π
�

H 2 � n �
fr � p � ωo � ω � � cosθ � dω �

2Delta functions in BxDFs have some additional subtle implications for light transport algorithms.
Section 16.2.4 describes the issues in detail.

3The fact that these two quantities are equal is due to the reciprocity of real-world reflection func-
tions. If we are using a non-physically based BRDF that does not obey reciprocity, this assumption,
along with many others in lrt, breaks down.

BSDF REFLECTION 334
BSDF TRANSMISSION 334

BxDF 334
BxDFType 334
Spectrum 181
Vector 27

336 Reflection Models [Ch. 9

The BxDF::rho() method computes the reflectance function ρdh:
explain the samples stuff... Yes, what is this? —Greg�

BxDF Interface ��� �
virtual Spectrum rho(const Vector &wo, int nSamples = 16,

Float *samples = NULL) const;

For some BxDFs, this integral can be computed analytically. If not, we will
provide a method to estimate the value of ρdh in Section 15.3.4 the chapter on
Monte Carlo integration.

The hemispherical-hemispherical reflectance of a surface, denoted by ρhh, is a
constant spectral value that gives the fraction of incident light reflected by a surface
when the incident light is the same from all directions. It is:

ρhh � 1
π
�

H 2 � n �
�

H 2 � n �
fr � p � ωo � ωi ��� cos θo cos θi � dωodωi

We overload the BxDF::rho method to compute ρhh if no direction ωo is pro-
vided.�
BxDF Interface ��� �
virtual Spectrum rho(int nSamples = 16, Float *samples = NULL) const;

9.1.2 BRDF � BTDF Adapter

It’s handy to be define an adapter class that lets us re-use an already-defined BRDF
class as a BTDF, especially for phenomenological models that may be equally plau-
sible models of transmission. The BRDFToBTDF class takes a BRDF pointer in the
constructor and uses it to implement the BTDF interface. In particular, this means
forwarding method calls on to the BRDF, possible switching the ωi direction to lie
in the same hemisphere as ωo, as the BRDF expects.�
BxDF Declarations ��� �
class BRDFToBTDF : public BxDF {
public:�

BRDFToBTDF Public Methods �
private:

BxDF *brdf;
};

The constructor for our adapter class is simple. It simply switches the reflection
and transmission flags of the BxDF::type member.�
BRDFToBTDF Public Methods ���
BRDFToBTDF(BxDF *b)

: BxDF(BxDFType(b->type ˆ (BSDF_REFLECTION | BSDF_TRANSMISSION))) {
brdf = b;

}

The adapter will need to convert an incoming vector to the corresponding vector
in the opposite hemisphere. Fortunately, this is a simple calculation in the shading
coordinate system; we simply negate the vector’s z coordinate.

Sec. 9.2] Specular Reflection and Transmission 337

336 BRDFToBTDF
336 BxDF::rho()
181 Spectrum
27 Vector

�
BRDFToBTDF Public Methods ��� �
static Vector otherHemisphere(const Vector &w) {

return Vector(w.x, w.y, -w.z);
}

Finally, evaluating the adapted BRDF or the corresponding reflectances ρdh and
ρhh is just a matter of reflecting the given ray into the other hemisphere before
calling the BTDF’s corresponding method.�
BRDFToBTDF Public Methods ��� �
Spectrum rho(const Vector &w, int nSamples,

Float *samples) const {
return brdf->rho(otherHemisphere(w), nSamples, samples);

}
Spectrum rho(int nSamples, Float *samples) const {

return brdf->rho(nSamples, samples);
}

�
BxDF Method Definitions ���
Spectrum BRDFToBTDF::f(const Vector &wo, const Vector &wi) const {

return brdf->f(wo, otherHemisphere(wi));
}

� ��� � � ������ � � � � � ��� � � � � � �	� � � � � � � � � � � � �

The behavior of light at perfectly smooth surfaces is relatively easy to character-
ize analytically in both the physical and geometric optics models. These surfaces
exhibit perfect specular reflection and transmission of incident light; for a given
ωi direction, all light is scattered in a single outgoing direction. For specular re-
flection, this direction is the outgoing direction that makes the same angle with the
normal that the incoming direction does (See Figure 9.4).

For transmission, this direction is given by Snell’s law, which relates the angle
θt between the transmitted direction and the flipped surface normal � n to the angle
θi between the incident ray and the surface normal n. (One of the exercises at the
end of this chapter is to derive Snell’s law using Fermat’s Principle from optics.)
Snell’s law is dependent on the index of refraction for the medium the incident
ray is in and the index of refraction of the medium it is entering. The index of
refraction describes how much more slowly light travels in a particular medium
compared to the speed of light in a vacuum. We will use the “eta” symbol, η, to
denote the index of refraction. Snell’s law is:

ηi sinθi � ηt sinθt �
In general, the index of refraction η varies by the wavelength of light. Thus,

incident light generally scatters in multiple directions at the boundary between two
different media, an effect known as dispersion: this effect can be seen when inci-
dent white light is split into spectral components, by a prism. Common practice in
graphics is to ignore this wavelength dependence, since this effect is generally not
crucial for visual accuracy, and doing so simplifies the light transport calculations
substantially. Alternatively, the paths of multiple beams of light (e.g. at a series of

338 Reflection Models [Ch. 9

N

tω

iω
θi

η
i

ηt

θt

θi

Figure 9.4: Basic setting for specular reflection and transmission. Why isn’t wr

labeled in this diagram? The reflected direction ωr is the direction ωi opposite
the outgoing direction ωo that makes the same angle θi with the surface normal
as the incident ray. The transmitted direction makes an angle θt with the negated
surface normal, where θt is given by Snell’s law, which depends on the indices of
refraction of the incident and transmitted media, ηo and ηt , respectively.

discrete wavelengths) can be tracked through the environment which a dispersive
object is found. The further reading section at the end of this chapter has pointers
to previous research in this area.

9.2.1 Fresnel reflectance

In addition to knowing the reflected and transmitted directions, we also need to
compute the fraction of incoming light that is reflected or transmitted. In simple
raytracers, these fractions are typically just given as “reflectivity” or “transmissive-
ness” values, which are uniform over the entire surface. For physical reflection or
refraction, however, these effects are view dependent and cannot be captured sim-
ply by constant per-surface scaling amounts. The Fresnel equations describe the
amount of light reflected from a surface; they are the solution to Maxwell’s equa-
tions at smooth surfaces. There are two sets of Fresnel equations; one for dielectric
media–objects that don’t conduct electricity, like glass–and one for conductors, like
metals.

For each of these cases, the Fresnel equations have two forms, depending on the
polarization of the incident light. Properly accounting for polarization in rendering
is a complex task; in lrt we will make the common assumption that light is cir-
cularly polarized; i.e., that it is randomly oriented with respect to the light wave.
With this simplifying assumption, the Fresnel reflectance is simply the sum of the
squares of the parallel and perpendicular polarization terms.

To compute the Fresnel reflectance of a dielectric, we need to know the indices
of refraction for the two media (Figure 9.4). Table 9.1 has the indices of refraction
for a number of dielectric materials.

The Fresnel formulae for dielectrics are Nolan says that these are approxima-
tions too. It would be nice to say something about the theory here, and why
we need approximations. He said something about the solutions being highly

Sec. 9.2] Specular Reflection and Transmission 339

181 Spectrum

Medium Index of refraction η
Vacuum 1.0
Air at sea level 1.00029
Ice 1.31
Water (20 � C) 1.333
Fused Quartz 1.46
Glass 1.5 - 1.6
Sapphire 1.77
Diamond 2.42

Table 9.1: Indices of refraction for a variety of objects, giving the ratio of the speed
of light in a vacuum to the speed of light in the medium. Though this is a generally
a wavelength-dependent quantity, these values are just averages over the visible
wavelengths.

non-linear, and these approximations drop the higher order terms. Can we
get some learning on this?:

r � � ηt � N � ωo � � ηo � N � ωt �
ηt � N � ωo � � ηo � N � ωt �

r � � ηo � N � ωo � � ηt � N � ωt �
ηo � N � ωo � � ηt � N � ωt �

where r � is the Fresnel reflectance for parallel polarized light and r � is the re-
flectance for perpendicular polarized light. ηo and ηt are the indices of refraction
for the incident and transmitted media, and ωo and ωt are the incident and trans-
mitted directions, where ωt was computed with Snell’s law. For light with circular
polarization (the usual assumption in graphics),

r � 1
2 � r2� � r2

� � �
The function FrDiel() computes the Fresnel reflection formula for circularly

polarized light. Note that the quantities n � ωo and n � ωt are passed in the variables
coso and cost.�
BxDF Utility Functions ���
Spectrum FrDiel(Float coso, Float cost, const Spectrum &etao,

const Spectrum &etat) {
Spectrum Rparl = ((etat * coso) - (etao * cost)) /

((etat * coso) + (etao * cost));
Spectrum Rperp = ((etao * coso) - (etat * cost)) /

((etao * coso) + (etat * cost));
return (Rparl*Rparl + Rperp*Rperp) / 2.f;

}

Due to conservation of energy, the energy transmitted by a dielectric is 1 � Fr, if
Fr is the Fresnel reflectance.

Conductors don’t transmit light. Some of the incident light is absorbed by the
material and turned into heat; the Fresnel formula for conductors tells how much
is reflected. In addition to depending on cos θo, it depends on η, the index of

Spectrum 181

340 Reflection Models [Ch. 9

Object η k
Gold 0.37 2.82
Silver 0.177 3.638
Copper 0.617 2.63
Steel 2.485 3.433

Table 9.2: Representative measured values of η and k for a few conductors (data
from Hall.)

refraction of the conductor, and k, its absorption coefficient. Values for η and k
for a few conductors are given in Figure 9.2. As with the index of refraction for
dielectrics, these quantities are wavelength-dependent, though are represented as
averages here.

again, explain dropping higher-order terms; why are we approximating
here? A widely used approximation to the Fresnel reflectance for conductors is:

r2� � � η2 � k2 � � N � ωi � 2 � 2η � N � ωi � � 1� η2 � k2 � � N � ωi � 2 � 2η � N � ωi � � 1
(9.2.1)

r2
� � � η2 � k2 � � 2η � N � ωi � � � N � ωi � 2� η2 � k2 � � 2η � N � ωi � � � N � ωi � 2 (9.2.2)

�
BxDF Utility Functions ��� �
Spectrum FrCond(Float coso, const Spectrum &eta, const Spectrum &k) {

Spectrum tmp = (eta*eta + k*k) * coso*coso;
Spectrum Rparl2 = (tmp - (2.f * eta * coso) + 1) /

(tmp + (2.f * eta * coso) + 1);
Spectrum tmp_f = eta*eta + k*k;
Spectrum Rperp2 = (tmp_f - (2.f * eta * coso) + coso*coso) /

(tmp_f + (2.f * eta * coso) + coso*coso);
return (Rparl2 + Rperp2) / 2.f;

}

For many conductors, values for η and/or k aren’t known–much less work has
gone into measuring these values for conductors than for dielectrics. Two approx-
imation methods have been applied in graphics to find plausible values for these
quantities. Both assume that the reflectance of the object has been measured at
normal incidence: the viewer and the light are both looking directly down on the
surface. By fixing the value of either η or k and substituting into the Fresnel con-
ductor formula, we can approximate the other value so that the proper reflectance
is computed for normal incidence.

The first method computes an approximate value of η, assuming that the ab-
sorption coefficient is equal to zero. If k � 0 (assumed), and n � ωi � 1 (normal
incidence), then equations 9.2.1 and 9.2.2 both simplify to:

r2� � r2
� � η2

� 2η � 1
η2 � 2η � 1 �

�
η � 1
η � 1 � 2

Since the Fresnel reflectance I is given at normal incidence, we can solve for η,
giving:

Sec. 9.2] Specular Reflection and Transmission 341

342 FresnelDielectric
181 Spectrum
183 Spectrum::Clamp()
182 Spectrum::Sqrt()

η � 1 � � I

1 � � I
�
BxDF Utility Functions ��� �
Spectrum FresnelApproxEta(const Spectrum &i) {

Spectrum intensity = i.Clamp(0.f, .999f);
return (Spectrum(1.) + intensity.Sqrt()) /

(Spectrum(1.) - intensity.Sqrt());
}

We can perform the same process to approximate the absorption coefficient k,
assuming that η � 1. In this case, the fresnel equations simplify to:

r2� � r2
� � k2

k2 � 4

And we can easily solve for k:

k � 2

�
q

1 � q

�
BxDF Utility Functions ��� �
Spectrum FresnelApproxK(const Spectrum &i) {

Spectrum intensity = i.Clamp(0.f, .999f);
return 2.f * (intensity / (Spectrum(1.) - intensity)).Sqrt();

}

For convenience, we will define an abstract Fresnel class that provides an in-
terface for computing Fresnel reflection coefficients. The FresnelConductor and
FresnelDielectric realizations of this interface help simplify the implementa-
tion of subsequent BRDFs that may need to support both forms.�
BxDF Declarations ��� �
class Fresnel {
public:�

Fresnel Interface �
};

The only function provided by the Fresnel interface is the Fresnel::Evaluate()
method. Given the cosine of the angle made by the incoming direction and the sur-
face normal, it returns the amount of light reflected by the surface.�
Fresnel Interface ��� �
virtual Spectrum Evaluate(Float cosi) const = 0;

Fresnel Conductors

Our first implementation of this interface, FresnelConductor is (as the name
implies) for conductors.

FrCond() 340
Fresnel 341
Spectrum 181

342 Reflection Models [Ch. 9

�
BxDF Declarations ��� �
class FresnelConductor : public Fresnel {
public:�

FresnelConductor Public Methods �
private:�

FresnelConductor Private Data �
};

The FresnelConductor constructor simply stores the index of refraction η and
the absorption coefficient k.�
FresnelConductor Public Methods ��� �
FresnelConductor(const Spectrum &e, const Spectrum &kk)

: eta(e), k(kk) {
}

�
FresnelConductor Private Data ���
Spectrum eta, k;

The evaluation routine for FresnelConductor is simple; it just calls the FrCond
function defined above.�
BxDF Method Definitions ��� �
Spectrum FresnelConductor::Evaluate(Float cosi) const {

return FrCond(fabsf(cosi), eta, k);
}

Fresnel Dielectrics
�
BxDF Declarations ��� �
class FresnelDielectric : public Fresnel {
public:�

FresnelDielectric Public Methods �
private:�

FresnelDielectric Private Data �
};

The constructor for FresnelDielectric simply stores the indices of refraction
on the two sides ηo and ηt .�
FresnelDielectric Public Methods ��� �
FresnelDielectric(Float eo, Float et) {

eta_o = eo;
eta_t = et;

}
�
FresnelDielectric Private Data ���
Float eta_o, eta_t;

�
BxDF Method Definitions ��� �
Spectrum FresnelDielectric::Evaluate(Float coso) const {�

Compute Fresnel reflectance for dielectric �
}

Sec. 9.2] Specular Reflection and Transmission 343

677 Clamp()
339 FrDiel()

Figure 9.5: The cosine of the angle θ that a direction ωi makes with the surface nor-
mal tells us if the direction is pointing outside the surface (in the same hemisphere
as the normal), or inside the surface. In the standard BxDF coordinate system, this
test just requires checking the z component of the direction vector. Here, ω i

1 is
in the upper hemisphere, with a positive-valued cosine, while ωi

2 is in the lower
hemisphere.

Evaluating the Fresnel formula for dielectric media is a bit more complicated
than for conductors. First, we need to determine if the incident direction is on
the outside of the medium or in the inside of it to know how to interpret the two
indices of refraction. Next, we apply Snell’s law to compute the sine of the angle
the transmitted direction makes with the surface normal. We can then compute the
cosine of this angle using the identity sin2 x � cos2 x � 1.�
Compute Fresnel reflectance for dielectric ���
coso = Clamp(coso, -1.f, 1.f);�
Compute indices of refraction for dielectric ��
Compute sint using Snell’s law �
if (sint > 1.) {�

Handle total internal reflection �
}
else {

Float cost = sqrtf(max(0.f, 1.f - sint*sint));
return FrDiel(fabsf(coso), cost, eo, et);

}

The sign of the cosine of the incident direction indicates on which side of the
medium the direction lies; see Figure 9.5. If the cosine is between 0 and 1, the
direction is on the outside, and if it is between -1 and 0, it’s on the inside. We set
the variables eo and et such that eo has the index of refraction of the medium the
incident ray is in.�
Compute indices of refraction for dielectric ���
bool entering = coso > 0.;
Float eo = eta_o, et = eta_t;
if (!entering)

swap(eo, et);

Fresnel 341
Spectrum 181

SpecularReflection 345

344 Reflection Models [Ch. 9

Once we know which index of refraction is which, we can easily compute sinθt

using Snell’s law:�
Compute sint using Snell’s law ���
Float sint = eo/et * sqrtf(max(0.f, 1.f - coso*coso));

When light is traveling from one medium to another with a lower index of re-
fraction, incident angles near grazing have no transmission into the other medium.
The angle at which this happens is called the critical angle; when θo is greater than
the critical angle, total internal reflection occurs–all of the light is just reflected.
That case is detected here by a value of sinθt greater than one; we just set F to 1,
rather than using the Fresnel equations.�
Handle total internal reflection ���
return 1.;

A Special Fresnel Interface

The FresnelNoOp implementation of the Fresnel interface simply returns 100%
reflection for all incoming directions. Although this is physically implausible, it
allows lrt to implement certain kinds of materials that are popular in computer
graphics, such as perfect mirror reflection.�
BxDF Declarations ��� �
class FresnelNoOp : public Fresnel {
public:

Spectrum Evaluate(Float) const { return Spectrum(1.); }
};

9.2.2 Specular reflection

We can now implement the SpecularReflection class, which describes phys-
ically plausible specular reflection using the Fresnel interface from the previous
section. First, we will derive the BRDF for a specular reflector. Since the Fresnel
equations give the fraction of light reflected Fr � ωo � , then we need a BRDF such
that

Lo � ωo � � Fr � ωo � Li � ωi �
where ωi is the reflection vector for ωo about the surface normal.

Such a BRDF can be constructed using the Dirac delta distribution, a special
distribution δ � x � defined such that

δ � x � � 0 � x �� 0

but where � ∞

� ∞
δ � x � dx � 1 �

These functions have the important property that:

� f � x � δ � x � x0 � dx � f � x0 � (9.2.3)

The delta distribution requires special handling compared to standard functions.
In particular, integrals with delta distributions must be evaluated by sampling the

Sec. 9.2] Specular Reflection and Transmission 345

334 BSDF REFLECTION
334 BSDF SPECULAR
334 BxDF
334 BxDFType
341 Fresnel
181 Spectrum

delta distribution; their values cannot be properly computed without doing so. Con-
sider the delta distribution equation 9.2.3: if we tried to evaluate it using the trape-
zoid rule or some other numerical integration technique, there would be zero prob-
ability that any of the evaluation points xi would have a non-zero value of δ � xi � .
Rather, we must allow the delta distribution to determine the evaluation point it-
self. We will see this issue in practice for both specular BxDFs as well as some of
the light sources in Chapter 13.

Intuitively, we want the BRDF to be zero everywhere except at the perfect reflec-
tion direction. This suggests the use of the delta distribution. A first guess might be
to simply use delta functions to restrict the outgoing angle to the reflection angle.
This would yield a BRDF of:

fr � p � ωo � ωi � � δ � ωi � ωr ��� δ � cosθi � cosθr � δ � φi � φr
�

π �
Although this seems appealing, plugging into equation 5.4.9 reveals a problem:

Lr � θr � φr � � �
HemiN

δ � cosθi � cosθr � δ � φi � φr
�

π � Li � θi � φi � cosθi dωi

� Li � θr � φr
�

π � cos θi

This is not correct, because it contains an extra factor of cosθi. We can simply
divide out this factor to find the correct BRDF for perfect specular reflection:

fr � p � ωo � ωi ��� Fr � ωo � δ � ωi � R � ωo � n � �� cosθi �
if R � ωo � n � is the specular reflection vector for ωo reflected about the surface nor-
mal n. (Note that Fr � ωo � � Fr � ωi � when the BRDF is non-zero, sine then the two
directions make the same angle with the surface normal.)�
BxDF Declarations ��� �
class SpecularReflection : public BxDF {
public:�

SpecularReflection Public Methods �
private:�

SpecularReflection Private Data �
};

The SpecularReflection BxDF takes a Fresnel object to describe dielectric
or conductor Fresnel properties and an additional spectrum, which is used to scale
the reflected color.�
SpecularReflection Public Methods ���
SpecularReflection(const Spectrum &r, Fresnel *f)

: BxDF(BxDFType(BSDF_REFLECTION | BSDF_SPECULAR)),
R(r), fresnel(f) {

}
�
SpecularReflection Private Data ���
Spectrum R;
Fresnel *fresnel;

CosTheta() 332
Fresnel::Evaluate() 341

Spectrum 181
SpecularReflection 345

SpecularReflection::R 345
Vector 27

346 Reflection Models [Ch. 9

z

y

x

φ
φ+π

θ θ

Figure 9.6: Given an incident direction that makes an angle θ with the surface
normal and an angle φ with the x axis, the reflected ray about the normal makes an
angle θ with the normal and φ � π with the x axis. The � x � y � z � coordinates of this
direction can be found by scaling the incident direction by � � 1 ��� 1 � 1 � .

The rest of the implementation is completely straightforward; we return no scat-
tering from SpecularReflection::f(), since for an arbitrary pair of directions,
the delta function returns no scattering4 .�
SpecularReflection Public Methods ��� �
Spectrum f(const Vector &, const Vector &) const {

return Spectrum(0.);
}

However, we do implement the Sample f() method, which selects an appropri-
ate direction according to the delta function.�
BxDF Method Definitions ��� �
Spectrum SpecularReflection::Sample_f(const Vector &wo,

Vector *wi, Float u1, Float u2, Float *pdf) const {�
Compute perfect specular reflection direction �
*pdf = 1.f;
return fresnel->Evaluate(CosTheta(wo)) * R /

fabsf(CosTheta(*wi));
}

To compute the reflection direction, we need to compute the reflection of ωo

around the surface normal. Because all these computations take place in a shading
coordinate system where the surface normal is defined to be � 0 � 0 � 1 � , the compu-
tation is quite simple–all we need to do is to rotate ωo by π radians about n–see
Figure 9.6.

Recall the transformation matrix from Chapter 2 for a rotation around the z axis;

4If the user happened to pass a vector and its perfect mirror direction, this function still returns
zero. Although this might be a slightly confusing interface to these reflection functions, we still
get the correct answer because reflection functions involving singularities like δ-functions require
special handling by the light transport equations (see Chapter 16).

Sec. 9.2] Specular Reflection and Transmission 347

27 Vector

N

θi

η
i

ηt

θt

dA

L1

L2

Figure 9.7: The amount of transmitted radiance at the boundary between media
with different indices of refraction is scaled by the squared ratio of the two indices
of refraction. Intuitively, this can be understood to be the result of the radiance’s
differential solid angle being squeezed down or expanded as a result of transmis-
sion.

if the angle of rotation is π radians, it is:���
�
� 1 0 0 0
0 � 1 0 0
0 0 1 0
0 0 0 1

����
�

When a vector is multiplied by this matrix, the effect is just to negate the x and y
components and thus it’s easy to compute the reflection direction.�
Compute perfect specular reflection direction ���
*wi = Vector(-wo.x, -wo.y, wo.z);

9.2.3 Specular Transmission

there was some horrible confusion here between the o subscript and the i sub-
script on thetas, omegas, and etas. I’m not sure I got it all right. This merits
some careful looking-at. Please.

We will now derive the BTDF for specular transmission. Snell’s law does more
than give us the direction for the transmitted ray– it can also be used to show that
radiance along a ray changes as the ray goes between media of different indices of
refraction.

Consider radiance arriving at the boundary between two media, with indices
of refraction ηi and ηt for the incoming and transmitted media, respectively (Fig-
ure 9.7). We will denote the fraction of incident energy that is transmitted to the
outgoing direction by τ (this will generally be given by the Fresnel equations). The
amount of transmitted differential flux, then, is:

d2Φi � τd2Φt �

BSDF SPECULAR 334
BSDF TRANSMISSION 334

BxDF 334
BxDFType 334

FresnelDielectric 342
Spectrum 181

SpecularReflection 345
SpecularTransmission::etat 349

SpecularTransmission::T 349

348 Reflection Models [Ch. 9

If we use the definition of radiance (Equation 5.2.4), we have

τ � Lt cosθt dAdωt ��� � Li cosθi dAdωi � �
Expanding the solid angles to spherical angles, we have

τ � Lt cosθt dA sinθt dθt dφt � � � Li cos θi dA sinθi dθi dφi � � (9.2.4)

We can now differentiate Snell’s law with respect to θ, which gives the relation:

ηi cosθi dθi � ηt cosθt dθt �
Rearranging terms, we get:

cosθi dθi

cosθt dθt
� ηt

ηi
�

Substituting this and Snell’s law into Equation 9.2.4 and simplifying, we have:

τLtη
2
i dφt � Liη

2
t dφi �

Because φt � φi � π, dφt � dφi, so this gives the final relationship:

Li � τLt
η2

i

η2
t
� (9.2.5)

The BTDF for specular transmission is thus

fr � p � ωi � ωt � � η2
i

η2
t
� 1 � Fr � ωi � � δ � ωi � T � ωt � �� cos θt �

The SpecularTransmission class is almost exactly the same as SpecularReflection
except that the sampled direction is the direction for perfect specular transmission.�
BxDF Declarations ��� �
class SpecularTransmission : public BxDF {
public:�

SpecularTransmission Public Methods �
private:�

SpecularTransmission Private Data �
};

The SpecularTransmission constructor stores the two indices of refraction on
either side of the surface, as well as a “transmissiveness” scaling factor T.�
SpecularTransmission Public Methods ���
SpecularTransmission(const Spectrum &t, Float ei, Float et)

: BxDF(BxDFType(BSDF_TRANSMISSION | BSDF_SPECULAR)),
fresnel(ei, et) {

T = t;
etai = ei;
etat = et;

}

Because conductors do not transmit light, we always use a FresnelDielectric
object to do the Fresnel computations.

Sec. 9.2] Specular Reflection and Transmission 349

332 CosTheta()
341 Fresnel::Evaluate()
342 FresnelDielectric
181 Spectrum
345 SpecularReflection
348 SpecularTransmission
27 Vector

z

y

x

φ

φ+π
θ

θ

i

t

Figure 9.8: The specularly transmitted direction make an angle θt with the negated
surface normal, � z. Like specular reflection, the angle it makes with the x axis is
π greater than the incident ray’s angle.

�
SpecularTransmission Private Data ���
Spectrum T;
Float etai, etat;
FresnelDielectric fresnel;

Like the SpecularReflection class, we return zero from SpecularTransmission::f(),
since this reflection distribution is a multiple of a δ-function.�
SpecularTransmission Public Methods ��� �
Spectrum f(const Vector &, const Vector &) const {

return Spectrum(0.);
}

Figure 9.8 shows the basic setting for specular transmission. The incident ray is
refracted about the surface normal, with the angle θt given by Snell’s law.�
BxDF Method Definitions ��� �
Spectrum SpecularTransmission::Sample_f(const Vector &wo,

Vector *wt, Float u1, Float u2, Float *pdf) const {�
Figure out which η is incident and which is transmitted ��
Compute transmitted ray direction �
*pdf = 1.f;
Spectrum F = fresnel.Evaluate(CosTheta(wo));
return (ei*ei)/(et*et) * (Spectrum(1.)-F) * T /

fabsf(CosTheta(*wt));
}

We start by seeing if the incident ray is entering or exiting the refractive medium;
we use the convention that the surface normal (and thus the � 0 � 0 � 1 � direction in our
local reflection space) is oriented such that it points outside of the object. There-
fore, if the z component of the ωo direction is greater than zero, the incident ray is
coming from outside of the object.

CosTheta() 332
SinTheta2() 332

SpecularTransmission::etat 349
Vector 27

350 Reflection Models [Ch. 9

N

tω

iω

θi η
i

ηt

θt

sin

cos

cos

sin

θi

θi

θt

θt

Figure 9.9: Basic geometry for computing the transmitted direction ωt from the
incident direction ωi. The cosθ terms are equal to the z components of the direction
vectors and the sin θ terms are equal to the xy lengths of the corresponding direction
vectors.

�
Figure out which η is incident and which is transmitted ���
bool entering = CosTheta(wo) > 0.;
Float ei = etai, et = etat;
if (!entering)

swap(ei, et);

Figure 9.9 shows the basic setting for computing the transmitted ray direction.
We next compute sini2 and sint2, which are the squares of sinθi and sinθt ,

respectively. In the reflection coordinate system, sinθi is equal to the sum of the
squares of the x and y components of ωo.

�
sinθt � 2 can be computed directly from�

sinθi � 2 using Snell’s law.
We then apply the trigonometric identity sin2 θ
 cos2 θ � 1 to compute cosθt

from sinθt ; this directly gives us the z component of the transmitted direction. To
compute the x and y components, we first mirror ωo about the normal, as we did for
specular reflection, but then scale it by the ratio sinθt � sin θi to give it the proper
magnitude. From Snell’s law, this ratio is just ηi � ηt , though, which we happen to
have computed previously.�
Compute transmitted ray direction ���
Float sini2 = SinTheta2(wo);
Float eta = ei / et;
Float sint2 = eta * eta * sini2;�
Handle total internal reflection for transmission �
Float cost = sqrtf(max(0.f, 1.f - sint2));
if (entering) cost = -cost;
Float sintOverSini = eta;
*wt = Vector(sintOverSini * -wo.x, sintOverSini * -wo.y, cost);

We need to handle the case of total internal reflection here as well; if the squared
value of sin θt is greater than one, no transmission is possible, so we just return
black.

Sec. 9.3] Lambertian Reflection 351

334 BSDF DIFFUSE
334 BSDF REFLECTION
334 BxDF
334 BxDFType
678 INV PI
181 Spectrum
27 Vector

�
Handle total internal reflection for transmission ���
if (sint2 > 1.) return 0.;

� ��� � � � � � � � � � � � ��� ��� � � � �

One of the simplest BRDFs is the Lambertian model; it models a perfect diffuse
surface that scatters incident illumination equally in all directions. Although this
reflection model is not physically plausible, it is a good approximation to many
real-world surfaces such as matte paint.�
BxDF Declarations ��� �
class Lambertian : public BxDF {
public:�

Lambertian Public Methods �
private:�

Lambertian Private Data �
};

The Lambertian constructor takes a reflectance SPD R which gives the fraction
of incident light that is scattered. We also precompute the quantity R

π for conve-
nience in later calculations.�
Lambertian Public Methods ���
Lambertian(const Spectrum &reflectance)

: BxDF(BxDFType(BSDF_REFLECTION | BSDF_DIFFUSE)),
R(reflectance), RoverPI(reflectance * INV_PI) {

}
�
Lambertian Private Data ���
Spectrum R, RoverPI;

The reflection distribution function for Lambertian is quite straightforward,
since its value is constant. However, we don’t just return the original reflectance
value R, since BRDF’s must integrate to unity over the hemisphere to preserve
energy (see Section 5.4.1). Since the true BRDF must be a multiple of R, we know
that: �

H 2 � N �
cRdω � 1

which gives =̧ 1
π . This R

π value was precomputed in the Lambertian constructor.
�
BxDF Method Definitions ��� �
Spectrum Lambertian::f(const Vector &wo,

const Vector &wi) const {
return RoverPI;

}

The directional-hemispherical and hemispherical-hemispherical reflectance val-
ues for a Lambertian BRDF are trivial to compute analytically; the derivations are
omitted.

Lambertian::R 351
Spectrum 181
Vector 27

352 Reflection Models [Ch. 9

N

θNf

N

θ

Nf

Figure 9.10: Microfacet surface models are often described by a function that de-
scribes the distribution of microfacet normals nf with respect to the surface normal
n. The greater the variation of microfacet normals, the rougher the surface is (left).
Smooth surfaces have relatively little variation of microfacet normals (right).

�
Lambertian Public Methods ��� �
Spectrum rho(const Vector &w, int nSamples,

Float *samples) const {
return R;

}
�
Lambertian Public Methods ��� �
Spectrum rho(int, Float *) const { return R; }

� ��� � � � � � � �	��� � � � �
� �

Most geometric optics-based approaches to modeling surface reflection are based
on the idea that rough surfaces can be modeled as a collection of small micro-
facets. A surface comprised of microfacets is essentially a heightfield, where the
distribution of faces is described statistically. For example, the left half of Fig-
ure 9.10 shows the cross-section of a relatively rough surface. On the right is a
much smoother microfacet surface.

Microfacet-based BRDF models work by statistically modeling the scattering of
light from a large collection of such microfacets. If we assume that the differential
area being illuminated, dA, is relatively large compared to the size of individual
microfacets, then a large number of microfacets are illuminated, so their aggregate
behavior can be modeled.

The two main components of microfacet models are an expression for the dis-
tribution of facets and a BRDF that describes how light scatters from individual
microfacets. Given these, we would like to derive a closed form expression that
gives the BRDF that describes scattering from such a surface. Perfect mirror re-
flection is typically used for the microfacet BRDF, though the Oren–Nayar model
(described below) treats them as Lambertian reflectors.

Finally, local lighting effects at the microfacet level need to be considered (Fig-
ure 9.11). Consider an individual microfacet of interest, indicated by a heavy line
(WHAT HEAVY LINE) in the figure. On the left, we can see that the viewer may not
be able to see it, due to occlusion from another microfacet. As shown in the middle
figure, it may be in the shadow of a neighboring microfacet. Finally, as shown in
the right figure, inter-reflection among the microfacets may cause the microfacet to
receive more light than predicted by direct illumination. A common simplification

Sec. 9.4] Microfacet Models 353

Figure 9.11: There are three important geometric effects to consider with micro-
facet reflection models. On the left is masking, where the microfacet of interest
isn’t visible to the viewer due to occlusion by another microfacet. In the middle
is shadowing, where analogously light doesn’t reach the microfacet. On the right
is inter-reflection, where light bounces among the microfacets before reaching the
viewer.

is to assume that all of the microfacets are symmetric V-shaped grooves. If this
assumption is made, then interreflection with most of the other microfacets can be
ignored; only the neighboring microfacet in the groove needs to be considered.

Individual microfacet-based BRDFs consider each of these effects with varying
degrees of accuracy. The general approach is to make the best approximations to
these effects possible, while still obtaining an easily evaluated expression.

9.4.1 Oren–Nayar diffuse reflection

Oren and Nayar observed that real-world objects tend not to exhibit perfect Lam-
bertian. Specifically, rough surfaces generally appear brighter as the illumination
direction approaches the viewing direction. They developed a reflection model that
describes rough surfaces as a collection of symmetric V-shaped grooves. They fur-
ther assumed that each individual microfacet (groove face) exhibited perfect Lam-
bertian reflection, and derived a BRDF that models the aggregate reflection of the
collection of grooves. The distribution of microfacets was assumed to be Gaussian
with a single parameter σ, the standard deviation of the orientation angle.

The resulting model, which accounts for shadowing, masking, and inter-reflection
among the microfacets didn’t have a closed-form solution, so they found the fol-
lowing approximation that fit it well: result is:

fr � ωi � ωo � 	 ρ
π
� A � Bmax � 0 � cos � φi � φo ��� sinω � tanω � �

where if σ is in radians,

A 	 1 �

σ2

2 � σ2 � 0 � 33 �
B 	 0 � 45σ2

σ2 � 0 � 09
ω � 	 max � θi � θo �
ω � 	 min � θi � θo �

We can precompute the values of the A and B parameters to the model and store
them away in the constructor; this will save us work in evaluating the BRDF later.

BSDF DIFFUSE 334
BSDF REFLECTION 334

BxDF 334
BxDFType 334
CosPhi() 333

INV PI 678
SinPhi() 333

SinTheta() 332
Spectrum 181
Vector 27

354 Reflection Models [Ch. 9

�
OrenNayar Public Methods ��� �
OrenNayar(const Spectrum &reflectance, Float sig)

: BxDF(BxDFType(BSDF_REFLECTION | BSDF_DIFFUSE)),
R(reflectance) {

Float sigma = Radians(sigma);
Float sigma2 = sigma*sigma;
A = 1.f - (sigma2 / (2.f * (sigma2 + 0.33f)));
B = 0.45f * sigma2 / (sigma2 + 0.09f);

}
�
OrenNayar Private Data ���
Spectrum R;
Float A, B;

Evaluating the model is relatively straightforward; just a matter of applying
some trigonometry to compute the values for the terms in the model. We start
by computing and storing sinθi and sin θo; recall from to the section on specular
transmission and Figure 9.3 that the xy magnitude of the direction vectors gives
these values.�
BxDF Method Definitions ��� �
Spectrum OrenNayar::f(const Vector &wo,

const Vector &wi) const {
Float sinthetai = SinTheta(wi), sinthetao = SinTheta(wo);�
Compute cosine term of Oren–Nayar model ��
Compute sine and tangent terms of Oren–Nayar model �
return R * INV_PI * (A + B * maxcos * sinalpha * tanbeta);

}

We now need to compute the max � 0 � cos � φi � φo � � term. We can apply the
trigonometric identity

cos � a � b ��� cosacos b � sinasin b �

such that we just need to compute the sines and cosines of φi and φo.�
Compute cosine term of Oren–Nayar model ���
Float sinphii = SinPhi(wi), cosphii = CosPhi(wi);
Float sinphio = SinPhi(wo), cosphio = CosPhi(wo);
Float dcos = cosphii * cosphio + sinphii * sinphio;
Float maxcos = max(0.f, dcos);

Finally, we compute the sinα and tanβ terms. Note that whichever of ωi or ωo

has a larger value for cosθ (i.e. a larger value of its z component), has a smaller
value for θ. Given the knowledge of which angle is smaller, we can set sinα
directly from the appropriate sin θ value already computed. The tangent can then
just be computed using the identity tana � sina

�
cos a.

Sec. 9.4] Microfacet Models 355

332 CosTheta()

H

oω

iω

θ
θ

Figure 9.12: For perfectly specular microfacets and a given pair of directions ω i

and ωo, only those microfacets with normal ωh � �

ωi � ωo will reflect any light
from ωi to ωo.

�
Compute sine and tangent terms of Oren–Nayar model ���
Float sinalpha, tanbeta;
if (fabsf(CosTheta(wi)) > fabsf(CosTheta(wo))) {

sinalpha = sinthetao;
tanbeta = sinthetai / fabsf(CosTheta(wi));

}
else {

sinalpha = sinthetai;
tanbeta = sinthetao / fabsf(CosTheta(wo));

}

9.4.2 Torrance–Sparrow model

One of the first microfacet models for computer graphics was developed by Tor-
rance and Sparrow to model metallic surfaces. They modeled surfaces as collec-
tions of perfectly smooth mirror microfacets. The surface is statistically described
by a distribution function D � θ � that gives the probability that a microfacet has
orientation θ (recall Figure 9.10 which shows how roughness and the microfacet
normal distribution function are related).

Because the microfacets are perfectly specular, only those that are oriented ex-
actly so that they reflect the incident direction ωi to the outgoing direction ωo give
any reflection for that pair of directions. In other words, only those microfacets
with a normal equal to the half-angle vector,

ωh � �

ωi � ωo

cause perfect specular reflection from ωi to ωo (and vice-versa). (Figure 9.12.)
The derivation of the Torrance–Sparrow has a number of interesting steps; we’ll

go through it in detail here. Consider the differential flux incident on the micro-
facets oriented with half-angle ωh for directions ωi and ωo, d2Φh. From the defi-
nition of radiance, Equation 5.2.4, it is: I don’t like the “2” in the superscript of
d2Φh

d2Φh � Li � ωi � dω dA � � ωh ��� Li � ωi � dω cos θh dA � ωh � �

356 Reflection Models [Ch. 9

N H

oω

iω

θ h
oθ

Figure 9.13: Setting for the derivation of the Torrance–Sparrow model. For direc-
tions ωi and ωi, only microfacets with normal ωh reflect light. The angle between
ωh and n is denoted by θ and the angle between ωh and ωo is denoted by θh. (The
angle between ωh and ωi is also necessarily θh.)

where we have written dA (ωh) for the area measure of the microfacets with orien-
tation ωh and cos θh for the cosine of the angle between ωi and ωh (Figure 9.13).

The differential area of microfacets with orientation ωh is just

dA � ωh ��� D � ωh � dωhdA �
The first two terms describe the differential area of facets per unit area that have
the proper orientation, and the dA term converts this to differential area.

Therefore,
d2Φh � Li � ωi � dω cosθh D � ωh � dωh dA � ωh � � (9.4.6)

If we assume that the microfacets individually reflect light according to Fresnel’s
law, the outgoing flux is

d2Φo � F � ωo � ωi � d2Φh � (9.4.7)

Again using the definition of radiance, the reflected outgoing radiance is

L � ωo � � d2Φo

dωo cosθodA �
If we substitute Equation 9.4.7 into this and then Equation 9.4.6 into the result, we
have

L � ωo ��� F � ωo � ωi � Li � ωo � dωi D � ωh � dωh dA cosθh

dωo dA cosθo

In Section 15.3.1, we will derive an important relation between dωh and dωo:

dωh � dωo

4cos θh
�

We can substitute this into the previous equation and simplify, giving

L � ωo ��� F � ωo � ωi � Li � ωo � D � ωh � dωi

4 cosθo
�

We can now apply the definition of the BRDF, Equation 5.4.8, giving us the
Torrance–Sparrow BRDF:

fr � p � ωo � ωi � � D � ωh � F � ωi � ωo �
4 cosθi cosθo

Sec. 9.4] Microfacet Models 357

334 BSDF GLOSSY
334 BSDF REFLECTION
334 BxDF
334 BxDFType
341 Fresnel
358 Microfacet::distribution
358 Microfacet::fresnel
358 Microfacet::R
181 Spectrum
27 Vector

The Torrance–Sparrow model also includes a geometric attenuation term, which
describes the fraction of microfacets that are masked or shadowed, given directions
ωi and ωo. This G term can just be included in the derivation as the Fresnel term
was above. The full model, then, is

fr � p � ωo � ωi ��� D � ωh � G � ωo � ωi � F � ωo � ωi �
4 cosθo cosθi

� (9.4.8)

One of the nice things about the Torrance–Sparrow model is that the derivation
doesn’t depend on the particular microfacet distribution being used. Furthermore,
because it doesn’t depend on a particular Fresnel function, it can be used for both
conductors and dielectrics. However, reflection functions besides perfect specular
reflection can not be easily substituted: the relationship between dωh and dωo used
in its derivation depends on the specular reflection assumption.

We now use the Torrance–Sparrow model to implement a general microfacet-
based BRDF. It takes a pointer to an abstract MicrofacetDistribution class,
which provides a single method to compute the D term of the Torrance–Sparrow
model. This function, MicrofacetDistribution::D(), gives the probability
density for microfacets to be oriented with normal ωh.�
BxDF Declarations ��� �
class MicrofacetDistribution {
public:�

MicrofacetDistribution Interface �
};

�
MicrofacetDistribution Interface ��� �
virtual Float D(const Vector &wh) const = 0;

The Microfacet BRDF, then, just takes a pointer to a distribution, the re-
flectance of the object, and a Fresnel function.�
BxDF Declarations ��� �
class Microfacet : public BxDF {
public:�

Microfacet Public Methods �
private:�

Microfacet Private Data �
};

�
BxDF Method Definitions ��� �
Microfacet::Microfacet(const Spectrum &reflectance, Fresnel *f,

MicrofacetDistribution *d)
: BxDF(BxDFType(BSDF_REFLECTION | BSDF_GLOSSY)),
R(reflectance), distribution(d), fresnel(f) {

}
�
Microfacet Private Data ���
Spectrum R;
MicrofacetDistribution *distribution;
Fresnel *fresnel;

AbsDot() 31
CosTheta() 332

Dot() 30
Fresnel 341

Fresnel::Evaluate() 341
Microfacet 357

MicrofacetDistribution 357
MicrofacetDistribution::D() 357

Spectrum 181
Vector 27

Vector::Hat() 30

358 Reflection Models [Ch. 9

Evaluating the terms of the Torrance–Sparrow BRDF is straightforward. For the
Fresnel term, recall that the angle θh is the same between ωh and both ωi and ωo, so
it doesn’t matter which vector we use to compute the cosine of θh. We arbitrarily
choose to use ωi.�
BxDF Method Definitions ��� �
Spectrum Microfacet::f(const Vector &wo, const Vector &wi) const {

Float cosThetaO = fabsf(CosTheta(wo));
Float cosThetaI = fabsf(CosTheta(wi));
Vector wh = (wi + wo).Hat();
Spectrum F = fresnel->Evaluate(Dot(wi, wh));
return R * distribution->D(wh) * G(wo, wi, wh) * F /

(4.f * cosThetaI * cosThetaO);
}

The final component of the Torrance–Sparrow model is a geometric attenuation
term that accounts for masking and shadows. This term is derived by assuming that
the microfacets were made of infinitely long V-shaped grooves. This assumption
is more restrictive than the general term D � ωh � used to model the microfacet dis-
tribution, and does not account for the roughness of the surface, but yields a closed
form result, which is crucial. It is also easy to evaluate, and matches real-world
surfaces well. The attenuation term is (we omit the derivation):

G � ωo � wi � � min

�
1 � min

�
2 � N � H � � N � ωo

ωo � H � 2 � � N � H � � N � ωi �
ωo � H � �

�
Microfacet Public Methods ��� �
Float G(const Vector &wo, const Vector &wi,

const Vector &wh) const {
Float NdotH = fabsf(CosTheta(wh));
Float NdotWO = fabsf(CosTheta(wo)), NdotWI = fabsf(CosTheta(wi));
Float WOdotH = AbsDot(wo, wh);
return min(1.f, min((2.f * NdotH * NdotWO / WOdotH),

(2.f * NdotH * NdotWI / WOdotH)));
}

9.4.3 Blinn Microfacet Distribution

The Blinn microfacet model gives an exponential falloff of distribution of micro-
facet normal orientations with respect to the underlying surface normal. The most
likely microfacet orientation is in the surface normal direction, falling off to no
microfacets oriented perpendicular to the normal. For smooth surfaces, this falloff
happens very quickly, and for rough surfaces, it is more gradual.

Sec. 9.4] Microfacet Models 359

357 MicrofacetDistribution

�
BxDF Declarations ��� �
class Blinn : public MicrofacetDistribution {
public:

Blinn(Float e) { exponent = e; }�
Blinn Public Methods �

private:
Float exponent;

};

The Blinn model uses a popular theme in computer graphics: it raises the cosine
of the angle between the half-vector and the normal to a power:

D � ωh � ∝ � ωh � N � e
where e is a user-supplied exponent that controls the rate. Like BRDF’s, microfacet
distribution functions must be normalized to ensure that they are physically plau-
sible. In the case of microfacets, what we need to ensure is that there exists some
heightfield with the given distribution of face normals D � ωh � . Another way to think
about this normalization requirement is that if we sum the projected area of all the
microfacet faces over some area dA, the sum should equal dA. Mathematically,
this means we must enforce:

�
H 2 � N �

D � ωh � cosθh dωh � 1

A common error is to perform this integral over solid angle instead of projected
solid angle (i.e., to leave out the cosθh term), which is not too bad, but it does not
guarantee the existence of a heightfield with the right distribution. Of course, we
don’t care about the actual heightfield, just that it exists.

For the Blinn model, we have that D � ωh � ∝ � ωh � N � e. The above normalization
requirement gives:

�
H 2 � N �

c � ωh � N � e cosθh dωh � � 2π

0
� π

2

0
c � cos θh � e � 1 sinθh dθdφ

� 2cπ � 1

0
ue � 1du

� 2cπ
ue � 2

e � 2

�
�
�
�

1

0

� 2cπ
e � 2 � 1

Therefore,

c � e � 2
2π

So the properly normalized Blinn microfacet distribution is:

D � ωh ��� e � 2
2π � ωh � N � e (9.4.9)

CosTheta() 332
INV TWOPI 678

Vector 27

360 Reflection Models [Ch. 9

0.0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1

4
20

Figure 9.14: Graph showing the effect of varying the exponent for the Blinn mi-
crofacet distribution model. The solid line shows the graph of the non-normalized
distribution function x4, and the dotted line shows the graph of x20. The larger the
exponent, the more likely it is that a microfacet will be oriented close to the surface
normal, as would be the case for a smooth surface.

Figure 9.14 shows how the exponent affects the distribution renderings of this.
The solid line shows the distribution of cosines of the angle between the surface
normal and the microfacet normal with an exponent of 4. This corresponds to a
fairly rough surface, so there is a high probability of microfacets being oriented in
a direction far away from the normal. The dashed line shows the effect of a higher
exponent of 20, corresponding to a smoother surface. For this case, there is a much
lower probability that any microfacets will be oriented very far from the surface
normal direction.�
Blinn Public Methods ���
Float D(const Vector &wh) const {

Float costhetah = fabsf(CosTheta(wh));
return (exponent+2) * INV_TWOPI * powf(max(0.f, costhetah), exponent);

}

9.4.4 Anisotropic microfacet model

Because the Blinn distribution from the last section only depends on the angle
made between the half-angle and the surface normal, it is radially symmetric, and
yields an isotropic BRDF. Ashikhmin and Shirley have developed a microfacet
distribution function for modeling the appearance of anisotropic surfaces. Recall
that an anisotropic BRDF is one where the reflection characteristics at a point vary
as the surface is rotated about that point in the plane perpendicular to the surface
normal. Brushed metals and some types of fabric exhibit anisotropy.

Their model is physically-based, has intuitive parameters, is efficient, and fits
well into the Monte Carlo integration techniques that will be introduced in later
chapters. We won’t present the derivation here; the reader is referred to the fur-
ther reading section for pointers to their original papers. Their model takes two
parameters: ex, which gives an exponent for the distribution function for half-angle
vectors with an azimuthal angle that orients them exactly along the

�
x axis, and

Sec. 9.4] Microfacet Models 361

357 MicrofacetDistribution

Figure 9.15: The two exponents ex and ey for the anisotropic microfacet distribution
function give specular exponents for microfacets facing exactly along the x and
y axes, respectively. For microfacets with other orientations, the exponent e is
computed by finding the radius e of the super-ellipse for the actual orientation
angle φ.

ey, an exponent for microfacets oriented along the
�

y axis. Exponents for interme-
diate orientations are found by considering these two values as the lengths of the
axes of a super-ellipse and finding the appropriate value for the actual microfacet
orientation–see Figure 9.15.

The resulting microfacet distribution function is

D � ωh ��� � � ex � 1 � � � ey � 1 � � ωh � N � ex cos2 φ � ey sin2 φ �
�
BxDF Declarations ��� �
class Anisotropic : public MicrofacetDistribution {
public:�

Anisotropic Public Methods �
private:

Float ex, ey;
};

�
Anisotropic Public Methods ���
Anisotropic(Float x, Float y) { ex = x; ey = y; }

The terms of the distribution function can be computed quite efficiently. Recall
from the Oren–Nayar BRDF that cosφ � x

�
sin θ and sinφ � y

�
sin θ. Since we

want to compute cos2 φ and sin2 φ, however, we can use the substitution sin2 θ �

CosTheta() 332
Vector 27

362 Reflection Models [Ch. 9

cos2 θ � 1, so that

cos2 φ � x2

1 � z2

sin2 φ � y2

1 � z2 �
Thus, the implementation is:�
Anisotropic Public Methods ��� �
Float D(const Vector &wh) const {

Float costhetah = fabsf(CosTheta(wh));
Float e = (ex * wh.x * wh.x + ey * wh.y * wh.y) /

(1.f - costhetah * costhetah);
return sqrtf((ex+1)*(ey+1)) * powf(costhetah, e);

}

� ��� � � � ��� � � �	� � � �
��
A recent trend in computer graphics is to enable the use of measured data for

rendering realistic images. Although this approach can lead to very realistic render-
ings, one drawback is the enormous amount of data required to accurately represent
a measured BRDF.

Lafortune, Foo, Torrance, and Greenberg have developed a BRDF model de-
signed to fit measured BRDF data to a parameterized model with a relatively small
number of parameters. Their model is both easy to implement and efficient. The
genesis of their model is the Phong model–one of the first BRDF models developed
for graphics. The original Phong model has a number of shortcomings (especially
that it is neither reciprocal nor energy-conserving) that the Lafortune model avoids.

The modified Phong BRDF, which is reciprocal, is

fr � p � ωo � ωi ��� � ωi � R � ωo � n � � e � � ωo � R � ωi � n � � e �

where R � ω � n � is the operator that reflects the vector ω about the surface normal n.
Like the Blinn microfacet distribution model, the cosine of the angle between the
two vectors is raised to a given power. In the canonical BRDF coordinate system,
the Phong model can be equivalently written as

fr � p � ωo � ωi ��� � ωi � � ωo � � � 1 ��� 1 � 1 � � � e � � ωo � � ωi � � � 1 ��� 1 � 1 � � � e �
Lafortune points out that the vector � � 1 ��� 1 � 1 � in the modified Phong model can

itself be a parameter to the BRDF. We will call this vector the orientation vector,
since it orients the direction of maximum reflection. For example, if the orientation
vector were � � 1 ��� 1 � 0 � 5 � , the main reflection vector would be lowered from the
perfect specular direction to be closer to the surface. Many glossy surfaces exhibit
this off-specular reflective behavior.

If the orientation vector were � 1 � 1 � 1 � , the surface would be retro-reflective–light
would be primarily reflected back along the direction it arrived along. The moon is
an example of a retro-reflective surface.

Sec. 9.5] Lafortune Model 363

334 BxDF
334 BxDFType
181 Spectrum

Using this generalized Phong model as a building block, the Lafortune model
expresses the BRDF as the sum of multiple Phong lobes, each with a different
orientation vector and specular exponent, plus a Lambertian diffuse term. The
contribution of each lobe is determined by the magnitude of the orientation vector–
the re-oriented incident vector is no longer necessarily of unit length and its length
affects the magnitude of the dot product5 . Thus, we have:

fr � p � ωo � ωi ��� ρd

π
�

nlobes

∑
i
� ωi � � ωo � oi � � ei �

that’s supposed to be ei on the end there, right? where ρd is the diffuse re-
flectance, oi are the orientation vectors, and ei are the specular exponents.

As a further generalization, each orientation vector and specular exponent is
allowed to vary as a function of wavelength; we represent each of them with
Spectrum objects in the implementation below. This gives a natural way to ex-
press wavelength-dependent reflection variation in the model.

In the original paper, this model defined the orientation vectors so that the vector� 1 � 1 � 1 � would give the classic Phong model. To be consistent with our specular re-
flection BRDF, we will instead use the convention that � � 1 ��� 1 � 1 � gives the Phong
model.�
BxDF Declarations ��� �
class Lafortune : public BxDF {
public:�

Lafortune Public Methods �
private:�

Lafortune Private Data �
};

The Lafortune BxDF here follows a slightly different convention for managing
the values passed into it than the rest of the BxDFs: rather than making a local copy
of the values in the arrays of coefficients passed to its constructor, it just stores
pointers to the arrays and assumes that the calling code will be responsible for
freeing this memory if it was dynamically allocated. The motivation for this is
to save unnecessary copying of data for the common case where the coefficients
are statically allocated, as they are in all of the materials that use Lafortune in
Chapter 10. If a material uses textures to compute the coeffecients in some manner,
it can use the BSDF ALLOC() macro from Section to allocate the coefficient data to
ensure that it is freed at an appropriate time.

Because the particular values of the parameters to this BRDF may affect whether
it is diffuse or glossy, the BxDFType is left as an additional parameter to the con-
structor.

5This makes for an unintuitive control for manual adjustment of the BRDF’s characteristics,
though it is less troublesome if the BRDF is being automatically fit to measured data.

BxDF 334
BxDFType 334

INV PI 678
Lafortune 363
Spectrum 181

Spectrum::Pow() 183
Vector 27

364 Reflection Models [Ch. 9

�
BxDF Method Definitions ��� �
Lafortune::Lafortune(const Spectrum &r, u_int nl,

const Spectrum *xx, const Spectrum *yy,
const Spectrum *zz,
const Spectrum *e, BxDFType t)
: BxDF(t), R(r) {
nLobes = nl;
x = xx;
y = yy;
z = zz;
exponent = e;

}
�
Lafortune Private Data ���
Spectrum R;
u_int nLobes;
const Spectrum *x, *y, *z, *exponent;

To evaluate this reflection model, we simply sum the contribution of each lobe.�
BxDF Method Definitions ��� �
Spectrum Lafortune::f(const Vector &wo, const Vector &wi) const {

Spectrum ret = R * INV_PI;
for (u_int i = 0; i < nLobes; ++i) {�

Add contribution for ith Phong lobe �
}
return ret;

}

Evaluating each lobe is straightforward. We simultaneously compute the re-
oriented ωo vector by multiplying its x, y, and z coefficients with the appropriate
spectral orientation coefficients and compute the dot product of the result with ω i,
giving a spectral result which is itself then raised to the spectral exponent provided.�
Add contribution for ith Phong lobe ���
Spectrum v = x[i] * wo.x * wi.x + y[i] * wo.y * wi.y +

z[i] * wo.z * wi.z;
ret += v.Pow(exponent[i]);

� ��� � � � � ��� ���	� � �
���	���
�
� ��� � �

Shirley and collaborators have often made the observation that most BRDF
Models in graphics do not account for the effect of Fresnel reflection reducing the
amount of light reaching the bottom level of layered objects. Consider a polished
wood table or a wall with glossy paint: if you look at their surfaces head-on, you
primarily see the wood or the paint pigment color. As you move your viewpoint
toward a glancing angle, you see less of the underlying color as it is overwhelmed
by increasing glossy reflection due to Fresnel effects. The images in Figure XXX
show this effect. do these renderings please

In this section, we will implement a BRDF model due to Ashikhmin and Shirley
that models a diffuse underlying surface with a glossy specular surface above it.

Sec. 9.6] Fresnel Incidence Effects 365

334 BSDF GLOSSY
334 BSDF REFLECTION
334 BxDF
334 BxDFType
357 MicrofacetDistribution
181 Spectrum

Figure 9.16: The FresnelBlend BRDF models the effect of a surface with a glossy
layer on top of a diffuse substrate. As on the angle of incidence of the direction
vectors ωi and ωo heads toward glancing (right), the amount of light that reaches
the diffuse substrate is reduced by Fresnel effects and the diffuse layer becomes
less visibly apparent.

The effect of reflection from the diffuse surface is modulated by the amount of
energy left after Fresnel effects have been considered. Figure 9.16 shows this; on
the left, the incident direction is close to the normal, so most light is transmitted to
the diffuse layer and the diffuse term dominates. On the right, the incident direction
is close to glancing, so glossy reflection is the primary mode of reflection.�
BxDF Declarations ��� �
class FresnelBlend : public BxDF {
public:�

FresnelBlend Public Methods �
private:�

FresnelBlend Private Data �
};

The model takes two spectra, representing diffuse and specular reflectance, and
a microfacet distribution function for the glossy layer.�
BxDF Method Definitions ��� �
FresnelBlend::FresnelBlend(const Spectrum &d, const Spectrum &s,

MicrofacetDistribution *dist)
: BxDF(BxDFType(BSDF_REFLECTION | BSDF_GLOSSY)),

Rd(d), Rs(s) {
distribution = dist;

}
�
FresnelBlend Private Data ���
Spectrum Rd, Rs;
MicrofacetDistribution *distribution;

This model is based on the weighted sum of a glossy specular term and a diffuse
term. Accounting for reciprocity and energy conservation, the glossy specular term
is derived as

fr � p � ωo � ωi � � D � ωh � F � ωo � ωi �
8π � ωh � ωi � � max � � n � ωo � � � n � ωi � � �

CosTheta() 332
FresnelBlend 365

FresnelBlend::Rd 365
FresnelBlend::Rs 365

M PI 678
MicrofacetDistribution::D() 357

Spectrum 181
Vector 27

Vector::Hat() 30

366 Reflection Models [Ch. 9

where D � ωh � is a microfacet distribution term and F � ωo � ωi � represents Fresnel
reflectance. Note that this is quite similar to the Torrance–Sparrow model.

The key to Ashikhmin and Shirley’s model was deriving a diffuse term such that
the model still obeyed reciprocity and conserved energy. One key to making the
derivation practical was using an approximation to the Fresnel reflection equations
due to Schlick, who computed Fresnel reflection as

F � cosθ � � R � � 1 � R � � 1 � cosθ � 5 �

where R is the reflectance of the surface at normal incidence.
Given this Fresnel term, they showed that the diffuse term below successfully

modeled Fresnel-based reduced diffuse reflection in a physically plausible manner:
sweet jesus, how is this related to the above equation? Explain this.

fr � ωi � ωo ��� 28Rd

23π � 1 � Rs �
�

1 �

�
1 �

� N � ωi �
2 � 5 � �

1 �

�
1 �

� N � ωo �
2 � 5 �

�
FresnelBlend Public Methods ��� �
Spectrum SchlickFresnel(Float costheta) const {

return Rs + powf(1 - costheta, 5.f) * (Spectrum(1.) - Rs);
}

�
BxDF Method Definitions ��� �
Spectrum FresnelBlend::f(const Vector &wo, const Vector &wi) const {

Spectrum diffuse = (28.f/(23.f*M_PI)) * Rd *
(Spectrum(1.) - Rs) *
(1 - powf(1 - .5f * fabsf(CosTheta(wi)), 5)) *
(1 - powf(1 - .5f * fabsf(CosTheta(wo)), 5));

Vector H = (wi + wo).Hat();
Spectrum specular = distribution->D(H) /

(8.f * M_PI * AbsDot(wi, H) *
max(fabsf(CosTheta(wi)), fabsf(CosTheta(wo)))) *
SchlickFresnel(Dot(wi, H));

return diffuse + specular;
}

����� ���� � � � ��� � � �
Phong developed and early empirical reflection model for glossy surfaces in

computer graphics (Phong 1975). Though not reciprocal or energy-conserving, it
was a cornerstone of the first synthetic images of non-Lambertian objects. The
Torrance–Sparrow microfacet model is described in (Torrance and Sparrow 1967);
a variant of it was applied to computer graphics by Cook and Torrance (Cook and
Torrance 1981; Cook and Torrance 1982).

Hall’s book collected and described the state of the art in physically-based sur-
face reflection models for graphics in 1989; it remains a seminal reference (Hall
1989). It discussed the physics of surface reflection in detail, with many point-
ers to the original literature and with many tables of useful measured data about
reflection from real surfaces.

Exercises 367

Cite wavelength-dependent IOR stuff. Incl Glassner PDIS (Glassner 1995, Sec-
tion 11.8), Delvin et al survey. Smits, musgrave stuff. McCool stratified wave-
length clusters.

Beckmann developed an early physical optics model of surface reflection XXX,
which Kajiya used to derive an anisotropic model for computer graphics (Kajiya
1985). Beckmann’s work was built upon more recently by He et al (He, Torrance,
Sillion, and Greenberg 1991). However, Nayar et al have shown that some re-
flection models based on physical (wave) optics have substantially the same char-
acteristics as those based on geometric optics–the geometric optics approxima-
tions don’t seem to cause too much error (except for very smooth surfaces) (Nayar,
Ikeuchi, and Kanade 1991). This is a helpful result, giving experimental basis to
the general belief that wave optics models aren’t usually worth their computational
expense for computer graphics applications.

The Oren–Nayar Lambertian model is described in their 1994 SIGGRAPH pa-
per (Oren and Nayar 1994). Other notable BRDF models recently developed
in computer graphics include Ward’s anisotropic model (Ward 1992) and Hanra-
han and Krueger’s model of subsurface reflection (Hanrahan and Krueger 1993).
Schlick developed an anisotropic model that is both computationally efficient and
easy to importance sample for Monte Carlo integration (Schlick 1993). Ashikhmin
et al recently developed techniques for computing self-shadowing terms for arbi-
trary microfacet distributions, without needing to make the assumptions that Tor-
rance and Sparrow did (Ashikhmin, Premoze, and Shirley 2000), though unfor-
tunately their solutions cannot be evaluated in closed form, but must be approxi-
mated numerically. Other good references for anisotropic models are Poulin and
Fournier’s and Lu et al’s (Poulin and Fournier 1990; Lu, Koenderink, and Kappers
1999).

Lafortune et al (Lafortune, Foo, Torrance, and Greenberg 1997).
Ashikhmin and Shirley anisotropic model (Ashikhmin and Shirley 2002; Ashikhmin

and Shirley 2000)
Kajiya and Kay developed a reflection model for hair based on a model of in-

dividual hairs as cylinders with diffuse and glossy reflection properties that deter-
mined the overall reflection from these cylinders accounting for the effect of vari-
ation in surface normal over the hemisphere along the cylinder (Kajiya and Kay
1989). See also the paper by Banks, which XXX (Banks 1994). More recently,
Goldman has developed a probabilistic shading model that models reflection from
collections of short hairs (Goldman 1997) and Marschner et al have developed a
more accurate of light scattering from long hair (Marschner, Jensen, Cammarano,
Worley, and Hanrahan 2003).

A number of researchers have investigated how to find BRDFs based on model-
ing the small-scale geometric features of a reflective surface. This work includes
Cabral et al’s computing BRDFs from bump maps (Cabral, Max, and Springmeyer
1987), Fournier’s normal distribution functions (Fournier 1992), and Westin et
al (Westin, Arvo, and Torrance 1992).

368 Reflection Models [Ch. 9

Figure 9.17: Fermat’s principle for Snell’s law...
�

� � � � � � � �

9.1 simulation: geom and brdf, fire rays at it, tabularize BRDF. isotropic a big
win–3d table θo, θi, dφ...

9.2 Hanrahan–Krueger subsurface stuff.

9.3 A consequence of Fermat’s principle from optics is that light traveling from
a point x1 in a medium with index of refraction η1 to a point x2 medium with
another index of refraction η2 will follow a path that minimizes the time to
get from the first point to the second point. Snell’s law can be shown to
follow from this fact directly.

Consider light traveling between two points x1 and x2 separated by a pla-
nar boundary. The light could potentially pass through the boundary while
traveling from x1 to x2 at any point on the boundary x � (see Figure 9.17,
which shows two such possible points x � and x � � .) Recall that the time it
takes light to travel between two points in a medium with a constant index
of refraction is proportional to the distance between them times the index
of refraction in the medium. Using this fact, show that the point x � on the
boundary that minimizes the total time to travel from x1 to x2 is the point
where η1 sin θ1 � η2 sinθ2.

370 BSDF

� � � ��� � � � � �

The low-level BRDFs and BTDFs introduced in Chapter 9 solve only part of the
problem of describing how a surface scatters light. Although they describe how
light is scattered at a particular point on the surface, but we still need to know which
BRDFs and BTDFs describe the scattering at a point, and what the parameters that
describe the behavior of these scattering functions.

In this chapter, we provide a general procedural shading mechanism to generate
BRDFs and BTDFs for points on surfaces. The basic idea is that a surface shader
is bound to each primitive in the scene. The surface shader is a small procedure
that is executed at a point to be shaded; it returns the BSDF, which holds a collection
of BRDFs and BTDFs that describes the scattering at the point. This is a somewhat
different shading paradigm than many rendering systems use—most combine the
function of the surface shader and the lighting integrator (see Chapter 16) into a
single shader. By separating these two pieces, a more flexible system results that is
better able to handle new light transport algorithms.�����
� � � � � �

We now present the implementation of our the general BSDF class. It represents
a weighted mixture of BRDFs and BTDFs, allowing the rest of the system to work
with composite BSDFs directly, rather than having to consider all of the components
they are built from.

Equally important, the BSDF class hides the mechanics of shading normals from
the rest of the system. Shading normals, either from per-vertex normals on polyg-
onal meshes, or from bump mapping, can substantially improve the visual richness
of scenes. However, because they are an ad hoc construct, they are tricky to in-
corporate into a physically-based renderer. Those issues will all be handled in the
BSDF, simplifying other parts of the system.� ���

BSDF::nBxDFs 371
Cross() 31

DifferentialGeometry 58
Normal 34

370 Materials [Ch. 10

Ng
Ns

Figure 10.1: The geometric normal, ng, defined by the surface geometry, and the
shading normal, ns, given by per-vertex normals and/or bump mapping will gener-
ally specify different hemispheres for integrating incident illumination to compute
surface reflection. This inconsistency is important to handle carefully since it can
lead to unsightly artifacts in images.

�
BSDF Declarations ��� �
class BSDF {
public:�

BSDF Public Methods ��
BSDF Public Data �

private:�
BSDF Private Methods ��
BSDF Private Data �

};

XXX text needs update XXX
The BSDF constructor takes two pieces of DifferentialGeometry: dgS, is the

shading differential geometry, where the normal, S, and T vectors may have been
modified from the true geometric normal and tangent vectors of the original sur-
face and dgG, which represents the true geometric characteristics at the point being
shaded–see Figure 10.1. Throughout this section, we will use the convention that
ns is the shading normal and ng is the geometric normal.
�
BSDF Method Definitions ���
BSDF::BSDF(const DifferentialGeometry &dg, const Normal &ngeom,

Float e)
: dgShading(dg), eta(e) {
ng = ngeom;
nn = dgShading.nn;
sn = dgShading.dpdu.Hat();
tn = Cross(nn, sn);
nBxDFs = 0;

}
�
BSDF Public Data ���
const DifferentialGeometry dgShading;
const Float eta;

Sec. 10.1] BSDFs 371

659 Assert()
370 BSDF
334 BxDF
334 BxDF::type
334 BxDFType
58 DifferentialGeometry
30 Dot()
34 Normal
27 Vector

�
BSDF Private Data ���
Normal nn, ng;
Vector sn, tn;
int nBxDFs;
#define MAX_BxFS 8
BxDF * bxdfs[MAX_BxFS];

�
BSDF Inline Method Definitions ���
inline void BSDF::Add(BxDF *b) {

Assert(nBxDFs < MAX_BxFS);
bxdfs[nBxDFs++] = b;

}

A short utility routine checks to see if the flags for a particular BxDF are com-
patible with the flags passed in by a user.�
BSDF Inline Method Definitions ��� �
inline bool BSDF::MatchesFlags(const BxDF *bxdf,

BxDFType flags) const {
return (bxdf->type & flags) == bxdf->type;

}
�
BSDF Public Methods ��� �
int NumComponents() const { return nBxDFs; }
int NumComponents(BxDFType flags) const {

int num = 0;
for (int i = 0; i < nBxDFs; ++i)

if (MatchesFlags(bxdfs[i], flags)) ++num;
return num;

}

We also provide a transformation to and from the local coordinate system ex-
pected by BxDFs (as described in Section 9.1). In this coordinate system, the sur-
face normal is along � 0 � 0 � 1 � , the primary tangent is � 1 � 0 � 0 � and the secondary
tangent is � 0 � 1 � 0 � . This transformation into “shading space” simplified many of
the BxDF equations in Chapter 9. These transformations are computed in the same
way as the DifferentialGeometry methords for transforming to and from the
differential geometry’s frame; see Section 2.8 for more information.

The transformation to shading space normalizes the resulting vector, since many
BxDF implementations depend on this. However, we don’t normalize directions in
world space, since there’s not a corresponding assumption for world-space rays.�
BSDF Public Methods ��� �
Vector WorldToLocal(const Vector &v) const {

return Vector(Dot(v, sn), Dot(v, tn), Dot(v, nn));
}

�
BSDF Public Methods ��� �
Vector LocalToWorld(const Vector &v) const {

return Vector(sn.x * v.x + tn.x * v.y + nn.x * v.z,
sn.y * v.x + tn.y * v.y + nn.y * v.z,
sn.z * v.x + tn.z * v.y + nn.z * v.z);

}

BSDF::nn 371
BSDF::sn 371
BSDF::tn 371

BxDF 334
Vector 27

372 Materials [Ch. 10

oω

iω Ng
Ns

oω

iω

Ng
Ns

Figure 10.2: The two types of error that result from using shading normals: on the
left, a light leak, where the geometric normal indicates that the light is on the back-
side of the surface, but the shading normal indicates the light is visible (assuming
a reflective and not transmissive surface.) On the right is a dark spot, where the
geometric normal indicates that the surface is illuminated but the shading normal
indicates that the viewer is behind the lit side of the surface.

Shading normals can cause a variety of undesirable artifacts in practice–see Fig-
ure 10.2. On the left is a light leak: the geometric normal indicates that ω i and
ωo lie on opposide sides of the surface, so if the surface is not transmissive, the
light should have no contribution. However, if we directly evaluate the scattering
equation 5.4.9 about the hemisphere centered around the shading normal, we will
incorrectly incorporate the light from ωi. Thus, we can see that ns can’t just be
used as a direct replacement for ng in rendering computations.

The right side of Figure 10.2 shows a similar situation: the shading normal
indicates that no light should be reflected to the viewer, since it is not in the same
hemisphere as the illumination, while the geometric normal incidates that they are
in the same hemisphere. Direct use of ns would cause ugly black spots on the
surface where this situation happens.

Fortinately, there is an elegant solution to these problems. When evaluating the
BSDF, we use the geometric normal to decide if we should be evaluating reflection
or transmission: if ωi and ωo lie in the same hemisphere with respect to ng, we
evaluate the BRDFs, and otherwise we evaluate the BTDFs.

Given that convention, recall from Section 9.1 that BxDFs in lrt should evaluate
their values without regard to whether ωi and ωo are in the same or are in different
hemispheres. Thus, light leaks are avoided, since we only evaluate the BTDFs for
the situation in the left side of Figure 10.2, giving us no reflection for a purely
reflective surface. Similarly, black spots are avoided since we would evaluate the
BRDFs for the situation on the right side of the figure, even though the shading
normal thinks that the directions are in different hemispheres. Because the BRDFs
evaluate their values in this case, we get a reasonable result.

Given all that, evaluating the BSDF is easy. We just transform the world-space
direction vectors to local BSDF space, determine whether we should be using the
BRDFs or the BTDFs, and loop over the appropriate set, evaluating a weighted
sum of their contributions.

Sec. 10.1] BSDFs 373

370 BSDF
371 BSDF::bxdfs
371 BSDF::MatchesFlags()
371 BSDF::nBxDFs
371 BSDF::WorldToLocal()
334 BSDF ALL
334 BSDF REFLECTION
334 BSDF TRANSMISSION
334 BxDF
335 BxDF::f()
334 BxDFType
30 Dot()

375 Material
670 MemoryArena
181 Spectrum
563 SurfaceIntegrator
27 Vector

�
BSDF Method Definitions ��� �
Spectrum BSDF::f(const Vector &woW,

const Vector &wiW, BxDFType flags) const {
Vector wi = WorldToLocal(wiW), wo = WorldToLocal(woW);
Spectrum f = 0.;
if (Dot(wiW, ng) * Dot(woW, ng) > 0)

flags = BxDFType(flags & ˜BSDF_TRANSMISSION);
else

flags = BxDFType(flags & ˜BSDF_REFLECTION);
for (int i = 0; i < nBxDFs; ++i)

if (MatchesFlags(bxdfs[i], flags))
f += bxdfs[i]->f(wo, wi);

return f;
}

We’ll also provide BSDF methods that sum up the reflectance values of their
individual BxDFs; the implementation of these methods are straightforward loops
over the BxDFs and won’t be shown here.�
BSDF Public Methods ��� �
Spectrum rho(BxDFType flags = BSDF_ALL) const;
Spectrum rho(const Vector &wo, BxDFType flags = BSDF_ALL) const;

10.1.1 BSDF Memory Management

For each camera ray that intersects geometry in the scene, one or more BSDF ob-
jects will be created by the SurfaceIntegrator in the process of computing the
reflected radiance from the intersection point. (Integrators that account for multiple
inter-reflections of light will generally create a number of BSDFs in this process.)
Each of these BSDFs in turn has a number of BRDFs and BTDFs stored inside it, as
returned by the Material at the intersection point. A straightforward implementa-
tion would use new and delete to dynamically allocate storage for both the BSDF
as well as each of the BxDFs that it holds.

Unfortunately, such an approach is relatively inefficient: too much time is spent
in the dynamic memory management routines for a series of small memory alloca-
tions. Instead, we will use a specialized allocation scheme based on the MemoryArena
described in Appendix ??. The MemoryArena allocates a large block of memory
and responds to allocation requests via the MemoryArena::Alloc() call by re-
turning sections of that block from beginning to end. It does not support freeing
individual allocations. Instead, the MemoryArena::FreeAll() method is called
when all of the allocated items are no longer in use. The result is that individual
allocations are extremely efficient, and freeing memory is also efficient and done
relatively infrequently.

The BSDF class holds a static MemoryArena that will be used for BSDF and
BxDF allocations. After each camera ray has been handled, the Scene::Render()
method frees up all of the memory used for allocating BSDF memory for that ray.
(There should be no BSDF pointers held anywhere in the system at this point.)

The BSDF provides allocation and freeing routines that mirror those in the MemoryArena;
the requests are just passed on to the static MemoryArena in the BSDF.

BSDF 370
BxDF 334

Material 375
MemoryArena 670

MemoryArena::Alloc() 670
MemoryArena::FreeAll() 671

374 Materials [Ch. 10

�
BSDF Public Methods ��� �
static void *Alloc(u_int sz) { return zone.Alloc(sz); }
static void FreeAll() { zone.FreeAll(); }

�
BSDF Private Data ��� �
static MemoryArena zone;

For the convenience of code that allocates BSDFs and BxDFs (e.g. the Materials
throughout the rest of this chapter), we will provide a macro that hides some of the
messiness of using the memory zone approach. Insead of using the new operator to
allocate those objects, like this:

BSDF *b = new BSDF;
BxDF *lam = new Lambertian(Spectrum(1.0);

code should instead be written with the BSDF_ALLOC() macro, like this:

BSDF *b = BSDF ALLOC(BSDF);
BxDF *lam = BSDF ALLOC(Lambertian)(Spectrum(1.0));

The macro calls the BSDF::Alloc() routine to allocate the appropriate amount
of memory for the object, and then uses the placement operator new to run the
constructor for the object at the given memory location.�
BSDF Declarations ��� �
#define BSDF_ALLOC(T) new (BSDF::Alloc(sizeof(T))) T

We will make the BSDF destructor a private method, in order to ensure that
it isn’t inadvertently called. This could lead to subtle errors, since a pointer in the
middle memory managed by the MemoryArena would be passed to the system’s dy-
namic allocation freeing routine. We also declare a friend class of a non-existent
class; this is just to silence compiler warnings related to having a private destructor.�
BSDF Private Methods ���
˜BSDF() { }
friend class NoSuchClass;

������� � ����� � � �� � ����� � � ��� � � ����� ��� � � �	�	�
� � �
�
material.h* ���
#include "lrt.h"
#include "primitive.h"
#include "texture.h"
#include "color.h"
#include "reflection.h"�
Material Class Declarations ��
Material Creation Macros �

�
material.cpp* ���
#include "material.h"�
Material Method Definitions �

Sec. 10.2] Material Interface and Bump Mapping 375

491 AreaLight
370 BSDF
58 DifferentialGeometry

400 DifferentialGeometry::ComputeDifferentials()
132 GeometricPrimitive
132 GeometricPrimitive::material
131 Intersection
131 Intersection::dg
131 Intersection::primitive
131 Intersection::WorldToObject
377 Material::Bump()
34 Normal

132 Primitive::GetBSDF()
37 RayDifferential

663 ReferenceCounted
67 Shape::GetShadingGeometry()

563 SurfaceIntegrator
43 Transform

�
Material Class Declarations ���
class Material : public ReferenceCounted {
public:�

Material Interface ��
Material Public Methods �

private:�
Material Private Data �

};

There are two main functions that Materials are responsible for implementing.
The first is a pure virtual function that returns the BSDF for a point on a surface
represented by its DifferentialGeometry. The material is responsible for syn-
thesizing relevant information about the texture and geometric surface properties
at the point to generate the scattering function at the point.�
Material Interface ���
virtual BSDF *GetBSDF(const DifferentialGeometry &dg, const Normal &ngeom) const = 0;

Since the usual interface to the hit point that various SurfaceIntegrators is
through a Intersection, we will also add a convenience method to Intersection
that returns the BSDF at the hit point. It does some setup work, computes the shad-
ing differential geometry, and forwards the request on to the Material.�
Intersection Method Definitions ��� �
BSDF *Intersection::GetBSDF(const RayDifferential &ray) const {

dg.ComputeDifferentials(ray);
return primitive->GetBSDF(dg, WorldToObject);

}
�
GeometricPrimitive Method Definitions ��� �
const AreaLight *GeometricPrimitive::GetAreaLight() const {

return areaLight;
}

�
GeometricPrimitive Method Definitions ��� �
BSDF *GeometricPrimitive::GetBSDF(const DifferentialGeometry &dg,

const Transform &WorldToObject) const {
DifferentialGeometry dgs;
shape->GetShadingGeometry(WorldToObject.GetInverse(),

dg, &dgs);
material->Bump(&dgs, dg);
return material->GetBSDF(dgs, dg.nn);

}

10.2.1 Bump mapping

All materials take an optional Float texture map that defines a displacement at
each point on the surface: each point p has a displaced point p � associated with
it, defined by p � � p � dn � p � , where d is the offset returned by the displacement
texture at p and n � p � is the surface normal at p–see Figure 10.3. We will use this
texture to compute bump-mapped shading normals below, though it could also be
used in an implementation of displacement mapping.

Material 375
Texture 394

376 Materials [Ch. 10

Figure 10.3: The displacement texture associated with each material defines a new
surface based on the old one, offset by the displacement amount along the normal
at each point. lrt doesn’t compute a geometric representation of this displaced
surface, though it does use it to compute shading normals for bump-mapping.

�
Material Public Methods ���
Material(Texture<Float> *disp) {

displace = disp;
}

�
Material Private Data ���
Texture<Float> *displace;

The second important Material method, Bump(), is responsible for computing
the effect of bump mapping at the point being shaded. It allows the Material
to perturb its normal or tangent vectors in order to simulate the effect of rough
surfaces or modify the mapping for anisotropy, respectively.

To compute a shading normal at a point, we will evaluate the displacement
texture at two auxiliary points next to the current point x: see Figure 10.4. We
move to the nearby positions on the tangent plane px � p � dx � ∆p

�
∆x and py �

p � dy � ∆p
�
∆y, the intersection points of the auxiliary differential rays, and thus

the estimated points one pixel to the side in the x and y directions. By evaluating
the displacement at these three points, we compute three points on the displaced
surface, p � , p �x and p �y. The cross product of new tangent vectors vx � p �x � p and
vy � p �y � p gives the shading normal ns.

This approach is based on the assumption that the surface is locally flat around p:
if it has a large curvature, then p � dx � ∆p

�
∆x may be far from the actual surface.

This error is rarely a problem in practice.�
Material Method Definitions ��� �
void Material::Bump(DifferentialGeometry *dgs,

const DifferentialGeometry &dgg) const {
if (displace) {�

Compute offset positions and evaluate displacement texture ��
Compute bump-mapped differential geometry �

}�
Orient shading normal to match geometric normal �

}

Sec. 10.2] Material Interface and Bump Mapping 377

58 DifferentialGeometry
58 DifferentialGeometry::nn
58 DifferentialGeometry::p

378 DifferentialGeometry::Shift()
375 Material
376 Material::displace
33 Point

395 Texture::Evaluate()
27 Vector

Figure 10.4: To compute the shading normal at a point, we evaluate the displace-
ment texture at that point and at two auxiliary points. By taking the cross product
of the vectors from the main point to the auxiliary point, we find the shading nor-
mal. The auxiliary points are found by offsetting by the parametric distances du
and dv along the ∂p � ∂u and ∂p � ∂v vectors.

Given the offset distances, we use the DifferentialGeometry::Shift() method
to compute the differential geometry at the auxiliary points. We can then evaluate
the displacement texture at the three points and compute the three displaced posi-
tions.�
Compute offset positions and evaluate displacement texture ���
if (dgs->dudx == 0 && dgs->dvdx == 0 &&

dgs->dudy == 0 && dgs->dvdy == 0)
dgs->dudx = dgs->dvdy = .01;

DifferentialGeometry dgdx, dgdy;
dgs->Shift(1, 0, &dgdx);
dgs->Shift(0, 1, &dgdy);
Point p = dgs->p + Vector(dgs->nn) * displace->Evaluate(*dgs);
Point px = dgdx.p + Vector(dgdx.nn) * displace->Evaluate(dgdx);
Point py = dgdy.p + Vector(dgdy.nn) * displace->Evaluate(dgdy);

The DifferentialGeometry::Shift() method uses the local-flatness assump-
tion mentioned above. New

�
u � v � coordinates are easily computed based on the�

x � y � offset the caller provided. We assume that the partial derivatives, dpdu and
dpdv are the same at the shifted point due to the flatness assumption, though we
approximate the new surface normal using dndu and dndv. We also assume that
the Jacobians ∂u � ∂x, ∂v � ∂x, etc., are loally constant so that we can compute du by
dx * dudx + dy * dudy, etc. The new point p, then, is just computed by moving
the appropriate distances along ∂p � ∂u and ∂p � ∂v.

Cross() 31
DifferentialGeometry 58

DifferentialGeometry::dndu 58
DifferentialGeometry::dndv 58
DifferentialGeometry::dpdu 58
DifferentialGeometry::dpdv 58
DifferentialGeometry::dpdx 400
DifferentialGeometry::dpdy 400
DifferentialGeometry::dudx 400
DifferentialGeometry::dudy 400
DifferentialGeometry::dvdx 400
DifferentialGeometry::dvdy 400
DifferentialGeometry::nn 58
DifferentialGeometry::p 58

DifferentialGeometry::shape 58
DifferentialGeometry::u 58
DifferentialGeometry::v 58

Dot() 30
Normal 34
Vector 27

378 Materials [Ch. 10

�
DifferentialGeometry Public Methods ��� �
void Shift(Float dx, Float dy, DifferentialGeometry *g) const {

g->p = p + dx * (dudx * dpdu + dvdx * dpdv) +
dy * (dudy * dpdu + dvdy * dpdv);

g->u = u + dx * dudx + dy * dudy;
g->v = v + dx * dvdx + dy * dvdy;
g->nn = Normal(Cross(dpdu, dpdv) + dx * (dudx * dndu + dvdx * dndv) +

dy * (dudy * dndu + dvdy * dndv)).Hat();

g->dpdu = dpdu;
g->dpdv = dpdv;
g->dpdx = dpdx;
g->dpdy = dpdy;
g->dudx = dudx;
g->dvdx = dvdx;
g->dudy = dudy;
g->dvdy = dvdy;
g->dndu = dndu;
g->dndv = dndv;
g->shape = shape;

}

Given the new positions, we compute partial derivatives with forward differ-
ences. This is all that we need to do here; the DifferentialGeometry constructor
takes care of computing the resulting normal, etc.�
Compute bump-mapped differential geometry ���
Float dx = sqrtf(dgs->dudx*dgs->dudx + dgs->dvdx*dgs->dvdx);
Float dy = sqrtf(dgs->dudy*dgs->dudy + dgs->dvdy*dgs->dvdy);
dgs->UpdateBasis((p-px) / dx, (p-py) / dy);

XXX dndu and dndv? XXX�
DifferentialGeometry Method Definitions ��� �
void DifferentialGeometry::UpdateBasis(const Vector &DPDU,

const Vector &DPDV) {
dpdu = DPDU;
dpdv = DPDV;
nn = Normal(Cross(dpdu, dpdv)).Hat();�
Adjust normal based on orientation and handedness �

}

Finally, this method flips the shading coordinate frame if needed, so that the
shading normal lies in the hemisphere around the geometric normal–the assump-
tion is that the shading normal represents a relatively small perturbation of the
geometric normal, so should be in the same hemisphere.�
Orient shading normal to match geometric normal ���
if (Dot(dgg.nn, dgs->nn) < 0)

dgs->nn = -dgs->nn;

Sec. 10.2] Material Interface and Bump Mapping 379

36 Ray
37 RayDifferential

Figure 10.5: The specular reflection formula gives the direction of the reflected ray
(solid line) at a point on a surface. An offset ray for a ray differential (dashed line)
will generally intersect the surface at a different point and be reflected in a different
direction. The new direction is affected by both the different surface normal at the
point as well as its different incident direction.

10.2.2 ***ADV***: Ray differentials for specular reflection and trans-
mission

Where should this go???
This is so poorly explained, it’s unbelievable. Needs serious editing/rewriting.
RayDifferentials were described in Section 1.3.3 as generalizations of Rays

that also stored the rays that would be traced at the image samples offset one pixel
in the x and y directions. Section 11.2.1 used these auxiliary rays to estimate the
texture-space sampling rate for the image being rendered, which was crucial for
texture filtering to reduce aliasing. Given the success of this approach for camera
rays, one might want to extend the method to make it possible to determine texture-
space sampling rates for objects that are seen indirectly via specular reflection or
refraction–objects seen in mirrors, for example, should also not have texture alias-
ing if possible. Igehy has developed an elegant solution to the problem of how to
find the appropriate differential rays for specular reflection and refraction (Igehy
1999) which is the approach used in lrt 1.

Given an intersection at a point on a surface that a ray differential hit, we’d like
to find an approximation to the reflected or refracted rays that would have been
traced at the intersection points for the two offset rays (see Figure 10.5.) The new
ray for the main ray is computed by the BSDF, so just the updated rays for the
differentials need to be computed.

For both reflection and refraction, the origin of each differential is easily found.
The differential geometry at the intersection point stores approximations for how
much the surface position changes with respect to changes ∂p � ∂x and ∂p � ∂y on the
image plane. Thus, adding these offsets to the intersection point gives the origins
for the new rays.

1Igehy’s formulation is slightly different than the one here–he effectively stored the differences
between the main ray and the offset rays, while we store the offset rays explicitly. The mathematics
all work out to be the same in the end; we chose this alternative since it makes the algorithm’s
operation for camera rays easier to understand.

DifferentialGeometry::dndx 400
DifferentialGeometry::dpdx 400
DifferentialGeometry::dpdy 400

Intersection::dg 131
RayDifferential 37

Vector 27

380 Materials [Ch. 10

�
Compute ray differential rd for specular reflection ���
RayDifferential rd(p, wi);
rd.hasDifferentials = true;
rd.rx.o = p + isect.dg.dpdx;
rd.ry.o = p + isect.dg.dpdy;�
Compute differential reflected directions �
Finding the directions of these rays is slightly more tricky. Igehy observed that

If we knew how much the direction ωi changed with respect to a shift of a pixel
in the x and y directions on the image plane, we could use this to approximate the
direction of the offset rays:

ωx � ωi �
∂ωi

∂x �
For a general world-space surface normal and outgoing direction, the direction for
perfect specular reflection is

ωi � � ωo � 2 � ωo � n � n �
Fortunately, the partial derivatives of this expression are easily computed.

∂ωi

∂x � ∂
∂x � ωi � � ωo � 2 � ωo � n � n �

� �

∂ωo

∂x
� 2 � � ωo � n � ∂n

�
∂x �

∂ � ωo � N �
∂x

n � �
Using the properties of the dot product, it can be shown that

∂ � ωo � N �
∂x � ∂ωo

∂x
n � ωo

∂N
∂x

All of the necessary quantities are readily available from the DifferentialGeometry,
and the implementation is straightforward.�
Compute differential reflected directions ���
const Vector &dndx = bsdf->dgShading.dndx, &dndy = bsdf->dgShading.dndy;
Vector dwodx = -ray.rx.d - wo, dwody = -ray.ry.d - wo;
Float dDNdx = Dot(dwodx, n) + Dot(wo, dndx);
Float dDNdy = Dot(dwody, n) + Dot(wo, dndy);
rd.rx.d = wi - dwodx + 2 * (Dot(wo, n) * dndx + Vector(dDNdx * n));
rd.ry.d = wi - dwody + 2 * (Dot(wo, n) * dndy + Vector(dDNdy * n));

A similar process of differentiating the equation for the direction of a specularly
transmitted ray gives the equation to find the differential change in transmitted
direction. We won’t include the derivation or our implementation here, but refer
the interested reader to the original paper and to the source code, respectively.

Sec. 10.3] Matte 381

370 BSDF
334 BxDF
351 Lambertian
375 Material
181 Spectrum
394 Texture

������� � ��� ���
�
matte.cpp* ���
#include "lrt.h"
#include "material.h"�
Matte Class Declarations ��
Matte Method Definitions �

�
Matte Class Declarations ���
class Matte : public Material {
public:�

Matte Public Methods �
private:�

Matte Private Data �
};

The simplest surface is Matte. It describes a diffusely-reflecting surface. A
Matte::Kd texture parameter gives the overall reflectivity of the surface at each
point.�
Matte Public Methods ���
Matte(Texture<Spectrum> *kd, Texture<Float> *sig,

Texture<Float> *disp)
: Material(disp) {
Kd = kd;
sigma = sig;

}
�
Matte Private Data ���
Texture<Spectrum> *Kd;
Texture<Float> *sigma;

We need to destroy the Texture when the material is deleted. For brevity, we
won’t include the destructors for the rest of the materials in this chapter.�
Matte Method Definitions ���
Matte::˜Matte() {

delete Kd;
delete sigma;

}

The BSDF method just puts the pieces together. The Matte::Kd texture is eval-
uated to compute the Kd color at the point being shaded. This is then passed on to
create a Lambertian BxDF, which is returned inside a BSDF object.

BSDF 370
BSDF::Add() 371
BSDF ALLOC 374

DifferentialGeometry 58
Lambertian 351

Material 375
Matte 381

Matte::Kd 381
Matte::sigma 381

Normal 34
Spectrum 181
Texture 394

Texture::Evaluate() 395

382 Materials [Ch. 10

�
Matte Method Definitions ��� �
BSDF *Matte::GetBSDF(const DifferentialGeometry &dg, const Normal &ngeom) const {

Spectrum r = Kd->Evaluate(dg);
Float sig = sigma->Evaluate(dg);
BSDF *ret = BSDF_ALLOC(BSDF)(dg, ngeom);
if (sig == 0.)

ret->Add(BSDF_ALLOC(Lambertian)(r));
else

ret->Add(BSDF_ALLOC(OrenNayar)(r, sig));
return ret;

}

������� � � ��� � �
�
plastic.cpp* ���
#include "lrt.h"
#include "material.h"�
Plastic Class Declarations ��
Plastic Method Definitions ��
Plastic Dynamic Creation Routine �

�
Plastic Class Declarations ���
class Plastic : public Material {
public:�

Plastic Public Methods �
private:�

Plastic Private Data �
};

A more interesting surface is plastic. Plastic can be modelled as a mixture of a
diffuse and glossy scattering function, with appropriate parameters controlling the
particular colors and glossiness. The parameters to Plastic are two reflectivities,
Kd and Ks, which control how much diffuse reflection there is and how much glossy
specular reflection there is. Next is a roughness parameter (which should range
from zero to one) that determines the size of the specular highlight; the higher it is,
the rougher the surface and the smaller the highlight.�
Plastic Public Methods ��� �
Plastic(Texture<Spectrum> *kd, Texture<Spectrum> *ks,

Texture<Float> *rough, Texture<Float> *disp)
: Material(disp) {

Kd = kd;
Ks = ks;
roughness = rough;

}
�
Plastic Private Data ���
Texture<Spectrum> *Kd, *Ks;
Texture<Float> *roughness;

Sec. 10.5] Translucent 383

359 Blinn
370 BSDF
371 BSDF::Add()
374 BSDF ALLOC
334 BxDF
58 DifferentialGeometry

341 Fresnel
342 FresnelDielectric
351 Lambertian
375 Material
357 Microfacet
34 Normal

382 Plastic
382 Plastic::Kd
382 Plastic::Ks
382 Plastic::roughness
181 Spectrum
395 Texture::Evaluate()

�
Plastic Method Definitions ��� �
BSDF *Plastic::GetBSDF(const DifferentialGeometry &dg, const Normal &ngeom) const {

Spectrum kd = Kd->Evaluate(dg);
BxDF *diff = BSDF_ALLOC(Lambertian)(kd);
Fresnel *fresnel = BSDF_ALLOC(FresnelDielectric)(1.5f, 1.f);
Spectrum ks = Ks->Evaluate(dg);
Float rough = roughness->Evaluate(dg);
BxDF *spec = BSDF_ALLOC(Microfacet)(ks, fresnel, BSDF_ALLOC(Blinn)(1.f / rough));
BSDF *ret = BSDF_ALLOC(BSDF)(dg, ngeom);
ret->Add(diff);
ret->Add(spec);
return ret;

}

������� � � � � � �	�������

�
translucent.cpp* ���
#include "lrt.h"
#include "material.h"�
Translucent Class Declarations ��
Translucent Method Definitions �

�
Translucent Class Declarations ���
class Translucent : public Material {
public:�

Translucent Public Methods �
private:�

Translucent Private Data �
};

Blinn 359
BRDFToBTDF 336

BSDF 370
BSDF::Add() 371
BSDF ALLOC 374

DifferentialGeometry 58
Fresnel 341

FresnelDielectric 342
Lambertian 351

Material 375
Microfacet 357

Normal 34
Spectrum 181

Texture::Evaluate() 395
Translucent 383

384 Materials [Ch. 10

�
Translucent Method Definitions ��� �
BSDF *Translucent::GetBSDF(const DifferentialGeometry &dg, const Normal &ngeom) const {

BSDF *ret = BSDF_ALLOC(BSDF)(dg, ngeom);
Spectrum r = reflect->Evaluate(dg);
Spectrum t = transmit->Evaluate(dg);
if (r.Black() && t.Black()) return ret;

Spectrum kd = Kd->Evaluate(dg);
if (!kd.Black()) {

if (!r.Black()) ret->Add(BSDF_ALLOC(Lambertian)(r * kd));
if (!t.Black()) ret->Add(BSDF_ALLOC(BRDFToBTDF)(BSDF_ALLOC(Lambertian)(t * kd)));

}
Spectrum ks = Ks->Evaluate(dg);
if (!ks.Black()) {

Float rough = roughness->Evaluate(dg);
if (!r.Black()) {

Fresnel *fresnel = BSDF_ALLOC(FresnelDielectric)(1.5f, 1.f);
ret->Add(BSDF_ALLOC(Microfacet)(r * ks, fresnel,

BSDF_ALLOC(Blinn)(1.f / rough)));
}
if (!t.Black()) {

Fresnel *fresnel = BSDF_ALLOC(FresnelDielectric)(1.5f, 1.f);
ret->Add(BSDF_ALLOC(BRDFToBTDF)(BSDF_ALLOC(Microfacet)(t * ks, fresnel,

BSDF_ALLOC(Blinn)(1.f / rough))));
}

}
return ret;

}

������� 	 � � �

�
glass.cpp* ���
#include "lrt.h"
#include "material.h"�
Glass Class Declarations ��
Glass Method Definitions �

�
Glass Class Declarations ���
class Glass : public Material {
public:�

Glass Public Methods �
private:�

Glass Private Data �
};

Another surface shader simulates glass. Nevertheless, a combination of specular
reflection and refraction brings us to the heart of recursive ray tracing and can
lead to some nifty images. Our parameters include reflection and transmission
coefficients as well as the index of refraction of the object.

Sec. 10.7] Mirror 385

370 BSDF
371 BSDF::Add()
374 BSDF ALLOC
58 DifferentialGeometry

342 FresnelDielectric
384 Glass
375 Material
34 Normal

181 Spectrum
345 SpecularReflection
348 SpecularTransmission
394 Texture
395 Texture::Evaluate()

�
Glass Public Methods ��� �
Glass(Texture<Spectrum> *r, Texture<Spectrum> *t,

Texture<Float> *i, Texture<Float> *disp)
: Material(disp) {

Kr = r;
Kt = t;
index = i;

}
�
Glass Private Data ���
Texture<Spectrum> *Kr, *Kt;
Texture<Float> *index;

As usual, we start by computing new parameters from the primitive’s user-
supplied values. We then generate a new BSDF that holds reflective and transmissive
BRDFs as appropriate given the parameter values.�
Glass Method Definitions ��� �
BSDF *Glass::GetBSDF(const DifferentialGeometry &dg, const Normal &ngeom) const {

Spectrum R = Kr->Evaluate(dg);
Spectrum T = Kt->Evaluate(dg);
Float ior = index->Evaluate(dg);
BSDF *ret = BSDF_ALLOC(BSDF)(dg, ngeom, ior);
if (!R.Black())

ret->Add(BSDF_ALLOC(SpecularReflection)(R,
BSDF_ALLOC(FresnelDielectric)(1., ior)));

if (!T.Black())
ret->Add(BSDF_ALLOC(SpecularTransmission)(T, 1., ior));

return ret;
}

������� � � � � ���

XXX like glass, but just reflection, no fresnel effects�
mirror.cpp* ���
#include "lrt.h"
#include "material.h"�
Mirror Class Declarations ��
Mirror Method Definitions �

�
Mirror Class Declarations ���
class Mirror : public Material {
public:�

Mirror Public Methods �
private:�

Mirror Private Data �
};

�
Mirror Private Data ���
Texture<Spectrum> *Kr;

BSDF 370
BSDF::Add() 371
BSDF ALLOC 374

DifferentialGeometry 58
FresnelNoOp 344

Material 375
Mirror 385
Normal 34

Spectrum 181
SpecularReflection 345

Texture 394
Texture::Evaluate() 395

386 Materials [Ch. 10

As usual, we start by computing new parameters from the primitive’s user-
supplied values. We then generate a new BSDF that holds reflective and transmissive
BRDFs as appropriate given the parameter values.�
Mirror Method Definitions ��� �
BSDF *Mirror::GetBSDF(const DifferentialGeometry &dg, const Normal &ngeom) const {

Spectrum R = Kr->Evaluate(dg);
BSDF *ret = BSDF_ALLOC(BSDF)(dg, ngeom);
if (!R.Black())

ret->Add(BSDF_ALLOC(SpecularReflection)(R,
BSDF_ALLOC(FresnelNoOp)()));

return ret;
}

������� � �� � � � � � ��

�
shinymetal.cpp* ���
#include "lrt.h"
#include "material.h"�
ShinyMetal Class Declarations ��
ShinyMetal Method Definitions �

�
ShinyMetal Class Declarations ���
class ShinyMetal : public Material {
public:�

ShinyMetal Public Methods �
private:�

ShinyMetal Private Data �
};

Another basic combination of scattering functions gives us something that looks
like a shiny metal surface. We have both a glossy specular reflection, with re-
flectance Ks, and perfect mirror specular reflection, with reflectance Kr.�
ShinyMetal Public Methods ��� �
ShinyMetal(Texture<Spectrum> *ks, Texture<Float> *rough,

Texture<Spectrum> *kr, Texture<Float> *disp)
: Material(disp) {

Ks = ks;
roughness = rough;
Kr = kr;

}
�
ShinyMetal Private Data ���
Texture<Spectrum> *Ks, *Kr;
Texture<Float> *roughness;

Sec. 10.9] Diffuse Substrate 387

359 Blinn
370 BSDF
371 BSDF::Add()
374 BSDF ALLOC
58 DifferentialGeometry

341 Fresnel
341 FresnelApproxEta()
375 Material
357 Microfacet
357 MicrofacetDistribution
34 Normal

386 ShinyMetal
386 ShinyMetal::Kr
386 ShinyMetal::Ks
386 ShinyMetal::roughness
181 Spectrum
345 SpecularReflection
395 Texture::Evaluate()

�
ShinyMetal Method Definitions ��� �
BSDF *ShinyMetal::GetBSDF(const DifferentialGeometry &dg, const Normal &ngeom) const {

Spectrum spec = Ks->Evaluate(dg);
Float rough = roughness->Evaluate(dg);
Spectrum R = Kr->Evaluate(dg);

MicrofacetDistribution *md = BSDF_ALLOC(Blinn)(1.f / rough);
Spectrum k = 0.;
Fresnel *frMf = BSDF_ALLOC(FresnelConductor)(FresnelApproxEta(spec), k);
Fresnel *frSr = BSDF_ALLOC(FresnelConductor)(FresnelApproxEta(R), k);
BSDF *ret = BSDF_ALLOC(BSDF)(dg, ngeom);
ret->Add(BSDF_ALLOC(Microfacet)(1., frMf, md));
ret->Add(BSDF_ALLOC(SpecularReflection)(1., frSr));
return ret;

}

����� ��� ��� � � ��� � � ��� � �����
XXX need a better name�

substrate.cpp* ���
#include "lrt.h"
#include "material.h"�
Substrate Class Declarations ��
Substrate Method Definitions �

�
Substrate Class Declarations ���
class Substrate : public Material {
public:�

Substrate Public Methods �
private:�

Substrate Private Data �
};

A reasonably good model of glossy paint can be constructed using some of the
pieces we have put together so far. There are two main types of light reflection
with glossy paint: some of the incident light is specularly reflected at the surface,
and the rest is transmitted into a substrate with suspended colored particles–see
Figure 10.6. The transmitted light is interacts with the particles, and some wave-
lengths of light are absorbed, based on the particle color. The remaining light
eventually exits.

If we make the assumption that the exiting light exits in random directions,
reflection from the substrate can be modeled with a Lambertian BRDF. We will
use the Fresnel formula for dielectrics to determine how much light is reflected
and how much is transmitted, giving us weighting terms for the specular reflection
and the body reflection BRDFs.

Anisotropic 361
BSDF 370

BSDF::Add() 371
BSDF ALLOC 374

DifferentialGeometry 58
FresnelBlend 365

Material 375
Normal 34

Spectrum 181
Substrate 387

Texture 394
Texture::Evaluate() 395

388 Materials [Ch. 10

Figure 10.6:

�
Substrate Public Methods ���
Substrate(Texture<Spectrum> *kd, Texture<Spectrum> *ks,

Texture<Float> *u, Texture<Float> *v, Texture<Float> *disp)
: Material(disp) {
Kd = kd;
Ks = ks;
nu = u;
nv = v;

}
�
Substrate Private Data ���
Texture<Spectrum> *Kd, *Ks;
Texture<Float> *nu, *nv;

�
Substrate Method Definitions � � �
BSDF *Substrate::GetBSDF(const DifferentialGeometry &dg, const Normal &ngeom) const {

Spectrum d = Kd->Evaluate(dg);
Spectrum s = Ks->Evaluate(dg);
Float u = nu->Evaluate(dg);
Float v = nv->Evaluate(dg);

BSDF *ret = BSDF_ALLOC(BSDF)(dg, ngeom);
ret->Add(BSDF_ALLOC(FresnelBlend)(d, s, BSDF_ALLOC(Anisotropic)(1.f/u, 1.f/v)));
return ret;

}

�����������	��
������������
��

�
clay.cpp* ���
#include "lrt.h"
#include "material.h"�
Clay Class Declarations ��
Clay Method Definitions �
Cornell Program of Computer Graphics...

Sec. 10.11] Uber Material 389

370 BSDF
371 BSDF::Add()
374 BSDF ALLOC
334 BSDF DIFFUSE
334 BSDF REFLECTION
334 BxDFType
58 DifferentialGeometry

363 Lafortune
375 Material
34 Normal

181 Spectrum
394 Texture

�
Clay Class Declarations ���
class Clay : public Material {
public:

Clay(Texture<Float> *disp) : Material(disp) { }
};

�
Clay Method Definitions ���
BSDF *Clay::GetBSDF(const DifferentialGeometry &dg, const Normal &ngeom) const {�

Declare clay coefficients �
BSDF *ret = BSDF_ALLOC(BSDF)(dg, ngeom);
ret->Add(BSDF_ALLOC(Lafortune)(Spectrum(diffuse), 3, xy, xy, z, e,

BxDFType(BSDF_REFLECTION | BSDF_DIFFUSE)));
return ret;

}
�
Declare clay coefficients ���
static Float diffuse[3] = { 0.383626f, 0.260749f, 0.274207f };
static Float xy0[3] = { -1.089701f, -1.102701f, -1.107603f };
static Float z0[3] = { -1.354682f, -2.714801f, -1.569866f };
static Float e0[3] = { 17.968505f, 11.024489f, 21.270282f };
static Float xy1[3] = { -0.733381f, -0.793320f, -0.848206f };
static Float z1[3] = { 0.676108f, 0.679314f, 0.726031f };
static Float e1[3] = { 8.219745f, 9.055139f, 11.261951f };
static Float xy2[3] = { -1.010548f, -1.012378f, -1.011263f };
static Float z2[3] = { 0.910783f, 0.885239f, 0.892451f };
static Float e2[3] = { 152.912795f, 141.937171f, 201.046802f };
static Spectrum xy[3] = { Spectrum(xy0), Spectrum(xy1), Spectrum(xy2) };
static Spectrum z[3] = { Spectrum(z0), Spectrum(z1), Spectrum(z2) };
static Spectrum e[3] = { Spectrum(e0), Spectrum(e1), Spectrum(e2) };

Will ifdraft felt, primer, skin... , Felt, , Primer, , Skin, , BluePaint, , BrushedMetal.

BSDF 370
DifferentialGeometry 58

Material 375
Normal 34

Spectrum 181
Texture 394

390 Materials [Ch. 10

�����
� ��� � � � � ����� � � �
�
uber.cpp* ���
#include "lrt.h"
#include "material.h"�
UberMaterial Class Declarations ��
UberMaterial Method Definitions ��
UberMaterial Dynamic Creation Routine �

�
UberMaterial Class Declarations ���
class UberMaterial : public Material {
public:

// UberMaterial Method Declarations
˜UberMaterial();
UberMaterial(Texture<Spectrum> *kd, Texture<Spectrum> *ks,

Texture<Float> *rough, Texture<Spectrum> *op,
Texture<Float> *disp)
: Material(disp) {

Kd = kd;
Ks = ks;
roughness = rough;
opacity = op;

}
BSDF *GetBSDF(const DifferentialGeometry &dg, const Normal &ngeom) const;

private:
// UberMaterial Private Data
Texture<Spectrum> *Kd, *Ks, *opacity;
Texture<Float> *roughness;

};
�
UberMaterial Method Definitions ���
UberMaterial::˜UberMaterial() {

delete Kd;
delete Ks;
delete roughness;
delete opacity;

}

Further Reading 391

359 Blinn
370 BSDF
374 BSDF ALLOC
334 BxDF
58 DifferentialGeometry

341 Fresnel
342 FresnelDielectric
351 Lambertian
357 Microfacet
34 Normal

181 Spectrum
348 SpecularTransmission

�
UberMaterial Method Definitions ��� �
BSDF *UberMaterial::GetBSDF(const DifferentialGeometry &dg, const Normal &ngeom) const {

BSDF *ret = BSDF_ALLOC(BSDF)(dg, ngeom);
Spectrum kd = Kd->Evaluate(dg);
if (!kd.Black()) {

BxDF *diff = BSDF_ALLOC(Lambertian)(kd);
ret->Add(diff);

}

Spectrum ks = Ks->Evaluate(dg);
if (!ks.Black()) {

Fresnel *fresnel = BSDF_ALLOC(FresnelDielectric)(1.5f, 1.f);
Float rough = roughness->Evaluate(dg);
BxDF *spec = BSDF_ALLOC(Microfacet)(ks, fresnel, BSDF_ALLOC(Blinn)(1.f / rough));
ret->Add(spec);

}

#if 0
Spectrum op = opacity->Evaluate(dg);
if (op != Spectrum(1.)) {

BxDF *tr = BSDF_ALLOC(SpecularTransmission)(-op + Spectrum(1.), 1., 1.);
ret->Add(tr);

}
#endif

return ret;
}

����� ���� � � � ��� � � �
Phong and Crow first introduced the idea of interpolating per-vertex shading

normals to give the appearence of smooth surfaces from polygonal meshes (Phong
and Crow 1975). Blinn later developed the bump-mapping technique to give the
appearence of geometric complexity on coarse meshes (Blinn 1978).

Snyder and Barr noted the light leak problem from per-vertex shading normals
and proposed a number of work-arounds (Snyder and Barr 1987). The method we
have used in this chapter is from Veach’s thesis (Veach 1997, Section 5.3); it is a
more robust solution than those of Snyder and Barr.

Kajiya generalized the idea of bump mapping the normal to frame mapping (Ka-
jiya 1985).

Shading normals introduce a number of subtle problems to physically-based
light transport algorithms that we have not addressed here. For example, they can
easily lead to surfaces that reflect more energy than was incident upon them, which
can wreak havoc with light transport algorithms. Veach has investigated this issue
in depth and proposed a number of solutions (Veach 1996).

Amanatides’s cone tracing method (Amanatides 1984) and Heckbert and Han-
rahan (Heckbert and Hanrahan 1984) were the first to extend ray tracing to incor-
porate an area associated with each image sample, rather than just an infinitessimal
ray.

BSDF 370
BxDF 334

DifferentialGeometry 58

392 Materials [Ch. 10

Ray differentials (Igehy 1999). Extended by Suykens and Willems to han-
dle glossy reflection as well (Suykens and Willems 2001). See also Turkowski’s
technical report (Turkowski 1993). Also Shinya et al (Shinya, Takahashi, and
Naito 1987), and Mitchell and Hanrahan (Mitchell and Hanrahan 1992). Gritz
and Hahn (Gritz and Hahn 1996), though theirs doesn’t get good anisotropic filter
regions and doesn’t account for the variation in angle that the separation between
adjacent pixels subtends as you go from the center to the edges of the image plane.
Collins estimated ray footprint by keeping tree of all rays traced from a given eye
ray, examining corresponding rays at the same level and position (Collins 1994).

Displacement mapping (Cook 1984; Cook, Carpenter, and Catmull 1987). Dice
stuff up (Pharr and Hanrahan 1996). Inverse displacement mapping (Patterson,
Hoggar, and Logie 1991; Logie and Patterson 1994). Wang adaptive stuff (Wang,
Maillot, Fiume, Ng-Thow-Hing, Woo, and Bakshi 2000). Smits et al (Smits,
Shirley, and Stark 2000). Heidrich and Seidel (Heidrich and Seidel 1998).

Dana et al BTF stuff (Dana, van Ginneken, Nayar, and Koenderink 1999).
Gondek et al investigated reflection from glossy painted surfaces (Gondek, Meyer,

and Newman 1994); some of the observations from their paper influenced the ad-
hoc paint material model introduced here.

Lafortune coefficients from measurements taken for Marschner at al paper, in-
cluded here with permission of the Program of Computer Graphics, Cornell Uni-
versity (Marschner, Westin, Lafortune, Torrance, and Greenberg 1999).�

� � � � � � � �

10.1 One form of aliasing that lrt doesn’t make efforts to eliminate is specular
highlight aliasing. Glossy specular surfaces with high specular exponents,
particularly if they have high curvature, are succeptable to aliasing as small
changes in incident direction or surface position (and thus surface normal)
may cause the highlight’s contribution to change substantially. Read Ama-
natides’s paper on this topic (Amanatides 1992) and extend lrt to reduce
specular aliasing, either using his technique or by developing your own.
Most of the quantities needed are already available—∂n

�
∂x and ∂n

�
∂y in

the DifferentialGeometry, etc., though it will be necessary to extent the
BxDF interface to give more information about specular exponents for glossy
specular reflection components.

10.2 Another approach to specular highlight aliasing is to super-sample the BSDF,
evaluating it multiple times around the point being shaded. Modify the BSDF
class to use the DifferentialGeometry::Shift() method to move to a set
of positions within the pixel sampling rate around the intersection point and
evaluate the BSDF at each one of them when the BSDF evaluation routines
are called. How well does this combat specular highlight aliasing?

� � � � � � � � �

We will now describe a set of interfaces and classes that allow us to incorporate
texture into our material models. All of the materials in Chapter 10 have a few
parameters that describe their characteristics (diffuse reflectance, glossiness, etc.).
Because properties of realistic materials typically vary over the surface, we need
an abstractions for describing this variation, and the code in this chapter addresses
this problem. By separating the pattern generation methods here from the material
descriptions in the previous chapter, it is easy to mix and match, thereby creating a
wide variety of appearances.

In graphics, the techniques used to compute these varying surface parameters
fall under the area of texturing. In lrt, a texture is extremely general; it is a func-
tion that maps positions in some domain (typically either � s � t � parametric space
or � x � y � z � object space) to some other domain (typically spectra, vectors, or the
real numbers). We support a variety of mappings; for surfaces with no variation
in some parameter, we support zero-dimensional functions that always return a
constant. For more typical variation on a surface, we support two-dimensional
functions of � s � t � parameter values on a surface. Finally, for variation in space, we
provide three-dimensional functions (e.g. of position in the scene). The arguments
to these texture functions are generally referred to as texture coordinates. This
chapter will include all three types of textures. Two-dimensional image maps are a
well-known type of texturing–they are incorporated into our texturing framework
in Section 11.5.

Texture functions may themselves be a source of high-frequency variation in
the image function. See Figure 11.1, which shows an severly aliased image of a
checkerboard on a plane. At the horizon, the number of checks between a pair of
pixels is very large–the middle of that figure shows a close-up view of four pixels

�����

DifferentialGeometry 58

394 Texture [Ch. 11

Figure 11.1: Texture aliasing: on the left is an image of a checkerboard texture
with one sample per pixel–it has severe aliasing artifacts at the horizon. The middle
image shows a zoomed-in area from near the horizon, which gives a sense of how
much high frequency detail is present between adjacent pixel sample positions. On
the right, the texture function has taken into account the image sampling rate to
prefilter the checkerboard function and remove high frequency detail, resulting in
an anti-aliased image, even with a single sample per pixel.

at the horizon. Although the visual impact of this aliasing is reduced with the non-
uniform sampling techniques from Chapter 7, a better solution to this problem is to
implement texture functions that are aware of their frequency content so that they
can reduce high frequencies based on the rate at which they are being sampled. For
many texture functions, computing their frequency content isn’t too difficult and
is substantially more efficient than increasing the image sampling rate and tracing
more rays into the scene.

The first section of this chapter will describe the basic texture interface and
illustrate its use with a few basic texture functions. We will then discuss general
approaches to texture anti-aliasing. Finally, we will present more complex texture
implementations, showing a number of texture anti-aliasing techniques along the
way.

� �	�
� � � � � � � � � ������� � �	��� � ����� � � � � � � � � ��� � �

Texture is a template class parameterized by the return type of its evaluation
function. This allows us to reuse almost all of the texturing code between textures
that return different types (floats, spectra, vectors, normals, etc.).�
Texture Class Declarations ���
template <class T> class Texture {
public:�

Texture Interface �
};

The key to Texture’s interface is its evaluation function; it returns a value of
the template type T. It has access to the DifferentialGeometry at the point being
shaded; different textures in this chapter will use different parts of this structure to
perform their evaluation.

Sec. 11.1] Texture Interface and Basic Textures 395

58 DifferentialGeometry
394 Texture

�
Texture Interface ���
virtual T Evaluate(const DifferentialGeometry &) const = 0;

11.1.1 Constant Texture

ConstantTexture returns the same value no matter where it is evaluated. Because
this represents a pure DC signal, it can be properly reconstructed with any sampling
rate or pattern, and therefore needs no anti-aliasing. Although this texture appears
trivial, it is actually incredibly useful. By providing this class, all parameters to all
materials can be represented as a Texture, whether they are spatially varying or
not. For example, a red diffuse object will have a ConstantTexture that always
returns red as the diffuse color of the material. This way, the shading system will
always evaluate a texture to get the surface color at a point, avoiding the need for
separate textured and non-textured versions of materials.�
Texture Class Declarations ��� �
template <class T>
class ConstantTexture: public Texture<T> {
public:

ConstantTexture(const T &v) { value = v; }
T Evaluate(const DifferentialGeometry &) const;

private:
T value;

};
�
Texture Template Method Definitions ���
template <class T>
T ConstantTexture<T>::Evaluate(

const DifferentialGeometry &) const {
return value;

}

11.1.2 Scale Texture

We have defined the texture interface in a way that makes it easy to use the output
of one texture function when computing another. This is useful since it lets us
define generic texture operations using any of the other texture types we have. The
ScaleTexure takes two textures, a base map and a scale, and returns the product
of their values when evaluated. This texture can also ignore anti-aliasing, leaving
it to its members to handle.�
Texture Class Declarations ��� �
template <class T1, class T2>
class ScaleTexture : public Texture<T2> {
public:�

ScaleTexture Public Methods �
private:

Texture<T1> *scale;
Texture<T2> *value;

};

ConstantTexture 395
DifferentialGeometry 58

Texture 394
Texture::Evaluate() 395

396 Texture [Ch. 11

�
ScaleTexture Public Methods ���
ScaleTexture(Texture<T1> *s, Texture<T2> *v) {

scale = s;
value = v;

}
�
Texture Template Method Definitions ��� �
template <class T1, class T2>
T2 ScaleTexture<T1, T2>::Evaluate(

const DifferentialGeometry &dg) const {
return scale->Evaluate(dg) * value->Evaluate(dg);

}

We need to delete the child textures used by ScaleTextures when they are
deleted. We won’t show the destructors for the rest of the textures in this chapter;
if they hold pointers to other textures they will delete them in their destructors.�
ScaleTexture Public Methods ��� �
˜ScaleTexture() {

delete scale;
delete value;

}

11.1.3 Mix Textures

The MixTexture class is a more general variation of ScaleTexture. It takes three
textures as input: two may be of any type, and the third must return a floating
point value. The floating point texture is then used to linearly interpolate between
the two other textures. Note that we can use a ConstantTexture for the floating
point values to achieve a uniform blend, or a more complex Texture to blend in a
spatially nonuniform way.�
Texture Class Declarations ��� �
template <class T>
class MixTexture : public Texture<T> {
public:�

MixTexture Public Methods �
private:

Texture<T> *tex1, *tex2;
Texture<Float> *amount;

};
�
MixTexture Public Methods ���
MixTexture(Texture<T> *t1, Texture<T> *t2, Texture<Float> *amt) {

tex1 = t1;
tex2 = t2;
amount = amt;

}

To evaluate the mixture, we just evaluate the three textures and use the floating
point value to linearly interpolate between the two. When the blend amount amt is

Sec. 11.2] Sampling and Anti-Aliasing 397

58 DifferentialGeometry
396 MixTexture
395 Texture::Evaluate()

zero, the first texture’s value is returned and when it is one, the second one’s value
is returned. We will generally assume that amt will be between zero and one, but
this behavior is not enforced, so texture extrapolation is possible.�
Texture Template Method Definitions ��� �
template <class T>
T MixTexture<T>::Evaluate(

const DifferentialGeometry &dg) const {
T t1 = tex1->Evaluate(dg), t2 = tex2->Evaluate(dg);
Float amt = amount->Evaluate(dg);
return (1. - amt) * t1 + amt * t2;

}

� �	��� � � � � �� � � � �	������ � � ���� � � � � �

The sampling task in chapter 7 can be frustrating since the aliasing problem is
known to be unsolvable from the start. The infinite frequency content of geometric
edges and hard shadows guarantees aliasing in our images, regardless of the image
sampling rate. Fortunately, for textures things are not so hopeless. We often either
have a convenient analytic form of the texture function available, making it possible
to remove excessively high frequencies before sampling it, or we can be careful
when we evaluate the function so as to not introduce high frequencies in the first
place. Doing the extra work to anti-alias the texture functions themselves is much
more computationally efficient than increasing the pixel sampling rate to reduce
texture aliasing and is a far more elegant solution to this problem. When complex
surface detail is represented by a texture, we can often render an almost completely
alias-free image with just a single sample per pixel.

We need to address two problems in order to anti-alias textures:

1. Determine what the sampling rate is in texture space. The screen space sam-
pling rate is known from the image resolution and pixel sampling rate, but
here we need to determine what the resulting sampling rate is on a surface in
the scene, and from that determine the rate at which the texture function is
being sampled.

2. Given the texture sampling rate, we need to apply sampling theory (e.g. by
removing excess frequencies beyond the Nyquist limit from the texture func-
tion) in order to return a texture value that doesn’t have high-frequency vari-
ation.

These two issues will be addressed in the next two sub-sections.

11.2.1 Computing the texture-space sampling rate

Figure 11.2 shows the problem we face: texture coordinates � s � t � have been as-
signed to an object in the scene, such that at every point on the surface, the � s � t �
coordinates at that point can be computed. For example, we might just compute� s � t � directly from the � u � v � coordinates of the point on a parametric surface. Given
a particular point being shaded with some � s � t � texture coordinates, we need to

398 Texture [Ch. 11

Figure 11.2: Given a set of image samples (here denoted by hash marks on the
image plane) at some sampling rate, the 3D scene is sampled at some other rate
by the camera rays. If our texture function depends on 2D surface coordinates
� s � t � , then the sampling rate in � s � t � can be approximated by the change in sample
values ��� s1 � s2 � � 2 � � t1 � t2 � � 2 � between adjacent image sample locations. This
texture sampling rate is difficult to compute exactly: it is likely to be varying from
sample to sample on the image plane, and it depends on the image sampling rate,
the camera imaging model, the geometry of the 3D shape, and the association of
� s � t � coordinates with 3D points on the object.

Figure 11.3: different sampling rates in x and y

estimate the local sampling rate at the point. If the two adjacent image smaples in-
tersected the same surface and we know knew their texture coordinates � s1 � t1 � and
� s2 � t2 � , then we could use these points to approximate the local texture sampling
rate as ��� s1 � s2 � � 2 � � t1 � t2 � � 2 � .

Since we are creating a 2D image, we both need to consider the texture sampling
rate as we vary our position in both the x and y directions on the image pane.
Figure 11.3 shows an example where adjacent samples in the x direction lead to a
high sampling rate in texture space, while adjacent samples in y lead to a relatively
low rate.

An alternate approach is to analytically compute the partial derivatives of the
texture parameterization function in terms of image coordinates, ∂s � ∂x, ∂t � ∂x,
∂s � ∂y, and ∂t � ∂y. These derivatives also give a first-order approximation that
we could use to compute the sampling rate. Though this approach is the basis
of texture anti-aliasing in most triangle scan-conversion based renderers, it can be
difficult to extend to general curved geometry and non-linear camera projections.

Sec. 11.2] Sampling and Anti-Aliasing 399

36 Ray
37 RayDifferential

Figure 11.4: rays intersecting the tangent plane lets us approximate the relevant
variations...

For a two-dimensional image, there are four such differential estimates, one
pair for the adjacent image sample in the x direction and the other for y. We will
denote these approximations to the differential change in texture coordinate � s � t �
as a function of image position � x � y � by ∂s � ∂x, ∂t � ∂x, ∂s � ∂y, and ∂t � ∂y, and by
dsdx, etc., in source code.

Some assumptions and approximations need to be made in order to make the
problem tractable. It is far better to make these assumptions and do some form
of anti-aliasing than to give up and just increase the image sampling rate to re-
duce aliasing, since additional camera rays are very expensive. The key to our
calculations lies in the RayDifferential structure, which was defined long ago
in Section 2.4.1. This structure is initialized in the Scene::Render() function,
and contains not only the ray actually being traced through the scene, but also two
offset rays, one offset horizontally one pixel from the camera ray and the other
offset vertically by one pixel.

All of the geometric ray intersection routines only use the main camera ray for
their computations; the auxiliary rays are ignored (this is trivially accomplished
because RayDifferential is a subclass of Ray). Once we find an intersection and
are evaluating textures, however, we use the offset rays to estimate the local texture
sampling rate. The key to this estimate is that we assume the surface is locally flat
with respect to the sampling rate at the point being shaded. This is a reasonable
approximation in practice, and it is hard to do much better; since ray tracing is a
point-sampling technique, we have no additional information about the scene in
between the rays we traced.

Given this approximation, we compute the plane through the point intersected
by the main ray and tangent to the surface there. This plane is given by the implicit
plane equation

ax � by � cz � d 	 0 �

where a 	 nx, b 	 ny, c 	 nz, and d 	 � � n � p � .
Next, we compute the intersection of the auxiliary rays rx and ry with this plane

(Figure 11.4). Given their hit positions, we would like the find the amount of
variation in position on the surface and variation in parametric � u � v � coordinates
between adjacent camera ray samples. These give us the sampling rate in texture
parameter space, which individual textures can use to determine their maximum
allowed frequency content.

HUMPER STOPPED EDITING HERE

DifferentialGeometry 58
DifferentialGeometry::dndu 58
DifferentialGeometry::dndv 58

DifferentialGeometry::p 58
Point 33

RayDifferential 37
RayDifferential::hasDifferentials 38

Shape 63
Vector 27

400 Texture [Ch. 11

XXXX should this be moved back to shapes, rolled into constructor there??
XXXX�
DifferentialGeometry Public Data ��� �
mutable Vector dpdx, dpdy;
mutable Vector dndx, dndy;
mutable Float dudx, dvdx, dudy, dvdy;

�
Initialize DifferentialGeometry from parameters ��� �
dudx = dvdx = dudy = dvdy = 0;

�
DifferentialGeometry Method Definitions ��� �
DifferentialGeometry::DifferentialGeometry(const Point &P,

const Vector &DPDU, const Vector &DPDV, const Vector &DNDU,
const Vector &DNDV, Float uu, Float vv,
const Shape *sh, Float DUDX, Float DVDX,
Float DUDY, Float DVDY)

: p(P), dpdu(DPDU), dpdv(DPDV), dndu(DNDU), dndv(DNDV) {�
Initialize DifferentialGeometry from parameters ��
Adjust normal based on orientation and handedness �
dudx = DUDX;
dvdx = DVDX;
dudy = DUDY;
dvdy = DVDY;
dndx = dndu * dudx + dndv * dvdx;
dndy = dndu * dudy + dndv * dvdy;
dpdx = dpdu * dudx + dpdv * dvdx;
dpdy = dpdu * dudy + dpdv * dvdy;

}
�
DifferentialGeometry Method Definitions ��� �
void DifferentialGeometry::ComputeDifferentials(

const RayDifferential &ray) const {
if (ray.hasDifferentials) {�

Estimate screen-space change in p, n, and � u � v � �
}
else {

dudx = dvdx = 0.;
dudy = dvdy = 0.;
dpdx = dpdy = Vector(0,0,0);

}
}

�
Estimate screen-space change in p, n, and � u � v � ����

Compute auxiliary intersection points with plane �
dpdx = px - p;
dpdy = py - p;�
Compute � u � v � offsets at auxiliary points �
dndx = dndu * dudx + dndv * dvdx;
dndy = dndu * dudy + dndv * dvdy;

Sec. 11.2] Sampling and Anti-Aliasing 401

58 DifferentialGeometry::nn
30 Dot()
33 Point
35 Ray::o
38 RayDifferential::rx
38 RayDifferential::ry
27 Vector

Figure 11.5: computing the change in � u � v � using the position of a point with
respect to the tangent frame coordinate system.

Given their hit positions, we approximate the positions px and py on the surface
with the intersection locations on the tangent plane. The ray–plane intersection
algorithm says that if a ray is described by origin o and direction d, then the t value
where it intersects a plane described by ax � by � cz � d � 0 is

t � � � � a � b � c � � p � � d� a � b � c � � d
To compute this value for the two auxiliary rays, we first compute the plane’s

d coefficient. We don’t need to compute the a, b, and c coefficients, since they’re
just in dg.nn. We can then apply this formula directly.�
Compute auxiliary intersection points with plane ���
Float D = -Dot(nn, Vector(p.x, p.y, p.z));
Vector rxv(ray.rx.o.x, ray.rx.o.y, ray.rx.o.z);
Float tx = -(Dot(nn, rxv) + D) / Dot(nn, ray.rx.d);
Point px = ray.rx.o + tx * ray.rx.d;
Vector ryv(ray.ry.o.x, ray.ry.o.y, ray.ry.o.z);
Float ty = -(Dot(nn, ryv) + D) / Dot(nn, ray.ry.d);
Point py = ray.ry.o + ty * ray.ry.d;

We compute their parametric � u � v � coordinates by taking advantage of the face
that the surface’s ∂p

�
∂u and ∂p

�
∂v form a (not-necessarily orthogonal) coordinate

system on the plane and that the coordinates of the auxiliary intersection points in
terms of this coordinate system are their coordinates with respect to the � u � v � pa-
rameterization (see Figure 11.5). Given a position p � on the plane, we can compute
its position with respect to the coordinate system by

� p � � p � � � ∂p
�
∂u ∂p

�
∂v � �

du
dv �

or �� p � � px
p � � py

p � � pz

�� �
�� ∂p

�
∂ux ∂p

�
∂vx

∂p
�
∂uy ∂p

�
∂vy

∂p
�
∂uz ∂p

�
∂vz

�� �
du
dv �

This is a linear system in three equations of two unknowns–i.e. it’s over-constrained.
However, we need to be careful since one of the equations may be degenerate–e.g.
if ∂p

�
∂u and ∂p

�
∂v are in the xy plane such that their z components are both zero,

DifferentialGeometry::dpdu 58
DifferentialGeometry::dpdv 58
DifferentialGeometry::dudx 400
DifferentialGeometry::dudy 400
DifferentialGeometry::dvdx 400
DifferentialGeometry::dvdy 400
DifferentialGeometry::nn 58
DifferentialGeometry::p 58
SolveLinearSystem2x2() 675

402 Texture [Ch. 11

then the third equation will be degenerate. To deal with this, since we only need
two equations to solve the system, we’d like to choose two that won’t have de-
generacies. Easy way to do this is to take the cross product of ∂p

�
∂u and ∂p

�
∂v

and see which coordinate of the result has the largest magnitude; throw away that
coordinate and use the other two. But that cross product is already available in Nn...�
Compute � u � v � offsets at auxiliary points ����

Initialize A, Bx, and By matrices for offset computation �
SolveLinearSystem2x2(A, Bx, x);
dudx = x[0];
dvdx = x[1];
SolveLinearSystem2x2(A, By, x);
dudy = x[0];
dvdy = x[1];

�
Initialize A, Bx, and By matrices for offset computation ���
Float A[2][2], Bx[2], By[2], x[2];
int axes[2];
if (fabsf(nn.x) > fabsf(nn.y) && fabsf(nn.x) > fabsf(nn.z)) {

axes[0] = 1; axes[1] = 2;
}
else if (fabsf(nn.y) > fabsf(nn.z)) {

axes[0] = 0; axes[1] = 2;
}
else {

axes[0] = 0; axes[1] = 1;
}�
Initialize matrices for chosen projection plane �

�
Initialize matrices for chosen projection plane ���
A[0][0] = dpdu[axes[0]];
A[0][1] = dpdv[axes[0]];
A[1][0] = dpdu[axes[1]];
A[1][1] = dpdv[axes[1]];
Bx[0] = px[axes[0]] - p[axes[0]];
Bx[1] = px[axes[1]] - p[axes[1]];
By[0] = py[axes[0]] - p[axes[0]];
By[1] = py[axes[1]] - p[axes[1]];

XXX “filter region” often used to describe this area around a sample. but
is a misnomer, since filter’s extent not necessarily the same XXX

XXX discuss errors, filtering over areas on the surface that are invisible due
to occlusion, silhouettes, etc. XXX

XXX note that anti-aliasing via tex coord differentials values is only really
right if the end up being fed into a linear function to compute pixel contribu-
tion afterward... True for e.g. diffuse coefficient, but not for, say, a specular
exponent... XXX

HUMPER STARTED EDITING AGAIN HERE

Sec. 11.2] Sampling and Anti-Aliasing 403

11.2.2 Anti-Aliasing Methods

Once we know the sampling rate in texture space, we need to remove frequencies
in the texture function that are past the Nyquist limit for that sampling rate. What
we would like to do, with as few approximations as possible, is to compute the
result of the ideal texture resampling process. Given an arbitrary texture function
T � s � t � , defined on a surface in the scene, consider the frequency content of the
function T � � x � y � , which is T � s � t � projected onto the image plane and expressed in
terms of image coordinates:

T � � x � y � � T � s∂x
�
∂s � t∂x

�
∂t � s∂y

�
∂s � t∂y

�
∂t � �

which can be approximated using the first-order differential values computed pre-
viously:

T � � x � y � � T � s � � ∆s
�
∆x � � t

� � ∆t
�
∆x � � s

� � ∆s
�
∆y � � t

� � ∆t
�
∆y � � �

As we move away from the � x � y � position on the image plane for which ∂s
�
∂x, etc.

were computed, this approximation will become progressively more inaccurate.
The ideal resampling process says that in order to evaluate T � � x � y � without alias-

ing, we must:

� Band-limit it, removing frequencies beyond the Nyquist limit by convolving
it with the ideal sinc reconstruction filter:

T �b � x � y � � � ∞

� ∞
� ∞

� ∞
r � x � � r � y � � T � � x � x � � y � y � � dx � dy �

� Convolve this function with the pixel filter f � x � y � centered at the � x � y � point
on the screen at which we want to evaluate the texture function.

T �f � x � y � � � xWidth � 2

� xWidth � 2
� yWidth � 2

� yWidth � 2
f � x � � y � � T �b � x � x � � y � y � � dx � dy �

We will usually ignore the second step, effectively acting as if the pixel filter was a
box filter, which allows us to do the anti-aliasing work completely in texture-space
and simplifies the implementation significantly. In practice, both these steps can
both be highly simplified; making some effort at applying them is much better than
making no effort at all. Finding efficient solutions to this problem is made more
difficult in practice because the texture sampling rate is generally different at every
point that is shaded in the image, depending on the orientation and distance to the
visible object at each image sample.

As a concrete example that can be solved in closed-form, consider a texture
based on the sine function

T � s � t � � 1 � sin � 2πs � sin � 2πt � �
In both the s and t directions, it has a single component with frequency ω � 1 plus
a constant component. According to sampling theory, point-sampling this function
will lead to aliasing if the sampling frequency in texture space is less than ωs � 2
(corresponding to a sample spacing of 1

�
2.)

404 Texture [Ch. 11

The best approach is to pre-filtering the texture function before evaluating it at a
particular � s � t � position by convolving with a sinc filter with width 1

�
ωs, such that

it removes all frequencies beyond half of the sampling frequency ωs. The result of
this can be worked out in closed form–if ωs � 2, the sinc filter will remove the sin
components of T � s � t � completely, giving us a filtered texture function

Tf � s � t � � 1 �
If the texture sampling rate is high enough to capture the sin terms without aliasing,
the sinc leaves this texture function unchanged, giving a filtered version

Tf � s � t � � 1 � sin � 2πs � sin � 2πt � �
This example is unusual in that it is easy to work out in closed-form what the

effect of pre-filtering with the ideal reconstruction filter would be. For more re-
alistic texture functions, this is not possible. However, having seen the ideal pro-
cess, some simplifications for more complex texture functions immediately suggest
themselves.

First, The same disadvantages that the sinc has for image sample filtering are
present in texture filtering. Recalll that the sinc has infinite extent and exhibits
ringing artifacts when there are discontinuities in the function being filtered. A
finite extent filter such as the Gaussian or the Mitchell filter might be used. Even
the box filter, with its shortcomings, gives acceptable results for texture filtering
in many cases. The box can be particularly easy to apply, since it merely requires
averaging the the texture function over some � s � t � region. Intuitively, this is a rea-
sonable approach to the texture filtering problem, and it can be computed directly
for many texture functions.

Another approach is use the observation that the effect of the sinc filter is to
let frequency components below the Nyquist limit pass through unchanged but
to remove frequencies past them. Therefore, if we have some awareness of the
frequency content of the texture function (e.g. if it is a sum of terms, each one
with known frequency content), then if we replace the high-frequency terms with
their average values, we are effectively doing the work of the sinc pre-filter. This
approach is known as clamping. XXX explain shortcomings w.r.t. sinc XXX

Finally, for texture functions where none of these techniques is easily applied,
we can use super-sampling, where the function is evaluated and filtered at multiple
locations around � s � t � to approximate pre-filtering. If a box filter is used to filter
the samples, then this is equivalent to averaging the value of the function around� s � t � . This approach can be expensive if the texture function is complex to evaluate,
and as with image sampling, a very large number of samples may be needed to
remove aliasing. Recall that sampling theory shows that jittering the locations
of the sample points can turn the aliasing to noise. Though this is a brute-force
solution, it is at least more efficient than increasing the image sampling rate, since
it saves us the cost of tracing more rays through the scene.

Sec. 11.3] Texture Coordinate Generation 405

58 DifferentialGeometry
410 TextureMapping3D

� �	��� � � � � � � � � � ��� � � � ����� 	 ����� � ��� � � �

We should probably have example renderings for all these mappings...
The textures in this chapter are functions that take a two-dimensional � s � t � coor-

dinate or a three-dimensional � x � y � z � coordinate and compute a texture value at the
given position. Sometimes there are obvious ways to choose these texture coordi-
nates; for parametric surfaces, such as the quadrics in Chapter 3, there is a natural
two-dimensional parameterization of the surface, and for all surfaces the shading
point p is a natural choice for a three-dimensional coordinate. In lrt, we will use
the convention that 2D texture coordinates are denoted by � s � t � ; this helps make
clear the distinction between the intrinsic � u � v � parameterization of the underlying
surface and the possibly-different coordinate values used for texturing.

In general, however, there is often not a natural parameterization of complex
surfaces. For instance, given an arbitrary subdivision surface, there is no simple
and general-purpose way to assign � s � t � texture values to the whole shape so that
the entire � 0 � 1 � 2 � s � t � space is covered continuously and without distortion. In
fact, creating smooth parameterizations of complex meshes with low distortion is
an active area of research in computer graphics. This section will introdouce two
abstract base classes–TextureMapping2D and TextureMapping3D–that provide
an interface for computing 2D and 3D texture coordinates. We will then implement
a number of standard mappings using them.

The TextureMapping2D base class has a single method, Map(), which is given
the DifferentialGeometry at the shading point and returns the � s � t � texture coor-
dinates via Float pointers. Also, it returns estimates for the change in s and t with
respect to pixel x and y coordinates in dsdx, dtdx, dsty, and dtdy so that textures
that use the mapping can determine the � s � t � sampling rate and filter accordingly.�
Texture Class Declarations ��� �
class TextureMapping2D {
public:�

TextureMapping2D Interface �
};

�
TextureMapping2D Interface ��� �
virtual void Map(const DifferentialGeometry &dg,

Float *s, Float *t, Float *dsdx, Float *dtdx,
Float *dsdy, Float *dtdy) const = 0;

11.3.1 2D Identity Mapping

The simplest texture mapping uses the 2D parametric � u � v � coordinates in the
DifferentialGeometry to compute the texture coordinates. These can be off-
set and scaled with user-supplied values in each dimension.�
Texture Class Declarations ��� �
class IdentityMapping2D : public TextureMapping2D {
public:�

IdentityMapping2D Public Methods �
private:

Float su, sv, du, dv;
};

DifferentialGeometry 58
DifferentialGeometry::u 58
DifferentialGeometry::v 58

SphericalMapping2D 407
TextureMapping2D 405

406 Texture [Ch. 11

�
Texture Method Definitions ���
IdentityMapping2D::IdentityMapping2D(Float _su, Float _sv,

Float _du, Float _dv) {
su = _su; sv = _sv;
du = _du; dv = _dv;

}

The scale-and-shift computation to compute � s � t � coordinates is quite straight-
forward.�
Texture Method Definitions ��� �
void IdentityMapping2D::Map(const DifferentialGeometry &dg,

Float *s, Float *t, Float *dsdx, Float *dtdx,
Float *dsdy, Float *dtdy) const {

*s = su * dg.u + du;
*t = sv * dg.v + dv;�
Compute texture differentials for 2D identity mapping �

}

Computing the differential change in s and t in terms of the original change in u
and v and the scale amounts is also easy. Using the chain rule,

∂s
∂x � ∂u

∂x
∂s
∂u

�
∂v
∂x

∂s
∂v

and similarly for the three other partial derivatives. From the mapping method,

s � su � u �

so
∂s
∂u � su � ∂s

∂v � 0 �
and thus

∂s
∂x � su

∂u
∂x

�
and so forth.�
Compute texture differentials for 2D identity mapping ���
*dsdx = su * dg.dudx;
*dtdx = sv * dg.dvdx;
*dsdy = su * dg.dudy;
*dtdy = sv * dg.dvdy;

11.3.2 Spherical Mapping

Another useful mapping effectively wraps a sphere around the object. Each point
is projected along the vector from the sphere’s center through the point, up to the
sphere’s surface. There, the same � u � v � mapping as was used for the sphere shape
is used.

The SphericalMapping2D object stores a transformation that is applied to points
before this mapping is performed; this effectively allows the sphere to be arbitrarily
positioned and oriented with respect to the object.

Sec. 11.3] Texture Coordinate Generation 407

58 DifferentialGeometry
58 DifferentialGeometry::p

678 INV PI
678 INV TWOPI
33 Point

193 SphericalPhi()
193 SphericalTheta()
405 TextureMapping2D
43 Transform
27 Vector
30 Vector::Hat()

�
Texture Class Declarations ��� �
class SphericalMapping2D : public TextureMapping2D {
public:�

SphericalMapping2D Public Methods �
private:

void sphere(const Point &P, Float *s, Float *t) const;
Transform WorldToTexture;

};
�
Texture Method Definitions ��� �
void SphericalMapping2D::Map(const DifferentialGeometry &dg,

Float *s, Float *t, Float *dsdx, Float *dtdx,
Float *dsdy, Float *dtdy) const {

sphere(dg.p, s, t);�
Compute texture coordinate differentials for sphere � u � v � mapping �

}

A short utility function computes the mapping for a single point; it will be useful
to have this logic separated out for computing texture coordinate differentials.�
Texture Method Definitions ��� �
void SphericalMapping2D::sphere(const Point &p, Float *s,

Float *t) const {
Vector vec = (WorldToTexture(p) - Point(0,0,0)).Hat();
Float theta = SphericalTheta(vec);
Float phi = SphericalPhi(vec);
*s = theta * INV_PI;
*t = phi * INV_TWOPI;

}

We could here again use the chain rule to compute the texture coordinate differ-
entials, but will instead use a forward differencing approximation to give a flavor
of another way to compute these values which is useful for more involved mapping
functions. Recall that the DifferentialGeometry has fields that hold the change
in position as a function of change in image sample position, so if the s coordinate
is computed by some function fs � p � , it’s easy to compute approximations like

∂s
∂x

� fs � p � ∆ � ∂p
�
∂x � � fs � p �

∆ �
As the distance ∆ � 0, this approximates the partial derivative.

One other detail is that the sphere mapping has a discontinuity in the mapping
formula; there is a seam at t � 1 where the t texture coordinate then discontinuously
jumps back to zero again. We can detect this by checking to see if the dtdx or
dtdy estimate we computed was greater than 0 � 5 and then adjusting the estimate
appropriately.

DifferentialGeometry 58
DifferentialGeometry::dpdx 400
DifferentialGeometry::dpdy 400

DifferentialGeometry::p 58
M PI 678

Point 33
TextureMapping2D 405

Transform 43
Vector 27

Vector::Hat() 30

408 Texture [Ch. 11

�
Compute texture coordinate differentials for sphere � u � v � mapping ���
Float sx, tx, sy, ty;
const Float delta = .01;
sphere(dg.p + delta * dg.dpdx, &sx, &tx);
*dsdx = (sx - *s) / delta;
*dtdx = (tx - *t) / delta;
if (*dtdx > .5) *dtdx = 1. - *dtdx;
sphere(dg.p + delta * dg.dpdy, &sy, &ty);
*dsdy = (sy - *s) / delta;
*dtdy = (ty - *t) / delta;
if (*dtdy > .5) *dtdy = 1. - *dtdy;

11.3.3 Cylindrical Mapping

Like the spherical mapping, the cylindrical mapping effectively wraps a cylinder
around the object having texture coordinates computed for it. It also supports a
transformation to orient the mapping cylinder.�
Texture Class Declarations ��� �
class CylindricalMapping2D : public TextureMapping2D {
public:�

CylindricalMapping2D Public Methods �
private:

void cylinder(const Point &P, Float *s, Float *t) const;
Transform WorldToTexture;

};

The cylindrical mapping has the same basic structure as the sphere mapping;
the mapping function is just different. Therefore, we will omit the fragment that
computes texture coordinate differentials, since it is essentially the same as the
spherical version.�
Texture Method Definitions ��� �
void CylindricalMapping2D::Map(const DifferentialGeometry &dg,

Float *s, Float *t, Float *dsdx, Float *dtdx,
Float *dsdy, Float *dtdy) const {

cylinder(dg.p, s, t);�
Compute texture coordinate differentials for cylinder � u � v � mapping �

}
�
Texture Method Definitions ��� �
void CylindricalMapping2D::cylinder(const Point &p, Float *s,

Float *t) const {
Vector vec = (WorldToTexture(p) - Point(0,0,0)).Hat();
*s = (M_PI + atan2f(vec.y, vec.x)) / (2.f * M_PI);
*t = vec.z;

}

Sec. 11.3] Texture Coordinate Generation 409

58 DifferentialGeometry
400 DifferentialGeometry::dpdx
400 DifferentialGeometry::dpdy
58 DifferentialGeometry::p
30 Dot()
33 Point

405 TextureMapping2D
27 Vector

11.3.4 Planar Mapping

Another classic mapping method is the planar mapping. The point to have texture
coordinates computed is effectively projected onto a plane; a 2D parameterization
of the plane then gives texture coordinates for the point. For example, a point p
could be projected on the z � 0 plane to yield texture coordinates given by u � p x
and v � py.

More generally, we can define such a parameterized plane with two non-parallel
vectors vu and vv and offsets du and dv. The texture coordinates are given by
finding the coordinates of the point with respect to the plane coordinate system,
which is done by taking the dot product of the vector from the point to the origin
with each vector vu and vv and then adding the offset. For the example in the
previous paragraph, we’d have vu � � 1 � 0 � 0 � , vv � � 0 � 1 � 0 � , and du � dv � 0.
�
Texture Class Declarations ��� �
class PlanarMapping2D : public TextureMapping2D {
public:�

PlanarMapping2D Public Methods �
private:

Vector vs, vt;
Float ds, dt;

};
�
Texture Method Definitions ��� �
PlanarMapping2D::PlanarMapping2D(const Vector &_v1,

const Vector &_v2, Float _ds, Float _dt) {
vs = _v1;
vt = _v2;
ds = _ds;
dt = _dt;

}

The planar mapping differentials can be computed directly by finding the differ-
entials of p in texture coordinate space; the result is below.�
Texture Method Definitions ��� �
void PlanarMapping2D::Map(const DifferentialGeometry &dg,

Float *s, Float *t, Float *dsdx, Float *dtdx,
Float *dsdy, Float *dtdy) const {

Vector vec = dg.p - Point(0,0,0);
*s = ds + Dot(vec, vs);
*t = dt + Dot(vec, vt);
*dsdx = Dot(dg.dpdx, vs);
*dtdx = Dot(dg.dpdx, vt);
*dsdy = Dot(dg.dpdy, vs);
*dtdy = Dot(dg.dpdy, vt);

}

DifferentialGeometry 58
DifferentialGeometry::dpdx 400
DifferentialGeometry::dpdy 400

DifferentialGeometry::p 58
Point 33

Transform 43
Vector 27

410 Texture [Ch. 11

11.3.5 3D Mapping

We will define a TextureMapping3D class that defines the interface for generating
three-dimensional texture coordinates.�
Texture Class Declarations ��� �
class TextureMapping3D {
public:�

TextureMapping3D Interface �
};

�
TextureMapping3D Interface ��� �
virtual Point Map(const DifferentialGeometry &dg,

Vector *dpdx, Vector *dpdy) const = 0;

The natural three dimensional mapping just takes the world-space coordinate of
the point being shaded and applies a linear transformation to it. This will often
be a transformation that takes the point back to the primitive’s object space, so the
texture does not appear to change as the object is transformed. XXX shader space,
actually XXX�
Texture Class Declarations ��� �
class IdentityMapping3D : public TextureMapping3D {
public:

IdentityMapping3D(const Transform &x)
: WorldToTexture(x) { }

Point Map(const DifferentialGeometry &dg, Vector *dpdx,
Vector *dpdy) const;

private:
Transform WorldToTexture;

};
�
Texture Method Definitions ��� �
Point IdentityMapping3D::Map(const DifferentialGeometry &dg,

Vector *dpdx, Vector *dpdy) const {
Point p = WorldToTexture(dg.p);
Float delta = .1f;
*dpdx = (WorldToTexture(dg.p + delta * dg.dpdx) - p) / delta;
*dpdy = (WorldToTexture(dg.p + delta * dg.dpdy) - p) / delta;
return p;

}

� �	��� ������� � ��� ������� � � � � ��� � �

The simplest non-constant 2D textures interpolate between multiple given val-
ues based on the relation of the � s � t � coordinates of the point being shaded to values
at the four corners of � 0 � 1 � 2 or at the vertices of a triangle mesh. These textures
also don’t need to consider anti-aliasing, since they are typically not the source of
high frequency variations.

Sec. 11.4] Interpolated Textures 411

394 Texture
405 TextureMapping2D

Figure 11.6: basic bilerp idea

11.4.1 Bilinear Interpolation
�
Texture Class Declarations ��� �
template <class T>
class BilerpTexture : public Texture<T> {
public:�

BilerpTexture Public Methods �
private:�

BilerpTexture Private Data �
};

The BilerpTexture class provides bilinear interpolation between four constant
values. Figure 11.6 shows the basic idea: values are defined at � 0 � 0 � , � 1 � 0 � , � 0 � 1 � ,
and � 1 � 1 � in � s � t � parameter space. The value at a particular � s � t � position is found
by interpolating between them.�
Texture Template Method Definitions ��� �
template <class T>
BilerpTexture<T>::BilerpTexture(TextureMapping2D *m,

const T &t00, const T &t01, const T &t10,
const T &t11) {

mapping = m;
v00 = t00;
v01 = t01;
v10 = t10;
v11 = t11;

}
�
BilerpTexture Private Data ���
TextureMapping2D *mapping;
T v00, v01, v10, v11;

The interpolated value of the four values at a � s � t � position can be computed
by three linear interpolations. For example, we can first interpolate u of the way
between the values at � 0 � 0 � and � 1 � 0 � and store that in a temporary tmp1. We
can then interpolate u of the way between the � 0 � 1 � and � 1 � 1 � values and store the

BilerpTexture 411
BilerpTexture::mapping 411

BilerpTexture::v00 411
BilerpTexture::v01 411
BilerpTexture::v10 411
BilerpTexture::v11 411

DifferentialGeometry 58
Texture 394

TextureMapping2D::Map() 405

412 Texture [Ch. 11

result in tmp2. Finally, by interpolating v of the way between tmp1 and tmp2 gives
us our final result. Mathematically, this is:

tmp1 � � 1 � u � val00 � uval10

tmp2 � � 1 � u � val01 � uval11

result � � 1 � v � tmp1 � vtmp2

Rather than storing the intermediate values explicitly, some algebraic rearrange-
ment gives us the same result from an appropriately weighted average of the four
corner values:

result � � 1 � u � � 1 � v � val00 � � 1 � u � vval01 �
u � 1 � v � val10 � uvval11

�
Texture Template Method Definitions ��� �
template <class T>
T BilerpTexture<T>::Evaluate(const DifferentialGeometry &dg) const {

Float u, v, dsdx, dtdx, dsdy, dtdy;
mapping->Map(dg, &u, &v, &dsdx, &dtdx, &dsdy, &dtdy);
return (1-u)*(1-v) * v00 + (1-u)*v * v01 + u*(1-v) * v10 +

u*v * v11;
}

� �	��� � � � �
� � � � � ��� �

The ImageTexture class stores a 2D array of point sampled values of a texture
function. It uses these samples to reconstruct a continuous image function that can
be evaluated at an arbitrary � s � t � position. These sample values are often called
texels, since they are similar to pixels but are used in the context of a texture.
Image textures are the most widely used type of texture in computer graphics:
digital photographs, scanned artwork, images created with image editing programs,
and images generated by renderers are all extremely useful sources of data for this
particular texture representation. The term texture map is often used to refer to this
type of texture, though this usage blurs the distinction between the mapping that
computes texture coordinates and the texture function itself.�
Texture Class Declarations ��� �
template <class T>
class ImageTexture : public Texture<T> {
public:�

ImageTexture Public Methods �
private:�

ImageTexture Private Methods ��
ImageTexture Private Data �

};

Sec. 11.5] Image Texture 413

412 ImageTexture
414 ImageTexture::GetTexture()
417 MIPMap
181 Spectrum
405 TextureMapping2D

The caller provides the ImageTexture with the filename of an image. The data
in this file is used to create a MIPMap that stores the texels in memory and handles
the details of reconstruction and filtering to reduce aliasing.

For an ImageTexture that returns Spectrum values from Texture::Evaluate(),
the MIPMap stores the image data with type Spectrum. This can be a somewhat
wasteful representation, since most image file formats use a single byte for red,
green, and blue channels at each texel, while the Spectrum class stores spectra
with 32-bit floating point values for each color coefficient. However, it would be
unnecessarily restrictive to only support that representation. It’s important that the
system support image maps with arbitrary floating-point values for the accuracy
and high contrast that come from this generality; it is particularly useful for bring-
ing measured data into the renderer. As such, we will accept some wasted memory
and store all color-oriented textures with Spectrum objects here.�
Texture Template Method Definitions ��� �
template <class T>
ImageTexture<T>::ImageTexture(TextureMapping2D *m,

const string &filename) {
mapping = m;
mipmap = GetTexture(filename);

}
�
ImageTexture Private Data ���
MIPMap<T> *mipmap;
TextureMapping2D *mapping;

11.5.1 Texture caching

Because image maps are memory-intensive and because the user may reuse a tex-
ture many times within a scene, lrt maintains a hash table of image maps, so that
they are only loaded into memory once even if they are used in more than one
ImageTexture.

ImageTexture 412
ImageTexture::convert() 415

MIPMap 417
Spectrum 181

414 Texture [Ch. 11

�
Texture Template Method Definitions ��� �
template <class T> MIPMap<T> *ImageTexture<T>::GetTexture(

const string &filename) {
static map<string, MIPMap<T> *> textures;
if (textures.find(filename) != textures.end())

return textures[filename];
int width, height;
Spectrum *texels = ReadImage(filename, &width, &height);
MIPMap<T> *ret = NULL;
if (texels) {�

Convert texels to type T and create MIPMap �
}
else {�

Create zero-valued MIPMap �
}
textures[filename] = ret;
return ret;

}

Because the image loading routines always return an array of Spectrum values
for the texels, it is necessary to convert these Spectrum values to the particular type
T of texel that this MIPMap is storing (e.g. Float) if the type of T isn’t Spectrum.
The per-texel conversion is handled by the utility routine ImageTexture::convert().
Note that this conversion is wasted work in the common case where the MIPMap is
storing Spectrum values, but the flexibility it gives us is worth this relatively small
cost in efficiency.1�
Convert texels to type T and create MIPMap ���
T *convertedTexels = new T[width*height];
for (int i = 0; i < width*height; ++i)

convert(texels[i], &convertedTexels[i]);
ret = new MIPMap<T>(width, height, convertedTexels);
delete[] texels;
delete[] convertedTexels;

Per-texel conversion is done using C++ function overloading. For every type to
which we would like to be able to convert Spectrum values, a separate convert()
function must be provided. In the loop over texels above, C++’s function over-
loading mechanism will select the appropriate instance of convert() based on the
destination type. Unfortunately, it is not possible to return the converted value from
the function, since C++ doesn’t support overloading by return type.�
ImageTexture Private Methods ��� �
static void convert(const Spectrum &from, Spectrum *to) {

*to = from;
}
static void convert(const Spectrum &from, Float *to) {

*to = from.y();
}

1Additional C++ template trickery could ensure that this step was skipped when T is type
Spectrum, if the cost of this unnecessary work was unacceptable.

Sec. 11.5] Image Texture 415

58 DifferentialGeometry
412 ImageTexture
413 ImageTexture::mapping
413 ImageTexture::mipmap
417 MIPMap
427 MIPMap::Lookup()
181 Spectrum
185 Spectrum::y()
405 TextureMapping2D::Map()

If the texture file wasn’t found or was unreadable, an image map with a single
zero-valued sample is created so that the renderer can continue and generate some
image of the scene without needing to abort execution. The ReadImage function
will print a warning message to the screen in this case.�
Create zero-valued MIPMap ���
T *oneVal = new T[1];
oneVal[0] = 0.;
ret = new MIPMap<T>(1, 1, oneVal);
delete[] oneVal;

The ImageTexture evaluation routine does the usual texture coordinate compu-
tation and then hands the image map lookup to the MIPMap. The MIPMap does the
difficult image filtering work for anti-aliasing using the partial derivatives of the
texture coordinates.�
Texture Template Method Definitions ��� �
template <class T>
T ImageTexture<T>::Evaluate(

const DifferentialGeometry &dg) const {
Float s, t, dsdx, dtdx, dsdy, dtdy;
mapping->Map(dg, &s, &t, &dsdx, &dtdx, &dsdy, &dtdy);
return mipmap->Lookup(s, t, dsdx, dtdx, dsdy, dtdy);

}

11.5.2 MIP Maps

As always, if the image function that is reconstructed from the point samples has
higher frequency detail than can be represented by the texture sampling rate, alias-
ing will be present in the final image. Any frequencies higher than the Nyquist
limit must be removed by pre-filtering before the function is evaluated. Figure 11.7
shows the basic problem we face: an image texture has texels that are samples at
a fixed frequency. The filter region is given by its � s � t � center point and offsets to
the estimated texture coordinate locations for the adjacent image samples. Because
these offsets are estimates of the texture sampling rate, it is necessary to remove
any frequencies higher than twice the distance to the adjacent samples in order to
satisfy the Nyquist criterion.

The texture sampling and reconstruction process has a few key differences from
the process discussed in Chapter 7, however. First, it’s inexpensive to get the value
of a sample–only the cost of an array lookup is necessary (as opposed to having
to trace a ray). Second, because the texture image function is fully defined by
the set of samples and there is no mystery about what its highest frequency could
be, there is no problem regarding the function’s behavior between samples. These
differences make it possible to remove detail from the texture before sampling, thus
eliminating aliasing due to image texture in final images.

However, the texture sampling rate will in general change from pixel to pixel–it
is spatially variant. The sampling rate is determined by scene geometry and its ori-
entation, the texture coordinate mapping function, and the camera projection and
image sampling rate. Because the sampling rate is not fixed, texture filtering algo-
rithms need to be able to filter over arbitrary regions of texture samples efficiently.

416 Texture [Ch. 11

Figure 11.7: may need to look at many texels to filter a texture over a large area...

Figure 11.8: image sequence showing that texture filtering makes a big difference

Sec. 11.5] Image Texture 417

Figure 11.9: A few levels of an image pyramid...

The MIPMap class implements two methods for efficient texture filtering with
spatially varying filter widths. The first, trilinear interpolation, is fast and easy to
implement, and has been widely used for texture filtering in graphics hardware.
The second, elliptically weighted averaging, is slower and more complex, but re-
turns extremely high quality results.

To limit the potential number of texels that need to be accessed, both of these fil-
tering methods use an image pyramid of increasingly lower-resolution pre-filtered
versions of the original image to accelerate their operation2 . The original image
texels are at the bottom level of the pyramid, and the image at each level is half the
resolution of the the previous level, up to the top level which has a single texel rep-
resenting the average of all of the texels in the original image. Figure 11.9 shows
a few levels of the image pyramid for the XXX texture on the XXX scene. This
collection of images only needs 1

�
3 more memory than storing the most detailed

level alone, and can be used to quickly find filtered values over large regions of the
original image.

MIPMap is a template class, and is parameterized by the data type of the image
texels. lrt creates MIPMaps of both Spectrum and Float images; Float MIP
maps are used for representing directional distributions of intensity from gonio-
metric light sources, for example. The MIPMap requires that the type T support just
a few basic operations, including addition and multiplication by a scalar.�
MIPMap Declarations ���
template <class T> class MIPMap {
public:�

MIPMap Public Methods �
private:�

MIPMap Private Methods ��
MIPMap Private Data �

};

In the constructor, the MIPMap copies the image data provided by the caller,
possibly resizes the image to ensure that its resolution is a power of two in each
direction, and initializes a lookup table used by the elliptically weighted average

2The name “mipmap” comes from the Latin “multum in parvo”, which means “many things in
the same place”, a nod to the image pyramid.

IsPowerOf2() 678
MIPMap 417

RoundUpPow2() 678

418 Texture [Ch. 11

filtering method in Section 11.5.4.�
MIPMap Method Definitions ���
template <class T>
MIPMap<T>::MIPMap(int sres, int tres, const T *img) {

T *resampledImage = NULL;
if (!IsPowerOf2(sres) || !IsPowerOf2(tres)) {�

Resample image to power-of-two resolution �
}�
Initialize levels of MIPMap from image �
if (resampledImage) delete[] resampledImage;�
Initialize EWA filter weights if needed �

}

Implementation of an image pyramid is substantially easier if the resolution of
the original image is an exact power of two in each direction; this ensures that there
is a straightforward relationship between the level of the pyramid and the number
of texels at that level. If the user has provided an image where the resolution in
one or both of the dimensions is not a power of two, then the MIPMap constructor
starts by increasing the image resolution up to the next power of two greater than
the original resolution before constructing the pyramid.

Image magnification in this manner involves more application of the sampling
and reconstruction theory from Chapter 7: we have an image function that has been
sampled at one sampling rate, and we’d like to reconstruct a continuous image
function from the original samples to resample at a new set of sample positions.
Because this represents an increase in the sampling rate from the original rate,
we don’t have to worry about introducing aliasing due to undersampling high fre-
quency components in this step–we only need to reconstruct and directly resample
the new function. Figure 11.10 illustrates this task in 1D.

The MIPMap will use a separable reconstruction filter for this task; recall from
Section 7.7 that separable filters can be written as the product of one-dimensional
filters: f � x � y � � f � x � f � y � . One advantage of using a separable filter is that if we
are using one to resample an image from one resolution � s � t � to another � s � � t � � ,
then we can implement the resampling as two one-dimensional resampling steps,
first resampling in s to create an image of resolution � s � � t � and then resampling that
image to create the final image of resolution � s � � t � � . Resampling the image via two
1D steps in this manner simplifies implementation and makes the number of texels
accessed for each texel in the final image a linear function of the filter width, rather
than a quadratic one.�
Resample image to power-of-two resolution ���
int sPow2 = RoundUpPow2(sres), tPow2 = RoundUpPow2(tres);�
Resample image in s direction ��
Resample image in t direction �
sres = sPow2;
tres = tPow2;

Reconstructing the original image function and sampling it at a new texel’s posi-
tion is mathematically equivalent to centering the reconstruction filter kernel at the
new texel’s position and weighting the nearby texels in the original image appro-
priately (see Figure 11.11.) Thus, each new texel is a weighted average of a small

Sec. 11.5] Image Texture 419

420 MIPMap::resampleWeights()
420 ResampleWeight

0 1
0

1

0 1
0

1

Figure 11.10: To increase an image’s resolution to be a power of two, the MIPMap
performs two 1D resampling steps with a separable reconstruction filter. On the
left is a 1D function reconstructed from three samples, denoted by dots. To repre-
sent the same image function with more samples, we just need to reconstruct the
continuous function and evaluate it at the new positions, shown as dots in the right
image.

number of texels in the original image.
The MIPMap::resampleWeights() method determines which original texels

contribute to each new texel and the values of contribution weights. It returns the
values in an array of ResampleWeight structures for all of the texels in a 1D row
or column of the image. Because this information is the same for all rows of the
image when we are resampling in s and all columns when we are resampling in t,
it’s more efficient to compute it once for each of the two passes and then reuse it
many times for each one. Given these weights, the image is first magnified in the
s direction, turning the original image with resolution (sres,tres) into an image
with resolution (sPow2,tres), which is stored in resampledImage. We allocate
enough space in resampledImage to hold the final zoomed image, so we don’t
have to do two large allocations.

well, why is the resampledImage sPow2 * tPow2 then, when the above line
says it should be sPow2*tres?�
Resample image in s direction ���
ResampleWeight *sWeights = resampleWeights(sres, sPow2);
resampledImage = new T[sPow2 * tPow2];�
Apply sWeights to zoom in s direction �
delete[] sWeights;

For the filter function we will use below, no more than four of the original texels
will contribute to each new texel after zooming, so ResampleWeight only needs to
hold four weights. Because the four texels are contiguous, we only store the offset
to the first one.�
MIPMap Private Data ���
struct ResampleWeight {

int firstTexel;
Float weight[4];

};

Assert() 659
MIPMap::Lanczos() 420

420 Texture [Ch. 11

Figure 11.11: Given an image described by evenly-spaced point samples, denoted
here by dots, we’d like to reconstruct the image function at an arbitrary point,
denoted here by an “x”. The value at this point can be computed by centering the
reconstruction filter kernel at the new point and computing the weighted average
of the nearby samples using the filter’s value for the offsets to those samples.

�
MIPMap Private Methods � � �
ResampleWeight *resampleWeights(int oldres, int newres) {

Assert(newres >= oldres);
ResampleWeight *wt = new ResampleWeight[newres];
Float filterwidth = 2.f;
for (int i = 0; i < newres; ++i) {�

Compute image resampling weights for ith texel �
}
return wt;

}

Just as it was important to distinguish between discrete and continuous pixel co-
ordinates in Chapter 7, the same issues need to be addressed with texel coordinates
here. We will use the same conventions as described in Section 7.2.9 here. For
each new texel, this function starts by computing its position’s continuous coordi-
nates in terms of the old texel coordinates. This value is stored in center, as it is
the center of the reconstruction filter for the new texel. Next, it needs to find the
offset to the first texel that contributes to the new texel. This is a slightly tricky
calculation–after subtracting the filter width to find the start of the filter’s non-zero
range, it is necessary to add an extra 0 � 5 offset to the continuous coordinate before
computing the floor to find the discrete coordinate. Figure 11.12 illustrates why
this offset is needed.

Starting from this first contributing texel, this function loops over four texels,
computing each one’s offset to the center of the filter kernel and the correspond-
ing filter weight. The reconstruction filter function used to compute the weights,
MIPMap::Lanczos(), is equivalent to the one in SincFilter::Sinc1D().

Sec. 11.5] Image Texture 421

420 ResampleWeight::firstTexel
420 ResampleWeight::weight

Figure 11.12: The computation to find the first texel inside a reconstruction filter’s
support is slightly tricky. Consider a filter centered around continuous coordinate
2.75 with width 2, as shown here. The filter’s support covers the range � 0 � 75 � 4 � 75 � ,
though texel zero is outside the filter’s support: adding 0 � 5 to the lower end before
taking the floor to find the discrete texel gives the correct starting texel, number
one.

�
Compute image resampling weights for ith texel ���
Float center = (i + .5f) * oldres / newres;
wt[i].firstTexel = Floor2Int((center - filterwidth) + 0.5f);
for (int j = 0; j < 4; ++j) {

Float pos = wt[i].firstTexel + j + .5f;
wt[i].weight[j] = Lanczos((pos - center) / filterwidth);

}�
Normalize filter weights for texel resampling �
Depending on the filter function used, the four filter weights may not sum to

one. Therefore, to ensure that the resampled image won’t be any brighter or darker
than the original image, the weights are normalized here.�
Normalize filter weights for texel resampling ���
Float invSumWts = 1.f / (wt[i].weight[0] + wt[i].weight[1] +

wt[i].weight[2] + wt[i].weight[3]);
for (int j = 0; j < 4; ++j)

wt[i].weight[j] *= invSumWts;

Once the weights have been computed, it’s easy to apply them to compute the
zoomed texels. For each of the tres horizontal scanlines in the original image, we
make a pass across the sPow2 texels in the s-zoomed image using the precomputed
weights to compute their values.�
Apply sWeights to zoom in s direction ���
for (int t = 0; t < tres; ++t) {

for (int s = 0; s < sPow2; ++s) {�
Compute texel � s � t � in s-zoomed image �

}
}

The MIPMap uses the convention that any out-of-bounds texel coordinate should
be remapped to the range of valid coordinates by taking the modulus of the value
with the overall resolution in its dimension, thus repeating the image. It is neces-
sary to handle this case here as well, since some of the texels needed will be off the
edges of the image sample array.

BlockedArray 672
Log2Int() 678

Mod() 677
ResampleWeight::firstTexel 420

ResampleWeight::weight 420

422 Texture [Ch. 11

�
Compute texel � s � t � in s-zoomed image ���
resampledImage[t*sPow2+s] = 0.;
for (int j = 0; j < 4; ++j) {

int origS = Mod(sWeights[s].firstTexel + j, sres);
resampledImage[t*sPow2+s] += sWeights[s].weight[j] *

img[t*sres + origS];
}

The process for resampling in the t direction is almost the same as for s, so we
won’t include the implementation here.

Once we have an image with resolutions that are powers of two, the levels of
the MIP map can be initialized, starting from the bottom. Each one will filter the
texels from the previous level. Because image maps use a fair amount of memory,
and because 8-20 texels are typically used per image texture lookup to compute a
filtered value, it’s worth carefully considering how the texels are laid out in mem-
ory, since reducing cache misses while accessing the texture map can noticeably
improve the renderer’s performance for certain scenes. Because both of the two
texture filtering methods implemented in this section access a set of texels in a
rectangular region of the image map each time a lookup is performed, the MIPMap
uses the BlockedArray template class to store the 2D arrays of texel values, rather
than using a standard C++ array. The BlockedArray reorders the array values in
memory in a way that improves cache coherence when the values are accessed with
these kinds of rectangular patterns; it is described in Appendix A.3.5.�
Initialize levels of MIPMap from image ���
nLevels = 1 + Log2Int(max(sres, tres));
pyramid = new BlockedArray<T> *[nLevels];�
Initialize most detailed level of MIPMap �
for (int i = 1; i < nLevels; ++i) {�

Initialize ith MIPMap level from i � 1st level �
}

�
MIPMap Private Data ��� �
BlockedArray<T> **pyramid;
int nLevels;

The base level of the MIP map, which holds the original data (or the resampled
data, if it didn’t originally have power of two resolutions), is easily initialized by
the default BlockedArray constructor.�
Initialize most detailed level of MIPMap ���
pyramid[0] = new BlockedArray<T>(sres, tres, img);

Before showing how the rest of the levels are initialized, we will first define
a texel access function that will be used during that process. MIPMap::texel()
returns a reference to the texel value for the given discrete integer-valued texel
position. As described above, if an out-of-range texel coordinate is passed in, this
method effectively repeats the texture over the entire 2D texture coordinate domain
by taking the modulus of the coordinate with respect to the texture size. Other
reasonable ways to handle this condition include clamping the texel coordinates to
the valid range, or returning a constant value for out of range coordinates. should
we provide these options? Would be so simple.

Sec. 11.5] Image Texture 423

672 BlockedArray
673 BlockedArray::uSize()
673 BlockedArray::vSize()
417 MIPMap

�
MIPMap Method Definitions ��� �
template <class T>
const T &MIPMap<T>::texel(int level, int s, int t) const {

const BlockedArray<T> &l = *pyramid[level];
s = Mod(s, l.uSize());
t = Mod(t, l.vSize());
return lPYWEB_NO_USE (s, t);

}

For non-square images, the resolution in one direction must be clamped to one
for the upper levels of the image pyramid, where there is still down-sampling to do
in the larger of the two resolutions. This is handled by the max() call below.�
Initialize ith MIPMap level from i � 1st level ���
int sRes = max(1, pyramid[i-1]->uSize()/2);
int tRes = max(1, pyramid[i-1]->vSize()/2);
pyramid[i] = new BlockedArray<T>(sRes, tRes);�
Filter four texels from finer level of pyramid �
Here the MIPMap just uses a simple box filter to average four texels from the

previous level to find the value the current texel. While using the Lanczos filter
here would give a slightly better result for this computation, the box filter is fine in
practice. Why not do the right thing? fine in practice is a cop-out.

Though not shown above, there are actually two versions of the MIPMap::texel()
method, the other returning a T & instead of a const T &, thus making it possible
to use a MIPMap::texel() call on the left hand side of an assignment expression
as is done here.�
Filter four texels from finer level of pyramid ���
for (int t = 0; t < tRes; ++t)

for (int s = 0; s < sRes; ++s)
texel(i, s, t) = .25f * (

texel(i-1, 2*s, 2*t) +
texel(i-1, 2*s+1, 2*t) +
texel(i-1, 2*s, 2*t+1) +
texel(i-1, 2*s+1, 2*t));

11.5.3 Isotropic Triangle Filter

The first of the two MIPMap::Lookup() methods uses a triangle filter over the tex-
ture samples to remove high frequencies. Although this filter function does not give
high-quality results, it can be implemented very efficiently. In addition to the � s � t �
coordinates of the evaluation point, the user passes this method a filter width for the
lookup, giving the extent of the region of the texture to filter across. This method
filters over a square region in texture space, so the width should be conservatively
chosen to avoid aliasing in both the s and t direction. Filtering techniques like this
one that do not support a filter extent that is non-square or non-axis-aligned are
known as isotropic. The primary disadvantage of isotropic filtering algorithms is
that textures viewed at an oblique angle will appear substantially blurry, since the
sampling rate along one axis will be very different from the sampling rate along
the other.

Log2() 677
MIPMap 417

424 Texture [Ch. 11

Figure 11.13: choosing a mipmap level for the triangle filter...

Because filtering over many texels for wide filter widths would be inefficient,
this method chooses a MIP map level from the pyramid such that the filter region
at that level would cover four texels at that level; Figure 11.13 shows the idea.�
MIPMap Method Definitions �
 �
template <class T>
T MIPMap<T>::Lookup(Float s, Float t, Float width) const {�

Compute MIPMap level for trilinear filtering ��
Perform trilinear interpolation at appropriate MIPMap level �

}

Since the resolutions of the levels of the pyramid are all powers of two, the
resolution of level l is 2nLevels

�
1

�
l . Therefore, to find the level with a texel spacing

width w requires solving the equation:

1
w

� 2nLevels
�

1
�

l

for l. In general this will be a floating-point value between two MIP map levels.�
Compute MIPMap level for trilinear filtering ���
Float level = nLevels - 1 + Log2(max(width, 1e-8f));

As shown by Figure 11.13, applying a triangle filter to the four texels around
the sample point will either filter over too small a region or too large a region
(except for very carefully-selected filter widths). The implementation here applies
the triangle filter at both of these levels and blends between them according to how
close level is to each of them. This helps hide the transitions from one MIP map
level to the next at nearby pixels in the final image. While applying a triangle filter
to four texels at two levels in this manner doesn’t give exactly the same result as
applying it to the original highest-resolution texels, the difference isn’t too bad in
practice and the efficiency of thies approach is worth this penalty. The elliptically
weighted average filtering in the next section should be used when texture quality
is very important.

Sec. 11.5] Image Texture 425

423 MIPMap::texel()
426 MIPMap::triangle()

Figure 11.14: To comptue the value of the image texture function at an arbitrary� s � t � position, MIPMap::triangle() finds the four texels around � s � t � and weights
them according to a triangle filter based on their distance to � s � t � . One way to
implement this is as a series of linear interpolations, as shown here: first, the two
texels below � s � t � are linearly inteprolated to find a value at � s � 0 � , and the two
texels above it are interpolated to find � s � 1 � . Then, � s � 0 � and � s � 1 � are linearly
interpolated again to find the value at � s � t � .
�
Perform trilinear interpolation at appropriate MIPMap level ���
if (level < 0)

return triangle(0, s, t);
else if (level >= nLevels - 1)

return texel(nLevels-1, 0, 0);
else {

int iLevel = Floor2Int(level);
Float delta = level - iLevel;
return (1.f-delta) * triangle(iLevel, s, t) +

delta * triangle(iLevel+1, s, t);
}

Given floating-point texture coordinates in � 0 � 1 � 2, the MIPMap::triangle()
routine uses a triangle filter to interpolate between the four texels that surround the
sample point, as shown in Figure 11.14. This method first scales the coordinates by
the texture resolution at the given mipmap level in each direction, turning them into
continuous texel coordinates. Because these are continuous coordinates, but the
texels in the image map are defined at discrete texture coordinates, it’s important to
carefully convert into a common representation. Here, we will do all of our work
in discrete coordinates, mapping the continuous texel coordinates to discrete space.

For example, consider the 1D case with a continuous texture coordinate of 2 � 4:
this coordinate is a distance of 0 � 1 below the discrete texel coordinate 2 (which
corresponds to a continuous coordinate of 2 � 5), and is 0 � 9 above the discrete coor-
dinate 1 (continuous coordinate 1 � 5). Thus, if we subtract 0 � 5 from the continuous
coordinate 2 � 4, giving 1 � 9, we can correctly compute the correct distances to the
discrete coordinates 1 and 2 by subtracting coordinates.

After computing the distances in s and t to the texel at the lower left of the
given coordinates, ds and dt, MIPMap::triangle() computes weights for the

BlockedArray::uSize() 673
BlockedArray::vSize() 673

Clamp() 677
MIPMap 417

MIPMap::texel() 423

426 Texture [Ch. 11

four texels and computes the filtered value. Recall that the triangle filter is

f � x � y � � � 1 � � x � � � 1 � � y � � ;
the appropriate weights follow directly. Notice the similarity between this compu-
tation andBilerpTexture::Evaluate().�
MIPMap Method Definitions ��� �
template <class T>
T MIPMap<T>::triangle(int level, Float s, Float t) const {

level = Clamp(level, 0, nLevels-1);
s = s * pyramid[level]->uSize() - 0.5f;
t = t * pyramid[level]->vSize() - 0.5f;
int s0 = Floor2Int(s), t0 = Floor2Int(t);
Float ds = s - s0, dt = t - t0;
return (1.-ds)*(1.-dt) * texel(level, s0, t0) +

(1.-ds)*dt * texel(level, s0, t0+1) +
ds*(1.-dt) * texel(level, s0+1, t0) +
ds*dt * texel(level, s0+1, t0+1);

}

11.5.4 Elliptically Weighted Average

The elliptically weighted average (EWA) algorithm fits an ellipse to the two axes
in texture space given by the texture coordinate differentials and then filters the
texture with a Gaussian filter function (see Figure 11.15). It is widely regarded
as one of the best texture filtering algorithms in graphics and has been carefully
derived from the basic principles of sampling theory. Unlike the triangle filter in
the previous section, it can filter over arbitrarily-orented regions of the texture, with
some flexibility of different filter extents in different directions. This type of filter
is known as isotropic. This capability greatly improves the quality of its results,
since it can properly adapt to different sampling rates along the two image axes.

We won’t show its full derivation here, though we do note that it is distinguished
by being a unified resampling filter: it simultaneously computes the result of a
Gaussian filtered texture function convolved with a Gaussian reconstruction filter
in image space. This is contrast to many other texture filtering methods that ignore
the effect of the image space filter, or equivalently assume that it is a box. Even if
a Gaussian isn’t being used for filtering the samples for the image being rendered,
taking some account of the spatial variation of the image filter improves the results,
assuming that the filter being used is somewhat similar in shape to the Gaussian,
as the Mitchell and windowed sinc filters are.�
MIPMap Method Definitions ��� �
template <class T>
T MIPMap<T>::Lookup(Float s, Float t, Float ds0, Float dt0,

Float ds1, Float dt1) const {�
Compute ellipse minor and major axes ��
Clamp ellipse eccentricity if too large ��
Choose level of detail for EWA lookup ��
Do EWA filtering at appropriate level �

}

Sec. 11.5] Image Texture 427

417 MIPMap

Figure 11.15: The EWA filter applies a Gaussian filter to the texels in an elliptical
area around the evaluation point. The extent of the ellipse is such that its edge
passes through the positions of the adjacent texture samples as estimated by the
texture coordinate partial derivatives.

The screen-space partial derivatives of the texture coordinates are the axes of the
ellipse. This method starts out by determining which of the two axes is the major
axis (the longer of the two) and which is the minor, swapping them if needed so
that ds0,dt0 is the major axis. The length of the minor axis will be used shortly
to select a MIP map level to use.�
Compute ellipse minor and major axes ���
if (ds0*ds0 + dt0*dt0 < ds1*ds1 + dt1*dt1) {

swap(ds0, ds1);
swap(dt0, dt1);

}
Float majorLength = sqrtf(ds0*ds0 + dt0*dt0);
Float minorLength = sqrtf(ds1*ds1 + dt1*dt1);

Next the eccentricity of the ellipse is computed–this is the ratio of the length of
the major axis to the length of the minor axis. A large eccentricity indicates a very
long and skinny ellipse. Because this method filters texels from a MIP map level
chosen based on the length of the minor axis, highly eccentric ellipses mean that
a large number of texels need to be filtered. To avoid this expense (and to ensure
that any EWA lookup takes a bounded amount of time), the length of the minor
axis may be increased to limit the eccentricity. The result may be an overly-blurred
result for such regions, though this usually isn’t noticeable when it happens.

Why isn’t the max eccentricity a user-settable parameter? I hate magic
constants.

Log2Int() 678
MIPMap 417

MIPMap::texel() 423

428 Texture [Ch. 11

�
Clamp ellipse eccentricity if too large ���
const Float maxEccentricity = 8.f;
if (minorLength * maxEccentricity < majorLength) {

Float scale = majorLength / (minorLength * maxEccentricity);
ds1 *= scale;
dt1 *= scale;
minorLength *= scale;

}

Like the triangle filter, the EWA filter uses the image pyramid to reduce the
number of texels to be filtered for a particular texture lookup. It chooses a MIP
map level such the minor axis of the ellipse has a total width of five texels at that
level. Given the limited eccentricity of the ellipse due to the clamping above, the
total number of texels use will be bounded.

Given the length of the minor axis, the computation to find the appropriate pyra-
mid level is the same as was used for the triangle filter. Here, however, filtering
is only done at one level of the pyramid, rather than blending between two filtered
results. There is some danger of seeing the transition points between MIP map
levels when filtering is only done on one level, though this is much less easily seen
with the EWA filter than with the triangle filter.�
Choose level of detail for EWA lookup ���
int lod = max(0, nLevels - 1 + Log2Int(minorLength));

If the appropriate level is beyond the top of the pyramid, this method can im-
mediately return the average texture value from the top level without doing any
filtering. Otherwise the EWA() method actually applies the filter.�
Do EWA filtering at appropriate level ���
if (lod >= nLevels-1)

return texel(nLevels-1, 0, 0);
else

return EWA(s, t, ds0, dt0, ds1, dt1, lod);
�
MIPMap Method Definitions ��� �
template <class T>
T MIPMap<T>::EWA(Float s, Float t, Float ds0, Float dt0,

Float ds1, Float dt1, int level) const {�
Convert EWA coordinates to appropriate scale for level ��
Compute ellipse coefficients to bound EWA filter region ��
Compute the ellipse’s � s � t � bounding box in texture space ��
Scan over ellipse bound and compute quadratic equation �

}

The MIPMap::EWA() method first converts from texture coordinates in � 0 � 1 � to
coordinates and differentials in terms of the resolution of the chosen MIP map level.
It also subtracts 0 � 5 from the continuous position coordinate to align the sample
point with the discrete texel coordinates, as was done in MIPMap::triangle().

Sec. 11.5] Image Texture 429

673 BlockedArray::uSize()
673 BlockedArray::vSize()

�
Convert EWA coordinates to appropriate scale for level ���
s = s * pyramid[level]->uSize() - 0.5f;
t = t * pyramid[level]->vSize() - 0.5f;
ds0 *= pyramid[level]->uSize();
dt0 *= pyramid[level]->vSize();
ds1 *= pyramid[level]->uSize();
dt1 *= pyramid[level]->vSize();

Next it is necessary to compute the coefficients of the implicit equation for the
ellipse with axes (ds0,dt0) and (ds1,dt1) and centered at the origin. Placing
the ellipse at the origin rather than at � s � t � simplifies the implicit equation and the
computation of its coefficients, and can be easily corrected for when the equation is
evaluated later. The general form of the implicit equation for all points � s � t � inside
such an ellipse is

e � s � t � � As2 � Bst � Ct2 � F �
though it is more computationally efficient to divide through by F and express this
as

e � s � t � � A
F

s2 �
B
F

st �
C
F

t2 � A � s2 � B � st � C � t2 � 1 �
We will not derive the equations that give the values of the coefficients, though the
interested reader can algebraically verify their correctness.3

�
Compute ellipse coefficients to bound EWA filter region ���
Float A = dt0*dt0 + dt1*dt1 + 1;
Float B = -2.f * (ds0*dt0 + ds1*dt1);
Float C = ds0*ds0 + ds1*ds1 + 1;
Float invF = 1.f / (A*C - B*B*0.25f);
A *= invF;
B *= invF;
C *= invF;

The next step is to find the axis-aligned bounding box in discrete integer texel
coordinates of the texels that are potentially inside the ellipse. The EWA algorithm
loops over all of these candidate texels, filtering the contributions of those that are
in fact inside the ellipse. The bounding box is found by determining the minimum
and maximum value that the ellipse takes in the s and t directions. These extrema
can be calculated by finding the partial derivatives ∂e � s � t � �

∂s and ∂e � s � t � �
∂t, find-

ing their solutions for s � 0 and t � 0, and adding the offset to the ellipse center.
For brevity, we will not include the derivation for these expressions here.�
Compute the ellipse’s � s � t � bounding box in texture space ���
Float det = -B*B + 4.f*A*C;
Float invDet = 1.f / det;
Float uSqrt = sqrtf(det * C), vSqrt = sqrtf(A * det);
int s0 = Ceil2Int (s - 2.f * invDet * uSqrt);
int s1 = Floor2Int(s + 2.f * invDet * uSqrt);
int t0 = Ceil2Int (t - 2.f * invDet * vSqrt);
int t1 = Floor2Int(t + 2.f * invDet * vSqrt);

3Heckbert’s thesis has the original derivation (Heckbert 1989, p. 80). A and C have an extra term
of 1 added to them to ensure that the ellipse is a minimum of one texel separation wide. This ensures
that the ellipse will not fall between the texels when magnifying at the most detailed level.

430 Texture [Ch. 11

Figure 11.16: finding the r2 ellipse value for the EWA filter table lookup

Now that the bounding box is known, the EWA algorithm loops over the texels,
transforming each one to the coordinate system where the texture lookup point � s � t �
is at the origin. It then evaluates the ellipse equation to see if the texel is inside the
ellipse (see Figure 11.16.) The weight of each inside texel is computed with a
Gaussian centered at the middle of the ellipse. The final filtered value returned is
a weighted sum over texels � s � � t � � inside the ellipse, where f is the Gaussian filter
function:

∑ f � s � � s � t � � t � t � s � � t � �
∑ f � s � � s � t � � t � �

�
Scan over ellipse bound and compute quadratic equation ���
T num(0.);
Float den = 0;
for (int it = t0; it <= t1; ++it) {

Float tt = it - t;
for (int is = s0; is <= s1; ++is) {

Float ss = is - s;�
Compute squared radius and filter texel if inside ellipse �

}
}
return num / den;

A nice feature of the implicit equation is that its value at a particular texel is
the squared ratio of the distance from the center of the ellipse to the texel to the
distance from the center of the ellipse to the ellipse boundary along the line through
that texel (see Figure 11.16. This value is used to index into a precomputed look-up
table of Gaussian filter function values.

Sec. 11.6] Solid and Procedural Texturing 431

667 AllocAligned()
410 IdentityMapping3D
417 MIPMap
423 MIPMap::texel()
410 TextureMapping3D

�
Compute squared radius and filter texel if inside ellipse ���
Float r2 = A*ss*ss + B*ss*tt + C*tt*tt;
if (r2 < 1.) {

Float weight = weightLut[min(Float2Int(r2 * WEIGHT_LUT_SIZE),
WEIGHT_LUT_SIZE-1)];

num += texel(level, is, it) * weight;
den += weight;

}

The lookup table is initialized the first time a MIPMap is constructed. Because it
will be indexed with squared distances from the filter center r2, each entry stores a
value e � αr, rather than e � αr2

.�
MIPMap Private Data ��� �
#define WEIGHT_LUT_SIZE 128
static Float *weightLut;

�
Initialize EWA filter weights if needed ���
if (!weightLut) {

weightLut = (Float *)AllocAligned(WEIGHT_LUT_SIZE *
sizeof(Float));

for (int i = 0; i < WEIGHT_LUT_SIZE; ++i) {
Float alpha = 2;
Float r2 = float(i) / float(WEIGHT_LUT_SIZE - 1);
weightLut[i] = expf(-alpha * r2);

}
}

� �	��� � � �� � � �	� � � � � ��� ��� � � � � � ��� � � �

ALL OF THESE SHOULD HAVE EXAMPLE RENDERINGS – can we
use the quadrics RIB file from CS348b circa 2001?

Once one starts to think of � s � t � texture coordinates as quantities that can be
computed in a number of ways–not just from the parametric coordinates of the
surface, the next step is to consider textures themselves as functions that can be
computed in many ways, not necessarily by filtering an image map. Given this
generalization to procedural texturing, it’s natural to consider texture functions
defined over a three-dimensional domain (often called solid textures) rather than
just 2D � s � t � . The nice thing about solid textures is that all objects have a natural
three-dimensional texture mapping–the object-space position. This is a substantial
advantage for texturing objects that don’t have a natural two-dimensional parame-
terization (e.g. triangle meshes and implicit surfaces), and for objects that have a
distorted parameterization (e.g. the poles of a sphere.) In preparation for this, Sec-
tion 11.3.5 defined a general TextureMapping3D interface to compute 3D texture
coordinates as well as an IdentityMapping3D implementation.

The problem that solid textures introduce is texture representation; a three-
dimensional bitmap takes up a fair amount of storage space, and is much harder
to acquire than a two-dimensional texture map. Therefore, procedural texturing

Shape 63
Spectrum 181
Texture 394

TextureMapping2D 405

432 Texture [Ch. 11

came into being around the same time as solid texturing–the idea that short pro-
grams could be used to generate texture values at arbitrary positions on surfaces in
the scene.

A simple example of this idea is a procedural sine wave. If we wanted to use a
sine wave for bump-mapping (for example, to simulate waves in water), it would
be inefficient and inaccurate to precompute values of the function at a grid of points
and then store them in an image map. Instead, it makes much more sense to evalu-
ate the sin function at points on the surface as needed.

If we can describe a three-dimensional function that describes the colors of
wood-grain in a solid block of wood, for instance, then we can generate images
of complex objects that appear to be carved from wood. Over the years, procedural
texturing has grown in application considerably as techniques have been developed
to describe more and more complex surfaces procedurally.

Procedural texturing has a number of other interesting implications. First, it
can be used to reduce overall memory requirements for rendering, by avoiding
the storage of large, high-resolution texture maps. In addition, procedural shading
gives the promise of potentially infinite detail; as the viewer approaches an object,
the texturing function is evaluated at the points being shaded, which naturally leads
to the right amount of detail being visible. In contrast, image texture maps typically
become blurry when the viewer is too close to them. On the other hand, procedural
textures can be much more difficult to control than image maps.

Another difficulty with procedural textures is anti-aliasing. Procedural textures
are often expensive to evaluate, and point samples don’t fully characterize the be-
havior of function (as they do with image maps). Because we would like to remove
high-frequency information in the texture function before we take samples from it,
we need to be aware of the frequency content of the various steps we take along the
way so we can avoid introducing high frequencies. Though this sounds daunting,
there are a handful of techniques that work well to handle this.

Here we will first introduce some very simple procedural textures, then discuss
basic tools for introducing more complex variations on them, and then implement
a number of more complex procedural textures.

11.6.1 UV texture

Our first procedural texture converts converts the surface’s � u � v � coordinates into
the first two components of a Spectrum. This is especially useful when debugging
the parameterization of a new Shape.�
Texture Class Declarations ��� �
class UVTexture : public Texture<Spectrum> {
public:�

UVTexture Public Methods �
private:

TextureMapping2D *mapping;
};

Sec. 11.6] Solid and Procedural Texturing 433

180 COLOR SAMPLES
395 ConstantTexture
58 DifferentialGeometry

181 Spectrum
394 Texture
405 TextureMapping2D
405 TextureMapping2D::Map()
432 UVTexture
432 UVTexture::mapping

�
Texture Method Definitions ��� �
Spectrum UVTexture::Evaluate(

const DifferentialGeometry &dg) const {
Float u, v, dsdx, dtdx, dsdy, dtdy;
mapping->Map(dg, &u, &v, &dsdx, &dtdx, &dsdy, &dtdy);
Float cs[COLOR_SAMPLES];
memset(cs, 0, COLOR_SAMPLES * sizeof(Float));
cs[0] = u;
cs[1] = v;
return Spectrum(cs);

}

11.6.2 Checkerboard

The checkerboard is the canonical procedural texture. The � s � t � texture coordi-
nates are used to break up parameter space into square regions which are shaded
with alternating patterns. Rather than just supporting checkerboards that switch
between two fixed colors, we allow the user to pass in two texture maps to color
the alternating regions. The canonical checkerboard is obtained by passing two
ConstantTextures.�
Texture Class Declarations ��� �
template <class T> class Checkerboard2D : public Texture<T> {
public:�

Checkerboard2D Public Methods �
private:�

Checkerboard2D Private Data �
};

For simplicity, the frequency of the check function is 1 in � s � t � space. This
can always be changed with an appropriate scale of the � s � t � coordinates by the
TextureMapping2D.�
Checkerboard2D Public Methods ���
Checkerboard2D(TextureMapping2D *m, Texture<T> *c1,

Texture<T> *c2, const string &aa) {
mapping = m;
tex1 = c1;
tex2 = c2;�
Select anti-aliasing method for Checkerboard2D �

}
�
Checkerboard2D Private Data ���
Texture<T> *tex1, *tex2;
TextureMapping2D *mapping;

The checkerboard is a good procedural texture for demonstrating trade-offs
among various general anti-aliasing approaches for procedural textures. There-
fore, we will implement a number of them, selectable via a string passed to the
constructor. The image sequence in Figure 11.8 shows the reults of these various
anti-aliasing strategies.

Checkerboard2D 433
Checkerboard2D::mapping 433

Checkerboard2D::tex1 433
Checkerboard2D::tex2 433
DifferentialGeometry 58

Texture 394
Texture::Evaluate() 395

TextureMapping2D 405
TextureMapping2D::Map() 405

434 Texture [Ch. 11

�
Select anti-aliasing method for Checkerboard2D ���
if (aa == "none") aaMethod = NONE;
else if (aa == "supersample") aaMethod = SUPERSAMPLE;
else if (aa == "closedform") aaMethod = CLOSEDFORM;
else {

Warning("Anti-aliasing mode \"%s\" not understood "
"by Checkerboard2D, defaulting to \"supersample\"", aa.c_str());

aaMethod = SUPERSAMPLE;
}

�
Checkerboard2D Private Data ��� �
enum { NONE, SUPERSAMPLE, CLOSEDFORM } aaMethod;

The evaluating routine does the usual texture coordinate and differential compu-
tation and then uses the appropriate fragment to compute an anti-aliased checker-
board value (or not, if point-sampling has been selected).�
Texture Template Method Definitions ��� �
template <class T>
T Checkerboard2D<T>::Evaluate(

const DifferentialGeometry &dg) const {
Float s, t, dsdx, dtdx, dsdy, dtdy;
mapping->Map(dg, &s, &t, &dsdx, &dtdx, &dsdy, &dtdy);
if (aaMethod == CLOSEDFORM) {�

Compute closed form box-filtered Checkerboard2D value �
}
else if (aaMethod == SUPERSAMPLE) {�

Supersample Checkerboard2D �
}�
Point sample Checkerboard2D �

}

The simplest case is to ignore anti-aliasing and just point-sample the checker-
board texture at the point being shaded. For this case, after getting the � s � t � texture
coordinates from the TextureMapping2D, we compute the integer checkerboard
coordinates for that � s � t � position and see if this has odd or even parity to deter-
mine which of the two texture maps to evaluate.�
Point sample Checkerboard2D ���
if ((Floor2Int(s) + Floor2Int(t)) % 2 == 0)

return tex1->Evaluate(dg);
return tex2->Evaluate(dg);

XXX make clear that “filter region” is a misnomer.
Given how bad aliasing can be in a point-sampled checkerboard texture, we will

invest some effort to anti-alias it properly. The easiest case happens when the entire
filter region lies inside a single check (Figure 11.17). In this case, we simply need
to determine which of the check types we are inside and evaluate that one. As long
as the Texture inside that check does appropriate anti-aliasing itself, the result for
this case will be anti-aliased.

Sec. 11.6] Solid and Procedural Texturing 435

Figure 11.17: the easy case for filtering the checkerboard.

�
Compute closed form box-filtered Checkerboard2D value ����

Evaluate single check if filter is entirely inside one of them ��
Apply box-filter to checkerboard region �
We can easily see if the entire filter region is inside a single check by computing

its � s � t � bounding box and seeing if all of it maps to a single integer � s � t � checker
coordinate.�
Evaluate single check if filter is entirely inside one of them ���
Float ds = .5f * max(fabsf(dsdx), fabsf(dsdy));
Float dt = .5f * max(fabsf(dtdx), fabsf(dtdy));
Float s0 = s - ds, s1 = s + ds;
Float t0 = t - dt, t1 = t + dt;
if (Floor2Int(s0) == Floor2Int(s1) &&

Floor2Int(t0) == Floor2Int(t1)) {�
Point sample Checkerboard2D �

}

Otherwise, we can approximate the filtered value by first computing a floating
point value that indicates what fraction of the filter region covers each of the two
check types. We are effectively computing the average of the 2D step function that
takes on the value 0 where we are in tex1 and 1 when we are in tex2, over the filter
region. The left side of Figure 11.18 shows a graph of the checkerboard function
c � x � , defined as:

c � x � �
�

0 : � x � is odd
1 : otherwise

Given the average value value, we can blend between the two sub-textures, accord-
ing to what fraction of the filter region each one is visible for.

We can use the integral of the 1D checkerboard function c � x � to compute the
average value of the function over some extent. Inspection of the graph reveals that

� x

0
c � x � dx ��� x �

2 � � 2max � x �
2 � � x �

2 � � � 5 � 0 � �
To compute the average value of the step function in one dimension, we separately
compute the integral of the checkerboard in each 1D direction in order to compute
its average value over the filter region. Figure 11.18 shows graphs of the 1D step
function (left) and its integral (right).

Checkerboard2D::tex1 433
Texture::Evaluate() 395

436 Texture [Ch. 11

Figure 11.18: left, the 1D step function used to define the checkerboard texture
c � x � . right, a graph of the value of the integral �

x
0 c � x � dx.

XXX need to carefully explain area2 computation XXX
I agree –Humper�

Apply box-filter to checkerboard region ���
#define BUMPINT(x) \

(Floor2Int((x)/2) + 2.f * max((x/2)-Floor2Int(x/2) - .5f, 0.f))
Float sint = (BUMPINT(s1) - BUMPINT(s0)) / (2. * ds);
Float tint = (BUMPINT(t1) - BUMPINT(t0)) / (2. * dt);
Float area2 = sint + tint - 2.f * sint * tint;
if (ds > 1.f || dt > 1.f)

area2 = .5f;
return (1.f - area2) * tex1->Evaluate(dg) +

area2 * tex2->Evaluate(dg);

The final checkerboard anti-aliasing method we show is classic supersampling.
We will evaluate the checkerboard at a set of random stratified positions around the� s � t � point in texture space, jittered so that they roughly cover the filter area.

An extra point in favor of supersampling is that the box filter approach described
previously is actually not completely correct. Specifically, it assumes that we can
compute the correct overall anti-aliased result by determining how much of the
filter covers each of the two types of checker and then evaluating both of them,
blending between their results appropriately. The problem with this assumption is
that each of the sub-textures will evaluate and anti-alias itself as if it were com-
pletely visible throughout all of the filter region.

Figure 11.19 shows a case where this is an incorrect assumption. There, we
have a checkerboard texture where each of the sub-textures is also a checkerboard.
The textures are all configured such that the result of the main checkerboard tex-
ture is a solid grey color–all of the black parts of the sub-textures are completely
hidden. However, if the sub-textures filter themselves with the incorrect assump-
tion described above, then some of the black will “leak in” to the final computed
result. This is a somewhat contrived worst-case, and the box filter approach does
work correctly for sub-textures that are just a constant value, for example. How-
ever, the super-sampling approach we will implement here does not suffer from
this problem.

Sec. 11.6] Solid and Procedural Texturing 437

58 DifferentialGeometry
400 DifferentialGeometry::dudx
400 DifferentialGeometry::dudy
400 DifferentialGeometry::dvdx
400 DifferentialGeometry::dvdy
378 DifferentialGeometry::Shift()

Figure 11.19: The checkerboard with nefarious sub-textures can cause us trouble!

We take a fixed number of stratified samples, N SAMPLES in the s and t direc-
tions. For each one, we initialize a DifferentialGeometry object for the sample
position and then point-sample the checkerboard texture function.�
Supersample Checkerboard2D ���
#define N_SAMPLES 4
Float samples[2*N_SAMPLES*N_SAMPLES];
StratifiedSample2D(samples, N_SAMPLES, N_SAMPLES);
T value = 0.;
Float filterSum = 0.;
for (int i = 0; i < N_SAMPLES*N_SAMPLES; ++i) {�

Compute new differential geometry for supersample location ��
Compute � s � t � for supersample and evaluate sub-texture �

}
return value / filterSum;

This next paragraph is basically opaque to me. What the hell is going on?
We choose texture samples over the rough pixel-separation-sized texture-space

filter area; the DifferentialGeometry::Shift() method takes care of comput-
ing an approximation to the appropriate DifferentialGeometry. We then scale
down the screen-space differentials for the shifted point, so that any anti-aliasing
done by the sub-texture will be over an appropriately reduced area.�
Compute new differential geometry for supersample location ���
DifferentialGeometry dgs;
Float dx = samples[2*i] - 0.5f;
Float dy = samples[2*i+1] - 0.5f;
dg.Shift(dx, dy, &dgs);
dgs.dudx /= N_SAMPLES;
dgs.dudy /= N_SAMPLES;
dgs.dvdx /= N_SAMPLES;
dgs.dvdy /= N_SAMPLES;

Finally, we weight the sample values with a Gaussian filter and accumulate the
result from the appropriate sub-texture into value.

Checkerboard2D 433
Checkerboard2D::tex1 433
Checkerboard2D::tex2 433

Texture 394
Texture::Evaluate() 395

TextureMapping2D::Map() 405
TextureMapping3D 410

438 Texture [Ch. 11

�
Compute � s � t � for supersample and evaluate sub-texture ���
Float ss, ts, dsdxs, dtdxs, dsdys, dtdys;
mapping->Map(dgs, &ss, &ts, &dsdxs, &dtdxs, &dsdys, &dtdys);
Float wt = expf(-2.f * (dx*dx + dy*dy));
filterSum += wt;
if ((Floor2Int(ss) + Floor2Int(ts)) % 2 == 0)

value += wt * tex1->Evaluate(dgs);
else

value += wt * tex2->Evaluate(dgs);

Figure 11.20 shows these three anti-aliasing approaches for the checkerboard in
practice.

11.6.3 Solid Checkerboard

The Checkerboard2D class from the previous section wraps a checkerboard pat-
tern around the object in parameter space. We can also define a solid checkerboard
pattern based on three-dimensional texture coordinates. This way, the object ap-
pears carved out of 3D checker cubes. Like the 2D variant, we provide two texture
functions to choose between. Note that these two textures need not be solid tex-
tures themselves; we are merely choosing between them based on the 3D position
of the hit point.�
Texture Class Declarations ��� �
template <class T> class Checkerboard3D : public Texture<T> {
public:�

Checkerboard3D Public Methods �
private:�

Checkerboard3D Private Data �
};

�
Checkerboard3D Public Methods ���
Checkerboard3D(TextureMapping3D *m, Texture<T> *c1,

Texture<T> *c2) {
mapping = m;
tex1 = c1;
tex2 = c2;

}
�
Checkerboard3D Private Data ���
Texture<T> *tex1, *tex2;
TextureMapping3D *mapping;

Ignoring anti-aliasing, the basic computation to see if we are inside a 3D checker
region is

((Floor2Int(P.x) + Floor2Int(P.y) + Floor2Int(P.z)) % 2
== 0).

Here we will just use the same basic supersampling approach as we used in the 2D
checkerboard. The code with the implementation is elided here, however, since it

Sec. 11.6] Solid and Procedural Texturing 439

Figure 11.20: Comparisons of the three approaches for anti-aliasing in procedu-
ral textures, applied to the checkerboard texture; all images were rendered with
one sample per pixel. In the top image, no effort has been made to remove high
frequency variation from the texture function, so there are severe artifacts in the
image. The middle image shows the approach based on computing the filter region
in texture space and averaging the texture function over that area. On the bottom
is an image where the checkerboard function was super-sampled 16 times in tex-
ture space at each shading point. Both the area-averaging and the supersampling
approaches give substantially better results than the top image. In this example,
supersampling gives the best results, since the averaging approach has blurred out
the checkerboard pattern sooner than was needed, due to over-estimating the filter
region. However, in general, the averaging approach will guarantee that there is no
aliasing due to the texture, which is desirable.

Checkerboard3D 438
DifferentialGeometry 58

440 Texture [Ch. 11

is substantially the same as in the 2D case, just with the inside-check test modified
as above.�
Texture Template Method Definitions ��� �
template <class T>
T Checkerboard3D<T>::Evaluate(

const DifferentialGeometry &dg) const {�
Supersample Checkerboard3D �

}

Example rendering!� �	����� � � � �
In order to write solid textures for complex surface appearances, it is helpful

to be able to introduce some controlled variation to the process. Consider a wood
floor made of individual planks; each plank’s color is likely to be slightly different
than the others. Or consider a windswept lake; we might want to have waves of
similar amplitude across the entire like, but we don’t want them to be the same (as
they would be if they were constructed from a collection of sine waves.)

These sorts of problems are typically solved using what is known as a noise
function. In general, noise functions used in graphics are smoothly-varying func-
tions taking � n � � � 1 � 1 � , for at least n � 1 � 2 � 3, but without obviously repeating
patterns. One of the most crucial properties of a noise function is that they are of-
ten bandlimited, with a maximum frequency of roughly 1, which makes it possible
to control their frequency content so that they do not introduce frequencies higher
than allowed by the Nyquist limit.

Many of the noise functions that have been developed are built on the idea of an
integer lattice over � 3 . Some value is associated with each integer � x � y � z � position
in space. Then, given an arbitrary position in space, the eight adjoining lattice
values are found. These lattice values are then interpolated to compute the noise
value at the particular point. This can be generalized or restricted to more or fewer
dimensions d, where the number of lattice points is 2d .

A simple example of this is value noise. Pseudo-random numbers between � 1
and 1 are associated with each lattice point, and actual noise values are computed
with trilinear interpolation or with a more complex spline interpolant, which can
give a smoother result by avoiding derivative discontinuities when moving from
one lattice cell to another.

For such a noise function, given an integer � x � y � z � lattice point, we must be able
to efficiently compute its parameter value. Because it is infeasible to store values
for all possible � x � y � z � points, some compact representation is needed. One option
is to use a hash function, where the coordinates are hashed and then used to look
up parameters from a fixed-size table of precomputed pseudo-random parameter
values. Another option is to use a table of values where the offset into the table is
computed with a hash based on x, y, and z.

11.7.1 Perlin Noise

Here we will implement a noise function introduced by Ken Perlin; as such, it is
known as Perlin noise. It has a value of zero at all � x � y � z � integer lattice points.

Sec. 11.7] Noise 441

Figure 11.21: The Perlin noise function, shown here in one dimension, is computed
by generating a smooth function that is zero but with a given derivative at integer
lattice points. The derivatives are used to compute a smooth interpolating curve.

Its variation comes from varying gradient vectors at each lattice point that guide
the interpolation of a function in between the points. This noise function has many
of the desired characteristics of a noise function described above, is reasonably
computationally efficient and is easy to implement. See Figure 11.22 for a graph
of Perlin noise.

To evaluate the noise function, we first need to find the eight gradient vectors
for the cell the � x � y � z � point is in. Then we just need to do the 3D interpolation.
�
Texture Method Definitions ��� �
Float Noise(Float x, Float y, Float z) {�

Compute noise cell coordinates and offsets ��
Compute gradient weights ��
Compute trilinear interpolation of weights �

}

We first compute the integer coordinates of the cell that the given point lies
inside and the fractional offsets of the point from the lower cell corner.�
Compute noise cell coordinates and offsets ���
int ix = Floor2Int(x);
int iy = Floor2Int(y);
int iz = Floor2Int(z);
Float dx = x - ix, dy = y - iy, dz = z - iz;

We then compute eight weight values, one for each corner of the cell. Concep-
tually, each integer lattice point has a random gradient vector associated with it;
the weight for any point inside the cell is computed by computing the dot product
of the vector from the point to the lower corner of the cell with the dot product of
the gradient vector.

This is pretty unclear; need a figure ;)
XXX draw a figure for this, make it more clear XXX
The gradient vectors do not need to be represented explicltly. All of the gradients

we will use will only have values � 1, 0, or 1 in their coordinates, so that the dot

Grad() 443
NOISE PERM SIZE 443

442 Texture [Ch. 11

-10 -5 0 5 10
-1.0

-0.5

0.0

0.5

1.0

Figure 11.22: Graph of a noise function; important qualities to note include that it is
smoothly varying, doesn’t have unexpected high frequencies, and ranges between
-1 and 1.

products reduce to addition of some (possibly negated) components of the vector4.
The Grad() function handles this computation.

XXX can use and since is power of 2 size... XXX�
Compute gradient weights ���
ix &= (NOISE_PERM_SIZE-1);
iy &= (NOISE_PERM_SIZE-1);
iz &= (NOISE_PERM_SIZE-1);
Float w000 = Grad(ix, iy, iz, dx, dy, dz);
Float w100 = Grad(ix+1, iy, iz, dx-1, dy, dz);
Float w010 = Grad(ix, iy+1, iz, dx, dy-1, dz);
Float w110 = Grad(ix+1, iy+1, iz, dx-1, dy-1, dz);
Float w001 = Grad(ix, iy, iz+1, dx, dy, dz-1);
Float w101 = Grad(ix+1, iy, iz+1, dx-1, dy, dz-1);
Float w011 = Grad(ix, iy+1, iz+1, dx, dy-1, dz-1);
Float w111 = Grad(ix+1, iy+1, iz+1, dx-1, dy-1, dz-1);

Given an integer lattice point, we use a permutation table to quickly compute a
random offset value between 0 and NOISE_PERM_SIZE. We then take the low-order
bits of this to determine which gradient vector to use for the point.

In a pre-process, we fill an array of size NOISE_PERM_SIZE with numbers from
0 to NOISE PERM SIZE-1 and then randomly permute its elements. We then make
an array of size 2*NOISE PERM SIZE that holds the resulting permuted table twice
in succession. The second copy of the table makes lookups slightly more efficient.

4The original formulation of Perlin noise also had a precomputed table of pseudo-random gradient
directions, though Perlin has more recently suggested that the randomness from the permutation table
is enough to remove regularity from the noise function.

Sec. 11.7] Noise 443

677 Lerp()

By doing three nested permutations in this way, we avoid any regularity that
might be present if we used NoisePerm[ix+iy+iz], where we’d get the same
result if ix and iy were interchanged, etc. By replicating the table twice, we avoid
the need to compute modulus values after lookups, like

(NoisePerm[ix]+iy) % NOISE PERM SIZE

Then to compute the gradient value, we...�
Texture Method Definitions ��� �
inline Float Grad(int x, int y, int z, Float dx,

Float dy, Float dz) {
int h = NoisePerm[NoisePerm[NoisePerm[x]+y]+z];
h &= 15;
Float u = h<8 || h==12 || h==13 ? dx : dy;
Float v = h<4 || h==12 || h==13 ? dy : dz;
return ((h&1) ? -u : u) + ((h&2) ? -v : v);

}
�
Perlin Noise Data ���
#define NOISE_PERM_SIZE 256
static int NoisePerm[2 * NOISE_PERM_SIZE] = {

151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96,
53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142,�
Noise permutation table �

};

Given these eight weights, we want to trilinearly interpolate between them at the
point. Rather than interpolating with dx, dy, and dz directly, though, we run each
of these values through a smoothing function. This ensures that the noise function
has first and second derivative continuity as we move from lattice cell to lattice
cell.�
Texture Method Definitions ��� �
inline Float NoiseWeight(Float t) {

Float t3 = t*t*t;
Float t4 = t3*t;
return 6.f*t4*t - 15.f*t4 + 10.f*t3;

}
�
Compute trilinear interpolation of weights ���
Float wx = NoiseWeight(dx);
Float wy = NoiseWeight(dy);
Float wz = NoiseWeight(dz);
Float x00 = Lerp(wx, w000, w100);
Float x10 = Lerp(wx, w010, w110);
Float x01 = Lerp(wx, w001, w101);
Float x11 = Lerp(wx, w011, w111);
Float y0 = Lerp(wy, x00, x10);
Float y1 = Lerp(wy, x01, x11);
return Lerp(wz, y0, y1);

DifferentialGeometry 58
Point 33

Texture 394
Texture::Evaluate() 395

TextureMapping2D 405
TextureMapping2D::Map() 405

444 Texture [Ch. 11

For convenience, we’ll also provide a method that takes a Point directly.�
Texture Method Definitions ��� �
Float Noise(const Point &P) {

return Noise(P.x, P.y, P.z);
}

11.7.2 Random Polka Dots
�
Texture Class Declarations ��� �
template <class T> class PolkaDots : public Texture<T> {
public:�

PolkaDots Public Methods �
private:�

PolkaDots Private Data �
};

To show a basic use of the noise function, we’ll write a polka-dot texture. This
texture divides � s � t � texture space into rectangular cells. Each cell has a 50%
chance of having a dot inside of it, where the dot is randomly placed inside the
cell.

PolkaDots takes the usual 2D mapping function, as well as two Textures, one
for the regions of the surface outside of the dots and one for the regions inside.�
PolkaDots Public Methods ��� �
PolkaDots(TextureMapping2D *m, Texture<T> *c1, Texture<T> *c2) {

mapping = m;
outsideDot = c1;
insideDot = c2;

}
�
PolkaDots Private Data ���
Texture<T> *outsideDot, *insideDot;
TextureMapping2D *mapping;

The evaluation function is pretty straightforward. We start by taking the � s � t �
texture coordinates and computing integer sCell and tCell values, which give us
the coordinates of the cell that we’re in. (See Figure 11.23.)�
Texture Template Method Definitions ��� �
template <class T>
T PolkaDots<T>::Evaluate(const DifferentialGeometry &dg) const {�

Compute cell incides for dots ��
Return insideDot result if point is inside dot �
return outsideDot->Evaluate(dg);

}
�
Compute cell incides for dots ���
Float s, t, dsdx, dtdx, dsdy, dtdy;
mapping->Map(dg, &s, &t, &dsdx, &dtdx, &dsdy, &dtdy);
int sCell = Floor2Int(s + .5f), tCell = Floor2Int(t + .5f);

Sec. 11.7] Noise 445

441 Noise()
444 PolkaDots::insideDot
395 Texture::Evaluate()

v

u

(1,1) (2,1)

(1,2) (2,2)

Figure 11.23:

Once we know the cell indices, we need to decide if there is a polka dot in the
cell. Obviously, this computation needs to be consistent, so that for all times that
this routine runs for points in a particular cell, it always returns the same result.
On the other hand, we’d like the result to not be regular. Enter noise: we evaluate
the noise function at a position that is the same for all points inside this cell–
sCell+.5, tCell+.5. If this is greater than zero, we decide that there is a dot in
the cell and continue processing.

Recall that out noise function always returns zero at integer � x � y � z � coordinates,
so we don’t want to just evaluate it at sCell, tCell. Although the 3D noise
function would actually be evaluating noise at sCell, tCell, .5, slices through
noise with integer values for any of the are not as good as with all of them offset.

If there is a dot in the cell, we use the same trick to randomly shift the center
of the dot around; we compute a new dot position using noise to offset it from the
center of the cell.

Finally, we just need to decide if the � s � t � coordinates are within distance radius
of the shifted center. We compute their squared distance to the center and compare
it to the squared radius.

We will not consider anti-aliasing of the polka dots texture here; an exercise at
the end of the chapter outlines how this might be done.�
Return insideDot result if point is inside dot ���
if (Noise(sCell+.5, tCell+.5) > 0) {

Float radius = .35f;
Float maxShift = 0.5f - radius;
Float sCenter = sCell + maxShift *

Noise(sCell + 1.5f, tCell + 2.8f);
Float tCenter = tCell + maxShift *

Noise(sCell + 4.5f, tCell + 9.8f);
Float ds = fabsf(s - sCenter), dt = fabsf(t - tCenter);
if (ds*ds + dt*dt < radius*radius)

return insideDot->Evaluate(dg);
}

This texture, like all procedural textures in this chapter, is an implicit texture; in

Point 33
Vector 27

446 Texture [Ch. 11

other words, the texture function is written to be able to describe the texture at any
particular point being shaded–because it does so in a way such that it squares

11.7.3 FBm

One of the most useful applications of noise is to compute patterns via spectral
synthesis, where a complex function fs � s � is defined by a sum of contributions
from another function f � x � :

fs � x � � ∑
i

wi f � six � �

for a set of weight values wi and parameter scale values si. If the base function
f � x � has a well-defined frequency content (e.g. is a sine or cosine function, or a
noise function), then each term f � six � also has a well-defined frequency content–
the larger the value of si, the higher frequencies result. Each term of the sum
is weighted by a weight value wi, so that the result is a sum of contributions of
various frequencies, with different frequency ranges weighted differently.

Typically, the scales si are chosen in a geometric progression such that si � 2si � 1

and the weights are wi � 1
�
2wi � 1. The result is that as higher-frequency variation

is added to the function, it has relatively less influence on the overall shape of f s � x � .
Each additional term is called an octave of noise, borrowing a term from music,
since it has twice the frequency content of the previous one. When this scheme
is used with Perlin noise, the result is often referred to as “FBm”, which stands
for “Fractional Brownian motion”, a term from fractal geometry that describes a
particular type of random process that varies in a similar manner.

FBm is a very useful building block for building procedural textures because it
gives us a function with more complex variation than plain noise, while still being
easy to compute and still having well-defined overall frequency content. The utility
function FBm() below implements the FBm function. Figure 11.24 shows a graph
of it. In addition to taking the point to evaluate the function at and its partial deriva-
tives for anti-aliasing computation, it takes an omega parameter, which ranges from
zero to one and controls the smoothness of the marble pattern by controlling the
falloff of contributions at higher frequencies (values around 0 � 5 work well), and
octaves, which gives a maximum number of octaves of noise to use to compute
the sum.�
Texture Method Definitions ��� �
Float FBm(const Point &P, const Vector &dpdx, const Vector &dpdy,

Float omega, int maxOctaves) {�
Compute number of octaves for anti-aliased FBm ��
Compute sum of octaves of noise for FBm �
return sum;

}

To anti-alias the FBm function, we will use a technique called clamping. The
idea is that when we are computing a value based on a sum of components, each
with known frequency content, we should stop adding in components that would
have frequencies beyond the Nyquist limit and instead add their average value to
the sum. Because the average value of Noise() is zero, all that we need to do is to

Sec. 11.7] Noise 447

-5 0 5
-1.0

-0.5

0.0

0.5

1.0

-5 0 5
-1.0

-0.5

0.0

0.5

1.0

-5 0 5
-1.0

-0.5

0.0

0.5

1.0

Figure 11.24: Graphs of the FBm() function for 2, 4, and 6 octaves of noise. Notice
how as more levels of noise are added, the graph has progressively more detail,
though its overall shape remains roughly the same.

Clamp() 677
Log2() 677
Noise() 441

Vector::LengthSquared() 30

448 Texture [Ch. 11

compute the number of octaves such that none of the terms have excessively high
frequencies.

Noise() (and thus the first term of fs � x � as well) has a maximum frequency
content of roughly ω � 1. Each subsequent term represents a doubling of frequency
content. Therefore, we would like find the appropriate number of terms n such that
if the sampling rate in noise space is s, we have

2n � s � 2ω � 1 �
Thus, we have

2n � 1 � 1
�
s

n � 1 � log � 1 �
s �

n � 1 � 1
�
2log � s2 � �

We can compute the squared sampling rate s2 by finding the maximum of the
length of the differentials ∂p

�
∂x and ∂p

�
∂y.

�
Compute number of octaves for anti-aliased FBm ���
Float s2 = max(dpdx.LengthSquared(), dpdy.LengthSquared());
Float foctaves = min((Float)maxOctaves, 1.f - .5f * Log2(s2));
int octaves = Floor2Int(foctaves);

We then compute the given integer number of octaves up to the Nyquist limit and
fade in the last octave, according to the fractional part of foctaves. This ensures
that successive octaves of noise fade in gradually, rather than appearing abruptly,
which can cause visually-noticeable artifacts at the transitions. We increase the
frequency between octaves by 1.99, rather than by a factor of two, in order to
reduce the impact of the fact that the noise function is zero at integer lattice points.
This breaks up that regularity across octaves of noise, XXX.�
Compute sum of octaves of noise for FBm ���
Float sum = 0., lambda = 1., o = 1.;
for (int i = 0; i < octaves; ++i) {

sum += o * Noise(lambda * P);
lambda *= 1.99f;
o *= omega;

}
Float partialOctave = foctaves - octaves;
sum += o * SmoothStep(.3, .7, partialOctave) * Noise(lambda * P);

The SmoothStep() function it takes a minimum and maximum value and a
point at which to evaluate the a smooth interpolating function. If the point is below
the minimum, zero is returned, and if it’s above the maximum, one is returned.
Otherwise it smoothly interpolates between zero and one.�
Global Inline Functions ��� �
inline Float SmoothStep(Float min, Float max, Float value) {

Float v = Clamp((value - min) / (max - min), 0., 1.);
return -2.f * v * v * v + 3.f * v * v;

}

Sec. 11.7] Noise 449

58 DifferentialGeometry
446 FBm()
450 MarbleTexture::mapping
450 MarbleTexture::octaves
450 MarbleTexture::omega
33 Point

181 Spectrum
394 Texture
410 TextureMapping3D
410 TextureMapping3D::Map()
27 Vector

11.7.4 Bumpy

FBm is useful by itself as a source of random variation for bump-mapping. The
BumpyTexture is a Float-valued texture that uses FBm to compute bump map
offsets.�
Texture Class Declarations ��� �
class BumpyTexture : public Texture<Float> {
public:�

BumpyTexture Public Methods �
private:�

BumpyTexture Private Data �
};

�
BumpyTexture Public Methods ��� �
BumpyTexture(int oct, Float roughness, TextureMapping3D *map) {

omega = roughness;
octaves = oct;
mapping = map;

}
�
BumpyTexture Private Data ���
int octaves;
Float omega;
TextureMapping3D *mapping;

�
Texture Method Definitions ��� �
Float BumpyTexture::Evaluate(const DifferentialGeometry &dg) const {

Vector dpdx, dpdy;
Point P = mapping->Map(dg, &dpdx, &dpdy);
return FBm(P, dpdx, dpdy, omega, octaves);

}

11.7.5 Marble
�
Texture Class Declarations ��� �
class MarbleTexture : public Texture<Spectrum> {
public:�

MarbleTexture Public Methods �
private:�

MarbleTexture Private Data �
};

�
MarbleTexture Public Methods ��� �
MarbleTexture(int oct, Float roughness, TextureMapping3D *map) {

omega = roughness;
octaves = oct;
mapping = map;

}

Clamp() 677
DifferentialGeometry 58

FBm() 446
MarbleTexture 449

Point 33
Spectrum 181
Texture 394

TextureMapping3D 410
TextureMapping3D::Map() 410

Vector 27

450 Texture [Ch. 11

�
MarbleTexture Private Data ���
int octaves;
Float omega;
TextureMapping3D *mapping;

�
Texture Method Definitions ��� �
Spectrum MarbleTexture::Evaluate(const DifferentialGeometry &dg) const {

Vector dpdx, dpdy;
Point P = mapping->Map(dg, &dpdx, &dpdy);

Float scale = .05; // XXX fold into xform...
Float variation = .3;
Float marble = scale * P.y + variation * FBm(scale * P, scale * dpdx, scale * dpdy, omega, octaves);
Float t = fabsf(sinf(5.f * marble));�
Evaluate marble spline at t �

// return Clamp(marble, 0.1f, 1.f);
}

�
Evaluate marble spline at t ���
static Float c[][3] = { { .58, .58, .6 }, { .58, .58, .6 }, { .58, .58, .6 },

{ .5, .5, .5 }, { .6, .61, .58 }, { .58, .58, .6 },
{ .58, .58, .6 }, {.1, .1, .33 }, { .58, .58, .6 }, };

#define NC sizeof(c) / sizeof(c[0])
#define NSEG (NC-3)
int first = Floor2Int(t * NSEG);
t = (t * NSEG - first);
Spectrum c0(c[first]), c1(c[first+1]), c2(c[first+2]), c3(c[first+3]);

Spectrum s0 = (1.f - t) * c0 + t * c1;
Spectrum s1 = (1.f - t) * c1 + t * c2;
Spectrum s2 = (1.f - t) * c2 + t * c3;

s0 = (1.f - t) * s0 + t * s1;
s1 = (1.f - t) * s1 + t * s2;

return (1.f - t) * s0 + t * s1;

11.7.6 Windy Waves

A simple application of FBm can give a reasonably convincing representation of
ocean waves. This Texture is based on two observations. First, that across the
surface of a wind-swept lake (for example), some areas are relatively smooth and
some are more choppy; this comes from the natural variation of wind’s strength
from area to area. Second, that the overall form of individual waves on the surface
can be well described by the FBm, scaled by the wind strength.

Sec. 11.7] Noise 451

58 DifferentialGeometry
446 FBm()
33 Point

394 Texture
410 TextureMapping3D
410 TextureMapping3D::Map()
27 Vector

Figure 11.25: windy waves

�
Texture Class Declarations ��� �
class Windy : public Texture<Float> {
public:�

Windy Public Methods �
private:�

Windy Private Data �
};

�
Windy Public Methods ��� �
Windy(TextureMapping3D *map) {

mapping = map;
}

�
Windy Private Data ���
TextureMapping3D *mapping;

The evaluation function uses two calls to the FBm function. The first scales down
the point P by a factor of 10; as a result, the first call to FBm returns relatively low-
frequency variation over the object being shaded. We use this to determine the
local strength of the wind. The second call figures out the amplitude of the wave at
the particular point, independent of the amount of wind there. The product of these
two values gives the actual wave offset for the particular location. Figure 11.25
shows the result.�
Texture Method Definitions ��� �
Float Windy::Evaluate(const DifferentialGeometry &dg) const {

Vector dpdx, dpdy;
Point P = mapping->Map(dg, &dpdx, &dpdy);
Float windStrength = FBm(.1 * P, .1 * dpdx, .1 * dpdy, .5f, 3);
Float waveHeight = FBm(P, dpdx, dpdy, .5f, 6);
return fabsf(windStrength) * waveHeight;

}

452 Texture [Ch. 11

����� ���� � � � ��� � � �
2D texture mapping with images was first introduced to graphics by Blinn and

Newell (Blinn and Newell 1976). After Crow identified aliasing as the source of
many errors in images in graphics (Crow 1977), quite a bit of work has been done to
find efficient and effective ways of anti-aliasing image maps. Dungan et al (Dun-
gan Jr., Stenger, and Sutty 1978) were the first to suggest creating a pyramid of
pre-filtered texture images; they just used the nearest texture sample at the appro-
priate level when looking up texture values, using super-sampling in screen-space
to anti-alias the result. Feibush et al researchers investigated a spatially-varing filter
function, rather than a simple box filter (Feibush, Levoy, and Cook 1980). (Blinn
and Newell were aware of Crow’s results, and used a simple box filter for their
textures.) A good general survey of texture mapping algorithms was written by
Heckbert (Heckbert 1986).

Williams used a MIP map image pyramid for texture filtering with trilinear in-
terpolation (Williams 1983). Shortly thereafter, Crow introduced summed area ta-
bles, which are able to quickly filter over axis-aligned rectangular regions of texture
space (Crow 1984). Summed area tables handle anisotropy better than Williams’s
method, though only for primarily axis-aligned filter regions.

Greene and Heckbert originally developed the elliptically weighted average tech-
nique (Greene and Heckbert 1986b), and Heckbert’s Masters thesis put the method
on a solid theoretical footing (Heckbert 1989). Fournier and Fiume have developed
an even higher-quality texture filtering method that focuses on using a bounded
amount of computation per lookup (Fournier and Fiume 1988). Nonetheless, their
method appears to be less efficient than EWA. Landsdale’s Masters thesis also has
an extensive description of EWA and Fournier and Fiume’s method, including im-
plementation details (Lansdale 1991).

More recently, a number of researchers have investigated generalizing Williams’s
original method, using a series of MIP map probes. By taking multiple samples
from the MIP map, anisotropy is handled well, while preserving the computa-
tional efficiency. Examples include McCormack et al’s feline method (McCor-
mack, Perry, Farkas, and Jouppi 1999) and Cant and Shrubsole’s improvement
of their previously-developed texture filtering method using MIP maps (Cant and
Shrubsole 2000).

Image resampling: Heckbert’s zoom code cleverly avoids feedback without
needing auxiliary storage, cite reampling paper from stanford CCRMA site, Mei-
jeering type stuff?

3D solid texturing was originally developed by Gardner (Gardner 1984), Per-
lin (Perlin 1985), Peachey (Peachey 1985). Norton et al developed the clamping
method that is widely used for anti-aliasing textures based on solid texturing (Nor-
ton, Rockwood, and Skolmoski 1982). Procedural texturing was introduced by
Cook (Cook 1984), Perlin (Perlin 1985), and Peachey (Peachey 1985).

Peachey’s chapter in Texturing and Modeling has a great summary of approaches
to noise functions (Ebert, Musgrave, Peachey, Perlin, and Worley 2003, Chapter 2).
Worley developed a new noise function with different visual characteristics than
Perlin’s (Worley 1996). Also, Worley’s chapter in Texturing and Modeling on com-
puting differentials for filter regions presents an approach similar to ours (Ebert,
Musgrave, Peachey, Perlin, and Worley 2003, p. 166) Perlin’s paper on the revised

Exercises 453

417 MIPMap
181 Spectrum

noise function (Perlin 2002).
Shading languages: Hanrahan and Lawson(Hanrahan and Lawson 1990), Cook (Cook

1984), Perlin (Perlin 1985). See Ebert et al (Ebert, Musgrave, Peachey, Perlin, and
Worley 2003) and Apodaca and Gritz (Apodaca and Gritz 2000) for techniques for
writing procedural shaders; both of those have excellent discussions of anti-aliasing
procedural textures. The stuff here is similar to the shade tree approach.

Automatic, affine arithmetic stuff (Heidrich, Slusallek, and Seidel 1998).
Windy shader here based on Musgrave’s in texturing and modeling.
Dorsey et al flow (Dorsey, Pedersen, and Hanrahan 1996)
Reaction diffusion (Witkin and Kass 1991; Turk 1991).
Fleischer et al growing complex texture patterns on surface (Fleischer, Laidlaw,

Currin, and Barr 1995).
Sims wacky genetic stuff (Sims 1991).�

� � � � � � � �

11.1 8-bit image maps: many image file formats don’t store floating-point color
values but instead use eight bits for each color component, mapping the val-
ues to the range � 0 � 1 � For images stored in this format, the MIPMap uses four
times more memory than strictly necessary by using Floats in Spectrum
objects to store these colors. Modify the image reading routines to indicate
when an image is read from such a file and modify the MIPMap so that it
keeps the MIP map in an eight bit representation. How much memory is
saved for image texture-heavy scenes? How is lrt’s performance affected?
Speculate about the causes of any performance differences.

11.2 Texture caching: for scenes with many image textures where reading them
all into memory simultaneously has a prohibitive memory cost, an effec-
tive approach can be to allocate a fixed amount of memory for image maps
(a texture cache), load textures into that memory on demand, and discard
the image maps that haven’t been accessed recently when the memory fills
up (Peachey 1990). To enable good performance with small texture caches,
image maps should be stored in a tiled format that makes it possible to load in
small square regions of the texture independently of each other. (Tiling tech-
niques like these are used in graphics hardware to improve the performance
of their texture memory caches (Hakura and Gupta 1997; Igehy, Eldridge,
and Proudfoot 1998; Igehy, Eldridge, and Hanrahan 1999).) Implement a
texture cache in lrt. You will also need to create a tiled image file format
or modify an existing format to support tiling. Write a conversion program
that converts images in other formats to your tiled format. How small can
you make the texture cache and still see good performance?

11.3 The Feline texture filtering technique is a middle ground between trilinear
interpolation and EWA filtering; it gives results nearly as good as EWA by
doing trilinear filtering at a series of positions along the longer filtering axis
in texture space. Read the paper that describes Feline (McCormack, Perry,
Farkas, and Jouppi 1999) and implement this method in lrt. How does its
performance and quality compare to EWA?

Checkerboard2D 433
PolkaDots 444

Texture 394

454 Texture [Ch. 11

11.4 Implement plug-in shading language to allow user-written programs to com-
pute texture values.

11.5 detect specular highlight aliasing: gauss map, then find maximum value of
ωh inside the spherical triangle–either � 0 � 0 � 1 � , at a vertex, or along an edge?
Can we be sure that all ωh will be inside the spherical triangle given by the
three points, or is that just going to be good enough?

11.6 shading with closures, multi-point-sample textures and BSDFs..

11.7 Modify the MIPMap so that never does any texture filtering and always returns
a bilinearly interpolated value from the finest level of the pyramid. Using
the XXX.lrt scene, experiment with how high the number of pixel samples
needs to be in order to eliminate artifacts due to texture aliasing. (You may
find it useful to render a short animated sequence with a moving camera to
fully see the effect of texture aliasing.) How much faster is it to do correct
texture filtering in the texture lookup routine?

11.8 Implement Worley’s noise function (Worley 1996) and develop some Textures
that are based on it.

11.9 An additional advantage of properly anti-aliased image map lookups is that
it improves cache performance. Consider for example the situation of under-
sampling a high-resolution image map: nearby samples on the screen will
access widely-separated parts of the image map, such that there is low prob-
ability that texels fetched from main memory for one texture lookup will
already be in the cache for texture lookups at adjacent pixel samples. Mod-
ify lrt so that it always does image texture lookups from the finest level of
the MIPMap, being careful to ensure that the same number of texels are still
being accessed. How does performance change? What do cache-profiling
tools report about the effectiveness of the CPU cache?

11.10 Anti-aliased polka dot texture: the implementation of the PolkaDots texture
above does not make any effort to avoid causing aliasing in the results that
it computes. Modify this texture to add anti-aliasing. The Checkerboard2D
texture offers a guide as to how this might be done, though this case is more
complicated, both because the polka dots are not present in ever grid cell and
are irregularly positioned within the cell.

At the two extremes of a filter region that is within a single cell and a filter
region that spans a large number of cells, the task is easier. If the filter is
entirely within a single cell and is entirely inside or outside the polka dot in
that cell (if present), then we just need to evaluate one of the two sub-textures
as appropriate. If the filter is within a single cell but overlaps both the dot
and the base texture, then one can compute how much of the filter area is
inside the dot and how much is outside and blend between the two. At the
other extreme, if the filter area is extremely large, one can blend between the
two textures according to the overall average of how much area is covered
by dots and how much is not. (Note that here we are potentially making the
same error as was made in the checkerboard, where the sub-textures aren’t

Exercises 455

aware that part of their area is occluded by another texture. Ignore this issue
for this exercise.)

Implement these approaches and then consider the intermediate cases, where
the filter region spans a small number of cells. What approaches work well
for anti-aliasing this texture?

� � �

630 VolumeIntegrator
465 VolumeRegion

� ��� � � � � � � � � � � � � � ��� � � � �

Until now, lrt has been described under the assumption that the scene is a col-
lection of surfaces in a vacuum; this assumption made it possible to assume that
radiance is unchanging along rays between surfaces. There are many real-world
situations where this assumption is inaccurate, however: fog and smoke attenuate
and scatter light that passes through them, for example, and scattering by parti-
cles in the atmosphere is what makes the sky blue and sunsets red. Therefore, this
chapter introduces the mathematical description of the effects that operate on light
as it passes through participating media—particles distributed throughout a region
of 3D space that affect the distribution of light. Simulating these effects allows us
to render images with effects including atmospheric haze, beams of light through
clouds, light passing through cloudy water, and subsurface scattering, which de-
scribes scattering from objects where light exits the object at a different place than
it enters.

This chapter first describes the basic physical processes that change the amount
of radiance along rays passing through participating media. We will then introduce
a basic interface for modeling different types of media, the VolumeRegion base
class, and provide implementations of a number of useful representations. Like a
BSDF, the volume description just describes how light is scattered at single loca-
tions; in order to determine the global effect on the distribution of light in the scene,
VolumeIntegrators are used. They apply various techniques to model the effect
of light interactions in participating media and will be described and implemented
in Section 16.7, in the light transport chapter.

� � �

458 ***ADV***: Volume Scattering [Ch. 12

Figure 12.1: Absorption reduces the amount of radiance along a ray through
a participating medium. Consider a ray carrying some radiance L at a point
p in direction ω; if it passes through a differential cylinder filled with absorb-
ing particles, the change in radiance due to absorption due to those particles is
dL � p � ω � � � σa � p � ω � L � p � ω � dt.� � �
� ����� � � ��������� � � ��� � � � ��� ��� � � � � � � � ��� � � � �

There three main processes that affect the distribution of radiance in an environ-
ment with participating media.

� The first is absorption, which describes the reduction in radiance passing
from one point to another due to the absorption of energy (i.e. its conversion
to another form of energy, such as heat).

� Second is emission, which describes energy that is added to the environment
from luminous particles.

� The last is scattering, which describes how light heading in one direction
scattered to different directions due to collisions with particles.

The charactersitics of all of these properties may be homogeneous or inhomoge-
neous. Homogeneous properties are constant throughout a given spatial extent,
while inhomogeneous properties may vary arbitrarily throughout it.

12.1.1 Absorption

Consider thick black smoke from a fire: the smoke obscures the objects behind
it because the its particles absorb the radiance from them as it travels from the
surface of the object to he viewer. The thicker the smoke, the more of this radiance
is absorbed and less one can see of what is behind it. Absorption is described
by the absorption cross-section, σa; it is the probability that light is absorbed per
unit distance travelled in the medium. In general, the absorption cross section may
vary by both position p and direction ω, though it is normally just a function of
position. It is also in general a spectrally-varying quantity. The units of σa are
one over distance (e.g. m � 1). As such, it can take on any positive value–it’s not
required to be between zero and one, for instance.

Figure 12.1 shows the effect of absorption along a differential length of a ray.
The ray is carrying an amount of radiance L as it enters a differential volume.
Particles in the volume absorb some of the radiance and L � dL is the amount

Sec. 12.1] ***ADV***: Volume Scattering Processes 459

Figure 12.2: The volume emission function Lve � p � ω � gives the change in radiance
along a ray as it passes through a differential volume of emissive particles such that
the change in radiance per differential distance is dL = Lve dt.

that exits (where dL is less than or equal to zero.) This change in radiance along
differential ray length dt is described by the differential equation

dL � p � ω ��� � σa � p � ω � L � p � ω � dt

which just says that the differential reduction in radiance along the beam is a linear
function of its entering the region radiance.1

This differential equation can be easily solved to give the integral equation de-
scribing the total fraction of light absorbed for a ray passing along a non-differential
distance between two points p and p � in direction ω � �

p � � p with distance d be-
tween p and p � :

e ��� d
0 σa

� p � tω � ω � dt �
12.1.2 Emission

While absorption reduces the amount of radiance along a ray as it passes through a
medium, emission increases it. Various chemical and thermal processes (or nuclear
processes, e.g. in the case of the sun), convert energy into visible wavelengths of
light which illuminate the environment. Figure 12.2 shows emission in a differen-
tial volume, where we denote emitted radiance added to a ray per unit distance at a
point in a volume p in a direction ω by Lve � p � ω � .

The differential equation that gives the change in radiance due to emission is

dL � p � ω ��� Lve � p � ω � dt �

12.1.3 Out-Scattering and Extinction

The third basic light interaction in participating media is scattering. As a beam of
radiance propagates through a medium, it may collide with particles in the medium
and be scattered into different directions. This has two effects on the total radiance
the beam carries: it clearly reduces the radiance exiting a differential region of the
beam because some of it is deflected from the ray’s direction–this is called out-
scattering and is the topic of this section. However, radiance from other rays may

1This is another instance of the linearity assumption in radiometry: the fraction of light absorbed
doesn’t vary based on the ray’s radiance, but is always a fixed fraction.

460 ***ADV***: Volume Scattering [Ch. 12

Figure 12.3: Like absorption, out-scattering also reduces the radiance along a ray.
Light that hits particles may be scattered in another direction such that the radiance
exiting the region in the original direction is reduced.

be scattered into the path of the current ray; this in-scattering is the subject of the
next section.

The probability of such a scattering event occurring per unit distance is given by
the scattering coefficient, σs. Similar to the attenuation coefficient, the reduction
in radiance along a differential length dt due to out-scattering is given by

dL � p � ω ��� � σs � p � ω � L � p � ω � dt �
The total reduction in radiance due to the two effects that reduce radiance in par-

ticipating media, absorption and out-scattering, is given by the sum σa � σs. This
combined effect of absorption and out-scattering is called attenuation. For conve-
nience the sum of these two coefficients is denoted by the attenuation coefficient
σt ,

σt � p � ω ��� σa � p � ω � � σs � p � ω � �
Given the attenuation coefficient σt , the differential equation describing overall

attenuation
dL � p � ω �

dt � � σt � p � ω � L � p � ω �
can be solved to find the beam transmittance, which gives the fraction of radiance
that is transmitted between a two points on a ray. It is necessarily always between
zero and one.

Tr � p � p � � � e � � d
0 σt � p � tω � ω � dt �

where d is the distance between p and p � , ω is the normalized direction vector
between them, and Tr denotes the beam transmittance between p and p � . (This
quantity is also often called the extinction.) Thus, if reflected radiance from a point
on a surface in a given direction is given by L � p � ω � , after accounting for extinction,
the radiance at another point p � in direction ω is

Tr � p � p � � L � p � ω � �
This idea is illustrated in Figure 12.4.

Two useful basic properties of beam transmittance are that transmittance from a
point to itself is one, Tr � p � p � � 1, and in a vacuum, Tr � p � p � � � 1 for all p � .

Sec. 12.1] ***ADV***: Volume Scattering Processes 461

Figure 12.4: The beam transmittance Tr � p � p � � gives the fraction of light trans-
mitted from one point to another, accounting for absorption and out-scattering.
(And ignoring emission and in-scattering.) Given radiance at a point p in direction
ω (e.g. reflected radiance from a surface), the radiance visible at another point p �
along the ray (p,ω) is Tr � p � p � � L � p � ω � .

Figure 12.5: A useful property of beam transmittance is that it is multiplicative:
the transmittance between points p and p � � on a ray like the one shown here is equal
to the transmittance from p to p � times the transmittance from p � to p � � for all points
p � between p and p � � .

Another important property, true in all media, is that transmittance is multiplicative
along points on a ray:

Tr � p � p � � ��	 Tr � p � p � � Tr � p � � p � � � �

for all points p � between p and p � � . (See Figure 12.5.) This is a useful property for
volume scattering implementations, since it allows them to incrementally compute
transmittance at many points along a ray while only needing to find the product
of the previously-computed transmittance with the transmittance for an added seg-
ment.

The exponentiated term in Tr is called the optical thickness between the two
points. It is denoted by the symbol τ:

τ � p � p � ��	
� d

0
σt � p � tω � dt �

In a homogeneous medium, σt is a constant, the τ integral is trivially evaluated and
Beer’s law describes the attenuation.

Tr � p � p � ��	 e
� σtd

�

follows directly.

462 ***ADV***: Volume Scattering [Ch. 12

Figure 12.6: In-scattering accounts for the increase in radiance along a ray due
to radiance along other rays interacting with particles along the path of the ray.
Radiance scattered by these particles in the direction of the ray increases the ray’s
total radiance.

ω

ω'

Figure 12.7: The phase function describes the distribution of scattered radiance in
directions ω � at a point, given incident radiance along the direction ω. Here we
have plotted the Henyey-Greenstein phase function with an asymmetry parameter
g equal to 0 � 5.

12.1.4 In-scattering

While out-scattering reduces radiance along a ray due to scattering in different
directions, in-scattering accounts for increased radiance due to radiance from other
directions; see Figure 12.6. Under the assumption that the individual particles
that cause these scattering events are separated by a few times the lengths of their
radii, it is possible to ignore interactions between these particles when describing
scattering at some location (van de Hulst 1981). Under these assumptions, the
phase function, p � ω � ω � � , is a function of the two directions that describes the
angular distribution of scattered radiation at a point. It is the volumetric analog to
the BSDF.

Unlike BSDFs, phase functions are defined so that they are normalized so that
for all ω,

1
4π
�

S2
p � ω � ω � � dω � � 1 � (12.1.1)

This causes them to actually be probability distribution functions that give the prob-
ability density for scattering in a particular direction.

The total added radiance per unit distance due to in-scattering is given by the
source term, S,

dL � p � ω ��� S � p � ω � dt �

Sec. 12.2] ***ADV***: Phase Functions 463

678 M PI
27 Vector

It accounts for both volume emission and in-scattering:

S � p � ω � � Lve � p � ω � � σs � p � ω � �
S2

p � p ��� ω � � ω � Li � p � ω � � dω � �
The source term is the product of the scattering probability per unit distance, σs,
and the amount of added radiance at a point, which is given by the integral over the
sphere of directions at the point that computes the product of incident radiance and
the phase function, which describes the medium’s angular response to illumination
at the point. Note that the source term is very similar in form to the scattering
equation, 5.4.9; the main difference is that there is no cosine term (since the phase
function operates on radiance, rather than differential irradiance as the BSDF does).� � ��������� � � ��������� � � � � ��� �	� � � � � �

Just as there are a wide variety of BSDF models to describe scattering from sur-
faces, a variety of phase functions have been developed, ranging from parameter-
ized models, which can be used to fit a function with a small number of parameters
to measured data, to the analytic, which are derived by directly deriving the scat-
tered radiance distribution that results from scattering from particles with known
shape and material (e.g. scattering from spherical water droplets.)

In most naturally-occuring media, the phase function is a function of the angle
between the two directions ω and ω � ; such media are called isotropic and these
phase functions are often written as p � cos θ � . In exotic media, such as those with
crystalline-type structure, the phase function is a function of each of the two angles,
though this is much less common. In addition to being normalized, as described
above, an important property of naturally-occurring phase functions is that they are
reciprocal: the two directions can be interchanged and the phase function’s value
remains unchanged.

In a slightly confusing overloading of terminology, phase functions themselves
can be isotropic or anisotropic as well. The isotropic phase function describes equal
scattering in all directions and is thus is independent of either of the two angles;
because phase functions are normalized, it has the value 1

�
4π.

pisotropic � ω � ω � � � 1
4π �

Anisotropic phase functions vary based on the directions based either on the angle
between the two directions or the two directions themselves, depending on if the
medium is isotropic or anisotropic, respectively.�
Volume Scattering Definitions ���
Float PhaseIsotropic(const Vector &, const Vector &) {

return 1.f / (4.f * M_PI);
}

All of the anisotropic phase functions in the remainder of this section describe
isotropic media and thus are all defined an implemented in terms of the angle be-
tween the two-directions—Figure 12.8 shows the convention for how this angle is
measured. Note that when describing scattering in participating media, we use a
different convention for the direction of vectors at a scattering event in a volume

M PI 678
Vector 27

464 ***ADV***: Volume Scattering [Ch. 12

Figure 12.8: Phase functions are written with the convention that the incident di-
rection points toward the point where scattering happens and the outgoing direction
points away from it. The angle between them is denoted by θ.

than we used for scattering at a surface, where both vectors faced away from the
surface. This matches the usual convention used for phase functions.

A widely-used phase function, particularly in computer graphics, was developed
by Henyey and Greenstein. This phase function was specifically designed to be
easy to use for fitting measured scattering data. A single parameter, g controls the
distribution of scattered light.

pHG � cosθ � 	 1
4π

1 � g2

� 1 � g2
� 2g � cos θ ��� 3 � 2

The value of g must be in the range � � 1 � 1 � . Negative values of g correspond to
back-scattering, where light is mostly scattered back toward the incident direction,
and positive values correspond to forward scattering. The greater the magnitude
of g, the more scattering is scattered close to the � ω or ω directions (for back-
scattering and forward scattering, respectively.)�
Volume Scattering Definitions � ���
Float PhaseHG(const Vector &w, const Vector &wp, Float g) {

Float costheta = Dot(w, wp);
return 1.f / (4.f * M_PI) * (1.f - g*g) /

powf(1.f + g*g - 2.f * g * costheta, 1.5f);
}

The asymmetry parameter was carefully chosen to have a precise meaning. It is
the average value of the product of the phase function being approximated with the
Henyey–Greenstein phase function with the cosine of the angle between ω � and ω.
Given an arbitrary phase function, its g value can be computed by:

g 	 1
2

�
S2

p � ω � ω � � � ω � ω � � dω �

Thus, isotropic scattering corresponds to a g of zero. Any number of phase func-
tions can satisfy this equation; the g value alone is not enough to uniquely describe
a scattering distribution. Nevertheless, the convenience of being able to easily
convert a complex scattering distribution into a simple parameterized model often
outweighs this loss in accuracy.

More complex phase functions that aren’t described well with a single asym-
metry parameter are often modeled with a weighted sum of phase functions like

Sec. 12.3] ***ADV***: Volume Interface and Homogeneous Volumes 465

678 M PI
27 Vector

630 VolumeIntegrator

Henyey–Greenstein, each with different parameter values:

p � ω � ω � � � n

∑
i � 1

wi pi � ω � ω � �
where the weights, wi necessarily sum to one so that the normalization condition
holds.

An alternative phase function was developed by Schlick as an efficient approx-
imation to the Henyey–Greenstein function. It has been widely used in computer
graphics due to its computational efficiency since it doesn’t call the powf() func-
tion. It is

pSchlick � cos θ ��� 1
4π

1 � g2

� 1 � gcosθ � 2 �

where the g parameter has an equivalent effect on the distribution.�
Volume Scattering Definitions ��� �
Float PhaseSchlick(const Vector &w, const Vector &wp, Float g) {

Float gcostheta = g * Dot(w, wp);
return 1.f / (4.f * M_PI) * (1.f - g*g) /

((1.f - gcostheta) * (1.f - gcostheta));
}

� � ��������� � � ��������� � � ��� � � ������� � �	��� � ��� � � � ���
����� � � � � � ��� � �

The user-supplied information about participating media in the scene is repre-
sented by implementations of the abstract VolumeRegion class, which provides
the basic interface that describes volume scattering in a particular region of the
scene with a given spatial extent. Multiple VolumeRegions of different types can
be used to describe different types of scattering in different parts of the scene. In
this section, we will describe the basic interface, which is in the core/volume.h
and core/volume.cpp files as well as a handful of useful implementations, all of
which are in the volumes/ directory.�
Volume Scattering Declarations ��� �
class VolumeRegion {
public:�

VolumeRegion Interface �
};

All VolumeRegions must be able to compute an axis-aligned world-space bound-
ing box which is returned by their WorldBound() method. As with Shapes and
Primitives, this bound is useful for being able to conservatively quickly cull vol-
umes from consideration for rays that don’t pass near them.

Additionally, because it helps VolumeIntegrators to know a minimal subset
of a world-space ray that passes through a region, and because their actual extent
may not be well-described by an world-space bounding box, a separate method,
IntersectP() checks to see if a given ray intersects the region and returns the
parametric t range of the segment that overlaps the volume if it does.

BBox 38
HomogeneousVolume 467

Point 33
Ray 36

Spectrum 181
Vector 27

VolumeRegion 465

466 ***ADV***: Volume Scattering [Ch. 12

�
VolumeRegion Interface ��� �
virtual BBox WorldBound() const = 0;
virtual bool IntersectP(const Ray &ray, Float *t0,

Float *t1) const = 0;

This interface has four basic methods corresponding to the basic scattering prop-
erties introduced earlier in this chapter that allow VolumeRegions to describe their
possibly spatially-varying scattering properties. Given a world-space point and di-
rection, sigma a(), sigma s(), and Lve() return the corresponding values for the
given position and direction in the volume. The p() method returns the value of
the phase function for the given pair of directions at the given point.�
VolumeRegion Interface ��� �
virtual Spectrum sigma_a(const Point &,

const Vector &) const = 0;
virtual Spectrum sigma_s(const Point &,

const Vector &) const = 0;
virtual Spectrum Lve(const Point &, const Vector &) const = 0;
virtual Float p(const Point &, const Vector &,

const Vector &) const = 0;

For convenience, there is also a sigma t() method to return the attenuation
coefficient. A default implementation returns the sum of the σa and σs values, but
some VolumeRegion implementations will be able to avoid duplicate work and
override this method when both values are needed.�
Volume Scattering Definitions ��� �
Spectrum VolumeRegion::sigma_t(const Point &p, const Vector &w) const {

return sigma_a(p, w) + sigma_s(p, w);
}

Finally, the Tau() method computes the optical thickness that the ray passes
through in the volume from the point ray(ray.mint) to ray(ray.maxt). Some
implementations, like the HomogeneousVolume below, can compute this value ex-
actly while others use Monte Carlo integration to compute it. For the benefit of
the Monte Carlo approach, this method takes two optional parameters, nSamples
and offset, that are ignored by the implementations that compute this value in
closed-form. The Monte Carlo routines are defined in Section 15.5; the meanings
of these extra parameters are described there.�
VolumeRegion Interface ��� �
virtual Spectrum Tau(const Ray &ray,

Float step = 1.f, Float offset = 0.5) const = 0;

12.3.1 Homogeneous Volume

The simplest volume representation, HomogeneousVolume, describes a region of
space bounded by an axis-aligned bounding box with homogeneous scattering
properties throughout it. Values for σa, σs, the phase function’s g value, and
the amount of emission Lve are passed to the constructor. In conjunction with a
transformation from world space to the volume’s object space and an axis-aligned

Sec. 12.3] ***ADV***: Volume Interface and Homogeneous Volumes 467

38 BBox
181 Spectrum
43 Transform
55 Transform::GetInverse()

465 VolumeRegion

Figure 12.9: Volumes described by axis-aligned bounding boxes in the volume’s
object space can compute a tighter bound on the parametric t range of a ray that
overlaps the volume by transforming the ray into object space and computing the
ray–box intersections there than if they find the intersections with the world-space
bound and an untransformed ray in world space. Here, the filled circles denote
the world-space intersections and the open circles denote the object-space inter-
sections.

volume space bound, this suffices to describe the region. Its implementation is in
volumes/homogeneous.cpp.�
HomogeneousVolume Declarations ���
class HomogeneousVolume : public VolumeRegion {
public:�

HomogeneousVolume Public Methods �
private:�

HomogeneousVolume Private Data �
};

The constructor, not shown here, copies parameters to set the corresponding
member variables.�
HomogeneousVolume Private Data ���
Spectrum sig_a, sig_s, le;
Float g;
BBox extent;
Transform WorldToVolume;

Because the bound is maintained internally in the volume’s object space, it must
be transformed out to world space for the WorldBound() method.�
HomogeneousVolume Public Methods � � �
BBox WorldBound() const {

return WorldToVolume.GetInverse()(extent);
}

If the region’s world to volume transformation includes a rotation such that the
bound isn’t aligned with the world space axes, it’s possible to compute a tighter
segment of the ray–volume overlap by transforming the ray to the volume’s object
space and doing the overlap test there–Figure 12.9 illustrates an example of this.
Therefore, this is the approach taken by IntersectP().

BBox::Inside() 40
Distance() 34

HomogeneousVolume::extent 467
HomogeneousVolume::sig a 467

HomogeneousVolume::WorldToVolume 467
Point 33
Ray 36

Spectrum 181
Vector 27

VolumeRegion 465

468 ***ADV***: Volume Scattering [Ch. 12

�
HomogeneousVolume Public Methods ��� �
bool IntersectP(const Ray &r, Float *t0, Float *t1) const {

Ray ray = WorldToVolume(r);
return extent.IntersectP(ray, t0, t1);

}

Implementation of the rest of the VolumeRegion interface methods is straight-
forward; each one just verifies that the given point is inside the region’s extent and
returns the appropriate value if so. The sigma a() method illustrates the basic
approach; the rest of the methods won’t be included here.�
HomogeneousVolume Public Methods ��� �
Spectrum sigma_a(const Point &p, const Vector &) const {

return extent.Inside(WorldToVolume(p)) ? sig_a : 0.;
}

Because σa and σs are constant throughout the volume, the optical thickness that
a ray passes through can be computed in closed form.�
HomogeneousVolume Public Methods ��� �
Spectrum Tau(const Ray &ray, Float, Float) const {

Float t0, t1;
if (!IntersectP(ray, &t0, &t1)) return 0.;
return Distance(ray(t0), ray(t1)) * (sig_a + sig_s);

}

� � ��� ����� � � ��������� � � � ��� � � � � ��� � � � � � � ��� � �

The rest of the volume representations in this chapter are based on the assump-
tion that the underlying particles throughout the medium all have the same basic
scattering properties, but that their density changes spatially at different points in
the medium. An implication of this assumption is that their volume scattering prop-
erties can be described by the product of the density function and a baseline value
for each of them. In order to reduce duplicated code and so that the various rep-
resentations can just focus on varying the density of the particles, we will define a
DensityRegion class that provides implementations many of the VolumeRegion
interface functions based on a new pure virtual method that returns the density
at a point. Volume representations can inherit from the DensityRegion and be
saved the trouble of needing to provide their own implementations of some of the
VolumeRegion methods.�
Volume Scattering Declarations ��� �
class DensityRegion : public VolumeRegion {
public:�

DensityRegion Public Methods �
protected:�

DensityRegion Protected Data �
};

The DensityRegion constructor takes the basic values of the scattering proper-
ties and stores them in corresponding member variables.

Sec. 12.4] ***ADV***: Varying-Density Volumes 469

468 DensityRegion
464 PhaseHG()
33 Point

181 Spectrum
43 Transform
27 Vector

470 VolumeGrid

�
DensityRegion Public Methods ���
DensityRegion(const Spectrum &sig_a, const Spectrum &sig_a,

Float g, const Spectrum &Le, const Transform &v2w);

�
DensityRegion Protected Data ���
Transform WorldToVolume;
Spectrum sig_a, sig_s, le;
Float g;

All subclasses must implement the DensityRegion’s Density() method, which
returns the volume’s density at the given point in object space. The density returned
is applied as a scale to the basic scattering parameters; as such, it can take on any
value greater than or equal to zero.�
DensityRegion Public Methods ��� �
virtual Float Density(const Point &Pobj) const = 0;

The sigma a() method is illustrative of all of the VolumeRegion methods im-
plemented by the DensityRegion; it just scales sig a by the local density at the
point.�
DensityRegion Public Methods ��� �
Spectrum sigma_a(const Point &p, const Vector &) const {

return Density(WorldToVolume(p)) * sig_a;
}

Finally, note that the p() method doesn’t scale the phase function’s value by the
local density; variations in the amount of scattering from point to point are already
accounted for by the scaled σs values.�
DensityRegion Public Methods ��� �
Float p(const Point &p, const Vector &w,

const Vector &wp) const {
return PhaseHG(w, wp, g);

}

The DensityRegion has no hope of implementing the Tau() method, since it
depends on global knowledge of the shape of the VolumeRegion as well as the den-
sity distribution throughout it. Therefore, this method is still left to be implemented
by the subclasses.

12.4.1 3D Grids

The VolumeGrid stores densities at a regular 3D grid of positions similar to how
ImageMaps represent images with a 2D grid of samples. These samples are inter-
polated to compute the density at positions between the sample points. The im-
plementation here takes a 3D array of user-supplied density values, thus allowing
a variety of sources of data (e.g. physical simulation in a pre-process, data from a
real object, as from a medical CT scan, etc.) The user also supplies baseline values
of σa, σs, etc., all of which are passed to the DensityRegion constructor to be
scaled by the local density at the point of interest. The implementation is defined
in volumes/volumegrid.cpp.

BBox 38
BBox::Inside() 40
DensityRegion 468

Point 33
Spectrum 181

Transform 43

470 ***ADV***: Volume Scattering [Ch. 12

�
VolumeGrid Declarations ���
class VolumeGrid : public DensityRegion {
public:�

VolumeGrid Public Methods �
private:�

VolumeGrid Private Data �
};

The constructor does the usual initialization of the basic scattering properties,
stores an object-space bounding box that defines the region’s extent and makes a
local copy of the density values passed in.�
VolumeGrid Method Definitions ���
VolumeGrid::VolumeGrid(const Spectrum &sa, const Spectrum &ss, Float gg,

const Spectrum &emit, const BBox &e, const Transform &v2w,
int x, int y, int z, const Float *d)

: DensityRegion(sa, ss, gg, emit, v2w) {
extent = e;
nx = x;
ny = y;
nz = z;
density = new Float[nx*ny*nz];
memcpy(density, d, nx*ny*nz*sizeof(Float));

}
�
VolumeGrid Private Data ���
Float *density;
int nx, ny, nz;
BBox extent;

The implementations of WorldBound() and IntersectP() are just like the
ones for the HomogeneousRegion so aren’t included here.

The task of the Density() method is to use the samples to reconstruct the vol-
ume density function at the given point.�
VolumeGrid Method Definitions ��� �
Float VolumeGrid::Density(const Point &Pobj) const {

if (!extent.Inside(Pobj)) return 0;�
Compute voxel coordinates and offsets for Pobj ��
Trilinearly interpolate density values to compute local density �

}

Given the eight 3D sample values around the point, the implementation here
trilinearly interpolates among them to compute the density function there. First,
it find the integer coordinates of the sample beneath the lookup point in each di-
rection, vx, vy, and vz. Then, it finds the distance from the lookup point to that
sample for use in the trilinear interpolation computations, dx, dy, and dz.

Sec. 12.4] ***ADV***: Varying-Density Volumes 471

39 BBox::pMax
39 BBox::pMin

677 Lerp()
470 VolumeGrid::extent
470 VolumeGrid::nx
470 VolumeGrid::ny
470 VolumeGrid::nz

�
Compute voxel coordinates and offsets for Pobj ���
Float voxx = (Pobj.x - extent.pMin.x) /

(extent.pMax.x - extent.pMin.x) * nx;
Float voxy = (Pobj.y - extent.pMin.y) /

(extent.pMax.y - extent.pMin.y) * ny;
Float voxz = (Pobj.z - extent.pMin.z) /

(extent.pMax.z - extent.pMin.z) * nz;
int vx = Floor2Int(voxx - .5f);
int vy = Floor2Int(voxy - .5f);
int vz = Floor2Int(voxz - .5f);
Float dx = voxx - vx;
Float dy = voxy - vy;
Float dz = voxz - vz;

�
Trilinearly interpolate density values to compute local density ���
Float d00 = Lerp(dx, D(vx, vy, vz), D(vx+1, vy, vz));
Float d10 = Lerp(dx, D(vx, vy+1, vz), D(vx+1, vy+1, vz));
Float d01 = Lerp(dx, D(vx, vy, vz+1), D(vx+1, vy, vz+1));
Float d11 = Lerp(dx, D(vx, vy+1, vz+1), D(vx+1, vy+1, vz+1));
Float d0 = Lerp(dy, d00, d10);
Float d1 = Lerp(dy, d01, d11);
return Lerp(dz, d0, d1);

The D() utility method returns the density at the given sample position. Its only
tasks are to handle out-of-bounds sample positions with clamping and to compute
the appropriate array offset for the given sample.�
VolumeGrid Public Methods ��� �
Float D(int x, int y, int z) const {

x = Clamp(x, 0, nx-1);
y = Clamp(x, 0, ny-1);
z = Clamp(x, 0, nz-1);
return density[z*nx*ny + y*nx + z];

}

12.4.2 Exponential Density

Another useful density function is the ExponentialDensity, which describes a
density that varies as an exponential function of height h within a given 3D extent.

d � y � � ae � bh �
The a and b values are parameters that control the overall density and how quickly
it falls off as a function of height, respectively. Larger a values increase the density
globally, and larger b values increase the rate of falloff. This density function is
a good model for the earth’s atmosphere as seen from the earth’s surface (where
the atmosphere’s curvature can generally be neglected) (Ebert, Musgrave, Peachey,
Perlin, and Worley 2003). It is defined in volumes/exponential.cpp.

BBox 38
DensityRegion 468

GridAccel 139
KdTreeAccel 154

Point 33
Primitive 130

Scene 8
Vector 27

VolumeIntegrator 630
VolumeRegion 465

472 ***ADV***: Volume Scattering [Ch. 12

�
ExponentialDensity Declarations ���
class ExponentialDensity : public DensityRegion {
public:�

ExponentialDensity Public Methods �
private:�

ExponentialDensity Private Data �
};

The ExponentialDensity’s constructor just initializes its member variables
directly from values passed in. In addition to the volume scattering properties
passed to the DensityRegion constructor, the volume’s bound, and the a and b
parameter values, this implementation takes a vector giving an “up” direction that
orients the volume and is used to compute the height of points for the density
computation. While the up direction is redundant, in that the world to object space
transformation of the volume can be used to orient it as needed, an explicit up
vector like this can be conceptually easier for the user.�
ExponentialDensity Private Data ���
BBox extent;
Float a, b;
Vector upDir;

The WorldBound() and IntersectP() are also like the others, this being one
more volume with an extent described by and object-space axis-aligned bounding
box.

The height of a given object-space point is easily found by projecting the vector
from the lower corner of the bounding box onto the “up” direction. This is simi-
lar to how vectors are transformed to and from the BSDF coordinate system, for
example.�
ExponentialDensity Public Methods ��� �
Float Density(const Point &Pobj) const {

if (!extent.Inside(Pobj)) return 0;
Float height = Dot(Pobj - extent.pMin, upDir);
return a * exp(-b * height);

}

� � ��� ����� � � ��������� � � ��� � � � � � ��������� �

Just as subclasses of the Primitive class can be written that are themselves ag-
gregates that hold one or more primitives, the same can be done with VolumeRegions.
There are two main reasons to use volume aggregates in the system: first, it sim-
plifies the Scene and the implementation of VolumeIntegrators, since they can
be written to make calls to a single aggregate VolumeRegion, rather than need-
ing to loop over all of the regions in the scene themselves whenever it is nec-
essary to find scattering properties at some point. Second, similarly to how the
GridAccel and KdTreeAccel were able to substantially speed up ray–primitive
intersection tests by not checking for intersections with all primitives for every
ray, smart VolumeRegion implementations can use 3D spatial data structures to
improve efficiency by quickly culling volumes far from a particular ray or lookup
point.

Sec. 12.5] ***ADV***: Volume Aggregates 473

38 BBox
33 Point

181 Spectrum
658 vector
27 Vector

465 VolumeRegion
466 VolumeRegion::sigma a()

Here we will just implement a simple VolumeRegion that stores a list of all
of the volumes in the scene and loops over them in each method implementa-
tion. This will be an inefficient implementation for scenes with many distinct
VolumeRegions, though writing a more efficient implementation is left as an exer-
cise at the end of the chapter.�
Volume Scattering Declarations ��� �
class VolumeList : public VolumeRegion {
public:�

VolumeList Public Methods �
private:�

VolumeList Private Data �
};

�
Volume Scattering Definitions ��� �
VolumeList::VolumeList(const vector<VolumeRegion *> &r) {

regions = r;
for (u_int i = 0; i < regions.size(); ++i)

bound = Union(bound, regions[i]->WorldBound());
}

�
VolumeList Private Data ���
vector<VolumeRegion *> regions;
BBox bound;

As described above, the implementations of the various VolumeRegion interface
methods mostly just need to loop over each of the individual regions.�
Volume Scattering Definitions ��� �
Spectrum VolumeList::sigma_a(const Point &p,

const Vector &w) const {
Spectrum s(0.);
for (u_int i = 0; i < regions.size(); ++i)

s += regions[i]->sigma_a(p, w);
return s;

}

The one method that isn’t trivial is IntersectP(). The parametric t range of
the ray over all the volumes is equal to the extent from the minimum of all of the
tmin values for the regions that it did intersect to the maximum of all of the tmax

values.

INFINITY 678
Ray 36

VolumeList 473
VolumeList::regions 473

VolumeRegion::IntersectP() 466

474 ***ADV***: Volume Scattering [Ch. 12

�
Volume Scattering Definitions ��� �
bool VolumeList::IntersectP(const Ray &ray,

Float *t0, Float *t1) const {
bool hitAny = false;
*t0 = INFINITY;
*t1 = -INFINITY;
for (u_int i = 0; i < regions.size(); ++i) {

Float tr0, tr1;
if (regions[i]->IntersectP(ray, &tr0, &tr1)) {

hitAny = true;
*t0 = min(*t0, tr0);
*t1 = max(*t1, tr1);

}
}
return hitAny;

}
����� ���� � � � ��� � � �

The books written by van de Hulst (van de Hulst 1980) and Preisendorfer (Preisendor-
fer 1965; Preisendorfer 1976) are excellent introductions to volume light transport.
Chandrasekhar’s seminal book is another excellent resource (Chandrasekar 1960),
though it is mathematically challenging.

The Henyey–Greenstein phase function was originally described in Henyey and
Greenstein’s 1941 paper (Henyey and Greenstein 1941). Detailed discussion of
scattering and phase functions and derivations of phase functions that describe
scattering from independent spheres, cylinders, and other simple shapes can be
found in van de Hulst (van de Hulst 1981). In particular, extensive discussion of
the commonly-used Mie and Rayleigh scattering models (which describe scattering
from particles approximately the size of or larger than the wavelength of incident
radiation and particles much smaller than the wavelength of incident radiation, re-
spectively) is available there. Hansen and Travis’s survey article is also a good
introduction to the variety of commonly-used phase functions (Hansen and Travis
1974).

Just as procedural modeling of textures is an effective technique for shading sur-
faces, procedural modeling of volume densities can be used to describe realistic-
looking volumetric objects like clouds and smoke. For example, Perlin and Hof-
fert’s paper describes early work in this area (Perlin and Hoffert 1989) and Ebert
et al’s book has a number of sections devoted to this topic, including further ref-
erences (Ebert, Musgrave, Peachey, Perlin, and Worley 2003). More recently, ac-
curate physical simulation of the dynamics of smoke, and fire has led to extremely
realistic volume data-sets (See for example Fedkiw et al (Fedkiw, Stam, and Jensen
2001).)

In this chapter, we have ignored all issues related to sampling and anti-aliasing
of volumes, though in principle this issues should be considered, e.g. for the
case of a volume that occupies just a few pixels on the screen. Marschner and
Lobb present the theory and practice of sampling and reconstruction for three-
dimensional datasets, applying ideas similar to those in Chapter 7 (Marschner and
Lobb 1994).

Exercises 475

472 ExponentialDensity
473 VolumeList
465 VolumeRegion

�
� � � � � � � �

12.1 The optical thickness of a ray passing through an ExponentialDensity
can be computed in closed-form, so that the default Tau() method based
on Monte Carlo integration isn’t needed. Derive this expression and add an
implementation that computes its value to the ExponentialDensity class.
Test your implementation to ensure that it computes the same results as the
Monte Carlo approach. How much does this speed up lrt for scenes that
use an instance of the ExponentialDensity volume?

12.2 The VolumeList volume aggregate will have poor performance for a scene
with more than a handful of VolumeRegions–for example, time will be
wasted determining the values of σt and σs in areas where the point is out-
side most of the volumes. Write a better volume aggregate based on a 3D
data structure like a grid or an octree that is more robust in the presence
of large numbers of volumes. Verify that it returns the same results as the
VolumeList and measure how much faster lrt is when it is used rather than
the VolumeList. (Don’t forget to modify the GraphicsOptions::MakeScene()
method to create an instance of your new aggregate instead of a VolumeList.)

� � �

� � � � � � � � � � �

In order to be able to see the scene we’re rendering, it’s necessary that some of
the objects in the scene emit light into the scene. In this chapter, we’ll describe
the abstract Light class, which defines the basic abstractions and interfaces used
for light sources in lrt. We’ll then describe the implementations of a number of
useful light sources, including point lights that emit uniform illumination in all
directions, spotlights, and light sources defined by making a shape emissive. By
hiding the implementation of different types of lights behind a carefully-designed
interface, we’ve made it possible for the light transport routines to operate without
needing to know what particular types of lights are in the scene, similarly to how
the acceleration structures can hold collections of primitives without needing to
know their actual types.

This chapter provides a rich and varied set of light source implementations,
though the variety is slightly limited by lrt’s physically-based design. Many flex-
ible light source models have been developed for computer graphics, incorporating
substantial control over properties like how quickly the light falls off with distance,
which objects are illuminated by the light, which objects do and do not cast shad-
ows from the light, etc. (See, for example, Barzel’s article (Barzel 1997).) While
controls such as these are quite useful for artistic effects, many of them are incom-
patible with the physically-based light transport algorithms in Chapter 16 and thus
can’t be provided in the models here.

Furthermore, this chapter only defines the basic light functionality. Many of
the interesting quantities related to complex light sources cannot be computed in
closed form, so the Monte Carlo routines in Chapter 14 will round out the light
source interfaces and implementations for use by the integrators in Chapter 16.

� � �

Integrator 562
Transform 43

Transform::GetInverse() 55

478 Light Sources [Ch. 13

� � �
� � � � �� ������� � � �����

The core lighting routines and interfaces are in core/light.h and core/light.cpp.
Implementations of particular lights are in individual source files in the lights/
directory.�
light.h* ���
#include "lrt.h"
#include "geometry.h"
#include "transform.h"
#include "color.h"
#include "paramset.h"
#include "mc.h"�
Light Declarations �

�
light.cpp* ���
#include "light.h"
#include "scene.h"�
Light Method Definitions �
All lights share one common parameter: a transformation that defines the light’s

coordinate system in terms of the scene’s world coordinate system. Just like shapes,
it’s often handy to be able to write a light’s implementation assuming a particular
coordinate system (e.g. that a spotlight is always located at the origin of its light
space, shining down the � z axis.)�
Light Declarations ���
class Light {
public:�

Light Interface �
protected:�

Light Protected Data �
};

�
Light Interface ��� �
Light(const Transform &l2w) {

LightToWorld = l2w;
WorldToLight = LightToWorld.GetInverse();

}
�
Light Protected Data ���
Transform WorldToLight, LightToWorld;

So that the Integrators can compute light reflection at a point on a surface,
Lights must be able to compute the differential irradiance arriving at a location in
the scene due to their illumination. Recall from Section 5.2 that irradiance, E , is
the flux density per area; from a point source of flux, it falls off proportionally to
the cosine of the angle of incident light with the surface normal of the receiver, and
inversely proportional to the squared distance between the two.

The differential irradiance function dE(), takes the world-space position P and
normal N of the point where we want compute illumination. The light determines

Sec. 13.1] Light Interface 479

34 Normal
33 Point
36 Ray
37 RAY EPSILON

181 Spectrum
27 Vector

Figure 13.1: differential irradiance setting

the incident direction ω, which is returned in *w. This method returns the differ-
ential irradiance to the caller and also initializes the VisibilityChecker if dE is
non-zero.�
Light Interface ��� �
virtual Spectrum dE(const Point &P, const Normal &N,

Vector *w, VisibilityTester *vis) const = 0;

�
Light Interface ��� �
virtual Spectrum Power() const = 0;

write text here. This is useful e.g. in the direct lighting integrator, where it lets
us figure out that there’s no reason to try to sample the BSDF to find the light...�
Light Interface ��� �
virtual bool IsDeltaLight() const = 0;

13.1.1 Visibility Testing

The VisibilityTester is a closer, an object that encapsulates a small amount of
data and some computation that is yet to be done. It allows lights to return the dE
value under the assumption that the point P and the light source are mutually-
visible. The integrator can then decide if illumination from the direction ω is
important–for example, light incident on the back side of a non-translucent sur-
face contributes nothing to reflection from the other side. If the actual amount
of arriving illumination is needed, methods in the visibility tester can cause the
necessary shadow ray to be traced.�
Light Declarations ��� �
struct VisibilityTester {�

VisibilityTester Public Methods �
Ray r;

};

The first two methods initialize the VisibilityTester, informing it that ei-
ther a segment between two points, p1 and p2, needs to be checked for occlusion
(SetSegment()), or that a semi-infinite ray from the point p in the direction w
should be checked (SetRay()).�
VisibilityTester Public Methods ���
void SetSegment(const Point &p1, const Point &p2) {

r = Ray(p1, p2-p1, RAY_EPSILON, 1.f - RAY_EPSILON);
}

Light 478
Point 33
Ray 36

RAY EPSILON 37
Scene 8

Spectrum 181
StatsCounter 661

Vector 27
VisibilityTester 479

VisibilityTester::r 479

480 Light Sources [Ch. 13

�
VisibilityTester Public Methods ��� �
void SetRay(const Point &p, const Vector &w) {

r = Ray(p, w, RAY_EPSILON);
}

The second pair of methods are called by integrators to cause the appropriate
ray to be traced. Unoccluded() traces the shadow ray and returns a boolean result.
Transmittance() determines the fraction of illumination from the light that is not
extinguished by participating media in the scene. If the scene has no participating
media, it always returns a constant spectral value of one.�
Light Method Definitions ��� �
bool VisibilityTester::Unoccluded(const Scene *scene) const {�

Update shadow ray statistics �
return !scene->IntersectP(r);

}
�
Light Method Definitions ��� �
Spectrum VisibilityTester::Transmittance(const Scene *scene) const {

return scene->Transmittance(r);
}

Since shadow rays may repreent a significant fraction of overall rendering time,
it’s useful to keep track of the total number of shadow rays traced.�
Update shadow ray statistics ���
static StatsCounter nShadowRays("Lights",

"Number of shadow rays traced");
++nShadowRays;

� � ��� � � � ��� � � � �� �
�
point.cpp* ���
#include "lrt.h"
#include "light.h"
#include "shape.h"�
PointLight Classes ��
PointLight Method Definitions �
Now we can present some light source implementations. The point light is one

of the most straightforward. The PointLight class implements an isotropic point
light source that shines the same amount of light in all directions.�
PointLight Classes ���
class PointLight : public Light {
public:�

PointLight Public Methods �
private:�

PointLight Private Data �
};

Sec. 13.2] Point Lights 481

34 DistanceSquared()
30 Dot()

478 Light
478 Light::LightToWorld
678 M PI
34 Normal
33 Point

480 PointLight
181 Spectrum
43 Transform
27 Vector
30 Vector::Hat()

479 VisibilityTester
479 VisibilityTester::SetSegment()

PointLights are positioned at the origin in light space; to place them elsewhere,
the world-to-light transform should be adjusted with an additional translation as
appropriate. We precompute the world-space position of the light in the constructor
by transforming � 0 � 0 � 0 � from light space to world space. We also precompute the
source’s total power from its intensity, applying the closed form solution of the
integral XXX.�
PointLight Method Definitions ���
PointLight::PointLight(const Transform &light2world,

const Spectrum &intensity)
: Light(light2world) {
lightPos = LightToWorld(Point(0,0,0));
Intensity = intensity;

}
�
PointLight Public Methods ��� �
Spectrum Power() const {

return Intensity * 4.f * M_PI;
}

�
PointLight Private Data ���
Point lightPos;
Spectrum Intensity;

�
PointLight Public Methods ��� �
bool IsDeltaLight() const { return true; }

Point lights are defined in terms of their radiant intensity. For an isotropic
point light, the radiant intensity is constant and independent of direction. To
compute the differential irradiance, we start by computing the incident direction
ω from the shading point to the light and normalizing it. Next we initialize the
VisibilityChecker to check the segment between the two points and compute
the incident differential irradiance.�
PointLight Method Definitions ��� �
Spectrum PointLight::dE(const Point &P, const Normal &N,

Vector *w, VisibilityTester *visibility) const {
*w = (lightPos - P).Hat();
visibility->SetSegment(P, lightPos);
return Intensity * fabs(Dot(*w, N)) /

DistanceSquared(lightPos, P);
}

13.2.1 Spot Light
�
spot.cpp* ���
#include "lrt.h"
#include "light.h"
#include "shape.h"�
SpotLight Declarations ��
SpotLight Method Definitions �

Light 478
Light::LightToWorld 478

Point 33
Radians() 677
Spectrum 181

Transform 43

482 Light Sources [Ch. 13

Figure 13.2: Spotlights are defined by two angles, falloffStart and totalWidth. Ob-
jects inside the inner cone of angles, up to falloffStart are fully illuminated by the
light. The directions between falloffStart and totalWidth are a transition zone that
ramps down from full illumination to no illumination, such that points outside the
totalWidth cone aren’t illuminated at all. The cosine of the angle between the vec-
tor to a point p and the spotlight axis, θ, can easily be computed with a dot product.

Spot lights are a handy variation on point lights; rather than shining illumination
in all directions, they light objects in a cone of directions from their position. For
simplicity, we will define the spotlight in the light coordinate system to always be
at the position

�
0 � 0 � 0 � , pointing down the
 z axis. To place or orient it elsewhere

in the scene, the Light::WorldToLight matrix can be set appropriately.�
SpotLight Declarations ���
class SpotLight : public Light {
public:�

SpotLight Public Methods �
private:�

SpotLight Private Data �
};

Two angles are passed in the constructor to set the extent of the SpotLight’s
cone: the overall angular width of the cone, and the angle at which fall-off from full
illumination to no illumination starts; see Figure 13.2. We precompute and store
the cosines of these angles in the spotlight object, for efficiency when computing
illumination later.�
SpotLight Method Definitions ���
SpotLight::SpotLight(const Transform &light2world,

const Spectrum &intensity, Float width, Float fall)
: Light(light2world) {
lightPos = LightToWorld(Point(0,0,0));
Intensity = intensity;
cosTotalWidth = cosf(Radians(width));
cosFalloffStart = cosf(Radians(fall));

}
�
SpotLight Private Data ���
Float cosTotalWidth, cosFalloffStart;
Point lightPos;
Spectrum Intensity;

Sec. 13.2] Point Lights 483

34 DistanceSquared()
478 Light::WorldToLight
34 Normal
33 Point

181 Spectrum
482 SpotLight
482 SpotLight::cosFalloffStart
482 SpotLight::cosTotalWidth
482 SpotLight::Intensity
482 SpotLight::lightPos
27 Vector
30 Vector::Hat()

479 VisibilityTester
479 VisibilityTester::SetSegment()

The SpotLight::dE() method is almost identical to PointLight::dE(), ex-
cept that we also call the Falloff() method, which computes the attenuation due
to the spotlight cones. This computation is encapsulated in a separate method since
other SpotLight methods will need to perform it as well.

To compute the spotlight’s strength for a receiving point p, we compute the
cosine of the angle between the vector from the spotlight origin to the point and
the vector alone the center of the spotlight’s cone. We compare this to the cosines
of the falloff and overall width angles to see where the point lies with respect to
the spot light cone. To compute the cosine of the offset angle to a point p, we have
(see Figure 13.2):

cosθ � �� p � � 0 � 0 � 0 � � � � 0 � 0 � 1 �� pz
� �

p
�

We can trivally determine that points with a cosine greater than the cosine of the
falloff angle are inside the cone receiving full illumination, and points with cosine
less than the width angle’s cosine are completely outside the cone. (Note that the
computation is slightly tricky since for θ � � 0 � 2π � , then if θ � θ � then cosθ �
cosθ � .)�
SpotLight Method Definitions ��� �
Spectrum SpotLight::dE(const Point &P, const Normal &N, Vector *w,

VisibilityTester *visibility) const {
*w = (lightPos - P).Hat();
visibility->SetSegment(P, lightPos);
return Intensity * Falloff(-*w) * fabs(Dot(*w, N)) /

DistanceSquared(lightPos, P);
}

�
SpotLight Method Definitions ��� �
Float SpotLight::Falloff(const Vector &w) const {

Vector wl = WorldToLight(w).Hat();
Float costheta = wl.z;
if (costheta < cosTotalWidth)

return 0.;
if (costheta > cosFalloffStart)

return 1.;�
Compute falloff inside spotlight cone �

}

For points inside the transition range, we determine how far it is along between
the start of falloff and the end, and arbitrarily scale the intensity accordingly.�
Compute falloff inside spotlight cone ���
Float delta = (costheta - cosTotalWidth) /

(cosFalloffStart - cosTotalWidth);
return delta*delta*delta*delta;

We approximate the power of the light by computing the area of the solid angle
of directions that is covered by the cone with a spread angle halfway between
width and fall. (For the point light, the 4π scale that turns intensity into power
comes from the 4π solid angle of the sphere of all directions.)

Light 478
Light::LightToWorld 478

M PI 678
MIPMap 417
Point 33

ProjectionLight::Intensity 485
ProjectionLight::lightPos 485

Spectrum 181
SpotLight::cosFalloffStart 482
SpotLight::cosTotalWidth 482

SpotLight::Intensity 482
Texture 394

Transform 43

484 Light Sources [Ch. 13

�
SpotLight Public Methods ��� �
Spectrum Power() const {

return Intensity * 2.f * M_PI *
(1.f - .5 * (cosFalloffStart + cosTotalWidth));

}

13.2.2 Texture Projection Light
�
projection.cpp* ���
#include "lrt.h"
#include "light.h"
#include "shape.h"
#include "mipmap.h"�
ProjectionLight Declarations ��
ProjectionLight Method Definitions �
Another useful light source acts like a slide projector: it takes a texture map

and projects its image out into the scene. We use a projective transformation to
project points in the scene onto the light’s projection plane; see Figure 13.3. A
field of view angle is given with the light so that the constructor can compute an
appropriate projection matrix.�
ProjectionLight Declarations ���
class ProjectionLight : public Light {
public:�

ProjectionLight Public Methods �
private:�

ProjectionLight Private Data �
};

�
ProjectionLight Method Definitions ���
ProjectionLight::ProjectionLight(const Transform &light2world,

const Spectrum &intensity, const string &texname,
Float fov)

: Light(light2world) {�
Create ProjectionLightMIP-map ��
Initialize ProjectionLight projection matrix �
lightPos = LightToWorld(Point(0,0,0));
Intensity = intensity;

}

We could use a Texture to represent the light projection distribution, giving the
ProjectionLight more generality, so that procedural projection patterns could be
used, for example. However, having a precise representation of the projection func-
tion, as we do by using an image in a MIPMap is useful for Monte Carlo sampling
the projection distribution.

Sec. 13.2] Point Lights 485

417 MIPMap
210 Perspective()
210 PerspectiveCamera
33 Point

484 ProjectionLight
677 Radians()
37 RAY EPSILON

181 Spectrum
43 Transform

�
Create ProjectionLightMIP-map ���
int width, height;
Spectrum *texels = ReadImage(texname, &width, &height);
if (texels)

projectionMap = new MIPMap<Spectrum>(width, height, texels);
else

projectionMap = NULL;
delete[] texels;

�
ProjectionLight Private Data ���
MIPMap<Spectrum> *projectionMap;
Point lightPos;
Spectrum Intensity;

Similarly to the PerspectiveCamera, the ProjectionLight computes a pro-
jection matrix and the screen-space extent of the projection.�
Initialize ProjectionLight projection matrix ���
Float aspect = width / height;
if (width > height) {

screenX0 = -1.f;
screenX1 = 1.f;
screenY0 = -1.f/aspect;
screenY1 = 1.f/aspect;

}
else {

screenX0 = -1.f/aspect;
screenX1 = 1.f/aspect;
screenY0 = -1.f;
screenY1 = 1.f;

}
Float opposite = tanf(Radians(fov) / 2.f);
Float tanDiag = opposite * sqrtf(1.f + 1.f/(aspect*aspect));
cosTotalWidth = cosf(atanf(tanDiag));
hither = RAY_EPSILON;
yon = 1e10;
lightProjection = Perspective(fov, hither, yon);

�
ProjectionLight Private Data ��� �
Transform lightProjection;
Float hither, yon;
Float cosTotalWidth;
Float screenX0, screenX1, screenY0, screenY1;

Light the spot light’s version, ProjectionLight::dE() calls out to a utility
method, Projection(), to compute how much light is projected in the given di-
rection.

Light::WorldToLight 478
Normal 34
Point 33

ProjectionLight 484
ProjectionLight::hither 485

ProjectionLight::Intensity 485
ProjectionLight::lightPos 485

Spectrum 181
Vector 27

VisibilityTester 479

486 Light Sources [Ch. 13

Figure 13.3: The basic setting for projection light sources. A point p in the light’s
coordinate system is projected on to the plane of the image using the light’s pro-
jection matrix.

�
ProjectionLight Method Definitions � ���
Spectrum ProjectionLight::dE(const Point &P, const Normal &N, Vector *w,

VisibilityTester *visibility) const {
*w = (lightPos - P).Hat();
visibility->SetSegment(P, lightPos);
return Intensity * Projection(-*w) * fabs(Dot(*w, N)) /

DistanceSquared(lightPos, P);
}

�
ProjectionLight Method Definitions � ���
Spectrum ProjectionLight::Projection(const Vector &w) const {

Vector wl = WorldToLight(w);�
Discard directions behind projection light ��
Project point on to projection plane and compute light �

}

We immediately discard projection points that are behind the hither and plane for
the projection. Because the projective transformation has the unfortunate property
that it projects points behind the center of projection to points in front of it, is
important in particular to discard points with a negative z value. Otherwise, given
a projected point, we wouldn’t be able to know if it was originally behind the light
(and not illuminated) or in front of it.�
Discard directions behind projection light ���
if (wl.z < hither) return 0.;

After projecting the point to the projection plane, points with coordinate values
inside the screen window are inside the projection window. We then offset and
scale them to get � s � t � texture coordinates inside � 0 � 1 � 2 to use when evaluating the
projection texture map.

Sec. 13.2] Point Lights 487

678 M PI
33 Point

485 ProjectionLight::cosTotalWidth
485 ProjectionLight::Intensity
485 ProjectionLight::lightProjection
485 ProjectionLight::projectionMap
485 ProjectionLight::screenX0
485 ProjectionLight::screenX1
485 ProjectionLight::screenY0
485 ProjectionLight::screenY1
181 Spectrum

Figure 13.4: An example of a goniometric diagram specifying an outgoing light
distribution from a point light source in 2D. The emitted intensity is defined in
a fixed set of directions on the unit sphere and the intensity for a given outgoing
direction ω is found by interpolating the intensities of the adjacent samples.

�
Project point on to projection plane and compute light ���
Point Pl = lightProjection(Point(wl.x, wl.y, wl.z));
if (Pl.x < screenX0 || Pl.x > screenX1 ||

Pl.y < screenY0 || Pl.y > screenY1) return 0.;
Float s = (Pl.x - screenX0) / (screenX1 - screenX0);
Float t = (Pl.y - screenY0) / (screenY1 - screenY0);
return projectionMap ? projectionMap->Lookup(s, t) : 1.;

�
ProjectionLight Public Methods ��� �
Spectrum Power() const {

return Intensity * 2.f * M_PI * (1.f - cosTotalWidth);
}

13.2.3 Goniometric diagram lights
�
goniometric.cpp* ���
#include "lrt.h"
#include "light.h"
#include "shape.h"
#include "scene.h"
#include "mipmap.h"�
GoniometricLight Declarations ��
GoniometricLight Method Definitions �
A goniometric diagram describes the distribution of luminance from a point

light source; widely used in illumination engineering to characterize lights. Here,
we’ll implement a light source that uses goniometric diagrams encoded in 2D im-
age maps wrapped around the sphere to describe the emission distribution of the
light. The implementation is very similar to the point light sources defined pre-
viously in this section; we just scale the intensity based on outgoing direction ac-
cording to the goniometric diagram’s values. Figure 13.4 shows an example in two
dimensions.

INV PI 678
INV TWOPI 678

Light 478
Light::LightToWorld 478
Light::WorldToLight 478

MIPMap 417
MIPMap::Lookup() 427

Point 33
Spectrum 181

SphericalPhi() 193
SphericalTheta() 193

Transform 43
Vector 27

488 Light Sources [Ch. 13

�
GoniometricLight Declarations ���
class GoniometricLight : public Light {
public:�

GoniometricLight Public Methods �
private:�

GoniometricLight Private Data �

};
�
GoniometricLight Method Definitions ��� �
GoniometricLight::GoniometricLight(const Transform &light2world,

const Spectrum &intensity, const string &texname)
: Light(light2world) {
lightPos = LightToWorld(Point(0,0,0));
Intensity = intensity;�
Create mipmap for GoniometricLight �

}
�
Create mipmap for GoniometricLight ���
int width, height;
Spectrum *texels = ReadImage(texname, &width, &height);
if (texels) {

Float *ftex = new Float[width*height];
for (int i = 0; i < width*height; ++i)

ftex[i] = texels[i].y();
mipmap = new MIPMap<Float>(width, height, ftex);
delete[] texels;
delete[] ftex;

}
else mipmap = NULL;

�
GoniometricLight Private Data ���
Point lightPos;
Spectrum Intensity;
MIPMap<Float> *mipmap;

Goniometric diagrams are usually defined in a coordinate space where the y axis
is up, so we’ll swap y and z before using the spherical coordiantes functions...�
GoniometricLight Public Methods ��� �
Float Scale(const Vector &w) const {

Vector wp = WorldToLight(w.Hat());
swap(wp.y, wp.z);
Float theta = SphericalTheta(wp), phi = SphericalPhi(wp);
Float s = phi * INV_TWOPI, t = theta * INV_PI;
return mipmap ? mipmap->Lookup(s, t) : 1.;

}
�
GoniometricLight Public Methods ��� �
Spectrum Power() const {

return 4.f * M_PI * Intensity;
}

Sec. 13.3] Distant Lights 489

490 DistantLight::L
490 DistantLight::lightDir
488 GoniometricLight::Intensity
478 Light
478 Light::LightToWorld
678 M PI
181 Spectrum
43 Transform
27 Vector

Figure 13.5: All incident light from a distant light source comes in from the same
direction...� � ����� � � � � ��� � � � �� �
�
distant.cpp* ���
#include "lrt.h"
#include "light.h"
#include "shape.h"
#include "scene.h"�
DistantLight Declarations ��
DistantLight Method Definitions �

�
DistantLight Declarations ���
class DistantLight : public Light {
public:�

DistantLight Public Methods �
private:�

DistantLight Private Data �
};

Another useful light source type is a directional light. It describes an emitter
where at every point in space, illumination is arriving from the same direction (see
Figure 13.5). Such a light is also called a point light “at infinity”, since as a point
light becomes progressively farther away, it acts more and more like a directional
light. Light sources like the sun (as considered from earth) can be thought of
as directional light sources—though they are actually point or area light sources,
because they’re so far away, the illumination effectively arrives in parallel beams.�
DistantLight Method Definitions ���
DistantLight::DistantLight(const Transform &light2world,

const Spectrum &radiance, const Vector &dir)
: Light(light2world) {
lightDir = LightToWorld(dir).Hat();
L = radiance;

}

Directional lights don’t quite fit in with our previous decision to characterize
lights in terms of their total power. Interestingly enough, the total power emitted
by a directional light is proportional to the area of the scene receiving light. For
now, we interpret the power value as the amount of emitted radiance along a ray
from the directional light. Later, in Section 15.4, we will revisit this issue to more
accurately compute total power from directional lights.

DistantLight 489
Dot() 30

Normal 34
Point 33

Spectrum 181
Vector 27

VisibilityTester 479
VisibilityTester::SetRay() 480

490 Light Sources [Ch. 13

Figure 13.6: The same scene, illuminated by a point light source (top) and an area
light source (bottom).

�
DistantLight Private Data ���
Vector lightDir;
Spectrum L;

Now the method for differential irradiance, which reflects a straightforward ap-
plication of Equation 5.4.7.�
DistantLight Method Definitions ��� �
Spectrum DistantLight::dE(const Point &P,

const Normal &N, Vector *w, VisibilityTester *visibility) const {
*w = lightDir;
visibility->SetRay(P, *w);
return L * fabs(Dot(*w, N));

}

XXX fix me XXX. Need to just pass Scene into here? Then maybe move
this to MC chapter? Or do that basic work here, build on it there?�
DistantLight Public Methods ��� �
Spectrum Power() const {

return L;
}

� � ��� ��� � � � � � �� �
Area lights are light sources defined by a shape that it emitting light. Because

such a light illuminates points in the scene from multiple directions, we can’t just
consider differential irradiance from a single direction as we have some with light
sources so far. In general, computing radiometric quantities related to area lights
requires computing integrals over the surface of the light, a task that will be revis-
ited with the Monte Carlo integration techniques of Chapter 14. The reward for
this work (and computational expense) is soft shadow penumbra, rather than the
hard shadows that are cast by point lights. Figure 13.6 shows a comparison of a
scene illuminated by a point light and the same scene illuminated by an area light.

Sec. 13.4] Area Lights 491

478 Light
100 LoopSubdiv
664 Reference
63 Shape

181 Spectrum
43 Transform

�
area.cpp* ���
#include "light.h"
#include "primitive.h"�
AreaLight Method Definitions �

�
Light Declarations ��� �
class AreaLight : public Light {
public:�

AreaLight Interface �
protected:�

AreaLight Protected Data �
};

In the constructor, we calculate and store the area of the light source when it is
defined, because these area calculations may be expensive. Computation methods
for surface area are described in Chapter 3.�
AreaLight Method Definitions ���
AreaLight::AreaLight(const Transform &light2world,

const Spectrum &le, const Reference<Shape> &s)
: Light(light2world) {
Lemit = le;
if (s->CanIntersect())

shape = s;
else {�

Create ShapeSet for Shape �
}
area = shape->Area();

}
�
AreaLight Protected Data ���
Spectrum Lemit;
Reference<Shape> shape;
Float area;

Need to explain this Some shapes, like LoopSubdivs, aren’t amenable to being
used as area lights directly. We need to refine them until we have simple Shapes
that can all sample themselves. We’ll do this refinement here, and store them in a
ShapeSet, so that the rest of the code here can always just pretend that there’s one
single shape... The fragment

�
Create ShapeSet for Shape � , not included here,

handles the details of this.
One ugly thing about this is that we are overloading the meaning of CanIntersect(),

to include “can we compute surface area and can we sample points on this thing”.
Need a better name for CanIntersect() to reflect this?

Should this go to the shapes chapter? On some level, yes, since it is a
Shape. On another level, no, since it’s more like a private utility thing that
AreaLights use...

AreaLight::Lemit 491
Dot() 30
M PI 678

Normal 34
Point 33

Reference 664
Shape 63

Spectrum 181
vector 658
Vector 27

492 Light Sources [Ch. 13

�
Shape Declarations ��� �
class ShapeSet : public Shape {
public:�

ShapeSet Public Methods �
private:

vector<Reference<Shape> > shapes;
Float area;
vector<Float> areaCDF;

};

We first provide two methods unique to area lights. The first evaluates the area
light’s emitted radiance, L, at a point on the surface of the light for a given direction.
We assume that the given point is on the surface of the light. Furthermore, we will
use the convention in lrt that area lights are one-sided–they only illuminate from
the side of the surface that the surface normal faces toward; the other side has no
emission.

For the basic area lights here, the amount of radiance emitted is the same at
all points on the light and the same for all outgoing directions in the hemisphere
about the normal. (More generally, emission may vary depending on both of these
values.) We can compute emitted irradiance by dividing flux by the surface area
(because emission is constant over the surface); dividing this by π, the area of
the hemisphere with projected solid angle measure, gives radiance in a particular
direction.�
AreaLight Interface ��� �
virtual Spectrum L(const Point &p, const Normal &N,

const Vector &w) const {
return Dot(N, w) > 0 ? Lemit : 0.;

}

It’s also handy to be able to compute emitted irradiance (often called radiosity)
at a point on the light. Here we also assume that the point x is on the light’s surface
and that the light’s emission doesn’t vary by location.�
AreaLight Interface ��� �
virtual Spectrum B(const Point &p) const {

return Lemit * M_PI;
}

�
AreaLight Interface ��� �
Spectrum Power() const {

return Lemit * area * M_PI;
}

We won’t provide a differential irradiance method here, but will define one in
the Monte Carlo chapter once we have developed its underlying mathematics.�
AreaLight Interface ��� �
bool IsDeltaLight() const { return false; }

Sec. 13.5] Infinite Area Lights 493

478 Light

Figure 13.7: Uffizi latlong map� � ��� ��� � ��� ��� ��� � � � � � �� �
�
infinite.cpp* ���
#include "lrt.h"
#include "light.h"
#include "texture.h"
#include "shape.h"
#include "scene.h"�
InfiniteAreaLight Declarations ��
InfiniteAreaLight Method Definitions �

�
InfiniteAreaLight Declarations ���
class InfiniteAreaLight : public Light {
public:�

InfiniteAreaLight Public Methods �
private:�

InfiniteAreaLight Private Data �
};

Another useful kind of light is the infinite area light. This is an area light source
at infinity that surrounds the entire scene; one good way to visualize it is as an
enormous sphere that casts light into the scene from every direction. One use of
infinite area lights is environment lighting: given a representation of illumination in
some environment, synthetic objects can be lit as if they were in that environment.
A widely-used representation for light for this application is the latitude-longitude
radiance map; it stores emitted radiance as a function of direction. A lat-long
environment map of the Uffizi Gallery in Florence is shown in Figure 13.7; a teapot
illuminated by the illumination from this map is shown in Figure 13.8.

Like the other lights, the InfiniteAreaLight takes a transformation matrix;
here its use is to orient the texture map. We use spherical coordinates to map
from directions on the sphere to � θ � φ � directions from from there to � u � v � texture
coordinates; the transformation describes which direction is “up”.

CoordinateSystem() 32
InfiniteAreaLight 493

INV PI 678
INV TWOPI 678

Light 478
Light::WorldToLight 478

MIPMap 417
MIPMap::Lookup() 427

Spectrum 181
SphericalPhi() 193

SphericalTheta() 193
Transform 43

Vector 27
Vector::Hat() 30

494 Light Sources [Ch. 13

Figure 13.8: Teapot in Uffizi environment

�
InfiniteAreaLight Method Definitions ��� �
InfiniteAreaLight::InfiniteAreaLight(const Transform &light2world,

const Spectrum &L, const string &texmap)
: Light(light2world) {
radianceMap = NULL;
if (texmap != "") {

int width, height;
Spectrum *texels = ReadImage(texmap, &width, &height);
if (texels)

radianceMap = new MIPMap<Spectrum>(width, height, texels);
delete[] texels;

}
Lbase = L;

}
�
InfiniteAreaLight Private Data ���
Spectrum Lbase;
MIPMap<Spectrum> *radianceMap;

Like directional lights, the total power from the infinite area light is related to the
surface area of the scene. Therefore, here we also treat the power as the radiance.�
Compute infinite light radiance for this direction ���
Spectrum L = Lbase;
if (radianceMap != NULL) {

Vector wh = WorldToLight(w).Hat();
Vector S, T;
CoordinateSystem(wh, &S, &T);
Float s = SphericalPhi(wh) * INV_TWOPI;
Float t = SphericalTheta(wh) * INV_PI;
L *= radianceMap->Lookup(s, t);

}

Because infinite area lights need to be able to contribute radiance to rays that
don’t hit any geometry in the scene, we’ll add a method to the base Light class
that returns emitted radiance due to that light along a ray that didn’t hit anything in
the scene.

Further Reading 495

493 InfiniteAreaLight
478 Light
35 Ray::d
37 RayDifferential

181 Spectrum
27 Vector

XXX how does this change/become better integrated when we have support
for volumetric stuff?? XXX�
Light Method Definitions ��� �
Spectrum Light::Le(const RayDifferential &) const {

return Spectrum(0.);
}

The InfiniteAreaLight’s implementation of this can reuse the fragment from
its dE method.�
InfiniteAreaLight Method Definitions ��� �
Spectrum InfiniteAreaLight::Le(const RayDifferential &r) const {

Vector w = r.d;�
Compute infinite light radiance for this direction �
return L;

}
�
InfiniteAreaLight Public Methods ��� �
Spectrum Power() const {

return Lbase;
}

�
InfiniteAreaLight Public Methods ��� �
bool IsDeltaLight() const { return false; }

����� ���� � � � ��� � � �
Warn developed early models of light sources with non-isotropic emission distri-

butions (Warn 1983). More recently, Barzel has described a highly parameterized
model for light sources, including many controls for controlling rate of falloff, the
area of space that is illuminated, etc (Barzel 1997). Bjorke has developed flexible
controls for controlling illuminaton for artistic effect (Bjorke 01 renderman course
notes). (The Barzel and Bjorke approaches are not physically based, however.)

Blinn and Newell first introduced the idea of environment maps and their use
for simulating illumination (Blinn and Newell 1976), though they only considered
illumination of specular objects. Greene also developed these ideas, considering
anti-aliasing and different representations for environment maps (Greene 1986).

Miller and Hoffman first considered using environment maps to illuminate ob-
jects with diffuse BRDFs (Miller and Hoffman 1984). Debevec later extended this
work (Debevec 1998).

As for efficient ray tracing, lights are special in that we don’t care about the
geometric details of intersection, just whether or not there is one along a given ray.
Beyond the IntersectP() stuff we already do, shadow cache, light buffer (Haines
and Greenberg 1986), shaft culling (Haines and Wallace 1994).

Pearce points out that shadow cache doesn’t work well if scene has fine tessel-
lations; may be better to cache the voxel that held the last occluder, or something
similar (Pearce 1991). It can also not be so good if multiple levels of reflection and
refraction are present...

Minkowski sum to effectively expand primitives (or bounds of primitives) in
scene so that intersecting one ray against primitives tells if any of a collection of

496 Light Sources [Ch. 13

rays might have intersected the actual primitives (Lukaszewski 2001). Also sim-
plification envelopes stuff: Cohen et al (Cohen, Varshney, Manocha, Turk, Weber,
Agarwal, Brooks Jr., and Wright 1996).

XXX Mention ways of gathering up bundles of rays XXX
Hart et al generalize light shadow cache, find blockers and clip light source

geometry against them (Hart, Dutré, and Greenberg 1999).�
� � � � � � � �

13.1 depth-mapped shadows for lights. Williams (Williams 1978), Reeves et
al (Reeves, Salesin, and Cook 1987).

13.2 Another technique that takes advantage of this property of shadow rays is
the shadow cache. Each light source in the scene keeps a pointer to the
last primitive that occluded light from that light source. Subsequent shadow
rays are fist checked against this blocker–since the blocking object will often
block many shadow rays in a row, this can make it much faster to find the
blocker.

13.3 Volumetric ambient light that varies with x or w

13.4 Through clever algebraic manipulation and precomputation of one more value
in the constructor, the SpotLight::Falloff() method can be rewritten to
compute the exact same result (modulo floating point differences) while us-
ing no square root computations and no divides (recall the Vector::Hat()
uses a square root and a divide.) Derive and implement this optimization.
How much is running time improved on a spotlight-heavy scene?

� � � � ��� � � � � � � ��� � � � ��� � � � � � � �
� � � � � ���

Judicious use of randomness has revolutionized the field of algorithm design.
Randomized algorithms fall broadly into two classes: Las Vegas and Monte Carlo.
Las Vegas algorithms are those that use randomness but always give the correct
answer. Monte Carlo algorithms, on the other hand, frequently give the wrong
answer, but give the right answer on average. So, by averaging the results of
several runs of a Monte Carlo algorithm (on the same input), we can get a result that
is provably very close to the true answer. Rajeev Motwani has written an excellent
introduction to the field of randomized algorithms (Motwani and Raghavan 1995).

Monte Carlo Integration1 is a way of using random sampling to estimate the
values of integrals. The key advantage of Monte Carlo integration is that one only
needs to be able to evaluate the integrand at an arbitrary points in the domain in or-
der to estimate the value of � f � x � dx. This not only makes Monte Carlo easy to im-
plement, it also means that we can numerically evaluate integrals that are difficult
or impossible to integrate analytically. In contrast to traditional quadrature-based
techniques such as the trapezoid, midpoint, or Simpson’s rules, Monte Carlo’s con-
vergence rate is independent of the dimensionality of the integrand.

Many of the integrals that arise in rendering are difficult or impossible to eval-
uate directly. For example, to compute the amount of light reflected by a surface
at a point (Equation 5.4.9), we must integrate the product of the incident light and
the BSDF over the unit sphere. A closed form expression for this product is al-
most never available, and even if it were performing the integral analytically seems

1For brevity, we will refer to Monte Carlo Integration simply as “Monte Carlo”.

� � �

498 Monte Carlo Integration: Basic Concepts [Ch. 14

hopeless. Monte Carlo integration allows us to estimate the reflected radiance sim-
ply by simply choosing a set of directions over the sphere, computing incident
radiance along them, multiplying by the BSDF’s value, and applying a weighting
term.

The main disadvantage of Monte Carlo is that if we use n samples to estimate the
integral, the algorithm converges as O � n � 1 � 2 � . More simply, to reduce the error by
half, we must evaluate four times more samples. In images, artifacts from Monte
Carlo sampling manifest themselves as noise—some pixels are much too bright and
some are much too dark. Although this can be perceptually less objectionable than
aliasing, noise is still distracting, and it is still error. Most of the current research
in Monte Carlo is in reducing this error as much as possible.�
mc.h* ����

MC Utility Declarations ��
MC Class Declarations ��
MC Inline Functions �

�
mc.cpp* ���
#include "lrt.h"
#include "geometry.h"
#include "shape.h"
#include "mc.h"�
MC Function Definitions �� � �
� � �	��� � � � � �	� � �	��� � � � � ��� �� � � � � � �����
We will start by defining some basic terms and reviewing basic concepts from

probability. We assume that the reader is already familiar with probability at a high-
school level; readers needing a more complete introduction to this topic should con-
sult a textbook such as Sheldon Ross’s Introduction to Probability Models (Ross
2002).

A random variable X is a value chosen by some random process. We will al-
ways use capital letters to denote random variables. Applying any function to a
random variable results in a new random variable Y � f � X � . Random variables are
always drawn from some domain, which can be either discrete (e.g. a fixed set of
possibilities) or continuous (e.g. the real numbers �).

For example, the result of a roll of a die is a discrete random variable sampled
from the set of events Xi � � 1 � 2 � 3 � 4 � 5 � 6 � . Each event has a probability pi � 1

�
6

and the sum of probabilities ∑ pi is necessarily one. We can take a continuous
random variable ξ that is uniformly distributed among the real numbers between
zero and one and map it to a discrete random variable, choosing Xi if:

i � 1

∑
j � 1

p j � ξ �
i

∑
j � 1

p j �
For lighting applications, we might want to define a probability of sampling illumi-
nation from each of a set of light sources, based on the power Φi from each source
relative to the total power from all sources.

pi � Φi

∑ j Φ j
�

Sec. 14.1] Background and Probability Review 499

Notice that these pi sum to one, which is always true of probabilities.
The cumulative distribution function (CDF) P � xi � of a random variable is the

probability that a value from the variable’s domain is less than xi:

P � x � � Pr � X � x � �
For the die example, P � 2 � � 1

�
3, since two of the six possibilities are less than or

equal to 2.
A particularly important random variable is the uniform random variable, which

we will write as ξ. This variable takes on all values in its domain with equal
probability. This particular variable is important for two reasons. First, it is easy to
generate a variable with this distribution in software—most runtime libraries have
a random number generator that does just that. Second, as we will show later, we
can generate samples from arbitrary distributions by first starting with a uniform
random variable and applying an appropriate transformation.

Another example of a continuous random variable is one that ranges over the real
numbers between 0 and 2 where the probability of it taking on any particular value
x is related to the value 2 � x: it is twice as likely for it to take on a value around
zero as it is to take one around one, etc. The probability density function (PDF)
formalizes this idea: it describes the relative probability of a random variable taking
on a particular value. The PDF p � x � is just the derivative of the random variable’s
CDF.

p � x � � dP � x �
dx

For uniform random variables, p � x � is a constant.
PDFs are necessarily non-negative and always integrate to one over their do-

mains. For the uniform random variable ξ, P � x ��� x and p � x � � 1. We will use the
notation x � p to denote that x is a random variable with the PDF p.

Given an arbitrary interval � a � b � in the domain, the PDF can give the probability
that a random variable lies inside the interval.

P � x � � a � b � � � � b

a
p � x � dx

This follows directly from the first fundamental theorem of calculus and the defi-
nition of a PDF.

14.1.1 Expected Values and Variance

The expected value Ep � f � x � � of a function f is defined as the average value that f
takes, assuming a distribution of values p � x � over its domain.

Ep � f � x � � � � f � x � p � x � dx (14.1.1)

Consider finding the expected value of the cosine function between 0 and π, where
p is uniform2 . Because p � x � must integrate to one over the domain, we have p � x � �

2When computing expected values with a uniform distribution, we will drop the subscript p

500 Monte Carlo Integration: Basic Concepts [Ch. 14

1
�
π and

E � cos � x � � � � π

0

cos x
π

dx

� 1
π � � sinπ � sin0 �

� 0

Which is precisely what we expect.
The variance of a function is the expected deviation of the function from its

expected value:

V � f � x � � � E
� � f � x � � E � f � x � � � 2 � (14.1.2)

The expected value and variance have three important properties that follow
immediately from their respective definitions:

E � a f � x � � � aE � f � x � �
E � ∑

i

f � Xi � � � ∑
i

E � f � Xi � �

V � a f � x � � � a2V � f � x � �

These properties, and some simple algebraic manipulation, yield a much simpler
expression for the variance:

V � f � x � � � E
� � f � x � � E � f � x � � � 2 �

V � f � x � � � E
�
f 2 � x � � 2 f � x � E � f � x � � � E � f � x � � 2 �

V � f � x � � � E
�
f 2 � x � � � 2E � f � x � E � f � x � � � � E

�
E � f � x � � 2 �

V � f � x � � � E
�
f 2 � x � � � 2E � f � x � � 2 � E � f � x � � 2

V � f � x � � � E
�
f 2 � x � � � E � f � x � � 2 (14.1.3)

So the variance is simply the expected value of the square minus the square of
the expected value. One final property of the variance that only holds if the random
variables are independent:

V � ∑
i

f � XI � � � ∑
i

V � f � Xi � �

Sec. 14.2] The Monte Carlo Estimator 501

� � ��� � �� � � ����� � � � � �
� � � � ��� ���

We can now define the Monte Carlo estimator, which lets us estimate the value
of an integral.

Let’s suppose that we want to evaluate some difficult one-dimensional integral
I � � a

b f � x � dx. Assuming we have a steady supply of uniform random variables
ξi

� � a � b � , then we can easily estimate this integral as:

FN � b � a
N

N

∑
i � 1

f � ξi �
Why is this a good way to estimate I? It is easy to show that the expected value

of this estimator is in fact equal to I. First, note that the PDF p � x � corresponding
to our random variable ξi must be 1

b � a , since p must be a constant and integrate to
one over the domain � a � b � . So, the expected value of our estimator FN is:

E � FN � � E � b � a
N

N

∑
i � 1

f � ξi ���
� b � a

N

N

∑
i � 1

E � f � ξi � �

� b � a
N

N

∑
i � 1

� b

a
f � x � p � x � dx

� 1
N

N

∑
i � 1

� b

a
f � x � dx

� � b

a
f � x � dx

� I

The restriction to uniform random variables can be relaxed with only a small
generalization. This is extremely important, since careful choosing of the PDF
from which to draw samples is the primary technique used to reduce variance in
Monte Carlo. If the random variables Xi are drawn from some arbitrary PDF p � x � ,
then we use the estimator:

FN � 1
N

N

∑
i � 1

f � Xi �
p � Xi �

It is similarly easy to see that this is the right estimator:

502 Monte Carlo Integration: Basic Concepts [Ch. 14

E � FN � � E � 1
N

N

∑
i � 1

f � Xi �
p � Xi � �

� 1
N

N

∑
i � 1

� b

a

f � x �
p � x � p � x � dx

� 1
N

N

∑
i � 1

� b

a
f � x � dx

� � b

a
f � x � dx

� I

Extending this estimator to multiple dimensions or complex integration domains
is straightforward. N samples Xi are taken from a multi-dimensional (or “joint”)
PDF and the estimator is applied as usual. This is a key difference between Monte
Carlo and traditional deterministic quadrature techniques; The number of samples
taken in Monte Carlo is independent of the dimensionality of the integral, while in
numerical quadrature the number of samples required is exponential in the dimen-
sion.

Showing that the Monte Carlo estimator converges to the right answer is not
enough to justify its use; a good rate of convergence is important too. To reason
about the rate of convergence of our estimator, we will use a theorem from proba-
bility called Chebyshev’s inequality. As originally stated, the theorem says that:

Pr � �F � E � F � � � k � � V � F �
k2 (14.2.4)

To use this inequality for our own purposes, we first write δ � V � f �
k2 , and obtain:

Pr

�
�F � E � F � � � �

V � F �
δ �

�
� δ

Now, define Yi � f � Xi � . Our estimator FN is therefore:

FN � 1
N ∑

i

Yi

Because the Yi are independent and all have the same variance (which we will
call V � Y � , we can simplify the expression for V � F � :

V � F � � V � 1
N ∑

i

Yi �
� 1

N2V � ∑
i

Yi �
� 1

N2 ∑
i

V � Yi �

� 1
N

V � Y �

Sec. 14.3] The Inversion Method for Sampling Random Variables 503

Figure 14.1: A discrete PDF.

Since the root-mean-square error is defined as the square root of the variance,
this immediately tells us that the RMS error decreases as 1�

N
. In addition, substi-

tuting this result into the Chebyshev inequality, we get:

Pr

���
F � E � F �

���
1�
N � V � Y �

δ �
	�� δ

In other words, if we fix the error confidence δ, the absolute error goes as O � � N � ,
just like the RMS error. We can obtain slightly tighter bounds on the absolute error
using the central limit theorem; see Veach for details (Veach 1997).

The key insight to all this analysis is that it is independent of the dimensionality
of the integral being estimated. Although standard quadrature converges faster than
O � � N � in one dimension, its performance is exponentially poorer as the dimen-
sionality increases, making Monte Carlo the only practical numerical integration
algorithm for high dimensional integrals. We have already encountered some high-
dimensional integrals in this book, and in the next chapter we will see that the path
tracing formulation of the rendering equation is an infinite-dimensional integral!

�� ���������������� ��������� � � ����� � �!���#"
%$'&%(��)�+*-,
.� �/��$10
 �2�
%3.(���
In order to properly evaluate equation 14.2, we need to be able to draw a ran-

dom sample from a given probability distribution. To understand how this process
works, first consider a simple, discrete example. Suppose we have a process with
four possible outcomes. The probabilities of each of the four outcomes are given
by p1, p2, p3, and p4, respectively, with the requirement that ∑4

i 4 1 pi 	 1. The
corresponding PDF is shown in figure 14.1.

In order to draw a sample from this distribution, we first construct the CDF P � x � .
In the continuous case, P is simply the indefinite integral of p. In the discrete case,
however, we can directly construct the CDF by simply stacking the bars on top of
each other, starting at the left. This is shown in figure 14.2.

Notice that the height of the rightmost bar must be one because of the require-
ment that all probabilities sum to one. Now, to draw a sample from the original
distribution, we take a uniform random number ξ � � 0 � 1 � and project it onto the
CDF from the side. This is illustrated in figure 14.3.

504 Monte Carlo Integration: Basic Concepts [Ch. 14

Figure 14.2: A discrete CDF.

Figure 14.3: Drawing the sample from the discrete distribution.

It should be clear that this draws from the correct distribution – the probability
of the uniform sample hitting any particular bar is exactly equal to the height of
that bar. In order to generalize this technique to continuous distributions, consider
what happens as the number of discrete possiblities approaches infinity. The PDF
from figure 14.1 becomes a smooth curve, and the CDF from figure 14.2 becomes
its integral. The projection process described in the previous paragraph is still
the same, although if the function is continuous it has a convenient mathematical
interpretation—we simply invert the CDF function and evaluate it. This technique
is, unsurprisingly, called the inversion method.

More precisely, we can draw a sample Xi from an arbitrary PDF p � x � with the
following steps:

1. Compute the CDF P � x � � � p � x � dx.

2. Compute the inverse P � 1 � x � .
3. Obtain a uniformly distributed random number ξ.

4. Compute Xi � P � 1 � ξ � .
14.3.1 Example: Power Distribution

As an example of how this procedure works, let’s draw samples from a power
distribution. This will come up again when we are trying to sample the Blinn
microfacet model. A power distribution is defined as:

p � x � ∝ xn, or p � x � � cxn

The first task to tackle is always to normalize the PDF. In most cases, this simply
involves computing the value of some proportionality constant (c in this case). This
is almost always accomplished by enforcing the constraint that � 1

0 p � x � dx � 1, so:

Sec. 14.3] The Inversion Method for Sampling Random Variables 505

� 1

0
cxndx � 1

c
xn � 1

n � 1

�
�
�
�

1

0
� 1

c
n � 1 � 1

c � n � 1

Therefore, p � x � � � n � 1 � xn . We can integrate this to get the CDF: P � x ��� xn � 1.
Now, inversion is simple: P � 1 � x � � n � 1� x. Now that we have P � 1, it is simple to
draw samples from the power distribution:

X � n � 1� ξ

A trick that works only for the power distribution is to select X � max � ξ1 � ξ2 � ����� � ξn � 1 � .
This is a power distribution! To see why, note that Pr � X � x � is the probability
that all the ξi � x. But the ξi are independent, so:

Pr � X � x � � n � 1

∏
i � 1

Pr � ξi � x � � xn � 1

Which is exactly the desired CDF3. Depending on the speed of your random
number generator, this techinque can be faster than the inversion method for small
values of n.

14.3.2 Example: Exponential Distribution

In volume rendering, it is frequently useful to draw samples from a distribution
p � x � ∝ e � cx. First, we must normalize this distribution so that it integrates to one:

� ∞

0
ke � cx � �

k
c

e � cx

�
�
�
�

∞

0

� k
c � 1

So we know that k � c, and our PDF is p � x � � ce � cx. Now, we integrate to get
P � x � � � e � cx � C. Of course, because this is a CDF, we know that4 P � ∞ � � 1, so
C � 1 and the CDF is P � x � � 1 � e � cx. This function is straightforward to invert:

P � 1 � x � � �

ln � 1 � x �
c

and we can draw samples thusly: X � �

ln � 1 � ξ �
c . This can be further simplified

by making the observation that if ξ is a uniformly distributed random number, so

3A similar trick can be used for Gaussian distributions – just take the average instead of the
maximum. This is a direct consequence of the central limit theorem.

4This notion is deliberately sloppy; the more formal requirement is that limx � ∞ P � x � � 1.

506 Monte Carlo Integration: Basic Concepts [Ch. 14

is 1 � ξ, so we can safely replace 1 � ξ by ξ without losing anything. Therefore,
our final sampling strategy is:

X � �

ln � ξ �
c

� � ��� � � � � ��� ��� � � � ��� � � � � ��� � � � ��� ����� � � ��� � � � ��� � � � ��� ��� � � � � �

So far, we have assumed that we started with uniformly distributed random num-
bers. But suppose we are given random numbers Xi that are already drawn from
some PDF pX � x � . Now, if we compute Yi � y � Xi � , what is the new distribution?
This might seem like an esoteric question, but we will see that understanding this
kind of transformation is critical for drawing samples of multi-dimensional distri-
bution functions.

For simplicity, first assume that y � x � is continuous and non-decreasing (e.g.,
y � � x � � 0). Because y is non-decreasing, we know that Pr � Y � y � x � � � Pr � X � x � .
This means that Py � y � � Px � x � where y is shorthand for y � x � . Remember that P is
the CDF, so we get the PDF by differentiation.

By the chain rule, we get:

py � y � dy
dx � px � x �

or

py � y � �
�

dy
dx � � 1

px � x �
If y � x � can be non-increasing, this works out to

py � y � �
�
�
�
�
dy
dx

�
�
�
�
� 1

px � x �
How can we use this formula? Suppose that px � x � � 2x over the domain � 0 � 1 � ,

and let Y � sin � X � . What is the PDF of Y? We know that dy
dx � cos � x � , so:

py � y � � � cos � x � � � 1 px � x �� � cos � x � � � 1 2x

� 2sin � 1 � y �
cos � sin � 1 � y � �

� 2sin � 1 � y �� 1 � y2

The alert reader will object that this procedure seems backwards — usually we
have some PDF that we want to sample from, not some given transformation. Typ-
ically we have X drawn from some px � x � , and we want Y from some py � y � . What
transformation should we use?

All we need is for the CDF’s to be equal, or Py � Y � � Px � X � . This immediately
gives the transformtion:

Sec. 14.5] The Rejection Method 507

Figure 14.4: Rejection sampling is cool

y � x � � P � 1
y � Px � x � �

This is clearly a generalization of the inversion method, since if X were uni-
formly distributed, Px � x � � x and we have the same procedure from the last section.� � ��� � �� � � � ��� � � � � � � �� � �

Before we go too far down this path, let’s first look at a simple method for
drawing samples from any distribution, in any dimension. The rejection method is
essentially dart throwing. Assume that we want to draw samples from p � x � , but we
don’t know how to integrate p � x � , or we don’t know how to invert P � x � . Of course,
these could always be done numerically, but that is expensive and error-prone.

All is not lost, however. Suppose we have another PDF q � x � that satisfies p � x � �
Mq � x � for some M, and we know how to sample from q. The rejection method is
then quite simple:

loop forever:
X = q->sample()
U = uniform->sample()
if U < p(x) / (Mq(x)) then

return X

What this procedure is doing is choosing a pair of variables � X � ξ � . If the point� X � ξMq � X � � lies under p � X � , then the sample X is accepted. Otherwise it is re-
jected and a new sample pair is chosen. This is illustrated in figure 14.4.

Without going into the math in too much detail, it should be clear that the effi-
ciency of this scheme depends on how tightly Mq � x � bounds p � x � . Note that this
technique works in any number of dimensions!

14.5.1 Example: Rejection Sampling a Unit Circle

Suppose we want to select a uniformly distributed point inside a unit circle. Using
the rejection method, we simply select a random � X � Y � inside the circumscribed
square, and return it if it falls inside the circle. This is shown in figure 14.5.

508 Monte Carlo Integration: Basic Concepts [Ch. 14

Figure 14.5: Rejection sampling a circle

The function RejectionSampleDisk() implements this algorithm. Given two
uniform random variables u1 and u2, it returns a point � x � y � inside the unit circle.�
MC Function Definitions ���
void RejectionSampleDisk(Float u1, Float u2, Float *x, Float *y) {

Float sample_x, sample_y;
do {

sample_x = 1-2*u1;
sample_y = 1-2*u2;

} while (sample_x*sample_x + sample_y*sample_y > 1);
*x = sample_x;
*y = sample_y;

}

A similar technique will work for any complex shape as long as it has an inside-
outside test.

The efficiency of this technique depends on the percentage of samples we expect
to be rejected. In the 2D case, this is easy to compute; it is the area of the circle
divided by the area of the square: π

4 � 78 � 5%. In higher dimensions, the story
changes. It is a little known and perhaps counterintuitive fact that the volume of
an n-dimensional hypersphere goes to zero as n increases. The volume of a unit
n-hypersphere is given by (see (Weisstein 1999) for an introduction, and (Wells
1987) for a derivation):

Vn � 2π
n
2

nΓ � n2 �
Since we are only interested in integral dimensions, we can simplify the gamma

function in the above expression:

Vn �
�� � 2

n � 1
2 π

n � 1
2� n � !! n odd5

2π
n
2

n � n
2 � 1 � ! n even

Interestingly, this function peaks at n � 5, and then descends back down to zero
as n goes to infinity. This tells us that rejection sampling is unlikely to be a good
idea in higher dimensions.

A concept that needs clarification at this point is the notion of “uniform” sam-
pling in multiple dimensions. Whenever this is desired, the question must always
be asked “Uniform with respect to what?”. In the case of the circle, the answer is
“uniform with repect to area”. This means that if we pick any neighborhood inside
the circle, the likelihood of choosing a point inside that neighboorhood is exactly
equal to the area of the neighboorhood divided by the area of the circle. This is
illustrated in figure 14.6.

Sec. 14.6] Transformation in Multiple Dimensions 509

Figure 14.6: Uniform area sampling. Pr � P �
N � � A � N �

A � D �� � ��� � � � � ��� ��� � ��� � � � � � � �� � � �� � � � � �
� � � � � �

Rejection sampling not only breaks down in higher dimensions, but even in low
dimensions there is still some wasted effort. We have already seen the transforma-
tion method in one dimension; let’s see how multi-dimensional PDF’s are affected
by transformation.

Suppose we have an n-D random variable X � � X1 � X2 � ����� � Xn � over some do-
main Ωx

� � n with density function px � x � . Now let Y � T � X � , where T : Ωx � Ωy

is a bijection. What is the density function of Y?
The argument is a straightforward generalization of the one-dimensional case.

Since T is a bijection, we know that

Pr � Y � T � D � � � Pr � X � D �
for any domain D � Ωx.

We can write this in terms of the density functions px and py:

�
T � D �

py � y � dy � �
D

px � x � dx

Now, we apply a change of variables to the left hand side of this equation. Since
this is a multi-dimensional integral, this requires multiplying by the determinant of
the Jacobian matrix JT :

�
D

py � T � x � � � JT � x � � dx � �
D

px � x � dx

But this equation holds for any domain D. The only way that this can be true is
if the integrands themselves are equal. Therefore,

py � T � x � � � JT � x � � � px � x �

510 Monte Carlo Integration: Basic Concepts [Ch. 14

or

py � T � x � � � px � x �� JT � x � �
14.6.1 Example: Polar Coordinates

The polar transformation is given by:

x � r cos θ
y � r sin θ

Suppose we draw samples from some density p � r� θ � . What is the corresponding
density p � x � y � ? The Jacobian of this transformation is:

JT � � ∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

� � � cosθ � r sinθ
sinθ r cos θ

�

And the determinant is r � cos2 θ � sin2 θ � � r. So p � x � y � � p � r� θ �
r . Of course, this

is backwards from what we usually want – typically we start with a sampling strat-
egy in Cartesian coordinates and want to transform it to one in polar coordinates.
In that case, we would have:

p � r� θ � � rp � x � y �
14.6.2 Example: Spherical Coordinates

x � r sin θcos φ
y � r sin θsin φ
z � r cos θ

The Jacobian of this transformation has determinant � JT � � r2 sinθ, so the cor-
responding density function is:

p � r� θ � φ � � r2 sinθp � x � y � z �
The reason this transformation is so important is that we can represent a direc-

tion as a point � x � y � z � on the unit sphere. Remember that solid angle is defined as
the area of a set of points on the unit sphere. In spherical coordinates, we derived:

dω � sinθdθdφ
So if we have a density function defined over solid angle, this means that

Pr � Ω � D � � �
D

p � ω � dω

The density with respect to θ and φ can therefore be derived:

p � θ � φ � dθdφ � p � ω � dω
p � θ � φ � � sin θp � ω �

Sec. 14.7] 2D Sampling with Multi-Dimensional Transformation 511

� � ��� � � � ��� ���� � � � � �� � �� � � � � � � ��� � � � � �� � � � � � � ��� � ��� � � �

Suppose we have a 2D joint density function p � x � y � that we wish to draw sam-
ples � X � Y � from. To do this we first introduce some basic terminology from con-
ditional probability:

The marginal density function p � x � is obtained by simply “integrating out” one
of the dimensions:

p � x � � � p � x � y � dy

This can be thought of as the density function for X alone.
The conditional density function p � y � x � is the density function for Y once we

have chosen some particlar X (it is read “p of y given x”):

p � y � x � � p � x � y �
p � x �

The basic idea for 2D sampling is to first compute the marginal density to isolate
one particular variable, and draw a sample from that density using standard 1D
inversion techniques. Once that sample is drawn, compute the conditional density
function, and draw a sample from that, again using standard 1D techniques.

14.7.1 Example: Uniformly Sampling a Hemisphere

In this example, we want to choose a direction on the hemisphere uniformly with
respect to solid angle. Remember, a uniform distribution means that the density
function is a constant! So we know that p � ω � � c. In addition, remember that the
density function must integrate to one over its domain. Therefore, we have:

�
H2

p � ω � dω � 1 � c �
H2

dω � 1 � c � 1
2π

This tells us that p � ω � � 1
2π , or p � θ � φ � � sinθ

2π (see the above example on spher-
ical coordinates).

Let’s sample θ first. To do this, we need θ’s marginal density function:

p � θ � � � 2π

0
p � θ � φ � dφ � � 2π

0

sinθ
2π

dφ � sinθ

Now, we compute the conditional density for φ:

p � φ � θ � � p � θ � φ �
p � θ � � 1

2π
Notice that the density function for φ is itself uniform — this should make intu-

itive sense given the symmetry of the hemisphere. Now, we use the 1D inversion
technique to sample each of these PDF’s in turn, making sure that the CDF’s prop-
erly evaluate to 1 at the maximal domain value:

P � θ � � � sinθdθ � 1 � cosθ

P � φ � θ � � � 1
2π

dφ � φ
2π

INV TWOPI 678
M PI 678

Vector 27

512 Monte Carlo Integration: Basic Concepts [Ch. 14

Inverting these functions is straightforward, and again noting that we can safely
replace 1 � ξ with ξ since these are both uniformly distributed random numbers
over � 0 � 1 � , we get:

θ � cos � 1 � ξ1 �
φ � 2πξ2

Converting these back to Cartesian coordinates, we get the final sampling for-
mulae:

x � sin θcosφ � cos � 2πξ2 � � 1 � ξ2
1

y � sin θsinφ � sin � 2πξ2 � � 1 � ξ2
1

z � cos θ � ξ1

This sampling strategy is implemented below. Two uniform random numbers
u1 and u2 are passed in, and a vector on the hemisphere is returned.�
MC Function Definitions ��� �
Vector UniformSampleHemisphere(Float u1, Float u2) {

Float z = u1;
Float r = sqrtf(max(0.f, 1.f - z*z));
Float phi = 2 * M_PI * u2;
Float x = r * cosf(phi);
Float y = r * sinf(phi);
return Vector(x, y, z);

}

For each sampling routine we present, there is a corresponding Weight function
that simply evaluates the PDF. Of course, we need to be careful about which PDF
to evaluate — we’ve already seen that we can transform PDF’s around any way we
want, and the resulting functions are different! Unless otherwise specified, we will
assume that the PDF’s are with respect to solid angle. For the hemisphere, the solid
angle PDF is a constant p � ω � � 1

2π .
�
MC Function Definitions ��� �
Float UniformHemispherePdf(Float theta, Float phi) {

return INV_TWOPI;
}

Sampling the full sphere uniformly over its area is almost exactly the same, and
we omit the derivation.

x � 2r � ξ1 � 1 � ξ1 � cosφ

y � 2r � ξ1 � 1 � ξ1 � sinφ

z � 1 � 2ξ1

Sec. 14.7] 2D Sampling with Multi-Dimensional Transformation 513

678 M PI
27 Vector

�
MC Function Definitions ��� �
Vector UniformSampleSphere(Float u1, Float u2) {

Float z = 1.f - 2.f * u1;
Float r = sqrtf(max(0.f, 1.f - z*z));
Float phi = 2.f * M_PI * u2;
Float x = r * cosf(phi);
Float y = r * sinf(phi);
return Vector(x, y, z);

}
�
MC Function Definitions ��� �
Float UniformSpherePdf() {

return 1.f / (4.f * M_PI);
}

14.7.2 Example: Sampling a Unit Disk

Although the disk example seems simpler than the hemisphere, it actually gives
many students the most trouble, because it has an (incorrect) intuitive solution.
Most students, when asked to choose a random point inside a unit circle, simply
give the (wrong) answer:

r � ξ1

θ � 2πξ2

Although this point is certainly random, and it is inside the circle, it is not uni-
formly distributed; it actually clumps samples near the center of the circle. To see
why, let’s derive the correct transformation from first principles.

Since we’re going to sample uniformly with respect to area, the PDF p � x � y �
must be a constant. By normalization, we get p � x � y � � 1

π . If we transform into
polar coordinates (see the polar example above), we get p � r� θ � � r

π . Now we
compute the marginal and conditional densities as before:

p � r � � � 2π

0
p � r� θ � dθ

� � 2π

0

r
π

dθ

� 2π
r
π� 2r

and

p � θ � r � � p � r� θ �
p � r �

� 1
2π

M PI 678

514 Monte Carlo Integration: Basic Concepts [Ch. 14

Figure 14.7: The concentric mapping maps squares to circles, giving a less dis-
torted mapping than the first method shown for uniformly sampling points on the
unit disk.

NEED A FIGURE FOR THE SIMPLE r � � ξ1 mapping.

Figure 14.8: Please! FIGURE!

As with the hemisphere case, this should make sense because of the symmetry of
the circle.

Now we simply integrate and invert:

P � r � � r2

P � 1 � r � � � r

P � θ � � θ
2π

P � 1 � θ � � 2πθ

So sampling a disk can be done thusly:

r � � ξ1

θ � 2πξ2

Notice how taking the square root of ξ1 tends to spread the samples back towards
the edge of the disk, negating the clumping referred to earlier.�
MC Function Definitions ��� �
void UniformSampleDisk(Float u1, Float u2, Float *x, Float *y) {

Float r = sqrtf(u1);
Float theta = 2.0f * M_PI * u2;
*x = r * cosf(theta);
*y = r * sinf(theta);

}

Though this mapping solves the problem at hand, it has distortion issues; areas
on the unit square are elongated and/or compressed when mapped to the disk. This
is unfortunate when we have well-stratified samples on the unit square, since that
stratification is lost when we transform to the circle. Peter Shirley has developed a
“concentric” mapping from the unit square to the unit circle that avoids this prob-
lem. The concentric mapping takes points in the square � � 1 � 1 � 2 to the unit disk by
uniformly mapping concentric squares to concentric circles–see Figure 14.7.

The mapping turns wedges of the square into slices of the disk. For example,

Sec. 14.7] 2D Sampling with Multi-Dimensional Transformation 515

y

x r

θ

Figure 14.9: Triangular wedges of the square are mapped into � r� θ � pairs in pie-
shaped slices of the circle.

points in the shaded area of the square in Figure 14.7 are mapped to � r� θ � by

r � x

θ � y
x

See Figure 14.9. The other four quadrants are handled analogously.�
MC Function Definitions ��� �
void ConcentricSampleDisk(Float u1, Float u2,

Float *dx, Float *dy) {
Float r, theta;�
Map uniform random numbers to � � 1 � 1 � 2 ��
Map square to � r� θ � �
*dx = r*cosf(theta);
*dy = r*sinf(theta);

}
�
Map uniform random numbers to � � 1 � 1 � 2 ���
Float sx = 2 * u1 - 1;
Float sy = 2 * u2 - 1;

�
Map square to � r� θ � ����

Handle degeneracy at the origin �
if (sx >= -sy) {

if (sx > sy) {�
Handle first region �

}
else {�

Handle second region �
}

}
else {

if (sx <= sy) {�
Handle third region �

}
else {�

Handle fourth region �
}

}
theta *= M_PI / 4.f;

M PI 678

516 Monte Carlo Integration: Basic Concepts [Ch. 14

�
Handle first region ���
r = sx;
if (sy > 0.0)

theta = sy/r;
else

theta = 8.0f + sy/r;

The remaining cases are analogous and are omitted.

14.7.3 Example: Cosine Weighted Hemisphere Sampling

As we will see later in this chapter, it is often useful to sample from a distribution
that is similar to the integrand being estimated. Because we know that the integral
in Equation 15.3.1 weights the result by a cosine term, we will generate directions
that are more likely to be close to the top of the hemisphere than the bottom, where
the cosine term has a small value.

Mathematically, this means that

p � ω � ∝ cos θ

Converting this to spherical coordinates, we get

p � θ � φ � ∝ sinθcos θ

Normalizing as usual, we get:

�
H2

cp � θ � φ � dθdφ � 1

� 2π

0
� π

2

0
ccosθsin θdθdφ � 1

c2π � 1

0
udu � 1

c � 1
π

so

p � θ � φ � � 1
π

cosθsin θ

We could compute the marginal and conditional densities as before, but instead
we’re going to use a trick knows as Malley’s method to generate these cosine-
weighted points. The idea behind Malley’s method is that if we choose points
uniformly from the unit disk and then generate directions by projecting the points
on the disk up to the hemisphere above it, the resulting distribution of directions
will be a cosine distribution—see Figure 14.10.

Why does this work? Let � r� φ � be the polar coordinates of the point chosen on
the disk (note that we’re using φ instead of the usual θ here). From our calculations
before, we know that the joint density p � r� φ � � r

π represents the point sampled on
the disk.

Sec. 14.7] 2D Sampling with Multi-Dimensional Transformation 517

515 ConcentricSampleDisk()
678 INV PI
27 Vector

N

Figure 14.10: Malley’s method: to sample direction vectors from a cosine-
weighted distribution, uniformly sample points on the unit disk and project them
up to the unit sphere.

Now, we map this to the hemisphere. The vertical projection gives sinθ � r,
which is easily seen from the diagram in Figure 14.10. To complete the � r� φ � �� sinθ � φ � transformation, we need the determinant of the Jacobian:

� JT � �
�
�
�
�
cos θ 0

0 1

�
�
�
� � cosθ

Therefore, p � θ � φ � � � JT � p � r� φ � � cosθ r
π � 1

π cosθsin θ, which is exactly what
we wanted! We have used the transformation method to prove that Malley’s method
generates directions with a cosine-weighted distribution.

Note that this technique works regardless of the method used to sample points
from the circle, so we can use Shirley’s concentric mapping just as well as the
simpler � r� θ � � � � ξ1 � 2πξ2 � method.
�
MC Utility Declarations ��� �
inline Vector CosineSampleHemisphere(Float u1, Float u2) {

Vector ret;
ConcentricSampleDisk(u1, u2, &ret.x, &ret.y);
ret.z = sqrtf(max(0.f, 1.f - ret.x*ret.x - ret.y*ret.y));
return ret;

}

Remember that all of our weighting functions are with respect to solid angle,
not spherical coordinates, so we simply return a weight of cosθ

π .
�
MC Utility Declarations ��� �
inline Float CosineHemispherePdf(Float theta, Float phi) {

return cosf(theta) * INV_PI;
}

14.7.4 Example: Sampling a triangle

Our final example will show how to uniformly sample a trianlge. Although this
might seem like a simple task, it turns out to be more complex than the ones we’ve
seen so far. To simplify the problem, we will assume we are sampling an isoceles
right triangle of area 1

2 . Because the output of our sampling routine will be barycen-
tric coordinates, our technique works for any triangle despite this simplificiation.
Figure 14.7.4 shows the shape to be sampled.

518 Monte Carlo Integration: Basic Concepts [Ch. 14

Figure 14.11: Sampling an isoceles right triangle. Note that the equation of the
hypotenuse is v 	 1 � u.

Since we are sampling with respect to area, we know that the PDF p � x � y � must
be a constant equal to the reciprocal of the shape’s area (work it out yourself if
you’re not sure —

�
∆ cdxdy 	 1), so p � u � v � 	 2.

First, we compute the marginal density p � u � :

p � u � 	
� 1 � u

0
p � u � v � dv

	 2
� 1 � u

0
dv

	 2 � 1 � u �
and the conditionaly density p � v

�
u � :

p � v
�
u � 	 p � u � v �

p � u �
	 2

2 � 1 � u �
	 1

1 � u
The CDF’s are, as always, gotten by integration:

P � u � 	
�

p � u � du 	 2u � u2

P � v � 	
�

p � v
�
u � dv 	 v

1 � u

And now, we invert these functions:

P � u � 	 ξ1

2u � u2 	 ξ1

u2
� 2u � ξ1 	 0

u 	 1 ��� 1 � ξ1

	 1 � � ξ1 remember, if ξ is uniform, so is 1 � ξ
	 1 ��� ξ1 because u � � 0 � 1 �

We do the same for P � v � :

Sec. 14.7] 2D Sampling with Multi-Dimensional Transformation 519

P � v � � ξ2
v

1 � u � ξ2

v � ξ2 � 1 � u �� ξ2 � 1 � � 1 � � ξ1 � �� ξ2 � ξ1

So our final strategy is:

u � 1 � � ξ1

v � ξ2 � ξ1

Notice that the two variables in this case are not independent!�
MC Function Definitions ��� �
void UniformSampleTriangle(Float u1, Float u2, Float *u, Float *v) {

*u = 1 - sqrtf(u1);
*v = u2 * sqrtf(u1);

}

We won’t provide a weight function for this sampling strategy since the proper
weight will depend on the triangle’s area.

�	���

� � � � ��� � � � � � � ��� � � � ��� � � � � �
� � � � � � � � � � ��� � �

Before we go further into techniques for sampling from various distributions,
we should first explain why we are doing this at all! Equation 14.2 tells us that
we can use any distribution, so what makes one distribution more appropriate than
another?

It turns out that it is advantageous to choose a sampling distribution that is “simi-
lar” to the integrand. This technique is called importance sampling. In Monte Carlo
sampling, “advantageous” usually means “leads to reduced variance”. Importance
sampling is not the only technique for reducing variance; the use of expected val-
ues, jittering, stratification, and control variates are all examples of techniques de-
signed to reduce variance. We will cover some of these techniques in this chapter;
see Veach for a more complete treatment ??.

The battle against variance is the basis of most of the work in optimizing Monte
Carlo. Variance in Monte Carlo ray tracing manifests itself as noise in the image.
As we showed earlier, Monte Carlo’s convergence rate makes it is necessary to
quadruple the number of samples in order to reduce the variance by half. Of course,
this increases the runtime of the estimation procedure proportionally to the number
of samples.

The efficiency of an estimator F is defined as:

ε � F � � 1
V � F � T � F �

where V � F � is the variance, and T � F � is the running time. According to this metric,
F1 is more efficient than F2 if it takes less time to produce the same variance, or if�	� �

522 Monte Carlo Integration II: Variance Reduction [Ch. 15

Figure 15.1: The function h � x � , bounded above by the constant m
.

it produces less variance in the same amount of time.� ���
� ��� � � � � � ��������� � ��� � � � � ��� �
� � ��� �
The techniques in this section all involve analytically integrating a function that

is similar to the integrand. These techniques turn out to be some of the most pow-
erful for computer graphics, but unfortunately they are not always applicable.

15.1.1 The use of expected values

One of the most obvious techniques for reducing variance is to reduce the dimen-
sionality of the problem by integrating out one of the dimensions. For example, if
we start with the estimator

F � f � X � Y �
p � X � Y �

we can replace it with F � � f � � X �
p � X � , where

f � � x � � � f � x � y � dy

p � x � � � p � x � y � dy

In order to do this, we need to be able to integrate both f and p with respect to
y. We also need to be able to draw samples from the marginal density p � x � , but we
can always do that by simply drawing samples from p � x � y � (which we assume we
could already do because of the existence of the estimator F) and throwing away
the y coordinate.

As an example of this technique, assume we want to compute the integral I �
�

b
a h � x � dx, and we know that h � x � � m � x

� � a � b � , as shown in figure 15.1.
The simplest technique for estimating this integral is just to throw darts at the

rectangle and count the number that fall under the curve. Formally,

f � x � y � �
�

1 0 � y � h � x �
0 otherwise

In this case, p � x � y � � 1
m � b � a � , since our darts are uniformly distributed with

respect to area. Now we estimate I � � f � x � y � dxdy with N points:

Î � 1
N

N

∑
i � 1

f � xi � yi �
p � xi � yi � � m � b � a �

N

N

∑
i � 1

f � xi � yi �
Now, we apply the expected values technique described above:

f � � x � � � f � x � y � dy � � h � x �

0
dy � h � x �

p � x � � � m

0
p � x � y � dy � 1

b � a

Sec. 15.1] Analytic Integration Techniques 523

And our new estimator is:

Î � � 1
N ∑

i � 1

N
f � � xi �
p � xi � � b � a

N ∑
i � 1

N f � xi �
But this is the standard Monte Carlo estimator from the previous chapter! We

have reduced rejection sampling to Monte Carlo estimation through the use of ex-
pected values.

This technique is called “the use of expected values” because F � is the condi-
tional expected value of F . This is defined as:

EY � G � � � g � x � y � p � y � x � dy

� � g � x � y � p � x � y � dy

� p � x � y � dy

It is easy to see that F � meets this definition:

F � � EY

�
f � x � y �
p � x � y �

�

� � f � x � y �
p � x � y � p � y � x � dy

� � f � x � y �
p � x � y � p � x � y �

� p � x � y � � dy �
dy

� f � x �
p � x �

This fact makes it easy to analyze the effect this technique has on variance.
To do so, we will make use of a simple theorem that separates multi-dimensional
variance:

THEOREM: V � G � � ExVyG � VxEyG
PROOF:

ExVyG � VxEyG � Ex

�
Ey

�
G2 � � � EY G � 2 � � Ex � EyG � 2

� � ExEyG � 2

� ExEy

�
G2 � � � ExEyG � 2

� V � G �
therefore, we can write V � F � � ExVyF � VxEyF . but EyF � F � , so we have

V � F � � ExVyF � V � F � � , or

V � F � � V � F � � � ExVyF

Notice that the right hand term of this equation is necessarily non-negative be-
cause the variance of a random variable is always non-negative. This proves that
the variance of F � cannot be more than the variance of F . Although this fact is true
in general, our choice of example also serves as a proof that rejection sampling
is less efficient than standard Monte Carlo sampling, which should be intuitively
clear.

524 Monte Carlo Integration II: Variance Reduction [Ch. 15

15.1.2 Importance Sampling

Recall that we do not always have to choose our samples uniformly; we can use
any p � x � that we like. Importance sampling is based on the observation that th
estimator will converge more quickly if the samples are taken from a distribution
p � x � that is similar to the function f � x � in the integrand. The basic idea is that by
concentrating work where the value of the integrand is relatively high, the estimate
is generated more efficiently.

We will motivate this technique informally. Suppose we’re trying to use Monte
Carlo techniques to evaluate some integral I � � f � x � dx. Since we can choose
any sampling distribution we want, let’s choose p � x � ∝ f � x � , or p � x � � c f � x � . As
always, we must normalize this distribution function. It is trivial to show that
normalization forces c � 1

� f � x � dx � 1
I . But this requires us to know the value of I,

which is what we were trying to estimate in the first place!
Nonetheless, if we could sample from this distribution, each estimate would be

Yi � f � Xi �
p � Xi � � 1

c . Since c is a constant, each estimate has the exact same value, and
the variance is zero! Of course, this is ludicrous since we wouldn’t bother using
Monte Carlo if we could integrate f directly. However, it should be clear that the
closer p � x � is to a multiple of f � x � , the lower the variance will be.

In many cases, the integrand is the product of more than one function. It is
frequently inconvenient to construct a PDF that is similar to the product, but even
building one that is similar to one of the multiplicands can be very helpful. This
will be a common strategy in the next chapter, where we will be trying to estimate
integrals that multiply lighting, visibility, BRDF’s, and cosine terms.

In practice, importance sampling is one of the most frequently used variance re-
duction techniques, since it can easily be applied to very complex functions. It will
be the variance reduction technique of choice in lrt, and a variety of techniques
for sampling from distributions that are similar to common functions in graphics
are presented later in this chapter.

15.1.3 Multiple Importance Sampling

The idea of combining samples from two different distributions to estimate the in-
tegral of a product of functions was first introduced to graphics by Eric Veach and
Leo Guibas; many of the facts presented in this section are proved and carefully
analyzed in their paper (Veach and Guibas 1995) and in Veach’s doctoral disser-
taion (Veach 1997).

Monte Carlo gives us tools to estimate an integral of the form � f � x � dx. How-
ever, we are frequently faced with integrals that are the product of two or more
functions: � f � x � g � x � dx. If we have an importance sampling strategy for f � x �
and a strategy for g � x � , which should we use? In general it is very difficult to
directly combine these strategies to compute a probability density function that is
proportional to the product f � x � g � x � . Rather than choosing between the two sam-
pling strategies, multiple importance sampling gives us the tools needed to use both
sampling strategies separately and combine their answers in an intelligent way.

The idea behind multiple importance sampling is that when estimating an in-
tegral of the form � f � x � g � x � dx we should draw samples from both distributions.

Sec. 15.1] Analytic Integration Techniques 525

Then, each sample is instead weighted by

1
N

�
∑
n f

f � xi � g � xi � ŵ f � xi �
p f � xi � � ∑

ng

f � xi � g � xi � ŵg � xi �
pg � xi � � �

where n f is the number of samples taken from f ’s importance sampling method,
ng is the number of samples taken from g’s, N � n f � ng, and ŵ f and ŵg are special
weighting functions that take into account all of the different ways that a sample x i

could have been generated, rather than just the particular one that was used.
A good choice for this weighting function is the balance heuristic.

ŵs � x � � ns ps � x �
∑i ni pi � x �

The balance heuristic is a provably good way to weight samples to reduce variance.
We provide an implementation of this function for the specific case of two functions
f and g; we will not need a more general case in lrt.�
MC Inline Functions ���
inline Float BalanceHeuristic(int nf, Float fPdf, int ng, Float gPdf) {

return (nf * fPdf) / (nf * fPdf + ng * gPdf);
}

In practice, the power heuristic often reduces variance even further. For some
exponent β, the power heuristic is:

ŵs � x � � � ns ps � x � � β
∑i � ni pi � x � � β

Veach determined empirically that β � 2 is a good value; we have β � 2 hard-
coded into the implementation.�
MC Inline Functions ��� �
inline Float PowerHeuristic(int nf, Float fPdf, int ng, Float gPdf) {

Float f = nf * fPdf, g = ng * gPdf;
return (f*f) / (f*f + g*g);

}

Intuitively, multiple importance sampling reduces variance because it reduces
the “surprise factor” that results when one of the sampling terms is large while the
other is small. If our sampling strategy for f gives a large contribution while g is
near-zero at the same point, we waste a lot of effort sampling at locations where
the integrand is small.

Consider our primary objective of evaluating lighting integrals of the form

Lo � x � ωo ��� � Li � x � ωi � fr � x � ωi � ωo � cosθdωi

Further consider the example of glossy reflections of area light sources. Now imag-
ine two separate cases: a large area light reflected in a near-perfect mirror, and a
small area light reflected in a dull glossy reflector.

If we were to only perform regular importance sampling according to Li or fr,
one of these two cases would perform very poorly. Consider the mirror BRDF case

526 Monte Carlo Integration II: Variance Reduction [Ch. 15

GET ERIC’S PERMISSION

Figure 15.2: Reprint Eric’s MIS example with the spheres

when we only importance sampling the lighting. This means that we will choose
a point on the area light and evaluate the integral. But since the BRDF is almost
a mirror, it will be very near zero at all reflection directions except the mirror
direction. This means that almost all of the points we choose on the area light will
have almost zero contribution, and we should expect the variance to be quite high.
However, the small area light reflected in a dull mirror would look excellent, since
the BRDF is large at all directions pointing towards the light source.

If, on the other hand, we sampled the BRDF, we would see exactly the opposite
problem. The mirror BRDF would look excellent, since all of the sampled direc-
tions had high contribution. However, the dull BRDF will look terrible, since most
of the sampled directions will miss the light source and contribute nothing.

With multiple importance sampling, we can use both sampling strategies and
combine them effectively. We will first draw a sample from both the lighting and
the BRDF. For the lighting sample, we determine the probability that the corre-
sponding direction would have been chosen by the BRDF. Similarly, for the BRDF
sample, we determine the probability that the corresponding point would have been
chosen by the light (this is the reason for the extra Weight methods for both lights
and reflection functions).

Now we can combine the two samples in the right way! If the light says “zero
probability; the BRDF’s direction misses me entirely”, we use the light’s sample
(making the dull BRDF picture look good). If the BRDF says “negligible probabil-
ity; the light’s point is not in the mirror direction”, then we use the BRDF sample
(making the mirror BRDF picture look good). If the lighting says “fairly high
probability” and the BRDF says “fairly low probability”, then we weight the two
samples accordingly.

Example renderings illustrating this intuitive argument are shown in figure 15.2.

� ������� � � � � ���� � � �� � � ��	��� � �����

In addition to simplifying the problem through analytic integration techniques,
we can also reduce variance by carefully placing samples so as to capture “im-
portant” features of the integrand (or, more accurately, to be less likely to miss
important features). These techniques are complimentary to analytic integration
techniques, and are therefore also used extensively in lrt.

15.2.1 Stratified Sampling

Stratified sampling was introduced in section 7.4, and we now have the tools to
formally motivate its use. Stratified sampling works by subdividing the domain Ω
into n non-overlapping regions Ω1 � Ω2 � ����� � Ωn. Each region is called a stratum, and
they must completely cover the original domain; that is,

� n
i � 1Ωi � Ω

Sec. 15.2] Careful Sample Placement 527

To draw samples from Ω, we will draw ni samples from each Ωi, according to
densities pi. A simple example is super-sampling a pixel. With stratified sampling,
we divide the pixel into a k � k grid, and draw a smaple from each grid cell. This
is better than taking k2 random samples, since the sample locations are less likely
to clump.

Within a single stratum Ωi, we have an estimate

Fi � 1
ni

ni

∑
i � 1

f � Xi j �
where Xi j is the j’th sample drawn from density pi. Then our overall estimate
becomes F � ∑n

i � 1 viFi, where vi is the fractional volume of stratum i (vi
� � 0 � 1 �).

The true average value of the integrand in stratum i is

µi � E � f � Xi j � � � 1
vi
�

Ωi

f � x � dx

and the variance in this stratum is

σ2
i � 1

v1
�

Ωi
� f � x � � µi � 2 dx

So, with ni samples in the stratum, the variance of the per-stratum estimator is
σ2

i
ni

. This shows that the variance of the overall estimator is

V � F � � V
�
∑viFi �� ∑V � viFi �

� ∑v2
i V � Fi �

� ∑ v2
i σ2

i

ni

If we make the reasonable assumption that the number of samples ni is pro-
portional to the volume vi, then we have ni � viN, and the variance of the total
estimator is

V � FN � � 1
N ∑viσ2

i

How can we compare this to the variance without stratification? It turns out
that this is simple with a little trick. Choosing an unstratified sample is equivalent
to choosing a random stratum I according to the discrete probability distribution
defined by the volumes vi, and then choosing a random sample X in ΩI . In this
sense, X is chosen conditionally on I, and we can use the conditional expectation
theorem from the last section:

V � F � � ExViF � VxEiF

� 1
N

�
∑viσ2

i � ∑vi � µi � Q � �
Where Q is the mean of f over the whole domain Ω. There are two things to

notice about this formula. First, we know that the right hand sum must be non-
negative, since variance is always non-negative. Second, this proves that stratified

528 Monte Carlo Integration II: Variance Reduction [Ch. 15

sampling can never reduce variance. In fact, stratification is always a win as long
as the right hand sum is not exactly zero, which only happens when the function f
has the same mean over each stratum Ωi. In fact, we would like to maximize the
right hand sum, so it is in our interest to make the strata have as unequal means as
possible.

This explains why compact strata are desirable if you don’t know anything about
the function f . If the strata are wide, they will contain more variation, and will have
µi closer to the true mean Q. This also explains why the Shirley square-to-circle
mapping (Figure 14.7) is better than the straightforward mapping (Figure 14.8),
since the straightforward mapping has less and less compact strata away from the
center.

Stratified sampling has a downside, however; it suffers from the same “curse
of dimensionality” as standard numeric quadrature. Full stratification in D dimen-
sions with S strata per dimension requires SD samples, which quickly becomes
prohibitive.

15.2.2 Jittered Sampling

There are two main ways to characterize a random point-distribution process. The
most straightforward is to compute the mean density per unit area generated by the
process. More sophisticated analysis is possible using the autocorrelation function.
This function tells us, given a point at � x � y � , the likelihood of finding another point
at � x � u � y � v � :

A � u � v � � E

� � ∞

� ∞
� ∞

� ∞
s � x � y � s � x � u � y � v � dxdy

�

where s is the sampling function (e.g., a sum of δ-functions), and E � ����� � is the
average over all such sampling functions.

We know from chapter 7 that sampling and reconstruction using a uniform pat-
tern results in copies of the spectrum, which might overlap if the sampling rate is
not sufficient. What can we say about random sampling? In order to answer this
question, we would need to now the Fourier transform of s � x � y � . Unfortunately,
this is undefined, as s is a random process.

Instead, we can define a related quantity called the spectral density of s � x � y � .
The spectral density is the energy per frequency per unit area. It turns out that
this is the Fourier transform of the autocorrelation function. Although this is pretty
complicated, spectral density is actually very easy to approximate. We can simply
form lots of instances of the sampling function s � x � y � , and average their Fourier
spectra. A plot of the spectral density of a Poisson (e.g. purely random) process is
shown in figure 15.3.

These spectra generally consist of a δ-function at the origin, surrounded by a
sea of noise. Because the noise is present at all frequencies, it is “white” noise,
and convolving with a Poisson distribution results in noisy, unstructured aliasing.
A Poisson disk distribution, on the other hand, has a much nicer spectral density,
shown in figure 15.4.

Notice that the Poisson disk distribution also has a δ-function surrounded by
a sea of noise, but there is a gap between the spike and the noise. Because the

Sec. 15.2] Careful Sample Placement 529

Figure 15.3: The spectral density of a Poisson process. Should either compute this
ourselves or get Don’s permission to re-use these figures.

Figure 15.4: The spectral density of a Poisson disk process.

530 Monte Carlo Integration II: Variance Reduction [Ch. 15

Figure 15.5: The Fourier transform a jittered point distribution.

noise is only present at high frequencies, this is “blue” noise. When using a blue-
noise process to sample a function, the overlapping copies of the signal spectrum
laid down during reconstruction are pushed out away from the origin. This gives
the center copy of the spectrum some “breathing room”, which can help avoid or
lessen aliasing. In fact, if the spectrum of the signal fit entirely in the gap between
the δ-function and the noise, we could perfectly reconstruct the original signal!
Even if we can’t, the noise will all be high-frequency, which is just what we want.
It has been observed that the photoreceptors in a monkey eye are arranged in a
Poisson-disk distribution (Yellot 1983).

What, then, can we say about jittered sampling? It is easy to compute the Fourier
transform of a jittered sampling process, as shown in figure 15.5. The jitter spec-
trum is also a blue-noise spectrum, although there is more low-frequency noise
present than in the Poisson disk case. Although this makes jittered patterns inferior
to Poisson disk patterns for sampling, they are still substantially better than purely
random processes, and they are very cheap to compute.

In addition, we can analytically determine the spectral density of a jittered dis-
tribution. We will do so in one dimension; the extension to multiple dimensions is
straightforward. We write the jittered distribution as

s � x � � ∞

∑
n � � ∞

δ � x � xn �
where xn � nT � jn, T is the sampling frequency and jn is the jitter amount.

The random variable jn is drawn from some probability distribution j � x � . The key
insight is that j � x � can be anything, but it’s just a function, so it has a Fourier
transform J � ω � .

It can be shown (we should either find the derivation of this or cite some-
thing) that the spectral density S � ω � of this jitter process is:

S � ω � � 1
T

�
1 � J2 � ω � � �

2π
T 2 � J � ω � � 2 ∞

∑
n � � ∞

δ
�

ω �

2πn
T �

Sec. 15.3] Sampling Reflection Functions 531

-4 -2 2 4

0.2

0.4

0.6

0.8

1

Figure 15.6: 1 � sinc2 � ω �
This looks complicated, but what if we restrict ourselves to the common case

where jn is uniformly distributed? Then j � x � is just a box function, and J � ω � �
sinc � ω � . But sinc � ω � is zero at all integers except ω � 0, so the right hand summa-
tion is just a single scaled δ-function, and the spectral density reduces to the simple
formula:

S � ω � � 1
T

�
1 � sinc2 � ω � � � kδ � ω �

This function is plotted in figure 15.6. It is clear that this is a blue-noise like
distribution with very little energy near the δ-function at the origin. This demon-
strates that jittered sampling produces a reasonable spectrum for sampling and re-
construction, and pushes aliasing error into high frequency noise where it is less
perceptually objectionable.

15.2.3 Quasi Monte Carlo Methods

How should this be different from what’s in chapter 7? Maybe that stuff
should move here?

� ����� � � � � �� � � � ��� ��� � � � � ��� �	� � � � � �

We will now show how to use importance sampling to sample BSDFs (this can
be used to compute integrals of the reflection functions from Chapter 9, for ex-
ample.) Given some point on a surface, we often wish to compute the reflection
integral that gives outgoing radiance in a direction ωo.

Lo � x � ωo � � �
H 2 � n �

fr � x � ωi � ωi � Li � ωi � � cos θi � dωi � (15.3.1)

BRDFToBTDF 336
BxDF 334

BxDF::f() 335
INV PI 678

Lambertian 351
Spectrum 181
Vector 27

532 Monte Carlo Integration II: Variance Reduction [Ch. 15

Our task here is to define probability densities that do a good job of matching the
BSDF term of the integrand. Because it’s difficult to know when all of the terms
will simultaneously have high values, we’ll concentrate on strategies for sampling
each one of them. Later, we’ll show how combining the samples together from
multiple strategies works gives excellent results.

First, we need to provide a reasonable default sampling method. If we know
nothing about the BDRF, then the best thing to do is to sample the upper hemi-
sphere according to a cosine distribution, because of the cosine term in Equa-
tion 15.3.1.

In addition to drawing a sample, all sampling routines will also return the value
of the probability distribution for the sample chosen. This is necessary in order to
properly evaluate the estimator f � Xi �

p � Xi � .
Recall that Malley’s method gives a cosine distribution, so we can just use this

directly.�
BxDF Method Definitions ��� �
Spectrum BxDF::Sample_f(const Vector &wi, Vector *wo,

Float u1, Float u2, Float *pdf) const {�
Cosine-sample the hemisphere, flipping the direction if necessary �
*pdf = Pdf(wi, *wo);
return f(wi, *wo);

}

update text here to match code
We might need to flip the direction returned by Malley’s method to make sure

that it lies on the same side of the surface as the incoming direction. Because the
coordinate system of the surface has � 0 � 0 � 1 � as the normal, doing this test is a
simple matter of comparing the signs of the z coordinate of ωi and ωo.�
Cosine-sample the hemisphere, flipping the direction if necessary ���
*wo = CosineSampleHemisphere(u1, u2);
if (wi.z < 0.) *wo = -*wo;

Rather than evaluating the PDF directly inside the sampling routine, PDF eval-
uation will always be relegated to a Weight routine. This allows the PDF for an
arbitrary direction (e.g. one not necessarily generated by the sampling routine it-
self) to be evaluated. The need for this will become apparent when we discuss
multiple importance sampling.

To actually evaluate the PDF (which we showed earlier was p � ω � � cosθ
π , note

that we can simply return Nω̇o, which simplifies to simply the z coordinate of ωo

since N � � 0 � 0 � 1 � :�
BxDF Method Definitions ��� �
Float BxDF::Pdf(const Vector &wi, const Vector &wo) const {

return fabsf(wo.z) * INV_PI;
}

This sampling method is a fine one for Lambertian reflectors (where the BRDF
is a constant), so we won’t override the method for Lambertian or OrenNayar
BxDFs. For the wrapper class BRDFToBTDF, we simply sample the BRDF but negate
the outgoing direction:

Sec. 15.3] Sampling Reflection Functions 533

336 BRDFToBTDF
334 BxDF
532 BxDF::Pdf()
357 Microfacet
357 MicrofacetDistribution
181 Spectrum
27 Vector

�
BxDF Method Definitions ��� �
Float BRDFToBTDF::Pdf(const Vector &wi,

const Vector &wo) const {
return brdf->Pdf(wi, -wo);

}

15.3.1 Sampling the Blinn microfacet distribution

More complex BxDFs to sample are those based on microfacet distribution func-
tions (See Section 9.4). There, the BxDF is a product of three main terms, D, G,
and F , which is then divided by two cosine terms. Here we will describe how to
importance sample the D part of the Blinn model; trying to develop a sampling
method that accounted for all of the terms simultaneously would be difficult, and
it’s the D term that accounts for most of the variation in the BxDF’s value.

All MicrofacetDistributions must implement sampling and weighting func-
tions, each with the same signature as the corresponding BxDF function.�
MicrofacetDistribution Interface ��� �
virtual void Sample_f(const Vector &wi, Vector *wo,

Float u1, Float u2) const = 0;
virtual Float Pdf(const Vector &wi, const Vector &wo) const = 0;

Microfacet BxDFs, then, just forward on the sampling and weight requests to
their distribution function.�
BxDF Method Definitions ��� �
Spectrum Microfacet::Sample_f(const Vector &wi, Vector *wo,

Float u1, Float u2, Float *pdf) const {
distribution->Sample_f(wi, wo, u1, u2);
if (wi.z * wo->z < 0.f) return Spectrum(0.f);
*pdf = distribution->Pdf(wi, *wo);
return f(wi, *wo);

}
�
BxDF Method Definitions ��� �
Float Microfacet::Pdf(const Vector &wi,

const Vector &wo) const {
if (wi.z * wo.z < 0.f) return 0.f;
return distribution->Pdf(wi, wo);

}

Recall that Blinn’s microfacet distribution function is D � � n � 1 � � cos θH � n,
where cosθH � � N � H � . Because the value of φ doesn’t affect D, the PDF ph � θ � φ �
is separable into ph � θ � and ph � φ � . ph � φ � is constant, with a value of 1

� � 2π).

As usual, to sample θH , we must first normalize it, so that �
π � 2
0 p � θ � dω � 1.

1 � c � π � 2

0
� n � 1 � cosn θH sinθHdθH

� c � � cosn � 1 π
2

� cosn � 1 0 �
c � 2π

534 Monte Carlo Integration II: Variance Reduction [Ch. 15

ω

θ

o

H

ωH

ωi
θi

Figure 15.7: The adjustment for change of variable from sampling from the half-
angle distribution to sampling from the indicent direction distribution can be de-
rived with an observation about the relative angles involved.

Thus, our PDF ph � θ � is � n � 1 � cosn θH . To sample from the distribution given a
uniform random number ξ, we solve:

ξ � � θ

0
� n � 1 � cosn θH sinθHdθH

ξ � cosn � 1 0 � cosn � 1 θ
n � 1� 1 � ξ � cosθ

Since ξ is a uniform random number, so is 1 � ξ, so we can simplify this to

θ � cos � 1
�

n � 1� ξ1 � . Since the value φ doesn’t affect the value of D, we sample it

uniformly: φ � 2πξ2.
We’re not quite done yet, however. Microfacet distributions always give the

distribution of normals around the half-angle vector, but the reflection integral is
with respect to the incoming vector. This is a subtle point which many students
miss when implementing importance sampling of microfacet distributions.

The fix is simple: we must simply change variables from θH to θi. This requires
multiplying by the Jacobian ∂ωi

�
∂ωH :

�
H 2 � n �

fr � ωi � ωr � L � ωi � cos θidωH
∂ωi

∂ωH
� �

H 2 � n �
fr � ωi � ωr � L � ωi � cos θidωi

� Lo � x � ωr �
This Jacobian can be easily computed with a simple geometric construction.

Consider the spherical coordinate system oriented about ωo (see Figure 15.7). The
differential solid angles dωi and dωH are sinθidθidφi and sinθHdθH dφH , respec-
tively. Therefore,

dωi

dωH
� sinθidθidφi

sinθHdθH dφH

But ωi is computed by reflecting ωo about ωH ! This immediately gives θi � 2θH

Sec. 15.3] Sampling Reflection Functions 535

359 Blinn
678 M PI
192 SphericalDirection()
27 Vector

H
ωo

−ωo

ωi

d

2d

Figure 15.8: The reflection of a direction ωo about the direction H can be computed
by first taking the offset � ωo from the origin, giving the vector beneath the surface.
We then add two times the distance d, which is given by the projection of ωo onto
H (which is given by their dot product) to give us the direction ωi above the surface.

and φi � φH . Thus,

dωi

dωH
� sin2θH 2dθH dφH

sin θHdθHdφH

� 4cos θH sinθH

sinθH

� 4cos θH

� 4
�
ωi � H � � 4

�
ωo � H �

Therefore, the PDF after transformation is p
�
θ � � ph

�
θ � 4 � ωi � H � .

After all that work, the sampling function is actually quite straightforward. We
sample a cos θ and a φ value and convert them to a direction vector using spherical
angles; we want to compute a H vector as the vector with that offset from the
normal direction.�
BxDF Method Definitions �
 �
void Blinn::Sample_f(const Vector &wi, Vector *wo,

Float u1, Float u2) const {
Float costheta = powf(u1, 1.f / (exponent+1));
Float sintheta = sqrtf(max(0.f, 1.f - costheta*costheta));
Float phi = u2 * 2.f * M_PI;�
Compute sampled half-angle vector H ��
Compute incident direction by reflecting about H �

}

But because lrt transforms the normal to
�
0 � 0 � 1 � in the reflection coordinate

system, we can almost use the computed spherical direction directly. The only
additional detail to handle is that if ωi is in the other hemisphere than the normal,
then the half-angle vector needs to be in that hemisphere.�
Compute sampled half-angle vector H ���
Vector H = SphericalDirection(sintheta, costheta, phi);
if (wi.z < 0.f) H = -H;

Anisotropic 361
Blinn 359
Dot() 30

Vector 27

536 Monte Carlo Integration II: Variance Reduction [Ch. 15

All that’s left to do in the last line of code is to apply the formula for reflection
of a vector about another vector; see Figure 15.8.�
Compute incident direction by reflecting about H ���
*wo = -wi + 2.f * Dot(wi, H) * H;

The weighting function is also straightforward; we simply evaluate the half-
angle PDF, and multiply by the Jacobian we just computed.�
BxDF Method Definitions ��� �
Float Blinn::Pdf(const Vector &wi, const Vector &wo) const {

Vector H = (wi + wo).Hat();
Float costheta = fabsf(H.z);
return ((exponent + 1.f) * powf(costheta, exponent)) /

(4.f * Dot(wo, H));
}

15.3.2 Sampling the anisotropic microfacet model

Ashikhmin and Shirley give the equations for sampling their anisotropic Phong
BRDF model; see (Ashikhmin and Shirley 2002; Ashikhmin and Shirley 2000).
We will simply restate their results here; interested readers should consult the orig-
inal publications for details and derivations.

First, we use the PDF from section 9.4.4 to choose a half-angle vector in the
first quadrant of the hemisphere (that is, spherical angles in the range � θ � φ � ��
0 � π

2 � �
�
0 � π

2 � . This is done using the following formulae:

φ � arctan

�
ex � 1
ey � 1

tan

�
πξ1

2 � � (15.3.2)

θ � cos � 1
�
ξ

� ex cos2 φ � ey sin2 φ � 1 � � 1

2 � (15.3.3)

�
BxDF Method Definitions ��� �
void Anisotropic::Sample_f(const Vector &wi, Vector *wo,

Float u1, Float u2) const {
Float phi, costheta;�
Sample from first quadrant and remap to hemisphere �
Float sintheta = sqrtf(max(0.f, 1.f - costheta*costheta));�
Compute sampled half-angle vector H ��
Compute incident direction by reflecting about H �

}

To sample from the first quadrant, we simply check whether ξ1 lies in � 0 � � 25 � ,
� � 25 � � 5 � , � � 5 � � 75 � , or � � 75 � 1 � . Then we remap it to � 0 � 1 � , sample using Equa-
tions 15.3.2 and 15.3.3, and add 0, π

�
2, π, or 3π

�
2 to φ as required.

Sec. 15.3] Sampling Reflection Functions 537

361 Anisotropic
365 FresnelBlend
678 M PI
357 MicrofacetDistribution::D()
27 Vector

�
Sample from first quadrant and remap to hemisphere ���
if (u1 < .25f) {

sampleFirstQuadrant(4.f * u1, u2, &phi, &costheta);
} else if (u1 < .5f) {

u1 = 4.f * (.5f - u1);
sampleFirstQuadrant(u1, u2, &phi, &costheta);
phi = M_PI - phi;

} else if (u1 < .75f) {
u1 = 4.f * (u1 - .5f);
sampleFirstQuadrant(u1, u2, &phi, &costheta);
phi += M_PI;

} else {
u1 = 4.f * (1.f - u1);
sampleFirstQuadrant(u1, u2, &phi, &costheta);
phi = 2.f * M_PI - phi;

}

The sampleFirstQuadrant method is a direct implementation of the Equa-
tions 15.3.2 and 15.3.3.�
BxDF Method Definitions ��� �
void Anisotropic::sampleFirstQuadrant(Float u1, Float u2,

Float *phi, Float *costheta) const {
phi = atanf(sqrtf((ex+1)(ey+1)) * tanf(M_PI * u1 * 0.5f));
Float cosphi = cosf(*phi), sinphi = sinf(*phi);
*costheta = powf(u2, 1.f/(ex * cosphi * cosphi +

ey * sinphi * sinphi + 1));
}

Finally, the weight of this sampling method is straightforward; we simply return
the distribution itself, making sure to account for the change of variables required
to convert from the half-angle distribution to the incident angle distribution just as
in Blinn::Weight.�
BxDF Method Definitions ��� �
Float Anisotropic::Pdf(const Vector &wi, const Vector &wo) const {

if (wi.z * wo.z < 0.) return 0;
Vector H = (wi + wo).Hat();
return D(H) / (4.f * Dot(wo, H));

}

15.3.3 FresnelBlend

Is this the best sampling strategy for this BxDF?
The FresnelBlend class is just a mixture of a diffuse and glossy term. With

equal probability, we sample one or the other. We use ξ1 to choose which to sample,
and remap ξ1 to be between 0 and 1 before doing the sampling.

BxDF 334
FresnelBlend 365

INV PI 678
Spectrum 181
Vector 27

538 Monte Carlo Integration II: Variance Reduction [Ch. 15

�
BxDF Method Definitions ��� �
Spectrum FresnelBlend::Sample_f(const Vector &wi, Vector *wo,

Float u1, Float u2, Float *pdf) const {
if (u1 < .5) {

u1 = 2.f * u1;�
Cosine-sample the hemisphere, flipping the direction if necessary �

}
else {

u1 = 2.f * (u1 - .5f);
distribution->Sample_f(wi, wo, u1, u2);
if (wi.z * wo->z < 0.f) return Spectrum(0.f);

}
*pdf = Pdf(wi, *wo);
return f(wi, *wo);

}

The weight for this sampling strategy is simple; it is just an average of the diffuse
and glossy weights.�
BxDF Method Definitions ��� �
Float FresnelBlend::Pdf(const Vector &wi, const Vector &wo) const {

if (wi.z * wo.z < 0.f) return 0.f;
return .5f * fabsf(wo.z) * INV_PI +

.5f * distribution->Pdf(wi, wo);
}

15.3.4 Reflectance

We will now show how the Monte Carlo sampling routines can be used to estimate
the reflectance integrals (defined in Section 9.1.1) for arbitrary BSDFs. Recall
that the hemispherical-directional reflectance is the fraction of light coming from a
given direction that is reflected in any direction, and is given by:

ρdh � ω � � 1
π
�

H 2 � n �
fr � ω � ω � � dω � �

To estimate its value for a particular BxDF, we take four samples of the estimator.
The number of samples is fixed to avoid allocating memory in this routine, which
can be called fairly frequently.

Sec. 15.3] Sampling Reflection Functions 539

334 BxDF
251 LatinHypercube()
678 M PI
181 Spectrum
27 Vector

�
BxDF Method Definitions ��� �
Spectrum BxDF::rho(const Vector &w, int nSamples,

Float *samples) const {
if (!samples) {

samples = (Float *)alloca(2 * nSamples * sizeof(Float));
LatinHypercube(samples, nSamples, 2);

}
Spectrum r = 0.;
for (int i = 0; i < nSamples; ++i) {�

Estimate one term of ρdh �
}
return r / nSamples;

}

Actually evaluating the estimator is straightforward; we simply sample the re-
flection function, and divide it by the returned weight. Notice that we also weight
the reflection function by the cosine of the incoming angle; we do this because�
Estimate one term of ρdh ���
Vector wi;
Float pdf;
Spectrum f = Sample_f(w, &wi, samples[2*i], samples[2*i+1], &pdf);
if (!f.Black() && pdf > 0.) r += f * fabsf(wi.z) / pdf;

The hemispherical-hemispherical reflectance can be estimated similarly. Given

ρhh � 1
π
�

H 2 � n �
�

H 2 � n �
fr � ωi � ωr � dωidωr �

to estimate a term of ρhh, we need to sample two vectors, ωi and ωo. We first sample
ωo uniformly over the hemisphere; because our BxDF sampling routine expects the
outgoing ray to be passed in, we need to sample one using a different approach.
Fortunately, uniform sampling over the hemisphere works well for this.

We then sample the other direction with the BxDF::Sample_f() routine. We
then just compute the estimate by multiplying the function’s value by the two
weights.�
BxDF Method Definitions ��� �
Spectrum BxDF::rho(int nSamples, Float *samples) const {

if (!samples) {
samples = (Float *)alloca(4 * nSamples * sizeof(Float));
LatinHypercube(samples, nSamples, 4);

}
Spectrum r = 0.;
for (int i = 0; i < nSamples; ++i) {�

Estimate one term of ρhh �
}
return r / (M_PI*nSamples);

}

BSDF 370
BSDF::WorldToLocal() 371

BxDF 334
BxDF::Sample f() 335

BxDFType 334
M PI 678

Spectrum 181
Spectrum::Black() 182

UniformSampleHemisphere() 512
Vector 27

540 Monte Carlo Integration II: Variance Reduction [Ch. 15

�
Estimate one term of ρhh ���
Vector wo, wi;
wo = UniformSampleHemisphere(samples[4*i], samples[4*i+1]);
Float pdf_o = 2.f * M_PI, pdf_i;
Spectrum f = Sample_f(wo, &wi, samples[4*i+2], samples[4*i+3], &pdf_i);
if (pdf_i > 0. && !f.Black())

r += f * fabsf(wi.z * wo.z) / (pdf_o * pdf_i);

15.3.5 Sampling BSDFs

Now that we have defined methods to sample individual BxDFs, we define the over-
all sampling method for the BSDF class. Here we have one or more individual BxDFs
that we know how to sample individually, but where we want to sample the BSDF
that results from the bunch of them together. Our simple solution is to randomly
pick among the BxDFs, with an equal probability of choosing each one. We then
use the chosen BxDF’s BxDF::Sample_f() method to sample the actual direction.

The incoming and outgoing directions passed to this routine are in world coor-
dinates. Because the BxDF sampling methods operate in a local coordinate system,
those directions need to be transformed to and from world space as necessary.�
BSDF Method Definitions ��� �
Spectrum BSDF::Sample_f(const Vector &wiW, Vector *woW,

Float u1, Float u2, Float u3, Float *pdf, BxDFType flags,
BxDFType *sampledType) const {

Vector wi = WorldToLocal(wiW);�
Choose which BxDF to sample ��
Sample chosen BxDF ��
Handle specular BxDF �
if (matchingComps > 1) *pdf /= matchingComps;
return f;

}

We first determine which BxDF we’re going to sample. This isn’t trivial, since
the caller passes in certain flags that the chosen BxDF must match. This way, the
caller can choose to only sample diffuse BxDF’s if that is appropriate.�
Choose which BxDF to sample ���
int nComps = NumComponents(flags);
const int which = min(Floor2Int(u3 * nComps), nComps-1);
BxDF *bxdf = NULL;
int comp = which;
int matchingComps = 0;
for (int i = 0; i < nBxDFs; ++i) {

if (MatchesFlags(bxdfs[i], flags)) {
if (comp-- == 0)

bxdf = bxdfs[i];
++matchingComps;

}
}
if (!bxdf) return Spectrum(0.f);

Sec. 15.3] Sampling Reflection Functions 541

370 BSDF
371 BSDF::bxdfs
372 BSDF::LocalToWorld()
371 BSDF::MatchesFlags()
371 BSDF::NumComponents()
371 BSDF::WorldToLocal()
334 BSDF SPECULAR
334 BxDF
335 BxDF::f()
532 BxDF::Pdf()
335 BxDF::Sample f()
334 BxDF::type
181 Spectrum
182 Spectrum::Black()
27 Vector

Once the BxDF is chosen, we call its corresponding Sample f() method. Recall
that these methods expect and return vectors in the BxDF’s local coordinate system,
so we transform the returned vector back into world coordinates immediately.�
Sample chosen BxDF ���
Vector wo;
Spectrum f = bxdf->Sample_f(wi, &wo, u1, u2, pdf);
if (f.Black()) return f;
if (sampledType) *sampledType = bxdf->type;
*woW = LocalToWorld(wo);

�
Handle specular BxDF ���
if (!(bxdf->type & BSDF_SPECULAR)) {

for (int i = 0; i < nBxDFs; ++i) {
if (i != which && MatchesFlags(bxdfs[i], flags)) {

*pdf += bxdfs[i]->Pdf(wi, wo);
f += bxdfs[i]->f(wi, wo);

}
}

}

To compute the weight for the chosen sample, the obvious (but wrong) thing to
do would be to simply call the BxDF::Pdf() method of the BxDF we chose. Al-
though this makes intuitive sense, we must consider the true probability distribution
of the BSDF, since that is what we sampled from. Because we sampled each BxDF
with equal probability, we should equally weight the values of their BxDF::Pdf()
methods to compute the overall weight for the BSDF.�
BSDF Method Definitions ��� �
Float BSDF::Pdf(const Vector &wiW, const Vector &woW) const {

if (nBxDFs == 0.) return 0.;
Vector wi = WorldToLocal(wiW), wo = WorldToLocal(woW);
Float pdf = 0.f;
for (int i = 0; i < nBxDFs; ++i)

pdf += bxdfs[i]->Pdf(wi, wo);
return pdf / nBxDFs;

}

15.3.6 Specular reflection and transmission

I think this text needs some cleanup — I think it’s right but perhaps could be
made less informal if I knew exactly how this stuff all fit together with the new
zen of light transport.

Dirac delta functions present a problem for this framework, since they involve
infinities and singularities. In the real world, this is not a problem because true
perfect reflection or transmission is physically impossible. However, it is often
convenient to model surfaces as containing perfect reflection properties, so we need
to deal with this issue.

Specular reflection or transmission is generally special cased by the particular
light transport algorithm, since it is impossible to properly sample from a delta

Normal 34
Point 33

Spectrum 181
Vector 27

VisibilityTester 479

542 Monte Carlo Integration II: Variance Reduction [Ch. 15

function (see the next chapter for details). In brief, these algorithms will tend
to simply compute the reflected or transmitted radiance directly without explicit
use of Monte Carlo methods. The reason this technique fits in well with Monte
Carlo integration is that the function and its weight will both be a scaled Dirac
delta function, and those delta functions will cancel out when computing a Monte
Carlo estimator. So even though the division by the distribution is never performed
explicitly, all the math works out in the end.

The only remaining piece is to return zero as the weight for any other vectors, so
that the rest of the Monte Carlo framework knows not to count contributions from
delta functions when the contribution will be zero.�
SpecularReflection Public Methods ��� �
Float Pdf(const Vector &wi, const Vector &wo) const {

return 0.;
}

�
SpecularTransmission Public Methods ��� �
Float Pdf(const Vector &wi, const Vector &wo) const {

return 0.;
}

� ����� � � � � �� � � � � � �� � � ��� ��� �
We move now from sampling reflection distributions to sampling radiance from

light sources. For consistency, we will use the same interface for light sources
involving singularities (such as point and directional light sources) and true area
light sources.

15.4.1 Basic Interface

Each light supports a Light::Sample_L() method that returns the incident radi-
ance due to that light at some given point P. The interface can optionally supply
the surface normal at P in order to achieve smarter sampling of points on an area
light (for example, we could only choose points that are visible from the given
orientation).

Note that these all return densities with respect to solid angle on the sphere.
This is really important.

XXX what about transmission type issues here, though? XXX�
Light Interface ��� �
virtual Spectrum Sample_L(const Point &P, Float u1,

Float u2, Vector *wo, Float *pdf,
VisibilityTester *, bool *deltaLight = NULL) const = 0;

virtual Spectrum Sample_L(const Point &P, const Normal &N, Float u1, Float u2,
Vector *wo, Float *pdf, VisibilityTester *, bool *deltaLight = NULL) const;

We can also sample the radiance along an arbitrary ray for shooting energy from
the light source. This is necessary to support light transport algorithms that con-
sider rays from the light source, such as photon mapping (Section 16.6) and bidi-
rectional path tracing (Section 16.4).

Sec. 15.4] Sampling Light Sources 543

478 Light
34 Normal
33 Point
36 Ray
8 Scene

181 Spectrum
27 Vector

479 VisibilityTester

�
Light Interface ��� �
virtual Spectrum Sample_L(const Scene *scene, Float u1, Float u2,

Float u3, Float u4, Ray *ray, Float *pdf,
bool *deltaLight = NULL) const = 0;

The default implementations of the normal-augmented weighting and sampling
functions simply ignore their extra argument and use the simple point-based ver-
sions instead.�
Light Interface ��� �
virtual Float Pdf(const Point &P, const Normal &,

const Vector &w) const {
return Pdf(P, w);

}
�
Light Method Definitions ��� �
Spectrum Light::Sample_L(const Point &P, const Normal &, Float u1, Float u2,

Vector *wo, Float *pdf, VisibilityTester *visibility,
bool *deltaLight) const {

return Sample_L(P, u1, u2, wo, pdf, visibility, deltaLight);
}

15.4.2 Lights with Singularities

In this section, we present the sampling routines for light sources that have no phys-
ical counterpart. One could argue that such lights do not belong in a physically-
based rendering system, but they are such useful abstractions both for computa-
tional and noise-reduction reasons that we choose to include them in lrt.

Some care needs to be taken in implementing these functions, though. Just as
with sampling perfect specular reflection, these light sources have distributions that
involve delta functions. For example, point lights in lrt are defined in terms of
radiant intensity, not radiance. However, we can safely ignore this effect, since the
delta function will appear in the numerator and denominator of any Monte Carlo
estimator, and will therefore cancel itself out. Just bear in mind that the values
returned here are actually intensities and not radiance, but the math all works out
in the end.

again, some re-wording of the above might be in order.

Point Lights

Sampling a point light is straightforward. We simply construct a vector from
the light’s position to the supplied sample point, and weight it according to the
r2 falloff of intensity. So notice that the same intensity value is returned for each
invocation of this function, but the intensity will be divided by r2 because of the
Monte Carlo weighting.

Actually, we end up returning radiance intensity rather than radiance here
and for other point lights. Need to explain that.

DistanceSquared() 34
Point 33

PointLight 480
PointLight::Intensity 481
PointLight::lightPos 481

Spectrum 181
SpotLight 482

SpotLight::Falloff() 483
SpotLight::Intensity 482

Vector 27
Vector::Hat() 30

VisibilityTester 479
VisibilityTester::SetSegment() 479

544 Monte Carlo Integration II: Variance Reduction [Ch. 15

�
PointLight Method Definitions ��� �
Spectrum PointLight::Sample_L(const Point &P, Float u1, Float u2,

Vector *wo, Float *pdf, VisibilityTester *visibility,
bool *deltaLight) const {

*wo = (lightPos - P).Hat();
*pdf = 1.f;
if (deltaLight) *deltaLight = true;
visibility->SetSegment(P, lightPos);
return Intensity / DistanceSquared(lightPos, P);

}

If the PointLight::Weight function is called directly, we simply return zero.
Because the point light always generates rays that originate in the same location,
the odds of any other sampling strategy generating the same ray are zero. This way,
if a point light is used to approximate a very small light source, the direct lighting
from the source will always be 100% of the final contribution, instead of being
mixed in with a reflected ray that cannot hit an infinitessimally small light source.�
PointLight Method Definitions ��� �
Float PointLight::Pdf(const Point &, const Vector &) const {

return 0.;
}

Spotlights

Spotlight is similar; just need to comupte outgoing intensity using the spot-
light’s falloff function rather than returning the same value every time. Note we’re
still working with radiant intensity (instead of true radiance) by ignoring the delta
functions that would eventually cancel out anyway. Plus, for sampling a direction
for shooting, we can be clever and only sample directions in the spotlight cone.�
SpotLight Method Definitions ��� �
Spectrum SpotLight::Sample_L(const Point &P, Float u1, Float u2,

Vector *wo, Float *pdf, VisibilityTester *visibility,
bool *deltaLight) const {

*wo = (lightPos - P).Hat();
*pdf = 1.f;
if (deltaLight) *deltaLight = true;
visibility->SetSegment(P, lightPos);
return Intensity * Falloff(-*wo) /

DistanceSquared(lightPos, P);
}

For generating an outgoing ray from a spotlight, we would like to sample a
direction θ uniformly over the cone of directions around the center direction ωc up
to that maximum angle.

1 � c � θmax

0
1sinθdθ

� c � � cos θmax � 1 �
So p � θ � � c � 1

� � 1 � cos θmax � and the weighting function w � θ � � 1 � cosθmax.

Sec. 15.4] Sampling Light Sources 545

677 Lerp()
478 Light::LightToWorld
678 M PI
36 Ray
8 Scene

181 Spectrum
482 SpotLight
482 SpotLight::Intensity
27 Vector

To sample a particular offset angle,

ξ � 1� 1 � cosθmax � �
θ

�

0
sinθdθ

ξ � 1 � cosθmax � � 1 � cosθ �
cosθ � � 1 � ξ � 1 � cosθmax �

θ � � arccos � 1 � ξ � 1 � cosθmax � �
Actually cosθ � is what we want anyway for spherical angles centered around ωc.�

MC Function Definitions ��� �
Vector UniformSampleCone(Float u1, Float u2, Float costhetamax) {�

Uniformly sample θ and φ in cone �
return Vector(cosf(phi) * sintheta, sinf(phi) * sintheta, costheta);

}
�
Uniformly sample θ and φ in cone ���
Float costheta = Lerp(u1, costhetamax, 1.f);
Float sintheta = sqrtf(1.f - costheta*costheta);
Float phi = u2 * 2.f * M_PI;

Of course, the weighting for the chosen cone is simply the inverse of the cone’s
solid angle.�
MC Function Definitions ��� �
Float UniformConePdf(Float cosThetaMax) {

return 1.f / (2.f * M_PI * (1.f - cosThetaMax));
}

Now, we’re ready to sample a ray coming out of the spotlight. We just choose
a random ray inside the spotlight’s cone, using the functions we just defined. Note
that a more sophisticated scheme could be employed if we knew in advance what
the falloff function was, since we would like to send rays only where the intensity
of the spotlight is high. Since we don’t know the falloff function in advance, this
is impractical.�
SpotLight Method Definitions ��� �
Spectrum SpotLight::Sample_L(const Scene *scene, Float u1, Float u2,

Float u3, Float u4, Ray *ray, Float *pdf,
bool *deltaLight) const {

ray->o = lightPos;
Vector v = UniformSampleCone(u1, u2, cosTotalWidth);
ray->d = LightToWorld(v);
*pdf = UniformConePdf(cosTotalWidth);
if (deltaLight) *deltaLight = true;
return Intensity * Falloff(ray->d);

}

Projection lights and Goniometric lights

Projectionlights and Goniometriclights are essentially the same as Spotlights;
we simply use the ProjectionLight::Projection or the GoniometricLight::Scale

DistantLight 489
M PI 678

Point 33
Ray 36

Scene 8
Spectrum 181
Vector 27

VisibilityTester 479
VisibilityTester::SetRay() 480

546 Monte Carlo Integration II: Variance Reduction [Ch. 15

function instead of the Spotlight::Falloff function to evaluate intensity. The
sampling functions are almost identical to spot lights and are therefore omitted.

Directional light

Sampling a directional light from a given point is trivial; we just return the
directional light’s vector and radiance.�
DistantLight Method Definitions ��� �
Spectrum DistantLight::Sample_L(const Point &P, Float u1, Float u2,

Vector *wo, Float *pdf, VisibilityTester *visibility,
bool *deltaLight) const {

*wo = lightDir;
*pdf = 1.f;
if (deltaLight) *deltaLight = true;
visibility->SetRay(P, *wo);
return L;

}

Sampling a ray from the light’s distribution is more interesting. Our task here
is to choose a ray whose direction is the same as the light’s direction, but which
intersects the scene at a random location. To do this, we construct a disk which
has the same radius as the scene’s bounding sphere, and whose normal is oriented
with the light’s direction. We then choose a random point on this disk, using the
ConcentricSampleDisk function.

Once this point has been chosen, we simply displace the point along the light’s
direction by the scene’s bounding sphere radius, and use the new point as the ori-
gin of our light ray. This construction ensures that the ray origin lies outside the
bounding sphere of the scene, and also that it will intersect the bounding sphere
when shot.�
DistantLight Method Definitions ��� �
Spectrum DistantLight::Sample_L(const Scene *scene,

Float u1, Float u2, Float u3, Float u4,
Ray *ray, Float *pdf, bool *deltaLight) const {�

Choose point on disk oriented toward infinite light direction ��
Set ray origin and direction for infinite light ray �
if (deltaLight) *deltaLight = true;
*pdf = 1.f / (M_PI * worldRadius * worldRadius);
return L;

}

Choosing the point on the oriented disk is a simple application of vector algebra.�
Choose point on disk oriented toward infinite light direction ���
Point worldCenter;
Float worldRadius;
scene->WorldBound().BoundingSphere(&worldCenter, &worldRadius);
Vector v1, v2;
CoordinateSystem(lightDir, &v1, &v2);
Float d1, d2;
ConcentricSampleDisk(u1, u2, &d1, &d2);
Point Pdisk = worldCenter + worldRadius * (d1 * v1 + d2 * v2);

Sec. 15.4] Sampling Light Sources 547

41 BBox::BoundingSphere()
515 ConcentricSampleDisk()
32 CoordinateSystem()

489 DistantLight
493 InfiniteAreaLight
495 InfiniteAreaLight::Le()
34 Normal
33 Point

679 RandomFloat()
37 RayDifferential
14 Scene::WorldBound()

181 Spectrum
27 Vector

479 VisibilityTester
480 VisibilityTester::SetRay()

And finally, we just offset the point along the light direction and initialize the
ray.�
Set ray origin and direction for infinite light ray ���
ray->o = Pdisk + worldRadius * lightDir;
ray->d = -lightDir;

Like all other lights involving singularities, we return a weight of zero for all
direct queries, since we want multiple importance sampling to always choose our
direct light sampling over a sampling of surface scattering.�
DistantLight Method Definitions ��� �
Float DistantLight::Pdf(const Point &, const Vector &) const {

return 0.;
}

15.4.3 Infinite Area Lights

InfiniteAreaLight is the first example of light with a non-trivial sampling and
weighting method. Recall that this light is a sphere that surrounds the entire scene,
illuminating geometry from all directions. Sampling this light is fairly easy; we
just choose a point on the sphere that is sampled with a cosine distribution.�
InfiniteAreaLight Method Definitions ��� �
Spectrum InfiniteAreaLight::Sample_L(const Point &P,

const Normal &N, Float u1, Float u2,
Vector *wo, Float *pdf, VisibilityTester *visibility,
bool *deltaLight) const {�

Sample cosine-weighted direction on unit sphere ��
Compute pdf for cosine-weighted infinite light direction ��
Transform direction to world space �
if (deltaLight) *deltaLight = false;
// XXX yuck
visibility->SetRay(P, *wo);
return Le(RayDifferential(P, *wo));

}

Choosing a cosine-weighted point on the unit sphere is almost exactly the same
as Malley’s method from section 14.7.3, except that we randomy select either the
upper or lower hemisphere on which to genereate a point. We leave it to the reader
to prove that this generates the right distribution (see exercise ??).�
Sample cosine-weighted direction on unit sphere ���
Float x, y, z;
ConcentricSampleDisk(u1, u2, &x, &y);
z = sqrtf(max(0.f, 1.f - x*x - y*y));
if (RandomFloat() < .5) z *= -1;
*wo = Vector(x, y, z);

The weight of this point is computed similarly to CosineHemisphereWeight(),
except we need to take into account the additional solid angle subtended by the
entire sphere.

CoordinateSystem() 32
InfiniteAreaLight 493

InfiniteAreaLight::Le() 495
INV TWOPI 678

M PI 678
Normal 34
Point 33

RayDifferential 37
Spectrum 181

UniformSampleSphere() 513
UniformSpherePdf() 513

Vector 27
VisibilityTester 479

VisibilityTester::SetRay() 480

548 Monte Carlo Integration II: Variance Reduction [Ch. 15

�
Compute pdf for cosine-weighted infinite light direction ���
*pdf = fabsf(wo->z) * INV_TWOPI;

As with sampling BSDFs, we need to transform the chosen point to world co-
ordinates. We do this with an implicit coordinate system constructed around the
supplied normal.�
Transform direction to world space ���
Vector v1, v2;
CoordinateSystem(Vector(N).Hat(), &v1, &v2);
*wo = Vector(v1.x * wo->x + v2.x * wo->y + N.x * wo->z,

v1.y * wo->x + v2.y * wo->y + N.y * wo->z,
v1.z * wo->x + v2.z * wo->y + N.z * wo->z);

Finally, we provide a non-trivial Weight function for InfiniteAreaLight.
This function returns the same value as InfiniteAreaLight::Sample_L(), which
is just the cosine weight converted to a solid angle measure. Because this function
doesn’t always return zero, InfiniteAreaLights can be used properly with mul-
tiple importance sampling.�
InfiniteAreaLight Method Definitions ��� �
Float InfiniteAreaLight::Pdf(const Point &, const Normal &N,

const Vector &w) const {
return AbsDot(N, w) * INV_TWOPI;

}

If no shading normal is supplied, we simply sample the sphere uniformly.�
InfiniteAreaLight Method Definitions ��� �
Spectrum InfiniteAreaLight::Sample_L(const Point &P,

Float u1, Float u2, Vector *wo, Float *pdf,
VisibilityTester *visibility, bool *deltaLight) const {

*wo = UniformSampleSphere(u1, u2);
*pdf = UniformSpherePdf();
if (deltaLight) *deltaLight = false;
visibility->SetRay(P, *wo);
return Le(RayDifferential(P, *wo));

}

In the case of uniform sampling, the PDF is simply a constant equal to the
surface area of the sphere being sampled, or 1

4π .
�
InfiniteAreaLight Method Definitions ��� �
Float InfiniteAreaLight::Pdf(const Point &, const Vector &) const {

return 1.f / (4.f * M_PI);
}

Generating a random ray from an infinite sphere is tricky, because we need
to ensure that the ray directions are themselves uniformly distributed. Li et al.
proved that uniformly distributed lines through the volume enclosed by a sphere
can be generated by connecting two uniformly chosen points on the surface of the
sphere (Li, Wang, Martin, and Bowyer 2003).

Ugh, is that the right weight?

Sec. 15.4] Sampling Light Sources 549

41 BBox::BoundingSphere()
493 InfiniteAreaLight
678 M PI
34 Normal
33 Point
36 Ray
37 RayDifferential
8 Scene

14 Scene::WorldBound()
181 Spectrum
513 UniformSampleSphere()
27 Vector

479 VisibilityTester

�
InfiniteAreaLight Method Definitions ��� �
Spectrum InfiniteAreaLight::Sample_L(const Scene *scene,

Float u1, Float u2, Float u3, Float u4,
Ray *ray, Float *pdf, bool *deltaLight) const {�

Choose two points p1 and p2 on scene bounding sphere ��
Construct ray between p1 and p2 �
if (deltaLight) *deltaLight = false;�
Compute InfiniteAreaLight ray weight �
ray->d *= -1.;
Spectrum L = Le(RayDifferential(*ray));
ray->d *= -1.;
return L;

}

Of course, the “sphere” here is only an implicit one surrounding the scene. In
order to use our sphere sampling routines, we must explicitly find the radius and
center of the scene’s bounding sphere, and sample it.

grow the bounding sphere by a little to avoid precision problems at ex-
trema? Suppose the entire scene is a single sphere illuminated by an infinite
area light.�
Choose two points p1 and p2 on scene bounding sphere ���
Point worldCenter;
Float worldRadius;
scene->WorldBound().BoundingSphere(&worldCenter, &worldRadius);
Point p1 = worldCenter + worldRadius * UniformSampleSphere(u1, u2);
Point p2 = worldCenter + worldRadius * UniformSampleSphere(u3, u4);

Once we have chosen the two points p1 and p2 on the scene’s bounding sphere,
it is a simple matter to construct a ray between these two points, using p1 as the
origin and p2 � p1 as the direction vector.�
Construct ray between p1 and p2 ���
ray->o = p1;
ray->d = (p2-p1).Hat();

shorty – explain this please. The densities in the Li paper are different and
I’m not sure if they’re relevant or not. This is pretty hairy.�
Compute InfiniteAreaLight ray weight ���
//*weight = 1.f / ((4 * M_PI * worldRadius * worldRadius) *
// (4 * M_PI * worldRadius * worldRadius));
*pdf = 1.f / (4.f * worldRadius * worldRadius);

why is this zero? needs explanation. no good reason; it just needs to be
thought through and implemented.�
InfiniteAreaLight Method Definitions ��� �
Spectrum InfiniteAreaLight::dE(const Point &P, const Normal &N,

Vector *wo, VisibilityTester *visibility) const {
*wo = Vector(0,0,0);
return 0.;

}

Normal 34
Point 33
Shape 63

Sphere 68

550 Monte Carlo Integration II: Variance Reduction [Ch. 15

15.4.4 Area Lights

Finally, we present the methods for sampling arbitrary area lights. Recall that in
lrt, area lights are defined by attaching an emission profile to geometry. There-
fore, in order to properly sample such a light source, we must be able to generate
samples over the surface of geometry. In order to do this, we will add methods to
the Shape class to generate random points on their surfaces1 .

As with lights, we provide more than one way to generate these points. The first
interface simply returns a uniformly distributed random point on the surface of the
shape, along with the surface normal at the chosen point.�
Shape Interface ��� �
virtual Point Sample(Float u1, Float u2, Normal *Ns) const {

Severe("Unimplemented Shape::Sample method called");
return Point();

}

The next interface also allows the sampling routine to consider an additional
point not on the surface. This is particularly useful for lighting, since we can pass
in the point to be lit and ensure that we only sample the portion of the shape that is
visible from that point. The Sphere class implements this interface; see below. The
default implementation ignores the additional point and calls the default method.�
Shape Interface ��� �
virtual Point Sample(const Point &P,

Float u1, Float u2, Normal *Ns) const {
return Sample(u1, u2, Ns);

}

no one overrides this third interface, do they?�
Shape Interface ��� �
virtual Point Sample(const Point &P, const Normal &N,

Float u1, Float u2, Normal *Ns) const {
return Sample(P, u1, u2, Ns);

}

For most shapes, our sampling methods will sample uniformly over the surface
of the shape. We will override this with Sphere below, but the same Shape::Pdf()
function can be used for all Shapes to compute the reciprocal of the probability
density.

again, no one implements the more complex normal-augmented interface.�
Shape Interface ��� �
virtual Float Pdf(const Point &P, const Normal &N,

const Vector &dir) const {
return Pdf(P, dir);

}

1Notice that the Shape::Sample method is not a C++ “pure virtual” function. This is deliberate;
not all shapes will implement a Sample method. Some shapes are very difficult to sample (e.g.
fractals), and it would be unreasonable to require those shapes to implement a Sample method just
to be used as geometry. Of course, it will be a runtime error to use a shape without a Sample method
as an area light.

Sec. 15.4] Sampling Light Sources 551

58 DifferentialGeometry
34 DistanceSquared()

678 INFINITY
562 Integrator
34 Normal
33 Point
36 Ray
63 Shape
66 Shape::Intersect()
27 Vector

The Shape::Weight function takes a Point and a Vector, and tells us the
probability that the place where that ray intersects the geometry would have been
chosen by the Shape’s own Shape::Sample routine.�
Shape Interface ��� �
virtual Float Pdf(const Point &P, const Vector &dir) const {�

Intersect sample ray with area light geometry ��
Convert light sample weight to solid angle measure �
return pdf;

}

Of course, if the ray doesn’t intersect the shape at all, the probability is zero,
so we check for that first. Otherwise, we get the differential geometry for the
corresponding sample point on the light, which will come in handy below.�
Intersect sample ray with area light geometry ���
DifferentialGeometry dgLight;
Ray ray(P, dir);
Float thit;
if (!Intersect(ray, &thit, &dgLight)) return 0.;
ray.maxt = thit;

We can now compute the sample weight for this sample. We start by computing
the weight with respect to the area measure over the shape. Since Shape::Sample
chooses samples based on uniform area sampling over the surface, the sample
weight is just equal to the shape’s area.

However, in light transport, the integrals we are solving are with respect to a
solid angle measure. Although it is more mathematically natural to express the
shape density in terms of an area measure, it greatly simplifies the caller’s job if all
sample weights are with respect to solid angle. This is a subtle point, but crucial to
understanding this code and the Integrator classes in the next chapter.

To convert a density from area to solid angle, we simply multiply by the Jaco-
bian:

∂ωi

∂A � r2

cosθo

where θo is the angle between the ray leaving the light source and the light’s surface
normal, and r2 is the distance between the point on the light and the point being
shaded.�
Convert light sample weight to solid angle measure ���
Vector dirHat = dir.Hat();
Float pdf = DistanceSquared(P, ray(ray.maxt)) /

(AbsDot(dgLight.nn, -dirHat) * Area());
if (AbsDot(dgLight.nn, -dirHat) == 0.f) pdf = INFINITY;

We also provide a Weight function that only considers the point chosen, not the
point to be shaded. Obviously, in this case the returned weight must be with respect
to an area measure, since there are no implied distances or angles. This method is
useful for routines that want to generate rays originating on the surface of a light,
such as the photon mapping integrator (see section 16.6) or the bidirectional path
tracer (see section 16.4).

ConcentricSampleDisk() 515
Cylinder 78

Cylinder::phiMax 79
Cylinder::radius 79

Cylinder::zmax 79
Cylinder::zmin 79

Disk 82
Normal 34
Point 33

Shape::ObjectToWorld 64
Shape::Pdf() 551

Shape::reverseOrientation 64

552 Monte Carlo Integration II: Variance Reduction [Ch. 15

�
Shape Interface ��� �
virtual Float Pdf(const Point &Pshape) const {

return 1.f / Area();
}

Sampling Disks

Sampling a Disk is just like picking a point on the unit disk, except we account
for the value of phiMax and we use the value of Disk::height for the z value.

we don’t actually handle phimax here. Is it easy to modify Shirley’s map-
ping, or should we do something else?�
Disk Public Methods ��� �
Point Disk::Sample(Float u1, Float u2, Normal *Ns) const {

Point p;
ConcentricSampleDisk(u1, u2, &p.x, &p.y);
p.x *= radius;
p.y *= radius;
p.z = height;
*Ns = ObjectToWorld(Normal(0,0,1)).Hat();
if (reverseOrientation) *Ns *= -1.f;
return ObjectToWorld(p);

}

Sampling Cylinders

Uniform sampling on cylinders is straightforward; we just pick a height and a
φ value uniformly. Intuitively, this works because a cylinder is just a rolled-up
rectangle.�
Cylinder Public Methods ��� �
Point Cylinder::Sample(Float u1, Float u2,

Normal *Ns) const {
Float h = Lerp(u1, zmin, zmax);
Float t = u2 * phiMax;
Point p = Point(radius * cosf(t), radius * sinf(t), h);
*Ns = ObjectToWorld(Normal(p.x, p.y, 0.)).Hat();
if (reverseOrientation) *Ns *= -1.f;
return ObjectToWorld(p);

}

Sampling Triangles

Sec. 15.4] Sampling Light Sources 553

34 Normal
33 Point
64 Shape::ObjectToWorld
64 Shape::reverseOrientation
68 Sphere
69 Sphere::radius
90 Triangle

513 UniformSampleSphere()
519 UniformSampleTriangle()

r

ωc

θ

Figure 15.9: To sample points on a spherical light source, we can uniformly sample
within the cone of directions around a central vector ωc with a angular spread of
up to θ.

�
TriangleMesh Method Definitions ��� �
Point Triangle::Sample(Float u1, Float u2,

Normal *Ns) const {
Float b1, b2;
UniformSampleTriangle(u1, u2, &b1, &b2);�
Get triangle vertices in p1, p2, and p3 �
Point p = b1 * p1 + b2 * p2 + (1.f - b1 - b2) * p3;
Normal n = Normal(Cross(p2-p1, p3-p1));
*Ns = ObjectToWorld(n).Hat();
if (reverseOrientation) *Ns *= -1.f;
return ObjectToWorld(p);

}

Sampling Spheres

handle partial spheres
If we’re not given an external point that’s being lit, sampling a point on a sphere

is extremely simple. We just use the UniformSampleSphere method to generate a
point on the unit sphere, and scale the point by the sphere’s radius.�
Sphere Public Methods ��� �
Point Sphere::Sample(Float u1, Float u2, Normal *Ns) const {

Point P = Point(0,0,0) + radius * UniformSampleSphere(u1, u2);
*Ns = ObjectToWorld(Normal(P.x, P.y, P.z)).Hat();
if (reverseOrientation) *Ns *= -1.f;
return ObjectToWorld(P);

}

If we are given a point to be lit, however, we can do better. Uniform sampling
give a correct estimate, but we can greatly reduce variance by being careful to not
sample points on the sphere that we know aren’t visible to the point being shaded

CoordinateSystem() 32
DistanceSquared() 34

Normal 34
Point 33

Shape::ObjectToWorld 64
Shape::reverseOrientation 64

Sphere 68
Sphere::radius 69

Vector 27

554 Monte Carlo Integration II: Variance Reduction [Ch. 15

(ignoring the back side of the sphere as seen from the shading point). Figure 15.9
shows the basic two-dimensional setting for an alternate approach.

What we will do instead is uniformly sample directions over the solid angle
subtended by the sphere from the point being shaded. We can generate directions
inside this cone of directions by sampling an offset θ from the center vector ωc,
and then sampling a rotation angle φ around the vector.

As seen from point being shaded, the sphere subtends an angle of

θmax � arcsin

�
r�P � c � � � arccos 1 �

�
r�P � c � � 2

(15.4.4)

where r is the radius of the sphere and c is its center–see Figure 15.9.�
Sphere Public Methods ��� �
Point Sphere::Sample(const Point &P,

Float u1, Float u2, Normal *Ns) const {�
Compute coordinate system for sphere sampling ��
Sample uniformly on sphere if P is inside it ��
Sample sphere uniformly inside subtended cone �
if (reverseOrientation) *Ns *= -1.f;

}

We first compute a coordinate system to use for sampling the sphere. The main
axis is the vector between the sphere’s center and the point being lit.�
Compute coordinate system for sphere sampling ���
Point Pcenter = ObjectToWorld(Point(0,0,0));
Vector wc = (Pcenter - P).Hat();
Vector wcX, wcY;
CoordinateSystem(wc, &wcX, &wcY);

We must be careful about shading points that lie inside the sphere. If this hap-
pens, we simply sample the entire sphere uniformly, since the whole sphere is
clearly visible from inside.�
Sample uniformly on sphere if P is inside it ���
if (DistanceSquared(P, Pcenter) < radius*radius)

return Sample(u1, u2, Ns);

If the point to be lit is outside, we have the situation from Figure 15.9, and can
proceed accordingly. We compute the cosine of the subtended angle θmax using
equation 15.4.4. We then generate a random ray inside the subtended cone us-
ing the UniformSampleCone function, and intersect it with the sphere to get our
sample point.

Note that we must be careful about precision errors here. If the generated ray
just grazes the edge of the sphere, the Sphere::Intersect routine might fail,
which would not give us a point. In this case, we arbitrarily choose to return the
point on the line between the shading point and the sphere center. Note that this
very slightly biases the sampling routine, although the error introduced by this bias
is extremely small.

Sec. 15.4] Sampling Light Sources 555

58 DifferentialGeometry
34 DistanceSquared()
34 Normal
33 Point
36 Ray
63 Shape
64 Shape::ObjectToWorld

551 Shape::Pdf()
68 Sphere
70 Sphere::Intersect()
69 Sphere::radius

545 UniformSampleCone()
27 Vector

�
Sample sphere uniformly inside subtended cone ���
Float cosThetaMax = sqrtf(max(0.f, 1.f - radius*radius /

DistanceSquared(P, Pcenter)));
DifferentialGeometry dgSphere;
Float thit;
Point Ps;
Ray r(P, UniformSampleCone(u1, u2, cosThetaMax, wcX, wcY, wc));
if (!Intersect(r, &thit, &dgSphere)) Ps = Pcenter - radius * wc; // !@$!$
else Ps = r(thit);
*Ns = Normal(Ps - Pcenter).Hat();
return Ps;

To compute the weight for this sampling routine, we must first differentiate be-
tween the two sampling strategies for points inside and outside the sphere.�
Sphere Public Methods ��� �
Float Sphere::Pdf(const Point &P, const Vector &dir) const {

Point Pcenter = ObjectToWorld(Point(0,0,0));�
Return uniform weight if point inside sphere ��
Compute general sphere weight �

}

If the shading point was inside the sphere, we used a uniform sampling strategy.
In this case, we just hand off the Weight call to the parent class, which will take
care of the solid angle conversion for us.�
Return uniform weight if point inside sphere ���
if (DistanceSquared(P, Pcenter) < radius*radius)

return Shape::Pdf(P, dir);

In the general case, we simply re-compute the angle subtended by the sphere
and call UniformConeWeight. Note that no conversion is required here, because
UniformConeWeight already returns weights with respect to a solid angle mea-
sure.�
Compute general sphere weight ���
Float cosThetaMax = sqrtf(max(0.f, 1.f - radius*radius /

DistanceSquared(P, Pcenter)));
return UniformConePdf(cosThetaMax);

Does this deserve its own subsection? Or ifdraft it out entirely?
Would be nice to have a better-distributed random sample to pick the light...�

ShapeSet Public Methods ��� �
Point Sample(Float u1, Float u2, Normal *Ns) const {

Float ls = RandomFloat();
u_int sn;
for (sn = 0; sn < shapes.size()-1; ++sn)

if (ls < areaCDF[sn]) break;
return shapes[sn]->Sample(u1, u2, Ns);

}

AreaLight 491
Normal 34
Point 33
Shape 63

Shape::Pdf() 551
Spectrum 181
Vector 27

VisibilityTester 479
VisibilityTester::SetSegment() 479

556 Monte Carlo Integration II: Variance Reduction [Ch. 15

15.4.5 Sampling Area Lights

The methods shown above were all for sampling shapes. In order to use these meth-
ods for area lights, we must implement the proper Light::Sample_L() methods.
Fortunately, this is simple; we just delegate the calls to the underlying Shape and
compute the required vectors and spectrum.�
AreaLight Method Definitions ��� �
Spectrum AreaLight::Sample_L(const Point &P,

const Normal &N, Float u1, Float u2,
Vector *wo, Float *pdf, VisibilityTester *visibility,
bool *deltaLight) const {

Normal Ns;
Point Ps = shape->Sample(P, N, u1, u2, &Ns);
*wo = (Ps - P).Hat();
*pdf = shape->Pdf(P, N, *wo);
if (deltaLight) *deltaLight = false;
visibility->SetSegment(P, Ps);
return L(P, Ns, -*wo);

}

Float AreaLight::Pdf(const Point &P, const Normal &N,
const Vector &w) const {

return shape->Pdf(P, N, w);
}

The other Light::Sample_L() and Light::Pdf() interfaces are similar and
omitted.�
AreaLight Method Definitions ��� �
Spectrum AreaLight::dE(const Point &P, const Normal &N, Vector *wo,

VisibilityTester *visibility) const {
Normal Ns;
Point Ps = shape->Sample(P, N, RandomFloat(), RandomFloat(), &Ns);
*wo = (Ps - P).Hat();
visibility->SetSegment(P, Ps);
return L(P, Ns, -*wo) * AbsDot(N, *wo) /

shape->Pdf(P, N, *wo);
}

� ����� � � � � �� � � � � ��� � � � ��� ��� � � � �
Add a VolumeRegion::sample phase()method
Needed this here for the label. Either don’t refer to it, or write the section.
Maybe note that this is a low-dimensional integral (1D) of a smooth function, so

MC really isn’t the best way to go. Maybe do some quadrature rule, or use a fixed
step size or ... ?

Sec. 15.5] Sampling Volume Scattering 557

468 DensityRegion
36 Ray

181 Spectrum
466 VolumeRegion::IntersectP()
466 VolumeRegion::sigma t()

�
Volume Scattering Definitions ��� �
Spectrum DensityRegion::Tau(const Ray &r, Float stepSize, Float offset) const {

Float t0, t1;
Float length = r.d.Length();
Ray rn(r.o, r.d / length, r.mint * length, r.maxt * length);
if (!IntersectP(rn, &t0, &t1)) return 0.;
Spectrum tau(0.);
t0 += offset * stepSize;
while (t0 < t1) {

tau += sigma_t(rn(t0), -rn.d);
t0 += stepSize;

}
return tau * stepSize;

}

We will wrap up by defining sampling methods for atmospheric scattering, as
described in Chapter 12.

Beer’s law says that e � αx describes how much unattenuated light remains in a
beam after travelling some distance x through a medium. Say that we have traced a
ray through a scene and it has hit an object at a distance d. We then might want to
randomly sample a point along the ray according to how much light remains; we’d
like to focus our sampling on the parts where the light energy is strongest. First,
we need to transform the exponential function into a valid PDF:

1 � c � d

0
e � αxdx

� �

c
α � e � αd

� 1 �
� c

α � 1 � e � αd �
So

c � α
� � 1 � e � αd � �

Following similar steps, we can now determine how to sample a distance d �
given a uniform random number ξ:

ξ � α
1 � e � αd

� d
�

0
e � αxdx

� 1 � e � αd
�

1 � e � αd

ξ � 1 � e � αd � � 1 � e � αd
�

e � αd
� � 1 � ξ � 1 � e � αd �

� αd � � log � 1 � ξ � 1 � e � αd � �
d � � �

log � 1 � ξ � 1 � e � αd � �
α

To sample Henyey-Greenstein, it’s just:

cos θ � �

1� 2g �
�

1 � g2
� � 1 � g2

1 � g � 2gξ � 2 �

558 Monte Carlo Integration II: Variance Reduction [Ch. 15

If g �� 0, otherwise cosθ � 1 � 2ξ
XXX put it all together, show how you sample that, then sample φ, make a little

coordinate system and you’re off....�
Foo ���
double evalHG(double g, double costheta) {

return (1 - g*g) / powf(1 + g*g - 2*g*costheta, 1.5);
}

�
Foo ��� �
double sampleHG(double g, double u, double *pdf) {

if (fabsf(g) < 1e-5) {
*pdf = 1.;
return 1.f - u * 2.;
}
double cost = -1.f / (2.0 * g) * (1 + g*g - sqr((1 - g*g)/(1-g+2*g*u)));
*pdf = evalHG(g, -cost);
return cost;

}

� ����� � � � � � � � � � �� � � ���

XXX just introduce RR more directly: say “here is the algorithm, here is how
the weighting works, and the result is unbiased... XXX

v � � �
v

�
p ξ � p

0 otherwise

Expected value is then � 1 � p � � 0 � p � v �
p � v�

For the first problem, we will apply a Monte Carlo technique known as Russian
roulette. Recall that we defined a discrete probability density function over the
lights in the scene for the direct lighting integrator in Section 16.1. Here, we will in
a similar manner define a probability for sampling each of the terms of the infinite
sum. For example, we might define the probability of sampling the ith term as

pi � 1
4i � 1 �

Along the same lines as the direct lighting example, when we randomly decided to
go ahead and sample the ith term according to the probability pi, we would need
to weight it’s estimate by 1

�
pi to make the estimate unbiased.

To turn this approach into an algorithm that still doesn’t require us to loop over
an infinite number of terms, we will incrementally decide whether to sample the
ith term only if we also decided to sample the i � 1st term. Once we decide not
to sample a particular term, we don’t sample any of the subsequent ones. This ap-
proach works so long as the probability of sampling each term is a non-increasing
sequence. For example, for the probabilities pi above, we equivalently have

p1 � 1

pi � pi
c pi � 1

Further Reading 559

where pi
c, the probability that sampling continues after the ith term, is 1

�
4.

There is almost total freedom in how the continuation probabilities pi
c are se-

lected: we’re free to use any information we’d like to set them so long as the
weight is updated appropriately when we decide to continue. However, poorly
chosen Russian roulette weights can substantially increase variance: consider if
we immediately applied Russian roulette to all of the camera rays with a contin-
uation probability of � 01: we’d only trace 1% of the eye rays, weighting each of
them by 1

� � 01 � 100. The resulting image would numerically be just as correct
as if we hadn’t applied Russian roulette, though visually the result would be terri-
ble: mostly black pixels with a few very bright ones. One of the exercises at the
end of this chapter discusses this problem further and describes a technique called
efficiency optimized Russian roulette that tries to set Russian roulette weights in a
way that minimizes variance.

Splitting too!!!
����� ���� � � � ��� � � �

Spanier and Gelbard (Spanier and Gelbard 1969)
Kalos and Whitlock (Kalos and Whitlock 1986)
Fishman (Fishman 1996). Liu book (Liu 2001).
Cook et al (Cook, Porter, and Carpenter 1984; Cook 1986).
Shirley thesis (Shirley 1990a)
Shirley et al on light source sampling (Shirley, Wang, and Zimmerman 1996).
Shirley square to disk mapping (Shirley and Chiu 1997)
Shirley’s article has a number of recipies for warping uniform random numbers

to the surfaces of various shapes (Shirley 1992).
Arvo and Kirk (Arvo and Kirk 1990)
Veach thesis (Veach 1997), includes multiple importance sampling stuff (Veach

and Guibas 1995).
Keller on QMC stuff (Keller 1996), cite other stuff here as well
Dutre GI compendum
Monte Carlo/Quasi Monte Carlo website www.mcqmc.org.

� ���

202 Camera
563 SurfaceIntegrator
630 VolumeIntegrator

� � � � � � � � � � � � �

This chapter brings together the ray tracing algorithms, radiometric concepts,
and Monte Carlo sampling algorithms of the previous chapters to implement a set
of integrators that compute radiance along rays in the scene. For example, these
radiance values are necessary to compute image formation in the camera Integra-
tors are so-named because the are responsible for evaluating the integral equation
called the rendering equation that describes the equilibrium distribution of radi-
ance in an environment. As the Camera generates rays, they are handed off to the
SurfaceIntegrator and the VolumeIntegrator that the user selected; together
they are responsible for doing appropriate shading and lighting computations to
compute the radiance scattered back along the ray, accounting for light reflected
from the first surface visible along the ray and light attenuated and scattered by
participating media along the ray, respectively.

Because the rendering equation can only be solved in closed-form for the sim-
plest of scenes, it’s generally necessary to apply a suitable numerical integration
technique to approximate its solution. This has been an active area of research in
rendering, and many solution methods have been proposed. In this chapter, we
will provide implementations of a number of different integrators based on Monte
Carlo integration that represent a broad selection of major approaches to the prob-
lem. Due to basic decisions made in lrt’s design, we do not have any methods
based on finite-element algorithms (“radiosity”), which is the other major approach
to solving the rendering equation. See the further reading section for more infor-
mation about this method.

The basic integrator interfaces are defined in core/transport.h and some util-
ity functions used by integrators are in core/transport.cpp. The implementa-
tions of the various integrators are in the integrators/ directory.

� � �

RayDifferential 37
Sampler 237

Scene 8
Spectrum 181

562 Light Transport [Ch. 16

�
transport.h* ���
#include "lrt.h"
#include "primitive.h"
#include "color.h"
#include "light.h"
#include "reflection.h"
#include "sampling.h"
#include "material.h"�
Integrator Declarations �

�
transport.cpp* ���
#include "transport.h"
#include "scene.h"�
Integrator Method Definitions ��
Integrator Utility Functions �
Both surface and volume integrators inherit from the Integrator abstract base

class which defines the common interface that both of them must implement.�
Integrator Declarations ���
class Integrator {
public:�

Integrator Interface �
};

The key method that all integrators must implement is Integrator::L(), which
returns the radiance along the ray. The parameters are the following:

1. scene: a pointer to the Scene being rendered. The integrator will query the
scene for information about the lights and geometry present, etc.

2. ray: the ray along which the radiance should be evaluated.

3. sample: a pointer to a Sample generated by the Sampler for this ray; some
integrators will use some of its entries for Monte Carlo sampling.

4. alpha: the opacity of the surface that was hit should be set in this output
variable; it should be zero if no surface was hit.

The method returns a Spectrum that holds the radiance along the ray.�
Integrator Interface ��� �
virtual Spectrum L(const Scene *, const RayDifferential &ray,

const Sample *sample, Float *alpha) const = 0;

Optionally, the integrator may implement the Preprocess() method. It is
called after the Scene has been fully initialized, and gives the integrator a chance
to do scene-dependent computation, such as allocating additional data structures
that are dependent on the number of lights in the scene, or pre-computing a rough
representation of the distribution of radiance in the scene. If there isn’t any work
like this to be done, then this method can be left unimplemented.�
Integrator Interface ��� �
virtual void Preprocess(const Scene *scene) {
}

Sec. 16.1] Direct Lighting 563

562 Integrator
237 Sampler

8 Scene

If the integrator would like the Sampler to generate sample patterns in the
Sample for it to use, it should override the RequestSamples() method and call
back to Sample::Add1D() and Sample::Add2D() methods, as described in Sec-
tion 7.3.1.�
Integrator Interface ��� �
virtual void RequestSamples(Sample *sample, const Scene *scene) {
}

The SurfaceIntegrator base class doesn’t add any new methods beyond those
required by the Integrator.�
Integrator Declarations ��� �
class SurfaceIntegrator : public Integrator {
};

� � �
� � � � ��� � � � � �� � � �
�
directlighting.cpp* ���
#include "lrt.h"
#include "transport.h"
#include "scene.h"�
DirectLighting Declarations ��
DirectLighting Method Definitions �
Before we introduce the light transport equation in its full generality, we will

implement an integrator that only accounts for direct lighting–light that has trav-
elled directly from a light source to the point being shaded–and ignores indirect
illumination from objects that are not themselves emissive. Starting out with this
integrator allows us to focus on some of the key details of direct lighting without
worrying about the full light transport equation. Furthermore, some of the routines
developed here will be used in subsequent integrators that solve the complete light
transport equation.�
DirectLighting Declarations ���
class DirectLighting : public SurfaceIntegrator {
public:�

DirectLighting Public Methods �
private:�

DirectLighting Private Data �
};

We support three different strategies for computing direct lighting; all compute
an unbiased estimate of reflection from direct lighting at the point being shaded,
though they show off different approaches to the problem. An enumerant records
which one has been selected.�
DirectLighting Private Data ���
enum LightStrategy { SAMPLE_ALL_UNIFORM, SAMPLE_ONE_UNIFORM,

SAMPLE_ONE_WEIGHTED } strategy;

DirectLighting 563
DirectLighting::SAMPLE ALL UNIFORM 563
DirectLighting::SAMPLE ONE UNIFORM 563

DirectLighting::SAMPLE ONE WEIGHTED 563
DirectLighting::strategy 563

Sample::Add1D() 240
Sample::Add2D() 240

Scene 8
Scene::lights 9

564 Light Transport [Ch. 16

�
DirectLighting Method Definitions ��� �
DirectLighting::DirectLighting(const string &st, int md) {

maxDepth = md;
rayDepth = 0;
if (st == "one") strategy = SAMPLE_ONE_UNIFORM;
else if (st == "all") strategy = SAMPLE_ALL_UNIFORM;
else if (st == "weighted") strategy = SAMPLE_ONE_WEIGHTED;
else {

Warning("Strategy \"%s\" for direct lighting unknown. "
"Using \"all\".", st.c_str());

strategy = SAMPLE_ALL_UNIFORM;
}�
DirectLighting constructor implementation �

}
�
DirectLighting Public Methods ��� �
void RequestSamples(Sample *sample, const Scene *scene) {

if (strategy == SAMPLE_ALL_UNIFORM) {
u_int nLights = scene->lights.size();
lightSampleOffset = sample->Add2D(nLights);
lightNumOffset = -1;
bsdfSampleOffset = sample->Add2D(nLights);
bsdfComponentOffset = sample->Add1D(nLights);

}
else {

lightSampleOffset = sample->Add2D(1);
lightNumOffset = sample->Add1D(1);
bsdfSampleOffset = sample->Add2D(1);
bsdfComponentOffset = sample->Add2D(1);

}
}

�
DirectLighting Private Data ��� �
mutable int rayDepth;
int maxDepth;
int lightSampleOffset, lightNumOffset;
int bsdfSampleOffset, bsdfComponentOffset;

Recall the scattering equation from Section 5.4. It says that reflected radiance
L � p � ωo � from a point p on a surface in direction ωo is the sum of emitted radiance
from the surface at the point plus the integral of incoming radiance over the sphere
times the BSDF for each direction times a cosine term. For the DirectLighting
integrator, we are only interested in incoming radiance directly from light sources,
which we denote by Ld � p � ω � .

L � p � ωo ��� Le � p � ωo � ���
S2

f � p � ωo � ωi � Ld � p � ωi � � cosθi � dωi (16.1.1)

The value of Le � p � ωo � is easily found by calling the Intersection::Le() method
at the intersection point. To estimate the integral over the sphere, we will apply
Monte Carlo integration.

Sec. 16.1] Direct Lighting 565

9 Scene::lights

The basic form of the DirectLighting::L() method is similar to WhittedIntegrator::L();
the Scene::Intersect() method is called to find the first visible surface along
the ray, the BSDF at that point is computed etc. We won’t include the full imple-
mentation of DirectLighting::L() here in order to focus on its key fragment,�
Compute direct lighting at hit point � , which estimates the value of the integral that

gives the reflected radiance.�
Compute direct lighting for DirectLighting integrator ���
if (scene->lights.size() > 0) {�

Apply direct lighting strategy �
}

The fragment
�
Apply direct lighting strategy � calls one of the functions that im-

plement the three direct lighting approaches–UniformSampleAllLights(), UniformSampleOneLight(),
or WeightedSampleOneLight()–depending on the value of the strategy mem-
ber variable.

Consider the term of the direct lighting equation that we’re concerned with here:

�
S2

f � p � ωo � ωi � Ld � p � ωi � � cosθi � dωi �
This can be broken into a sum over the lights in the scene

lights

∑
i � 1

�
S2

f � p � ωo � ωi � Ld � i � � p � ωi � � cosθi � dωi �

where Ld � i � denotes incident radiance from the ith light and

Ld � p � ωi � � ∑
i

Ld � i � � p � ωi � �
One valid approach is to estimate each term of this sum individually, adding the
results together. This is the most basic direct lighting strategy and is implemented
in UniformSampleALlLights(), which we have implemented as a global function
rather than a DirectLighting method so that other integrators can use it as well.
The EstimateDirect() function, which computes a Monte Carlo estimate of one
of these terms, will be defined after we have described the other two direct lighting
strategies.�
Integrator Utility Functions ���
Spectrum UniformSampleAllLights(const Scene *scene, const Point &p,

const Normal &n, const Vector &wo, BSDF *bsdf,
const Sample *sample, int lightSampleOffset,
int bsdfSampleOffset, int bsdfComponentOffset) {

Spectrum L(0.);
for (u_int i = 0; i < scene->lights.size(); ++i) {

Light *light = scene->lights[i];
L += EstimateDirect(scene, light, p, n, wo, bsdf,

sample, lightSampleOffset, bsdfSampleOffset,
bsdfComponentOffset, i);

}
return L;

}

BSDF 370
EstimateDirect() 570

Light 478
Normal 34
Point 33

RandomFloat() 679
Sample::oneD 241

Scene 8
Scene::lights 9

Spectrum 181
Vector 27

566 Light Transport [Ch. 16

In a scene with a large number of lights, we may not want to always compute
direct lighting from all of the lights at every point that is shaded. Monte Carlo
gives us a way to do this in a way that still computes the correct result in the limit.
Consider as an example computing the expected value of the sum of two functions
E � f � x � � g � x � � . It can be shown that if we randomly evaluate just one of f � x � or
g � x � but multiply the result by two, then the expected value of the result will still
be f � x � � g � x � .

XXX show this properly.
This generates to sums of more terms; here we can estimate direct lighting for

only one randomly-chosen light, multiplying the result by the number of lights
to compensate. In the first strategy, we effectively used a probability of one for
sampling each light, so no additional weighting was necessary there.�
Integrator Utility Functions ��� �
Spectrum UniformSampleOneLight(const Scene *scene, const Point &p,

const Normal &n, const Vector &wo, BSDF *bsdf,
const Sample *sample, int lightSampleOffset,
int lightNumOffset, int bsdfSampleOffset,
int bsdfComponentOffset) {�

Randomly chose a single light to sample, light �
return (Float)nLights *

EstimateDirect(scene, light, p, n, wo, bsdf, sample,
lightSampleOffset, bsdfSampleOffset,
bsdfComponentOffset, 0);

}
�
Randomly chose a single light to sample, light ���
int nLights = int(scene->lights.size());
int lightNum;
if (lightNumOffset != -1)

lightNum = Floor2Int(sample->oneD[lightNumOffset][0] * nLights);
else

lightNum = Floor2Int(RandomFloat() * nLights);
lightNum = min(lightNum, nLights-1);
Light *light = scene->lights[lightNum];

It’s possible to be even more creative in choosing the individual light sampling
probabilities. In fact, we’re free to set the probabilities any way we like, so long
as we weight the result appropriately and there is non-zero probability of sampling
any light that contributes to the reflection at the point. The better a job we do at
setting the probabilities so that the probability of sampling a light is proportional
to the light’s contribution to reflection at the point, the more efficient the Monte
Carlo estimator will be and the fewer rays will be needed to reach a particular level
of variance. (This is just the discrete instance of importance sampling.)

XXX Emphasize issue of handling large numbers of light sources, e.g. in a
densely occluded building, not just making the most out of simple situations
XXX

Here we’ll implement a strategy that tries to adapt the probabilities of sampling
each light over the course of rendering the image, increasing the relative probabil-
ity of sampling lights that have made a large contribution to reflection for previous

Sec. 16.1] Direct Lighting 567

samples. For example, for a light that is always shadowed, we will reduce the
probability of sampling it, increasing the probability of sampling lights that are
contributing illumination. So long as the probability of sampling any light never
goes to zero so hat we have no chance of detecting when it does contribute illumi-
nation at some point, the result will remain unbiased.

We will start with a uniform probability for sampling each of the lights. When-
ever a sample is taken from a particular light, a running average of reflected ra-
diance due to that light is updated. By evaluating the importance of each light
according to the amount of light reflected rather than the amount of incident light,
we also account for the effect of the BSDF in our weighting; if the BSDF is very
glossy, a bright light may have much less effect on the image than a dimmer light
that is often along the specular reflection direction, for example.

for each weight, store a weight, so that relative weights give relative probability
of sampling lights. to make a discrete pdf, sum the weights and divide all by the
sum. to make a discrete cdf, take sum of weights up to ith one. to choose a light,
take a uniform random number,

weight is exponentially decaying average of reflected luminance ȳ. can be com-
puted incrementally...

ȳi � � 1 � α � yi � α ȳi � 1

where α controls rate of decay. XXX why luminance: perceptually based...
XXX

We’ll keep track of both the running average of reflected luminance from each
light source as well as running average of reflected luminance from the light sources
we sampled. This allows us to determine the relative importance of different
lights...

XXX just make this an exercise?�
DirectLighting Private Data ��� �
mutable Float *avgY, *avgYsample, *cdf;
mutable Float overallAvgY;

Until we find a light source that contributes reflected light, overallAvgY will
be zero. In this case, we just sample a single light with uniform probability. This
gives us a reflected luminance value we can use to start updating the running aver-
ages with. Otherwise, we choose a light according to its previous contribution and
update

BSDF 370
EstimateDirect() 570

Normal 34
Point 33
Scene 8

Scene::lights 9
Spectrum 181

Spectrum::y() 185
UniformSampleOneLight() 566

Vector 27

568 Light Transport [Ch. 16

�
Integrator Utility Functions ��� �
Spectrum WeightedSampleOneLight(const Scene *scene, const Point &p,

const Normal &n, const Vector &wo, BSDF *bsdf,
const Sample *sample, int lightSampleOffset,
int lightNumOffset, int bsdfSampleOffset,
int bsdfComponentOffset, Float *&avgY,
Float *&avgYsample, Float *&cdf, Float &overallAvgY) {

int nLights = int(scene->lights.size());�
Initialize avgY array if necessary �
Spectrum L(0.);
if (overallAvgY == 0.) {�

Sample one light uniformly and initialize luminance arrays �
}
else {�

Choose light according to average reflected luminance �
L = EstimateDirect(scene, light, p, n, wo, bsdf,

sample, lightSampleOffset, bsdfSampleOffset,
bsdfComponentOffset, 0);�

Update avgY array with reflected radiance due to light �
L /= lightSampleWeight;

}
return L;

}

We can’t allocate space for avgY until the first time the L() method is called;
we don’t know how many lights are in the scene until then.

XXX do this in Preprocess()method XXX�
Initialize avgY array if necessary ���
if (!avgY) {

avgY = new Float[nLights];
avgYsample = new Float[nLights];
cdf = new Float[nLights+1];
for (int i = 0; i < nLights; ++i)

avgY[i] = avgYsample[i] = 0.;
}

To use the relative light weights to select a light source, we first use them to
compute a discrete pdf over the light sources. We can then generate a uniform
random sample value and use it to search through the cdf to find the appropriate
light.�
Sample one light uniformly and initialize luminance arrays ���
L = UniformSampleOneLight(scene, p, n, wo, bsdf, sample,

lightSampleOffset, lightNumOffset, bsdfSampleOffset,
bsdfComponentOffset);

Float luminance = L.y();
overallAvgY = luminance;
for (int i = 0; i < nLights; ++i)

avgY[i] = luminance;

Sec. 16.1] Direct Lighting 569

478 Light
241 Sample::oneD

9 Scene::lights
185 Spectrum::y()

XXX trade-off of wasting time sampling lights that have never done us any
good, just to check and see if as we move around the image thing have changed,
versus not noticing when the set of important lights changes... emphasize that
this a demonstration of the idea, not necessarily the best for all applications...
XXX�
Choose light according to average reflected luminance ���
Float c, lightSampleWeight;
for (int i = 0; i < nLights; ++i)

avgYsample[i] = max(avgY[i], .1f * overallAvgY);
ComputeStep1dCDF(avgYsample, nLights, &c, cdf);
Float t = SampleStep1d(avgYsample, cdf, c, nLights,

sample->oneD[lightNumOffset][0], &lightSampleWeight);
int lightNum = min(Float2Int(nLights * t), nLights-1);
Light *light = scene->lights[lightNum];

�
Update avgY array with reflected radiance due to light ���
Float luminance = L.y();
avgY[lightNum] =

ExponentialAverage(avgY[lightNum], luminance, .99f);
overallAvgY =

ExponentialAverage(overallAvgY, luminance, .999f);

�
Global Inline Functions ��� �
inline Float ExponentialAverage(Float avg, Float val, Float alpha) {

return (1.f - alpha) * val + alpha * avg;
}

16.1.1 Estimating the direct lighting integral

Having chosen a particular light to estimate direct lighting from, we need to esti-
mate the value of the integral

�
S2

f � p � ωo � ωi � Ld � p � ωi � � cos θi � dωi

for that light. To compute this estimate, we need to sample one or more directions
ωi and apply the Monte Carlo estimator

1
N

N

∑
j � 1

f � p � ωo � ω j � Ld � p � ω j � � cosθ j �
p � ω j � �

To reduce variance, we like to use importance sampling to choose directions ω j .
Because both the BSDF and the direct radiance terms are individually complex, it
would be difficult in general to find sampling distributions that match their product
well. Instead we will use the BSDF’s sampling distribution for some of the samples
and the light’s for the rest. Depending on the characteristics of each of them, one of
these two sampling methods may be far more effective than the other. Therefore,
we will use multiple importance sampling to further improve the results.

XXX mention that visibility makes direct light part particularly bad? XXX

BSDF 370
Light 478

Normal 34
Point 33
Scene 8

Spectrum 181
Vector 27

570 Light Transport [Ch. 16

Figure 16.1: sample BSDF vs. sample light..

Figure 16.1 shows two cases where each of the sampling methods is much better
than the other. On the left, the BSDF is very specular and the light source is
relatively large. Sampling the BSDF will be effective at finding directions where
the integrand’s value is large, while sampling the light will be less effective: most
of the samples will be black since the BSDF is zero for most of the directions to
the light source. When the light happens to sample a point in the BSDF’s glossy
region, there will be a spike in the image because the light will return a low pdf,
while the value of the integrand will be relatively large. In effect, we suffer from
variance because the sampling distribution didn’t match the actual distribution of
the function’s values very well.

On the other hand, sometimes sampling the light is the right strategy; on the
right side of Figure 16.1, the BSDF is non-zero over many directions and the light
is relatively small. It will be far more effective to choose points on the light to
compute ωi, since the BSDF will have trouble finding directions where there is
non-zero incident radiance from the light. Similar to the first case, we would see
substantial spikes of noise when the BSDF happens to select a direction where the
light was visible since the sampling distribution didn’t match the overall function
well.

By applying multiple importance sampling, we can not only use both of the two
sampling methods, but can do so in a way that eliminates the extreme variance that
each of the methods is vulnerable to individually, since the weighting terms from
MIS reduce this variance substantially.�
Integrator Utility Functions ��� �
Spectrum EstimateDirect(const Scene *scene, const Light *light,

const Point &p, const Normal &n, const Vector &wo,
BSDF *bsdf, const Sample *sample, int lightSamp,
int bsdfSamp, int bsdfComponent, u_int sampleNum) {

Spectrum Ld(0.);�
Find light and BSDF sample values for direct lighting estimate ��
Sample light source with multiple importance sampling ��
Sample BSDF with multiple importance sampling �
return Ld;

}

First we need the values for the various random numbers that we’ll be using for
Monte Carlo integration. A 2D sample (ls1, ls2) is needed for sampling the light
source, and another 2D sample (bs1, bs2) for sampling the BSDF, and finally a

Sec. 16.1] Direct Lighting 571

373 BSDF::f()
542 Light::Sample L()
679 RandomFloat()
241 Sample::n2D
241 Sample::oneD
241 Sample::twoD
181 Spectrum
182 Spectrum::Black()
27 Vector

479 VisibilityTester
480 VisibilityTester::Unoccluded()

1D sample bcs is used to select a BxDF component to sample from the complete
BSDF. (XXXX explain that more carefully...)

If the integrator calling this routine has requested appropriate samples from the
Smapler, we use the corresponding values in the Sample. Otherwise, we get uni-
form random values from RandomFloat().�
Find light and BSDF sample values for direct lighting estimate ���
Float ls1, ls2, bs1, bs2, bcs;
if (lightSamp != -1 && bsdfSamp != -1 &&

sampleNum < sample->n2D[lightSamp] &&
sampleNum < sample->n2D[bsdfSamp]) {
ls1 = sample->twoD[lightSamp][2*sampleNum];
ls2 = sample->twoD[lightSamp][2*sampleNum+1];
bs1 = sample->twoD[bsdfSamp][2*sampleNum];
bs2 = sample->twoD[bsdfSamp][2*sampleNum+1];
bcs = sample->oneD[bsdfComponent][sampleNum];

}
else {

ls1 = RandomFloat();
ls2 = RandomFloat();
bs1 = RandomFloat();
bs2 = RandomFloat();
bcs = RandomFloat();

}

For sampling the light, it’s pretty straightforward application of the Monte Carlo
sampling routines and the balance heuristic...

XXX explain delta function issues for this XXX
XXX update code so that sample function fills in a PDF variable, then we

compute a weight, then compute f � x � w � x � �
p � x � ... XXX

�
Sample light source with multiple importance sampling ���
Vector wi;
Float lightPdf, bsdfPdf;
bool deltaLight;
VisibilityTester visibility;
Spectrum Li = light->Sample_L(p, n,

ls1, ls2, &wi, &lightPdf, &visibility, &deltaLight);
if (lightPdf > 0. && !Li.Black()) {

Spectrum f = bsdf->f(wo, wi);
if (!f.Black() && visibility.Unoccluded(scene)) {�

Add light’s contribution to reflected radiance �
}

}

BSDF::Sample f() 540
BSDF ALL 334

BSDF SPECULAR 334
BxDFType 334

Light::Pdf() 543
PowerHeuristic() 525

Spectrum 181
Spectrum::Black() 182

VisibilityTester::Transmittance() 480

572 Light Transport [Ch. 16

�
Add light’s contribution to reflected radiance ���
if (deltaLight) {

Ld += f * AbsDot(wi, n) * Li *
visibility.Transmittance(scene) /
lightPdf;

}
else {

bsdfPdf = bsdf->Pdf(wo, wi);
Float weight = PowerHeuristic(1, lightPdf, 1, bsdfPdf);
Ld += f * AbsDot(wi, n) * Li *

visibility.Transmittance(scene) * weight /
lightPdf;

}

XXX BSDF is only slightly more tricky, where we need a Ld() utility
method that computes incident radiance from only the given light source;
other lights are ignored XXX

Don’t do MIS for specular stuff, since other technique has no chance of
finding it. Or, in a sense, the implicit delta function in the weight for the
specular guy swamps the weight of the non-specular guy.

XXX it’s a waste to see if we try to hit the light for a delta light source XXX
XXX make clear we ignore specular components of BSDF throughout all

this, here is the only place it has to be done actively. Will generally be tracing
rays for that from integrator, wasteful to do here... XXX

XXX if f is black, is pdf always zero? Or, is pdf ever zero w/o f being
black? Simplify code all over the place..

Note that it’s not worth bothering if this is a delta light source, since then
there is no chance that the direction the BSDF samples will hit the light�
Sample BSDF with multiple importance sampling ���
if (!light->IsDeltaLight()) {

BxDFType flags = BxDFType(BSDF_ALL & ˜BSDF_SPECULAR);
Spectrum f = bsdf->Sample_f(wo, &wi,

bs1, bs2, bcs, &bsdfPdf, flags);
if (!f.Black() && bsdfPdf > 0.) {

lightPdf = light->Pdf(p, n, wi);
if (lightPdf > 0.) {�

Add light contribution from BSDF sampling �
}

}
}

Sec. 16.2] The Light Transport Equation 573

375 GeometricPrimitive::GetAreaLight()
131 Intersection
132 Intersection::Le()
131 Intersection::primitive
525 PowerHeuristic()
36 Ray
37 RayDifferential
14 Scene::Intersect()

�
Add light contribution from BSDF sampling ���
Float weight = PowerHeuristic(1, bsdfPdf, 1, lightPdf);
Intersection lightIsect;
if (scene->Intersect(Ray(p, wi), &lightIsect) &&

lightIsect.primitive->GetAreaLight() == light)
Ld += f * lightIsect.Le(-wi) * AbsDot(wi, n) *

weight / bsdfPdf;
else if (!light->Le(RayDifferential(p, wi)).Black() && !scene->IntersectP(Ray(p, wi)))

Ld += f * light->Le(RayDifferential(p, wi)) * AbsDot(wi, n) *
weight / bsdfPdf;

� � ��� � �� � � � �� � � � � � ����� � �
� � ��� � � �

The light transport equation (LTE) is the governing equation that describes the
equilibrium distribution of radiance in a scene accounting for all of the light scat-
tering among objects in the scene. It gives the total reflected radiance at a point
on a surface in a scene in terms of emission from the surface, its BSDF, and the
distribution of incident illumination arriving at the point. The key task of the in-
tegrator objects in lrt is to numerically compute a solution to the LTE to find the
radiance along camera rays starting at the film plane. Because radiance along a
ray is unchanged as long as the ray doesn’t intersect a surface (in a scene without
participating media), we just need to find the first surface that a camera ray inter-
sects and solve the LTE to find the outgoing radiance from that surface in the ray’s
direction in order to compute the radiance arriving at the film. Section 16.7 at the
end of this chapter describes the generalizations necessary for scenes that do have
participating media.

The detail that makes the task of evaluating the LTE difficult is the fact that inci-
dent illumination at any particular point is affected by the geometry and scattering
properties of all of the other objects in the scene. For example, bright light shining
on a deep red object may cause a reddish tint on nearby objects in the scene, or a
glass may focus light into caustic patterns on a table top. Rendering algorithms that
account for this complexity are often called global illumination algorithms, to dif-
ferentiate them from local illumination algorithms that don’t use a representation
of the complete scene description in their shading computations.

In this section, we will first derive the basic LTE and will describe some general
approaches for manipulating the equation in ways that make it easier to develop
rendering algorithms that compute solutions to it. We will then describe two gen-
eralizations of the LTE that make some of its key properties more clear and serve
as the foundation for some of the advanced integrators we will implement later in
this chapter.

16.2.1 Basic derivation

The light transport equation depends on the basic assumptions we have already
made in choosing to use radiometry to describe light–that wave optics effects are
unimportant and that the distribution of radiance in the scene is in equilibrium. To
be able to compute radiance arriving at the film along the camera ray, we would
like to be able to express the outgoing radiance from a point on the first surface

574 Light Transport [Ch. 16

Figure 16.2: Radiance along a ray through free space is unchanged. Therefore, to
compute the radiance along a ray from point p in direction ω, we can find the first
surface the ray intersects and compute reflected radiance in the direction � ω there.
The trace operator t

�
p � ω � gives the point p � on the first surface that the ray

�
p � ω �

intersects.

the camera ray intersects p, in direction ωo, the direction from the ray’s origin to
p, which we will denote by Lo

�
p � ωo � . This can be separated into radiance that is

directly emitted by the surface if it is an area light source, Le, and radiance that
is scattered by the surface due to incident illumination at p from other objects, Ls.
The emitted radiance is a known property of the scene, and the scattered radiance
is given by the scattering equation, 5.4.9. Combining these, we have:

Lo
�
p � ωo � � Le

�
p � ωo �

�
S2

f
�
p � ωo � ωi � Li

�
p � ωi ��� cos θi � dωi �

Because we have assumed for now that there is no participating media present,
radiance is constant along rays through free space and we can relate the incident
radiance at p in terms of the outgoing radiance from another point p � , as shown
by Figure 16.2. If we define the ray-casting function t

�
p � ω � as a function that

computes the first surface point p � intersected by a ray from p in the direction ω,
we can write the incident radiance at p in terms of outgoing radiance at p � :

Li
�
p � ωo � � Lo

�
t
�
p � ωo ��� � ωo � �

In case the scene is not closed, we will define the ray casting function as returning
a special value Λ if the ray

�
p � ω � doesn’t intersect any object in the scene, such

that Lo
�
Λ � ω � is zero.

We can now combine these two expressions to find the light transport equation,
which gives outgoing radiance point in terms of outgoing radiance at all of the
other points in the scene that are visible from p:

L
�
p � ωo � � Le

�
p � ωo �

�
S2

f
�
p � ωo � ωi � L

�
t
�
p � ωi ��� � ωi ��� cos θi � dωi � (16.2.2)

where for simplicity we have replaced the Lo symbols with L.

16.2.2 Analytic solution

The brevity of the LTE masks the fact that in general it is impossible to solve analyt-
ically. The complexity that comes from physically-based BSDF models, complex

Sec. 16.2] The Light Transport Equation 575

scene geometry, and the complex visibility relationships between objects that re-
sult all conspire to require that a numerical solution technique be used to attack the
problem. Fortunately, the combination of ray tracing algorithms and Monte Carlo
integration gives a powerful pair of tools that can handle this complexity without
needing to impose restrictions on various components of the LTE (e.g. requiring
that all BSDFs be Lambertian, or substantially limiting the geometric representa-
tions that are supported.)

It is possible to find analytic solutions to the LTE in extremely simple settings.
While this is of little help with developing general-purpose rendering algorithms,
it can help with debugging the implementations of integrators. If an integrator that
is supposed to solve the complete LTE doesn’t compute a solution that matches
the analytic solution, then clearly there is a bug in the integrator to be fixed. As
an example, consider the interior of a sphere where all points on the surface of the
sphere have a Lambertian BRDF, f � p � ωo � ωi � � c, and also emit a constant amount
of radiance in all directions. We have

L � p � ωo ��� Le � c �
H 2 � n �

L � t � p � ωi � ��� ωi � � cosθi � dωi �
The outgoing radiance distribution at any point on the sphere must be the same
as at any other point; nothing in the environment as described could introduce any
variation among different points. Therefore, the incident radiance distribution must
be the same at all points and the cosine weighted integral of incident radiance must
be the same everywhere as well. As such, we can replace the radiance terms with
constants and simplify, writing the LTE as

L � Le � cπL �
While we could immediately solve this equation for L, it’s interesting to consider
successive substitution of the right-hand side into the L term on the right-hand side.
If we also replace πc with ρhh, the reflectance of a Lambertian surface, we have

L � Le � ρhh � Le � ρhh � Le �������
� ∞

∑
i � 0

Leρi
hh �

In other words, reflected radiance is equal to the emitted radiance at the point plus
light that has been scattered by a BSDF once after emission, plus light that has
been scattered twice, and so forth.

Because ρhh � 1 due to conservation of energy, the series converges and the
reflected radiance at all points in all directions is

L � Le

1 � ρhh
�

This process we have just applied–repeatedly substituting the LTE’s right hand
side into the incident radiance term in the integral–can be productively applied
in more general cases. For example, the DirectLighting integrator effectively

576 Light Transport [Ch. 16

Figure 16.3: The three-point form of the light transport equation converts the in-
tegral to be over the domain of points on surfaces in the scene, rather than over
directions over the sphere. It is a key transformation for deriving the path integral
form of the light transport equation.

computes the result of making a single such substitution,

L � p � ωo ��� Le � p � ωo � � �
S2

f � p � ωo � ωi ��
Le � t � p � ωi � ��� ωi � � �

S2
f � p ��� ωi � ω � � L � t � p � ωi � � ω � � � cosθ � � dω � � � cosθi � dωi

And then ignores the result of multiply scattered light, setting L � t � p � ωi � � ω � ��� 0.
Over the next few pages, we will see how performing successive substitutions

in this manner and then regrouping the results expresses the LTE in a more natural
way for developing rendering algorithms.

16.2.3 Integral Over Paths

The introduction of the light transport equation to graphics led to a flurry of work
in rendering, giving a sound theoretical basis for deriving and evaluating the cor-
rectness of rendering algorithms. For instance, the path-tracing algorithm in Sec-
tion 16.3 below is based on successively evaluating the effect of light that has
scattered once, twice, and so forth, using Monte Carlo integration.

One shortcoming of the LTE as expressed in the form of Equation 16.2.2 is that
it is an integral equation where the left hand side of the equation appears under the
integral on the right hand side. Not only is this somewhat unwieldy, but it naturally
leads to light transport algorithms based on successively evaluating the LTE by
recursively expanding the equation, constructing paths through the scene starting
from the camera and ending at the lights. Using the light transport equation in this
way limits the set of sampling techniques that are naturally applied to constructing
paths and makes it difficult to incorporate more sophisticated techniques that can
solve the LTE more efficiently. For example, ray tracing two paths–one starting
from the camera and one starting from a light in the scene–and connecting them
up in the middle can be a more effective way of finding important indirect lighting
contributions than just creating paths starting from the camera.

Sec. 16.2] The Light Transport Equation 577

Figure 16.4: The G � p � p � � term of the three-point light transport equation gathers
up a number of geometric factors that affect the amount of light exchanged between
two differential areas in the scene.

The path integral form of the light transport equation is a more general way of
expressing it. It has the form of sums over paths of various numbers of vertices
on surfaces in the scene, where the first vertex is on the image plane and the last
is on a light source. This form makes it more natural to develop creative ways of
generating light transport paths through the scene and easier to apply more general
integration techniques, which in turn can lead to more accurate results.

To derive the path integral form, we start with the three-point form of the light
transport equation, where integral over incident directions ωi and p is replaced with
an integral over points p � in the scene (see Figure 16.3). First, we define outgoing
radiance from a point p � to a point p by

L � p � � p ��� L � p � � ω � �

if p � and p are mutually visible and ω � �

p � p � . We can also write the BSDF at p �
as

f � p � � � p � � p ��� f � p � � ωo � ωi � �
where ωi � �

p � � � p � and ωo � �

p � p � . Substituting these into the light transport equa-
tion and applying the term to convert an integral over solid angle into an integral
over area, we have

L � p � � p ��� Le � p � � p � � �
A

L � p � � � p � � f � p � � � p � � p � G � p � � � p � � dA � p � � � �

where A is the surface area of all of the surfaces of the scene and the G � p � � � p � �
term accounts for cosθi term in the original integral and the change of variables
from integral over solid angle to integral over area. It is:

G � p � p � � � V � p � p � � � cos θ � � cos θ � ��
p � p �

�
2 �

where V � p � p � � is a visibility term that is one if the points are mutually visible
and zero otherwise (see Figure 16.4).

We can now start to expand the three-point light transport equation, repeatedly
substituting the right hand side of the equation into the L � p � � p � � term inside the

578 Light Transport [Ch. 16

Figure 16.5: example path

integral. Here are the first few terms that give incident radiance at a point p0 from
another point p1, where p1 is the first point on a surface along the ray from p0 in
direction p1 � p0.

L � p1 � p0 � � Le � p1 � p0 � �
�

A
Le � p2 � p1 � f � p2 � p1 � p0 � G � p2 � p1 � dA � p2 � �
�

A2
Le � p3 � p2 � f � p3 � p2 � p1 � G � p3 � p2 �

f � p2 � p1 � p0 � G � p2 � p1 � dA � p3 � dA � p2 � �������
The pattern becomes clear, and we have

L � p1 � p0 � � ∞

∑
i � 1

P � p̄i � � (16.2.3)

P � p̄i � gives the amount of radiance scattered over a path p̄ with i � 1 vertices,

p̄ � p0 � p1 � ����� � pi �
where p0 is on the film plane and pi is on a light source, and

P � p̄i � � �
Ai � 1

Le � pi � pi � 1 ��
i � 1

∏
j � 1

f � pj � 1 � pj � pj � 1 � G � pj � 1 � pj ��� dA � p2 � ����� dA � pi � �
See Figure 16.5.

The product of the BSDF and geometry terms is the throughput of the path; it
describes the fraction of radiance from the light source that arrives at the camera
after all of the scattering at vertices between them. We will denote it by

T � p̄i ��� i � 1

∏
j � 1

f � pj � 1 � pj � pj � 1 � G � pj � 1 � pj � �

so
P � p̄i ��� �

Ai � 1
Le � pi � pi � 1 � T � p̄i � dA � p2 � ����� dA � pi � �

Sec. 16.2] The Light Transport Equation 579

Given Equation 16.2.3 and a particular length i, all that we need to do to compute
a Monte Carlo estimate the radiance arriving at p0 due to paths of length i is to
sample a set of vertices with appropriate density in the scene pi to generate a path
and then to evaluate an estimate of P � p̄i � using those vertices. Whether we generate
those vertices by starting a path from the camera, starting from the light, starting
from both ends, or starting from a point in the middle is a detail that only affects
how the weights for the Monte Carlo estimates are computed. We will see how this
formulation leads in practice to practical light transport algorithms in the following
two sections.

16.2.4 Delta distributions in the integrand

Delta functions may be present in P � p̄i � terms due to both BSDF components de-
scribed by delta distributions as well as certain types of light sources (e.g. point
lights and directional lights). These distributions need to be handled explicitly by
the light transport algorithm if present. For example, it is impossible to randomly
choose an outgoing direction from a point on a surface that would intersect a point
light source–instead it is necessary to explicitly choose the single direction from
the point to the light source if we want to be able to include its contribution. (The
same is true for sampling BSDFs with delta components.) While handling this case
introduces some additional complexity to the integrators, it is generally welcome
because it reduces the dimensionality of the integral we need to evaluate, turning
parts of it into a plain sum.

For example, consider the direct illumination term, P � p̄2 � , in a scene with a
single point light source at point plight described by a delta distribution,

P � p̄2 � � �
A

Le � p2 � p1 � f � p2 � p1 � p0 � G � p2 � p1 � dA � p2 �
� δ � plight � p2 � Le � plight � p2 �

p � plight � f � p2 � p1 � p0 � G � p2 � p1 � �
In other words, p2 must be the same as the light’s position in the scene, (the delta
distribution in the numerator cancels out due to an implicit delta distribution in
p � plight � ; recall the discussion of sampling delta distributions in Section MC.XXX),
and we are left with terms that can be evaluated directly, with no need for Monte
Carlo. An analogous situation holds for BSDFs with delta distributions in the path
throughput T � p̄i � ; each one eliminates an integral over area from the estimate to be
computed.

16.2.5 Partitioning the integrand

Many rendering algorithms have been developed that are particularly good at solv-
ing the LTE under some conditions, but don’t work well (or at all) under others.
For example, the Whitted integrator only handles specular reflection from delta
BSDFs and ignores multiply scattered light from diffuse and glossy BSDFs, and
the irradiance caching technique described later in this chapter effectively com-
putes scattering form diffuse surfaces but would introduce a large amount of error
if used for glossy or specular reflection.

580 Light Transport [Ch. 16

Because we would like to be able to derive correct light transport algorithms that
account for all possible modes of scattering without introducing any contributions
and without double-counting others, it is important to carefully account for which
parts of the LTE a particular solution method accounts for. A nice way of ap-
proaching this problem is to is by partition the LTE in various ways. For example,
we might expand the sum over paths to

L � p1 � p0 � � P � p̄1 � � P � p̄2 � � ∞

∑
i � 3

P � p̄i � �

where the first term is trivially evaluated by computing the emitted radiance at p1,
the second term is solved with an accurate direct lighting solution technique, but
the remaining terms in the sum are handled with a faster but less-accurate approach.
If the contribution of these terms to the total reflected radiance is relatively small
for the scene we’re rendering, this may be a reasonable approach to take. We just
need to be careful to ignore P � p̄1 � and P � p̄2 � with the algorithm that handles P � p̄3 �
and beyond (and similarly with the other parts.)

We may also want to partition individual P � p̄i � terms. For example, we might
want to split the emission term into emission from small light sources, Le � s, and
emission from large light sources, Le � l , giving us two separate integrals to estimate.

P � p̄i � � �
Ai � 1

� Le � s � pi � pi � 1 � � Le � l � pi � pi � 1 � � T � p̄i � dA � p2 � ����� dA � pi �
� � i

A
Le � s � pi � pi � 1 � � T � p̄i � dA � p2 � ����� dA � pi � �

� � i

A
Le � l � pi � pi � 1 � � T � p̄i � dA � p2 � ����� dA � pi �

The two integrals can be evaluated independently, possibly using completely dif-
ferent algorithms, or different numbers of samples, selected in a way that handles
the different conditions well. As long as the estimate of the Le � s integral ignores
any emission from large lights, the estimate of the Le � l integral ignores emission
from small lights, and all lights are categorized as either “large” or “small”, we
will still compute the correct result.

Finally, the BSDF terms can be partitioned as well (in fact, this application
was the reason that BSDF categorization with BxDFType values was introduced in
Section 9.1.) For example, if f∆ denotes components of the BSDF described by
delta distributions and f � ∆ denotes the remaining components,

P � p̄i � � �
Ai � 1

Le � pi � pi � 1 � i � 1

∏
j � 1
� f∆ � pj � 1 � pj � pj � 1 � �

f � ∆ � pj � 1 � pj � pj � 1 � � G � pj � 1 � pj �
dA � p2 � ����� dA � pi � �

Note that because there are i � 1 BSDF terms in the product, we need to be careful
to not only count terms with only f∆ components or only f � ∆ components; we need
to handle all of the terms like f∆ f � ∆ f � ∆ as well.

Sec. 16.2] The Light Transport Equation 581

16.2.6 The measurement equation and importance

In light of the path integral form of the LTE, it’s useful to go back and formally
describe the quantity that is being estimated as we compute pixel values for the
image. Doing so will help us be able to formally apply the LTE to a wider set of
problems than just computing 2D images (for example, to precomputing scattered
radiance at the vertices of a polygonal model, as might be useful for interactive
rendering applications.) Furthermore, this leads us to a key theoretical mechanism
for understanding particle tracing and the photon mapping algorithm that will be
described in Section 16.6.

The measurement equation describes the value of an abstract measurement that
is found by integrating over some set of rays carrying radiance. For example,
when computing the value of a pixel in the image, we want to integrate over rays
starting in the neighborhood of the pixel, with contribution weighted by the image
reconstruction filter. Ignoring depth of field for now (so that each point on the film
plane corresponds to a single outgoing direction from the camera), we can write
the pixel’s value as an integral over points on the film plane of a weighting function
times the incident radiance along the corresponding camera rays.

I j � �
Afilm

�
S2

We � pfilm� ω � Li � pfilm� ω � � cos θ � dA � pfilm� dω

� �
Afilm

�
A

We � p0 � p1 � L � p1 � p0 � G � p0 � p1 � dA � p0 � dA � p1 �
where I j is the measurement for the jth pixel and paths p̄ start at a point on the film.
In this setting, the We � p0 � p1 � term is the product of the filter function around the
pixel, f j and a delta function that selects the appropriate camera ray direction of
the sample from p0, ωcamera � p0 � :

We � p0 � p1 ��� f j � pfilm� δ � t � pfilm� ωcamera � pfilm� � � p1 � �
This formulation may initially seem gratuitously complex, but it leads us to an
important insight. If we expand the P � p̄i � terms of the LTE sum, we have

I j � �
Afilm

�
A

We � p0 � p1 � L � p1 � p0 � G � p0 � p1 � dA � p0 � dA � p1 �
� ∑

i

�
A2

We � pfilm � p1 � P � p̄i � G � p0 � p1 � dA � p0 � dA � p1 �
� ∑

i

�
Ai � 1

We � p0 � p1 � T � p̄i � Le � pi � 1 � pi � G � p0 � p1 � dA � p0 � ����� dA � pi � �
A nice symmetry between the emitted radiance from light sources, Le, and the
contribution of a sample on sample on the film to the pixel measurement, We has
become apparent. The implications of this symmetry are important: it says that
we can think of the rendering process in two different ways–light could be emit-
ted from light sources, bounce around the scene, and arrive at a sensor where We
describes its contribution to the measurement. Alternatively, we can think of some
quantity being emitted from the sensor, bouncing around the scene, and making a
contribution when it hits a light source. Either intuition is equally valid.

The value described by the We � p0 � p1 � term is known as the importance for
the ray between p0 and p1 in the scene. When the measurement equation is used

582 Light Transport [Ch. 16

to compute pixel measurements, the importance will often be partially or fully
described by delta distributions, as it was in the example above. Many other
types of measurement besides image formation can be described by appropriately-
constructed importance functions and thus the formalisms described here can be
used to show how the integral over paths described by the measurement equation is
the integral that must be estimated to compute them. We will make particular use
of these ideas when describing the bidirectional path tracing and photon mapping
algorithms later in this chapter.

XXX mention adjoint equations and BSDF symmetry issues here, too...
XXX

� � ��� � ���� � � ��� � � �

Now that we have derived the path integral form of the light transport equation,
we’ll show how it can be used to derive the path tracing light transport algorithm
and will present a path tracing integrator. Path tracing was the first general-purpose
unbiased Monte Carlo light transport algorithm used in graphics. Kajiya introduced
it in the same paper that first described the light transport equation. Path tracing
incrementally generates paths of scattering events starting at the eye and ending at
light sources in the scene. One was to think of it is as an extension of Whitted’s
method to include both delta-distribution and non-delta BSDFs and light sources,
rather than just accounting for the delta terms.

Although it is slightly easier to derive path tracing directly from the basic light
transport equation, we will instead approach it from the path integral form, which
helps build understanding of the path integral equation and will make the general-
ization to bidirectional path tracing, where paths are generated starting from the
lights as well as from the eye easier to understand.

16.3.1 Overview

Given the path integral form of the LTE, we need to estimate the value of

L � p1 � p0 ��� ∞

∑
i � 1

P � p̄i �
for a given eye ray from p that first intersects the scene at p1. We have two problems
that must be solved in order to compute this estimate:

1. How do we estimate the value of the sum of the infinite number of P � p̄i �
terms with a finite amount of computation?

2. Given a particular P � p̄i � term, how do we generate one or more paths p̄ in
order to compute a Monte Carlo estimate of its multi-dimensional integral?

For path tracing, we can take advantage of the fact that for physically-valid
scenes, paths with more vertices scatter less light than paths with fewer vertices
overall (this isn’t necessarily true for any particular pair of paths, just in the aggre-
gate.) This is a natural consequence of conservation of energy in BSDFs. There-
fore, we will always estimate the first few terms P � p̄i � and will then start to apply

Sec. 16.3] Path Tracing 583

Figure 16.6:

Russian roulette to stop sampling after a finite number of terms, without introduc-
ing bias. Recall that Russian roulette allows us to probabilistically stop computing
terms in a sum so long as we re-weight the terms that we do compute. For example,
if we always computed estimates of P � p̄1 � , P � p̄2 � , and P � p̄3 � but stopped without
computing more terms with probability q, then an unbiased estimate of the sum
would be

P � p̄1 � � P � p̄2 � � P � p̄3 � � 1
1 � q

∞

∑
i � 4

P � p̄i �
Using Russian roulette in this way doesn’t solve the problem of needing to evaluate
an infinite sum, but has pushed it a bit farther out.

If we take this idea a step further and instead randomly consider terminating
evaluation of the sum at each term with probability qi,

1
1 � q1

�
P � p̄1 � � 1

1 � q2

�
P � p̄2 � � 1

1 � q3
� P � p̄3 � � �����

We will eventually stop continued evaluation of the sum, yet because for any par-
ticular value of i there is greater than zero probability of evaluating the term P � p̄i �
and because it will be weighted appropriately if we do evaluate it, the final result
will be an unbiased estimate of the sum.

16.3.2 Path sampling

Given this method for evaluating only a finite number of terms of the infinite sum,
we also need a way to estimate the contribution of particular term P � p̄i � . We need
i � 1 vertices to specify the path, where the last vertex pi is on a light source and
the first vertex p0 is determined by the camera ray’s first intersection point (see
Figure 16.6.) Looking at the form of P � p̄i � , a multiple integral over surface area of
objects in the scene the most natural thing to do is to sample vertices pi according
to the differential area of objects in the scene, such that it’s equally probable to
sample any particular point on an object in the scene for pi as any other point.
(We don’t actually use this approach in the PathIntegrator implementation for
reasons that will be described below, but this sampling technique could possibly be
used to improve the efficiency of our basic implementation and helps to clarify the
meaning of the path integral LTE.)

584 Light Transport [Ch. 16

We could define a discrete probability over the n objects in the scene; if each
has surface area Ai, then the probability of sampling a vertex on the surface of the
ith object should be

pi � Ai

∑ j A j
�

Then, given a method to sample a point on the ith object with uniform probability,
the pdf for sampling any particular point on object i is 1

�
Ai. Thus, the overall

probability density for sampling the point is

Ai

∑ j A j

1
Ai
�

And all samples pi have the same pdf value

pA � pi � � 1

∑ j A j
�

It’s reassuring that they all have the same weight, since our intent was to choose
among all points on surfaces in the scene with equal probability.

Given the set of vertices p0 � p1 � ����� � pi � 1, we can then sample the last vertex pi on
a light source in the scene, defining its pdf in the same way. Although we could use
the same technique used for sampling path vertices to sample points on lights, this
would lead to high variance, since for all of the paths where pi wasn’t on the surface
of an emitter, the path would have zero value. The expected value would still be the
correct value of the integral, but convergence would be extremely slow. A better
approach is to sample over the areas of only the emitting objects with probabilities
updated accordingly. Given a complete path, we have all of the information we
need to compute the estimate of P � p̄i � ; it’s just a matter of evaluating each of the
terms.

It’s easy to be more creative about how we set the sampling probabilities with
this general approach. For example, if we knew that indirect illumination from
a few objects contributed to most of the lighting in the scene, we could assign
a higher probability to generating path vertices pi on those objects, updating the
sample weights appropriately.

There are two interrelated problems with sampling paths in this manner. The
first can lead to high variance, while the second can lead to incorrect results. The
first problem is that many of the paths will have no contribution if they have pairs of
adjacent vertices that are not mutually visible. Consider applying the area sampling
method in a complex building model: adjacent vertices in the path will almost
always have a wall or two between them, giving no contribution for the path and
excessive variance in the estimate.

The second problem is that if the integrand has delta functions in it (e.g. a point
light source or a perfectly specular BSDF), this sampling technique will never be
able to choose path vertices such that the delta distributions are non-zero. And
even if there aren’t delta distributions, as the BSDFs become increasingly glossy
specular, almost all of the paths will have low contributions since the points in
f � pi � 1 � pi � pi � 1 � will cause the BSDF to have a small or zero value and again
we will suffer from high variance.

Sec. 16.3] Path Tracing 585

16.3.3 Path sampling

A solution that solves both of these problems is to construct the path incrementally,
starting from p0. At each vertex, the BSDF is sampled to generate a new direction;
the next vertex pi � 1 is found by tracing a ray from pi in the sampled direction
and finding the closest intersection. We are effectively trying to find a path with
a large contribution by making a series of choices that locally find directions with
important contributions. While one can imagine situations where this approach
could be ineffective, it is a generally a good strategy.

Because this approach constructs the path by sampling BSDFs according to solid
angle, and because the path integral LTE is an integral over surface area in the
scene, we need to apply the correction to convert from the probability density ac-
cording to solid angle pω to a density according to area pA (recall Section 5.3):

pA � pω

�
pi � pi � 1

� 2

� cos θi � �
This correction causes some of the terms of the geometric term G � pi � pi � 1 � to
cancel out of P � p̄i � . Furthermore, we already know that pi and pi � 1 must be mutu-
ally visible since we traced a ray to find pi � 1, so the visibility term is trivially one.
If we still sample the last vertex pi from some distribution over the surfaces of light
sources pA � pi � , our estimate is

P � p̄i � � Le � pi � pi � 1 �
pA � pi �

�
i � 1

∏
j � 1

f � pj � 1 � pj � pj � 1 � � cosθ j �
pω � pj � 1 � pj � � �

16.3.4 Implementation

Our path tracing implementation computes an estimate of the sum of path contri-
butions P � p̄i � using the approach described above. Starting at the first intersection
of the camera ray with the scene geometry, p1, we incrementally sample path ver-
tices by importance sampling the BSDF at the current vertex and tracing a ray to
the next vertex. To find the last vertex of a particular path, pi, which must be on
a light source in the scene, we will use the multiple importance sampling-based
direct lighting code that was developed for the direct lighting integrator. By using
the multiple importance sampling weights instead of pA � pi � to compute the esti-
mate as described above, we will have lower variance in the result for cases where
sampling the BSDF would have been a better way to find a point on the light.

Another small difference is that as we are evaluating the estimates of the path
contribution terms P � p̄i � , we will re-use the vertices of the previous path of length
i � 1 (except the vertex on the emitter) as a starting point when constructing the
path of length i. This means that we just need to trace one more ray to construct
the new path, rather then i rays as we would if we started from scratch. Reusing
paths in this manner does introduce correlation among all of the P � p̄i � terms in the
sum, which slightly reduces the quality of the result. In practice this is more than
made up for by the improved overall efficiency due to tracing fewer rays.

Sample::Add1D() 240
Sample::Add2D() 240

Scene 8
SurfaceIntegrator 563

586 Light Transport [Ch. 16

�
path.cpp* ���
#include "lrt.h"
#include "transport.h"
#include "scene.h"�
PathIntegrator Declarations ��
PathIntegrator Method Definitions �

�
PathIntegrator Declarations ���
class PathIntegrator : public SurfaceIntegrator {
public:�

PathIntegrator Public Methods �
private:�

PathIntegrator Private Data �
};

We will use samples from the Sampler for random sampling at the first SAMPLE DEPTH
vertices of the path. After the first few bounces, the advantages of well-distributed
sample points are greatly reduced and we will just use uniform random numbers.
We need light and BSDF samples for multiple importance sampling for the direct
lighting calculation at each vertex of the path as well as BSDF samples for sam-
pling directions when generating the outgoing direction for finding the next vertex
of the path.�
PathIntegrator Method Definitions ���
void PathIntegrator::RequestSamples(Sample *sample,

const Scene *scene) {
for (int i = 0; i < SAMPLE_DEPTH; ++i) {

lightPositionOffset[i] = sample->Add2D(1);
lightNumOffset[i] = sample->Add1D(1);
bsdfDirectionoffset[i] = sample->Add2D(1);
bsdfComponentOffset[i] = sample->Add1D(1);
outgoingDirectionOffset[i] = sample->Add2D(1);
outgoingComponentOffset[i] = sample->Add1D(1);

}
}

�
PathIntegrator Private Data ���
#define SAMPLE_DEPTH 3
int lightPositionOffset[SAMPLE_DEPTH];
int lightNumOffset[SAMPLE_DEPTH];
int bsdfDirectionoffset[SAMPLE_DEPTH];
int bsdfComponentOffset[SAMPLE_DEPTH];
int outgoingDirectionOffset[SAMPLE_DEPTH];
int outgoingComponentOffset[SAMPLE_DEPTH];

Each time through the for loop of the integrator, we find the next vertex of
the path by intersecting the current ray with the scene geometry and compute the
contribution of the path to the overall radiance value with the direct lighting code.
We then choose a new direction from the last vertex of the path to update the ray to
be traced the next time through the loop. After a few vertices have been sampled,
we start using Russian roulette to randomly terminate the path.

Sec. 16.3] Path Tracing 587

586 PathIntegrator
37 RayDifferential
8 Scene

181 Spectrum

�
PathIntegrator Method Definitions ��� �
Spectrum PathIntegrator::L(const Scene *scene,

const RayDifferential &r, const Sample *sample,
Float *alpha) const {�

Declare common path integration variables �
for (int pathLength = 0; ; ++pathLength) {�

Find next vertex of path ��
Possibly add emitted light at path vertex ��
Evaluate BSDF at hit point ��
Sample illumination from lights to find path contribution ��
Sample BSDF to get new path direction ��
Possibly terminate the path �

}
return L;

}

Four variables record the current state of the path. pathThroughput holds the
product of the BSDF values and cosine terms for the vertices generated so far,
divided by their respective sampling pdfs,

i � 1

∏
j � 1

f � pj � 1 � pj � pj01 � � cos θ j �
pω � pj � 1 � pj � �

Thus, the product of pathThroughput with scattered light from direct lighting
at the final vertex of the path gives the contribution for that overall path. One
advantage of this approach is that we don’t need to store the positions and BSDFs
of all of the vertices of the path, only the last one. L holds the radiance value from
the running total of ∑P � p̄i � that we are computing, and ray holds the next ray to
be traced to extend the path one more vertex. Finally, specularBounce records if
the last outgoing path direction sampled was due to specular reflection; the need to
record this will be explained shortly.�
Declare common path integration variables ���
Spectrum pathThroughput = 1., L = 0.;
RayDifferential ray(r);
bool specularBounce = false;

Because of the loop invariant that ray has been initialized to be the ray to be
traced to find the next path vertex, our task here is quite easy. If no intersection
is found along the given ray, we stop processing this path. The fragment

�
Stop

path sampling since no intersection was found � , not included here, does some final
cleanup and breaks out of the loop. If we did find an intersection, and if this is the
first vertex of the path after the point on the film plane, we also need to initialize the
alpha output variable and the maxt variable of the ray that was originally passed
to PathIntegrator::L().

BSDF::dgShading 370
DifferentialGeometry::p 58

Intersection 131
Intersection::Le() 132

Normal 34
PathIntegrator::bsdfComponentOffset 586
PathIntegrator::bsdfDirectionoffset 586

PathIntegrator::lightNumOffset 586
PathIntegrator::lightPositionOffset 586

Point 33
Ray::d 35

Ray::maxt 36
Scene::Intersect() 14

UniformSampleOneLight() 566
Vector 27

588 Light Transport [Ch. 16

�
Find next vertex of path ���
Intersection isect;
if (!scene->Intersect(ray, &isect)) {�

Stop path sampling since no intersection was found �
break;

}
if (pathLength == 0) {

r.maxt = ray.maxt;
if (alpha) *alpha = 1.;

}

We only include emission at a vertex that happened to hit an emitting object at
the first intersection point since that isn’t handled by any other sampling method or
if the previous bounce was due to specular reflection. In other words, we need to
ignore any emission from vertices in the path that aren’t explicitly sampled as part
of the direct lighting computation, unless the previous bounce was due to specular
reflection, because the direct lighting code ignores any specular components of the
BSDF, leaving the integrator to handle them on its own instead.�
Possibly add emitted light at path vertex ���
if (pathLength == 0 || specularBounce)

L += pathThroughput * isect.Le(-ray.d);

The direct lighting computation uses of the UniformSampleOneLight() func-
tion, which gives us an estimate of the reflected radiance from the BSDF at the
vertex at the end of the current path. Scaling this value by the running product of
the path contribution gives the overall contribution to the total radiance estimate.�
Sample illumination from lights to find path contribution ���
const Point &p = bsdf->dgShading.p;
const Normal &n = bsdf->dgShading.nn;
Vector wo = -ray.d;
if (pathLength < SAMPLE_DEPTH)

L += pathThroughput *
UniformSampleOneLight(scene, p, n, wo, bsdf, sample,

lightPositionOffset[pathLength],
lightNumOffset[pathLength],
bsdfDirectionoffset[pathLength],
bsdfComponentOffset[pathLength]);

else
L += pathThroughput *

UniformSampleOneLight(scene, p, n, wo, bsdf, sample);

And now we need to sample the BSDF at the end of the current path to get an
outgoing direction from this vertex for the next ray to trace. The

�
Get random

numbers for sampling new direction, bs1, bs2, and bcs � fragment, not included
here, gets three sample values, either from sample if the current path length is
less than SAMPLE DEPTH or using ‘[RandomFloat()]RandomFloat() otherwise.
BSDF::Sample f() uses the first two, bs1 and bs2 to select a direction from a
single BxDF’s distribution, and bcs to choose which of potentially multiple BxDFs
to sample. We update the path throughput as described earlier and initialize ray

Sec. 16.4] ***ADV***: Bidirectional Path Tracing 589

540 BSDF::Sample f()
334 BSDF ALL
334 BSDF SPECULAR
334 BxDFType
679 RandomFloat()
37 RayDifferential

181 Spectrum
182 Spectrum::Black()
27 Vector

with the ray to be traced to find the next vertex the next time we go through the for
loop.�
Sample BSDF to get new path direction ����

Get random numbers for sampling new direction, bs1, bs2, and bcs �
Vector wi;
Float pdf;
BxDFType flags;
Spectrum f = bsdf->Sample_f(wo, &wi, bs1, bs2, bcs,

&pdf, BSDF_ALL, &flags);
if (f.Black() || pdf == 0.)

break;
specularBounce = (flags & BSDF_SPECULAR);
pathThroughput *= f * AbsDot(wi, n) / pdf;
ray = RayDifferential(p, wi);

Path termination kicks in after a few bounces, with a fixed termination prob-
ability for all additional bounces. If the path isn’t terminated, we can update
pathThroughput with the Russian roulette weight and all subsequent P � p̄i � terms
will be appropriately affected by the weight.�
Possibly terminate the path ���
if (pathLength > 3) {

Float continueProbability = .5f;
if (RandomFloat() > continueProbability)

break;
pathThroughput /= continueProbability;

}

� � ��� ����� � � ��������� � � � � � ��� � � � � � � ���� � � ��� � � �

XXX incorporate In lrt,since we don’t explicitly model the camera geometry
as part of the scene, there is no way to generate a path from a light to the film
without explicitly sampling a point on the film anyway. Though this slightly limits
the ways in which we can generate paths p̄ , it’s usually a minor loss in practice
(XXX explain better XXX).�
bidirectional.cpp* ���
#include "lrt.h"
#include "transport.h"
#include "scene.h"
#include "mc.h"�
Bidirectional Local Declarations ��
Bidirectional Method Definitions �
The path tracing algorithm described in the previous section was the first general

light transport algorithm in graphics, handling both a wide variety of geometric
objects as well as area lights and general BSDF models. Although it works well
for many scenes, it can exhibit high variance in the presence of particular tricky
lighting conditions. For example, consider the setting shown in Figure 16.7; a light
source is illuminating a small area on the ceiling, such that the rest of the room

590 Light Transport [Ch. 16

Figure 16.7:

is only illuminated by indirect lighting bouncing from that area. If we only trace
paths starting from the eye, we will almost never happen to sample a vertex in the
illuminated region before we trace a shadow ray to the light. Most of the paths will
have no contribution, while a few of them–the ones that happen to hit the small
region on the ceiling–will have a large contribution. The resulting image will have
high variance.

Difficult lighting settings like this can be handled more effectively by construct-
ing paths that start from the eye on one end, from the light on the other end, and
are connected in the middle with a visibility ray. This bidirectional path tracing
algorithm is a generalization of the standard path tracing algorithm; for the same
amount of computation, it can give substantially lower variance. XXX say some-
thing about adjoint algorithms in general XXX

XXX p0 versus p1 XXX
The path integral LTE makes it easy to understand how to construct a bidirec-

tional algorithm. As with standard path tracing, the first vertex, p1, is found by
computing the first intersection along the camera ray, and the last vertex is found
by sampling a point on a light source in the scene. Here we will label the last vertex
as q1, so that we can construct a path of not-initially-determined length “backward”
from the light.

In the basic bidirectional algorithm, we go forward from the eye to create a sub-
path p1 � p2 � ����� � pi and backward from the light to compute a subpath q1 � q2 � ����� � qj.
Each sub-path is usually computed incrementally by sampling the BSDF at the
previous vertex, though other sampling approaches can be used in the same way as
was described for standard path tracing. (Weights for each vertex are computed in
the same manner as well.) In either case, in the end, we have a path

p̄ � p1 � ����� � pi � qj � ����� � q1 �
We need to trace a shadow ray between pi and qj to make sure they are mutually
visible; if so, the path carries light from the light to the camera and we can evaluate
the path’s contribution directly.

There are three refinements to the basic algorithm that improve its performance
in practice. The first two are analogous to improvements made to path tracing.

� First, we will re-use sub-paths: given a path p1 � ����� � pi � qj � ����� � q1, we will
evaluate transport over all of the paths generated by connecting all the vari-
ous combinations of prefixes of the two paths together. If the two paths have

Sec. 16.4] ***ADV***: Bidirectional Path Tracing 591

563 SurfaceIntegrator

i and j vertices, respectively, then a total of i ����� j unique paths can be con-
structed from them, ranging in length from 2 to i � j vertices long. XXX
number of paths of length n � � � � XXX. Each such path built this way only
requires that a visibility check be performed by tracing a shadow ray between
the last vertices of each of the sub-paths.

� The second optimization is to ignore the paths generated in the path-reuse
stage that only use one vertex from the light sub-path and instead to use
the optimized direct lighting code that we developed for the direct lighting
integrator. This gives a lower-variance result than using the vertex on the
light sampled for the light sub-path, since it allows us to both use multiple
importance sampling with the BSDF and to use stratified sampling patterns.

� The third optimization, left as an exercise, is to use multiple importance sam-
pling to re-weight paths. Recall the example of a light pointed up at the ceil-
ing, indirectly illuminating a room. As described so far, bidirectional path
tracing will improve the result substantially by greatly reducing the number
of paths with no contribution, since the paths from the light will be effective
at finding those light transport routes. However, the image will still suffer
from variance due to paths with excessively large contributions, for example
from paths from the eye that happened to find the bright spot in the ceiling.
We can apply MIS, recognizing that for a path with n vertices, there are ac-
tually n � 1 ways we could generate a path with that length–e.g. a 4 vertex
path could have been built from one eye vertex and three light vertices, two
of each kind of vertex, or three eye vertices and one light vertex. Given a
particular path sampled in a particular way, we can compute the weights for
each of the other ways the path could have been generated and apply the
balance heuristic.

�
Bidirectional Local Declarations ��� �
class BidirIntegrator : public SurfaceIntegrator {
public:�

BidirIntegrator Public Methods �
private:�

BidirIntegrator Private Methods ��
BidirIntegrator Data �

};

BidirIntegrator 591
RayDifferential 37
Sample::Add1D() 240
Sample::Add2D() 240

Scene 8
Spectrum 181

592 Light Transport [Ch. 16

�
Bidirectional Method Definitions ���
void BidirIntegrator::RequestSamples(Sample *sample, const Scene *scene) {

for (int i = 0; i < MAX_VERTS; ++i) {
eyeBSDFOffset[i] = sample->Add2D(1);
eyeBSDFCompOffset[i] = sample->Add1D(1);
lightBSDFOffset[i] = sample->Add2D(1);
lightBSDFCompOffset[i] = sample->Add1D(1);
directLightOffset[i] = sample->Add2D(1);
directLightNumOffset[i] = sample->Add1D(1);
directBSDFOffset[i] = sample->Add2D(1);
directBSDFCompOffset[i] = sample->Add1D(1);

}
lightNumOffset = sample->Add1D(1);
lightPosOffset = sample->Add2D(1);
lightDirOffset = sample->Add2D(1);

}
�
BidirIntegrator Data ���
#define MAX_VERTS 4
int eyeBSDFOffset[MAX_VERTS], eyeBSDFCompOffset[MAX_VERTS];
int lightBSDFOffset[MAX_VERTS], lightBSDFCompOffset[MAX_VERTS];
int directLightOffset[MAX_VERTS], directLightNumOffset[MAX_VERTS];
int directBSDFOffset[MAX_VERTS], directBSDFCompOffset[MAX_VERTS];
int lightNumOffset, lightPosOffset, lightDirOffset;

�
Bidirectional Method Definitions ��� �
Spectrum BidirIntegrator::L(const Scene *scene,

const RayDifferential &ray,
const Sample *sample, Float *alpha) const {

Spectrum L(0.);�
Generate eye and light sub-paths ��
Connect bidirectional path prefixes and evaluate throughput �
return L;

}

XXX should use sample here, etc...�
Generate eye and light sub-paths ���
BidirVertex eyePath[MAX_VERTS], lightPath[MAX_VERTS];
int nEye = generatePath(scene, ray, sample, eyeBSDFOffset,

eyeBSDFCompOffset, eyePath, MAX_VERTS);
if (nEye == 0) {

*alpha = 0.;
return L;

}
*alpha = 1;�
Choose light for bidirectional path ��
Sample ray from light source to start light path �
int nLight = generatePath(scene, lightRay, sample, lightBSDFOffset,

lightBSDFCompOffset, lightPath, MAX_VERTS);

Sec. 16.4] ***ADV***: Bidirectional Path Tracing 593

592 BidirIntegrator::eyeBSDFCompOffset
592 BidirIntegrator::eyeBSDFOffset
594 BidirIntegrator::generatePath()
592 BidirIntegrator::lightBSDFCompOffset
592 BidirIntegrator::lightBSDFOffset
592 BidirIntegrator::lightDirOffset
592 BidirIntegrator::lightPosOffset
370 BSDF
334 BxDFType
478 Light
542 Light::Sample L()
34 Normal
33 Point
36 Ray

241 Sample::oneD
241 Sample::twoD

9 Scene::lights
181 Spectrum
27 Vector

�
Choose light for bidirectional path ���
int lightNum = Floor2Int(sample->oneD[lightNumOffset][0] *

scene->lights.size());
lightNum = min(lightNum, (int)scene->lights.size() - 1);
Light *light = scene->lights[lightNum];
Float lightWeight = Float(scene->lights.size());

XXX use good sample pattern here XXX�
Sample ray from light source to start light path ���
Ray lightRay;
Float lightSampleWeight;
bool deltaLight;
Float u[4];
u[0] = sample->twoD[lightPosOffset][0];
u[1] = sample->twoD[lightPosOffset][1];
u[2] = sample->twoD[lightDirOffset][0];
u[3] = sample->twoD[lightDirOffset][1];
Spectrum Le = light->Sample_L(scene, u[0], u[1], u[2], u[3],

&lightRay, &lightSampleWeight, &deltaLight);
Le = lightWeight / lightSampleWeight;

�
Bidirectional Local Declarations ��� �
struct BidirVertex {

BidirVertex() { bsdfWeight = dAWeight = 0.; rrWeight = 1.;
flags = BxDFType(0); bsdf = NULL; }

BSDF *bsdf;
Point p;
Normal ng, ns;
Vector wi, wo;
Float bsdfWeight, dAWeight, rrWeight;
BxDFType flags;

};
�
Bidirectional Method Definitions ��� �
int BidirIntegrator::generatePath(const Scene *scene, const Ray &r,

const Sample *sample, const int *bsdfOffset,
const int *bsdfCompOffset,
BidirVertex *vertices, int maxVerts) const {

int nVerts = 0;
RayDifferential ray(r.o, r.d);
while (nVerts < maxVerts) {�

Find next vertex in path and initialize vertices �
++nVerts;�
Possibly terminate bidirectional path sampling ��
Initialize ray for next segment of path �

}�
Initialize additional values in vertices �
return nVerts;

}

AbsDot() 31
BidirIntegrator 591

BidirIntegrator::evalPath() 595
BidirIntegrator::weightPath() 595

BidirVertex 593
BidirVertex::bsdf 593
BidirVertex::ng 593
BidirVertex::ns 593
BidirVertex::p 593

BidirVertex::wi 593
BSDF::dgShading 370
BSDF::Sample f() 540

BSDF ALL 334
DifferentialGeometry::p 58

DistanceSquared() 34
Intersection 131

Intersection::dg 131
RandomFloat() 679

Ray 36
Ray::d 35
Ray::o 35

RayDifferential 37
Sample::oneD 241
Sample::twoD 241

Scene 8
Scene::Intersect() 14

Spectrum 181
Spectrum::Black() 182

594 Light Transport [Ch. 16

�
Find next vertex in path and initialize vertices ���
Intersection isect;
if (!scene->Intersect(ray, &isect))

break;
BidirVertex &v = vertices[nVerts];
v.bsdf = isect.GetBSDF(ray); // do before Ns is set!
v.p = isect.dg.p;
v.ng = isect.dg.nn;
v.ns = v.bsdf->dgShading.nn;
v.wi = -ray.d;

�
Possibly terminate bidirectional path sampling ���
if (nVerts > 2) {

Float rrProb = .2f;
if (RandomFloat() > rrProb)

break;
v.rrWeight = 1.f / rrProb;

}
�
Initialize ray for next segment of path ���
Float u1 = sample->twoD[bsdfOffset[nVerts-1]][0];
Float u2 = sample->twoD[bsdfOffset[nVerts-1]][1];
Float u3 = sample->oneD[bsdfCompOffset[nVerts-1]][0];
Spectrum fr = v.bsdf->Sample_f(v.wi, &v.wo, u1, u2, u3,

&v.bsdfWeight, BSDF_ALL, &v.flags);
if (fr.Black())

break;
ray = RayDifferential(v.p, v.wo);

Should cache brdf and g terms, etc...�
Initialize additional values in vertices ���
for (int i = 0; i < nVerts-1; ++i)

vertices[i].dAWeight = vertices[i].bsdfWeight *
AbsDot(-vertices[i].wo, vertices[i+1].ng) /
DistanceSquared(vertices[i].p, vertices[i+1].p);

�
Connect bidirectional path prefixes and evaluate throughput ���
Spectrum directWt(1.0);
for (int i = 1; i <= nEye; ++i) {�

Handle direct lighting for bidirectional integrator �
for (int j = 1; j <= nLight; ++j)

L += Le * evalPath(scene, eyePath, i, lightPath, j) /
weightPath(eyePath, i, lightPath, j);

}

Sec. 16.4] ***ADV***: Bidirectional Path Tracing 595

591 BidirIntegrator
596 BidirIntegrator::visible()
593 BidirVertex
373 BSDF::f()

8 Scene
181 Spectrum
182 Spectrum::Black()
27 Vector

�
Handle direct lighting for bidirectional integrator ���
directWt /= eyePath[i-1].rrWeight;
L += directWt *

UniformSampleOneLight(scene, eyePath[i-1].p, eyePath[i-1].ng, eyePath[i-1].wi,
eyePath[i-1].bsdf, sample, directLightOffset[i-1], directLightNumOffset[i-1],
directBSDFOffset[i-1], directBSDFCompOffset[i-1]) /
weightPath(eyePath, i, lightPath, 0);

directWt *= eyePath[i-1].bsdf->f(eyePath[i-1].wi, eyePath[i-1].wo) *
AbsDot(eyePath[i-1].wo, eyePath[i-1].ng) /
eyePath[i-1].bsdfWeight;

�
Bidirectional Method Definitions ��� �
Float BidirIntegrator::weightPath(BidirVertex *eye, int nEye,

BidirVertex *light, int nLight) const {
return Float(nEye + nLight);

}

XXX splatting for caustics, review indexing stuff carefully, etc...
XXX look out for specular stuff when we divide by weights!�

Bidirectional Method Definitions ��� �
Spectrum BidirIntegrator::evalPath(const Scene *scene, BidirVertex *eye, int nEye,

BidirVertex *light, int nLight) const {
Spectrum L(1.);
for (int i = 0; i < nEye-1; ++i)

L *= eye[i].bsdf->f(eye[i].wi, eye[i].wo) *
AbsDot(eye[i].wo, eye[i].ng) /
(eye[i].bsdfWeight * eye[i].rrWeight);

Vector w = light[nLight-1].p - eye[nEye-1].p;
L *= eye[nEye-1].bsdf->f(eye[nEye-1].wi, w) *

G(eye[nEye-1], light[nLight-1]) *
light[nLight-1].bsdf->f(-w, light[nLight-1].wi) /
(eye[nEye-1].rrWeight * light[nLight-1].rrWeight);

for (int i = nLight-2; i >= 0; --i)
L *= light[i].bsdf->f(light[i].wi, light[i].wo) *

AbsDot(light[i].wo, light[i].ng) /
(light[i].bsdfWeight * light[i].rrWeight);

if (L.Black())
return L;

if (!visible(scene, eye[nEye-1].p, light[nLight-1].p))
return 0.;

return L;
}

�
Bidirectional Method Definitions ��� �
Float BidirIntegrator::G(const BidirVertex &v0, const BidirVertex &v1) {

Vector w = (v1.p - v0.p).Hat();
return AbsDot(v0.ng, w) * AbsDot(v1.ng, -w) /

DistanceSquared(v0.p, v1.p);
}

BidirIntegrator 591
BidirVertex 593

DistanceSquared() 34
Point 33
Ray 36

RAY EPSILON 37
Scene 8

Vector 27
Vector::Hat() 30

596 Light Transport [Ch. 16

�
Bidirectional Method Definitions ��� �
bool BidirIntegrator::visible(const Scene *scene, const Point &P0,

const Point &P1) {
Ray ray(P0, P1-P0, RAY_EPSILON, 1.f - RAY_EPSILON);
return !scene->IntersectP(ray);

}

� � ��� � � � ��� � � �	��� � �	� �� � �
Even with bidirectional path tracing, for some scenes it can take a large num-

ber of rays (and corresponding compute time) to generate images without objec-
tionable noise. One approach to this problem has been the development of bi-
ased approaches to solving the LTE. These approaches generally reuse previously-
computed results over multiple estimates, even when the values used don’t estimate
the precise quantity that needs to be computed (for example, reusing an illumina-
tion value from a nearby point under the assumption that illumination is slowly
changing.) XXX make interpolation idea more clear. Irradiance caching, de-
scribed in this section, and photon mapping, described in the next, have been two
successful biased methods for light transport.

By introducing bias, these methods produce images without the high-frequency
noise artifacts that unbiased Monte Carlo techniques are prone to. They can often
do so using relatively little additional computation compared to basic techniques
like Whitted-style ray tracing. This efficiency comes at a price, however: one key
characteristic of unbiased Monte Carlo techniques is that variance decreases in a
predictable and well-characterized manner as more samples are taken. As such, if
an image was computed with an unbiased technique and has no noise, we can be
extremely confident that the image correctly represents the lighting in the scene.
With a biased solution method, however, error estimates aren’t well defined for
the approaches that have been developed so far; if the image doesn’t have visual
artifacts, it still may have substantial error. And given an image with artifacts,
increasing the sampling rate with a biased technique doesn’t necessarily eliminate
artifacts in a predictable way.

One of the first biased Monte Carlo light transport techniques that was devel-
oped is irradiance caching; it is based on the observation that while direct lighting
often changes rapidly from point to point (e.g. consider a hard shadow edge), in-
direct lighting is usually slowly changing in many environments. Therefore, if we
compute an accurate representation of indirect light at a sparse set of sample points
in the scene and then interpolate nearby samples to compute an approximate repre-
sentation of indirect light at any particular point being shaded, we can expect that
the error introduced by not recomputing indirect lighting everywhere shouldn’t be
too bad and can enjoy a substantial computational savings.

There are immediately two issues that must be addressed in the design of an
algorithm such as this one:

1. How do we represent and store the indirect lighting distribution after we have
computed it at a point?

2. How often do we compute accurate representations of indirect light, and how
often do we interpolate from already-existing samples?

Sec. 16.5] Irradiance Caching 597

In the irradiance caching algorithm, indirect lighting is computed on demand at
a subset of the points that are shaded (as opposed to in a pre-process) and stored
in a cache. When a point is being shaded, we first search the cache for one or
more acceptable nearby samples, using a set of error metrics to be described later
to determine if the already-existing samples are acceptable. In order to have a
compact representation of indirect light, this algorithm only stores the irradiance at
each point, rather than a directionally-varying radiance distribution, thus reducing
the light representation to just a single Spectrum.

Recall that irradiance arriving at one side of a surface with normal n is

E � p � n � � �
H 2 � n �

L � p � ωi � � cos θi � dωi �
It is in a sense a weighted average of incoming radiance at a point, giving a sense of
the aggregate illumination there. The reflection component of scattering equation,

Lo � p � ωo ��� �
H 2 � n �

Li � p � ωi � fr � p � ωo � ωi ��� cos θi � dωi �
If the surface is Lambertian, the BSDF is constant, and we have

Lo � p � ωo � � c �
H 2 � n �

Li � p � ωi ��� cos θi � dωi

� cE � p � n � �

where E � p � n � is the irradiance at the point p around the hemisphere centered
around the normal n, as defined in Equation 5.2.5. Thus, for perfectly diffuse
materials, the irradiance alone is enough information to exactly compute the re-
flection from the surface due to a particular incident lighting distribution. Thus,
another key assumption in the irradiance caching algorithm is that many of the sur-
faces in the scene are diffuse, or that other approaches will be used for the glossy
and specular components of the BSDF.

If the surface is nearly Lambertian (e.g. has the Oren–Nayar BRDF or a glossy
surface with a very wide specular lobe), we can instead view the irradiance caching
algorithm as making the approximation

Lo � p � ωo � �
� �

H 2 � n �
fr � p � ωo � ωi � dωi � � �

H 2 � n �
Li � p � ωi � � cosθi � dωi �� � πρdh � ωo � � E � p � n �

Where ρdh is the hemispherical-directional reflectance, introduced in Section 9.1.1.
This error in this approximation increases as the variation of either of the two inte-
grands increases. In particular, to the degree that if the incident light distribution is
uniform, or the BRDF is Lambertian, there is less error. (For example, consider
a perfectly specular surface, where only incident radiance from a single direc-
tion contributes to reflected radiance; using the irradiance and the hemispherical-
directional reflectance to compute reflection for such a BSDF incorrectly includes
the effect of radiance from all the other incident directions.)

SurfaceIntegrator 563

598 Light Transport [Ch. 16

�
irradiancecache.cpp* � �
#include "lrt.h"
#include "transport.h"
#include "scene.h"
#include "mc.h"
#include "octree.h"�
IrradianceCache Forward Declarations ��
IrradianceCache Declarations ��
IrradianceCache Method Definitions �

�
IrradianceCache Declarations ���
class IrradianceCache : public SurfaceIntegrator {
public:�

IrradianceCache Public Methods �
private:�

IrradianceCache Data ��
IrradianceCache Private Methods �

};

Our implementation takes parameters that give the maximum number of bounces
of indirect light and specular reflection that the integrator will account for. (We
use basic Whitted-style raytracing to account for perfect specular reflection.) The
maxError value will be used to control how frequently we reuse irradiance sam-
ples versus compute a new sample, and nSamples controls how many rays are
used to estimate the irradiance integral for each sample we compute. Finally,
specularDepth tracks the current ray depth as we recursively call the integrator
to account for multiply-scattered light.�
IrradianceCache Method Definitions ���
IrradianceCache::IrradianceCache(int maxspec, int maxind,

Float maxerr, int ns, int nf) {
maxError = maxerr;
nSamples = ns;
nFilter = min(nSamples-1, nf);
maxSpecularDepth = maxspec;
specularDepth = 0;

}
�
IrradianceCache Data ���
Float maxError;
int nSamples, nFilter;
int maxSpecularDepth;
mutable int specularDepth;

We’ll again reuse the direct lighting routines that were defined in the direct light-
ing integrator, so we will request that the Sampler provide us with an appropriate
set of sample values to be used for those calls.

XXX do one for each level up to max specular depth?? XXX Need to do this
elsewhere, too?

Sec. 16.5] Irradiance Caching 599

132 Intersection::Le()
598 IrradianceCache
598 IrradianceCache::maxSpecularDepth
598 IrradianceCache::specularDepth
240 Sample::Add1D()
240 Sample::Add2D()

8 Scene
9 Scene::lights

566 UniformSampleAllLights()
27 Vector

�
IrradianceCache Method Definitions ��� �
void IrradianceCache::RequestSamples(Sample *sample,

const Scene *scene) {
u_int nLights = scene->lights.size();
lightPositionOffset = sample->Add2D(nLights);
bsdfDirectionoffset = sample->Add2D(nLights);
bsdfComponentOffset = sample->Add1D(nLights);

}
�
IrradianceCache Data ��� �
int lightPositionOffset;
int bsdfDirectionoffset, bsdfComponentOffset;

We won’t include most of the irradiance cache’s L() method here, but will just
focus on its key two fragments,

�
Compute direct lighting for irradiance cache � and�

Compute indirect lighting for irradiance cache � .
For direct lighting, we use one of the functions from Section 16.1 to use multiple

importance sampling for the direct lighting estimate. We sample all of the lights
for the initial ray intersection and intersections from purely specular reflection to
give a good result for points that are directly visible. However, if this is a recursive
call to the IrradianceCache where we’re computing reflected radiance for one
of the sample rays that is being used to compute the irradiance estimate, we only
sample a single light source for greater efficiency for those rays. Because so many
rays are traced for a single irradiance estimate, the overall result is still reasonable.

Note also that we need to be careful to ignore emission from light sources that
indirect sample rays happen to intersect directly; this ensures that we don’t inad-
vertently include the effect of direct illumination in the irradiance estimate we are
computing, since it is only supposed to account for the effects of indirect lighting.�
Compute direct lighting for irradiance cache ���
L += isect.Le(wo);
L += UniformSampleAllLights(scene, p, n, wo, bsdf, sample,

lightPositionOffset, bsdfDirectionoffset, bsdfComponentOffset);

We also partition the BSDF for the indirect lighting computation. Perfect spec-
ular reflection is handled by sampling the BSDF and recursively calling the inte-
grator, just as the WhittedIntegrator does. The implementation here uses ir-
radiance caching for both the diffuse and glossy components of the BSDF, thus
introducing error for the glossy components. (An exercise at the end of the chapter
describes generalizing this integrator to sample from the glossy parts of the BSDF
and recursively call the integrator for those rays instead.)�
Compute indirect lighting for irradiance cache ���
if (specularDepth++ < maxSpecularDepth) {

Vector wi;�
Trace rays for specular reflection and refraction �

}
--specularDepth;�
Estimate indirect lighting with irradiance cache �
We need to handle reflection and transmission individually here, possibly com-

puting two independent irradiance values since the irradiance from the hemisphere

BSDF 370
BSDF::NumComponents() 371

BSDF::rho() 373
BSDF DIFFUSE 334
BSDF GLOSSY 334

BSDF REFLECTION 334
BSDF TRANSMISSION 334

BxDFType 334
Intersection::dg 131
IrradianceCache 598

IrradianceCache::InterpolateIrradiance() 605
Normal 34
Point 33
Scene 8

Spectrum 181
Vector 27

600 Light Transport [Ch. 16

H 2 � n � , which is needed for reflective surfaces, and the hemisphere H 2 � � n � ,
which is needed for transmissive surfaces, are completely different. The IndirectReflectedL()
method handles either case, interpolating a value using the cache or computing a
new value if necessary. We will reorient the normal here so that it points in the
same hemisphere that the ωo vector is in; IndirectReflectedL() depends on
this convention when it generates sample rays over the hemisphere, since it will
ensure that all of these rays are in the same hemisphere as n.�
Estimate indirect lighting with irradiance cache ���
Normal ng = isect.dg.nn;
if (Dot(wo, ng) < 0.f) ng = -ng;
BxDFType flags = BxDFType(BSDF_REFLECTION | BSDF_DIFFUSE | BSDF_GLOSSY);
L += IndirectReflectedL(p, ng, wo, bsdf, flags, sample, scene);
flags = BxDFType(BSDF_TRANSMISSION | BSDF_DIFFUSE | BSDF_GLOSSY);
L += IndirectReflectedL(p, -ng, wo, bsdf, flags, sample, scene);

XXX think we need a π factor in final mult, but apparently not? Review
rho computations again... Lambertian vs. Oren Nayar, etc.. XXX

If the InterpolateIrradiance() method isn’t able to find enough nearby ir-
radiance samples of good enough quality, we go ahead and compute a new sample
and add it to the cache.�
IrradianceCache Method Definitions ��� �
Spectrum IrradianceCache::IndirectReflectedL(const Point &p,

const Normal &n, const Vector &wo, BSDF *bsdf,
BxDFType flags, const Sample *sample,
const Scene *scene) const {

if (bsdf->NumComponents(flags) == 0) return Spectrum(0.);
Spectrum E;
if (!InterpolateIrradiance(scene, p, n, &E)) {�

Compute irradiance at current point ��
Add computed irradiance value to cache �

}
return E * bsdf->rho(wo, flags);

}

Before describing how irradiance values are stored, looked-up, and interpolated,
first we’ll discuss how new estimates are computed; this will make more clear how
some of the details of reuse work later. We need to estimate the value of the integral

E � p � n � � �
H 2 � n �

Li � p � ωi ��� cos θi � dωi � (16.5.4)

Because there is no easy available way to importance sample based on the dis-
tribution of incident radiance, we will just use a cosine weighted distribution of
directions. We are then faced with the problem of computing the amount of ra-
diance along each one Li � p � ωi � . This is naturally handled with a recursive call
to IrradianceCache::L() via Scene::L(). Because we need to account for
indirect illumination at intersection points from these rays, we will again have irra-
diance cache lookups there and possibly new irradiance estimates to be computed.

We are thus de facto computing each radiance value with a forward path-tracing
algorithm, using the irradiance cache for indirect illumination at each vertex. We

Sec. 16.5] Irradiance Caching 601

370 BSDF
598 IrradianceCache::nSamples
586 PathIntegrator
248 RandomUInt()
181 Spectrum
658 vector

could alternatively have used standard path tracing without irradiance caching, or
even bidirectional path tracing to compute these values. The improved robustness
from using bidirectional path tracing (for example, for indirect lighting due to a
spotlight shining at a small area on a ceiling) to compute these values would be a
good improvement to the basic algorithm we have implemented here.

Before we start tracing rays to compute the irradiance estimate, we initialize a
pair of random values to use to scramble the two dimensions of a low-discrepancy
point sequence that we will map to cosine-weighted directions over the hemi-
sphere. (See Section 7.5.3 for an explanation of how we randomly scramble point
sequences so that we use a different set of sample values each time, while still
preserving the good distribution properties of the point set.) We also initialize the
sumInvDists variable to zero; it accumulates the sum of one over the distance
each sample ray travels before intersecting an object; we will use this value later to
help estimate how widely reusable the irradiance estimate is.�
Compute irradiance at current point ���
u_int scramble[2] = { RandomUInt(), RandomUInt() };
Float sumInvDists = 0.;
vector<Spectrum> Lirrad;
for (int i = 0; i < nSamples; ++i) {�

Trace ray to sample radiance for irradiance estimate �
}�
Filter radiance values and compute irradiance estimate �
To compute the irradiance estimate, we will use the standard Monte Carlo esti-

mator

E � p � n � � 1
N ∑

j

Li � p � ω j � � cos θ j �
p � ω j � �

Because we are generating rays with a cosine weighted distribution, p � ω ��� cosθ
�
π,

so we have
1
N ∑

j

Li � p � ω j � � cosθ j �� cos θ j � �
π � π

N ∑
j

Li � p � ω j � �
CosineSampleHemisphere() returns a direction in the canonical reflection co-

ordinate system, with the normal direction mapped to the � z axis, based on a 2D
sample value from a randomized low-discrepancy � 0 � 2 � -sequence, as introduced in
Section 7.5. To get a world-space ray direction, we can use the convenient method
LocalToWorld() method from the BSDF class. Finally, we may need to flip the
ray around so that it lies in the same hemisphere as the normal that was passed in.
The radiance along the sample ray is computed with path tracing. The fragment
that does this computation,

�
Do path tracing to compute radiance along ray for

estimate � , is not included here, since it is essentially the same as the code in the
PathIntegrator.

BSDF::LocalToWorld() 372
CosineSampleHemisphere() 517

Ray 36
Ray::maxt 36

RAY EPSILON 37
RayDifferential 37

Sample02Net() 262
Vector 27

602 Light Transport [Ch. 16

�
Trace ray to sample radiance for irradiance estimate ����

Update irradiance statistics for rays traced �
Float u[2];
Sample02Net(i+1, scramble, u);
Vector w = CosineSampleHemisphere(u[0], u[1]);
RayDifferential r(Ray(p, bsdf->LocalToWorld(w), RAY_EPSILON));
if (Dot(r.d, n) < 0) r.d = -r.d;�
Do path tracing to compute radiance along ray for estimate �
sumInvDists += 1.f / (r.maxt * r.d.Length());

Figure XXX shows an image of the Sponza atrium scene, rendered with the
irradiance caching integrator. Something as clearly gone wrong, since the bright
splotchy artifacts are not expected given the model and lighting environment. In-
vestigation showed that the unexpectedly bright irradiance estimates have roughly
five times as much energy as their neighbors others, but that this variation wasn’t
due to variance due to too few rays being traced–4,096 were used for the irradiance
estimates in the figure, which should have been plenty.

The root cause of the bright irradiance estimates was that the reflectances of sur-
faces in this model are unexpectedly high–around 0.9, which is higher to the max-
imum reflectance ever seen in realistic materials, which is roughly 0.8 for bright
white paint. Rock surfaces like these would be expected to have a much lower re-
flectance. Due to the Russian roulette algorithm used for path termination, the path
throughput of surviving paths tends to grow larger with successive bounces: for ex-
ample, assuming diffuse surfaces, cosine-weighted sampling, and Russian roulette
with a path termination of 0.5 starting after the third bounce, the path throughput
for an i bounce path will be

0 � 9i

0 � 5i � 3 �
For a fifteen bounce path, this value is roughly 843. If the randomness in the
Russian roulette computations work out so that a handful of paths for a particular
estimate are this long and if a number of them are able to see the light source, the
estimate has the potential to have a much larger value than a neighboring estimate
where paths happened to be terminated sooner.

From a strict Monte Carlo perspective, there is no bug in the code; while the
blotches are unsightly, they only reflect variance in the estimator. The bright es-
timates are no more wrong than the rest of the estimates. This is a slightly un-
satisfying argument, as is the claim that the splotches reflect an error in the scene
description and that light transport in scenes with high reflectance like this one isn’t
important to handle well.

One solution to this problem would be to adjust the Russian roulette algorithm,
for example by using a lower termination probability. Alternatively, paths could
just be terminated without question after a particular number of bounces. Instead,
we will solve this problem here by adding a bit more bias to the algorithm. A direct
solution to the bright splotches is to simply ignore very bright radiance values from
the rays used to compute the irradiance estimate; if one is many times brighter than
all of the others, it is likely that it represents a high variance spike. Here, we
will optionally ignore the k brightest radiance values, where k is a user-supplied
parameter. The application of techniques like these to rendering is often called

Sec. 16.5] Irradiance Caching 603

598 IrradianceCache::maxError
598 IrradianceCache::nSamples
605 IrradianceCache::octree
605 IrradianceSample
678 M PI
682 Octree::Add()

filtering, since they were first applied to filtering pixels in images with very high
values due to variance spikes.

Fortunately, there are linear-time partition algorithms that take an unsorted array
of n values and reorder them such that the kth element of the array holds the kth
largest value, all smaller values are placed before the kth entry and all larger values
are after it. The C++ standard library’s nth element() function does just this.�
Filter radiance values and compute irradiance estimate ���
if (nFilter > 0)

std::nth_element(&Lirrad[0], &Lirrad[nSamples-nFilter], &Lirrad[nSamples]);
for (int i = 0; i < nSamples - nFilter; ++i)

E += Lirrad[i];
E *= M_PI / Float(nSamples - nFilter);

The bottom image in Figure XXX shows the result of ignoring the 8 brightest
radiance values out of the 4,096 used for computing irradiance estimates; the result
is substantially more visually acceptable.

So that we can efficiently search for all of the already-computed irradiance es-
timates around a point in the scene, we use an octree data structure to store the
estimates. The Octree template class, which is described in Appendix A.5, recur-
sively splits a given bounding box into subregions, refining the current region into
eight sub-regions at each level of the tree by dividing the box in half at the mid point
of its extent along the x, y, and z axes. Each irradiance estimate has an axis-aligned
bounding box associated with it, giving the overall area for which it may be a valid
sample. The octree uses the extent of this box as a guide for an appropriate level
of refinement at which to store the sample. Later, given a point to lookup nearby
irradiance samples for, the octree just needs to traverse the nodes that the point is
inside (and there is one such node at each level of the tree) and provide the samples
overlapping those nodes to be considered for interpolation (see Figure 16.8).

If the user set the maxError parameter to zero, we don’t bother storing the sam-
ple in the octree and instead recompute the irradiance at each point in the scene.
Otherwise, we compute a maximum region of influence that the irradiance estimate
could potentially contribute to and provide this to the octree.�
Add computed irradiance value to cache ����

Update statistics for new irradiance sample �
if (maxError > 0.) {�

Compute bounding box of irradiance sample’s contribution region �
octree->Add(IrradianceSample(E, p, n, maxDist),

sampleExtent);
}

Having taken a set of radiance samples, we’d like to estimate over how wide an
area we can reuse the irradiance at other points without introducing too much error.
For example, indirect irradiance at a point in the middle of the ceiling of a room
is likely to be changing more slowly as a function of position than it is at the edge
of the ceiling where the wall meets it. In general, the more objects that are close
to the sample point, the greater potential there is for rapidly-changing irradiance.
Therefore, we compute the harmonic mean of the distance each of the sample rays

BBox 38
BBox::Expand() 40

Clamp() 677
IrradianceCache::nSamples 598

IrradProcess::maxError 606

604 Light Transport [Ch. 16

Figure 16.8: Example of irradiance sample storage in 2D (with a quadtree, rather
than an octree). Each irradiance sample, denoted by a dot, has a maximum distance
over which it potentially can contribute irradiance, denoted here by a circle. Sam-
ples are stored in the tree nodes that the overlap, and the tree is refined adaptively
so that each sample is stored in a small number of nodes. Given a point at which we
want to look up nearby irradiance estimates, here shown with an “x”, we just need
to traverse the tree nodes that the point overlaps, considering all of the irradiance
samples stored in these nodes.

travelled before intersecting an object,

N

∑N 1
�
di

�

where di is the distance that the ith ray travelled. This will serves as an upper bound
on the area of influence for the estimate.�
Compute bounding box of irradiance sample’s contribution region ���
static Float minMaxDist = .001 * powf(scene->WorldBound().Volume(), 1./3.);
static Float maxMaxDist = .125 * powf(scene->WorldBound().Volume(), 1./3.);
Float maxDist = nSamples / sumInvDists;
if (minMaxDist > 0.f)

maxDist = Clamp(maxDist, minMaxDist, maxMaxDist);
maxDist *= maxError;
BBox sampleExtent(p);
sampleExtent.Expand(maxDist);

Each irradiance estimate is represented by an instance of the IrradianceSample
structure, which just holds th relevant pieces of information. Its constructor, not in-
cluded here, initializes the member variables with the values passed to it.�
IrradianceCache Declarations ��� �
struct IrradianceSample {�

IrradianceSample Constructor �
Spectrum E;
Normal n;
Point p;
Float maxDist;

};

Sec. 16.5] Irradiance Caching 605

38 BBox
39 BBox::pMax
39 BBox::pMin

598 IrradianceCache
606 IrradProcess
608 IrradProcess::GetIrradiance()
607 IrradProcess::Successful()
34 Normal

681 Octree
685 Octree::Lookup()
33 Point
8 Scene

14 Scene::WorldBound()
181 Spectrum
27 Vector

The octree is allocated in the Preprocess() method since the scene is avail-
able to us then and we can find its overall extent, which is needed by the Octree
constructor. We expand the bound by a small amount in each direction so that
the octree can gracefully deal with the fact that some of the irradiance samples
and some of the lookup points will be marginally outside the scene bounds due to
floating-point error from ray intersection computations.�
IrradianceCache Method Definitions ��� �
void IrradianceCache::Preprocess(const Scene *scene) {

BBox wb = scene->WorldBound();
Vector delta = .01 * (wb.pMax - wb.pMin);
wb.pMin -= delta;
wb.pMax += delta;
octree = new Octree<IrradianceSample, IrradProcess>(wb);

}
�
IrradianceCache Data ��� �
mutable Octree<IrradianceSample, IrradProcess> *octree;

Now we can define the method that attempts t compute an interpolated irradi-
ance value at a point in the scene using cached values. Much of the work is done
by the Octree::Lookup() method, which traverses the nodes of the octree that
the given point is inside and calls a method of the IrradProcess object for each
IrradianceSample in each of these nodes. This IrradProcess method decides
if each sample is acceptable and accumulates the value of the interpolated result.�
IrradianceCache Method Definitions ��� �
bool IrradianceCache::InterpolateIrradiance(const Scene *scene,

const Point &p, const Normal &n, Spectrum *E) const {
if (!octree) return false;
IrradProcess proc(n, maxError);
octree->Lookup(p, proc);�
Update irradiance cache lookup statistics �
if (!proc.Successful()) return false;
*E = proc.GetIrradiance();
return true;

}

IrradProcess stores additional information about the point being shaded that
we’ll need for deciding whether irradiance samples can be used at that point as
well as information about the interpolated value that is being computed. Its con-
structor initializes n and maxError with the values passed in and zeros the rest of
its members.

IrradianceSample 605
IrradianceSample::maxDist 605

IrradianceSample::n 605
IrradianceSample::p 605

Normal 34
Point 33

Spectrum 181

606 Light Transport [Ch. 16

�
IrradianceCache Declarations ��� �
struct IrradProcess {�

IrradProcess Public Methods �
Normal n;
Float maxError;
mutable int nFound, samplesChecked;
mutable Float sumWt;
mutable Spectrum E;

};

This IrradProcess method is called for each IrradianceSample in an oc-
tree node that the lookup point is inside. It is given both the original point p that
was passed to Octree::Lookup() above as well as an irradiance sample from the
octree. It first performs a series of tests that may reject the sample as not being
acceptable. If the sample passes these tests, we compute a value that tries to ap-
proximate the error from using the sample at the shading point, which we compare
to the user-supplied error limit.�
IrradianceCache Method Definitions ��� �
void IrradProcess::operator()(const Point &p,

const IrradianceSample &sample) const {
++samplesChecked;�
Skip irradiance sample if surface normals are too different ��
Skip irradiance sample if it’s too far from the sample point ��
Skip irradiance sample if it’s in front of point being shaded ��
Compute estimate error term and possibly use sample �

}

If the surface normal of the lookup point and the normal used when computing
the irradiance estimate are substantially different (Figure 16.9, right), the hemi-
sphere of directions that determines their irradiance values will be different enough
that it’s unlikely that the sample will accurately represent the actual irradiance.�
Skip irradiance sample if surface normals are too different ���
if (Dot(n, sample.n) < 0.01f)

return;

We next make sure that the point being shaded isn’t too far from the sample.
This check is redundant given the way we compute the error metric below, but it
gives us an early out before the expensive square-root and division operations that
we will use there.�
Skip irradiance sample if it’s too far from the sample point ���
Float d2 = DistanceSquared(p, sample.p);
if (d2 > sample.maxDist * sample.maxDist)

return;

We next check to see if the irradiance sample is in front of the lookup point (see
Figure 16.9, left). If so, the sample might have a very large maxDist value, reflect-
ing an expected slowly-changing indirect irradiance, while the lookup point might
be close to a corner or other geometric feature that causes irradiance to actually be
changing more quickly there.

Sec. 16.5] Irradiance Caching 607

605 IrradianceSample::E
605 IrradianceSample::maxDist
605 IrradianceSample::n
605 IrradianceSample::p
606 IrradProcess::E
606 IrradProcess::n
606 IrradProcess::nFound
606 IrradProcess::sumWt
34 Normal

Figure 16.9: Rejection tests for samples in the irradiance cache.

�
Skip irradiance sample if it’s in front of point being shaded ���
Normal navg = sample.n + n;
if (Dot(p - sample.p, navg) > .01)

return;

If the sample has passed these four tests, we compute a numerical estimate of the
expected error from including the sample in our irradiance value. The expression
we use to do this is ad-hoc, but it captures the key ideas that erorr should increase
with distance between the sample and the point being shaded and should increase
as their normal vectors diverge. If this is less than the user-supplied error limit, we
compute a weight for this irradiance value, giving it more weight if its error is low,
and add the irradiance to a running sum of interpolated irradiances.�
Compute estimate error term and possibly use sample ���
Float err = sqrtf(d2) / (sample.maxDist * Dot(n, sample.n));
if (err < 1.) {

++nFound;
Float wt = (1.f - err) * (1.f - err);
E += wt * sample.E;
sumWt += wt;

}

When we are done traversing the octree and processing candidate samples, we
need to decide if we have computed an acceptable interpolated irradiance value
from the irradiance samples. We will require that at least three acceptable samples
were found; ensuring that multiple samples were used helps to smooth out the
result.�
IrradProcess Public Methods ��� �
bool Successful() {

return (sumWt > 0. && nFound > 0);
}

The final interpolated irradiance value is a weighted sum of the irradiance values
of the acceptable estimates,

E � ∑i wiEi

∑i wi
�

IrradProcess::E 606
IrradProcess::sumWt 606

Spectrum 181

608 Light Transport [Ch. 16

�
IrradProcess Public Methods ��� �
Spectrum GetIrradiance() const { return E / sumWt; }

� � ��� � � � � � � � � � ��� � � � � �	� � ��� � � � � �	��� � �
Photon mapping is another biased technique for solving the LTE. Unlike irradi-

ance caching, it handles both glossy and diffuse reflection well; perfectly specular
reflection is handled separately with recursive ray tracing. Photon mapping is one
of a family of particle tracing algorithms, which are based on the idea of con-
structing paths from the lights. At each vertex of the path, the amount of incident
illumination arriving at the vertex is recorded. After a certain number of these illu-
mination samples have been computed, a data structure that stores a representation
of the distribution of light in the scene is built, and at rendering time, this represen-
tation is used to compute values of measurements needed to compute the image.
Because the particle tracing step is decoupled from computing the measurements,
many measurements may be able to reuse the work done for a single particle path,
thus leading to more efficient rendering algorithms.

In this section, we will start by introducing a theory of particle tracing algo-
rithms and will discuss the conditions that must be fulfilled by a particle tracing
algorithm so that arbitrary measurements an be computed correctly using the par-
ticles created by the algorithm. We will then describe an implementation of a pho-
ton mapping integrator that uses particles to estimate illumination by interpolating
lighting contributions from particles around the point being shaded.

16.6.1 Theoretical basis for particle tracing

Particle tracing algorithms in computer graphics are typically explained in terms of
packets of energy being shot from the light sources in the scene that deposit energy
at surfaces they intersect before scattering in new directions. This is an intuitive
way of thinking about particle tracing, but the intuition that it provides doesn’t
make it easy to answer basic questions about how propagation and scattering affect
the particles. For example, does their contribution fall off with squared distance
like flux density? Which cosθ terms, if any, affect the particles after they scatter
from a surface?

In order to give a solid theoretical basis for particle tracing, we will describe
it with a framework introduced by Veach (Veach 1997, Appendix 4.A), which in-
stead interprets the stored particle histories as samples of the scene’s equilibrium
radiance distribution. Under certain conditions on the distribution and weights of
the particles, the particles can be used to compute estimates of nearly any measure-
ments based on the light distribution in the scene. In this framework, it is quite easy
to answer questions about the details of particle propagation like the ones above.

A particle tracing algorithm generates a set of N samples of illumination at
points pj, on surfaces in the scene

� pj � ω j � α j � �
where each sample records incident illumination from direction ω j and has some
weight α j associated with it. We would like to determine the conditions on the
weights such that we can use them to compute estimates of arbitrary measurements.

Sec. 16.6] Particle Tracing and Photon Mapping 609

Given an importance function We � p � ω � that describes the measurement to be
taken, the condition we would like to fulfill is that the particles should be distributed
and weighted such that using them to compute an estimate has the same expected
value as the measurement equation for the same importance function:

E � 1
N

N

∑
j � 1

α jWe � pj � ω j � � � �
A2
�

S2
We � p � ω � Li � p � ω � dAdω � (16.6.5)

For example, we might want to use the particles to compute the total flux on a
wall. Using the definition of flux,

Φ � �
Awall

�
H 2 � n �

Li � p � ω ��� cos θ � dAdω �

the corresponding importance function selects the particles that lie on the wall and
arrived from the hemisphere around the normal.

We � p � ω � � �
1 : p is on wall surface
0 : otherwise

� max � � ω � n � � 0 �
If the particle weights and distribution is true for arbitrary importance functions,
as in Equation 16.6.5, then our flux estimate can be computed directly as is just a
sum of the appropriate particle weights multiplied by the cos θ term. If we want to
estimate flux over a different wall, a subset of the original wall, etc., we only need
to recompute the weighted sum with an updated importance function; the particles
and weighs can be re-used.

To see how to generate and weight particles that fulfill these conditions, consider
the task of evaluating the measurement equation integral

�
A
�

S2
We � p0 � ω � L � p0 � ω � dωdA � p0 ���

�
A
�

A
We � p0 � p1 � L � p1 � p0 � G � p0 � p1 � dA � p0 � dA � p1 �

where the importance function that describes the measurement is a black box and
thus cannot be used to drive the sampling of the integral at all. We can still compute
an estimate of the integral, but must sample a set of points p0 and p1 from all of
the surfaces in the scene, using some sampling distribution that doesn’t depend on
We (e.g. by uniformly sampling points by surface area). Expanding the LTE in the
integrand and applying the standard Monte Carlo estimator for N samples, we can
find the estimator for the measurement

E � 1
N

N

∑
i � 1

We � pi � 0 � pi � 1 � �
L � pi � 1 � pi � 0 � G � pi � 0 � pi � 1 �

p � pi � 0 � p � pi � 1 � � � �
We can further expand out the L term into the sum over paths and use the fact that

E � ab � � E � aE � b � � . For a particular sample, the expected value E � L � pi � 1
� �

pi � 0
� can be

written as a finite sum of ni terms in just the same way that we generated a finite
set of weighted path vertices for path tracing. If the probability of continuing the
sum after j terms is qi � j , then the jth term of the ith sample has contribution

Le � pni � pni � 1 �
p � pni �

ni � 1

∏
j � 1

1
qi � j

f � pi � j � 1 � pi � j � pi � j � 1 � G � pi � j � 1 � pi � j �
p � pi � j � �

610 Light Transport [Ch. 16

Figure 16.10: photon particle history

Looking back at Equation 16.6.5, we can see that this value gives the appropriate
value of the particle weights.

αi � j � Le � pni � pni � 1 �
p � pni �

ni � 1

∏
j � 1

1
qi � j

f � pi � j � 1 � pi � j � pi � j � 1 � G � pi � j � 1 � pi � j �
p � pi � j � �

XXX review the p � p � stuff, general indexing, etc... XXXX
Mention joint distribution

� αp � α � p � ω � dα � L � p � ω �
Intuition about interplay between number of particles and their weights...

If we only had a single measurement to make, it would be better if we used
information about We and could compute the estimate more intelligently, since
the general particle tracing approach described here may generate many useless
samples if We only covers a small subset of the points on scene objects. If we
will be computing many measurements, however, the key advantage that particle
tracing brings is that we can generate the samples and weights once, and can then
reuse them over a large number of measurements, potentially computing results
much more efficiently than if the measurements were all computed from scratch.

Note that we have the freedom to generate a set of particles with these weights
in all sorts of different ways; although the natural approach is to start from point on
lights and incrementally sample paths using the BSDFs at the path vertices, simi-
larly to how the path tracing integrator generates paths (starting here from the light,
rather than from the camera), we could generate them with any number of different
sampling strategies, so long as there was non-zero probability of generating a par-
ticle at any point where We was non-zero and the particle weights were computed
appropriately for the sampling distribution used.

XXX In tricky settings, can be tough to get enough photons to the part of the
scene you’re actually looking at... This is the flip side to the problem of finding
the small reflected light source on the ceiling when only tracing rays from the eye.
XXX

Sec. 16.6] Particle Tracing and Photon Mapping 611

563 SurfaceIntegrator

16.6.2 Photon Integrator

The photon mapping integrator traces particles into the scene as described above
and interpolates among particles to approximate the incident illumination at shad-
ing points. For consistency with other descriptions of the algorithm, we will refer
to particles generated for photon mapping as photons. We use a kd-tree data here
to store the photons; it allows us to quickly find the photons around the point being
shaded. The kd-tree is the photon map. Because the kd-tree is decoupled from the
scene geometry, this algorithm isn’t limited to a particular set of types of geomet-
ric representations. (In contrast to using a texture map defined over shapes’ � u � v �
parameterizations to store illumination, for instance.)

Photon mapping partitions the LTE in a number of different ways that make
it easier to adjust the solution quality. For example, particles from the lights are
characterized as being one of three types: direct illumination–light that has arrived
directly at a surface, without any scattering, caustic illumination–light that has ar-
rived at a non-specular surface after reflecting from one or more specular surfaces,
and indirect illumination, which covers all other types of illumination. Thanks to
this partitioning, the integrator has a fair amount of flexibility in how it estimates
reflected radiance. For instance, it might use the indirect and caustic photons to es-
timate reflection due to those modes of light transport, but sample the light sources
directly for direct illumination. As mentioned previously, this integrator also par-
titions the BSDF: perfect specular components are always handled with recursive
ray tracing, while either the photon maps or further Monte Carlo ray tracing is used
for the rest of it.�
photonmap.cpp* ���
#include "lrt.h"
#include "transport.h"
#include "scene.h"
#include "mc.h"
#include "kdtree.h"
#include "sampling.h"�
Photonmap Local Declarations ��
Photonmap Method Definitions �

�
Photonmap Local Declarations ��� �
class PhotonIntegrator : public SurfaceIntegrator {
public:�

PhotonIntegrator Public Methods �
private:�

PhotonIntegrator Private Methods ��
PhotonIntegrator Private Data �

};

Quite a few different parameters control the operation of the integrator. The
user must specify a desired number of photons of each type–caustic, direct, and
indirect–to store in each of the three types of photon map. More photons increases
the quality of results, but takes more time and memory. Because this integrator
interpolates nearby photons to estimate illumination at the shading point, the user
can also set how many photons are used for the interpolation. The more that are

612 Light Transport [Ch. 16

used, the smoother the illumination estimate will be, since a larger number of pho-
tons will be used to reconstruct it. If too many are used, the result will tend to be
too blurry, while too few gives a splotchy appearance. Usually 50 to 100 is a good
choice. Finally, the integrator can be configured to do a one-bounce sampling of
indirect illumination by sampling the BSDF and tracing rays, rather than using the
indirect photon map directly. This process, which will be described in more detail
later, is known as final gathering.

We won’t include the implementation of the PhotonIntegrator here, since it
just directly initializes its member variables from the parameters passed to it. Its
member variables are:

� nCausticPhotons, nDirectPhotons, and nIndirectPhotons give the to-
tal number of photons we’d like to store for each category of illumination
stored in the photon map.

� nLookup gives the total number of photons to try to use for the interpolation
step.

� maxDistSquared gives the maximum allowed squared distance from the
point being shaded to a photon that can be used for the interpolation there. If
its value is too large, we will waste time searching for nearby photons, while
if it’s too small, we may not be able to find nLookup nearby photons, leading
to an overly-splotchy result.

� specularDepth and maxSpecularDepth track the current and maximum
values of specular reflection, similarly to the Whitted integrator.

� directWithPhotons determines whether direct illumination is computed
with the photon map or by tracing shadow rays to sample the lights.

� finalGather controls if final gathering is used for indirect lighting rather
than using the indirect map directly; if true, gatherSamples controls the
number of samples taken.

�
PhotonIntegrator Private Data ���
u_int nCausticPhotons, nIndirectPhotons, nDirectPhotons;
u_int nLookup;
mutable int specularDepth;
int maxSpecularDepth;
Float maxDistSquared;
bool directWithPhotons, finalGather;
int gatherSamples;
int nFilter;

XXX here and elsewhere round 2D stuff to power of 2 for LD sampling
stuff? XXX

The PhotonIntegrator::RequestSamples() method is also quite similar to
the others and so is not included in the text; it requests samples for multiple im-
portance sampling for direct lighting, and, if final gathering has been enabled, a
well-distributed set of samples for sampling the BSDF for the final gather step.

Sec. 16.6] Particle Tracing and Photon Mapping 613

617 Photon
611 PhotonIntegrator

8 Scene
661 StatsCounter
658 vector

�
PhotonIntegrator Private Data ��� �
int lightPositionOffset;
int bsdfDirectionoffset, bsdfComponentOffset;
int gatherSampleOffset, gatherComponentOffset;

16.6.3 Building the photon maps

When the integrator’s Preprocess() method is called, we follow particle paths
through the scene until we have accumulated the desired number of particle histo-
ries to build the three photon maps. At each intersection of the path with an object,
a weighted photon is stored if the map for the corresponding type of illumination
is not yet full. Photon objects represent such an illumination sample; the contents
of this structure will be defined in a few pages.�
Photonmap Method Definitions ��� �
void PhotonIntegrator::Preprocess(const Scene *scene) {

if (scene->lights.size() == 0) return;
vector<Photon> causticPhotons, directPhotons, indirectPhotons;�
Initialize photon shooting statistics �
bool causticDone = (nCausticPhotons == 0);
bool directDone = (nDirectPhotons == 0);
bool indirectDone = (nIndirectPhotons == 0);
while (!causticDone || !directDone || !indirectDone) {

++nshot;�
Give up if we’re not storing enough photons ��
Trace a photon path and store contribution �

}
}

We keep track of the total number of paths generated in nshot. One one hand,
we may need to shoot many more photons than are stored, for example due to
photons that leave the scene without intersecting any objects. On the other hand,
each path may contribute multiple Photon sample values as it bounces around the
scene.�
Initialize photon shooting statistics ���
static StatsCounter nshot("Photon Map",

"Number of photons shot from lights");

If we find that we have generated many paths while storing few to no photons
of some types, we eventually give up and exit without creating the corresponding
kd-trees. (For example, this might happen if we were trying to populate a caustic
map but there weren’t any specular objects in the scene to create caustic paths.)�
Give up if we’re not storing enough photons ���
if (nshot > 500000 &&

(unsuccessful(nCausticPhotons, causticPhotons.size(), nshot) ||
unsuccessful(nDirectPhotons, directPhotons.size(), nshot) ||
unsuccessful(nIndirectPhotons, indirectPhotons.size(), nshot))) {

Error("Unable to store enough photons. Giving up.\n");
return;

}

BSDF 370
BSDF::FreeAll() 374

Light 478
RadicalInverse() 254

Scene::lights 9
Spectrum::Black() 182

614 Light Transport [Ch. 16

�
PhotonIntegrator Private Methods ���
static bool unsuccessful(int needed, int found, int shot) {

return (found < needed && (found == 0 || shot / found > 1000));
}

To create a new path, we start by sampling a ray from one of the lights in the
scene and then follow the path, recording particle intersections as it bounces around
the scene. The alpha variable is incrementally updated to store the path contribu-
tion at each vertex. After path termination, we free the BSDF memory allocated
for the path before going on to start the next one.�
Trace a photon path and store contribution ����

Choose 4D sample values for photon ��
Choose light to shoot photon from ��
Generate photonRay from light source and initialize alpha �
if (!alpha.Black()) {�

Follow photon path through scene and record intersections �
}
BSDF::FreeAll();

Since we would like the samples used to generate ray directions to be well-
distributed, but we don’t know ahead of time how many paths will need to be gener-
ated to get the desired number of particle histories, we’ll use a Halton sequence for
these sample values. Recall from Section 7.5 that any number of sequential points
starting from the beginning of the Halton sequence have good low-discrepancy
properties. Using a Halton sequence here gives a more uniform distribution of
photons throughout the scene than uniform random points, for example.�
Choose 4D sample values for photon ���
Float u[4];
u[0] = RadicalInverse(nshot+1, 2);
u[1] = RadicalInverse(nshot+1, 3);
u[2] = RadicalInverse(nshot+1, 5);
u[3] = RadicalInverse(nshot+1, 7);

We choose among the lights in the scene with equal probability, using the Hal-
ton point from the next dimension to select among them. As with the direct light-
ing integrator, one could imagine more effective sampling strategies, such as sam-
pling according to lights’ total power or changing sampling probabilities adaptively
based on the contributions of the particles that they emit. If such a strategy was
used, we’d just need to update the computation of lightPdf accordingly.�
Choose light to shoot photon from ���
int nLights = int(scene->lights.size());
int lightNum = min(Floor2Int(nLights * RadicalInverse(nshot+1, 11)),

nLights-1);
Light *light = scene->lights[lightNum];
Float lightPdf = 1.f / nLights;

We can now sample a ray from the light source and initialize its α value with

Le � p0 � ω0 �
p � p0 � ω0 � �

Sec. 16.6] Particle Tracing and Photon Mapping 615

370 BSDF
371 BSDF::NumComponents()
334 BSDF REFLECTION
334 BSDF SPECULAR
334 BSDF TRANSMISSION
334 BxDFType
131 Intersection
375 Intersection::GetBSDF()
542 Light::Sample L()
35 Ray::d
37 RayDifferential
14 Scene::Intersect()
15 Scene::Transmittance()

181 Spectrum
27 Vector

where p � p0 � ω0 � is the product of the pdf for sampling this particular light and the
pdf for sampling this particular ray leaving the light.�
Generate photonRay from light source and initialize alpha ���
RayDifferential photonRay;
Float pdf;
Spectrum alpha = light->Sample_L(scene, u[0], u[1], u[2], u[3],

&photonRay, &pdf);
alpha /= pdf * lightPdf;

And now we start following the path though the scene, updating α after each
scattering event and recording photons at the path vertices. The specularPath
variable records whether the path we are following has only intersected perfectly
specular surfaces after leaving the light source, which indicates that the path is a
caustic path.�
Follow photon path through scene and record intersections ���
bool specularPath = false;
Intersection photonIsect;
int nIntersections = 0;
while (scene->Intersect(photonRay, &photonIsect)) {

++nIntersections;�
Handle photon/surface intersection ��
Sample new photon ray direction ��
Possibly terminate photon path �

}

Given a photon-surface intersection, the first thing we need to do is to update
whichever of the three photon maps is the appropriate one for storing this particle’s
contribution. However, if the photon has hit a perfectly specular surface, there’s
no need to record it in any photon map, since we don’t use photons for computing
reflection from specular surfaces at render-time.

XXX hmm, does that break some deep-seated assumptions that density es-
timation is based on?? XXX�
Handle photon/surface intersection ���
alpha *= scene->Transmittance(photonRay);
Vector wo = -photonRay.d;
BSDF *photonBSDF = photonIsect.GetBSDF(photonRay);
BxDFType specularType = BxDFType(BSDF_REFLECTION |

BSDF_TRANSMISSION | BSDF_SPECULAR);
bool hasNonSpecular = (photonBSDF->NumComponents() >

photonBSDF->NumComponents(specularType));
if (hasNonSpecular) {�

Deposit photon at surface �
}

If this is the first intersection found after the particle has left the light source,
then the photon represents direct illumination. Otherwise, if it has only reflected
from specular surfaces before arriving at the current intersection point, it must be
a caustic photon. Any other case–a path that only hit non-specular surfaces, or
a path that hit a series of specular surfaces before scattering from non-specular

DifferentialGeometry::p 58
Intersection::dg 131

Photon 617

616 Light Transport [Ch. 16

Figure 16.11: photon fsm

surfaces–represents indirect illumination. The finite state machine in Figure 16.11
illustrates these ideas; the nodes of the graph show which of the photon maps
should be updated for a photon in that state, and the edges describe whether the
photon has scattered from a specular or a non-specular BSDF component at its
previous intersection.�
Deposit photon at surface ���
Photon photon(photonIsect.dg.p, alpha, wo);
if (nIntersections == 1) {�

Process direct lighting photon intersection �
}
else if (specularPath) {�

Process caustic photon intersection �
}
else {�

Process indirect lighting photon intersection �
}

The fragments for processing the three types of photon map updates all have
equivalent functionality, so we only have the fragment for direct lighting photons
here. Until enough photons of a particular type have been found, the corresponding
photons are stored in the corresponding vector of Photons declared above. When
the desired number are available, we go ahead and construct a kd-tree (the KdTree
template class we use is described in Appendix A.6.) When the tree is built and
we have decided to ignore any additional photons of this type that are found while
following paths to fill up the unfilled maps, we also record how many paths from
the lights needed to be constructed before we found the desired number of photons.
This value will be important for the density estimation algorithm used to interpolate
among photons around a point being shaded.

Sec. 16.6] Particle Tracing and Photon Mapping 617

688 KdTree
623 PhotonProcess
33 Point

181 Spectrum
27 Vector

�
Process direct lighting photon intersection ���
if (!directDone) {

directPhotons.push_back(photon);
if (directPhotons.size() == nDirectPhotons) {

directDone = true;
nDirectPaths = nshot;
directMap = new KdTree<Photon, PhotonProcess>(directPhotons);

}
}

�
PhotonIntegrator Private Data ��� �
int nCausticPaths, nDirectPaths, nIndirectPaths;
mutable KdTree<Photon, PhotonProcess> *causticMap;
mutable KdTree<Photon, PhotonProcess> *directMap;
mutable KdTree<Photon, PhotonProcess> *indirectMap;

The Photon structure stores just enough information to record a photon’s contribution–
the position where it hit the surface, its weight, and the direction it arrived from.�
Photonmap Local Declarations ��� �
struct Photon {�

Photon Constructor �
Point p;
Spectrum alpha;
Vector wi;

};
�
Photon Constructor ���
Photon(const Point &pp, const Spectrum &wt, const Vector &w)

: p(pp), alpha(wt), wi(w) {
}

Now that we have recorded the particle’s contribution in one of the photon maps,
we need to choose a new outgoing direction from the intersection point and update
the α value to account for the effect of the BSDF scattering the incident illumina-
tion at the surface. Equation 16.6.5 shows how to incrementally update the particle
weight after a scattering event: we have some weight αi,j that represents the weight
for the jth intersection of the ith particle history. After a scattering event where a
new vertex pi � j � 1 has been sampled, it should be scaled by

1
qi � j � 1

f � pi � j � 1 � pi � j � pi � j � 1 � G � pi � j � 1 � pi � j �
p � pi � j � 1 � �

As with the path tracing integrator, we’d like to choose the next vertex in the path
by sampling the BSDF at the intersection point, rather than directly sampling by
area on the scene surfaces. Therefore, we again apply the Jacobian to account for
this change in measure, all of the terms in G � e � x � cept for a single � cos θ � cancel
out, and the scaling term is

1
qi � j � 1

f � pi � j � 1 � pi � j � pi � j � 1 � G � pi � j � 1 � pi � j �
p � pi � j � 1 � �

BSDF::dgShading 370
BSDF::Sample f() 540

BSDF ALL 334
BSDF SPECULAR 334

BxDFType 334
DifferentialGeometry::p 58

Intersection::dg 131
RandomFloat() 679

RayDifferential 37
Spectrum 181

Spectrum::Black() 182
Vector 27

618 Light Transport [Ch. 16

As the very first intersection, the random numbers used for sampling are the
next two dimensions of the point in the Halton sequence that was used to start this
path, ensuring a good distribution of directions at the first bounces across all of
the paths. For subsequent bounces, we just use uniform random numbers, as the
advantages of further low discrepancy points matter less as more bounces occur.�
Sample new photon ray direction ���
Vector wi;
Float pdf;
BxDFType flags;�
Get random numbers for sampling outgoing photon direction �
Spectrum fr = photonBSDF->Sample_f(wo, &wi, u1, u2, u3,

&pdf, BSDF_ALL, &flags);
if (fr.Black() || pdf == 0.f)

break;
specularPath = (nIntersections == 1 || specularPath) &&

bool(flags & BSDF_SPECULAR);
alpha *= fr * AbsDot(wi, photonBSDF->dgShading.nn) / pdf;
photonRay = RayDifferential(photonIsect.dg.p, wi);

As usual, after the first few bounces, Russian roulette either terminates the path
or increases its weight to account for the missing contributions of the paths that
were terminated.�
Possibly terminate photon path ���
if (nIntersections > 3) {

Float continueProbability = .5f;
if (RandomFloat() > continueProbability)

break;
alpha /= continueProbability;

}

16.6.4 Using the photon map

XXX make clear the changing illumination error problem–e.g. a small wall,
etc. XXX

At rendering-time, the photon map is used to compute reflected light at each
point being shaded. We’d like to estimate the value of the scattering equation at a
point p, which can equivalently (and cumbersomely) be written as an integral over
all points on surfaces in the scene

�
S2

Li � p � ωi � f � p � ωo � ωi ��� cosθi � dωi �
�

A
�

S2
δ � p � p � � Li � p � � ωi � f � p � � ωo � ωi ��� cos θi � dωidA � p � � �

and so the function that describes the measurement we need to compute is

We � p � � ω � � δ � p � � p � f � p � ωo � ω � � cos θ � �
Unfortunately, because there is a delta distribution in We, the particle histories that
were generated without accounting for this have zero probability of having non-
zero contribution when Equation 16.6.5 is used to compute the estimate of the

Sec. 16.6] Particle Tracing and Photon Mapping 619

Figure 16.12: photon basic

measurement value (just as we will never be able to choose a direction from a sur-
face that intersects a point light source unless the direction is sampled accounting
for this.)

Here is the point at which bias is introduced into the photon mapping algorithm.
Under the assumption that the information about illumination at nearby points can
be used to construct an estimate of illumination at the shading point, photon map-
ping interpolates information about illumination at the point being shaded from
nearby photons. The more photons there are around the point and the higher their
weights, the more light we estimate is illuminating the point. The estimated illu-
mination at the point is used in conjunction with the surface’s BSDF to compute
the reflected light; Figure 16.12 shows the basic idea.

The error introduced by this interpolation can be difficult to quantify. Storing
more photons, so that it isn’t necessary to use photons as far away, will almost
always improve the results, but in general, error will depend on how quickly the
illumination is changing at the point being shaded. Because this interpolation step
tends to blur out illumination, high-frequency changes in lighting are least-well
reconstructed with photon mapping.

In order to reduce the blurriness in final images from this interpolation, the pho-
ton mapping algorithm partitions the integrand and uses photons to evaluate some
parts of it, but traces rays to estimate the rest. A number of different partitionings
have been proposed; here we will split the BSDF into delta and non-delta com-
ponents, and will separate incident radiance from the non-delta component into
incident direct (Li � d), indirect (Li � i), and caustic (Li � c) illumination:

�
S2

Li � p � ωi � f � p � ωo � ωi ��� cosθi � dωi �
�

S2
Li � p � ωi � f∆ � p � ωo � ωi ��� cos θi � dωi �

�
S2
� Li � d � p � ωi � � Li � i � p � ωi � � Li � c � p � ωi � � f � ∆ � p � ωo � ωi ��� cos θi � dωi �

We will elide the complete implementation of PhotonIntegrator::L(), which
is similar in form to the L() methods of the other integrators and will focus on the
two key fragments that do the direct and indirect lighting computations, respec-
tively. When these fragments run, the specular BSDF components have already
been handled in the elided code, so we only need to consider the non-delta reflec-
tion case here.

PhotonIntegrator::bsdfComponentOffset 613
PhotonIntegrator::bsdfDirectionoffset 613

PhotonIntegrator::causticMap 617
PhotonIntegrator::directMap 617

PhotonIntegrator::finalGather 612
PhotonIntegrator::indirectMap 617

PhotonIntegrator::lightPositionOffset 613
PhotonIntegrator::maxDistSquared 612
PhotonIntegrator::nCausticPaths 617
PhotonIntegrator::nDirectPaths 617

PhotonIntegrator::nFilter 612
PhotonIntegrator::nIndirectPaths 617

PhotonIntegrator::nLookup 612
UniformSampleAllLights() 566

620 Light Transport [Ch. 16

The delta components of the BSDF can be efficiently and accurately handled
with recursive ray tracing. For the non-delta components, it is usually worth sam-
pling direct lighting Li � d by tracing shadow rays to the light sources. Photon maps
for direct lighting are normally only useful for large area light sources casting
smooth shadows and for quickly rendering preview images. A parameter to the
integrator selects between these two options. The LPhoton() function, which will
be described shortly, computes reflected radiance in the direction wo for the given
BSDF and photon map.�
Compute direct lighting for photon map integrator ���
if (directWithPhotons)

L += LPhoton(directMap, nDirectPaths, nLookup,
bsdf, isect, wo, maxDistSquared,
nFilter);

else
L += UniformSampleAllLights(scene, p, n, wo, bsdf, sample,

lightPositionOffset, bsdfDirectionoffset,
bsdfComponentOffset);

We will always use the caustic photon map to account for light paths that have
one or more specular bounces before hitting a non-specular surface. These paths
are particularly difficult to find when tracing paths starting from the point being
shaded; because caustics are focused light, there tend to be enough photons to
compute good lighting estimates in areas with caustics.

For some scenes, indirect lighting can be represented well (and computed ex-
tremely efficiently) with the photon map. If higher quality is needed, we also
provide a method known as final gathering. At each shading point, we sample the
BSDF and trace rays out into the scene to find incident radiance along those rays.
However, at the intersection points of the gather rays, we always use the direct,
indirect, and caustic maps to compute the reflection there. Thus, we don’t pay any
cost for tracing additional rays to shade those points. Because the error from the
interpolation of photons there isn’t seen directly at the original point being shaded,
the final result can have very high quality.�
Compute indirect lighting for photon map integrator ���
L += LPhoton(causticMap, nCausticPaths, nLookup, bsdf,

isect, wo, maxDistSquared,
nFilter);

if (finalGather) {�
Do one-bounce final gather for photon map �

}
else

L += LPhoton(indirectMap, nIndirectPaths, nLookup,
bsdf, isect, wo, maxDistSquared,
nFilter);

For final gathering, we need to estimate the reflected radiance due to indirect
illumination, �

S2
f � p � ωo � ωi � Li � i � p � ωi � � cos θi � dωi �

Sec. 16.6] Particle Tracing and Photon Mapping 621

131 Intersection
612 PhotonIntegrator::gatherSamples
37 RayDifferential
14 Scene::Intersect()

181 Spectrum

Figure 16.13: photon gathering

In our implementation here, we will always use the BSDF’s importance sampling
method to choose sampled directions. (The further reading section has pointers to a
number of techniques that use the incident directions of the photons that are close to
p to derive importance sampling techniques that try to match the distribution L i � i;
using both of these sampling methods along with multiple importance sampling
can substantially improve the efficiency of final gathering.) Our estimator is

1
N

N

∑
j � 1

f � p � ωo � ω j � Li � i � p � ω j � � cosθ j �
p � ω j � �

�
Do one-bounce final gather for photon map ���
Spectrum Li(0.);
for (int i = 0; i < gatherSamples; ++i) {�

Sample random direction for final gather ray �
RayDifferential bounceRay(p, wi);
Intersection gatherIsect;
if (scene->Intersect(bounceRay, &gatherIsect)) {�

Compute reflected radiance due to final gather sample �
}

}
L += Li / gatherSamples;

�
Sample random direction for final gather ray ���
Vector wi;
Float u1 = sample->twoD[gatherSampleOffset][2*i];
Float u2 = sample->twoD[gatherSampleOffset][2*i+1];
Float u3 = sample->oneD[gatherComponentOffset][i];
Float pdf;
BxDFType flags;
Spectrum fr = bsdf->Sample_f(wo, &wi, u1, u2, u3, &pdf, BSDF_ALL,

&flags);
if (fr.Black() || pdf == 0.f || (flags & BSDF_SPECULAR)) continue;

BSDF 370
BSDF::NumComponents() 371

BSDF::Sample f() 540
BSDF ALL 334

BSDF DIFFUSE 334
BSDF GLOSSY 334

BSDF REFLECTION 334
BSDF SPECULAR 334

BSDF TRANSMISSION 334
BxDFType 334

Intersection 131
Intersection::GetBSDF() 375

KdTree 688
Photon 617

PhotonIntegrator 611
PhotonIntegrator::causticMap 617
PhotonIntegrator::directMap 617

PhotonIntegrator::gatherComponentOffset 613
PhotonIntegrator::gatherSampleOffset 613

PhotonIntegrator::indirectMap 617
PhotonIntegrator::maxDistSquared 612
PhotonIntegrator::nCausticPaths 617
PhotonIntegrator::nDirectPaths 617

PhotonIntegrator::nFilter 612
PhotonIntegrator::nIndirectPaths 617

PhotonIntegrator::nLookup 612
PhotonProcess 623

Ray::d 35
Sample::oneD 241
Sample::twoD 241

Spectrum 181
Spectrum::Black() 182

Vector 27

622 Light Transport [Ch. 16

Having found the first point of intersection of the ray from p in direction ω j, we
need to compute the outgoing radiance at that point in direction � ω j, which gives
the incident radiance at p, Li � p � ω � � Lo � t � p � ω � ��� ω � .

Note we ignore Le–i.e. the direct illumination term for the point we’re shading..�
Compute reflected radiance due to final gather sample ���
BSDF *gatherBSDF = gatherIsect.GetBSDF(bounceRay);
Vector bounceWo = -bounceRay.d;
Spectrum Lindir =

LPhoton(directMap, nDirectPaths, nLookup,
gatherBSDF, gatherIsect, bounceWo, maxDistSquared,
nFilter) +

LPhoton(indirectMap, nIndirectPaths, nLookup,
gatherBSDF, gatherIsect, bounceWo, maxDistSquared,
nFilter) +

LPhoton(causticMap, nCausticPaths, nLookup,
gatherBSDF, gatherIsect, bounceWo, maxDistSquared,
nFilter);

Li += fr * Lindir / pdf;

16.6.5 Photon interpolation and density estimation

The LPhoton() function has two main tasks: first, it needs to find the nLookup
photons that are closest to the point where the looking is being done. Second, it
needs to use those photons to compute the reflected radiance at the point.�
Photonmap Method Definitions ��� �
Spectrum PhotonIntegrator::LPhoton(

KdTree<Photon, PhotonProcess> *map,
int nPaths, int nLookup, BSDF *bsdf,
const Intersection &isect, const Vector &wo,
Float maxDistSquared, int nFilter) {

Spectrum L(0.);
if (!map) return L;
BxDFType nonSpecular = BxDFType(BSDF_REFLECTION |

BSDF_TRANSMISSION | BSDF_DIFFUSE | BSDF_GLOSSY);
if (bsdf->NumComponents(nonSpecular) == 0)

return L;�
Initialize PhotonProcess object, proc, for photon map lookups ��
Do photon map lookup �
return L;

}

Similar to the octree used for the irradiance cache, the KdTree used to store
photons takes a parameter to its Lookup() method that defines an object that is
called back for every item in the search region. PhotonProcess handles that for
us here, storing information about the nearby photons that have been passed to it
using the ClosePhoton structure. We use alloca() to efficiently allocate space
for the array ofClosePhotons, rather than repeatedly calling new each time this
method is called.

Sec. 16.6] Particle Tracing and Photon Mapping 623

58 DifferentialGeometry::p
131 Intersection::dg
691 KdTree::Lookup()
617 Photon
612 PhotonIntegrator::nLookup
33 Point

�
Initialize PhotonProcess object, proc, for photon map lookups ���
PhotonProcess proc(nLookup, isect.dg.p);
proc.photons = (ClosePhoton *)alloca(nLookup * sizeof(ClosePhoton));

�
Do photon map lookup ���
map->Lookup(isect.dg.p, proc, maxDistSquared);�
Accumulate light from nearby photons �
In addition to keeping track of the nearby photons PhotonProcess also needs

to record the position at the lookup point, so that it can determine the distance from
photons that are passed to it to the shading point.�
Photonmap Local Declarations ��� �
struct PhotonProcess {�

PhotonProcess Public Methods �
const Point &p;
ClosePhoton *photons;
u_int nLookup;
mutable u_int foundPhotons;

};

To keep track of a photon close to the lookup point, we only need to store a
pointer to it. However, we also cache the squared distance from the photon to the
lookup point in order to more quickly be able to discard the farthest away photon
when a closer one is found.�
Photonmap Local Declarations ��� �
struct ClosePhoton {

ClosePhoton(const Photon *p, Float md2) {
photon = p;
distanceSquared = md2;

}
bool operator<(const ClosePhoton &p2) const {

return distanceSquared < p2.distanceSquared;
}
const Photon *photon;
Float distanceSquared;

};

As the KdTree traverses the tree nodes, it will call this callback method of
PhotonProcess, which decides if this photon is useful for the reflected radiance
computation at the intersection point. It adds a reference to it to the ClosePhotons
array, photons, if so.

ClosePhoton 623
ClosePhoton::distanceSquared 623

Photon 617
PhotonProcess 623

PhotonProcess::foundPhotons 623
PhotonProcess::nLookup 623
PhotonProcess::photons 623

624 Light Transport [Ch. 16

�
Photonmap Method Definitions ��� �
void PhotonProcess::operator()(const Photon &photon,

Float distSquared, Float &maxDistSquared) const {
if (foundPhotons < nLookup) {�

Add photon to unordered array of photons �
}
else {�

Remove most distant photon from heap and add new photon �
}

}

Until we have found nLookup photons around the point, we just store the nearby
photons in an unordered array that is filled in whatever order photons are passed to
this callback method. However, once the nLookup+1st photon arrives (if it does),
we need to discard the one that is farthest away and only keep the nLookup closest
ones. Therefore, after nLookup have arrived, we reorder photons to be a heap,
such that the root element is the one with the greatest distance from the lookup
point. Recall that a heap data structure can be constructed in linear time and that it
can be updated after an item is removed or added in constant time. It is substantially
more efficient to organize with a heap than to keep them sorted by distance. The
make heap() function in the C++ standard library reorders a given array into a
heap so that the zero-th element is the root of the heap.

Once we have found nLookup photons, we can also decrease the search ra-
dius that the KdTree uses as it traverses its nodes; there’s no reason to consider
any additional photons that are farther away than the farthest one in the heap.
KdTree::Lookup() passes a reference to maxDistSquared into this callback method
so that we can reduce its value in situations like this. (It will not work as expected,
however, if we increase maxDistSquared partway through a search.)�
Add photon to unordered array of photons ���
photons[foundPhotons++] = ClosePhoton(&photon, distSquared);
if (foundPhotons == nLookup) {

std::make_heap(&photons[0], &photons[nLookup]);
maxDistSquared = photons[0].distanceSquared;

}

As additional photons come in after we have built the heap, we know that the
squared distance to new ones must be less than the maxDistSquared, since the
KdTree doesn’t call the callback method for items that are further away. Thus,
any additional photon must be closer than the root node of the heap, which is the
farthest away one we are storing. Therefore, we immediately call the standard
library routine that removes the root item of the heap and updates the order of
the remaining ones in the heap to reestablish a valid heap, pop heap(). The new
photon is added to the end of the array, which will have been left empty after
pop heap()’s updates, and then push heap() again rebuilds the heap, accounting
for a new element added to the end of it. After all of this, we can again reduce
maxDistSquared to whatever the distance is to the new farthest-away photon.

Sec. 16.6] Particle Tracing and Photon Mapping 625

623 ClosePhoton
623 ClosePhoton::distanceSquared
623 PhotonProcess::nLookup
623 PhotonProcess::photons

�
Remove most distant photon from heap and add new photon ���
std::pop_heap(&photons[0], &photons[nLookup]);
photons[nLookup-1] = ClosePhoton(&photon, distSquared);
std::push_heap(&photons[0], &photons[nLookup]);
maxDistSquared = photons[0].distanceSquared;

Once we have found the nearby photons, we need to interpolate them in some
manner. Recall from the original description of the particle tracing algorithm that
both the local density of the particles and their individual weights together affect
their contribution (a greater density of particles in the domain where We is non-
zero will cause more of them to contribute their weights to the sum, and clearly
higher weights of individual particles increases their contribution). A statistical
technique called density estimation gives us exactly the tools we need to perform
this interpolation.

Density estimation constructs a pdf given a set of sample points under the as-
sumption that the samples are distributed according to the overall distribution of
some function of interest. Histogramming is a straightforward example of the idea–
in 1D, the line is divided into intervals with some width, and one can count how
many samples land in each interval and normalize so that the areas of the intervals
sum to one. XXX Figure XXX.

Kernel methods are a more sophisticated density estimation technique. They
generally give better results and smoother pdfs that don’t suffer from the disconti-
nuities in histograms. Given a kernel function k � x � that integrates to one,

� ∞

� ∞
k � x � dx � 1

the kernel estimator for N samples at locations xi is

p̂ � x � � 1
Nh

N

∑
i � 1

k

�
x � xi

h � �

where h is the window width (also known as the smoothing parameter). Kernel
methods can be thought of as placing a series of bumps at observation points, where
the sum of the bumps forms a pdf since they individually integrate to one and the
sum is normalized. Figure 16.14 shows an example of density estimation in 1D,
where a smooth pdf is computed from a set of sample points.

use p for points
The key question with kernel methods is how the window width h is chosen.

If it is too wide, the pdf will blur out relevant detail in parts of the domain with
many samples, while if it is too narrow, the pdf will be too bumpy in the tails of the
distribution where there aren’t many samples. Nearest neighbor techniques solve
this problem by choosing h adaptively based on local density of samples. Where
there are many samples, the width is small, while where there are few samples,
the width is large. For example, one approach is to pick a number n and find the
distance to the nth nearest sample from the point x and use that distance, dk � x � for
the window width. This is the generalized nth nearest neighbor estimate,

p̂ � x � � 1
Ndn � x �

N

∑
i � 1

k

�
x � xi

dn � x � � �

626 Light Transport [Ch. 16

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

Figure 16.14: 1D example of density estimation, using the Epanechnikov kernel,
k
�
t � � � 75

�
1 � � 2t2 � �

�
5, if t � �

5, 0 otherwise, and a width of 0 � 1.

In d dimensions, this generalizes to

p̂
�
x � � 1

N
�
dn

�
x � � d

N

∑
i � 1

k

�
x � xi

dn
�
x ��� �

And if we can’t find n items, but only find n �

f̂
�
x � � n �

n
1

N
�
dn

�
x � � d

N

∑
i

k

�
x � xi

dn
�
x ��� �

This is the estimator we will use. We will just use a constant kernel function. In
2D, the constant kernel function that fulfills the normalization requirement is

k
�
x � �

1
π : � x � � 1
0 : otherwise

Explain why no cosθ here.

p̂
�
p � ∑

i

αi f
�
p � ωo � ωi �

L
�
p � ω � � dΦ

�
p � ω �

dA
�
p � cos θdω

Derive in terms of using the reconstructed pdf...
Hack to ignore less than 3, but if it’s that sparse, it just looks splotchy...
And if it’s Lambertian, it’s a big performance win to not evaluate the BSDF for

each photon but to pull it out of the sum...�
Accumulate light from nearby photons ���
if (proc.foundPhotons > 3) {�

Compute photon scale factor with density estimation ��
Filter photons with high α values ��
Estimate reflected light from photons �

}

Sec. 16.6] Particle Tracing and Photon Mapping 627

623 ClosePhoton
678 M PI
612 PhotonIntegrator::nLookup
623 PhotonProcess::foundPhotons
623 PhotonProcess::photons

We just scale uniformly. Can reduce blurriness of results slightly by using a
weighting function that gives greater weight to photons the closer they are to the
point being shaded...�
Compute photon scale factor with density estimation ���
Float scale = proc.foundPhotons /

(Float(nLookup) * Float(nPaths) * maxDistSquared * M_PI);

Just as filtering out unusually high radiance values from irradiance estimates
helped reduce artifacts with the irradiance cache, it is similarly worthwhile to ig-
nore a small number of the photons with the largest alpha values found at the
lookup point. The same sort of bright spotches are eliminated by doing so.

In the code below, after nth element() places the brightest photons at the end
of the photons array, it is also necessary to increase the photon scale-factor to com-
pensate for the ignored photons and reduce nFound so that the loop over photons
below doesn’t consider the ones at the end of the array.�
Filter photons with high α values ���
ClosePhoton *photons = proc.photons;
int nFound = proc.foundPhotons;
if (nFilter > 0 && nFound > 2*nFilter) {

std::nth_element(&photons[0], &photons[nFound-nFilter],
&photons[nFound], CmpPhotonAlpha());

scale *= nFound / (nFound - nFilter);
nFound -= nFilter;

}
�
Photonmap Local Declarations ��� �
struct CmpPhotonAlpha {

bool operator()(const ClosePhoton &p1,
const ClosePhoton &p2) const {
return p1.photon->alpha < p2.photon->alpha;

}
};

For purely diffuse BSDFs, it’s wasteful to call the BSDF::f() method nFound
times, since it will always return a constant value. Therefore, this method is only
called for each photon if glossy components are present; otherwise, the equivalent
computation can be done much more efficiently by finding the weighted sum of
photon α values and multiplying it by the constant BSDF, found by dividing the
surface’s reflectance by π.

BSDF::f() 373
BSDF GLOSSY 334

BSDF REFLECTION 334
BSDF TRANSMISSION 334

BxDFType 334
ClosePhoton::photon 623

INV PI 678
Photon::alpha 617

Photon::wi 617
Spectrum 181

SurfaceIntegrator 563
VolumeIntegrator 630

VolumeRegion 465

628 Light Transport [Ch. 16

�
Estimate reflected light from photons ���
if (bsdf->NumComponents(BxDFType(BSDF_REFLECTION |

BSDF_TRANSMISSION | BSDF_GLOSSY)) > 0)
for (int i = 0; i < nFound; ++i)

L += bsdf->f(wo, photons[i].photon->wi) *
(scale * photons[i].photon->alpha);

else {
Spectrum Li(0.);
for (int i = 0; i < nFound; ++i)

Li += photons[i].photon->alpha;
L += (scale * Li) * bsdf->rho(wo) * INV_PI;

}

� � ��������� � � ��������� � � ��� � � ����� � � ��� � � �

Just as SurfaceIntegrators are the meeting-point of the scene geometry, ma-
terials, and lights, applying sophisticated algorithms to solve the light transport
equation and determine the distribution of radiance in the scene, VolumeIntegrators
are responsible for incorporating the effect of participating media (as described by
VolumeRegions) into this process and determining how it affects the distribution
of radiance. This section briefly introduces the equation of transfer, which de-
scribes how participating media changes radiance along rays, and then describes
the VolumeIntegrator interface as well as a few simple VolumeIntegrators.

16.7.1 ***ADV***: The Equation of Transfer

The equation of transfer is the fundamental equation that governs the behavior of
light in a medium that absorbs, emits, and scatters radiation (Chandrasekar 1960).
It accounts for all of the volume scattering processes described in Chapter 12—
absorption, emission, and in- and out-scattering—to give an equation that describes
the distribution of radiance in an environment. The light transport equation is a
special case of the equation of transfer, simplified by the lack of participating media
and specialized for scattering from surfaces (Arvo 1993).

In its most basic form, the equation of transfer is an integro-differential equa-
tion that describes how the radiance along a beam changes at a point. After being
transformed it into a purely integral equation, it describes the effect of participat-
ing media from the infinite number of points along a line. It can be derived in a
straightforward manner by subtracting the effects of the scattering processes that
reduce energy along a beam (absorption and out-scattering) from the processes that
increase energy along it (emission and in-scattering). Recall the source term from
Section 12.1.4; it gives the change in radiance along a ray at a point in a particular
direction due to emission and in-scattered light from other points in the medium:

S � p � ω � � Lve � p � ω � � σs � p � ω � �
S2

p � p ��� ω � � ω � Li � p � ω � � dω � �
The source term accounts for all of the processes that add radiance to a ray.

Sec. 16.7] ***ADV***: Volume Integration 629

Figure 16.15: The equation of transfer gives the radiance along a ray � p � ω � passing
through participating media. At each point along the ray, the source term S � p � � w �
gives the differential added radiance added at the point due to scattering and emis-
sion. This radiance is then attenuated by the beam transmittance Tr � p � � p � from
the point p � to the ray’s origin.

Figure 16.16: For a finite ray that intersects a surface, the radiance arriving at
� p � ω � is equal to the outgoing radiance from the surface, Lo � p0 � ω � times the beam
transmittance to the surface plus the added radiance from all points along the ray
from p to p0.

The attenuation coefficient, σt � p � ω � accounts for all processes that reduce radi-
ance at a point: absorption and out-scattering.

dL � p � ω ��	 � σt � p � ω � L � p � ω � dt

The overall differential change in radiance at a point p � along a ray is found by
adding these two effects together to get the integro-differential form of the equation
of transfer.1

∂
∂t

L � p � � ω ��	 � σt � p � ω � L � p � � ω � � S � p � � ω �
With suitable boundary conditions, this equation can be transformed to a purely

integral equation. For example, if we assume that there are no surfaces in the scene
so that the rays are never blocked and have an infinite length, the integral equation
of transfer is

L � p � ω � 	
� ∞

0
Tr � p � � p � S � p � � � ω � dt � �

where p � 	 p � tω. (See Figure 16.15.) The meaning of this equation is reasonably
intuitive–it just says that the radiance arriving at a point from a given direction is
contributed to by the added radiance along all points along the ray from the point.
The amount of the added radiance at each point along the ray that reaches the ray’s
origin is reduced by the total beam transmittance from the ray’s origin to the point.

More generally, if there are reflecting and/or emitting surfaces in the scene, rays
don’t necessarily have infinite length and the surface a ray hits affects its radiance,
adding outgoing radiance from the surface at the point and preventing radiance

1It is an integro-differential equation due to the integral over the sphere in the source term.

Integrator 562
Ray 36

Scene 8
Spectrum 181

630 Light Transport [Ch. 16

from points along the ray beyond the intersection point from contributing to ra-
diance at the ray’s origin. If a ray (p, ω) intersects a surface at some point p0 a
distance t along the ray, then the integral equation of transfer is

L � p � ω � � Tr � p0 � p � Lo � p0 ��� ω � ��� t

0
Tr � p � � p � S � p � ��� ω � dt � (16.7.6)

Where p0 � p � tω is the point on the surface and p � � p � t � ω are points along the
ray. (See Figure 16.16).

This equation describes the two effects that contribute to radiance along the ray:
first, reflected radiance back along the ray from the surface is given by the Lo term,
which gives the emitted and reflected radiance from the surface. This radiance
may be attenuated by the participating media; the beam transmittance from the
ray origin to the point accounts for this. The second term accounts for the added
radiance along the ray due to volume scattering and emission, but only up to the
point where the ray intersects the surface–points beyond that one don’t affect the
radiance along the ray.

In the interests of brevity, we will refrain from further generalization of the equa-
tion of transfer here. However, just as the light transport equation could be written
in a more general form as a sum over paths of various numbers of vertices and
by adding and importance function to turn it into the measurement equation, the
equation of transfer can be generalized in a similar manner. Likewise, we will only
present a few simple VolumeIntegrators in the remainder of this section, though
the general types of algorithms used for the surface integrators in this chapter, such
as path tracing, bidirectional path tracing, photon mapping, etc., can be applied
to volume integration as well. The further reading section has pointers to more
information about these topics.

16.7.2 ***ADV***: Volume Integrator Interface

The VolumeIntegrator interface inherits from Integrator, picking up the Preprocess(),
RequestSamples() and L() methods declared there. The first two of these meth-
ods are used by volume integrators in the same way as by surface integrators. The
L() method is similar to the surface integrator versions in that it returns the radi-
ance along the given ray, though volume integrators should assume that the ray has
already been intersected with the scene geometry and that if the ray does intersect
a surface, its Ray::maxt value will have been set to be at the intersection point.
As such, the volume integrator must only compute the effect of volume scattering
from the range [mint, maxt] along the ray.

The VolumeIntegrator interface adds an additional method that implemen-
tations must provide, Transmittance(), which is responsible for computing the
beam transmittance along the given ray from Ray::mint to Ray::maxt.�
Volume Scattering Declarations ��� �
class VolumeIntegrator : public Integrator {
public:

virtual Spectrum Transmittance(const Scene *scene,
const Ray &ray, const Sample *sample, Float *alpha) const = 0;

};

Sec. 16.7] ***ADV***: Volume Integration 631

630 VolumeIntegrator

With this background, the Scene::L() method can be fully understood. It is
a direct implementation of Equation 16.7.6. The surface integrator computes out-
going radiance at the ray’s intersection point, ignoring attenuation back to the ray
origin. The volume integrator’s Transmittance() method is called to compute
the beam transmission to the point on the surface, and its L() method gives the ra-
diance along the ray due to participating media. The sum of these two terms gives
the total radiance arriving at the ray origin.

16.7.3 ***ADV***: Emission-Only Integrator

The simplest-possible volume integrator (other than one that ignored participating
media completely) simplifies the source term by ignoring in-scattering completely
and only accounting for emission and attenuation. Because in-scattering is ignored,
the integral over the sphere in the source term at each point along the ray disappears
and the simplified equation of transfer is:

L � p � ω � � Tr � p0 � p � Lo � p0 ��� ω � � � t

0
Tr � p � � p � Lve � p � ��� ω � dt � (16.7.7)

The EmissionIntegrator, defined in integrators/emission.cpp, takes this
approach.�
EmissionIntegrator Declarations ���
class EmissionIntegrator : public VolumeIntegrator {
public:�

EmissionIntegrator Public Methods �
private:�

EmissionIntegrator Private Data �
};

The EmissionIntegrator’s Transmittance() and L() methods both have to
evaluate one-dimensional integrals along points t � along a ray. Rather than using
a fixed number of samples for each estimate the implementation here the number
based on the distance the ray travels in the volume—the longer the distance, the
more samples are taken. This approach is worthwhile for the naturally intuitive
reasons—the longer the ray’s extent in the medium, the more acuracy is desirable,
and the more samples are likely to be needed to capture greater variation in optical
properties along the ray. The number of samples taken is determined indirectly by
a user-supplied parameter giving a step-size between samples; the ray is divided
into segments of the given length and a single sample is taken in each one.�
EmissionIntegrator Public Methods ���
EmissionIntegrator(Float ss) { stepSize = ss; }

�
EmissionIntegrator Private Data ���
Float stepSize;

Only a single 1D sample is needed for of the integrals along rays in the two
methods below.

EmissionIntegrator 631
Exp() 183
Ray 36

Sample::Add1D() 240
Sample::oneD 241

Scene 8
Scene::volumeRegion 9

Spectrum 181
VolumeRegion 465

VolumeRegion::Tau() 466

632 Light Transport [Ch. 16

�
EmissionIntegrator Method Definitions ���
void EmissionIntegrator::RequestSamples(Sample *sample,

const Scene *scene) {
tauSampleOffset = sample->Add1D(1);
scatterSampleOffset = sample->Add1D(1);

}
�
EmissionIntegrator Private Data ��� �
int tauSampleOffset, scatterSampleOffset;

The Transmittance() method is reasonably straightforward. The VolumeRegion’s
Tau() method takes care of computing the optical thickness τ from the ray’s start-
ing point to its ending point. The only work for the integrator here is to choose
a step size (in case Tau() does Monte Carlo integration, as the implementation in
Section 15.5 does), pass a single sample value along to that method, and return e � τ.
(If the Tau() method called can compute τ analytically, these additional values are
ignored.)

This method also takes advantage of the fact that the Sample value is only non-
NULL for camera rays to increase the step size, thus reducing computational de-
mands (and accuracy) for shadow and indirect rays. The reduction in accuracy for
those rays generally isn’t noticeable, however.�
EmissionIntegrator Method Definitions ��� �
Spectrum EmissionIntegrator::Transmittance(const Scene *scene,

const Ray &ray, const Sample *sample, Float *alpha) const {
if (!scene->volumeRegion) return Spectrum(1.f);
Float step = sample ? stepSize : 4.f * stepSize;
Float offset = sample ? sample->oneD[tauSampleOffset][0] :

RandomFloat();
Spectrum tau = scene->volumeRegion->Tau(ray, step, offset);
return Exp(-tau);

}

The L() method is responsible for evaluating the second term of the sum in
Equation 16.7.7. If the ray enters the volume at t � t0 along the ray, then no atten-
uation happens from start of ray up to t0, and the L() method can instead consider
integral from t0 to t1, the minimum of the point where the ray exits the volume and
the point where it intersects a surface—see Figure 16.17. Given this integral,

� t1

t0
Lve � p � ��� ω � Tr � p � � p � dt � �

a straightforward approach is to uniformly select random points along the ray be-
tween t0 and t1 and evaluate the estimator

1
N ∑

i

Lve � pi ��� ω � Tr � pi � p �
p � pi � � t1 � t0

N ∑
i

Lve � pi ��� ω � Tr � pi � p �
since p � pi � � 1

� � t1 � t0 � .
The Lve term in the estimator can be evaluated directly with the corresponding

VolumeRegion method, and the optical thickness τ to evaluate Tr can either be

Sec. 16.7] ***ADV***: Volume Integration 633

631 EmissionIntegrator
37 RayDifferential
8 Scene

181 Spectrum
465 VolumeRegion
466 VolumeRegion::IntersectP()

Figure 16.17: The starting point of the ray marching process, t0, is the maximum
ray origin or the ray’s intersection point with the participating media’s bound. Sim-
ilarly, the end, t1, is the minimum of the point where the ray exits the medium and
the point where it intersects a surface, if any.

evaluated directly (for a homogeneous or exponential atmosphere), or via Monte
Carlo integration as described in Section 15.5.

In order to do this computation, the implementation of the L() method thus starts
out by finding the t range for the integral and initializing t0 and t1 accordingly.�
EmissionIntegrator Method Definitions ��� �
Spectrum EmissionIntegrator::L(const Scene *scene,

const RayDifferential &ray, const Sample *sample,
Float *alpha) const {

VolumeRegion *vr = scene->volumeRegion;
Float t0, t1;
if (!vr || !vr->IntersectP(ray, &t0, &t1)) return 0.f;�
Do emission-only volume integration in vr �

}

Two additional details round out the implementation here. First, just as the
VolumeRegion::Tau() method in Section 15.5 used a uniform step size between
sample points, this implementation also steps uniformly for similar reasons. Sec-
ond, the beam transmittance values Tr can be evaluated efficiently if the points pi

are sorted from the one closest to p to the one farthest away. qThen, the multiplica-
tive property of Tr can be used to incrementally compute Tr from its value from the
previous point:

Tr � pi � p ��� Tr � pi � 1 � p � Tr � pi � pi � 1 � �
Because Tr � pi � pi � 1 � covers a shorter distance than Tr � pi � p � , fewer samples
can be used to estimate its value if it is evaluated with Monte Carlo. Both of these
ideas are illustrated in Figure 16.18

634 Light Transport [Ch. 16

Figure 16.18: volume integration ray sampling: the ray’s extent from t0 to t1 is
subdivided into a number of segments based on the stepSize parameter. A single
sample is taken in each segment, where the first sample is placed randomly in the
first segment and all additional samples are offset by equal-sized steps (top). Ray-
marching tracks the previous point to which transmittance was computed, pPrev
as well as the current point, p. Initially, pPrev is the point where the ray enters the
volume (middle). At each subsequent step, beam transmittance is computed as the
product of transmittance to pPrev and the additional transmittance from pPrev to
p.

Sec. 16.7] ***ADV***: Volume Integration 635

33 Point
679 RandomFloat()
36 Ray

241 Sample::oneD
181 Spectrum
185 Spectrum::y()
27 Vector

466 VolumeRegion::Lve()
466 VolumeRegion::Tau()

�
Do emission-only volume integration in vr ���
Spectrum Lv(0.);�
Prepare for volume integration stepping �
for (int i = 0; i < N; ++i, t0 += step) {�

Advance to sample at t0 and update T ��
Compute emission-only source term at p �

}
return Lv * step;

�
Prepare for volume integration stepping ���
int N = Ceil2Int((t1-t0) / stepSize);
Float step = (t1 - t0) / N;
Spectrum T(1.f);
Point p = ray(t0), pPrev;
Vector w = -ray.d;
if (sample) t0 += sample->oneD[scatterSampleOffset][0] * step;
else t0 += RandomFloat() * step;

To find the overall transmittance at the current point, it’s only necessary to find
the transmittance from the previous point to the current point and multiply it by the
transmittance from the ray origin to the previous point, as described above.�
Advance to sample at t0 and update T ���
pPrev = p;
p = ray(t0);
Spectrum stepTau = vr->Tau(Ray(pPrev, p - pPrev, 0, 1),

.5f * stepSize, RandomFloat());
T *= Exp(-stepTau);�
Possibly terminate raymarching if transmittance is small �
In a thick medium, the transmittance may become very low after the ray has

passed a sufficient distance through it. To reduce the time spend computing source
term values that are likely to have very little contribution to the radiance at the ray’s
origin, ray stepping is randomly terminated with Russian roulette when transmit-
tance is sufficiently small. Because Tr � 1, transmittance never increases as we
step from one point to the next in the medium, so once the transmittance is low,
termination in this manner is a reasonable technique.�
Possibly terminate raymarching if transmittance is small ���
if (T.y() < 1e-3) {

const Float continueProb = .5f;
if (RandomFloat() > continueProb) break;
T /= continueProb;

}

Having done all this other work, actually computing the source term at the point
is trivial.�
Compute emission-only source term at p ���
Lv += T * vr->Lve(p, w);

EmissionIntegrator 631
VolumeIntegrator 630

636 Light Transport [Ch. 16

Figure 16.19: When the direct lighting contribution is evaluated at some point t
along a ray passing through participating media, it’s necessary to compute the at-
tenuation of the radiance from the light passing through the volume to the scattering
point as well as the attenuation from that point back to the eye.

16.7.4 ***ADV***: Single Scattering Integrator

Almost all of the implementation of the SingleScattering integrator parallels the
EmissionIntegrator, so only the fragments in the parts that differ are included
here.�
SingleScattering Declarations ���
class SingleScattering : public VolumeIntegrator {
public:�

SingleScattering Public Methods �
private:�

SingleScattering Private Data �
};

In addition to worrying about the emission at each point along the ray, this in-
tegrator also considers the incident radiance due to direct illumination but ignores
incident radiance due to multiple scattering. Thus, its L() method evaluates

� t

0
Tr � p � � p � �

Lve � p � � ω � � σs � p � � ω � �
S2

p � p � ��� ω � � ω � Ld � p � � ω � � dω � � dt � �
where Ld only includes radiance from direct lighting. This radiance may be blocked
by geometry in the scene and may itself be attenuated by participating media be-
tween the light and the point p � along the ray—see Figure 16.19.

This integrator uses the same general ray-marching approach to evaluate the
equation of transfer as the EmissionIntegrator. One difference compared to that
integrator is that before it enters the for loop over sample positions, it computes
sample values for light source sampling. Because it isn’t known how many of
samples will be necessary until L() is called since this depends on the length of

Sec. 16.7] ***ADV***: Volume Integration 637

251 LatinHypercube()
478 Light

9 Scene::lights
181 Spectrum
182 Spectrum::Black()
466 VolumeRegion::Lve()
466 VolumeRegion::sigma s()

the ray segment over which integration is being done, it’s not possible to have the
Sampler generate samples and pass them into L() via the Sample with the current
interfaces in lrt. Therefore, a three-dimensional set of Latin hypercube samples
are generated here. The first dimension is used to choose which light to sample at
each scattering point, and the other two are used by the light to select a point on
the light source.�
Compute sample patterns for single scattering samples ���
Float *samp = (Float *)alloca(3 * N * sizeof(Float));
LatinHypercube(samp, N, 3);
int sampOffset = 0;

The other difference from the EmissionIntegrator is how the source term is
evaluated at each term p � . At each sample point along the ray, the fragment below
computes the single-scattering approximation of the source term at the point p.
It serves the same role as the

�
Compute emission-only source term at p � fragment

above. After including volume emission as the EmissionIntegrator does, it finds
the value of σs at the point, selects a light to sample using the sample table, and
computes its contribution to scattering at the point. Because the source term will
generally be evaluated at many points along the ray, only a single light is sampled
at each one and its contribution will be scaled by the number of lights, similar to
the direct lighting integrator’s “sample one light” strategy.�
Compute single-scattering source term at p ���
Lv += T * vr->Lve(p, w);
Spectrum ss = vr->sigma_s(p, w);
if (!ss.Black()) {

int nLights = scene->lights.size();
int lightNum = min(Floor2Int(samp[sampOffset] * nLights), nLights-1);
Light *light = scene->lights[lightNum];�
Add contribution of light due to scattering at p �

}
sampOffset += 3;

Computing the estimate of the direct lighting contribution involves estimating
the integral �

S2
p � p � ��� ω � � ω � Ld � p � � ω � � dω � �

Here, rather than sampling both the phase function and the light source and apply-
ing multiple importance sampling, the implementation here has the light choose
a sample position and computes the estimator directly. For media that aren’t ex-
tremely anisotropic, this approach works well.

Light::Sample L() 542
Spectrum 181

Spectrum::Black() 182
Vector 27

VisibilityTester 479
VisibilityTester::Transmittance() 480

VisibilityTester::Unoccluded() 480
VolumeRegion::p() 466

638 Light Transport [Ch. 16

�
Add contribution of light due to scattering at p ���
Float pdf;
VisibilityTester vis;
Vector wo;
Float u1 = samp[sampOffset+1], u2 = samp[sampOffset+2];
Spectrum L = light->Sample_L(p, u1, u2, &wo, &pdf, &vis);
if (!L.Black() && vis.Unoccluded(scene)) {

Spectrum Ld = L * vis.Transmittance(scene);
Lv += T * Ld * ss * vr->p(p, w, -wo) * nLights / pdf;

}

����� ���� � � � ��� � � �
Lommel was the apparently first to derive the equation of transfer (Lommel

1889), in a not-widely-known paper. Not only did he derive the equation of trans-
fer, but he solved it in some simplified cases in order to estimate reflection functions
from real world surfaces (including marble and paper) and compared his solutions
to measured reflectance data from these surfaces.

Apparently unaware of Lommel’s work, Schuster was the next worker in ra-
diative transfer to consider the effect of multiple scattering (Schuster 1905). He
used the term self-illumination to describe the fact that each part of the medium is
illuminated by every other part of the medium and derived differential equations
that described reflection from a slab along the normal direction assuming the pres-
ence of isotropic scattering; the conceptual framework that he developed remains
essentially unchanged in the field of radiative transfer

Soon thereafter, Scharzchild introduced the concept of radiative equilibrium (?)
and Jackson expressed Schuster’s equation in integral form, also noting that “the
obvious physical mode of solution is Liouville’s method of successive substitu-
tions.” (i.e. a Neumann series solution) (Jackson 1910). Finally, King completed
the re-discovery of the equation of transfer by expressing it in the general integral
form (King 1913). (Yanovitskij (Yanovitskij 1997) traces the origin of the integral
equation of transfer to Chvolson (Chvolson 1890), but we have been unable to find
a copy of this paper.)

Russian roulette introduced to graphics by Kirk and Arvo (Kirk and Arvo 1991).
Hall and Greenberg had previously suggested adaptively terminating ray trees by
not tracing rays with less than some minimum contribution (Hall and Greenberg
1983). Kirk and Arvo’s technique is unbiased, though in some situations, bias and
less noise may be the less undesirable artifact.

Lafortune bidir (Lafortune and Willems 1994). Veach and Guibas (Veach and
Guibas 1994). Kollig and Keller bidir with quasi-random sample patterns (Kollig
and Keller 2000).

Irradiance caching (Ward, Rubinstein, and Clear 1988; Ward and Heckbert 1992;
Ward 1994b)

Kajiya (Kajiya 1986), Immel et al (Immel, Cohen, and Greenberg 1986)
Photon maps–resampling step between light and eye makes tricky situations a

lot easier... Arvo (Arvo 1986). Heckbert (Heckbert 1990). Collins (Collins 1994).
Jensen (Jensen 1996; Jensen and Christensen 1998). Photon mapping improve-
ments (Peter and Pietrek 1998; Suykens and Willens 2000; Keller and Wald 2000).
Also can be used to derive better importance sampling methods for final gathering,

Exercises 639

path tracing, etc, based on approximation of incident illumination using nearby
photons (Jensen 1995; Hey and Purgathofer 2002).

Per TVCG paper on adjoints and importance (Christensen 2003)
Shirley thesis (Shirley 1990a; Shirley 1990b), incl sum over paths formulation
Metropolis (Veach and Guibas 1997) (Pauly, Kollig, and Keller 2000)
Radiance (and radiosity stuff) for virtual mirrors for light paths...
The equation of transfer was first introduced to graphics by Kajiya and von

Herzen (Kajiya and Herzen 1984); Rushmeier was the first to compute solutions of
it in a general setting (Rushmeier 1988). However, Arvo was the first to make the
essential connections between previous formalizations of light transport in graphics
and the equation of transfer and radiative transfer in general (Arvo 1993).

Bhate and Tokuta spherical harmonic approach (Bhate and Tokuta 1992). Pérez/Pueyo/Sillion
volume globillum survey (Pérez, Pueyo, and Sillion 1997).

Blasi et al two pass Monte Carlo algorithm, somewhat in the spirit of Kajiya
and von Herzen, where first pass shoots energe from lights and stores it in a grid,
second pass does final rendering (Blasi, Saẽc, and Schlick 1993).

Lafortune and Willems bidir stuff (Lafortune and Willems 1996).
Jensen book (Jensen 2001).
Reichert final gather (Reichert 1992).
Blinn first introduced basic volume scattering algorithms to graphics (Blinn

1982b). Other important early work includes Kajiya and von Herzen (Kajiya and
Herzen 1984), Max (Max 1986), and Nishita et al (Nishita, Miyawaki, and Naka-
mae 1987). Glassner’s book has a thorough overview of this topic and previous
applications of it in graphics (Glassner 1995), and Max’s survey article also con-
cisely summarizes the topic (Max 1995).

One key application of volume scattering algorithms in computer graphics has
been simulating atmospheric scattering. Work on this topic includes Klassen (Klassen
1987) and Nishita et al (Nishita, Miyawaki, and Nakamae 1987). More recently,
Preetham et al’s SIGGRAPH paper introduced a physically rigorous and computa-
tionally efficient atmospheric and sky-lighting model (Preetham, Shirley, and Smits
1999).

There are a number of important applications of visualizing volumetric datasets
for medical and engineering applications–this area is called volume rendering. In
many of these applications, radiometric accuracy is substantially less important
then developing techniques that help make structure in the data apparent (e.g.
where the bones are in CT scan data.) Early papers in this area include Levoy’s (Levoy
1988; Levoy 1990b; Levoy 1990a) and Drebin et al (Drebin, Carpenter, and Han-
rahan 1988).

Rushmeier and Torrance finite element stuff (Rushmeier and Torrance 1987).�
� � � � � � � �

16.1 To further improve efficiency, Russian roulette can be applied to skip tracing
many of the shadow rays that make a low contribution to the final image.
Tentatively compute the potential contribution of each shadow ray to the
final overall radiance value before tracing the ray; if the contribution is be-
low some threshold, apply Russian roulette to possibly skip tracing the ray.

IrradianceCache 598

640 Light Transport [Ch. 16

XXX Russian roulette always increases variance; its value comes from
improving efficiency...

16.2 Read Veach’s description of efficiency-optimized Russian roulette, which
adaptively chooses a threshold for applying Russian roulette (Veach 1997,
Section XX). Implement this algorithm in lrt and evaluate its effectiveness
in comparison to manually set thresholds.

16.3 Path tracing to be able to flag important stuff for indirect lighting, be able to
sample it according to dA. Then use MIS to compute weights. Experiments
with scene with substantial indirect lighting: how much help, how much does
it hurt when mostly direct? What if the wrong objects are flagged as impor-
tant? Or if MIS isn’t used? What about dynamically changing probabilities
based on experience...

16.4 Light transport algorithms that trace paths from the lights like bidirectional
path tracing and particle tracing implicitly assume that the BSDFs in the
scene are symmetric–that f � p � ω � ω � � � f � p � ω � � ω � . However, both real-
world BSDFs like the one describing specular transmission as well as syn-
thetic BSDFs like the ones that are used when shading normals are used are
not symmetric; not accounting for this can lead to substantial errors in these
light transport algorithms (Veach 1997, Section XX). Fix lrt to properly
handle non-symmetric BSDFs.

16.5 Photons as paths from light for bidir–use as tiny light sources–unbiased.

16.6 Improve the BidirectionalIntegrator so that it uses multiple importance
sampling to weight path contributions (Veach and Guibas 1995). How much
is variance reduced by this improvement?

16.7 Extent the IrradianceCache so optionally sample the glossy components
of the BSDF and recursively trace rays to evaluate indirect radiance along
them. Set up a scene that illustrates a situation where this gives a substan-
tially better result than using the irradiance estimate for glossy reflection.

16.8 Algorithms for handling many lights... Ward, Wald...

16.9 Improve the IrradianceCache’s computation of irradiance values by mod-
ifying it to use bidirectional path tracing instead of regular path tracing to
compute the individual radiance values. Construct a scene where this ap-
proach is much better than path tracing. How much does it improve the
results for scenes where the path tracing approach works well already?

16.10 By taking a directionally-varying distribution of incoming radiance, using
it to compute irradiance, and then just storing an irradiance value, the ir-
radiance cache makes a well-chosen engineering trade-off that minimizes
the amount of information that must be stored with each entry in the irra-
diance cache. (Substantially more memory would be needed to store all of
these radiance values with each cache entry, for example.) For diffuse BS-
DFs, irradiance is sufficient to accurately compute reflection, but for glossy

Exercises 641

598 IrradianceCache
636 SingleScattering

BSDFs, the lack of directionally-varying illumination information may in-
troduce substantial error. Investigate compact representations for functions
on the sphere such as spherical harmonics and spherical wavelets and extend
the irradiance cache to represent the incident illumination with coefficients
from such a set of basis functions. Modify the IrradianceCache’s L()
method to use this representation to compute reflected light from points on
surfaces and compare the accuracy of images rendered with this technique
to images rendererd by the original irradiance cache, particularly for scenes
with glossy surfaces.

16.11 Expected values for many light source handling. Can probabilistically as-
sume a value for part of the integrand. Then x% of the time, compute it for
real, weight result by � guess � actual � �

x%... Show that this is an unbiased
estimator, etc...

16.12 kajiya-von herzen stuff, precompute illumination on a grid, save all those
redundant-ray marching computations

16.13 Extent the SingleScattering volume integrator to use multiple impor-
tance sampling based on sampling points on the light source and sampling
the phase function for the direct lighting contribution. Under what circum-
stances will this method give substantially less variance than the current im-
plementation?

16.14 Design and implement a general Monte Carlo path tracing approach to com-
puting images with multiple scattering in participating media.

16.15 bidir for lighting in volumes, cite path integral generalization to volumes by
the volume metropolis guys, also lafortune paper.

16.16 If photon mapping is only being used to render caustics in a scene, genera-
tion of the caustic map can be accelerated by flagging which objects in the
scene potentially have specular components in their BSDFs and then build-
ing a directional table around each light source recording which directions
could potentially result in specular paths (Jensen 1996). Photons are only
shot in these directions, saving work of tracing photons in directions that are
certain to not lead to caustics. Extend lrt to support this technique. Note
that different solutions will be needed for point light sources, directional
light sources, and area light sources. How much does this end up improving
efficiency for these sorts of scenes?

16.17 Another approach to improving the efficiency of photon shooting is to start
out by shooting photons from lights in all directions with equal probability,
but to then dynamically update the probability based on which directions are
lead to light paths that have high throughput and which directions are less
effective. Photons then must be re-weighted based on the probability for
shooting a photon in a particular direction. (This is similar in spirit to the
WeightedSampleOneLight() light source sampling method.) So long as
there is always non-zero possibility of sending a photon in any direction, this
approach doesn’t introduce bias into the shooting algorithm. One advantage

VolumeIntegrator 630

642 Light Transport [Ch. 16

of this second approach is that the user of the renderer doesn’t need to flag
which objects may cast caustics ahead of time.

16.18 Performance of the photon mapping integrator can be substantially improved
by using irradiance caching to compute reflection from diffuse objects–for
example, final gathering can be avoided for diffuse surfaces and only needs
to be done for glossy surfaces. Extend the photon mapping integrator to com-
pute and interpolate irradiance estimates like the IrradianceCache. When
an irradiance value needs to be computed at a point, use the photon map to
compute the reflected radiance at the intersection points of the rays traced
to compute the irradiance estimate; this further improves performance since
additional bounces of rays don’t need to be traced to compute the estimate.

16.19 Even if they aren’t used directly for computing reflected radiance, the pho-
tons around a point carry useful information about the illumination there
that can be used for importance sampling. First, see Keller and Wald’s pa-
per (Keller and Wald 2000) and extend the photon mapping integrator to
record which light source each direct lighting photon originated from. When
computing direct illumination at a point, use the nearby direct lighting pho-
tons to choose light source sampling probabilities based on the estimated
contribution of each of the light sources.

Next, see Jensen’s first paper on photon mapping and Hey and Purgathofer’s
more recent paper (Jensen 1995; Hey and Purgathofer 2002). Both of these
describe methods for using importance sampling to choose ray directions
for path tracing and final gathering based on a pdf built using the photons
around a point. Since the distribution of incident directions of these photons
gives information about the distribution of indirect illumination there, they
can be used to construct a continuous distribution of directions over the unit
sphere. Implement one of these methods and apply it for sampling some
of the rays used for the final gathering computation (continue to sample the
BSDF for the rest of the rays). Apply multiple importance sampling to com-
pute weights for these samples.

16.20 use depth-mapped shadowmap stuff for fast light beams through atmosphere

16.21 pass radiance into attenuation()/L() functions of VolumeIntegrator,
use their magnitudes to guide how many MC samples to take, etc...

16.22 With inhomogeneous volume regions, where the optical depth between two
points must be computed with raymarching, the SingleScattering volume
integrator may spend a lot of time finding the attenuation between lights and
points on rays where single scattering is being computed. One approach to
reducing this computation is to take advantage of the fact that the amount
of attenuation for nearby rays is generally smoothly varying and to use a
precomputed approximation to the attenuation. For example, Kajiya and
Von Herzen computed the attenuation to a light source at a grid of points
in 3D space and then found attenuation at any particular point could by in-
terpolating among nearby grid samples (Kajiya and Herzen 1984). A more
sophisticated approach was developed by Lokovic and Veach in the form of

Exercises 643

630 VolumeIntegrator

deep shadow maps, which is based on a clever compression technique that
takes advantage of the smoothness of the reattenuation (Lokovic and Veach
2000). Implement one of these approaches in lrt and measure how much
it speeds up the SingleScattering integrator. Are there situations where
this approach results in image errors?

16.23 spotlight volume region, let light sample t along path as well... interesing/generally
illustrative a la specular stuff, in that if you don’t deal with it, it gets harder
the more specular it gets, but if you do, then it’s really easy to nail...

16.24 bidir by sampling a bunch of lights paths, then randomly importance sam-
pling among them based on amount of energy that they carry? what other
things can we do to get local path space exploration a la metropolis?

16.25 way to partition lights to handle directly or not

16.26 phomap: accelerate final gathering by precomputing outgoing irradiance at
photons; then for final gather, just fine one nearest photon at gather ray hit
and return its value–way faster than doing lookups and BSDF evaluations...

16.27 Fluence caching for volume rendering

16.28 Varying step-size for ray-marching: one shortcoming of the VolumeIntegrators
is that they take a fixed step-size through the participating medium. If the
medium is very thick in some parts but very sparse in others, this may be in-
efficient, as a short step-size is needed to accurately resolve detail in the thick
parts but is wasteful in the rest of the volume. Modify the implementations
in this chapter to vary the step-size based on the local scattering properties.
How much does this speed up rendering the smoke.lrt scene?

16.29 Ray differentials for global illumination rays: Suykens and Willems (Suykens
and Willems 2001), Christensen et al (Christensen, Laur, Fong, Wooten, ,
and Batali 2003).

� � �

� � � � � � � � � � � � � � � � �

lrt represents a single point in the space of rendering system designs. The
basic decisions we made early on—that ray tracing would be the basic geomet-
ric visibility algorithm used, that physical correctness would be a cornerstone of
the system, and that Monte Carlo would be the main approach used for numeri-
cal integration—all had pervasive implications in the system’s design. An entirely
different set of trade-offs would have been made if this was a renderer designed in-
stead for maximal performance for real-time rendering or for maximum flexibility
for artistic expression, for example. This chapter looks back at some of the details
of the complete system, discusses some design alternatives, and also sketches out
how it could be extended in more complex ways than have been described in the
exercises at the ends of the chapters.

� � �
� � � � � � � � � � � ��� � ��� � � � �
One of the basic assumptions in lrt’s design was that the most interesting types

of images to render are images with complex geometry and lighting and that ren-
dering these images well—with good sampling patterns, ray differentials, and anti-
aliased texture—is worth the additional overhead that it introduces. A result of this
assumption is that lrt is relatively inefficient at rendering simple images, however.

For example, if all of the lights and geometry are removed from the foo.lrt
scene, the system still takes roughly half as much time to generate a completely
black image as it does to generate the full image. All of the effort used to compute
samples and ray differentials for camera rays and to add the contribution of the
rays to the image is clearly a substantial fraction of the time spent rendering simple
scenes. For example, with the standard parameter settings, each image sample
contributes to sixteen pixels in the image on average; if very little time is spent

� � �

BSDF 370
Camera 202

DifferentialGeometry 58
Sampler 237

Shape 63

646 Summary and Conclusion [Ch. 17

computing the ray’s radiance, then the time to update the image using a non-trivial
reconstruction filter will generally be much higher than if a one-pixel-wide box
filter was used for image reconstruction and each sample only contributed to a
single pixel.

Of course, for a more complex scene, the time spent finding ray intersections,
evaluating textures, and applying Monte Carlo integration algorithms comes to
dominate running time, and the relative time spent on sample generation and im-
age sample filtering becomes less important. Because we believe that these are the
most important types of scenes to render, the fact that some parts of the system are
a bottleneck for simple scenes isn’t a high priority to improve.

Another example of performance implications from the basic design decisions
is that because lrt makes some effort to filter texture maps well and compute ray
differentials, finding the BSDF at a ray intersection is more computationally inten-
sive than it is in other renderers that don’t expend as much effort in this area. lrt
generally performs better as more samples are taken to compute outgoing radiance
at a given intersection point–for example, increasing the number of shadow rays
traced to an area light source amortizes the anti-aliasing work done in computing
the BSDF’s textures over more samples, while tracing more camera rays to reduce
noise in shadows is relatively less efficient, since a BSDF needs to be computed at
each of their intersection tests.

Furthermore, some parts of the system may sometimes do unnecessary work
due to the way the system is currently designed. For example, Samplers always
compute lens and time samples, even if they aren’t needed by the Camera; there’s
no way for the Camera to communicate its sample needs. Similarly, if an intergrator
doesn’t use all of the samples requested in its GetSamples() method for some ray,
the Sampler’s work for generating those samples is wasted. This can happen if the
ray doesn’t intersect any geometry, for example.

Another example of potentially wasted computation is that Shapes always com-
pute the partial derivatives of their normal ∂n

�
∂u and ∂n

�
∂v, even though these

may not be needed. (Currently, they are only needed if the BSDF has specular
components and ray differentials are being computed for the reflected or refracted
rays.) There’s no way for the intersection routine to know if they will be needed at
intersection-time, however, so they are always computed. Indeed, there’s currently
no way to know if the BSDF will have specular components at ray–shape intersec-
tion time; the BSDF must be created by the material for this to be known, and the
material needs the differential geometry at the intersection point to compute the
BSDF!

One way to address this shortcoming would be to allow the material to conser-
vatively describe all of the fields in the DifferentialGeometry that it needs, for
example by setting bits in an int. This mask could be passed to the Shape in-
tersection routines, which could then skip setting the member variables that aren’t
needed. This approach could further save execution time by allowing shapes to
skip computing � u � v � parametric coordinates if they weren’t needed, etc.

what else sucks about the design?

Sec. 17.1] Design Retrospective 647

36 Ray
27 Vector

17.1.1 Abstraction Versus Efficiency

One of the basic tensions when designing interfaces between parts of a software
system is making a reasonable trade-off between abstraction and efficiency. For
example, many programmers who have just learned object-oriented programming
concepts, religiously make all data in all classes private and provide accessor
functions to get and set the values of the data items. For simple classes (e.g.
Vector), we believe that approach is misguided, since it needlessly hides an im-
plementation detail–that the class holds three floating-point coordinates–that can
reasonably expected to never be changed (e.g. by switching to a spherical coordi-
nate representation).

Of course, the other extreme of using no information-hiding and exposing all
details of all classes internals, is also a recipe for a code maintenance nightmare.
(Indeed, lrt’s plug-in design has helped enforce compliance to the system’s basic
interfaces.) Yet we believe that there is nothing wrong with judiciously exposing
basic design decisions and allowing code throughout the system to base their im-
plementations on these decisions. For example, the fact that a Ray is represented
with a point, a vector, and two-floating point values that give its extent is a decision
that doesn’t need to be hidden behind a layer of abstraction.

An important thing to keep in mind when writing a software system is its ex-
pected final size. The core of lrt (excluding its plug-in modules), where all of the
basic interfaces, abstractions, and policy decisions are defined, is almost exactly
ten thousand lines of code. Adding additional functionality to the system will gen-
erally only increase the amount of code in the plug-ins. The system is never going
to grow to be a million lines of code; this fact can be reflected in the amount of
information hiding used in the system. It would be a waste of programmer time
(and likely a source of runtime inefficiency) to design the interfaces to be prepared
for a system of that level of complexity.

17.1.2 Design Alternatives: Triangles Only

While the ability of ray tracing algorithm to handle a wide variety of shape rep-
resentations directly without requiring tessellation is an elegant property, it’s not
as useful in practice as one might expect. Most scenes are either modeled di-
rectly with polygons ore with smooth surfaces like spline patches and subdivision
surfaces that either have difficult-to-implement or relatively inefficient ray–shape
intersection algorithms, if any. As such, they are usually tessellated into triangles
for ray intersection tests in practice. In short, not many shapes that are commonly
encountered in real-world scenes can be described well with quadrics!

Given this state of affairs, there are some advantages to designing the system
around a common low-level shape representation and to only operate on triangles
throughout much of the the pipeline. Such a renderer would still support a variety
of primitives in the scene description but always would must tessellate them into a
single representation like triangles. Advantages of this design include:

1. The renderer can depend on the fact that the triangle vertices can be com-
pletely transformed into world space, so that no transformations of rays into
object space are ever necessary.

648 Summary and Conclusion [Ch. 17

2. The acceleration structures can be specialized so that their nodes directly
store the triangles that overlap them, improving the locality of the geometry
in memory and making it possible to do ray–primitive intersection tests di-
rectly in the traversal routine, without needing to pass through two levels of
virtual function calls, as to do intersection tests is currently necessary.

3. The presence of per-vertex normals in triangle meshes could be supported
in a more direct manner, rather than through the VertexTexture class. The
current abstraction for them in lrt leads to inefficiency in the computation
of ∂n

�
∂u and ∂n

�
∂v for shading geometry in Section 10.2, for example, since

these values could be computed directly from the vertex normals like ∂p
�
∂u

and ∂p
�
∂v is in the Triangle::Intersect() routine currently.

4. Displacement mapping, where geometry is subdivided into small triangles
which can then have their vertices perturbed procedurally or with texture
maps, can be more easily implemented if all primitives are able to dice them-
selves into triangles.

These advantages are substantial, both in their performance implications and
the complexity that they remove from the design of many parts of the system; for
a professional rendering system, rather than one that with pedagogical goals like
lrt, this alternative is probably worth pursuing.

17.1.3 Design Alternatives: Streaming Computation

One of the most exciting recent developments in computer architecture has been
the development of streaming models of processor design (Kapasi, Rixner, Dally,
Khailany, Ahn, Mattson, and Owens 2003). Streaming architectures differ from
conventional CPUs in that they are highly-parallel, with many computational units
on a single chip, and they are optimized for processing that has with a high ratio
of computation to memory bandwidth used. They offer substantial performance
advantages compared to general-purpose CPUs, which focus more on making a
small number of computational units run quickly than exploiting parallelism over
many units.

As modern graphics hardware has become programmable, it has used the stream-
ing model. This has allowed commodity graphics hardware to see performance
growth at a substantially faster rate than CPUs have been able to achieve—a sus-
tained rate of doubling performance every six months, as opposed to the eighteen
months that Moore’s law would predict (Hanrahan 2002; Kirk 2002). Thus, almost
all modern computers have specialized streaming processors inside them and are
likely to continue to for the foreseeable future.

Streaming architectures like these have shown substantial promise in address-
ing the problem of what to do with the enormous growth in the number number
of transistors that are available on a single chip—they can allocate them directly
to more computational elements—while conventional CPU architectures don’t sup-
port a programming model that makes it possible to keep more computational units
busy, so they tend to be limited to using these transistors for secondary tasks like
increasing the amount of on-chip cache memory.

Sec. 17.2] Major Projects 649

Many graphics and media-related applications fit the streaming programming
model well (Owens, Dally, Kapasi, Rixner, Mattson, and Mowery 2000; Owens,
Khailany, Towles, and Dally 2002; Owens 2002). Purcell and collaborators have
demonstrated the implementation of a general-purpose ray tracer on streaming
graphics hardware with no native support for ray tracing, an important milestone
in the process of applying the capabilities of these architectures to general-purpose
computational problems (Purcell, Buck, Mark, and Hanrahan 2002; Purcell, Don-
ner, Cammarano, Jensen, and Hanrahan 2003).

Writing efficient code for streaming architectures well requires different ap-
proaches than writing efficient code for CPUs. For example, the mechanisms for
writing data to main memory are more constrained than on CPUs. However, the
performance rewards for writing software that matches this model well will come
to be substantial. Indeed, given the performance potentially available from archi-
tectures based on this model in the future, we believe that should a second edition
of this book be written in a few years, the system may well target streaming pro-
cessor architectures rather than general-purpose CPUs.� � ��� � � � ��� � � ��� ��� � �

Most of the exercises at the end of the chapters have been reasonably self-
contained, involving modifying or extending plug-in modules, rather than making
substantial changes to the system’s overall architecture. This section outlines a
number of more ambitious changes that could be made to the system, involving
more wide-reaching changes to its main abstractions and interfaces.

17.2.1 Parallel Rendering

Given the computational cost of ray tracing, there has been interest in parallel algo-
rithms for ray tracing since shortly after the algorithm was first introduced (Cleary,
Wyvill, Vatti, and Birtwistle 1983; Green and Paddon 1989; Badouel and Priol
1989). With the computational capabilities available in modern CPUs, researchers
have started to demonstrate interactive ray tracing using tens of processors. For
example, Parker et al developed an interactive ray-tracer on a shared-memory com-
puter with 64 processors (Parker, Martin, Sloan, Shirley, Smits, and Hansen 1999)
and Wald and collaborators have interactively ray traced complex scenes on a clus-
ter of PCs (Wald, Slusallek, Benthin, and Wagner 2001; Wald, Slusallek, and Ben-
thin 2001; Wald, Kollig, Benthin, Keller, and Slusallek 2002; Wald, Benthin, and
Slusallek 2003).1 Chalmers et al’s book has good coverage of the state of the art in
parallel ray tracing (Chalmers, Davis, and Reinhard 2002).

Parallelizing lrt would require changes to many parts of the system, depending
on the particular approach used and the hardware target. One alternative is tar-
get the system to be run on a cluster of networked machines with each processes
running in their own address spaces and communicating with the others via ex-
plicit message passing. The other main alternative is to design the system for a
shared-memory environment, where a number of threads share the same memory

1Indeed, even if one isn’t writing a parallel ray tracer, there is a wealth of information in papers
on this topic about extremely efficient implementation of ray tracing algorithms, quickly building
high-quality acceleration structures, cache-friendly programming for ray-tracing, and so forth.

Sampler 237
Scene 8

650 Summary and Conclusion [Ch. 17

space. This section will focus on issues related to the second approach, as more
lower-level details of the system as currently written are relevant to discussion of
this approach. See for example Wald et al’s work and Chalmers et al’s book for
information about techniques related to the first approach.

The key problem to solve when multiple independent threads of execution have
access to a shared region of memory is access of shared data. It is critical to ensure
that one thread isn’t part way through modifying a data structure that another is si-
multaneously reading, thus giving it inconsistent or invalid results, that two threads
don’t simultaneously try to update the same memory location, etc. The mechanism
that solves this problem is mutual exclusion: threads must coordinate among them-
selves in some manner so that these problems don’t occur. This can be done by
convention–if only one thread needs to read or write some data structure and the
other threads never access it, this problem can’t come up.

More generally, mechanisms like locks can be used, where threads can request
ownership of a lock object that they later give up, and the operating system ensures
that no more than one thread holds the lock at any point in time. If shared data
structures are protected by locks and all threads follow the convention that they
acquire the appropriate lock before accessing or updating shared data structures,
then the program can execute correctly. This idea is straightforward; implementing
it consistently and correctly in a complex system is quite difficult, however, partic-
ularly since mutual exclusion bugs are typically non-deterministic across multiple
runs of the program, as some show no errors and others may crash, purely due to a
lucky or unlucky scheduling of threads by the operating system.

If we were parallelizing lrt, we would probably start by parsing the scene
description file and building the scene representation, including the acceleration
structures, using just a single thread. This phase of the program’s execution is dif-
ficult to parallelize, since all of the work being done is creation of data structures,
and generally isn’t the main bottleneck in image synthesis. We would then design
the system to create multiple threads to share the work rendering the image, but
then write out the final image and clean up with just a single thread.

Once the Scene has been created and the rendering threads are ready to start, a
mechanism for determining what rendering work each thread should do is needed.
An effective and straightforward approach is to partition the image plane into re-
gions and to have different threads work on different regions, taking responsibility
for all of the work needed to compute the contributions of a set of image samples.

The image can be partitioned statically or dynamically—a static partition di-
vides the image into N regions for N threads; each one can work on its region
without needing to communicate with the others. Because some parts of the image
may be complex and require more computation than others, a better approach is to
divide the image into more regions than there are threads and have threads access
a shared data structure to determine what region of the image to work on next. The
granularity of the image decomposition must be chosen carefully as well; if it is
too fine, threads will finish work on their image region quickly and spend too much
time waiting for access to the shared work queue. On the other hand, if the regions
are too large, a thread working on a complex region may be the bottle neck that
holds up the completion of rendering, as other threads sit idle. In either case, the
Samplers would need to be updated to support the partitioning method used, e.g.
so that they would generate samples for multiple regions of the image as needed.

Sec. 17.2] Major Projects 651

202 Camera
294 Film
281 Filter
598 IrradianceCache
141 MailboxPrim
375 Material
611 PhotonIntegrator
130 Primitive
63 Shape

465 VolumeRegion

In simple ray tracing systems, the main rendering phase is easily parallelizable,
since all of the data structures used except for the output image are read-only.
Many threads can thus easily share the same scene data and only have to coordi-
nate among each other for image output. (Indeed, for this reason ray tracing has
somewhat unfairly been called “embarrassingly parallelizable”.) In more complex
ray tracing systems, there are more issues to address. Fortunately, many of the
classes in lrt are safe for multi-threading as they are currently written. For exam-
ple, the Shapes, Cameras, Filters, VolumeRegions, and Materials operate on
the data passed into their methods and don’t modify their member data after they
have been created. As such, there is no potential for trouble if multiple threads are
calling methods of one of them simultaneously.

Other parts of the system, for example the Film, would require locking, how-
ever. In lrt, having threads acquire and release a lock to the Film for each image
sample they computed radiance for would probably lead to poor performance, as
the time spent acquiring and releasing locks would dwarf the time spent on up-
dating the image. The easiest way to work around this would be for threads to
accumulate multiple sample contributions in thread-local memory and then pass
them to the Film in batches of a few tens or hundreds of samples. An approach
like this would amortize the time spent on locking over more work. Alternatively,
each thread could hold a separate Film object and update it without locking, though
the memory cost of this would be higher. When rendering completed, all of the in-
dividual Films would be are merged into a single Film object for final processing
and output.

There are also issues related to the accelerators. If an accelerator that refines all
of the Primitives as the acceleration structure is being built, then the acceleration
structure is read-only, except for the MailboxPrims, and locking may be avoided.
If the accelerator refines primitives for intersection lazily, threads should use an
reader–writer lock to protect the accelerator. A reader–writer lock allows multiple
threads to hold a read lock for read-only access to a data structure, but only allows
one to hold a writer lock, and only hands out a writer lock if no threads hold a
reader lock. Primitive refinement and updates to the acceleration data structure
should only be done by a thread holding a writer lock.

Mailboxing introduces a few additional complications to the acclerators for
multi-threading. The variable used to assign rays ides is a potential source of
contention, and having multiple threads try to update the shared mailboxes in the
MailboxPrims is a likely source of trouble. The best solution to this is probably
for each thread to assign rays mailbox ids independently of the others and for each
thread to use local private memory to store the id of the last ray tested against each
primitive.

Of the remainder of the system, most of the rest is thread-safe. The statistics
system would need to be rewritten to accurately collect statistics in the presence of
multiple threads, and the PhotonIntegrator and IrradianceCache would both
need additional locking for their data structures, though.

17.2.2 Increased Scene Complexity

Given well-built accelerator structures, one of ray tracing’s strengths is that the time
spent on ray–primitive intersections grows slowly with added scene complexity. As

Triangle 90

652 Summary and Conclusion [Ch. 17

such, the possible complexity that a ray tracer can handle may be limited more by
memory requirements than by computation time. Because the rays traced by a ray
tracer may pass through many different regions of the scene during a short period
of time, virtual memory often doesn’t perform well with complex scenes, due to
the incoherent memory access patterns.

One way to increase the potential complexity that a renderer is capable of han-
dling is to reduce the memory used to store the scene. For the ecosys.lrt scene,
for example, lrt currently uses approximately 300MB of memory for the one mil-
lion triangles tin the scene—300 bytes per triangle, if all memory use (acceleration
structures, geometry, materials, etc.) is amortized over the geometric complexity.
We have previously written ray tracers that managed an average of 40 bytes per
triangle, including all memory overhead. To do this successfully requires careful
attention to memory use throughout the system; for example, we had the equiva-
lent of three different Triangle implementations, one using 8 bit u chars to store
vertex indices, one using 16 bit u shorts, and one using 32 bit u ints; the small-
est one that was needed for the range of vertex indices in the mesh was chosen at
runtime. Deering’s paper on geometry compression and Ward’s packed color for-
mat are both good inspirations for thinking along these lines (Deering 1995; Ward
1991).

A more complex approach is geometry caching (Pharr and Hanrahan 1996),
where the renderer holds a fixed amount of geometry in memory and discards ge-
ometry that hasn’t been accessed recently. This approach is useful for scenes with a
lot of tessellated geometry, where a compact higher-level shape representation like
a subdivision surface can explode into a large number of triangles. When avail-
able memory is low, it can be worthwhile to discard some of this geometry and
regenerate it later if needed.

The performance of such a cache can be substantially improved by reordering
the rays that are traced in order to improve their spatial and thus memory coher-
ence (Pharr, Kolb, Gershbein, and Hanrahan 1997). An easier-to-implement and
more effective approach to improving the cache’s behavior is described by Chris-
tensen et al, who wrote a ray tracer that uses simplified representations of the scene
geometry in a geometry cache to substantially increase its effectiveness (Chris-
tensen, Laur, Fong, Wooten, , and Batali 2003).

17.2.3 Subsurface Scattering

There is an important assumption implicit in the BSDF and the scattering equation:
that the only incident light that has an effect on the outgoing radiance at a point p
is also incident on the surface at p–light that hits the surface at other points p � is
assumed to not affect outgoing radiance at p. (Equivalently, the BSDF assumes that
the distribution of incident radiance on the surface is uniform over a relatively large
area of the surface with respect to the distance light travels beneath the surface.)

For many types of surfaces–human skin, marble, etc.–there is a significant amount
of subsurface light transport, however. Indeed, the snow scene in Figure snow fig-
ure in intro simulates subsurface scattering in the snow on the trees and on the
ground, giving it the soft diffused look of real snow. Light that enters such a sur-
face at one location may travel for some distance underneath the surface, undergo-
ing scattering there, before exiting at another position–see Figure 17.1.

Sec. 17.2] Major Projects 653

58 DifferentialGeometry
63 Shape

oω iω

Figure 17.1: The bidirectional scattering-surface reflectance distribution function
generalizes the BSDF to account for light that exits the surface at a point other than
where it enters. It is more difficult to evaluate than the BSDF, though subsurface
light transport can make a substantial contribution to the appearance of many real-
world objects.

The bidirectional scattering-surface reflectance distribution function (BSSRDF)
is the formalism that describes this scattering process. It is a distribution function
S � p � � ωi � p � ωo � that describes the proportion of outgoing differential radiance at
point p in direction ωo due to differential irradiance at p � from direction ωi. The
scattering equation for the BSSRDF requires integration over surface area and in-
coming direction; with two more dimensions to integrate over, it is substantially
more complex than Equation 5.4.9.

Lo � p � ωo ��� �
A
�

S2
S � p � � ωi � p � ωo � cosθi dωi dA

Fortunately, points p � that are far away from p generally contribute little to Lo � p � ωo � .
This fact can be a substantial help in implementations of subsurface scattering al-
gorithms.

Light transport inside a surface is volume light transport in participating media
and is described by the equation of transfer—subsurface scattering is based on the
same effects as light scattering in clouds, just at a smaller scale. Indeed, one of
the key characteristics of subsurface scattering is that it makes possible a number
of simplifications to the general volume light transport problem due to the fact that
in the end, the quantity of interest is the distribution of light leaving a surface at a
point, rather than the actual distribution of light inside the participating medium.

lrt currently has deep-seated assumptions that the BSDF is the abstraction that
will be used to model reflection from surfaces. In order to support subsurface scat-
tering, it would need to be extended to support methods for describing the volume
scattering properties of translucent materials. Furthermore, integrators would be
needed that applied subsurface light transport algorithms to compute reflection.
Because some of these algorithms require the ability to determine more informa-
tion about local surface geometry than is available in DifferentialGeometry,
including the ability to move across points on the surface around the intersection
point, the Shape interface will likely require extension to implement these algo-
rithms as well.

654 Summary and Conclusion [Ch. 17

Subsurface scattering was first introduced to graphics by Hanrahan and Krueger (Han-
rahan and Krueger 1993), though their approach did not accurately simulate light
that entered the object at points other than at the point being shaded. Dorsey et
al applied photon maps to simulating true subsurface scattering (Dorsey, Edelman,
Legakis, Jensen, and Pedersen 1999). Other recent work in this area includes pa-
pers by Pharr and Hanrahan (Pharr and Hanrahan 2000) and Jensen et al (Jensen,
Marschner, Levoy, and Hanrahan 2001; Jensen and Buhler 2002).

The two most easily implemented approaches to this problem are volume pho-
ton maps for subsurface scattering, as described by Dorsey et al (Dorsey, Edelman,
Legakis, Jensen, and Pedersen 1999) and Jensen et al’s dipole approach (Jensen,
Marschner, Levoy, and Hanrahan 2001; Jensen and Buhler 2002). The latter ap-
proach has been the basis of a number of fast implementations for scanline and
interactive rendering (Hery 2003; Hao, Baby, and Varshney 2003; Dachsbacher
and Stamminger 2003).

17.2.4 Precomputation for Interactive Rendering

Monte Carlo ray tracing algorithms have application beyond synthesis of final im-
ages for display. Recently there has been interest in algorithms for precomputing
information about geometric models that encodes a description of how they re-
spond to illumination, rather than computing how they reflect a particular distribu-
tion of illumination. This information can then be used in scanline or interactive
z-buffer rendering to compute realistic shading based on arbitrary illumination con-
ditions. For example, precomputed radiance transfer (PRT) algorithms account for
inter-reflection of light in geometric models, representing it in a way that can be
efficiently evaluated in interactive applications (Sloan, Kautz, and Snyder 2002;
Sloan, Liu, Shum, and Snyder 2003; Sloan, Hall, Hart, and Snyder 2003).

Because lrt’s overall design is geared toward image synthesis rather than this
type of pre-processing, extending the system to compute this information for a
given model isn’t just a matter of writing a new SurfaceIntegrator; the basic
Integrator::L() interface isn’t flexible enough to naturally match the needs of
these algorithms. For example, the PRT algorithms in the papers cited above need
to compute coefficients that encode response to incident illumination at the vertices
of a triangle mesh; the task of the integrator is no longer to compute radiance along
a set of independent rays. Furthermore, the Sample structure isn’t rich enough to
naturally encode where the samples are to be taken.

Another shortcoming in lrt’s interfaces is that they don’t provide access to the
scene geometry beyond its bounding boxes and ray–object intersection queries;
there’s no way to iterate over all of the vertices of a triangle mesh, for example.
This was an intentional design decision, since by minimizing the number and vari-
ety of methods that Shapes must provide, it’s easier to add new and unusual shapes
to the system. For many types of shapes (spheres even), the very idea of iterating
over its vertices has no meaning.

One approach to all of these problems is to write an integrator that overloads the
Integrator::Preprocess() method and does this precomputation there. The
scene description file could then be set up to render an image that was one pixel
wide and one pixel tall, which could be ignored. In this case, the integrator would
also be responsible for determining the points on the model at which values needed

Sec. 17.2] Major Projects 655

to be computed (e.g. by reading a file from disk, or via parameters to the integra-
tor), doing the appropriate computation in Preprocess(), and also writing the
results to disk.

Alternatively, given an appropriate importance function and leaving the emitted
radiance function as an arbitrary function as opposed to a specific function speci-
fied by the lights in the scene, it’s possible to express some precomputed radiance
transfer algorithms in terms of a series of measurements that can be computed
with the measurement equation. An alternative would be to derive an appropri-
ate importance function for a particular PRT approach, show that the measurement
equation gives the value of the appropriate quantity, and to design a replacement
interface for the Integrator::L() method that takes a representation of an im-
portance function and computes an estimate of the measurement equation for that
importance function.

�	� �

598 IrradianceCache
611 PhotonIntegrator

� ��� � � � � � �

In additional to all of the graphics-related code, there are a number of general
low-level utility routines that are useful throughout the system. These routines,
though key to lrt’s operation, are relatively less interesting than the rest of the
code in the system. It is good to have basic familiarity with them in order to under-
stand other code, but understanding their implementation in detail isn’t necessary
to understand lrt.

This appendix starts by reviewing the parts of the C++ Standard Library used
in lrt and then describes routines used for error reporting, memory management,
pseudo-random number generation, and other basic details. These sections will
omit much of the associated source code, as it isn’t particularly interesting. Most of
these routines are declared in core/lrt.h and defined in core/util.cpp. Finally,
we wrap up with the implementations of generic octree and kd-tree data structures.
These are currently only used by the IrradianceCache and PhotonIntegrator,
but were written so that they could be re-used for other applications as well.

� �
� � �� ����� � � � ����� � � � � � � � � �
Finally, simple functions that compute the minimum or maximum of two values

and a function that swaps the values of two variables. We just use the appropriate
functions provided by the standard C++ library.�
Global Include Files ���
#include <algorithm>
using std::min;
using std::max;
using std::swap;
using std::sort;

�	� �

vector 658

658 Utilities [App. A

XXX start discussing container classes in general, then specialize down to
vectors, sets, and maps XXX

For the benefit of readers unfamiliar with C++’s standard library, we will briefly
review some of its facilities that we will be using. The vector class from the C++
standard library is a parameterized container class. It is similar to an array, though
it can automatically grow as items are added to it. As it is a are template classe, a
vector of ints (for example) is declared as vector<int> v;.

To add a new item to the end of a vector, a push back method is available:

vector<int> vec;
for (int i = 0; i < 10; ++i)

vec.push_back(i);

We can’t say vec[i] = i in the above loop, since the vector needs to be in-
formed that the user needs it to grow bigger, so that space may need to be allocated
if needed.

A useful operation supported by vectors is the reserve() call. This lets us
inform the vector the number of items that we will be adding to it; this lets it
allocate sufficient space once, rather than needing to grow repeatedly as we insert
items into it (e.g. vec.reserve(100) reserves 100 spaces in the vector.)

The vector class provides a size() method, which returns the total number of
items inside of it. This method can be be used in conjunction with the [] operator
to access items in the vector directly:

for (int i = 0; i < vec.size(); ++i)
printf ("%d\n", vec[i]);

After a vector has been filled (e.g. with push back()), its members an be
modified with the [] operator as well.

Vectors also provide an erase method; this takes two iterators to the sequence
and removes all of the items from the first to the one before the last. Thus,

v.erase(v.begin(), v.end());

empties a vector completely.
Finally, the pair template class will be occasionally used; it provides a conve-

nient way to construct a new object that holds two other objects. For example, if
we’re filling a hash table and are storing an array of pointers to hashed objects Foo
with their integer hash values, we might declare an array of pair<Foo *, int>.
Given a variable p that is a pair of objects, the constituent objects can be accessed
as p.first and p.second. We can create a pair object with the make pair()
function:

int i = 0, Foo *foop = NULL;
pair<Foo *, int> p = make_pair(foop, i);
p.first = new Foo;

XXX sets and maps XXX
XXX string XXX

Sec. A.2] Communicating with the User 659

� ����� � � � � ��� � ��� � � � � � �� ��	� � � � �
The functions and classes in this section are all involved with communicating

information to the user of the system–reporting warnings and errors at rendering-
time, gathering statistics about the runtime performance of the system, and other
related tasks. The intent behind these routines is twofold: first, they are a conve-
nience for code in other parts of the system, providing useful functionality in one
place so that it doesn’t need to be duplicated. Second, by centralizing communi-
cation with the user in a well-defined set of routines, they ensure that policy about
how this communication is done can be easily modified. For example, if lrt was
embedded in another application that had a graphical user interface, errors might
be reported via a dialog box or a routine provided by the other application. If
printf() calls were strewn throughout the system, this would be a more difficult
modification to make.

A.2.1 Error Reporting

lrt provides four functions for reporting error conditions. In increasing sever-
ity, they are Info(), Warning(), Error(), and Severe(). All of them take a
formatting string as their first argument and then a variable number of arguments
providing values for the format. The syntax is identical to that used by the printf
family of functions. For example, if rayNum is an int, then

Info("Now tracing ray number %d\n", rayNum);

will print the expected result.
lrt also has its own version of the standard assert() macro, here named

Assert(). It checks that the given expression’s value evaluates to true; if not,
Severe() is called with information about where the assertion failed. It is used
for basic sanity checks where if the test fails, there is little possibility of recovery
and continuing execution. A failed assertion is a particularly user-unfriendly way
to for system to exit, as the message printed will likely be cryptic to anyone other
than the developer.�
Global Inline Functions ��� �
#ifdef NDEBUG
#define Assert(expr) ((void)0)
#else
#define Assert(expr) \

((expr) ? (void)0 : Severe("Assertion " #expr " failed in %s, line %d", \
__FILE__, __LINE__))

#endif // NDEBUG

A.2.2 Reporting Progress

The ProgressReporter class lets the system give the user some indication of how
much of a lengthy task has been completed and how much more time it is expected
to take. For example, the Scene::Render() method uses it to show how many of
the camera rays have been traced. The current implementation prints a row of plus

660 Utilities [App. A

signs, the elapsed time, and the estimated remaining time to complete the task to
the screen.�
Global Classes ���
struct ProgressReporter {�

ProgressReporter Public Methods ��
ProgressReporter Data �

};

The constructor takes the total number of units of work to be done (e.g. the total
number of camera rays to that will be traced), and a short string describing what
task is bring performed.�
ProgressReporter Public Methods ���
ProgressReporter(int t, const string &title);

Once the ProgressReporter has been created, each call to its Update() method
reports that one more unit of work has been completed. (An optional integer value
can be used to indicate that multiple units are done.) As enough units are completed
to warrant updating the display, an updated report is printed to the screen.�
ProgressReporter Public Methods ��� �
void Update(int num = 1) const;

When all of the work is done, the Done() method should be called to ensure that
the fact that the task has been finished is reported to the user.�
ProgressReporter Public Methods ��� �
void Done() const;

A.2.3 Statistics

lrt also has a unified interface for gathering statistics which provides a single
unified format for statistics reporting at the conclusion of rendering. At program
termination, a single function call causes all of the statistics to be printed out.

Three types of statistics can be gathered:

� Counters: These provide a way to count the frequency of something—e.g.
the total number of rays that are traced while making an image. They can also
be track the minimum or maximum of some quantity (such as the number of
primitives overlapping a kd-tree leaf node, for example.)

� Percentages: This records the percentage of times an event happens out of
the possible times it could have happened—e.g. the number of successful
ray–triangle intersection tests versus the total number of ray–triangle inter-
section tests.

� Ratios: These are essentially equivalent to percentages, but are just reported
as a ratio. For example, a ratio is used to track the average number of grid
voxels that the primitives in the scene overlap.

When a statistic type is reported to the statistics system, the caller must provide a
category and a name for the particular statistic. The category gives a way to gather
related types of statistics in output (e.g. all of the statistics gathered by the camera

Sec. A.2] Communicating with the User 661

module can be reported together.) The name specifically describes the particular
statistic.

For example, a counter is created by creating a StatsCounter object passing
it a general category name (e.g. “Camera”) the name of the specific statistic (e.g.
“Rays Generated”). The StatsCounter should be declared so that it is persistent
throughout the program’s execution, for example as a dynamically-allocated or a
static object. If it is only used in one function, it’s convenient to just declare it
static inside that function.�
Global Classes ��� �
class StatsCounter {
public:�

StatsCounter Public Methods �
private:�

StatsCounter Private Data �
};

�
StatsCounter Public Methods ���
StatsCounter(const string &category, const string &name);

�
StatsCounter Private Data ���
StatsCounterType num;

The counter is incremented by calling the ++ operator of the variable that repre-
sents it.�
StatsCounter Public Methods ��� �
void operator++() { ++num; }
void operator++(int) { ++num; }

Alternatively, if the counter is being used to track the minimum or maximum of
some range of values, the Min() and Max() methods can be used to report a new
value to it.�
StatsCounter Public Methods ��� �
void Max(StatsCounterType val) { num = max(val, num); }
void Min(StatsCounterType val) { num = min(val, num); }
operator int() const { return (int)num; }

StatsRatio and StatsPercentage both have identical interfaces; the format
of how they report their results is all that is different. Like the StatsCOunter,
both also take the category name and statistic name as the only parameters to their
constructors.�
StatsRatio Public Methods ��� �
void Add(int a, int b) { na += a; nb += b; }

�
StatsPercentage Public Methods ���
void Add(int a, int b) { na += a; nb += b; }

The StatsPrint() function prints all of the statistics that have been registered
with the statistics system. It does some rudimentary work to sort them by cate-
gory, make the columns of numbers line up, and report large numbers in units of
thousands, millions, or billions, as appropriate.

662 Utilities [App. A

�
Global Function Declarations ��� �
extern void StatsPrint(FILE *dest);

When the program is freeing up memory when it’s about to exit, it calls the
StatsCleanup() function, which frees up memory allocated by the statistics sys-
tem.�
Global Function Declarations ��� �
extern void StatsCleanup();

� ��� � � � ��� � � � � � �
� � �����

Memory management is often a complex issue in a system written in a language
without garbage collection. It is a big more straightforward in lrt, thanks to the
fact that most dynamic memory allocation is done as the scene representation is
assembled as the scene description file is parsed, and most of this memory is in use
until rendering is finished. Nevertheless, there are a few issues related to memory
management that warrant classes and routines to address them. Most of these is-
sues are performance-related, though an automatic reference-counting class is also
useful for cleanly tracking the lifetimes of objects where multiple pointers to them
are held in different parts of the system.

A.3.1 Variable stack allocation

Sometimes a routine needs to allocate a variable amount of temporary space for
some computation it performs. If a relatively small amount of memory is needed,
the overhead of dynamic allocation via new and delete (or malloc() and free())
may be high relative to the work actually being done. Instead, it can be substan-
tially more efficient to use the alloca() call, which allocates memory on the rou-
tine’s execution stack with just a few machine instructions. This memory is au-
tomatically deallocated when the routine exits, a feature than can also save book-
keeping work in the routine that uses it.

alloca() is an extremely useful tool, though there are two pitfalls to be aware of
when using it. First, because the memory is deallocated when the routine returns,m
the pointer must be not returned by the routine that allocated it or stored in a data-
structure with a longer lifetime than the function that allocated it. (This pointer may
be passed into other functions called by the allocating function, however.) Second,
stack space is limited on some systems, so alloca() shouldn’t be used for more
than a few kilobytes. For larger allocations, the overhead of new and delete isn’t
too bad, anyway.

A.3.2 Reference-Counted Objects

In languages like C++, where the language doesn’t provide automatic memory
management and the user must deallocate dynamically allocated memory when
through with it, it can be tricky to deal with the case when multiple objects hold a
pointer to some other object. We want to free the second object as soon as no other
object holds a pointer to it, but no sooner, so that we avoid both memory leaks as
well as subtle errors due to memory corruption.

Sec. A.3] Memory Management 663

664 Reference

As long as there aren’t circular references (e.g. object A holds a reference to
object B, which holds a reference to object A.), a good solution to this problem is
to use reference counting. An integer count is associated with objects that may be
held by multiple objects; it is incremented when another object stores a reference
to it and decremented when a reference goes away (e.g. due to the holding object
being destroyed.) When the reference count goes to zero, the object can be safely
freed.

We will define two classes to make it easy to use reference counted objects in
lrt. First is a template, ReferenceCounted. An object of type Foo should inherit
from ReferenceCounted if it is to be managed via reference counting. This adds
an nReferences field to it. The actual count will be managed by the Reference
class, defined below.�
Global Classes ��� �
class COREDLL ReferenceCounted {
public:

ReferenceCounted() { nReferences = 0; }
int nReferences;

private:
ReferenceCounted(const ReferenceCounted &);
ReferenceCounted &operator=(const ReferenceCounted &);

};

Rather than holding a pointer to a reference counted object Foo, other objects
should declare a Reference<Foo> to hold the reference. The Reference template
class handles updating the reference count as appropriate. For example, consider
the function below:

void func() {
Reference<Foo> r1 = new Foo;
Reference<Foo> r2 = r1;
r1 = new Foo;
r2 = r1;

}

In the first line, a Foo object is allocated; r1 holds a reference to it, and the object’s
nReferences count should be one. A second reference to the object is made in
the second line; r1 and r2 refer to the same Foo object, with a reference count of
two. Next, a new Foo object is allocated. When a reference to it is assigned to
r1, the reference count of the original object is decremented to one. Now r1 and
r2 point to separate objects. Finally, in the last line, r2 is assigned to refer to the
newly-allocated Foo object. The original Foo object now has zero references, and
is automatically deleted. At the end of the function, when both r1 and r2 go out of
scope, the reference count for the second Foo object goes to zero, causing it to be
freed as well.

The only trick to all this is the low-level C++ syntax that makes all this happen
automatically, so that other code can treat References as much like pointers as
possible. (For example, if the Foo class has a bar() method, we’d like to be able
to write code like r1->bar() in the function above, etc.)

664 Utilities [App. A

�
Global Classes ��� �
template <class T> class COREDLL Reference {
public:�

Reference Public Methods �
private:

T *ptr;
};

The constructors are straightforward; after dealing with the possibility of NULL
pointers, they just need to increment the reference count.�
Reference Public Methods ���
Reference(T *p = NULL) {

ptr = p;
if (ptr) ++ptr->nReferences;

}
�
Reference Public Methods ��� �
Reference(const Reference<T> &r) {

ptr = r.ptr;
if (ptr) ++ptr->nReferences;

}

Given a reference that is being assigned to hold a different reference, it is just
necessary to decrement our old reference count and increment the count of the new
object. The increments and decrements are ordered carefully below, so that code
like r1 = r1 doesn’t inadvertently delete the object r1 is refering to if it only has
one reference.�
Reference Public Methods ��� �
Reference &operator=(const Reference<T> &r) {

if (r.ptr) r.ptr->nReferences++;
if (ptr && --ptr->nReferences == 0) delete ptr;
ptr = r.ptr;
return *this;

}
�
Reference Public Methods ��� �
Reference &operator=(T *p) {

if (p) p->nReferences++;
if (ptr && --ptr->nReferences == 0) delete ptr;
ptr = p;
return *this;

}
�
Reference Public Methods ��� �
˜Reference() {

if (ptr && --ptr->nReferences == 0)
delete ptr;

}

Finally, a few methods take care of the details so that references can be used
much like pointers–e.g. so that -> can be used to call methods, etc. The operator

Sec. A.3] Memory Management 665

154 KdTreeAccel
417 MIPMap
664 Reference

bool method makes it possible to check to see if a reference points to a NULL object
with code like if (!r)�
Reference Public Methods ��� �
T *operator->() { return ptr; }
const T *operator->() const { return ptr; }
operator bool() const { return ptr != NULL; }
bool operator<(const Reference<T> &t2) const {

return ptr < t2.ptr;
}

A.3.3 Cache-Friendly Memory Behavior

While the speed of modern CPUs has continued to increase at roughly the rate pre-
dicted by Moore’s law (doubling every eighteen months), modern memory tech-
nologies haven’t been able to keep up; memory has been getting faster at a rate
of roughly 10% per year. The result of many years of this state of affairs is that a
CPU may have to wait 100 or more cycles to receive the result of a read from amin
memory. The CPU is usually idle for much of this time and a substantial amount
of its computational potential may be lost.

One of the most effective architectural innovations to address this problem has
been the addition of small fast cache memory either to the CPU itself or closer to
it than main memory. The cache hold recently-accessed data and is able to service
memory traffic from the CPU in many fewer cycles than if it had to go all of the
way to main memory, thus helping the CPU be able to do more computation and
less waiting for memory.

Due to the high penalty for going to main memory (or alternatively, the large
reward for being able to service a memory read from the cache), using algorithms
and data structures in the system that are cache friendly can substantially improve
its performance. This section will give an overview of current cache technology
and discuss general programming techniques for improving cache performance.
These techniques are used in many parts of lrt, particularly the KdTreeAccel,
MIPMap, and ImageFilm.

When the CPU makes a memory reference, the cache (or caches) are checked
to see if they have that memory location’s value copied in the cache. If so, a
cache hit is said to have occurred; otherwise there has been a cache miss and the
value is loaded from memory and stored in the cache. The basic goal of cache-
efficient programming is to minimize cache misses, for example by reducing the
total number of memory accesses or by reordering them to improve the probability
of a cache hit.

L1, L2, ...
Currently, 1-5 cycles to L1 cache, 5-20 to L2, 40-100 to main memory.
3 types of misses: compulsory, capacity, conflict.
cache line is...
When a miss occurs, date currently in the cache generally needs to be discarded

to make room for the new data. How a cache entry is chosen to be discarded
depends on how addresses in memory are mapped to cache lines. For a direct-
mapped cache, each main memory address can only map to a single cache address,

666 Utilities [App. A

Figure A.1: Cache-aligned memory allocation ensures that the address returned is
aligned with the start of a cache line. This figure shows the layout of three 16 byte
objects in memory on a system with 32 byte cache lines. On the top, the starting
address is not cache aligned–the first and last of the three objects span two cache
lines, such that we may incur two cache misses when accessing their elements.
On the bottom, the memory is cache aligned, guaranteeing that a maximum of one
cache miss will be incurred per object.

so there is no question about which cache entry must be discarded for a new one.
For a direct-mapped cache, if the cache has total size s, and block size b then
memory ranges � 0 � b � 1 � , � s � s � b � 1 � , � 2s � 2s � b � 1 � , ����� all map to the same
cache line.

A more general organization is n-way set associative (e.g. n � 2, n � 4). Then
any memory location maps to any one of n different cache lines. Then, the cache
line to replace is chosen with a heuristic that tries to choose the one least likely to
be accessed again in the future, e.g. by choosing the least recently used entry. Can
improve performance by reducing thrashing.

One relatively-easy way to reduce the number of cache misses incurred by lrt
and slightly improve its overall performance is to make sure that some memory
allocations are well aligned with the blocks of memory that the cache manages.
Figure A.1 shows the basic setting. There, we are allocating three 16 byte objects
on a system with 32 byte cache lines. By making sure that the first object starts
at the start of a cache entry (bottom), we ensure that we will incur no more than
one cache miss when accessing any one of the items. If we expect to be accessing
only some of the items (as opposed to looping over all of them in order), then per-
formance will generally be improved with cache-aligned allocation. (lrt’s overall
performance speed up by approximately 3% when allocation for the kd-tree accel-
erator in Section 4.4 was switched to use aligned allocation.)

The AllocAligned() and FreeAligned() functions provide a wrapper around
system memory allocation and freeing routines to do cache-aligned allocation. If
the pre-processor constant L1 CACHE LINE SIZE hasn’t been set previously, we
guess a cache line size of 64 bytes, which is typical of many architectures today.

Sec. A.3] Memory Management 667

�
Memory Allocation Functions ���
void *AllocAligned(size_t size) {
#ifndef L1_CACHE_LINE_SIZE
#define L1_CACHE_LINE_SIZE 64
#endif

return memalign(L1_CACHE_LINE_SIZE, size);
}

�
Memory Allocation Functions ��� �
void FreeAligned(void *ptr) {

free(ptr);
}

Another family of techniques for improving cache performance is based on re-
organizing data structures themselves. For example, simply reducing the size of
an frequently-used data structure by packing multiple integer values into a single
word with bit fields can be helpful. Doing so improves the spatial locality of mem-
ory access at runtime, since code that accesses more than one of the packed values
won’t incur more than one cache miss to get them all. Furthermore, by reducing
the overall size of the structure, this technique can reduce capacity misses, if fewer
cache lines are needed to store the structure.

If not all of the elements of a structure are usually accessed, there are a few
possible strategies. For example, if the structure is 128 bytes large and the com-
puter has 64 byte cache lines, two cache misses may be needed to access it. If
the commonly-used fields are moved to the first 64 bytes rather than being spread
throughout, then no more than one cache miss will be incurred when only those
fields are needed (Truong, Bodin, and Seznec 1998).

A related technique is “splitting”, where data structures are split into “hot” and
“cold” parts, each stored in separate regions of memory. For example, given an
array of some structure type, splitting it into two arrays where the less frequently
accessed parts of the original structure are in a new structure in a second array re-
duces misses when accessing the “hot” parts since each cache line is able to hold
more of them–once it is filled, multiple structures can be accessed without addi-
tional misses. And in a similar manner to other cache-friendly techniques, “cold”
data doesn’t displace useful information in the cache except when it is actually
needed.

Trees: eliminate pointers, e.g. for a fully-populated binary tree, allocate as array,
left child of node n is node 2n, right child is 2n � 1.

Prefetching
compulsory, capacity, conflict misses

A.3.4 Arena-Based Allocation

The conventional wisdom about memory allocation is that allocation based on the
system’s malloc() and new() routines is slow and that it is often worth-while to
write custom allocation routines for objects that will be frequently allocated and
freed. However, this conventional wisdom seems to be wrong. Wilson et al (Wil-
son, Johnstone, Neely, and Boles 1995), Johnstone and Wilson (Johnstone and
Wilson 1999), and Berger et al (Berger, Zorn, and McKinley 2001; Berger, Zorn,

MemoryArena 670
vector 658

668 Utilities [App. A

and McKinley 2002) have all investigated the performance of memory allocation
routines with real applications and have found that user-written allocators almost
always result in worse performance in both execution time and memory use com-
pared to a well-written generic system memory allocator.

One type of custom allocation technique that was found to be useful was arena-
based allocation, which allows the user to quickly allocate objects from a large
contiguous region of memory. In this scheme, individual objects can’t be freed;
only when the lifetime of all of the allocated objects is over is the entire region
of memory freed. This is a natural fit for many of the allocation patterns in lrt.
lrt has two classes that provide this type of allocation. The first, ObjectArena,
is a template parameterized by the type of object to be allocated. The other,
MemoryArena, supports variable-sized allocation. In some sense, it subsumes
the functionality of the ObjectArena, though the ObjectArena provides slightly
cleaner syntax in code that only needs an arena for a single type.

There are two main advantages to arena-based allocation: first allocation is ex-
tremely fast, usually just requiring a pointer increment. Second, it can improve
locality of reference and lead to fewer cache misses, since the allocated objects are
contiguous in memory, without any extra space between them taken up for book-
keeping by the dynamic memory allocator.�
Global Classes ��� �
template <class T> class ObjectArena {
public:�

ObjectArena Public Methods �
private:�

ObjectArena Private Data �
};

�
ObjectArena Public Methods ���
ObjectArena() {

nAvailable = 0;
}

�
ObjectArena Private Data ���
T *mem;
int nAvailable;
vector<T *> toDelete;

The Alloc() method returns a pointer to enough memory to hold a single in-
stance of the type T that it handles allocation for. If there isn’t enough space for
another T object in the last allocated block of memory, a new block is allocated.

Sec. A.3] Memory Management 669

667 AllocAligned()
667 FreeAligned()
670 MemoryArena

�
ObjectArena Public Methods ��� �
T *Alloc() {

if (nAvailable == 0) {
int nAlloc = max((unsigned long)16,

(unsigned long)(65536/sizeof(T)));
mem = (T *)AllocAligned(nAlloc * sizeof(T));
nAvailable = nAlloc;
toDelete.push_back(mem);

}
--nAvailable;
return mem++;

}

A more convenient alternative is provided by its operator T * method, which
just calls Alloc() itself. This allows one to write code that uses C++’s place-
ment new operator to simultaneously allocate memory and run the constructor to
initialize it:

ObjectArena<Foo> arena;
Foo *f = new (arena) Foo;

�
ObjectArena Public Methods ��� �
operator T *() {

return Alloc();
}

The ObjectArena’s destructor frees all of the blocks of memory that have been
allocated by the arena. To free this memory sooner, the FreeAll() method can be
called. Note that the ObjectArena doesn’t run the objects’ destructors when the
memory is freed; it is the caller’s responsibility to do this manually if appropriate:

f-> Foo();

Note that the object must not be deleted.�
ObjectArena Public Methods ��� �
void FreeAll() {

for (u_int i = 0; i < toDelete.size(); ++i)
FreeAligned(toDelete[i]);

toDelete.erase(toDelete.begin(), toDelete.end());
nAvailable = 0;

}

The MemoryArena quickly allocates memory for objects of varaible size by
handing out adjacent blocks of memory for a pre-allocated block. Like the ObjectArena,
it also does not support freeing of individual blocks of memory, only freeing of all
of the memory in the zone all at once. Thus, it is useful for cases where a number
of allocations need to be done with low overhead, and where all of the allocated
objects have similar lifetimes and where it’s easy to determine when all of them
have been deallocated.

vector 658

670 Utilities [App. A

�
Global Classes ��� �
class MemoryArena {
public:�

MemoryArena Public Methods �
private:�

MemoryArena Private Data �
};

The implementation of the MemoryArena is pretty straightforward. It allocates
memory in chunks of size blockSize, the value of which is set by a parameter
passed to the constructor. It maintains a pointer to the current block of memory
and the offset of the first free location in the block.�
MemoryArena Public Methods ���
MemoryArena(u_int bs = 32768) {

blockSize = bs;
curBlockPos = 0;
currentBlock = (char *)AllocAligned(blockSize);

}

The MemoryArena also uses two vectors to hold pointers to blocks of memory
that have been fully used as well as available blocks that were previously allocated
but aren’t currently in use.�
MemoryArena Private Data ���
u_int curBlockPos, blockSize;
char *currentBlock;
vector<char *> usedBlocks, availableBlocks;

To service an allocation request, we round up the requested amount of memory
so that it is in tune with the computer’s word alignment requirements. We then see
if the current block has enough space to handle the request, allocating a new block
if necessary. We then return the appropriate pointer and update our record of our
current offset into the current block.�
MemoryArena Public Methods ��� �
void *Alloc(u_int sz) {�

Round up sz to minimum machine alignment �
if (curBlockPos + sz > blockSize) {�

Get new block of memory for MemoryArena �
curBlockPos = 0;

}
void *ret = currentBlock + curBlockPos;
curBlockPos += sz;
return ret;

}

Most modern computer architectures impose alignment requirements on the po-
sitioning of objects in memory. For example, it is typically a requirement that 4
byte wide float values be stored at memory locations that are themselves multi-
ples of 4. To be safe, we will always hand out memory at 8 byte boundaries, which
is a conservative requirement for modern architectures.

Sec. A.3] Memory Management 671

672 BlockedArray

�
Round up sz to minimum machine alignment ���
sz = ((sz + 7) & (˜7));

We first need to store the pointer to the current block of memory on the usedBlocks
list so that it’s not lost; later, when MemoryArena::FreeAll() is called, we’ll be
able to reuse the block for the next series of allocations. We then check to see
if there are any already-allocated free blocks in the availableBlocks list before
falling back to calling the system allocation routine to allocate a brand new block.�
Get new block of memory for MemoryArena ���
usedBlocks.push_back(currentBlock);
if (availableBlocks.size()) {

currentBlock = availableBlocks.back();
availableBlocks.pop_back();

}
else

currentBlock = (char *)AllocAligned(max(sz, blockSize));

When the user is done with all of the memory, we just reset our offset in the
current block and move all of the memory from the usedBlocks list onto the
availableBlocks list.�
MemoryArena Public Methods ��� �
void FreeAll() {

curBlockPos = 0;
while (usedBlocks.size()) {

availableBlocks.push_back(usedBlocks.back());
usedBlocks.pop_back();

}
}

A.3.5 Blocked 2D Arrays

In C++, the natural way that 2D arrays are arranged in memory is to have entire
rows of values contiguous in memory, as shown on the left side of Figure A.2.
For an array indexed by � u � v � , the problem with this layout is that nearby � u � v �
array positions will often map to substantially different memory locations; while
adjacent values in the u direction are adjacent in memory, for an array of objects of
some type T, adjacent values in v are width * sizeof(T) locations apart. Thus,
spatially-coherent access in terms of 2D array positions does not necessarily lead to
the spatially-coherent memory access patterns that modern memory caches depend
on.

For all but the smallest arrays, the adjacent values in the y direction will be on
different cache lines, and thus, if the cost of a cache miss is incurred to reference a
value at a particular location � u � v � , there is no chance that handling that miss will
also load into memory the data for values � u � v � 1 � , � u � v � 1 � , etc.

To address these problems, the BlockedArray template implements a generic
2D array of values, with the items ordered in memory using a blocked memory
layout, as shown on the right side of Figure A.2. The array is subdivided into
square blocks of a small fixed size that is a power of two, BLOCK SIZE. Within
each block, the items are laid out row-by-row, as in the usual layout. This scheme

672 Utilities [App. A

Figure A.2: In C++, the natural layout for a 2D array of size width*height is a
block of width*height entries, where the

�
u � v � array element is at the u+v*width

offset. This approach is shown on the left. On the right is a blocked array; it has
been split into smaller square blocks, each of which is laid out linearly. Though
it is slightly more complex to find the memory location associated with a given�
u � v � array position, the improvement in cache performance due to more coher-

ent memory access patterns often more than makes up for this for overall faster
performance.

substantially improves the memory coherence of memory references in practice,
with very small added computation to compute the memory address for a particular
position (Lam, Rothberg, and Wolf 1991).

The size of the blocks is set via a template parameter, logBlockSize.�
Global Classes �
 �
template<class T, int logBlockSize> class BlockedArray {
public:�

BlockedArray Public Methods �
private:�

BlockedArray Private Data �
};

The constructor allocates space for the array and optionally initializes it from a
standard array passed in. Because the array size may not be an exact multiple of
the block size, it may be necessary to round up the size in one or both directions
to find the total amount of memory needed for the blocked array. The RoundUp()
method, defined below, rounds up the value passed to it to be a multiple of the
block size, if it isn’t already; this gives us the size that must be allocated in each
direction.

Sec. A.3] Memory Management 673

667 AllocAligned()
672 BlockedArray

Figure A.3: Given an array coordinate, the � u � v � block number that it is in can
be found by shifting off the logBlockSize low order bits for both u and v. (For
example, with a logBlockSize of 2 and thus a block size of 4, we can see see that
this correctly maps 1D array positions from 0 to 3 to block 0, 4 to 7 to block 1,
etc. To find the offset within the particular block, we just mask off the high order
bits, leaving the logBlockSize low order bits. Because the block size is a power
of two, these computations can all be done with a few efficient bit operations.

�
BlockedArray Public Methods ���
BlockedArray(int nu, int nv, const T *d = NULL) {

uRes = nu;
vRes = nv;
uBlocks = RoundUp(uRes) >> logBlockSize;
int nAlloc = RoundUp(uRes) * RoundUp(vRes);
data = (T *)AllocAligned(nAlloc * sizeof(T));
for (int i = 0; i < nAlloc; ++i)

new (&data[i]) T();
if (d)

for (int v = 0; v < nv; ++v)
for (int u = 0; u < nu; ++u)

(*this)(u, v) = d[v * uRes + u];
}

�
BlockedArray Private Data ���
T *data;
int uRes, vRes, uBlocks;

�
BlockedArray Public Methods ��� �
int BlockSize() const { return 1 << logBlockSize; }
int RoundUp(int x) const {

return (x + BlockSize() - 1) & ˜(BlockSize() - 1);
}

For convenience, the BlockedArray can also reports its size in each dimension.�
BlockedArray Public Methods ��� �
int uSize() const { return uRes; }
int vSize() const { return vRes; }

Looking up a value from a particular � u � v � position in the array requires some
slightly tricky indexing work to find the memory offset for that value. There are

674 Utilities [App. A

two steps to this process: first, finding which block the value is in, and second,
finding its offset within the block. Because the block sizes are always powers of
two, the logBlockSize low order bits in each of the u and v array positions give the
offset within the block and the high order bits give the block number–Figure A.3
shows how the address bits are computed.�
BlockedArray Public Methods ��� �
int Block(int a) const { return a >> logBlockSize; }
int Offset(int a) const { return (a & (BlockSize() - 1)); }

Then, given the block number � bu � bv � and the offset within the block � ou � ov � ,
we need to compute what memory location this maps to in the blocked array lay-
out. First consider the task of finding the starting address of the block; since the
blocks are laid out row-by-row, this corresponds to the block number bu + bv
* uBlocks, where uBlocks is the number of blocks in the u direction, which was
computed in the constructor. Because each block has BlockSize()*BlockSize()
values in it, the product of the block number and this value gives us the offset to
start of the block. We then just need to account for the additional offset from the
start of the block, which is ou + ov * BlockSize().�
BlockedArray Public Methods ��� �
T &operator()(int u, int v) {

int bu = Block(u), bv = Block(v);
int ou = Offset(u), ov = Offset(v);
int offset = BlockSize() * BlockSize() * (uBlocks * bv + bu);
offset += BlockSize() * ov + ou;
return data[offset];

}

We will also provide a convenience method to convert the blocked array back
to a standard C++ array; the caller is responsible for allocating enough memory to
hold the uRes * vRes values.�
BlockedArray Public Methods ��� �
void GetLinearArray(T *a) const {

for (int v = 0; v < vRes; ++v)
for (int u = 0; u < uRes; ++u)

*a++ = (*this)(u, v);
}

� ��� � ������ � ��� � � �� � � ��� � ��� �
A.4.1 2x2 Linear Systems

There are a number of places throughout lrt where we need to solve a 2x2 linear
system Ax � B of the form�

a00 a01

a10 a11

� �
x0

x1

� � � b0

b1

�

Sec. A.4] Mathematical Routines 675

663 ReferenceCounted
63 Shape
43 Transform

for the values x0 and x1. The SolveLinearSystem2x2() routine implements the
closed form solution to such a system, returning false if the determinant of A
suggests that the system is degenerate and there are no solutions.�
Matrix Method Definitions ���
bool SolveLinearSystem2x2(const Float A[2][2],

const Float B[2], Float x[2]) {
Float det = A[0][0]*A[1][1] - A[0][1]*A[1][0];
if (fabsf(det) < 1e-5)

return false;
Float invDet = 1.0f/det;
x[0] = (A[1][1]*B[0] - A[0][1]*B[1]) * invDet;
x[1] = (A[0][0]*B[1] - A[1][0]*B[0]) * invDet;
return true;

}

A.4.2 4x4 Matrices

The Matrix4x4 structure provides a low-level representation of 4 by 4 matrices.
It is an integral part of the Transform class, which holds two matrices, one repre-
senting a transform and the other representing its inverse. Because many Shapes
often have identical transformations, Matrix4x4s are reference counted so that
the Transform class only needs to hold shared Matrix4x4 references, rather than
holding the much larger complete matrices.�
Global Classes ��� �
struct Matrix4x4 : public ReferenceCounted {�

Matrix4x4 Public Methods �
Float m[4][4];

};

The default constructor sets the matrix to the identity matrix.�
Matrix4x4 Public Methods ���
Matrix4x4() {

for (int i = 0; i < 4; ++i)
for (int j = 0; j < 4; ++j)

if (i == j) m[i][j] = 1.;
else m[i][j] = 0.;

}

There are also provide constructors that allow the user to pass an array of floats,
or sixteen individual floats to initialize the Matrix4x4 with.�
Matrix4x4 Public Methods ��� �
Matrix4x4(Float mat[4][4]);
Matrix4x4(Float t00, Float t01, Float t02, Float t03,

Float t10, Float t11, Float t12, Float t13,
Float t20, Float t21, Float t22, Float t23,
Float t30, Float t31, Float t32, Float t33);

Matrix4x4 675
Reference 664

676 Utilities [App. A

The Matrix4x4 supports a few low-level matrix operations, each of which re-
turns a reference to a newly allocated matrix that holds the result of the operation.
For example, Transpose() transposes the matrix’s elements.�
Matrix Method Definitions ��� �
Reference<Matrix4x4> Matrix4x4::Transpose() const {

return new Matrix4x4(m[0][0], m[1][0], m[2][0], m[3][0],
m[0][1], m[1][1], m[2][1], m[3][1],
m[0][2], m[1][2], m[2][2], m[3][2],
m[0][3], m[1][3], m[2][3], m[3][3]);

}

The product of two matrices M1 and M2 is computed by setting the � i � j � th ele-
ment of the result to the sum of the products of the elements of the ith row of M1

with the jth column of M2.�
Matrix4x4 Public Methods ��� �
static Reference<Matrix4x4> Mul(const Reference<Matrix4x4> &m1,

const Reference<Matrix4x4> &m2) {
Float r[4][4];
for (int i = 0; i < 4; ++i)

for (int j = 0; j < 4; ++j)
r[i][j] = m1->m[i][0] * m2->m[0][j] +

m1->m[i][1] * m2->m[1][j] +
m1->m[i][2] * m2->m[2][j] +
m1->m[i][3] * m2->m[3][j];

return new Matrix4x4(r);
}

Finally, Inverse() returns the inverse of the matrix. The implementation uses
a numerically stable Gauss–Jordan elimination routine to compute the inverse.�
Matrix4x4 Public Methods ��� �
Reference<Matrix4x4> Inverse() const;

A.4.3 Utility Functions

Now we’ll define a few very short functions that will be useful throughout the
program. First is Lerp(), which performs linear interpolation between two values,
v1 and v2, with position given by the t parameter. When t is zero, the result is v1;
when t is one, the result is v2.

Lerp() is implemented with the computation

� 1 � t � v1 � tv2

in the function below, rather than in the more terse and potentially more efficient
form of

v1 � t � v2 � v1 �
in the interests of reducing floating-point error. In the event that the magnitudes of
v1 and v2 are substantially different, it may not be possible to accurately represent
the difference v2 � v1 with a floating-point value in the latter form. When this

Sec. A.4] Mathematical Routines 677

678 M PI

inaccurate value is scaled by t and added to v1, it may be substantially different
than the correct value. With the first formulation, not only is this problem avoided
but Lerp() returns exactly the values v1 and v2 when pos has values 0 and 1,
respectively, and always returns a value in the range � v1 � v2 � if t is in � 0 � 1 � ; this
property also isn’t guaranteed by the second approach.�
Global Inline Functions ��� �
inline Float Lerp(Float t, Float v1, Float v2) {

return (1.f - t) * v1 + t * v2;
}

Clamp() clamps a value val to be between the values low and high. If val is
out of that range, low or high is returned as appropriate.�
Global Inline Functions ��� �
inline Float Clamp(Float val, Float low, Float high) {

if (val < low) return low;
else if (val > high) return high;
else return val;

}

Mod() computes the remainder of a
�
b. This function is handy since it behaves

predictably and reasonably with negative numbers—the C and C++ standards leave
the behavior of the % operator undefined in that case.�
Global Inline Functions ��� �
inline int Mod(int a, int b) {

int n = int(a/b);
a -= n*b;
if (a < 0)

a += b;
return a;

}

Two simple functions convert from angles expressed in degrees to radians, and
vice versa.�
Global Inline Functions ��� �
inline Float Radians(Float deg) { return ((Float)M_PI/180.f) * deg; }
inline Float Degrees(Float rad) { return (180.f/(Float)M_PI) * rad; }

Because the math library doesn’t provide a base-2 logarithm function, we pro-
vide one here.�
Global Inline Functions ��� �
inline Float Log2(Float x) {

static Float invLog2 = 1.f / logf(2.f);
return logf(x) * invLog2;

}

Sometimes we just need an integer valued base-2 logarithm. (For example in the
EWA texture filtering implementation.) This can be computed quickly by shifting
and masking the mantissa bits from an IEEE float and returning them directly.

678 Utilities [App. A

�
Global Inline Functions ��� �
inline int Log2Int(Float v) {

return ((*(int *) &v) >> 23) - 127;
}

Finally, some fancy bit-twiddling can quickly determine if a given integer is an
exact power of two and can round an integer up to the next power of two greater
than or equal to it.�
Global Inline Functions ��� �
inline bool IsPowerOf2(int v) {

return (v & (v - 1)) == 0;
}

�
Global Inline Functions ��� �
inline u_int RoundUpPow2(u_int v) {

v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return v+1;

}

Unfortunately, not all system math.h files store the value of π in M_PI. If it is
not defined, we do it ourself.�
Global Constants ��� �
#ifndef M_PI
#define M_PI 3.14159265358979323846f
#endif

Other useful constants include 1
255 , 1

π , and 1
2π :

�
Global Constants ��� �
#define INV_255 0.00392156862745098039f
#define INV_PI 0.31830988618379067154f
#define INV_TWOPI 0.15915494309189533577f

We define a generally-useful INFINITY value using FLT MAX from the standard
math library, which is the largest representable floating point number.�
Global Constants ��� �
#ifndef INFINITY
#define INFINITY FLT_MAX
#endif

A.4.4 Floating-point to integer conversion

On the x86 architecture, it can take as many as 80 processor cycles to convert
a floating-point value to an integer value; the conversion to integer in a simple
sequence of code like:

Sec. A.4] Mathematical Routines 679

Float a = ..., b = ...;
int i = (int)(a * b);

may take 80 times longer than the multiplication a*b! The root problem is that the
floating-point unit’s rounding mode needs to be changed from the default before
the built-in conversion instruction is used, and this requires an expensive flush of
the entire floating-point pipeline.

lrt needs to convert Floats to integers in a number of performance-sensitive
areas. These include the sample filtering code, where for every camera sample it
is necessary to compute the extent of pixel samples that are affected by the sample
based on the filter extent. Similarly, in the Perlin noise evaluation routines, the
integer lattice cell that a floating-point position is in must be found.

Sree Kotay and Mike Herf have developed some techniques to these conver-
sions much more quickly without needing to change the rounding mode by taking
advantage of low-level knowledge of the layout of IEEE floating-point values in
memory. Using these routines in lrt sped it up by up to 5% for some scenes. We
will not include the details of their implementation here as they are arcane, to say
the least. However, there are four key functions, all of them taking a Float value
and returning an integer:

1. Float2Int(f): This is the same as the basic cast (int)f.

2. Round2Int(f): This rounds the floating point value f to the nearest integer,
returning the result as an int.

3. Floor2Int(f): The first integer value less than or equal to f is returned.

4. Ceil2Int(f): And similarly, the first integer value greater than or equal to
f is returned.

A.4.5 Pseudo-Random Numbers

lrt uses a custom pseudo-random number generator rather than calling the one
provided by the system. Doing so is worth the trouble, both because it allows us
to ensure that the system produces the same results regardless of machine architec-
ture and C library implementation but also because many systems provide random
number generation routines with poor statistical distributions.

The random number generator used in lrt is the “Mersenne Twister” by Makoto
Matsumoto and Takuji Nishimura. The code to the random number generator is
both complex and subtle, and we will not attempt to explain it here. Nevertheless,
it is one of the best random number generators known, can be implemented very
efficiently, and has a period of 219937

� 1 before it repeats the series again. Pointers
to the paper describing its algorithm can be found at the end of this section.

The RandomFloat() and RandomUInt() routines provide uniformly-distributed
floating point values from the range � 0 � 1 � and � 0 � 232

� 1 � , respectively.
�
Global Inline Functions ��� �
inline Float RandomFloat();
inline unsigned long RandomUInt();

IrradianceCache 598
OctNode 681

680 Utilities [App. A

Figure A.4: Basic octree refinement: starting with an axis-aligned bounding box,
the octree is defined by progressively splitting each node into eight equal-sized
child nodes. The order in which the child nodes are assigned numbers 0 ����� 7 is
significant–details of this will be explained later in this section. Different sub-trees
may be refined to different depths, giving an adaptive discretization of 3D space.

� ��� � � � � ��� �
The octree is a three-dimensional data structure that recursively splits a region of

space into axis-aligned boxes. Starting with a single box at the top level, each level
of refinement splits the previous level’s boxes into eight child boxes, each covering
one-eigth of the volume of the previous ones–Figure A.4 shows the basic idea. The
octree implementation defined in this section is in the file core/octree.h.

While octrees have many applications, among them acceleration structures for
ray tracing, the implementation here helps accelerate the query “given a collec-
tion of objects and their axis-aligned bounding boxes, which of their bounds over-
lap a given point”? For large numbers of objects, using an octree to answer this
question can be substantially faster than looping over all of the objects directly.
lrt currently only uses octrees to store the irradiance estimates computed by the
IrradianceCache integrator–each estimate has a bounding box associated with
it that gives the maximum region of space where the estimate may be used for
shading computations. However, the octree implementation is independent of the
irradiance cache in order to simplify the description of the IrradianceCache as
well as to make it easier to re-use the octree for other applications.

First, we will define the OctNode structure, which represents a node of the tree.
It holds pointers to the eight possible children of the node (some or all of which
may be NULL) and a vector of NodeData objects. NodeData is the object type that
the user of the octree wants to store in the tree; for the IrradianceCache, it’s the
IrradSample structure, which records the results from a single irradiance estimate.
The constructor and destructor of the OctNode just initialize the children to NULL
and delete them, respectively; their implementations won’t be shown here.

Sec. A.5] Octrees 681

38 BBox
154 KdTreeAccel
658 vector

�
Octree Declarations ���
template <class NodeData> struct OctNode {

OctNode() {
for (int i = 0; i < 8; ++i)

children[i] = NULL;
}
˜OctNode() {

for (int i = 0; i < 8; ++i)
delete children[i];

}
OctNode *children[8];
vector<NodeData> data;

};

The Octree class is parameterized by the NodeData type as well as by a “lookup
procedure”, LookupProc, which is essentially a callback function that lets the
Octree communicate back to the caller which elements of NodeData overlap a
given lookup position.�
Octree Declarations ��� �
template <class NodeData, class LookupProc> class Octree {
public:�

Octree Public Methods �
private:�

Octree Private Data �
};

The constructor takes overall bound of the tree and a maximum depth beyond
which it will never refine nodes to have children.�
Octree Public Methods ���
Octree(const BBox &b, int md = 16)

: bound(b) {
maxDepth = md;

}
�
Octree Private Data ���
int maxDepth;
BBox bound;
OctNode<NodeData> root;

To add an item to the tree, the octree walks down levels the tree, creating new
nodes as needed until termination criteria are met and the item is added to the
node it overlaps. Similarly to the KdTreeAccel of Section 4.4, performance is
substantially affected depending on what the specific termination criteria are. For
example, we could trivially decide to never refine the tree and add all items to the
root node. This would be a valid octree, though it would perform poorly for large
numbers of objects. However, if the tree is refined too much, items may span many
nodes, leading to excessive memory use.

The entrypoint for adding an item directly calls an internal “add item” method
with a few additional parameters, including the current node being considered, the
bounding box of the node, and the squared length of the diagonal of the data item’s

BBox 38
BBox::pMax 39
BBox::pMin 39

DistanceSquared() 34
OctNode 681
Octree 681

Octree::bound 681
Octree::maxDepth 681

682 Utilities [App. A

bounding box. This method calls itself recursively as it works down the octree to
the nodes where the item is stored.�
Octree Public Methods ��� �
void Add(const NodeData &dataItem, const BBox &dataBound) {

add(&root, bound, dataItem, dataBound,
DistanceSquared(dataBound.pMin, dataBound.pMax));

}

The internal add() method either adds the item to the current node and returns
or determines which child nodes the item overlaps, allocates them if necessary, and
recursively calls add() to allow the children to decide whether to stop the recursion
and add the item or to continue down the tree.�
Octree Method Definitions ���
template <class NodeData, class LookupProc>
void Octree<NodeData, LookupProc>::add(OctNode<NodeData> *node,

const BBox &nodeBound, const NodeData &dataItem,
const BBox &dataBound, Float diag2, int depth) {�

Possibly add data item to current octree node ��
Otherwise add data item to octree children �

}

The item is added to the current node once the maximum tree depth is reached
or when the length of the diagonal of the node is less than the length of the diagonal
of the item’s bounds. This ensures that the item overlaps a relatively small number
of tree nodes, while not being too small relative to the extent of the nodes that it’s
added to. Figure A.5 shows the basic operation of the algorithm in two dimensions
(where the corresponding data structure is known as an quadtree).�
Possibly add data item to current octree node ���
if (depth == maxDepth ||

DistanceSquared(nodeBound.pMin, nodeBound.pMax) < diag2) {
node->data.push_back(dataItem);
return;

}

If the algorithm continues down the tree, it needs to determine which of the child
nodes the item’s bounding box overlaps. The fragment

�
Determine which children

the item overlaps � efficiently sets an array of boolean values, over[], such that the
ith element is true only if the bounds of the data item being added overlap the ith
child of the current node. It can then loop over the eight children and recursively
call add() for the ones that the object overlaps.

Sec. A.5] Octrees 683

Figure A.5: Creation of a quadtree (the 2D analog of an octree): in the top row, the
tree is comprised of just the root node and an object with bounds around a given
point is being added. The tree’s topology is illustrated with a small box beneath
it, corresponding to the root node with no children. Next, the tree is refined one
level and the object is added to the single child node that it overlaps (again shown
schematically underneath the tree.) In the bottom row, another new object with a
smaller bounding box than the first is being added. The add() method ends up
going down two levels of the tree before adding the item, again to the single node
that it overlaps. In general, items may be stored in multiple nodes of the tree.

BBox::pMax 39
BBox::pMin 39

OctNode 681
OctNode::children 681

Point 33

684 Utilities [App. A

�
Otherwise add data item to octree children ���
Point pMid = .5 * nodeBound.pMin + .5 * nodeBound.pMax;�
Determine which children the item overlaps �
for (int child = 0; child < 8; ++child) {

if (!over[child]) continue;
if (!node->children[child])

node->children[child] = new OctNode<NodeData>;�
Compute childBound for octree child child �
add(node->children[child], childBound, dataItem, dataBound, diag2,

depth+1);
}

Rather than computing the bounds of each child and doing a bounding box over-
lap test, it is possible save work by taking advantage of symmetries, such as the fact
that if the x range of the object’s bounding box is entirely on the left side of the
plane that splits the tree node in the x direction, there is no way that it overlaps
any of the four child nodes on the right side. Careful selection of the child node
numbering scheme in Figure A.4 is key to the success of this approach. Here the
child node numbering scheme becomes important. The child nodes are numbered
such that the low bit of a child’s number is zero if its z component is on the low side
of the z splitting plane and one if it is on the high side. Similarly, the second bit
is set based on which side the child is of the y plane, and the third bit is set based
on its position with respect to the x plane. Given boolean variables that classify
a child node with respect to the splitting planes (true if it is above the plane, the
child number of a given node is equal to:

4*(xHigh ? 1 : 0) + 2*(yHigh ? 1 : 0) + 1*(zHigh ? 1
: 0)

It is possible to quickly determine which child nodes a given bounding box
overlaps by classifying its extent with respect to the center point of the node. For
example, if the bounding box’s starting x value is less than the midpoint, then the
node potentially overlaps children numbers 0, 1, 2, and 3. If its ending x value is
greater than the midpoint, it potentially overlaps 4, 5, 6, and 7. We check the y
and z dimensions in turn, computing the logical and of the results: the item only
overlaps a child node if it overlaps its extent in all three dimensions.

Sec. A.5] Octrees 685

38 BBox
40 BBox::Inside()

681 Octree::bound
686 Octree::lookup()
33 Point

�
Determine which children the item overlaps ���
bool over[8];
over[0] = over[1] = over[2] = over[3] = (dataBound.pMin.x <= pMid.x);
over[4] = over[5] = over[6] = over[7] = (dataBound.pMax.x > pMid.x);
over[0] &= (dataBound.pMin.y <= pMid.y);
over[1] &= (dataBound.pMin.y <= pMid.y);
over[4] &= (dataBound.pMin.y <= pMid.y);
over[5] &= (dataBound.pMin.y <= pMid.y);
over[2] &= (dataBound.pMax.y > pMid.y);
over[3] &= (dataBound.pMax.y > pMid.y);
over[6] &= (dataBound.pMax.y > pMid.y);
over[7] &= (dataBound.pMax.y > pMid.y);
over[0] &= (dataBound.pMin.z <= pMid.z);
over[2] &= (dataBound.pMin.z <= pMid.z);
over[4] &= (dataBound.pMin.z <= pMid.z);
over[6] &= (dataBound.pMin.z <= pMid.z);
over[1] &= (dataBound.pMax.z > pMid.z);
over[3] &= (dataBound.pMax.z > pMid.z);
over[5] &= (dataBound.pMax.z > pMid.z);
over[7] &= (dataBound.pMax.z > pMid.z);

Here again taking advantage of the child node numbering scheme, the bounding
box of a particular child is easily found based on the child number and the parent
node’s bound.�
Compute childBound for octree child child ���
BBox childBound;
childBound.pMin.x = (child & 4) ? pMid.x : nodeBound.pMin.x;
childBound.pMax.x = (child & 4) ? nodeBound.pMax.x : pMid.x;
childBound.pMin.y = (child & 2) ? pMid.y : nodeBound.pMin.y;
childBound.pMax.y = (child & 2) ? nodeBound.pMax.y : pMid.y;
childBound.pMin.z = (child & 1) ? pMid.z : nodeBound.pMin.z;
childBound.pMax.z = (child & 1) ? nodeBound.pMax.z : pMid.z;

After items have been added to the tree, the user can use the tree find up the items
that have bounds that overlap a given point. The Lookup() method walks down
the tree, processing the nodes that the given point overlaps. The user-supplied
callback, process is called for each NodeData item that overlaps the given point.

As with the Add() method, the main lookup function directly calls to an internal
version that takes a pointer to the current node and the current node’s bounds.�
Octree Public Methods ��� �
void Lookup(const Point &p, const LookupProc &process) {

if (!bound.Inside(p)) return;
lookup(&root, bound, p, process);

}

If the internal lookup function has been called with a given node, the point p
must be inside the node. The user-supplied callback is called for each NodeData
item that is stored in the octree node, allowing the user to do whatever processing

BBox 38
BBox::pMax 39
BBox::pMin 39

KdTree 688
KdTreeAccel 154

OctNode 681
OctNode::children 681

OctNode::data 681
Octree 681

PhotonIntegrator 611
Point 33

686 Utilities [App. A

is appropriate.1 The callback must either be a pointer to a function that takes a
position and a NodeData object, or a class that has an operator() method that
takes those arguments.

After the items are processed, this method continues down the tree into the single
child node that p is inside the bottom is reached.�
Octree Method Definitions ��� �
template <class NodeData, class LookupProc>
void Octree<NodeData, LookupProc>::lookup(OctNode<NodeData> *node,

const BBox &nodeBound, const Point &p,
const LookupProc &process) {

for (u_int i = 0; i < node->data.size(); ++i)
process(p, node->data[i]);�

Determine which octree child node p is inside �
if (node->children[child]) {�

Compute childBound for octree child child �
lookup(node->children[child], childBound, p, process);

}
}

Again taking advantage of the child numbering scheme, it is possible to quickly
determine which child a point overlaps by classifying it with respect to the center
of the parent node in each direcion.�
Determine which octree child node p is inside ���
Point pMid = .5f * nodeBound.pMin + .5f * nodeBound.pMax;
int child = (p.x > pMid.x ? 4 : 0) +

(p.y > pMid.y ? 2 : 0) + (p.z > pMid.z ? 1 : 0);

� ��� � � � � � � � �
Like the octree, the kd-tree is another data structure that accelerates the pro-

cessing of spatial data. (And of course it was the basis of the KdTreeAccel in
Chapter 4. In contrast to the octree, where the data items had a known bounding
box and the caller wanted to find all items that overlap a given point, the generic
kd-tree that is the topic of this section is useful for handling data items that are
just single points in space, with no associated bound, but where the caller wants
to find all such points within a user-supplied distance of a given point. It is a key
component of the PhotonIntegrator.

The KdTree that will be described here is generally similar to the KdTreeAccel
of Section 4.4 in that 3D space is progressively split in half by planes. There are
two main differences, however:

� Here, each tree node stores a single data item. As such, there is exactly one
kd-tree node for each data item stored in the tree.

1Note that the Octree actually passes all of the data items in the node to the call back, not just
the subset of them that p is inside the bounds of. This isn’t too much of a problem in practice, since
the node using the Octree can always store a BBox in the NodeData and do the check itself. For uses
where it doesn’t matter if a few extra NodeData items are passed back, writing the implementation
in this way saves the BBox storage space.

Sec. A.6] Kd-Trees 687

154 KdTreeAccel

� Because each item being stored is just a single point, items never straddle
the splitting plane and need to be stored on both sides of a split.

One result of these differences is that it is possible to build a perfectly balanced tree,
which can improve the efficiency of data lookups. Furthermore, the total number
of nodes in the tree will always be exactly the same as the number of data items.

Like the KdTreeAccel, the implementation here stores all of the nodes of the
tree in a single contiguous array. The left child of any node with a left child will be
one after the node in the array, and the rightChild member of KdNode gives the
offset to the right child of the node, if any. rightChild will be set to a very large
number if there is no right child.

To further improve the cache efficiency of the kd-tree, we will apply the cache
optimization described previously of separating “hot” and “cold” data. “Hot” data
is data that is frequently accessed while we are traversing the tree, while cold data
is less frequently accessed. By splitting the kd-tree node data structure into two
pieces in this way, we are able to pack hot data close together in contiguous mem-
ory, improving the cache efficiency of accessing it, since we can pack more tree
nodes into a single cache line.

The representation of the basic structure of the tree is stored in KdNode struc-
tures; they record information about splitting and the children of the node, if any.
The additional data that the user wants to store at each node is stored in a separate
array, indexed identically to the KdNode array (i.e. the ith KdNode’s data is i into
the data array.)�
KdTree Declarations ���
struct KdNode {

void init(Float p, u_int a) {
splitPos = p;
splitAxis = a;
rightChild = ˜0;
hasLeftChild = 0;

}
void initLeaf() {

splitAxis = 3;
rightChild = ˜0;
hasLeftChild = 0;

}�
KdNode Data �

};
�
KdNode Data ���
Float splitPos;
u_int splitAxis:2;
u_int hasLeftChild:1;
u_int rightChild:29;

The KdTree is parameterized by the type of object stored in the nodes, NodeData
and the type of callback object that is used for reporting which nodes are within
a given search radius of the lookup position. The KdTree depends on NodeData

AllocAligned() 667
KdNode 687

KdTree::recursiveBuild() 689
vector 658

688 Utilities [App. A

having a Point p member variable that gives its position; if it is used with a type
without such a variable, a compile-time error will result.�
KdTree Declarations ��� �
template <class NodeData, class LookupProc> class KdTree {
public:�

KdTree Public Methods �
private:�

KdTree Private Data �
};

�
KdTree Private Data ���
KdNode *nodes;
NodeData *nodeData;
u_int nNodes, nextFreeNode;

All of the data items must be supplied to the KdTree constructor. Incremental
addition or removal of NodeData items isn’t supported since this functionality isn’t
needed in lrt and doing so keeps the implementation here straightforward. The
constructor allocates all of the memory needed for the tree and the data and calls
the recursive tree construction function, which takes an array of NodeData pointers,
chooses one to store in the current node, and recursively builds the children of that
node with the remaining data items. Because the tree is built such that the indexing
of the node and nodeData arrays is identical, the nodeData array will be initialized
from the items in the vector passed into the constructor as the tree is being built—
only when a KdNode at a particular offset in nodes is initialized do we know which
position to store the corresponding NodeData item.�
KdTree Method Definitions ���
template <class NodeData, class LookupProc>
KdTree<NodeData, LookupProc>::KdTree(const vector<NodeData> &d) {

nNodes = d.size();
nextFreeNode = 1;
nodes = (KdNode *)AllocAligned(nNodes * sizeof(KdNode));
nodeData = new NodeData[nNodes];
vector<const NodeData *> buildNodes;
for (u_int i = 0; i < nNodes; ++i)

buildNodes.push_back(&d[i]);
recursiveBuild(0, 0, nNodes, buildNodes);

}

Tree construction is handled by the recursiveBuild() method. It takes the
node number of the current node to be initialized and offsets into the array data
indicating the subset of data items � start � end � from the buildNodes array to be
stored beneath this node.

The tree building process selects the “middle” element of the user-supplied data
(to be explained precisely below) and partitions the data, so that all items below
the middle are in the first half of the array and all items above the middle are in
the second half. It constructs a node with the middle element as its data item and
then recursively initializes the two children of the node by processing the first and

Sec. A.6] Kd-Trees 689

687 KdNode::initLeaf()
688 KdTree
658 vector

Figure A.6: Creation of a kd-tree to store a set of points: given a collection of
points (left), a split direction is first chosen. Here, we have decided to split in the
x direction. We find the point in the middle along x and split along the plane that
goes through the point. Roughly half of points are to the left of the splitting plane
and half are to the right. We then continue recursively in each half, allocating new
tree nodes, splitting and partitioning, until all data points have been processed.

second halves of the array (minus the middle element.) Figure A.6 shows the basic
process of bulding the kd-tree.�
KdTree Method Definitions ��� �
template <class NodeData, class LookupProc> void
KdTree<NodeData, LookupProc>::recursiveBuild(u_int nodeNum,

int start, int end,
vector<const NodeData *> &buildNodes) {�

Create leaf node of kd-tree if we’ve reached the bottom ��
Choose split direction and partition data ��
Allocate kd-tree node and continue recursively �

}

When there just a single item to be processed, the bottom of the tree has been
reached, the node is flagged as a leaf, and the nodeData array item can be initial-
ized to be at the appropriate offset.�
Create leaf node of kd-tree if we’ve reached the bottom ���
if (start + 1 == end) {

nodes[nodeNum].initLeaf();
nodeData[nodeNum] = *buildNodes[start];
return;

}

Otherwise, the data is partitioned into two halves and a non-leaf node is initial-
ized. Splitting is along whichever coordinate axis the remaining data items span
the largest extent. The standard library nth_element() function finds the middle
node along that axis; it takes takes three pointers start, mid, and end into a se-
quence and partitions it such that the midth element is in the position it would be in
if the range was sorted and where all elements from start to mid-1 are less than
mid, and elements from mid+1 to end are greater than mid. This can all be done
more quickly than sorting the entire range–in O � n � time rather than O � n logn � .

BBox 38
Octree 681

690 Utilities [App. A

�
Choose split direction and partition data ����

Compute bounds of data from start to end �
int splitAxis = bound.MaximumExtent();
int splitPos = (start+end)/2;
std::nth_element(&buildNodes[start], &buildNodes[splitPos],

&buildNodes[end], CompareNode<NodeData>(splitAxis));

�
Compute bounds of data from start to end ���
BBox bound;
for (int i = start; i < end; ++i)

bound = Union(bound, buildNodes[i]->p);

The nth_element() function needs a “comparison object” that determines the
ordering between two data elements. CompareNode compares positions along the
chosen axis.�
KdTree Declarations ��� �
template<class NodeData> struct CompareNode {

CompareNode(int a) { axis = a; }
int axis;
bool operator()(const NodeData *d1,

const NodeData *d2) const {
return d1->p[axis] < d2->p[axis];

}
};

Once the data has been partitioned, the current node is initialized to store the
middle item and its two children are recursively initialized with the two sets of
remaining items.�
Allocate kd-tree node and continue recursively ���
nodes[nodeNum].init(buildNodes[splitPos]->p[splitAxis], splitAxis);
nodeData[nodeNum] = *buildNodes[splitPos];
if (start < splitPos) {

nodes[nodeNum].hasLeftChild = 1;
u_int childNum = nextFreeNode++;
recursiveBuild(childNum, start, splitPos, buildNodes);

}
if (splitPos+1 < end) {

nodes[nodeNum].rightChild = nextFreeNode++;
recursiveBuild(nodes[nodeNum].rightChild, splitPos+1, end,

buildNodes);
}

When code elsewhere wants to look up items from the tree, they provide a point
p, a callback procedure (similar to the one used in the Octree above), and a max-
imum squared search radius. (Taking the squared radius rather than the radius
directly leads to some optimizations in the traversal code below.) All data items
within that radius will be passed back to the caller.

Rather than being passed by value, the squared search radius is passed into the
lookup function by reference. This will allow the lookup routine to pass it to the

Sec. A.6] Kd-Trees 691

688 KdTree
692 KdTree::recursiveLookup()
623 PhotonProcess
33 Point

Figure A.7: Basic process of kd-tree lookups. The point marked with an “x” is the
lookup position, and the region of interest is denoted by the circular region around
it. At the root node of the tree (indicated by a bold splitting line), the data item
is outside of the region of interest, so it is not handed to the callback function.
However, the region overlaps both children of the node, so we have to recursively
consider each of them. We will consider the right child (child number one) first,
however, in order to examine the nearby data items before examining the ones
farther away.

callback procedure by reference, so that it can potentially reduce the search ra-
dius as the search goes on. This can speed up lookups when the callback routine
can determine partway along that a smaller search radius was appropriate (as the
PhotonProcess object does.)

As usual, the lookup method immediately calls an internal lookup procedure,
passing in a pointer to the current node to be processed.�
KdTree Method Definitions ��� �
template <class NodeData, class LookupProc> void
KdTree<NodeData, LookupProc>::Lookup(const Point &p,

const LookupProc &proc, Float &maxDistSquared) const {
recursiveLookup(0, p, proc, maxDistSquared);

}

The lookup function has two responsibilities: it needs to recursively process the
children of the current node based on which of them the search region overlaps
(potentially both of them), and it needs to call the callback routine, passing it the
data item in the current node if it is inside the search radius. Figure A.7 shows the
basic process.

KdNode 687
KdTree 688

KdTree::nodes 688
Point 33

692 Utilities [App. A

�
KdTree Method Definitions ��� �
template <class NodeData, class LookupProc> void
KdTree<NodeData, LookupProc>::recursiveLookup(u_int nodeNum,

const Point &p, const LookupProc &process,
Float &maxDistSquared) const {

KdNode *node = &nodes[nodeNum];�
Process kd-tree node’s children ��
Hand kd-tree node to processing function �

}

The tree is traversed in a depth-first manner, first heading toward the leaf nodes
that are close to the lookup point p before the callback method is called to process
data items. This approach ensures that data points are passed to the callback func-
tion in a generally near-to-far order. If the caller is only interested in finding a fixed
number of points around the lookup point, after which it will end the search, this is
a more efficient order.

Therefore, this method first walks down the side of the tree that the current point
lies on. Only after that lookup has returned does it go down the other side, if the
search radius indicates that the lookup region covers both sides of the tree. Leaf
nodes are denoted by a value of 3 in the node’s splitAxis field, in which case
thesesteps are skipped.�
Process kd-tree node’s children ���
int axis = node->splitAxis;
if (axis != 3) {

Float dist2 = (p[axis] - node->splitPos) * (p[axis] - node->splitPos);
if (p[axis] <= node->splitPos) {

if (node->hasLeftChild)
recursiveLookup(nodeNum+1, p, process, maxDistSquared);

if (dist2 < maxDistSquared && node->rightChild < nNodes)
recursiveLookup(node->rightChild, p, process, maxDistSquared);

}
else {

if (node->rightChild < nNodes)
recursiveLookup(node->rightChild, p, process, maxDistSquared);

if (dist2 < maxDistSquared && node->hasLeftChild)
recursiveLookup(nodeNum+1, p, process, maxDistSquared);

}
}

Finally, at the end of the lookup function, the check is made to see if the point
stored in the node is inside the search radius. An expensive square root computation
is saved by comparing squared distances, and the data item is passed back to the
callback function if appropriate. In addition to doing whatever processing it needs
to do based on the item, the callback function may decrease maxDistSquared in
order to reduce the region of space searched for the remainder of the processing.�
Hand kd-tree node to processing function ���
Float dist2 = DistanceSquared(nodeData[nodeNum].p, p);
if (dist2 < maxDistSquared)

process(nodeData[nodeNum], dist2, maxDistSquared);

Sec. A.7] Image Input Output 693

658 vector

� ��� � � � �
� ���	� ��� � ����� ���
An important part of a rendering system is its routines for reading and writing

images. Because many image file formats have been developed, all of them special
in their own way, it is helpful for a renderer to support a variety of them. Un-
fortunately, the details of dealing with a particular format, let alone a variety of
formats, are tedious. Therefore, lrt has a plug-in architecture for image input and
output. The rest of the system uses three functions for image and output that hide
the details of loading and using these plug-ins.

� ��� � �
� � � �	� ���
� � � �

The lrt.h file is included by all other that all source files in the system. It has
global function declarations and inline functions, a few small widely-used classes
(e.g. the statistics-related classes) and other widely-used data.

All files that include lrt.h get a number of other include files in the process;
this makes it possible for them to just include lrt.h and not repeatedly include the
others. in the interests of compile-time efficiency, it’s worth trying to keep number
of such automatically included files to a minimum; the ones here are necessary for
almost all other modules, however.�
Global Include Files ��� �
#include <math.h>
#include <stdlib.h>
#define _GNU_SOURCE 1
#include <stdio.h>
#include <string.h>

Also, we include files from the standard library to get the vector, and pair tem-
plate classes. The using directive brings these container classes into our names-
pace.�
Global Include Files ��� �
#include <string>
using std::string;
#include <vector>
using std::vector;
using std::pair;
using std::make_pair;
#include <iostream>
using std::ostream;

We will also define a number of types with typedef here. First is Float; rather
than using the built-in float and double types for floating point variables, we
abstract away this choice with Float. This makes it convenient to globally change
from one representation to the other. In general, as long as numerical algorithms
with egregious stability are avoided, the precision provided by float is sufficient
in a ray tracer.

For convenience, we also define shorthand names for unsigned cardinal types:
u_char, u_short, u_int, and u_long.

694 Utilities [App. A

�
Global Type Declarations ��� �
typedef float Float;
typedef unsigned char u_char;
typedef unsigned short u_short;
typedef unsigned int u_int;
typedef unsigned long u_long;

We will also define a macro that holds lrt’s current version number. This is a
floating-point value that will be increased as future versions of lrt are developed.�
Global Constants ��� �
#define LRT_VERSION 1.0

����� ���� � � � ��� � � �
Grunwald et al were one of the first groups of researchers to investigate the

inter-play between memory allocation algorithms and the cache behavior of appli-
cations (Grunwald, Zorn, and Henderson 1993).

Or can reorder the computation, so that the program accesses pharr 97, cache
paper on ray tracing...

Lam et al investigated blocking (tiling) for improving cache performance and
developed techniques for selecting appropriate block sizes, given the size of the
arrays and the cache size (Lam, Rothberg, and Wolf 1991).

In lrt, we only worry about cache layout issues for dynamically-allocated stuff.
However, Calder et al show a profile-driven system that optimizes memory layout
of global variables, constant values, data on the stack, and dynamically-allocated
data from the heap in order to reduce cache conflicts among them all (Calder, Chan-
dra, John, and Austin 1998), giving an average 30% reduction in data cache misses
for the applications they studied.

Blocking for tree data structures–keep node and a few levels of children contigu-
ous (Chilimbi, Hill, and Larus 1999). Among other applications, they applied their
tool to the layout of the acceleration octree in the radiance renderer and reported a
42% speedup in runtime.

More on structures: possibly split into “hot” and “cold” parts, allocated sepa-
rately, to improve hits on hot parts. Also more on reordering fields inside structure
to improve locality (Chilimbi, Davidson, and Larus 1999).

Christer cache chapter
Detailed information about the random number generator we are using, includ-

ing the original paper from ACM Transactions on Modelling and Computer Simu-
lation (Matsumoto and Nishimura 1998) are available at http://www.math.keio.ac.jp/˜matumoto/emt.html.

Sean Anderson bit twiddling hacks.
Float to int stuff at http://www.stereopsis.com/FPU.html.
Gaussian elimination, pivot stuff(Atkinson 1993).
Numerical Recipes, Press (Press, Teukolsky, Vetterling, and Flannery 1992).
Samet’s book on octrees (Samet 1990)
de Berg et al computational geoemtry (de Berg, van Kreveld, Overmars, and

Schwarzkopf 2000)
The TIFF specification (cite XXX)...

Exercises 695

672 BlockedArray
155 KdAccelNode
688 KdTree
670 MemoryArena
417 MIPMap
668 ObjectArena

�
� � � � � � � �

1.1 Modify the ObjectArena and MemoryArena so that they just call new for
each memory allocation. Render images of a few scenes and measure how
much slower lrt runs (be sure to choose scenes that end up running code
that uses these custom allocators.) Can you quantify how much of this is due
to different cache behavior and how much is due to overhead in the dynamic
memory management routines?

1.2 Change the BlockedArray class so that it doesn’t do any blocking and
just uses a linear addressing scheme for the array. Measure the change
in lrt’s performance as a result. (Scenes with many image map textures
are most likely to show differences, since the MIPMap class is a key user of
BlockedArray.

1.3 The KdNode for the KdTree can be brought down to use just four bytes of
storage; making this change may further improve its memory performance.
Modify the KdNode to just store the split position and split axis in four bytes,
using the same technique as was used to overlap the flags and the split
position in the KdAccelNode. Then, modify the tree construction routine
to build a left-balanced kd-tree, where the tree’s topology is organized such
that for the node at position i in the array of nodes, the left child is at 2*i
and the right child is at 2*i+1, and the tree is balanced such that if only the
first nNodes elements of the array are used, XXXX. Explain left-balanced
binary trees better.

��� �

� � � � � � � � � � � ��� � � � � ��� � ��� � �

This appendix describes the application programming interface (API) that is
used to describe the scene to be rendered to lrt. Users of the renderer typically
don’t call the functions in this interface directly, but instead use the text file format
described in Appendix C to describe their scenes to the renderer; the statements in
these text files have a direct correspondence to the API functions described here.

The need for such an interface to the renderer is clear: there must be a convenient
way in which all of the properties of scene to be rendered can be communicated to
the renderer. In choosing an API style for a renderer, there are two main decisions
to make: should the API be focused on configuring a graphics pipeline or should
it be focused on describing the physical scene; and should the API be based on an
immediate mode or a retained mode style?

As for the first question, there have historically been two main approaches to
scene description in graphics: the interface may specify how to rendering the scene,
configuring a rendering pipeline at a low-level, or it may specify what the scene’s
objects, lights, and material properties are, and leave it to the renderer to decide
how to transform that description into the best-possible image.

The first approach has been successfully used for interactive graphics, as seen in
the OpenGL and Direct3D APIs. There, it’s not possible to just dmonte an object
as being mirror reflective and have reflections appear automatically; rather, the user
must choose an algorithm for rendering reflections, render the scene multiple times
(e.g. to generate a cube-map environment map), and then configure the graphics
pipeline to use the cube-map when rendering the reflective object. The advantage
of this approach is that the full flexibility of the rendering hardware is exposed to
the user, making it possible to carefully control the actual computation being done
and to use the hardware in ways not originally imagined by its designers.

The second, declarative approach to scene description, has been most successful

��� �

698 Scene Description Interface [App. B

for applications like high-end offline rendering, e.g. as embodied by the Ren-
derMan interface. There, users are willing to cede control of more the low-level
rendering details to the renderer in exchange for the ability to specify the scene’s
properties at a higher level of abstraction.

For lrt, we will use an interface based on the declarative approach. Because
lrt is fundamentally physically-based, the API is less flexible than many non-
physically-based rendering APIs. For example, instead of making it possible to
flag some lights as only illuminating some objects in the scene, a capability that
can be useful for artistic effect, in lrt all lights in the scene must illuminate all
objects.

The other decision to make in the API design is whether to use an immediate
mode or a retained mode style. In an immediate mode API, the user specifices the
scene via a stream of commands that the renderer processes as they arrive. In gen-
eral, it’s not possible for the user to make changes to any of the scene description
data already specified (e.g. “change the material of that sphere I described previ-
ously from plastic to glass”); once it has been given to the renderer, the information
is no longer accessible to the user.

Retained mode APIs give the user some degree of access to the scene data struc-
ture that the renderer has built up from the scene description given to it so far. The
user can modify the scene description in a variety of ways before finally instructing
the renderer to render the scene.

Immediate mode has been very successful for hardware graphics APIs since it
allows the graphics hardware to immediately start to draw the objects in the scene
as they are given by the user. By not needing to build up data structures to repre-
sent the scene (and thus being able to discard geometry immediately after drawing
it) and by being able to immediately cull objects that are outside of the viewing
frustum without worrying that the user will change the camera position before ren-
dering, these APIs have been key to high-performance interactive graphics.

For ray tracing renderers like lrt, where the entire scene must be described
and stored in memory before rendering can begin, some of these advantages of
immediate mode aren’t applicable. Nonetheless, we will still use immediate mode
semantics in our API, since it leads to a clean and straightforward scene descrip-
tion language. This choice makes it more difficult to use lrt for applications like
quickly re-rendering a scene after making a small change to it (e.g. by moving a
light source), and may make rendering animations less straightforward, since the
entire scene needs to be re-described for each frame of an animation.

The rendering API consists of roughly thirty-five carefully chosen functions, all
of which are declared in the core/api.h header file.�
api.h* ���
#include "lrt.h"�
API Function Declarations �
The implementation of these functions is in core/api.cpp.

Sec. B.1] Parameter Sets 699

700 ParamSet

�
api.cpp* ���
#include "api.h"
#include "paramset.h"
#include "color.h"
#include "scene.h"
#include "film.h"
#include "dynload.h"
#include "volume.h"
#include <map>
using std::map;�
API Local Classes ��
API Static Data ��
API Macros ��
API Static Methods ��
API Function Definitions �

� � � � � � � � � ����� � � � �
A key problem that the API must address is extensibility: if a developer has

added new modules to lrt to implement new shapes, cameras, etc., minimal or
no changes to the API should be necessary. In particular, the API should be as
unaware as possible of what particular parameters these objects take and what their
meaning is.

One key piece of our solution to this is the ParamSet class. It handles collec-
tions of named parameters and their values in a generic way. Most of the API
routines take a ParamSet as one of their parameters–for example, the shape cre-
ation routine, lrtShape() takes a string giving the name of the shape to make
and a ParamSet with parameters for it. The appropriate shape implementation is
loaded from disk, and a creation routine is called, passing along the ParamSet.
This style makes the API’s implementation very straightforward.

The ParamSet is a key part of how objects are created at run-time, bundling up
the values of the parameters to the constructors in a single object. For example,
it might record that there is a single floating-point value named “radius” with a
value of 2.5, and an array of four color values named “specular” with various color
values. The ParamSet provides methods for both setting and retrieving values from
this kind of set of parameters.�
paramset.h* ���
#include "lrt.h"
#include "geometry.h"
#include "color.h"�
ParamSet Macros ��
ParamSet Types ��
ParamSet Declarations ��
ParamSetItem Methods �

�
paramset.cpp* ���
#include "paramset.h"�
ParamSet Methods �

Normal 34
ParamSetItem 701

Point 33
Spectrum 181
vector 658
Vector 27

700 Scene Description Interface [App. B

�
ParamSet Declarations ���
class ParamSet {
public:�

ParamSet Public Methods �
private:�

ParamSet Data �
};

The ParamSet holds seven types of parameters: integers, scalar floating point
vaules, points, vectors, normals, spectra, and strings. Internally, it stores a vector
of named values for each of the different types that it stores–each bound parameter
is represented by a ParmSetItem of the appropriate type.�
ParamSet Data ���
vector<ParamSetItem<int> *> ints;
vector<ParamSetItem<Float> *> floats;
vector<ParamSetItem<Point> *> points;
vector<ParamSetItem<Vector> *> vectors;
vector<ParamSetItem<Normal> *> normals;
vector<ParamSetItem<Spectrum> *> spectra;
vector<ParamSetItem<string> *> strings;

The constructor for the ParamSet does no work; it starts out with unfilled
vectors of parameters.�
ParamSet Public Methods ���
ParamSet() { }

However, because it holds pointers to ParamSetItems in the vectors, we need
to do some work when one ParamSet is assigned to another one; we can’t just let
the default assignment operator copy the contents of all of the vectors, since we
would then free the ParamSetItem memory twice in the two ParamSet destruc-
tors. The implementation of this is straightforward, allocating duplicates of all of
the ParamSetItems, so we will not include it here.�
ParamSet Public Methods ��� �
ParamSet &operator=(const ParamSet &p2);

B.1.1 ParamSetItem

The ParamSetItem structure stores all of the relevant information about a single
parameter–name, value, etc. Though many parameters just hold a single value
of their type, we may also hold multiple values, either because the parameter is
an array type and/or because multiple values were given for the parameter. For
example (using the syntax that is used to describe parameters in lrt’s input files),
the foo parameter:

"float foo[2]" [0 1 2 3 4 5]

has a basic type of float[2]. Here, three items of this type have been given, [0
1], [2 3], and [4 5].

XXX make more clear array size versus num items relationship, distinction...
XXX

Sec. B.1] Parameter Sets 701

�
ParamSet Declarations ��� �
template <class T> struct ParamSetItem {�

ParamSetItem Public Methods ��
ParamSetItem Data �

};

The ParamSetItem directly initializes its members from the values passed in
and makes a copy of the values in the array of parameter values in locally-allocated
memory.�
ParamSetItem Methods ���
template <class T>
ParamSetItem<T>::ParamSetItem(const string &n, const T *v, int t,

int c, int ni) {
name = n;
type = t;
arraySize = c;
nItems = ni;
int nAlloc = arraySize * nItems;
data = new T[nAlloc];
for (int i = 0; i < nAlloc; ++i)

data[i] = v[i];
lookedUp = false;

}

We also store a boolean value lookedUp that is initially set to false but it is
changed to be true after the value has been retrieved from the ParamSet. Later,
this will allow us to print warning messages if any parameters were added to the
parameter set but never used (probably indicating a misspelling or other user error.)�
ParamSetItem Data ���
string name;
int type, arraySize, nItems;
T *data;
bool lookedUp;

We represent the base type of a parameter with an integer. This type includes
both the underlying datatype–float, point, etc.–as well as the parameter’s storage
class. These two are stored together in the type member. We’ll define some con-
stants to represent each of the possible types.�
ParamSet Types ���
#define PARAM_TYPE_INT (1<<0)
#define PARAM_TYPE_FLOAT (1<<1)
#define PARAM_TYPE_POINT (1<<2)
#define PARAM_TYPE_VECTOR (1<<3)
#define PARAM_TYPE_NORMAL (1<<4)
#define PARAM_TYPE_STRING (1<<5)
#define PARAM_TYPE_COLOR (1<<6)

The storage class accounts for the idea that we may want to have multiple values
of a parameter defined in a way that it can be interpolated over a surface, taking on
a different value at each point being shaded. For example, a triangle mesh might be

PARAM TYPE FLOAT 701
ParamSet 700

ParamSetItem 701

702 Scene Description Interface [App. B

defined with a single diffuse color for all of the triangles, but with specular colors
defined at each vertex and interpolated inside each face.

There are three different storage classes to handle these sorts of situations:

� Uniform parameters take on a single value over the entire object

� Varying parameters are specified with four values which are bilinearly inter-
polated according to the � u � v � parameter value for a point on the surface.

� Vertex parameters are only available for mesh shapes, and represent values
specefied at each vertex of the mesh.

�
ParamSet Types ��� �
#define PARAM_TYPE_UNIFORM (1<<7)
#define PARAM_TYPE_VARYING (1<<8)
#define PARAM_TYPE_VERTEX (1<<9)

Naturally, the ParamSetItem needs to free allocated memory in its destructor.�
ParamSetItem Public Methods ��� �
˜ParamSetItem() {

delete[] data;
}

B.1.2 Adding to the parameter set

To add an entry to the parameter set, the user just calls an appropriate method of
the ParamSet, passing the name of the parameter, a pointer to its value, and storage
class information.�
ParamSet Methods ��� �
void ParamSet::AddFloat(const string &name, const Float *data,

int type, int narray, int nitems) {
type |= PARAM_TYPE_FLOAT;
EraseFloat(name);
floats.push_back(new ParamSetItem<Float>(name, data, type,

narray, nitems));
}

We won’t include the rest of the methods to add other data types to the ParamSet,
but will include their prototypes here for reference.

Sec. B.1] Parameter Sets 703

34 Normal
702 PARAM TYPE UNIFORM
33 Point

181 Spectrum
27 Vector

�
ParamSet Public Methods ��� �
void AddInt(const string &, const int *,

int type = PARAM_TYPE_UNIFORM, int nArray = 1,
int nItems = 1);

void AddPoint(const string &, const Point *,
int type = PARAM_TYPE_UNIFORM, int nArray = 1,
int nItems = 1);

void AddVector(const string &, const Vector *,
int type = PARAM_TYPE_UNIFORM, int nArray = 1,
int nItems = 1);

void AddNormal(const string &, const Normal *,
int type = PARAM_TYPE_UNIFORM, int nArray = 1,
int nItems = 1);

void AddSpectrum(const string &, const Spectrum *,
int type = PARAM_TYPE_UNIFORM, int nArray = 1,
int nItems = 1);

void AddString(const string &, const string *,
int type = PARAM_TYPE_UNIFORM, int nArray = 1,
int nItems = 1);

B.1.3 Looking up values in the parameter set

Looking up parameter values is similarly straightforward; we just loop through the
values we have of the requested type and return the value, if any. There are two
versions of the lookup method, a simple one for uniform parameters with array size
of one (or non-array types) with a single data value that returns the data value di-
rectly, and a more complex one that returns a pointer to the values of more complex
types.

The methods that look up a single item (e.g. FindOneFloat()) take the name of
the parameter and a default value. If the parameter is not found, the default value
is silently returned. This makes it easy to write initialization code like:

Float radius = params.FindOneFloat("radius", 1.f);

Here, it’s not an error if there isn’t a “radius” parameter–we just want to use the
default value. For the case where it is an error for a parameter to be unavailable,
the second set of lookup methods can be used instead.�
ParamSet Methods ��� �
Float ParamSet::FindOneFloat(const string &name, Float d) const {

for (u_int i = 0; i < floats.size(); ++i)
if (floats[i]->name == name &&

(floats[i]->type & PARAM_TYPE_UNIFORM) &&
floats[i]->nItems == 1 &&
floats[i]->arraySize == 1) {
floats[i]->lookedUp = true;
return *(floats[i]->data);

}
return d;

}

Normal 34
PARAM TYPE UNIFORM 702

ParamSet 700
Point 33

Spectrum 181
Vector 27

704 Scene Description Interface [App. B

As above, here are the declarations for the rest of the analogous methods.�
ParamSet Public Methods ��� �
int FindOneInt(const string &, int d) const;
Point FindOnePoint(const string &, const Point &d) const;
Vector FindOneVector(const string &, const Vector &d) const;
Normal FindOneNormal(const string &, const Normal &d) const;
Spectrum FindOneSpectrum(const string &,

const Spectrum &d) const;
string FindOneString(const string &, const string &d) const;

The second lookup method returns a pointer to the data if it’s present. It returns
the storage class information in the given type pointer, the number of array ele-
ments in the nArray value, and then umber of data items in nItems. (Thus, the
total number of values in the memory pointed to by the returned pointer nArray *
nItems.) It’s up to the caller to interpret these appropriately when accessing the
returned pointer.�
ParamSet Methods ��� �
const Float *ParamSet::FindFloat(const string &name, int *type,

int *nArray, int *nItems) const {
for (u_int i = 0; i < floats.size(); ++i)

if (floats[i]->name == name) {
*nArray = floats[i]->arraySize;
*type = floats[i]->type;
*nItems = floats[i]->nItems;
floats[i]->lookedUp = true;
return floats[i]->data;

}
return NULL;

}

These are the rest of the analogous lookup functions.�
ParamSet Public Methods ��� �
const int *FindInt(const string &, int *type,

int *nArray, int *nItems) const;
const Point *FindPoint(const string &, int *type,

int *nArray, int *nItems) const;
const Vector *FindVector(const string &, int *type,

int *nArray, int *nItems) const;
const Normal *FindNormal(const string &, int *type,

int *nArray, int *nItems) const;
const Spectrum *FindSpectrum(const string &, int *type,

int *nArray, int *nItems) const;
const string *FindString(const string &, int *type,

int *nArray, int *nItems) const;

Because the user may misspell parameter names in the scene description file,
we’ll also provide a function that goes through the parameter set and reports if any
of the parameters present were never looked up. If this happens, odds are good the
user has given an incorrect parameter.

Sec. B.1] Parameter Sets 705

700 ParamSet

�
ParamSet Methods ��� �
void ParamSet::ReportUnused() const {
#define CHECK_UNUSED(v) \

for (i = 0; i < (v).size(); ++i) \
if (v[i]->name[0] != ’_’ && !(v)[i]->lookedUp) \

Warning("Parameter \"%s\" not used", \
(v)[i]->name.c_str())

u_int i;
CHECK_UNUSED(ints);
CHECK_UNUSED(floats);
CHECK_UNUSED(points);
CHECK_UNUSED(vectors);
CHECK_UNUSED(normals);
CHECK_UNUSED(spectra);
CHECK_UNUSED(strings);

}

We break the functionality of the destructor out into a separate Clear() method;
this allows us to clear out an existing ParamSet without fully destroying it. (This
is useful in the copy constructor, for example.)�
ParamSet Public Methods ��� �
ParamSet::˜ParamSet() {

Clear();
}

The Clear() method is straightforward, just looping over all of the vectors and
deleting their individual ParamSetItems before resetting the vectors to have zero
length.�
ParamSet Methods ��� �
void ParamSet::Clear() {

u_int i;
#define DEL_PARAMS(name) \

for (i = 0; i < (name).size(); ++i) \
delete (name)[i]; \

(name).erase((name).begin(), (name).end())

DEL_PARAMS(ints);
DEL_PARAMS(floats);
DEL_PARAMS(points);
DEL_PARAMS(vectors);
DEL_PARAMS(normals);
DEL_PARAMS(spectra);
DEL_PARAMS(strings);

#undef DEL_PARAMS
}

Finally, we’ll provide a method that returns a string representation of the
ParamSet, using the same syntax as would be used to initialize the ParamSet in
a lrt input file. The implementation of this is tedius and straightforward, so has
been elided here.

StatsCleanup() 662

706 Scene Description Interface [App. B

�
ParamSet Public Methods ��� �
string ToString() const;

� � � 	 � � � � ��� � � � �
Now that we have a general mechanism for passing collections of parameters

and their values into the renderer, we can move forward to the actual rendering
API. Before any other API function calls are made, the rendering system must be
initialized by a call to lrtInit(). After this has been done, general rendering
options like the camera and sampler properties, the tone mapping algorithm to be
used, etc., can be set, but the user can not yet start to describe the lights, shapes,
and materials in the scene.

After the basic rendering options have been set, the lrtWorldBegin() function
is called and the options are fixed; it’s no longer allowed to change them. The user
then describes the geometric primitives and lights that are in the scene along with
their various attributes. The reason we disllow further changes to graphics options
after lrtWorldBegin() is that doing so can simplify the overall implementation
of the renderer. For example, consider a spline surface shape that tessellated itself
into triangles at creation time at a resolution based on the area of the screen that
it covered: if the camera’s position and image resolution have been locked down
by the time the shape is created, than we don’t have to defer the tessellation work
until later.

When all of the primitives have been supplied, lrtWorldEnd() is called. At this
point the renderer knows that the scene description is complete and that rendering
can begin. The image is rendered and written to disk before lrtWorldEnd() re-
turns. The user may then specify new graphics options for another frame of an
animation and then another lrtWorldBegin()/lrtWorldEnd() block to describe
the geometry for the next frame, repeating as many times as desired. When there is
no more rendering to be done, lrtCleanup() should be called; this handles final
cleanup of the system.

The fragments that define these two functions will be filled in throughout the
rest of this appendix as we come to need to do various pieces of initialization and
cleanup.�
API Function Definitions ���
void lrtInit() {�

System-wide initialization ��
API Initialization �

}
�
API Function Definitions ��� �
void lrtCleanup() {

StatsCleanup();�
API Cleanup �

}

Sec. B.2] Global Options 707

B.2.1 State tracking

Because all of the API calls besides lrtInit() are illegal before lrtInit() is
called and because most of the others are only legal before or after lrtWorldBegin(),
we will provide some facilities for tracking what state the API is in. We use a mod-
ule static variable currentApiState. It starts out with value STATE UNINITIALIZED,
indicating that the API system hasn’t yet been initialized. Its value is is updated
appropriately by lrtInit(), lrtWorldBegin(), and lrtCleanup().�
API Static Data ���
#define STATE_UNINITIALIZED 0
#define STATE_OPTIONS_BLOCK 1
#define STATE_WORLD_BLOCK 2
static int currentApiState = STATE_UNINITIALIZED;

Now we can start to define the fragment in the implementation of lrtInit().
It makes sure that lrtInit() hasn’t already been called and sets the api state to
reflect that any of the graphics options API calls are now legal.�
API Initialization ���
if (currentApiState != STATE_UNINITIALIZED)

Error("lrtInit() has already been called.");
currentApiState = STATE_OPTIONS_BLOCK;

Similarly, lrtCleanup() makes sure that lrtInit() has been called and that
we’re not in the middle of a lrtWorldBegin()/lrtWorldEnd() block before re-
setting the state to the uninitialized state.�
API Cleanup ���
if (currentApiState == STATE_UNINITIALIZED)

Error("lrtCleanup() called without lrtInit().");
else if (currentApiState == STATE_WORLD_BLOCK)

Error("lrtCleanup() called while inside world block.");
currentApiState = STATE_UNINITIALIZED;

All API procedures that are only valid in particular states call one of the state
verification macros, VERIFY UNINITIALIZED(), VERIFY OPTIONS(), or VERIFY WORLD(),
to ensure that currentApiState holds the appropriate value. If the states don’t
match, we print an error message and return immediately from the function.�
API Macros ���
#define VERIFY_INITIALIZED(func) \
if (currentApiState == STATE_UNINITIALIZED) { \

Error("lrtInit() must be before calling \"%s()\". " \
"Ignoring.", func); \

return; \
} else /* swallow trailing semicolon */

currentApiState 707
Scene 8

STATE OPTIONS BLOCK 707
STATE WORLD BLOCK 707

Transform 43
VERIFY INITIALIZED 707

708 Scene Description Interface [App. B

�
API Macros ��� �
#define VERIFY_OPTIONS(func) \
VERIFY_INITIALIZED(func); \
if (currentApiState == STATE_WORLD_BLOCK) { \

Error("Options cannot be set inside world block; " \
"\"%s\" not allowed. Ignoring.", func); \

return; \
} else /* swallow trailing semicolon */

�
API Macros ��� �
#define VERIFY_WORLD(func) \
VERIFY_INITIALIZED(func); \
if (currentApiState == STATE_OPTIONS_BLOCK) { \

Error("Scene description must be inside world block; " \
"\"%s\" not allowed. Ignoring.", func); \

return; \
} else /* swallow trailing semicolon */

�
API Macros ��� �
#define LRT_UNIMP(func) { \
static bool first = true; \
if (first) { \

first = false; \
Warning("Call to unimplemented API function \"%s\"!", func); \

} }

B.2.2 Transformations

While the scene is being described, lrt maintains a current transformation matrix
(CTM). When shapes are created, for example, the value of the CTM is used as the
object to world transformation for that shape. Similarly, the CTM sets the camera
to world transformation when the camera for the scene is created.

The scene description API provides a number of routines that update the CTM.
Most of them post-multiply the CTM with a given new transformation matrix.
These routines are slightly complicated by the need to be able to specify multi-
ple transformations for moving objects that are at different positions at different
points in time. We store up to two current transformations, updating only one of
them when a transformation call is made, depending on which transform of a mov-
ing object is being specified. If the object is not moving, we just update the first of
the two of them.�
API Local Classes ���
struct TransformSet {�

TransformSet Methods �
Transform shutterOpen, shutterClose;

};
�
API Static Data ��� �
static TransformSet curTransform;

Sec. B.2] Global Options 709

708 curTransform
43 Transform

708 TransformSet
707 VERIFY INITIALIZED

�
TransformSet Methods ���
void operator*=(const Transform &x) {

shutterOpen = shutterOpen * x;
}

�
TransformSet Methods ��� �
void SetEnd() { shutterClose = shutterOpen; }

�
TransformSet Methods ��� �
const Transform &GetOpen() const {

return shutterOpen;
}

�
TransformSet Methods ��� �
const Transform &GetClose() const {

return shutterClose;
}

�
TransformSet Methods ��� �
void Reset() {

shutterOpen = Transform();
shutterClose = Transform();

}

The transformations of moving objects are given within motion blocks, like:

AttributeBegin
Translate 1 0 0
Translate 0 1 0
SetEndTransform
AttributeEnd

This specifies that at time 10, the first translation should be appended to the cur-
rent transformation and at time 11, the second translation should be. The lrtMotionBegin
function takes an array of time values that specifies how many transformations will
be given.

If there is no current motion block, then we just update the current transform.
Otherwise, we update the appropriate one depending on how many transforms have
been given in this block so far.�
API Function Definitions ��� �
void lrtSetEndTransform() {

VERIFY_INITIALIZED("SetEndTransform");
curTransform.SetEnd();

}

The actual transformation functions are quite straightforward; most just use the
multiplication operator from the TransformSet to update the current transforma-
tion.�
API Function Definitions ��� �
void lrtIdentity() {

VERIFY_INITIALIZED("Identity");
curTransform.Reset();

}

curTransform 708
TransformSet 708

Vector 27
VERIFY INITIALIZED 707

710 Scene Description Interface [App. B

�
API Function Declarations ��� �
extern void lrtTransform(Float transform[16]);
extern void lrtConcatTransform(Float transform[16]);
extern void lrtRotate(Float angle, Float dx, Float dy, Float dz);
extern void lrtScale(Float sx, Float sy, Float sz);
extern void lrtLookAt(Float ex, Float ey, Float ez, Float lx, Float ly,

Float lz, Float ux, Float uy, Float uz);

�
API Function Definitions ��� �
void lrtTranslate(Float dx, Float dy, Float dz) {

VERIFY_INITIALIZED("Translate");
curTransform *= Translate(Vector(dx, dy, dz));

}
�
API Function Definitions ��� �
void lrtCoordinateSystem(const string &name) {

VERIFY_INITIALIZED("CoordinateSystem");
namedCoordinateSystems[name] = curTransform;

}
�
API Static Data ��� �
static map<string, TransformSet> namedCoordinateSystems;

�
API Function Definitions ��� �
void lrtCoordSysTransform(const string &name) {

VERIFY_INITIALIZED("CoordSysTransform");
if (namedCoordinateSystems.find(name) != namedCoordinateSystems.end())

curTransform = namedCoordinateSystems[name];
}

B.2.3 Options

The user can set a variety of options before the scene to be rendered is specified.
These include things such as the camera position and type, image sampling and
reconstruction options, the type of image file to write out, etc. We store all of
this information in a GraphicsOptions structure. It has a number of public data
members that subsequent API calls will set and a number of methods to help create
objects used by the rest of the system for rendering.�
API Local Classes ��� �
struct GraphicsOptions {�

GraphicsOptions Public Methods ��
Graphics Options �

};
�
API Local Classes ��� �
GraphicsOptions::GraphicsOptions() {�

GraphicsOptions Constructor Implementation �
}

Sec. B.2] Global Options 711

710 GraphicsOptions
700 ParamSet
708 VERIFY OPTIONS

We have a single instance of the GraphicsOptions that is available to the rest
of the functions in this file.�
API Static Data ��� �
static GraphicsOptions *curGraphicsOptions = NULL;

When lrtInit() is called, we need to ensure that the GraphicsOptions is
re-initialized to hold default values.�
API Initialization ��� �
curGraphicsOptions = new GraphicsOptions;

And similarly, we need to free it at lrtCleanup()-time.�
API Cleanup ��� �
delete curGraphicsOptions;
curGraphicsOptions = NULL;

The various API functions for setting options are quite similar in both their in-
terface and their implementation. For example, lrtPixelFilter() specifies the
Filter to be used for filtering image samples. It takes two parameters, a string
giving the name of the filter to use, and a ParamSet, giving the parameters to the
filter. The dynamic loading code in Appendix D will later use the string name to
load the appropriate filter implementation from disk, passing it the ParamSet we
were given in lrtPixelFitler(). For now, however, all that we need to do is to
verify that the API is in an appropriate state for lrtPixelFilter() to be called
and store away the name of the filter and the parameters in the graphics options
structure.�
API Function Definitions ��� �
void lrtPixelFilter(const string &name, const ParamSet ¶ms) {

VERIFY_OPTIONS("PixelFilter");
curGraphicsOptions->FilterName = name;
curGraphicsOptions->FilterParams = params;

}
�
Graphics Options ���
string FilterName;
ParamSet FilterParams;

The default filter function, in case the user doesn’t specify one, is set here.�
GraphicsOptions Constructor Implementation ���
FilterName = "mitchell";

Most of the rest of the graphics options do exactly the same thing in their im-
plementations. Therefore, we will only include the declarations of these functions
here. What each of thse functions controls should be readily apparent; Appendix C
gives more information about each of them.

Camera 202
curGraphicsOptions 711

curTransform 708
namedCoordinateSystems 710

ParamSet 700
TransformSet 708

VERIFY OPTIONS 708

712 Scene Description Interface [App. B

�
API Function Declarations ��� �
extern void lrtFilm(const string &type, const ParamSet ¶ms);
extern void lrtSampler(const string &name, const ParamSet ¶ms);
extern void lrtAccelerator(const string &name,

const ParamSet ¶ms);
extern void lrtToneMap(const string &name, const ParamSet ¶ms);
extern void lrtSurfaceIntegrator(const string &name,

const ParamSet ¶ms);
extern void lrtVolumeIntegrator(const string &name,

const ParamSet ¶ms);

lrtCamera() is slightly different than the other options, since the camera-to-
world transformation needs to be set. The current transformation when lrtCamera()
is called is used to initialize this value.�
API Function Definitions ��� �
void lrtCamera(const string &name, const ParamSet ¶ms) {

VERIFY_OPTIONS("Camera");
curGraphicsOptions->CameraName = name;
curGraphicsOptions->CameraParams = params;
curGraphicsOptions->WorldToCamera = curTransform;
TransformSet camInv = curTransform;
camInv.shutterOpen = camInv.shutterOpen.GetInverse();
camInv.shutterClose = camInv.shutterClose.GetInverse();
namedCoordinateSystems["camera"] = camInv;

}
�
Graphics Options ��� �
string CameraName;
mutable ParamSet CameraParams;
TransformSet WorldToCamera;

�
GraphicsOptions Constructor Implementation ��� �
CameraName = "orthographic";

The only other slightly unusual graphics options API call is lrtSearchPath(),
which is used to set the directory path that lrt uses to search for plug-in implemen-
tations. It takes a single string, which holds a colon-separated list of directories.�
API Function Declarations ��� �
extern void lrtSearchPath(const string &path);

� � � � ������� � � � ��� � � � �

After the user has set up the overall graphics options, the lrtWorldBegin()
call indicates the start of the description of the shapes, materials, and lights in the
scene. It updates the record of the current state and resets the current transforma-
tion matrix (previously used to specify the world-to-camera transformation) to the
identity. For the rest of the world block, it will hold the current object-to-world
transformation.

Sec. B.3] Scene Definition 713

714 curGraphicsState
707 currentApiState
708 curTransform
710 GraphicsOptions
710 namedCoordinateSystems
707 STATE WORLD BLOCK
708 VERIFY OPTIONS

�
API Function Definitions ��� �
void lrtWorldBegin() {

VERIFY_OPTIONS("WorldBegin");
currentApiState = STATE_WORLD_BLOCK;
curTransform.Reset();
namedCoordinateSystems["world"] = curTransform;

}

B.3.1 Hierarchical Graphics State

As the stream of commands comes in that specifies the scene geometry, a variety
of attributes can be updated as well. These include information about the current
material, the current transformation matrix, etc. When a geometric primitive or
light source is then added to the scene, various parts of the current set of attributes
are used to initialize their specific parameters.

The current set of active attributes is managed with an attribute stack. This
allows the user to push the current set of attributes, make changes to their values
and then later pop back to the previously pushed attribute values. For example, a
scene description file might have lines such as:

Material "matte"
AttributeBegin # push current attributes
Material "plastic"
Translate 5 0 0
Shape "sphere" "float radius" [1] # plastic and translated
AttributeEnd # pop attributes
Shape "sphere" "float radius" [1] # matte and not translated

Changes to attributes made inside an lrtAttributeBegin()/lrtAttributeEnd()
block are forgotten at the end of the block. Being able to save and restore attributes
in this manner is a classic idiom for scene description in computer graphics. XXX.

We store the rest of set of current attributes in the GraphicsState structure. As
with GraphicsOptions, we’ll be adding members to it throughout this section.�
API Local Classes ��� �
struct GraphicsState {�

Graphics State Methods ��
Graphics State �

};
�
API Local Classes ��� �
GraphicsState::GraphicsState() {�

GraphicsState Constructor Implementation �
}

When lrtInit() is called, we initialize the current graphics state to hold de-
fault values.�
API Initialization ��� �
curGraphicsState = GraphicsState();

currentApiState 707
curTransform 708
GraphicsState 713

namedCoordinateSystems 710
STATE OPTIONS BLOCK 707

TransformSet 708
vector 658

VERIFY WORLD 708

714 Scene Description Interface [App. B

We also keep a list of GraphicsStates; when lrtAttributeBegin() is called,
we copy the current GraphicsState and push it on to the vector. Attribute end
pops the state to restore to back off of the vector.�
API Static Data ��� �
static GraphicsState curGraphicsState;
static vector<GraphicsState> pushedGraphicsStates;
static vector<TransformSet> pushedTransforms;

�
API Function Definitions ��� �
void lrtAttributeBegin() {

VERIFY_WORLD("AttributeBegin");
pushedGraphicsStates.push_back(curGraphicsState);
pushedTransforms.push_back(curTransform);

}
�
API Function Definitions ��� �
void lrtAttributeEnd() {

VERIFY_WORLD("AttributeEnd");
if (!pushedGraphicsStates.size()) {

Error("Unmatched lrtAttributeEnd() encountered. "
"Ignoring it.");

return;
}
curGraphicsState = pushedGraphicsStates.back();
curTransform = pushedTransforms.back();
pushedGraphicsStates.pop_back();
pushedTransforms.pop_back();

}

B.3.2 WorldEnd and Rendering

When lrtWorldEnd() is called, the scene has been fully specified and rendering
can begin. We make sure that there aren’t excess graphics state structures on the
state stack, issuing a warning if so, before creating the Scene object and calling its
Render() method.�
API Function Definitions ��� �
void lrtWorldEnd() {

VERIFY_WORLD("WorldEnd");�
Ensure there are no pushed graphics states ��
Create scene and render �
currentApiState = STATE_OPTIONS_BLOCK;
StatsPrint(stdout);
curTransform.Reset();
namedCoordinateSystems.erase(namedCoordinateSystems.begin(),

namedCoordinateSystems.end());
}

Sec. B.3] Scene Definition 715

711 curGraphicsOptions
714 curGraphicsState
720 GraphicsOptions::MakeScene()
700 ParamSet
714 pushedGraphicsStates
714 pushedTransforms

8 Scene
11 Scene::Render()

708 VERIFY WORLD

�
Ensure there are no pushed graphics states ���
while (pushedGraphicsStates.size()) {

Error("Missing end to lrtAttributeBegin");
pushedGraphicsStates.pop_back();
pushedTransforms.pop_back();

}

The GraphicsOptions::MakeScene() method handles all of the detail work
involved in creating all of the objects corresponding to the settings provideed by
the user. It is described in Section B.4. After the Scene has been created, the
Render() method takes over and executes the main rendering loop.�
Create scene and render ���
Scene *scene = curGraphicsOptions->MakeScene();
if (scene) scene->Render();
delete scene;

B.3.3 Surface and Material Description

The current material is specified by lrtMaterial(). We gather up all of the addi-
tional parameters and their values passed along with the name of the material and
store them away in the graphics state. When we later go create the material, we’ll
use these to set up its textures.�
API Function Declarations ��� �
extern void lrtMaterial(const string &name, const ParamSet ¶ms);
extern void lrtBumpMap(const string &name, const ParamSet ¶ms);

B.3.4 Geometric Primitives
�
API Function Definitions ��� �
void lrtReverseOrientation() {

VERIFY_WORLD("ReverseOrientation");
curGraphicsState.reverseOrientation =

!curGraphicsState.reverseOrientation;
}

�
Graphics State ��� �
bool reverseOrientation;

�
GraphicsState Constructor Implementation ��� �
reverseOrientation = false;

�
API Function Definitions ��� �
void lrtShape(const string &name, const ParamSet ¶ms) {

VERIFY_WORLD("Shape");
Reference<Shape> s = CreateShape(name,

curGraphicsOptions->SearchPath,
curTransform.GetOpen(),
curGraphicsState.reverseOrientation, params);

curGraphicsState.AddShape(s, params);
}

AreaLight 491
areaLightParams 719

curGraphicsOptions 711
curGraphicsState 714

curTransform 708
GeometricPrimitive 132

GraphicsState 713
Light 478

Material 375
ParamSet 700

Primitive 130
Reference 664

Scene 8
SearchPath 743

Shape 63
vector 658

VERIFY WORLD 708
VolumeRegion 465

716 Scene Description Interface [App. B

After the shape creation function has created a new Shape, it passes it along to
AddShape() for further processing.�
API Static Methods ��� �
void GraphicsState::AddShape(const Reference<Shape> &shape,

const ParamSet &geomParams) {
if (!shape) return;
AreaLight *area = NULL;�
Initialize area light for shape ��
Initialize material for shape �
Reference<Primitive> prim = new GeometricPrimitive(shape,

mtl, area);
if (curGraphicsOptions->currentInstance) {

if (area)
Warning("Area lights not supported with object instancing");

curGraphicsOptions->currentInstance->push_back(prim);
}
else {

curGraphicsOptions->primitives.push_back(prim);
if (area != NULL) {�

Create area lights given number of light samples �
}

}
geomParams.ReportUnused();

}
�
Create area lights given number of light samples ���
int nSamples = areaLightParams.FindOneInt("nsamples", 1);
if (nSamples == 1)

curGraphicsOptions->lights.push_back(area);
else

for (int i = 0; i < nSamples; ++i)
curGraphicsOptions->lights.push_back(

new MultiAreaLight(area, nSamples));

All of the Primitives and Lights that are defined are stored in a big vector as
we process the input file; they are later passed off to the Scene when it is created.�
Graphics Options ��� �
mutable vector<Reference<Primitive> > primitives;
mutable vector<Light *> lights;
mutable vector<VolumeRegion *> volumeRegions;

We need to create the Material that is bound to the shape. We first determine
which one to create based on the string stored in GraphicsState::material,
which was set by lrtMaterial().

Sec. B.3] Scene Definition 717

711 curGraphicsOptions
708 curTransform
375 Material
700 ParamSet
130 Primitive
664 Reference
743 SearchPath
394 Texture
658 vector
708 VERIFY WORLD

�
Initialize material for shape ���
Texture<Float> *displace = CreateBump(displacement, curGraphicsOptions->SearchPath,

curTransform.GetOpen(), geomParams, displaceParams);
Reference<Material> mtl = CreateMaterial(material, curGraphicsOptions->SearchPath,

curTransform.GetOpen(), geomParams, materialParams, displace);
if (!mtl)

mtl = CreateMaterial("plastic", curGraphicsOptions->SearchPath,
curTransform.GetOpen(), geomParams, materialParams,
displace);

if (!mtl)
Severe("Unable to create \"plastic\" material?!");

Each of the various materials takes a number of parameters to set its properties.
The binding of these parameters is a bit tricky; consider the “matte” material, which
takes a color texture named “Kd”. Matte defines a default value for Kd that can be
overridden when the lrtMaterial() call is made.

Material "matte" "color Kd" [.5 1 .5]

However, this value can then be overridden again when the primitive is created:

Material "matte" "color Kd" [1 0 0]
Shape "sphere" "float radius" [1] # red
Shape "sphere" "float radius" [1] "color Kd" [0 1 0] #
green

Therefore, we create a ParamSet from the parameters given when the material
is defined in an lrtMaterial call. When creating the Material, however, we first
look for parameter values in geomParams, which was set from the parameters to
the primitive-creation API call. If this doesn’t have a value, we fall back to the
value in GraphicsState::materialParams, and from there to a default value.

B.3.5 Object Instancing

Note that these implicitly save and restore attributes
XXX not currently... XXX�

API Function Definitions ��� �
void lrtObjectBegin(const string &name) {

VERIFY_WORLD("ObjectBegin");
if (curGraphicsOptions->currentInstance)

Error("ObjectBegin called inside of instance definition");
curGraphicsOptions->instances[name] = vector<Reference<Primitive> >();
curGraphicsOptions->currentInstance = &curGraphicsOptions->instances[name];

}
�
Graphics Options ��� �
map<string, vector<Reference<Primitive> > > instances;
vector<Reference<Primitive> > *currentInstance;

curGraphicsOptions 711
curTransform 708

InstancePrimitive 134
ParamSet 700

Primitive 130
Reference 664
SearchPath 743

vector 658
VERIFY WORLD 708

718 Scene Description Interface [App. B

�
GraphicsOptions Constructor Implementation ��� �
currentInstance = NULL;

�
API Function Definitions ��� �
void lrtObjectEnd() {

VERIFY_WORLD("ObjectEnd");
if (!curGraphicsOptions->currentInstance)

Error("ObjectEnd called outside of instance definition");
curGraphicsOptions->currentInstance = NULL;

}
�
API Function Definitions ��� �
void lrtObjectInstance(const string &name) {

VERIFY_WORLD("ObjectInstance");
if (curGraphicsOptions->currentInstance) {

Error("ObjectInstance can’t be called inside instance definition");
return;

}
if (curGraphicsOptions->instances.find(name) == curGraphicsOptions->instances.end()) {

Error("Unable to find instance named \"%s\"", name.c_str());
return;

}
vector<Reference<Primitive> > &in = curGraphicsOptions->instances[name];
if (in.size() == 0) return;
if (in.size() > 1 || !in[0]->CanIntersect()) {

Reference<Primitive> accel = CreateAccelerator(curGraphicsOptions->AcceleratorName,
curGraphicsOptions->SearchPath, in, curGraphicsOptions->AcceleratorParams);

if (!accel)
accel = CreateAccelerator("kdtree",

curGraphicsOptions->SearchPath, in, ParamSet());
if (!accel)

Severe("Unable to find \"kdtree\" accelerator");
in.erase(in.begin(), in.end());
in.push_back(accel);

}
Reference<Primitive> prim = new InstancePrimitive(in[0], curTransform.GetOpen());
curGraphicsOptions->primitives.push_back(prim);

}

B.3.6 Light Sources

Finally, we’ll define the routines that allow the user to specify light sources for the
scene. The API provides two ways of doing this: the first, lrtLightSource() de-
fines a light source that doesn’t have geometry associated with it (e.g. a point light
or a directional light). The second, lrtAreaLightSource() specifies an active
are light source; the primitives that follow it up to the end of the current attribute
block are treated as emitting geometry as given by the area light description.

Sec. B.3] Scene Definition 719

491 AreaLight
711 curGraphicsOptions
714 curGraphicsState
708 curTransform
478 Light
700 ParamSet
743 SearchPath
63 Shape

708 VERIFY WORLD
465 VolumeRegion

�
API Function Definitions ��� �
void lrtLightSource(const string &name, const ParamSet ¶ms) {

VERIFY_WORLD("LightSource");
Light *lt = CreateLight(name, curGraphicsOptions->SearchPath,

curTransform.GetOpen(), params);�
Add new light to graphics state �

}
�
Add new light to graphics state ���
if (lt == NULL)

Error("lrtLightSource: light type \"%s\" unknown.", name.c_str());
else

curGraphicsOptions->lights.push_back(lt);

When an area light is specified, we can’t create it immediately–we need to wait
for the upcoming primitives which will define the light source’s geometry. There-
fore, as in lrtMaterial(), we just save away the name of the area light source
type and the parameters given here.�
API Function Definitions ��� �
void lrtAreaLightSource(const string &name, const ParamSet ¶ms) {

VERIFY_WORLD("AreaLightSource");
curGraphicsState.areaLight = name;
curGraphicsState.areaLightParams = params;

}
�
Graphics State ��� �
ParamSet areaLightParams;
string areaLight;

We can now define the fragment
�
Initialize area light for shape � from the GraphicsState::AddShape()

method. This just takes the area light information from lrtAreaLightSource()
and the Shape passed in to GraphicsState::AddShape() to create an AreaLight
object.�
Initialize area light for shape ���
if (areaLight != "")

area = CreateAreaLight(areaLight, curGraphicsOptions->SearchPath,
curTransform.GetOpen(), areaLightParams, shape);

B.3.7 Volumes
�
API Function Definitions ��� �
void lrtVolume(const string &name, const ParamSet ¶ms) {

VERIFY_WORLD("Volume");
VolumeRegion *vr = CreateVolumeRegion(name,

curGraphicsOptions->SearchPath,
curTransform.GetOpen(), params);

if (vr) curGraphicsOptions->volumeRegions.push_back(vr);
}

Filter 281
GraphicsOptions 710

GraphicsOptions::FilterName 711
GraphicsOptions::FilterParams 711

Scene 8

720 Scene Description Interface [App. B

� � � � ������� � � � ��� � � � � ��� � � �
Scene destructor frees up all this memory we allocated...�

API Function Definitions ��� �
Scene *GraphicsOptions::MakeScene() const {�

Initialize filter with pixel filter ��
Initialize film and camera from API settings ��
Initialize sampler from API settings ��
Initialize surfaceIntegrator from API settings ��
Initialize volumeIntegrator from API settings ��
Initialize accelerator from API settings �
if (!camera || !sampler || !film || !accelerator ||

!filter || !surfaceIntegrator || !volumeIntegrator) {
Severe("Unable to create scene due to missing DSOs");
return NULL;

}�
Initialize volumeRegion from volume region(s) �
Scene *ret = new Scene(camera, surfaceIntegrator, volumeIntegrator,

sampler, accelerator, lights, volumeRegion);
primitives.erase(primitives.begin(), primitives.end());
lights.erase(lights.begin(), lights.end());
volumeRegions.erase(volumeRegions.begin(), volumeRegions.end());
return ret;

}
�
Initialize filter with pixel filter ���
Filter *filter = CreateFilter(FilterName, SearchPath, FilterParams);

The fragments for creating the rest of the Scene-related objects are similarly
straightforward calls to dynamic object creation routines, so won’t all be included
here.

����� ���� � � � ��� � � �
RenderMan companion(Upstill 1989)
RI Spec(Pixar Animation Studios 1989)
Advanced RMan book
OpenGL stuff
What about scene graph, hierarchical graphics state ideas, etc?

��� � � � � � � � � � � � � �

The scene description files used by lrt are text files with a reasonably direct
mapping between statements in these input files to calls to the API functions in
Appendix B. For example, when the WorldBegin statement is parsed in an input
file, the lrtWorldBegin() function is called. The file format was designed so that
it would be both easy to parse by lrt and easy for other applications to generate
from their own internal representations of a scene. While a binary file format could
lead to smaller files and faster parsing of them, a text format is easier to edit by
hand if necessary and makes it easier to convert to from other formats. The input
file parser (which we won’t include here) is very simple; it has no logic about when
which statements are valid or not but just just passes them on to the corresponding
API call, which worries about all such details.

The file examples/simple.lrt, reproduced in Figure C.1, is a short example
of a lrt input file. Note that at the start of the file, up to the WorldBegin state-
ment, overall options for rendering the scene like the camera type and position, the
sampler and the image file to be written out are all configured. After WorldBegin,
the lights and geometry in the scene are defined, up until the WorldEnd statement,
which causes the image to be rendered. The hash character # denotes that the rest
of the line is a comment and should be ignored by the parser.

Some of the statements in the input file have no additional arguments–examples
include WorldBegin, AttributeBegin, etc.–and those related to specifying trans-
formations, such as Rotate and LookAt take a fixed set of arguments. Most of
them take a variable number of arguments and are of the form:

identifier “type” parameter-list

For example, Shape describes a shape to be added to the scene, where the name of
the type of shape is given by a string, and then a set of parameters are specified.

�	� �

ParamSet 700

722 Input File Format [App. C

example lrt scene: renders a disk with a checkerboard
LookAt 0 5 50 0 -1 0 0 1 0
Camera "perspective" "float fov" [30]
PixelFilter "mitchell" "float xwidth" [2] "float ywidth" [2]
Sampler "bestcandidate"
Film "image" "string filename" ["checkerboard.tiff"]
"integer xresolution" [300] "integer yresolution" [300]
WorldBegin
LightSource "distant" "point from" [0 10 0] "point to" [0 0 0]
"color L" [1 1 1]
AttributeBegin
Rotate 15 0 1 0
Rotate 100 1 0 0
Material "checkerboard" "float frequency" [30] "float Ks" [0]
Shape "disk" "float radius" [100] "float height" [-1]
AttributeEnd
WorldEnd

Figure C.1: Basic example of a lrt scene description file.

Statements of this type all correspond to one of the plug-in types that lrt supports;
the type string gives the name of the particular plug-in implementation to use, and
the parameter list gives the parameters to pass to the plug-in.

With this design, the parser doesn’t need to know anything about the semantics
of the parameters in the parameter list–it just needs to know how to parse general
parameter lists and initialize a ParamSet from them. As such, an advantage of this
approach is that the parser doesn’t need to be modified as new plug-in implemen-
tations are addeed to the system.

Comments are delineated by hash character #.
Other files can be included via Include

Include "geometry.lrt"

� � � � � � � � � ����� � � � � �

The lists of named parameters and their values that appear in statements that
support parameter lists are the key meeting-ground between the parsing system
and the dynamically-loaded plug-ins. Each of these lists holds an arbitrary number
of name/value pairs, with the name in quotation marks and the value or values
inside brackets:

”type name” [value]

For example,

"float fov" [30]

specifies a parameter named “fov” that is a single floating-point value, here with
value 30. Or,

Sec. C.2] Statement Types 723

"float cropwindow[4]" [0 .5 0 .25]

specifies that “cropwindow” is an array of four floats, with the given values. It is
necessary that the complete type of each parameter be given along with its name;
lrt has no built-in knowledge that the “from” parameter to a PointLight is of
type point, for example. This is a small extra burden for the person or program
creating the input file, it simplifies the parsing system in lrt.

lrt supports seven basic parameter types: integer, float, point, vector,
normal, color, and string. The point, vector, and normal types all take three
floating point values, while color takes COLOR_SAMPES floating point values. string
parameters must be inside quotation marks:

"string filename" ["output.tiff"]

As shown by the “cropwindow” example above, arrays of these types may be given
as well; the number of array elements is given by an integer value in brackets
immediately after the name of the parameter.

In addition to the basic types described above, parameters can optionally have
a variability associated with them. For example, in order to specify per-vertex
normals for a triangle mesh, we’d like to be able to specify a parameter that is of
type normal but has one value for each vertex of the mesh. Such a parameter is
specified as type vertex normal. In a similar manner, we might want to specify a
parameter that has values that are interpolated across the � u � v � parameterization of
the surface, with four values specified for the points � 0 � 0 � , � 0 � 1 � , � 1 � 0 � and � 1 � 1 � .
This type of parameter is of type varying. Most of the time, the variablity isn’t
appropriate (e.g. for the a camera’s field of view) and doesn’t need to be specified.
Alternatively, uniform variability can be redundantly provided.

� � � � � ����� � ����� � � � � �
With those basics of the input file format down, we will now enumerate the

basic types of statement that are supported, what their parameters are, and which
API calls they correspond to.

C.2.1 Transformations

The following set of routines update the current transformation matrix; see Sec-
tion B.2.2 for further information about the API routines related to transforma-
tions. Each of them takes a fixed set of parameters of floating-point or string type,
as corresponds to their API call.

Name API Call
Identity lrtIdentity()
Translate x y z lrtTranslate()
Scale x y z lrtScale()
Rotate angle x y z lrtRotate()
LookAt ex ey ez lx ly lz ux uy uz lrtLookAt()
CoordinateSystem "name" lrtCoordinateSystem() ”
CoordSysTransform "name" lrtCoordSysTransform()
Transform m00 ...m33 lrtTransform()
ConcatTransform m00 ...m33 lrtConcatTransform()

724 Input File Format [App. C

C.2.2 Options

Rendering options all must be specified before the WorldBegin statement that be-
gins the description of the contents of the scene.

SearchPath can be used to specify the set of directories lrt looks in to find
plug-ins at runtime. By default, it looks in the current directory and the directories
that the supplied plug-ins were stored in when they were originally compiled.

Name API Call
SearchPath "path" lrtSearchPath()

The string path given can provide multiple directory names separated by colons;
the previous value of the search path can be specified with &. For example,

SearchPath "/ext/lrtplugins:&:./plugins"

The rest of the options all specify a plug-in of a various type to use. All take the
name of the specific plug-in to use and its parameter list.

Name API Call
Camera "name" parameter-list lrtCamera()
Sampler "name" parameter-list lrtSampler()
PixelFilter "name" parameter-list lrtPixelFilter()
Film "name" parameter-list lrtFilm()
Sampler "name" parameter-list lrtSampler()
Accelerator "name" parameter-list lrtAccelerator()
ToneMap "name" parameter-list lrtToneMap()
SurfaceIntegrator "name" parameter-list lrtSurfaceIntegrator()
VolumeIntegrator "name" parameter-list lrtVolumeIntegrator()

Of these only Camera uses the value of the the current transformation matrix
when it is encountered in an input file: it is used to initialize the world to camera
transformation.

C.2.3 Attributes

The WorldBegin statement marks the end of options specification and the start of
the description of the lights and geometry in the scene. WorldEnd denotes the end
of the scene description; rendering starts when it is encountered.

Name API Call
WorldBegin lrtWorldBegin()
WorldEnd lrtWorldEnd()

The current graphics state is saved and restored with AttributeBegin and
AttributeEnd.

Name API Call
AttributeBegin lrtAttributeBegin()
AttributeEnd lrtAttributeEnd()

In addition to the current transformation matrix, lrt stores only a small amount
of additional information in the graphics state. The four statements below all set
values in the graphics state that will be used when geometry is created for objects
in the scene.

Sec. C.3] Standard Plug-ins 725

217 EnvironmentCamera
210 PerspectiveCamera

Name API Call
Material "name" parameter-list lrtMaterial()
BumpMap "name" parameter-list lrtBumpMap()
ReverseOrientation lrtReverseOrientation()

C.2.4 Lights, Shapes, and Volumes

Most of the statements inside the WorldBegin block will specify shapes and light
sources for the scene. The corresponding input file statements are listed in this
table:

Name API Call
Shape "name" parameter-list lrtShape()
LightSource "name" parameter-list lrtLightSource()
AreaLightSource "name" parameter-list lrtAreaLightSource()

All of these make use of the current transformation matrix: for shapes, it is used
for the object to world transformation; for lights, the light to world transformation.
and for volumes, volume to world.

C.2.5 Object Instancing

ObjectBegin ”name”
ObjectEnd
ObjectInstance ”name”

� � � � � � �	��� � ��� � � � � � �
Reference about the names and parameters used for setting up all of the plug-ins

defined throughout this book....

C.3.1 Cameras

There are three standard Camera models in lrt:
Name Class
"orthographic" OrthographicCamera
"perspective" PerspectiveCamera
"environment" EnvironmentCamera

Parameter Default Value Definition
"float hither" 1e-3
"float yon" 1e30
"float shutteropen" 0
"float shutterclose" 0
"float lensradius" 0
"float focaldistance" 1e30
"float pixelaspectratio" 1
"float frameaspectratio" xres/yres
"float screenwindow[4]"

Implementation Parameter Default Value Definition
"perspective" "float fov" 90

BestCandidateSampler 275
ContrastOp 313

HighContrastOp 315
LDSampler 258
MaxWhiteOp 312

NonLinearOp 322
StratifiedSampler 244

726 Input File Format [App. C

C.3.2 ToneMaps

Name Class
"contrast" ContrastOp
"highconstrast" HighContrastOp
"maxwhite" MaxWhiteOp
"nonlinear" NonLinearOp

nonlinear takes displayadaptationy (default 50)

C.3.3 Samplers

all:

Parameter Default Value Definition
"integer xsamples" 2
"integer ysamples" 2
"integer xresolution" 640
"integer yresolution" 480
"float cropwindow[4]" 0 1 0 1

"stratified" StratifiedSampler
"lowdiscrepancy" LDSampler
"bestcandidate" BestCandidateSampler

"stratified" "integer jitter" 1

"lowdiscrepancy" "integer zaremba" 0

C.3.4 Film

image

Parameter Default Value Definition
"integer xresolution" 640
"integer yresolution" 480
"integer writefrequency" -1
"float cropwindow[4]" (0, 1, 0, 1)
"string filename" ”lrt.tiff”
"integer writecoefficients" 0
"integer premultiplyalpha" 1
"float XYZToR[3]" (3.240479, -1.537150, -0.498535)
"float XYZToG[3]" (-0.969256, 1.875991f, 0.041556)
"float XYZToB[3]" (0.055648, -0.204043f, 1.057311)
"float gain" 1
"float gamma" 1
"integer integerformat" 1
"integer max" 255
"float dither" 0.5
"float bloomradius" 0.
"float bloomfraction" 0.2

Sec. C.3] Standard Plug-ins 727

282 BoxFilter
78 Cylinder
82 Disk

285 GaussianFilter
100 LoopSubdiv
286 MitchellFilter
289 SincFilter
68 Sphere

284 TriangleFilter
87 TriangleMesh

C.3.5 Filters

all:
Parameter Default Value Definition
"float xwidth" 2
"float ywidth" 2

Name Class
"box" BoxFilter
"triangle" TriangleFilter
"gaussian" GaussianFilter
"mitchell" MitchellFilter
"sinc" SincFilter

Sinc default width is 4...
"gaussian" "float alpha" 2
"sinc" "float tau" 3

C.3.6 Shapes

Name Class
"sphere" Sphere
"cone" Cone
"cylinder" Cylinder
"disk" Disk
"hyperboloid" Hyperboloid
"paraboloid" Paraboloid
"trianglemesh" TriangleMesh
"subdiv" LoopSubdiv
"nurbs" NURBS

sphere

Parameter Default Value Definition
"float radius" 1
"float zmin" -radius
"float zmax" radius
"float thetamax" 360

cone

Parameter Default Value Definition
"float radius" 1
"float height" 1
"float thetamax" 360

cylinder

Parameter Default Value Definition
"float radius" 1
"float zmin" -1
"float zmax" 1
"float thetamax" 360

disk

Parameter Default Value Definition
"float height" 0
"float radius" 1
"float thetamax" 360

GridAccel 139
KdTreeAccel 154

728 Input File Format [App. C

heightfield

Parameter Default Value Definition
"int nu" u
"int nv" v
"vertex float Pz"

hyperboloid

Parameter Default Value Definition
"point p1" 0 0 0
"point p2" 1 1 1
"float thetamax" 360

nurbs

Parameter Default Value Definition
"integer nu"
"integer uorder"
"float uknots" ...
"float u0"
"float u1"
"integer nv"
"integer vorder"
"float vknots" ...
"float v0"
"float v1"
"vertex point P" ...
"vertex float Pw[4]" ...

paraboloid

Parameter Default Value Definition
"float radius" 1
"float zmin" 0
"float zmax" 1
"float thetamax" 360

subdiv

Parameter Default Value Definition
"integer nlevels" 3
"integer vertices" ...
"integer nvertices" ...
"vertex point P" ...
"string scheme" loop

trianglemesh

Parameter Default Value Definition
"integer indices" ...
"vertex point P" ...
"vertex point N" ...
"vertex point st" ...

C.3.7 Accelerators

Name Class
"grid" GridAccel
"kdtree" KdTreeAccel

grid
Parameter Default Value Definition
"integer refineimmediately" 0

Sec. C.3] Standard Plug-ins 729

389 BluePaint
389 BrushedMetal
389 Clay
389 Felt
384 Glass
381 Matte
385 Mirror
382 Plastic
389 Primer
386 ShinyMetal
389 Skin
387 Substrate
383 Translucent

kd-tree

Parameter Default Value Definition
"integer intersectcost" 80
"integer traversalcost" 1
"integer emptybonus" 0.2
"integer maxprims" 1
"integer maxdepth" -1

C.3.8 Materials

Name Class
"matte" Matte
"plastic" Plastic
"translucent" Translucent
"mirror" Mirror
"glass" Glass
"shinymetal" ShinyMetal
"substrate" Substrate
"clay" Clay
"felt" Felt
"primer" Primer
"skin" Skin
"bluepaint" BluePaint
"brushedmetal" BrushedMetal
"uber" UberMaterial

Name Class
"checkerboard" Plastic XXX
"dots" Plastic XXX
"marble" Plastic XXX

matte

Parameter Default Value Definition
"color basecolor" 1
"color Kd" 1
"float sigma" 0

plastic

Parameter Default Value Definition
"color basecolor" 1
"color specularcolor" 1
"float Kd" 1
"float Ks" 1
"float roughness" 0.1
"string texturename" ””

730 Input File Format [App. C

translucent

Parameter Default Value Definition
"color basecolor" 1
"color Kd" 1
"color Ks" 1
"float roughness" 0.1
"color specularcolor" 1
"string texturename" ””
"color reflect" .5
"color transmit" .5

mirror
Parameter Default Value Definition
"color basecolor" 0.5
"color Kr" 1

glass

Parameter Default Value Definition
"color basecolor" 1
"color Kr" 1
"color Kt" 1
"float index" 1.5

shinymetal

Parameter Default Value Definition
"color basecolor" 1
"float roughness" 0.1
"color Ks" 1
"color Kr" 1

substrate

Parameter Default Value Definition
"color basecolor" 1
"color glossycolor" 1
"color Kr" 1
"color Ks" 1
"float uroughness" 0.1
"float vroughness" 0.1

checkerboard

Parameter Default Value Definition
"color Kd" 1
"color Ks" 1
"float roughness" 0.1
"color specularcolor" 1
"color color1" 0.1
"color color2" 1.0
"float frequency" 1
"integer dimension" 2
"float noisescale" 0.
"string aamode" � ”closedform,supersample,none” �

Sec. C.3] Standard Plug-ins 731

472 ExponentialDensity
467 HomogeneousVolume
470 VolumeGrid

dots

Parameter Default Value Definition
"color Kd" 1
"color Ks" 1
"float roughness" 0.1
"color specularcolor" 1
"color dotcolor" 0.1
"color basecolor" 1.0
"float frequency" 1

marble

Parameter Default Value Definition
"color Kd" 1
"color Ks" 1
"float roughness" 0.1
"float frequency" 1
"float variation" .5
"int maxoctaves" 8

uber

Parameter Default Value Definition
"color diffusecolor" 1
"color specularcolor" 1
"float roughness" 0.1
"color opacity" 1.
"string basetex" ””
"string opacitytex" ””

C.3.9 Bump Functions

imagemap
Parameter Default Value Definition
"float scale" 1
"string texturename" ””

windy
Parameter Default Value Definition
"float stretch" 1
"float scale" 1

bumpy
Parameter Default Value Definition
"float octaves" 6
"float omega" .5

C.3.10 Volumes

Name Class
"exponential" ExponentialDensity
"homogeneous" HomogeneousVolume
"volumegrid" VolumeGrid

AreaLight 491
DistantLight 489

GoniometricLight 488
InfiniteAreaLight 493

PointLight 480
ProjectionLight 484

SpotLight 482

732 Input File Format [App. C

common:

Parameter Default Value Definition
"color sigma a" 0 0 0
"color sigma s" 0 0 0
"float g" 0
"color Le" 0 0 0
"point p0" 0 0 0
"point p1" 1 1 1

exponential

Parameter Default Value Definition
"float a" 1
"float b" 1
"vector updir" (0,1,0)

volumegrid

Parameter Default Value Definition
"int nx" 1
"int ny" 1
"int nz" 1
"float density[nx*ny*nz]" ””

C.3.11 Lights

Name Class
"area" AreaLight
"distant" DistantLight
"goniometric" GoniometricLight
"infinite" InfiniteAreaLight
"point" PointLight
"projection" ProjectionLight
"spot" SpotLight

area
Parameter Default Value Definition
"color L" 1 1 1

distant

Parameter Default Value Definition
"color L" 1 1 1
"point from" 0 0 0
"point to" 0 0 1

goniometric
Parameter Default Value Definition
"color I" 1 1 1
"string mapname" ””

infinite
Parameter Default Value Definition
"color L" 1 1 1
"string mapname" ””

point
Parameter Default Value Definition
"color I" 1 1 1
"point from" 0 0 0

projection

Parameter Default Value Definition
"color I" 1 1 1
"float fov" 45
"string mapname" ””

Sec. C.3] Standard Plug-ins 733

591 BidirIntegrator
631 EmissionIntegrator
598 IrradianceCache
586 PathIntegrator
611 PhotonIntegrator
636 SingleScattering
16 WhittedIntegrator

spot

Parameter Default Value Definition
"color I" 1 1 1
"float coneangle" 30
"float conedeltaangle" 5

C.3.12 SurfaceIntegrators

Name Class
"whitted" WhittedIntegrator
"directlighting" DirectLightingIntegrator
"path" PathIntegrator
"bidirectional" BidirIntegrator
"photonmap" PhotonIntegrator
"irradiancecache" IrradianceCache

whitted
Parameter Default Value Definition
"integer maxdepth" 5

directlighting
Parameter Default Value Definition
"integer maxdepth" 5
"string strategy" ”all”/”one”/”weighted”

photonmap

Parameter Default Value Definition
"integer causticphotons" 20000
"integer indirectphotons" 100000
"integer directphotons" 100000
"integer nused" 50
"integer maxdepth" 5
"float maxdist" .1
"integer finalgather" 1
"integer finalgathersamples" 32
"integer directwithphotons" 0
"integer nfilter" 8

irradiancecache

Parameter Default Value Definition
"float maxerror" .2
"integer maxspeculardepth" 5
"integer maxindirectdepth" 3
"integer nsamples" 4096
"integer nfilter" 8

C.3.13 VolumeIntegrators

"single" SingleScattering
"emission" EmissionIntegrator

emission
Parameter Default Value Definition
"float stepsize" 1

single
Parameter Default Value Definition
"float stepsize" 1

LoopSubdiv 100
TriangleMesh 87

734 Input File Format [App. C

�
� � � � � � � �

3.1 lrt’s scene file parser is written using the standard lex and yacc tools.
While these are an easy way to develop such a parser, carefully imple-
mented hand-written parsers can be substantially more efficient. Replace
lrt’s parser with a hand-written parser that parses the same file format. Mea-
sure the change in performance with your parser. Profile lrt when render-
ing complex scenes like ecosysXXXX.lrt; what fraction of time rendering is
spent in parsing?

3.2 lrt’s scene description format makes it easy for other programs to export
lrt scenes and makes it easy for users to edit the scene files to make small
adjustments to them. However, for complex scenes such as ecosysXXXX.lrt,
the large text files that are necessary to describe them can take a long time to
parse and may occupy a lot of disk space.

Investigate extensions to lrt to support compact binary file formats for scene
files. Three possible ways to approach this problem are:

� Full binary file format: each of the scene file directives (Shape, Filter,
etc), could be encoded compactly, for example with a single bte. The
name of the particular instance type being created can then be encoded
as a NULL-terminated string or as an integer index into a string table.
The parameter list that follows could also be encoded compactly, for
example using a single byte to denote the type of each parameter, an
integer to encode the number of parameter values, the parameter name
as a string or an index into a table, and then the parameter values in
raw binary form, rather than in text. (See Appendix XXX of the Ren-
derMan specification (Pixar Animation Studios 1989) for an overview
of RenderMan’s binary encoding, which is along thesel ines.)

� Binary encoding for large meshes: since most of the complexity in de-
tailed scenes comes from large polygon and subdivision surface meshes,
providing specialized encodings for just those shapes may be almost as
effective as a binary encoding for the entire scene description format
and has the advantage of not requiring that the scene file parser be re-
written. Extend the TriangleMesh or LoopSubdiv to take an optional
string parameter that gives the filename for abinary file that holds some
or all of the mesh vertex positions and normals and the array of integers
that describes which triangles uses which vertices.

� Binary representation of internal data structures: for complex scenes,
creating the ray acceleration aggregates may take more time than the
initial parsing of the scene file. A third alternative is to modify the
system to have the capability of dumping out a representation of the
acceleration structure and all of the primitives inside it after it is first
created. The resulting file could then be subsequently read back into
memory much more quickly than rebuilding the data structure from
scratch. However, because C++ doesn’t have native support for saving
arbitrary objects to disk and then reading them back during a subse-
quent execution of the program (a capability known as serialization or

Exercises 735

pickling in other languages), adding this feature effectively requires ex-
tending many of the objects in lrt to support this capability on their
own.

All three of these approaches have their advantages and disadvantages, though
the second is the easiest to implement and will usually solve the basic prob-
lem well. The third approach isn’t too much harder than the first, and should
give he best performance of the three of them.

��� �

� � � � � � � � � � � � � � � � �

One of the key parts of lrt’s design was the decision that the lrt executable
would only hold the key core logic of the system. All of the shapes, cameras, lights,
integrators, and accelerators are stored in separate object files on disk; at run-time,
lrt loads in the appropriate object code for the needed objects. This makes it far
easier to extend lrt with new implementations of various types and helps ensure a
clean design by making it much harder to side-step the basic system interfaces.�
dynload.h* ���
#include "lrt.h"�
Runtime Loading Declarations �

�
dynload.cpp* ���
#include "dynload.h"
#include "paramset.h"
#include "shape.h"
#include "material.h"
#ifndef WIN32
#include <dlfcn.h>
#endif
#include <map>
using std::map;�
Runtime Loading Forward Declarations ��
Runtime Loading Static Data ��
Runtime Loading Local Classes ��
Runtime Loading Method Definitions ��
DSO Method Definitions �

��� �

ParamSet 700
Reference 664

Shape 63
Transform 43

738 Dynamic Object Creation [App. D

�
Global Include Files ��� �
#ifdef WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif

�
Platform-specific definitions ��� �
#ifdef WINDOWS
#ifdef CORE_SOURCE
#define COREDLL __declspec(dllexport)
#else
#define COREDLL __declspec(dllimport)
#endif
#else
#define COREDLL
#endif

���
� � � ��� � � � � �	� � � � � � � � � � � ��� �

In this section, we will describe the general process that lrt uses to link in
implementations at runtime. We will focus on the details only for the Shape class,
since the other times that are loaded at runtime are handled quite similarly.

D.1.1 Creation Functions

All of the object files that hold shape implementations must provide a function with
the same signature. When lrt needs to create a particular shape, it will call this
function from the appropriate object file.�
Shape Creation Declaration ���
Reference<Shape> CreateShape(const Transform &o2w, bool reverseOrientation,

const ParamSet ¶ms);

Because all Shapes store an object to world transformation, we pass the appro-
priate transformation to this function. However, in general we need to be able to
pass whichever other parameters the particular shape needs and that the user may
have set in the input file. Because we don’t want to hard-code knowledge like
“spheres need to have a floating-point radius value passed to their constructor” into
lrt, we use the ParamSet to handle marshal parameters and their values for use
by the individual shapes.

The dynamic sphere creation routine just pulls the appropriate values out of the
ParamSet and cals the constructor, returning a newly-allocated sphere.

Sec. D.1] Reading Dynamic Libraries 739

700 ParamSet
664 Reference
63 Shape
68 Sphere
43 Transform

�
Sphere Method Definitions ��� �
extern "C" Reference<Shape> CreateShape(const Transform &o2w,

bool reverseOrientation, const ParamSet ¶ms) {
Float radius = params.FindOneFloat("radius", 1);
Float zmin = params.FindOneFloat("zmin", -radius);
Float zmax = params.FindOneFloat("zmax", radius);
Float thetamax = params.FindOneFloat("thetamax", 360);
return new Sphere(o2w, reverseOrientation, radius,

zmin, zmax, thetamax);
}

The creation routines for other shapes are quite similar, so won’t be included
here.

XXX include the basic signatures for the other object creation functions here,
though XXX

D.1.2 Loading object files

Loading an object file with such a function to be called from disk and linking it into
a running application can be done relatively easy in modern operating systems. The
system calls to use are highly operating-system dependent, however. The DSO base-
class is one key to this process; it hides the operating-system-dependent parts of
it.

Dynamic shared object DSO
Dynamic link library DLL
XXX what is a DSO, DSO vs DLL. Rename this class? XXX�

Global Classes ��� �
class DSO {
public:�

DSO Public Methods �
private:
#if defined(WIN32)

HMODULE hinstLib;
#else

void *hinstLib;
#endif
};

The DSO constructor handles the first step of loading the shared object into lrt’s
address spade. It takes a pathname to the object file.

DSO 739
ShapeDSO 741

740 Dynamic Object Creation [App. D

�
DSO Method Definitions ���
DSO::DSO(const string &fname) {
#ifdef WIN32

hinstLib = LoadLibrary(fname.c_str());
if (!hinstLib)

Error("DSO Loader can’t open DLL \"%s\"", fname.c_str());
#else

hinstLib = dlopen(fname.c_str(), RTLD_LAZY);
if (!hinstLib)

Error("DSO Loader can’t open DLL \"%s\" (%s)", fname.c_str(),
dlerror());

#endif
}

And the destructor makes the system call to remove the library from our address
space.�
DSO Method Definitions ��� �
DSO::˜DSO() {
#ifdef WIN32

FreeLibrary(hinstLib);
#else

dlclose(hinstLib);
#endif
}

Once a library has been loaded into memory, the GetSymbol() function lets us
ask for a function inside the DSO with a particular name. If that function exists,
then this returns a pointer to it which we can use to actually call it.�
DSO Method Definitions ��� �
void *DSO::GetSymbol(const string &symname) {

void *data;
#ifdef WIN32

data = GetProcAddress(hinstLib, symname.c_str());
#else
#ifdef __APPLE__

string sym = string("_") + symname;
data = dlsym(hinstLib, sym.c_str());

#else
data = dlsym(hinstLib, symname.c_str());

#endif
#endif

if (!data)
Error("Couldn’t get symbol \"%s\" in DSO.", symname.c_str());

return data;
}

For each base type for which we are able to load implementations at runtime,
we inherit from DSO. Here is the implementation of ShapeDSO. All of these imple-
mentations just call the DSO GetSymbol function in the constructor, passing in the

Sec. D.1] Reading Dynamic Libraries 741

739 DSO
700 ParamSet
664 Reference
63 Shape
43 Transform

name of the object creation function (e.g. CreateShape(), which was introduced
previously in this section.) All Shape shared object files implement this function
and return a new Shape of their particular type when it is called.�
Runtime Loading Local Classes ���
class ShapeDSO : public DSO {
public:�

ShapeDSO Constructor �
typedef Reference<Shape> (*CreateShapeFunc)(const Transform &o2w,

bool reverseOrientation, const ParamSet ¶ms);
CreateShapeFunc CreateShape;

};

One possibly dangerous thing that the constructor does is cast the returned sym-
bol to be a pointer to a function with the right signature for creating shapes. If
the person who implemented a particular Shape defined it with a CreateShape
function that only took a ParamSet and didn’t have a Transform parameter, the
program would probably crash at run-time if it tried to call that function. In the
interests of making it easier to keep lrt portable across architectures, we’ll just
take that risk and keep the code here simpler.�
ShapeDSO Constructor ���
ShapeDSO(const string &name)

: DSO(name) {
CreateShape = (CreateShapeFunc)(GetSymbol("CreateShape"));

}

XXX call this function something else! XXX
The function that the main section of lrt uses when it actually needs to create

a shape is also called CreateShape. It takes the name of the shape to be created,
the object to world transformation, and the ParamSet for the new shape. It calls
GetShapeDSO, which will be defined shortly–it returns the DSO for the named shape
if it exists–and it then calls the creation function pointer that the DSO holds to
actually cause the particular shape to be made.�
Runtime Loading Method Definitions ���
Reference<Shape> CreateShape(const string &name, const string &searchpath,

const Transform &object2world, bool reverseOrientation,
const ParamSet ¶mSet) {

ShapeDSO *dso = LoadDSO<ShapeDSO>(name, shape_dsos, searchpath);
if (dso)

return dso->CreateShape(object2world, reverseOrientation, paramSet);
return NULL;

}

DSO 739
SearchPath 743

ShapeDSO 741

742 Dynamic Object Creation [App. D

�
Runtime Loading Forward Declarations ���
template <class D> D *LoadDSO(const string &name,

map<string, D *> &loadedDSOs,
const string &searchPath) {

if (loadedDSOs.find(name) != loadedDSOs.end())
return loadedDSOs[name];

string filename = name;
#ifdef WIN32

filename += ".dll";
#else

filename += ".so";
#endif

string path = SearchPath(searchPath, filename);
D *dso = NULL;
if (path != "")

loadedDSOs[name] = dso = new D(path.c_str());
else

Error("Unable to find DSO/DLL for \"%s\"",
name.c_str());

return dso;
}

�
Runtime Loading Forward Declarations ��� �
class ShapeDSO;
class FilterDSO;
class MaterialDSO;
class BumpDSO;
class FilmDSO;
class LightDSO;
class AreaLightDSO;
class VolumeRegionDSO;
class SurfaceIntegratorDSO;
class VolumeIntegratorDSO;
class ToneMapDSO;
class AcceleratorDSO;
class CameraDSO;
class SamplerDSO;

Sec. D.2] Object Creation Functions 743

375 Material
741 ShapeDSO
181 Spectrum
394 Texture

�
Runtime Loading Static Data ���
static map<string, ShapeDSO *> shape_dsos;
static map<string, FilterDSO *> filter_dsos;
static map<string, MaterialDSO *> material_dsos;
static map<string, BumpDSO *> bump_dsos;
static map<string, FilmDSO *> film_dsos;
static map<string, LightDSO *> light_dsos;
static map<string, AreaLightDSO *> arealight_dsos;
static map<string, VolumeRegionDSO *> volume_dsos;
static map<string, SurfaceIntegratorDSO *> surf_integrator_dsos;
static map<string, VolumeIntegratorDSO *> vol_integrator_dsos;
static map<string, ToneMapDSO *> tonemap_dsos;
static map<string, AcceleratorDSO *> accelerator_dsos;
static map<string, CameraDSO *> camera_dsos;
static map<string, SamplerDSO *> sampler_dsos;

�
Runtime Loading Method Definitions ��� �
static string SearchPath(const string &searchpath,

const string &filename) {
const char *start = searchpath.c_str();
const char *end = start;
while (*start) {

while (*end && *end != ’:’)
++end;

string component(start, end);

string fn = component + "/" + filename;
FILE *f = fopen(fn.c_str(), "r");
if (f) {

fclose(f);
return fn;

}
if (*end == ’:’) ++end;
start = end;

}
return "";

}

����� � � � ��� � � � � ��� � � � ��� �	� � � � � �

�
Material Creation Macros ���
#define SURF_TEX_S(var, def) \

Texture<Spectrum> *(var) = Material::MakeSpecTex(geomParams, surfaceParams, \
#var, def)

#define SURF_TEX_F(var, def) \
Texture<Float> *(var) = Material::MakeFloatTex(geomParams, surfaceParams, \

#var, def)

BilerpTexture 411
BoxFilter 282

ConstantTexture 395
Filter 281

IdentityMapping2D 406
Material 375

PARAM TYPE UNIFORM 702
PARAM TYPE VARYING 702

ParamSet 700
Spectrum 181
Texture 394

744 Dynamic Object Creation [App. D

�
Material Method Definitions ��� �
Texture<Spectrum> *Material::MakeSpecTex(const ParamSet &pGeom, const ParamSet &pShader,

const string &name, const Spectrum &def) {
int type, narray, nitems;
const Spectrum *s = pGeom.FindSpectrum(name, &type, &narray, &nitems);
if (!s) s = pShader.FindSpectrum(name, &type, &narray, &nitems);
if (!s) return new ConstantTexture<Spectrum>(def);
Assert(narray == 1); // XXX for now

if (type & PARAM_TYPE_UNIFORM)
return new ConstantTexture<Spectrum>(*s);

else if (type & PARAM_TYPE_VARYING) {
Assert(nitems == 4);
return new BilerpTexture<Spectrum>(new IdentityMapping2D,

s[0], s[1], s[2], s[3]);
}
return NULL;

}
�
Material Method Definitions ��� �
Texture<Float> *Material::MakeFloatTex(const ParamSet &pGeom, const ParamSet &pShader,

const string &name, Float def) {
int type, narray, nitems;
const Float *s = pGeom.FindFloat(name, &type, &narray, &nitems);
if (!s)

s = pShader.FindFloat(name, &type, &narray, &nitems);
if (!s) return new ConstantTexture<Float>(def);
Assert(narray == 1); // XXX for now
if (type & PARAM_TYPE_UNIFORM)

return new ConstantTexture<Float>(*s);
else if (type & PARAM_TYPE_VARYING) {

Assert(nitems == 4);
return new BilerpTexture<Float>(new IdentityMapping2D,

s[0], s[1], s[2], s[3]);
}
return NULL;

}
�
Find common filter parameters ���
Float xw = ps.FindOneFloat("xwidth", 2.);
Float yw = ps.FindOneFloat("ywidth", 2.);

�
Box Filter Method Definitions ��� �
extern "C" Filter *CreateFilter(const ParamSet &ps) {�

Find common filter parameters �
return new BoxFilter(xw, yw);

}

Sec. D.2] Object Creation Functions 745

281 Filter
285 GaussianFilter
286 MitchellFilter
700 ParamSet
289 SincFilter
284 TriangleFilter

�
Triangle Filter Method Definitions ��� �
extern "C" Filter *CreateFilter(const ParamSet &ps) {�

Find common filter parameters �
return new TriangleFilter(xw, yw);

}
�
Gaussian Filter Method Definitions ��� �
extern "C" Filter *CreateFilter(const ParamSet &ps) {�

Find common filter parameters �
Float alpha = ps.FindOneFloat("alpha", 2.f);
return new GaussianFilter(xw, yw, alpha);

}
�
Mitchell Filter Method Definitions ��� �
extern "C" Filter *CreateFilter(const ParamSet &ps) {�

Find common filter parameters �
Float B = ps.FindOneFloat("B", 1.f/3.f);
Float C = ps.FindOneFloat("C", 1.f/3.f);
return new MitchellFilter(B, C, xw, yw);

}
�
Sinc Filter Method Definitions ��� �
extern "C" Filter *CreateFilter(const ParamSet &ps) {

Float xw = ps.FindOneFloat("xwidth", 4.);
Float yw = ps.FindOneFloat("ywidth", 4.);
Float tau = ps.FindOneFloat("tau", 3.f);
return new SincFilter(xw, yw, tau);

}
�
Initialize common sampler parameters ���
int xsamp = params.FindOneInt("xsamples", 2);
int ysamp = params.FindOneInt("ysamples", 2);
int xstart, xend, ystart, yend;
film->GetSampleExtent(&xstart, &xend, &ystart, ¥d);

746 Dynamic Object Creation [App. D

� � � � � � � � �

Akenine-Möller, T. and E. Haines (2002). Real-Time Rendering. A. K. Peters.

Amanatides, J. (1984, July). Ray tracing with cones. In H. Christiansen (Ed.),
Computer Graphics (SIGGRAPH ’84 Proceedings), Volume 18, pp. 129–
135.

Amanatides, J. (1992, May). Algorithms for the detection and elimination of
specular aliasing. In Graphics Interface ’92, pp. 86–93.

Amanatides, J. and A. Woo (1987, August). A fast voxel traversal algorithm for
ray tracing. In Eurographics ’87, pp. 3–10.

Anton, H. A., I. Bivens, and S. Davis (2001). Calculus (7 ed.). John Wiley &
Sons.

Apodaca, A. A. and L. Gritz (2000). Advanced RenderMan: creating CGI for
motion pictures. Morgan Kaufmann.

Appel, A. (1968). Some techniques for shading machine renderings of solids. In
AFIPS 1968 Spring Joint Computer Conf., Volume 32, pp. 37–45.

Arnaldi, B., T. Priol, and K. Bouatouch (1987, August). A new space sub-
division method for ray tracing CSG modelled scenes. The Visual Com-
puter 3(2), 98–108.

Arvo, J. (1986, August). Backward ray tracing.

Arvo, J. (1988, March). Linear-time voxel walking for octrees.

Arvo, J. (1990). Transforming axis-aligned bounding boxes. In A. S. Glassner
(Ed.), Graphics Gems I, pp. 548–550. Academic Press.

Arvo, J. (1993, August). Transfer equations in global illumination. In Global
Illumination, SIGGRAPH ‘93 Course Notes, Volume 42.

� � �

748 BIBLIOGRAPHY

Arvo, J. (1995, December). Analytic Methods for Simulated Light Transport.
Ph. D. thesis, Yale University.

Arvo, J. and D. Kirk (1990, August). Particle transport and image synthesis.
Computer Graphics 24(4), 63–66.

Arvo, J. and D. B. Kirk (1987, July). Fast ray tracing by ray classification. In
M. C. Stone (Ed.), Computer Graphics (SIGGRAPH ’87 Proceedings), Vol-
ume 21, pp. 55–64.

Ashikhmin, M. (2002, June). A tone mapping algorithm for high contrast im-
ages. In The proceedings of 13th Eurographics Workshop on Rendering,
Pisa, Italy, pp. 145–155.

Ashikhmin, M., S. Premoze, and P. S. Shirley (2000, July). A microfacet-based
brdf generator. In Proceedings of ACM SIGGRAPH 2000, Computer Graph-
ics Proceedings, Annual Conference Series, pp. 65–74. ACM Press / ACM
SIGGRAPH / Addison Wesley Longman. ISBN 1-58113-208-5.

Ashikhmin, M. and P. Shirley (2000, June). An anisotropic Phong light reflec-
tion model. Technical report UUCS-00-014.

Ashikhmin, M. and P. Shirley (2002). An anisotropic Phong BRDF model. Jour-
nal of Graphics Tools 5(2), 25–32.

Atkinson, K. (1993). Elementary Numerical Analysis. John Wiley & Sons.

Badouel, D. and T. Priol (1989). An efficient parallel ray tracing scheme for
highly parallel architectures. In Fifth Eurographics Workshop on Graphics
Hardware.

Banks, D. C. (1994, July). Illumination in diverse codimensions. In Proceedings
of SIGGRAPH 94, Computer Graphics Proceedings, Annual Conference Se-
ries, pp. 327–334.

Barzel, R. (1997). Lighting controls for computer cinematography. Journal of
Graphics Tools 2(1), 1–20. ISSN 1086-7651.

Berger, E. D., B. G. Zorn, and K. S. McKinley (2001). Composing high-
performance memory allocators. In SIGPLAN Conference on Programming
Language Design and Implementation, pp. 114–124.

Berger, E. D., B. G. Zorn, and K. S. McKinley (2002). Reconsidering custom
memory allocation. In Proceedings of ACM OOPSLA 2002.

Betrisey, C., J. F. Blinn, B. Dresevic, B. Hill, G. Hitchcock, B. Keely, D. P.
Mitchell, J. C. Platt, and T. Whitted (2000). Displaced filtering for patterned
displays. Society for Information Display International Symposium. Digest
of Technical Papers 31, 296–299.

Bhate, N. and A. Tokuta (1992, May). Photorealistic volume rendering of me-
dia with directional scattering. In Proceedings of the Third Eurographics
Rendering Workshop, pp. 227–245.

Blasi, P., B. L. Saẽc, and C. Schlick (1993). A rendering algorithm for discrete
volume density objects. 12(3), 201–210.

Blinn, J. F. (1978, August). Simulation of wrinkled surfaces. In Computer
Graphics (SIGGRAPH ’78 Proceedings), Volume 12, pp. 286–292.

BIBLIOGRAPHY 749

Blinn, J. F. (1982a, July). A generalization of algebraic surface drawing. ACM
Transactions on Graphics 1(3), 235–256.

Blinn, J. F. (1982b, July). Light reflection functions for simulation of clouds and
dusty surfaces. Computer Graphics 16(3), 21–29.

Blinn, J. F. and M. E. Newell (1976). Texture and reflection in computer gener-
ated images. Communications of the ACM 19, 542–546.

Bolin, M. R. and G. W. Meyer (1998, July). A perceptually based adaptive sam-
pling algorithm. In Proceedings of SIGGRAPH 98, Computer Graphics Pro-
ceedings, Annual Conference Series, pp. 299–310.

Bracewell, R. N. (2000). The Fourier Transform and its Applications. McGraw-
Hill.

Bronsvoort, W. F. and F. Klok (1985, October). Ray tracing generalized cylin-
ders. ACM Transactions on Graphics 4(4), 291–303.

Buck, R. C. (1978). Advanced Calculus. New York, NY: McGraw–Hill.

Cabral, B., N. Max, and R. Springmeyer (1987, July). Bidirectional reflection
functions from surface bump maps. In Computer Graphics (SIGGRAPH ’87
Proceedings), Volume 21, pp. 273–281.

Calder, B., K. Chandra, S. John, and T. Austin (1998). Cache-conscious data
placement. In Proceedings of the Eighth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS-VIII), San Jose.

Cant, R. J. and P. A. Shrubsole (2000, July). Texture potential MIP mapping,
a new high-quality texture antialiasing algorithm. ACM Transactions on
Graphics 19(3), 164–184.

Cazals, F., G. Drettakis, and C. Puech (1995, August). Filtering, clustering and
hierarchy construction: a new solution for ray-tracing complex scenes. Com-
puter Graphics Forum 14(3), 371–382.

Chalmers, A., T. Davis, and E. Reinhard (Eds.) (2002). Practical Parallel Ren-
dering. A. K. Peters.

Chandrasekar, S. (1960). Radiative Transfer. New York: Dover Publications.
Originally published by Oxford University Press, 1950.

Chilimbi, T. M., B. Davidson, and J. R. Larus (1999). Cache-conscious structure
definition. In SIGPLAN Conference on Programming Language Design and
Implementation, pp. 13–24.

Chilimbi, T. M., M. D. Hill, and J. R. Larus (1999). Cache-conscious structure
layout. In SIGPLAN Conference on Programming Language Design and
Implementation, pp. 1–12.

Chiu, K., M. Herf, P. Shirley, S. Swamy, C. Wang, and K. Zimmerman (1993,
May). Spatially nonuniform scaling functions for high contrast images. In
Graphics Interface ’93, Toronto, Ontario, Canada, pp. 245–253. Canadian
Information Processing Society.

750 BIBLIOGRAPHY

Christensen, P. H. (2003, July). Adjoints and importance in rendering: an
overview. IEEE Transactions on Visualization and Computer Graphics 9(3),
329–340.

Christensen, P. H., D. M. Laur, J. Fong, W. L. Wooten, , and D. Batali (2003,
September). Ray differentials and multiresolution geometry caching for dis-
tribution ray tracing in complex scenes. In Computer Graphics Forum (Eu-
rographics 2003 Conference Proceedings), pp. 543–552.

Chvolson, O. D. (1890). Grundzüge einer matematischen teorie der inneren dif-
fusion des lichtes. Izv. Peterburg. Academii Nauk 33, 221–265.

Clark, J. H. (1976). Hierarchical geometric models for visible surface algo-
rithms. Communications of the ACM 19(10), 547–554.

Cleary, J. G., B. M. Wyvill, R. Vatti, and G. M. Birtwistle (1983, May). Design
and analysis of a parallel ray tracing computer. In Graphics Interface ’83,
pp. 33–38.

Cohen, J., A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. P.
Brooks Jr., and W. Wright (1996, August). Simplification envelopes. In Pro-
ceedings of SIGGRAPH 96, Computer Graphics Proceedings, Annual Con-
ference Series, pp. 119–128.

Cohen, M. and J. Wallace (1993). Radiosity and realistic image synthesis. Aca-
demic Press Professional.

Collins, S. (1994, June). Adaptive splatting for specular to diffuse light trans-
port. In Fifth Eurographics Workshop on Rendering, Darmstadt, Germany,
pp. 119–135.

Cook, R. L. (1984, July). Shade trees. In H. Christiansen (Ed.), Computer
Graphics (SIGGRAPH ’84 Proceedings), Volume 18, pp. 223–231.

Cook, R. L. (1986, January). Stochastic sampling in computer graphics. ACM
Transactions on Graphics 5(1), 51–72.

Cook, R. L., L. Carpenter, and E. Catmull (1987, July). The REYES image
rendering architecture. In Computer Graphics (Proceedings of SIGGRAPH
87), Anaheim, California, pp. 95–102.

Cook, R. L., T. Porter, and L. Carpenter (1984, July). Distributed ray tracing. In
Computer Graphics (SIGGRAPH ’84 Proceedings), Volume 18, pp. 137–45.

Cook, R. L. and K. E. Torrance (1981, August). A reflectance model for com-
puter graphics. In Computer Graphics (SIGGRAPH ’81 Proceedings), Vol-
ume 15, pp. 307–316.

Cook, R. L. and K. E. Torrance (1982, January). A reflectance model for com-
puter graphics. ACM Transactions on Graphics 1(1), 7–24.

Crow, F. C. (1977, November). The aliasing problem in computer-generated
shaded images. Communications of the ACM 20(11), 799–805.

Crow, F. C. (1984, July). Summed-area tables for texture mapping. In Computer
Graphics (Proceedings of SIGGRAPH 84), Volume 18, pp. 207–212.

BIBLIOGRAPHY 751

Dachsbacher, C. and M. Stamminger (2003). Translucent shadow maps. In Pro-
ceedings of the 13th Eurographics workshop on Rendering, pp. 197–201.
Eurographics Association.

Dana, K. J., B. van Ginneken, S. K. Nayar, and J. J. Koenderink (1999, Jan-
uary). Reflectance and texture of real-world surfaces. ACM Transactions on
Graphics 18(1), 1–34.

de Berg, M., M. van Kreveld, M. Overmars, and O. Schwarzkopf (2000). Com-
putational Geometry: Algorithms and Applications. Springer-Verlag. ISBN
3-540-65620-0.

de Voogt, E., A. van der Helm, and W. F. Bronsvoort (2000). Ray tracing de-
formed generalized cylinders. The Visual Computer 16(3-4), 197–207.

Debevec, P. (1998, July). Rendering synthetic objects into real scenes: Bridg-
ing traditional and image-based graphics with global illumination and high
dynamic range photography. In Proceedings of SIGGRAPH 98, Computer
Graphics Proceedings, Annual Conference Series, Orlando, Florida, pp.
189–198. ACM SIGGRAPH / Addison Wesley. ISBN 0-89791-999-8.

Deering, M. F. (1995, August). Geometry compression. In Proceedings of SIG-
GRAPH 95, Computer Graphics Proceedings, Annual Conference Series,
pp. 13–20.

DeRose, T. D. (1989). A coordinate-free approach to geometric programming.
Also available as Technical Report No. 89-09-16, Department of Computer
Science and Engineering, University of Washington, Seattle, WA (Septem-
ber, 1989).

Deussen, O., P. M. Hanrahan, B. Lintermann, R. Mech, M. Pharr, and
P. Prusinkiewicz (1998, July). Realistic modeling and rendering of plant
ecosystems. In Proceedings of SIGGRAPH 98, Computer Graphics Proceed-
ings, Annual Conference Series, pp. 275–286.

Devlin, K., A. Chalmers, A. Wilkie, and W. Purgathofer (2002, September).
Tone reproduction and physically based spectral rendering. In D. Fellner
and R. Scopignio (Eds.), Proceedings of Eurographics 2002, pp. 101–123.
The Eurographics Association.

Dippé, M. A. Z. and E. H. Wold (1985, July). Antialiasing through stochas-
tic sampling. In B. A. Barsky (Ed.), Computer Graphics (SIGGRAPH ’85
Proceedings), Volume 19, pp. 69–78.

Dobkin, D. P., D. Eppstein, and D. P. Mitchell (1996, October). Computing the
discrepancy with applications to supersampling patterns. ACM Transactions
on Graphics 15(4), 354–376. ISSN 0730-0301.

Dobkin, D. P. and D. P. Mitchell (1993, May). Random-edge discrepancy of
supersampling patterns. In Graphics Interface ’93, Toronto, Ontario, pp.
62–69. Canadian Information Processing Society.

Dorsey, J., A. Edelman, J. Legakis, H. W. Jensen, and H. K. Pedersen (1999, Au-
gust). Modeling and rendering of weathered stone. In Proceedings of SIG-
GRAPH 99, Computer Graphics Proceedings, Annual Conference Series,
pp. 225–234.

752 BIBLIOGRAPHY

Dorsey, J., H. K. Pedersen, and P. M. Hanrahan (1996, August). Flow and
changes in appearance. In Proceedings of SIGGRAPH 96, Computer Graph-
ics Proceedings, Annual Conference Series, pp. 411–420.

Drebin, R. A., L. Carpenter, and P. Hanrahan (1988, August). Volume rendering.
In Computer Graphics (Proceedings of SIGGRAPH 88), Volume 22, pp. 65–
74.

Duff, T. (1985, July). Compositing 3-d rendered images. In Computer Graphics
(Proceedings of SIGGRAPH 85), Volume 19, pp. 41–44.

Dungan Jr., W., A. Stenger, and G. Sutty (1978, August). Texture tile considera-
tions for raster graphics. In Computer Graphics (Proceedings of SIGGRAPH
78), Volume 12, pp. 130–134.

Durand, F. and J. Dorsey (2000, June). Interactive tone mapping. In Rendering
Techniques 2000: 11th Eurographics Workshop on Rendering, pp. 219–230.
Eurographics. ISBN 3-211-83535-0.

Durand, F. and J. Dorsey (2002, July). Fast bilateral filtering for the display of
high-dynamic-range images. ACM Transactions on Graphics 21(3), 257–
266. ISSN 0730-0301 (Proceedings of ACM SIGGRAPH 2002).

Eberly, D. H. (2001). 3D game engine design: a practical approach to real-time
computer graphics. San Francisco, CA: Morgan Kaufmann.

Ebert, D., F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley (2003). Tex-
turing and Modeling: A Procedural Approach. San Francisco, CA: Morgan
Kaufmann Publishers.

Fante, R. L. (1981, April). Relationship between radiative-transport theory and
Maxwell’s equations in dielectric media. Journal of the Optical Society of
America 71(4), 460–468.

Fedkiw, R., J. Stam, and H. W. Jensen (2001, August). Visual simulation of
smoke. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Pro-
ceedings, Annual Conference Series, pp. 15–22.

Feibush, E. A., M. Levoy, and R. L. Cook (1980, July). Synthetic texturing
using digital filters. In Computer Graphics (Proceedings of SIGGRAPH 80),
Volume 14, pp. 294–301.

Ferwerda, J. A. (2001, September-October). Elements of early vision for com-
puter graphics. IEEE Computer Graphics & Applications 21(5), 22–33.
ISSN 0272-1716.

Ferwerda, J. A., S. Pattanaik, P. S. Shirley, and D. P. Greenberg (1996, August).
A model of visual adaptation for realistic image synthesis. In Proceedings
of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Se-
ries, New Orleans, Louisiana, pp. 249–258. ACM SIGGRAPH / Addison
Wesley. ISBN 0-201-94800-1.

Ferwerda, J. A., S. N. Pattanaik, P. S. Shirley, and D. P. Greenberg (1997, Au-
gust). A model of visual masking for computer graphics. In Proceedings of
SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference Se-
ries, Los Angeles, California, pp. 143–152. ACM SIGGRAPH / Addison
Wesley. ISBN 0-89791-896-7.

BIBLIOGRAPHY 753

Fishman, G. S. (1996). Monte Carlo: Concepts, Algorithms, and Applications.
New York, NY: Springer Verlag.

Fleischer, K., D. Laidlaw, B. Currin, and A. H. Barr (1995, August). Cellular
texture generation. In Proceedings of SIGGRAPH 95, Computer Graphics
Proceedings, Annual Conference Series, pp. 239–248.

Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes (1990). Com-
puter Graphics: principles and practice. Reading, Massachusetts: Addison-
Wesley.

Fournier, A. (1992, May). Normal distribution functions and multiple surfaces.
In Graphics Interface ’92 Workshop on Local Illumination, pp. 45–52.

Fournier, A. and E. Fiume (1988, August). Constant-time filtering with space-
variant kernels. In J. Dill (Ed.), Computer Graphics (SIGGRAPH ’88 Pro-
ceedings), Volume 22, pp. 229–238.

Fournier, A., D. Fussel, and L. Carpenter (1982, June). Computer rendering of
stochastic models. Comm. of the ACM 25(6), 371–384.

Fraser, C. and D. Hanson (1995). A Retargetable C Compiler: Design and Im-
plementation. Addison-Wesley.

Friedel, I. and A. Keller (2000). Fast generation of randomized low discrepancy
points sets. In Monte Carlo and Quasi-Monte Carlo Methods 2000, Berlin,
pp. 257–273. Springer-Verlag.

Fujimoto, A., T. Tanaka, and K. Iwata (1986, April). Arts: Accelerated ray-
tracing system. IEEE Computer Graphics and Applications 6(4), 16–26.

Gardner, G. Y. (1984, July). Simulation of natural scenes using textured quadric
surfaces. In H. Christiansen (Ed.), Computer Graphics (SIGGRAPH ’84
Proceedings), Volume 18, pp. 11–20.

Gershbein, R. and P. M. Hanrahan (2000, July). A fast relighting engine for
interactive cinematic lighting design. In Proceedings of ACM SIGGRAPH
2000, Computer Graphics Proceedings, Annual Conference Series, pp. 353–
358.

Gershun, A. (1939). The light field. Journal of Mathematics and Physics 18,
51–151.

Glassner, A. (1993, August). Spectrum: an architecture for image synthesis, re-
search, education, and practice. In Developing Large-Scale Graphics Soft-
ware Toolkits, SIGGRAPH ‘93 Course Notes, Volume 03, pp. 1–14–1–43.

Glassner, A. (1995). Principles of Digital Image Synthesis. Morgan Kaufmann
Publishers.

Glassner, A. S. (1984, October). Space subdivision for fast ray tracing. IEEE
Computer Graphics and Applications 4(10), 15–22.

Glassner, A. S. (1989, July). How to derive a spectrum from an RGB triplet.
IEEE Computer Graphics & Applications 9(4), 95–99.

Goldman, D. B. (1997, August). Fake fur rendering. In Proceedings of SIG-
GRAPH 97, Computer Graphics Proceedings, Annual Conference Series,
pp. 127–134.

754 BIBLIOGRAPHY

Goldman, R. (1985). Illicit expressions in vector algebra. ACM Transactions on
Graphics 4(3), 223–243.

Goldsmith, J. and J. Salmon (1987, May). Automatic creation of object hier-
archies for ray tracing. IEEE Computer Graphics and Applications 7(5),
14–20.

Goldstein, R. A. and R. Nagel (1971, January). 3-D visual simulation. Simula-
tion 16(1), 25–31.

Gondek, J. S., G. W. Meyer, and J. G. Newman (1994, July). Wavelength depen-
dent reflectance functions. In Proceedings of SIGGRAPH ’94, pp. 213–220.
ACM Press.

Gortler, S. J., R. Grzeszczuk, R. Szeliski, and M. F. Cohen (1996, August). The
lumigraph. In Proceedings of SIGGRAPH 96, Computer Graphics Proceed-
ings, Annual Conference Series, pp. 43–54.

Gray, A. (1993). Modern differential geometry of curves and surfaces. CRC
Press.

Green, S. A. and D. J. Paddon (1989, November). Exploiting coherence for
multiprocessor ray tracing. IEEE Computer Graphics & Applications 9(6),
12–26.

Greene, N. (1986, November). Environment mapping and other applications of
world projections. IEEE Computer Graphics & Applications 6(11), 21–29.

Greene, N. and P. S. Heckbert (1986a, June). Creating raster omnimax images
from multiple perspective views using the elliptical weighted average filter.
IEEE Computer Graphics & Applications 6(6), 21–27.

Greene, N. and P. S. Heckbert (1986b, June). Creating raster omnimax images
from multiple perspective views using the elliptical weighted average filter.
IEEE Computer Graphics and Applications 6(6), 21–27.

Gritz, L. and J. K. Hahn (1996). BMRT: A global illumination implementation
of the RenderMan standard. Journal of Graphics Tools 1(3), 29–47.

Grunwald, D., B. G. Zorn, and R. Henderson (1993). Improving the cache lo-
cality of memory allocation. In SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pp. 177–186.

Haines, E. (1994). Point in polygon strategies. In P. Heckbert (Ed.), Graphics
Gems IV, pp. 24–46. Academic Press.

Haines, E. A. and D. P. Greenberg (1986). The light buffer: a shadow testing
accelerator. IEEE Computer Graphics & Applications 6(9), 6–16.

Haines, E. A. and J. R. Wallace (1994). Shaft culling for efficient ray-traced
radiosity. In Second Eurographics Workshop on Rendering (Photorealistic
Rendering in ComputerGraphics).

Hakura, Z. S. and A. Gupta (1997, June). The design and analysis of a cache
architecture for texture mapping. In Proceedings of the 24th International
Symposium on Computer Architecture, Denver, Colorado, pp. 108–120.

Hall, R. (1989). Illumination and Color in Computer Generated Imagery. New
York: Springer-Verlag.

BIBLIOGRAPHY 755

Hall, R. A. and D. P. Greenberg (1983, November). A testbed for realistic image
synthesis. IEEE Computer Graphics & Applications 3, 10–20.

Hanrahan, P. (1983, July). Ray tracing algebraic surfaces. In Computer Graphics
(Proceedings of SIGGRAPH 83), Volume 17, pp. 83–90.

Hanrahan, P. (2002). Why is graphics hardware so fast?

Hanrahan, P. and W. Krueger (1993, August). Reflection from layered surfaces
due to subsurface scattering. In Computer Graphics (SIGGRAPH Proceed-
ings), pp. 165–174.

Hanrahan, P. and J. Lawson (1990, August). A language for shading and light-
ing calculations. In F. Baskett (Ed.), Computer Graphics (SIGGRAPH ’90
Proceedings), Volume 24, pp. 289–298.

Hansen, J. E. and L. D. Travis (1974). Light scattering in planetary atmospheres.
Space Science Reviews 16, 527–610.

Hao, X., T. Baby, and A. Varshney (2003). Interactive subsurface scattering for
translucent meshes. In ACM Symposium on Interactive 3D Graphics, pp.
75–82.

Hart, D., P. Dutré, and D. P. Greenberg (1999, August). Direct illumination
with lazy visibility evaluation. In Proceedings of SIGGRAPH 99, Computer
Graphics Proceedings, Annual Conference Series, pp. 147–154.

Hart, J. C. (1996). Sphere tracing: a geometric method for the antialiased ray
tracing of implicit surfaces. The Visual Computer 12(9), 527–545.

Havran, V. and J. Bittner (2002, February). On improving kd-trees for ray shoot-
ing. In Proceedings of WSCG’2002 conference, pp. 209–217.

He, X. D., K. E. Torrance, F. X. Sillion, and D. P. Greenberg (1991, July). A
comprehensive physical model for light reflection. In T. W. Sederberg (Ed.),
Computer Graphics (SIGGRAPH ’91 Proceedings), Volume 25, pp. 175–
186.

Heckbert, P. (1984, July). The mathematics of quadric surface rendering and
SOID. 3-D Technical Memo.

Heckbert, P. S. (1986, November). Survey of texture mapping. IEEE Computer
Graphics and Applications 6(11), 56–67.

Heckbert, P. S. (1989, June). Fundamentals of texture mapping and image warp-
ing. M.sc. thesis, Department of Electrical Engineering and Computer Sci-
ence, University of California, Berkeley.

Heckbert, P. S. (1990, August). Adaptive radiosity textures for bidirectional ray
tracing. In Computer Graphics (Proceedings of SIGGRAPH 90), Volume 24,
pp. 145–154.

Heckbert, P. S. and P. Hanrahan (1984, July). Beam tracing polygonal objects.
In Computer Graphics (Proceedings of SIGGRAPH 84), Volume 18, pp.
119–127.

Heidrich, W. and H.-P. Seidel (1998, June). Ray-tracing procedural displace-
ment shaders. In Graphics Interface ’98, pp. 8–16.

756 BIBLIOGRAPHY

Heidrich, W., P. Slusallek, and H.-P. Seidel (1998, July). Sampling procedural
shaders using affine arithmetic. ACM Transactions on Graphics 17(3), 158–
176.

Henyey, L. G. and J. L. Greenstein (1941). Diffuse radiation in the galaxy. As-
trophysical Journal 93, 70–83.

Hery, C. (2003, July). Implementing a skin BSSRDF.

Hey, H. and W. Purgathofer (2002). Importance sampling with hemispherical
particle footprints. In A. Chalmers (Ed.), Proceedings of the 18th Spring
Conference on Computer Graphics.

Hiller, S., O. Deussen, and A. Keller (2001, November). Tiled blue noise sam-
ples. In T. Ertl, B. Girod, G.Greiner, H. Niemann, and H.-P. Seidel (Eds.),
Proceedings of Vision, MOdeling and Visualization.

Hoffman, G. (2002, December). Windowed sinc interpolation.

Hoppe, H., T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald,
J. Schweitzer, and W. Stuetzle (1994, July). Piecewise smooth surface re-
construction. In Proceedings of SIGGRAPH 94, Computer Graphics Pro-
ceedings, Annual Conference Series, Orlando, Florida, pp. 295–302. ACM
SIGGRAPH / ACM Press. ISBN 0-89791-667-0.

Hurley, J., A. Kapustin, A. Reshetov, and A. Soupikov (2002, September). Fast
ray tracing for modern general purpose CPU. In Proceedgins of GraphiCon
2002.

Igehy, H. (1999, August). Tracing ray differentials. In Proceedings of SIG-
GRAPH 99, Computer Graphics Proceedings, Annual Conference Series,
pp. 179–186.

Igehy, H., M. Eldridge, and P. Hanrahan (1999, August). Parallel texture
caching. In 1999 SIGGRAPH / Eurographics Workshop on Graphics Hard-
ware, pp. 95–106.

Igehy, H., M. Eldridge, and K. Proudfoot (1998, August). Prefetching in a tex-
ture cache architecture. In 1998 SIGGRAPH / Eurographics Workshop on
Graphics Hardware, pp. 133–142.

Immel, D. S., M. F. Cohen, and D. P. Greenberg (1986, August). A radiosity
method for non-diffuse environments. In Computer Graphics (SIGGRAPH
’86 Proceedings), Volume 20, pp. 133–142.

Jackson, W. H. (1910). The solution of an integral equation occurring in the
theory of radiation. Bulletin of the American Mathematical Society 16, 473–
475.

Jansen, F. W. (1986). Data structures for ray tracing. In L. R. A. Kessener, F. J.
Peters, and M. L. P. Lierop (Eds.), Data Structures for Raster Graphics,
Workshop Proceedings, pp. 57–73. Springer Verlag.

Jensen, H. W. (1995, June). Importance driven path tracing using the photon
map. In Eurographics Rendering Workshop 1995, pp. 326–335.

Jensen, H. W. (1996, June). Global illumination using photon maps. In X. Pueyo
and P. Schröder (Eds.), Eurographics Rendering Workshop 1996, New York
City, NY, pp. 21–30. Eurographics: Springer Wien. ISBN 3-211-82883-4.

BIBLIOGRAPHY 757

Jensen, H. W. (2001). Realistic Image Synthesis Using Photon Mapping. Natick,
MA: A. K. Peters, Ltd.

Jensen, H. W. and J. Buhler (2002, July). A rapid hierarchical rendering tech-
nique for translucent materials. ACM Transactions on Graphics 21(3), 576–
581.

Jensen, H. W. and P. H. Christensen (1998, July). Efficient simulation of light
transport in scenes with participating media using photon maps. In M. Cohen
(Ed.), SIGGRAPH 98 Conference Proceedings, Annual Conference Series,
pp. 311–320. Addison Wesley.

Jensen, H. W., S. R. Marschner, M. Levoy, and P. Hanrahan (2001, August). A
practical model for subsurface light transport. In Proceedings of ACM SIG-
GRAPH 2001, Computer Graphics Proceedings, Annual Conference Series,
pp. 511–518.

Jevans, D. and B. Wyvill (1989, June). Adaptive voxel subdivision for ray trac-
ing. In Graphics Interface ’89, pp. 164–172.

Johnstone, M. S. and P. R. Wilson (1999). The memory fragmentation problem:
solved? ACM SIGPLAN Notices 34(3), 26–36.

Kajiya, J. and M. Ullner (1981, August). Filtering high quality text for display
on raster scan devices. In Computer Graphics (Proceedings of SIGGRAPH
81), pp. 7–15.

Kajiya, J. T. (1982, July). Ray tracing parametric patches. In Computer Graph-
ics (SIGGRAPH 1982 Conference Proceedings), pp. 245–254.

Kajiya, J. T. (1983, July). New techniques for ray tracing procedurally defined
objects. In Computer Graphics (Proceedings of SIGGRAPH 83), Volume 17,
pp. 91–102.

Kajiya, J. T. (1985, July). Anisotropic reflection models. In Computer Graphics
(Proceedings of SIGGRAPH 85), Volume 19, pp. 15–21.

Kajiya, J. T. (1986, August). The rendering equation. In D. C. Evans and
R. J. Athay (Eds.), Computer Graphics (SIGGRAPH ’86 Proceedings), Vol-
ume 20, pp. 143–150.

Kajiya, J. T. and B. P. V. Herzen (1984, July). Ray tracing volume densities. In
Computer Graphics (Proceedings of SIGGRAPH 84), Volume 18, pp. 165–
174.

Kajiya, J. T. and T. L. Kay (1989, July). Rendering fur with three dimen-
sional textures. In Computer Graphics (Proceedings of SIGGRAPH 89),
Volume 23, pp. 271–280.

Kalos, M. H. and P. A. Whitlock (1986). Monte Carlo Methods: Volume I:
Basics. New York, NY: Wiley.

Kalra, D. and A. H. Barr (1989, July). Guaranteed ray intersections with im-
plicit surfaces. In Computer Graphics (Proceedings of SIGGRAPH 89), Vol-
ume 23, pp. 297–306.

Kapasi, U. J., S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn, P. Mattson, and J. D.
Owens (2003, August). Programmable stream processors. IEEE Computer,
54–62.

758 BIBLIOGRAPHY

Kay, D. S. and D. P. Greenberg (1979, August). Transparency for computer
synthesized images. In Computer Graphics (SIGGRAPH ’79 Proceedings),
Volume 13, pp. 158–164.

Kay, T. and J. Kajiya (1986, August). Ray tracing complex scenes. In Computer
Graphics (SIGGRAPH ’86 Proceedings), Volume 20, pp. 269–278.

Keller, A. (1996, June). Quasi-Monte Carlo radiosity. In X. Pueyo and
P. Schröder (Eds.), Eurographics Rendering Workshop 1996, New York
City, NY, pp. 101–110. Eurographics: Springer Wien.

Keller, A. (1997, August). Instant radiosity. In Proceedings of SIGGRAPH 97,
Computer Graphics Proceedings, Annual Conference Series, Los Angeles,
California, pp. 49–56. ACM SIGGRAPH / Addison Wesley. ISBN 0-89791-
896-7.

Keller, A. (2001). Strictly deterministic sampling methods in computer graph-
ics. mental images technical report, also in SIGGRAPH 2003 Monte Carlo
Course Notes.

Keller, A. and I. Wald (2000). Efficient importance sampling techniques for the
photon map. In Proceedings of Vision, Modeling and Visualization 2000, pp.
271–279.

King, L. V. (1913). On the scattering and absorption of light in gaseous media,
with applications to the intensity of sky radiation. Philosophical Transac-
tions of the Royal Society of London. Series A. Mathematical and Physical
Sciences 212, 375–433.

Kirk, D. (2002). Gpu talk.

Kirk, D. and J. Arvo (1988, July). The ray tracing kernel. In Proceedings of
Ausgraph ’88, pp. 75–82.

Kirk, D. B. and J. Arvo (1991, July). Unbiased sampling techniques for image
synthesis. In T. W. Sederberg (Ed.), Computer Graphics (SIGGRAPH ’91
Proceedings), Volume 25, pp. 153–156.

Klassen, R. V. (1987, July). Modeling the effect of the atmosphere on light.
ACM Transactions on Graphics 6(3), 215–237.

Klimaszewski, K. S. and T. W. Sederberg (1997, January). Faster ray tracing
using adaptive grids. IEEE Computer Graphics and Applications 17(1), 42–
51.

Knuth, D. E. (1984). Literate programming. The Computer Journal 27, 97–111.
Reprinted in Donald E. Knuth, Literate Programming, Stanford Center for
the Study of Language and Information, 1992.

Knuth, D. E. (1986). MetaFont: The Program. Reading, Massachusetts:
Adisson-Wesley.

Knuth, D. E. (1993a). TEX: The Program. Reading, Massachusetts: Adisson–
Wesley.

Knuth, D. E. (1993b). The Stanford GraphBase. New York, NY: ACM Press and
Addison–Wesley.

BIBLIOGRAPHY 759

Kolb, C., P. Hanrahan, and D. Mitchell (1995, August). A realistic camera model
for computer graphics. In R. Cook (Ed.), SIGGRAPH 95 Conference Pro-
ceedings, Annual Conference Series, pp. 317–324. Addison Wesley.

Kollig, T. and A. Keller (2000). Efficient bidirectional path tracing by ran-
domized Quasi-Monte Carlo integration. In Monte Carlo and Quasi-Monte
Carlo Methods 2000, Berlin, pp. 290–305. Springer-Verlag.

Kollig, T. and A. Keller (2002). Efficient multidimensional sampling. In
G. Drettakis and H.-P. Seidel (Eds.), Computer Graphics Forum, Volume 21,
pp. 557–563.

Lafortune, E. and Y. Willems (1994). A theoretical framework for physically
based rendering. Computer Graphics Forum 13(2), 97–107.

Lafortune, E. P. and Y. D. Willems (1996, June). Rendering participating media
with bidirectional path tracing. In Eurographics Rendering Workshop 1996,
pp. 91–100.

Lafortune, E. P. F., S.-C. Foo, K. E. Torrance, and D. P. Greenberg (1997, Au-
gust). Non-linear approximation of reflectance functions. In Proceedings of
SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference Se-
ries, Los Angeles, California, pp. 117–126. ACM SIGGRAPH / Addison
Wesley. ISBN 0-89791-896-7.

Lam, M. S., E. E. Rothberg, and M. E. Wolf (1991). The cache performance and
optimizations of blocked algorithms. In Proceedings of the Fourth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-IV), Palo Alto, CA.

Lambert, J. H. (2001). Photometry, or, on the measure and gradations of light,
colors, and shade. The Illuminating Engineering Society of North America.
Transated by David L. DiLaura.

Lang, S. (1986). An Introduction to Linear Algebra. New York, NY: Springer
Verlag.

Lansdale, R. C. (1991, January). Texture mapping and resampling for computer
graphics. M.sc. thesis, Department of Electrical Engineering, University of
Toronto.

Larson, G. W. (1998). Logluv encoding for full-gamut, high-dynamic range im-
ages. Journal of Graphics Tools 3(1), 15–31.

Larson, G. W., H. Rushmeier, and C. Piatko (1997, October - December). A vis-
ibility matching tone reproduction operator for high dynamic range scenes.
IEEE Transactions on Visualization and Computer Graphics 3(4), 291–306.
ISSN 1077-2626.

Larson, G. W. and R. A. Shakespeare (1998). Rendering with Radiance: The
Art and Science of Lighting Visualization. Morgan Kaufmann Publishers.

Lee, M. E., R. A. Redner, and S. P. Uselton (1985, July). Statistically optimized
sampling for distributed ray tracing. In Computer Graphics (Proceedings of
SIGGRAPH 85), Volume 19, pp. 61–67.

Levoy, M. (1988, May). Display of surfaces from volume data. IEEE Computer
Graphics & Applications 8(3), 29–37.

760 BIBLIOGRAPHY

Levoy, M. (1990a, July). Efficient ray tracing of volume data. ACM Transactions
on Graphics 9(3), 245–261.

Levoy, M. (1990b, March). A hybrid ray tracer for rendering polygon and vol-
ume data. IEEE Computer Graphics & Applications 10(2), 33–40.

Levoy, M. and P. M. Hanrahan (1996, August). Light field rendering. In Pro-
ceedings of SIGGRAPH 96, Computer Graphics Proceedings, Annual Con-
ference Series, pp. 31–42.

Levoy, M. and T. Whitted (1995, January). The use of points as a display prim-
itive. Technical Report 85-022, Computer Science Department, University
of North Carolina at Chapel Hill.

Li, X., W. Wang, R. R. Martin, and A. Bowyer (2003). Using low-discrepancy
sequences and the crofton formula to compute surface areas of geometric
models. Computer Aided Design 35(9), 771–782.

Liu, J. S. (2001). Monte Carlo strategies in scientific computing. New York, NY:
Springer-Verlag.

Logie, J. R. and J. W. Patterson (1994, December). Inverse displacement map-
ping in the general case. Computer Graphics Forum 14(5), 261–273.

Lokovic, T. and E. Veach (2000, July). Deep shadow maps. In Proceedings of
ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Confer-
ence Series, pp. 385–392.

Lommel, E. (1889). Die Photometrie der diffusen Zurückwerfung. Annalen der
Physik 36, 473–502.

Loop, C. (1987). Smooth subdivision surfaces based on triangles. Ph. D. thesis,
University of Utah.

Lu, R., J. J. Koenderink, and A. M. L. Kappers (1999). Specularities on surfaces
with tangential hairs or grooves. Computer Vision and Image Understand-
ing 78, 320–335.

Lukaszewski, A. (2001). Exploiting coherence of shadow rays. In AFRIGRAPH
2001, pp. 147–150. ACM SIGGRAPH.

MacDonald, J. D. and K. S. Booth (1990, June). Heuristics for ray tracing using
space subdivision. The Visual Computer 6(3), 153–166.

Malacara, D. (2002). Color vision and colorimetry: theory and applications.
SPIE–The International Society for Optical Engineering.

Mann, S., N. Litke, and T. DeRose (1997, June). A coordinate free geometry
ADT. Research Report CS-97-15, Computer Science Department, Univer-
sity of Waterloo. Available at: ftp://cs-archive.uwaterloo.ca/cs-archive/CS-
97-15/.

Marschner, S. R., H. W. Jensen, M. Cammarano, S. Worley, and P. Hanrahan
(2003, July). Light scattering from human hair fibers. ACM Transactions on
Graphics 22(3), 780–791.

Marschner, S. R. and R. J. Lobb (1994, October). An evaluation of reconstruc-
tion filters for volume rendering. In Proceedings of Visualization ’94, Wash-
ington, DC, pp. 100–107.

BIBLIOGRAPHY 761

Marschner, S. R., S. H. Westin, E. P. F. Lafortune, K. E. Torrance, and D. P.
Greenberg (1999, June). Image-based BRDF measurement including human
skin. In Eurographics Rendering Workshop 1999, Granada, Spain. Springer
Wein / Eurographics.

Matsumoto, M. and T. Nishimura (1998, January). Mersenne twister: A 623-
dimensionally equidistributed uniform pseudorandom number generator.
ACM Transactions on Modeling and Computer Simulation 8(1), 3–30.

Max, N. (1995, June). Optical models for direct volume rendering. IEEE Trans-
actions on Visualization and Computer Graphics 1(2), 99–108.

Max, N. L. (1986, August). Atmospheric illumination and shadows. In Com-
puter Graphics (Proceedings of SIGGRAPH 86), Volume 20, pp. 117–124.

McCluney, W. R. (1994). Introduction to radiometry and photometry. Artech
House.

McCool, M. and E. Fiume (1992). Hierarchical Poisson disk sampling distribu-
tions. In Proceedings of Graphics Interface 1992, pp. 94–105.

McCormack, J., R. Perry, K. I. Farkas, and N. P. Jouppi (1999, August). Feline:
Fast elliptical lines for anisotropic texture mapping. In Proceedings of SIG-
GRAPH 99, Computer Graphics Proceedings, Annual Conference Series,
Los Angeles, California, pp. 243–250. ACM SIGGRAPH / Addison Wesley
Longman. ISBN 0-20148-560-5.

Meijering, E. (2002, March). A chronology of interpolation: from ancient
astronomy to modern signal and image processing. Proceedings of the
IEEE 90(3), 319–342.

Meijering, E. H. W., W. J. Niessen, J. P. W. Pluim, and M. A. Viergever (1999).
Quantitative comparison of sinc-approximating kernels for medial image in-
terpolation. In C. Taylor and A. Colchester (Eds.), Medical Image Comput-
ing and Computer-Assisted Intervention – MICCAI 1999, Berlin, pp. 210–
217. Springer-Verlag. Vol 1679 of Lecture Notes in Computer Science.

Miller, G. S. and C. R. Hoffman (1984). Illumination and reflection maps: Sim-
ulated objects in simulated and real environments.

Mitchell, D. P. (1987, July). Generating antialiased images at low sampling den-
sities. In M. C. Stone (Ed.), Computer Graphics (SIGGRAPH ’87 Proceed-
ings), Volume 21, pp. 65–72.

Mitchell, D. P. (1991, July). Spectrally optimal sampling for distributed ray trac-
ing. In T. W. Sederberg (Ed.), Computer Graphics (SIGGRAPH ’91 Pro-
ceedings), Volume 25, pp. 157–164.

Mitchell, D. P. (1992, May). Ray tracing and irregularities of distribution. In
Third Eurographics Workshop on Rendering, Bristol, UK, pp. 61–69.

Mitchell, D. P. (1996, August). Consequences of stratified sampling in graphics.
In Proceedings of SIGGRAPH 96, Computer Graphics Proceedings, An-
nual Conference Series, New Orleans, Louisiana, pp. 277–280. ACM SIG-
GRAPH / Addison Wesley. ISBN 0-201-94800-1.

762 BIBLIOGRAPHY

Mitchell, D. P. and P. Hanrahan (1992, July). Illumination from curved reflec-
tors. In Computer Graphics (Proceedings of SIGGRAPH 92), Volume 26,
pp. 283–291.

Mitchell, D. P. and A. N. Netravali (1988, August). Reconstruction filters in
computer graphics. In J. Dill (Ed.), Computer Graphics (SIGGRAPH ’88
Proceedings), Volume 22, pp. 221–228.

Möller, T. and B. Trumbore (1997). Fast, minimum storage ray-triangle inter-
section. Journal of Graphics Tools 2(1), 21–28.

Moon, P. and D. E. Spencer (1936). The Scientific Basis of Illuminating Engi-
neering. New York, NY: McGraw-Hill.

Moon, P. and D. E. Spencer (1948). Lighting Design. Reading, MA: Addison-
Wesley.

Motwani, R. and P. Raghavan (1995). Randomized Algorithms. Cambridge Uni-
versity Press.

Musgrave, K. (1992). A panoramic virtual screen for ray tracing. In D. Kirk
(Ed.), Graphics Gems III, pp. 288–. Academic Press.

Nakamae, E., K. Kaneda, T. Okamoto, and T. Nishita (1990, August). A lighting
model aiming at drive simulators. In Computer Graphics (Proceedings of
SIGGRAPH 90), Volume 24, pp. 395–404.

Nayar, S. K., K. Ikeuchi, and T. Kanade (1991, July). Surface reflection: Phys-
ical and geometrical perspectives. IEEE Transactions on Pattern Analysis
and Machine Intelligence 17(7), 611–634.

Naylor, B. (1993, May). Constructing good partition trees. In Graphics Interface
’93, pp. 181–191.

Niederreiter, H. (1992). Random number generation and quasi-Monte Carlo
methods. Philadelpha, Pennsylvania: Society for Industrial and Applied
Mathematics.

Nishita, T., Y. Miyawaki, and E. Nakamae (1987, July). A shading model
for atmospheric scattering considering luminous intensity distribution of
light sources. In Computer Graphics (Proceedings of SIGGRAPH 87), Vol-
ume 21, pp. 303–310.

Norton, A., A. P. Rockwood, and P. T. Skolmoski (1982, July). Clamping: a
method of antialiasing textured surfaces by bandwidth limiting in object
space. In Computer Graphics (Proceedings of SIGGRAPH 82), Volume 16,
pp. 1–8.

Oren, M. and S. K. Nayar (1994, July). Generalization of Lambert’s reflectance
model. In A. Glassner (Ed.), Proceedings of SIGGRAPH ’94 (Orlando,
Florida, July 24–29, 1994), Computer Graphics Proceedings, Annual Con-
ference Series, pp. 239–246. ACM Press.

Owens, J. D. (2002, November). Computer Graphics on a Stream Architecture.
Ph. D. thesis, Stanford University.

Owens, J. D., W. J. Dally, U. J. Kapasi, S. Rixner, P. Mattson, and B. Mowery
(2000, August). Polygon rendering on a stream architecture. In 2000 SIG-
GRAPH / Eurographics Workshop on Graphics Hardware, pp. 23–32.

BIBLIOGRAPHY 763

Owens, J. D., B. Khailany, B. Towles, and W. J. Dally (2002, September). Com-
paring REYES and OpenGL on a stream architecture. In 2002 SIGGRAPH
/ Eurographics Workshop on Graphics Hardware, pp. 47–56.

Parker, S., W. Martin, P.-P. J. Sloan, P. S. Shirley, B. Smits, and C. Hansen (1999,
April). Interactive ray tracing. In 1999 ACM Symposium on Interactive 3D
Graphics, pp. 119–126.

Pattanaik, S. N., J. A. Ferwerda, M. D. Fairchild, and D. P. Greenberg (1998,
July). A multiscale model of adaptation and spatial vision for realistic im-
age display. In Proceedings of SIGGRAPH 98, Computer Graphics Proceed-
ings, Annual Conference Series, Orlando, Florida, pp. 287–298. ACM SIG-
GRAPH / Addison Wesley. ISBN 0-89791-999-8.

Pattanaik, S. N., J. E. Tumblin, H. Yee, and D. P. Greenberg (2000, July). Time-
dependent visual adaptation for realistic image display. In Proceedings of
ACM SIGGRAPH 2000, Computer Graphics Proceedings, Annual Confer-
ence Series, pp. 47–54. ACM Press / ACM SIGGRAPH / Addison Wesley
Longman. ISBN 1-58113-208-5.

Patterson, J. W., S. G. Hoggar, and J. R. Logie (1991, June). Inverse displace-
ment mapping. Computer Graphics Forum 10(2), 129–139.

Pauly, M., T. Kollig, and A. Keller (2000, June). Metropolis light transport
for participating media. In Rendering Techniques 2000: 11th Eurographics
Workshop on Rendering, pp. 11–22. Eurographics. ISBN 3-211-83535-0.

Peachey, D. R. (1985, July). Solid texturing of complex surfaces. In B. A.
Barsky (Ed.), Computer Graphics (SIGGRAPH ’85 Proceedings), Vol-
ume 19, pp. 279–286.

Peachey, D. R. (1990). Texture on demand. unpublished manuscript.

Pearce, A. (1991). A recursive shadow voxel cache for ray tracing. In J. Arvo
(Ed.), Graphics Gems II, pp. 273–274. Academic Press.

Peercy, M. S. (1993, August). Linear color representations for full spectral ren-
dering. In J. T. Kajiya (Ed.), Computer Graphics (SIGGRAPH ’93 Proceed-
ings), Volume 27, pp. 191–198.

Pérez, F., X. Pueyo, and F. X. Sillion (1997, June). Global illumination tech-
niques for the simulation of participating media. In Eurographics Rendering
Workshop 1997, pp. 309–320.

Perlin, K. (1985, July). An image synthesizer. In Computer Graphics (SIG-
GRAPH ’85 Proceedings), Volume 19, pp. 287–296.

Perlin, K. (2002, July). Improving noise. ACM Transactions on Graphics 21(3),
681–682. ISSN 0730-0301 (Proceedings of ACM SIGGRAPH 2002).

Perlin, K. and E. M. Hoffert (1989, July). Hypertexture. In Computer Graphics
(Proceedings of SIGGRAPH 89), Volume 23, pp. 253–262.

Peter, I. and G. Pietrek (1998, June). Importance driven construction of photon
maps. In Eurographics Rendering Workshop 1998, pp. 269–280.

Pfister, H., M. Zwicker, J. van Baar, and M. Gross (2000, July). Surfels: Surface
elements as rendering primitives. In Proceedings of ACM SIGGRAPH 2000,
Computer Graphics Proceedings, Annual Conference Series, pp. 335–342.

764 BIBLIOGRAPHY

Pharr, M. and P. Hanrahan (1996, June). Geometry caching for ray-tracing dis-
placement maps. In Eurographics Rendering Workshop 1996, pp. 31–40.

Pharr, M. and P. M. Hanrahan (2000, July). Monte Carlo evaluation of non-linear
scattering equations for subsurface reflection. In Proceedings of ACM SIG-
GRAPH 2000, Computer Graphics Proceedings, Annual Conference Series,
pp. 75–84.

Pharr, M., C. Kolb, R. Gershbein, and P. M. Hanrahan (1997, August). Render-
ing complex scenes with memory-coherent ray tracing. In Proceedings of
SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference Se-
ries, pp. 101–108.

Phong, B.-T. (1975, June). Illumination for computer generated pictures. Com-
munications of the ACM 18(6), 311–317.

Phong, B.-T. and F. C. Crow (1975). Improved rendition of polygonal models
of curved surfaces. In Proceedings of the 2nd USA-Japan Computer Confer-
ence.

Pixar Animation Studios (1989, September). The RenderMan interface. With
typographical corrections through May 1995.

Porter, T. and T. Duff (1984, July). Compositing digital images. In Computer
Graphics (Proceedings of SIGGRAPH 84), Volume 18, Minneapolis, Min-
nesota, pp. 253–259.

Potmesil, M. and I. Chakravarty (1981, August). A lens and aperture camera
model for synthetic image generation. In Computer Graphics (Proceedings
of SIGGRAPH 81), Volume 15, Dallas, Texas, pp. 297–305.

Potmesil, M. and I. Chakravarty (1982, April). Synthetic image generation with
a lens and aperture camera model. ACM Transactions on Graphics 1(2), 85–
108.

Potmesil, M. and I. Chakravarty (1983, July). Modeling motion blur in
computer-generated images. In Computer Graphics (Proceedings of SIG-
GRAPH 83), Volume 17, Detroit, Michigan, pp. 389–399.

Poulin, P. and A. Fournier (1990, August). A model for anisotropic reflection. In
Computer Graphics (Proceedings of SIGGRAPH 90), Volume 24, pp. 273–
282.

Poynton, C. (2002a). Frequently-asked questions about color.
http://www.inforamp.net/˜poynton/ColorFAQ.html.

Poynton, C. (2002b). Frequently-asked questions about gamma.
http://www.inforamp.net/˜poynton/GammaFAQ.html.

Preetham, A. J., P. S. Shirley, and B. E. Smits (1999, August). A practical
analytic model for daylight. In Proceedings of SIGGRAPH 99, Computer
Graphics Proceedings, Annual Conference Series, pp. 91–100.

Preisendorfer, R. W. (1965). Radiative Transfer on Discrete Spaces. Oxford:
Pergamon Press.

Preisendorfer, R. W. (1976). Hydrologic Optics. Honolulu, Hawaii: U.S. De-
partment of Commerce, National Oceanic and Atmospheric Administration.
Six volumes.

BIBLIOGRAPHY 765

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992). Nu-
merical Recipes in C: The Art of Scientific Computing (2nd ed.). Cambridge:
Cambridge University Press.

Prusinkiewicz, P. (1986, May). Graphical applications of L-systems. In Graph-
ics Interface ’86, pp. 247–253.

Prusinkiewicz, P., M. James, and R. Mech (1994, July). Synthetic topiary. In
Proceedings of SIGGRAPH 94, Computer Graphics Proceedings, Annual
Conference Series, pp. 351–358.

Prusinkiewicz, P., L. Mündermann, R. Karwowski, and B. Lane (2001, August).
The use of positional information in the modeling of plants. In Proceedings
of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Con-
ference Series, pp. 289–300.

Purcell, T. J., I. Buck, W. R. Mark, and P. Hanrahan (2002, July). Ray tracing
on programmable graphics hardware. ACM Transactions on Graphics 21(3),
703–712.

Purcell, T. J., C. Donner, M. Cammarano, H. W. Jensen, and P. Hanrahan (2003,
July). Photon mapping on programmable graphics hardware. In Graphics
Hardware 2003, pp. 41–50.

Ramasubramanian, M., S. N. Pattanaik, and D. P. Greenberg (1999, August).
A perceptually based physical error metric for realistic image synthesis. In
Proceedings of SIGGRAPH 99, Computer Graphics Proceedings, Annual
Conference Series, Los Angeles, California, pp. 73–82. ACM SIGGRAPH
/ Addison Wesley Longman. ISBN 0-20148-560-5.

Raso, M. and A. Fournier (1991, June). A piecewise polynomial approach to
shading using spectral distributions. In Graphics Interface ’91, pp. 40–46.
Canadian Information Processing Society.

Reeves, W. T., D. H. Salesin, and R. L. Cook (1987, July). Rendering an-
tialiased shadows with depth maps. In Computer Graphics (Proceedings of
SIGGRAPH 87), Volume 21, pp. 283–291.

Reichert, M. C. (1992, January). A two-pass radiosity method driven by lights
and viewer position. Master’s thesis, Cornell University.

Reinhard, E. (2002). Parameter estimation for photographic tone reproduction.
Journal of Graphics Tools 7(1), 45–52.

Reinhard, E., M. Stark, P. Shirley, and J. Ferwerda (2002). Photographic tone
reproduction for digital images. ACM Transactions on Graphics 21(3), 267–
276. Proceedings of ACM SIGGRAPH 2002.

Rogers, D. F. and J. A. Adams (1990). Mathematical elements for computer
graphics. New York, NY: McGraw–Hill.

Ross, S. M. (2002). Introduction to Probability Models (8 ed.). Academic Press.

Rougeron, G. and B. Péroche (1998). Color fidelity in computer graphics: A
survey. Computer Graphics Forum 17(1), 3–16. ISSN 1067-7055.

Rubin, S. M. and T. Whitted (1980, July). A 3-dimensional representation for
fast rendering of complex scenes. Computer Graphics 14(3), 110–116.

766 BIBLIOGRAPHY

Rushmeier, H. E. (1988). Realistic Image Synthesis for Scenes with Radiatively
Participating Media. Ph.d. thesis, Cornell University.

Rushmeier, H. E. and K. E. Torrance (1987, July). The zonal method for cal-
culating light intensities in the presence of a participating medium. In Com-
puter Graphics (Proceedings of SIGGRAPH 87), Volume 21, pp. 293–302.

Rushmeier, H. E. and G. J. Ward (1994, July). Energy preserving non-linear
filters. In Proceedings of SIGGRAPH 94, Computer Graphics Proceedings,
Annual Conference Series, pp. 131–138.

Rusinkiewicz, S. and M. Levoy (2000, July). Qsplat: A multiresolution point
rendering system for large meshes. In Proceedings of ACM SIGGRAPH
2000, Computer Graphics Proceedings, Annual Conference Series, pp. 343–
352.

Saito, T. and T. Takahashi (1990, August). Comprehensible rendering of 3-d
shapes. In Computer Graphics (Proceedings of SIGGRAPH 90), Volume 24,
pp. 197–206.

Samet, H. (1990). The Design and Analysis of Spatial Data Structures. Addison-
Wesley. ISBN 0-201-50255-0.

Schaufler, G. and H. W. Jensen (2000, June). Ray tracing point sampled ge-
ometry. In Rendering Techniques 2000: 11th Eurographics Workshop on
Rendering, pp. 319–328.

Schlick, C. (1993, June). A customizable reflectance model for everyday render-
ing. In Fourth Eurographics Workshop on Rendering, held in Paris, France,
14-16 June 1993, pp. 73–84. Eurographics.

Schneider, P. J. and D. H. Eberly (2003). Geometric tools for computer graphics.
San Francisco, CA: Morgan Kaufmann Publishers.

Schuster, A. (1905, January). Radiation through a foggy atmosphere. Astrophys-
ical Journal 21(1), 1–22.

Shade, J., S. J. Gortler, L. wei He, and R. Szeliski (1998, July). Layered depth
images. In Proceedings of SIGGRAPH 98, Computer Graphics Proceedings,
Annual Conference Series, pp. 231–242.

Shinya, M., T. Takahashi, and S. Naito (1987, July). Principles and applications
of pencil tracing. In Computer Graphics (Proceedings of SIGGRAPH 87),
Volume 21, pp. 45–54.

Shirley, P. (1990a, November). Physically Based Lighting Calculations for
Computer Graphics. Ph.D. thesis, Dept. of Computer Science, U. of Illinois,
Urbana-Champaign.

Shirley, P. (1990b, May). A ray tracing method for illumination calculation in
diffuse-specular scenes. In Proceedings of Graphics Interface ’90, pp. 205–
212.

Shirley, P. (1991, September). Discrepancy as a quality measure for sample dis-
tributions. In W. Purgathofer (Ed.), Eurographics ’91, pp. 183–194. North-
Holland.

BIBLIOGRAPHY 767

Shirley, P. (1992). Nonuniform random point sets via warping. In D. Kirk (Ed.),
Graphics Gems III, pp. 80–83. Academic Press.

Shirley, P. and K. Chiu (1997). A low distortion map between disk and square.
Journal of Graphics Tools 2(3), 45–52. ISSN 1086-7651.

Shirley, P., C. Y. Wang, and K. Zimmerman (1996, January). Monte Carlo
techniques for direct lighting calculations. ACM Transactions on Graph-
ics 15(1), 1–36. ISSN 0730-0301.

Sillion, F. and C. Puech (1994). Radiosity and Global Illumination. San Fran-
cisco: Morgan Kaufmann Publishers. ISBN 1-55860-277-1.

Sims, K. (1991, July). Artificial evolution for computer graphics. In Computer
Graphics (Proceedings of SIGGRAPH 91), Volume 25, pp. 319–328.

Sloan, P.-P., J. Hall, J. Hart, and J. Snyder (2003, July). Clustered principal com-
ponents for precomputed radiance transfer. ACM Transactions on Graph-
ics 22(3), 382–391.

Sloan, P.-P., J. Kautz, and J. Snyder (2002, July). Precomputed radiance transfer
for real-time rendering in dynamic, low-frequency lighting environments.
ACM Transactions on Graphics 21(3), 527–536.

Sloan, P.-P., X. Liu, H.-Y. Shum, and J. Snyder (2003, July). Bi-scale radiance
transfer. ACM Transactions on Graphics 22(3), 370–375.

Slusallek, P. (1996, May). Vision - an architecture for physically-based render-
ing. Ph. D. thesis, University of Erlangen.

Slusallek, P. and H.-P. Seidel (1996, June). Towards an open rendering kernel
for image synthesis. In Eurographics Rendering Workshop 1996, pp. 51–60.

Slusallek, P. and H.-P. Siedel (1995, March). Vision - an architecture for global
illumination calculations. IEEE Transactions on Visualization and Com-
puter Graphics 1(1), 77–96.

Smith, A. R. (1979). Painting tutorial notes.

Smith, A. R. (1984, July). Plants, fractals and formal languages. In Computer
Graphics (Proceedings of SIGGRAPH 84), Volume 18, pp. 1–10.

Smith, A. R. (1995, July). A pixel is not a little square, a pixel is not a little
square, a pixel is not a little square! (and a voxel is not a little cube). Mi-
crosoft Tech Memo 6, http://www.alvyray.com.

Smits, B. (1998). Efficiency issues for ray tracing. Journal of Graphics
Tools 3(2), 1–14.

Smits, B., P. S. Shirley, and M. M. Stark (2000, June). Direct ray tracing of
displacement mapped triangles. In Rendering Techniques 2000: 11th Euro-
graphics Workshop on Rendering, pp. 307–318.

Snyder, J. M. (1992). Generative Modeling for Computer Graphics and CAD:
Symbolic Shape Design Using Interval Analysis. Academic Press.

Snyder, J. M. and A. H. Barr (1987, July). Ray tracing complex models contain-
ing surface tessellations. In M. C. Stone (Ed.), Computer Graphics (SIG-
GRAPH ’87 Proceedings), Volume 21, pp. 119–128.

768 BIBLIOGRAPHY

Snyder, J. M. and J. T. Kajiya (1992, July). Generative modeling: A symbolic
system for geometric modeling. In Computer Graphics (Proceedings of SIG-
GRAPH 92), Volume 26, pp. 369–378.

Spanier, J. and E. M. Gelbard (1969). Monte Carlo principles and neutron trans-
port problems. Reading, Massachusetts: Addison–Wesley.

Spencer, G., P. S. Shirley, K. Zimmerman, and D. P. Greenberg (1995, Au-
gust). Physically-based glare effects for digital images. In Proceedings of
SIGGRAPH 95, Computer Graphics Proceedings, Annual Conference Se-
ries, Los Angeles, California, pp. 325–334. ACM SIGGRAPH / Addison
Wesley. ISBN 0-201-84776-0.

Stam, J. (1999, August). Diffraction shaders. In Proceedings of SIGGRAPH 99,
Computer Graphics Proceedings, Annual Conference Series, pp. 101–110.

Stolfi, J. (1991). Oriented Projective Geometry. San Diego, CA: Academic
Press.

Stroustrup, B. (1997). The C++ Programming Language. Addison-Wesley.

Stürzlinger, W. (1998, July). Ray tracing triangular trimmed free-form surfaces.
IEEE Transactions on Visualization and Computer Graphics 4(3), 202–214.

Sun, Y., F. D. Fracchia, M. S. Drew, and T. W. Calvert (2001). A spectrally
based framework for realistic image synthesis. The Visual Computer 17(7),
429–444. ISSN 0178-2789.

Sung, K., J. Craighead, C. Wang, S. Bakshi, A. Pearce, and A. Woo (1998, Octo-
ber). Design and implementation of the Maya renderer. In Pacific Graphics
’98.

Sung, K. and P. Shirley (1992). Ray tracing with the BSP tree. In D. Kirk (Ed.),
Graphics Gems III, pp. 271–274. Academic Press.

Suykens, F. and Y. Willems (2001, June). Path differentials and applications. In
Rendering Techniques 2001: 12th Eurographics Workshop on Rendering,
pp. 257–268.

Suykens, F. and Y. Willens (2000, June). Density control for photon maps. In
Rendering Techniques 2000: 11th Eurographics Workshop on Rendering,
pp. 23–34.

Torrance, K. E. and E. M. Sparrow (1967). Theory for off-specular reflection
from roughened surfaces. Journal of the Optical Society of America 57(9),
1105–1114.

Trumbore, B., W. Lytle, and D. P. Greenbert (1993, August). A testbed for im-
age synthesis. In Developing Large-Scale Graphics Software Toolkits, SIG-
GRAPH ‘93 Course Notes, Volume 03, pp. 4–7–4–19.

Truong, D. N., F. Bodin, and A. Seznec (1998). Improving cache behavior of
dynamically allocated data structures. In IEEE PACT, pp. 322–329.

Tumblin, J., J. K. Hodgins, and B. K. Guenter (1999, January). Two methods
for display of high contrast images. ACM Transactions on Graphics 18(1),
56–94. ISSN 0730-0301.

BIBLIOGRAPHY 769

Tumblin, J. and H. E. Rushmeier (1993, November). Tone reproduction for re-
alistic images. IEEE Computer Graphics & Applications 13(6), 42–48.

Tumblin, J. and G. Turk (1999, August). LCIS: A boundary hierarchy for detail-
preserving contrast reduction. In Proceedings of SIGGRAPH 99, Computer
Graphics Proceedings, Annual Conference Series, Los Angeles, California,
pp. 83–90. ACM SIGGRAPH / Addison Wesley Longman. ISBN 0-20148-
560-5.

Turk, G. (1991, July). Generating textures for arbitrary surfaces using reaction-
diffusion. In Computer Graphics (Proceedings of SIGGRAPH 91), Vol-
ume 25, pp. 289–298.

Turkowski, K. (1990a). The differential geometry of parametric primitives.

Turkowski, K. (1990b). Filters for common resampling tasks. In A. S. Glassner
(Ed.), Graphics Gems I, pp. 147–165. Academic Press.

Turkowski, K. (1990c). Properties of surface-normal transformations. In A. S.
Glassner (Ed.), Graphics Gems I, pp. 539–547. Academic Press.

Turkowski, K. (1993). The differential geometry of texture-mapping and shad-
ing.

Upstill, S. (1989). The RenderMan Companion. Reading, Massachusetts:
Addison–Wesley.

van de Hulst, H. C. (1980). Multiple Light Scattering. New York: Academic
Press. Two volumes.

van de Hulst, H. C. (1981). Light Scattering by Small Particles. New York:
Dover Publications. Originally published by John Wiley and Sons, 1957.

Veach, E. (1996, June). Non-symmetric scattering in light transport algorithms.
In X. Pueyo and P. Schröder (Eds.), Eurographics Rendering Workshop
1996. Springer Wien.

Veach, E. (1997, December). Robust Monte Carlo Methods for Light Transport
Simulation. Ph. D. thesis, Stanford University.

Veach, E. and L. Guibas (1994, June). Bidirectional estimators for light trans-
port. In Fifth Eurographics Workshop on Rendering, Darmstadt, Germany,
pp. 147–162.

Veach, E. and L. J. Guibas (1995, August). Optimally combining sampling tech-
niques for Monte Carlo rendering. In Computer Graphics (SIGGRAPH Pro-
ceedings), pp. 419–428.

Veach, E. and L. J. Guibas (1997, August). Metropolis light transport. In Com-
puter Graphics (SIGGRAPH Proceedings), pp. 65–76.

Wald, I., C. Benthin, and P. Slusallek (2003, June). Interactive global illumina-
tion in complex and highly occluded environments. In Eurographics Sympo-
sium on Rendering: 14th Eurographics Workshop on Rendering, pp. 74–81.

Wald, I., T. Kollig, C. Benthin, A. Keller, and P. Slusallek (2002, June). Inter-
active global illumination using fast ray tracing. In Rendering Techniques
2002: 13th Eurographics Workshop on Rendering, pp. 15–24.

770 BIBLIOGRAPHY

Wald, I., P. Slusallek, and C. Benthin (2001, June). Interactive distributed ray
tracing of highly complex models. In Rendering Techniques 2001: 12th Eu-
rographics Workshop on Rendering, pp. 277–288.

Wald, I., P. Slusallek, C. Benthin, and M. Wagner (2001). Interactive rendering
with coherent ray tracing. Computer Graphics Forum 20(3), 153–164.

Wallace, B. A. (1981, August). Merging and transformation of raster images for
cartoon animation. In Proceedings of ACM SIGGRAPH ’81, Volume 15, pp.
253–262.

Wallis, B. (1990). Forms, vectors, and transforms. In A. S. Glassner (Ed.),
Graphics Gems I, pp. 533–538. Academic Press.

Wandell, B. (1995). Foundations of vision. Sinauer Associates.

Wang, X. C., J. Maillot, E. L. Fiume, V. Ng-Thow-Hing, A. Woo, and S. Bak-
shi (2000, June). Feature-based displacement mapping. In Rendering Tech-
niques 2000: 11th Eurographics Workshop on Rendering, pp. 257–268.

Ward, G. (1991). Real pixels. In J. Arvo (Ed.), Graphics Gems II, pp. 80–83.
Academic Press.

Ward, G. (1994a). A contrast-based scalefactor for luminance display. In
P. Heckbert (Ed.), Graphics Gems IV, pp. 415–421. Boston: Academic
Press. ISBN 0-12-336155-9.

Ward, G. J. (1992, July). Measuring and modeling anisotropic reflection. In
E. E. Catmull (Ed.), Computer Graphics (SIGGRAPH ’92 Proceedings),
Volume 26, pp. 265–272.

Ward, G. J. (1994b, July). The Radiance lighting simulation and rendering sys-
tem. In A. Glassner (Ed.), Proceedings of SIGGRAPH ’94, pp. 459–472.

Ward, G. J. and P. Heckbert (1992, May). Irradiance gradients. In Third Euro-
graphics Workshop on Rendering, Bristol, UK, pp. 85–98.

Ward, G. J., F. M. Rubinstein, and R. D. Clear (1988, August). A ray trac-
ing solution for diffuse interreflection. In J. Dill (Ed.), Computer Graphics
(SIGGRAPH ’88 Proceedings), Volume 22, pp. 85–92.

Warn, D. R. (1983, July). Lighting controls for synthetic images. In Computer
Graphics (Proceedings of SIGGRAPH 83), Volume 17, Detroit, Michigan,
pp. 13–21.

Watt, A. and M. Watt (1992). Advanced Animation and Rendering Techniques.
New York, NY: Addison–Wesley.

Weghorst, H., G. Hooper, and D. P. Greenberg (1984, January). Improved com-
putational methods for ray tracing. ACM Transactions on Graphics 3(1),
52–69.

Weisstein, E. (1999). Hypersphere.

Wells, D. (1987). The Penguin Dictionary of Curious and Interesting Numbers.
Penguin USA.

Westin, S., J. Arvo, and K. Torrance (1992, July). Predicting reflectance func-
tions from complex surfaces. Computer Graphics 26(2), 255–264.

BIBLIOGRAPHY 771

Whitted, T. (1980, June). An improved illumination model for shaded display.
Communications of the ACM 23(6), 343–349.

Williams, L. (1978, August). Casting curved shadows on curved surfaces. In
Computer Graphics (Proceedings of SIGGRAPH 78), Volume 12, pp. 270–
274.

Williams, L. (1983, July). Pyramidal parametrics. In Computer Graphics (SIG-
GRAPH ’83 Proceedings), Volume 17, pp. 1–11.

Wilson, P. R., M. S. Johnstone, M. Neely, and D. Boles (1995). Dynamic storage
allocation: A survey and critical review. In Proc. Int. Workshop on Memory
Management, Kinross Scotland (UK).

Witkin, A. and M. Kass (1991, July). Reaction-diffusion textures. In Computer
Graphics (Proceedings of SIGGRAPH 91), Volume 25, pp. 299–308.

Wong, T.-T., W.-S. Luk, and P.-A. Heng (1997). Sampling with Hammersley
and Halton points. Journal of Graphics Tools 2(2), 9–24. ISSN 1086-7651.

Worley, S. P. (1996, August). A cellular texture basis function. In Proceedings
of SIGGRAPH 96, Computer Graphics Proceedings, Annual Conference Se-
ries, New Orleans, Louisiana, pp. 291–294. ACM SIGGRAPH / Addison
Wesley. ISBN 0-201-94800-1.

Wyvill, B. and G. Wyvill (1989, March). Field functions for implicit surfaces.
The Visual Computer 5(1/2), 75–82.

Yanovitskij, E. G. (1997). Light Scattering In Inhomogeneous Atmospheres.
Berlin: Springer Verlag.

Yellot, J. I. (1983). Spectral consequences of photoreceptor sampling in the Rhe-
sus retina. Science 221, 382–385.

Zorin, D., P. Schröder, T. DeRose, L. Kobbelt, A. Levin, and W. Sweldins
(2000, August). Subdivision for modeling and animation. SIGGRAPH 2000
Course Notes.

� �	�

� ��� � � � � � � � � � � �

Aggregate 135
Anisotropic 361
AreaLight 491
BBox 38
BRDFToBTDF 336
BestCandidateSampler 275
BidirIntegrator 591
BidirVertex 593
BilerpTexture 411
Blinn 359
BlockedArray 672
BluePaint 389
BoundEdge 162
BoxFilter 282
BrushedMetal 389
BumpyTexture 449
BxDF 334
BxDFType 334
Camera 202
Checkerboard2D 433
Checkerboard3D 438
Clay 389
ClosePhoton 623
CompareNode 690
ConstantTexture 395
ContrastOp 313

� ���

774 Index of Classes [App. E

CreateShape 741
Cylinder 78
CylindricalMapping2D 408
DensityRegion 468
DifferentialGeometry 58
DirectLighting 563
Disk 82
DistantLight 489
EmissionIntegrator 631
EnvironmentCamera 217
ExponentialDensity 472
Felt 389
Film 294
Filter 281
Fresnel 341
FresnelBlend 365
FresnelConductor 342
FresnelDielectric 342
FresnelNoOp 344
GaussianFilter 285
GeometricPrimitive 132
Glass 384
GoniometricLight 488
GraphicsOptions 710
GraphicsState 713
GridAccel 139
HighContrastOp 315
HomogeneousVolume 467
IdentityMapping2D 406
IdentityMapping3D 410
ImageFilm 295
ImageInfo 301
ImageTexture 412
InfiniteAreaLight 493
InstancePrimitive 134
Integrator 562
Intersection 131
IrradProcess 606
IrradianceCache 598
IrradianceSample 605
KdAccelNode 155
KdNode 687
KdToDo 168
KdTree 688
KdTreeAccel 154
LDSampler 258
Lafortune 363
Lambertian 351

App. E] Index of Classes 775

Light 478
LoopSubdiv 100
MIPMap 417
MailboxPrim 141
MarbleTexture 449
Material 375
Matrix4x4 675
Matte 381
MaxWhiteOp 312
MemoryArena 670
Microfacet 357
MicrofacetDistribution 357
Mirror 385
MitchellFilter 286
MixTexture 396
NoisePerm 443
NonLinearOp 322
Normal 34
ObjectArena 668
OctNode 681
Octree 681
OrthoCamera 207
ParamSet 700
ParamSetItem 701
PathIntegrator 586
PerspectiveCamera 210
Photon 617
PhotonIntegrator 611
PhotonProcess 623
Pixel 297
PlanarMapping2D 409
Plastic 382
Point 33
PointLight 480
PolkaDots 444
Primer 389
Primitive 130
ProgressReporter 660
ProjectionLight 484
ProjectiveCamera 205
Ray 36
RayDifferential 37
Reference 664
ReferenceCounted 663
ResampleWeight 420
SDEdge 104
SDFace 102
SDVertex 101

776 Index of Classes [App. E

Sample 239
SampleGrid 268
Sampler 237
ScaleTexture 396
Scene 8
SearchPath 743
Shape 63
ShapeDSO 741
ShapeSet 492
ShinyMetal 386
SincFilter 289
SingleScattering 636
Skin 389
Spectrum 181
SpecularReflection 345
SpecularTransmission 348
Sphere 68
SphericalMapping2D 407
SpotLight 482
StatsCounter 661
StratifiedSampler 244
Substrate 387
SurfaceIntegrator 563
Texture 394
TextureMapping2D 405
TextureMapping3D 410
ToneMap 310
Transform 43
TransformSet 708
Translucent 383
Triangle 90
TriangleFilter 284
TriangleMesh 87
UVTexture 432
Vector 27
VisibilityTester 479
VolumeGrid 470
VolumeIntegrator 630
VolumeList 473
VolumeRegion 465
Voxel 144
WhittedIntegrator 16
Windy 451

� ��� � � � � � � � � � � � � � �

AbsDot() 31
AbsSinTheta() 332
AllocAligned() 667
Assert() 659
BC GRID SIZE 268
BSDF 370
BSDF ALL 334
BSDF ALLOC 374
BSDF ALL REFLECTION 334
BSDF ALL TRANSMISSION 334
BSDF ALL TYPES 334
BSDF DIFFUSE 334
BSDF GLOSSY 334
BSDF REFLECTION 334
BSDF SPECULAR 334
BSDF TRANSMISSION 334
BalanceHeuristic() 525
BestCandidate2D() 268
COLOR SAMPLES 180
Ceil2Int() 679
Clamp() 677
ConcentricSampleDisk() 515
CoordinateSystem() 32
CosPhi() 333
CosTheta() 332
CosineHemispherePdf() 517

� � �

778 Index of Non-Classes [App. F

CosineSampleHemisphere() 517
CreateShape() 738
Cross() 31
DSO 739
Degrees() 677
Distance() 34
DistanceSquared() 34
Dot() 30
EstimateDirect() 570
Exp() 183
ExponentialAverage() 569
FBm() 446
FILTER TABLE SIZE 298
Float2Int() 679
Floor2Int() 679
FoldedRadicalInverse() 256
FrCond() 340
FrDiel() 339
FreeAligned() 667
FresnelApproxEta() 341
FresnelApproxK() 341
GRID 268
Gaussian() 285
GetSymbol() 740
Grad() 443
INFINITY 678
INV 255 678
INV PI 678
INV TWOPI 678
IsPowerOf2() 678
L1 CACHE LINE SIZE 667
LRT UNIMP 708
LRT VERSION 694
LatinHypercube() 251
Lerp() 677
LoadDSO() 742
Log2() 677
Log2Int() 678
LookAt() 51
M PI 678
Mod() 677
NEXT 103
NOISE PERM SIZE 443
Noise() 441
NoiseWeight() 443
Octree:add() 682
Orthographic() 208
PARAM TYPE COLOR 701

App. F] Index of Non-Classes 779

PARAM TYPE FLOAT 701
PARAM TYPE INT 701
PARAM TYPE NORMAL 701
PARAM TYPE POINT 701
PARAM TYPE STRING 701
PARAM TYPE UNIFORM 702
PARAM TYPE VARYING 702
PARAM TYPE VECTOR 701
PARAM TYPE VERTEX 702
PREV 103
ParseFile() 8
Perspective() 210
PhaseHG() 464
PhaseIsotropic() 463
PhaseSchlick() 465
PowerHeuristic() 525
Quadratic() 72
RAY EPSILON 37
Radians() 677
RadicalInverse() 254
RandomFloat() 679
RandomUInt() 679
Redistribute2D() 273
RejectionSampleDisk() 508
Rotate() 50
RotateX() 48
RotateY() 48
RotateZ() 48
Round2Int() 679
RoundUpPow2() 678
SAMPLE TABLE SIZE 267
SQRT SAMPLE TABLE SIZE 267
STATE OPTIONS BLOCK 707
STATE UNINITIALIZED 707
STATE WORLD BLOCK 707
SURF TEX F 743
SURF TEX S 743
Sample02Net() 262
Scale() 47
Shuffle() 248
SinPhi() 333
SinTheta() 332
SinTheta2() 332
SmoothStep() 448
Sobol2() 263
SolveLinearSystem2x2() 675
Sphere:Sample() 553
SphericalDirection() 192

780 Index of Non-Classes [App. F

SphericalDirection(xyz) 193
SphericalPhi() 193
SphericalTheta() 193
StatsCleanup() 662
StatsPrint() 662
StratifiedSample1D() 247
StratifiedSample2D() 247
Translate() 46
UniformConePdf() 545
UniformHemispherePdf() 512
UniformSampleAllLights() 566
UniformSampleCone() 545
UniformSampleDisk() 514
UniformSampleHemisphere() 512
UniformSampleOneLight() 566
UniformSampleSphere() 513
UniformSampleTriangle() 519
UniformSpherePdf() 513
Union() 40
VERIFY INITIALIZED 707
VERIFY OPTIONS 708
VERIFY WORLD 708
VanDerCorput() 263
WeightedSampleOneLight() 568
Wrapped1DDist() 270
addSampleToGrid() 269
alloca() 662
api.h 698
areaLightParams 719
camera.h 201
color.h 177
curGraphicsOptions 711
curGraphicsState 714
curTransform 708
currentApiState 707
currentSample 268
dynload.h 737
film.h 294
film/image.cpp 295
light.h 478
lrtAccelerator() 712
lrtAreaLightSource() 719
lrtAttributeBegin() 714
lrtAttributeEnd() 714
lrtBumpMap() 715
lrtCamera() 712
lrtCleanup() 706
lrtConcatTransform() 710

App. F] Index of Non-Classes 781

lrtCoordSysTransform() 710
lrtCoordinateSystem() 710
lrtFilm() 712
lrtIdentity() 710
lrtInit() 706
lrtLightSource() 719
lrtLookAt() 710
lrtMaterial() 715
lrtObjectBegin() 717
lrtObjectEnd() 718
lrtObjectInstance() 718
lrtPixelFilter() 711
lrtReverseOrientation() 715
lrtRotate() 710
lrtSampler() 712
lrtScale() 710
lrtSearchPath() 712
lrtSetEndTransform() 709
lrtShape() 716
lrtSurfaceIntegrator() 712
lrtToneMap() 712
lrtTransform() 710
lrtTranslate() 710
lrtVolume() 719
lrtVolumeIntegrator() 712
lrtWorldBegin() 713
lrtWorldEnd() 714
main() 8
material.h 374
mc.h 498
namedCoordinateSystems 710
paramset.h 699
prims0 166
prims1 166
push back() 658
pushedGraphicsStates 714
pushedTransforms 714
reserve() 658
sampleDist2 270
sampling.h 236
scene.cpp 8
scene.h 8
shapes/trianglemesh.cpp 87
size() 658
tonemap.h 310
tonemaps/contrast.cpp 312
tonemaps/highcontrast.cpp 314
tonemaps/maxwhite.cpp 312

782 Index of Non-Classes [App. F

tonemaps/nonlinear.cpp 321
transport.h 561
vector 658

��� � � � � � � � � � �

Anisotropic::D() 362
Anisotropic::Pdf() 537
Anisotropic::Sample f() 536
Anisotropic::ex 361
Anisotropic::ey 361
Anisotropic::sampleFirstQuadrant() 537
AreaLight::Area 491
AreaLight::B() 492
AreaLight::L() 492
AreaLight::Lemit 491
AreaLight::Power() 492
AreaLight::Sample L() 556
AreaLight::dE() 556
AreaLight::shape 491
BBox::BoundingSphere() 41
BBox::Expand() 40
BBox::Inside() 40
BBox::IntersectP() 137
BBox::MaximumExtent() 41
BBox::Overlaps() 40
BBox::Volume() 41
BBox::pMax 39
BBox::pMin 39
BRDFToBTDF::Pdf() 533
BRDFToBTDF::f() 337
BRDFToBTDF::otherHemisphere() 337

�����

784 Index of Members 1 [App. G

BRDFToBTDF::rho() 337
BSDF::Add() 371
BSDF::Alloc() 374
BSDF::FreeAll() 374
BSDF::LocalToWorld() 372
BSDF::MAX BxFS 371
BSDF::MatchesFlags() 371
BSDF::NumComponents() 371
BSDF::Sample f() 540
BSDF::WorldToLocal() 371
BSDF::bxdfs 371
BSDF::dgShading 370
BSDF::eta 370
BSDF::f() 373
BSDF::nBxDFs 371
BSDF::ng 371
BSDF::nn 371
BSDF::rho() 373
BSDF::sn 371
BSDF::tn 371
BSDF::zone 374
BestCandidateSampler::GetNextSample() 278
BestCandidateSampler::imageSamplesDone 276
BestCandidateSampler::sampleOffsets 278
BestCandidateSampler::sampleTable 276
BestCandidateSampler::scrambles 276
BestCandidateSampler::tableOffset 276
BestCandidateSampler::xTablePos 276
BestCandidateSampler::xTableWidth 276
BestCandidateSampler::yTablePos 276
BestCandidateSampler::yTableWidth 276
BidirIntegrator::G() 596
BidirIntegrator::L() 592
BidirIntegrator::MAXVERTS 592
BidirIntegrator::RequestSamples() 592
BidirIntegrator::directBSDFCompOffset 592
BidirIntegrator::directBSDFOffset 592
BidirIntegrator::directLightNumOffset 592
BidirIntegrator::directLightOffset 592
BidirIntegrator::evalPath() 595
BidirIntegrator::eyeBSDFCompOffset 592
BidirIntegrator::eyeBSDFOffset 592
BidirIntegrator::generatePath() 594
BidirIntegrator::lightBSDFCompOffset 592
BidirIntegrator::lightBSDFOffset 592
BidirIntegrator::lightDirOffset 592
BidirIntegrator::lightNumOffset 592
BidirIntegrator::lightPosOffset 592

App. G] Index of Members 1 785

BidirIntegrator::visible() 596
BidirIntegrator::weightPath() 595
BidirVertex::bsdf 593
BidirVertex::bsdfWeight 593
BidirVertex::dAWeight 593
BidirVertex::flags 593
BidirVertex::ng 593
BidirVertex::ns 593
BidirVertex::p 593
BidirVertex::rrWeight 593
BidirVertex::wi 593
BidirVertex::wo 593
BilerpTexture::Evaluate() 412
BilerpTexture::mapping 411
BilerpTexture::v00 411
BilerpTexture::v01 411
BilerpTexture::v10 411
BilerpTexture::v11 411
Blinn::D() 360
Blinn::Pdf() 536
Blinn::Sample f() 535
Blinn::exponent 359
BlockedArray::Block() 674
BlockedArray::BlockSize() 673
BlockedArray::GetLinearArray() 674
BlockedArray::Offset() 674
BlockedArray::RoundUp() 673
BlockedArray::uSize() 673
BlockedArray::vSize() 673
BoxFilter::Evaluate() 282
BumpyTexture::mapping 449
BumpyTexture::octaves 449
BumpyTexture::omega 449
BxDF::Pdf() 532
BxDF::Sample f() 532
BxDF::f() 335
BxDF::rho() 539
BxDF::type 334
Camera::CameraToWorld 203
Camera::ClipHither 203
Camera::ClipYon 203
Camera::GenerateRay() 202
Camera::ShutterClose 203
Camera::ShutterOpen 203
Camera::WorldToCamera 203
Camera::film 203
Checkerboard2D::CLOSEDFORM 434
Checkerboard2D::Evaluate() 434

786 Index of Members 1 [App. G

Checkerboard2D::NONE 434
Checkerboard2D::SUPERSAMPLE 434
Checkerboard2D::aaMethod 434
Checkerboard2D::mapping 433
Checkerboard2D::tex1 433
Checkerboard2D::tex2 433
Checkerboard3D::Evaluate() 440
Checkerboard3D::mapping 438
Checkerboard3D::tex1 438
Checkerboard3D::tex2 438
Clay::GetBSDF() 389
ClosePhoton::distanceSquared 623
ClosePhoton::photon 623
ConstantTexture::Evaluate() 395
ContrastOp::Map() 314
Cylinder::Area() 81
Cylinder::Intersect() 80
Cylinder::ObjectBound() 79
Cylinder::Sample() 552
Cylinder::phiMax 79
Cylinder::radius 79
Cylinder::zmax 79
Cylinder::zmin 79
CylindricalMapping2D::Map() 408
CylindricalMapping2D::WorldToTexture 408
CylindricalMapping2D::cylinder() 408
DensityRegion::Density() 469
DensityRegion::Lve() 469
DensityRegion::WorldToVolume 469
DensityRegion::g 469
DensityRegion::le 469
DensityRegion::p() 469
DensityRegion::sig a 469
DensityRegion::sigma a() 469
DensityRegion::sigma s() 469
DensityRegion::sigma t() 469
DifferentialGeometry::ComputeDifferentials() 400
DifferentialGeometry::Shift() 378
DifferentialGeometry::UpdateBasis() 378
DifferentialGeometry::dndu 58
DifferentialGeometry::dndv 58
DifferentialGeometry::dndx 400
DifferentialGeometry::dpdu 58
DifferentialGeometry::dpdv 58
DifferentialGeometry::dpdx 400
DifferentialGeometry::dpdy 400
DifferentialGeometry::dudx 400
DifferentialGeometry::dudy 400

App. G] Index of Members 1 787

DifferentialGeometry::dvdx 400
DifferentialGeometry::dvdy 400
DifferentialGeometry::nn 58
DifferentialGeometry::p 58
DifferentialGeometry::shape 58
DifferentialGeometry::u 58
DifferentialGeometry::v 58
DirectLighting::RequestSamples() 564
DirectLighting::SAMPLE ALL UNIFORM 563
DirectLighting::SAMPLE ONE UNIFORM 563
DirectLighting::SAMPLE ONE WEIGHTED 563
DirectLighting::avgY 567
DirectLighting::avgYsample 567
DirectLighting::bsdfComponentOffset 564
DirectLighting::bsdfSampleOffset 564
DirectLighting::cdf 567
DirectLighting::lightNumOffset 564
DirectLighting::lightSampleOffset 564
DirectLighting::overallAvgY 567
DirectLighting::strategy 563
Disk::Area() 85
Disk::Intersect() 83
Disk::ObjectBound() 83
Disk::Sample() 552
Disk::height 83
Disk::phiMax 83
Disk::radius 83
DistantLight::L 490
DistantLight::Power() 490
DistantLight::Sample L() 546
DistantLight::dE() 490
DistantLight::lightDir 490
EmissionIntegrator::Transmittance() 632
EnvironmentCamera::GenerateRay() 218
ExponentialDensity::Density() 472
ExponentialDensity::a 472
ExponentialDensity::b 472
ExponentialDensity::extent 472
ExponentialDensity::upDir 472
Film::AddSample() 294
Film::GetSampleExtent() 295
Film::WriteImage() 294
Film::xResolution 294
Film::yResolution 294
Filter::Evaluate() 281
Filter::invXWidth 281
Filter::invYWidth 281
Filter::xWidth 281

788 Index of Members 1 [App. G

Filter::yWidth 281
Fresnel::Evaluate() 341
FresnelBlend::Pdf() 538
FresnelBlend::Rd 365
FresnelBlend::Rs 365
FresnelBlend::Sample f() 538
FresnelBlend::SchlickFresnel() 366
FresnelBlend::distribution 365
FresnelBlend::f() 366
FresnelConductor::Evaluate() 342
FresnelConductor::eta 342
FresnelConductor::k 342
FresnelDielectric::Evaluate() 342
FresnelDielectric::eta o 342
FresnelDielectric::eta t 342
FresnelNoOp::Evaluate() 344
GaussianFilter::Evaluate() 285
GaussianFilter::alpha 285
GaussianFilter::expX 285
GaussianFilter::expY 285
GeometricPrimitive::CanIntersect() 133
GeometricPrimitive::GetAreaLight() 375
GeometricPrimitive::GetBSDF() 375
GeometricPrimitive::Intersect() 133
GeometricPrimitive::IntersectP() 133
GeometricPrimitive::Refine() 133
GeometricPrimitive::WorldBound() 133
GeometricPrimitive::areaLight 132
GeometricPrimitive::material 132
GeometricPrimitive::shape 132
Glass::GetBSDF() 385
Glass::Kr 385
Glass::Kt 385
Glass::index 385
GoniometricLight::Intensity 488
GoniometricLight::Power() 489
GoniometricLight::lightPos 488
GoniometricLight::mipmap 488
GraphicsOptions::FilterName 711
GraphicsOptions::FilterParams 711
GraphicsOptions::MakeScene() 720
GraphicsState::AddShape() 716
GridAccel::CanIntersect() 146
GridAccel::Intersect() 146
GridAccel::IntersectP() 152
GridAccel::InvWidth 142
GridAccel::NVoxels 141
GridAccel::Offset() 144

App. G] Index of Members 1 789

GridAccel::PosToVoxel() 143
GridAccel::VoxelToPos() 148
GridAccel::Width 142
GridAccel::WorldBound() 146
GridAccel::bounds 141
GridAccel::curMailboxId 146
GridAccel::gridForRefined 140
GridAccel::mailboxes 141
GridAccel::nMailboxes 141
GridAccel::voxels 142
HighContrastOp::C() 317
HighContrastOp::Map() 318
HighContrastOp::T() 318
HomogeneousVolume::IntersectP() 468
HomogeneousVolume::Lve() 468
HomogeneousVolume::Tau() 468
HomogeneousVolume::WorldBound() 467
HomogeneousVolume::WorldToVolume 467
HomogeneousVolume::extent 467
HomogeneousVolume::g 467
HomogeneousVolume::le 467
HomogeneousVolume::p() 468
HomogeneousVolume::sig a 467
HomogeneousVolume::sigma a() 468
HomogeneousVolume::sigma s() 468
HomogeneousVolume::sigma t() 468
IdentityMapping2D::Map() 406
IdentityMapping2D::du 406
IdentityMapping2D::dv 406
IdentityMapping2D::su 406
IdentityMapping2D::sv 406
IdentityMapping3D::Map() 410
IdentityMapping3D::WorldToTexture 410
ImageFilm::AddSample() 298
ImageFilm::GetSampleExtent() 300
ImageFilm::WriteImage() 301
ImageFilm::cropWindow 296
ImageFilm::filter 296
ImageFilm::filterTable 298
ImageFilm::imageInfo 296
ImageFilm::pixels 297
ImageFilm::sampleCount 296
ImageFilm::writeFrequency 296
ImageFilm::xPixelCount 297
ImageFilm::xPixelStart 297
ImageFilm::yPixelCount 297
ImageFilm::yPixelStart 297
ImageInfo::bWeight 322

790 Index of Members 1 [App. G

ImageInfo::bloomFraction 307
ImageInfo::bloomRadius 307
ImageInfo::clampToGamut 323
ImageInfo::ditherAmount 325
ImageInfo::filename 325
ImageInfo::gWeight 322
ImageInfo::gain 323
ImageInfo::integerFormat 325
ImageInfo::invGamma 324
ImageInfo::maxDisplayValue 325
ImageInfo::maxDisplayY 311
ImageInfo::premultiplyAlpha 302
ImageInfo::rWeight 322
ImageInfo::toneMap 311
ImageInfo::writeCoefficientImage 301
ImageTexture::Evaluate() 415
ImageTexture::GetTexture() 414
ImageTexture::convert() 415
ImageTexture::mapping 413
ImageTexture::mipmap 413
InfiniteAreaLight::Lbase 494
InfiniteAreaLight::Le() 495
InfiniteAreaLight::Power() 495
InfiniteAreaLight::Sample L() 548
InfiniteAreaLight::radianceMap 494
InstancePrimitive::GetAreaLight() 135
InstancePrimitive::GetBSDF() 135
InstancePrimitive::InstanceToWorld 134
InstancePrimitive::Intersect() 134
InstancePrimitive::IntersectP() 134
InstancePrimitive::WorldBound() 135
InstancePrimitive::WorldToInstance 134
InstancePrimitive::instance 134
Integrator::Preprocess() 563
Integrator::RequestSamples() 563
Intersection::GetBSDF() 375
Intersection::Le() 132
Intersection::WorldToObject 131
Intersection::dg 131
Intersection::primitive 131
IrradProcess::E 606
IrradProcess::GetIrradiance() 608
IrradProcess::Successful() 607
IrradProcess::maxError 606
IrradProcess::n 606
IrradProcess::nFound 606
IrradProcess::samplesChecked 606
IrradProcess::sumWt 606

App. G] Index of Members 1 791

IrradianceCache::IndirectReflectedL() 600
IrradianceCache::InterpolateIrradiance() 605
IrradianceCache::Preprocess() 605
IrradianceCache::RequestSamples() 599
IrradianceCache::bsdfComponentOffset 599
IrradianceCache::bsdfDirectionoffset 599
IrradianceCache::lightPositionOffset 599
IrradianceCache::maxError 598
IrradianceCache::maxSpecularDepth 598
IrradianceCache::nFilter 598
IrradianceCache::nSamples 598
IrradianceCache::octree 605
IrradianceCache::specularDepth 598
IrradianceSample::E 605
IrradianceSample::maxDist 605
IrradianceSample::n 605
IrradianceSample::p 605
KdAccelNode::IsLeaf() 157
KdAccelNode::SplitAxis() 157
KdAccelNode::SplitPos() 157
KdAccelNode::aboveChild 155
KdAccelNode::flags 155
KdAccelNode::initInterior() 157
KdAccelNode::initLeaf() 156
KdAccelNode::nPrimitives() 157
KdAccelNode::nPrims 155
KdAccelNode::onePrimitive 155
KdAccelNode::primitives 155
KdAccelNode::split 155
KdNode::hasLeftChild 687
KdNode::init() 687
KdNode::initLeaf() 687
KdNode::rightChild 687
KdNode::splitAxis 687
KdNode::splitPos 687
KdToDo::node 168
KdToDo::tmax 168
KdToDo::tmin 168
KdTree::Lookup() 691
KdTree::nNodes 688
KdTree::nextFreeNode 688
KdTree::nodeData 688
KdTree::nodes 688
KdTree::recursiveBuild() 689
KdTree::recursiveLookup() 692
KdTreeAccel::Intersect() 166
KdTreeAccel::IntersectP() 171
KdTreeAccel::bounds 158

792 Index of Members 1 [App. G

KdTreeAccel::buildTree() 159
KdTreeAccel::curMailboxId 154
KdTreeAccel::emptyBonus 154
KdTreeAccel::isectCost 154
KdTreeAccel::mailboxPrims 154
KdTreeAccel::maxPrims 154
KdTreeAccel::nAllocedNodes 158
KdTreeAccel::nMailboxes 154
KdTreeAccel::nextFreeNode 158
KdTreeAccel::nodes 158
KdTreeAccel::traversalCost 154
KdTreeAccel::zone 160
LDSampler::GetNextSample() 260
LDSampler::curSample 260
LDSampler::imageSamplesDone 264
LDSampler::invNSamples 260
LDSampler::nSamples 260
LDSampler::scale 260
LDSampler::scrambles 264
LDSampler::useFolded 260
Lafortune::R 364
Lafortune::exponent 364
Lafortune::f() 364
Lafortune::nLobes 364
Lafortune::x 364
Lafortune::y 364
Lafortune::z 364
Lambertian::R 351
Lambertian::RoverPI 351
Lambertian::f() 351
Lambertian::rho() 352
Light::Le() 495
Light::LightToWorld 478
Light::Pdf() 543
Light::Power() 479
Light::Sample L() 542
Light::WorldToLight 478
Light::dE() 479
LoopSubdiv::CanIntersect() 109
LoopSubdiv::ObjectBound() 109
LoopSubdiv::Refine() 110
LoopSubdiv::WorldBound() 109
LoopSubdiv::beta() 121
LoopSubdiv::faces 101
LoopSubdiv::gamma() 121
LoopSubdiv::nLevels 101
LoopSubdiv::vertices 101
LoopSubdiv::weightBoundary() 115

App. G] Index of Members 1 793

LoopSubdiv::weightOneRing() 113
MIPMap::Lanczos() 420
MIPMap::Lookup() 427
MIPMap::Lookup(tri) 424
MIPMap::WEIGHT LUT SIZE 431
MIPMap::nLevels 422
MIPMap::pyramid 422
MIPMap::resampleWeights() 420
MIPMap::texel() 423
MIPMap::triangle() 426
MIPMap::weightLut 431
MailboxPrim::lastMailboxId 141
MailboxPrim::primitive 141
MarbleTexture::Evaluate() 450
MarbleTexture::mapping 450
MarbleTexture::octaves 450
MarbleTexture::omega 450
Material::Bump() 377
Material::GetBSDF() 375
Material::displace 376
Matrix4x4::Inverse() 676
Matrix4x4::Mul() 676
Matrix4x4::Transpose() 676
Matrix4x4::m 675
Matte::GetBSDF() 382
Matte::Kd 381
Matte::sigma 381
MaxWhiteOp::Map() 312
MemoryArena::Alloc() 670
MemoryArena::FreeAll() 671
Microfacet::G() 358
Microfacet::Pdf() 533
Microfacet::R 358
Microfacet::Sample f() 533
Microfacet::distribution 358
Microfacet::f() 358
Microfacet::fresnel 358
MicrofacetDistribution::D() 357
MicrofacetDistribution::Pdf() 533
MicrofacetDistribution::Sample f() 533
Mirror::GetBSDF() 386
Mirror::Kr 386
MitchellFilter::B 286
MitchellFilter::C 286
MitchellFilter::Evaluate() 287
MitchellFilter::Mitchell1D() 287
MixTexture::Evaluate() 397
MixTexture::amount 396

794 Index of Members 1 [App. G

MixTexture::tex1 396
MixTexture::tex2 396
NonLinearOp::Map() 322
ObjectArena::Alloc() 669
ObjectArena::FreeAll() 669
OctNode::children 681
OctNode::data 681
Octree::Add() 682
Octree::Lookup() 685
Octree::bound 681
Octree::lookup() 686
Octree::maxDepth 681
Octree::root 681
OrenNayar::A 354
OrenNayar::B 354
OrenNayar::R 354
OrenNayar::f() 354
OrthoCamera::GenerateRay() 209
ParamSet::AddFloat() 702
ParamSet::AddInt() 703
ParamSet::AddNormal() 703
ParamSet::AddPoint() 703
ParamSet::AddSpectrum() 703
ParamSet::AddString() 703
ParamSet::AddVector() 703
ParamSet::FindFloat() 704
ParamSet::FindInt() 704
ParamSet::FindNormal() 704
ParamSet::FindOneFloat() 704
ParamSet::FindOneInt() 704
ParamSet::FindOneNormal() 704
ParamSet::FindOnePoint() 704
ParamSet::FindOneSpectrum() 704
ParamSet::FindOneString() 704
ParamSet::FindOneVector() 704
ParamSet::FindPoint() 704
ParamSet::FindSpectrum() 704
ParamSet::FindString() 704
ParamSet::FindVector() 704
ParamSet::ReportUnused() 705
ParamSet::ToString() 706
ParamSet::floats 700
ParamSet::ints 700
ParamSet::normals 700
ParamSet::points 700
ParamSet::spectra 700
ParamSet::strings 700
ParamSet::vectors 700

App. G] Index of Members 1 795

ParamSetItem::arraySize 701
ParamSetItem::data 701
ParamSetItem::lookedUp 701
ParamSetItem::nItems 701
ParamSetItem::name 701
ParamSetItem::type 701
PathIntegrator::L() 587
PathIntegrator::RequestSamples() 586
PathIntegrator::SAMPLE DEPTH 586
PathIntegrator::bsdfComponentOffset 586
PathIntegrator::bsdfDirectionoffset 586
PathIntegrator::lightNumOffset 586
PathIntegrator::lightPositionOffset 586
PathIntegrator::outgoingComponentOffset 586
PathIntegrator::outgoingDirectionOffset 586
PerspectiveCamera::GenerateRay() 212
Photon::alpha 617
Photon::p 617
Photon::wi 617
PhotonIntegrator::L() 619
PhotonIntegrator::LPhoton() 622
PhotonIntegrator::Preprocess() 613
PhotonIntegrator::RequestSamples() 612
PhotonIntegrator::bsdfComponentOffset 613
PhotonIntegrator::bsdfDirectionoffset 613
PhotonIntegrator::causticMap 617
PhotonIntegrator::directMap 617
PhotonIntegrator::directWithPhotons 612
PhotonIntegrator::finalGather 612
PhotonIntegrator::gatherComponentOffset 613
PhotonIntegrator::gatherSampleOffset 613
PhotonIntegrator::gatherSamples 612
PhotonIntegrator::indirectMap 617
PhotonIntegrator::lightPositionOffset 613
PhotonIntegrator::maxDistSquared 612
PhotonIntegrator::maxSpecularDepth 612
PhotonIntegrator::nCausticPaths 617
PhotonIntegrator::nCausticPhotons 612
PhotonIntegrator::nDirectPaths 617
PhotonIntegrator::nDirectPhotons 612
PhotonIntegrator::nFilter 612
PhotonIntegrator::nIndirectPaths 617
PhotonIntegrator::nIndirectPhotons 612
PhotonIntegrator::nLookup 612
PhotonIntegrator::specularDepth 612
PhotonIntegrator::unsuccessful() 614
PhotonProcess::foundPhotons 623
PhotonProcess::nLookup 623

796 Index of Members 1 [App. G

PhotonProcess::operator() 624
PhotonProcess::p 623
PhotonProcess::photons 623
Pixel::L 297
Pixel::alpha 297
Pixel::depth 297
Pixel::weightSum 297
PlanarMapping2D::ds 409
PlanarMapping2D::dt 409
PlanarMapping2D::map 409
PlanarMapping2D::vs 409
PlanarMapping2D::vt 409
Plastic::GetBSDF() 383
Plastic::Kd 382
Plastic::Ks 382
Plastic::roughness 382
PointLight::Intensity 481
PointLight::Pdf() 544
PointLight::Power() 481
PointLight::Sample L() 544
PointLight::dE() 481
PointLight::lightPos 481
PolkaDots::Evaluate() 444
PolkaDots::insideDot 444
PolkaDots::mapping 444
PolkaDots::outsideDot 444
Primitive::CanIntersect() 131
Primitive::FullyRefine() 131
Primitive::GetAreaLight() 132
Primitive::GetBSDF() 132
Primitive::Intersect() 131
Primitive::IntersectP() 131
Primitive::Refine() 131
Primitive::WorldBound() 143
ProgressReporter::Done() 660
ProgressReporter::Update() 660
ProjectionLight::Intensity 485
ProjectionLight::Power() 487
ProjectionLight::cosTotalWidth 485
ProjectionLight::hither 485
ProjectionLight::lightPos 485
ProjectionLight::lightProjection 485
ProjectionLight::projectionMap 485
ProjectionLight::screenX0 485
ProjectionLight::screenX1 485
ProjectionLight::screenY0 485
ProjectionLight::screenY1 485
ProjectionLight::yon 485

App. G] Index of Members 1 797

ProjectiveCamera::CameraToScreen 206
ProjectiveCamera::FocalDistance 215
ProjectiveCamera::LensRadius 215
ProjectiveCamera::RasterToCamera 206
ProjectiveCamera::RasterToScreen 206
ProjectiveCamera::ScreenToRaster 206
ProjectiveCamera::WorldToScreen 206
Ray::d 35
Ray::maxt 36
Ray::mint 36
Ray::o 35
Ray::operator() 37
Ray::time 36
RayDifferential::hasDifferentials 38
RayDifferential::rx 38
RayDifferential::ry 38
ResampleWeight::firstTexel 420
ResampleWeight::weight 420
SDEdge::f 104
SDEdge::fptr 104
SDEdge::v 104
SDFace::children 102
SDFace::f 102
SDFace::nextFace() 108
SDFace::nextVert() 108
SDFace::otherVert() 117
SDFace::prevFace() 108
SDFace::prevVert() 109
SDFace::v 102
SDFace::vnum() 108
SDVertex::P 101
SDVertex::boundary 101
SDVertex::child 101
SDVertex::oneRing() 113
SDVertex::regular 101
SDVertex::startFace 101
SDVertex::valence() 106
Sample::Add1D() 240
Sample::Add2D() 240
Sample::imageX 239
Sample::imageY 239
Sample::lensX 239
Sample::lensY 239
Sample::n1D 241
Sample::n2D 241
Sample::oneD 241
Sample::time 239
Sample::twoD 241

798 Index of Members 1 [App. G

SampleGeneration::main() 268
Sampler::GetNextSample() 238
Sampler::TotalSamples() 238
Sampler::xPixelEnd 238
Sampler::xPixelSamples 238
Sampler::xPixelStart 238
Sampler::yPixelEnd 238
Sampler::yPixelSamples 238
Sampler::yPixelStart 238
ScaleTexture::evaluate 396
ScaleTexture::scale 396
ScaleTexture::value 396
Scene::Intersect() 14
Scene::IntersectP() 14
Scene::L() 15
Scene::Render() 11
Scene::Transmittance() 15
Scene::WorldBound() 14
Scene::aggregate 9
Scene::camera 9
Scene::lights 9
Scene::sampler 10
Scene::surfaceIntegrator 10
Scene::volumeIntegrator 10
Scene::volumeRegion 9
Shape::Area() 491
Shape::CanIntersect() 65
Shape::GetShadingGeometry() 67
Shape::Intersect() 66
Shape::IntersectP() 66
Shape::ObjectBound() 64
Shape::ObjectToWorld 64
Shape::Pdf() 551
Shape::Refine() 65
Shape::Sample() 550
Shape::WorldBound() 64
Shape::WorldToObject 64
Shape::reverseOrientation 64
Shape::transformSwapsHandedness 64
ShapeSet::area 492
ShapeSet::areaCDF 492
ShapeSet::shapes 492
ShinyMetal::GetBSDF() 387
ShinyMetal::Kr 386
ShinyMetal::Ks 386
ShinyMetal::roughness 386
SincFilter::Evaluate() 289
SincFilter::Sinc1D() 289

App. G] Index of Members 1 799

SingleScattering::L() 636
Spectrum::AddWeighted() 182
Spectrum::Black() 182
Spectrum::CIE 185
Spectrum::CIEend 185
Spectrum::CIEstart 185
Spectrum::Clamp() 183
Spectrum::IsNaN() 183
Spectrum::Pow() 183
Spectrum::Sqrt() 182
Spectrum::XWeight 185
Spectrum::XYZ() 184
Spectrum::YWeight 185
Spectrum::ZWeight 185
Spectrum::c 181
Spectrum::nCIE 185
Spectrum::y() 185
SpecularReflection::Pdf() 542
SpecularReflection::R 345
SpecularReflection::Sample f() 346
SpecularReflection::f() 346
SpecularReflection::fresnel 345
SpecularTransmission::Pdf() 542
SpecularTransmission::Sample f() 349
SpecularTransmission::T 349
SpecularTransmission::etao 349
SpecularTransmission::etat 349
SpecularTransmission::f() 349
SpecularTransmission::fresnel 349
Sphere::Area() 77
Sphere::Bound 70
Sphere::Intersect() 70
Sphere::IntersectP() 77
Sphere::Sample() 554
Sphere::phiMax 69
Sphere::radius 69
Sphere::thetaMax 69
Sphere::thetaMin 69
Sphere::zmax 69
Sphere::zmin 69
SphericalMapping2D::Map() 407
SphericalMapping2D::WorldToTexture 407
SphericalMapping2D::sphere() 407
SpotLight::Falloff() 483
SpotLight::Intensity 482
SpotLight::Power() 484
SpotLight::Sample L() 545
SpotLight::cosFalloffStart 482

800 Index of Members 1 [App. G

SpotLight::cosTotalWidth 482
SpotLight::dE() 483
SpotLight::lightPos 482
StatsPercentage::Add() 661
StatsRatio::Add() 661
StratifiedSampler::GetNextSample() 248
StratifiedSampler::imageSamples 244
StratifiedSampler::jitterSamples 244
StratifiedSampler::lensSamples 244
StratifiedSampler::samplePos 247
StratifiedSampler::timeSamples 244
StratifiedSampler::xPos 244
StratifiedSampler::yPos 244
Substrate::Kd 388
Substrate::Ks 388
Substrate::nu 388
Substrate::nv 388
Texture::Evaluate() 395
TextureMapping2D::Map() 405
TextureMapping3D::Map() 410
ToneMap::Map() 311
Transform::GetInverse() 55
Transform::SwapsHandedness() 57
Transform::operator() 53
Translucent::GetBSDF() 384
Triangle::Area() 96
Triangle::GetShadingGeometry() 97
Triangle::GetUVs() 96
Triangle::Intersect() 92
Triangle::ObjectBound() 90
Triangle::Sample() 553
Triangle::WorldBound() 90
Triangle::mesh 90
Triangle::v 90
TriangleFilter::Evaluate() 284
TriangleMesh::CanIntersect() 89
TriangleMesh::ObjectBound() 89
TriangleMesh::Refine() 89
TriangleMesh::WorldBound() 89
TriangleMesh::n 88
TriangleMesh::ntris 88
TriangleMesh::nverts 88
TriangleMesh::p 88
TriangleMesh::s 88
TriangleMesh::uvs 88
TriangleMesh::vertexIndex 88
UVTexture::Evaluate() 433
UVTexture::mapping 432

App. G] Index of Members 1 801

Vector::Hat() 30
Vector::Length() 30
Vector::LengthSquared() 30
VisibilityTester::SetRay() 480
VisibilityTester::SetSegment() 479
VisibilityTester::Transmittance() 480
VisibilityTester::Unoccluded() 480
VisibilityTester::r 479
VolumeGrid::D() 471
VolumeGrid::Density() 470
VolumeGrid::density 470
VolumeGrid::extent 470
VolumeGrid::nx 470
VolumeGrid::ny 470
VolumeGrid::nz 470
VolumeIntegrator::Transmittance() 630
VolumeList::IntersectP() 474
VolumeList::Lve() 473
VolumeList::bound 473
VolumeList::p() 473
VolumeList::regions 473
VolumeList::sigma a() 473
VolumeList::sigma s() 473
VolumeList::sigma t() 473
VolumeRegion::IntersectP() 466
VolumeRegion::Lve() 466
VolumeRegion::Tau() 466
VolumeRegion::WorldBound() 466
VolumeRegion::p() 466
VolumeRegion::sigma a() 466
VolumeRegion::sigma s() 466
VolumeRegion::sigma t() 466
Voxel::AddPrimitive() 145
Voxel::Intersect() 149
Voxel::allCanIntersect 144
Voxel::nPrimitives 144
Voxel::onePrimitive 144
Voxel::primitives 144
WhittedIntegrator::L() 16
WhittedIntegrator::maxDepth 17
WhittedIntegrator::rayDepth 17
Windy::Evaluate() 451
Windy::mapping 451

���	�

� � � � � � � � � � �

ExponentialDensity::a 472
OrenNayar::A 354
Checkerboard2D::aaMethod 434
KdAccelNode::aboveChild 155
Octree::Add() 682
StatsPercentage::Add() 661
BSDF::Add() 371
StatsRatio::Add() 661
Sample::Add1D() 240
Sample::Add2D() 240
ParamSet::AddFloat() 702
ParamSet::AddInt() 703
ParamSet::AddNormal() 703
ParamSet::AddPoint() 703
Voxel::AddPrimitive() 145
Film::AddSample() 294
ImageFilm::AddSample() 298
GraphicsState::AddShape() 716
ParamSet::AddSpectrum() 703
ParamSet::AddString() 703
ParamSet::AddVector() 703
Spectrum::AddWeighted() 182
Scene::aggregate 9
Voxel::allCanIntersect 144
MemoryArena::Alloc() 670
ObjectArena::Alloc() 669

�����

804 Index of Members 2 [App. H

BSDF::Alloc() 374
Photon::alpha 617
GaussianFilter::alpha 285
Pixel::alpha 297
MixTexture::amount 396
AreaLight::Area 491
ShapeSet::area 492
Shape::Area() 491
Sphere::Area() 77
Cylinder::Area() 81
Disk::Area() 85
Triangle::Area() 96
ShapeSet::areaCDF 492
GeometricPrimitive::areaLight 132
ParamSetItem::arraySize 701
DirectLighting::avgY 567
DirectLighting::avgYsample 567
ExponentialDensity::b 472
OrenNayar::B 354
MitchellFilter::B 286
AreaLight::B() 492
LoopSubdiv::beta() 121
Spectrum::Black() 182
BlockedArray::Block() 674
BlockedArray::BlockSize() 673
ImageInfo::bloomFraction 307
ImageInfo::bloomRadius 307
VolumeList::bound 473
Octree::bound 681
Sphere::Bound 70
SDVertex::boundary 101
BBox::BoundingSphere() 41
KdTreeAccel::bounds 158
GridAccel::bounds 141
BidirVertex::bsdf 593
PathIntegrator::bsdfComponentOffset 586
PhotonIntegrator::bsdfComponentOffset 613
DirectLighting::bsdfComponentOffset 564
IrradianceCache::bsdfComponentOffset 599
IrradianceCache::bsdfDirectionoffset 599
PhotonIntegrator::bsdfDirectionoffset 613
PathIntegrator::bsdfDirectionoffset 586
DirectLighting::bsdfSampleOffset 564
BidirVertex::bsdfWeight 593
KdTreeAccel::buildTree() 159
Material::Bump() 377
ImageInfo::bWeight 322
BSDF::bxdfs 371

App. H] Index of Members 2 805

Spectrum::c 181
MitchellFilter::C 286
HighContrastOp::C() 317
Scene::camera 9
ProjectiveCamera::CameraToScreen 206
Camera::CameraToWorld 203
LoopSubdiv::CanIntersect() 109
GridAccel::CanIntersect() 146
Shape::CanIntersect() 65
GeometricPrimitive::CanIntersect() 133
Primitive::CanIntersect() 131
TriangleMesh::CanIntersect() 89
PhotonIntegrator::causticMap 617
DirectLighting::cdf 567
SDVertex::child 101
OctNode::children 681
SDFace::children 102
Spectrum::CIE 185
Spectrum::CIEend 185
Spectrum::CIEstart 185
Spectrum::Clamp() 183
ImageInfo::clampToGamut 323
Camera::ClipHither 203
Camera::ClipYon 203
Checkerboard2D::CLOSEDFORM 434
DifferentialGeometry::ComputeDifferentials() 400
ImageTexture::convert() 415
SpotLight::cosFalloffStart 482
SpotLight::cosTotalWidth 482
ProjectionLight::cosTotalWidth 485
ImageFilm::cropWindow 296
KdTreeAccel::curMailboxId 154
GridAccel::curMailboxId 146
LDSampler::curSample 260
CylindricalMapping2D::cylinder() 408
Ray::d 35
MicrofacetDistribution::D() 357
Anisotropic::D() 362
VolumeGrid::D() 471
Blinn::D() 360
ParamSetItem::data 701
OctNode::data 681
BidirVertex::dAWeight 593
PointLight::dE() 481
Light::dE() 479
DistantLight::dE() 490
AreaLight::dE() 556
SpotLight::dE() 483

806 Index of Members 2 [App. H

VolumeGrid::density 470
DensityRegion::Density() 469
ExponentialDensity::Density() 472
VolumeGrid::Density() 470
Pixel::depth 297
Intersection::dg 131
BSDF::dgShading 370
BidirIntegrator::directBSDFCompOffset 592
BidirIntegrator::directBSDFOffset 592
BidirIntegrator::directLightNumOffset 592
BidirIntegrator::directLightOffset 592
PhotonIntegrator::directMap 617
PhotonIntegrator::directWithPhotons 612
Material::displace 376
ClosePhoton::distanceSquared 623
FresnelBlend::distribution 365
Microfacet::distribution 358
ImageInfo::ditherAmount 325
DifferentialGeometry::dndu 58
DifferentialGeometry::dndv 58
DifferentialGeometry::dndx 400
ProgressReporter::Done() 660
DifferentialGeometry::dpdu 58
DifferentialGeometry::dpdv 58
DifferentialGeometry::dpdx 400
DifferentialGeometry::dpdy 400
PlanarMapping2D::ds 409
PlanarMapping2D::dt 409
IdentityMapping2D::du 406
DifferentialGeometry::dudx 400
DifferentialGeometry::dudy 400
IdentityMapping2D::dv 406
DifferentialGeometry::dvdx 400
DifferentialGeometry::dvdy 400
IrradianceSample::E 605
IrradProcess::E 606
KdTreeAccel::emptyBonus 154
FresnelConductor::eta 342
BSDF::eta 370
SpecularTransmission::etao 349
SpecularTransmission::etat 349
FresnelDielectric::eta o 342
FresnelDielectric::eta t 342
BidirIntegrator::evalPath() 595
ScaleTexture::evaluate 396
Filter::Evaluate() 281
Checkerboard2D::Evaluate() 434
ImageTexture::Evaluate() 415

App. H] Index of Members 2 807

SincFilter::Evaluate() 289
FresnelConductor::Evaluate() 342
BoxFilter::Evaluate() 282
MarbleTexture::Evaluate() 450
BilerpTexture::Evaluate() 412
Fresnel::Evaluate() 341
MixTexture::Evaluate() 397
FresnelNoOp::Evaluate() 344
FresnelDielectric::Evaluate() 342
Windy::Evaluate() 451
MitchellFilter::Evaluate() 287
UVTexture::Evaluate() 433
ConstantTexture::Evaluate() 395
Texture::Evaluate() 395
Checkerboard3D::Evaluate() 440
PolkaDots::Evaluate() 444
TriangleFilter::Evaluate() 284
GaussianFilter::Evaluate() 285
Anisotropic::ex 361
BBox::Expand() 40
Lafortune::exponent 364
Blinn::exponent 359
GaussianFilter::expX 285
GaussianFilter::expY 285
VolumeGrid::extent 470
ExponentialDensity::extent 472
HomogeneousVolume::extent 467
Anisotropic::ey 361
BidirIntegrator::eyeBSDFCompOffset 592
BidirIntegrator::eyeBSDFOffset 592
SDEdge::f 104
SDFace::f 102
OrenNayar::f() 354
Lambertian::f() 351
Lafortune::f() 364
SpecularReflection::f() 346
BxDF::f() 335
Microfacet::f() 358
BSDF::f() 373
FresnelBlend::f() 366
BRDFToBTDF::f() 337
SpecularTransmission::f() 349
LoopSubdiv::faces 101
SpotLight::Falloff() 483
ImageInfo::filename 325
Camera::film 203
ImageFilm::filter 296
GraphicsOptions::FilterName 711

808 Index of Members 2 [App. H

GraphicsOptions::FilterParams 711
ImageFilm::filterTable 298
PhotonIntegrator::finalGather 612
ParamSet::FindFloat() 704
ParamSet::FindInt() 704
ParamSet::FindNormal() 704
ParamSet::FindOneFloat() 704
ParamSet::FindOneInt() 704
ParamSet::FindOneNormal() 704
ParamSet::FindOnePoint() 704
ParamSet::FindOneSpectrum() 704
ParamSet::FindOneString() 704
ParamSet::FindOneVector() 704
ParamSet::FindPoint() 704
ParamSet::FindSpectrum() 704
ParamSet::FindString() 704
ParamSet::FindVector() 704
ResampleWeight::firstTexel 420
BidirVertex::flags 593
KdAccelNode::flags 155
ParamSet::floats 700
ProjectiveCamera::FocalDistance 215
PhotonProcess::foundPhotons 623
SDEdge::fptr 104
ObjectArena::FreeAll() 669
MemoryArena::FreeAll() 671
BSDF::FreeAll() 374
Microfacet::fresnel 358
SpecularReflection::fresnel 345
SpecularTransmission::fresnel 349
Primitive::FullyRefine() 131
DensityRegion::g 469
HomogeneousVolume::g 467
Microfacet::G() 358
BidirIntegrator::G() 596
ImageInfo::gain 323
LoopSubdiv::gamma() 121
PhotonIntegrator::gatherComponentOffset 613
PhotonIntegrator::gatherSampleOffset 613
PhotonIntegrator::gatherSamples 612
BidirIntegrator::generatePath() 594
OrthoCamera::GenerateRay() 209
Camera::GenerateRay() 202
EnvironmentCamera::GenerateRay() 218
PerspectiveCamera::GenerateRay() 212
InstancePrimitive::GetAreaLight() 135
GeometricPrimitive::GetAreaLight() 375
Primitive::GetAreaLight() 132

App. H] Index of Members 2 809

Material::GetBSDF() 375
Matte::GetBSDF() 382
Translucent::GetBSDF() 384
Mirror::GetBSDF() 386
Clay::GetBSDF() 389
Glass::GetBSDF() 385
ShinyMetal::GetBSDF() 387
Primitive::GetBSDF() 132
Plastic::GetBSDF() 383
InstancePrimitive::GetBSDF() 135
GeometricPrimitive::GetBSDF() 375
Intersection::GetBSDF() 375
Transform::GetInverse() 55
IrradProcess::GetIrradiance() 608
BlockedArray::GetLinearArray() 674
BestCandidateSampler::GetNextSample() 278
Sampler::GetNextSample() 238
LDSampler::GetNextSample() 260
StratifiedSampler::GetNextSample() 248
ImageFilm::GetSampleExtent() 300
Film::GetSampleExtent() 295
Shape::GetShadingGeometry() 67
Triangle::GetShadingGeometry() 97
ImageTexture::GetTexture() 414
Triangle::GetUVs() 96
GridAccel::gridForRefined 140
ImageInfo::gWeight 322
RayDifferential::hasDifferentials 38
KdNode::hasLeftChild 687
Vector::Hat() 30
Disk::height 83
ProjectionLight::hither 485
ImageFilm::imageInfo 296
StratifiedSampler::imageSamples 244
LDSampler::imageSamplesDone 264
BestCandidateSampler::imageSamplesDone 276
Sample::imageX 239
Sample::imageY 239
Glass::index 385
PhotonIntegrator::indirectMap 617
IrradianceCache::IndirectReflectedL() 600
KdNode::init() 687
KdAccelNode::initInterior() 157
KdNode::initLeaf() 687
KdAccelNode::initLeaf() 156
BBox::Inside() 40
PolkaDots::insideDot 444
InstancePrimitive::instance 134

810 Index of Members 2 [App. H

InstancePrimitive::InstanceToWorld 134
ImageInfo::integerFormat 325
SpotLight::Intensity 482
ProjectionLight::Intensity 485
PointLight::Intensity 481
GoniometricLight::Intensity 488
IrradianceCache::InterpolateIrradiance() 605
Cylinder::Intersect() 80
KdTreeAccel::Intersect() 166
Scene::Intersect() 14
Shape::Intersect() 66
GridAccel::Intersect() 146
Primitive::Intersect() 131
Voxel::Intersect() 149
Sphere::Intersect() 70
Triangle::Intersect() 92
InstancePrimitive::Intersect() 134
GeometricPrimitive::Intersect() 133
Disk::Intersect() 83
Sphere::IntersectP() 77
GridAccel::IntersectP() 152
KdTreeAccel::IntersectP() 171
HomogeneousVolume::IntersectP() 468
Primitive::IntersectP() 131
VolumeList::IntersectP() 474
Scene::IntersectP() 14
Shape::IntersectP() 66
InstancePrimitive::IntersectP() 134
VolumeRegion::IntersectP() 466
BBox::IntersectP() 137
GeometricPrimitive::IntersectP() 133
ParamSet::ints 700
Matrix4x4::Inverse() 676
ImageInfo::invGamma 324
LDSampler::invNSamples 260
GridAccel::InvWidth 142
Filter::invXWidth 281
Filter::invYWidth 281
KdTreeAccel::isectCost 154
KdAccelNode::IsLeaf() 157
Spectrum::IsNaN() 183
StratifiedSampler::jitterSamples 244
FresnelConductor::k 342
Plastic::Kd 382
Matte::Kd 381
Substrate::Kd 388
Glass::Kr 385
ShinyMetal::Kr 386

App. H] Index of Members 2 811

Mirror::Kr 386
Substrate::Ks 388
ShinyMetal::Ks 386
Plastic::Ks 382
Glass::Kt 385
Pixel::L 297
DistantLight::L 490
AreaLight::L() 492
BidirIntegrator::L() 592
WhittedIntegrator::L() 16
Scene::L() 15
PathIntegrator::L() 587
PhotonIntegrator::L() 619
SingleScattering::L() 636
MIPMap::Lanczos() 420
MailboxPrim::lastMailboxId 141
InfiniteAreaLight::Lbase 494
HomogeneousVolume::le 467
DensityRegion::le 469
Intersection::Le() 132
InfiniteAreaLight::Le() 495
Light::Le() 495
AreaLight::Lemit 491
Vector::Length() 30
Vector::LengthSquared() 30
ProjectiveCamera::LensRadius 215
StratifiedSampler::lensSamples 244
Sample::lensX 239
Sample::lensY 239
BidirIntegrator::lightBSDFCompOffset 592
BidirIntegrator::lightBSDFOffset 592
DistantLight::lightDir 490
BidirIntegrator::lightDirOffset 592
BidirIntegrator::lightNumOffset 592
DirectLighting::lightNumOffset 564
PathIntegrator::lightNumOffset 586
GoniometricLight::lightPos 488
SpotLight::lightPos 482
PointLight::lightPos 481
ProjectionLight::lightPos 485
PathIntegrator::lightPositionOffset 586
PhotonIntegrator::lightPositionOffset 613
IrradianceCache::lightPositionOffset 599
BidirIntegrator::lightPosOffset 592
ProjectionLight::lightProjection 485
Scene::lights 9
DirectLighting::lightSampleOffset 564
Light::LightToWorld 478

812 Index of Members 2 [App. H

BSDF::LocalToWorld() 372
ParamSetItem::lookedUp 701
Octree::lookup() 686
KdTree::Lookup() 691
MIPMap::Lookup() 427
Octree::Lookup() 685
MIPMap::Lookup(tri) 424
PhotonIntegrator::LPhoton() 622
DensityRegion::Lve() 469
VolumeList::Lve() 473
HomogeneousVolume::Lve() 468
VolumeRegion::Lve() 466
Matrix4x4::m 675
GridAccel::mailboxes 141
KdTreeAccel::mailboxPrims 154
SampleGeneration::main() 268
GraphicsOptions::MakeScene() 720
PlanarMapping2D::map 409
IdentityMapping3D::Map() 410
HighContrastOp::Map() 318
CylindricalMapping2D::Map() 408
ContrastOp::Map() 314
SphericalMapping2D::Map() 407
ToneMap::Map() 311
IdentityMapping2D::Map() 406
TextureMapping3D::Map() 410
MaxWhiteOp::Map() 312
TextureMapping2D::Map() 405
NonLinearOp::Map() 322
ImageTexture::mapping 413
Windy::mapping 451
Checkerboard3D::mapping 438
MarbleTexture::mapping 450
BumpyTexture::mapping 449
UVTexture::mapping 432
PolkaDots::mapping 444
BilerpTexture::mapping 411
Checkerboard2D::mapping 433
BSDF::MatchesFlags() 371
GeometricPrimitive::material 132
Octree::maxDepth 681
WhittedIntegrator::maxDepth 17
ImageInfo::maxDisplayValue 325
ImageInfo::maxDisplayY 311
IrradianceSample::maxDist 605
PhotonIntegrator::maxDistSquared 612
IrradProcess::maxError 606
IrradianceCache::maxError 598

App. H] Index of Members 2 813

BBox::MaximumExtent() 41
KdTreeAccel::maxPrims 154
IrradianceCache::maxSpecularDepth 598
PhotonIntegrator::maxSpecularDepth 612
Ray::maxt 36
BidirIntegrator::MAXVERTS 592
BSDF::MAX BxFS 371
Triangle::mesh 90
Ray::mint 36
ImageTexture::mipmap 413
GoniometricLight::mipmap 488
MitchellFilter::Mitchell1D() 287
Matrix4x4::Mul() 676
IrradianceSample::n 605
IrradProcess::n 606
TriangleMesh::n 88
Sample::n1D 241
Sample::n2D 241
KdTreeAccel::nAllocedNodes 158
ParamSetItem::name 701
BSDF::nBxDFs 371
PhotonIntegrator::nCausticPaths 617
PhotonIntegrator::nCausticPhotons 612
Spectrum::nCIE 185
PhotonIntegrator::nDirectPaths 617
PhotonIntegrator::nDirectPhotons 612
SDFace::nextFace() 108
KdTree::nextFreeNode 688
KdTreeAccel::nextFreeNode 158
SDFace::nextVert() 108
IrradianceCache::nFilter 598
PhotonIntegrator::nFilter 612
IrradProcess::nFound 606
BSDF::ng 371
BidirVertex::ng 593
PhotonIntegrator::nIndirectPaths 617
PhotonIntegrator::nIndirectPhotons 612
ParamSetItem::nItems 701
LoopSubdiv::nLevels 101
MIPMap::nLevels 422
Lafortune::nLobes 364
PhotonProcess::nLookup 623
PhotonIntegrator::nLookup 612
GridAccel::nMailboxes 141
KdTreeAccel::nMailboxes 154
BSDF::nn 371
DifferentialGeometry::nn 58
KdTree::nNodes 688

814 Index of Members 2 [App. H

KdToDo::node 168
KdTree::nodeData 688
KdTree::nodes 688
KdTreeAccel::nodes 158
Checkerboard2D::NONE 434
ParamSet::normals 700
Voxel::nPrimitives 144
KdAccelNode::nPrimitives() 157
KdAccelNode::nPrims 155
BidirVertex::ns 593
LDSampler::nSamples 260
IrradianceCache::nSamples 598
TriangleMesh::ntris 88
Substrate::nu 388
BSDF::NumComponents() 371
Substrate::nv 388
TriangleMesh::nverts 88
GridAccel::NVoxels 141
VolumeGrid::nx 470
VolumeGrid::ny 470
VolumeGrid::nz 470
Ray::o 35
Cylinder::ObjectBound() 79
TriangleMesh::ObjectBound() 89
Shape::ObjectBound() 64
Disk::ObjectBound() 83
Triangle::ObjectBound() 90
LoopSubdiv::ObjectBound() 109
Shape::ObjectToWorld 64
MarbleTexture::octaves 450
BumpyTexture::octaves 449
IrradianceCache::octree 605
GridAccel::Offset() 144
BlockedArray::Offset() 674
BumpyTexture::omega 449
MarbleTexture::omega 450
Sample::oneD 241
KdAccelNode::onePrimitive 155
Voxel::onePrimitive 144
SDVertex::oneRing() 113
PhotonProcess::operator() 624
Transform::operator() 53
Ray::operator() 37
BRDFToBTDF::otherHemisphere() 337
SDFace::otherVert() 117
PathIntegrator::outgoingComponentOffset 586
PathIntegrator::outgoingDirectionOffset 586
PolkaDots::outsideDot 444

App. H] Index of Members 2 815

DirectLighting::overallAvgY 567
BBox::Overlaps() 40
BidirVertex::p 593
TriangleMesh::p 88
IrradianceSample::p 605
Photon::p 617
SDVertex::P 101
DifferentialGeometry::p 58
PhotonProcess::p 623
VolumeList::p() 473
HomogeneousVolume::p() 468
DensityRegion::p() 469
VolumeRegion::p() 466
PointLight::Pdf() 544
BxDF::Pdf() 532
Shape::Pdf() 551
Light::Pdf() 543
Microfacet::Pdf() 533
Anisotropic::Pdf() 537
SpecularTransmission::Pdf() 542
BRDFToBTDF::Pdf() 533
MicrofacetDistribution::Pdf() 533
Blinn::Pdf() 536
FresnelBlend::Pdf() 538
SpecularReflection::Pdf() 542
Cylinder::phiMax 79
Disk::phiMax 83
Sphere::phiMax 69
ClosePhoton::photon 623
PhotonProcess::photons 623
ImageFilm::pixels 297
BBox::pMax 39
BBox::pMin 39
ParamSet::points 700
GridAccel::PosToVoxel() 143
Spectrum::Pow() 183
ProjectionLight::Power() 487
Light::Power() 479
PointLight::Power() 481
GoniometricLight::Power() 489
SpotLight::Power() 484
DistantLight::Power() 490
AreaLight::Power() 492
InfiniteAreaLight::Power() 495
ImageInfo::premultiplyAlpha 302
PhotonIntegrator::Preprocess() 613
IrradianceCache::Preprocess() 605
Integrator::Preprocess() 563

816 Index of Members 2 [App. H

SDFace::prevFace() 108
SDFace::prevVert() 109
MailboxPrim::primitive 141
Intersection::primitive 131
Voxel::primitives 144
KdAccelNode::primitives 155
ProjectionLight::projectionMap 485
MIPMap::pyramid 422
Lambertian::R 351
OrenNayar::R 354
Microfacet::R 358
Lafortune::R 364
VisibilityTester::r 479
SpecularReflection::R 345
InfiniteAreaLight::radianceMap 494
Sphere::radius 69
Disk::radius 83
Cylinder::radius 79
ProjectiveCamera::RasterToCamera 206
ProjectiveCamera::RasterToScreen 206
WhittedIntegrator::rayDepth 17
FresnelBlend::Rd 365
KdTree::recursiveBuild() 689
KdTree::recursiveLookup() 692
LoopSubdiv::Refine() 110
Primitive::Refine() 131
Shape::Refine() 65
GeometricPrimitive::Refine() 133
TriangleMesh::Refine() 89
VolumeList::regions 473
SDVertex::regular 101
Scene::Render() 11
ParamSet::ReportUnused() 705
PathIntegrator::RequestSamples() 586
BidirIntegrator::RequestSamples() 592
IrradianceCache::RequestSamples() 599
Integrator::RequestSamples() 563
PhotonIntegrator::RequestSamples() 612
DirectLighting::RequestSamples() 564
MIPMap::resampleWeights() 420
Shape::reverseOrientation 64
BRDFToBTDF::rho() 337
Lambertian::rho() 352
BxDF::rho() 539
BSDF::rho() 373
KdNode::rightChild 687
Octree::root 681
Plastic::roughness 382

App. H] Index of Members 2 817

ShinyMetal::roughness 386
BlockedArray::RoundUp() 673
Lambertian::RoverPI 351
BidirVertex::rrWeight 593
FresnelBlend::Rs 365
ImageInfo::rWeight 322
RayDifferential::rx 38
RayDifferential::ry 38
TriangleMesh::s 88
Cylinder::Sample() 552
Disk::Sample() 552
Triangle::Sample() 553
Sphere::Sample() 554
Shape::Sample() 550
ImageFilm::sampleCount 296
Anisotropic::sampleFirstQuadrant() 537
BestCandidateSampler::sampleOffsets 278
StratifiedSampler::samplePos 247
Scene::sampler 10
IrradProcess::samplesChecked 606
BestCandidateSampler::sampleTable 276
DirectLighting::SAMPLE ALL UNIFORM 563
PathIntegrator::SAMPLE DEPTH 586
SpecularReflection::Sample f() 346
SpecularTransmission::Sample f() 349
BSDF::Sample f() 540
Blinn::Sample f() 535
Microfacet::Sample f() 533
FresnelBlend::Sample f() 538
Anisotropic::Sample f() 536
BxDF::Sample f() 532
MicrofacetDistribution::Sample f() 533
Light::Sample L() 542
InfiniteAreaLight::Sample L() 548
SpotLight::Sample L() 545
AreaLight::Sample L() 556
DistantLight::Sample L() 546
PointLight::Sample L() 544
DirectLighting::SAMPLE ONE UNIFORM 563
DirectLighting::SAMPLE ONE WEIGHTED 563
ScaleTexture::scale 396
LDSampler::scale 260
FresnelBlend::SchlickFresnel() 366
BestCandidateSampler::scrambles 276
LDSampler::scrambles 264
ProjectiveCamera::ScreenToRaster 206
ProjectionLight::screenX0 485
ProjectionLight::screenX1 485

818 Index of Members 2 [App. H

ProjectionLight::screenY0 485
ProjectionLight::screenY1 485
VisibilityTester::SetRay() 480
VisibilityTester::SetSegment() 479
DifferentialGeometry::shape 58
GeometricPrimitive::shape 132
AreaLight::shape 491
ShapeSet::shapes 492
DifferentialGeometry::Shift() 378
Camera::ShutterClose 203
Camera::ShutterOpen 203
Matte::sigma 381
HomogeneousVolume::sigma a() 468
VolumeRegion::sigma a() 466
DensityRegion::sigma a() 469
VolumeList::sigma a() 473
VolumeRegion::sigma s() 466
DensityRegion::sigma s() 469
VolumeList::sigma s() 473
HomogeneousVolume::sigma s() 468
VolumeRegion::sigma t() 466
VolumeList::sigma t() 473
HomogeneousVolume::sigma t() 468
DensityRegion::sigma t() 469
DensityRegion::sig a 469
HomogeneousVolume::sig a 467
SincFilter::Sinc1D() 289
BSDF::sn 371
ParamSet::spectra 700
IrradianceCache::specularDepth 598
PhotonIntegrator::specularDepth 612
SphericalMapping2D::sphere() 407
KdAccelNode::split 155
KdNode::splitAxis 687
KdAccelNode::SplitAxis() 157
KdNode::splitPos 687
KdAccelNode::SplitPos() 157
Spectrum::Sqrt() 182
SDVertex::startFace 101
DirectLighting::strategy 563
ParamSet::strings 700
IdentityMapping2D::su 406
IrradProcess::Successful() 607
IrradProcess::sumWt 606
Checkerboard2D::SUPERSAMPLE 434
Scene::surfaceIntegrator 10
IdentityMapping2D::sv 406
Transform::SwapsHandedness() 57

App. H] Index of Members 2 819

SpecularTransmission::T 349
HighContrastOp::T() 318
BestCandidateSampler::tableOffset 276
HomogeneousVolume::Tau() 468
VolumeRegion::Tau() 466
MixTexture::tex1 396
Checkerboard2D::tex1 433
Checkerboard3D::tex1 438
Checkerboard2D::tex2 433
MixTexture::tex2 396
Checkerboard3D::tex2 438
MIPMap::texel() 423
Sphere::thetaMax 69
Sphere::thetaMin 69
Ray::time 36
Sample::time 239
StratifiedSampler::timeSamples 244
KdToDo::tmax 168
KdToDo::tmin 168
BSDF::tn 371
ImageInfo::toneMap 311
ParamSet::ToString() 706
Sampler::TotalSamples() 238
Shape::transformSwapsHandedness 64
VolumeIntegrator::Transmittance() 630
EmissionIntegrator::Transmittance() 632
VisibilityTester::Transmittance() 480
Scene::Transmittance() 15
Matrix4x4::Transpose() 676
KdTreeAccel::traversalCost 154
MIPMap::triangle() 426
Sample::twoD 241
BxDF::type 334
ParamSetItem::type 701
DifferentialGeometry::u 58
VisibilityTester::Unoccluded() 480
PhotonIntegrator::unsuccessful() 614
ProgressReporter::Update() 660
DifferentialGeometry::UpdateBasis() 378
ExponentialDensity::upDir 472
LDSampler::useFolded 260
BlockedArray::uSize() 673
TriangleMesh::uvs 88
DifferentialGeometry::v 58
SDFace::v 102
SDEdge::v 104
Triangle::v 90
BilerpTexture::v00 411

820 Index of Members 2 [App. H

BilerpTexture::v01 411
BilerpTexture::v10 411
BilerpTexture::v11 411
SDVertex::valence() 106
ScaleTexture::value 396
ParamSet::vectors 700
TriangleMesh::vertexIndex 88
LoopSubdiv::vertices 101
BidirIntegrator::visible() 596
SDFace::vnum() 108
BBox::Volume() 41
Scene::volumeIntegrator 10
Scene::volumeRegion 9
GridAccel::voxels 142
GridAccel::VoxelToPos() 148
PlanarMapping2D::vs 409
BlockedArray::vSize() 673
PlanarMapping2D::vt 409
ResampleWeight::weight 420
LoopSubdiv::weightBoundary() 115
MIPMap::weightLut 431
LoopSubdiv::weightOneRing() 113
BidirIntegrator::weightPath() 595
Pixel::weightSum 297
MIPMap::WEIGHT LUT SIZE 431
BidirVertex::wi 593
Photon::wi 617
GridAccel::Width 142
BidirVertex::wo 593
Shape::WorldBound() 64
InstancePrimitive::WorldBound() 135
LoopSubdiv::WorldBound() 109
TriangleMesh::WorldBound() 89
HomogeneousVolume::WorldBound() 467
GeometricPrimitive::WorldBound() 133
GridAccel::WorldBound() 146
Triangle::WorldBound() 90
Primitive::WorldBound() 143
Scene::WorldBound() 14
VolumeRegion::WorldBound() 466
Camera::WorldToCamera 203
InstancePrimitive::WorldToInstance 134
Light::WorldToLight 478
BSDF::WorldToLocal() 371
Shape::WorldToObject 64
Intersection::WorldToObject 131
ProjectiveCamera::WorldToScreen 206
SphericalMapping2D::WorldToTexture 407

App. H] Index of Members 2 821

CylindricalMapping2D::WorldToTexture 408
IdentityMapping3D::WorldToTexture 410
HomogeneousVolume::WorldToVolume 467
DensityRegion::WorldToVolume 469
ImageInfo::writeCoefficientImage 301
ImageFilm::writeFrequency 296
ImageFilm::WriteImage() 301
Film::WriteImage() 294
Lafortune::x 364
ImageFilm::xPixelCount 297
Sampler::xPixelEnd 238
Sampler::xPixelSamples 238
ImageFilm::xPixelStart 297
Sampler::xPixelStart 238
StratifiedSampler::xPos 244
Film::xResolution 294
BestCandidateSampler::xTablePos 276
BestCandidateSampler::xTableWidth 276
Spectrum::XWeight 185
Filter::xWidth 281
Spectrum::XYZ() 184
Lafortune::y 364
Spectrum::y() 185
ProjectionLight::yon 485
ImageFilm::yPixelCount 297
Sampler::yPixelEnd 238
Sampler::yPixelSamples 238
Sampler::yPixelStart 238
ImageFilm::yPixelStart 297
StratifiedSampler::yPos 244
Film::yResolution 294
BestCandidateSampler::yTablePos 276
BestCandidateSampler::yTableWidth 276
Spectrum::YWeight 185
Filter::yWidth 281
Lafortune::z 364
Sphere::zmax 69
Cylinder::zmax 79
Sphere::zmin 69
Cylinder::zmin 79
KdTreeAccel::zone 160
BSDF::zone 374
Spectrum::ZWeight 185

�	�	�

� ��� � � � � � � � � � �

�
API Cleanup � 706, 707, 711�
API Function Declarations � 698, 710 , 711 , 712 , 715�
API Function Definitions � 699, 706, 709 , 710 , 711 , 712 , 714 , 715 , 717 , 718 , 719 , 720�
API Initialization � 706, 707, 711 , 713�
API Local Classes � 699, 708, 710 , 713�
API Macros � 699, 707, 708�
API Static Data � 699, 707, 708 , 710 , 711 , 714�
API Static Methods � 699, 716�
Accumulate bloom from pixel � bx � by � � 309�
Accumulate light from nearby photons � 623, 626�
Add computed irradiance value to cache � 600, 603�
Add contribution for ith Phong lobe � 364�
Add contribution of light due to scattering at p � 637�
Add light contribution from BSDF sampling � 572�
Add light’s contribution to reflected radiance � 571�
Add new light to graphics state � 719�
Add photon to unordered array of photons � 624�
Add primitive to already-allocated voxel � 143, 144�
Add primitive to overlapping voxels � 142, 143�
Add primitives to grid voxels � 139, 142�
Add sample contribution to image � 11, 13�
Adjust normal based on orientation and handedness � 59, 378, 400�
Advance to next child node, possibly enqueue other child � 168, 170�
Advance to next pixel for stratified sampling � 249�
Advance to next sample table position � 278, 279�
Advance to next voxel � 149, 151

�	���

824 Index of Code Chunks [App. I

�
Advance to sample at t0 and update T � 635�
Aggregate Public Methods � 135�
Allocate LoopSubdiv vertices and faces � 100�
Allocate and initialize sample � 11�
Allocate and initialize arrays for per-pixel records � 263�
Allocate film image storage � 296, 297�
Allocate initial primitives array in voxel � 145�
Allocate kd-tree node and continue recursively � 689, 690�
Allocate new voxel and store primitive in it � 143, 144�
Allocate next level of children in mesh tree � 111�
Allocate storage for a pixel’s worth of stratified samples � 244�
Allocate storage for sample pointers � 240, 241�
Allocate storage for sample values � 240, 241�
Allocate working imaging memory and compute normalized pixel values � 301, 302�
Allocate working memory for kd-tree construction � 158, 162, 166�
Allow integrators to do pre-processing for the scene � 11�
Anisotropic Public Methods � 361, 362�
Apple scale to pixels for tone mapping and map to � 0 � 1 � � 311�
Apply sWeights to zoom in s direction � 419, 421�
Apply bloom filter to image pixels � 308�
Apply boundary rule for even vertex � 111, 114�
Apply box-filter to checkerboard region � 435, 436�
Apply direct lighting strategy � 565�
Apply display imaging pipeline � 301, 303�
Apply edge rules to compute new vertex position � 116�
Apply gamma correction to image � 303, 324�
Apply high contrast tone mapping operator � 318, 319�
Apply one-ring rule for even vertex � 111, 112�
Apply tone mapping based on local adaptation luminance � 319, 321�
Apply tone reproduction to image � 303, 311�
AreaLight Interface � 491, 492�
AreaLight Method Definitions � 491, 556�
AreaLight Protected Data � 491�
BBox Method Definitions � 39, 41 , 137�
BBox Public Data � 38, 39�
BBox Public Methods � 38, 39 , 40 , 41�
BRDFToBTDF Public Methods � 336, 337�
BSDF Declarations � 334, 369 , 374�
BSDF Inline Functions � 332, 333�
BSDF Inline Method Definitions � 371�
BSDF Method Definitions � 370, 372 , 540 , 541�
BSDF Private Data � 370, 374�
BSDF Private Methods � 370, 374�
BSDF Public Data � 370�
BSDF Public Methods � 370, 371 , 373�
Bail out if we found a hit closer than the current node � 168�
BestCandidate Sampling Constants � 267, 275�
BestCandidateSampler Declarations � 275

App. I] Index of Code Chunks 825

�
BestCandidateSampler Method Definitions � 275, 276, 278�
BestCandidateSampler Private Data � 275, 276, 278�
BestCandidateSampler Public Methods � 275�
BidirIntegrator Data � 591, 592�
BidirIntegrator Private Methods � 591�
BidirIntegrator Public Methods � 591�
Bidirectional Local Declarations � 589, 591 , 593�
Bidirectional Method Definitions � 589, 591, 592 , 593 , 595 , 596�
BilerpTexture Private Data � 411�
BilerpTexture Public Methods � 411�
Blinn Public Methods � 359, 360�
BlockedArray Private Data � 672, 673�
BlockedArray Public Methods � 672, 673 , 674�
BoundEdge Public Methods � 162 , 163�
Box Filter Declarations � 281, 282�
Box Filter Method Definitions � 281, 282, 744�
Build kd-tree for accelerator � 154, 158�
Build luminance image pyramid � 318, 319�
BumpyTexture Private Data � 449�
BumpyTexture Public Methods � 449�
BxDF Declarations � 334, 336 , 341 , 342 , 344 , 345 , 348 , 351 , 357 , 358 , 361 , 363 , 365�
BxDF Interface � 334 , 335 , 336�
BxDF Method Definitions � 337, 342 , 346 , 349 , 351 , 354 , 357 , 358 , 363 , 364 , 365 , 366 , 532 , 533 , 535 , 536 , 537 , 538 , 539�
BxDF Public Data � 334�
BxDF Utility Functions � 339, 340 , 341�
Camera Declarations � 201, 205�
Camera Interface � 202�
Camera Method Definitions � 201, 203 , 206�
Camera Protected Data � 202, 203�
Camera Public Data � 202, 203�
Camera Sample Data � 239�
Check 2D samples in current grid cell � 274�
Check distance from times of nearby samples � 272�
Check distance to nearby samples � 273�
Check for intersections inside leaf node � 168, 170�
Check for ray–primitive intersection � 151�
Check one primitive inside leaf node � 171�
Check ray against overall grid bounds � 146�
Check sample against crop window, goto again if outside � 278, 279�
Checkerboard2D Private Data � 433, 434�
Checkerboard2D Public Methods � 433�
Checkerboard3D Private Data � 438�
Checkerboard3D Public Methods � 438�
Choose 4D sample values for photon � 614�
Choose light according to average reflected luminance � 568, 569�
Choose level of detail for EWA lookup � 426, 428�
Choose light for bidirectional path � 592, 593�
Choose light to shoot photon from � 614

826 Index of Code Chunks [App. I

�
Choose point on disk oriented toward infinite light direction � 546�
Choose split axis position for interior node � 160, 162�
Choose split direction and partition data � 689�
Choose two points p1 and p2 on scene bounding sphere � 549�
Choose which BxDF to sample � 540�
Choose which axis to split along � 163�
Clamp ellipse eccentricity if too large � 426, 427�
Classify primitives with respect to split � 160, 165�
Clay Class Declarations � 388�
Clay Method Definitions � 388, 389�
Clean up after rendering and store final image � 11, 14�
Compute � s � t � for supersample and evaluate sub-texture � 437�
Compute � u � v � offsets at auxiliary points � 400, 402�
Compute s1 � 92�
Compute (u,v) grid cell to check � 270, 272, 274�
Compute Fresnel reflectance for dielectric � 342, 343�
Compute Hammersley � x � y � image sample location � 260�
Compute MIPMap level for trilinear filtering � 424�
Compute ∂n

�
∂u and ∂n

�
∂v for triangle shading geometry � 97�

Compute ∂n
�
∂u and ∂n

�
∂v from fundamental form coefficients � 76, 81�

Compute InfiniteAreaLight ray weight � 549�
Compute childBound for octree child child � 684, 685, 686�
Compute pdf for cosine-weighted infinite light direction � 547�
Compute sint using Snell’s law � 343, 344�
Compute t to intersection point � 92, 93�
Compute auxiliary intersection points with plane � 400, 401�
Compute barycentric coordinates for point � 97�
Compute bloom for pixel (x,y) � 308, 309�
Compute bounding box of irradiance sample’s contribution region � 603, 604�
Compute bounds and choose grid resolution � 139, 141�
Compute bounds for kd-tree construction � 158�
Compute bounds of data from start to end � 690�
Compute bump-mapped differential geometry � 376, 378�
Compute cell incides for dots � 444�
Compute closed form box-filtered Checkerboard2D value � 434�
Compute coefficients for fundamental forms � 76, 81�
Compute contrast-preserving scalefactor, s � 314�
Compute coordinate system for sphere sampling � 554�
Compute cosine term of Oren–Nayar model � 354�
Compute cost for split at ith edge � 164�
Compute cost of all splits for axis to find best � 163, 164�
Compute current voxel for axis � 147�
Compute cylinder ∂n

�
∂u and ∂n

�
∂v � 81�

Compute cylinder ∂p
�
∂u and ∂p

�
∂v � 81�

Compute cylinder hit point and φ � 80�
Compute deltas for triangle partial derivatives � 95�
Compute differential reflected directions � 380�
Compute direct lighting for DirectLighting integrator � 565

App. I] Index of Code Chunks 827

�
Compute direct lighting for irradiance cache � 599�
Compute direct lighting for photon map integrator � 620�
Compute distance along ray to split plane � 168, 169�
Compute ellipse coefficients to bound EWA filter region � 428, 429�
Compute ellipse minor and major axes � 426, 427�
Compute emission-only source term at p � 635�
Compute emitted and reflected light at ray intersection point � 16, 17�
Compute emitted light if ray hit an area light source � 17, 19�
Compute estimate error term and possibly use sample � 606, 607�
Compute extent of pixels contributing bloom � 309�
Compute falloff inside spotlight cone � 483�
Compute film image extent � 296�
Compute first barycentric coordinate � 92, 93�
Compute general sphere weight � 555�
Compute gradient weights � 441, 442�
Compute image resampling weights for ith texel � 420�
Compute image sample positions � 268�
Compute image-space extent of bloom effect � 308�
Compute incident direction by reflecting about H � 535, 536�
Compute indices of refraction for dielectric � 343�
Compute indirect lighting for irradiance cache � 599�
Compute indirect lighting for photon map integrator � 620�
Compute infinite light radiance for this direction � 494, 495�
Compute initial parametric range of ray inside kd-tree extent � 166�
Compute intersection distance along ray � 72�
Compute irradiance at current point � 600, 601�
Compute lens samples � 268, 273�
Compute local adaptation luminance at � x � y � � 319�
Compute local contrast at � x � y � � 320�
Compute low-discrepancy 1D samples � 263�
Compute low-discrepancy 2D samples � 263, 264�
Compute low-discrepancy integrator samples � 261, 263, 278�
Compute maximum luminance of all pixels � 312�
Compute min delta for this time � 272�
Compute new differential geometry for supersample location � 437�
Compute new odd edge vertices � 111, 115�
Compute new set of samples if needed for next pixel � 248, 249�
Compute next digit of folded radical inverse � 256�
Compute next digit of radical inverse � 254�
Compute noise cell coordinates and offsets � 441�
Compute number of octaves for anti-aliased FBm � 446, 448�
Compute odd vertex on kth edge � 115�
Compute offset positions and evaluate displacement texture � 376, 377�
Compute perfect specular reflection direction � 346, 347�
Compute photon scale factor with density estimation � 626, 627�
Compute pixel luminance values � 311�
Compute plane intersection for disk � 83, 84�
Compute point on plane of focus � 216

828 Index of Code Chunks [App. I

�
Compute premultiplied alpha color values � 301, 302�
Compute projective camera screen transformations � 206�
Compute projective camera transformations � 206�
Compute quadratic t values � 72�
Compute quadratic cylinder coefficients � 79, 80�
Compute quadratic sphere coefficients � 70, 71, 77�
Compute raster sample from table � 278�
Compute ray differential rd for specular reflection � 21, 379�
Compute ray differential rd for specular transmission � 21�
Compute reflected radiance due to final gather sample � 621, 622�
Compute reflection by integrating over the lights � 17, 19�
Compute remaining dimensions of Hammersley sample � 260�
Compute sample patterns for single scattering samples � 637�
Compute sample’s raster extent � 298�
Compute sampled half-angle vector H � 535, 536�
Compute second barycentric coordinate � 92, 93�
Compute sine and tangent terms of Oren–Nayar model � 354�
Compute single-scattering source term at p � 637�
Compute sphere ∂n

�
∂u and ∂n

�
∂v � 74, 75�

Compute sphere ∂p
�
∂u and ∂p

�
∂v � 74�

Compute sphere hit position and φ � 70, 73, 77�
Compute squared radius and filter texel if inside ellipse � 430�
Compute sum of octaves of noise for FBm � 446, 448�
Compute tangents of boundary face � 121, 122�
Compute tangents of interior face � 121�
Compute texel � s � t � in s-zoomed image � 421�
Compute texture coordinate differentials for cylinder � u � v � mapping � 408�
Compute texture coordinate differentials for sphere � u � v � mapping � 407�
Compute texture differentials for 2D identity mapping � 406�
Compute the ellipse’s � s � t � bounding box in texture space � 428, 429�
Compute time samples � 268, 271�
Compute total number of sample values needed � 240, 241�
Compute transmitted ray direction � 349, 350�
Compute triangle partial derivatives � 93, 94�
Compute trilinear interpolation of weights � 441, 443�
Compute valence of boundary vertex � 106, 107�
Compute valence of interior vertex � 106�
Compute vertex tangents on limit surface � 110, 121�
Compute voxel coordinates and offsets for Pobj � 470�
Compute voxel widths and allocate voxels � 139, 142�
Compute world adaptation luminance, Ywa � 314, 322�
Connect bidirectional path prefixes and evaluate throughput � 592, 594�
Construct ray between p1 and p2 � 549�
ContrastOp Declarations � 313�
ContrastOp Method Definitions � 313�
Convert EWA coordinates to appropriate scale for level � 428�
Convert image to display RGB � 303, 323�
Convert light sample weight to solid angle measure � 551

App. I] Index of Code Chunks 829

�
Convert texels to type T and create MIPMap � 414�
Copy uv, N, and S vertex data, if present � 88�
Cosine-sample the hemisphere, flipping the direction if necessary � 532, 538�
Create ProjectionLightMIP-map � 484�
Create ShapeSet for Shape � 491�
Create TriangleMesh from subdivision mesh � 110�
Create mipmap for GoniometricLight � 488�
Create and initialize new odd vertex � 116�
Create area lights given number of light samples � 716�
Create leaf if no good splits were found � 160, 165�
Create leaf node of kd-tree if we’ve reached the bottom � 689�
Create scene and render � 714, 715�
Create zero-valued MIPMap � 414, 415�
Cylinder Declarations � 78�
Cylinder Method Definitions � 78, 79 , 80 , 81�
Cylinder Private Data � 78, 79�
Cylinder Public Methods � 78, 552�
CylindricalMapping2D Public Methods � 408�
DSO Method Definitions � 737, 739, 740�
DSO Public Methods � 739�
Declare clay coefficients � 389�
Declare common path integration variables � 587�
Decorrelate sample dimensions � 247, 248�
Define RGB access macros � 323�
DensityRegion Protected Data � 468, 469�
DensityRegion Public Methods � 468, 469�
Deposit photon at surface � 615, 616�
Determine which children the item overlaps � 684�
Determine which octree child node p is inside � 686�
DifferentialGeometry Declarations � 58�
DifferentialGeometry Method Definitions � 59, 378 , 400�
DifferentialGeometry Public Data � 58, 400�
DifferentialGeometry Public Methods � 58, 377�
DirectLighting Declarations � 563�
DirectLighting Method Definitions � 563�
DirectLighting Private Data � 563, 564 , 567�
DirectLighting Public Methods � 563, 564�
DirectLighting constructor implementation � 564�
Discard directions behind projection light � 486�
Disk Declarations � 82�
Disk Method Definitions � 82, 83 , 85�
Disk Private Data � 82, 83�
Disk Public Methods � 82, 552�
DistantLight Declarations � 489�
DistantLight Method Definitions � 489, 490 , 546 , 547�
DistantLight Private Data � 489�
DistantLight Public Methods � 489, 490�
Dither image � 303, 325

830 Index of Code Chunks [App. I

�
Do EWA filtering at appropriate level � 426, 428�
Do emission-only volume integration in vr � 633�
Do mailbox check between ray and primitive � 151�
Do one-bounce final gather for photon map � 620, 621�
Do path tracing to compute radiance along ray for estimate � 602�
Do photon map lookup � 622, 623�
EmissionIntegrator Declarations � 631�
EmissionIntegrator Method Definitions � 631, 632 , 633�
EmissionIntegrator Private Data � 631, 632�
EmissionIntegrator Public Methods � 631�
Enqueue secondChild in todo list � 170�
Ensure there are no pushed graphics states � 714�
EnvironmentCamera Declarations � 217�
EnvironmentCamera Definitions � 217, 218�
EnvironmentCamera Private Data � 217, 218�
EnvironmentCamera Public Methods � 217�
Estimate indirect lighting with irradiance cache � 599, 600�
Estimate one term of ρdh � 539�
Estimate one term of ρhh � 539�
Estimate reflected light from photons � 626, 627�
Estimate screen-space change in p, n, and � u � v � � 400�
Evaluate BSDF at hit point � 17, 18, 587�
Evaluate filter value at � x � y � pixel � 299, 300�
Evaluate marble spline at t � 450�
Evaluate radiance along camera ray � 11, 13�
Evaluate single check if filter is entirely inside one of them � 435�
ExponentialDensity Declarations � 471�
ExponentialDensity Private Data � 472�
ExponentialDensity Public Methods � 472�
Figure out which η is incident and which is transmitted � 349�
Fill in DifferentialGeometry from triangle hit � 92, 93�
Film Declarations � 294�
Film Interface � 294�
Film Public Data � 294�
Filter Interface � 281�
Filter Public Data � 281�
Filter four texels from finer level of pyramid � 423�
Filter photons with high α values � 626, 627�
Filter radiance values and compute irradiance estimate � 601, 603�
Find stepAxis for stepping to next voxel � 151, 152�
Find voxelsPerUnitDist for grid � 141, 142�
Find best 2D sample relative to neighbors � 273�
Find best time relative to neighbors � 272�
Find camera ray for sample � 11, 12�
Find common filter parameters � 744, 745�
Find light and BSDF sample values for direct lighting estimate � 570, 571�
Find minimum and maximum image luminances � 318�
Find next vertex in path and initialize vertices � 593, 594

App. I] Index of Code Chunks 831

�
Find next vertex of path � 587�
Find parametric representation of cylinder hit � 80�
Find parametric representation of disk hit � 83, 84�
Find parametric representation of sphere hit � 70, 73�
Find quadratic discriminant � 72�
Find voxel extent of primitive � 142�
Finish vertex initialization � 100, 107�
Follow photon path through scene and record intersections � 614, 615�
Foo � 558�
Free BSDF memory from computing image sample value � 11, 13�
Free memory allocated for bloom effect � 308, 309�
Free working memory for kd-tree construction � 158, 159�
Fresnel Interface � 341�
FresnelBlend Private Data � 365�
FresnelBlend Public Methods � 365, 366�
FresnelConductor Private Data � 342�
FresnelConductor Public Methods � 342�
FresnelDielectric Private Data � 342�
FresnelDielectric Public Methods � 342�
Function Definitions � 2, 3�
Gaussian Filter Declarations � 284�
Gaussian Filter Method Definitions � 284, 285, 745�
GaussianFilter Private Data � 284, 285�
GaussianFilter Public Methods � 284, 285�
GaussianFilter Utility Functions � 284, 285�
Generate LHS samples along diagonal � 251�
Generate photonRay from light source and initialize alpha � 614, 615�
Generate a random candidate sample � 269�
Generate environment camera ray direction � 218�
Generate eye and light sub-paths � 592�
Generate first 2D sample arbitrarily � 268�
Generate next best 2D image sample � 268, 269�
Generate raster and camera samples � 209, 212�
Generate ray differentials for camera ray � 12�
Generate stratified camera samples for (xPos,yPos) � 244, 246, 249�
Generate stratified samples for integrators � 249, 251�
GeometricPrimitive Method Definitions � 133 , 375�
GeometricPrimitive Private Data � 132�
GeometricPrimitive Public Methods � 132�
Geometry Declarations � 27, 33 , 34 , 35 , 37 , 38�
Geometry Inline Functions � 29 , 30 , 31 , 32 , 34 , 35 , 192 , 193�
Get all samples from Sampler and evaluate contributions � 11�
Get new block of memory for MemoryArena � 670, 671�
Get next free node from nodes array � 159�
Get node children pointers for ray � 168, 169�
Get one ring vertices for boundary vertex � 113, 114�
Get one ring vertices for interior vertex � 113�
Get pointer to scramble values for current pixel � 263, 264

832 Index of Code Chunks [App. I

�
Get random numbers for sampling new direction, bs1, bs2, and bcs � 589�
Get random numbers for sampling outgoing photon direction � 618�
Get ray mailbox id � 146�
Get triangle vertices in p1, p2, and p3 � 90, 93, 96, 553�
Give up if we’re not storing enough photons � 613�
Glass Class Declarations � 384�
Glass Method Definitions � 384, 385�
Glass Private Data � 384, 385�
Glass Public Methods � 384�
Global Classes � 660, 661 , 663 , 668 , 669 , 672 , 675 , 739�
Global Constants � 37, 180 , 678 , 694�
Global Forward Declarations � 268�
Global Function Declarations � 661 , 662�
Global Include Files � 657, 693 , 737�
Global Inline Functions � 72, 448 , 569 , 659 , 677 , 678 , 679�
Global Type Declarations � 693�
GoniometricLight Declarations � 487�
GoniometricLight Method Definitions � 487, 488�
GoniometricLight Private Data � 488�
GoniometricLight Public Methods � 488�
Grab next node to process from todo list � 168, 171�
Graphics Options � 710, 711, 712 , 716 , 717�
Graphics State Methods � 713�
Graphics State � 713, 715 , 719�
GraphicsOptions Constructor Implementation � 710, 711, 712 , 717�
GraphicsOptions Public Methods � 710�
GraphicsState Constructor Implementation � 713, 715�
GridAccel Declarations � 138�
GridAccel Method Definitions � 139, 146 , 149�
GridAccel Private Data � 139, 141 , 142 , 144 , 146�
GridAccel Private Public Methods � 139, 143, 144 , 148�
GridAccel Public Methods � 139, 152�
Hand kd-tree node to processing function � 692�
Handle degeneracy at the origin � 515�
Handle degenerate parametric mapping � 97, 98�
Handle direct lighting for bidirectional integrator � 594�
Handle first region � 515, 516�
Handle fourth region � 515�
Handle new edge � 105�
Handle photon/surface intersection � 615�
Handle previously-seen edge � 105�
Handle ray with negative direction for voxel stepping � 147, 149�
Handle ray with no intersection � 16, 21�
Handle ray with positive direction for voxel stepping � 147, 148�
Handle second region � 515�
Handle specular BxDF � 540, 541�
Handle third region � 515�
Handle total internal reflection for transmission � 350

App. I] Index of Code Chunks 833

�
Handle total internal reflection � 343, 344�
Handle zero determinant for triangle partial derivative matrix � 95�
HighContrastOp Declarations � 315�
HighContrastOp Method Definitions � 318�
HighContrastOp Utility Methods � 315, 317�
HomogeneousVolume Declarations � 467�
HomogeneousVolume Private Data � 467�
HomogeneousVolume Public Methods � 467 , 468�
IdentityMapping2D Public Methods � 405�
If maximum contrast is exceeded, compute adaptation luminance � 320�
ImageFilm Declarations � 295�
ImageFilm Method Definitions � 295, 298 , 300 , 301�
ImageFilm Private Data � 295, 296, 297 , 298�
ImageFilm Public Methods � 295�
ImageInfo Constructor Implementation � 301, 302 , 307 , 311 , 322 , 323 , 324 , 325�
ImageInfo Declarations � 301�
ImageInfo Public Data � 301, 302 , 307 , 311 , 322 , 323 , 324 , 325�
ImageTexture Private Data � 412, 413�
ImageTexture Private Methods � 412, 414�
ImageTexture Public Methods � 412�
Increase search region and prepare to compute contrast again � 320�
Increase size of primitives array in voxel � 145�
InfiniteAreaLight Declarations � 493�
InfiniteAreaLight Method Definitions � 493 , 495 , 547 , 548 , 549�
InfiniteAreaLight Private Data � 493, 494�
InfiniteAreaLight Public Methods � 493, 495�
Initialize ith MIPMap level from i � 1st level � 422, 423�
Initialize EWA filter weights if needed � 418, 431�
Initialize Global Variables � 2, 3�
Initialize A and C matrices for barycentrics � 97, 98�
Initialize A, Bx, and By matrices for offset computation � 402�
Initialize DifferentialGeometry from parameters � 59, 400�
Initialize DifferentialGeometry from parametric information � 70, 76, 80, 83�
Initialize PhotonProcess object, proc, for photon map lookups � 622�
Initialize ProjectionLight projection matrix � 484, 485�
Initialize Triangle shading geometry with n and s � 97�
Initialize accelerator from API settings � 720�
Initialize avgY array if necessary � 568�
Initialize film and camera from API settings � 720�
Initialize filter with pixel filter � 720�
Initialize primNums for kd-tree construction � 158�
Initialize prims with primitives for grid � 139, 140�
Initialize ray for next segment of path � 593, 594�
Initialize sampler from API settings � 720�
Initialize surfaceIntegrator from API settings � 720�
Initialize volumeIntegrator from API settings � 720�
Initialize volumeRegion from volume region(s) � 720�
Initialize additional values in vertices � 593, 594

834 Index of Code Chunks [App. I

�
Initialize area light for shape � 716, 719�
Initialize bloom filter table � 308�
Initialize common sampler parameters � 745�
Initialize common variables for Whitted integrator � 17, 18�
Initialize depth of field parameters � 206, 215�
Initialize edges for axis � 163�
Initialize first three columns of viewing matrix � 51�
Initialize fourth column of viewing matrix � 51�
Initialize interior node and continue recursion � 159, 160�
Initialize leaf node if termination criteria met � 159�
Initialize levels of MIPMap from image � 418, 422�
Initialize mailboxes for KdTreeAccel � 154�
Initialize mailboxes for grid � 139, 140�
Initialize material for shape � 716�
Initialize matrices for chosen projection plane � 402�
Initialize most detailed level of MIPMap � 422�
Initialize photon shooting statistics � 613�
InstancePrimitive Method Definitions � 134�
InstancePrimitive Private Data � 134�
InstancePrimitive Public Methods � 134�
Integrator Declarations � 562, 563�
Integrator Interface � 562 , 563�
Integrator Method Definitions � 562�
Integrator Utility Functions � 562, 565, 566 , 567 , 570�
Integrator Sample Data � 239, 241�
Interpolate � u � v � triangle parametric coordinates � 93, 95�
Intersect sample ray with area light geometry � 551�
Intersection Method Definitions � 132, 375�
Intersection Public Methods � 131�
IrradProcess Public Methods � 606, 607�
IrradianceCache Data � 598, 599 , 605�
IrradianceCache Declarations � 598, 604 , 605�
IrradianceCache Forward Declarations � 598�
IrradianceCache Method Definitions � 598, 600 , 605 , 606�
IrradianceCache Private Methods � 598�
IrradianceCache Public Methods � 598�
IrradianceSample Constructor � 604�
Issue warning if unexpected radiance value returned � 13�
KdAccelNode Declarations � 155 , 162�
KdAccelNode Methods � 155, 156, 157�
KdNode Data � 687�
KdTree Declarations � 687, 688 , 690�
KdTree Method Definitions � 688, 689 , 691�
KdTree Private Data � 688�
KdTree Public Methods � 688�
KdTreeAccel Declarations � 152 , 168�
KdTreeAccel Method Definitions � 154, 159 , 166�
KdTreeAccel Private Data � 154, 158 , 160

App. I] Index of Code Chunks 835

�
KdTreeAccel Public Methods � 154, 171�
Keep this sample if it is the best one so far � 269, 271�
LDSampler Declarations � 258�
LDSampler Method Definitions � 258, 260�
LDSampler Private Data � 258, 260, 264�
LDSampler Public Methods � 258�
Lafortune Private Data � 363, 364�
Lafortune Public Methods � 363�
Lambertian Private Data � 351�
Lambertian Public Methods � 351, 352�
Light Declarations � 478, 479 , 491�
Light Interface � 478 , 479 , 542 , 543�
Light Method Definitions � 478, 480 , 495 , 543�
Light Protected Data � 478�
Loop over filter support and add sample to pixel arrays � 298, 299�
Loop over neighboring grid cells and check distances � 269, 270�
Loop over primitives in voxel and find intersections � 149, 150�
LoopSubdiv Declarations � 99�
LoopSubdiv Inline Functions � 106�
LoopSubdiv Local Structures � 101 , 102 , 104�
LoopSubdiv Macros � 103�
LoopSubdiv Method Definitions � 100, 109 , 110 , 113 , 114�
LoopSubdiv Private Data � 100, 101�
LoopSubdiv Private Methods � 100, 112, 121�
LoopSubdiv Public Methods � 100, 109�
MC Class Declarations � 498�
MC Function Definitions � 498, 508, 512 , 513 , 514 , 515 , 519 , 545�
MC Inline Functions � 498, 525�
MC Utility Declarations � 498, 517�
MIPMap Declarations � 417�
MIPMap Method Definitions � 418, 422 , 424 , 426 , 428�
MIPMap Private Data � 417, 419, 422 , 431�
MIPMap Private Methods � 417, 420�
MIPMap Public Methods � 417�
MailboxPrim Declarations � 140�
Map image to display range � 303, 325�
Map square to � r� θ � � 515�
Map uniform random numbers to � � 1 � 1 � 2 � 515�
MarbleTexture Private Data � 449�
MarbleTexture Public Methods � 449�
Material Class Declarations � 374�
Material Creation Macros � 374, 743�
Material Interface � 375�
Material Method Definitions � 374, 376 , 743 , 744�
Material Private Data � 375, 376�
Material Public Methods � 375�
Matrix Method Definitions � 675, 676�
Matrix4x4 Public Methods � 675, 676

836 Index of Code Chunks [App. I

�
Matte Class Declarations � 381�
Matte Method Definitions � 381�
Matte Private Data � 381�
Matte Public Methods � 381�
MaxWhiteOp Declarations � 312�
MaxWhiteOp Public Methods � 312�
Memory Allocation Functions � 666, 667�
MemoryArena Private Data � 670�
MemoryArena Public Methods � 670, 671�
Microfacet Private Data � 357�
Microfacet Public Methods � 357, 358�
MicrofacetDistribution Interface � 357 , 533�
Mirror Class Declarations � 385�
Mirror Method Definitions � 385, 386�
Mirror Private Data � 385�
Mirror Public Methods � 385�
Mitchell Filter Declarations � 285, 286�
Mitchell Filter Method Definitions � 285, 287, 745�
MitchellFilter Public Methods � 286, 287�
Mix bloom effect into each pixel � 308, 309�
MixTexture Public Methods � 396�
Modify ray for depth of field � 209, 212, 216�
Noise permutation table � 443�
NonLinearOp Declarations � 321�
NonLinearOp Public Methods � 322�
Normal Methods � 34, 35�
Normal Public Data � 34�
Normalize filter weights for texel resampling � 421�
Normalize pixel with weight sum � 302�
ObjectArena Private Data � 668�
ObjectArena Public Methods � 668, 669�
Octree Declarations � 680, 681�
Octree Method Definitions � 682, 686�
Octree Private Data � 681�
Octree Public Methods � 681, 682 , 685�
OrenNayar Private Data � 354�
OrenNayar Public Methods � 353�
Orient shading normal to match geometric normal � 376, 378�
OrthoCamera Public Methods � 207�
OrthographicCamera Declarations � 207�
OrthographicCamera Definitions � 207, 208�
Otherwise add data item to octree children � 682�
ParamSet Data � 700�
ParamSet Declarations � 699, 700�
ParamSet Macros � 699�
ParamSet Methods � 699, 702 , 703 , 704 , 705�
ParamSet Public Methods � 700, 702 , 704 , 705�
ParamSet Types � 699, 701, 702

App. I] Index of Code Chunks 837

�
ParamSetItem Data � 701�
ParamSetItem Methods � 699, 701�
ParamSetItem Public Methods � 701, 702�
Parse scene from input files � 8�
Parse scene from standard input � 8�
PathIntegrator Declarations � 586�
PathIntegrator Method Definitions � 586�
PathIntegrator Private Data � 586�
PathIntegrator Public Methods � 586�
Pattern Precomputation Local Data � 267�
Pattern Precomputation Utility Functions � 269, 270�
Perform projective divide � 210, 211�
Perform trilinear interpolation at appropriate MIPMap level � 424�
Perlin Noise Data � 443�
Permute LHS samples in each dimension � 251�
PerspectiveCamera Declarations � 209�
PerspectiveCamera Method Definitions � 209, 210, 212�
PerspectiveCamera Public Methods � 210�
Photon Constructor � 617�
PhotonIntegrator Private Data � 611, 612, 617�
PhotonIntegrator Private Methods � 611, 614�
PhotonIntegrator Public Methods � 611�
PhotonProcess Public Methods � 623�
Photonmap Local Declarations � 611 , 617 , 623 , 627�
Photonmap Method Definitions � 611, 613 , 622 , 623�
PlanarMapping2D Public Methods � 409�
Plastic Class Declarations � 382�
Plastic Dynamic Creation Routine � 382�
Plastic Method Definitions � 382�
Plastic Private Data � 382�
Plastic Public Methods � 382�
Platform-specific definitions � 738�
Point Methods � 33�
Point Public Data � 33�
Point sample Checkerboard2D � 434, 435�
PointLight Classes � 480�
PointLight Method Definitions � 480, 481, 543 , 544�
PointLight Private Data � 480, 481�
PointLight Public Methods � 480, 481�
PolkaDots Private Data � 444�
PolkaDots Public Methods � 444�
Possibly add data item to current octree node � 682�
Possibly add emitted light at path vertex � 587, 588�
Possibly apply bloom effect to image � 303, 308�
Possibly terminate bidirectional path sampling � 593, 594�
Possibly terminate photon path � 615, 618�
Possibly terminate raymarching if transmittance is small � 635�
Possibly terminate the path � 587, 589

838 Index of Code Chunks [App. I

�
Possibly write out in-progress image � 298, 301�
Precompute x and y filter table offsets � 299�
Precompute filter weight table � 296, 297�
Prepare for next level of subdivision � 111, 119�
Prepare for volume integration stepping � 635�
Prepare to traverse kd-tree for ray � 166, 168�
Primitive Declarations � 130, 131 , 132 , 134 , 135�
Primitive Interface � 130 , 131 , 132�
Primitive Method Definitions � 131�
Print welcome banner � 8�
Process caustic photon intersection � 616�
Process direct lighting photon intersection � 616�
Process indirect lighting photon intersection � 616�
Process kd-tree interior node � 168�
Process kd-tree node’s children � 692�
Process scene description � 8�
ProgressReporter Data � 660�
ProgressReporter Public Methods � 660�
Project point on to projection plane and compute light � 486�
ProjectionLight Declarations � 484�
ProjectionLight Method Definitions � 484, 485 , 486�
ProjectionLight Private Data � 484, 485�
ProjectionLight Public Methods � 484, 487�
ProjectiveCamera Protected Data � 205, 206, 215�
ProjectiveCamera Public Methods � 205�
Push vertices to limit surface � 110, 120�
Put vert one-ring in Pring � 113, 115, 121�
Randomly chose a single light to sample, light � 566�
Ray Public Data � 35, 36�
Ray Public Methods � 35, 36, 37�
RayDifferential Methods � 37, 38�
RayDifferential Public Data � 37, 38�
Recursively initialize children nodes � 160, 165�
Reference Public Methods � 664, 665�
Refine last primitive in todo list � 131�
Refine primitive in mp if it’s not intersectable � 150�
Refine primitives in voxel if needed � 149, 150�
Release temporary image memory � 301, 303�
Remove most distant photon from heap and add new photon � 624�
Report rendering progress � 11, 14�
Resample image in s direction � 418, 419�
Resample image in t direction � 418�
Resample image to power-of-two resolution � 418�
Return false if BestCandidateSampler is done � 278�
Return insideDot result if point is inside dot � 444, 445�
Return next StratifiedSampler sample point � 248, 249�
Return uniform weight if point inside sphere � 555�
Round up sz to minimum machine alignment � 670

App. I] Index of Code Chunks 839

�
Runtime Loading Declarations � 737�
Runtime Loading Forward Declarations � 737, 741, 742�
Runtime Loading Local Classes � 737, 741�
Runtime Loading Method Definitions � 737, 741, 743�
Runtime Loading Static Data � 737, 742�
SDEdge Comparison Function � 104�
SDEdge Constructor � 104�
SDFace Constructor � 102�
SDFace Methods � 102, 108, 116�
SDVertex Constructor � 101�
SDVertex Methods � 101�
Sample BSDF to get new path direction � 587, 589�
Sample BSDF with multiple importance sampling � 570, 572�
Sample Method Definitions � 237, 240�
Sample Pattern Precomputation � 267 , 268 , 273�
Sample Public Methods � 239, 240�
Sample chosen BxDF � 540, 541�
Sample cosine-weighted direction on unit sphere � 547�
Sample from first quadrant and remap to hemisphere � 536�
Sample illumination from lights to find path contribution � 587, 588�
Sample light source with multiple importance sampling � 570, 571�
Sample new photon ray direction � 615, 618�
Sample one light uniformly and initialize luminance arrays � 568�
Sample point on lens � 216�
Sample random direction for final gather ray � 621�
Sample ray from light source to start light path � 592, 593�
Sample sphere uniformly inside subtended cone � 554�
Sample uniformly on sphere if P is inside it � 554�
Sampler Interface � 237, 238�
Sampler Method Definitions � 237, 238�
Sampler Public Data � 237, 238�
Sampling Declarations � 236, 237, 239 , 254 , 256 , 280�
Sampling Function Definitions � 237, 247, 248 , 251�
Sampling Inline Functions � 236, 262, 263�
Save display image to disk � 303, 326�
Scale image and handle out-of-gamut RGB values � 303, 323�
Scale to canonical viewing volume � 210, 211�
ScaleTexture Public Methods � 395, 396�
Scan over ellipse bound and compute quadratic equation � 428, 430�
Scene Data � 8, 9, 10�
Scene Declarations � 8�
Scene Methods � 10, 15�
Scene Public Methods � 8, 14�
See if hit point is inside disk radius and φmax � 83, 84�
Select anti-aliasing method for Checkerboard2D � 433�
Select best sample for current image sample � 273�
Select best time sample for current image sample � 271�
Set face to vertex pointers � 100, 103

840 Index of Code Chunks [App. I

�
Set neighbor pointers in faces � 100, 105�
Set ray origin and direction for infinite light ray � 546, 547�
Set ray time value � 209, 212, 218�
Set up 3D DDA for ray � 146, 147�
Shape Creation Declaration � 738�
Shape Declarations � 63, 491�
Shape Interface � 63, 64 , 65 , 66 , 67 , 550 , 551�
Shape Method Definitions � 64�
Shape Public Data � 63, 64�
ShapeDSO Constructor � 741�
ShapeSet Public Methods � 492, 555�
Shift stratified image samples to pixel coordinates � 247�
ShinyMetal Class Declarations � 386�
ShinyMetal Method Definitions � 386�
ShinyMetal Private Data � 386�
ShinyMetal Public Methods � 386�
Sinc Filter Declarations � 287�
Sinc Filter Method Definitions � 287, 289, 745�
SingleScattering Declarations � 636�
SingleScattering Private Data � 636�
SingleScattering Public Methods � 636�
Skip irradiance sample if it’s in front of point being shaded � 606�
Skip irradiance sample if it’s too far from the sample point � 606�
Skip irradiance sample if surface normals are too different � 606�
Solve quadratic equation for t values � 70, 71, 77, 80�
Spectrum Declarations � 177, 180�
Spectrum Method Definitions � 178, 184�
Spectrum Private Data � 181�
Spectrum Public Data � 181, 185�
Spectrum Public Methods � 181, 182 , 183 , 184 , 185�
SpecularReflection Private Data � 345�
SpecularReflection Public Methods � 345, 346 , 542�
SpecularTransmission Private Data � 348�
SpecularTransmission Public Methods � 348, 349 , 542�
Sphere Declarations � 68�
Sphere Method Definitions � 69, 70 , 76 , 77 , 738�
Sphere Private Data � 68, 69�
Sphere Public Methods � 68, 553 , 554 , 555�
SphericalMapping2D Public Methods � 407�
SpotLight Declarations � 481, 482�
SpotLight Method Definitions � 481, 482, 483 , 544 , 545�
SpotLight Private Data � 482�
SpotLight Public Methods � 482, 483�
Start recursive construction of kd-tree � 158�
StatsCounter Private Data � 661�
StatsCounter Public Methods � 661�
StatsPercentage Public Methods � 661�
StatsRatio Public Methods � 661

App. I] Index of Code Chunks 841

�
Stop path sampling since no intersection was found � 588�
Store MailboxPrim *s for leaf node � 156�
StratifiedSampler Declarations � 242�
StratifiedSampler Method Definitions � 242, 244, 248�
StratifiedSampler Private Data � 244, 247�
StratifiedSampler Public Methods � 244�
Substrate Class Declarations � 387�
Substrate Method Definitions � 387, 388�
Substrate Private Data � 387, 388�
Substrate Public Methods � 387�
Supersample Checkerboard2D � 434, 437�
Supersample Checkerboard3D � 440�
System-wide initialization � 706�
Test cylinder intersection against clipping parameters � 80�
Test disk φ value against φmax � 84�
Test sphere intersection against clipping parameters � 70, 73, 77�
Texture Class Declarations � 394, 395 , 396 , 405 , 406 , 408 , 409 , 410 , 411 , 412 , 432 , 433 , 438 , 444 , 449 , 450�
Texture Interface � 394�
Texture Method Definitions � 406, 407 , 408 , 409 , 410 , 432 , 441 , 443 , 444 , 446 , 449 , 450 , 451�
Texture Template Method Definitions � 395, 396 , 397 , 411 , 412 , 413 , 415 , 434 , 440 , 444�
TextureMapping2D Interface � 405�
TextureMapping3D Interface � 410�
ToneMap Declarations � 310�
ToneMap Interface � 310, 311�
Trace a photon path and store contribution � 613, 614�
Trace ray to sample radiance for irradiance estimate � 601�
Trace rays for specular reflection and refraction � 17, 20, 599�
Transform Declarations � 43�
Transform Inline Functions � 52, 53 , 55�
Transform Method Definitions � 46 , 47 , 48 , 49 , 50 , 55 , 56 , 57 , 208 , 210�
Transform Private Data � 43, 44�
Transform Public Methods � 43, 44, 45 , 55�
Transform Ray to object space � 70, 77, 80, 83�
Transform direction to world space � 547, 548�
Transform instance’s differential geometry to world space � 134�
Transform mesh vertices to world space � 88�
TransformSet Methods � 708, 709�
Translucent Class Declarations � 383�
Translucent Method Definitions � 383�
Translucent Private Data � 383�
Translucent Public Methods � 383�
Traverse kd-tree nodes in order for ray � 166, 168�
Triangle Data � 90�
Triangle Filter Declarations � 282�
Triangle Filter Method Definitions � 282, 284, 744�
Triangle Public Methods � 90, 96�
TriangleMesh Data � 87, 88�
TriangleMesh Declarations � 87, 90

842 Index of Code Chunks [App. I

�
TriangleMesh Method Definitions � 87, 88, 89 , 90 , 92 , 96 , 552�
TriangleMesh Public Methods � 87, 89�
Trilinearly interpolate density values to compute local density � 470, 471�
UVTexture Public Methods � 432�
UberMaterial Class Declarations � 390�
UberMaterial Dynamic Creation Routine � 390�
UberMaterial Method Definitions � 390�
Uniformly sample θ and φ in cone � 545�
Update avgY array with reflected radiance due to light � 568, 569�
Update best for 2D sample if it is best so far � 273, 274�
Update best if this is best time so far � 272�
Update f and v for next level of subdivision � 110�
Update t hitp for quadric intersection � 70, 76, 80, 83�
Update best split if this is lowest cost so far � 164�
Update child vertex pointer to new even vertex � 119�
Update child vertex pointer to new odd vertex � 119�
Update children f pointers for neighbor children � 118�
Update children f pointers for siblings � 118�
Update even vertex face pointers � 118�
Update face neighbor pointers � 118�
Update face vertex pointers � 118, 119�
Update interval for ith bounding box slab � 137�
Update irradiance cache lookup statistics � 605�
Update irradiance statistics for rays traced � 602�
Update minimum squared distance from cell’s samples � 270�
Update neighbor pointer for edge � 105�
Update new mesh topology � 111, 118�
Update parametric interval from slab intersection ts � 137, 138�
Update pixel values with filtered sample contribution � 299, 300�
Update ray for effect of lens � 216�
Update sample shifts � 276, 278, 279�
Update shadow ray statistics � 480�
Update statistics for new irradiance sample � 603�
Update vertex positions and create new edge vertices � 111�
Update vertex positions for even vertices � 111�
Use n and s to compute shading tangents for triangle, ss and ts � 97, 98�
Vector Methods � 27, 29 , 30 , 35�
Vector Public Data � 27�
VisibilityTester Public Methods � 479�
Volume Scattering Declarations � 465 , 468 , 473 , 630�
Volume Scattering Definitions � 463, 464 , 465 , 466 , 473 , 556�
VolumeGrid Declarations � 469�
VolumeGrid Method Definitions � 470�
VolumeGrid Private Data � 470�
VolumeGrid Public Methods � 470, 471�
VolumeList Private Data � 473�
VolumeList Public Methods � 473�
VolumeRegion Interface � 465 , 466

App. I] Index of Code Chunks 843

�
Voxel Declarations � 144�
Voxel Public Methods � 144, 145�
Walk ray through voxel grid � 146, 149�
WhittedIntegrator Declarations � 15�
WhittedIntegrator Method Definitions � 15, 16�
WhittedIntegrator Private Data � 16, 17�
WhittedIntegrator Public Methods � 16�
Windy Private Data � 451�
Windy Public Methods � 451�
Write raw coefficient image � 301, 303�
Write sample table to disk � 268, 274�
api.cpp* � 698�
api.h* � 698�
area.cpp* � 490�
bestcandidate.cpp* � 275�
bidirectional.cpp* � 589�
box.cpp* � 281�
camera.cpp* � 201�
camera.h* � 201�
clay.cpp* � 388�
color.cpp* � 177�
color.h* � 177�
cylinder.cpp* � 78�
directlighting.cpp* � 563�
disk.cpp* � 82�
distant.cpp* � 489�
dynload.cpp* � 737�
dynload.h* � 737�
environment.cpp* � 217�
gaussian.cpp* � 284�
glass.cpp* � 384�
goniometric.cpp* � 487�
infinite.cpp* � 493�
irradiancecache.cpp* � 597�
light.cpp* � 478�
light.h* � 478�
lowdiscrepancy.cpp* � 256�
lrt.cpp* � 7�
main program � 7�
material.cpp* � 374�
material.h* � 374�
matte.cpp* � 381�
mc.cpp* � 498�
mc.h* � 498�
mirror.cpp* � 385�
mitchell.cpp* � 285�
orthographic.cpp* � 206�
paramset.cpp* � 699

844 Index of Code Chunks [App. I

�
paramset.h* � 699�
path.cpp* � 585�
perspective.cpp* � 209�
photonmap.cpp* � 611�
plastic.cpp* � 382�
point.cpp* � 480�
projection.cpp* � 484�
samplepat.cpp � 267�
sampling.cpp* � 236�
sampling.h* � 236�
shinymetal.cpp* � 386�
sinc.cpp* � 287�
spot.cpp* � 481�
stratified.cpp* � 242�
substrate.cpp* � 387�
translucent.cpp* � 383�
transport.cpp* � 562�
transport.h* � 561�
triangle.cpp* � 282�
trianglemesh.cpp* � 87�
uber.cpp* � 390�
whitted.cpp* � 15

