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Foreword

 

From its novel and experimental beginnings over thirty years ago, computer ani-
mation has grown to become a mainstream artistic tool in the hugely active indus-
tries of motion films, television and advertising. The area has attracted many
computer scientists, artists, animators, designers, and production people. 

The past decade has been a particularly exciting period in computer animation
both for those engaged in the field and for the audiences of the many films that
have used the technology. It has been exciting to see animation that could not have
been done any other way, as well as films with special effects that blend animation
and live action so well as to make them indistinguishable.

Underlying this enormous activity is the set of algorithms that comprise the
actual software engine of computer animation, defining the powers of expression
that are available to the animator. With the industry’s maturity has come the need
for a textbook that captures the art and mathematics behind the technology and
that can serve as both an archival record and a teaching manual. With 

 

Computer
Animation: Algorithms and Techniques, 

 

Rick Parent has done a terrific job of meet-
ing this need. He has worked in the area of computer animation since its early
days in the seventies, first as a student and now as a professor on the faculty at
Ohio State University as well as a consultant and entrepreneur.

Just as we at the National Research Council of Canada were fortunate to work
with artists and animators in the early days of developing computer animation
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techniques, so was Rick Parent at Ohio State University. Whereas we worked
under the leadership of Nestor Burtnyk primarily in 2D layered cel animation,
Rick embarked on applying 3D graphics methods that have become the basis of
most commercial computer animation today. Because of this experience, Rick’s
book is both academically rigorous and eminently practical, presenting a thorough
and up-to-date treatment of the algorithms used in computer animation.

Marceli Wein
Kingston, Ontario

 

Marceli Wein is Researcher Emeritus of the National Research Council of Canada, where he
had worked for thirty years as Research Officer. In the late sixties and seventies he worked with
Nestor Burtnyk, who wrote the original key frame interpolation software that became the basis
of the first computer animation system. Their work in collaboration with the National Film
Board of Canada resulted in 

 

Hunger

 

 (1974), by Peter Foldes, which was the first computer-
animated film to be nominated for an Academy Award. In 1997, Burtnyk and Wein received a
Technical Award from the Academy of Motion Picture Arts and Sciences.
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Preface

 

Overview

 

This book surveys algorithms and programming techniques for specifying and
generating motion for graphical objects. It is primarily concerned with three-
dimensional (3D) computer animation. The main audience is advanced under-
graduate or beginning graduate computer science students. Computer graphics
programmers who want to learn the basics of computer animation programming
and computer animators (digital artists) who want to better understand the under-
lying computational issues of animation software will also benefit from this book.

This book addresses practical issues and provides accessible techniques and
straightforward implementations. Appendixes cover basic material that the reader
may find useful as a refresher as well as specific algorithms for use in implementa-
tions. In some cases, programming examples are complete working code segments,
in C, which can be copied, compiled, and run to produce basic examples of the
algorithms discussed; other programming examples are C-like pseudocode that
can be translated into working code. C was chosen because it forms the common
basis for languages such as C++ and Java, and it lends itself to illustrating the step-
by-step nature of algorithms. Purely theoretical discussions have been avoided as
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much as possible except to point out avenues of current and future research. The
emphasis is on three-dimensional techniques; the two-dimensional (2D) issues are
not completely ignored, but they are a minor part of the text.

This text is not intended for animators using off-the-shelf animation software
(except to the extent that it might help in understanding the underlying computa-
tions required for a particular technique). It does not attempt to cover the theory
of computer animation, address the aesthetics of computer animation, or discuss
the artistic issues involved in designing animations. It does not detail the produc-
tion issues in the actual commercial enterprise of producing a finished piece of ani-
mation. And, finally, it does not address the issue of 

 

computer-assisted animation,

 

which, for our purposes, is taken to mean the computerization of conventional
hand-drawn techniques; for the most part, that area has its own set of separate
issues [1] [2]. The book does concentrate on full 3D computer animation and
identifies the useful algorithms and techniques that animators and programmers
can use to move objects in interesting ways. 

To 

 

animate

 

 literally means “to give life to”; 

 

animating

 

 is moving something (or
making something appear to move) that cannot move itself—whether it is a pup-
pet of King Kong, a hand-drawn image of Snow White, the hands of a watch, or a
synthetic image of a wooden toy cowboy. Animation has been used to teach and
entertain from the early days of puppetry and continues to be used today in film
and video. It is a powerful tool to spark the imagination of the child in all of us.
Animation adds the dimension of time to computer graphics. This opens up great
potential for transmitting information and knowledge to the viewer while igniting
the emotions. Animation also creates a whole new set of problems for those who
produce the images that constitute the animated sequence. To animate something,
the animator has to be able to control, either directly or indirectly, how the 

 

thing

 

 is
to move through time and space as well as how it might change its own shape or
appearance over time. 

The fundamental objective of computer animation programming is to select
techniques and design tools that are expressive enough for animators to specify
what they intend, yet at the same time are powerful enough to relieve animators
from specifying any details they are not interested in. Obviously, no one tool is
going to be right for every animator, for every animation, or even for every scene
in a single animation. The appropriateness of a particular animation tool depends
on the effect desired and the control required by the animator. An artistic piece of
animation will usually require tools different from those required by an animation
that simulates reality or educates a patient.

There is a distinction made here between 

 

computer-assisted

 

 

 

animation

 

 and

 

computer-generated

 

 

 

animation

 

 

 

[1]

 

 

 

[3]

 

. Computer-assisted animation refers to sys-
tems consisting of one or more two-dimensional planes that computerize the tra-
ditional (hand-drawn) animation process. Interpolation between key shapes is
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typically the only use of the computer in producing this type of animation (in
addition to the non–motion control uses of the computer in tasks such as inking,
shuffling paper, and managing data).

This book is concerned with computer-generated animation in which the ani-
mator is typically working in a synthetic three-dimensional environment with the
objective of specifying the motion of both the cameras and the 3D objects (e.g.,
as in 

 

Toy Story

 

). For discussion purposes, motion specification for computer-
generated animation is divided into two broad categories, 

 

interpolation and basic
techniques

 

 and 

 

advanced algorithms

 

. These somewhat arbitrary names have been
chosen to accentuate the computational differences among approaches to motion
control. The former group can be thought of as 

 

low level

 

 because the animator
exercises fine control over the motion and the expectations of the animator are
very precise. The latter group comprises 

 

high-level

 

 algorithms in which control is at
a coarser level with less of a preconceived notion of exactly what the motion will
look like. Use of the term 

 

algorithms

 

 is meant to reinforce the notion of the relative
sophistication of these techniques.

The interpolation and basic technique category consists of ways in which the
computer is used to fill in the details of the motion once the animator specifies the
required information. Examples of techniques in this category are key framing and
path following. When using these techniques, animators typically have a fairly spe-
cific idea of the exact motion they want; these techniques give animators a direct
and precise way of specifying and controlling the motion, with the computer’s
function limited to filling in appropriate numeric values that are required to pro-
duce the desired motion.

High-level procedural algorithms and behavioral models generate motion using
a set of rules or constraints that specify 

 

what

 

 is to be done instead of 

 

how

 

 it is to be
done. The animator chooses an appropriate algorithm or sets up the rules of a
model and then selects initial values or boundary conditions. The system is then
set into motion, so to speak, and the objects’ motions are automatically generated
by the algorithm or model. These approaches, such as particle systems and rigid
body dynamics, often rely on sophisticated computations. To aid the reader in
understanding and implementing the computations required for high-level algo-
rithms, the appendixes provide background information on various mathematical
areas related to animation, such as vector algebra, numerical integration tech-
niques, and optimization techniques. Algorithms that require exceptionally
sophisticated mathematical formulas and advanced training in physics, mechanical
engineering, math, and so on are not emphasized in this text, although pointers to
references are often given for the interested reader.

The motion control methods can also be discussed in terms of the level of
abstraction at which the animator is working. At one extreme, at a very low level
of abstraction, the animator could individually color every pixel in every frame
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using a paint program. At the other extreme, at a very high level of abstraction, the
animator could (in an ideal world) tell a computer to “make a movie about a dog.”
Presumably, the computer would whirl away while it computes such a thing. A
high level of abstraction frees the animator from dealing with the myriad details
required to produce a piece of animation. A low level of abstraction allows the ani-
mator to be very precise in specifying exactly what is to be displayed and when. In
practice, animators want to be able to switch back and forth and to work at vari-
ous levels of abstraction depending on the desired effect. Developing effective ani-
mation tools that permit animators to work at both high and low levels of
abstraction is a particular challenge.

This distinction between basic techniques and advanced algorithms is made pri-
marily for pedagogical purposes. In practice the collection of techniques and algo-
rithms used in computer animation forms a continuum from low to high levels of
abstraction. Each technique requires a certain amount of effort from the animator
and from the computer. This distribution of workload between the animator and
the computer is a distinguishing characteristic among animation techniques. Intu-
itively, low-level techniques tend to require more user input and employ fairly
straightforward computation. High-level algorithms, on the other hand, require
less specific information from the animator and more computation. The dividing
line between the categories is an artificial construct used solely to provide a conve-
nient method of grouping techniques for discussion in the book.

In addition, model-specific applications are surveyed. These have been grouped
into the two general areas 

 

natural phenomena

 

 and 

 

figure modeling

 

. The former con-
centrates on naturally occurring complex phenomena and includes plants, fire,
smoke, and water. The latter concentrates on animating the human form and
includes walking, reaching, and facial expression. The topics in the two chapters
dealing with these areas tend to be more recently developed than topics found in
earlier chapters and are therefore less well established. These chapters survey vari-
ous approaches rather than offer specific solutions to specific problems.

 

Organization of the Book

 

The first chapter discusses general issues related to animation, including percep-
tion, the technological history of hand-drawn animation, a survey of animation
production, and a brief snapshot of the ever-evolving history of computer anima-
tion. These provide a broad perspective of the art and craft that is animation.

Chapter 2 presents general techniques and technical issues. It reviews computa-
tional issues in computer graphics to ensure a solid background in the techniques
that are important in understanding the remainder of the book. This includes a
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review of the rendering pipeline and a discussion of the ordering of transforma-
tions to reduce round-off errors that can creep into a series of calculations as one
builds on another. A detailed section on quaternion representation of orientation
is presented in this chapter as well. If the reader is well versed in computer graph-
ics, this chapter may be skimmed to pick up relevant terminology or skipped alto-
gether.

Chapters 3 and 4 present the techniques and algorithms that form the basis for
computer animation. Chapter 3 discusses the low-level, basic techniques, concen-
trating on interpolation. It also presents the basics of key-frame systems and ani-
mation languages. The high-level advanced algorithms are presented in Chapter 4,
which begins with forward and inverse kinematics, followed by physically based
techniques. The algorithms that are typified by emergent behavior are included:
particle systems, flocking, and autonomous behavior. Finally, energy minimization
techniques are introduced.

Chapters 5 and 6 present model-specific applications of computer animation.
Chapter 5 focuses on approaches to modeling natural phenomena and covers the
representation and animation of plants, water, and gases. Chapter 6 concentrates
on figure animation and includes sections on activities of figures and common
modeling issues: reaching and grasping, walking, facial expression, representing
virtual humans, and clothes.

Appendix A presents rendering issues often involved in producing images for
computer animation: double buffering, compositing, computing motion blur, and
drop shadows. It assumes a knowledge of the use of frame buffers, of how a 

 

z

 

-
buffer display algorithm works, and of aliasing issues. Appendix B is a collection of
relevant material from a variety of disciplines. It contains a survey of interpolation
and approximation techniques, vector algebra and matrices, quaternion conver-
sion code, the first principles of physics, several useful numeric techniques, and
attributes of film, video, and image formats. 

The Web page associated with the book, containing images, code, figures, and
animations, can be found at 

 

http://www.mkp.com/caat/.
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C

 

omputer animation, for many people, is synonymous with big-screen events
such as 

 

Star Wars,

 

 

 

Toy Story,

 

 and 

 

Titanic

 

. But not all, or arguably even most, com-
puter animation is done in Hollywood. It is not unusual for Saturday morning
cartoons to be entirely computer generated. Computer games take advantage of
state-of-the-art computer graphics techniques. Real-time performance-driven
computer animation has appeared at SIGGRAPH

 

1

 

 and on 

 

Sesame Street.

 

 Desktop
computer animation is now possible at a reasonable cost. Computer animation on
the Web is routine. Digital simulators for training pilots, SWAT teams, and
nuclear reactor operators are commonplace. The distinguishing characteristics of
these various venues are the cost, the image quality desired, and the amount and
type of interaction allowed. This book does not address the issues concerned with
a particular venue, but it does present the algorithms and techniques used to do
animation in all of them.

In computer animation, any value that can be changed can be animated. An
object’s position and orientation are obvious candidates for animation, but all of

 

1. SIGGRAPH is the Association for Computing Machinery’s (ACM’s) Special Interest Group on Computer Graphics.
The ACM is the main professional group for computer scientists.
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the following can be animated as well: the object’s shape, its shading parameters,
its texture coordinates, the light source parameters, and the camera parameters.

To set the context for computer animation, it is important to understand its
heritage, its history, and certain relevant concepts. This chapter discusses motion
perception, the technical evolution of animation, animation production, and
notable works in computer animation. It provides a grounding in computer ani-
mation as a field of endeavor.

 

1.1 Perception

 

Images can quickly convey a large amount of information because the human
visual system is a sophisticated information processor. It follows, then, that mov-
ing images have the potential to convey even more information in a short time.
Indeed, the human visual system has evolved to provide for survival in an ever-
changing world; it is designed to notice and interpret movement.

When animation is created for later viewing it is typically recorded on film or
video as a series of still images that when displayed in rapid sequence are perceived
by an observer as a single moving image. This is possible because the eye-brain
complex assembles the sequence of still images and interprets it as continuous
movement. A single image presented to a viewer for a short time will leave an
imprint of itself—the 

 

positive afterimage

 

—in the visual system for a short time
after it is removed (dramatically demonstrated by looking into the flash produced
by a flash camera). This phenomenon is attributed to what has come to be called

 

persistence of vision

 

. When a person is presented with a sequence of closely related
still images at a fast enough rate, persistence of vision induces the sensation of con-
tinuous imagery.

 

2

 

 The afterimages of the individual stills fill in the gaps between
the images. In both film and video, a sequence of images is recorded that can be
played back at rates fast enough to fool the eye into interpreting it as continuous
imagery. When the perception of continuous imagery fails to be created, the image
is said to 

 

flicker

 

. In this case, the animation appears as a rapid sequence of still
images to the eye-brain. Depending on conditions such as room lighting and
viewing distance, the rate at which single images must be played back in order to
maintain the persistence of vision varies. This rate is referred to as the 

 

flicker rate

 

.
Persistence of vision is not the same as perception of motion. Rotating a white

light source fast enough will create the impression of a stationary white ring.

 

2. Recently in the literature, it has been argued that persistence of vision is not the mechanism responsible for success-
fully viewing film and video as continuous imagery. I avoid controversy here and, for purposes of this book and consis-
tent with popular practice, assume that whatever psychophysical mechanism is responsible for persistence of vision is
also responsible for the impression of continuous imagery in film and video.
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Although this effect can be attributed to persistence of vision, the result is static.
The sequential illumination of a group of lights typical of a movie theater marquee
produces the illusion of a lighted object circling the signage. Motion is perceived,
yet persistence of vision is not involved because no individual images are present.

While persistence of vision addresses the lower limits for establishing the per-
ception of continuous imagery, there are also upper limits to what the eye can per-
ceive. The receptors in the eye continually sample light in the environment. The
limitations on motion perception are determined by the reaction time of those
sensors and by other mechanical limitations such as blinking and tracking. If an
object moves too quickly with respect to the viewer, then the receptors in the eye
will not be able to respond fast enough for the brain to distinguish sharply
defined, individual detail; 

 

motion blur

 

 results. In sequences of still images, motion
blur results as a combination of the object’s speed and the time interval over which
the scene is sampled. In a still camera, a fast-moving object will not blur if the
shutter speed is fast enough relative to the object’s speed. In computer graphics,
motion blur will never result if the scene is sampled at a precise instant in time; to
compute motion blur, the scene needs to be sampled over an interval of time or
manipulated to appear as though it were. (See Appendix A for a discussion of
motion blur calculations.) If motion blur is not calculated, then images of a fast-
moving object can appear disjointed. The motion becomes jerky, similar to live
action viewed with a strobe light, and is often referred to as 

 

strobing

 

. In hand-
drawn animation, fast-moving objects are typically stretched in the direction of
travel so that the object’s images in adjacent frames overlap, reducing the strobing
effect. 

As reflected in the discussion above, there are actually two rates that are of con-
cern. One is the 

 

playback rate,

 

 the number of images per second displayed in the
viewing process. The other is the 

 

sampling rate,

 

 the number of different images
that occur per second. The playback rate is the rate related to flicker. The sampling
rate determines how jerky the motion appears. For example, a television signal
conforming to the National Television Standards Committee (NTSC) format dis-
plays images at a rate of thirty per second, but in some programs (e.g., some Satur-
day morning cartoons) there may be only six different images per second, with
each image repeatedly displayed five times. Often, lip-synch animation is drawn
on twos (every other frame) because drawing it on ones (animating it in every
frame) appears too hectic. Some films display each frame twice to reduce flicker
effects. On the other hand, because an NTSC television signal is interlaced (which
means the odd-numbered scanlines are played beginning with the first sixtieth of a
second and the even-numbered scanlines are played beginning with the next sixti-
eth of a second), smoother motion can be produced by sampling the scene every
sixtieth of a second even though the complete frames are only played back at thirty
frames per second. See Appendix B for details concerning various film and video
formats.
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1.2 The Heritage of Animation

 

In the most general sense, 

 

animation

 

3

 

 includes “live-action” puppetry such as that
found on 

 

Sesame Street

 

 and the use of mechanical devices to articulate figures such
as in 

 

animatronics

 

. However, I concentrate here on devices that use a sequence of
individual stills to create the effect of a single moving image, because these devices
have a closer relationship to computer animation.

 

1.2.1 Early Devices

 

Persistence of vision

 

 and the ability to interpret a series of stills as a moving image
were actively investigated in the 1800s 

 

[2]

 

, well before the film camera was
invented. The recognition and subsequent investigation of this effect led to a vari-
ety of devices intended as parlor toys. Perhaps the simplest of these early devices is
the 

 

thaumatrope,

 

 a flat disk with images drawn on both sides and having two
strings connected opposite each other on the rim of the disk (see Figure 1.1). The
disk could be quickly flipped back and forth by twirling the strings. When flipped
rapidly enough, the two images appear to be superimposed. The classic example
uses the image of a bird on one side and the image of a birdcage on the other; the
rotating disk visually places the bird inside the birdcage. An equally primitive tech-
nique is the 

 

flipbook,

 

 a tablet of paper with an individual drawing on each page.
When the pages are flipped rapidly, the viewer has the impression of motion.

One of the most well known early animation devices is the 

 

zoetrope,

 

 or wheel of
life. The zoetrope has a short, fat cylinder that rotates on its axis of symmetry.
Around the inside of the cylinder is a sequence of drawings, each one slightly dif-
ferent from the ones next to it. The cylinder has long vertical slits cut into its side
between each adjacent pair of images so that when it is spun on its axis each slit
allows the eye to see the image on the opposite wall of the cylinder (see Figure 1.2,
Plate 1). The sequence of slits passing in front of the eye as the cylinder is spun on
its axis presents a sequence of images to the eye, creating the illusion of motion. 

Related gizmos that use a rotating mechanism to present a sequence of stills to
the viewer are the 

 

phenakistoscope

 

 and the 

 

praxinoscope

 

. The phenakistoscope also
uses a series of rotating slots to present a sequence of images to the viewer by posi-
tioning two disks rotating in unison on an axis; one disk has slits, and the other
contains images facing the slits. One sights along the axis of rotation so the slits

 

3. A more restricted definition of 

 

animation,

 

 also found in the literature, requires the use of a sequence of stills to create
the visual impression of motion. The restricted definition does not admit techniques such as animatronics or shadow
puppets under the rubric 

 

animation

 

.

Team LRN



 

The Heritage of Animation 5

 

Figure 1.1

 

A thaumatrope

 

Figure 1.2

 

A zoetrope 

Team LRN



 

6

 

      

 

 1: Introduction

 

pass in front of the eye, which can thus view a sequence of images from the other
disk. The praxinoscope uses a cylindrical arrangement of rotating mirrors inside a
large cylinder of images facing the mirrors. The mirrors are angled so they reflect
an observer’s view of the images. 

Just before the turn of the century, the moving image began making its way
onstage. The magic lantern (an image projector powered by candle or lamp) and
shadow puppets became popular theater entertainment [1]. On the educational
front, Eadweard Muybridge investigated the motions of humans and animals. To
show image sequences during his lectures, he invented the 

 

zoopraxinoscope,

 

 a pro-
jection device also based on rotating slotted disks. Then, in 1891, the seed of a rev-
olution was planted: Thomas Edison invented the motion picture projector, giving
birth to a new industry.

 

1.2.2 The Early Days of “Conventional” Animation

 

Animation in America exploded in the twentieth century in the form of filming
hand-drawn, two-dimensional images (also referred to as 

 

conventional animation

 

).
Studying the early days of conventional animation is interesting in itself [12] [15]
[18] [19], but the purpose of this overview is to provide an appreciation of the
technological advances that drove the progress of animation during the early years.
The earliest use of a camera to make lifeless things appear to move occurred in
1896. Georges Méliès used simple camera tricks such as multiple exposures and
stop-motion techniques to make objects appear, disappear, and change shape [7]
[21]. Some of the earliest pioneers in film animation were Emile Cohl, a French-
man who produced several vignettes; J. Stuart Blackton, an American who actually
animated “smoke” in a scene in 1900 (special effects) and is credited with creating
the first animated cartoon, in 1906; and the American Winsor McCay, the first
celebrated animator, best known for his works 

 

Little Nemo 

 

(1911) and 

 

Gertie the
Dinosaur 

 

(1914).

 

 

 

McCay is considered by many to have produced the first popular
animations.

Like many of the early animators, McCay was an accomplished newspaper car-
toonist. He redrew each complete image on rice paper mounted on cardboard and
then filmed them individually. He was also the first to experiment with color in
animation. Much of his early work was incorporated into vaudeville acts in which
he “interacted” with an animated character on a screen. Similarly, early cartoons
often incorporated live action with animated characters. To appreciate the impact
of such a popular entertainment format, we should keep in mind the relative
naïveté of audiences at the time; they had no idea how film worked, much less
what hand-drawn animation was. It was, indeed, magic. 

The first major technical developments in the animation process can be traced
to the efforts of John Bray, one of the first to recognize that patenting aspects of
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the animation process would result in a competitive advantage. Starting in 1910,
his work laid the foundation for conventional animation as it exists today. Earl
Hurd, who joined forces with Bray in 1914, patented the use of translucent 

 

cels

 

4

 

in the compositing of multiple layers of drawings into a final image and also pat-
ented gray scale drawings as opposed to black-and-white. Later developments by
Bray and others enhanced the overlay idea to include a peg system for registration
and the drawing of the background on long sheets of paper so that 

 

panning

 

 (trans-
lating the camera parallel to the plane of the background) could be performed
more easily. Out of Bray’s studio came Max Fleischer (Betty Boop), Paul Terry
(Terrytoons), George Stallings (Tom and Jerry), and Walter Lantz (Woody Wood-
pecker). In 1915 Fleischer patented 

 

rotoscoping

 

 (drawing images on cells by tracing
over previously recorded live action). Several years later, in 1920, Bray experi-
mented with color in the short 

 

The Debut of Thomas Cat

 

.
While the technology was advancing, animation as an art form was still strug-

gling. The first animated character with an identifiable personality was Felix the
Cat, drawn by Otto Messmer of Pat Sullivan’s studio. Felix was the most popular
and most financially successful cartoon of the mid-1920s. In the late 1920s, how-
ever, new forces had to be reckoned with: sound and Walt Disney.

 

1.2.3 Disney

 

Walt Disney was, of course, the overpowering force in the history of conventional
animation. Not only did his studio contribute several technical innovations, but
Disney, more than anyone else, advanced animation as an art form. Disney’s inno-
vations in animation technology included the use of a storyboard to review the
story and pencil sketches to review motion. In addition, he pioneered sound and
color in animation (although he was not the first to use color). Disney also studied
live-action sequences to create more realistic motion in his films. When he used
sound for the first time in 

 

Steamboat Willie

 

 (1928), he gained an advantage over
his competitors.

One of the most significant technical innovations of the Disney studio was
development of the multiplane camera (see Figure 1.3). The multiplane camera
consists of a camera mounted above multiple planes, each of which holds an ani-
mation cell. Each of the planes can move in six directions (right, left, up, down, in,
out), and the camera can move closer and farther away (see Figure 1.4). 

Multiplane camera animation is more powerful than one might think. By mov-
ing the camera closer to the planes while the planes are used to move foreground
images out to the sides, a more effective zoom can be performed. Moving multiple

 

4.

 

Cel

 

 is short for 

 

celluloid,

 

 which was the original material used in making the translucent layers. Currently, cels are
made from acetate. 
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planes at different rates can produce the 

 

parallax effect,

 

 which is the visual effect of
closer objects apparently moving faster across the field of view than objects farther
away as an observer’s view pans across an environment. This is very effective in cre-
ating the illusion of depth and an enhanced sensation of three dimensions. Keep-
ing the camera lens open during movement can produce several additional effects:
figures can be extruded into shapes of higher dimension; depth cues can be incor-
porated into an image by blurring the figures on more distant cels; and motion
blur can be produced

 

.

 

With regard to the art of animation, Disney perfected the ability to impart
unique, endearing personalities in his characters, such as those exemplified in

 

Figure 1.3

 

Disney multiplane camera
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Mickey Mouse, Pluto, Goofy, the Three Little Pigs, and the Seven Dwarfs. He
promoted the idea that the mind of the character was the driving force of the
action and that a key to believable animated motion was the analysis of real-life
motion. He also developed mood pieces, for example, 

 

Skeleton Dance 

 

(1929) and

 

Fantasia

 

 (1940). 

 

1.2.4 Contributions of Others

 

The 1930s saw the proliferation of animation studios, among them Fleischer,
Iwerks, Van Beuren, Universal Pictures, Paramount, MGM, and Warner Brothers.
The technological advances that are of concern here were mostly complete by this
period. The differences between and contributions of the various studios have to
do more with the artistic aspects of animation than with the technology involved
in producing animation. Many of the notable animators in these studios were
graduates of Disney’s or Bray’s studio. Among the most recognizable names are Ub
Iwerks, George Stallings, Max Fleischer, Bill Nolan, Chuck Jones, Paul Terry, and
Walter Lantz.

 

1.2.5 Other Media for Animation

 

The rich heritage of hand-drawn animation in the United States makes it natural
to consider it the precursor to computer animation, which also has strong roots in
this country. However, computer animation has a close relationship to other ani-
mation techniques as well. A close comparison can be made between computer
animation and some stop-motion techniques, such as clay and puppet animation.
Typically in three-dimensional computer animation, the first step is the object
modeling process. The models are then manipulated to create the three-
dimensional scenes that are rendered to produce the images of the animation. 

 

Figure 1.4

 

Directional range of the multiplane camera, inside of which the image is optically 
composited. 

Camera movement

Each plane can move 
independently in six directions
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In much the same way, clay and puppet stop-motion animation use three-
dimensional figures that are built and then animated in separate, well-defined
stages. Once the physical, three-dimensional figures are created, they are used to
lay out a three-dimensional environment. A camera is positioned to view the envi-
ronment and record an image. One or more of the figures are manipulated, and
the camera may be repositioned. The camera records another image of the scene.
The figures are manipulated again, another image is taken of the scene, and the
process is repeated to produce the animated sequence. Willis O’Brien of 

 

King Kong

 

fame is generally considered the dean of this type of stop-motion animation. His
understudy, who went on to create an impressive body of work in his own right,
was Ray Harryhausen (

 

Mighty Joe Young, Jason and the Argonauts,

 

 and many more).
More recent impressive examples of 3D stop-motion animation are Nick Park’s

 

Wallace and Gromit

 

 series and the Tim Burton productions 

 

Nightmare Before
Christmas

 

 and 

 

James and the Giant Peach

 

.
Because of computer animation’s close association with video technology, it has

also been associated with video art, which depends largely on the analog manipu-
lation of the video signal. Because creating video art is inherently a two-
dimensional process, the relationship is viewed mainly in the context of computer
animation postproduction techniques. Even this connection has faded since the
popularity of recording computer animation by digital means has eliminated most
analog processing.

 

1.2.6 Principles of Computer Animation

 

To study various techniques and algorithms used in computer animation, it is use-
ful to first understand their relationship to the animation principles used in hand-
drawn animation. In an article by Lasseter [8], the principles of animation as artic-
ulated by some of the original Disney animators [19] are related to techniques
commonly used in computer animation. These principles are 

 

squash & stretch

 

, 

 

tim-
ing, secondary actions

 

, 

 

slow in & slow out, arcs, follow through/overlapping action

 

,

 

exaggeration

 

, 

 

appeal, anticipation, staging, 

 

and 

 

straight ahead

 

 versus 

 

pose to pose. 

 

Las-
seter is a conventionally trained animator who worked at Disney before going to
Pixar. At Pixar he was responsible for many celebrated computer animations,
including the first to win an Academy Award, 

 

Tin Toy

 

. Whereas Lasseter discusses
each principle in terms of how it might be implemented using computer anima-
tion techniques, the principles are organized here according to the type of issue
they contribute to in a significant way. Because several principles relate to multiple
issues, some principles appear under more than one heading.
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Simulating Physics

 

Squash & stretch, timing, secondary actions, slow in & slow out, and arcs estab-
lish the physical basis of objects in the scene. A given object possesses some degree
of rigidity and should appear to have some amount of mass. This is reflected in the
distortion (

 

squash & stretch

 

) of its shape during an action, especially a collision.
The animation must support these notions consistently for a given object
throughout the animation. 

 

Timing

 

 has to do with how actions are spaced accord-
ing to the weight, size, and personality of an object or character and, in part, with
the physics of movement as well as the artistic aspects of the animation. 

 

Secondary
actions

 

 support the main action, possibly supplying physically based reactions to
an action that just occurred. 

 

Slow in & slow out 

 

and 

 

arcs

 

 are concerned with how
things move through space. Objects 

 

slow in and slow out of poses. When speaking
of the actions involved, objects are said to ease in and ease out. Such speed varia-
tions model inertia, friction, and viscosity. Objects, because of the physical laws of
nature such as gravity, usually move not in straight lines but rather in arcs.

Designing Aesthetic Actions
Exaggeration, appeal, and follow through/overlapping action are principles that ad-
dress the aesthetic design of an action or action sequence. Often the animator
needs to exaggerate a motion so it cannot be missed or so it makes a point (Tex
Avery is well known for this type of conventional animation). To keep the audi-
ence’s attention, the animator needs to make it enjoyable to watch (appeal ). In ad-
dition, actions should flow into one another ( follow through/overlapping action) to
make the entire shot appear to continually evolve instead of looking like disjointed
movements. Squash & stretch can be used to exaggerate motion and to create
flowing action. Secondary actions and timing considerations also play a role in de-
signing motion.

Effective Presentation of Actions
Anticipation and staging concern how an action is presented to the audience. Antic-
ipation dictates that an upcoming action is set up so that the audience knows it (or
something) is coming. Staging expands on this notion of presenting an action so
that it is not missed by the audience. Timing is also involved in effective presenta-
tion to the extent that an action has to be given the appropriate duration for the
intended effect to reach the audience. Secondary actions and exaggeration can also
be used to create an effective presentation of an action.

Production Technique
Straight ahead versus pose to pose concerns how a motion is created. Straight ahead
refers to progressing from a starting point and developing the motion continually
along the way. Physically based animation could be considered a form of this. Pose
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to pose, the typical approach in conventional animation, refers to identifying key
frames and then interpolating intermediate frames.

1.3  Animation Production

Although animation production is not the subject of this book, it merits some dis-
cussion. It is useful to have some familiarity with how a piece of animation is bro-
ken into parts and how animators go about producing a finished piece. Much of
this is taken directly from conventional animation and is applicable to computer
animation.

A piece of animation is usually discussed using a four-level hierarchy, although
the specific naming convention for the levels may vary.5 Here the overall anima-
tion—the entire project—is referred to as the production. Typically, productions
are broken into major parts referred to as sequences. A sequence is a major episode
and is usually identified by an associated staging area; a production usually consists
of one to a dozen sequences. A sequence is broken down into one or more shots;
each shot is a continuous camera recording. A shot is broken down into the indi-
vidual frames of film. A frame is a single recorded image. This results in the hierar-
chy shown in Figure 1.5.

Several steps are required to successfully plan and carry out the production of a
piece of animation [9] [18]. Animation is a trial-and-error process that involves
feedback from one step to previous steps and usually demands several iterations
through multiple steps at various times. Even so, the production of animation typ-
ically follows a standard pattern. First, a preliminary story is decided on, including
a script. A storyboard is developed that lays out the action scenes by sketching rep-
resentative frames. The frames are often accompanied by text that sketches out the

5. Live-action film tends to use a five-level hierarchy: film, sequence, scene, shot, frame [3]. Here terminology used in
feature-length computer animation is presented.

Figure 1.5 Sample hierarchy of a simple animation production 

Sequence 1

  shot 1 shot 2 shot 3shot 1 shot 2 shot 4

Frame 1 Frame 2 Frame n

Sequence 2

Production
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action taking place. This is used to present, review, and critique the action as well
as to examine character development. A model sheet is developed that consists of a
number of drawings for each figure in various poses and is used to ensure that each
figure’s appearance is consistent as it is repeatedly drawn during the animation
process. The exposure sheet records information for each frame such as sound track
cues, camera moves, and compositing elements. The route sheet records the statis-
tics and responsibility for each scene. An animatic, or story reel, may be produced
in which the storyboard frames are recorded, each for as long as the sequence it
represents, thus creating a rough review of the timing. Once the storyboard has
been decided on, the detailed story is worked out to identify the actions in more
detail. Key frames (also known as extremes) are then identified and produced by
master animators to aid in confirmation of character development and image qual-
ity. Associate and assistant animators are responsible for producing the frames
between the keys; this is called in-betweening. Test shots, short sequences rendered
in full color, are used to test the rendering and motions. To completely check the
motion, a pencil test may be shot, which is a full-motion rendering of an extended
sequence using low-quality images such as pencil sketches. Problems identified in
the test shots and pencil tests may require reworking of the key frames, detailed
story, or even the storyboard. Inking refers to the process of transferring the pen-
ciled frames to cels. Opaquing, also called painting, is the application of color to
these cels. 

Sound is very important in animation because of the higher level of precise tim-
ing that is possible when compared to live action [9]. Sound takes three forms in
an animation: music, special effects, and voice. Whether the sound or the anima-
tion should be created first depends on the production and the role that sound
plays. For lip-synched animation, the sound track should be created first and the
animation made to fit. In most other cases, the animation can take place first, with
the sound created to fit the action. In such cases, a scratch track, or rough sound
track, is built at the same time the storyboard is being developed and is included in
the animatic.

Computer animation production has borrowed most of the ideas from conven-
tional animation production, including the use of a storyboard, test shots, and
pencil testing. The storyboard has translated directly to computer animation pro-
duction, although it may be done on-line. It still holds the same functional place
in the animation process and is an important component in planning animation.
The use of key frames and in-betweens has also been adopted in certain computer
animation systems. 

While computer animation has borrowed the production approaches of con-
ventional animation, there are significant differences between how computer ani-
mation and conventional animation create an individual frame of the animation.
In computer animation, there is usually a strict distinction among creating the
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models; creating a layout of the models including camera positioning and lighting;
specifying the motion of the models, lights, and camera; and the rendering process
applied to those models. This allows for reusing models and lighting setups. In
conventional animation, all of these processes happen simultaneously as each
drawing is created, the only exception being the possible reuse of backgrounds, for
example, with the multilayer approach. 

The two main evaluation tools of conventional animation, test shots and pencil
tests, have counterparts in computer animation. A speed/quality trade-off can be
made in each of the three stages of creating a frame of computer animation: model
building, motion control, and rendering. By using high-quality techniques in only
one or two of these stages, that aspect of the presentation can be quickly checked
in a cost-effective manner. A test shot in computer animation is produced by a
high-quality rendering of a highly detailed model to see a single frame, a short
sequence of frames of the final product, or every nth frame of a longer sequence
from the final animation. The equivalent of a pencil test can be performed by sim-
plifying the sophistication of the models used, by using low-quality and/or low-
resolution renderings, or by using simplified motion. 

Often, it is useful to have several representations of each model available at
varying levels of detail. For example, placeholder cubes can be rendered to present
the gross motion of rigid bodies in space and to see spatial and temporal relation-
ships among objects. “Solids of revolution” objects (objects created by rotating a
silhouette edge around an axis) lend themselves quite well to multiple levels of
detail for a given model based on the number of slices used. Texture maps and dis-
placement maps can be disabled until the final renderings.

To simplify motion, articulated figures6 can be kept in key poses as they navi-
gate through an environment in order to avoid interpolation or inverse kinemat-
ics. Collision detection and response can be selectively “turned off” when not
central to the effect created by the sequence. Complex effects such as smoke and
water can be removed or represented by simple geometric shapes during testing.

Many aspects of the rendering can be selectively turned on or off to provide
great flexibility in giving the animator clues to the finished product’s quality with-
out committing to the full computations required in the final presentation. Real-
time rendering can be used to preview the animation. Wire frame rendering of
objects can sometimes provide sufficient visual cues to be used in testing. Often,
the resulting animation can be computed in real time for very effective motion
testing before committing to a full anti-aliased, transparent, texture-mapped ren-
dering. Shadows, smooth shading, texture maps, environmental maps, specular
reflection, and solid texturing are options the animator can use for a given run of

6. Articulated figures are models consisting of rigid segments usually connected in a treelike structure; the connections are
either revolute or prismatic joints, allowing a segment to rotate or translate relative to the connected segment.
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the rendering program. Even in finished pieces of commercial animation it is com-
mon practice to take computational shortcuts when they do not affect the quality
of the final product. For example, the animator can select which objects can
shadow which other objects in the scene. In addition to being a compositional
issue, selective shadowing saves time over a more robust approach in which every
object can shadow every other object. In animation, environmental mapping is
commonly used instead of ray tracing. Radiosity is typically avoided. 

Computer animation is well suited for producing the equivalent of test shots
and pencil tests. In fact, because the quality of the separate stages of computer ani-
mation can be independently controlled, it may be even better suited for these
evaluation techniques than conventional animation.

1.3.1 Computer Animation Production Tasks
While motion control is the primary subject of this book, it is worth noting that
motion control is only one aspect of the effort required to produce computer ani-
mation. The other tasks (and the other talents) that are integral to the final prod-
uct should not be overlooked. As previously mentioned, producing quality
animation is a trial-and-error, iterative process wherein performing one task may
require rethinking one or more previously completed tasks. Even so, these tasks
can be laid out in an approximate chronological order according to the way they
are typically encountered. Any proposed ordering is subject to debate. The one
presented here summarizes an article that describes the system used to produce
Pixar’s Toy Story [5]. See Figure 1.6.

• The Story Department translates the verbal into the visual. The screenplay
enters the Story Department, the storyboard is developed, and the story reel
leaves. It goes to the Art Department.

• The Art Department, working from the storyboard, creates the designs and
color studies for the film, including detailed model descriptions and lighting
scenarios.The Art Department develops a consistent look to be used in the
imagery. This look guides the Modeling, Layout, and Shading Departments.

• The Modeling Department creates the characters and the world in which
they live. Every brick and stick to appear in the film must be handcrafted.
Often, articulated figures or other models with inherent movements are cre-
ated as parameterized models. Parameters are defined that control possible
articulations or other movements for the figure. This facilitates the ability of
animators to stay on the model, ensuring that the animation remains consis-
tent with the concept of the model. The models are given to Layout and
Shading.
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• The Layout Department is responsible for taking the film from two dimen-
sions to three dimensions. To ensure good flow, Layout implements proper
staging and blocking. This guides the Animation Department. 

• On one path between the Modeling Department and Lighting Department
lies Shading. The Shading Department must translate the attributes of the
object that relate to its visual appearance into texture maps, displacement
shaders, and lighting models. Relevant attributes include the material the
object is made of, its age, and its condition. Much of the effective appearance
of an object comes not from its shape but from the visual qualities of its
surface.

• On another path between Modeling and Lighting lies Layout, followed by
Animation. Working from audio, the story, and the blocking and staging
produced by Layout, the Animation Department is responsible for bringing

Figure 1.6 Computer animation production pipeline
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the characters to life. In the case of parameterized models, basic movements
have already been defined. The Animation Department creates the subtler
gestures and movements necessary for the “actor” to effectively carry out the
scene. 

• The Lighting Department assigns to each sequence teams that have responsi-
bility for translating the Art Department’s vision into digital reality. At this
point the animation and camera placement have been done. Key lights are
set to establish the basic lighting environment. Subtler lighting particular to
an individual shot refines this in order to establish the correct mood and
bring focus to the action.

• The Camera Department is responsible for actually rendering the frames.
During Toy Story, Pixar used a dedicated array of hundreds of processors
called the RenderFarm. 

1.3.2 Digital Editing
A revolution has swept the film and video industries in recent years: the digital
representation of images. Even if computer graphics and digital effects are not a
consideration in the production process, it is becoming commonplace to store
program elements in digital form instead of using the analog film and videotape
formats. Digital representations have the advantage of being able to be copied with
no image degradation. So even if the material was originally recorded using analog
means, it has recently become cost-effective to transcribe the images to digital
image store. And, of course, once the material is in digital form, digital manipula-
tion of the images is a natural capability to incorporate in any system.

In the Old Days . . .
The most useful and fundamental digital image manipulation capability is that of
editing sequences of images together to create a new presentation. Originally, film
sequences were edited together by physically cutting and splicing tape. This is an
example of nonlinear editing, in which sequences can be inserted in any order at
any time to assemble the final presentation. However, splicing is a time-consuming
process, and making changes in the presentation or trying different alternatives
can place a heavy burden on the stock material as well.

Electronic editing7 allows one to manipulate images as electronic signals rather
than use a physical process. The standard configuration uses two source videotape
players, a switching box, and an output videotape recorder (see Figure 1.7). The

7. To simplify the discussion and make it more relevant to the capabilities of the personal computer, the discussion here
focuses on video editing, although much of it is directly applicable to digital film editing, except that film standards
require much higher resolution and therefore more expensive equipment.
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two source tapes are searched to locate the initial desired sequence; the tape deck
on which it is found is selected for recording on the output deck, and the sequence
is recorded. The tapes are then searched to locate the next segment, the deck is
selected for output, and it is recorded on the output tape. This continues until the
new composite sequence has been created on the output tape. The use of two
source tapes allows multiple sources to be more easily integrated into the final pro-
gram. Other analog effects can be incorporated into the output sequence at the
switcher by using a character generator (text overlays) and/or a special effects genera-
tor (wipes, fades, etc.). Because the output is assembled in a sequence order, this is
referred to as linear editing. One of the drawbacks of this approach is that the out-
put material has to be assembled in a linear fashion. Electronic editing also has the
drawback that the material is copied in the editing process, introducing some
image degradation. Because the output tape is commonly used to master the tapes
that are sent out to be viewed, these tapes are already third generation. Another
drawback is the amount of wear on the source material as the source tapes are
repeatedly played and rewound as the next desired sequence is searched for. If dif-
ferent output versions are required (called versioning ), the source material will be
subject to even more wear and tear because the source material is being used for
multiple purposes.

Often, to facilitate the final assemblage of the output sequence and avoid exces-
sive wear of the original source material, copies of the source material are used in a
preprocessing stage in which the final edits are determined. This is called off-line
editing. The result of this stage is an EDL (edit decision list), which is a final list of
the edits that need to be made to assemble the final piece. The EDL is then passed
to the on-line editing stage, which uses the original source material to make the
edits and create the finished piece. This process is referred to as conforming.

To keep track of edit locations, control track pulses can be incorporated onto
the tape used to assemble the thirty-frame-per-second NTSC video signal. Simple

Figure 1.7 Linear editing system
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editing systems count the pulses; this is called control track editing. However, the
continual shuffling of the tape back and forth during the play and rewind of the
editing process can result in the editing unit losing count of the pulses. This is
something the operator must be aware of and take into account. In addition,
because the edit counts are relative to the current tape location, the edit locations
are lost when the editing station is turned off.

The Society of Motion Picture and Television Engineers (SMPTE) time code is
an absolute eight-digit tag on each frame in the form of WWXXYYZZ, where
WW is the hour, XX is the minute, YY is the second, and ZZ is the frame number.
This tag is calculated from the beginning of the sequence. This allows an editing
station to record the absolute frame number for an edit and then store the edit
location in a file that can be retrieved for later use.

The process described so far is assemble editing. Insert editing is possible if a con-
trol signal is first laid down on the output tape. Then sequences can be inserted
anywhere on the tape in forming the final sequence. This provides some nonlinear
editing capability, but it is still not possible to easily lengthen or shorten a
sequence without repositioning other sequences on the tape to compensate for the
change.

Digital On-line Nonlinear Editing
To incorporate a more flexible nonlinear approach, fully digital editing systems
have become more accessible [6] [13] [22]. These can be systems dedicated to edit-
ing, or they can be software systems that run on standard computers. Analog tape
may still be used as the source material and for the final product, but everything in
between is digitally represented and controlled (see Figure 1.8).

After a sequence has been digitized, an icon representing it can be dragged onto
a time line provided by the editing system. Sequences can be placed relative to one
another; they can be repeated, cut short, overlapped with other sequences, com-
bined with transition effects, and mixed with other effects. A simplified example of
such a time line is shown in Figure 1.9.

The positioning of the elements in the time line is conceptual only; typically
the data in the digital image store is not actually copied or moved. The output
sequence can be played back in real time if the disk random access and graphics
display are fast enough to fetch and compile the separate tracks on the fly. In the
case of overlapping sequences with transitions, either the digital store must sup-
port the access of multiple tracks simultaneously so a transition can be constructed
on the fly or the transition sequence needs to be precomputed and explicitly stored
for access during playback. When the sequence is finalized it can be assembled and
stored digitally or recorded on video. Whatever the case, the flexibility of this
approach and the ability to change edits and try alternatives make nonlinear digi-
tal editing systems very powerful.
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1.3.3 Digital Video
As the cost of computer memory decreases and processor speeds increase, the cap-
ture, compression, storage, and playback of digital video have become more preva-
lent [17] [20]. This has several important ramifications. First, desktop animation
has become inexpensive enough to be within the reach of the consumer. Second,
in the film industry it has meant that compositing is no longer optical. Optically
compositing each element in a film meant another pass of the negative through an
optical film printer, which meant degraded quality. With the advent of digital

Figure 1.8 On-line nonlinear editing system

Figure 1.9 Simplified example of a time line used for nonlinear digital editing 
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compositing (see Appendix A), the limit on the number of composited elements is
removed. Third, once films are routinely stored digitally, digital techniques can be
used for wire removal and to apply special effects. These digital techniques have
become the bread and butter of computer graphics in the film industry.

When one works with digital video, there are several issues that need to be
addressed to determine the cost, speed, storage requirements, and overall quality of
the resulting system. Compression techniques can be used to conserve space, but
some compression compromises the quality of the image and the speed of com-
pression/decompression may restrict a particular technique’s suitability for a given
application. During video capture, any image compression must operate in real
time. Formats used for storage and playback can be encoded off-line, but the
decoding must support real-time playback. Video resolution, video frame rates,
and full-color imagery require that 21 Mb/sec be supported for video playback.
An hour of uncompressed video requires 76 Gb of storage. There are several digital
video formats used by different manufacturers of video equipment for various
applications; these formats include D1, D2, D3, D5, miniDV, DVC, Digital8,
MPEG, and digital Betacam. Better signal quality can be attained with the use of
component instead of composite signals. Discussion of these and other issues
related to digital video is beyond the scope of this book. Information on some of
the more popular formats can be found in Appendix B.

1.4 A Brief History of Computer Animation

1.4.1 Early Activity
The earliest computer animation of the late 1960s and early 1970s was produced
by a mix of researchers in university labs and individual visionary artists [10] [11]
[14]. At the time, raster displays driven by frame buffers were just being developed
and digital output to television was still in the experimental stage. The displays in
use were primarily storage tubes and refresh vector displays. Storage tubes retain an
image indefinitely because of internal circuitry that continuously refreshes the dis-
play. However, because the image cannot be easily modified, storage tubes were
used mainly to draw complex static models. Vector (calligraphic) displays use a
display list of line- and arc-drawing instructions that an internal processor uses to
repeatedly draw an image that would otherwise quickly fade on the screen. Vector
displays can draw moving images by carefully changing the display list between
refreshes. These were popular for interactive design. Static images were often
recorded onto film by placing a camera in front of the display and taking a picture
of the screen. Shaded images could be produced by opening the shutter of the film
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camera and essentially scan converting the elements (e.g., polygons) by drawing
closely spaced horizontal vectors to fill the figure; after scan conversion was com-
pleted, the shutter was closed to terminate the image recording. The intensity of
the image could be regulated by using the intensity control of the vector display or
by controlling other aspects of the image recording such as by varying the density
of the scanlines. An image of a single color was generated by placing a colored fil-
ter in front of the camera lens. A full-color image could be produced by breaking
the image into its red, green, and blue components and triple exposing the film
with each exposure using the corresponding colored filter. This same approach
could be used to produce animation as long as the motion camera was capable of
single-frame recording. This required precise frame registration, usually available
only in expensive equipment. Animated sequences could be colored by triple
exposing the entire film. A programmer or animator was fortunate if both the
camera and the filters could be controlled by computer.

The earliest research in computer graphics and animation occurred at MIT in
1963 when Ivan Sutherland developed an interactive constraint satisfaction system
on a vector refresh display. The user could construct an assembly of lines by speci-
fying constraints between the various graphical elements. If one of the graphical
elements moved, the system calculated the reaction of other elements to this
manipulation based on satisfying the specified constraints. By interactively manip-
ulating one of the graphical elements, the user could produce complex motion in
the rest of the assembly. Later, at the University of Utah, Sutherland helped David
Evans establish the first significant research program in computer graphics and
animation.

In the early 1970s, computer animation in university research labs became
more widespread. Computer graphics, as well as computer animation, received an
important impetus through government funding at the University of Utah. As a
result, Utah produced several groundbreaking works in animation: an animated
hand and face by Ed Catmull (Hand/Face, 1972); a walking and talking human
figure by Barry Wessler (Not Just Reality, 1973); and a talking face by Fred Parke
(Talking Face, 1974). Although the imagery was extremely primitive by today’s
standards, the presentations of lip-synched facial animation and linked figure ani-
mation were impressive demonstrations well ahead of their time. 

In the mid-1970s, Norm Badler at the University of Pennsylvania conducted
investigations into posing a human figure. He developed a constraint system to
move the figure from one pose to another. He has continued this research and
established the Center for Human Modeling and Simulation at Penn. Jack is a
software package developed at the center that supports the positioning and anima-
tion of anthropometrically valid human figures in a virtual world. 

At Ohio State University in the 1970s, the Computer Graphics Research Group
(CGRG), founded by the artist Chuck Csuri, produced animations using a real-
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time video playback system developed at North Carolina State University under
the direction of John Staudhammer. Software developed at CGRG compressed
frames of animation and stored them to disk. During playback, the compressed
digital frames were retrieved from the disk and piped to the special-purpose hard-
ware, which took the digital information, decompressed it on the fly, and con-
verted it into a video signal for display on a standard television. The animation was
driven by the ANIMA II language [4]. 

In the late 1970s, the New York Institute of Technology (NYIT) produced
several computer animation systems thanks to individuals such as Ed Catmull and
Alvy Ray Smith. At the end of the 1970s, NYIT embarked on an ambitious
project to produce a wholly computer generated feature film using three-
dimensional computer animation, titled The Works. While the project was never
completed, excerpts were shown at several SIGGRAPH conferences as progress
was made. The excerpts demonstrated high-quality rendering, articulated figures,
and interacting objects. The system used at NYIT was BBOP, a three-dimensional
key-frame articulated figure animation system [16]. 

Early artistic animators in this period included Ken Knowlton, Lillian
Schwartz, S. Van Der Beek, John Whitney, Sr., and A. M. Noll. Typical artistic
animations consisted of animated abstract line drawings displayed on vector
refresh displays. Using the early technology, Chuck Csuri produced pieces such as
Hummingbird (1967) that were more representational.

In 1974, the first computer animation nominated for an Academy Award, Hun-
ger, was produced by Rene Jodoin; it was directed and animated by Peter Foldes.
This piece used a 21⁄2D system that depended heavily on object shape modification
and line interpolation techniques. The system was developed by Nestor Burtnyk
and Marceli Wein at the National Research Council of Canada in conjunction
with the National Film Board of Canada. Hunger was the first animated story
using computer animation.

In the early 1980s Daniel Thalmann and Nadia Magnenat-Thalmann started
work in computer animation at the University of Montreal. Over the years, their
labs have produced several impressive animations, including Dream Flight (N.
Magnenat-Thalmann and D. Thalmann, 1982), Tony de Peltrie (P. Bergeron,
1985), and Rendez-vous à Montréal (N. Magnenat-Thalmann and D. Thalmann,
1988).

Others who advanced computer animation during the period were Ed Em-
shwiller at NYIT, who demonstrated moving texture maps in Sunstone (1979); Jim
Blinn, who produced the Voyager flyby animations at the Jet Propulsion Labora-
tory (1979); Don Greenberg, who used architectural walk-throughs of the Cornell
University campus (1971); and Nelson Max at Lawrence Livermore Laboratory,
who animated space-filling curves (1978).
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The mid- to late 1970s saw the first serious hints of commercial computer ani-
mation. Tom DeFanti developed the Graphical Symbiosis System (GRASS) at
Ohio State University (1976), a derivative of which was used in the computer
graphics sequences of the first Star Wars film (1977). In addition to Star Wars, films
such as Future World (1976) and Looker (1981) began to incorporate simple com-
puter animation as examples of advanced technology. This was an exciting time for
those in the research labs wondering if computer animation would ever see the
light of day. One of the earliest companies to use computer animation was the
Mathematical Application Group Inc. (MAGI), which used a ray-casting algo-
rithm to provide scientific visualizations. MAGI also adapted its technique to pro-
duce early commercials for television.

1.4.2 The Middle Years
The 1980s saw a more serious move by entrepreneurs into commercial animation.
Computer hardware advanced significantly with the introduction of the VAX
computer in the 1970s and the IBM PC at the beginning of the 1980s. Hardware
z-buffers were produced by companies such as Raster Tech and Ikonas; Silicon
Graphics was formed; and flight simulators based on digital technology were tak-
ing off because of efforts by the Evans and Sutherland Corporation. These hard-
ware developments were making the promise of cost-effective computer animation
to venture capitalists. At the same time, graphics software was getting more sophis-
ticated: Turner Whitted introduced anti-aliased ray tracing (The Compleat Angler,
1980); Nelson Max produced several films about molecules as well as one of the
first films animating waves (Carla’s Island, 1981); and Loren Carpenter produced a
flyby of fractal terrain (Vol Libre, 1982). Companies such as Alias, Wavefront, and
TDI were starting to produce sophisticated software tools making advanced ren-
dering and animation available off-the-shelf for the first time.

Animation houses specializing in 3D computer animation started to appear.
Television commercials, initially in the form of flying logos, provided a profitable
area where companies could hone their skills. Demo reels appeared at SIGGRAPH
produced by the first wave of computer graphics companies such as Information
International Inc. (Triple-I), Digital Effects, MAGI, Robert Abel and Associates,
and Real Time Design (ZGRASS). The first four of these companies combined to
produce the digital imagery in Disney’s TRON (1982), which was a landmark
movie in its (relatively) extensive use of a computer-generated environment in
which graphical objects were animated. Previously, the predominant use of com-
puter graphics in movies had been to show a monitor (or simulated projection) of
something that was supposed to be a computer graphics display (Futureworld,
1976; Star Wars, 1977; Looker, 1981). Still, in TRON, the computer-generated
imagery was not meant to simulate reality; the action takes place inside a com-
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puter, so a computer-generated look was consistent with the story line. At the
same time that computer graphics was starting to find its way into the movies it
was becoming a more popular tool for generating television commercials. As a
result, more computer graphics companies surfaced, including Digital Pictures,
Image West, Cranston-Csuri, Pacific Data Images, Lucasfilm, Marks and Marks,
Digital Productions, and Omnibus Computer Graphics. 

Most early use of synthetic imagery in movies was incorporated with the intent
that it would appear as if computer generated. The other use of computer anima-
tion during this period was to do animation. That is, the animated pieces were
meant not to fool the eye into thinking that what was being seen was real but
rather to replace the look and feel of 2D conventional animation with that of 3D
computer animation. Of special note are the award-winning animations produced
by Lucasfilm and Pixar:

The Adventures of Andre and Wally B. (1984)—first computer animation dem-
onstrating motion blur
Luxo Jr. (1986)—nominated for an Academy Award
Red’s Dream (1987)
Tin Toy (1988)—first computer animation to win an Academy Award
Knick Knack (1989)
Geri’s Game (1999)—Academy Award winner

These early animations paved the way for 3D computer animation to be
accepted as an art form. They were among the first fully computer generated three-
dimensional animations to be taken seriously as animations, irrespective of the
technique involved. Another early piece of 3D animation, which integrated com-
puter graphics with conventional animation, was Technological Threat (1988). This
was one of three films nominated for an Academy Award as an animated short in
1988; Tin Toy came out the victor.

One of the early uses of computer graphics in film was to model and animate
spacecraft. Working in (virtual) outer space with spacecraft has the advantages of
simple illumination models, a relatively bare environment, and relatively simple
animation of rigid bodies. In addition, spacecraft are usually modeled by relatively
simple geometry—as is the surrounding environment (planets)—when in flight.
The Last Starfighter (1984, Digital Productions) used computer animation instead
of building models for special effects; the computer used, the Cray X-MP, even
appeared in the movie credits. The action takes place in space as well as on planets;
computer graphics was used for the scenes in space, and physical models were used
for the scenes on a planet. Approximately twenty minutes of computer graphics
are used in the movie. While it is not hard to tell when the movie switches
between graphical and physical models, this was the first time graphics was used as
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an extensive part of a live-action film in which the graphics were supposed to look
realistic. 

Animation Comes of Age
As modeling, rendering, and animation became more sophisticated and the hard-
ware became faster and inexpensive, quality computer graphics began to spread to
the Internet, television commercials, computer games, and stand-alone game
units. In film, computer graphics helps to bring alien creatures to life. Synthetic
alien creatures, while they should appear to be real, do not have to match specific
audience expectations. Young Sherlock Holmes (1986, ILM) was the first to place a
synthetic character in a live-action feature film. An articulated stained glass win-
dow comes to life and is made part of the live action. The light sources and move-
ments of the camera in the live action had to be mimicked in the synthetic
environment, and images from the live action were made to refract through the
synthetic stained glass. In The Abyss (1989, ILM), computer graphics is used to
create an alien creature that appears to be made from water. Other notable films in
which synthetic alien creatures are used are Terminator II (1991, ILM), Casper
(1995, ILM), Species (1995, Boss Film Studios), and Men in Black (1997, ILM).

A significant advance in the use of computer graphics for the movies came
about because of the revolution in cheap digital technology, which allowed film
sequences to be stored digitally. Once the film is stored digitally, it is in a form
suitable for digital special effects processing, digital compositing, and the addition
of synthetic elements. For example, computer graphics can be used to remove the
mechanical supports of a prop or to introduce digital explosions or laser blasts. For
the most part, this resides in the 2D realm and thus is not the focus of this book.
However, with the advent of digital techniques for 2D compositing, sequences are
more routinely available in digital representations, making them amenable to a
variety of digital postprocessing techniques. The first digital blue screen matte
extraction was in Willow (1988, ILM). The first digital wire removal was in
Howard the Duck (1986, ILM). In True Lies (1994, Digital Domain), digital tech-
niques erased inserted atmospheric distortion to show engine heat. In Forrest
Gump (1994, ILM), computer graphics inserted a Ping-Pong ball in a sequence
showing an extremely fast action game, inserted a new character into old film foot-
age, and enabled the illusion of a double amputee as played by a completely able
actor. In Babe (1995, Rhythm & Hues), computer graphics was used to move the
mouths of animals and fill in the background uncovered by the movement. In
Interview with a Vampire (1994, Digital Domain), computer graphics were used to
curl the hair of a woman during her transformation into a vampire. In this case,
some of the effect was created using 3D graphics, which were then integrated into
the scene by 2D techniques.
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A popular graphical technique for special effects is the use of particle systems.
One of the earliest examples is in Star Trek II: The Wrath of Khan (1982, Lucas-
film), in which a wall of fire sweeps over the surface of a planet. Although by
today’s standards the wall of fire is not very convincing, it was an important step in
the use of computer graphics in movies. Particle systems are also used in Lawn-
mower Man (1992, Angel Studios, Xaos), in which a character disintegrates into a
swirl of small spheres. The modeling of a comet’s tail in the opening sequence of
the television series Star Trek: Deep Space Nine (1993– ) is a more recent example
of a particle system. In a much more ambitious and effective application, Twister
(1996, ILM) uses particle systems to simulate a tornado.

More challenging is the use of computer graphics to create realistic models of
creatures with which the audience is intimately familiar. Jurassic Park (1993, ILM)
is the first example of a movie that completely integrates computer graphics char-
acters (dinosaurs) of which the audience has fairly specific expectations. Of course,
there is still some leeway here, because the audience does not have precise knowl-
edge of how dinosaurs look. Jumanji (1995, ILM) takes on the ultimate task of
modeling creatures for which the audience has precise expectations: various jungle
animals. Most of the action is fast and blurry, so the audience does not have time
to dwell on the synthetic creatures visually, but the result is very effective. To a
lesser extent, Batman Returns (1995, PDI) does the same thing by providing “stunt
doubles” of Batman in a few scenes. The scenes are quick and the stunt double is
viewed from a distance, but it was the first example of a full computer graphics
stunt double in a movie. Computer graphics shows much potential for managing
the complexity in crowd scenes. PDI used computer graphics to create large
crowds in the Bud Bowl commercials of the mid-1980s. In feature films, crowd
scenes include the wildebeest scene in Lion King (1994, Disney), the alien charge
in Starship Troopers (1997, Tippet Studio), and (for distant shots) synthetic figures
populating the deck of the ship in Titanic (1998, ILM).

A holy grail of computer animation is to produce a synthetic human character
indistinguishable from a real person. Early examples of animations using “syn-
thetic actors” are Tony de Peltrie (1985, P. Bergeron), Rendez-vous à Montréal
(1988, D. Thalmann), Sextone for President (1989, Kleiser-Walziac Construction
Company), and Don’t Touch Me (1989, Kleiser-Walziac Construction Company).
However, it is obvious to viewers that these animations are computer generated.
Recent advances in illumination models and texturing have produced human fig-
ures that are much more realistic and have been incorporated into otherwise live-
action films. Synthetic actors have progressed from being distantly viewed stunt
doubles and passengers on a boat to assuming central roles in various movies: the
dragon in Dragonheart (1996, Tippett Studio, ILM); the Jellolike main character
in Flubber (1997, ILM); the aliens in Mars Attacks (1996, ILM); and the ghosts in
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Casper (1995, ILM). The first fully articulated humanoid synthetic actor integral
to a movie was the character Jar-Jar in Star Wars: Episode I (1999, ILM).

Of course, one use of computer animation is simply to “do animation”; com-
puter graphics is used to produce animated pieces that are essentially 3D cartoons
that would otherwise be done by more traditional means. The animation does
not attempt to fool the viewer into thinking anything is real; it is meant simply to
entertain. The film Hunger falls into this category, as do the Lucasfilm/Pixar ani-
mations. Toy Story is the first full-length, fully computer generated 3D animated
feature film. Recently, other feature-length 3D cartoons have emerged, such as
Ants (1998, PDI), A Bug’s Life (1998, Pixar), and Toy Story 2 (1999, Pixar). Many
animations of this type have been made for television. In an episode of The Simp-
sons (1995, PDI), Homer steps into a synthetic world and turns into a 3D com-
puter-generated character. There have been popular television commercials
involving computer animation, such as some Listerine commercials, the Shell
dancing cars, and a few LifeSavers commercials. Many Saturday morning car-
toons are now produced using 3D computer animation. Because many images are
generated to produce an animation, the rendering used in computer animation
tends to be computationally efficient. An example of rendering at the other
extreme is Bunny (1999, Blue Skies), which received an Academy Award for ani-
mated short. Bunny uses high-quality rendering in its imagery, including ray trac-
ing and radiosity.

Three-dimensional computer graphics is playing an increasing role in the pro-
duction of conventional hand-drawn animation. Computer animation has been
used to model 3D elements in hand-drawn environments. Technological Threat
(1988), previously mentioned, is an early animation that combined computer-
animated characters with hand-drawn characters to produce an entertaining com-
mentary on the use of technology. Three-dimensional environments were con-
structed for conventionally animated figures in Beauty and the Beast (1991,
Disney) and Tarzan (1999, Disney); three-dimensional synthetic objects, such as
the chariots, were animated in conventionally drawn environments in Prince of
Egypt (1998, Dreamworks). Because photorealism is not the objective, the render-
ing in such animation is done to blend with the relatively simple rendering of
hand-drawn animation.

Last, morphing, even though it is a two-dimensional animation technique,
should be mentioned because of its use in some films and its high impact in televi-
sion commercials. This is essentially a 2D procedure that warps control points (or
feature lines) of one image into the control points (feature lines) of another image
while the images themselves are blended. In Star Trek IV: The Voyage Home (1986,
ILM), one of the first commercial morphs occurred in the back-in-time dream
sequence. In Willow (1988, ILM), a series of morphs changes one animal into
another. This technique is also used very effectively in Terminator II (1991, ILM).
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PDI is known for its use of morphing in various commercials. Michael Jackson’s
music video Black and White, in which people’s faces morph into other faces, did
much to popularize the technique. In a Plymouth Voyager commercial the previ-
ous year’s car bodies and interiors morph into the new models, and in an Exxon
commercial a car changes into a tiger. Morphing remains a useful and popular
technique.

1.5 Chapter Summary

Computer graphics and animation have created a revolution in visual effects.
Advances are still being made, and new effects are finding a receptive audience. Yet
there is more potential to be realized as players in the entertainment industry
demand their own special look and desire a competitive edge. Computer anima-
tion has come a long way since the days of Ivan Sutherland and the University of
Utah. Viewed as another step in the development of animation, the use of digital
technology is indeed both a big and an important step in the history of animation.
With the advent of low-cost computing and desktop video, animation is now
within reach of more people than ever. It remains to be seen how the limits of the
technology will be pushed as new and interesting ways to create moving images are
explored.
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T

 

his chapter serves as a prelude to the animation techniques presented in the
remaining chapters. It is divided into two sections. The first serves as a quick
review of the basics of the computer graphics display pipeline and discusses the
control of round-off error when repeatedly transforming data. It is assumed that
the reader has already been exposed to transformation matrices, homogeneous
coordinates, and the display pipeline, including the perspective transformation;
this section concisely reviews these. The second section covers various orientation
representations and quaternion arithmetic, which is important for the discussion
of orientation interpolation in Chapter 3. 

 

2.1 Spaces and Transformations

 

Much of computer graphics and computer animation involves transforming data.
Object data are transformed from a defining space into a world space in order to
build a synthetic environment. Object data are transformed as a function of time
in order to produce animation. And, finally, object data are transformed in order

 

C H A P T E R

 

2

 

Technical
Background

Team LRN



 

32

 

      

 

 2: Technical Background

 

to view the object on a screen. The workhorse transformational representation of
graphics is the 4x4 transformation matrix, which can be used to represent combi-
nations of rotations, translations, and scales. 

A coordinate space can be defined by using either a left- or a right-handed coor-
dinate system. Left-handed coordinate systems have the 

 

x-, y -,

 

 and 

 

z

 

-coordinate
axes aligned as the thumb, index finger, and middle finger of the left hand are
arranged when held at right angles to each other in a natural pose: thumb extend-
ing out to the side of the hand, the middle finger extending perpendicular to the
palm, and the index finger held colinear with the forearm with no bend at the
wrist. The right-handed coordinate system is organized similarly with respect to
the right hand. These configurations are inherently different; there is no series of
pure rotations that transforms a left-handed configuration of axes into a right-
handed configuration. Which configuration to use is a matter of convention. It
makes no difference as long as everyone knows and understands the implications.
Below, the handedness of each space is given after all the spaces have been intro-
duced. Some application areas make the assumption that the 

 

y

 

-axis is “up.” Other
applications assume that the 

 

z

 

-axis is up. As with handedness, it makes no differ-
ence as long as everyone is aware of the assumption being made. In this book, the

 

y

 

-axis is considered up.
This section first reviews the transformational spaces through which object data

pass as they are massaged into a form suitable for display and then the use of
homogeneous representations of points and the 4x4 transformation matrix repre-
sentation of rotation, translation, and scale. Next come discussions of representing
arbitrary position and orientation by a series of matrices, representing compound
transformations in a matrix, and extracting a series of basic transformations from a
compound matrix. The display pipeline is then described in terms of the transfor-
mation matrices used to effect it; the discussion is focused on transforming a point
in space. In the case of transforming vectors, the computation is slightly different;
see Appendix B. This section concludes with a discussion of round-off error con-
siderations, including orthonormalization of a rigid transformation matrix.

 

2.1.1 The Display Pipeline

 

The 

 

display pipeline

 

 refers to the transformation of object data from its original
defined space through a series of spaces until its final mapping onto the screen.
The object data are transformed into different spaces in order to efficiently com-
pute illumination, clip the data to the view volume, and perform the perspective
transformation. After reviewing these spaces and their properties and the transfor-
mations that map data from one space to the next, this section defines useful ter-
minology. The names used for these spaces vary from text to text, so they will be
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reviewed here to establish a consistent naming convention for the rest of the book.
Clipping, while an important process, is not relevant to motion control and there-
fore is not covered.

The space in which an object is originally defined is referred to as 

 

object space

 

.
The data in object space are usually centered around the origin and often are cre-
ated to lie within some limited standard range such as minus one to plus one. The
object, as defined by its data points (which are also referred to as its 

 

vertices

 

), is
transformed, usually by a series of rotations, translations, and scales, into 

 

world
space

 

, the space in which objects are assembled to create the environment to be
viewed. 

In addition, world space is the space in which light sources and the observer

 

 

 

are
placed. For purposes of this discussion, 

 

observer

 

 

 

position

 

 is used synonymously and
interchangeably with 

 

camera position 

 

and

 

 eye position

 

. The observer parameters
include its 

 

position

 

 and its orientation, consisting of the 

 

view direction 

 

and the 

 

up
vector.

 

 There are various ways to specify these orientation vectors. Sometimes the
view direction is specified by giving a 

 

center of interest

 

 (COI), in which case the
view direction is the vector from the observer or eye position (EYE), also known as
the 

 

look-from point, 

 

to its center of interest, also known as the 

 

look-to point

 

. The
default orientation “straight up” defines the object’s up vector as the vector that is
perpendicular to the view direction and in the plane defined by the view direction
and the global 

 

y

 

-axis. This vector can be computed by first taking the cross prod-
uct of the view direction vector and the 

 

y

 

-axis and then taking the cross product of
this vector with the view direction vector (Equation 2.1). Head tilt information
can be provided in one of two ways. It can be given by specifying an angle devia-
tion from the straight up direction, in which case a head tilt rotation matrix can be
incorporated in the world- to eye-space transformation. Alternatively, head tilt
information can be given by specifying an up direction vector. The user-supplied
up direction vector is typically not required to be perpendicular to the view direc-
tion as that would require too much work on the part of the user. Instead, the vec-
tor supplied by the user, together with the view direction vector, defines the plane
in which the up vector lies. The difference between the user-supplied up direction
vector and the up vector is that the up vector by definition is perpendicular to the
view direction vector. The computation of the up vector is the same as that out-
lined in Equation 2.1, with the user-supplied up direction vector replacing the 

 

y -

 

axis.

 

(Eq. 2.1)

w = COI – EYE view direction vector
u = w × (0, 1, 0) cross product with y -axis
v = u × w up vector
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Care must be taken when using a default up vector. Defined as perpendicular to
the view vector and in the plane of the view vector and global 

 

y

 

-axis, it is unde-
fined for straight up and straight down views. These situations must be dealt with
as special cases or simply avoided. In addition to the undefined cases, some
observer motions can result in unanticipated effects. For example, the default
head-up orientation means that if the observer has a fixed center of interest and
the observer’s position arcs directly over the center of interest, then just before and
just after being directly overhead, the observer’s up vector will instantaneously
rotate by up to 180 degrees (see Figure 2.1).

In addition to the observer position and orientation, the field of view has to be
specified, as is standard in the display pipeline. This includes an 

 

angle of view

 

 (or
the equally useful half angle of view), 

 

hither clipping distance,

 

 and 

 

yon clipping dis-
tance

 

. Sometimes the terms 

 

near

 

 and 

 

far

 

 are used instead of 

 

hither

 

 and 

 

yon

 

. The
field of view information is used to set up the 

 

perspective projection

 

. 
The view specification discussed above is somewhat simplified. Other view

specifications use an additional vector to indicate the orientation of the projec-
tion plane, allow an arbitrary viewport to be specified on the plane of projection
that is not symmetrical about the view direction to allow for off-center projec-
tions, and allow for a parallel projection. The reader should refer to standard
graphics texts such as the one by Foley et al. [2] for in-depth discussion of such
view specifications.

The visible area of world space is formed by the observer position, view direc-
tion, angle of view, hither clipping distance, and yon clipping distance (Figure
2.2). These define the 

 

view frustum,

 

 the six-sided volume of world space contain-
ing data that need to be considered for display.

In preparation for the perspective transformation, the data points defining the
objects are usually transformed from world space to 

 

eye space

 

. In 

 

eye space,

 

 the
observer is positioned along the 

 

z

 

-axis with the line of sight made to coincide with

 

Figure 2.1

 

Demonstrating the up vector flip as observer’s position passes straight over center 
of interest
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the 

 

z

 

-axis. This allows the depth of a point, and therefore perspective scaling, to be
dependent only on the point’s 

 

z

 

-coordinate. The exact position of the observer
along the 

 

z

 

-axis and whether the eye space coordinate system is left-handed or
right-handed vary from text to text. For this discussion, the observer is positioned
at the origin looking down the positive 

 

z

 

-axis in left-handed space. In eye space as
in world space, lines of sight emanate from the observer position and diverge as
they expand into the visible view frustum, whose shape is often referred to as a

 

truncated pyramid

 

.
The 

 

perspective transformation

 

 transforms the objects’ data points from eye space
to 

 

image space

 

. The perspective transformation can be considered as taking the

 

Figure 2.2

 

Object- to world-space transformation and the view frustum in world space
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observer back to negative infinity in 

 

z

 

 and, in doing so, makes the lines of sight
parallel to each other and to the 

 

z

 

-axis. The pyramid-shaped view frustum
becomes a rectangular solid, or cuboid, whose opposite sides are parallel. Thus,
points that are farther away from the observer in eye space have their 

 

x-

 

 and 

 

y

 

-
coordinates scaled down more than points closer to the observer. This is some-
times referred to as 

 

perspective foreshortening

 

. Visible extents in image space are
usually standardized into the minus one to plus one range in 

 

x

 

 and 

 

y

 

 and from zero
to one in 

 

z

 

 (although in some texts visible 

 

z

 

 is mapped into the minus one to posi-
tive one range).

 

 

 

Image space points are then scaled and translated (and possibly
rotated) into 

 

screen space

 

 by mapping the visible ranges in 

 

x

 

 and 

 

y

 

 (minus one to
plus one) into ranges that coincide with the viewing area defined in the coordinate
system of the window or screen; the 

 

z

 

-coordinates can be left alone. The resulting
series of spaces is shown in Figure 2.3.

Ray casting (ray tracing without generating secondary rays) differs from the
above sequence of transformations in that the act of tracing rays through world
space implicitly accomplishes the perspective transformation. If the rays are con-
structed in world space based on pixel coordinates of a virtual frame buffer posi-
tioned in front of the observer, then the progression through spaces for ray casting
reduces to the transformations shown in Figure 2.4. Alternatively, data can be
transformed to eye space and, through a virtual frame buffer, the rays can be
formed in eye space.

In any case, animation is typically produced by the following: modifying the
position and orientation of objects in world space over time; modifying the shape
of objects over time; modifying display attributes of objects over time; transform-
ing the observer position and orientation in world space over time; or some com-
bination of these transformations. 

 

2.1.2 Homogeneous Coordinates and the Transformation Matrix

 

Computer graphics often uses homogeneous representations of points. This means
that a three-dimensional point is represented by a four-element vector.

 

1

 

 The coor-
dinates of the represented point are determined by dividing the fourth component
into the first three (Equation 2.2).

(Eq. 2.2)

1. Note the potential source of confusion in the use of the term vector to mean (1) a direction in space or (2) a 1xn or nx1
matrix. The context in which vector is used should make its meaning clear.

x
w
--- ,

y
w
--- ,

z
w
--- 

  x y z w, , ,[ ]=
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Typically, when transforming a point in world space, the fourth component will
be one. This means a point in space has a very simple homogeneous representation
(Equation 2.3).

(Eq. 2.3)

The basic transformations rotate, translate, and scale can be kept in 4x4 trans-
formation matrices. The 4x4 matrix is the smallest matrix that can represent all of
the basic transformations, and, because it is a square matrix, it has the potential for

Figure 2.3 Display pipeline showing transformation between spaces
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having a computable inverse, which is important for texture mapping and illumi-
nation calculations. In the case of the transformations rotation, translation, and
nonzero scale, the matrix always has a computable inverse. It can be multiplied
with other transformation matrices to produce compound transformations while
still maintaining 4x4-ness. The 4x4 identity matrix has zeros everywhere except
along its diagonal; the diagonal elements all equal one (Equation 2.4).

 (Eq. 2.4)

Typically in the literature, a point is represented as a 4x1 column matrix (also
known as a column vector ) and is transformed by multiplying by a 4x4 matrix on
the left (also known as premultiplying the column vector by the matrix), as shown
in Equation 2.4. However, some texts use a 1x4 matrix (also known as a row vec-
tor) to represent a point and transform it by multiplying it by a matrix on its right
(postmultiplying ). For example, postmultiplying a point by the identity transfor-
mation would appear as in Equation 2.5.

Figure 2.4 Transformation through spaces using ray casting
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(Eq. 2.5)

Because the conventions are equivalent, it is immaterial which is used as long as
consistency is maintained. The 4x4 transformation matrix used in one of the nota-
tions is the transpose of the 4x4 transformation matrix used in the other notation.

2.1.3 Compounding Transformations: 
Multiplying Transformation Matrices
One of the main advantages of representing transformations as square matrices is
that they can be multiplied together to produce a compound transformation. This
enables a series of transformations, Mi , to be premultiplied so that a single com-
pound transformation matrix, M, can be applied to a point P (see Equation 2.6).
This is especially useful (i.e., computationally efficient) when applying the same
series of transformations to a multitude of points. Note that matrix multiplication
is associative ((AB )C = A(BC )) but not commutative (AB ≠ BA).

(Eq. 2.6)

When using the convention of postmultiplying a point represented by a row
vector by the same series of transformations used when premultiplying a column
vector, the matrices will appear in reverse order as well as being the transpose of
the matrices used in the premultiplication. Equation 2.7 shows the same computa-
tion as Equation 2.6, except in Equation 2.7 a row vector is postmultiplied by the
transformation matrices. The matrices in Equation 2.7 are the same as those in
Equation 2.6 but are now transposed and in reverse order. The transformed point
is the same in both equations, with the exception that it appears as a column vec-
tor in Equation 2.6 and as a row vector in Equation 2.7. In the remainder of this
book, such equations will be in the form shown in Equation 2.6.

(Eq. 2.7)
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2.1.4 Basic Transformations
For now, only the basic transformations rotate, translate, and scale (uniform as
well as nonuniform) will be considered. These transformations, and any combina-
tion of them, are referred to as affine transformations [3]. The perspective transfor-
mation is discussed later. Restricting discussion to the basic transformations allows
the fourth element of each point vector to be assigned the value one and the last
row of the transformation matrix to be assigned the value [0001] (Equation 2.8).

  (Eq. 2.8)

The x, y, and z translation values of the transformation are the first three values
of the fourth column (d, h, m in Equation 2.8). The upper left 3x3 submatrix rep-
resents rotation and scaling. Setting the upper left 3x3 submatrix to an identity
transformation and specifying only translation produces Equation 2.9. 

(Eq. 2.9)

A transformation consisting of only uniform scale is represented by the identity
matrix with a scale factor, S, replacing the first three elements along the diagonal
(a, f, k in Equation 2.8). Nonuniform scale allows for independent scale factors to
be applied to the x-, y -, and z -coordinates of a point and is formed by placing Sx ,
Sy, and Sz along the diagonal as shown in Equation 2.10. 

(Eq. 2.10)

Uniform scale can also be represented by setting the lowest rightmost value to
1/S, as in Equation 2.11. In the homogeneous representation, the coordinates of
the point represented are determined by dividing the first three elements of the
vector by the fourth, thus scaling up the values by the scale factor S. This tech-
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nique invalidates the assumption that the only time the lowest rightmost element
is not one is during perspective, and, therefore, this should be used with care or
avoided altogether.

 (Eq. 2.11)

Values to represent rotation are set in the upper left 3x3 submatrix (a, b, c, e, f,
g, i, j, k of Equation 2.8). Rotation matrices around the x-axis, y -axis, and z -axis
in a right-handed coordinate system are shown in Equation 2.12, Equation 2.13,
and Equation 2.14, respectively. In a right-handed coordinate system, a positive
angle of rotation produces a counterclockwise rotation as viewed from the positive
end of the axis looking toward the origin (the right-hand rule).

(Eq. 2.12)

(Eq. 2.13)

(Eq. 2.14)

Combinations of rotations and translations are usually referred to as rigid trans-
formations because the spatial extent of the object does not change; only its posi-
tion and orientation in space are changed. Sometimes uniform scale is included in
the family of rigid transformations because the object’s intrinsic properties2 (e.g.,

2. An object’s intrinsic properties are those that are measured irrespective of an external coordinate system.
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dihedral angles)3 do not change. Nonuniform scale, however, is usually not consid-
ered a rigid transformation because object properties such as dihedral angles are
changed. A shear transformation is a combination of rotation and nonuniform scale
and it creates columns (rows) that are nonorthogonal to each other but still retains
the last row of three zeros followed by a one. Notice that any affine transformation
can be represented by a multiplicative 3x3 matrix (representing rotations, scales,
and shears) followed by an additive three-element vector (translation).

2.1.5 Representing an Arbitrary Orientation

Fixed Angle Representation
One way to represent an orientation is as a series of rotations around the principal
axes (the fixed angle representation). For example, consider that an object, say, an
aircraft, is originally defined at the origin of a right-handed coordinate system with
its nose pointed down the z-axis and its up vector in the positive y -axis direction.
Now imagine that the desire is to position the aircraft in world space so that its
center is at (20, –10, 35), its nose is oriented toward the point (23, –14, 40), and
its up vector is pointed in the general direction of the y -axis (or, mathematically, so
that its up vector lies in the plane defined by the aircraft’s center, the point the
plane is oriented toward, and the global y -axis). See Figure 2.5. 

3. The dihedral angle is the interior angle between adjacent polygons measured at the common edge

Figure 2.5 Desired position and orientation
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The task is to determine the representation of the transformation from the air-
craft’s object space definition to its desired position and orientation in world space.
The transformation can be decomposed into a (possibly compound) rotation fol-
lowed by a translation of (20, –10, 35). The rotation will transform the aircraft to
an orientation so that, with its center at the origin, its nose is oriented toward
(23 – 20, –14 + 10, 40 – 35) = (3, – 4, 5); this will be referred to as the aircraft’s
orientation vector.   The transformation that takes the aircraft into the desired ori-
entation (i.e., transforms the positive z-axis vector into the plane’s desired orienta-
tion vector while keeping its up vector generally aligned with the positive y -axis)
can be determined by noting that an x-axis rotation (pitch) followed by a y -axis
rotation (yaw) will produce the desired result. The sines and cosines necessary for
the rotation matrices can be determined by considering the desired orientation vec-
tor’s relation to the principal axes. In first considering the x-axis rotation, the orien-
tation vector is projected onto the y-z plane to see how the nose must be rotated up
or down (pitch). The sines and cosines can be read from the triangle formed by the
projected vector and the line segment that drops from the end of the vector to the
z-axis (Figure 2.6). To rotate the object to line up with the projected vector, a posi-
tive x-axis rotation with  and  is required.

Note that if the desired orientation vector projects onto the y -axis, then the ori-
entation vector lies in the x-y plane. In this case, the sines and cosines of the appro-
priate pitch can be read from the orientation vector’s x- and y -coordinate values
and used in a z-axis rotation matrix. 

After the pitch rotation has been applied to spin the aircraft around (yaw) to its
desired orientation, a y -axis rotation can be determined by looking at the (rotated)
direction vector in the x-z plane. To rotate the aircraft, a positive y -axis rotation
with  and  is required (Figure 2.7). 

An alternative way to represent a transformation to a desired orientation is to
construct what is known as the matrix of direction cosines. Consider transforming
a copy of the global coordinate system so that it coincides with a desired

Figure 2.6 Projection of desired 
orientation vector onto y-z plane

Figure 2.7 Projection of desired 
orientation vector onto x-z plane
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orientation defined by a unit coordinate system (see Figure 2.8). To construct this
matrix, note that the transformation matrix, M, should do the following: map the
unit x-axis vector into the X-axis of the desired orientation, map a unit y -axis vec-
tor into the Y-axis of the desired orientation, and map a unit z-axis vector into the
Z-axis of the desired orientation. See Equation 2.15. These three mappings
can be assembled into one matrix expression that defines the matrix M
(Equation 2.16). 

(Eq. 2.15)

(Eq. 2.16)

Since a unit x-vector (y -vector, z-vector) multiplied by a transformation matrix
will replicate the values in the first (second, third) column of the transformation
matrix, the columns of the transformation matrix can be filled with the coordi-
nates of the desired transformed coordinate system. Thus, the first column of the
transformation matrix becomes the desired X-axis as described by its x-, y -, and z -
coordinates in the global space, the second column becomes the desired Y-axis,
and the third column becomes the desired Z-axis (Equation 2.16). The name

Figure 2.8 Global coordinate system and unit coordinate system to be transformed 
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matrix of direction cosines is derived from the fact that the coordinates of a desired
axis in terms of the global coordinate system are the cosines of the angles made by
the desired axis with each of the global axes. 

In the example of transforming the aircraft, the desired Z-axis is the desired ori-
entation vector. With the assumption that there is no longitudinal rotation (roll),
the desired X-axis can be formed by taking the cross product of the original y -axis
and the desired Z-axis. The desired Y-axis can then be formed by taking the cross
product of the desired Z-axis and the desired X-axis. Each of these is divided by its
length to form unit vectors.

2.1.6 Extracting Transformations from a Matrix
For a compound transformation matrix that represents a series of rotations and
translations, a set of individual transformations can be extracted from the matrix,
which, when multiplied together, produce the original compound transformation
matrix. Notice that the series of transformations to produce a compound transfor-
mation is not unique, so there is no guarantee that the series of transformations so
extracted will be exactly the ones that produced the compound transformation
(unless something is known about the process that produced the compound
matrix).

The compound transformation can be formed by up to three rotations about
the principal axes (or one compound rotation represented by the direction cosine
matrix) followed by a translation.

The last row of a 4x4 transformation matrix, if the matrix does not include a
perspective transformation, will have zero in the first three entries and one as the
fourth entry (ignoring the use of that element to represent uniform scale). As
shown in Equation 2.17, the first three elements of the last column of the matrix,
A14, A24, A34, represent a translation. The upper left 3x3 submatrix of the original
4x4 matrix can be viewed as the definition of the transformed unit coordinate sys-
tem. It can be decomposed into three rotations around principal axes by arbitrarily
choosing an ordered sequence of three axes (such as x followed by y followed by z).
By using the projection of the transformed unit coordinate system to determine
the sines and cosines, the appropriate rotation matrices can be formed in much the
same way that transformations were determined in Section 2.1.5

(Eq. 2.17)
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If the compound transformation matrix includes a uniform scale factor, the
rows of the 3x3 submatrix will form orthogonal vectors of uniform length. The
length will be the scale factor, which, when followed by the rotations and transla-
tions, forms the decomposition of the compound transformation. If the rows of
the 3x3 submatrix form orthogonal vectors of unequal length, then their lengths
represent nonuniform scale factors.

2.1.7 Description of Transformations in the Display Pipeline
Now that the basic transformations have been described in some detail, the previ-
ously described transformations of the display pipeline can be explained in terms
of compositions of the basic transformations. It should be noted that the descrip-
tions of eye space and the perspective transformation are not unique. They vary
among the introductory graphics texts depending on where the observer is placed
along the z-axis to define eye space, whether the eye space coordinate system is
left-handed or right-handed, exactly what information is required from the user in
describing the perspective transformation, and the range of visible z-values in
image space. While functionally equivalent, the various approaches produce trans-
formation matrices that differ in the values of the individual elements. 

Object Space to World Space Transformation In a simple implementation, the
transformation of an object from its object space into world space is a series of
rotations, translations, and scales (i.e., an affine transformation) that are specified
by the user to place a transformed copy of the object data into a world space data
structure. In some systems, the user is required to specify this transformation in
terms of a predefined order of basic transformations such as scale, rotation around
the x-axis, rotation around the y -axis, rotation around the z-axis, and translation.
In other systems, the user may be able to specify an arbitrarily ordered sequence
of basic transformations. In either case, the series of transformations are com-
pounded into a single object space to world space transformation matrix.

The object space to world space transformation is usually the transformation
that is modified over time to produce motion. In more complex animation sys-
tems, this transformation may include manipulations of arbitrary complexity not
suitable for representation in a matrix, such as nonlinear shape deformations. 

World Space to Eye Space Transformation In preparation for the perspective
transformation, a rigid transformation is performed on all of the object data in
world space. The transformation is designed so that, in eye space, the observer is
positioned at the origin, the view vector aligns with the positive z-axis in left-
handed space, and the up vector aligns with the positive y -axis. The transforma-
tion is formed as a series of basic transformations. First, the observer is translated
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to the origin. Then, the observer’s coordinate system (view vector, up vector, and
the third vector required to complete a left-handed coordinate system) is trans-
formed by up to three rotations so as to align the view vector with the global nega-
tive z-axis and the up vector with the global y -axis. Finally, the z-axis is flipped by
negating the z-coordinate. All of the individual transformations can be represented
by 4x4 transformation matrices, which are multiplied together to produce a single,
compound, world space to eye space transformation matrix. This transformation
prepares the data for the perspective transformation by putting it in a form in
which the perspective divide is simply dividing by a point’s z-coordinate.

Perspective Matrix Multiply The perspective matrix multiplication is the first
part of the perspective transformation. The fundamental computation being per-
formed by the perspective transformation is that of dividing the x- and y -
coordinates by their z-coordinate and normalizing the visible range in x and y to
[–1, +1]. This is accomplished by using a homogeneous representation of a point
and, as a result of the perspective matrix multiplication, producing a representa-
tion in which the fourth element is Ze • tan φ. Ze is the point’s z-coordinate in eye
space and φ is the half angle of view. The z-coordinate is transformed so that pla-
narity is preserved and so that the visible range in z is mapped into [0, +1].
(These ranges are arbitrary and can be set to anything by appropriately forming
the perspective matrix. For example, sometimes the visible range in z is set to [–1,
+1].) In addition, the aspect ratio of the viewport can be used in the matrix to
modify either the x or y half angle of view so that no distortion results in the
viewed data.

Perspective Divide Each point produced by the perspective matrix multiplica-
tion has a nonunit fourth component that represents the perspective divide by z.
Dividing each point by its fourth component completes the perspective transfor-
mation. This is considered a separate step from the perspective matrix multiply
because a commonly used clipping procedure operates on the homogeneous repre-
sentation of points produced by the perspective matrix multiplication but before
perspective divide.

Image to Screen Space Mapping The result of the perspective transformation
(the perspective matrix multiply followed by perspective divide) maps visible ele-
ments into the range of minus one to plus one ([–1, +1]) in x and y. This range is
now mapped into the user-specified viewing area of the screen-based pixel coordi-
nate system. This is a simple linear transformation represented by a scale and a
translation and thus can be easily represented in a 4x4 transformation matrix.

Clipping, removing data that are outside the view frustum, can be implemented
in a variety of ways. It is computationally simpler if clipping is performed after the
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world space to eye space transformation. It is important to perform clipping in z
before perspective divide, to prevent divide by zero and from projecting objects
behind the observer onto the picture plane. However, the details of clipping are
not relevant to the discussion here. Interested readers should refer to one of the
standard computer graphics texts (e.g., [2]) for the details of clipping procedures.

2.1.8 Round-off Error Considerations
Once the object space to world space transformation matrix has been formed for
an object, the object is transformed into world space by simply multiplying all of
the object’s object space points by the transformation matrix. When an object is
animated, its points will be repeatedly transformed over time—as a function of
time. One way to do this is to repeatedly modify the object’s world space points.
However, incremental transformation of world space points usually leads to the
accumulation of round-off errors. For this reason, it is almost always better to
modify the transformation from object to world space and reapply the transfor-
mation to the object space points rather than repeatedly transform the world
space coordinates. To further transform an object that already has a transforma-
tion matrix associated with it, one simply has to form a transformation matrix
and premultiply it by the existing transformation matrix to produce a new one.
However, round-off errors can also accumulate when one repeatedly modifies a
transformation matrix. The best way is to build the transformation matrix anew
for each application.

An affine transformation matrix can be viewed as a 3x3 rotation/scale submatrix
followed by a translation. Most of the error accumulation occurs because of the
operations resulting from multiplying the 3x3 submatrix and the x-, y -, and z-
coordinates of the point. Therefore, the following round-off error example will
focus on the errors that accumulate as a result of rotations.

Consider the case of the moon orbiting the earth. For the sake of simplicity, the
assumption is that the center of the earth is at the origin, and initially the moon
data are defined with the moon’s center at the origin. The moon data are first
transformed to an initial position relative to the earth, for example (r, 0, 0) (see
Figure 2.9). There are three approaches that could be taken to animate the rota-
tion of the moon around the earth, and these will be used to illustrate various
effects of round-off error.

The first approach is, for each frame of the animation, to apply a delta y -axis
transformation matrix to the moon’s points, in which each delta represents the
angle it moves in one frame time (see Figure 2.10). Round-off errors will accumu-
late in the world space object points. Points that began as coplanar will no longer
be coplanar. This can have undesirable effects, especially in display algorithms,
which linearly interpolate values to render a surface.
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The second approach is, for each frame, to incrementally modify the transfor-
mation matrix that takes the object space points into the world space positions. In
the example of the moon, the transformation matrix is initialized with the x-axis
translation matrix. For each frame, a delta y -axis transformation matrix multiplies
the current transformation matrix and then that resultant matrix is applied to the
moon’s object space points (see Figure 2.11). Round-off error will accumulate in
the transformation matrix. Over time, the matrix will deviate from representing a
rigid transformation. Shearing effects will begin to creep into the transformation
and angles will cease to be preserved. While a square may begin to look like some-
thing other than a square, coplanarity will be preserved (because any matrix multi-
plication is, by definition, a linear transformation), so that rendering results will
not be compromised.

The third approach is to add the delta value to an accumulating angle variable
and then build the y -axis rotation matrix from that angle parameter. This would

Figure 2.9 Translation of moon out to its initial position on the x-axis

Figure 2.10 Rotation by applying incremental rotation matrices to points 
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then be multiplied with the x-axis translation matrix, and the resultant matrix
would be applied to the original moon points in object space (see Figure 2.12). In
this case, any round-off error will accumulate in the angle variable so that it may
begin to deviate from what is desired. This may have unwanted effects when one
tries to coordinate motions, but the transformation matrix, which is built anew
every frame, will not accumulate any errors itself. The transformation will always
represent a valid rigid transformation with both planarity and angles being
preserved. 

Orthonormalization
The rows of a matrix that represent a rigid transformation are perpendicular to
each other and are of unit length (orthonormal). The same can be said of the
matrix columns. If values in a rigid transformation matrix have accumulated
errors, then the rows cease to be orthonormal and the matrix ceases to represent a
rigid transformation; it will have the effect of introducing shear into the transfor-

Figure 2.11 Rotation by incrementally updating the rotation matrix

Figure 2.12 Rotation by forming the rotation matrix anew for each frame
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mation. However, if it is known that the matrix is supposed to represent a rigid
transformation, it can be massaged back into a rigid transformation matrix. A
rigid transformation matrix (assume for now that this means not any uniform
scale) has an upper 3x3 submatrix with specific properties: the rows (columns) are
unit vectors orthogonal to each other. A simple procedure to reformulate the
transformation matrix to represent a rigid transformation is to take the first row
(column) and normalize it. Take the second row (column), compute the cross
product of this row (column) and the first row (column), normalize it, and place it
in the third row (column). Take the cross product of the third row (column) and
the first row (column), normalize it, and put it in the second row (column). See
Figure 2.13. Notice that this does not necessarily produce the correct transforma-
tion; it merely forces the matrix to represent a rigid transformation. The error has
just been shifted around so that the columns of the matrix are orthonormal and
the error may be less noticeable.

If the transformation might contain a uniform scale, then take the length of one
of the rows, or the average length of the three rows, and, instead of normalizing
the vectors by the steps described above, make them equal to this length. If the
transformation might include nonuniform scale, then the difference between shear
and error accumulation cannot be determined unless something more is known
about the transformations represented.

2.2 Orientation Representation

A common issue that arises in computer animation is deciding the best way to rep-
resent the position and orientation of an object in space and how to interpolate
the represented transformations over time to produce motion. A typical scenario is
one in which the user specifies an object in two transformed states and the com-
puter is used to interpolate intermediate states, thus producing animated key-
frame motion. This section discusses possible orientation representations and
identifies strengths and weaknesses; the next chapter addresses the best way to
interpolate orientations using these representations. In this discussion, it is
assumed that the final transformation applied to the object is a result of rotations
and translations only, so that there is no scaling involved, nonuniform or other-
wise; that is, the transformations considered are rigid body.

The first obvious choice for representing the orientation and position of an
object is by a 4x4 transformation matrix. For example, a user may specify a series
of rotations and translations to apply to an object. This series of transformations is
compiled into 4x4 matrices and multiplied together to produce a compound 4x4
transformation matrix. In such a matrix the upper left 3x3 submatrix represents a
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rotation to apply to the object, while the first three elements of the fourth column
represent the translation (assuming points are represented by column vectors that
are premultiplied by the transformation matrix). No matter how the 4x4 transfor-
mation matrix was formed (no matter in what order the transformations were
given by the user, such as “rotate about x, translate, rotate about x, rotate about y,
translate, rotate about y ), the final 4x4 transformation matrix produced by multi-
plying all of the individual transformation matrices in the specified order will
result in a matrix that specifies the final position of the object by a 3x3 rotation
matrix followed by a translation. The conclusion is that the rotation can be inter-

Figure 2.13 Orthonormalization 
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polated independently from the translation. (For now, only linear interpolation is
considered, although higher-order interpolations are possible; see Appendix B.)

Now consider two such transformations that the user has specified as key states
with the intention of generating intermediate transformations by interpolation.
While it should be obvious that interpolating the translations is straightforward, it
is not at all clear how to go about interpolating the rotations. In fact, it is the objec-
tive of this discussion to show that interpolation of orientations can be a problem.
A property of 3x3 rotation matrices is that the rows and columns are orthonormal
(unit length and perpendicular to each other). Simple linear interpolation between
the nine pairs of numbers that make up the two 3x3 rotation matrices to be inter-
polated will not produce intermediate 3x3 matrices that are orthonormal and are,
therefore, not rigid body rotations. It should be easy to see that interpolating from a
rotation of +90 degrees about the y-axis to a rotation of –90 degrees about the y -
axis results in an intermediate transformation that is nonsense (Figure 2.14).

So direct interpolation of transformation matrices is not acceptable. There are
alternative representations that are more useful than transformation matrices in
performing such interpolations: fixed angle, Euler angle, axis angle, and quater-
nions.

2.2.1 Fixed Angle Representation
Fixed angle representation4 really refers to “angles used to rotate about fixed axes.”
A fixed order of three rotations is implied, such as x-y-z. This means that orienta-
tion is given by a set of three ordered parameters that represent three ordered rota-
tions about fixed axes, first around x, then around y, and then around z. There are
many possible orderings of the rotations, and, in fact, it is not necessary to use all
three coordinate axes. For example, x-y-x is a feasible set of rotations. The only
orderings that do not make sense are those in which an axis immediately follows
itself, such as in x-x-y. 

In any case, the main point is that the orientation of an object is given by three
angles, such as (10, 45, 90). In this example, the orientation represented is
obtained by rotating the object first about the x-axis by 10 degrees, then about the
y -axis by 45 degrees, and then about the z-axis by 90 degrees. In Figure 2.15, the
aircraft is shown in its initial orientation and in the orientation represented by the
fixed point values of (10, 45, 90). The following notation will be used to represent
such a sequence of rotations: Rz(90)Ry(45) Rx(10) (in this text, transformations are

4. Terms referring to rotational representations are not used consistently in the literature. This book follows the usage
found in Robotics [1], where fixed angle refers to rotation about the fixed (global) axes and Euler angle refers to rotation
about the rotating (local) axes.
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implemented by premultiplying points by transformation matrices; thus the rota-
tion matrices appear in right to left order).

From this orientation, changing the x-axis rotation value, which is applied first
to the data points, will make the aircraft’s nose dip either more or less in the y-z
plane. Changing the y -axis rotation will change the amount the aircraft, which has
been rotated around the x-axis, rotates out of the y-z plane. Changing the z-axis
rotation value, the rotation applied last, will change how much the twice rotated
aircraft will rotate about the z-axis.

The problem when using this scheme is that two of the axes of rotation can
effectively line up on top of each other when an object can rotate freely in space or
around a 3-degrees-of-freedom5 joint. Consider an object in an orientation repre-

Figure 2.14 Direct interpolation of transformation matrix values can result in nonsense

Figure 2.15 Fixed angle representation
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sented by (0, 90, 0), as shown in Figure 2.16. Examine what effect a slight change
in the first and third parametric values has on the object in that orientation. A
slight change of the third parameter will rotate the object slightly about the global
z-axis because that is the rotation applied last to the data points. However, note
that the effect of a slight change of the first parameter, which rotates the original
data points around the x-axis, will also have the effect of rotating the transformed
object slightly about the z-axis (Figure 2.17). This effect results because the 90-
degree y -axis rotation has essentially made the first axis of rotation align with the
third axis of rotation. This effect is called gimbal lock. From the orientation (0, 90,
0) the object can no longer be rotated about the global x-axis by a simple change
in its orientation representation (actually, the representation that will effect such
an orientation is (90, 90 + ε, 90)—not very intuitive). 

This same problem makes interpolation between key positions problematic in
some cases. Consider the key orientations (0, 90, 0) and (90, 45, 90), as shown in
Figure 2.18. The second orientation is a 45-degree x-axis rotation from the first
position. However, as discussed above, the object can no longer directly rotate
about the x-axis from the first key orientation because of the 90-degree y -axis rota-
tion. Direct interpolation of the key orientation representations would produce
(45, 67.5, 45) as the halfway orientation, which is very different from the (90,

Figure 2.16 Fixed angle representation of (0, 90, 0) 

Figure 2.17 Effect of slightly altering values of fixed angle representation (0, 90, 0) 
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22.5, 90) orientation that is desired (desired because that is the representation of
the orientation that is intuitively halfway between the two given orientations). The
result is that the object will swing out of the y-z plane during the interpolation,
which is not the behavior expected.

In its favor, the fixed angle representation is compact, fairly intuitive, and easy
to work with. However, it is often not the most desirable representation to use
because of the gimbal lock problem.

2.2.2 Euler Angle Representation
In a Euler angle representation, the axes of rotation are the axes of the local coordi-
nate system fixed to the object, as opposed to the global axes. A typical example of
using Euler angles is found in the roll, pitch, and yaw of an aircraft (Figure 2.19).

As with the fixed angle representation, the Euler angle representation can use
any of various orderings of three axes of rotation as its representation scheme.

Figure 2.18 Example orientations to interpolate 

Figure 2.19 Euler angle representation
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Consider a Euler angle representation that uses an x-y-z ordering and is specified
as (α, β, γ). The x-axis rotation, represented by the transformation matrix Rx(α), is
followed by the y -axis rotation, represented by the transformation matrix Ry(β),
around the y -axis of the local, rotated coordinate system. Using a prime symbol to
represent rotation about a rotated frame and remembering that points are repre-
sented as column vectors and are premultiplied by transformation matrices, one
achieves a result of Ry′ (β)Rx(α). Using global axis rotation matrices to implement
the transformations, the y-axis rotation around the rotated frame can be effected by
Rx(α)Ry(β)Rx(–α). Thus, the result after the first two rotations is Equation 2.18.

(Eq. 2.18)

The third rotation, Rz(γ), is around the now twice rotated frame. This rotation
can be effected by undoing the previous rotations with Rx(–α) followed by Ry(–β),
then rotating around the global z-axis by Rz(γ), and then redoing the previous
rotations. Putting all three rotations together, and using a double prime to denote
rotation about a twice rotated frame, results in Equation 2.19.

(Eq. 2.19)

Thus, this system of Euler angles is precisely equivalent to the fixed angle sys-
tem in reverse order. This is true for any system of Euler angles. For example, z-y-x
Euler angles are equivalent to x-y-z fixed angles. Therefore, the Euler angle repre-
sentation has exactly the same advantages and disadvantages as the fixed angle rep-
resentation.

2.2.3 Angle and Axis
Euler showed that one orientation can be derived from another by a single rotation
about an axis. This is known as Euler’s rotation theorem [1]. Thus, any orientation
can be represented by a four-tuple consisting of an angle and an (x, y, z) vector
(Figure 2.20). 

In some cases, this can be a useful representation. Interpolation between repre-
sentations (A1, θ1) and (A2, θ2) can be implemented by interpolating the axes of
rotation and the angles separately (Figure 2.21).6 An intermediate axis can be
determined by rotating one axis partway toward the other. The axis of rotation is
formed by taking the cross product of two axes, and the angle between the two
axes is determined by taking the inverse cosine of the dot product of normalized

6. A small raised dot (•) is used often to help disambiguate expressions involving scalar multiplication. A large raised dot
(•) is used to represent the dot product operation involving vectors.
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versions of the axes. An interpolant, 

 

k, 

 

can then be used to form an intermediate
axis and angle pair. Note that the axis-angle representation cannot be easily used
when compiling a series of rotations. However, the information contained in this
representation can be put in a form in which these operations are easily imple-
mented: quaternions.

 

2.2.4 Quaternions

 

As shown, the representations above have drawbacks when interpolating interme-
diate orientations when an object or joint has three degrees of rotational freedom.
A better approach is to use 

 

quaternions

 

 to represent orientation [4]. A quaternion
is a four-tuple of real numbers, [

 

s, x, y, z

 

] or, equivalently, [

 

s, v

 

], consisting of a sca-
lar, 

 

s,

 

 and a three-dimensional vector, 

 

v.

 

 
The quaternion is an alternative to the axis and angle representation that con-

tains the same information in a different form. Importantly, it is in a form that can
be interpolated as well as used in compiling a series of rotations into a single repre-
sentation. The axis and angle information of a quaternion can be viewed as an ori-

 

Figure 2.20

 

Euler’s rotation theorem implies that for any two orientations of an object, one 
can be produced from the other by a single rotation about an arbitrary axis

 

Figure 2.21
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entation of an object relative to its initial object space definition, or it can be
considered as the representation of a rotation to apply to an object definition. In
the former view, being able to interpolate between represented orientations is
important in generating key-frame animation. In the latter view, compiling a series
of rotations into a simple representation is a common and useful operation to per-
form to apply a single, compound transformation to an object definition.

 

Basic Quaternion Math

 

Before interpolation can be carried out, one must first understand some basic
quaternion math. 

 

Quaternion addition

 

 is simply the four-tuple addition of quater-
nion representations, [

 

s

 

1

 

, 

 

v

 

1] + [s2, v2] = [s1 + s2, v1 + v2]. Quaternion multiplica-
tion is defined as Equation 2.20. Notice that quaternion multiplication is not
commutative, q1 • q2 ≠ q2 • q1, but associative, (q1 • q2) • q3 = q1 • (q2 • q3).

(Eq. 2.20)

In these equations, the small dot represents scalar multiplication, the large dot
represents dot product, and “×” denotes cross product. A point in space, v, or,
equivalently, the vector from the origin to the point, is represented as [0, v]. It is
easy to see that quaternion multiplication of two orthogonal vectors (v1 • v2 = 0)
computes the cross product of those vectors (Equation 2.21).

(Eq. 2.21)

The quaternion [1, (0, 0, 0)] is the multiplicative identity; that is, [s, v] •

[1 (0, 0, 0)] = [s, v]. The inverse of a quaternion, [s, v]–1, is obtained by negating its
vector part and dividing both parts by the magnitude squared (the sum of the
squares of the four components), as shown in Equation 2.22.

(Eq. 2.22)

Multiplication of a quaternion, q, by its inverse, q–1, results in the unit-length
quaternion [1, (0, 0, 0)]. A unit-length quaternion (also referred to here as a unit
quaternion) is created by dividing each of the four components by the square root
of the sum of the squares of those components (Equation 2.23).

(Eq. 2.23)

Rotating Vectors Using Quaternions
To rotate a vector, v, using quaternion math, represent the vector as [0, v] and rep-
resent the rotation by a quaternion, q (how to represent rotations by a quaternion
is discussed below). The vector is rotated according to Equation 2.24.

s1 v1,[ ] s2 v2,[ ]⋅ s1 s2⋅ v1 v2•– s1 v2⋅ s2 v1⋅ v1 v2×+ +,[ ]=

0 v1,[ ] 0 v2,[ ]⋅ 0 v1 v2×,[ ]= iff v1 v2• 0=

q 1– 1 q⁄( )2 s v–,[ ]⋅=

where q s2 x2 y2 z2
+ + +=

q q( )⁄
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(Eq. 2.24)

A series of rotations can be compiled into a single representation by quaternion
multiplication. Consider a rotation represented by a quaternion p followed by a
rotation represented by a quaternion q on a vector, v (Equation 2.25).

(Eq. 2.25)

The inverse of a quaternion represents rotation about the same axis by the same
amount but in the reverse direction. Equation 2.26 shows that rotating a vector by
a quaternion q followed by rotating the result by a quaternion q-inverse produces
the original vector. 

(Eq. 2.26)

Also notice that in performing rotation, q • v • q–1, all effects of magnitude are
divided out due to the multiplication by the inverse of the quaternion. Thus, any
scalar multiple of a quaternion represents the same rotation as the corresponding
unit quaternion, as with the homogeneous representation of points.

Representing Rotations Using Quaternions
A rotation is represented in a quaternion form by encoding axis-angle informa-
tion. Equation 2.27 shows a unit quaternion representation of a rotation of an
angle, θ, about an axis of rotation (x, y, z). 

 (Eq. 2.27)

Notice that a quaternion and its negation, [–s, –v] both represent the same rota-
tion because the negated values indicate a negative rotation around the negated
axis. The two negatives in this case cancel each other out and produce the same
rotation (Equation 2.28).

(Eq. 2.28)

v′ Rot v( ) q v q 1–⋅ ⋅= =

Rotq Rotp v( )( ) q p v p 1–⋅ ⋅( ) q 1–⋅ ⋅=

qp( ) v qp( ) 1–⋅ ⋅( )=

Rotqp v( )=

Rot 1– Rot v( )( ) q 1– q v q 1–⋅ ⋅( ) q⋅ ⋅ v= =

q Rotθ x y z, ,( ), θ 2⁄( )cos θ 2⁄( )sin x y z, ,( )⋅,[ ]= =

q– Rot θ– x y z, ,( )–,=

θ– 2⁄( )cos θ–( ) 2⁄( )sin x y z, ,( )–( )⋅,[ ]=

θ 2⁄( )cos θ 2⁄( )sin– x y z, ,( )–( )⋅,[ ]=

θ 2⁄( )cos θ 2⁄( )sin x y z, ,⋅,[ ]=

Rotθ x y z, ,( ),=

q=
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2.3 Chapter Summary

Linear transformations represented by 4x4 matrices are a fundamental operation
in computer graphics and animation. Understanding their use, how to manipulate
them, and how to control round-off error is an important first step in mastering
graphics and animation techniques. 

There are several orientation representations to choose from. The most robust
representation of orientation is quaternions, but fixed angle, Euler angle, and axis-
angle are more intuitive, easier to implement, and often sufficient for a given situ-
ation. Appendix B contains useful conversions between quaternions and other rep-
resentations.
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T

 

his chapter presents methods for precisely specifying the motion of objects.
Using these techniques, the animator directly controls how the objects will move.
There is little uncertainty about the positions and orientations to be produced,
and the computer is used only to calculate the actual values. Procedures and algo-
rithms are used, to be sure, but in a very direct manner in which the animator has
very specific expectations about the motion that will be produced on a frame-by-
frame basis. Chapter 4, on advanced algorithms, addresses more sophisticated
techniques, in which the animator gives up some precision to produce motion
with certain desired qualities. The high-level algorithms of the next chapter leave
some uncertainty as to how the objects will be positioned for any particular frame. 

 

3.1 Interpolation

 

The foundation of most animation is the interpolation of values. One of the sim-
plest examples of animation is the interpolation of the position of a point in space.
But even to do this correctly is nontrivial and requires some discussion of several

 

Interpolation and
Basic Techniques

 

C H A P T E R
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issues: the appropriate interpolating function; the parameterization of the function
based on distance traveled; and maintaining the desired control of the interpolated
position over time.

Most of this discussion will be in terms of interpolating spatial values. The
reader should keep in mind that any changeable value involved in the animation
(and display) process such as an object’s transparency, the camera’s focal length, or
the color of a light source could be subjected to interpolation over time. 

Often, an animator has a list of values associated with a given parameter at spe-
cific frames (called 

 

key frames

 

 or 

 

extremes

 

) of the animation. The question to be
answered is how best to generate the values of the parameter for the frames
between the key frames. The parameter to be interpolated may be a coordinate of
the position of an object, a joint angle of an appendage of a robot, the transpar-
ency attribute of an object, or any other parameter used in the manipulation and
display of computer graphics elements. Whatever the case, values for the parame-
ter of interest must be generated for all of the frames between the key frames. 

For example, if the animator wants the position of an object to be (–5, 0, 0) at
frame 22 and the position to be (5, 0, 0) at frame 67, then values for the position
need to be generated for frames 23 to 66. Linear interpolation could be used. But
what if the object should appear to be stopped at frame 22 and needs to accelerate
from that position, reach a maximum speed by frame 34, start to decelerate at
frame 50, and come to a stop by frame 67? Or perhaps instead of stopping at frame
67, the object should continue to position (5, 10, 0) and arrive there at frame 80 by
following a nice curved path? The next several sections address these issues of gener-
ating points along a path defined by control points and distributing the points
along the path according to timing considerations.

 

3.1.1 The Appropriate Function

 

Appendix B contains a discussion of various specific interpolation techniques. In
this section, the discussion covers general issues that determine how to choose the
most appropriate interpolation technique and, once it is chosen, how to apply it in
the production of an animated sequence. 

The following issues need to be considered in order to choose the most appro-
priate interpolation technique: interpolation vs. approximation, complexity, conti-
nuity, and global vs. local control

 

Interpolation versus Approximation

 

Given a set of points to describe a curve, one of the first decisions one must make
is whether the given values represent actual positions that the curve should pass
through (interpolation) or whether they are meant merely to control the shape of
the curve and do not represent actual positions that the curve will intersect
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(approximation). See Figure 3.1. This distinction is usually dependent on whether
the data points are sample points of a desired curve or whether they are being used
to design a new curve. In the former case, the desired curve is assumed to be con-
strained to travel through the sample points, which is, of course, the definition of
an interpolating spline. In the latter case, an approximating spline can be used as
the animator quickly gets a feel for how repositioning the control points influences
the shape of the curve.

Commonly used interpolating functions are the Hermite formulation and the
Catmull-Rom spline. The Hermite formulation requires tangent information at
the endpoints, whereas Catmull-Rom uses only positions the curve should pass
through. Functions that approximate some or all of the control information
include Bezier and B-spline curves. See Appendix B for a more detailed discussion
of these functions.

 

Complexity

 

The complexity of the underlying interpolation equation is of concern because
this translates into its computational efficiency. The simpler the underlying equa-
tions of the interpolating function, the faster its evaluation. In practice, polynomi-
als are easy to compute, and, piecewise, cubic polynomials are the lowest-order
polynomials that provide sufficient smoothness while still allowing enough flexi-
bility to satisfy other constraints such as beginning and ending positions and tan-
gents. A polynomial whose order is lower than cubic does not provide for a point
of inflection between two endpoints and therefore may not fit smoothly to certain
data points. Using a polynomial whose order is higher than cubic typically does
not provide any significant advantages and is more costly to evaluate.

 

Continuity

 

The smoothness in the resulting curve is a primary consideration. Mathematically,
smoothness is determined by how many of the derivatives of the curve equation
are continuous. Zeroth-order continuity refers to the continuity of values of the
curve itself. Does the curve make any discontinuous jumps in its values? If a small

 

Figure 3.1

 

Comparing interpolation and approximating splines 

An interpolating spline in which the spline 
passes through the interior control points 

An approximating spline in which only the 
endpoints are interpolated; the interior control 
points are used only to design the curve
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change in the value of the parameter always results in a small change in the value
of the function, then the curve has zeroth-order, or positional, continuity. If the
same can be said of the first derivative of the function (the instantaneous change in
values of the curve), then the function has first-order, or tangential, continuity.
Second-order continuity refers to continuous curvature or instantaneous change of
the tangent vector. See Figure 3.2. In some geometric design environments,
second-order continuity of curves and surfaces may be needed, but in most anima-
tion applications, first-order continuity suffices.

In most applications, the curve is compound; it is made up of several segments.
The issue then becomes, not the continuity within a segment (which in the case of
polynomials is of infinite order), but the continuity enforced at the junction be-
tween adjacent segments. Hermite, Catmull-Rom, parabolic blending, and cubic
Bezier curves (see Appendix B) can all produce first-order continuity between
curve segments. There is a form of compound Hermite curves that produces
second-order continuity between segments at the expense of local control (see next
page). Cubic B-spline is second-order continuous everywhere. All of these curves
provide sufficient continuity for most animation applications. Appendix B dis-

 

Figure 3.2

 

Continuity (at the point indicated by the small circle)

circular arcs

Positional discontinuity at the 
point

Positional continuity but not 
tangential continuity at the point

Positional and tangential continuity 
but not curvature continuity at the 
point

Positional, tangential, and curvature 
continuity at the point
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cusses continuity in more mathematical terms, with topics including the differ-
ence between 

 

parametric continuity

 

 and 

 

geometric continuity.

 

Global versus Local Control

 

When designing a curve, a user often repositions one or just a few of the points
that control the shape of the curve in order to tweak just part of the curve. It is
usually considered an advantage if a change in a single control point has an effect
on only a limited region of the curve as opposed to changing the entire curve. A
formulation in which control points have a limited effect on the curve is referred
to as providing

 

 local control

 

. If repositioning one control point redefines the entire
curve, however slightly, then the formulation provides 

 

global control

 

. See Figure
3.3. Local control is almost always viewed as being the more desirable of the two.
Almost all of the composite curves provide local control: parabolic blending, Cat-
mull-Rom splines, composite cubic Bezier, and cubic B-spline. The form of Her-
mite curves that enforces second-order continuity at the segment junctions does so
at the expense of local control. Higher-order Bezier and B-spline curves have less
localized control than their cubic forms.

 

Summary

 

There are many formulations that can be used to interpolate values. The specific
formulation chosen depends on the desired continuity, whether local control is
needed, the degree of computational complexity involved, and the information

 

Figure 3.3

 

Comparing local and global effect of moving a control point

Local control: moving one control point only changes the curve over a finite bounded region

Global control: moving one control point changes the entire curve; distant sections may change only slightly
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required from the user. The Catmull-Rom spline is often used in animation path
movement because it is an interpolating spline and requires no additional informa-
tion from the user other than the points that the path is to pass through. Bezier
curves that are constrained to pass through given points are also often used. Para-
bolic blending is an often-overlooked technique that also affords local control and
is interpolating. Formulations for these curves appear in Appendix B. See Morten-
son [30] and Rogers and Adams [35] for more in-depth discussions.

 

3.2 Controlling the Motion Along a Curve

 

Designing the shape of a curve is only the first step in animation. The speed at
which the curve is traced out as the parametric value is increased has to be under
the direct control of the animator to produce predictable results. If the relation-
ship between a change in parametric value and the corresponding distance along
the curve is not known, then it becomes much more difficult for the animator to
produce desired effects. The first step in giving the animator control is to establish
a method for stepping along the curve in equal increments. Once this is done,
methods for speeding up and slowing down along the curve can be made available
to the animator.

For this discussion, it is assumed that an interpolating technique has been chosen
and that a function 

 

P

 

(

 

u

 

) has been selected that, for a given value of 

 

u,

 

 will produce
a value

 

 p 

 

=

 

 P

 

(

 

u

 

)

 

. 

 

If a “position in space” is being interpolated, then three functions
are being represented in the following manner. The

 

 x-, y-,

 

 and 

 

z

 

-coordinates for the
positions at the key frames are specified by the user. Key frames are associated with
specific values of the time parameter,

 

 u.

 

 The 

 

x-, y-, 

 

and 

 

z

 

-coordinates are considered
independently so that, for example, the 

 

x

 

-coordinates of the points are used as con-
trol values for the interpolating curve so that 

 

X 

 

=

 

 P

 

x

 

(

 

u

 

), where 

 

P

 

 denotes an inter-
polating function, and the subscript 

 

x

 

 is used to denote that this specific curve was
formed using the 

 

x

 

-coordinates of the key positions. Similarly, 

 

Y 

 

=

 

 P

 

y

 

(

 

u

 

) and

 

Z 

 

=

 

 P

 

z

 

(

 

u

 

) are formed so that for any specified time, 

 

u

 

, a position (

 

X, Y, Z

 

) can be
produced as (

 

P

 

x

 

(

 

u

 

), 

 

P

 

y

 

(

 

u

 

), 

 

P

 

z

 

(

 

u

 

)).
It is very important to note that varying the parameter of interpolation (in this

case 

 

u

 

) by a constant amount does not mean that the resulting values (in this case
Euclidean position) will vary by a constant amount. Thus, if positions are being
interpolated by varying 

 

u

 

 at a constant rate, the positions that are generated will not
necessarily, in fact will seldom, represent a constant speed (e.g., see Figure 3.4). 

To ensure a constant speed for the interpolated value, the interpolating function
has to be parameterized by arc length, that is, distance along the curve of interpo-
lation. Some type of reparameterization by arc length should be performed for
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most applications. Usually this reparameterization can be approximated without
adding undue overhead or complexity to the interpolating function. 

There are three approaches to establishing the reparameterization by arc length.
The first two methods create a table of values to establish a relationship between
parametric value and approximate arc length. This table can then be used to
approximate parametric values at equal-length steps along the curve. The first
method constructs the table by supersampling the curve and uses summed linear
distances to approximate arc length. The second method uses Gaussian quadrature
to numerically estimate the arc length. Both methods can benefit from an adaptive
subdivision approach to controlling error. The third method analytically computes
arc length. Unfortunately, many curves do not lend themselves to the analytic
method.

 

3.2.1 Computing Arc Length

 

To specify how fast the object is to move along the path defined by the curve, an
animator may want to specify the time at which positions along the curve should
be attained. Referring to Figure 3.5 as an example in two-dimensional space, the
animator may specify the following frame number and position pairs: (0, 

 

A

 

), (10,

 

B

 

), (35, 

 

C

 

), (60, 

 

D

 

). 
Alternatively, the animator may want to specify the relative velocities that an

object should have along the curve. For example, the animator may specify that an
object, initially at rest at position 

 

A,

 

 should smoothly accelerate until frame 20,
maintain a constant speed until frame 35, and then smoothly decelerate until
frame 60 at the end of the curve at position 

 

D.

 

 These kinds of constraints can be

 

Figure 3.4

 

Example of points produced by equal increments of an interpolating parameter 
for a typical cubic curve
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accommodated in a system that can compute the distance traveled along any span
of the curve.

Assume that the position of an object in three-space is being interpolated; the
parameterized interpolation function is a 

 

space curve

 

. The path of the object is a
cubic polynomial as a function of a single parametric variable, that is, Equation 3.1.

 

 

(Eq. 3.1)

 

Notice that in three-space this really represents three equations: one for the 

 

x

 

-
coordinate, one for the 

 

y

 

-coordinate, and one for the 

 

z

 

-coordinate. Each of the
three equations has its own constants 

 

a, b, c,

 

 and 

 

d.

 

 The equation can also be writ-
ten explicitly representing these three equations, as in Equation 3.2.

 

(Eq. 3.2)

 

Each of the three equations is a cubic polynomial of the form given in Equation
3.2. The curve itself can be specified using any of the standard ways of generating
a spline (see Appendix B or texts on the subject, e.g., [35]). Once the curve has
been specified, an object is moved along it by choosing a value of the parametric
variable, and then the 

 

x-, y-,

 

 and 

 

z

 

-coordinates of the corresponding point on the
curve are calculated. It is important to remember that in animation the path swept
out by the curve is not the only important thing. Equally important is how the
path is swept out over time. A very different effect will be evoked by the animation
if an object travels over the curve at a strictly constant speed instead of smoothly
accelerating at the beginning and smoothly decelerating at the end. As a conse-
quence, it is important to discuss both the curve that defines the path to be fol-
lowed by the object and the function that relates time to distance traveled. To

 

Figure 3.5

 

Position-time pairs constraining the motion
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avoid confusion, the term space curve will be used to refer to the former and the
term distance-time function will be used to refer to the latter. In discussing the
distance-time function, the curve that represents the function will be referred to
often. As a result, the terms curve and function will be used interchangeably in
some contexts. 

Notice that a function is desired that relates time to a position on the space
curve. The user supplies, in one way or another (to be discussed later), the
distance-time function that relates time to the distance traveled along the curve.
The distance along a curve is referred to as arc length and, in this text, is denoted
by s. When the arc length computation is given as a function of a variable u and
this dependence is noteworthy, then s (u) is used. The arc length at a specific para-
metric value, such as s (ui ), is often denoted as si. If the arc length computation is
specified as a function of time, then s (t) is used.

The interpolating function relates parametric value to position on the space
curve. The relationship between distance along the curve and parametric value
needs to be established. This relationship is the arc length parameterization of the
space curve. It allows movement along the curve at a constant speed by evaluating
the curve at equal arc length intervals. Further, it allows acceleration and decelera-
tion along the curve by controlling the distance traveled in a given time interval.

For an arbitrary curve, it is usually not the case that a constant change in the
parameter will result in a constant distance traveled. Because the value of the
parameterizing variable is not the same as arc length, it is difficult to choose the
values of the parameterizing variable so that the object moves along the curve at a
desired speed. The relationship between the parameterizing variable and arc length
is usually nonlinear. In the special case when a unit change in the parameterizing
variable results in a unit change in curve length, the curve is said to be parameter-
ized by arc length. Many seemingly difficult problems in control of motion in ani-
mation become very simple if the motion control curve can be parameterized by
arc length or, if arc length can be numerically computed, given a value for the
parameterizing variable. 

Let the function LENGTH(u1, u2) be the length along the space curve from the
point P (u1) to the point P (u2). See Figure 3.6. Then the two problems to solve
are 

1. Given parameters u1 and u2, find LENGTH(u1, u2).
2. Given an arc length s and a parameter value u1, find u2 such that

LENGTH(u1, u2) = s. This is equivalent to finding the zero point of the
expression s – LENGTH(u1, u2).

The first step in controlling the timing along a space curve is to establish the
relationship between parametric values and arc length. This can be done by speci-
fying the function s = G (u), which computes, for any given parametric value, the

Team LRN



72         3: Interpolation and Basic Techniques

length of the curve from its starting point to the point that corresponds to that
parametric value. Then if the inverse, G –1, can be computed (or estimated), the
curve can be effectively parameterized by arc length, that is, P (G –1(s)). Once this
is done, the second step is for the animator to specify, in one way or another, the
distance the object should move along the curve for each time step.

Establishing the Relationship between Parametric Value and Arc Length
In general, neither of the problems above has an analytic solution, so numerical
solution techniques must be used. As stated above, the first step in controlling the
motion of an object along a space curve is to establish the relationship between the
parametric value and arc length. If possible, the curve should be explicitly parame-
terized by arc length by analyzing the space curve equation. Unfortunately, most
types of parametric space curves are difficult or impossible to parameterize by arc
length. For example, it has been shown [21] that B-spline curves cannot, in gen-
eral, be parameterized by arc length. Since parameterization by arc length is not
possible for many useful types of curves, several approximate parameterization
techniques have been developed.

The Analytic Approach to Computing Arc Length
The length of the curve from a point P (u1) to any other point P (u2) can be found
by evaluating the arc length integral [25] (Equation 3.3) thus

(Eq. 3.3)

where the derivative of the space curve with respect to the parameterizing variable
is defined to be that shown in Equation 3.4 and Equation 3.5.

(Eq. 3.4)

Figure 3.6 LENGTH(u1, u2) 
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(Eq. 3.5)
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. The equation inside the radical becomes Equation 3.6. For the two-
dimensional case, the coefficients are given in Equation 3.7; the extension to 3D is
straightforward.

 

(Eq. 3.6)

(Eq. 3.7)

 

Estimating Arc Length by Forward Differencing

 

The easiest and conceptually simplest strategy for establishing the correspondence
between parameter value and arc length is to sample the curve at a multitude of
parametric values. Each parametric value produces a point along the curve. These
sample points can then be used to estimate the arc length by computing the linear
distance between adjacent points. As this is done, a table is built up of arc lengths
indexed by parametric values. For example, given a curve 

 

P

 

(

 

u

 

), compute the posi-
tions along the curve for 

 

u

 

 

 

= 0.00, 0.05, 0.10, 0.15, . . . , 1.0. The table, indexed
by u and represented here as G (u) would be computed as follows: 

G (0.0) = 0
G (0.05) = the distance between P (0.00) and P (0.05)
G (0.10) = G (0.05) plus the distance between P (0.05) and P (0.10)
G (0.15) = G (0.10) plus the distance between P (0.10) and P (0.15)
. . .
G (1.00) = G (0.95) plus the distance between P (0.95) and P (1.00)

For example, consider the table of values for u and corresponding values of the
function G in Table 3.1.

Pd ud⁄ xd u( ) ud⁄( )2 yd u( ) ud⁄( )2 zd u( ) ud⁄( )2
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2 cy
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As a simple example of how such a table could be used, consider the case in
which the user wants to know the distance (arc length) from the beginning of the
curve to the point on the curve corresponding to a parametric value of 0.73. The
parametric entry closest to 0.73 must be located in the table. Because the paramet-
ric entries are evenly spaced, the location in the table of the closest entry to the
given value can be determined by direct calculation. Using Table 3.1, the index, i,
is determined by Equation 3.8.

 (Eq. 3.8)

A crude approximation to the arc length is obtained by using the arc length
entry located in the table at index 15, that is, 0.959. A better approximation can

Table 3.1 Parameter, Arc Length Pairs

Index Parametric Entry Arc Length (G)

0 0.00 0.000
1 0.05 0.080
2 0.10 0.150
3 0.15 0.230
4 0.20 0.320
5 0.25 0.400
6 0.30 0.500
7 0.35 0.600
8 0.40 0.720
9 0.45 0.800

10 0.50 0.860
11 0.55 0.900
12 0.60 0.920
13 0.65 0.932
14 0.70 0.944
15 0.75 0.959
16 0.80 0.972
17 0.85 0.984
18 0.90 0.994
19 0.95 0.998
20 1.00 1.000

i int( ) given parametric value
distance between entries
---------------------------------------------------- 0.5+ 

 

i int( ) 0.73
0.05
--------------- 0.5+

 
 
 = 15

=

=
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be obtained by interpolating between the arc lengths corresponding to entries on
either side of the given parametric value. In this case, the index of the largest para-
metric entry that is less than the given value is desired (Equation 3.9).

(Eq. 3.9)

An arc length, L, can be linearly interpolated from the arc lengths in the table
by using the differences between the given parametric value and the parametric
entries on either side of it in the table, as in Equation 3.10.

(Eq. 3.10)

The solution to the first problem cited above (given two parameters u1 and u2,
find the distance between the corresponding points) can be found by applying this
calculation twice and subtracting the respective distances.

The reverse situation, that of finding the value of u given the arc length, is dealt
with in a similar manner. The table is searched for the closest arc length entry to
the given arc length value, and the corresponding parametric entry is used to esti-
mate the parametric value. This situation is a bit more complicated because the arc
length entries are not evenly spaced; the table must actually be searched for the
closest entry. Because the arc length entries are monotonically increasing, a binary
search is an effective method of locating the closest entry. As before, once the clos-
est arc length entry is found, the corresponding parametric entry can be used as
the approximate parametric value, or the parametric entries corresponding to arc
length entries on either side of the given arc length value can be used to linearly
interpolate an estimated parametric value.

For example, if the task is to estimate the location of the point on the curve that
is 0.75 unit of arc length from the beginning of the curve, the table is searched for
the entry whose arc length is closest to that value. In this case the closest arc length
is 0.72 and the corresponding parametric value is 0.40. For a better estimate, the
values in the table that are on either side of the given distance are used to linearly
interpolate a parametric value. In this case, the value of 0.75 is three-eighths of the
way between the table values 0.72 and 0.80. Therefore, an estimate of the para-
metric value would be calculated as in Equation 3.11.

i int( ) given parametric value
distance between entries
---------------------------------------------------- 

  int( ) 0.73
0.05
---------- 

  14= = =

L ArcLength i[ ] GivenValue Value i[ ]–( )
Value i 1+[ ] Value i[ ]–( )

--------------------------------------------------------------+=

ArcLength i 1+[ ] ArcLength i[ ]–( )⋅

0.944 0.73 0.70–
0.75 0.70–
---------------------------+ 0.959 0.944–( )⋅=

0.953=
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 (Eq. 3.11)

The solution to the second problem (given an arc length s and a parameter
value u1, find u 2 such that LENGTH(u1, u2) = s) can be found by using the table
to estimate the arc length associated with u1, adding that to the given value of s,
and then using the table to estimate the parametric value of the resulting length.

The advantages of this approach are that it is easy to implement, intuitive, and
fast to compute. The downside is that both the estimate of the arc length and the
interpolation of the parametric value introduce errors into the calculation. These
errors can be reduced in a couple of ways. 

The curve can be supersampled to help reduce errors in forming the table. For
example, ten thousand equally spaced values of the parameter could be used to
construct a table consisting of a thousand entries by breaking down each interval
into ten subintervals. This is useful if the curve is given beforehand and the table
construction can be performed as a preprocessing step. 

Better methods of interpolation can be used to reduce errors in estimating the
parametric value. Instead of linear interpolation, higher-order interpolation proce-
dures can be used in computing the parametric value. Of course, higher-order
interpolants slow down the computation somewhat, so a decision about the speed/
accuracy trade-off has to be made. 

These techniques reduce the error somewhat blindly. There is no measure for
the error in the calculation of the parametric value; these techniques only reduce
the error globally instead of investing more computation in the areas of the curve
in which the error is highest. 

Adaptive Approach
To better control error, an approach can be used that invests more computation in
areas estimated to have large errors. As before, a table is to be constructed in which
the first element of each entry is a parametric value and the second element of each
entry is the arc length of the curve from its start to the position corresponding to
that parametric value. (A linked list is an appropriate structure to hold this list
because the entries will typically not be generated in sorted order and a sorted list
is desired as the final result.) In addition, a sorted list of segments to be tested is
maintained. A segment on the list is defined and sorted by a range of parametric
values. 

Initially the element <0, 0> is put in the table and the entire curve is put on the
list of segments to be tested. The procedure operates on segments from the list to
be tested until the list is empty. The first segment on the list is always the one
tested next. The segment’s midpoint is computed by evaluating the curve at the
middle of the range of its parametric value. The curve is also evaluated at the end-

4.0
3
8
--- 

  4.5 4.0–( )⋅+ 4.1875=

Team LRN



Controlling the Motion Along a Curve 77

point of the segment; the position of the start of the segment is already in the table
and can be retrieved from there. The length of the segment and the lengths of each
of its halves are estimated by the linear distance between the points on the curve.
The sum of the estimated lengths of the two halves of the segment is compared to
the estimated length of the segment. If the difference between these two values is
above some user-specified threshold, then both halves, in order, are added to the
list of segments to be tested. If the values are within tolerance, then the parametric
value of the midpoint is recorded in the table along with the arc length of the first
point of the segment plus the distance from the first point to the midpoint. Also
added to the table is the last parametric value of the segment along with the arc
length to the midpoint plus the distance from the midpoint to the last point.
When the list of segments to be tested becomes empty, a list of <parametric value,
arc length> has been generated for the entire curve. 

One problem with this approach is that at a premature stage in the procedure
two half segments might indicate that the subdivision can be terminated (Figure
3.7). It is usually wise to force the subdivision down to a certain level and then
embark on the adaptive subdivision. 

Because the table has been adaptively built, it is not possible to directly com-
pute the index of a given parametric entry as it was with the nonadaptive
approach. Depending on the data structure used to hold the final table, either a
sequential search or, possibly, a binary search must be used. Once the appropriate
entries are found, then, as before, either a corresponding table entry can be used as
an estimate for the value or entries can be interpolated to produce better estimates.

Computing Arc Length Numerically
For cases in which efficiency of both storage and time are of concern, calculating
the arc length numerically may be desirable. Calculating the length function
involves evaluating the arc length integral (refer to Equation 3.3). Many numerical
integration techniques approximate the integral of a function with the weighted
sum of values of the function at various points in the interval of integration. Tech-
niques such as Simpson’s and trapezoidal integration use evenly spaced sample
intervals. Gaussian quadrature [4] uses unevenly spaced intervals in an attempt to
get the greatest accuracy using the smallest number of function evaluations.
Because evaluation of the derivatives of the space curve accounts for most of the
processing time in this algorithm, minimizing the number of evaluations is impor-
tant for efficiency.

Gaussian quadrature, as commonly used, is defined over an integration interval
from –1 to 1. The function to be integrated is evaluated at fixed points in the
interval –1 to +1, and each function evaluation is multiplied by a precalculated
weight. See Equation 3.12.
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(Eq. 3.12)

A function, g (t ), defined over an arbitrary integration interval (a, b) can be
mapped to the interval [–1, 1] by the linear transformation shown in Equation
3.13 to give Equation 3.14, so that g (t ) = f (u).

(Eq. 3.13)

(Eq. 3.14)

The weights and evaluation points for different orders of Gaussian quadrature
have been tabulated and can be found in many mathematical handbooks; see
Appendix B.

Figure 3.7 Tests for adaptive subdivision
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To perform Gaussian quadrature to compute the arc length of a cubic curve,
Equation 3.5, Equation 3.6, and Equation 3.7 are used to define the arc length
function shown in Equation 3.15. The actual code to carry this out is given below
in the discussion on adaptive Gaussian integration.

(Eq. 3.15)

Adaptive Gaussian Integration
Some space curves have derivatives that vary rapidly in some areas and slowly in
others. For such curves, Gaussian quadrature will either undersample some areas
of the curve or oversample some other areas. In the former case, unacceptable error
will accumulate in the result. In the latter case, time is wasted by unnecessary eval-
uations of the function. This is similar to what happens when using nonadaptive
forward differencing.

To address this problem, an adaptive approach can be used [17]. It follows the
same approach discussed in connection with arc length approximation by using
adaptive forward differencing. Each interval is evaluated using Gaussian quadra-
ture. The interval is then divided in half, and each half is evaluated using Gaussian
quadrature. The sum of the two halves is compared with the value calculated for
the entire interval. If the difference between these two values is less than the
desired accuracy, then the procedure returns the sum of the halves; otherwise, as
with the forward differencing approach, the two halves are added to the list of
intervals to be subdivided.

Initially the length of the entire space curve is calculated using adaptive Gauss-
ian quadrature. During this process, a table of the subdivision points is created.
Each entry in the table is a pair (u, s) where s is the arc length at parameter value
u. When calculating LENGTH(0, u), the table is searched to find the values ui ,
ui+1 such that ui ≤ u ≤ ui+1. The arc length from ui to u is then calculated using
nonadaptive Gaussian quadrature. This can be done because the space curve has
been subdivided in such a way that nonadaptive Gaussian quadrature will give
the required accuracy over the interval from ui to ui+1. LENGTH(0, u) is then
equal to si + LENGTH(ui , u). LENGTH(u1, u2) can be found by calculating
LENGTH(0, u1) and LENGTH(0, u2) and then subtracting. The code for the
adaptive integration and table-building procedure is shown in Figure 3.8.

This solves the first problem posed above; that is, given u1 and u2 find
LENGTH(u1, u2). To solve the second problem of finding u, which is a given dis-
tance, s, away from a given u1, numerical root-finding techniques must be used.

A u4⋅ B u3⋅ C u2⋅ D u⋅ E+ + + +

1–

1

∫
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/* ------------------------------------------------------------------------
STRUCTURES
*/

// the structure to hold entries of the table consisting of
// parameter value (u) and estimated length (length) 
typedef struct table_entry_structure {
    double u,length;
} table_entry_td;

// the structure to hold an interval of the curve, defined by 
// starting and ending parameter values and the estimated 
// length (to be filled in by the adaptive integration
// procedure)
typedef struct interval_structure {
    double u1,u2;
    double length;
} interval_td;

// coefficients for a 2D cubic curve
typedef struct cubic_curve_structure {
    double ax,bx,cx,dx;
    double ay,by,cy,dy;
} cubic_curve_td;

// polynomial function structure; a quadric function is generated
// from a cubic curve during the arclength computation
typedef struct polynomial_structure {
    double *coeff;
    int    degree;
} polynomial_td;

/* ------------------------------------------------------------------------
ADAPTIVE INTEGRATION
this is the high-level call used whenever a curve's length is to be computed
*/
void adaptive_integration(cubic_curve_td *curve, double u1, double u2, 
double tolerance)
{
 double subdivide();
 polynomial_td func;
 interval_td full_interval;
 double  total_length;
 double  integrate_func();
 double  temp;

 func.degree = 4;
 func.coeff = (double *)malloc(sizeof(double)*5);
 func.coeff[4] = 9*(curve->ax*curve->ax + curve->ay*curve->ay);
 func.coeff[3] = 12*(curve->ax*curve->bx + curve->ay*curve->by);
 func.coeff[2] = (6*(curve->ax*curve->cx + curve->ay*curve->cy) +
         4*(curve->bx*curve->bx + curve->by*curve->by)   );
 func.coeff[1] = 4*(curve->bx*curve->cx + curve->by*curve->cy);
 func.coeff[0] = curve->cx*curve->cx + curve->cy*curve->cy;
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 full_interval.u1 = u1; full_interval.u2 = u2;
 temp = integrate_func(&func,&full_interval);
 printf("\nInitial guess = %lf; %lf:%lf",temp,u1,u2);
 full_interval.length = temp;
 total_length = subdivide(&full_interval,&func,0.0,tolerance);
 printf("\n total length = %lf\n",total_length);
}

/* ------------------------------------------------------------------------
SUBDIVIDE
'total_length' is the length of the curve up to, but not including, the 
'full_interval' 
if the difference between the interval and the sum of its halves is less 
than 'tolerance,' 
    stop the recursive subdivision
'func' is a polynomial function
*/
double subdivide(interval_td *full_interval, polynomial_td *func, 
       double total_length, double tolerance)
{

 interval_td left_interval, right_interval;
 double  left_length,right_length;
 double  midu;
 double  subdivide();
 double integrate_func();
 double  temp;
 void add_table_entry();

 midu = (full_interval->u1+full_interval->u2)/2; 
 left_interval.u1 = full_interval->u1; left_interval.u2 = midu;
 right_interval.u1 = midu; right_interval.u2 = full_interval->u2;

 left_length = integrate_func(func, & left_interval);
 right_length = integrate_func(func, & right_interval);

 temp = fabs(full_interval->length - (left_length+right_length));
 if (temp > tolerance) {
  left_interval.length = left_length;
  right_interval.length = right_length;
  total_length = subdivide(&left_interval, func, total_length, tolerance);
  total_length = subdivide(&right_interval, func, total_length, tolerance);
  return(total_length);
 }
 else {
  total_length = total_length + left_length;
  add_table_entry(midu,total_length);
  total_length = total_length + right_length;
  add_table_entry(full_interval->u2,total_length);
  return(total_length);
 }
}
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/* ------------------------------------------------------------------------
ADD TABLE ENTRY
adds an entry of the form (parametric value, length) to the table being 
constructed
*/
void add_table_entry(double u, double length)
{
 /* add entry of (u, length) */
 printf("\ntable entry:  u: %lf, length: %lf",u,length);
}

/* ------------------------------------------------------------------------
INTEGRATE FUNCTION
use Gaussian quadrature to integrate square root of given function in the 
given interval
*/
double integrate_func(polynomial_td *func,interval_td *interval)
{
 double x[5]={.1488743389,.4333953941,.6794095682,.8650633666, 
.9739065285};
 double w[5]={.2966242247,.2692667193,.2190863625,.1494513491,.0666713443};
 double length, midu, dx, diff;
 int    i;
 double  evaluate_polynomial();
 double  u1,u2;

 u1 = interval->u1;
 u2 = interval->u2;

 midu = (u1+u2)/2.0;
 diff = (u2-u1)/2.0;
 length = 0.0;
 for (i=0; i<5; i++) {
  dx = diff*x[i];
  length += w[i]*(sqrt(evaluate_polynomial(func,midu+dx)) + 
          sqrt(evaluate_polynomial(func,midu-dx)));
 }
 length *= diff;

 return (length);
}

/* ------------------------------------------------------------------------
EVALUATE POLYNOMIAL
evaluate a polynomial
 */
double evaluate_polynomial(polynomial_td *poly, double u)
{
 double  w;
 int     i;
 double  value;
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Finding u Given s
The solution of the equation s – LENGTH(u1, u) = 0 gives the value of u that is at
arc length s from the point R (u1). Since the arc length is a strictly monotonically
increasing function of u, the solution is unique provided that the length of dR (u)/
du is not identically 0 over some integral. Newton-Raphson iteration can be used
to find the root of the equation because it converges rapidly and requires very little
calculation at each iteration. Newton-Raphson iteration consists of generating the
sequence {pn} as in Equation 3.16.

(Eq. 3.16)

In this case, f is equal to s – LENGTH(u1, Pn–1) = 0 and can be evaluated at pn–1
using the techniques discussed above for computing arc length; f ′ is dP/du evalu-
ated at pn–1. Two problems may be encountered with Newton-Raphson iteration:
Some of the pn may not lie on the space curve at all; dR/du may be zero, or very
nearly zero, at some points on the space curve. The first problem will cause all suc-
ceeding elements pn+1, pn+2 , . . . to be undefined, while the latter problem will
cause division by zero or by a very small number. A zero parametric derivative is
most likely to arise when two or more control points are placed in the same posi-
tion. This can easily be detected by examining the derivative of f in Equation
3.16. If it is small or zero, then binary subdivision is used instead of Newton-
Raphson iteration. Binary subdivision can be used in a similar way to handle the
case of undefined pn . When finding u such that LENGTH(0, u) = s, the subdivi-
sion table is searched to find the values si , si+1 such that si ≤ s ≤ si+1. The solution u
lies between ui and ui+1. Newton-Raphson iteration is then applied to this sub-
interval. An initial approximation to the solution is made by linearly interpolating
s between the endpoints of the interval and using this as the first iterate. Although
Newton-Raphson iteration can diverge under certain conditions, it does not hap-
pen often in practice. Since each step of Newton-Raphson iteration requires evalu-
ation of the arc length integral, eliminating the need to do adaptive Gaussian
quadrature, the result is a significant increase in speed. At this point it is worth

 value = 0.0;
 w = 1.0;
 for (i=0; i<=poly->degree; i++) {
  value += poly->coeff[i]*w;
  w *= u;
 }
 return value;
}

Figure 3.8 Adaptive Gaussian integration of arc length 

pn pn 1–   f p n 1 – ( ) f ′ p n 1 – ( ) ⁄ –=
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noting that the integration and root-finding procedures are completely indepen-
dent of the type of space curve used. The only procedure that needs to be modified
to accommodate new curve types is the derivative calculation subroutine, which is
usually a short program.

 

3.2.2 Speed Control

 

Once a space curve has been parameterized by arc length, it is possible to control
the speed at which the curve is traversed. Stepping along the curve at equally
spaced intervals of arc length will result in a constant speed traversal. More inter-
esting traversals can be generated by speed control functions that relate an equally
spaced parametric value (e.g., 

 

time

 

) to arc length in such a way that a controlled
traversal of the curve is generated. The most common example of such speed con-
trol is 

 

ease-in/ease-out

 

 traversal. This type of speed control produces smooth
motion as an object accelerates from a stopped position, reaches a maximum
velocity, and then decelerates to a stopped position.

In this discussion, the speed control function’s input parameter is referred to as

 
t,

 
 for 

 
time,

 
 and its output is 

 
arc length,

 
 referred to as

 
 distance

 
 or simply as 

 
s

 
. Con-

stant-velocity motion along the space curve can be generated by evaluating it at
equally spaced values of its arc length where arc length is a linear function of 

 
t.

 
 In

practice, it is usually easier if, once the space curve has been reparameterized by arc
length, the parameterization is then normalized so that the parametric variable
varies between zero and one as it traces out the space curve; the 

 

normalized arc
length parameter 

 

is just the arc length parameter divided by the total arc length of
the curve. For this discussion, the normalized arc length parameter will still be
referred to simply as the arc length.

Speed along the curve can be controlled by varying the arc length values at
something other than a linear function of 

 

t;

 

 the mapping of time to arc length is
independent of the form of the space curve itself. For example, the space curve
might be linear, while the arc length parameter is controlled by a cubic function
with respect to time. If 

 

t

 

 is a parameter that varies between 0 and 1 and if the curve
has been parameterized by arc length and normalized, then ease-in/ease-out can be
implemented by a function 

 

s

 

(

 

t

 

) 

 

=

 

 

 

ease

 

(

 

t

 

) so that as 

 

t

 

 varies uniformly between 0
and 1, 

 

s

 

 will start at 0, slowly increasing in value and gaining speed until the mid-
dle values and then decelerating as it approaches 1. See Figure 3.9. Variable 

 

s 

 

is
then used as the interpolation parameter in whatever function produces spatial
values.

The control of motion along a parametric space curve will be referred to as 

 

speed
control

 

. Speed control can be specified in a variety of ways and at various levels
of complexity. But the final result is to produce, either explicitly or implicitly, a
distance-time function 

 

s

 

(

 

t

 

), which, for any given time 

 

t,

 

 produces the distance
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traveled along the space curve (arc length). The space curve defines 

 

where

 

 to go,
while the distance-time function defines 

 

when

 

.
Such a function 

 

s

 

(

 

t

 

) would be used as follows. At a given time 

 

t, s

 

(

 

t

 

) is the
desired distance to have traveled along the curve at time 

 

t

 

. An arc length table (see
Section 3.2.1 on computing arc length) can then be used to find the correspond-
ing parametric value 

 
u

 
 that corresponds to that arc length. The space curve is then

evaluated at  u   to produce a point on the space curve. The arc length of the curve
segment from the beginning of the curve to the point is equal to 

 
s

 
(

 
t

 
) (within some

tolerance). If, for example, this position is used to translate an object through
space at each time step, it translates along the path of the space curve at a speed
indicated by 

 

s

 

(

 

t

 

).
There are various ways in which the distance-time function can be specified. It

can be explicitly defined by giving the user graphical curve-editing tools. It can be
specified analytically. It can also be specified by letting the user define the velocity-
time curve, or by defining the acceleration-time curve. The user can even work in a
combination of these spaces. In the following discussion, the common assumption
is that the entire arc length of the curve is to be traversed during the given total
time. Some additional optional assumptions (constraints) that are typically used are
listed below. In certain situations, it may be desirable to violate these constraints.

1. The distance-time function should be monotonic in 

 

t

 

—that is, the curve
should be traversed without backing up along the curve.

2. The distance-time function should be continuous—that is, there should be
no instantaneous jumps from one point on the curve to a nonadjacent point
on the curve. 

Following the assumption stated above, the entire space curve is to be traversed
in the given total time. This means that 0.0 
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). As mentioned previously, the distance-time function may also be
normalized so that all such functions end at 1.0 
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distance-time function facilitates its reuse with other space curves. An example of
an analytic definition is d (t) = (2 – t)*t, although this does not have the shape
characteristic of ease-in/ease-out motion control. See Figure 3.10.

3.2.3 Ease-in/Ease-out
Ease-in/ease-out is one of the most useful and most common ways to control
motion along a curve. There are several ways to incorporate ease-in/ease-out con-
trol. The standard assumption is that the motion starts and ends in a complete
stop and that there are no instantaneous jumps in velocity (first-order continuity).
There may or may not be an intermediate interval of constant speed, depending
on the technique used to generate the speed control. The speed control function
will be referred to as s (t ) = ease (t ), where t is a uniformly varying input parameter
meant to represent time and s is the output parameter that is the distance (arc
length) traveled as a function of time.

Sine Interpolation
One easy way to implement ease-in/ease-out is to use the section of the sine curve
from –π/2 to +π/2 as the ease(t) function. This is done by mapping the parameter
values of 0 to +1 into the domain of –π/2 to +π/2 and then mapping the corre-
sponding range of the sine functions of –1 to +1 in the range 0 to 1. See Equation
3.17 and the corresponding Figure 3.11.

(Eq. 3.17)

In this function, t is the input that is to be varied uniformly from zero to one
(e.g., 0.0, 0.1, 0.2, 0.3, . . .). The output, s, also goes from zero to one but does so

Figure 3.10 Graph of sample analytic distance-time function (2 – t)*t
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by starting off slowly, speeding up, and then slowing down. For example, at t =
.25, s (t) = .1465, and at t = .75, s (t) = .8535. With the sine/cosine ease-in/ease-
out function presented here, the “speed” of s with respect to t is never constant over
an interval but rather is always accelerating or decelerating, as can be seen by the
ever-changing slope of the curve. Notice that the derivative of this ease function is
zero at t = 0 and at t = 1. Zero derivatives at zero and one indicate a smooth ac-
celeration from a stopped position at the beginning of the motion and a smooth
deceleration to a stop at the end.

Using Sinusoidal Pieces for Acceleration and Deceleration
To provide an intermediate section of the distance-time function that has constant
speed, pieces of the sine curve can be constructed at each end of the function with
a linear intermediate segment. Care must be taken so that the tangents of the
pieces line up to provide first-order continuity. There are various ways to approach
this, but as an example assume the user specifies fragments of the unit interval that
should be devoted to acceleration and deceleration. For example, the user may
specify the value of 0.3 for acceleration and 0.75 for deceleration. Acceleration
occurs from time zero to 0.3 and deceleration occurs from time 0.75 to the end of
the interval. Referring to the user-specified values as k1 and k 2 respectively, a sinu-
soidal curve segment is used to implement an acceleration from time 0 to k1. A
sinusoidal curve is also used for velocity to implement deceleration from time k 2
to 1. Between times k1 and k 2, a constant velocity is used.

The solution is formed by piecing together a sine curve segment from –π/2 to
zero with a straight line segment (indicating constant speed) inclined at 45 degrees
(because the slope of the sine curve at zero is equal to one) followed by a sine curve
segment from zero to π/2. The initial sine curve segment is uniformly scaled by
k1 ⁄ π ⁄ 2 so that the length of its domain is k1. The length of the domain of the line

Figure 3.11 Using a sine curve segment as the ease-in/ease-out distance-time function
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segment is k 2 – k1. And the final sine curve segment is uniformly scaled by 1.0 –
k2 ⁄ π ⁄ 2 so that the length of its domain is 1.0 – k2. The sine curve segments must
be uniformly scaled to preserve C 1 (first-order) continuity at the junction of the
sine curves with the straight line segment. This means that for the first sine curve
segment to have a domain from zero to k1, it must have a range of length k1 ⁄ π ⁄ 2;
similarly, the ending sine curve segment must have a range of length 1.0 –k2 ⁄ π ⁄ 2.
The middle straight line segment, with a slope of one, will travel a distance of k2 – k1. 

To normalize the distance traveled, the resulting three-segment curve must be
scaled down by a factor equal to the total distance traveled as computed by k1 ⁄ π⁄ 2
+ k2 – k1 + 1.0 – k2 ⁄ π ⁄ 2. See Figure 3.12.

The ease function described above and shown in Equation 3.18 is implemented
in the code of Figure 3.13.

(Eq. 3.18)

Figure 3.12 Using sinusoidal segments with constant speed intermediate interval
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3.2.4 Constant Acceleration: Parabolic Ease-In/Ease-Out
To avoid the transcendental function evaluation (sin and cos), or corresponding
table look-up and interpolation, an alternative approach for the ease function is to
establish basic assumptions about the acceleration that in turn establish the basic
form that the velocity-time curve can assume. The user can then set parameters to
specify a particular velocity-time curve that can be integrated to get the resulting
distance-time function.

The simple case of no ease-in/ease-out would produce a constant zero accelera-
tion curve and a velocity curve that is a horizontal straight line at some value v0
over the time (t) interval from 0 to total time. The actual value of v0 depends on
the distance covered and is computed using the relationship distance = speed * time
so that v0*total_time=distance_covered. In the case where normalized values of 1.0
are being used for total distance covered and total time, v0 = 1.0. See Figure 3.14.

The distance-time curve is equal to the integral of the velocity-time curve and
relates time and distance along the space curve through a function s (t). Similarly,
the velocity-time curve is equal to the integral of the acceleration-time curve and
relates time and velocity along the space curve.

To implement an ease-in/ease-out function, constant acceleration and decelera-
tion at the beginning and end of the motion and zero acceleration during the mid-
dle of the motion are assumed. The assumptions of beginning and ending with
stopped positions mean that the velocity starts out at zero and ends at zero. In
order for this to be reflected in the acceleration/deceleration curve, the area under
the curve marked “acc” must be equal to the area above the curve marked “dec,”
but the actual values of the acceleration and deceleration do not have to be equal

Figure 3.13 Code to implement ease-in/ease-out using sinusoidal ease-in, followed by 
constant velocity and sinusoidal ease-out

float ease(float t, float k1, float k2)
{
float t1,t2;
float f,s;

f = k1*2/PI + k2 - k1 + (1.0-k2)*2/PI;

if (t < k1) {
s = k1*(2/PI)*(sin((t/k1)*PI/2-PI/2)+1);
}
else if (t < k2) {
s = (2*k1/PI + t-k1);
}
else {
s= 2*k1/PI + k2-k1 + ((1-k2)*(2/PI))*sin(((t-k2)/(1.0-k2))*PI/2);
}
return (s/f);
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to each other. Thus, three of the four variables (acc, dec, t1, t2) can be specified by
the user and the system can solve for the fourth to enforce the constraint of equal
areas. See Figure 3.15.

This piecewise constant acceleration function can be integrated to obtain the
velocity function. The resulting velocity function has a linear ramp for accelerating,
followed by a constant velocity interval, and ends with a linear ramp for decelera-
tion (see Figure 3.16). The integration introduces a constant into the velocity func-
tion, but this constant is zero under the assumption that the velocity starts out at
zero and ends at zero. The constant velocity attained during the middle interval

Figure 3.14 Acceleration, velocity, and distance curves for constant speed 

Figure 3.15 Acceleration/deceleration graph 
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depends on the total distance that must be covered during the time interval; the
velocity is equal to the area below (above) the acc (dec) segment in Figure 3.15. In
the case of normalized time and normalized distance covered, the total time and
total distance are equal to one. The total distance covered will be equal to the area
under the velocity curve (Figure 3.16). The area under the velocity curve can be
computed as in Equation 3.19.

(Eq. 3.19)

Because integration introduces arbitrary constants, the acceleration-time curve
does not bear any direct relation to total distance covered. Therefore, it is often
more intuitive for the user to specify ease-in/ease-out parameters using the
velocity-time curve. In this case, the user can set two of the three variables, t1, t2,
v0, and the system can solve for the third in order to enforce the “total distance
covered” constraint. For example, if the user specifies the time over which acceler-
ation and deceleration take place, then the maximum velocity can be found by
using Equation 3.20.

 (Eq. 3.20)

Figure 3.16 Velocity-time curve 
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The velocity-time function can be integrated to obtain the final distance-time
function. Once again, the integration introduces an arbitrary constant, but, with
the assumption that the motion begins at the start of the curve, the constant is
constrained to be zero. The integration produces a parabolic ease-in segment, fol-
lowed by a linear segment, followed by a parabolic ease-out segment (Figure 3.17).

The methods for ease control based on the sine function are easy to implement
and use but are less flexible than the acceleration-time and velocity-time functions.
These latter functions allow the user to have more control over the final motion
because of the ability to set various parameters.

3.2.5 General Distance-Time Functions
When working with velocity-time curves or acceleration-time curves, one finds
that the underlying assumption that the total distance is to be traversed during the
total time presents some interesting issues. Once the total distance and total time
are given, the average velocity is fixed. This average velocity must be maintained as
the user modifies, for example, the shape of the velocity-time curve. This can cre-
ate a problem if the user is working only with the velocity-time curve. One solu-
tion is to let the absolute position of the velocity-time curve float along the
velocity axis as the user modifies the curve. The curve will be adjusted up or down
in absolute velocity in order to maintain the correct average velocity. However, this

Figure 3.17 Distance-time function 
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means that if the user wants to specify certain velocities, such as starting and end-
ing velocities, or a maximum velocity, then other velocities must change in
response in order to maintain total distance covered. 

An alternative way to specify speed control is to fix the absolute velocities at key
points and then change the interior shape of the curve to compensate for average
velocity. However, this may result in unanticipated (and undesirable) changes in the
shape of the velocity-time curve. Some combinations of values may result in unnat-
ural spikes in the velocity-time curve in order to keep the area under the curve
equal to the total distance (one, in the case of normalized distance). Consequently,
undesirable accelerations may be produced, as demonstrated in Figure 3.18.

Notice that negative velocities mean that a point traveling along the space curve
backs up along the curve until the time is reached when velocity becomes positive
again. Usually, this is not acceptable behavior.

The user may also work directly with the distance-time curve. For some users,
this is the most intuitive approach. Assuming that a point on the curve starts at the
beginning of the curve at t = 0 and traversesthe curve to arrive at the end of the
curve at t = 1.0, then the distance-time curve is constrained to start at (0, 0) and

Figure 3.18 Some nonintuitive results of user-specified values on the velocity-time curve 
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end at (1.0, 1.0). If the objective is to start and stop with zero velocity, then the
slope at the start and end should be zero. The restriction that a point traveling
along the curve may not back up anytimeduring the traversal means that the
distance-time curve must be monotonically increasing (i.e., always have a nonneg-
ative slope). If the point may not stop along the curve during the time interval,
then there can be no horizontal sections in the distance-time curve (no internal
zero slopes). See Figure 3.19.

As mentioned before, the space curve that defines the path along which the
object moves is independent of the speed control curves that define the relative
velocity along the path as a function of time. A single space curve could have sev-
eral velocity-time curves defined along it, and one distance-time curve, for exam-
ple, a standard ease-in/ease-out function, could be applied to several different
space curves. Reusing distance-time curves is facilitated if normalized distance and
time are used.

Motion control frequently requires specifying positions and speeds along the
space curve at specific times. An example might be specifying the motion of a
hand as it reaches out to grasp an object; initially the hand accelerates toward the
object, and then, as it comes close, it slows down to almost zero speed before pick-
ing up the object. The motion is specified as a sequence of constraints on time,
position (in this case, arc length traveled along a space curve), velocity, and acceler-
ation. Stating the problem more formally, each point to be constrained is an n-
tuple, <ti , si , vi , ai , . . . ,>, where si is position, vi is velocity, ai is acceleration, and
ti is the time at which all the constraints must be satisfied (the ellipses, . . . , indi-
cate that higher-order derivatives may be constrained). Define the zero-order con-
straint problem to be that of satisfying sets of two-tuples, <ti , si >, while velocity,
acceleration, and so on are allowed to take on any values necessary to meet the
position constraints at the specified times. Zero-order constrained motion is illus-
trated at the top of Figure 3.20. Notice that there is continuity of position but not
of speed. By extension, the first-order constraint problem requires satisfying sets of
three-tuples, <si , vi , ti >, as shown in the bottom illustration in Figure 3.20. Stan-
dard interpolation techniques (see Appendix B) can be used to aid the user in gen-
erating distance-time curves. 

3.2.6 Curve Fitting to Position-Time Pairs
If the animator has specific positional constraints that must be met at specific
times, then the time-parameterized space curve can be determined directly.
Position-time pairs can be specified by the animator, as in Figure 3.21, and the
control points of the curve that produce an interpolating curve can be computed
from this information [35]. 
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For example, consider the case of fitting a B-spline1 curve to values of the form
Pi , ti ), i = 1, . . . , j. Given the form of B-spline curves shown in Equation 3.21 of
order k with n + 1 defining control vertices, and expanding in terms of the j given

Figure 3.19 Sample distance-time functions 

1. Refer to Appendix B for more information on B-spline curves.
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constraints (2 ≤ k ≤ n + ≤ j ), Equation 3.22 results. Put in matrix form, it becomes
Equation 3.23, in which the given points are in the column matrix P, the
unknown defining control vertices are in the column matrix B, and N is the matrix
of basis functions evaluated at the given times (t1, t 2, . . . , tj ).

Figure 3.20 Specifying motion constraints 

Figure 3.21 Position-time constraints
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(Eq. 3.21)

(Eq. 3.22)

(Eq. 3.23)

If there are the same number of given data points as there are unknown control
points, 2 ≤ k ≤ n + 1 = j, then N is square and the defining control vertices can be
solved by inverting the matrix, as in Equation 3.24.

(Eq. 3.24)

The resulting curve is smooth but can sometimes produce unwanted wiggles.
Specifying fewer control points (2 ≤ k ≤ n + 1 <  j ) can remove these wiggles but N
is no longer square. To solve the matrix equation, the pseudoinverse of N must be
used, as in Equation 3.25.

(Eq. 3.25)

3.3 Interpolation of Rotations Represented by Quaternions

Quaternions, as discussed in Chapter 2, are useful for representing orientations.
One of the most important reasons for choosing quaternions is that they can be
easily interpolated and they avoid the effects of gimbal lock, which can trouble the
other commonly used representations, fixed angles and Euler angles. While
quaternion representations of orientations can be interpolated to produce reason-
able intermediate orientations, direct linear interpolation of the individual quanti-
ties of the quaternion four-tuples produces nonlinear motion. To avoid effects of
magnitude on interpolation, unit quaternions are typically used to represent orien-
tations. Unit quaternions can be considered as points on the unit sphere in four-
dimensional space. 

P t( ) Bi Ni k, t( )⋅
i 1=

n 1+

∑=

P1 N1 k, t1( ) B1⋅ N2 k, t1( ) B2⋅ . . . Nn 1+ k, t1( ) Bn 1+⋅+ + +=

P2 N1 k, t2( ) B1⋅ N2 k, t2( ) B2⋅ . . . Nn 1+ k, t2( ) Bn 1+⋅+ + +=

. . .

Pj N1 k, tj( ) B1⋅ N2 k, tj( ) B2⋅ . . . Nn 1+ k, tj( ) Bn 1+⋅+ + +=

P N B⋅=

B N 1– P⋅=

P N B⋅=

NT P⋅ NT N B⋅ ⋅=

NT N⋅[ ]
1–

NT P⋅ ⋅ B=

Team LRN



98         3: Interpolation and Basic Techniques

Given two orientations represented by unit quaternions, intermediate orienta-
tions can be produced by linearly interpolating from the first to the second. These
orientations can be viewed as four-dimensional points on a straight-line path from
the first quaternion to the second quaternion. Simple equal-interval, linear inter-
polation between the two quaternions will not produce a constant speed rotation
because the unit quaternions to which the intermediate orientations map will not
produce equally spaced intervals on the unit sphere. Figure 3.22 shows the analo-
gous effect when interpolating a straight-line path between points on a 2D circle.

Intermediate orientations representing constant-speed rotation can be calcu-
lated by interpolating directly on the surface of the unit sphere, specifically along
the great arc between the two quaternion points. A quaternion, [s, v], and its nega-
tion, [–s, –v ], represent the same orientation. Interpolation from one orientation,
represented by the quaternion q1, to another orientation, represented by the
quaternion q2, can also be carried out from q1to –q2. The difference is that one
interpolation path will be longer than the other. Usually, the shorter path is the
more desirable because it represents the more direct way to get from one orienta-
tion to the other. The shorter path is the one indicated by the smaller angle
between the 4D quaternion vectors. This can be determined by using the 4D dot
product of the quaternions to compute the cosine of the angle between q1 and q2
(Equation 3.26). If the cosine is positive, then the path from q1 to q2 is shorter;
otherwise the path from q1 to –q2 is shorter (Figure 3.23).

Figure 3.22 Equally spaced linear interpolations of straight-line path between two points on 
a circle generate unequal spacing of points after projecting onto a circle 
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 (Eq. 3.26)

The formula for spherical linear interpolation (slerp) between unit quaternions
q1 and q2 with parameter u varying from 0 to 1 is given in Equation 3.27, where
q1 • q2 = cosθ. Notice that this does not necessarily produce a unit quaternion, so
the result must be normalized if a unit quaternion is desired.

(Eq. 3.27)

Notice that in the case u = 1 ⁄ 2, slerp (q1, q2, u) can be easily computed within a
scale factor, as q1 + q2, which can then be normalized to produce a unit quaternion.

When interpolating between a series of orientations, slerping between points on
the surface of a sphere has the same problem as linear interpolation between points
in Euclidean space: that of first-order discontinuity (see Appendix B). Shoemake
[37] suggests using cubic Bezier interpolation to smooth the interpolation
between orientations. In his paper, reasonable interior control points are automat-
ically calculated to define cubic segments between each pair of orientations.

To discuss this technique, assume for now that there is a need to interpolate
between two-dimensional points in Euclidean space [. . . , pn –1, pn, pn+1, . . .];
these will be referred to as the interpolated points. (How to consider the calcula-
tions using quaternion representations is discussed later.) Between each pair of
points, two control points will be constructed. For each of the interpolation
points, pn , two control points will be associated with it: the one immediately
before it, bn ; and the one immediately after it, an .

To calculate the control point following any particular point pn , take the vector
defined by pn –1 to pn and add it to the point pn. Now take this point (marked “1”
in Figure 3.24) and find the average of it and pn+1. This becomes one of the con-
trol points (marked “an” in Figure 3.24). 

Figure 3.23 The closer of the two representations of orientation is the better choice to use in 
interpolation
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Next, take the vector defined by 

 

a

 

n

 

 to 

 

p

 

n

 

 and add it to 

 

p

 

n

 

 to get 

 

b

 

n

 

 (Figure
3.25). Points  b

 n   and  a
 n   are the control points immediately before and after the

point 
 

p
 

n
 

. This construction ensures first-order continuity at the junction of adja-
cent curve segments (in this case, 

 

p

 

n

 

) because the control points on either side of
the point are colinear with the control point itself.

The end conditions can be handled by a similar construction. For example, the
first control point, 

 

a

 

0

 

, is constructed as the vector from the third interpolated
point to the second point (

 

p

 

1 

 

– 

 

p

 

2

 

) is added to the second point (Figure 3.26).
In forming a control point, the quality of the interpolated curve can be affected

by adjusting the distance the control point is from its associated interpolated point
while maintaining its direction from that interpolated point. For example, a new

 

b

 

n

 

′

 

 can be computed with a user-specified constant, 

 

k,

 

 as in Equation 3.28.

 

(Eq. 3.28)

 

Between any two interpolated points, a cubic Bezier curve segment is then
defined by the points 
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exactly the same way that 
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 is defined except for using 

 

p

 

n

 

, 

 

p

 

n+

 

1

 

, and 
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. The
cubic curve segment is then generated between 

 

p

 

n

 

 and 

 

p

 

n+

 

1.

 

 See Figure 3.27.
It should be easy to see how this procedure can be converted into the 4D spher-

ical world of quaternions. Instead of adding vectors, rotations are concatenated.
Averaging of orientations can easily be done by slerping to the halfway orientation,
which is implemented by adding quaternions (and optionally normalizing). 

Once the internal control points are computed, the De Casteljau algorithm can
be applied to interpolate points along the curve. An example of the De Casteljau

 

Figure 3.24
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Figure 3.25
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construction procedure in the Euclidean case of Bezier curve interpolation is
shown in Figure 3.28. See Appendix B for a more complete discussion of the
procedure.

The same procedure can be used to construct the Bezier curve in four-
dimensional spherical space. For example, to obtain an orientation corresponding to
the u = 1/3 position along the curve, the following orientations are computed:

p1 = slerp (qn,an,1/3)
p2 = slerp (an,bn+1,1/3)
p3 = slerp (bn+1,qn+1,1/3)
p12 = slerp (p1,p2,1/3)
p23 = slerp (p2,p3,1/3)
p = slerp (p12,p23,1/3)

Figure 3.26 Constructing the first interior control point

Figure 3.27 Construction of bn+1 and the resulting curve 

Figure 3.28 De Casteljau construction of point on cubic Bezier segment at 1 ⁄ 3 (the point labeled “3”)
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where p is the quaternion representing an orientation 1 ⁄ 3 along the spherical cubic
spline.

The procedure can be made especially efficient in the case of quaternion repre-
sentations when calculating points at positions along the curve corresponding to u
values that are powers of 1 ⁄ 2. For example, consider calculating a point at u = 1 ⁄ 4.

temp = slerp (qn,an,1/2) = qn + an
p1 = slerp (qn,temp,1/2) = qn + temp
temp = slerp (an,bn+1,1/2) = an + bn+1
p2 = slerp (an,temp,1/2) = an + temp
temp = slerp (bn+1,qn+1,1/2) = bn+1 + qn+1
p3 = slerp (bn+1,temp,1/2) = bn+1 + temp
temp = slerp (p1,p2,1/2) = p1 + p2
p12 = slerp (p1,temp,1/2) = p1 + temp
temp = slerp (p2,p3,1/2) = p2 + p3
p23 = slerp (p2,temp,1/2) = p2 + temp
temp = slerp (p12,p23,1/2) = p12 + p23
p = slerp (p12,temp,1/2) = p12 + temp

The procedure can be made more efficient if the points are generated in order
according to binary subdivision (1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, . . .) and
temporary values are saved for use in subsequent calculations.

3.4 Path Following

Animating an object by moving it along a path is a very common technique and
usually one of the simplest to implement. As with most other types of animation,
however, issues may arise that make the task more complicated than first envi-
sioned. An object (or camera) following a path requires more than just translating
along a space curve, even if the curve is parameterized by arc length and the
motion is controlled using ease-in/ease-out. Changing the orientation of the
object also has to be taken into consideration. If the path is the result of a digitiza-
tion process, then often it must be smoothed before it can be used. If the path is
constrained to lie on the surface of another object, then more computation is
involved. These issues are discussed below.

3.4.1 Orientation along a Path
Typically, a local coordinate system (u, v, w) is defined for an object to be ani-
mated. In this discussion, a right-handed coordinate system is assumed, with the
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origin of the coordinate system determined by a point along the path P (s). As pre-
viously discussed, this point is generated based on the frame number, arc length
parameterization, and possibly ease-in/ease-out control. This position will be
referred to as POS. The view vector is identified with the w -axis, the up vector is
identified with the v -axis, and the local u-axis is perpendicular to these two. To
form a right-handed coordinate system, the u-axis points to the left of the object as
someone at the object’s position (POS ) looks down the w -axis with the head
aligned with the v -axis (Figure 3.29).

There are various ways to handle the orientation of the camera as it travels along
a path. Of course, which method to use depends on the desired effect of the
animation. The orientation is specified by determining the direction of the w -axis
and the direction of the v -axis; the u-axis is then fully specified by completing the
left-handed coordinate system.

Use of the Frenet Frame
If an object or camera is following a path, then its orientation can be made directly
dependent on the properties of the curve. The Frenet frame2 can be defined along
the curve as a moving (right-handed) coordinate system, (u, v, w), determined by
the curve’s tangent and curvature. The Frenet frame changes orientation over the
length of the curve. It is defined as normalized orthogonal vectors with w in the
direction of the first derivative (P ′(s)), v orthogonal to w and in the general direc-
tion of the second derivative (P ′′(s)), and u formed by the cross product of the two
(Figure 3.30). Specifically, at a given parameter value s, the Frenet frame is calcu-
lated according to Equation 3.29, as illustrated in Figure 3.31. The vectors are
then normalized.

2. Note the potential source of confusion between the use of the frame to mean (1) a frame of animation and (2) the
moving coordinate system of the Frenet frame. The context in which the term frame is used should determine its
meaning. 

Figure 3.29 Camera-based local coordinate system

POS P (s)

v

wu
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(Eq. 3.29)

While the Frenet frame provides useful information about the curve, there are a
few problems with using it directly to control the orientation of a camera or object
as it moves along a curve. One problem occurs in segments of the curve that have
no curvature (P ′′(u) = 0), because the Frenet frame is undefined. These undefined
segments can be dealt with by interpolating a Frenet frame along the segment
from the Frenet frames at the boundary of the segment. By definition, there is no
curvature along this segment, so the boundary Frenet frames must differ by only a
rotation around w. Assuming that the vectors have already been normalized, the
angular difference between the two can be determined by taking the arccosine of
the dot product between the two v vectors so that θ = acos(v1 • v2). This rotation
can be linearly interpolated along the no-curvature segment (Figure 3.32).

The problem is more difficult to deal with when there is a discontinuity in the
curvature vector. Consider, for example, two semicircles spliced together so that

Figure 3.30 The derivatives at a point along the curve 

Figure 3.31 Frenet frame at a point along a curve
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they form an S (sigmoidal ) shape. The curvature vector, which for any point along
this curve will point to the center of the semicircle that the point is on, will instan-
taneously switch from pointing to one center point to pointing to the other center
point at the junction of the two semicircles. In this case, the Frenet frame is
defined everywhere but has a discontinuous jump in orientation at the junction.
See Figure 3.33. 

However, the main problem with using the Frenet frame as the local coordinate
frame to define the orientation of the camera or object following the path is that
the resulting motions are usually too extreme and not natural looking. Using the
w -axis (tangent vector) as the view direction of a camera can be undesirable.

Figure 3.32 Interpolating Frenet frames to determine the undefined segment
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Often, the tangent vector does not appear to correspond to the direction of “where
it’s going” even though it is in the instantaneous (analytic) sense. The more natural
orientation, for someone riding in a car or riding a bike, for example, would be to
look farther ahead along the curve rather than to look tangential to the curve. 

If the v -axis is equated with the up vector of an object, the object will rotate
wildly about the path even when the path appears to mildly meander through an
environment. With three-dimensional space curves, the problem becomes more
obvious as the path bends down toward the ground; the camera will invert and
travel along the path upside down. While the Frenet frame provides useful infor-
mation to the animator, its direct use to control object orientation is clearly of lim-
ited value. When modeling the motion of banking into a turn, the curvature
vector (u -axis) does indicate which way to bank and can be used to control the
magnitude of the bank. For example, the horizontal component (the component
in the x-z plane) of the u -axis can be used as the direction/magnitude indicator for
the bank. For a different effect, the animator may want the object to tilt away from
the curvature vector to give the impression of the object feeling a force that throws
it off the path, such as when one rides a roller coaster.

Camera Path Following: Adding a Center of Interest
The simplest method of specifying the orientation of a camera is to set its center of
interest (COI) to a fixed point in the environment or, more elegantly, to use the
center point of one of the objects in the environment. In either case, the center of
interest is directly determined and is available for calculating the view vector, w =
COI – POS. This is usually a good method when the path that the camera is fol-
lowing is one that circles some arena of action on which the camera’s attention
must be focused.

This still leaves one degree of freedom to be determined in order to fully specify
the local coordinate system. For now, assume that the up vector, v, is to be kept
“up.” Up in this case means “generally in the positive y -axis direction,” or, for a
more mathematical definition, the v -axis is at right angles to the view vector (w -

Figure 3.33 The curvature vector, defined everywhere but discontinuous, instantaneously 
switches direction at point P

P
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axis) and is to lie in the plane defined by the local w -axis and the global y -axis.
The local coordinate system can be computed as shown in Equation 3.30. The
vectors can then be normalized to produce unit length vectors.

(Eq. 3.30)

For a camera traveling down a path, the view direction can be automatically set
in several ways. As previously mentioned, the center of interest can be set to a spe-
cific point in the environment or to the position of a specific object in the environ-
ment. This works well as long as there is a single point or single object on which
the camera should focus and as long as the camera does not pass too close to the
point or object. Passing close to the center of interest will result in radical changes
in view direction (of course, in some cases, the resulting effect may be desirable).
Other methods use points along the path itself, a separate path through the envi-
ronment, or interpolation between positions in the environment. The up vector
can also be set in several ways. The default orientation is for the up vector to lie in
the plane of the view vector and the global y -axis. Alternatively, a tilt of the up vec-
tor can be specified away from the default orientation as a user-specified value (or
interpolated set of values). And, finally, the up vector can be explicitly specified by
the user.

The simplest method of setting the view vector is to use a delta parametric value
to define the center of interest. If the position of the camera on a curve is defined
by P (s), then the center of interest will be P (s + δs). This, of course, should be
after reparameterization by arc length. Otherwise, the actual distance to the center
of interest along the path will vary over time (although if a relatively large δu is
used, the variation may not be noticeable). At the end of the curve, once s + δs is
beyond the path parameterization, the view direction can be interpolated to the
end tangent vector as s approaches one (in the case that distance is normalized). 

Often, updating the center of interest to be a specific point along the curve can
result in views that appear jerky. In such cases, averaging some number of posi-
tions along the curve to be the center-of-interest point can smooth the view. How-
ever, if the number of points used is too small or the points are too close together,
the view may remain jerky. If n is too large and the points are spaced out too
much, the view direction may not change significantly during the traversal of the
path and will appear too static. The number of points to use and their spread
along the curve are dependent on the path itself and on the effect desired by the
animator.

An alternative to using some function of the position path to produce the center
of interest is to use a separate path altogether to define the center of interest. In this

w COI POS–=

u w y -axis×=

v u w×=
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case, the camera’s position is specified by P (s), while the center of interest is speci-
fied by some C (s). This requires more work by the animator but provides greater
control and more flexibility. Similarly, an up vector path, U(s), might be specified
so that the general up direction is defined by U(s) – P (s). This is just the general
direction because a valid up vector must be perpendicular to the view vector. Thus
the coordinate frame for the camera could be defined as in Equation 3.31.

(Eq. 3.31)

Instead of using a separate path for the center of interest, a simple but effective
strategy is to fix it at one location for an interval of time and then move it to
another location (using linear spatial interpolation and ease-in/ease-out temporal
interpolation) and fix it there for a number of frames and so on. The up vector can
be set as before in the default “up” direction.

3.4.2 Smoothing a Path
In cases in which the points making up a path are generated by a digitizing pro-
cess, the resulting curve can be too jerky because of noise or imprecision. To
remove the jerkiness, the coordinate values of the data can be smoothed by one of
several approaches. For this discussion, the following set of data will be used:
{(1, 1.6), (2, 1.65), (3, 1.6), (4, 1.8), (5, 2.1), (6, 2.2), (7, 2.0), (8, 1.5), (9, 1.3),
(10, 1.4)}. This is plotted in Figure 3.34.

Smoothing with Linear Interpolation of Adjacent Values
An ordered set of points in two-space can be smoothed by averaging adjacent
points. In the simplest case, the two points, one on either side of an original point,

Figure 3.34 Sample data for path smoothing
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P

 

i

 

,

 

 are averaged. This point is averaged with the original data point (Equation
3.32). Figure 3.35 shows the sample data plotted with the original data. Notice
how linear interpolation tends to draw the data points in the direction of local
concavities. Repeated applications of the linear interpolation to further smooth
the data would continue to draw the reduced concave sections and flatten out the
curve.

 

(Eq. 3.32)

 

Smoothing with Cubic Interpolation of Adjacent Values

 

To preserve the curvature but still smooth the data, the adjacent points on either
side of a data point can be used to fit a cubic curve that is then evaluated at its
midpoint. This midpoint is then averaged with the original point, as in the linear
case. A cubic curve has the form shown in Equation 3.33. The two data points on
either side of an original point, 
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 are used as constraints, as shown in Equation
3.34. These equations can be used to solve for the constants of the cubic curve (
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). Equation 3.33 is then evaluated at 
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 1 ⁄ 2; and the result is averaged with
the original data point (see Figure 3.36). Solving for the coefficients and evaluat-
ing the resulting cubic curve is a bit tedious, but the solution needs to be per-
formed only once and can be put in terms of the original data points, 
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. This is shown geometrically in Figure 3.37.

 

(Eq. 3.33)

 

Figure 3.35
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(Eq. 3.34)

 
For the end conditions, a parabolic arc can be fit through the first, third, and

fourth points, and an estimate for the second point from the start of the data set
can be computed (Figure 3.38). The coefficients of the parabolic equation, 
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 can be computed from the constraints in Equation 3.35, and the
equation can be used to solve for the position 
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=

 

 P (1 ⁄ 3). 

Figure 3.36 Smoothing data by cubic interpolation 

Figure 3.37 Geometric construction of a cubic estimate for smoothing a data point 
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(Eq. 3.35)

This can be rewritten in geometric form and the point can be constructed geo-
metrically from the three points P ′1  = P2 + 1 ⁄ 3 • (P0 – P3) (Figure 3.39). A similar
procedure can be used to estimate the data point secondfrom the end. The very
first and very last data points can be left alone if they represent hard constraints, or
parabolic interpolation can be used to generate estimates for them as well, for
example, P0′  = P3 + 3 • (P1 – P2). Figure 3.40 shows cubic interpolation to smooth
the data with and without parabolic interpolation for the endpoints.

Smoothing with Convolution Kernels
When the data to be smoothed can be viewed as a value of a function, yi = f (xi ),
the data can be smoothed by convolution. Figure 3.41 shows such a function

Figure 3.38 Smoothing data by parabolic interpolation 

Figure 3.39 Geometric construction of a parabolic estimate for smoothing a data point
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where the 

 

x

 

i

 

 are equally spaced. A smoothing kernel can be applied to the data
points by viewing them as a step function (Figure 3.42). Desirable attributes of a
smoothing kernel include the following: it is centered around zero, it is symmetric,
it has finite support, and the area under the kernel curve equals one. Figure 3.43
shows examples of some possibilities. A new point is calculated by centering the
kernel function at the position where the new point is to be computed. The new
point is calculated by summing the area under the curve that results from multi-
plying the kernel function, 
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), by the corresponding segment of the step func-
tion, 
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), beneath it (i.e., 

 

convolution

 

). Figure 3.44 shows a simple tent-shaped
kernel applied to a step function. In the continuous case, this becomes the inte-
gral, as shown in Equation 3.36, where [–
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. . . , 
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] is the extent of the support of
the kernel function.

 

(Eq. 3.36)

 

Figure 3.40

 

Sample data smoothed with cubic interpolation 

 

Figure 3.41
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The integral can be analytically computed or approximated by discrete means.
This can be done either with or without averaging down the number of points
making up the path. Additional points can also be interpolated. At the endpoints,
the step function can be arbitrarily extended so as to cover the kernel function
when centered over the endpoints. Often the first and last points must be fixed
because of animation constraints, so care must be taken in processing these. Figure
3.44 shows how a tent kernel is used to average the step function data; Figure 3.45
shows the sample data smoothed with the tent kernel.

 

Figure 3.42

 

Step function defined by data points of original curve

 

Figure 3.43
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Smoothing by B-Spline Approximation

 

Finally, if an approximation to the curve is sufficient, then points can be selected
from the curve, and, for example, B-spline control points can be generated based
on the selected points. The curve can then be regenerated using the B-spline con-
trol points, which ensures that the regenerated curve is smooth even though it no
longer passes through the original points.

 

3.4.3 Determining a Path along a Surface

 

If one object moves across the surface of another object, then a path across the sur-
face must be determined. If start and destination points are known, it can be com-
putationally expensive to find the shortest path between the points. However,

 

Figure 3.44

 

Example of a tent-shaped smoothing filter

 

Figure 3.45

 

Sample data smoothed with convolution using a tent kernel

1/8 3/4 1/8

v1

v2 v3

V
1
8
--- v1⋅ 3

4
--- v2⋅ 1

8
--- v3⋅+ +=

1.0
v1

Smoothing kernel superimposed over step 
function Areas of tent kernel under the different 

step function values

Computation of value smoothed by applying area 
weights to step function values

2.2

1.4

1.6

1.8
2 4 6 8 10

Team LRN



Path Following 115

often it is not necessary to find the absolute shortest path. Various alternatives exist
for determining suboptimal paths.

An easy way to determine a path along a polygonal surface mesh is to determine
a plane that contains the two points and is generally perpendicular to the surface.
(Generally perpendicular can be defined, for example, as the average of the two ver-
tex normals that the path is being formed between.) The intersection of the plane
with the faces making up the surface mesh will define a path between the two
points (Figure 3.46). If the surface is a higher-order surface and the known points
are defined in the u, v coordinates of the surface definition, then a straight line (or
curve) can be defined in the parametric space and transferred to the surface.

Alternatively, a greedy-type algorithm can be used to construct a path of edges
along a mesh surface from a given start vertex to a given destination vertex. For
each edge emanating from the current vertex (initially the start vertex), calculate
the projection of the edge onto the straight line between the current vertex and the
destination vertex. Divide this distance by the length of the edge to get the cosine
of the angle between the edge and the straight line. The edge with the largest
cosine is the edge most in the direction of the straight line; choose this edge to add
to the path. Keep applying this until the destination edge is reached. Improve-
ments to this approach can be made by allowing the path to cut across polygons to
arrive at points along opposite edges rather than by going vertex to vertex. Candi-
date edges can be generated by projecting the straight line onto polygons contain-
ing the vertex and then computing their cosine values for consideration. 

If a path downhill from an initial point on the surface is desired, then the sur-
face normal and global up vector can be used to determine the downhill vector.
The cross product of the normal and global up vector defines a vector that lies on
the surface perpendicular to the downhill direction. So the cross product of this
vector and the normal vector defines the downhill (and uphill) vector on a plane
(Figure 3.47). This same approach works with curved surfaces to produce the
instantaneous downhill vector.

Figure 3.46 Determining a path along a polygonal surface mesh by using plane intersection
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3.5 Key-Frame Systems

Many of the early computer animation systems were key-frame systems (e.g., [5]
[6] [7] [24]). Most of these were 2D systems based on the standard procedure used
for hand-drawn animation, in which master animators define and draw the key
frames of the sequence to be animated. In hand-drawn animation, assistant anima-
tors have the task of drawing the intermediate frames by mentally inferring the
action between the keys. The key frames occur often enough in the sequence so
that the intermediate action is reasonably well defined, or the keys are accompa-
nied by additional information to indicate placement of the intermediate frames.
In computer animation, the term key frame has been generalized to apply to any
variable whose value is set at specific key frames and from which values for the
intermediate frames are interpolated according to some prescribed procedure.
These variables have been referred to in the literature as articulation variables
(avars) [28], and the systems are sometimes referred to as track based. It is common
for such systems to provide an interactive interface with which the animator can
specify the key values and the interpolation desired (Figure 3.48). The interpola-
tion of variables is discussed at the beginning of this chapter; the rest of the discus-

Figure 3.47 Calculating the downhill vector, D

Figure 3.48 Simple interface for specifying interpolation of key values
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sion in this section focuses on shape interpolation analogous to the process of
hand-drawn animation.

Because these animation systems keep the strategy of interpolating two-
dimensional shapes, the basic operation is that of interpolating one (possibly
closed) curve into another (possibly closed) curve. The interpolation is straight-
forward if the correspondence between lines in the frames is known in enough
detail so that each pair of lines can be interpolated on a point-by-point basis to
produce lines in the intermediate frames (and if this is desirable from the user’s
point of view). This interpolation requires that for each pair of curves in the key
frames the curves have the same number of points and that for each curve, open or
closed, the correspondence between the points can be established. 

Of course, the simplest way to interpolate the points is using linear interpola-
tion between each pair of keys (Figure 3.49). Moving in arcs and allowing for ease-
in/ease-out can be accommodated by applying any of the interpolation techniques
discussed in Appendix B, providing that a point can be identified over several key
frames. 

Point-by-point correspondence information is usually not known, and even if it
is, the resulting correspondence is not necessarily what the user wants. The best

 

Figure 3.49

 

Simple key and intermediate frames

 

key frame key frame

key framekey frame

Keys and three intermediate frames with linear interpolation of a single point (with reference lines 
showing the progression of the interpolation in 
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 and 
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)

Simple key frames in which each curve of a frame has the same number of points as 
its counterpart in the other frame. 
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one can expect is for the curve-to-curve correspondence to be known. The prob-
lem is, given two arbitrary curves in key frames, to interpolate a curve as it
“should” appear in intermediate frames. For example, observe the egg splatting
against the wall in Figure 3.50. 

For illustrative purposes, consider the simple case in which the key frames 

 

f

 

1
and 

 

f

 

2 consist of a single curve (Figure 3.51). The curve in frame 

 

f

 

1 is referred to
as 

 

P

 

(

 

u

 

), and the curve in frame 

 

f

 

2 is referred to as 

 

Q

 

(

 

v

 

). This single curve must be
interpolated for each frame between the key frames in which it is defined. For sim-
plicity, but without loss of generality, it is assumed that the curve, while it may
wiggle some, is basically a vertical line in both key frames.

Some basic assumptions are used about what constitutes reasonable interpola-
tion, such as the fact that if the curve is a single continuous open segment in
frames 

 

f

 

1 and 

 

f

 

2, then it should remain a single continuous open segment in all
the intermediate frames. Also assumed is that the top point of 

 

P, P

 

(0), should
interpolate to the top point in 

 

Q, Q

 

(0), and, similarly, the bottom points should
interpolate. However, what happens at intermediate points along the curve is so
far left undefined (other than for the obvious assumption that the entire curve 

 

P

 

Figure 3.50

 

Egg splatting against a wall whose shape must be interpolated

 

Figure 3.51

 

Two frames showing a curve to be interpolated

P (u) Q (v)

Frame f 1 Frame f 2
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should interpolate to the entire curve 

 

Q;

 

 that is, the mapping should be one-to-
one and onto). 

If both curves were generated with the same type of interpolation information,
for example, each is a single, cubic Bezier curve, then intermediate curves could be
generated by interpolating the control points and reapplying the Bezier interpola-
tion. Another alternative would be to use interpolating functions to generate the
same number of points on both curves. These points could then be interpolated
on a point-by-point basis. Although these interpolations get the job done, they do
not provide sufficient control to a user who has specific ideas of how they should
progress.

Reeves [33] proposes a method of computing intermediate curves using 

 

moving
point constraints 

 

that allows the user to specify more information concerning the
correspondence of points along the curve and the speed of interpolation of those
points. The basic approach is to use surface patch technology (two spatial dimen-
sions) to solve the problem of interpolating a line in time (one spatial dimension,
one temporal dimension).

The curve to be interpolated is defined in several key frames. Interpolation infor-
mation—that is, a point’s path and speed of interpolation as defined over two or
more of the keys for one or more points—is defined for the curves. See Figure 3.52.

The first step is to define a segment of the curve to interpolate, bounded on
top and bottom by interpolation constraints. Linear interpolation of the very top
and very bottom of the curve, if not specified by a moving point constraint, is
used to bound the top and bottom segments. Once a bounded segment has been
formed, the task is to define an intermediate curve based on the constraints (see
Figure 3.53).

 

Figure 3.52

 

Moving point constraints

 

Figure 3.53
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Various strategies can be used to define the intermediate curve segment, C (t ) in
Figure 3.53, and are typically applications of surface patch techniques. For exam-
ple, tangent information along the curves can be extracted from the curve defini-
tions. The endpoint and tangent information can then be interpolated along the
top and bottom interpolation boundaries to define an intermediate curve. 

3.6 Animation Languages

An animation language is a group of structured constructs that can be used to
encode the information necessary to produce animations. The language can be
script based, in which instructions are recorded for later evaluation, or it can be
graphical, for example, in which flowchart-like diagrams encode relationships and
procedures. Nadia Magnenat-Thalmann and Daniel Thalmann [26] present a
good survey of early animation systems, and Steve May [28] presents a good over-
view of animation languages from the perspective of his interest in procedural rep-
resentations and encapsulated models; much of the discussion here is taken from
these sources.

The first animation systems used general-purpose programming languages (e.g.,
Fortran) to produce the motion sequences. However, each time an animation was
to be produced, there was overhead in defining graphical primitives, object data
structures, transformations, and renderer output. An animation language is any
encoding of the animation to be produced. It may be written in a special script or
in a general-purpose, possibly simplified, programming language that incorporates
features that facilitate animation production. Typical features include built-in
input/output operations for graphical objects, data structures to represent objects
and support the hierarchical composition of objects, a time variable, interpolation
functions, functions to animate object hierarchies, affine transformations, render-
ing-specific parameters, parameters for specifying camera attributes and defining
the view frustum, and the ability to direct the producing, viewing, and storing of
one or more frames of animation. The program written in an animation language
is often referred to as a script.

The advantage of using an animation language is twofold. First, the specifica-
tion of an animation written in the language is a hard-coded record of the anima-
tion that can be used at any time to regenerate it. The language also allows the
animation to be iteratively refined because the script can be changed and the ani-
mation regenerated. Second, the availability of programming constructs allows an
algorithmic approach to motion control. The animation language, if sufficiently
powerful, can interpolate values, compute arbitrarily complex numerical quanti-
ties, implement behavioral rules, and so on. The disadvantage of using an anima-
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tion language is that it is, fundamentally, a programming language and thus
requires the user (animator) to be a programmer. The animator must be trained
not only in the arts but also in the art of programming. Languages have been
developed with simplified programming constructs, but such simplification usu-
ally reduces the algorithmic power of the language. As users become more familiar
with a language, the tendency is to want more of the algorithmic power of a gen-
eral-purpose programming language put back into the animation language. More
recently, animation systems have been developed that are essentially user interfaces
on top of a scripting language. Users can use the system strictly from the interface
provided with the system, or they can write their own scripts in the underlying
language. One example of such a system is Alias/Wavefront’s MEL. MEL provides
variables, control statements, procedures, expressions, access to object attributes,
and the ability to customize the user interface. The standard user interface protects
users who do not know how to program or who do not want to use the underlying
language while giving access to the full power of the scripting language to those
users who wish to use it. A sample MEL script is shown below [1].

global proc emitAway()
{
   emitter -pos 0 0 0 -type direction -sp 0.3 -name emit -r 50 -spd 1;
   particle -name spray;
   connectDynamic -em emit spray
   connectAttr emit.tx emitShape.dx;
   connectAttr emit.ty emitShape.dy;
   connectAttr emit.tz emitShape.dz;
   rename emit “emitAway#”;
   rename spray “sprayAway#”;
}

3.6.1 Artist-Oriented Animation Languages
To accommodate animators not trained in the art of computer programming, sev-
eral simple animation languages were designed from the ground up with the inten-
tion of keeping the syntax simple and the semantics easy to understand (e.g., [18]
[19] [27]). In the early days of computer graphics, almost all animation systems
were based on such languages because there were few artists with technical back-
grounds who were able to program in a full-fledged programming language. These
systems, as well as some of those with graphical user interfaces (e.g., [15] [29]
[39]), were more accessible to artists but also had limited capabilities.

In these simple animation languages, typical statements referred to named
objects, a transformation, and a time at which (or a span of time over which) to
apply the transformation to the object. They also tended to have a syntax that was
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easy to parse (for the interpreter/compiler) and easy to read (for the animator).
The following examples are from ANIMA II [18]. 

set position <name> <x> <y> <z> at frame <number>
set rotation <name> [X,Y,Z] to <angle> at frame <number>
change position <name> to <x> <y> <z> from frame <number> to frame
   <number>
change rotation <name> [X,Y,Z] by <angle> from frame <number> to frame
   <number>

Specific values or variable names could be placed in the statements, which
included an indicator as to whether the transformation was relative to the object’s
current position or absolute in global coordinates. The instructions operated in
parallel; the script was not a traditional programming language in that sense.

As animators became more adept at writing animation scripts in such lan-
guages, they tended to demand that more capability be incorporated into the
language. As May [28] points out, “By eliminating the language constructs that
make learning animation languages difficult, command [artist-oriented] languages
give up the mechanisms that make animation languages powerful.” The developers
found themselves adding looping constructs, conditional control statements, ran-
dom variables, procedural calls, and data structure support. It usually became clear
that adding support for graphical objects and operations to an existing language
such as C or LISP was more reasonable than developing a full animation program-
ming language from scratch.

3.6.2 Articulation Variables
A feature used by several languages is associating the value of a variable with a
function, most notably, of time. The function is specified procedurally or designed
interactively using interpolating functions. Thus a script or other type of anima-
tion system, when needing a value of the variable in its computation, passes the
time variable to the articulation function, which returns its value for that time to
the computation. This technique goes by a variety of names, such as track, channel,
or articulation variable. The term articulation variable, often shortened to avar,
stems from its common use in various systems to control the articulation of linked
appendages. 

The use of avars when an interactive system is provided to the user for designing
the functions allows a script-based animation language to incorporate some interac-
tion during the development of the animation. It also allows digitized data as well
as arbitrarily complex functions to be easily incorporated into an animation.
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3.6.3 Graphical Languages
Graphical representations, such as those used in the commercial Houdini system
[38], represent an animation by a dataflow network. See Figure 3.54 (Plate 2). An
acyclic graph is used to represent objects, operations, and the relationships among
them. Nodes of the graph have inputs and outputs that connect to other nodes,
and data are passed from node to node by arcs of the graphics that are interactively
specified by the user. A node represents an operation to perform on the data being
passed into the node, such as an object description. A transformation node will
operate on an object description passed into the node and will produce a trans-
formed object representation as output. Inputs to a node can also be used to
parameterize a transformation or a data generation technique and can be set inter-
actively, set according to an articulation variable, or set according to an arbitrary
user-supplied procedure.

3.6.4 Actor-Based Animation Languages
Actor-based languages are an object-oriented approach to animation in which an
actor (encapsulated model [28]) is a graphical object with its associated data and

Figure 3.54 Sample Houdini dataflow network and the object it generates
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procedures, including geometric description, display attributes, and motion con-
trol. Reynolds [34] popularized the use of the term actor in reference to the encap-
sulated models he uses in his ASAS system.

The basic idea is that the data associated with a graphical object should not only
specify its geometry and display characteristics but also describe its motion. Thus
the encapsulated model of a car includes how the doors open, how the windows
roll down, and, possibly, the internal workings of the engine. Communication
with the actor takes place by way of message passing; animating the object is car-
ried out by passing requests to the actor for certain motions. The current status of
the actor can be extracted by sending a request for information to the actor and
receiving a message from the actor.

Actor-based systems provide a convenient way of communicating the time-
varying information pertaining to a model. However, the encapsulated nature of
actors with the associated message passing can result in inefficiencies when they are
used with simulation systems in which all objects have the potential to affect all
others.

3.7 Deforming Objects

Deforming an object or transforming one object into another is a visually power-
ful animation technique. It adds the notion of malleability and density. Flexible
body animation makes the objects in an animation seem much more expressive.
There are physically based approaches that simulate the flexing of objects undergo-
ing forces. However, many animators want more precise control over the shape of
an object than that provided by simulations and/or do not want the computa-
tional expense of the simulating physical processes. In such cases, the animator
wants to deform the object directly and define key shapes. Shape definitions that
share the same edge connectivity can be interpolated on a vertex-to-vertex basis in
order to smoothly change from one shape to the other. A sequence of key shapes
can be interpolated over time to produce flexible body animation.

It can probably be agreed that uniform scale does not change the shape of an
object, but what about nonuniform scale? Does a rectangle have the same shape as
a square? Most would say no. Most would agree that shearing changes the shape of
an object. Elementary schools often teach that a square and a diamond are differ-
ent shapes even though they may differ by only a rotation. The affine is the sim-
plest type of transformation that (sometimes) changes the shape of an object;
affine transformations are defined by a 3x3 matrix followed by a translation. Affine
transformations can be used to model the squash & stretch of an object, the
jiggling of a block of Jello, and the shearing effect of an exaggerated stopping
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motion. Nonuniform scale can be used for simple squash & stretch, but more
interesting shape distortions are possible with nonaffine transformations. User-
defined distortions are discussed below; physically based approaches are discussed
in the next chapter.

3.7.1 Warping an Object
A particularly simple way to modify the shape of an object is to displace one vertex
(the seed vertex) or group of vertices of the object and propagate the displacement
to adjacent vertices along the surface by attenuating the initial vertex’s displace-
ment. The displacement can be attenuated as a function of the distance between
the seed vertex and the vertex to be displaced. See Figure 3.55. A distance function
can be chosen to trade off quality of the results with computational complexity.
One simple function uses the minimum number of edges connecting the seed ver-
tex with the vertex to be displaced. Another such function uses the minimum dis-
tance traveled over the surface of the object between the seed vertex and the vertex
to be displaced.

Attenuation is a function of the distance metric. In one approach [32], the user
selects a function from a family of power functions to control the amount of atten-
uation. For a particular vertex that is i edges away from the seed vertex and where
the range of effect has been user selected to be vertices within n edges of the seed
vertex, a scale factor is applied to the displacement vector according to the user-
selected integer value of k as shown in Equation 3.37.

(Eq. 3.37)

These attenuation functions are easy to compute and provide sufficient flexibil-
ity for many desired effects. When k equals zero it corresponds to a linear attenua-
tion, while higher values of k create a more elastic impression. Values of k less than
zero create the effect of more rigid displacements (Figure 3.56). 

3.7.2 Coordinate Grid Deformation
A popular technique for modifying the shape of an object is credited to Sederberg
[36] and is called free-form deformation (FFD). FFD is only one of a number of
techniques that share a similar approach, establishing a local coordinate system that
encases the area of the object to be distorted. The initial configuration of the local
coordinate system is such that the determination of the local coordinates of a vertex
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is a simple process. Typically the initial configuration has orthogonal axes. The
object to be distorted, whose vertices are defined in global coordinates, is then
placed in this local coordinate space by determining the local coordinates of its ver-
tices. The local coordinate system is distorted by the user in some way, and the local
coordinates of the vertices are used to map their positions in global space. The idea
behind these techniques is that it is easier or more intuitive for the user to manipu-
late the local coordinate system than to manipulate the vertices of the object. Of
course, the trade-off is that the manipulation of the object is restricted to possible
distortions of the coordinate system. The local coordinate grid is usually distorted

 

Figure 3.55

 

Warping of object vertices

 

Displacement of seed vertex

Attenuated displacement propagated to adjacent vertices.
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so that the mapping is continuous (space is not torn apart), but it can be nonlinear,
making this technique more powerful than affine transformations.

 

2D Grid Deformation

 

Before proceeding to FFDs, a simpler scheme is presented. This is the seminal
work in flexible body animation [6] demonstrated in the 1974 film 

 

Hunger

 

. Peter
Foldes, Nestor Burtnyk, and Marceli Wein used a 2D technique that allowed for
shape deformation. In this technique, the local coordinate system is a 2D grid in
which an object is placed. The grid is initially aligned with the global axes so that
the mapping from local to global coordinates consists of a scale and a translate. For
example, in Figure 3.57, assume that the local grid vertices are defined at global
integer values from 20 to 28 in 

 

x 

 

and from 12 to 15 in 

 

y.

 

 Vertex 

 

A

 

 in the figure has
global coordinates of (25.6, 14.7). The local coordinates of vertex 

 

A

 

 would be
(5.6, 2.7).

The grid is then distorted by the user moving the vertices of the grid so that the
local space is distorted. The vertices of the object are then relocated in the dis-
torted grid by bilinear interpolation relative to the cell of the grid in which the ver-
tex is located (Figure 3.58). 

The bilinear interpolants used for vertex 

 

A

 

 would be 0.6 and 0.7. The positions
of vertices of cell (5, 2) would be used in the interpolation. Assume the cell’s ver-
tices are named 

 

P

 

00, 

 

P

 

01, 

 

P

 

10, and 

 

P

 

11. Bilinear interpolation results in Equa-
tion 3.38.

 

(Eq. 3.38)

 

Once this is done for all vertices of the object, the object is distorted according
to the distortion of the local grid. See Figure 3.59. For objects that contain hun-
dreds or thousands of vertices, the grid distortion is much more efficient than

 

Figure 3.56
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Figure 3.57

 

Initial 2D coordinate grid

 

Figure 3.58

 

Bilinear interpolation

 

Figure 3.59
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individually repositioning each vertex. In addition, it is more intuitive for the user
to specify a deformation.

 

Polyline Deformation

 

A 2D technique that is similar to the grid approach but lends itself to serpentine
objects is based on a simple polyline (linear sequence of connected line segments)
drawn by the user through the object to be deformed. Polyline deformation is sim-
ilar to the grid approach in that the object vertices are mapped to the polyline, the
polyline is then modified by the user, and the object vertices are then mapped to
the same relative location on the polyline. 

The mapping to the polyline is performed by first locating the most relevant
line segment for each object vertex. To do this, intersecting lines are formed at the
junction of adjacent segments, and perpendicular lines are formed at the extreme
ends of the polyline. These lines will be referred to as the boundary lines; each
polyline segment has two boundary lines. For each object vertex, the closest
polyline segment that contains the object vertex between its boundary lines is
selected (Figure 3.60).

Next, each object vertex is mapped to its corresponding polyline segment. A
line segment is constructed through the object vertex parallel to the polyline seg-
ment and between the boundary lines. For a given object vertex, the following
information is recorded (Figure 3.61): the closest line segment (

 

L

 

2); the line seg-
ment’s distance to the polyline segment (

 

d

 

); and the object vertex’s relative posi-
tion on this line segment, that is, the ratio 

 

r

 

 of the length of the line segment (

 

d

 

1)
and the distance from one end of the line segment to the object vertex (

 

d

 

2).
The polyline is then repositioned by the user and each object vertex is reposi-

tioned relative to the polyline using the information previously recorded for that
vertex. A line parallel to the newly positioned segment is constructed 

 

d

 

 units away
and the vertex’s new position is the same fraction along this line that it was in the
original configuration. See Figure 3.62.

 

Figure 3.60

 

Polyline drawn through object; bisectors and perpendiculars are drawn as dashed 
lines
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Global Deformations

 

Alan Barr [2] presents a method of globally deforming the space in which an
object is defined. Essentially, he applies a 3x3 transformation matrix, 

 

M,

 

 which is a
function of the point being transformed, that is, 
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cates the dependence of 
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 on 

 

P.

 

 For example, Figure 3.63 shows a simple linear
2D tapering operation. There is no reason why the function (

 

f

 

(

 

x

 

) in Figure 3.63)
needs to be linear; it can be whatever function produces the desired effect. Other
global deformations are possible. In addition to the taper operation, twists (Figure
3.64), bends (Figure 3.65), and various combinations of these (Figure 3.66) are
possible. For more details about these operations and Barr’s discussion of what he
terms local deformations, the interested reader is encouraged to refer to Barr’s
paper [2].

 

Figure 3.61

 

Measurements used to map an object vertex to a polyline

 

Figure 3.62

 

Remapping of an object vertex relative to a deformed polyline (see Figure 3.61)
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Figure 3.63 Global tapering

Figure 3.64 Twist about an axis
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Free-Form Deformation
FFD is essentially a 3D extension of Burtnyk’s technique and incorporates higher-
order interpolation. In both cases, a localized coordinate grid, in a standard config-
uration, is superimposed over an object. For each vertex of the object, coordinates
relative to this local grid are determined that register the vertex to the grid. The
grid is then manipulated by the user. Using its relative coordinates, each vertex is
then mapped back into the modified grid, which relocates it in global space.
Instead of linear interpolation, a cubic interpolation is typically used with FFD. In

Figure 3.65 Global bend operation
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Sederberg’s original paper [36], Bezier interpolation is suggested as the interpolat-
ing function, but any interpolation technique could be used.

Points of an object are located in a three-dimensional rectilinear grid. Initially
the local coordinate system is defined by a not necessarily orthogonal set of three
vectors (S, T, U ). A point P is registered in the local coordinate system by deter-
mining its trilinear interpolants, as done in Equation 3.39, Equation 3.40, and
Equation 3.41:

(Eq. 3.39)

Figure 3.66 Examples of global deformations
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(Eq. 3.40)

(Eq. 3.41)

In the equations above, the cross product of two vectors forms a third vector
that is orthogonal to the first two. The denominator normalizes the value being
computed. In the first equation, for example, the projection of S onto T × U deter-
mines the distance within which points will map into the range 0 < s < 1. 

Given the local coordinates (s, t, u) of a point and the unmodified local coordi-
nate grid, a point’s position can be reconstructed in global space by simply moving
in the direction of the local coordinate axes according to the local coordinates
(Equation 3.42):

(Eq. 3.42)

To facilitate the modification of the local coordinate system, a grid of control
points is created in the parallelepiped defined by the S, T, U axes. There can be an
unequal number of points in the three directions. For example, in Figure 3.68,
there are four in the S direction, three in the T direction, and two in the U di-
rection.

If there are nS points in the S direction, nT points in the T direction, and nU
points in the U direction, the control points are located according to Equation
3.43.

 (Eq. 3.43)

The deformations are specified by moving the control points from their initial
positions. The function that effects the deformation is a trivariate Bezier interpo-
lating function. The deformed position of a point Pstu is determined by using its (s,
t, u) local coordinates, as defined by Equation 3.39–Equation 3.41, in the Bezier
interpolating function shown in Equation 3.44. In Equation 3.44, P (s, t, u) repre-

Figure 3.67 Initial local coordinate system for FFDs
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sents the global coordinates of the deformed point, and Pijk represents the global
coordinates of the control points.

 

(Eq. 3.44)

This interpolation function of Equation 3.44 is an example of tricubic interpola-
tion. Just as the Bezier formulation can be used to interpolate a 1D curve or a 2D
surface, the Bezier formulation is being used here to interpolate a 3D solid space.

Like Bezier curves and surfaces, multiple Bezier solids can be joined with conti-
nuity constraints across the boundaries. Of course, to enforce positional continu-
ity, adjacent control lattices must share the control points along the boundary
plane. As with Bezier curves, C 1 continuity can be ensured between two FFD
control grids by enforcing colinearity among adjacent control points across the
common boundary (Figure 3.69).

Higher-order continuity can be maintained by constraining more of the control
points on either side of the common boundary plane. However, for most applica-
tions, C 1 continuity is sufficient. One possibly useful feature of the Bezier formu-
lation is that a bound on the change in volume induced by FFD can be
analytically computed. See Sederberg [36] for details.

FFDs have been extended to include initial grids that are something other than
a parallelepiped [13]. For example, a cylindrical lattice can be formed from the
standard parallelepiped by merging the opposite boundary planes in one direction
and then merging all the points along the cylindrical axis, as in Figure 3.70.

Figure 3.68 Grid of control points
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Compositing FFDs—Sequential versus Hierarchical

 

FFDs can be composed sequentially or hierarchically. In a sequential composition
an object is modeled by progressing through a sequence of FFDs, each of which
imparts a particular feature to the object. In this way, various detail elements can
be added to an object in stages as opposed to trying to create one mammoth, com-
plex FFD designed to do everything at once. For example, if a bulge is desired on a
bent tube, then one FFD can be used to impart the bulge on the surface while a
second is designed to bend the object (Figure 3.71).

Organizing FFDs hierarchically allows the user to work at various levels of
detail. Finer-resolution FFDs, usually localized, are embedded inside FFDs higher
in the hierarchy.

 

3

 

 As a coarser-level FFD is used to modify the object’s vertices, it

 

Figure 3.69

 

C

 

1

 

 continuity between adjacent control grids 

 

Figure 3.70

 

Cylindrical grid 

 

3. For this discussion, the hierarchy is conceptualized with the root note at the top, representing the coarsest level. Finer-
resolution, more localized nodes are found lower in the hierarchy.

Common boundary plane

Colinear control points
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also modifies the control points of any of its children FFDs that are within the
space affected by the deformation. A modification made at a finer level in the hier-
archy will remain well defined even as the animator works at a coarser level by
modifying an FFD grid higher up in the hierarchy [20] (Figure 3.72).

If an FFD encases only part of an object, then the default assumption is that
only those object vertices that are inside the initial FFD grid are changed by the
modified FFD grid. Because the finer-level FFDs are typically used to work on a
local area of an object, it is useful for the animator to be able to specify the part of
the object that is subject to modification by a particular FFD. Otherwise, the rect-
angular nature of the FFD’s grid can make it difficult to delimit the area that the
animator actually wants to affect.

 

Animated FFDs

 

Thus far FFDs have been considered as a method to modify the shape of an object
by repositioning its vertices. Animation would be performed by, for example, lin-
ear interpolation of the object’s vertices on a vertex-by-vertex basis. However,
FFDs can be used to control the animation in a more direct manner in one of two
ways. The FFD can be constructed so that traversal of an object through the FFD
space results in a continuous transformation of its shape [14]. Alternatively, the
control points of an FFD can be animated, which results in an animated deforma-
tion that automatically animates the object’s shape.

 

Figure 3.71

 

Sequential FFDs 

Bulging

Bending
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Deformation Tools

 

As discussed by Coquillart [14], a 

 

deformation tool

 

 is defined as a composition of
an initial lattice and a final lattice. The initial lattice is user defined and is embed-
ded in the region of the model to be animated. The final lattice is a copy of the ini-
tial lattice that has been deformed by the user. While the deformation tool may be
defined in reference to a particular object, the tool itself is represented in an
object-independent manner. This allows for a particular deformation tool to be
easily applied to any object (Figure 3.73). To deform an object, the deformation
tool must be associated with the object, thus forming what Coquillart calls an

 

AFFD object

 

. 

 

Moving the Tool 

 

A way to animate the object is to specify the motion of the
deformation tool relative to the object. In the example of Figure 3.73, the defor-

 

Figure 3.72

 

Simple example of hierarchical FFDs

 

Working at a coarser level

Working at a finer level
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mation tool could be translated along the object over time. Thus a sequence of
object deformations would be generated. This type of animated FFD works effec-
tively when a particular deformation, such as a bulge, progresses across an object
(Figure 3.74).

 

Figure 3.73

 

Deformation tool applied to an object

 

Figure 3.74

 

Deformation by translating the deformation tool relative to an object

Undeformed object  Deformed object
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Moving the Object

 

Alternatively, the object can translate through the local defor-
mation space of the FFD and, as it does, be deformed by the progression through
the FFD grid. The object can be animated independently in global world space
while the transformation through the local coordinate grid controls the change in
shape of the object. This type of animation works effectively for changing the
shape of an object to move along a certain path (e.g., Figure 3.75).

 

Animating the FFD

 

Another way to animate an object using FFDs is to animate the control points of
the FFD. For example, the FFD control points can be animated explicitly using
key-frame animation, or their movement can be the result of physically based sim-
ulation. As the FFD grid points move, they define a changing deformation to be
applied to the object’s vertices (see Figure 3.76).

Chadwick, Haumann, and Parent [10] describe a layered approach to anima-
tion in which FFDs are used to animate a human form. The FFDs are animated in
two ways. In the first technique, the positions of the FFD grid vertices are located
relative to a wire skeleton the animator uses to move a figure. As the skeleton is
manipulated, the grid vertices are repositioned relative to the skeleton automati-
cally. The skin of the figure is then located relative to this local FFD coordinate
grid. The FFDs thus play the role of muscular deformation of the skin. Joint artic-
ulation modifies the FFD grid, which in turn modifies the surface of the figure.
The FFD grid is a mechanism external to the skin that effects the muscle deforma-
tion. The “muscles” in this case are meant not to be anatomical representations of
real muscles but to provide for a more artistic style. 

As a simple example, a hinge joint with adjacent links is shown in Figure 3.77;
this is the object to be manipulated by the animator by specifying a joint angle.
There is a surface associated with this structure that is intended to represent the
skin. There are three FFDs: one for each of the two links and one for the joint.
The FFDs associated with the links will deform the skin according to a stylized
muscle, and the purpose of the FFD associated with the joint is to prevent inter-
penetration of the skin surface in highly bent configurations. As the joint bends,
the central points of the link FFDs will displace upward and the interior panels of
the joint FFD will rotate toward each other at the concave end in order to squeeze
the skin together without letting it penetrate itself. Each of the grids is 5x4, and
the joint grid is shown using dotted lines so that the three grids can be distin-
guished. Notice that the grids share a common set of control points where they
meet.

Moving the FFD lattice points based on joint angle is strictly a kinematic
method. The second technique employed by Chadwick and colleagues [10] uses
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Figure 3.75

 

Deformation of an object by passing through FFD space

Object traversing the logical FFD coordinate space Object traversing the distorted space
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physically based animation of the FFD lattice points to animate the figure. Anima-
tion of the FFD control points is produced by modeling the lattice with springs,
dampers, and mass points. The control points of the lattice can then respond to
gravity as well as kinematic motion of the figure. To respond to kinematic motion,
the center of the FFD is fixed relative to the figure’s skeleton. The user kinemati-
cally controls the skeleton, and the motion of the skeleton moves the center point
of the FFD lattice. The rest of the FFD lattice points react to the movement of this
center point via the spring-mass model, and the new positions of the FFD lattice

 

Figure 3.76

 

Using an FFD to animate a figure’s head

 

Figure 3.77

 

Using FFD to deform a surface around an articulated joint

Initial configuration

Surface distorted after joint articulation

Team LRN



 

Morphing (2D) 143

 

points induce movement in the surface of the figure. This approach animates the
clothes and facial tissue of a figure in animations produced by Chadwick [8] [9].

 

3.8 Morphing (2D)

 

Two-dimensional image metamorphosis has come to be known as 

 

morphing

 

.
Although really an image postprocessing technique, and thus not central to the
theme of this book, it has become so well known and has generated so much inter-
est that it demands attention. Typically, the user is interested in transforming one
image, called the source image, into the other image, called the destination image.
There have been several techniques proposed in the literature for specifying and
effecting the transformation. The main task is for the user to specify correspond-
ing elements in the two images; these correspondences are used to control the
transformation. Here, two approaches are presented. The first technique is based
on user-defined coordinate grids superimposed on each image. These grids impose
a coordinate space to relate one image to the other. The second technique is based
on pairs of user-defined feature lines, one in each image. The lines mark corre-
sponding features in the two images.  

3.8.1 Coordinate Grid Approach 

 

To transform one image into another, the user defines a curvilinear grid over each
of the two images to be morphed. It is the user’s responsibility to define the grids
so that corresponding elements in the images are in the corresponding cells of the
grids. The user defines the grid by locating the same number of grid intersection
points in both images; the grid must be defined at the borders of the images in
order to include the entire image (Figure 3.78). A curved mesh is then generated
using the grid intersection points as control points for an interpolation scheme
such as Catmull-Rom splines.

To generate an intermediate image, say 

 

t

 

 (0 

 

< t < 1.0), along the way from the
source image to the destination image, the vertices (points of intersection of the
curves) of the source and destination grids are interpolated to form an intermedi-
ate grid. This interpolation can be done linearly, or grids from adjacent key frames
can be used to perform higher-order interpolation. Pixels from the source and des-
tination images are stretched and compressed according to the intermediate grid
so that warped versions of both the source image and the destination grid are gen-
erated. A two-pass procedure is used to accomplish this (described below). A cross
dissolve is then performed on a pixel-by-pixel basis between the two warped
images to generate the final image. See Figure 3.79.
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For purposes of explaining the two-pass procedure, it will be assumed that it is
the source image to be warped to the intermediate grid, but the same procedure is
used to warp the destination image to the intermediate grid. 

First, the pixels from the source image are stretched and compressed in the x-
direction to fit the interpolated grid. These pixels are then stretched and com-
pressed in the y -direction to fit the intermediate grid. To carry this out, an auxil-
iary grid is computed that, for each grid point, uses the x-coordinate from the
corresponding grid point of the source image grid and the y -coordinate from the
corresponding point of the intermediate grid. The source image is stretched/com-
pressed in x by mapping it to the auxiliary grid, and then the auxiliary grid is used
to stretch/compress pixels in y to map them to the intermediate grid. In the discus-
sion below, it is assumed the curves are numbered left to right and bottom to top;
a curve’s number is referred to as its index.

Figure 3.80 illustrates the formation of the auxiliary grid from the source image
grid and the intermediate grid. Once the auxiliary grid is defined, the first pass
uses the source image and auxiliary grids to distort the source pixels in the x-
direction. For each column of grid points in both the source and the auxiliary grid,
a cubic Catmull-Rom spline is defined in pixel coordinates. The leftmost and
rightmost columns define straight lines down the sides of the images; this is neces-
sary to include the entire image in the warping process. See the top of Figure 3.81.
For each scanline, the x-intercepts of the curves with the scanline are computed.

Figure 3.78 Sample grid definitions

Image A
Image B

Image A with grid points and curves defined Image B with grid points and curves defined

Team LRN



Morphing (2D) 145

Figure 3.79 Interpolating to intermediate grid and cross dissolve 

Source image Destination image

Interpolate intermediate 
grid for time ‘T’

Warp source image to 
intermediate grid

Warp destination image to 
intermediate grid

Cross-dissolve
the two images
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These define a grid coordinate system on the scanline. The position of each pixel
on the scanline in the source image is determined relative to the x-intercepts by
computing the Catmull-Rom spline passing through the two-dimensional space of
the (grid index, x-intercept) pairs. See the middle of Figure 3.81. The integer val-
ues of x plus and minus one half, representing the pixel boundaries, can then be
located in this space and the fractional index value recorded. In the auxiliary
image, the x-intercepts of the curves with the scanline are also computed, and for
the corresponding scanline, the source image pixel boundaries can be mapped into
the intermediate image by using their fractional indices and locating their x-
positions in the auxiliary scanline. See the bottom of Figure 3.81. Once this is
complete, the color of the source image pixel can be used to color in auxiliary pix-
els by using fractional coverage to effect anti-aliasing.

Figure 3.80 Formation of auxiliary grid for two-pass warping of source image to 
intermediate grid

Source image grid Intermediate grid

source image grid point

Auxiliary grid

use x-coordinates
of these points

intermediate 
grid point

auxiliary
grid point

use y -coordinates 
of these points

Detail showing relationship of source image grid point, 
intermediate grid point, and auxiliary grid point
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Figure 3.81 For a given pixel in the auxiliary image, determine the range of pixel coordinates 
in the source image (for example, pixel 6 of auxiliary grid maps to pixel coordinates 3.5 to 5 of 
the source image)

0      1           2                         3

scanline

 0 1 2 3 4 5 6 7 8 . . .

 

 

 

0 1 2 3 4 5 6 7 8 . . .

10 2 3 10 2 3

pixel coordinates

grid coordinates

0

1

2

3

0

1

2

3

 

 

 

0 1  2 3 4 5  6 7  8 . . .

0

1

2

3

0

1

2

3

Source image grid Auxiliary grid

pixel coordinates

gr
id

 c
oo

rd
in

at
es

gr
id

 c
oo

rd
in

at
es

pixel coordinates

0         1                    2             3 

 

 

0 1  2 3 4 5  6 7  8 . . .

pixel coordinate to grid coordinate 
graph for source image

pixel coordinate to grid coordinate 
graph for auxiliary image

 

 

 

0 1  2 3 4 5  6 7  8 . . .

 

 

 

0 1  2 3 4 5  6 7  8 . . .

Use the graph to see where the column 
indices map to image pixels. (Here, half of 
pixel 3 and all of pixels 4 and 5 are useful)

Use the graph to determine the image pixel’s 
range in terms of the column indices 
(pixel 6 is shown)

Team LRN



 

148

 

      

 

 3: Interpolation and Basic Techniques

 

The result of the first phase generates colored pixels of an auxiliary image by
averaging source image pixel colors on a scanline-by-scanline basis. The second
phase repeats the same process on a column-by-column basis by averaging auxil-
iary image pixel colors to form the intermediate image. The columns are processed
by using the horizontal grid curves to establish a common coordinate system
between the two images. See Figure 3.82.

This two-pass procedure is applied to both the source and the destination
images with respect to the intermediate grid. Once both images have been warped
to the same intermediate grid, the important features are presumably (if the user
has done a good job of establishing the grids on the two images) in similar posi-
tions. At this point the images can be cross-dissolved on a pixel-by-pixel basis. The
cross dissolve is merely a blend of the two colors from corresponding pixels.

In the simplest case, alpha might merely be a linear function in terms of the
current frame number and the range of frame numbers over which the morph is to
take place. However, as Wolberg [41] points out, a nonlinear blend is often more
visually appealing. It is also useful to be able to locally control the cross dissolve
rates based on aesthetic concerns. For example, in the well-known commercial in
which a car morphs into a tiger, the front of the car is morphed into the head of
the tiger at a faster rate than the tail to add to the dynamic quality of the animated
morph.

Animated images are morphed by the user defining coordinate grids for various
key images in each of two animation sequences. The coordinate grids for a sequence
are then interpolated over time so that at any one frame in the sequence, a coordi-
nate grid can be produced for that frame. The interpolation is carried out on the 

 

x-
y

 

 positions of the grid intersection points; cubic interpolation such as Catmull-Rom
is typically used. Once a coordinate grid has been produced for corresponding
images in the animated sequences, the morphing procedure reduces to the static
image case and proceeds according to the description above. See Figure 3.83.

 

3.8.2 Feature-Based Morphing

 

Instead of using a coordinate grid, the user can establish the correspondence
between images by using feature lines [3]. Lines are drawn on the two images to
identify features that correspond to one another; and feature lines are interpolated
to form an intermediate feature line set. The interpolation can be based either on
interpolating endpoints or on interpolating center points and orientation. In
either case, a mapping for each pixel in the intermediate image is established to
each interpolated feature line, and a relative weight is computed that indicates the

C i[ ] j[ ] α C1 i[ ] j[ ]⋅ 1 α–( ) C2 i[ ] j[ ]⋅+=
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Figure 3.82 Establishing the auxiliary pixel range for a pixel of the intermediate image (for 
example, pixel 6 of the intermediate grid maps to pixel coordinates 3.5 to 5 of the auxiliary 
image)
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amount of influence that feature line should have on the pixel. The mapping is
used in the source image to locate the source image pixel that corresponds to the
intermediate image pixel. The relative weight is used to average the source image
locations generated by multiple feature lines into a final source image location.
This location is used to determine the color of the intermediate image pixel. This
same procedure is used on the destination image to form its intermediate image.
These intermediate images are then cross-dissolved to form the final intermediate
image.

Consider the mapping established by a single feature line, defined by two end-
points and oriented from 

 
P

 
1

 
 to 

 
P

 
2

 
. In effect, the feature line establishes a local

two-dimensional coordinate system (  U, V  ) over the image. For example, the first
point of the line can be considered the origin. The second point of the line estab-
lishes the unit distance in the positive 

 

V

 

-axis direction and scale. A line perpendic-
ular to this line and of unit length extending to its right (as one stands on the first
point and looks toward the second point) establishes the 

 

U

 

-axis direction and
scale. The coordinates (

 

u, v

 

) of a pixel relative to this feature line can be found by
simply computing the pixel’s position relative to the 

 

U

 

- and 

 

V

 

-axes of a local coor-
dinate system defined by that feature line. Variable 

 

v

 

 is the projection of (

 

P

 

 – 

 

P

 

1

 

)
onto the direction of (

 

P
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 – 

 

P

 

1

 

), normalized to the length of (

 

P

 

2

 

 – 

 

P

 

1

 

). 

 

u

 

 is calcu-
lated similarly. See Figure 3.84.

 

Figure 3.83

 

Morphing of animated sequences
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Assume that the points 

 

P

 

1

 

 and 

 

P

 

2

 

 are selected in the intermediate image and
used to determine the (

 

u, v

 

) coordinates of a pixel. Given the corresponding
feature line in the source image defined by the points 

 

Q

 

1 and Q2, a similar 2D
coordinate system, (S, T ), is established. Using the intermediate pixel’s u-, v-
coordinates relative to the feature line, one can compute its corresponding location
in the source image (Figure 3.85). 

To transform an image by a single feature line, each pixel of the intermediate
image is mapped back to a source image position according to the equations
above. The colors of the source image pixels in the neighborhood of that position
are then used to color in the pixel of the intermediate image. See Figure 3.86. 

Of course, the mapping does not typically transform an intermediate image
pixel back to the center of a source image pixel. The floating point coordinates of
the source image location could be rounded to the nearest pixel coordinates, which
would introduce aliasing artifacts. To avoid such artifacts in the intermediate
image, the corner points of the intermediate pixel could be mapped back to the
source image, which would produce a quadrilateral area in the source image; the
pixels, wholly or partially contained in this quadrilateral area, would contribute to
the color of the destination pixel.

The mapping described so far is a subset of the affine transformations. For
image pairs to be really interesting and useful, multiple line pairs must be used to

Figure 3.84 Local coordinate system of a feature in the intermediate image

Figure 3.85 Relocating a point’s position using local coordinates in the source image
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establish correspondences between multiple features in the images. For a pair of
images with multiple feature lines, each feature line pair produces a displacement
vector from an intermediate image pixel to its source image position. Associated
with this displacement is a weight based on the pixel’s position relative to the fea-
ture line in the intermediate image. The weight presented by Beier and Neely [3] is
shown in Equation 3.45.

 (Eq. 3.45)

The line is defined by point Q1 and Q2, and dist is the distance that the pixel is
from the line. The distance is measured from the finite line segment defined by
Q1 and Q2 so that if the perpendicular projection of P onto the infinite line
defined by Q1 and Q2 falls beyond the finite line segment, then the distance is
taken to be the distance to the closer of the two endpoints. Otherwise, the distance

Figure 3.86 Two examples of single-feature line morphing
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is the perpendicular distance to the finite line segment. User-supplied parameters
(a, b, p in Equation 3.45) control the overall character of the mapping. As dist
increases, w decreases but never goes to zero; as a practical matter, a lower limit
could be set below which w is clamped to zero and the feature line’s effect on the
point is ignored above a certain distance. If a is nearly zero, then pixels on the line
are rigidly transformed with the line. Increasing a makes the effect of lines over the
image smoother. Increasing p increases the effect of longer lines. Increasing b
makes the effect of a line fall off more rapidly. As presented here, these parameters
are global; for more precise control these parameters could be set on a feature-line-
by-feature-line basis. For a given pixel in the intermediate image, the displacement
indicated by each feature line pair is scaled by its weight. The weights and the
weighted displacements are accumulated. The final accumulated displacement is
then divided by the accumulated weights. This gives the displacement from the
intermediate pixel to its corresponding position in the source image. See the code
segment in Figure 3.87.

When morphing between two images, the feature lines are interpolated over
some number of frames. For any one of the intermediate frames, the feature line
induces a mapping back to the source image and forward to the destination image.
The corresponding pixels from both images are identified and their colors blended
to produce a pixel of the intermediate frame. In this way, feature-based morphing
produces a sequence of images that transform from the source image to the desti-
nation image.

The transformations implied by the feature lines are fairly intuitive, but some
care must be taken in defining transformations with multiple line pairs. Pixels that
lie on a feature line are mapped onto that feature line in another image. If feature
lines cross in one image, pixels at the intersection of the feature lines are mapped
to both feature lines in the other image. This situation essentially tries to pull apart
the image and can produce unwanted results. Also, some configurations of feature
lines can produce nonintuitive results. Other techniques in the literature (e.g.,
[25]) have suggested algorithms to alleviate these shortcomings.

3.9 3D Shape Interpolation

Changing one 3D object into another 3D object is a useful effect, but one with
problems for which general-purpose solutions are still being developed. Several
solutions exist that have various advantages and disadvantages. The techniques fall
into one of two categories: surface based or volume based. The surface-based tech-
niques use the boundary representation of the objects and modify one or both of
them so that the vertex-edge topologies of the two objects match. Once this is
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// ====================================================================

// XY structure
typedef struct xy_struct {
  float x,y;
} xy_td;

// FEATURE
//   line in image1: p1,p2; 
//   line in image2: q1,q2
//   weights used in mapping: a,b,p
//   length of line in image2
typedef struct feature_struct {
  xy_td p1,p2,q1,q2;
  float  a,b,p;
  float  plength,qlength;
} feature_td;

// FEATURE LIST
typedef struct featureList_struct {
  int  num;
  feature_td  *features;
} featureList_td;

// -------------------------------------------------------------------
//   MORPH
// -------------------------------------------------------------------
void morph(featureList_td *featureList)  
{
  float  a,b,p,length;
  xy_td  p1,p2,q1,q2;

  xy_td  vp,wp,vq,v,qq;
  int    ii,jj,indexS,indexD;
  float  idisp,jdisp;
  float  t,s,vx,vy;
  float  weight;
  char    background[3];
  float  fcolor[3];

  background[0] = 120;
  background[1] = 20;
  background[2] = 20;

  for (int i=0; i<HEIGHT; i++) {
    for (int j=0; j<WIDTH; j++) {
     fcolor[0] = 0.0; fcolor[1] = 0.0; fcolor[2] = 0.0;
     weight = 0;
     for (int k=0; k<featureList->num; k++) {
      // get info about kth feature line
     a = featureList->features[k].a;
     b = featureList->features[k].b;
     p = featureList->features[k].p;
     p1.x = featureList->features[k].p1.x;
     p1.y = featureList->features[k].p1.y;
     p2.x = featureList->features[k].p2.x;
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     p2.y = featureList->features[k].p2.y;
     q1.x = featureList->features[k].q1.x;
     q1.y = featureList->features[k].q1.y;
     q2.x = featureList->features[k].q2.x;
     q2.y = featureList->features[k].q2.y;
     length = featureList->features[k].qlength;

     // get local feature coordinate system in image1
     vp.x = p2.x-p1.x;
     vp.y = p2.y-p1.y;
     wp.x = vp.y;
     wp.y = -vp.x;

     // get feature vector in image2
     vq.x = q2.x-q1.x;
     vq.y = q2.y-q1.y;

     // get vector from first feature point to pixel (image2)
     v.x = j-q1.x;
     v.y = i-q1.y;

     // get perpendicular distance from feature line to pixel (image2)
     s = (v.x*vq.x + v.y*vq.y)/(length*length);
     t = (v.x*vq.y-v.y*vq.x)/(length*length); 

     // use (s,t) and vp, wp to map to point in image1 space
     jj = (int)(p1.x + s*vp.x + t*wp.x);
     ii = (int)(p1.y + s*vp.y + t*wp.y); 
     // printf("\n %d,%d",ii,jj);

     t = length/(a+t);
     jdisp += (jj-j)*t;
     idisp += (ii-i)*t;
     weight += t;
    }
    jdisp /= weight;
    idisp /= weight;
    ii = (int)(i+idisp);
    jj = (int)(j+jdisp);
    indexD = (WIDTH*i+j)*3;
    if ( (ii<0) || (ii>=HEIGHT) || (jj<0) || (jj>=WIDTH) ) {
     image2[indexD] = background[0];
     image2[indexD+1] = background[1];
     image2[indexD+2] = background[2];
    }
    else {
     indexS = (WIDTH*ii+jj)*3;
     image2[indexD] = image1[indexS];
     image2[indexD+1] = image1[indexS+1];
     image2[indexD+2] = image1[indexS+2];
    }

   }
  }
  // same image2
}

Figure 3.87 Code using feature lines to morph from source to destination image 
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done, the vertices of the object can be interpolated on a vertex-by-vertex basis.
Surface-based techniques usually have some restriction on the types of objects they
can handle, especially objects with holes through them. The number of holes
through an object is an important attribute of an object’s structure, or topology.
The volume-based techniques consider the volume contained within the objects
and blend one volume into the other. These techniques have the advantage of
being less sensitive to different object topologies. However, volume-based tech-
niques usually require volume representations of the objects and therefore tend to
be more computationally intensive than surface-based approaches. Volume-based
approaches will not be discussed further.

The terms used in this discussion are defined by Kent, Carlson, and Parent [22]
and Weiler [40]. Object refers to an entity that has a 3D surface geometry; the
shape of an object refers to the set of points in object space that make up the
object’s surface; and model refers to any complete description of the shape of an
object. Thus a single object may have several different models that describe its
shape. The term topology has two meanings, which can be distinguished by the
context in which they are used. The first meaning, from traditional mathematics,
is the connectivity of the surface of an object. For present purposes, this use of
topology is taken to mean the number of holes an object has and the number of
separate bodies represented. A doughnut and a teacup have the same topology and
are said to be topologically equivalent. A beach ball and a blanket have the same
topology. Two objects are said to be homeomorphic (or topologically equivalent) if
there exists a continuous, invertible, one-to-one mapping between the points on
the surfaces of the two objects. The genus of an object refers to how many holes, or
passageways, there are through it. A beach ball is a genus 0 object; a teacup is a
genus 1 object. The second meaning of the term topology, popular in the com-
puter graphics literature, refers to the vertex/edge/face connectivity of an object;
objects that are equivalent in this form of topology are the same except for the x-,
y -, z -coordinate definitions of their vertices (the geometry of the object).

For most approaches, the shape transformation problem can be discussed in
terms of the two subproblems: (1) the correspondence problem, or establishing the
mapping from a vertex (or other geometric element) on one object to a vertex (or
geometric element) on the other object; and (2) the interpolation problem, or cre-
ating a sequence of intermediate objects that visually represent the transforma-
tion of one object into the other. The two problems are related because the
elements that are interpolated are typically the elements between which corre-
spondences are established.

In general, it is not enough to merely come up with a scheme that transforms
one object into another. An animation tool must give the user some control over
which areas of one object map to which areas of the other object. This control
mechanism can be as simple as aligning the object using affine transformations, or
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it can be as complex as allowing the user to specify an unlimited number of point
correspondences between the two objects. A notable characteristic of the various
algorithms for shape interpolation is the use of topological information versus geo-
metric information. Topological information considers the logical construction of
the objects and, when used, tends to minimize the number of new vertices and
edges generated in the process. Geometric information considers the spatial extent
of the object and is useful for relating the position in space of one object to the
position in space of the other object.

While many of the techniques discussed here are applicable to sculptured sur-
faces, they are discussed in terms of planar polyhedra because these are the subject
of shape interpolation procedures in the majority of circumstances.

3.9.1 Matching Topology
The simplest case of transforming one object into another is when the two
objects to be interpolated share the same vertex-edge topology. Here, the objects
are transformed by merely interpolating the positions of vertices on a vertex-by-
vertex basis. As an example, this case arises when one of the previously discussed
techniques, such as FFD, has been used to modify the shape of one object with-
out modifying the vertex-edge connectivity to produce the second object. The
correspondence between the two objects is established by the vertex-edge connec-
tivity structure shared by the two objects. The interpolation problem is solved, as
is the case in the majority of techniques presented here, by interpolating 3D ver-
tex positions.

3.9.2 Star-Shaped Polyhedra
If the two objects are both star-shaped 4 polyhedra, then polar coordinates can be
used to induce a 2D mapping between two objects. See Figure 3.88 for the two-
dimensional equivalent. The object surfaces are sampled by a regular distribution
of rays emanating from a central point in the kernel of the object, and vertices of
an intermediate object are constructed by interpolating between the intersection
points along a ray. A surface definition is then constructed from the vertices by
forming the polygons of a regular polytope from the surface vertices. The vertices
making up each surface polygon can be determined as a preprocessing step and are
only dependent on how the rays are distributed in polar space. Figure 3.89 illus-
trates the sampling and interpolation for objects in two dimensions. The extension

4. A star-shaped (2D) polygon is one in which there is at least one point from which a line can be drawn to any point on
the boundary of the polygon without intersecting the boundary; a star-shaped (3D) polyhedron is similarly defined.
The set of points from which the entire boundary can be seen is referred to as the kernel of the polygon (in the 2D
case) or the polyhedron (in the 3D case).
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Figure 3.88 Star-shaped polygon and corresponding kernel

Figure 3.89 Star-shaped polyhedral shape interpolation
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to interpolating in three dimensions is straightforward. In the three-dimensional
case, polygon definitions on the surface of the object must then be formed.

3.9.3 Axial Slices
Chen and Parent [11] interpolate objects that are star shaped with respect to a cen-
tral axis. For each object, the user defines an axis that runs through the middle of
the object. At regular intervals along this axis, perpendicular slices are taken of the
object. These slices must be star shaped with respect to the point of intersection
between the axis and the slice. This central axis is defined for both objects, and the
part of each axis interior to its respective object is parameterized from zero to one.
In addition, the user defines an orientation vector (or a default direction is used)
that is perpendicular to the axis. See Figure 3.90. 

Corresponding slices (corresponding in the sense that they use the same axis
parameter to define the plane of intersection) are taken from each object. All of the
slices from one object can be used to reconstruct an approximation to the original
object using one of the contour-lofting techniques (e.g., [12] [16]). The 2D slices
can be interpolated pairwise (one from each object) by constructing rays that ema-
nate from the center point and sample the boundary at regular intervals with
respect to the orientation vector (Figure 3.91).

The parameterization along the axis and the radial parameterization with
respect to the orientation vector together establish a 2D coordinate system on the
surface of the object. Corresponding points on the surface of the object are
located in three-space. The denser the sampling, the more accurate the approxi-
mation to the original object. The corresponding points can then be interpolated
in three-space. Each set of ray-polygon intersection points from the pair of corre-

Figure 3.90 Coordinate system for axial slices

0 110

central axes

orientation vectors

Team LRN



160         3: Interpolation and Basic Techniques

sponding slices is used to generate an intermediate slice based on an interpolation
parameter (Figure 3.92). Linear interpolation is often used, although higher-
order interpolations are certainly useful. See Figure 3.93 for an example from
Chen and Parent [11]. 

This approach can also be generalized somewhat to allow for a segmented cen-
tral axis, consisting of a linear sequence of adjacent line segments. The approach
may be used as long as the star-shaped restriction of any slice is maintained. The
parameterization along the central axis is the same as before, except this time the
central axis consists of multiple line segments.

3.9.4 Map to Sphere
Even among genus 0 objects, more complex polyhedra may not be star shaped or
allow an internal axis (single or multisegment) to define star-shaped slices. A more
complicated mapping procedure may be required to establish the two-dimensional
parameterization of the objects’ surfaces. One approach is to map both objects
onto a common surface such as a unit sphere [22]. The mapping must be such
that the entire object surface maps to the entire sphere with no overlap (i.e., it
must be one-to-one and onto). Once both objects have been mapped onto the
sphere, a union of their vertex-edge topologies can be constructed and then
inversely mapped back onto each original object. This results in a new model for
each of the original shapes, but the new models now have the same topologies.
These new definitions for the objects can then be transformed by a vertex-by-
vertex interpolation.

There are several different ways to map an object to a sphere. No one way has
been found to work for all objects, but, taken together, most of the genus 0 objects

Figure 3.91 Projection lines for star-shaped polygons from objects in Figure 3.90

Team LRN



3D Shape Interpolation 161

can be successfully mapped to a sphere. The most obvious way is to project each
vertex and edge of the object away from a center point of the object onto the
sphere. This, of course, works fine for star-shaped polyhedra but fails for others.

Figure 3.92 Interpolating slices taken from two objects along each respective central axis
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Superimposed slices showing interpolated points

Slice from Object 1 showing 
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Slice from Object 2 showing 
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Slice reconstructed from 
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Another approach fixes key vertices to the surface of the sphere. These vertices are
either selected by the user or automatically picked by being topmost, bottommost,
leftmost, and so on. A spring-damper model is then used to force the remaining
vertices to the surface of the sphere while minimizing edge length.

If both objects are successfully mapped to the sphere’s surface (i.e., no overlap),
the projected edges are intersected and merged into one topology. The new ver-
tices and edges are a superset of both object topologies. They are then projected
back onto both object surfaces. This produces two new object definitions, identi-
cal in shape to the original objects but now having the same vertex-edge topology,
allowing for a vertex-by-vertex interpolation to transform one object into the
other.

Figure 3.93 3D shape interpolation from multiple 2D slices [11]

Original shapes sliced into contours
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Once the vertices of both objects have been mapped onto a unit sphere, edges
map to circular arcs on the surface of the sphere. The following description of the
algorithm to merge the topologies follows that found in Kent, Carlson, and Parent
[22]. It assumes that the faces of the models have been triangulated prior to pro-
jection onto the sphere and that degenerate cases, such as the vertex of one object
projecting onto the vertex or edge of the other object, do not occur; these can be
handled by relatively simple extensions to the algorithm.

To efficiently intersect each edge of one object with edges of the second object,
it is necessary to avoid a brute force edge-edge comparison for all pairs of edges.
While this approach would work theoretically, it would, as noted by Kent, be very
time-consuming and subject to numerical inaccuracies that may result in intersec-
tion points being erroneously ordered along an edge. Correct ordering of intersec-
tions along an edge is required by the algorithm.

In the following discussion on merging the topologies of the two objects, all ref-
erences to vertices, edges, and faces of the two objects refer to their projection on
the unit sphere. The two objects are referred to as Object A and Object B. Sub-
scripts on vertex, edge, and face labels indicate which object they come from. Each
edge will have several lists associated with it: an intersection list, a face list, and an
intersection-candidate list. 

The algorithm starts by considering one vertex, VA , of Object A and finding the
face, FB , of Object B that contains vertex VA . See Figure 3.94. Taking into account
that it is operating within the two-dimensional space of the surface of the unit
sphere, the algorithm can achieve this result quite easily and quickly. 

The edges emanating from VA are added to the work list. Face FB becomes the
current face, and all edges of face FB are put on each edge’s intersection-candidate
list. This phase of the algorithm has finished when the work list has been emptied
of all edges. 

Figure 3.94 Locating initial vertex of Object A in the face of Object B
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An edge, EA, and its associated intersection-candidate list are taken from the
work list. The edge EA is tested for any intersection with the edges on its intersec-
tion-candidate list. If no intersections are found, intersection processing for edge
EA is complete and the algorithm proceeds to the intersection-ordering phase. If
an intersection, I, is found with one of the edges, EB , then the following steps are
done: I is added to the final model; I is added to both edge EA’s intersection list
and edge EB’s intersection list; the face, GB , on the other side of edge EB becomes
the current face; and the other edges of face GB (the edges not involved in the
intersection) replace the edges in edge EA’s intersection-candidate list. In addition,
to facilitate the ordering of intersections along an edge, pointers to the two faces
from Object A that share EA are associated with I. This phase of the algorithm
then repeats by considering the edges on the intersection-candidate list for possible
intersections and, if any are found, processes subsequent intersections. When this
phase is complete all edge-edge intersections have been found. See Figure 3.95.

For Object A, the intersections have been generated in sorted order along the
edge. However, for Object B, the intersections have been associated with the edges
but have been recorded in essentially a random order along the edge. The intersec-
tion-ordering phase uses the faces associated with intersection points and the list
of intersections that have been associated with an edge of Object B to sort the
intersection points along the edge. The face information is used because numerical
inaccuracies can result in erroneous orderings if the numeric values of only param-
eters or intersection coordinates are used to order the intersections along the edge.

One of the defining vertices, VB , for an edge, EB , from Object B, is located
within a face, FA, of Object A. Initially, face FA is referred to as the current face. As a
result of the first phase, the edge already has all of its intersections recorded on its
intersection list. Associated with each intersection point are the faces of Object A
that share the edge EB intersected to produce the point. The intersection points are
searched to find the one that lists the current face, FA , as one of its faces; one and
only one intersection point will list FA. This intersection point is the first intersec-

Figure 3.95 The intersection list for edge EA
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tion along the edge, and the other face associated with the intersection point will
become the current face. The remaining intersection points are searched to see
which lists this new current face; it becomes the next intersection point, and the
other face associated with it becomes the new current face. This process continues
until all intersection points have been ordered along edge EB .

All of the information necessary for the combined models has been generated.
It needs to be mapped back to each original object, and new polyhedral definitions
need to be generated. The intersections along edges, kept as parametric values, can
be used on the original models. The vertices of Object A, mapped to the surface of
the sphere, need to be mapped onto the original Object B and vice versa for verti-
ces of Object B. This can be done by computing the barycentric coordinates of the
vertex with respect to the triangle that contains it (see Appendix B for details).
These barycentric coordinates can be used to locate the point on the original
object surface.

Now all of the vertices, edges, and intersection points from both objects have
been mapped back onto each object. New face definitions need to be constructed
for each object. Because both models started out as triangulated meshes, there are
only a limited number of configurations possible when one considers the retrian-
gulation required from the combined models (Figure 3.96). Processing can pro-
ceed by considering all of the original triangles from one of the models. For each
triangle, use the intersection points along its edges and the vertices of the other
object that are contained in it (along with any corresponding edge definitions) and
construct a new triangulation of the triangle. When this is finished, repeat the pro-
cess with the next triangle from the object.

The process of retriangulating a triangle proceeds as follows. First, output any
complete triangles from the other object contained in this object. Second, retrian-
gulate the triangle fragments that include an edge or edge segment of the original
triangle. Start at one of the vertices of the triangle and go to the first intersection
encountered along the boundary of the triangle. The procedure progresses around
the boundary of the triangle and ends when it returns to this intersection point.
The next intersection along the boundary is also obtained. These two intersections
are considered and the configuration identified by noting whether zero, one, or
two original vertices are contained in the boundary between the two intersection
points. The element inside the triangle that connects the two vertices/intersections
is either a vertex or an edge of the other object (along with the two edge segments
involved in the intersections). See Figure 3.96. Once the configuration is deter-
mined, retriangulating the region is a simple task. The procedure then continues
with the succeeding vertices or intersections in the order that they appear around
the boundary of the original triangle.

This completes the retriangulation of the combined topologies on the sphere.
The resulting mesh can then be mapped back onto the surfaces of both objects,
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which establishes new definitions of the original objects but with the same vertex-
edge connectivity. Notice that geometric information is used in the various map-
ping procedures in an attempt to map similarly oriented regions of the objects
onto one another, thus giving the user some control over how corresponding parts
of the objects map to one another.

3.9.5 Recursive Subdivision
The main problem with the procedure above is that many new edges are created as
a result of the merging operation. There is no attempt to map existing edges into
one another. To avoid a plethora of new edges, a recursive approach can be taken
in which each object is reduced to two-dimensional polygonal meshes [31].
Meshes from each object are matched by associating the boundary vertices and

Figure 3.96 Configurations possible with overlapping triangles and possible triangulations
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adding new ones when necessary. The meshes are then similarly split and the pro-
cedure is recursively applied until everything has been reduced to triangles. During
the splitting process, existing edges are used whenever possible to reduce the num-
ber of new edges created. Edges and faces are added during subdivision to main-
tain topological equivalence. A data structure must be used that supports a closed,
oriented, path of edges along the surface of an object. Each mesh is defined by
being on a particular side (e.g., right side) of such a path, and each section of a
path will be shared by two and only two meshes.

The initial objects are divided into an initial number of polygonal meshes. Each
mesh is associated with a mesh from the other object so that adjacency relation-
ships are maintained by the mapping. The simplest way to do this is merely to
break each object into two meshes—a front mesh and a back mesh. A front and
back mesh can be constructed by searching for the shortest paths between the
topmost, bottomost, leftmost, and rightmost vertices of the object and then
appending these paths (Figure 3.97). On particularly simple objects, care must be
taken so that these paths do not touch except at the extreme points. 

This is the only place where geometric information is used. If the user wants
certain areas of the objects to map to each other during the transformation pro-
cess, then those areas should be the initial meshes associated with each other, pro-
viding the adjacency relationships are maintained by the associations.

When a mesh is associated with another mesh, a one-to-one mapping must be
established between the vertices on the boundary of the two meshes. If one of the

Figure 3.97 Splitting objects into initial front and back meshes
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meshes has fewer boundary vertices than the other, then new vertices must be
introduced along its boundary to make up for the difference. There are various
ways to do this, and the success of the algorithm is not dependent on the method.
A suggested method is to compute the normalized distance of each vertex along
the boundary as measured from the first vertex of the boundary (the topmost ver-
tex can be used as the first vertex of the boundaries of the initial meshes). For the
boundary with fewer vertices, new vertices can be added one at a time by searching
for the largest gap in normalized distances for successive vertices in the boundary
(Figure 3.98). These vertices must be added to the original object definition.
When the boundaries have the same number of vertices, a vertex on one boundary

Figure 3.98 Associating vertices of boundaries
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is said to be associated with the vertex on the other boundary at the same relative
location. 

Once the meshes have been associated, each mesh is recursively divided. One
mesh is chosen for division, and a path of edges is found across it. Again, there are
various ways to do this and the procedure is not dependent on the method chosen
for its success. However, the results will have a slightly different quality depending
on the method used. One good approach is to choose two vertices across the
boundary from each other and try to find an existing path of edges between them.
An iterative procedure can be easily implemented that tries all pairs halfway
around and then tries all pairs one less than halfway around, then two less, and so
on. There will be no path only if the “mesh” is a single triangle—in which case the
other mesh must be tried. There will be some path that exists on one of the two
meshes unless both meshes are a single triangle, which is the terminating criterion
for the recursion (and would have been previously tested for). 

Once a path has been found across one mesh, then a path across the mesh it is
associated with must be established between corresponding vertices. This may
require creating new vertices and new edges (and, therefore, new faces) and is the
trickiest part of the implementation because minimizing the number of new edges
will help reduce the complexity of the resulting topologies. When these paths (one
on each mesh) have been created, the meshes can be divided along these paths, cre-
ating two pairs of new meshes. The boundary association, finding a path of edges,
and mesh splitting are recursively applied to each new mesh until all of the meshes
have been reduced to single triangles. At this point the new vertices and new edges
have been added to one or both objects so that both objects have the same topol-
ogy. Vertex-to-vertex interpolation of vertices can take place at this point in order
to carry out the object interpolation.

3.9.6 Summary
3D shape interpolation remains a difficult problem to implement robustly and
efficiently. However, several useful techniques have been developed that provide
promising results. Two of these are presented above and should give some idea of
the possibilities.

3.10 Chapter Summary

Interpolation is fundamental to most animation, and the ability to understand and
control the interpolation process is very important in computer animation pro-
gramming. Interpolation of values takes many forms, including arc length, image
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pixel color, and shape parameters. The control of the interpolation process can be
key framed, scripted, or analytically determined. But in any case, interpolation
forms the foundation upon which most computer animation takes place, includ-
ing those animations that use advanced algorithms. 
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A

 

 nimators are often more concerned with the general quality of the motion
than with precisely controlling the position and orientation of each object in each
frame. Such is the case with physical simulations; when dealing with a large num-
ber of objects; when animating objects whose motion is constrained in one way or
another; or when dealing with objects in the background whose precise motion is
not of great importance to the animation. This chapter is concerned with the algo-
rithms that employ some kind of structured model approach to producing
motion. The structure of the model automatically enforces certain qualities or
constraints on the motion to be generated. The use of a model eliminates the need
for the animator to be constantly concerned with specifying details of the motion.
Instead, those details are filled in by the model. Of course, by using these models,
the animator typically loses some fine control over the motion of the objects. The
model can take various forms, such as enforcing relative placement of geometric
elements, enforcing nonpenetration constraints, calculating reaction to gravity and
other forces, enforcing volume preservation, or following rules of behavior.
Motion is produced by the combination of the constraints and rules of the model
with additional control information from the user.

This chapter discusses both kinematic and dynamic models. 

 

Kinematic control

 

refers to the movement of objects irrespective of the forces involved in producing
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Algorithms
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the movement. For example, the interpolation techniques covered in the previous
chapter are concerned with kinematic control. Several of the algorithms given here
are also kinematic in nature, such as those having to do with the control of linked
armatures. 

 

Dynamic control

 

 is concerned with computing the underlying forces
that are then used to produce movement. Among the dynamic control algorithms
are those that are physically based. 

In the discussion that follows, kinematic models are covered first, then hierarchi-
cal models and the associated use of forward and inverse kinematic control. Rigid
body dynamics and the use of constraints, which are primarily concerned with
dynamic control, are then discussed, followed by techniques to control groups of
objects. The chapter concludes with a discussion of animating implicit surfaces.

 

4.1 Automatic Camera Control

 

One simple example of using a procedure or algorithm for control is the speci-
fication of the position and orientation of the camera. Various guidelines are
employed in the art of filmmaking for positioning the camera so as to capture con-
versation, follow action, and emphasize spatial qualities such as vastness or inti-
macy [6]. These guidelines primarily address aesthetic concerns; the discussion
here focuses on basic computational models for calculating camera motion based
on the geometric configuration of the elements in the scene.

Often, the animator is more concerned with effectively showing an action tak-
ing place than with getting a particular camera angle. When using high-level algo-
rithms to control the motion of objects, the animator may not be able to
anticipate the exact, or even general, position of objects during the animation
sequence. As a consequence, it is difficult for the animator to know exactly how to
position and orient the camera so that the important action will be captured in the
image. In such cases, it is often useful to have the camera position and center-of-
interest location automatically generated for each frame of the animation. There
are several ways to automatically set up camera control; the choice depends on the
effect desired in the animation.

A common way to automatically control the camera is to place the camera posi-
tion and/or center of interest relative to the positions of one or more objects in the
animation. (A simplifying assumption, which will be used for now, is that the
camera will maintain a head-up orientation during the motion.) A static camera
can be used to track an object by attaching the center of interest to the object’s
center point. If a group of objects move together, then the average of their loca-
tions can be used as the camera’s center of interest. This works as long as other
moving objects do not get in the way and the object (or group of objects) of inter-
est does not move too far away. 
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The camera can closely follow a widely roaming object by locating the position
of the camera relative to the moving object. For example, a constant global offset
vector can be used to position the camera relative to the center of interest; the off-
set vector can also be relative to the tracked object’s local coordinate system. Some-
times it is useful to constrain the camera’s position to a predefined plane or along a
line segment or curve. The closest point on the constraining element to the center
of interest can be calculated and used as the camera location. For example, in some
situations it might make sense to keep the camera at a specified altitude (con-
strained to be located on a plane parallel with the ground plane) so that it can cap-
ture the action below. Other constraints can also be used, such as distance between
the camera position and the center of interest and/or the angle made by the view
vector with the ground plane. 

Such precise calculations of a camera location can sometimes result in move-
ments that are too jerky if the objects of interest change position too rapidly. If the
camera motion can be precomputed (the animation is not being generated interac-
tively or in real time), then smoothing the curve by averaging each point with
some number of adjacent points will smooth out the curve. Attaching the camera
or center of interest with a spring and damper, instead of rigidly, can help to
smooth out the motion. For example, to track a flock of birds, the center of inter-
est can be attached to the center of the flock and the camera can be attached by a
spring-damper combination (see Section 4.3 for a discussion of modeling dynam-
ics and Appendix B for the basic equations of motion) to a location that is to the
back and side of this position.

It is useful during animation development to define cameras whose only pur-
pose is to inspect the motion of other objects. A camera can be attached to the
front or “over the shoulder” of an object moving in an environment, or it can be
attached to a point directly above an object of interest with the center of interest
coinciding with the object. To check facial expressions and eye movements, a cam-
era can be positioned directly in front of an object with the center of interest posi-
tioned on the figure’s face.

Although automatic control of the camera is a useful tool, as with most auto-
mated techniques, the animator trades off control for ease of use. Efficient use of
automatic control requires experience so that the quality of the results can be
anticipated beforehand.

 

4.2 Hierarchical Kinematic Modeling

 

Hierarchical modeling

 

 is the enforcement of connectivity (or relative placement)
constraints among objects organized in a treelike structure. Planetary systems are
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one type of hierarchical model. In planetary systems, moons rotate around planets,
which rotate around a sun, which moves in a galaxy. A common type of hierarchi-
cal model used in graphics has objects that are connected end to end to form
multibody jointed chains. Such hierarchies are useful for modeling animals and
humans so that the joints of the limbs are manipulated to produce a figure with
moving appendages. Such a figure is often referred to as 

 

articulated

 

. The move-
ment of an appendage by changing the configuration of a joint is referred to as

 

articulation

 

. Because the connectivity of the figure is built into the structure of the
model, the animator does not need to make sure that the objects making up the
limbs stay attached to one another.

Much of the material concerning the animation of hierarchies in computer
graphics comes directly from the field of robotics (e.g., [7]). The robotics literature
discusses the modeling of 

 

manipulators,

 

 a sequence of objects connected in a chain
by 

 

joints

 

. The rigid objects forming the connections between the joints are called

 

links,

 

 and the free end of the chain of alternating joints and links is called the 

 

end
effector

 

. The local coordinate system associated with each joint is referred to as the

 

frame

 

.
Robotics is concerned with all types of joints in which two links move relative

to one another. Graphics, on the other hand, is concerned primarily with 

 

revolute

 

joints, in which one link rotates about a fixed point of the other link. The links are
usually considered to be pinned together at this point, and the link farther down
the chain rotates while the other one remains fixed—at least as far as this joint is
concerned. The other type of joint used in computer animation is the 

 

prismatic

 

joint, in which one link translates relative to another. See Figure 4.1. 
The joints of Figure 4.1 allow motion in one direction and are said to have one

 

degree of freedom

 

 (DOF). Structures in which more than one degree of freedom are
coincident are called 

 

complex joints

 

. Complex joints include the planar joint and
the ball-and-socket joint. Planar joints are those in which one link slides on the

 

Figure 4.1

 

Typical joints used in computer animation 

Revolute joint
Prismatic joint
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planar surface of another. Typically, when a joint has more than one (

 

n 

 

>

 

 

 

1) degree
of freedom, such as a ball-and-socket joint, it is modeled as a set of 

 

n

 

 one-degree-
of-freedom joints connected by 

 

n – 

 

1 links of zero length (see Figure 4.2).

 

4.2.1 Representing Hierarchical Models

 

Human figures and animals are conveniently modeled as hierarchical linkages.
Such linkages can be represented by a tree structure of 

 

nodes

 

 connected by 

 

arcs.

 

1

 

The highest node of the tree is the 

 

root node,

 

 which corresponds to the root object
of the hierarchy whose position is known in the global coordinate system. The

 

Figure 4.2

 

Modeling complex joints

 

1. The connections between nodes of a tree structure are sometimes referred to as links; however, the robotics literature
refers to the objects between the joints as links. To avoid overloading the term 

 

links

 

, 

 

arcs

 

 is used here to refer to the
connections between nodes in a tree.

Ball-and-socket joint
Planar joint

zero-length linkages

zero-length linkage

θ1
θ3

θ2

T1

T2

Planar joint modeled as 2 one-degree 
prismatic joints with zero-length links

Ball-and-socket joint modeled as 3 one-degree joints 
with zero-length links
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position of all other nodes of the hierarchy will be located relative to the root
node. A node from which no arcs extend downward is referred to as a 

 

leaf node

 

.
“Higher up in the hierarchy” refers to a node that is closer to the root node. When
discussing two nodes of the tree connected by an arc, the one higher up the hierar-
chy is referred to as the 

 

parent node,

 

 and the one farther down the hierarchy is
referred to as the

 

 child node

 

. 
The mapping between the hierarchy and tree structure relates a node of the tree

to information about the object part (the link) and relates an arc of the tree (the
joint) to the transformation to apply to all of the nodes below it in the hierarchy.
Relating a tree arc to a figure joint may seem counterintuitive, but it is convenient
because a node of the tree can have several arcs emanating from it, just as an object
part may have several joints attached to it. In a discussion of a hierarchical model
presented by a specific tree structure, the terms 

 

node,

 

 

 

object part,

 

 and 

 

link

 

 are used
interchangeably since all refer to the geometry to be articulated. Similarly, the
terms 

 

joint

 

 and 

 

arc

 

 are used interchangeably.
In the tree structure, there is a root arc that represents a global transformation

to apply to the root node (and, therefore, indirectly to all of the nodes of the tree).
Changing this transformation will rigidly reposition the entire structure in the glo-
bal coordinate system. See Figure 4.3. 

A node of the tree structure contains the information necessary to define the
object part in a position ready to be articulated. In the case of rotational joints,
this means that the point of rotation on the object part is made to coincide with

 

Figure 4.3

 

Example of a tree structure representing a hierarchical structure

root node

link
joint

root arcroot

Articulated figure Tree structureAbstract hierarchical 
representation
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the origin. The object data may be defined in such a position, or there may be a
transformation matrix contained in the node that, when applied to the object
data, positions it so. In either case, all of the information necessary to prepare the
object data for articulation is contained at the node. The node represents the
transformation of the object data into a link of the hierarchical model.

Two types of transformations are associated with an arc leading to a node. One
transformation rotates and translates the object into its position of attachment rel-
ative to the link one position up in the hierarchy. This defines the link’s neutral
position relative to its parent. The other transformation is the variable information
responsible for the actual joint articulation. See Figure 4.4. 

 

A Simple Example

 

Consider the simple, two-dimensional, three-link example of Figure 4.5. In this
example, there is assumed to be no transformation at any of the nodes; the data are
defined in a position ready for articulation. Link 0, the root object, is transformed
to its orientation and position in global space by 

 

T

 

0

 

. Because all of the other parts
of the hierarchy will be defined relative to this part, this transformation affects the
entire assemblage of parts and thus will transform the position and orientation of
the entire structure. This transformation can be changed over time in order to ani-
mate the position and orientation of the rigid structure. Link 1 is defined relative
to the untransformed root object by transformation 

 

T

 

1

 

. Similarly, Link 1.1 is
defined relative to the untransformed Link 1 by transformation 

 

T

 

1.1

 

. These rela-
tionships can be represented in a tree structure by associating the links with nodes
and the transformations with arcs. In the example shown in Figure 4.6, the articu-
lation transformations are not yet included in the model. 

An arc in the tree representation contains a transformation that applies to the
object represented by the node to which the arc immediately connects. This trans-
formation is also applied to the rest of the linkage farther down the hierarchy. The

 

Figure 4.4

 

Arc and node definition

Arci

Nodei
Nodei contains
• a transformation to be applied to

object data to position it so its
point of rotation is at the 
origin (optional)

• object data

Arci contains 
• constant transformation of Linki to

its neutral position relative to Linki–1 
• variable transformation responsible 

for articulating Linki
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vertices of a particular object can be transformed to their final positions by concat-
enating the transformations higher up the tree and applying the composite trans-
formation matrix to the vertices. A vertex of the root object, Link 0, is located in
the world coordinate system by applying the rigid transformation that affects the
entire structure; see Equation 4.1. A vertex of the Link 1 object is located in the
world coordinate system by transforming it first to its location relative to Link 0
and then relocating it (conceptually along with Link 0) to world space by Equa-
tion 4.2. A vertex of the Link 1.1 object is similarly located in world space by

 

Figure 4.5

 

Example of a hierarchical model

Original definition of Link 1

Original definition of Link 1.1 

T0

T1

T1.1

Original definition of root object 
(Link 0)

Root object (Link 0) transformed 
(translated and scaled) by T0 to some 
known location in global space

Link 1 transformed by T1 to its position 
relative to untransformed Link 0

Link 1.1 transformed by T1.1 
to its position relative to 
untransformed Link 1
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Equation 4.3. Notice that as the tree is traversed farther down one of its branches,
a newly encountered arc transformation is concatenated with the transformations
previously encountered.

 

(Eq. 4.1)

(Eq. 4.2)

(Eq. 4.3)

 

As previously discussed, when one constructs the static position of the assembly,
each arc of the tree has an associated transformation that rotates and translates the
link associated with the child node relative to the link associated with the parent
node. To easily animate a revolute joint, there is also a parameterized (variable)
transformation that controls the rotation at the specified joint. See Figure 4.7. In
the tree representation that implements a revolute joint, a rotation transformation
is associated with the arc that precedes the node representing the link to be
rotated. See Figure 4.8. The rotational transformation is applied to the link before
the arc’s constant transformation. If a transformation is present at the node (for
preparing the data for articulation), then the rotational transformation is applied
after the node transformation but before the arc’s constant transformation. 

To locate a vertex of Link 1 in world space, one must first transform it via the
joint rotation matrix. Once that is complete, then the rest of the transformations
up the hierarchy are applied. See Equation 4.4. A vertex of Link 1.1 is transformed
similarly by compositing all of the transformations up the hierarchy to the root, as
in Equation 4.5. In the case of multiple appendages, the tree structure would

 

Figure 4.6

 

Example of a tree structure 

data for Link 0 (the root)

T0

data for Link 1

T1

data for Link 1.1

T1.1

(global position and orientation)

(transformation of Link 1 relative to Link 0)

(transformation of Link 1.1 relative to Link 1)

V0′ T0 V0⋅=

V1′ T0 T1 V1⋅ ⋅=

V1.1′ T0 T1 T1.1 V1.1⋅ ⋅ ⋅=
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reflect the bifurcations (or multiple branches if more than two). Adding another
arm to our simple example results in Figure 4.9.

(Eq. 4.4)

(Eq. 4.5)

Figure 4.7 Variable rotations at the joints 

Figure 4.8 Hierarchy showing joint rotations

T0

Link 1

Link 1.1

θ1

θ1.1

data for Link 0 (the root)

T0

data for Link 1

T1

data for Link 1.1

T1.1

R1(θ1)

R1.1(θ1.1)

V1′ T0 T1 R1 θ1( ) V1⋅ ⋅ ⋅=

V ′1.1 T0 T1 R1 θ1( ) T1.1 R1.1 θ1.1( ) V1.1⋅ ⋅ ⋅ ⋅ ⋅=
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The corresponding tree structure would have two arcs emanating from the root
node, as in Figure 4.10. Branching in the tree occurs whenever multiple append-
ages emanate from the same object. For example, in a simplified human figure, the
root hip area (see Figure 4.3) might branch into the torso and two legs. If pris-
matic joints are used, the strategy is the same, the only difference being that the
rotation transformation of the joint (arc) is replaced by a translation. 

Figure 4.9 Hierarchy with two appendages

Figure 4.10 Tree structure corresponding to hierarchy with two appendages

T0

Link 1

Link 1.1

θ1

θ1.1

θ2

θ2.1

data for Link 0 (the root)

T0

data for Link 1

T1

data for Link 1.1

T1.1

R1(θ1)

R1.1(θ1.1)

T2
R2(θ2)

T2.1

R2.1(θ2.1)

data for Link 2

data for Link 2.1
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4.2.2 Forward Kinematics
Evaluation of a hierarchy by traversing the corresponding tree produces the figure
in a position that reflects the setting of the joint parameters. Traversal follows a
depth-first pattern from root to leaf node. The traversal then backtracks up the
tree until an unexplored downward arc is encountered. The downward arc is then
traversed, followed by backtracking up to find the next unexplored arc. This tra-
versal continues until all nodes and arcs have been visited. Whenever an arc is fol-
lowed down the tree hierarchy, its transformations are concatenated to the
transformations of its parent node. Whenever an arc is traversed back up the tree
to a node, the transformation of that node must be restored before traversal con-
tinues downward. 

A stack of transformations is a conceptually simple way to implement the sav-
ing and restoring of transformations as arcs are followed down and then back up
the tree. Immediately before an arc is traversed downward, the current composite
matrix is pushed onto the stack. The arc transformation is then concatenated with
the current transformation by premultiplying it with the composite matrix.
Whenever an arc is traversed upward, the top of the stack is popped off of the
stack and becomes the current composite transformation. (If node transforma-
tions, which prepare the data for transformation, are present, they must not be
included in a matrix that gets pushed onto the stack.)
/* the node structure */
typedef struct node_struct {
    object *obj; /*  pointer to object data structure */
    struct arc **arc_array; /* array of pointer to arcs emanating

   downward from node */
    int num_arc; /* number of arcs in array */
} node_td;

/* the arc structure */
typedef struct arc_struct {
    trans_mat rot; /* joint rotation matrix */
    trans_mat m; /* orientation and position matrix */
    node_td *nptr; /* pointer to node below arc */
} arc_td;

/* the highest structure of the tree is the root arc holding the global
   transforms */
/* the high-level routine simply calls for the (recursive) evaluation of
   the root node */
eval_tree(struct arc rootArc) 
{
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    eval_node(rootArc->m,rootArc->node); /* recursively evaluate the
   root node */

}

/* the recursive evaluation routine */
eval_node(trans_mat m,node_struct node);
{
    trans_mat temp_m; /* temporary transformation */

    concat_tm(node->m,m,&temp_m); /* concatenate current and node
   transform */

    transf_obj(obj,temp_m,&temp_obj); /* transform object */
    display_obj(temp_obj); /* display transformed object */

    /* loop over each arc emanating from node and recursively evaluate 
    /* the attached node */
    for (l=0; l<node->num_arc; l++) {
        premul_tm(node->arc_array[l]->m,temp_m);
        premul_tm(node->arc_array[l]->rot,temp_m);
        eval_node(temp_m,node->arc_array[l]->node);
    }
}

To animate the linkage, the rotation parameters at the joints (the changeable
rotation matrices associated with the tree arcs and parameterized by joint angle)
are manipulated. A completely specified set of rotation parameters, which results
in positioning the hierarchical figure, is called a pose. A pose is specified by a vector
(the pose vector) consisting of one angle for each joint. 

In a simple animation, a user may determine a key position interactively then
interpolate joint rotations between key positions. Positioning a figure by specifying
all of the joint angles is called forward kinematics. Unfortunately, getting the figure
to a final desired position by specifying joint angles can be tedious for the user.
Often, it is a trial-and-error process. To avoid the difficulties in having to specify
all of the joint angles, inverse kinematics (IK) is sometimes used, in which the
desired position and orientation of the end effector are given and the internal joint
angles are calculated automatically.

4.2.3 Local Coordinate Frames
In setting up complex hierarchies and in applying sophisticated procedures such as
inverse kinematics, it is convenient to be able to define points in the local coordi-
nate system (frame) associated with a joint and to have a well-defined method for
converting the coordinates of a point from one frame to another. A common use
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for this method is to convert points defined in the frame of a joint to the global
coordinate system for display purposes. In the example above, a transformation
matrix is associated with each arc to represent the transformation of a point from
the local coordinate space of a child node to the local coordinate space of the par-
ent node. The inverse of the transformation matrix can be used to transform a
point from the parent’s frame to the child’s frame. Successively applying the
inverses of matrices farther up the hierarchy can transform a point from any posi-
tion in the tree into world coordinates for display. In the three-dimensional case,
4x4 transformation matrices can be used to describe the relation of one coordinate
frame to the next. However, robotics has adopted a more concise and more mean-
ingful parameterization: the Denavit-Hartenberg notation. 

Denavit-Hartenberg Notation
The Denavit-Hartenberg (DH) notation is a particular way of describing the rela-
tionship of a parent coordinate frame to a child coordinate frame. This convention
is commonly used in robotics and often adopted for use in computer animation.
Each frame is described relative to an adjacent frame by four parameters that
describe the position and orientation of a child frame in relation to its parent’s
frame. 

For revolute joints, the z-axis of the joint’s frame corresponds to the axis of rota-
tion (prismatic joints are discussed below). The link associated with the joint
extends down the x-axis of the frame. First consider a simple configuration in
which the joints and the axes of rotation are coplanar. The distance down the x-
axis from one joint to the next is the link length, ai . The joint angle, θi+1, is speci-
fied by the rotation of the i + 1 joint’s x-axis, xi+1, about its z-axis relative to the
ith frame’s x-axis direction, xi . See Figure 4.11. 

Figure 4.11 Denavit-Hartenberg parameters for planar joints
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Nonplanar configurations can be represented by including the two other DH
parameters. For this general case, the x-axis of the ith joint is defined as the line
segment perpendicular to the z-axes of the ith and i + 1 frames. The link twist
parameter,  αi , describes the rotation of the i + 1 frame’s z-axis about this perpen-
dicular relative to the z-axis of the ith frame. The link offset parameter, di+1, speci-
fies the distance along the z-axis (rotated by αi ) of the i + 1 frame from the ith x-
axis to the i + 1 x-axis. See Figure 4.12.

Notice that the parameters associated with the ith joint do not all relate the
ith frame to the i + 1 frame. The link length and link twist relate the ith and i +
1 frames; the link offset and joint rotation relate the i – 1 and ith frames. See
Table 4.1.

Figure 4.12 Denavit-Hartenberg parameters 

Table 4.1 Denavit-Hartenberg Joint Parameters for Joint i

Name Symbol Description

Link offset di distance from xi –1 to xi along zi

Joint angle θi angle between xi –1 and xi about zi

Link length ai distance from zi to zi +1 along xi

Link twist αi angle between zi and zi +1 about xi
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Stated another way, the parameters that describe the relationship of the i + 1
frame to the ith frame are a combination of ith joint parameters and i + 1 joint
parameters. The parameters can be paired off to define two screw transformations,
each of which consists of a translation and rotation relative to a single axis. The
offset (di +1) and angle (θi +1) are the translation and rotation of the i + 1 joint rel-
ative to the ith joint with respect to the ith joint’s z-axis. The length (ai ) and twist
(αi ) are the translation and rotation of the i + 1 joint with respect to the ith joint’s
x-axis. See Table 4.2. The transformation of the i + 1 joint’s frame from the ith
frame can be constructed from a series of transformations, each of which corre-
sponds to one of the DH parameters. As an example, consider a point, Vi +1,
whose coordinates are given in the coordinate system of joint i + 1. To determine
the point’s coordinates in terms of the coordinate system of joint i, the transforma-
tion shown in Equation 4.6 is applied.

In Equation 4.6, T and R represent translation and rotation transformation
matrices respectively; the parameter specifies the amount of rotation or transla-
tion, and the subscript specifies the axis involved. The matrix M maps a point
defined in the i + 1 frame into a point in the ith frame. By forming the M matrix
and its inverse associated with each pair of joints, one can convert points from one
frame to another, up and down the hierarchy.

A Simple Example
Consider the simple three-joint manipulator of Figure 4.13. The DH parameters
are given in Table 4.3. The linkage is planar, so there are no displacement parame-
ters and no twist parameters. Each successive frame is described by the joint angle
and the length of the link. 

Table 4.2 Parameters That Relate the ith Frame and the i + 1 Frame

Name Symbol Description Screw Transformation

Link offset di +1 distance from xi to xi +1 along zi +1 relative to zi +1 

Joint angle θi +1 angle between xi and xi +1 about zi +1 relative to zi +1

Link length ai distance from zi to zi +1 along xi relative to xi 
Link twist αi angle between zi and zi +1 about xi relative to xi 
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(Eq. 4.6)
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Including a Ball-and-Socket Joint
Some human joints are conveniently modeled using a ball-and-socket joint. Con-
sider an armature with a hinge joint, followed by a ball-and-socket joint followed
by another hinge joint, as shown in Figure 4.14. 

The DH notation can represent the ball-and-socket joint by three single DOF
joints with zero-length links between them. See Figure 4.15.

Notice that in a default configuration with joint angles set to zero, the DH
model of the ball-and-socket joint is in a gimbal lock position (incrementally
changing two of the parameters results in rotation about the same axis). The first

Figure 4.13 Simple manipulator using three revolute joints

Table 4.3 Parameters for Three-Revolute Joint Armature

Joint/Parameter Link Displacement Joint Angle Link Length Link Twist

A 0 θΑ 0 0
B 0 θΒ LA 0
C 0 θC LB 0

Figure 4.14 Incorporating a ball-and-socket joint
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and third DOFs of that joint are aligned. The z -axes of these joints are colinear
because the links between them are zero length and the two link twist parameters
relating them are 90 degrees. This results in a total of 180 degrees and thus aligns
the axes. As a consequence, the representation of the ball-and-socket joint is usu-
ally initialized with the middle of the three joint angles set to 90 degrees. See
Table 4.4.

Constructing the Frame Description
Because each frame’s displacement and joint angle are defined relative to the previ-
ous frame, a Frame 0 is defined so that the Frame 1 displacement and angle can be
defined relative to it. Frame 0 is typically defined so that it coincides with Frame 1
with zero displacement and zero joint angle. Similarly, because the link of the last
frame does not connect to anything, the x-axis of the last frame is chosen so that it
coincides with the x-axis of the previous frame when the joint angle is zero; the
origin of the nth frame is chosen as the intersection of the x-axis of the previous
frame and the joint axis when the displacement is zero.

Figure 4.15 Coordinate axes induced by the DH representation of a ball-and-socket joint

Table 4.4 Joint Parameters for Ball-and-Socket Joint

Joint/Parameter Link Displacement Joint Angle Link Length Link Twist

A 0 θA 0 0
B1 0 θB1 LA 90
B2 0 90 + θB2 0 90
B3 0 θB3 0 0
C 0 θC LB 0
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The following procedure can be used to construct the frames for intermediate
joints.

1. For each joint, identify the axis of rotation for revolute joints and the axis of
displacement for prismatic joints. Refer to this axis as the z-axis of the joint’s
frame.

2. For each adjacent pair of joints, the ith – 1 and ith for i from 1 to n, con-
struct the common perpendicular between the z-axes or, if they intersect, the
perpendicular to the plane that contains them. Refer to the intersection of
the perpendicular and the ith frame’s z-axis (or the point of intersection of
the two axes) as the origin of the ith frame. Refer to the perpendicular as the
x-axis of the ith frame. See Figure 4.16.

3. Construct the y -axis of each frame to be consistent with the right-hand rule
(assuming right-hand space).

4.2.4 Inverse Kinematics
In inverse kinematics, the desired position and possibly orientation of the end
effector are given by the user, and the joint angles required to attain that configu-
ration are calculated. The problem can have zero, one, or more solutions. If there
are so many constraints on the configuration that no solution exists, the system is
called overconstrained. If there are relatively few constraints on the system and
there are many solutions to the problem posed, then it is underconstrained. The
reachable workspace is that volume which the end effector can reach. The dextrous
workspace is the volume that the end effector can reach in any orientation.

If the mechanism is simple enough, then the joint angles (the pose vector)
required to produce the final, desired configuration can be calculated analytically.
Given an initial pose vector and the final pose vector, intermediate configurations
can be formed by interpolation of the values in the pose vectors, thus animating
the mechanism from its initial configuration to the final one. However, if the

Figure 4.16 Determining the origin and x -axis of the ith frame
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mechanism is too complicated for analytic solutions, then an incremental
approach can be used that employs a matrix of values (the Jacobian) that relates
changes in the joint angles to changes in the end effector position and orientation.
The end effector is iteratively nudged until the final configuration is attained
within a given tolerance.

Solving a Simple System by Analysis
For sufficiently simple mechanisms, the joint angles of a final desired position can
be determined analytically by inspecting the geometry of the linkage. Consider a
simple two-link arm in two-dimensional space. Link lengths are L1 and L2 for the
first and second link respectively. If a position is fixed for the base of the arm at the
first joint, any position beyond |L1 – L2| units from the base of the link and
within L1 + L2 of the base can be reached. See Figure 4.17. 

Assume for now (without loss of generality) that the base is at the origin. In a
simple inverse kinematics problem, the user gives the (X, Y ) coordinate of the
desired position for the end effector. The joint angles, θ1 and θ2, can be solved for
by computing the distance from the base to the goal and using the law of cosines to
compute the interior angles. Once the interior angles are computed, the rotation
angles for the two links can be computed. See Figure 4.18. Of course, the first step is
to make sure that the position of the goal is within the reach of the end effector; that
is, . 

In this simple scenario, there are only two solutions that will give the correct
answer; the configurations are symmetric with respect to the line from (0, 0) to
(X, Y ). This is reflected in the equation in Figure 4.18 because the arccosine is

Figure 4.17 Simple linkage 
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two-valued in both plus and minus theta (θ). However, for more complicated
armatures, there may be infinitely many solutions that will give the desired end
effector location.

The joint angles for relatively simple linkages can be solved by algebraic manip-
ulation of the equations that describe the relationship of the end effector to the
base frame. Most linkages used in robotic applications are designed to be simple
enough for this analysis. However, for many cases that arise in computer anima-
tion, analytic solutions are not tractable. In such cases, iterative numeric solutions
must be relied on. 

The Jacobian
Most mechanisms of interest to computer animation are too complex to allow an
analytic solution. For these, the motion can be incrementally constructed. At each

Figure 4.18 Equations used in solving simple inverse kinematic problem
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time step, a computation is performed that determines the best way to change
each joint angle in order to direct the current position and orientation of the end
effector toward the desired configuration. The computation forms the matrix of
partial derivatives called the Jacobian. 

To explain the Jacobian from a strictly mathematical point of view, consider the
six arbitrary functions of Equation 4.7, each of which is a function of six indepen-
dent variables. Given specific values for the input variables, xi , each of the output
variables, yi , can be computed by its respective function.

(Eq. 4.7)

These equations can also be used to describe the change in the output variables
relative to the change in the input variables. The differentials of yi can be written
in terms of the differentials of xi using the chain rule. This generates Equation 4.8.
Equation 4.7 and Equation 4.8 can be put in vector notation, producing Equation
4.9 and Equation 4.10 respectively.

(Eq. 4.8)

(Eq. 4.9)

(Eq. 4.10)

The 6x6 matrix of partial derivatives, ∂F ⁄ ∂X, is called the Jacobian and is a
function of the current values of xi . The Jacobian can be thought of as mapping
the velocities of X to the velocities of Y (Equation 4.11). At any point in time, the
Jacobian is a linear function of xi . At the next instant of time, X  has changed and
so has the linear transformation represented by the Jacobian. 

(Eq. 4.11)

y1 f1 x1 x2 x3 x4 x5 x6, , , , ,( )=

y2 f2 x1 x2 x3 x4 x5 x6, , , , ,( )=

y3 f3 x1 x2 x3 x4 x5 x6, , , , ,( )=

y4 f4 x1 x2 x3 x4 x5 x6, , , , ,( )=

y5 f5 x1 x2 x3 x4 x5 x6, , , , ,( )=

y6 f6 x1 x2 x3 x4 x5 x6, , , , ,( )=

yiδ
fiδ
x1∂

------- x1δ⋅
fiδ
x2∂

------- x2δ⋅
fiδ
x3∂

------- x3δ⋅
fiδ
x4∂

------- x4δ⋅+ + +=

+  
f

 
i 

δ
 
x

 
5
 ∂  -------  x 5 δ⋅  

f
 

i 
δ

 
x

 
6

 ∂ ------- x 6 δ⋅ +

Y F X( )=

Yδ F∂
X∂

------ X∂⋅=
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When one applies the Jacobian to a linked appendage, the input variables, 

 

x

 

i

 

,

 

become the joint angles and the output variables, 

 

y

 

i

 

,

 

 become the end effector posi-
tion and orientation. In this case, the Jacobian relates the velocities of the joint
angles to the velocities of the end effector position and orientation (Equation
4.12).

 

(Eq. 4.12)
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change in the end effector. The desired change will be based on the difference
between its current position/orientation to that specified by the goal configura-
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 compo-
nent (Equation 4.13).  is a vector of joint angle velocities which are the
unknowns of the equation (Equation 4.14). 
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 the Jacobian, is a matrix that relates
the two and is a function of the current pose (Equation 4.15).

 

(Eq. 4.13)

(Eq. 4.14)

(Eq. 4.15) 

Each term of the Jacobian relates the change of a specific joint to a specific
change in the end effector. The rotational change in the end effector, 

 

ω

 

, is merely
the velocity of the joint angle about the axis of revolution at the joint under con-
sideration. The linear change in the end effector is the cross product of the axis of
revolution and a vector from the joint to the end effector. The rotation at the
joint induces an instantaneous linear direction of travel at the end effector. See
Figure 4.19.

The desired angular and linear velocities are computed by finding the difference
between the current configuration of the end effector and the desired configura-
tion. The angular and linear velocities of the end effector induced by the rotation
of a specific joint axis are determined by the computations shown in Figure 4.19.

V J θ( )θ̇=

θ̇

V vx vy vz ωx ωy ωz, , , , ,[ ]T
=

θ̇ θ̇1 θ̇2 θ̇3 … θ̇n, , , ,[ ]
T

=

J

θ1∂
∂vx

θ2∂
∂vx … θn∂

∂vx

θ1∂
∂vy

θ2∂
∂vy … θn∂

∂vy

… … … …

θ1∂
∂ωz

θ2∂
∂ωz … θn∂

∂ωz

=

Team LRN



Hierarchical Kinematic Modeling 197

The problem is to determine the best linear combination of velocities induced by
the various joints that would result in the desired velocities of the end effector. The
Jacobian is formed by posing the problem in matrix form. 

When one assembles the Jacobian, it is important to make sure that all of the
coordinate values are in the same coordinate system. It is often the case that joint-
specific information is given in the coordinate system local to that joint. In form-
ing the Jacobian matrix, this information must be converted into some common
coordinate system such as the global inertial coordinate system or the end effector
coordinate system. Various methods have been developed for computing the Jaco-
bian based on attaining maximum computational efficiency given the required
information in local coordinate systems, but all methods produce the derivative
matrix in a common coordinate system. 

A Simple Example
Consider the simple three-revolute-joint, planar manipulator of Figure 4.20. In
this example, the objective is to move the end effector, E, to the goal position, G.
The orientation of the end effector is of no concern in this example. The axis of
rotation of each joint is perpendicular to the figure, coming out of the paper. The
effect of an incremental rotation, gi , of each joint can be determined by the cross
product of the joint axis and the vector from the joint to the end effector, Vi (Fig-
ure 4.21). Notice that the magnitude of each gi is a function of the distance
between the locations of the joint and the end effector.

The desired change to the end effector is the difference between the current
position of the end effector and the goal position. A vector of the desired change
in values is set equal to the Jacobian matrix multiplied by a vector of the unknown
values, which are the changes to the joint angles (Equation 4.16).

Figure 4.19 Angular and linear velocities induced by joint axis rotation
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Figure 4.20 Planar, three-joint manipulator

Figure 4.21 Instantaneous changes in position induced by joint angle rotations 
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(Eq. 4.16)

Solution Using the Inverse Jacobian
Once the Jacobian has been computed, an equation in the form of Equation
4.17 is to be solved. In the case that J is a square matrix, the inverse of the Jaco-
bian, J –1, is used to compute the joint angle velocities given the end effector
velocities (Equation 4.18). 

(Eq. 4.17)

(Eq. 4.18)

If the inverse of the Jacobian ( J –1) does not exist, then the system is said to be
singular for the given joint angles. A singularity occurs when a linear combination
of the joint angle velocities cannot be formed to produce the desired end effector
velocities. As a simple example of such a situation, consider a fully extended, pla-
nar arm with a goal position somewhere on the forearm (see Figure 4.22). In such
a case, a change in each joint angle would produce a vector perpendicular to the
desired direction. Obviously, no linear combination of these vectors could produce
the desired motion vector. Unfortunately, all of the singularities of a system cannot
be determined simply by visually inspecting the possible geometric configurations
of the linkage.

Problems with singularities can be reduced if the manipulator is redundant—
when there are more degrees of freedom than there are constraints to be satisfied.
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In this case, the Jacobian is not a square matrix and there are an infinite number of
solutions to the inverse kinematics problem. Because the Jacobian is not square, a
conventional inverse does not exist. Instead, the 

 

pseudo inverse,

 

 

 

J

 

+

 

, can be used
(Equation 4.19). Equation 4.19 works because a matrix multiplied by its own
transpose will be a square matrix.

 

 

(Eq. 4.19)
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 is called the 

 

pseudo inverse

 

 of 

 

J.

 

 It maps the
desired velocities of the end effector to the required velocities of the joint angles.
After making the substitutions shown in Equation 4.20, LU decomposition can be
used to solve Equation 4.21 for 

 

β

 

. This can then be substituted into Equation 4.22
to solve for .

 

(Eq. 4.20)

(Eq. 4.21)

 Figure 4.22  Simple example of a singular configuration
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(Eq. 4.22)

 

It is important to remember that the Jacobian is only valid for the instantaneous
configuration for which it is formed. That is, as soon as the configuration of the
linkage changes, the Jacobian ceases to accurately describe the relationship
between changes in joint angles and changes in end effector position and orienta-
tion. This means that if too big a step is taken in joint angle space, the end effector
may not appear to travel in the direction of the goal. If this appears to happen dur-
ing an animation sequence, then taking smaller steps in joint angle space and thus
recalculating the Jacobian more often may be in order.

 

Adding More Control

 The pseudo inverse computes one of many possible solutions. It minimizes joint
angle rates. The configurations produced, however, do not necessarily correspond
to what might be considered natural poses. To better control the kinematic model,
a control expression can be added to the pseudo inverse Jacobian solution. The
control expression is used to solve for control angle rates with certain attributes.
The added control expression, because of its form, contributes nothing to the
desired end effector motion. The form for the control expression is shown in
Equation 4.23. In Equation 4.24 it is shown that this form of the control expres-
sion does not add anything to the velocities. As a consequence, the control expres-
sion can be combined with the pseudo inverse Jacobian solution so that the given
velocities are still satisfied [27].

 

 

(Eq. 4.23)

(Eq. 4.24)

 

To bias the solution toward specific joint angles, such as the middle angle
between joint limits, 

 

H

 

 is defined as in Equation 4.25, where 

 

θ

 

i

 

 are the current
joint angles, θci are the desired joint angles, αi are the desired angle gains, and ψ is
the ψth norm (for ψ even). Variable z is equal to the gradient of H,  (Equa-
tion 4.26). This does not enforce joint limits as hard constraints, but the solution
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can be biased toward the middle values so that violating the joint limits is less
probable.

(Eq. 4.25)

(Eq. 4.26)

The desired angles and gains are input parameters. The gain indicates the rela-
tive importance of the associated desired angle; the higher the gain, the stiffer the
joint.2 If the gain for a particular joint is high, then the solution will be such that
the joint angle quickly approaches the desired joint angle. The control expression
is added to the solution indicated by the conventional pseudo inverse of the Jaco-
bian (Equation 4.27). If all gains are zero, then the solution will reduce to the
conventional pseudo inverse of the Jacobian. Equation 4.27 can be solved by re-
arranging terms as shown in Equation 4.28.

(Eq. 4.27)

(Eq. 4.28)

To solve Equation 4.28, set β = ( JJ T)–1  so that Equation 4.29
results. Use LU decomposition to solve for β in Equation 4.30. Substitute the
solution for β in Equation 4.29 to solve for .

(Eq. 4.29)

(Eq. 4.30)

2. Stiffness refers to how much something reacts to being perturbed. A stiff spring is a strong spring. A stiff joint, as used
here, is a joint that has a higher resistance to being pulled away from its desired value.
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Simple Euler integration can be used at this point to update the joint angles. The
Jacobian has changed at the next time step, so the computation must be performed
again and another step taken. This process repeats until the end effector reaches the
goal configuration within some acceptable (i.e., user-defined) tolerance.

4.2.5 Summary
Hierarchical models are extremely useful for enforcing certain relationships among
the elements so that the animator can concentrate on just the degrees of freedom
remaining. Forward kinematics gives the animator explicit control over each
degree of freedom but can become cumbersome when the animation is trying to
attain a specific position or orientation of an element at the end of a hierarchical
chain. Inverse kinematics, using the inverse or pseudo inverse of the Jacobian,
allows the animator to concentrate only on the conditions at the end of such a
chain but might produce undesirable configurations. Additional control expres-
sions can be added to the pseudo inverse Jacobian solution to express a preference
for solutions of a certain character. However, these are all kinematic techniques.
Often, more realistic motion is desired and physically based simulations are
needed. These approaches are discussed below.

4.3 Rigid Body Simulation

A common objective in computer animation is to create realistic-looking motion.
A major component of realistic motion is the physically based reaction of rigid
bodies to commonly encountered forces such as gravity, viscosity, friction, and
those resulting from collisions. Creating realistic motion with key-frame tech-
niques can be a daunting task. However, the equations of motion can be incorpo-
rated into an animation system to automatically calculate these reactions. This can
eliminate considerable tedium—if the animator is willing to relinquish precise
control over the motion of some objects. 

In rigid body simulation, various forces to be simulated are modeled in the sys-
tem. These forces may arise due to relative positioning of objects (e.g., gravity, col-
lisions), object velocity (e.g., viscosity), or the absolute position of objects in user-
specified vector fields (e.g., wind). When applied to objects, these forces induce
linear and angular accelerations based on the mass of the object (in the linear case)
and mass distribution of the object (in the angular case). These accelerations,
which are the time derivative of velocities, are integrated over a delta time step to
produce changes in object velocities (linear and angular). These velocities, in turn
integrated over a delta time step, produce changes in object positions and orienta-
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tions (Figure 4.23). The new positions and velocities of the objects give rise to new
forces, and the process repeats for the next time step.

The free flight of objects through space is a simple type of rigid body simula-
tion. The simulation of rigid body physics becomes more complex as objects col-
lide, roll and slide over one another, and come to rest in complex arrangements. In
addition, a persistent issue in rigid body simulation, as with most animation, is the
modeling of a continuous process (such as physics) with discrete time steps. The
trade-off of accuracy for computational efficiency is an ever-present consideration.

It should be noted that the difference between material commonly taught in
standard physics texts and that used in computer animation is in how the equa-
tions of motion are used. In standard physics, the emphasis is usually in analyzing
the equations of motion for times at which significant events happen, such as an
object hitting the ground. In computer animation, the concern is with modeling
the motion of objects at discrete time steps [16] as well as the significant events
and their aftermath. While the fundamental principles and basic equations are the
same, the discrete time sampling creates numerical issues that must be dealt with
carefully. See Appendix B for equations of motion from basic physics.

4.3.1 Bodies in Free Fall
To understand the basics in modeling physically based motion, the motion of a
point in space will be considered first. The position of the point at discrete time
steps is desired, where the interval between these time steps is some uniform ∆t. To
update the position of the point over time, its position, velocity, and acceleration
are used, which are modeled as functions of time, x (t), v (t), a(t), respectively. 

If there are no forces applied to a point, then a point’s acceleration is zero and its
velocity remains constant (possibly nonzero). In the absence of acceleration, the
point’s position, x (t), is updated by its velocity, v (t), as in Equation 4.31. A point’s
velocity, v (t), is updated by its acceleration, a (t). Acceleration arises from forces

Figure 4.23 Rigid body simulation update cycle 

object properties (e.g., position, 
linear and angular velocity, 
linear and angular momentum, 
mass)

calculate forces (e.g., wind, 
gravity, viscosity)

calculate change in 
objects’ positions, 
velocities, momenta 

calculate accelerations 
from objects’ masses
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applied to an object over time. To simplify the computation, a point’s acceleration
is usually assumed to be constant over the time period ∆t. See Equation 4.32. A
point’s position is updated by the average velocity during the time period ∆t. Under
the constant-acceleration assumption, the average velocity during a time period is
the average of its beginning velocity and ending velocity, as in Equation 4.33. By
substituting Equation 4.32 into Equation 4.33, one defines the updated position in
terms of the starting position, velocity, and acceleration (Equation 4.34).

(Eq. 4.31)

(Eq. 4.32)

(Eq. 4.33)

(Eq. 4.34)

A Simple Example
Using a standard physics example, consider a point with an initial position of
(0, 0), with an initial velocity of (100, 100) feet per second, and under the force of
gravity resulting in a uniform acceleration of (0, –32) feet per second per second.
Assume a delta time interval of one-thirtieth of a second (corresponding roughly
to the frame interval in NTSC video). In this example, the acceleration is uni-
formly applied throughout the sequence, and the velocity is modified at each time
step by the downward acceleration. For each time interval, the average of the
beginning and ending velocities is used to update the position of the point. This
process is repeated for each step in time. See Equation 4.35 and Figures 4.24 and
4.25.

(Eq. 4.35)
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A Note about Numeric Approximation 

 

The assumption that acceleration remains constant over the delta time step is
incorrect in most rigid body simulations; many forces continually vary as the
object changes its position and velocity over time. This means that the acceleration
actually varies over the time step, and it often varies in nonlinear ways. Sampling
the force at the beginning of the time step and using that to determine the acceler-
ation throughout the time step is not the best approach. The multiplication of
acceleration at the beginning of the time step by  ∆  t   to step to the next function
value (velocity) is an example of using the Euler integration method (Figure 4.26).

 

Figure 4.24
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It is important to understand the shortcomings of this approach and the available
options for improving the accuracy of the simulation. Many books have been writ-
ten about the subject; 

 

Numerical Recipes: The Art of Scientific Computing,

 

 by Press
et al. [22], is a good place to start. This short section is intended merely to demon-
strate that better options exist and that, at the very least, a Runge-Kutta method
should be considered. 

It is easy to see how the size of the time step affects accuracy (Figure 4.27). By
taking time steps that are too large, the numerically approximated path deviates
dramatically from the ideal continuous path. Accuracy can be increased by taking
smaller steps, but this can prove to be computationally expensive. 

Accuracy can also be increased by using better methods of integration. 

 

Runge-
Kutta

 

 is a particularly useful one. Figure 4.28 shows the advantage of using the

 

second-order Runge-Kutta,

 

 or 

 

midpoint,

 

 method, which uses derivative information
from the midpoint of the stepping interval. 

 

Second-order

 

 refers to the magnitude of
the error term. Higher-order Runge-Kutta methods are more accurate and there-
fore allow larger time steps to be taken, but they are more computationally expen-
sive per time step. Generally, it is better to use a fourth- or fifth-order Runge-Kutta
method.

 

Figure 4.25

 

Path of a particle in the simple example from the text

 

Figure 4.26
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While computer animation is concerned primarily with visual effects and not
numeric accuracy, it is still important to keep an eye on the numerics that underlie
any simulation responsible for producing the motion. Visual realism can be com-
promised if the numeric calculation is allowed to become too sloppy. One should
have a basic understanding of the strengths and weaknesses of the numeric tech-
niques used, and, in most cases, employing the Euler method should be done with
caution.

Equations of Motion for a Rigid Body
To develop the equations of motion for a rigid body, several concepts from physics
are presented first [16]. The rotational equivalent of linear force, or torque, needs
to be considered when a force is applied to an object not directly in line with its
center of mass. To uniquely solve for the resulting motions of interacting objects,
linear momentum and angular momentum have to be conserved. And, finally, to
calculate the angular momentum, the distribution of an object’s mass in space

Figure 4.27 Approximating the sine curve by stepping in the direction of its derivative
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a) In this example, the sine function is the 
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large, then the function reconstructed 
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widely from the underlying function. 
In this example, ∆x = 5.
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must be characterized by its inertia tensor. These concepts are discussed below and
are followed by the equations of motion.

Orientation and Rotational Movement
Similar to linear attributes of position, velocity, and acceleration, three-dimensional
objects have rotational attributes of orientation, angular velocity, and angular accel-
eration as functions of time. If an individual point in space is modeled, such as in a
particle system, then its rotational information can be ignored. Otherwise the phys-
ical extent of the mass of an object needs to be taken into consideration in realistic
physical simulations. 

For current purposes, consider an object’s orientation to be represented by a
rotation matrix, R (t). Angular velocity is the rate at which the object is rotating
irrespective of its linear velocity. It is represented by a vector, ω(t). The direction of
the vector indicates the orientation of the axis about which the object is rotating;
the magnitude of the angular velocity vector gives the speed of the rotation in rev-
olutions per unit of time. For a given number of rotations in a given time period,
the angular velocity of an object is the same whether the object is rotating about its
own axis or rotating about an axis some distance away. If an object is rotating
about its own axis at the rate of two revolutions per minute, it will have the same
angular velocity as when it is rotating two revolutions per minute about an axis ten
miles away. In the latter case, the rotation will also induce an instantaneous linear
velocity (which constantly changes). But in both cases the object is still rotating at
two revolutions per minute (Figure 4.29). 

Figure 4.28 Euler method and midpoint method
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Consider a point, a, whose position in space is defined relative to a point,
b = x (t); a’s position relative to b is defined by r (t). The point a is rotating and the
axis of rotation passes through the point b (Figure 4.30). The change in r (t) is
computed by taking the cross product of r (t) and ω(t) (Equation 4.36). Notice
that the change in r (t) is perpendicular to the plane formed by ω(t) and r (t) and
that the magnitude of the change is dependent on the perpendicular distance
between ω(t) and r (t), as well as the magnitudes of ω(t) and r (t).

(Eq. 4.36)

Now consider an object that has an extent (distribution of mass) in space. The
orientation of an object, represented by a rotation matrix, can be viewed as a
transformed version of the object’s local unit coordinate system. As such, its col-
umns can be viewed as vectors defining relative positions in the object. Thus, the
change in the rotation matrix can be computed by taking the cross product of
ω(t) with each of the columns of R (t) (Equation 4.37). By defining a special

Figure 4.29 For a given number of rotations per unit of time, the angular velocity is the same 
whether the axis of rotation is near or far away

Figure 4.30 A point rotating about an axis 
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matrix to represent cross products (Equation 4.38), one can represent Equation
4.37 by matrix multiplication (Equation 4.39). 

(Eq. 4.37)

(Eq. 4.38)

(Eq. 4.39)

Consider a point, Q, on a rigid object. Its position in the local coordinate space
of the object is q; q does not change. Its position in world space, q (t), is given by
Equation 4.40. The position of the body in space is given by x (t), and the orienta-
tion of the body is given by R (t). The velocity of the particle is given by differenti-
ating Equation 4.40. The relative position of the particle in the rigid body is
constant. The change in orientation is given by Equation 4.39, while the change
in position is represented by a velocity vector. These are combined to produce
Equation 4.41. The world space position of the point Q in the object, taking into
consideration the object’s orientation, is given by rearranging Equation 4.40 to
give R (t)q = q (t) – x (t). Substituting this into Equation 4.41 and distributing the
cross product produces Equation 4.42

(Eq. 4.40)

(Eq. 4.41)

(Eq. 4.42)

Center of Mass
The center of mass of an object is defined by the integration of the differential mass
times its position in the object. In computer graphics, the mass distribution of an
object is typically modeled by individual points, which is usually implemented by
assigning a mass value to each of the object’s vertices. If the individual masses are
given by mi , then the total mass of the object is represented by Equation 4.43.
Using an object coordinate system that is located at the center of mass is often use-
ful when modeling the dynamics of a rigid object. For the current discussion, it is
assumed that x (t) is the center of mass of an object. If the location of each mass
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point in world space is given by qi (t), then the center of mass is represented by
Equation 4.44. 

(Eq. 4.43)

(Eq. 4.44)

Forces
A linear force (a force along a straight line), F, applied to a mass, m, gives rise to a
linear acceleration, a, by means of the relationship shown in Equation 4.45 and
Equation 4.46. This fact provides a way to calculate acceleration from the applica-
tion of forces. Examples of such forces are gravity, viscosity, friction, impulse forces
due to collisions, and forces due to spring attachments. See Appendix B for the
basic equations from physics that give rise to such forces.

(Eq. 4.45)

(Eq. 4.46)

The various forces acting on a point can be summed to form the total external
force, F (t) (Equation 4.47). Given the mass of the point, the acceleration due to the
total external force can be calculated and then used to modify the velocity of the
point. This can be done at each time step. If the point is assumed to be part of a
rigid object, then the point’s location on the object must be taken into consider-
ation, and the effect of the force on the point has an impact on the object as a
whole. The rotational equivalent of linear force is torque. The torque that arises from
the application of forces acting on a point of an object is given by Equation 4.48.

(Eq. 4.47)

(Eq. 4.48)

Momentum 
As with force, the momentum (mass times velocity) of an object is decomposed
into a linear component and an angular component. The object’s local coordinate
system is assumed to be located at its center of mass. The linear component acts on
this center of mass, and the angular component is with respect to this center. Lin-
ear momentum and angular momentum need to be updated for interacting objects
because these values are conserved in a closed system. Saying that the linear
momentum is conserved in a closed system, for example, means that the sum of
the linear momentum does not change if there are no outside influences on the
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system. The case is similar for angular momentum. That they are conserved means
they can be used to solve for unknown values in the system, such as linear velocity
and angular velocity. 

Linear momentum is equal to velocity times mass (Equation 4.49). The total lin-
ear momentum P(t) of a rigid body is the sum of the linear momentums of each
particle (Equation 4.50). For a coordinate system whose origin coincides with the
center of mass, Equation 4.50 simplifies to the mass of the object times its velocity
(Equation 4.51). Further, since the mass of the object remains constant, taking the
derivative of momentum with respect to time establishes a relationship between
linear momentum and linear force (Equation 4.52). This states that the force act-
ing on a body is equal to the change in momentum. Interactions composed of
equal but opposite forces result in no change in momentum (i.e., momentum is
conserved).

(Eq. 4.49)

(Eq. 4.50)

(Eq. 4.51)

(Eq. 4.52)

Angular momentum is a measure of the rotating mass weighted by the mass’s dis-
tance from the axis of rotation. For a mass point in an object, the angular momen-
tum is computed by taking the cross product of a vector to the mass and a velocity
vector of that mass point times the mass of the point. These vectors are relative to
the center of mass of the object. The total angular momentum of a rigid body is
computed by integrating this equation over the entire object. For the purposes of
computer animation, the computation is usually summed over mass points that
make up the object (Equation 4.53). Notice that angular momentum is not
directly dependent on the linear components of the object’s motion.

(Eq. 4.53)

In a manner similar to the relation between linear force and the change in linear
momentum, torque equals the change in angular momentum (Equation 4.54). If
no torque is acting on an object, then angular momentum is constant. However,
the angular velocity of an object does not necessarily remain constant even in the
case of no torque. The angular velocity can change if the distribution of mass of an
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object changes, such as when an ice skater spinning on his skates pulls his arms in
toward his body to spin faster. This action brings the mass of the skater closer to
the center of mass. Angular momentum is a function of angular velocity, mass,
and the distance the mass is from the center of mass. To maintain a constant angu-
lar momentum, the angular velocity must increase if the distance of the mass
decreases.

(Eq. 4.54)

Inertia Tensor
Angular momentum is related to angular velocity in much the same way that lin-
ear momentum is related to linear velocity, P (t ) = M • v (t ). See Equation 4.55.
However, in the case of angular momentum, a matrix is needed to describe the dis-
tribution of mass of the object in space, the inertia tensor, I (t). The inertia tensor is
a symmetric 3x3 matrix. The initial inertia tensor defined for the untransformed
object is denoted as Iobject (Equation 4.56). Terms of the matrix are calculated by
integrating over the object (e.g., Equation 4.57). In Equation 4.57, the density of
an object point, q = (qx , qy , qz ), is ρ. For the discrete case, the equations are given
by Equation 4.58. In a center-of-mass-centered object space, the inertia tensor for
a transformed object depends on the orientation, R (t ), of the object but not on its
position in space. Thus it is dependent on time. It can be transformed according
to the transformation of the object by I(t ) = R (t )IobjectR (t )T. Its inverse is trans-
formed in the same way.

(Eq. 4.55)

(Eq. 4.56)

(Eq. 4.57)

(Eq. 4.58)
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The Equations
The state of an object can be kept in a vector, S(t ), consisting of its position, ori-
entation, linear momentum, and angular momentum (Equation 4.59). Object
attributes, which do not change over time, include its mass, M, and its object-
space inertia tensor, Iobject. At any time, an object’s time-varying inertia tensor,
angular velocity, and linear velocity can be computed (Equation 4.60–Equation
4.62). The time derivative of the object’s state vector can now be formed (Equa-
tion 4.63). 

(Eq. 4.59)

(Eq. 4.60)

(Eq. 4.61)

(Eq. 4.62)

(Eq. 4.63)

This is enough information to run a simulation. Once the ability to compute
the derivative information is available, then a differential equation solver can be
used to update the state vector. In the simplest implementation, Euler’s method
can be used to update the values of the state array. The values of the state array are
updated by multiplying their time derivatives by the length of the time step. In
practice, Runge-Kutta methods (especially fourth-order) have found popularity
because of their trade-off in speed, accuracy, and ease of implementation.

Care must be taken in updating the orientation of an object. If the derivative
information above is used to update the orientation rotation matrix, then the col-
umns of this matrix can quickly become nonorthogonal and not of unit length. At
the very least, the column lengths should be renormalized after being updated. A
better method is to update the orientation matrix by applying to its columns the
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axis-angle rotation implied by the angular velocity vector, ω(t ). The magnitude of
the angular velocity vector represents the angle of rotation about the axis along the
angular velocity vector (see Appendix B for the axis-angle calculation). Alterna-
tively, quaternions can be used to represent both the object’s orientation and the
orientation derivative, and its use here is functionally equivalent to the axis-angle
approach.

4.3.2 Bodies in Contact
When an object starts to move in any kind of environment other than a complete
void, chances are that sooner or later it will bump into something. If nothing is
done about this in a computer animation, the object will penetrate and then pass
through other objects. Other types of contact include objects sliding against and
resting on each other. All of these types of contact require the calculation of forces
in order to accurately simulate the reaction of one object to another.

Colliding Bodies
As objects move relative to one another, there are two issues that must be
addressed: (1) detecting the occurrence of collision and (2) computing the appro-
priate response to those collisions. The former is strictly a kinematic issue in that it
has to do with the positions and orientations of objects and how they change over
time. The latter is usually a dynamic issue in that forces that are a result of the col-
lision are computed and used to produce new motions for the objects involved.

Collision detection considers the movement of one object relative to another. In
its most basic form, testing for a collision amounts to determining whether there is
intersection in the static position of two objects at a specific instance in time. In a
more sophisticated form, the movement of one object relative to the other object
during a finite time interval is tested for overlap. These computations can become
quite involved when dealing with complex geometries.

Collision response is a consideration in physically based simulation. The geo-
metric extent of the object is not of concern but rather the distribution of its mass.
Localized forces at specific points on the object impart linear and rotational forces
onto the other objects involved.

In dealing with the time of collision, there are two options. The first is to pro-
ceed as best one can from this point in time by calculating an appropriate reaction
to the current situation by the particle involved in the collision (the penalty
method). This option allows penetration of the particle before the collision reac-
tion takes place. Of course, if the particle is moving rapidly, this penetration might
be visually significant. If multiple collisions occur in a time interval, they are
treated as occurring simultaneously even though handling them in their correct
sequential order may have produced different results. While more inaccurate than
the second option, this is simpler to implement and often gives acceptable results.
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The second option is to back up time ti to the first instant that a collision
occurred and determine the appropriate response at the time of collision. If multi-
ple collisions occur in a time interval, then time is backed up to the point at which
the first collision took place. In complex environments in which collisions happen
at a high rate, this constant backing up of time and recomputing the motion of
objects can become quite time-consuming.

There are three common options for collision response: a strictly kinematic
response, the penalty method, and the calculation of an impulse force. The kine-
matic response is quick and easy. It produces good visual results for particles and
spherically shaped objects. The penalty method introduces a temporary, nonphys-
ically based force in order to restore nonpenetration. It is typically used when
response to the collision occurs at the time step when penetration is detected (as
opposed to backing up time). The advantage of this technique is that it is easy to
compute and the force is easily incorporated into the computational mechanism
that simulates rigid body movement. Calculating the impulse force is a more pre-
cise way of introducing a force into the system and is typically used when time is
backed up to the point of first contact. Detecting collisions and reacting to them
are discussed next.

Particle-Plane Collision and Kinematic Response
One of the simplest illustrative situations to consider for collision detection and
response is that of a particle traveling at a constant velocity toward a stationary
plane at an arbitrary angle (see Figure 4.31). The task is to detect when the particle
collides with the plane and have it bounce off the plane. Because a simple plane is
involved, its planar equation can be used (Equation 4.64). E (p) is the planar equa-
tion, a,b,c,d are coefficients of the planar equation, and p is a particle that is only a
position in space and has no physical extent of its own. Points on the plane satisfy
the planar equation, that is, E (p) = 0. The planar equation is formed so that for

Figure 4.31 Point-plane collision 

E ( p) = 0

E ( p) > 0

E ( p) < 0
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points in front of the plane the planar equation evaluates to a positive value,
E (p) > 0; for points behind the plane, E (p) < 0.

(Eq. 4.64)

The particle travels toward the plane as its position is updated according to its
average velocity over the time interval, as in Equation 4.65. At each time step ti ,
the particle is tested to see if it is still in front of the plane, E (p (ti )) > 0. As long as
this evaluates to a positive value, there is no collision. The first time t at which
E (p (ti )) ≤ 0 indicates that the particle has collided with the plane at some time
between ti–1 and ti . What to do now? The collision has already occurred and
something has to be done about it. 

(Eq. 4.65)

In the kinematic response, when penetration is detected, the component of the
velocity vector of the particle that is parallel to the surface normal is simply negated
by subtracting it out of the velocity vector and then subtracting it out again. To
reduce the height of each successive bounce, a damping factor, 0 < k < 1, can be
applied when subtracting it out the second time (Equation 4.66). This bounces the
particle off a surface at a reduced velocity (Figure 4.32). This approach is not phys-
ically based, but it produces reasonable visuals, especially for particles and spheri-
cally shaped objects. Taking the example from Section 4.3.1 and incorporating
kinematic response to collisions with the ground produces Figure 4.33.

(Eq. 4.66)

The Penalty Method
When objects penetrate due to temporal sampling, a simple method of construct-
ing a reaction to the implied collision is the penalty method. As the name suggests,
a point is penalized for penetrating another object. In this case, a spring, with a
zero rest length, is momentarily attached from the offending point to the surface it
penetrated in such a way so as to impart a restoring force on the offending point.
For now, it is assumed that the surface it penetrates is immovable and thus does
not have to be considered as far as collision response is concerned. The closest
point on the penetrated surface to the penetrating point is used as the point of
attachment. See Figure 4.34. The spring, therefore, imparts a force on the point in
the direction of the penetrated surface normal and with a magnitude according to
Hooke’s law (F = –k • d ). A mass assigned to the point is used to compute a result-
ant acceleration (a = F ⁄ m), which contributes an upward velocity to the point.
When this upward velocity is combined with the point’s original motion, the
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point’s downward motion will be stopped and reversed by the spring, while any
component of its motion tangent to the surface will be unaffected. While easy to
implement, this approach is not ideal. An arbitrary mass (

 

m

 

) must be assigned to
the point, and an arbitrary constant (

 

k

 

) must be determined for the spring. It is
difficult to control because if the spring constant is too weak or if the mass is too
large, then the collision will not be corrected immediately. If the spring constant is
too strong or the mass is too small, then the colliding surfaces will be thrown apart
in an unrealistic manner. If the point is moving fast relative to the surface it pene-
trated, then it may take a few time steps for the spring to take effect and restore
nonpenetration.

 

Figure 4.32

 

Kinematic solution for collision reaction

 

Figure 4.33

 

Kinematic response to collisions with ground using 0.8 as the damping factor for 
the example from Section 4.3.1

 

Figure 4.34
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Using the example from Section 4.3.1 and implementing the penalty method
produces the motion traced in Figure 4.35. In this implementation, a temporary
spring is introduced into the system whenever both the 

 

y

 

 component of the posi-
tion and the 

 

y

 

 component of the velocity vector are negative; a spring constant of
250 and a point mass of 10 are used. While the spring force is easy to incorporate
with other system forces such as gravity, the penalty method requires the user to
specify fairly arbitrary control parameters that typically require a trial-and-error
process to determine appropriate values. 

When used with polyhedra objects, the penalty force can give rise to torque
when not acting in line with the center of mass of an object. When two polyhedra
collide, the spring is attached to both objects and imparts an equal but opposite
force on the two to restore nonpenetration. Detecting collisions among polyhedra
is discussed next, followed by a more accurate method of computing the impulse
forces due to such collisions. 

 

Testing Planar Polyhedra

 

In environments in which objects are modeled as planar polyhedra, at each time
step each polyhedron is tested for possible penetration against every other polyhe-
dron. A collision is implied whenever the environment transitions from a nonpen-
etration state to a state in which a penetration is detected. A test for penetration at
each time step can miss some collisions because of the discrete temporal sampling,
but it is sufficient for many applications.

Various tests can be used to determine whether an overlap condition exists
between polyhedra and the tests should be chosen according to computational
efficiency and generality. Bounding box tests, also known as min-max tests, can be
used to quickly determine if there is any chance for an intersection. A bounding
box can easily be constructed by searching for the minimum and maximum values
in 

 

x, y,

 

 and 

 

z.

 

 Bounding boxes can be tested for overlap. If there is no overlap of

 

Figure 4.35

 

Penalty method with a spring constant of 250 and a point mass of 10 for 
example from Section 4.3.1
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the bounding boxes, then there can be no overlap of the objects. If the object’s
shape does not match a rectangle well, then a bounding sphere or bounding slabs
(pairs of parallel planes at various orientations that bound the object) can be used.
A hierarchy of bounding shapes can be used on object groups, individual objects,
and individual faces. If these bounding tests fail to conclusively establish that a
nonoverlap situation exists, then more elaborate tests must be conducted. 

Most collisions can be detected by testing each of the vertices of one object to
see if any are inside another polyhedron and then testing each of the vertices of the
other object to see if any are inside the first. To test whether a point is inside a con-
vex polyhedron, each of the planar equations for the faces of the object is evaluated
using the point’s coordinates. If the planes are oriented so that a point to the out-
side of the object evaluates to a positive value and a point to the inside of the
object evaluates to a negative value, then the point under consideration has to
evaluate to a negative value in all of the planar equations in order to be declared
inside the polyhedron.

Testing a point to determine if it is inside a concave polyhedron is more diffi-
cult. One way to do it is to construct a semi-infinite ray emanating from the point
under consideration in any particular direction. For example, 

 

y 
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 P

 

y

 

, z 

 

=

 

 P

 

z

 

,

 

 

 

x 

 

>

 

P

 

x  

 

defines a line parallel to the 

 

x

 

-axis going in the positive direction from the
point 

 

P.

 

 This semi-infinite ray is used to test for intersection with all of the faces
of the object, and the intersections are counted; an odd number of intersections
means that the point is inside the object, and an even number means that the
point is outside. To intersect a ray with a face, the ray is intersected with the planar
equation of the face and then the point of intersection is tested to see if it is inside
the polygonal face. 

Care must be taken in correctly counting intersections if this semi-infinite ray
intersects the object exactly at an edge or vertex or if the ray is colinear with an
edge of the object. (These cases are similar to the situations that occur when scan-
converting concave polygons.) While this does not occur very often, it should be
dealt with robustly. Because the number of intersections can be difficult to resolve
in such situations, it can be computationally more efficient to simply choose a
semi-infinite ray in a different direction and start over with the test.

One can miss some intersection situations if performing only these tests. The
edges of each object must be tested for intersection with the faces of the other
object and vice versa to capture other overlap situations. The edge-face intersec-
tion test consists of two steps. In the first step, the edge is tested for intersection
with the plane of the face (i.e., the edge vertices are on opposite sides of the plane
of the face) and the point of intersection is computed if it exists. In the second
step, the point of intersection is tested for 2D containment inside the face. The
edge-face intersection tests would actually capture all of the penetration situations,
but because it is the more expensive of the two tests, it is usually better to perform
the vertex tests first. See Figure 4.36.
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Often, a normal that defines the plane of intersection is used in the collision
response calculations. For collisions that are detected by the penetration tests, one
of two collision situations can usually be established by looking at the relative
motion of the objects. Either a vertex has just penetrated a face, or an edge from
one object has just intersected an edge from the other object. In either case, the
plane of intersection can be established. When a vertex has penetrated a face, a
normal to the face is used. When there is an edge-edge intersection, the normal is
defined as the cross product of the two edges. 

In certain limited cases, a more precise determination of collision can be per-
formed. For example, if the movement of one object with respect to another is a
linear path, then the volume swept by one object can be determined and inter-
sected with the other object, whose position is assumed to be static relative to the
moving object. If the direction of travel is indicated by a vector, 

 

V,

 

 then front faces
and back faces with respect to the direction of travel can be determined. The
boundary edges that share a front face and a back face can be identified. The vol-
ume swept by the object is defined by the original positions of the back faces, the
translated positions of the front faces, and faces that are the boundary edges
extruded in the direction of travel (Figure 4.37). This volume is intersected with
the static object.

 

Impulse Force of Collision

 

To allow for more accurate handling of the moment of collision, time can be
“backed up” to the point of impact, the reaction can be computed, and the time
can be moved forward again. While more accurate in its reconstruction of events,
this approach can become very computationally intense in complex environments
if many closely spaced collisions occur. However, for a point-plane collision, the
impulse can be simplified because the angular velocity can be ignored.

 

Figure 4.36

 

Detecting polyhedra intersections

Vertex inside a polyhedron
Object penetration without a vertex 
of one object contained in the other 
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The actual time of collision within a time interval can be searched for by using
a binary search strategy. If it is known that a collision occurred between

 

 t
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these times are used to initialize the lower (
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 –1

 

) and upper (
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 t

 

i

 

) bounds on
the time interval to be tested. At each iteration of the search, the point’s position is
tested at the middle of the bounded interval. If the test indicates that the point has
not collided yet, then the upper bound is replaced with the middle of the time
interval. Otherwise, the lower bound is replaced with the middle of the time inter-
val. This test repeats with the middle of the new time interval and continues until
some desired tolerance is attained. The tolerance can be based either on the length
of the time interval or on the range of distances the point could be on either side
of the surface.

Alternatively, a linear-path, constant-velocity approximation can be used over
the time interval to simplify the calculations. The position of the point before pen-
etration and the position after penetration can be used to define a linear path. The
point of intersection along the line with a planar surface can be calculated analyti-
cally. The relative position of the intersection point along this line can be used to
estimate the precise moment of impact (Figure 4.38).

At the time of impact, the normal component of the point’s velocity can be
modified as the response to the collision. A scalar, the coefficient of restitution,
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between zero and one can be applied to the resulting velocity to model the degree
of elasticity of the collision (Figure 4.39).

Computing Impulse Forces
Once a collision is detected and the simulation has been backed up to the point of
intersection, the reaction to the collision can be calculated. By working back from
the desired change in velocity due to a collision, an equation that computes the
required change in momentum is formed. This equation uses a new term, called
impulse, expressed in units of momentum. The impulse, J, can be viewed as a large
force acting over a short time interval (Equation 4.67). The change in momentum
P, and therefore the change in velocity, can be computed once the impulse is
known (Equation 4.68).

(Eq. 4.67)

(Eq. 4.68)

Figure 4.39 Impact response of a point with a plane 
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To characterize the elasticity of the collision response, the user selects the coeffi-
cient of restitution, 0 ≤ ε ≤ 1, which relates the relative velocity before the collision
to the relative velocity after the collision in the direction normal to the plane of
intersection (Equation 4.69). To compute J, the equations of how the velocities
must change based on the equations of motion before and after the collision are
used. These equations use the impulse, j , and can then be used to solve for its
value.

(Eq. 4.69)

Assume that the collision of two objects, A and B, has been detected at time t.
Each object has a position for its center of mass (xA(t), xB(t)), linear velocity (vA(t),
vB (t)), and angular velocity (ωA(t), ωB(t)). The points of collision (pA, pB) have
been identified on each object. See Figure 4.40.

At the point of intersection, the normal to the surface of contact, n, is deter-
mined depending on whether it is a vertex-face contact or an edge-edge contact.
The relative positions of the contact points with respect to the center of masses are
rA and rB respectively (Equation 4.70). The relative velocity of the contact points
of the two objects in the direction of the normal to the surface is computed by
Equation 4.71. The velocities of the points of contact are computed as in Equa-
tion 4.72.

(Eq. 4.70)

(Eq. 4.71)

(Eq. 4.72)

Figure 4.40 Configuration of colliding objects 
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The linear and angular velocities of the objects before the collision (v–
A, v–

B ) are
updated by the impulse to form the linear and angular velocities after the collision
(v+

A, v+
B ). Impulse is a vector quantity in the direction of the normal to the surface

of contact, J = j • n. The linear velocities are updated by adding in the effect of the
impulse scaled by one over the mass (Equation 4.73). The angular velocities are
updated by computing the effect of the impulse on the angular velocity of the
objects (Equation 4.74).

(Eq. 4.73)

(Eq. 4.74)

To solve for the impulse, form the difference between the velocities of the con-
tact points after collision in the direction of the normal to the surface of collision
(Equation 4.75). The version of Equation 4.72 for velocities after collision is sub-
stituted into Equation 4.75. Equation 4.73 and Equation 4.74 are then substi-
tuted into that to produce Equation 4.76. Finally, substituting into Equation 4.69
and solving for j produces Equation 4.77. 

(Eq. 4.75)

(Eq. 4.76)

(Eq. 4.77)

Contact between two objects is defined by the point on each object involved in
the contact and the normal to the surface of contact. A point of contact is tested to
see if an actual collision is taking place. When collision is tested for, the velocity of
the contact point on each object is calculated. A collision is detected if the compo-
nent of the relative velocity of the two points in the direction of the normal indi-
cates the contact points are approaching each other.

If there is a collision, then Equation 4.77 is used to compute the magnitude of
the impulse. The impulse is used to scale the contact normal, which can then be
used to update the linear and angular momenta of each object.
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Compute VA, VB ;EQ 121
Compute Vrelative = dot(N,(VA–VB) ;relative velocity of two contact

 points
if Vrelative > threshold
              compute j ;EQ 126
              J = j*n
              PA += J ;update linear momentum
              PB –= J ;update linear momentum
              LA += rA x J ;update angular momentum
              LB –= rB x J ;update angular momentum
else if Vrelative < –threshold
              resting contact
else
              objects are moving away from each other

If there is more than one point of contact between two objects, then each must
be tested for collision. Each time a collision point is identified, it is processed for
updating the momentum as above. If any collision is processed in the list of con-
tact points, then after the momenta have been updated, the contact list must be
traversed again to see if there exist any collision points with the new object
momenta. Each time one or more collisions are detected and processed in the list,
the list must be traversed again; this is repeated until it can be traversed and no
collisions are detected.

Friction
An object resting on the surface of another object (the supporting object) is referred
to as being in a state of resting contact with respect to that supporting object. In
such a case, any force acting on the first object is decomposed into a component
perpendicular to the normal of the contact surface and a component parallel to the
normal of the contact surface (the normal force) (Figure 4.41). If the direction of
the parallel component is toward the supporting object, and if the supporting
object is considered immovable, such as the ground or a table, the parallel compo-
nent is immediately and completely canceled by a force equal and opposite in
direction that is supplied by the supporting object. If the supporting object is
movable, then the parallel component is applied transitively to the supporting
object and added to the forces being applied to the supporting object. If the per-
pendicular component of force is directed away from the supporting object, then
it is simply used to move the object up and away from the supporting object.

The parallel component of the force applied to the object is responsible for slid-
ing (or rolling) the object along the surface of the supporting object. If the object
is initially stationary with respect to the supporting object, then there is typically
some threshold force, due to static friction, that must be exceeded before the object
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will start to move. This static friction force, Fs , is a function of the normal force,
FN (Equation 4.78). The constant µs is the coefficient of static friction and is a
function of the two surfaces in contact.

 (Eq. 4.78)

Once the object is moving along the surface of the supporting object, there is a
kinetic friction that works opposite to the direction of travel. This friction creates a
force, opposite to the direction of travel, which is a linear function of the normal
force, N, on the object (Equation 4.79). The constant µk is the coefficient of
kinetic friction and is a function of the two surfaces in contact.

(Eq. 4.79)

Resting Contact
Computing the forces involved in resting contact is one of the more difficult
dynamics problems for computer animation. The exposition here follows that
found in Baraff ’s work [1]. The solution requires access to quadratic programming,
the implementation of which is beyond the scope of this book. An example situa-
tion in which several objects are resting on one another is shown in Figure 4.42.

For each contact point, there is a force normal to the surface of contact, just as
in colliding contact. The objective is to find the magnitude of that force for a given
configuration of objects. These forces (1) have to be strong enough to prevent
interpenetration; (2) must only push objects apart, not together; and (3) have to
go to zero at the point of contact at the moment that objects begin to separate.

To analyze what is happening at a point of contact, use a distance function,
di (t), that evaluates to the distance between the objects at the ith point of contact.
Assuming objects A and B are involved in the ith contact and the points involved
in the ith contact are pA and pB from the respective objects, then the distance
function is given by Equation 4.80.

Figure 4.41 Horizontal and vertical components of force 

Normal
Applied force

Parallel component

Perpendicular component 
(Normal force)

Fs µs FN⋅=

Fk µk FN⋅=
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 (Eq. 4.80)

If di (t ) is zero, then the objects involved are still in contact. Whenever di (t ) > 0,
the objects are separating. One of the objectives is to avoid di (t ) < 0, which would
indicate penetration.

At t0, the distance between the objects is zero. To prevent object penetration
from time t0 onward, the relative velocity of the two objects must be greater or
equal to zero, (t ) ≥ 0. The equation for relative velocity is produced by differen-
tiating Equation 4.80 and is shown in Equation 4.81. At time t0, the objects are
touching, so pA(t0) = pB(t0). This means that .
In addition, for resting contact, .

(Eq. 4.81)

Since , penetration will be avoided if the second derivative
is greater than or equal to zero, . The second derivative is produced by dif-
ferentiating Equation 4.81 as shown in Equation 4.82. At t0, remembering that
pA(t0) = pB (t0), one finds that the second derivative simplifies as shown in Equa-
tion 4.83. Notice that Equation 4.83 further simplifies if the normal to the surface
of contact does not change ( ).

(Eq. 4.82)

(Eq. 4.83)

The constraints on the forces as itemized at the beginning of this section can
now be written as equations: the forces must prevent penetration (Equation 4.84);

Figure 4.42 Multiple-object resting contacts
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the forces must push objects apart, not together (Equation 4.85); and either the
objects are not separating or, if the objects are separating, then the contact force is
zero (Equation 4.86).

 

(Eq. 4.84)

(Eq. 4.85)

(Eq. 4.86)

 

The relative acceleration of the two objects at the 
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th contact point, ,
is written as a linear combination of all of the unknown 
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s (Equation 4.87). For a
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nent of the relative acceleration that is dependent on the velocities of the points,
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(Eq. 4.87)

(Eq. 4.88)

 

In Equation 4.88,  is the linear acceleration as a result of the total force act-
ing on object 

 

A

 

 divided by its mass. A force 

 

f

 

j acting in direction nj (t0) produces
fj ⁄mA • nj (t0). Angular acceleration, , is formed by differentiating Equation
4.61 and produces Equation 4.89, in which the first term contains torque and
therefore relates the force fj to  while the second term is independent of the
force fj and so is incorporated into a constant term, bi .

(Eq. 4.89)

The torque from force fj is (pj – xA(t0)) × fj • nj (t0). The total dependence of
 on fj is shown in Equation 4.90. Similarly, the dependence of  on fj can

be computed. The results are combined as indicated by Equation 4.83 to form the
term aij as it appears in Equation 4.87.

(Eq. 4.90)
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Collecting the terms not dependent on an fj and incorporating a term based on
the net external force, FA(t0), and net external torque, τA(t0) acting on A, the part
of  independent of the fj ’s is shown in Equation 4.91. A similar expression is
generated for . To compute bi in Equation 4.87, the constant parts of
and  are combined and dotted with ni(t0). To this, the term

 is added.

(Eq. 4.91)

Equation 4.87 must be solved subject to the constraints in Equation 4.85, and
Equation 4.86. These systems of equations are solved by quadratic programming. It
is nontrivial to implement. Baraff [1] uses a package from Stanford [11] [13] [12]
[14]. Baraff notes that the quadratic programming code can easily handle

 instead of  in order to constrain two bodies to never separate.
This enables the modeling of hinges and pin-joints.

4.4 Enforcing Soft and Hard Constraints

One of the main problems with using physically based animation is for the anima-
tor to get the object to do what he or she wants while at the same time have it react
to the forces modeled in the environment. One way to solve this is to place con-
straints on the object that restrict some subset of the degrees of freedom of the
object’s motion. The remaining degrees of freedom are subject to the physically
based animation system. Constraints are simply requirements placed on the
object. For animation, constraints can take the form of co-locating points, main-
taining a minimum distance between objects, or requiring an object to have a cer-
tain orientation in space. The problem for the animation system is in enforcing
the constraints while the object’s motion is controlled by some other method. 

If the constraints are to be strictly enforced, then they are referred to as hard
constraints. If the constraints are relations the system should only attempt to sat-
isfy, then they are referred to as soft constraints. Satisfying hard constraints requires
more sophisticated numerical approaches than satisfying soft constraints. To sat-
isfy hard constraints, computations are made that search for a motion that reacts
to forces in the system while at the same time satisfying all of the constraints. As
more constraints are added to the system, this becomes an increasingly difficult
problem. Soft constraints are typically incorporated into a system as additional
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ṗ̇B t( ) ṗ̇A t( )
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forces that influence the final motion. One way to model flexible objects is to cre-
ate soft distance constraints between the vertices of an object. These constraints,
modeled by a mesh of interconnected springs and dampers, react to other forces in
the system such as gravity and collisions to create a dynamic structure. Soft con-
straint satisfaction can also be phrased as an energy minimization problem in
which deviation from the constraints increases the system’s energy. Forces are
introduced into the system that decrease the system’s energy. These approaches are
discussed below.

 4.4.1 Flexible Objects  
In Chapter 3, kinematic approaches to animating flexible bodies are discussed in
which the animator is responsible for defining the source and target shapes as well
as implying how the shapes are to be interpolated. Various physically based
approaches have been proposed that model elastic and inelastic behavior, viscoelas-
ticity, plasticity, and fracture (e.g., [15] [17] [20] [29] [30] [31]). Here, the sim-
plest approach is presented. Flexibility is modeled by a spring-mass-damper system
simulating the reaction of the body to external forces.

 

Spring-Mass-Damper Modeling of Flexible Objects

 

Probably the most common approach to modeling flexible shapes is the spring-
mass-damper model. The most straightforward strategy is to model each vertex of
an object as a point mass and each edge of the object as a spring. Each spring’s rest
length is set equal to the original length of the edge. A mass can be arbitrarily
assigned to an object by the animator and the mass evenly distributed among the
object’s vertices. If there is an uneven distribution of vertices throughout the object
definition, then masses can be assigned to vertices in an attempt to more evenly
distribute the mass. Spring constants are similarly arbitrary and are usually
assigned uniformly throughout the object to some user-specified value.

As external forces are applied to specific vertices of the object, either because of
collisions, gravity, wind, or explicitly scripted forces, vertices will be displaced rela-
tive to other vertices of the object. This displacement will induce spring forces,
which will impart forces to the adjacent vertices as well as reactive forces back to
the initial vertex. These forces will result in further displacements, which will
induce more spring forces throughout the object, resulting in more displacements,
and so on. The result will be an object that is wriggling and jiggling as a result of
the forces propagating along the edge springs and producing constant relative dis-
placements of the vertices.

One of the drawbacks with using springs to model the effects of external forces
on objects is that the effect has to propagate through the object, one time step at a
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time. This means that the number of vertices used to model an object and the
length of edges used have an effect on the object’s reaction to forces. Because the
vertices carry the mass of the object, using a different distribution of vertices to
describe the same object will result in a difference in the way the object reacts to
external forces.

 

A Simple Example

 

In a simple two-dimensional example, an equilateral triangle composed of three ver-
tices and three edges with uniform mass distribution and uniform spring constants
will react to an initial external force applied to one of the vertices (Figure 4.43). 

In the example, an external force is applied to vertex  V 2, pushing it generally
toward the other two vertices. Assume that the force is momentary and is applied
only for one time step during the animation. At the application of the force, an
acceleration (
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2

 

) is imparted to vertex 

 

V

 

2 by the force. The acceleration
gives rise to a velocity at point 

 

V

 

2, which in turn creates a change in its position.
At the next time step, the external force has already been removed, but, because
vertex 

 

V

 

2 has been displaced, the lengths of edges 

 

E

 

12 and 

 

E

 

23 have been
changed. As a result of this, a spring force is created along the two edges. The
spring that models edge 

 

E

 

12 imparts a restoring force to vertices 

 

V

 

1 and 

 

V

 

2,
while the spring that models edge 

 

E

 

23 imparts a restoring force to vertices 

 

V

 

2 and

 

V

 

3. Notice that the springs push back against the movement of 

 

V

 

2, trying to
restore its position, while at the same time they are pushing the other two vertices
away from 

 

V

 

2. In a polygonal mesh, the springs associated with mesh edges prop-
agate the effect of the force throughout the object. 

The force, 

 

F

 

i,j

 

, applied by the spring between vertex 
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 at vertex 
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 is
based on Hooke’s law and is given in Equation 4.92, in which 
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(Eq. 4.92)

 

Figure 4.43

 

A simple spring-mass model of a flexible object
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Depending on the size of forces applied to spring-mass points, the size of the
spring constant, and the size of the time step used to sample the system, a spring
simulation may numerically explode, resulting in computed behavior in which the
motions get larger and larger. This is because the force is assumed to be constant
throughout the time step. A smaller time step can be used to control the simula-
tion, or smaller spring constants can be assigned or larger masses used. But these
modifications slow down the simulation. The size of a force can be clamped to
some maximum, but this, too, can result in undesirable behavior. A common
modification to better control the reaction of the springs is to incorporate damp-
ers. A damper introduces an additional force in the spring that works against the
velocity of the spring length, thus helping to limit the speed at which a spring
changes length. 

Dampers
A damper imparts a force in the direction opposite to the velocity of the spring
length and is proportional to that velocity. As a spring starts to change length
faster and faster, the damper will help to control the change in length and keep it
within some range that does not allow the simulation to explode. In Equation
4.93, kd is the damping coefficient and vi (t ) is the velocity of the spring length.
The dampers are incorporated into the spring models, and the damper force is
proportional to the relative velocity of the endpoints of the spring-damper model
(Figure 4.44).

(Eq. 4.93)

Modeling only the object edges with spring dampers can result in a model that
has more than one stable configuration. For example, if a cube’s edges are modeled
with springs, during applications of extreme external forces, the cube can turn
inside out. Additional spring dampers can help to stabilize the shape of an object.
Springs can be added across the object’s faces and across its volume. To help pre-
vent such undesirable, but stable, configurations in a cube, one or more springs
that stretch diagonally from one vertex across the interior of the cube to the oppo-
site vertex can be included in the model. These springs will help to model the
internal material of a solid object (Figure 4.45).

Figure 4.44 Spring-damper configuration

Fi
damper k– d vi t( )⋅=

spring damper mass pointmass point
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If specific angles between adjacent faces (dihedral angles) are desired, then
angular springs (and dampers) can be applied. The spring resists deviation to the
rest angle between faces and imparts a torque along the edge that attempts to
restore the rest angle (Equation 4.94 and Figure 4.46). The damper works to limit
the resulting motion. The torque is applied to the vertex from which the dihedral
angle is measured; a torque of equal magnitude but opposite direction is applied to
the other vertex.

(Eq. 4.94)

4.4.2 Virtual Springs
Virtual springs introduce forces into the system that do no directly model physical
elements. These can be used to control the motion of objects in a variety of cir-
cumstances. The penalty method is an example of a virtual spring. Virtual springs
with zero rest lengths can be used to constrain one object to lie on the surface of
another, for example, or, with nonzero rest lengths, to maintain separation
between moving objects. 

Proportional derivative controllers (PDCs) are another type of virtual spring
used to keep a control variable and its derivative within the neighborhood of de-
sired values. For example, to maintain a joint angle and joint velocity close to
desired values, the user can introduce a torque into a system, as in Equation 4.95.
If the desired values are functions of time, PDCs are useful for biasing a model to-
ward a given motion while still allowing it to react to system forces. 

(Eq. 4.95)

Springs, dampers, and PDCs are an easy and handy way to control the motion
of objects by incorporating forces into a physically based modeling system. The
springs can model physical elements in the system as well as represent arbitrary
control forces. Dampers and PDCs are commonly used to keep system parameters

Figure 4.45 Interior springs to help 
stabilize the object’s configuration

Figure 4.46 An angular spring imparting 
restoring torques

τ
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τ ks θ t( ) θrest–( )⋅ kd θ̇ t( )⋅–=
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close to desired values. They are not without problems, however. One drawback to
using springs, dampers, and PDCs is that the user-supplied constants in the equa-
tions can be difficult to choose to obtain a desired effect. A drawback to using a
spring mesh is that the effect of the forces must ripple through the mesh as the
force propagates from one spring to the next. Still, they are often a useful and
effective tool for the animator.

4.4.3 Energy Minimization
The concept of a system’s energy can be used in a variety of ways to control the
motion of objects. Used in this sense, energy is not defined solely as physically
realizable but is free to be defined in whatever form serves the animator. Energy
functions can be used to pin objects together, to restore the shape of objects, or to
minimize the curvature in a spline as it interpolates points in space. 

As presented by Witkin, Fleischer, and Barr [32], energy constraints induce
restoring forces based on arbitrary functions of a model’s parameters. The current
state of a model can be expressed as a set of parameter values. These are external
parameters such as position and orientation as well as internal parameters such as
joint angles, the radius of a cylinder, or the threshold of an implicit function. They
are any value of the object model subject to change. The set of state parameters
will be referred to as Ψ.

A constraint is phrased in terms of a non-negative smooth function, E (Ψ), of
these parameters, and a local minimum of the constraint function is searched for
in the space of all parametric values. The local minimum can be searched for by
evaluating the gradient of the energy function and stepping in the direction of the
negative of the gradient, –∇E. The gradient of a function is the parameter space
vector in the direction of greatest increase of that function. Usually the parametric
state set will have quite a few elements, but for illustrative purposes suppose there
are only two state parameters. Taking the energy function to be the surface of a
height function of those two parameters, one can consider the gradient as pointing
uphill from any point on that surface. See Figure 4.47.

Given an initial set of parameters, Ψ0, the parameter function at time zero is
defined as F (0) = Ψ0. From this it follows that (d ⁄dt) F (t) = –∇E. The force vector
in parameter space is the negative of the gradient of the energy function, –∇E.
Any of a number of numerical techniques can be used to solve the equation, but a
particularly simple one is Euler’s method, as shown in Equation 4.96 (see Appen-
dix B or [22] for better methods).

(Eq. 4.96)F ti 1+( ) F ti( ) h ∇E⋅–=
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Determining the gradient, ∇E, is usually done numerically by stepping along
each dimension in parameter space, evaluating the energy function, and taking
differences between the new evaluations and the original value.

Three Useful Functions
As presented by Witkin, Fleischer, and Barr [32], three useful functions in defin-
ing an energy function are

The parametric position function, P (u, v) 
The surface normal function, N (u, v) 
The implicit function I (x) 

The parametric position function and surface normal function are expressed as
functions of surface parameters u and v (although for a given model, the surface
parameters may be more complex, incorporating identifiers of object parts, for
example). Given a value for u and v, the position of that point in space and the
normal to the surface at that point are given by the functions. The implicit func-
tion takes as its parameter a position in space and evaluates to an approximation of
the signed distance to the surface where a point on the surface returns a zero, a
point outside the object returns a positive distance to the closest point on the sur-
face, and a point inside the object returns a negative distance to the closest point
on the surface. These functions will, of course, also be functions of the current
state of the model, Ψ.

Useful Constraints
The functions above can be used to define several useful constraint functions. The
methods of Witkin, Fleischer, and Barr can also lead to several intuitive constraint
functions. The functions typically are associated with one or more user-specified
weights; these are not shown.

Figure 4.47 Sample simple energy function
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Point-to-Fixed-Point The point Q in space is fixed and is given in terms of abso-
lute coordinate values. The point P is a specific point on the surface of the model
and is specified by the u, v parameters. The energy function will be zero when
these two points coincide.

Point-to-Point A point on the surface of one object is given and the point on the
surface of a second object is given. The energy function will be zero when they
coincide. Notice that within a constant, this is a zero-length spring. Also notice
that the orientations of the objects are left unspecified. If this is the only constraint
given, then the objects could completely overlap or partially penetrate each other
to satisfy this constraint.

Point-to-Point Locally Abutting The energy function is zero when the points
coincide, and the dot product of the normals at those points is equal to minus one
(i.e., they are pointing away from each other).

Floating Attachment With the use of the implicit function of object b, a specific
point on object a is made to lie on the surface of object b.

Floating Attachment Locally Abutting A point of object a is constrained to lie
on the surface of b, using the implicit function of object b as above. In addition,
the normal of object a and the point must be colinear to and in the opposite direc-
tion of the normal of object b at the point of contact. The normal of object b is
computed as the gradient of its implicit function.

Other constraints are possible. Witkin, Fleischer, and Barr [32] present several
others as well as some examples of animations using this technique.

Energy Constraints Are Not Hard Constraints 
While such energy functions can be implemented quite easily and can be effec-
tively used to assemble a structure defined by relationships such as the ones
discussed above, a drawback to this approach is that the constraints used are not
hard constraints in the sense that the constraint being imposed on the model is not
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always met. For example, if a point-to-point constraint is specified and one of the
points is moved rapidly away, the other point, as moved by the constraint satisfac-
tion system, will chase around the moving point. If the moving point comes to a
halt, then the second point will, after a time, come to rest on top of the first point,
thus satisfying the point-to-point constraint. 

4.4.4 Space-Time Constraints
Space-time constraints view motion as a solution to a constrained optimization
problem that takes place over time in space. Hard constraints which include equa-
tions of motion as well as nonpenetration constraints and locating the object at
certain points in time and space are placed on the object. An objective function
that is to be optimized is stated; for example, minimize the amount of force
required to produce the motion over some time interval.

The material here is taken from Witkin and Kass [33]. Their introductory
example will be used to illustrate the basic points of the method. Interested readers
are urged to refer to that article as well as follow-up articles on space-time con-
straints (e.g., [5] [19]).

Space-Time Particle
Consider a particle’s position to be a function of time, x (t ). A time-varying force
function, f (t ), is responsible for moving the particle. Its equation of motion is
given in Equation 4.97.

(Eq. 4.97)

Given the function f (t ) and values for the particle’s position and velocity, x (t0)
and , at some initial time, the position function, x (t ), can be obtained by
integrating Equation 4.97 to solve the initial value problem.

However, the objective here is to determine the force function, f (t ). Initial and
final positions for the particle are given as well as the times the particle must be at
these positions (Equation 4.98). These equations along with Equation 4.97 are the
constraints on the motion.

(Eq. 4.98)

The function to be minimized is the fuel consumption, which here, for simplic-
ity, is given as f 2. For a given time period t0 < t < t1, this results in Equation
4.99 as the function to be minimized subject to the time-space constraints and the
motion equation constraint.

m ẋ̇ t( )⋅ f t( )– m g⋅– 0=

ẋ t0( )

x t0( ) a=

x t1( ) b=
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(Eq. 4.99)

In solving this, discrete representations of the functions x (t) and f (t) are consid-
ered. Time derivatives of x are approximated by finite differences (Equation 4.100
and Equation 4.101) and substituted into Equation 4.97 to form n physics con-
straints (Equation 4.102) and the two boundary constraints (Equation 4.103).

(Eq. 4.100)

(Eq. 4.101)

(Eq. 4.102)

(Eq. 4.103)

If one assumes that the force function is constant between samples, the object
function, R, becomes a sum of the discrete values of f. The discrete function R is
to be minimized subject to the discrete constraint functions, which are expressed
in terms of the sample values, xi and fi , that are to be solved for.

Numerical Solution
The problem as stated fits into the generic form of constrained optimization prob-
lems, which is to “find the Sj values that minimize R subject to Ci(Sj) = 0.” The Sj
values are the xi and fi . Solution methods can be considered black boxes that
request current values for the Sj values, R, and the Ci values as well as the deriva-
tives of R and the Ci with respect to the Sj as the solver iterates toward a solution.

The solution method used by Witkin and Kass [33] is a variant of sequential
quadratic programming (SQP) [14]. The method computes a second-order New-
ton-Raphson step in R, which is taken irrespective of any constraints on the sys-
tem. A first-order Newton-Raphson step is computed in the Ci  to reduce the
constraint functions. The step to minimize the objective function, R, is projected
onto the null space of the constraint step, that subspace in which the constraints
are constant to a first-order approximation. Therefore, as steps are being taken to
minimize the constraints, a particular direction for the step is chosen that does not
affect the constraint minimization and that reduces the objective function. 

Because it is first order in the constraint functions, the first derivative matrix
(the Jacobian) of the constraint function must be computed (Equation 4.104).

R f 2dt
t0

t1∫=

ẋi
xi xi 1––

h
--------------------=

ẋ̇i

xi 1+ 2 x⋅ i xi 1–+–

h2
---------------------------------------------=

pi m
xi 1+ 2 x⋅ i xi 1–+–

h2
---------------------------------------------⋅ f– m g⋅– 0= =

ca x1 a– 0= =

cb xn b– 0= =
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Because it is second order in the objective function, the second derivative matrix
(the Hessian) of the objective function must be computed (Equation 4.105). The
first derivative vector of the objective function must also be computed, ∂R ⁄ ∂Sj .

(Eq. 4.104)

(Eq. 4.105)

The second-order step to minimize R, irrespective of the constraints, is taken by
solving the linear system of equations shown in Equation 4.106. A first-order step
to drive the Cj’s to zero is taken by solving the linear system of equations shown in
Equation 4.107. The final update is . The algorithm reaches a fixed
point when the constraints are satisfied, and any further step that minimizes R
would violate one or more of the constraints.

(Eq. 4.106)

(Eq. 4.107)

Although one of the more complex methods presented here, space-time con-
straints are a powerful and useful tool for producing realistic motion while main-
taining given constraints. They are particularly effective for creating the illusion of
self-propelled objects whose movement is subject to user-supplied time constraints.

4.5 Controlling Groups of Objects

Managing complexity is one of the most important uses of the computer in ani-
mation, and nothing exemplifies that better than particle systems. A particle system
is a large collection of individual elements, which, taken together, represent a con-
glomerate, fuzzy object. Both the behavior and the appearance of each individual
particle are very simple. The individual particles typically behave according to sim-
ple physical principles with respect to their environment but not with respect to
other particles of the system. When viewed together, the particles create the
impression of a single, dynamic, complex object. This illusion of a greater whole is
referred to as emergent behavior and is an identifying characteristic of both particle
systems and flocking. The members of a flock, typically fewer in number than
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particles in a particle system, behave according to more sophisticated physics and a
bit of intelligence. Simple cognitive processes that control the movement of a
member are modeled and might include such behavior as goal-directed motion
and the avoidance of obstacles. Adding more intelligence to the members in a
group results in more interesting individual behaviors and sometimes goes by the
name 

 

autonomous behavior

 

. Modeling autonomous behavior tends to involve fewer
participants, less physics, and more intelligence. Particle systems, flocking, and
autonomous behavior are examples of independently behaving members of groups
with varying levels of autonomy, physical characteristics, and simulated motions
(Table 4.5).  

4.5.1 Particle Systems

 

Because typically there are a large number of elements in a particle system, simpli-
fying assumptions are used in both the rendering and the calculation of their
motions. Various implementations make different simplifying assumptions. Some
of the common assumptions made are

Particles do not collide with other particles
Particles do not cast shadows, except in an aggregate sense
Particles only cast shadows on the rest of the environment, not on each other
Particles do not reflect light—they are each modeled as point light sources

Particles are often modeled as having a finite life span, so that during an anima-
tion there may be hundreds of thousands of particles used but only thousands
active at any one time. Randomness is introduced into most of the modeling and
processing of particles to avoid excessive orderliness. In computing a frame of
motion for a particle system, the following steps are taken:

1. Any new particles that are born during this frame are generated
2. Each new particle is assigned attributes
3. Any particles that have exceeded their allocated life span are terminated

 

Table 4.5

 

Characteristics of Group Types

Type of Group Number of Elements Incorporated Physics Intelligence

 

Particles

 

many much—with environment none

 

Flocks

 

some some—with environment and 
other elements

limited

 

Autonomous 
behavior

 

few little much
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4. The remaining particles are animated and their shading parameters changed
according to the controlling processes

5. The particles are rendered 

See Figure 4.48. The steps are then repeated for each frame of the animation. If
the user can enforce the constraint that there are a maximum number of particles
active at any one time, then the data structure can be static and particle data struc-
tures can be reused as one dies and another is created in its place.

 

Particle Generation

 

Particles are typically generated according to a controlled stochastic process. For
each frame, a random number of particles are generated using some user-specified
distribution centered at the desired average number of particles per frame (Equa-
tion 4.108). The distribution could be uniform or Gaussian or anything else the
animator wants. In Equation 4.108, 

 

Rand

 

(_) returns a random number from –1.0
to 

 

+

 

1.0 in the desired distribution, and 

 

range

 

 scales it into the desired range. If the
particles are used to model a fuzzy object, then it is best to use the area of the
screen covered by the object to control the number of particles generated (Equa-
tion 4.109). The features of the random number generator, such as average value
and variance, can be a function of time to enable the animator to have more con-
trol over the particle system.

 

(Eq. 4.108)

(Eq. 4.109)

 

Figure 4.48

 

The life of a particle

# of particles average Rand(_) range⋅+=

# of particles average Rand(_) range screenArea⋅ ⋅+=

Particle’s midlife with modified 
color and shading

Trajectory based on 
simple physics Collides with environment

but not other particles

Particle’s demise, based on 
constrained and randomized 
life span

Particle’s birth: constrained and randomized 
place and time with initial color and 
shading (also randomized)
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Particle Attributes

 

The attributes of a particle determine its motion status, its appearance, and its life
in the particle system. Typical attributes are

position
velocity
shape parameters
color
transparency
lifetime

Each of the attributes is initialized when the particle is created. Again, to avoid
uniformity, the user typically randomizes values in some controlled way. The posi-
tion and velocity are updated according to the particle’s motion. The shape param-
eters, color, and transparency control the particle’s appearance. The lifetime
attribute is a count of how many frames the particle will exist in.

 Particle Termination  
At each new frame, each particle’s lifetime attribute is decremented by one. When
the attribute reaches zero, the particle is removed from the system. This completes
the particle’s life cycle and can be used to keep the number of particles active at
any one time within some desired range of values.

 

Particle Animation

 

Typically, each active particle in a particle system is animated throughout its life.
This activation includes not only its position and velocity but also its display
attributes: shape, color, and transparency. To animate the particle’s position in
space, the user considers forces and computes the resultant particle acceleration.
The velocity of the particle is updated from its acceleration, and then the average
velocity is computed and used to update the particle’s position. Gravity, other glo-
bal force fields (e.g., wind), local force fields (vortices), and collisions with objects
in the environment are typical forces modeled in the environment. 

The particle’s color and transparency can be a function of global time, its own
life span remaining, its height, and so on. The particle’s shape can be a function of
its velocity. For example, an ellipsoid can be used to represent a moving particle
where the major axis of the ellipsoid is aligned with the direction of travel and the
ratio of the ellipsoid’s length to the radius of its circular cross section is related to
its speed.

 

Particle Rendering

 

To simplify rendering, model each particle as a point light source so that it adds
color to the pixel(s) it covers but is not involved in visible surface algorithms
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(except to be hidden) or shadowing. In some applications, shadowing effects have
been determined to be an important visual cue. The density of particles between a
position in space and a light source can be used to estimate the amount of shadow-
ing. See Blinn [2], Ebert, Carlson, and Parent [8], and Reeves [23] for some of
these considerations. For more information, see Reeves and Blau on particle sys-
tems [24] and Sims on particle animation and rendering [28].

 

Particle System Representation

 

A particle is represented by a tuple [

 

x, v, f, m

 

], which holds its position, velocity,
force accumulator, and mass.

 

typedef particle_struct struct {
  vector3D p;
  vector3D v;
  vector3D f;
  float mass;
} particle;

 The state of a particle, [  x, v  ], will be updated by [  v, f  /  m  ] by the ODE (ordinary
differential equation) solver. The solver can be considered to be a black box to the
extent that the actual method used by the solver does not have to be known.

A particle system is an array of particles with a time variable: [*

 

p, n, t

 

].

 

typedef particleSystem_struct struct {
  particle  *p;
  int n;
  float t;
} particleSystem;

 

Updating Particle System Status

 

The particle system is updated by

 

update(pSystem)
{
  clearForces(pSystem)
  computeForces(pSystem)
  getState(pSystem,array1)
  computeDerivative(pSystem,arrayw)
  addVector(array1,array2,array2,n)
  saveState(array2,pSystem)
  t += deltaT
}
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Forces

 

Forces can be unary, particle pair, or environmental. Unary forces include gravity
and viscous drag. Particle pair forces, if desired, can be represented by springs and
dampers. However, implementing particle pair forces for each possible pair of par-
ticles can be prohibitively expensive in terms of computational requirements. Aux-
iliary processing, such as bucket sorting, can be employed to consider only 

 

n

 

-
nearest-neighbor pairs and reduce the computation required. Environmental
forces arise from a particle’s relationship to the rest of the environment. Gravita-
tional forces or forces arising from spring-damper configurations may be modeled
using various geometric elements in the environment.

 

Particle Life Span

 

Typically, each particle will have a life span. The particle data structure itself can be
reused in the system so that a particle system might have tens of thousands of par-
ticles over the life of the simulation but only, for example, one thousand in exis-
tence at any one time. Initial values are set pseudo randomly so that particles are
spawned in a controlled manner but with some variability.

 
4.5.2 Flocking Behavior

 

Flocking can be characterized as having a moderate number of members (relative
to particle systems and autonomous behavior), each of which is controlled by a rel-
atively simple set of rules that operate locally. The members exhibit limited intelli-
gence and are governed by relatively simple physics. The physics-based modeling
typically includes collision avoidance, gravity, and drag. As compared to particle
systems, there are fewer elements and there is usually more interelement interac-
tion modeled. In addition, members’ behavior usually models some limited intelli-
gence as opposed to being strictly physics based.

As with particle systems, aggregate behavior emerges from the local behavior of
members of the flock; it is 

 

emergent behavior

 

. The flocking behavior manifests itself
as a goal-directed body, able to split into sections and re-form, creating organized
patterns of flock members that can perform coordinated maneuvers.

For purposes of this discussion, the birds-in-flight analogy will be used,
although, in general, any collection of participants that exhibits this kind of group
behavior falls under the rubric 

 

flocking

 

. For example, flocking behavior is often
used to control herds of animals moving over terrain. Of course, in this case, their
motion is limited to the surface of a two-dimensional manifold. To use the flock
analogy but acknowledge that it refers to a more general concept, Reynolds uses
the term 

 

boid

 

 to refer to a member of the generalized flock. Much of this discus-
sion is taken from his paper [25].

Team LRN



 

Controlling Groups of Objects 247

 

There are two main forces at work in keeping a collection of objects behaving
like a flock: 

 

collision avoidance

 

 and 

 

flock centering

 

. These are competing tendencies
and must be balanced, with collision avoidance taking precedence.

Collision avoidance is relative to other members of the flock as well as other
obstacles in the environment. Avoiding collision with other members in the flock
means that some spacing must be maintained between the members even though
all members are usually in motion and that motion usually has some element of
randomness associated with it to break up unnatural-looking regularity. However,
because the objects, as members of a flock, are typically heading in the same direc-
tion, the relative motion between flock members is usually small. This facilitates
maintaining intermember spacing and, therefore, collision avoidance among
members. Considering only intermember collision avoidance, the objective should
be that resulting adjustments bring about small and smooth movements. 

Flock centering has to do with each member trying to be just that—a member
of a flock. As Reynolds [25] points out, a global flock centering force does not
work well in practice because it prohibits flock splitting, such as that often
observed when a flock passes around an obstacle. Flock centering should be a
localized tendency so that members in the middle of a flock will stay that way and
members on the border of a flock will have a tendency to veer toward their neigh-
bors on one side. Localizing the flocking behavior also reduces the order of com-
plexity of the controlling procedure.

 

Local Control

 

Controlling the behavior of a flock member with strictly local behavior rules is not
only computationally desirable; it also seems to be intuitively the way that flocks
operate in the real world. The objective is to be as local as possible, with no refer-
ence to global conditions of the flock or environment. There are three processes
that might be modeled: 

 

physics, perception,

 

 and 

 

reasoning and reaction

 

. The physics
modeled is similar to that described in particle systems: gravity, collision detection,
and collision response. Perception concerns the information about the environ-
ment to which the flock member has access. Reasoning and reaction are incorpo-
rated into the module that negotiates among the various demands produced as a
result of the perception and includes the aforementioned collision avoidance and
flock centering. An additional force that is useful in controlling the member’s reac-
tion to movements of the flock is velocity matching, whereby a flock member has
an urge to match its own velocity with that of its immediate neighbors. Velocity
matching helps a flock member to avoid collision with other members and keeps a
flock-centered boid flock centered.
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Perception

 

The main distinction between flocking and particle systems is the modeling of
perception and the subsequent use of the resulting information to drive the reac-
tion and reasoning processes. When one localizes the control of the members, a
localized area of perception is modeled. Usually the “sight” of the member is
restricted to just those members around it—or further to just those members gen-
erally in front of it. The position of the member can be made more precise to gen-
erate better-defined arrangements of the flock members. For example, if a flock
member always stays at a 45-degree angle, to the side and behind, to adjacent
members, then a tendency to form a diamond pattern results. If a flock member
always stays behind and to the side of one member with no members on the other
side, then a 

 

V pattern can be formed. Speed can also affect perception; the field of
view can extend forward and be slimmer in width as speed increases. To effect a
localized field of view, a boid should 

Be aware of itself and two or three of its neighbors
Be aware of what is in front of it and have a limited field of view ( fov)
Have a distance-limited field of view ( fov) 
Be influenced by objects within the line of sight
Be influenced by objects based on distance and size (angle subtended in the fov)
Be affected by things using a distance-squared or distance-cubed weighting
function
Have a general migratory urge but no global objective
Not follow a designated leader
Not have knowledge about a global flock center

Interacting with Other Members
A member interacts with other members of the flock to maintain separation with-
out collision while trying to maintain membership in the flock. There is an attrac-
tive force toward other members of the flock while a stronger, but shorter-range,
repulsion from individual members of the flock exists. In analyzing the behavior of
actual flocks, Potts [21] observed a chorus line effect in which a wave motion travels
faster than any rate chained reaction time could produce. This may be due to per-
ception extending beyond a simple closest-neighbor relationship.

Interacting with the Environment
The main interaction between a flock member and the environment is collision
avoidance, for which various approaches can be used. Force fields are the simplest
to implement and give good results in simple cases. However, in more demanding
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situations, force fields can give undesirable results. The trade-offs of various strate-
gies are discussed later, under “Collision Avoidance.”

Global Control
There is usually a global goal that is used to control and direct the flock. This can
be used either to influence all members of the flock or to influence just the leader.
The animation of the current leader of the flock is often scripted to follow a spe-
cific path or is given a specific global objective. Members can have migratory urge,
follow the leader, stay with the pack, or exhibit some combination of these urges.

Flock Leader
To simulate the behavior of actual flocks, the animator can have the leader change
periodically. Presumably, actual flocks change leaders because the wind resistance
is strongest for the leader and rotating the job allows the birds to conserve energy.
However, unless changing the flock leader adds something substantive to the
resulting animation, it is easier to have one designated leader whose motion is
scripted along a path to control the flock’s general behavior.

Negotiating the Motion
In producing the motion, three low-level controllers are commonly used. They
are, in order of priority, collision avoidance, velocity matching, and flock center-
ing. Each of these controllers produces a directive that indicates desired speed and
direction (a velocity vector). The task is to negotiate a resultant velocity vector
given the various desires. 

As previously mentioned, control can be enforced with repulsion from other
members and environmental obstacles and attraction to flock center. However,
this has major problems as forces can cancel each other out. Reynolds refers to the
programmatic entity that resolves competing urges as the navigation module. As
Reynolds points out, averaging the requests is usually a bad idea in that requests
can cancel each other out and result in nonintuitive motion. He suggests a priori-
tized acceleration allocation strategy in which there is a finite amount of control
available, for example, one unit. A control value is generated by the low-level con-
trollers in addition to the velocity vector. A fraction of control is allocated accord-
ing to priority order of controllers. If the amount of control runs out, then one or
more of the controllers receive less than what they requested. If less than the
amount of total possible control is not allocated, then the values are normalized
(to sum to the value of one, for example). A weighted average is then used to com-
pute the final velocity vector. Governors may be used to dampen the resulting
motion, as by clamping the maximum velocity or clamping the maximum accel-
eration.
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In addition to prioritized behaviors, the physical constraints of the flock mem-
ber being modeled need to be incorporated into the control strategy. Reynolds
suggests a three-stage process consisting of navigation, piloting, and flying. See
Figure 4.49. Navigation, as discussed above, negotiates among competing desires
and resolves them into a final desire. The pilot module incorporates this desire
into something the member model is capable of doing at the time, and the flight
model is responsible for the final articulation of the commands from the pilot
module.

The navigation module arbitrates among the urges and produces a resultant
directive to the member. This information is passed to the pilot model, which
instructs the flock member to react in a certain way in order to satisfy the directive.
The pilot model is responsible for incorporating the directive into the constraints
imposed on the flock member. For example, the weight, current speed and acceler-
ation, and internal state of the member can be taken into account at this stage.
Common constraints include clamping acceleration, clamping velocity, and
clamping velocity from below. The result from the pilot module is the specific
action that is to be put into effect by the flock member model. The flight module
is responsible for producing the parameters that will animate that action. 

Figure 4.49 Negotiating the motion
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n-Squared Complexity
One of the problems with flocking systems, in which knowledge about neighbors
is required and the number of members of a flock can get somewhat large, is that
the processing complexity is n-squared. Even when interactions are limited to
some k nearest neighbors, it is still necessary to find those k nearest neighbors out
of the total population of n. One way to find the nearest neighbors efficiently is to
perform a 3D bucket sort and then check adjacent buckets for neighbors. Such a
bucket sort can be updated incrementally by adjusting bucket positions of any
members that deviate too much from the bucket center as the buckets are trans-
formed along with the flock. There is, of course, a time-space trade-off involved in
bucket size; the smaller the buckets, the more buckets needed but the fewer mem-
bers per bucket on average. This does not completely eliminate the n-squared
problem because of worst-case distributions, but it is effective in practice.

Instead of searching for adjacent members, members can use message passing,
with each member informing other members of its whereabouts. But either each
member must send a message to every other member or the closest neighbors must
still be searched for.

Collision Avoidance
Several strategies can be used to avoid collisions. The ones mentioned here are
from Reynolds’s paper [25] and from his course notes [26]. These strategies, in one
way or another, model the flock member’s field of view and visual processing. A
trade-off must be made between the complexity of computation involved and how
effective the technique is in producing realistic and intuitive motion.

The simple strategy is to position a limited-extent, repelling force field around
every object. As long as a flock member maintains a safe distance from an object,
there is no force imparted by the object to the flock member. Whether this is so
can easily be determined by calculating the distance3 between the center point of
the flock member and the center of the object. Once this distance gets below a cer-
tain threshold, the distance-based force starts to gently push the flock member
away from the object. As the flock member gets closer, the force grows accordingly.
See Figure 4.50. The advantages of this are that in many cases it effectively directs
a flock member away from collisions, it is easy to implement, and its effect
smoothly decreases the farther away the flock member is from the object. It has its
drawbacks, too.

In some cases, the force field approach fails to produce the motion desired (or at
least expected). It prevents a flock member from traveling close and parallel to the

3. As in many cases in which the calculation of distance is required, one can use distance squared, thus avoiding the
square root required in the calculation of distance.
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surface of an object. The repelling force is as strong for a flock member moving
parallel to a surface as it is for a flock member moving directly toward the surface.
A typical behavior for a flock member attempting to fly parallel to a surface is to
veer away and then toward the surface. The collision avoidance force is initially
strong enough to repel the member so that it drifts away from the surface. When
the force weakens, the member heads back toward the surface. This cycle of veer-
ing away and then toward the surface keeps repeating. Another problem with sim-
ple collision avoidance forces occurs when they result in a force vector directly
toward the flock member. In this case, there is no direction indicated in which the
member should veer; it has to stop and back up—an unnatural behavior. Aggre-
gate forces can also prevent a flock member from finding and moving through an
opening that may be more than big enough for passage but for which the forces
generated by surrounding objects is enough to repel the member. See Figure 4.51.

The problem with a simple repelling force field approach is that there is no rea-
soned strategy for avoiding the potential collision. Various path planning heuris-
tics that can be viewed as attempts to model simple cognitive processes in the flock
member are useful. For example, a bounding sphere can be used to divert the flock
member’s path around objects by steering away from the center toward the rim of
the sphere (Figure 4.52). 

Once the flock member is inside the sphere of influence of the object, its direc-
tion vector can be tested to see if indicates a potential intersection with the bound-
ing sphere of the object. This calculation is the same as that used in ray tracing to
see if a ray intersects a sphere (Figure 4.53).

When a potential collision has been detected, the steer-to-avoid procedure can
be invoked. It is useful to calculate the point, B, on the boundary of the bounding
sphere that is in the plane defined by the direction vector, V; the location of the
flock member, P; and the center of the sphere, C (Figure 4.54).

Figure 4.50 Force field collision avoidance 
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Figure 4.51 Problems with force field collision avoidance 

Figure 4.52 Steering to avoid a bounding sphere 
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Steering to the boundary point on the bounding sphere is a useful strategy if a
close approach to the object’s edge is not required. For a more accurate and more
computationally expensive strategy, the flock member can steer to the silhouette
edges of the object, those edges that share a back face and a front face with respect
to the flock member’s position and, collectively, define a nonplanar manifold.
Faces can be tagged as front or back by taking the dot product of the normal with
a vector from the flock member to the face. The closest distance between the semi-
infinite direction of travel vector to a silhouette edge can be calculated. If there is
space for the flock member’s body and a comfort zone in which to fly around this
point, then this point can be steered toward Figure 4.55.

Figure 4.53 Testing for potential collision with a bounding sphere 

Figure 4.54 Calculation of point B on the boundary of a sphere
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An alternative strategy is to sample the environment by emitting virtual feelers
to detect potential collision surfaces. The feelers can be emitted in a progressively
divergent pattern, such as a spiral, until a clear path is found. 

Another strategy is to project the environment to an image plane. By generating
a binary image, the user can search for an uncovered group of pixels. Depth infor-
mation can be included to allow searching for discontinuities and to estimate the
size of the opening in three-space. The image can be smoothed until a gradient
image is attained, and the gradient can be followed to the closest edge.

Splitting and Rejoining
When a flock is navigating among obstacles in the environment, one of their more
interesting behaviors is the splitting and rejoining that result as members veer in
different directions and break into groups as they attempt to avoid collisions. If
the groups stay relatively close, then flock membership urges can bring the groups
back together to re-form the original, single flock. Unfortunately, this behavior is
difficult to produce because a balance must be created between collision avoidance
and the flock membership urge, with collision avoidance taking precedence in crit-
ical situations. Without this precise balance, either a flock faction will split and
never return to the flock or flock members will not split off as a separate group but
will only individually avoid the obstacle and disrupt the flock formation.

Modeling Flight
Since flocking is often used to model the behavior of flying objects, it is useful to
review the principles of flight. A local coordinate system of roll, pitch, and yaw is
commonly used to discuss the orientation of the flying object. The roll of an
object is the amount that it rotates to one side from an initial orientation. The

Figure 4.55 Determining steer-to point from silhouette edges
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pitch is the amount that its nose rotates up or down, and the yaw is the amount it
rotates about its up vector. See Figure 4.56.

Specific to modeling flight, but also of more general use, is a description of the
forces involved in aerodynamics. In geometric flight, flight is controlled by thrust,
drag, gravity, and lift (Figure 4.57). Thrust is the force used to propel the object
forward and is produced by an airplane’s engine or the flapping of a bird’s wings.
Drag is the force induced by an object traveling through a medium such as air
(i.e., wind resistance) and works in the direction directly against that in which the
object is traveling. Gravity is the force that attracts all objects to the earth and is
modeled by a constant downward acceleration. Lift is the upward force created by
air traveling around an airfoil such as the wings of an airplane or bird. The airfoil’s
shape is such that air traveling over it has to travel a longer distance than air travel-
ing under it. As a result, there is less pressure above the airfoil, which produces
most of the lift. Additional lift is generated at high angles of attack by the pressure
of wind against the lower surface of the wing (Figure 4.58). For straight and level
flight, lift cancels gravity and thrust exceeds drag.

In flight, a turn is induced by a roll, in which the up vector of the object rotates
to one side. Because the up vector is rotated to one side, the lift vector is not
directly opposite to gravity. Such a lift vector can be decomposed into a vertical

Figure 4.56 Roll, pitch, and yaw of local 
coordinate system 

Figure 4.57 Forces of flight 

Figure 4.58 Lift produced by an airfoil 
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component, the component that is directly opposite to gravity, and the horizontal
component, the component to the side of the object. A flying object turns by
being lifted sideways by the vertical component of the lift; this is why flying
objects tilt into a turn. For the object to be directed into the turn, there must be
some yaw. If a plane is flying level so that lift cancels gravity, tilting the lift vector
to one side will result in a decrease in the vertical component of lift. Thus, to
maintain level flight during a turn, one must maintain the vertical component of
lift by increasing the speed. See Figure 4.59.

Increasing the pitch increases the angle the wing makes with the direction of
travel. This results in increased lift and drag. However, if thrust is not increased
when pitch is increased, the increased drag will result in a decrease in velocity,
which, in turn, results in decreased lift. So, to fly up, thrust and pitch need to be
increased.

These same principles are applicable to a soaring bird. The major difference
between the flight of a bird and that of an airplane is in the generation of thrust. In
a plane, thrust is produced by the propeller. In a bird, thrust is produced by the
flapping of the wings.

Some of the important points to notice in modeling flight are as follows:

Turning is effected by horizontal lift 
Increasing pitch increases drag 
Increasing speed increases lift

4.5.3 Autonomous Behavior
Autonomous behavior, as used here, refers to the motion of an object that results
from modeling its cognitive processes. Usually such behavior is applied to rela-
tively few objects in the environment. As a result, emergent behavior is not typi-
cally associated with autonomous behavior, as it is with particle systems and

Figure 4.59 Lifting forces
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flocking behavior, simply because the numbers are not large enough to support the
sensation of an aggregate body. To the extent that cognitive processes are modeled
in flocking, autonomous behavior shares many of the same issues, most of which
result from the necessity to balance competing urges.

Autonomous behavior models an object that knows about the environment in
which it exists, reasons about the state it is in, plans a reaction to its circumstances,
and carries out actions that affect its environment. The environment, as it is sensed
and perceived by the object, constitutes the external state. In addition, there is an
internal state associated with the object made up of time-varying urges, desires,
and emotions, as well as (usually static) rules of behavior. 

It should not be hard to appreciate that modeling behavior can become arbi-
trarily complex. Autonomous behavior can be described at various levels of com-
plexity, depending on how many and what type of cognitive processes are
modeled. Is the objective simply to produce some interesting behavior, or is it to
simulate how the actual object would operate in a given environment? How much
and what kinds of control are to be exercised by the user over the autonomous
agent? Possible aspects to include in the simulation are sensors, especially vision
and touch; perception; memory; causal knowledge; commonsense reasoning; emo-
tions; and predispositions. Many of these issues are more the domain of artificial
intelligence than of computer graphics. However, besides its obvious role in ren-
dering results, computer graphics is also a relevant domain for which to discuss
this work because the objective of the cognitive simulation is motion control. In
addition, spatial reasoning is usually a major component of cognitive modeling
and, therefore, draws heavily on algorithms associated with computer graphics.

Autonomous behavior is usually associated with animal-like articulated objects.
However, it can be used with any type of object, especially if that object is typically
controlled by a reasoning agent. Obvious examples are cars on a highway, planes in
the air, or tanks on a battlefield. Autonomous behavior can also be imparted to
inanimate objects whose behavior can be humanized, such as kites, falling leaves,
or clouds. The current discussion focuses on the fundamentals of modeling behav-
ior. Issues specific to managing the behavior of articulated figures are taken up
later.

Knowing the Environment
There are various ways in which an object can know about its environment. At the
simplest level, the object simply has access to the environment database. It has per-
fect and complete knowledge about its own place and about other objects in the
environment. More complex modeling of acquiring knowledge of the environment
can involve sensors, including vision, and memory. Touch, modeled by detecting
collisions, can be used in navigating through the environment. Vision can be mod-
eled by rendering a scene from the point of view of the object. One could imagine
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situations in which it might be important to monitor sounds and smells. Memory
consists of recording the sensed information such as current positions, motions,
and display attributes (e.g., color) of other objects in the environment.

Internal State
Internal state is modeled partially by intentions. Intentions take on varied impor-
tance depending on the urges they are meant to satisfy. The instinct to survive is
perhaps the strongest urge and, as such, takes precedence over, say, the desire to
scratch an itch. Internal state also includes such things as inhibitions, identifica-
tion of areas of interest, and emotional state. These are the internal state variables
that are inputs to the rest of the behavioral model.While the internal state vari-
ables may actually represent a continuum of importance, Blumberg and Galyean
[4] group them into three precedence classes: imperatives, things that must be
done; desires, things that should be done, if they can be accommodated by the rea-
soning system; and suggestions, ways to do something should the reasoning sys-
tem decide to do that something.

Levels of Behavior
There are various levels at which an object’s motion can be modeled. In addition
to Blumberg and Galyean [4], Zeltzer [34] and Korein and Badler [18] discuss the
importance of decomposing high-level goals into object-specific manipulation of
the available degrees of freedom afforded by the geometry of the object. The levels
of behavior are differentiated according to the level of abstraction at which the
motion is conceptualized. They provide a convenient hierarchy in which the
implementation of behaviors can be discussed. The number of levels used is some-
what arbitrary. Those presented here are used to emphasize the motion control
aspects of autonomous behavior as opposed to the actual articulation of that
motion. Internal state and knowledge of the external world are inputs to the reason-
ing unit, which produces a strategy intended to satisfy some objective. A strategy is
meant to define the what that needs to be done. The planner turns the strategy
into a sequence of actions (the how), which is passed to the movement coordinator.
The movement coordinator selects the appropriate motor activities at the appropri-
ate time. The motor activities control specific degrees of freedom (DOF) of the
object. See Figure 4.60.

Keeping Behavior under Control 
One of the fundamental concerns with autonomous behavior, as with all high-
level motion control, is how to model the behaviors so that they are generated
automatically but are still under the control of the animator. One of the motiva-
tions for modeling behaviors is to relieve the animator from specifying the time-
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varying values for each of the degrees of freedom of the underlying geometry asso-
ciated with the object. Pure autonomy should probably not be the ultimate goal in
designing autonomous agents; often behavior needs to be controlled in order to be
relevant to the objectives of the animator. Also, the control needs to occur at vari-
ous levels of specificity. 

The various levels of behavior provide hooks with which control over behavior
can be exercised. The animator can insert external control over the behavior by
generating imperatives at any of the various levels: strategies, action sequences,
and/or activity invocation. In addition, more general control can be exercised by
setting internal state variables.

Arbitration between Competing Intentions
As with arbitration among competing forces in flocking, behaviors cannot, in gen-
eral, be averaged and be expected to produce reasonable results. The highest prece-
dent behavior must be accommodated at all costs, and other behaviors may be
accommodated if they do not contradict the effect of the dominant behavior. One
approach is to group behaviors into sets in which one behavior is selected. Selected
behaviors may then be merged to form the final behavior.

Modeling behavior, especially human behavior, can get arbitrarily complex.
Covering all of the complexities is the domain of artificial intelligence. However,
even a simple rule-based system can generate behavior that, if not always interest-
ing, is at least autonomous.

Figure 4.60 Levels of behavior
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4.6 Implicit Surfaces

Implicitly defined surfaces are surfaces defined by all those points that satisfy some
equation, f (P ) = 0, called the implicit function. A common approach to using
implicit surfaces to define objects useful for animation is to construct the implicit
function as a summation of implicitly defined primitive functions. Interesting ani-
mations can be produced by animating the relative position and orientation of the
primitive functions or by animating parameters used to define the functions them-
selves. Implicit surfaces lend themselves to shapes that are smooth and organic
looking; animated implicit surfaces are useful for modeling liquids, clouds, and
fanciful animal shapes.

An extensive presentation of implicit surface formulations is not appropriate
material for this book but can be found in several sources, in particular in Bloom-
enthal’s edited volume [3]. A brief overview of commonly used implicit surfaces
and their use in animations is presented here.

4.6.1 Basic Implicit Surface Formulation
In general, an implicit surface is defined by the collection of points that satisfy
some implicit function, f (P ) = 0. The surface is referred to as implicit because it is
only implicitly defined, not explicitly represented. As a result, when an explicit
definition of the surface is needed, as in a graphics display procedure, the surface
has to be searched for by inspecting points in space in some organized way. 

Implicit surfaces can be directly ray traced. Rays are constructed according to
the camera parameters and display resolution, as is typical in ray tracers. Points
along the ray are then sampled in such a way as to locate a surface point within
some error tolerance.

An explicit polygonal representation of an implicitly defined surface can be
constructed by sampling the implicit function at the vertices of a three-
dimensional mesh that is constructed so that its extent contains the nonzero extent
of the implicit function. The implicit function values at the mesh vertices are then
interpolated along mesh edges to estimate the location of points that lie on the
implicit surface. Polygonal fragments are then constructed in each cell of the mesh
by using any surface points located on the edges of that mesh cell. 

The best-known implicit primitive is often referred to as the metaball and is
defined by a central point (C ), a radius of influence (R ), a density function ( f ),
and a threshold value (T ). All points in space that are within a distance R from C
are said to have a density of f (distance(P, C ) ⁄ R ) with respect to the metaball
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(where distance(P, C ) computes the distance between P and C and where dis-
tance(P, C ) ⁄ R is the normalized distance). The set of points for which f (distance
(P, C ) ⁄ R ) – T = 0 (implicitly) defines the surface, S. In Figure 4.61, r is the dis-
tance at which the surface is defined for the isolated metaball shown because that
is the distance at which the function, f, evaluates to the threshold value.

Two generalizations of this formulation are useful. The first uses the weighted
sum of a number of implicit surface primitives so that the surface-defining implicit
function becomes a smooth blend of the individual surfaces (Equation 4.110).

 (Eq. 4.110)

The weights are arbitrarily specified by the user to construct some desired sur-
face. If all of the weights, wi, are one, then the implicit primitives are summed.
Because the standard density function has zero slope at zero and one, the primi-
tives will blend together smoothly. Using negative weights will create smooth con-
cavities. Severer concavities can be created by making the weight more negative.
Integer weights are usually sufficient for most applications, but noninteger weights
can also be used. See Figure 4.62.

The second generalization provides more primitives with which the user can
build interesting objects. Most primitives are distance based, and most of those are
offset surfaces. Typical primitives use the same formulation as the metaball but
allow a wider range of central elements. Besides a single point, a primitive can be
defined that uses a line segment, a triangle, a convex polyhedron, or even a con-
cave polyhedron. Any central element for which there is an associated well-defined
distance function can be used. The drawback to using more complex central ele-
ments, such as a concave polyhedron, is that the distance function is more compu-
tationally expensive. Other primitives, which are not strictly offset surfaces but
which are still distance based, are the cone-sphere and the ellipse. See Figure 4.63
for examples of offset and other distance-based primitives.

Figure 4.61 The metaball and a sample density function 
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4.6.2 Animation Using Implicitly Defined Objects
In Bloomenthal’s book [3],Wyvill discusses several animation effects that can be
produced by modifying the shape of implicit surfaces. The most obvious way to
achieve these modifications is to control the movement of the underlying central

Figure 4.62 Compound implicit surface

Figure 4.63 Distance-based implicit surfaces 
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elements. Topological changes are handled nicely by the implicit surface formula-
tion. The points that define a collection of metaballs can be controlled by a simple
particle system, and the resulting implicit surface can be used to model water,
taffy, or clouds, depending on the display attributes and the number of particles.
Central elements consisting of lines can be articulated as a jointed hierarchy. 

Motion can also be generated by modifying the other parameters of the implicit
surface. The weights of the different implicit primitives can be manipulated to
effect bulging and otherwise control the size of an implicit object. A simple blend
between objects can be performed by decreasing the weight of one implicit object
from one to zero while increasing another implicit object’s weight from zero to
one. The density function of the implicit objects can also be controlled to produce
similar shape deformation effects. Modifying the central element of the implicit is
also useful. The elongation of the defining axes of the ellipsoidal implicit can pro-
duce squashing & stretching effects. The orientation and length of the axes can be
tied to the velocity and acceleration attributes of the implicit object.

4.6.3 Collision Detection
Implicitly defined objects, because they are implemented using an implicit func-
tion, lend themselves to collision detection. Sample points on the surface of one
object can be tested for penetration with an implicit object by merely evaluating
the implicit function at those points in space (Figure 4.64). Of course, the effec-
tiveness of this method is dependent on the density and distribution of the sample
points on the first object. If a polyhedral object can be satisfactorily approximated
by one or more implicit surface primitives, then these can be used to detect colli-
sions of other polyhedral objects.

Because implicit functions can be used effectively in testing for collisions, they
can be used to test for collisions between polyhedral objects if they can fit reason-
ably well on the surface of the polyhedra (Figure 4.65). Of course, the effectiveness

Figure 4.64 Point samples used to test for collisions 
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of the technique is dependent on the accuracy with which the implicit surfaces
approximate the polyhedral surface.

4.6.4 Deforming the Implicit Surface as a Result of Collision
Marie-Paul Cani [3] [9] [10] has developed a technique to compute the deforma-
tion of colliding implicit surfaces. This technique first detects the collision of two
implicit surfaces by testing sample points on the surface of one object against the
implicit function of the other, as previously described. The overlap of the areas of
influence of the two implicit objects is called the penetration region. An additional
region just outside the penetration region is called the propagation region (Figure
4.66).

The density function of each object is modified by the overlapping density
function of the other object so as to deform the implicitly defined surface of both
objects so that they coincide in the region of overlap, thus creating a contact sur-
face (Figure 4.67). As shown in the example in Figure 4.67, a deformation term is
added to Fi as a function of Objectj ’s overlap with Objecti , Gij , to form the con-
tact surface. Similarly, a deformation term is added to Fj as a function of Objecti ’s
overlap with Objectj , Gji . The deformation functions are defined so that the iso-
surface of the modified density functions, Fi (p) + Gij (p) = 0 and Fj (p) + Gji (p) =
0, coincide with the surface defined by Fi (p) = Fj (p). Thus, the implicit functions,
after they have been modified for deformation and evaluated for points p on the
contact surface, are merely F1(p) – F2(p) = 0 and F2(p) – F1(p) = 0, respectively.
Thus, Gij evaluates to –Fj at the surface of contact. 

In the penetration region, the G’s are negative in order to compress the respec-
tive implicit surfaces as a result of the collision. They are defined so that their

Figure 4.65 Using implicit surfaces for detecting collisions between polyhedral objects 
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effect smoothly fades away for points at the boundary of the penetration region.
Consequently, the G’s are merely the negative of the F’s for points in the penetra-
tion region (Equation 4.111).

(Eq. 4.111)

Figure 4.66 Penetrating implicit surfaces

Figure 4.67 Implicit surfaces after deformation due to collision
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To simulate volume preservation, an additional term is added to the G’s so that
they evaluate to a positive value in the propagation region immediately adjacent
to, but just outside, the penetration region. The effect of the positive evaluation
will be to bulge out the implicit surface around the newly formed surface of con-
tact (Figure 4.67). 

In the propagation region, G(p) is defined as a function, h, of the distance to the
border of the interpenetration region. To ensure C 1 continuity between the inter-
penetration region and the propagation region, h′(0) must be equal to the direc-
tional derivative of G along the gradient at point p (k in Figure 4.68). See Cani
(née Gascuel) [9] and Gascuel and Cani [10] for more details. 

Restoring forces, which arise as a result of the deformed surfaces, are computed
and added to any other external forces acting on the two objects. The magnitude
of the force is simply the deformation term, G; it is in the direction of the normal
to the deformed surface at point p.

4.6.5 Summary
Although their display may be problematic for some graphic systems, implicit sur-
faces provide unique and interesting opportunities for modeling and animating
unusual shapes. They produce very organic-looking shapes and, because of their
indifference to changes in genus of the implicitly defined surface, lend themselves
to the modeling and animating of fluids and elastic material.

4.7 Chapter Summary

The models used to control animation can become complex and math intensive.
However, producing more complex motion requires the use of more complex
mathematical machinery. Modeling physics and automatically enforcing arbitrary
constraints is a nontrivial task. There has been much work in this area that has not

Figure 4.68 Deformation function in the propagation region
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been included in this chapter. The discussion here is intended for those without
specialized knowledge of math, physics, and numerical methods.
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A

 

mong the most difficult objects to model and animate computationally are
those that are not defined by a static, rigid, topologically simple structure. Many
of these complex forms are found in nature. They present especially difficult chal-
lenges for those intent on controlling their motion. Of the natural phenomena
discussed in this chapter, plants are the only ones with a well-defined surface; the
complexity of modeling them derives from their branching structure and their
growth process. Fire, smoke, and clouds are gaseous phenomena that have no
well-defined surface to model. They are inherently volumetric models, although
surface-based techniques have been applied with limited success. Water, when rel-
atively still, has a well-defined surface; however, it changes its shape as it moves. In
the case of ocean waves, features on the water’s surface move, but the water itself
does not travel. The simple surface topology can become arbitrarily complex when
the water becomes turbulent. Splashing, foaming, and breaking waves are complex
processes best modeled by particle systems and volumetric techniques, but these
techniques are inefficient in nonturbulent situations. In addition, water can travel
from one place to another, form streams, split into separate pools, and collect
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again. In modeling these phenomena for purposes of computer graphics, program-
mers always make simplifying assumptions in order to limit the computational
complexity and model only those features of the physical processes that are impor-
tant visually.

Many of the time-varying models described in this chapter (and the next) repre-
sent work that is state of the art. It is not the objective here to cover all aspects of
recent research. The basic models are covered, with only brief reference to the
more advanced algorithms. 

 

5.1 Plants

 

The modeling and animation of plants represent an interesting and challenging
area for computer animation. Plants seem to exhibit arbitrary complexity while
possessing a constrained branching structure. They grow from a single source
point, developing a branching structure over time while the individual structural
elements elongate. Plants have been modeled using particle systems, fractals, and
L-systems. There has been much work on modeling the static representations of
various plants (e.g., [1] [4] [20] [30] [34] [36] [38]). The intent here is not to
delve into the botanically correct modeling of particular plants but rather to
explain those aspects of modeling plants that make the animation of the growth
process challenging. The representational issues of synthetic plants are discussed in
just enough detail to uncover these aspects. Prusinkiewicz and Lindenmayer [33]
[35] provide more information on all aspects of modeling and animating plants.

The topology

 

1

 

 of a plant is characterized by a recursive branching structure. To
this extent, plants share with fractals the characteristics of self-similarity under
scale. The two-dimensional branching structures typically of interest are shown in
Figure 5.1. The three-dimensional branching structures are analogous.  

An encoding of the branching structure of a given plant is one of the objectives
of plant modeling. Plants are immensely varied, yet most share many common
characteristics. These shared characteristics allow efficient representations to be
formed by abstracting out the features that are common to plants of interest. But
the representation of the static structure of a mature plant is only part of the story.
A plant, being a living thing, is subject to changes due to growth. The modeling
and animation of the growth process are the subject of this section. 

 

1. The term

 

 

 

topology,

 

 as applied to describing the form of plants, refers to the number and arrangement of convex regions
of the plant delineated by concave areas of attachment to other convex regions.
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5.1.1 A Little Bit of Botany

 

Botany is, of course, useful when trying to model and animate realistic-looking
plants. For computer graphics and animation, it is only useful to the extent that it
addresses the visual characteristics of the plant. Thus, the structural components
and surface elements of plants are briefly reviewed here. Simplifications are made
so as to highlight the information most relevant for computer graphics modeling
and animation. 

The structural components of plants are 

 

stems, roots, buds, leaves,

 

 and 

 

flowers

 

.
Roots are typically not of interest when modeling the visual aspects of plants and
have not been incorporated into plant models. Most plants of interest in visualiza-
tion have a definite branching structure. Such plants are either 

 

herbaceous

 

 or

 

woody

 

. The latter are larger plants whose branches are heavier and more structur-
ally independent. The branches of woody plants tend to interfere and compete
with one another. They are also more subject to the effects of wind, gravity, and
sunlight. Herbaceous plants are smaller, lighter plants, such as ferns and mosses,
whose branching patterns tend to be more regular and less subject to environmen-
tal effects.

 

Figure 5.1

 

Branching structures of interest in two dimensions 

Basic branching schemes

Structures resulting from repeated application of a single branching scheme 
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Stems are usually above ground, grow upward, and bear leaves. The leaves are
attached in a regular pattern at nodes along the stem. The portions of the stem
between the nodes are called 

 

internodes

 

. 

 

Branching

 

 is the production of subordi-
nate stems from a main stem (the 

 

axis

 

). Branches can be formed by the main stem
bifurcating into two equally growing stems (

 

dichotomous

 

), or they can be formed
when a stem grows laterally from the main axis while the main axis continues to
grow in its original direction (

 

monopodial

 

). 
Buds are the embryonic state of stems, leaves, and flowers; they are classified as

either 

 

vegetative

 

 or 

 

flower buds

 

. Flower buds develop into flowers, whereas vegeta-
tive buds develop into stems or leaves. A bud at the end of a stem is called a 

 

termi-
nal

 

 bud; a bud that grows along a stem is called a 

 

lateral

 

 bud. Not all buds develop;
non-developing buds are referred to as 

 

dormant

 

. Sometimes in woody plants, dor-
mant buds will suddenly become active, producing young growth in an old-
growth area of a tree.

Leaves grow from buds. They are arranged on a stem in one of three ways: 

 

alter-
nate, opposite,

 

 or 

 

whorled

 

. 

 

Alternate

 

 means that the leaves shoot off one side of a
stem and then off the other side in an alternating pattern. 

 

Opposite

 

 means that a
pair of leaves shoot off the stem at the same point, but on opposite sides, of the
stem. 

 

Whorled

 

 means that three or more leaves radiate from a node.
Growth of a cell in a plant has four main influences: 

 

lineage, cellular descent, tro-
pisms,

 

 and 

 

obstacles

 

. 

 

Lineage

 

 refers to growth controlled by the age of the cell.

 

 Cel-
lular descent 

 

refers to the passing of nutrients and hormones from adjacent cells.
Growth controlled exclusively by lineage would result in older cells always being
larger than younger cells. Cellular descent can be bidirectional, depending on the
growth processes and reactions to environmental influences occurring in the plant.
Thus, cellular descent is responsible for the ends of some plants growing more
than the interior sections. Plant hormones are specialized chemicals produced by
plants. These are the main internal factors that control the plant’s growth and
development. Hormones are produced in specific parts of the plants and are trans-
ported to others. The same hormone may either promote or inhibit growth,
depending on the cells it interacts with.

Tropism responses are an important class of external influences that change the
direction of a plant’s growth. These include 

 

phototropism,

 

 the bending of a stem
toward light, and 

 

geotropism,

 

 the response of a stem or root to gravity. Physical
obstacles also affect the shape and growth of plants. Collision detection and
response can be calculated for temporary changes in the plant’s shape. Permanent
changes in the growth patterns can occur when such forces are present for
extended periods.
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5.1.2 L-Systems

 

D0L-Systems

 

L-systems

 

 are parallel rewriting systems. They were conceived as mathematical
models of plant development by the biologist Aristid Lindenmayer (the 

 

L

 

 in 

 

L-
systems

 

). The simplest class of L-system is deterministic and context-free (as in Fig-
ure 5.2); it is called a 

 

D0L-system.

 

2

 

 A D0L-system is a set of 

 

production rules

 

 of the
form 

 

α

 

i

 

 

 

→ β

 

i

 

, in which 

 

α

 

i

 

, the 

 

predecessor,

 

 is a single symbol and 

 

β

 

i

 

, the 

 

successor

 

,
is a sequence of symbols. In deterministic L-systems, 

 

α

 

i

 

 occurs only once on the
left-hand side of a production rule. A sequence of one or more symbols is given as
the initial string, or 

 

axiom

 

. A production rule can be applied to the string if its left-
hand side occurs in the string. The effect of applying a production rule to a string
means that the occurrence of 

 

α

 

i

 

 in the string is rewritten as 

 

β

 

i

 

. Production rules
are applied in parallel to the initial string. This replacement happens in parallel for
all occurrences of any left-hand side of a production in the string. Symbols of the
string that are not on the left-hand side of any production rule are assumed to be
operated on by the identity production rule, 

 

α

 

i

 

 

 

→ α

 

i

 

. The parallel application of
the production rules produces a new string. The production rules are then applied
again to the new string. This happens iteratively until no occurrences of a left-
hand side of a production rule occur in the string. Sample production rules and
the string they generate are shown in Figure 5.2.

 

Geometric Interpretation of L-Systems

 

The strings produced by L-systems are just that—strings. To produce images from
such strings, one must interpret them geometrically. Two common ways of doing
this are 

 

geometric replacement

 

 and 

 

turtle graphics

 

. In geometric replacement, each
symbol of a string is replaced by a geometric element. For example, the string
XXTTXX can be interpreted by replacing each occurrence of X with a straight line
segment and each occurrence of T with a 

 

V

 

 shape so that the top of the 

 

V

 

 aligns
with the endpoints of the geometric elements on either side of it. See Figure 5.3.

 

2. The 

 

D

 

 in 

 

D0L

 

 clearly stands for 

 

deterministic; 

 

the 

 

0

 

 indicates, as is more fully explained later, that the productions are
context-free.

 

Figure 5.2

 

Simple D0L-system and the sequence of strings it generates 

S -> ABA
A -> XX
B -> TT

S
ABA
XXTTXX

axiom

Production rules String sequence
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In turtle graphics, a geometry is produced from the string by interpreting the
symbols of the string as drawing commands given to a simple cursor called a tur-
tle. The basic idea of turtle graphics interpretation, taken from Prusinkiewicz and
Lindenmayer [35], uses the symbols from Table 5.1 to control the turtle. The state
of the turtle at any given time is expressed as by a triple (

 

x, y,

 

 

 

α

 

), where 

 

x

 

 and 

 

y

 

give its coordinates in a two-dimensional space and 

 

α

 

 gives the direction it is
pointing relative to some given reference direction (here, a positive angle is mea-
sured counterclockwise from the reference direction). The values 

 

d

 

 and 

 

δ

 

 are user-
specified system parameters and are the linear and rotational step sizes, respec-
tively. 

Given the reference direction, the initial state of the turtle (

 

x

 

0

 

, 

 

y

 

0

 

, 

 

α

 

0

 

), and the
parameters 

 

d

 

 and 

 

δ

 

, the user can generate the turtle interpretation of a string con-
taining the symbols of Table 5.1(Figure 5.4). 

 

Figure 5.3

 

Geometric interpretation of a simple string

 

Table 5.1

 

Turtle Graphics Commands

Symbol Turtle Graphic Interpretation

F Move forward a distance 

 

d

 

 while drawing a line. Its state will 
change from (

 

x, y,

 

 

 

α) to (x + d • cosα, y + d • sinα, α).
f Move forward a distance d without drawing a line. Its state 

will change as above.
+ Turn left by an angle δ. Its state will change from (x, y, α) to 

(x, y, α + δ).
– Turn right by an angle δ. Its state will change from (x, y, α) 

to (x, y, α – δ).

XXTTXX

String

Geometric interpretation

Geometric replacement rules

X T: :
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Bracketed L-Systems
The D0L-systems described above are inherently linear, and the graphical inter-
pretations reflect this. To represent the branching structure of plants, one intro-
duces a mechanism to represent multiple segments attached at the end of a single
segment. In bracketed L-systems, brackets are used to mark the beginning and the
end of additional offshoots from the main lineage. The turtle graphics interpreta-
tion of the brackets is given in Table 5.2. A stack of turtle graphic states is used,
and the brackets push and pop states onto and off this stack. The state is defined
by the current position and orientation of the turtle. This allows branching from a
stem to be represented. Further, because a stack is used, it allows an arbitrarily
deep branching structure.

Figure 5.5 shows some production rules. The production rules are context-free
and nondeterministic. They are context-free because the left-hand side of the
production rule does not contain any context for the predecessor symbol. They are

Figure 5.4 Turtle graphic interpretation of a string generated by an L-system

S -> ABA
A -> FF
B -> TT
T-> -F++F-

S
ABA
FFTTFF

axiom

FF-F++F--F++F-FF

Geometric interpretation

Production rules Sequence of strings produced from the axiom

Initial conditions

d =

δ 45
o

=

reference direction: 

initial state: 10 10 0, ,( )

x

y
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nondeterministic because there are multiple rules with identical left-hand sides;
one is chosen at random from the set whenever the left-hand side is to be replaced.
In this set of rules, S is the start symbol, and A and B represent a location of possi-
ble branching; A branches to the left and B to the right. The production stops
when all symbols have changed into ones that have a turtle graphic interpretation.

Figure 5.6 shows some possible terminal strings and the corresponding graphics
produced by the turtle interpretation. An added feature of this turtle interpreta-
tion of the bracketed L-system is the reduction of the size of the drawing step by
one-half for each branching level, where branching level is defined by the current
number of states on the stack. The bracketed L-system can be expanded to include
attribute symbols that explicitly control line length, line width, color, and so on
[35] and that are considered part of the state. 

Not only does this representation admit database amplification [41], but the
expansion of the start symbol into a terminal string parallels the topological
growth process of the plants. In some sense, the sequence of strings that progress
to the final string of all turtle graphic symbols represents the growth of the plant at
discrete events in its evolution (see Figure 5.7). This addresses one of the anima-
tion issues with respect to plants—that of animating the development of the
branching structure. However, the gradual appearance and subsequent elongation
of elements must also be addressed if a growing structure is to be animated in a
reasonable manner.

Stochastic L-Systems
The previous section introduced nondeterminism into the concept of L-systems,
but the method used to select the possible applicable productions for a given sym-
bol was not addressed. Stochastic L-systems assign a user-specified probability to

Table 5.2 Turtle Graphic Interpretation of Brackets

Symbol Turtle Graphic Interpretation

[ Push the current state of the turtle onto the stack
] Pop the top of the state stack and make it the current 

state

Figure 5.5 Nondeterministic, context-free production rules

S FAF⇒
A +FBF[ ]⇒
A F⇒
B F– BF[ ]⇒
B F⇒
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each production so that the probabilities assigned to productions with the same
left-hand side sum to one. These probabilities indicate how likely it is that the pro-
duction will be applied to the symbol on a symbol-by-symbol basis.

The productions of Figure 5.5 might be assigned the probabilities shown in Fig-
ure 5.8. These probabilities will control how likely a production will be to form a
branch at each possible branching point. In this example, left branches are very
likely to form, while right branches are somewhat unlikely. However, any arbi-
trarily complex branching structure has a nonzero probability of occurring. Using
such stochastic (nondeterministic) L-systems, one can set up an L-system that
produces a wide variety of branching structures that still exhibit some family-like
similarity [35].

Figure 5.6 Some possible terminal 
strings 

Figure 5.7 Sequence of strings produced by 
bracketed L-system 

Figure 5.8 Stochastic L-system

FFF

F[+FFF]F

F[+F[–FFF]F]F

F[+F[–FFF]F]F

F[+FBF]F

FAF

S1.0 FAF⇒

A0.8 +FBF[ ]⇒

A0.2 F⇒

B0.4 F– BF[ ]⇒

B0.6 F⇒
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Context-Free versus Context-Sensitive
So far, only context-free L-systems have been presented. Context-sensitive L-systems
add the ability to specify a context, in which the left-hand side (the predecessor
symbol) must appear in order for the production rule to be applicable. For exam-
ple, in the deterministic productions of Figure 5.9,3 the symbol A has different
productions depending on the context in which it appears. The context-sensitive
productions shown in the figure have a single right-side context symbol in two of
the productions. This concept can be extended to n left-side context symbols and
m right-side context symbols in the productions, called (n, m)L-systems, and, of
course, they are compatible with nondeterministic L-systems. In (n, m)L-systems,
productions with fewer than n context symbols on the left and m on the right are
allowable. Productions with shorter contexts are usually given precedence over
productions with longer contexts when they are both applicable to the same sym-
bol. If the context is one-sided, then L-systems are referred to as nL-systems, where
n is the number of context symbols and the side of the context is specified inde-
pendently.

5.1.3 Animating Plant Growth
There are three types of animation in plants. One type is the flexible movement of
an otherwise static structure, for example, a plant being subjected to a high wind.
Such motion is an example of a flexible body reacting to external forces and is not
dealt with in this section. The other types of animation are particular to plants and
involve the modeling of the growth process. 

The two aspects of the growth process are (1) changes in topology that occur
during growth and (2) the elongation of existing structures. The topological
changes are captured by the L-systems already described. They occur as discrete

Figure 5.9 Context-sensitive L-system production rules 

3. In the notation used here, as it is in the book by Prusinkiewicz and Lindenmayer [35], the predecessor is the symbol
on the “greater than” side of the inequality symbols. This is used so that the antecedent can be visually identified when
using either left or right contexts.

S FAT⇒
A T> +FBF[ ]⇒
A F> F⇒
B F– AF[ ]⇒
T F⇒

S
FAT
F[+FBF]F
F[+F[–FAF]F]F

Production rules String sequence
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events in time and are modeled by the application of a production that encapsu-
lates a branching structure, as in A ⇒ F [+F ]B.

Elongation can be modeled by productions of the form F ⇒ FF. The problem
with this approach is that growth is chunked into units equal to the length of the
drawing primitive represented by F. If F represents the smallest unit of growth,
then an internode segment can be made to grow arbitrarily long. But the produc-
tion rule F ⇒ FF lacks termination criteria for the growth process. Additional
drawing symbols can be introduced to represent successive steps in the elongation
process, resulting in a series of productions F0 ⇒ F1, F1 ⇒ F2, F2 ⇒ F3, F3 ⇒ F4,
and so on. Each symbol would represent a drawing operation of a different length.
However, if the elongation process is to be modeled in, say, one hundred time
steps, then approximately one hundred symbols and productions are required. To
avoid this proliferation of symbols and productions, the user can represent the
length of the drawing operation parametrically with the drawing symbol in para-
metric L-systems.

Parametric L-Systems
In parametric L-systems, symbols can have one or more parameters associated with
them. These parameters can be set and modified by productions of the L-system.
In addition, optional conditional terms can be associated with productions. The
conditional expressions are in terms of parametric values. The production is appli-
cable only if its associated condition is met. In the simple example of Figure 5.10,
the symbol A has a parameter t associated with it. The productions create the sym-
bol A with a parameter value of 0.0 and then increase the parametric value in
increments of 0.01 until it reaches 1.0. At this point the symbol turns into an F.

Context-sensitive productions can be combined with parametric systems to
model the passing of information along a system of symbols. Consider the produc-
tion of Figure 5.11. In this production, there is a single context symbol on both
sides of the left-hand symbol that is to be changed. These productions allow for
the relatively easy representation of such processes as passing nutrients along the
stem of a plant.

Timed L-Systems
Timed L-systems add two more concepts to L-systems: a global time variable, which
is accessible to all productions and which helps control the evolution of the string;

Figure 5.10 Simple parametric L-system Figure 5.11 Parametric, context-sensitive 
L-system production

S                     =>    A(0)
A(t)                =>    A(t+0.01)
A(t) : t>=1.0   =>  F 

A(t0)<A(t1)>A(t2): t2>t1 & t1>t0 => A(t1+0.01)
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and a local age value, τi , associated with each letter µi. Timed L-system produc-
tions are of the form shown in Equation 5.1. By this production, the letter µ0 has
a terminal age of β0 assigned to it. The terminal age must be uniquely assigned to a
symbol. Also by this production, each symbol µi has an initial age of αi assigned to
it. The terminal age assigned to a symbol µi must be larger than its initial age so
that its lifetime, βi – αi , is positive.

(Eq. 5.1)

A timed production can be applied to a matching symbol when that symbol’s
terminal age is reached. When a new symbol is generated by a production, it is
commonly initialized with an age of zero. As global time progresses from that
point, the local age of the variable increases until its terminal age is reached, at
which point a production is applied to it and it is replaced by new symbols. 

A string can be derived from an axiom by jumping from terminal age to termi-
nal age. At any point in time, the production to be applied first is the one whose
predecessor symbol has the smallest difference between its terminal age and its
local age. Each symbol appearing in a string has a local age less than its terminal
age. The geometric interpretation of each symbol is potentially based on the local
age of that symbol. Thus, the appearance of buds and stems can be modeled
according to their local age.

In the simple example of Figure 5.12, the symbol A can be thought of as a plant
seed; S can be thought of as an internode stem segment; and B can be thought of
as a bud that turns into the stem of a branch. After three units of time the seed
becomes a stem segment, a lateral bud, and another stem segment. After two more
time units, the bud develops into a branching stem segment.

Interacting with the Environment
The environment can influence plant growth in many ways. There are local influ-
ences such as physical obstacles, including other plants and parts of the plant itself.
There are global influences such as amount of sunlight, length of day, gravity, and
wind. But even these global influences are felt locally. The wind can be blocked
from part of the plant, as can the sun. And even gravity can have more of an effect
on an unsupported limb than on a supported part of a vine.The nutrients and
moisture in the soil affect growth. These are transported throughout the plant,
more or less effectively depending on local damage to the plant structure.

Figure 5.12 Simple timed L-system

µ0 β0,( ) µ1 α1,( ) µ2 α2,( ), . . . , µn αn,( ),( )⇒

axiom: (A,0)

(A,3) => (S,0) [+ (B,0)] (S,0)
(B,2) => (S,0)

Team LRN



Water 283

Mech and Prusinkiewicz [27] describe a framework for the modeling and ani-
mation of plants that bidirectionally interacts with the environment. They
describe open L-systems, in which communication terms of the form ?E(x1, x2, . . . ,
xm ) are used to transmit information as well as request information from the envi-
ronment. In turtle graphic interpretation of an L-system string, the string is
scanned left to right. As communication terms are encountered, information is
transmitted between the environment and the plant model. The exact form of the
communication is defined in an auxiliary specification file so that only relevant
information is transmitted. Information about the environment relevant to the
plant model includes distribution of nutrients, direction of sunlight, and length of
day. The state of the plant model can be influenced as a result of this information
and can be used to change the rate of elongation as well as to control the creation
of new offshoots. Information from the plant useful to the environmental model
includes use of nutrients and shade formation, which, in turn, can influence other
plant models in the environment.

5.1.4 Summary
L-systems, in all the variations, are an interesting and powerful modeling tool.
Originally intended only as a static modeling tool, L-systems can be used to model
the time-varying behavior of plantlike growth. Because of the iterative nature of
string development, the topological changes of plant growth can be successfully
captured by L-systems. By adding parameters, time variables, and communication
modules, one can model other aspects of plant growth. Most recently, Deussen et
al. [9] have used open L-systems to model plant ecosystems.

5.2 Water 

Water presents a particular challenge for computer animation because its appear-
ance and motion take various forms [15] [17] [42] [48]. Water can be modeled as
a still, rigid-looking surface to which ripples can be added as display attributes by
perturbing the surface normal as in bump mapping [3]. Alternatively, water can be
modeled as a smoothly rolling height field in which time-varying ripples are incor-
porated into the geometry of the surface [25]. In ocean waves, it is assumed that
there is no transport of water even though the waves travel along the surface in
forms that vary from sinusoidal to cycloidal4 [16] [32]. Breaking, foaming, and
splashing of the waves are added on top of the model in a postprocessing step [16]

4. A cycloid is the curve traced out by a point on the perimeter of a rolling disk.
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[32]. The transport of water from one location to another adds more computa-
tional complexity to the modeling problem [23].

5.2.1 Still Waters and Small-Amplitude Waves
The simplest way to model water is merely to assign the color blue to anything
below a given height. If the y -axis is “up,” then color any pixel blue in which the
world space coordinate of the corresponding visible surface has a y -value less than
some given constant. This creates the illusion of still water at a consistent “sea
level.” It is sufficient for placid lakes and puddles of standing water. Equivalently, a
flat blue plane perpendicular to the y -axis and at the height of the water can be
used to represent the water’s surface. These models, of course, do not produce any
animation of the water.

Normal vector perturbation (essentially the approach employed in bump map-
ping) can be used to simulate the appearance of small amplitude waves on an oth-
erwise still body of water. To perturb the normal, one or more simple sinusoidal
functions are used to modify the direction of the surface’s normal vector. The
functions are parameterized in terms of a single variable, usually relating to dis-
tance from a source point. It is not necessarily the case that the wave starts with zero
amplitude at the source. When standing waves in a large body of water are mod-
eled, each function usually has a constant amplitude. The wave crests can be linear,
in which case all the waves generated by a particular function travel in a uniform
direction, or the wave crests can radiate from a single user-specified or randomly
generated source point. Linear wave crests tend to form self-replicating patterns
when viewed from a distance. For a different effect, radially symmetrical functions
that help to break up these global patterns can be used. Radial functions also sim-
ulate the effect of a thrown pebble or raindrop hitting the water (Figure 5.13). The
time-varying height for a point at which the wave begins at time zero is a function
of the amplitude and wavelength of the wave. (Figure 5.14). Combining the two,
Figure 5.15 shows the height of a point at some distance d from the start of the
wave. This is a two-dimensional function relative to a point at which the function
is zero at time zero. This function can be rotated and translated so that it is posi-
tioned and oriented appropriately in world space. Once the height function for a
given point is defined, the normal to the point at any instance in time can be
determined by computing the tangent vector and forming the vector perpendicu-
lar to it, as shown in Figure 5.16. 

Superimposing multiple sinusoidal functions of different amplitude and with
various source points (in the radial case) or directions (in the linear case) can gen-
erate interesting patterns of overlapping ripples. Typically, the higher the fre-
quency of the wave component, the lower the amplitude (Figure 5.17). Notice
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that these do not change the geometry of the surface used to represent the water
(e.g., a flat blue plane) but are used only to change the shading properties. Also
notice that it must be a time-varying function that propagates the wave along the
surface.

Calculating the normals without changing the actual surface creates the illusion
of waves on the surface of the water. However, whenever the water meets a

Figure 5.13 Radially symmetric standing wave

Figure 5.14 Time-varying height of a stationary point
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protruding surface, like a rock, the lack of surface displacement will be evident.
See Figure 5.18 (Plate 3). The same approach used to calculate wave normals can
be used to modify the height of the surface. A mesh of points can be used to model
the surface of the water and the heights of the individual points can be controlled
by the overlapping sinusoidal functions, as shown in Figure 5.16. Either a faceted

Figure 5.15 Time-varying function at point P

Figure 5.16 Normal vector for wave function
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surface with smooth shading can be used or the points can be the control points of
a higher-order surface such as a B-spline surface. The points must be sufficiently
dense to sample the height function accurately enough for rendering. An option to
reduce the density required is to use only the low-frequency, high-amplitude func-
tions to control the height of the surface points and to include the high-frequency,
low-amplitude functions to calculate the normals.

Figure 5.17 Superimposed linear waves of various amplitudes and frequencies

Figure 5.18 Normal vector displacement versus height displacement
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5.2.2 The Anatomy of Waves
A more sophisticated model must be used to model waves with greater realism,
one that incorporates more of the physical effects that produce their appearance
and behavior. Waves come in various frequencies, from tidal waves to capillary
waves, which are created by wind passing over the surface of the water. The waves
collectively called wind waves are those of most interest for visual effects. The sinu-
soidal form of a simple wave has already been described and is reviewed here in a
more appropriate form for the equations that follow. In Equation 5.2, the func-
tion f (s, t) describes the amplitude of the wave in which s is the distance from the
source point, t is a point in time, A is the maximum amplitude, C is the propaga-
tion speed, and L is the wavelength. The period of the wave, T, is the time it takes
for one complete wave to pass a given point. The wavelength, period, and speed
are related by the equation C = L ⁄ T.

(Eq. 5.2)

The motion of the wave is different from the motion of the water. The wave
travels linearly across the surface of the water, while a particle of water moves in
nearly a circular orbit (Figure 5.19). While riding the crest of the wave, the particle
will move in the direction of the wave. As the wave passes and the particle drops
into the trough between waves, it will travel in the reverse direction. The steepness,
S, of the wave is represented by the term H ⁄ L. 

Waves with a small steepness value have a basically sinusoidal shape. As the
steepness value increases, the shape of the wave gradually changes into a sharply
crested peak with flatter troughs. Mathematically, the shape approaches that of a
cycloid. 

In an idealized wave, there is no net transport of water. The particle of water
completes one orbit in the time it takes for one complete cycle of the wave to pass.
The average orbital speed of a particle of water is given by the circumference of the
orbit, π • H, divided by the time it takes to complete the orbit, T (Equation 5.3).

(Eq. 5.3)

Figure 5.19 Circular paths of particles of water subjected to waves 
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If the orbital speed, 

 

Q ,

 

 of the water at the crest exceeds the speed of the wave,

 

C,

 

 then the water will spill over the wave, resulting in a breaking wave. Because the
average speed, 

 

Q ,

 

 increases as the steepness, 

 

S,

 

 of the wave increases, this limits the
steepness of a nonbreaking wave. The observed steepness of ocean waves, as
reported by Peachey [32], is between 0.5 and 1.0.

A common simplification of the full computational fluid dynamics simulation
of ocean waves is called the Airy model, and it relates the depth of the water, 
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 the
propagation speed, 
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 and the wavelength of the wave, 
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 (Equation 5.4).

 

(Eq. 5.4)
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 so 

 

C approaches . Peachey suggests using deep to mean
d ≥ L ⁄ 4 and shallow to mean d ≤ L ⁄ 20.

As a wave approaches the shoreline at an angle, the part of the wave that
approaches first will slow down as it encounters a shallower area. The wave will
progressively slow down along its length as more of it encounters the shallow area.
This will tend to straighten out the wave and is called wave refraction. 

Interestingly, even though speed (C ) and wavelength (L ) of the wave are
reduced as the wave enters shallow water, the period, T, of the wave remains the
same and the amplitude, A (and, equivalently, H ), remains the same or increases.
As a result, the orbital speed, Q (Equation 5.3), of the water remains the same.
Because orbital speed remains the same as the speed of the wave decreases, waves
tend to break as they approach the shoreline because the speed of the water exceeds
the speed of the wave. The breaking of a wave means that water particles break off
from the wave surface as they are “thrown forward” beyond the front of the wave.

5.2.3 Modeling Ocean Waves
The description of modeling ocean waves presented here follows Peachey [32].
The ocean surface is represented as a height field, y = f (x, z, t), where (x, z) defines
the two-dimensional ground plane, t is time, and y is the height. The wave func-
tion f is a sum of various waveforms at different amplitudes (Equation 5.5).

(Eq. 5.5)
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The wave function, Wi , is formed as the composition of two functions: a wave
profile, wi ; and a phase function, θi(x, z, t), according to Equation 5.6. This allows
the description of the wave profile and phase function to be addressed separately.

(Eq. 5.6)

Each waveform is described by its period, amplitude, source point, and direc-
tion. It is convenient to define each waveform, actually each phase function, as a
linear rather than radial wave and to orient it so the wave is perpendicular to the x-
axis and originates at the source point. The phase function is then a function only
of the x-coordinate and can then be rotated and translated into position in world
space.

Equation 5.7 gives the time dependence of the phase function. Thus, if the
phase function is known for all points x (assuming the alignment of the waveform
along the x-axis), then the phase function can be easily computed at any time at
any position. If the depth of water is constant, the Airy model states that the wave-
length and speed are also constant. In this case, the aligned phase function is given
in Equation 5.8.

(Eq. 5.7)

(Eq. 5.8)

However, if the depth of the water is variable, then Li is a function of depth and
θi is the integral of the depth-dependent phase-change function from the origin to
the point of interest (Equation 5.9). Numerical integration can be used to produce
phase values at predetermined grid points. These grid points can be used to inter-
polate values within grid cells. Peachey [32] successfully uses bilinear interpolation
to accomplish this.

(Eq. 5.9)

The wave profile function, wi , is a single-value periodic function of the fraction
of the phase function (Equation 5.6) so that wi (u) is defined for 0.0 ≤ u < 1.0.
The values of the wave profile function range over the interval [–1, 1]. The wave
profile function is designed so that its value is one at both ends of the interval
(Equation 5.10). 

 (Eq. 5.10)
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Linear interpolation can be used to model the changing profile of the wave
according to steepness. Steepness (H ⁄ L) can be used to blend between a sinusoidal
function (Equation 5.2) and a cycloidlike function (Equation 5.11) designed to
resemble a sharp-crested wave profile. In addition, wave asymmetry is introduced
as a function of the depth of the water to simulate effects observed in waves as they
approach a coastline. The asymmetry interpolant, k, is defined as the ratio between
the water depth, d, and deep-water wavelength, Li . See Equation 5.12. When k is
large, the wave profile is handled with no further modification. When k is small, u
is raised to a power in order to shift its value toward the low end of the range
between zero and one. This has the effect of stretching out the back of the wave
and steepening the front of the wave as it approaches the shore.

(Eq. 5.11)

(Eq. 5.12)

As the wave enters very shallow water, the amplitudes of the various wave com-
ponents are reduced so the overall amplitude of the wave is kept from exceeding
the depth of the water.

Spray and foam resulting from breaking waves and waves hitting obstacles can
be simulated using a stochastic but controlled (e.g., Gaussian distribution) particle
system. When the speed of the water, Q average, exceeds the speed of the wave, C,
then water spray leaves the surface of the wave and is thrown forward. Equation
5.3 indicates that this condition happens when π • S > 1.0 or, equivalently, S >
1.0 ⁄ π. Breaking waves are observed with steepness values less than this (around
0.1), which indicates that the water probably does not travel at a uniform orbital
speed. Instead, the speed of the water at the top of the orbit is faster than at other
points in the orbit. Thus, a user-specified spray-threshold steepness value can be
used to trigger the particle system. The number of particles generated is based on
the difference between the calculated wave steepness and the spray-threshold
steepness.

For a wave hitting an obstacle, a particle system can be used to generate spray in
the direction of reflection based on the incoming direction of the wave and the
normal of the obstacle surface. A small number of particles are generated just
before the moment of impact, are increased to a maximum number at the point of
impact, and are then decreased as the wave passes the obstacle. As always, stochas-
tic perturbation should be used to control both speed and direction. 
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5.2.4 Finding Its Way Downhill
One of the assumptions used to model ocean waves is that there is no transport of
water. However, in many situations, such as a stream of water running downhill, it
is useful to model how water travels from one location to another. In situations in
which the water can be considered a height field and the motion assumed to be
uniform through a vertical column of water, the vertical component of the velocity
can be ignored. In such cases, differential equations can be used to simulate a wide
range of convincing motion [23]. The Navier-Stokes equations (which describe
flow through a volume) can be simplified to model the flow. 

To develop the equations in two dimensions, the user parameterizes functions
are in terms of distance x. Let z = h (x) be the height of the water and z = b (x) be
the height of the ground at location x. The height of the water is d (x) = h (x) –
b (x). If one assumes that motion is uniform through a vertical column of water
and that v (x) is the velocity of a vertical column of water, then the shallow-water
equations are as shown in Equation 5.13 and Equation 5.14, where g is the gravi-
tational acceleration. See Figure 5.20. Equation 5.13 considers the change in
velocity of the water and relates its acceleration, the difference in adjacent veloci-
ties, and the acceleration due to gravity when adjacent columns of water are at dif-
ferent heights. Equation 5.14 considers the transport of water by relating the
temporal change in the height of the vertical column of water with the spatial
change in the amount of water moving.

(Eq. 5.13)

(Eq. 5.14)

Figure 5.20 Discrete two-dimensional representation of height field with water surface h, 
ground b, and horizontal water velocity v 
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These equations can be further simplified if the assumptions of small fluid
velocity and slowly varying depth are used. The former assumption eliminates the
second term of Equation 5.13, while the latter assumption implies that the term d
can be removed from inside the derivative in Equation 5.14. These simplifications
result in Equation 5.15 and Equation 5.16.

(Eq. 5.15)

(Eq. 5.16)

Differentiating Equation 5.15 with respect to x and Equation 5.16 with respect
to t and substituting for the cross derivatives results in Equation 5.17. This is the
one-dimensional wave equation with a wave velocity . As Kass and Miller
[23] note, this degree of simplification is probably not accurate enough for engi-
neering applications.

(Eq. 5.17)

This partial differential equation is solved using finite differences. The discreti-
zation, as used by Kass and Miller, is set up as in Figure 5.20, with samples of v
positioned halfway between the samples of h. The authors report a stable discreti-
zation, resulting in Equation 5.18 and Equation 5.19. Putting these two equations
together results in Equation 5.20, which is the discrete version of Equation 5.17.

(Eq. 5.18)

(Eq. 5.19)

(Eq. 5.20)

Equation 5.20 states the relationship of the height of the water surface to the
height’s acceleration in time. This could be solved by using values of hi to compute
the left-hand side and then using this value to update the next time step. As Kass
and Miller report, however, this approach diverges quickly because of the sample
spacing. 
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A first-order implicit numerical integration technique is used to provide a stable
solution to Equation 5.20. Numerical integration uses current sample values to
approximate derivatives. Explicit methods use approximated derivatives to update
the current samples to their new values. Implicit integration techniques find the
value whose derivative matches the discrete approximation of the current samples.
Implicit techniques typically require more computation per step, but, because they
are less likely to diverge significantly from the correct values, larger time steps can
be taken, thus producing an overall savings.

Kass and Miller find that a first-order implicit method (Equation 5.21,
Equation 5.22) is sufficient for this application. Using these equations to solve for
h (n) and substituting Equation 5.20 for the second derivative ( ) results in
Equation 5.23.

(Eq. 5.21)

(Eq. 5.22)

(Eq. 5.23)

Assuming d is constant during the iteration, the next value of h can be calcu-
lated from previous values with the symmetric tridiagonal linear system repre-
sented by Equation 5.24, Equation 5.25, and Equation 5.26. 
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(Eq. 5.25)
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(Eq. 5.26)

 

To simulate a viscous fluid, Equation 5.24 can be modified to incorporate a
parameter that controls the viscosity, thus producing Equation 5.27. The parame-
ter 
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 ranges between 0 and 1. When 

 

τ

 

 

 

=

 

 0, Equation 5.27 reduces to Equation
5.24.

 

(Eq. 5.27)
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iteration and compute the volume. If the volume changes from the last iteration,
then distribute the difference among the elements of that connected region.

The algorithm for the two-dimensional case is shown in Figure 5.21. 
 

Three-Dimensional Case
 

Extending the algorithm to the three-dimensional case considers a two-dimen-
sional height field. The computations are done by decoupling the two dimensions
of the field. Each iteration is decomposed into two subiterations, one in the 
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direction and one in the 
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-direction. 

 

Figure 5.21

 

Two-dimensional algorithm for water transport 
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5.2.5 Summary
Animating all of the aspects of water is a difficult task because of water’s ability to
change shape over time. Great strides have been made in animating individual
aspects of water such as standing waves, ocean waves, spray, and flowing water. An
efficient approach to an integrated model of water remains a challenge.

5.3 Gaseous Phenomena

Modeling gaseous phenomena (smoke, clouds, fire) is particularly challenging
because of their ethereal nature. Gas has no definite geometry, and, as a result, its
modeling, rendering, and animating are often interrelated. In scientific terms, gas
is usually lumped together with liquids, and their motions are commonly referred
to as fluid dynamics; the equations used to model them are referred to as computa-
tional fluid dynamics (CFD). Gas is usually treated as compressible, meaning that
density is spatially variable and computing the changes in density is part of the
computational cost. Liquids are usually treated as incompressible, which means the
density of the material remains constant. In fact, the equations in the previous sec-
tion, on the transport of water, were derived from the CFD equations. 

In a steady state flow, the motion attributes (e.g., velocity and acceleration) at
any point in space are constant. Particles traveling through a steady state flow can
be tracked similarly to how a space-curve can be traced out when the derivatives
are known. Vortices, circular swirls of material, are important features in fluid
dynamics. In steady state flow, vortices are attributes of space and are time-invari-
ant. In time-varying flows, particles that carry a nonzero vortex strength can travel
through the environment and can be used to modify the acceleration of other par-
ticles in the system by incorporating a distance-based force.

5.3.1 General Approaches to Modeling Gas
There are three approaches to modeling gas: grid-based methods (Eulerian formu-
lations), particle-based methods (Lagrangian formulations), and hybrid methods.
The approaches are illustrated here in two dimensions, but the extension to three
dimensions should be obvious.

Grid-Based Method
The grid-based method decomposes space into individual cells, and the flow of the
gas into and out of each cell is calculated (Figure 5.22). In this way, the density of
gas in each cell is updated from time step to time step. The density in each cell is
used to determine the visibility and illumination of the gas during rendering.
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Attributes of the gas within a cell, such as velocity, acceleration, and density, can
be used to track the gas as it travels from cell to cell.

The flow out of the cell can be computed based on the cell velocity, the size of
the cell, and the cell density. The flow into a cell is determined by distributing the
densities out of adjacent cells. External forces, such as wind and obstacles, are used
to modify the acceleration of the particles within a cell.

The rendering phase uses standard volumetric graphics techniques to produce
an image based on the densities projected onto the image plane. Illumination of a
cell from a light source through the volume must also be incorporated into the dis-
play procedure.

The disadvantage of this approach is that if a static data structure for the cellu-
lar decomposition is used, the extent of the interesting space must be identified
before the simulation takes place in order to initialize the cells that will be needed
during the simulation of the gas phenomena. Alternatively, a dynamic data struc-
ture that adapts to the traversal of the gas through space could be used, but this
increases overhead.

Particle-Based Method
In the particle-based method, particles or globs of gas are tracked as they progress
through space, often with a standard particle system approach (Figure 5.23). The
particles can be rendered individually, or they can be rendered as spheres of gas
with a given density. The advantage of this technique is that it is similar to rigid
body dynamics and therefore the equations are relatively simple and familiar. The
equations can be simplified if the rotational dynamics are ignored. In addition,
there are no restrictions imposed by the simulation setup as to where the gas may
travel. The disadvantage of this approach is that a large number of particles are

Figure 5.22 Grid-based method

Gas flowing through an individual cell Grid of cells
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needed to simulate a dense, expansive gas. Particles are assigned masses, and exter-
nal forces can be easily incorporated by updating particle accelerations and, subse-
quently, velocities.

Hybrid Method
Some models of gas trace particles through a spatial grid. Particles are passed from
cell to cell as they traverse the interesting space (Figure 5.24). The display
attributes of individual cells are determined by the number and type of particles
contained in the cell at the time of display. The particles are used to carry and
distribute attributes through the grid, and then the grid is used to produce the
display.

5.3.2 Computational Fluid Dynamics
The more physically based methods derive their equations from the Navier-Stokes
(NS) equations, which are the basis of computational fluid dynamics (CFD) cal-
culations used in scientific visualization. The standard NS approach is grid based
and sets up differential equations based on the conservation of momentum, mass,
and energy as it considers flow into and out of differential elements (Figure 5.25).
There are also vortex-based methods, which tend to be particle based. Such
approaches quickly get mathematically complex and are beyond the scope of this
book.

Figure 5.23 Particle-based method Figure 5.24 Hybrid method

Figure 5.25 Differential element used in Navier-Stokes 
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5.3.3 Clouds
Modeling clouds is a very difficult task because of their complex, amorphous,
space-filling structure and because even an untrained eye can easily judge the real-
ism of a cloud model. The ubiquitous nature of clouds makes them an important
modeling and animation task. This section describes their important visual and
physical characteristics, important rendering issues, and several approaches for
cloud modeling and animation.

Basic Cloud Types and Physics
Clouds are made of visible ice crystals and/or water droplets suspended in air,
depending on altitude and, hence, air temperature. Clouds are formed when air
rises, its water vapor cooling to the saturation point and condensing. The visible
condensed water vapor is what constitutes the cloud [8]. The shape of the cloud
varies based on processes that force the air to rise or bubble up (convection, con-
vergence, lifting along frontal boundaries, lifting due to mountains, or orography,
Kelvin-Helmholtz shearing, etc.) and the height (and other conditions) at which
the cloud forms [8]. Several sources [7] [8] [21] [46] present a very good introduc-
tion to clouds and their identification. Clouds formed above 20,000 feet (cirrus)
are wispy and white in appearance and composed primarily of ice crystals. Clouds
formed between 6,500 feet and 23,000 feet (i.e., altocumulus) are primarily com-
posed of water droplets; they are small and puffy and they collect into groups,
sometimes forming waves. Clouds formed below 6,500 feet (e.g., stratus, stratocu-
mulus) are again composed primarily of water droplets; they extend over a large
area and have a layered or belled appearance. The most characteristic cloud type is
the puffy cumulus. Cumulus clouds are normally formed by convection or frontal
lifting and can vary from having little vertical height to forming huge vertical tow-
ers (cumulonimbus) created by strong convection.

Visual Characteristics of and Rendering Issues for Clouds 
Clouds have several easily identifiable visual characteristics that must be modeled
to produce accurate images and animations. First, clouds have a volumetrically
varying amorphous structure with detail at many different scales. Second, cloud
formation often results from swirling, bubbling, and turbulent processes that pro-
duce characteristic time-varying patterns. Third, clouds have several illumination
and shading characteristics that must be accurately rendered to obtain convincing
images. Clouds are a three-dimensional medium of small ice and water droplets
that absorb, scatter, and reflect light. Illumination models for clouds are classified
as low-albedo and high-albedo models. A low-albedo reflectance model assumes
that secondary scattering effects are negligible, whereas a high-albedo illumination
model calculates the secondary and higher-order scattering effects. For optically
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thick clouds, such as cumulus, stratus, and cumulonimbus, secondary scattering
effects are significant and high-albedo illumination models (e.g., [2] [22] [25] [30]
[40]) should be used. Detailed descriptions of implementing a low-albedo illumi-
nation algorithm can be found in several sources [13] [22]. Simulation of wave-
length-dependent scattering is also important for creating correct atmospheric
dispersion effects for sunrise and sunset scenes (see Figure 5.26 [Plate 4] for a ren-
dering of sunset illumination). Self-shadowing of clouds and cloud shadowing on
landscapes are also important for creating realistic images of cloud scenes and
landscapes. Correct cloud shadowing requires volumetric shadowing techniques to
create accurate images, which can be very expensive when volumetric ray tracing is
used. A much faster alternative is to use volumetric shadow tables [12] [13] [22].

Early Approaches to Cloud Modeling
Modeling clouds in computer graphics has been a challenge for more than twenty
years [10]. Many early approaches used semitransparent surfaces to produce con-
vincing images of clouds [18] [19] [47]. Voss [47] has used fractal synthesis of par-
allel plane models to produce images of clouds seen from a distance. Gardner [18]
[19] has produced convincing images and animations of clouds by using Fourier
synthesis to control the transparency of large, hollow ellipsoids. This approach

Figure 5.26 An example of cirrus and cirrostratus clouds at sunset 
(Copyright 1998 David S. Ebert) 
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uses groups of ellipsoids to define and animate the general shape of clouds while
using procedurally textured transparency to produce the appearance of cloud
detail. 

 A similar approach has been taken by Kluyskens [24] to produce clouds in
Alias/Wavefront’s MayaTM animation systems. He uses randomized, overlapping
spheres to define the general cloud shape. A solid cloud texture is then used to color
the cloud and to control the transparency of the spheres. Finally, Kluyskens
increases the transparency of the spheres near their edges so that the defining shape
is not noticeable.

Volumetric Cloud Modeling
Although surface-based techniques can produce realistic images of clouds viewed
from a distance, these cloud models are hollow and do not allow the user to seam-
lessly enter, travel through, and inspect their interior. Volumetric density-based
models must be used to capture the three-dimensional structure of a cloud. Kajiya
[22] produced the first volumetric cloud model in computer graphics. Stam and
Fiume [43] and Foster and Metaxas [14] have produced convincing volumetric
models of smoke and steam but have not done substantial work on modeling
clouds. 

Neyret [28] has produced some preliminary results of a convective cloud model
based on general physical characteristics, such as bubbling and convection pro-
cesses. This model seems promising for simulating convective clouds; however, it
currently uses surfaces (large particles) to model the cloud structure. Extending
this approach to volumetric modeling/animation should produce convincing
cloud images and animations.

Particle systems [37] are commonly used to simulate the volumetric gases, such
as smoke, with convincing results and provide easy animation control. The diffi-
culty with using particle systems for cloud modeling is the massive number of par-
ticles that are necessary to simulate realistic clouds.

Several authors have used the idea of volume-rendered implicit functions (e.g.,
[5]) for volumetric cloud modeling. Nishita, Nakamae, and Dobashi [29] have
concentrated on illumination effects and have used volume-rendered implicits as a
basic cloud model in their work on multiple scattering illumination models. Stam
[43] [44] [45] has also used volumetric blobbies to create his models of smoke and
clouds. Ebert [11] [12] has used volumetric implicits combined with particle sys-
tems and procedural detail to simulate the formation and geometry of volumetric
clouds. This approach uses implicits to provide a natural way of specifying and
animating the global structure of the cloud while using more traditional proce-
dural techniques to model the detailed structure. The implicits are controlled by a
modified particle system that incorporates simple simulations of cloud formation
dynamics. Example images created by this technique can be seen in Figure 5.26
and Figure 5.27 (Plate 5).
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Example Volumetric Cloud Modeling System
Ebert’s cloud modeling and animation approach uses procedural abstraction of
detail to allow the designer to control and animate objects at a high level. Its inher-
ent procedural nature provides flexibility, data amplification, abstraction of detail,
and ease of parametric control. Abstraction of detail and data amplification are
necessary to make the modeling and animation of complex volumetric phenom-
ena, such as clouds, tractable. It would be impractical for an animator to specify
and control the detailed three-dimensional density of a cloud model. This system
does not use a physics-based approach because it is computationally prohibitive
and nonintuitive for many animators and modelers. Setting and animating correct
physics parameters for condensation temperature, temperature and pressure gradi-
ents, and so on is a time-consuming, detailed task. This model was developed to
allow the modeler and the animator to work at a much higher level and does not
restrict the animator by the laws of physics. Since a procedure is evaluated to
determine the object’s density, any advanced modeling technique, simple physics
simulation, mathematical function, or artistic algorithm can be included in the
model.

As mentioned earlier, this volumetric cloud model uses a two-level hierarchy:
the cloud macrostructure and the cloud microstructure. These are modeled by

Figure 5.27 An example of a cumulus cloud (Copyright 1997 David S. Ebert) 
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implicit functions and turbulent volume densities, respectively. The basic structure
of the cloud model combines these two components to determine the final density
of the cloud.

The cloud’s microstructure is created by using procedural turbulence and noise
functions (see Appendix B). This allows the procedural simulation of natural detail
to the level needed. Simple mathematical functions are added to allow shaping of
the density distributions and control over the sharpness of the density falloff.

Implicit functions work well to model the cloud macrostructure because of
their ease of specification and their smoothly blending density distributions. The
user simply specifies the location, type, and weight of the implicit primitives to
create the overall cloud shape. Any implicit primitive, including spheres, cylinders,
ellipsoids, and skeletal implicits, can be used to model the cloud macrostructure.
Since these are volume rendered as a semitransparent medium, the whole volumet-
ric field function is being rendered, as compared to implicit surface rendering,
where only a small range of values of the field are used to create the objects.

The implicit density functions are primitive based: they are defined by
summed, weighted, parameterized, primitive implicit surfaces. A simple example
of the implicit formulation of a sphere centered at the point center with radius r is
F (x, y, z) = (x – center.x)2 + ( y – center.y)2 + (z – center.z)2 – r 2 = 0. 

The real power of implicit functions is the smooth blending of the density fields
from separate primitive sources. A standard cubic function [49] is often used as
the density (blending) function for the implicit primitives (Equation 5.28). In
Equation 5.28, r is the distance from the primitive. This density function is cubic
in the distance squared, and its value ranges from 1, when r = 0 (within the primi-
tive), to 0, at r = R. This density function has several advantages. First, its value
drops off quickly to zero (at the distance R ), reducing the number of primitives
that must be considered in creating the final surface. Second, it has zero derivatives
at r = 0 and r = R and is symmetrical about the contour value 0.5, providing for
smooth blends between primitives. The final implicit density value is then the
weighted sum of the density field values of each primitive (Equation 5.29). Vari-
able wi is the weight of the i th primitive, and q is the closest point on element i
from p.

(Eq. 5.28)

(Eq. 5.29)

To create nonsolid implicit primitives, the animator procedurally alters the
location of the point before evaluating the blending functions. This alteration can
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be the product of the procedure and the implicit function and/or a warping of the
implicit space. These techniques are combined into a simple cloud model as
shown in the high-level description below.

volumetric_procedural_implicit_function(pnt, blend, pixel_size)      
    perturbed_point = procedurally alter pnt using noise and turbulence      
    density1 = implicit_function(perturbed_point)     
    density2 = turbulence(pnt, pixel_size)      
    blend = blend * density1 +  (1 - blend) * density2     
    density = shape the resulting blend based on user controls for
       wispiness and denseness (e.g., use pow and exponential function)      

return(density)

The density from the implicit primitives is combined with a pure turbulence-
based density using a user-specified blend (60% to 80% gives good results). The
blending of the two densities allows the creation of clouds that range from those
entirely determined by the implicit function density to those entirely determined
by the procedural turbulence function. When the clouds are completely deter-
mined by the implicit functions, they tend to look more like cotton balls. The
addition of the procedural alteration and turbulence is what gives them their natu-
ralistic look.

Cumulus Clouds
Cumulus clouds are very common and can be easily simulated using spherical or
elliptical implicit primitives. Figure 5.27 shows the type of result that can be
achieved by using nine implicit spheres to model a cumulus cloud. The animator
or modeler simply positions the implicit spheres to produce the general cloud
structure. Procedural modification then alters the density distribution to create the
detailed wisps. The algorithm used to create the clouds in Figure 5.27 follows.

cumulus(pnt,density,parms, pnt_w, vol)      
        xyz_td   pnt; /* location of point in cloud space */     
        xyz_td   pnt_w; /* location of point in world space */      
        float    *density,*parms;      
        vol_td   vol; 
{   
    float turbulence(); /* turbulence function */   
    float  noise(); /* noise function */   
    float  metaball_evaluate(); /* function for evaluating the metaball

   primitives*/   
            float mdens, /* metaball density value */         
            turb, /* turbulence amount */         
            noise_value; /* noise value */   
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    xyz_td path; /* path for swirling the point */   
    extern int frame_num;   
    static int ncalcd=1;   
    static float sin_theta_cloud, cos_theta_cloud, theta, 
            path_x, path_y, path_z, scalar_x, scalar_y, scalar_z;     

    /* calculate values that only depend on the frame number once per
       frame */   
    if(ncalcd)     {       
        ncalcd=0;       
        /* create gentle swirling in the cloud */       
        theta =(frame_num%600)*01047196;          /* swirling effect */
        cos_theta_cloud = cos(theta);
        sin_theta_cloud = sin(theta);
        path_x = sin_theta_cloud*.005*frame_num;
        path_y = .01215*(float)frame_num;
        path_z = sin_theta_cloud*.0035*frame_num;
        scalar_x = (.5+(float)frame_num*0.010);
        scalar_z = (float)frame_num*.0073;     
    }
    /* Add some noise to the point’s location  */
    noise_value = noise(pnt);          /* Use noise function */
    pnt.x –= path_x –noise_value*scalar_x;
    pnt.y = pnt.y – path_y +.5*noise_value;
    pnt.z += path_z – noise_value*scalar_z;

    /* Perturb the location of the point before evaluating the implicit
       primitives.  */
    turb=turbulence(pnt);
    turb_amount=parms[4]*turb;
    pnt_w.x += turb_amount;
    pnt_w.y –= turb_amount;
    pnt_w.z += turb_amount;

    mdens=(float)metaball_evaluate((double)pnt_w.x, (double)pnt_w.y, 
(double)pnt_w.z, (vol.metaball));

    *density= parms[1]*(parms[3]*mdens + (1.0 – parms[3])*turb*mdens);
    *density= pow(*density,(double)parms[2]);

}

Parms[3] is the blending function value between implicit (metaball) density and
the product of the turbulence density and the implicit density. This method of
blending ensures that the entire cloud density is a product of the implicit field val-
ues, preventing cloud pieces from occurring outside the defining primitives. Using
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a large parms[3] generates clouds that are mainly defined by their implicit primi-
tives and are, therefore, “smoother” and less turbulent. Parms[1] is a density scal-
ing factor; parms[2] is the exponent for the pow () function; and parms[4] controls
the amount of turbulence used in displacing the point before evaluation of the
implicit primitives. For good images of cumulus clouds, useful values are the fol-
lowing: 0.2 < parms[1] < 0.4, parms[2] = 0.5, parms[3] = 0.4, and parms[4] = 0.7.

Cirrus and Stratus Clouds
Cirrus clouds differ greatly from cumulus clouds in their density, thickness, and
falloff. In general, cirrus clouds are thinner, less dense, and wispier. These effects
can be created by altering the parameters of the cumulus cloud procedure and also
by changing the implicit primitives. The density value parameter for a cirrus cloud
is normally chosen as a smaller value and the chosen exponent is larger, producing
larger areas of no clouds and a greater number of individual clouds. To create cir-
rus clouds, the user can simply specify the global shape (envelope) of the clouds
with a few implicit primitives, or he or she can specify implicit primitives to deter-
mine the location and shape of each cloud. In the former case, the shape of each
cloud is controlled mainly by the volumetric procedural function and turbulence
simulation, unlike with cumulus clouds, for which the implicit functions are the
main shape control. It is also useful to modulate the densities along the direction
of the jet stream to produce more natural wisps. This can be created by the user
specifying a predominant direction of wind flow and using a turbulent version of
this vector in controlling the densities as follows:

Cirrus(pnt,density,parms, pnt_w, vol, jet_stream)
        xyz_td pnt;            /* location of point in cloud space */
        xyz_td pnt_w;          /* location of point in world space */
        xyz_td jet_stream;
        float  *density,*parms;
        vol_td vol; 
{
    float turbulence();        /* turbulence function */
    float noise();             /* noise function */
    float metaball_evaluate(); /* function for evaluating the metaball
                                  primitives*/
    float   mdens,             /* metaball density value */
            turb,              /* turbulence amount */
            noise_value;       /* noise value */
    xyz_td path;               /* path for swirling the point */
    extern int frame_num;
    static int ncalcd=1;
    static float sin_theta_cloud, cos_theta_cloud, theta,          
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            path_x, path_y, path_z, scalar_x, scalar_y, scalar_z;

    /* calculate values that only depend on the frame number once per
       frame  */
    if(ncalcd) {
        ncalcd=0;
        /* create gentle swirling in the cloud */
        theta =(frame_num%600)*01047196;          /* swirling effect */
        cos_theta_cloud = cos(theta);
        sin_theta_cloud = sin(theta);
        path_x = sin_theta_cloud*.005*frame_num;
        path_y = .01215*(float)frame_num;
        path_z = sin_theta_cloud*.0035*frame_num;
        scalar_x = (.5+(float)frame_num*0.010);
        scalar_z = (float)frame_num*.0073;     
    }

    /* Add some noise to the point’s location  */
    noise_value = noise(pnt);
    pnt.x –= path_x –noise_value*scalar_x;
    pnt.y = pnt.y – path_y +.5*noise_value;
    pnt.z += path_z – noise_value*scalar_z;

    /* Perturb the location of the point before evaluating the implicit
       primitives. */
    turb=turbulence(pnt);
    turb_amount=parms[4]*turb;
    pnt_w.x += turb_amount;
    pnt_w.y –= turb_amount;
    pnt_w.z += turb_amount;

 /* make the jet stream turbulent */
    jet_stream.x + =.2*turb;
    jet_stream.y + =.3*turb;
    jet_stream.z + =.25*turb;

    /* warp point along the jet stream vector */
    pnt_w = warp(jet_stream, pnt_w);

    mdens=(float)metaball_evaluate((double)pnt_w.x, (double)pnt_w.y, 
(double)pnt_w.z, (vol.metaball));

    *density= parms[1]*(parms[3]*mdens + (1.0 – parms[3])*turb*mdens);
    *density= pow(*density,(double)parms[2]); 
}
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An example of a cirrus cloud formation created using these techniques is given
in Figure 5.26.

Stratus clouds can also be modeled by using a few implicits to create the global
shape or extent of the stratus layer while using volumetric procedural functions to
define the detailed structure of all the clouds within this layer. Stratus cloud layers
are normally thicker and less wispy than cirrus clouds. This effect can be created
by adjusting the size of the turbulent space (smaller/fewer wisps), using a smaller
exponent value (creates more of a cloud layer effect), and increasing the density of
the cloud. Some of the more interesting stratus effects, such as a mackerel sky, can
be created by using simple mathematical functions to shape the densities. 

Animating Volumetric Procedural Clouds
The volumetric cloud models described above produce nice still images of clouds
and also clouds that gently evolve over time. The models can be animated by par-
ticle system dynamics with the implicit primitives attached to each particle. Since
the implicits are modeling the macrostructure of the cloud, while procedural tech-
niques are modeling the microstructure, fewer primitives are needed to achieve
complex cloud models. The smooth blending and procedurally generated detail
allow complex results with less than a few hundred primitives, a factor of 100 to
1,000 less than needed with traditional particle systems. The user specifies a few
initial implicit primitives and dynamics information, such as speed, initial velocity,
force function, and lifetime, and the system generates the location, number, size,
and type of implicit for each frame. Unlike traditional particle systems, cloud
implicit particles never die; they just become dormant.

Any commercial particle animation program, such as MayaTM, can also be used
to control the dynamics of the cloud particle system. A useful approach for cloud
dynamics is to use qualitative dynamics: simple simulations of the observed proper-
ties and formation of clouds. The underlying physical forces that create a wide
range of cloud formations are extremely complex to simulate, computationally
expensive, and very restrictive. The incorporation of simple, parameterized rules
that simulate observable cloud behavior will produce a powerful cloud animation
system. Figure 5.28(a) (Plate 6) shows a graphical user interface (GUI) used to
generate and animate a particle system for simulating convective (cumulus) cloud
formations based on qualitative dynamics. This Maya GUI controls a MELTM

script that generates the particle system and controls its dynamics. It uses Maya’s
vortex, airfield, and turbulence fields in its simulation of convection and cloud
particle bubbling. Example images from this script can be seen in Figure 5.28(b).
The simulation works as follows. Cloud bubbles are generated on the ground by
the user specifying either the area and the humidity level or the placement of a
particle emitter and its spread. The bubbles rise due to the force generated by tem-
perature difference, and their weight and the force of gravity affect them. A vortex
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field is used to simulate the movement of the bubbles in air. At an altitude deter-
mined by the surface temperature, the number of dust nuclei at that height, and
the humidity content, condensation takes place, so the hot steam cools off and can
now be seen as cloud particles. Alternatively, the user can explicitly specify the
height at which the stabilization and the aggregation of the bubbles occur to form
the cloud. The bubbles are simulated by particles, which have several attributes,

Figure 5.28 An example of cloud dynamics GUI and example images created in MayaTM 
(Copyright 1999 Ruchigartha)

(a) GUI used to control cloud formation (b) Example clouds

Team LRN



310         5: Natural Phenomena

such as position, radius, opacity, velocity, and lifetime. When a particle’s radius
becomes too large, the particle creates child particles and has its radius decreased
to conserve matter.

Summary
Despite the complexity of the physical processes that form clouds, most of their
important visual aspects have been effectively modeled by researchers. However,
there are still challenges in terms of providing user control of cloud motion and in
improving the fine-grain motion and rendering. 

5.3.4 Fire
Fire is a particularly difficult and computationally intensive process to model. It
has all the complexities of smoke and clouds and the added complexity of very
active internal processes that produce light and motion and create rapidly varying
display attributes. 

Recently, impressive advances have been made in the modeling of fire. At one
extreme, the most realistic approaches require sophisticated techniques from com-
putational fluid dynamics and are difficult to control (e.g., [43]). Work has also
been performed in simulating the development and spread of fire for purposes of
tracking its movement in an environment (e.g., [6] [39]). These models tend to be
only global, extrinsic representations of the fire’s movement and less concerned
with the intrinsic motion of the fire itself. Falling somewhere between these two
extremes, particle systems provide effective, yet computationally attractive,
approaches to fire.

Particle System Approach
One of the first and most popularly viewed examples of computer-generated fire
appears in the movie Star Trek II: The Wrath of Khan [31]. In the sequence referred
to as the genesis effect, an expanding wall of fire spreads out over the surface of the
planet from a single point of impact. The simulation is not a completely convinc-
ing model of fire, although the sequence is effective in the movie. The model uses
a two-level hierarchy of particles. The first level of particles is located at the point
of impact to simulate the initial blast; the second level consists of concentric rings
of particles, timed to progress from the central point outward, forming the wall of
fire and explosions. 

Each ring of second-level hierarchy consists of a number of individual particle
systems that are positioned on the ring and overlap so as to form a continuous
ring. The individual particle systems are modeled to look like explosions (Figure
5.29). The particles in each one of these particle systems are oriented to fly up and
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away from the surface of the planet. The initial position for a particle is randomly
chosen from the circular base of the particle system. The initial direction of travel
for each particle is constrained to deviate less than the ejection angle away from
the surface normal.

Other Approaches
Various other approaches have been used in animations with varying levels of suc-
cess. Two-dimensional animated texture maps have been used to create the effect
of the upward movement of burning gas, but such models are effective only when
viewed from a specific direction. Using a two-dimensional-multiple planes
approach adds some depth to the fire, but viewing directions are still limited. Stam
and Fiume [43] present advection-diffusion equations to evolve both density and
temperature fields. The user controls the simulation by specifying a wind field.
The results are effective, but the foundation mathematics are complicated and the
model is difficult to control. Other work (e.g., [6] [39]) models the spread of fire
in pools or through buildings but does not concentrate on visual realism. 

5.3.5 Summary
Modeling and animating gaseous phenomena is difficult. Gases are constantly
changing shape and lack even a definable surface. Volume graphics holds the most
promise for modeling and animating gas, but currently it has computational draw-
backs that make such approaches of limited use for animation. A useful and visu-
ally accurate model of fire remains the subject of research. 

Figure 5.29 Explosion-like particle system
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5.4 Chapter Summary

Modeling and animating many of the phenomena that occur in nature is challeng-
ing. Most of the techniques discussed in this chapter are still the subject of
research efforts. Plants exhibit both enormous complexity and a well-defined
structure. Much progress has been made in capturing both of these aspects in plant
models. However, work on plants interacting with the environment is fairly
recent. Water, smoke, clouds, and fire share an amorphous nature, which makes
them difficult to model and animate. Approaches that incorporate a greater
amount of physics have been developed recently for these phenomena. As process-
ing power becomes cheaper, techniques such as computational fluid dynamics
become more practical (and more desirable) tools for animating water and gas, but
convenient controls for such models have yet to be developed.
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M

 

odeling and animating an articulated figure is a daunting task. It is espe-
cially challenging when the figure is meant to represent a human. There are several
major reasons for this. First, the human figure is a very familiar form. This famil-
iarity makes each person a critical observer. When confronted with an animated
figure, a person readily recognizes when its movement does not “feel” or “look”
right. Second, the human form is very complex, with more than two hundred
bones and six hundred muscles. When fully modeled with linked rigid segments,
the human form is endowed with approximately two hundred degrees of freedom.
The deformable nature of the body’s parts further complicates the modeling and
animating task. Third, humanlike motion is not computationally well defined.
Some studies have tried to accurately describe humanlike motion, but typically
these descriptions apply only to certain constrained situations. Fourth, there is no
one definitive motion that is humanlike. Differences resulting from genetics, cul-
ture, personality, and emotional state all can affect how a particular motion is car-
ried out. General strategies for motion production have not been described, nor
have the nuances of motion that make each of us unique and uniquely recogniz-
able. Although the discussion in this chapter focuses primarily on the human
form, many of the techniques apply to any type of articulated figure.
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Table 6.1 provides the definitions of the anatomical terms used here. Particu-
larly noteworthy for this discussion are the terms that name planes relative to the
human figure: 

 

sagittal, coronal,

 

 and 

 

transverse

 

.

 

6.1 Reaching and Grasping

 

One of the most common human figure animation tasks involves movement of
the upper limbs. A synthetic figure may be required to reach and operate a control,
raise a coffee cup from a table up to his mouth to drink, or turn a complex object
over and over to examine it. It is computationally simpler to consider the arm as
an appendage that moves independently of the rest of the body. In some cases, this
can result in unnatural-looking motion. To produce more realistic motion, the
user often involves additional joints of the body in executing the motion. In this
section, the arm is considered in isolation. It is assumed that additional joints, if
needed, can be added to the reaching motion in a preprocessing step that positions
the figure and readies it for independently considered arm motion.

 

6.1.1 Modeling the Arm

 

The basic model of the human arm, ignoring the joints of the hand for now, can
be most simply represented as a seven-degrees-of-freedom (DOF) manipulator
(Figure 6.1): three DOFs are at the shoulder joint, one at the elbow, and three at
the wrist. See Chapter 4 for an explanation of joint representation, forward kine-
matics, and inverse kinematics. A 

 

configuration

 

 or 

 

pose

 

 for the arm is a set of seven
joint angles, one for each of the seven DOFs of the model.

Forearm rotation presents a problem. In Figure 6.1, the forearm rotation is
associated with the wrist. However, in reality, the forearm rotation is not associated
with a localized joint like most of the other DOFs of the human figure but rather

 

Table 6.1

 

Selected Terms from Anatomy

 

Sagittal plane

 

Perpendicular to the ground and divides the body into right and left halves

 

Coronal plane

 

Perpendicular to the ground and divides the body into front and back 
halves

 

Transverse plane

 

Parallel to the ground and divides the body into top and bottom halves

 

Distal

 

Away from the attachment of the limb

 

Proximal

 

Toward the attachment of the limb

 

Flexion

 

Movement of the joint that decreases the angle between two bones

 

Extension

 

Movement of the joint that increases the angle between two bones
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is distributed along the forearm itself as the two forearm bones (radius and ulna)
rotate around each other. Sometimes this rotation is associated with the elbow
instead; other implementations create a “virtual” joint midway along the forearm
to handle forearm rotation.

Of course, the joints of the human arm have limits. For example, the elbow can
flex to approximately 20 degrees and extend to as much as 160 degrees. Allowing a
figure’s limbs to exceed the joint limits would certainly contribute to an unnatural
look. Most joints are positioned with least strain somewhere in the middle of their
range and rarely attain the boundaries of joint rotation unless forced. More subtly,
joint limits may vary with the position of other joints, and further limits are
imposed on joints to avoid intersection of appendages with other parts of the
body. For example, if the arm is moved in a large circle parallel to and to the side
of the torso, the muscle strain causes the arm to distort the circle at the back. As
another example, tendons make it more difficult to fully extend the knee when
one is bending at the hip (the motion used to touch one’s toes).

If joint limits are enforced, some general motions can be successfully obtained
by using forward kinematics. Even if an object is to be carried by the hand, for-
ward kinematics in conjunction with attaching the object to the end effector cre-
ates a fairly convincing motion. But if the arm/hand must operate relative to a
fixed object, such as a knob, inverse kinematics is necessary. Unfortunately, the
normal methods of inverse kinematics, using the pseudo inverse of the Jacobian, is
not guaranteed to give humanlike motion. As explained in Chapter 4, in some ori-
entations a singularity may exist in which a degree of freedom is “lost” in Cartesian
space. For example, the motion can be hard to control in cases in which the arm is
fully extended.

According to the model shown in Figure 6.1, if only the desired end effector
position is given, then the solution space is underconstrained. In this case, multi-
ple solutions exist, and inverse kinematic methods may result in configurations
that do not look natural. As noted in Chapter 4, there are methods for biasing the
solution toward desired joint angles. This helps to avoid violating joint limits and

 

Figure 6.1

 

Basic model of the human arm 

3 DOFs (shoulder)

1 DOF (elbow)

3 DOFs (wrist)

End effector (hand, fingers)
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produces more humanlike motion but still lacks any anatomical basis for produc-
ing humanlike configurations.

It is often useful to specify the goal position of the wrist instead of the fingers to
better control the configurations produced. But even if the wrist is fixed (i.e.,
treated as the end effector) at a desired location, and the shoulder is similarly fixed,
there are still a large number of positions that might be adopted that satisfy both
the constraints and the joint limits. Biasing the joint angles to orientations prefer-
able for certain tasks reduces the multiple-solution-problem somewhat. 

To more precisely control the movement, the user can specify intermediate
positions and orientations for the end effector as well as for intermediate joints.
Essentially, this establishes key poses for the linkage. Inverse kinematics can then
be used to step from one pose to the next so that the arm is still guided along the
path. This affords some of the savings of using inverse kinematics while giving the
animator more control over the final motion.

The formal inverse Jacobian approach can be replaced with a more procedural
approach based on the same principles to produce more humanlike motion. In
human motion, the joints farther away from the end effector (the hand) have the
most effect on it. The joints closer to the hand change angles in order to perform
the fine orientation changes necessary for final alignment. This can be imple-
mented procedurally by computing the effect of each DOF on the end effector by
taking the cross product of the axis of rotation, 

 

ω

 

1

 

, with the vector from the joint
to the end effector, 

 

V

 

1

 

 (Figure 6.2). In addition, since the arm contains a 1-DOF
angle (elbow), a plane between the shoulder, the elbow, and the wrist is formed,
and the arm’s preferred positions dictate a relatively limited rotation range for that
plane. Once the plane is fixed, the shoulder and elbow angles are easy to calculate
and can be easily adjusted on that plane (Figure 6.3). Some animation packages
(e.g., Maya

 

TM

 

) allow the animator to specify an inverse kinematic solution based
on such a plane and to rotate the plane as desired.

Some neurological studies, notably those by Lacquaniti and Soechting [42] and
Soechting and Flanders [66], suggest that the arm’s posture is determined from the
desired location of the end effector (roughly “fixing the wrist’s orientation”), and
then the final wrist orientation is tweaked for the nature of the object and the task.
The model developed by Kondo [41] for this computation makes use of a spheri-
cal coordinate system. A set of angles for the shoulder and elbow is calculated from
the desired hand and shoulder position and then adjusted if joint limitations are
violated. Finally, a wrist orientation is calculated separately. The method is
described, along with a manipulation planner for trajectories of cooperating arms,
by Koga et al. [40].
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6.1.2 The Shoulder Joint

 

The shoulder joint requires special consideration. It is commonly modeled as a
ball joint with three coincident degrees of freedom. The human shoulder system is
actually more complex. Scheepers [62] describes a more realistic model of the clav-
icle and scapula along with a shoulder joint, in which three separate joints with
limited range provide very realistic-looking arm and shoulder motion. Scheepers
also provides a solution to the forearm rotation problem using a radioulnar (mid-
forearm) joint. See Figure 6.4.

 

6.1.3 The Hand

 

To include a fully articulated hand in the arm model, one must introduce many
more joints (and thus DOFs). A simple hand configuration may consist of a palm,
four fingers, and a thumb, with joints and DOFs as shown in Figure 6.5.

 

Figure 6.2

 

Effect of the first DOF on the end effector: 

 

R

 

1

 

 = 

 

ω

 

1

 

 

 

×

 

 

 

V

 

1

 

Figure 6.3

 

Constructing the arm in a user-specified plane

ω1

R1

P1V1

Desired end effector position

Shoulder position

Desired plane of arm (user specified) Arm configuration constructed in the plane
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A model similar to Figure 6.5 is used by Rijpkema and Girard [59] in their
work on grasping. Scheepers [62] uses twenty-seven bones, but only sixteen joints
are movable parts. Others use models with subtler joints inside the palm area in
order to get humanlike action.

If the hand is to be animated in detail, the designer must pay attention to types
of grasp and how the grasps are to be used. The opposable thumb provides
humans with great manual dexterity: the ability to point, grasp objects of many
shapes, and exert force such as that needed to open a large jar of pickles or a small
jewelry clasp. This requires carefully designed skeletal systems. Studies of grasping
show at least sixteen different categories of grasp, most involving the thumb and
one or more fingers. For a given task, the problem of choosing which grasp is best
(most efficient and/or most credible) adds much more complexity to the mere
ability to form the grasp.

Simpler models combine the four fingers into one surface and may eliminate
the thumb (Figure 6.6). This reduces both the display complexity and the motion
control complexity. Display complexity, and therefore image quality, can be main-
tained by using the full-detail hand model but coordinating the movement of all

 

Figure 6.4

 

Conceptual model of the upper limb

shoulder complex

elbow

radioulnar joint

clavicle joint

scapula

wrist
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Figure 6.5

 

Simple model of hands and fingers 

 

Figure 6.6

 

Simplified hands

2 DOFs

1 DOF

3 DOFs

wrist

thumb

fingers

palm

With opposable thumb Without opposable thumb
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the joints of the four fingers with one “grasping” parameter (Figure 6.7), even
though this only approximates real grasping action.

 

6.1.4 Coordinated Movement

 

Adding to the difficulties of modeling and controlling differentiated parts of the
upper limb is the difficulty of interjoint cooperation in a movement and assigning
any animation to a particular joint. It is easy to demonstrate this difficulty. Stretch
out your arm to the side and turn the palm of the hand so it is first facing up; then
rotate the hand so it is facing down and try to continue rotating it all the way
around so that the palm faces up again. Try to do this motion by involving first
only the hand/wrist/forearm and then the upper arm/shoulder. Adding motion of
the torso including the clavicle and spine, which involves more DOFs, makes this
task simpler, but it also makes the specification of angles to joints more complex.
It is difficult to determine exactly what rotation should be assigned to which joints
at what time in order to realistically model this motion.

Interaction between body parts is a concern beyond the determination of which
joints to use in a particular motion. While viewing the arm and hand as a separate,
independent system simplifies the control strategy, its relation to the rest of the
body must be taken into account for a more robust treatment of reaching. Reposi-
tioning, twisting, and bending of the torso, reactive motions by the other arm, and
even counterbalancing by the legs are often part of movements that only appear to
belong to a single arm. It is nearly impossible for a person reaching for an object to

 

Figure 6.7

 

Finger flexion controlled by single parameter; the increase in joint angle (degrees) 
per joint is shown 

10 20 400  80 
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keep the rest of the body in a fixed position. Rather than extend joints to the edges
of their limits and induce stress, other body parts may cooperate to relieve muscle
strain or maintain equilibrium.

By the same token, arm manipulation is used in many different full-body move-
ments. Even walking, which is often modeled as an activity of the legs only,
involves the torso, the arms, and even the head. The arm often seems like a simple
and rewarding place to begin modeling human figure animation, but it is difficult
to keep the tasks at a simple level.

 

6.1.5 Reaching Around Obstacles

 

To further complicate the specification and control of reaching motion, there may
be obstacles in the environment that must be avoided. Of course, it is not enough
to merely plan a collision-free path for the end effector. The entire limb sweeps out
a volume of space during reach that must be completely devoid of other objects to
avoid collisions. For sparse environments, simple reasoning strategies can be used
to determine the best way to avoid obstacles. 

As more obstacles populate the environment, more complex search strategies
might be employed to determine the path. Various path-planning strategies have
been proposed. For example, given an environment with obstacles, an artificial
potential field can be constructed as a function of the local geometry. Obstacles
impart a high potential field that attenuates based on distance. Similarly, the goal
position imparts a low potential into the field. The gradient of the field suggests a
direction of travel for the end effector and directs the entire linkage away from col-
lisions (Figure 6.8). Such approaches are susceptible to local minima traps, which
various strategies have been used to overcome. Genetic algorithms, for example,
have been used to search the space for a global minimum [50]. The genetic fitness
function can be tailored to find an optimal path in terms of one of several criteria
such as shortest end effector distance traveled, minimum torque, and minimum
angular acceleration. 

Such optimizations, however, produce paths that would not necessarily be con-
sidered humanlike. Optimized paths will typically come as close as possible to crit-
ical objects in the path in order to minimize the fitness function. Humans seldom
generate such paths in their reaching motions. The complexity of human motion
is further complicated by the effect of vision on obstacle avoidance. If the figure
“knows” there is an object to avoid but is not looking directly at it, then the reach-
ing motion will incorporate more leeway in the path than it would if the obstacle
were directly in the field of view. Furthermore, the cost of collision can influence
the resulting path: it costs more to collide with a barbed-wire fence than a towel.
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6.1.6 Strength

 

As anyone who has ever changed a spark plug in a car knows, avoiding all the
obstacles and getting the wrench on the plug is only half the battle. Once in posi-
tion, the arm and hand must be in a configuration in which there is enough
strength available to actually dislodge the plug. To simulate more realistic motions,
users incorporate strength criteria into the task planning [44]. As previously noted,
typical reaching motion problems are usually underconstrained, allowing for mul-
tiple solutions. The solution space can be searched for a specific motion that is
acceptable in terms of the amount of strain it places on the figure. 

When a specific motion is proposed by a kinematic planner, it can be evaluated
according to the strain it places on the body. The strain is determined by comput-
ing the torque necessary at each joint to carry out the motion and rating the
torque requirements according to desirability. Given the current pose for the fig-
ure, the required joint accelerations, and any external forces, the torque required at
each joint can be calculated. For each joint, the maximum possible torque for both
flexion and extension is given as a function of the joint’s angle as well as that of
neighboring joints. A 

 

comfort

 

 metric can be formed as the ratio of currently

 

Figure 6.8

 

Path planning result [50]

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 

00 30 30 30 29 28 27 26 28 29 30 31 32 33 33 33 33

01 30 26 25 24 23 22 21 22 23 24 25 26 27 28 29 33

02 30 25 24 23 22 21 20 21 22 23 24 25 26 27 28 33

03 29 24 23 24 28 26 19 20 21 22 25 26 27 28 29 34

04 28 23 22 28 28 19 18 19 20 29 30 31 32 34 30 34

05 27 22 21 26 19 18 17 16 17 24 21 02 06 34 03 34

06 26 21 20 25 18 17 16 15 16 17 02 01 02 01 02 07

07 25 20 19 18 17 16 15 14 05 12 11 15 01 02 03 00

08 24 19 18 17 16 15 14 13 12 11 10 05 04 03 04 00

09 25 20 19 18 17 16 15 12 11 10 09 06 05 04 05 10

10 25 21 20 19 18 15 14 13 12 11 06 07 06 05 06 15

11 25 25 25 24 23 16 15 14 13 12 09 08 09 10 11 16

12 26 26 26 25 24 17 18 15 16 22 12 11 10 11 12 17

13 27 22 21 20 19 18 17 18 17 18 13 12 11 12 13 18

14 27 23 22 21 20 19 18 17 16 15 14 13 12 13 14 18

15 27 27 27 26 25 24 23 22 23 23 23 18 17 18 18 18

Initial configuration
of arm

Selected key frames from
path of arm computed by
genetic algorithm

Polygons indicate
obstacles

Values indicate potentials
induced by obstacles

Goal position for
end effector
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requested torque and maximum possible torque. The 

 

comfort level

 

 for the figure is
computed by finding the maximum torque ratio for the entire body. The most
desirable motions are those that minimize the maximum torque ratio over the
duration of the motion. 

Once a motion has been determined to be unacceptable, it must be modified in
order to bring its comfort level back to within acceptable ranges. This can be done
by initiating one or more strategies that reduce the strain. Assume that a particular
joint has been identified that exceeds the accepted comfort range. If other joints in
the linkage can be identified that produce a motion in the end effector similar to
that of the problem joint and that have excess torque available, then increasing the
torques at these joints can compensate for reduced torque at the problem joint. It
may also be possible to include more joints in the linkage, such as the spine in a
reaching motion, to reformulate the inverse kinematic problem in the hope of
reducing the torque at the problem joint. See Lee et al. [44] for details.

 

6.2 Walking 

 

Walking, along with reaching, is one of the most common activities in which the
human form engages. It is a complex activity that for humans is learned only after
an extended trial-and-error process. An aspect that differentiates walking from
typical reaching motions, besides the fact that it uses the legs instead of the arms,
is that it is basically cyclic. While its cyclic nature provides some uniformity, acy-
clic components such as turning and tripping occur periodically. In addition,
walking is responsible for transporting the figure from one place to another and is
simultaneously responsible for maintaining balance. Thus dynamics plays a much
more integral role in the formation of the walking motion than it does in reaching.

An aspect of walking that complicates its analysis and generation is that it is
dynamically but not statically stable. This means that if a figure engaged in walk-
ing behavior suddenly freezes, the figure is not necessarily in a balanced state and
might fall to the ground. For animation purposes, this means that the walking
motion cannot be frozen in time and statically analyzed to determine the correct
forces and torques that produce the motion. As a result, knowledge of the walking
motion, in the form of either empirically gathered data [32] [37] or a set of param-
eters adjustable by the animator, is typically used as the global control mechanism
for walking behavior. Attributes such as stride length, hip rotation, and foot place-
ment can be used to specify what a particular walk should look like. A state transi-
tion diagram, or its equivalent, is typically used to transition from phase to phase
of the gait [11] [12] [28] [35] [57]. Calculation of forces and torques can then be
added, if desired, to make the nuances of the motion more physically accurate and
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more visually satisfying. Kinematics can be used to entirely control the legs, while
the forces implied by the movement of the legs are used to affect the motion of the
upper body [28] [67]. Alternatively, kinematics can be used to establish con-
straints on leg motion such as leg swing duration and foot placement. Then the
forces and torques necessary to satisfy the constraints can be used to resolve the
remaining degrees of freedom of the legs [11] [35] [57]. In some cases, forward
dynamic control can be used after determining the forces and torques necessary to
drive the legs from state to state [48].

 

6.2.1 The Mechanics of Locomotion

 

Understanding the interaction of the various joints involved in locomotion is the
first step in understanding and modeling locomotion. The walking and running
cycles are presented first. Then the walk cycle is broken down in more detail,
showing the complex movements involved. 

 

Walk Cycle

 

The walk cycle can be broken down into various phases [11] based on the relation
of the feet to their points of contact with the ground. See Figure 6.9. The 

 

stride

 

 is
defined by the sequence of motions between two consecutive repetitions of a body
configuration [37]. The 

 

left stance

 

 phase of a stride is initiated with the right foot
on the ground and the left heel just starting to strike the ground. During this
phase, the body is supported by both feet until the right foot pivots up and the
right toe leaves the ground. The left stance phase continues as the right foot leaves
the ground and starts swinging forward and as the right heel strikes the ground
and both feet are once again on the ground. The left toe leaving the ground termi-
nates the left stance phase. The 

 

right swing phase

 

 is the period in which the right
toe leaves the ground, the right leg swings forward, and the right heel strikes the
ground. Notice that the right swing phase is a subinterval of the left stance phase.
The end of the right swing phase initiates the right stance phase, and analogous
phases now proceed with the roles of the left leg and the right leg switched. The
walking cycle is characterized by alternating periods of single and double support.

 

Run Cycle

 

The run cycle can also be described as a sequence of phases. It differs from the
walk cycle in that both feet are off the ground at one time and at no time are both
feet on the ground. As in the walk cycle, the 

 

stance

 

 is the duration that a foot is on
the ground. Thus, the 

 

left stance,

 

 defined by the left heel strike and left toe lift, has
the right foot off the ground. This is followed by a period of 

 

flight,

 

 during which
both feet are off the ground, with the right foot swinging forward. The flight is
terminated by the right heel strike, which starts the 

 

right stance

 

. See Figure 6.10.
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Notice that the left and right stances do not overlap and are separated by periods
of flight.

 

Pelvic Transport

 

For present purposes, let the pelvis represent the mass of the upper body being
transported by the legs. Using a simplified representation for the legs, Figure 6.11
shows how the pelvis is supported by the stance leg at various points during the
stance phase of the walk cycle. Figure 6.12 shows these positions superposed dur-
ing a full stride and illustrates the abutting of two-dimensional circular arcs
describing the basic path of the pelvis as it is transported by the legs.

 

Pelvic Rotation

 

The pelvis represents the connection between the legs and the structure that sepa-
rates the legs in the third dimension. Figure 6.13 shows the position of the pelvis
during various points in the walking cycle, as viewed from above. The pelvis
rotates about a vertical axis centered at the stance leg, helping to lengthen the
stride as the swing leg stretches out for its new foot placement. This rotation of the

 

Figure 6.9
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pelvis above the stance leg means that the center of the pelvis follows a circular arc
relative to the top of that leg. The top of the stance leg is rotating above the point
of contact with the floor (Figure 6.13), so the path of the center of the pelvis
resembles a sinusoidal curve (Figure 6.14).

 

Figure 6.10

 

Run cycle [12]

 

Figure 6.11
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Pelvic List

 

The transport of the pelvis requires the legs to lift the weight of the body as the
pelvis rotates above the point of contact with the floor (Figure 6.15). To reduce the
amount of lift, the pelvis lists by rotating in the coronal plane. 

Figure 6.12

 

Transport of pelvis by intersecting circular arcs (sagittal plane)

 

Figure 6.13

 

Pelvic orientation during stance phase (transverse plane)

 

Figure 6.14

 

Path of the pelvic center from above (transverse plane), exaggerated for 
illustrative purposes

 

Figure 6.15

 

Pelvic list to reduce the amount of lift (coronal plane)
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Knee Flexion

 

As shown in Figure 6.15, in a pelvic list with one-piece legs, the swing leg would
penetrate the floor. Bending at the knee joint (flexion) allows the swing leg to
safely pass over the floor and avoid contact (Figure 6.16). Flexion at the knee of
the stance leg also produces some leveling out of the pelvic arcs produced by the
rotation of the pelvis over the point of contact with the floor. In addition, exten-
sion just before contact with the floor followed by flexion of the new stance leg at
impact provides a degree of shock absorption.

 

Ankle and Toe Joints

 

The final part of the puzzle to the walking motion is the foot complex, consisting
of the ankle, the toes, and the foot itself. This complex comprises several bones
and many degrees of freedom and can be simply modeled as two hinge joints per
foot (Figure 6.17). The ankle and toe joints serve to further flatten out the rotation
of the pelvis above the foot as well as to absorb some shock.

 

Figure 6.16

 

Knee flexion allowing for the swing leg to avoid penetrating the floor, 
leveling the path of the pelvis over the point of contact, and providing some shock 
absorption (sagittal plane)

 

Figure 6.17

 

Rotation due to ankle-toe joints
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6.2.2 The Kinematics of the Walk

 

Animation of the leg can be performed by appropriate control of the joint angles.
As previously mentioned, a leg’s walk cycle is composed of a stance phase and a
swing phase. The stance phase duration is the time from heel strike to toe lift. The
swing phase duration is the time between contact with the ground—from toe lift
to heel strike. The most basic approach to generating the walking motion is for the
animator to specify a list of joint angle values for each degree of freedom involved
in the walk. There are various sources for empirical data describing the kinematics
of various walks at various speeds. Figures 6.18 through 6.22, from Inman, Ral-
son, and Todd [37], graph the angles over time for the various joints involved in
the walk cycle, as well as giving values for the lateral displacement of the pelvis
[37]. 

Specifying all the joint angles, either on a frame-by-frame basis or by interpola-
tion of values between key frames, is an onerous task for the animator. In addition,
it takes a skilled artist to design values that create unique walks that deviate in any
way from precisely collected clinical data. When creating new walks, the animator

 

Figure 6.18

 

Lateral displacement of pelvis [37]
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Figure 6.19

 

Hip angles [37]

 

Figure 6.20

 

Knee angles [37]
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Figure 6.21

 

Ankle angles [37]

 

Figure 6.22

 

Toe angles [37]
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can specify kinematic values such as pelvic movement, foot placement, and foot
trajectories. Inverse kinematics can be used to determine the angles of the interme-
diate joints [12]. By constructing the time-space curves traced by the pelvis and
each foot, the user can determine the position of each for a given frame of the ani-
mation. Each leg can then be positioned by considering the pelvis fixed and the leg
a linked appendage whose desired end effector position is the corresponding posi-
tion on the foot trajectory curve (Figure 6.23). Sensitivity to segment lengths can
cause even clinical data to produce configurations that fail to keep the feet in solid
contact with the floor during walking. Inverse kinematics is also useful for forcing
clinical data to maintain proper foot placement.

 

6.2.3 Using Dynamics to Help Produce Realistic Motion

 

Dynamic simulation can be used to map specified actions and constraints to make
the movement more accurate physically. However, as Girard and Maciejewski [28]
point out, an animator who wants a particular look for a behavior often wants
more control over the motion than a total physical simulation provides (Girard
and Maciejewski discuss this in relation to walking, but it obviously applies in
many situations where physically reasonable, yet artistically controlled, motion is
desired). Dynamics must be intelligently applied so that it aids the animator and
does not become an obstacle that the animator must work around. In addition, to
make the computations tractable, the animator almost always simplifies the dy-
namics. There are several common types of simplifications: (1) some dynamic
effects are ignored, such as the effect of the swing leg on balance; (2) relatively

 

Figure 6.23

 

Pelvis and feet constraints satisfied by inverse kinematics
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small temporal variations are ignored and a force is considered constant over some
time interval, such as the upward push of the stance leg; (3) a complex structure,
such as the 7-DOF leg, is replaced for purposes of the dynamic computations by a
simplified but somewhat dynamically equivalent structure, such as a 1-DOF tele-
scoping leg; and (4) computing arbitrarily complex dynamic effects is replaced by
computing decoupled dynamic components, such as separate horizontal and verti-
cal components, which are computed independently of each other and then
summed.

In achieving the proper motion of the upper body, the legs are used to impart
forces to the mass of the upper body as carried by the pelvis. An upward force can
be imparted by the stance leg on the mass of the upper body at the point of con-
nection between the legs and the torso, that is, the hips [28] [67]. To achieve sup-
port of the upper body, the total upward acceleration due to the support of the legs
has to cancel to total downward acceleration due to gravity. As simplifying
assumptions, the effect of each leg can be considered independent of the other(s),
and the upward force of a leg on the upper body during the leg’s stance phase can
be considered constant. Similarly, horizontal acceleration can be computed inde-
pendently for each leg and can be considered constant during the leg’s stance phase
(Figure 6.24). The horizontal force of the legs can be adjusted automatically to
produce the average velocity for the body as specified by the animator, but the
fluctuations in instantaneous velocity over time help to create visually more
appealing motion than constant velocity alone would. The temporal variations in
upward and forward acceleration at each hip due to the alternating stance phases
can be used to compute pelvic rotation and pelvic list to produce even more realis-
tic motion.

More physics can be introduced into the lower body by modeling the leg
dynamics with a telescoping joint (implemented as a parallel spring-damper sys-
tem) during the stance phase. The upward force of the leg during the stance phase

Figure 6.24 Horizontal and vertical dynamics of stance leg: gravity and the vertical 
component must cancel over the duration of the cycle; the horizontal push must account 
for the average forward motion of the figure over the duration of the cycle

gravity

stance leg pushing upward

horizontal push of stance leg
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becomes time-varying as the telescoping joint compresses under the weight of the
upper body and expands under the restoring forces of the leg complex (upper leg,
lower leg, foot, and associated joints). The telescoping mechanism simulates the
shock-absorbing effect of the knee-ankle-toe joints. The leg complex is then fit to
the length of the telescoping joint by inverse kinematics (Figure 6.25). During the
swing phase, the leg is typically controlled kinematically and does not enter into
any dynamic considerations.

Incorporating more physics into the model, the kinematic control information
for the figure can be used to guide the motion (as opposed to constraining it). A
simple inverse dynamics computation is then used to try to match the behavior of
the system with the kinematic control values. Desired joint angles are computed
based on high-level, animator-supplied parameters such as speed and the number
of steps per unit distance. Joint torques are computed based on proportional-
derivative servos (Equation 6.1). The difference between the desired angle,
denoted by the underbar, and the current angle at each joint is used to compute
the torque to be applied at the next time step. The angular velocities are treated
similarly. These torque values are smoothed to prevent abrupt changes in the com-
puted motion. However, choosing good values for the gains (ks , kv ) can be diffi-
cult and usually requires a trial-and-error approach.

(Eq. 6.1)

6.2.4 Forward Dynamic Control
In some cases, forward dynamic control instead of kinematic control can be effec-
tively used. Kinematics still plays a role. Certain kinematic states, such as maxi-
mum forward extension of a leg, trigger activation of forces and torques. These
forces and torques move the legs to a new kinematic state, such as maximum back-
ward extension of a leg, which triggers a different sequence of forces and torques
[48]. The difficulty with this approach is in designing the forces and torques nec-

Figure 6.25 Telescoping joint with kinematically fit leg complex
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essary to produce a reasonable walk cycle (or other movement, for that matter). In
some cases it may be possible to use empirical data found in the biomechanics lit-
erature as the appropriate force and torque sequence.

6.2.5 Summary
Implementations of algorithms for procedural animation of walking are widely
available in commercial graphics packages. However, none of these could be con-
sidered to completely solve the locomotion problem, and many issues remain for
ongoing or future research. Walking over uneven terrain and walking around arbi-
trarily complex obstacles are difficult problems to solve in the most general case.
The coordinated movement required for climbing is especially difficult. A recur-
ring theme of this chapter is that developing general, robust computational models
of human motion is difficult, to say the least.

6.3 Facial Animation

Realistic facial animation is one of the most difficult tasks facing computer anima-
tors. The face is a very familiar structure that also exhibits a well-defined underly-
ing structure but allows for a large amount of variation between individuals. It is a
complex, deformable shape having distinct parts that articulate and is an impor-
tant component in modeling a figure because it is the main instrument for com-
munication and for defining a person’s character. There is also a need to
realistically animate the movement of the lips and surrounding face during speech
(lip-synching). A good facial model must be capable of geometrically representing
a specific person (called conformation by Parke [55], static by others [60]).

Facial models can be used for cartooning, for realistic character animation, for
telecommunications to reduce bandwidth, and for human-computer interaction
(HCI). In cartooning, facial animation has to be able to convey expression and
personality. In realistic character animation, the geometry and movement of the
face must adhere to the constraints of realistic human anatomy. Telecommunica-
tions and HCI have the added requirement that the facial model and motion must
be computationally efficient. In some applications, the model must correspond
closely to a specific target individual.

In addition to the issues addressed by other animation tasks, facial animation
often has the constraint of precise timing with respect to a sound track because of
lip-synching. Despite its name, lip-synching involves more than just the lips; the
rigid articulation of the jaw and the muscle deformation of the tongue must also
be considered.
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If a cartoon type of animation is desired, a simple geometric shape for the head
(such as a sphere) coupled with the use of animated texture maps often suffices for
facial animation. The eyes and mouth can be animated using a series of texture
maps applied to a simple head shape. See Figure 6.26 (Plate 7). The nose and ears
may be part of the head geometry, or, simpler still, they may be incorporated into
the texture map. Stylized models of the head may also be used that mimic the basic
mechanical motions of the human face, using only a pivot jaw and rotating
spheres for eyeballs. Eyelids can be skin-colored hemispheres that rotate to enclose
the visible portion of the eyeball. The mouth can be a separate geometry posi-
tioned on the surface of the face geometry, and it can be animated independently
or sequentially replaced in its entirety by a series of mouth shapes to simulate
motion of deformable lips. See Figure 6.27 (Plate 8). These approaches are analo-
gous to techniques used in conventional hand-drawn and stop-motion animation.

For more realistic facial animation, more complex facial models are used whose
surface geometry more closely corresponds to that of a real face. And the anima-
tion of these models is correspondingly more complex. For an excellent in-depth
presentation of facial animation see Parke and Waters [56]. An overview is given
here.

Figure 6.26 Texture-mapped facial animation from Getting into Art
(Copyright 1990 David S. Ebert [21])
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6.3.1 Types of Facial Models
The first problem confronting an animator in facial animation is creating the
geometry of the facial model to make it suitable for animation. This in itself can
be very difficult. Facial animation models vary widely, from simple geometry to
anatomy based. Generally, the complexity is dictated by the intended use. When
deciding on the construction of the model, important factors are geometry data
acquisition method, motion control and corresponding data acquisition method,
rendering quality, and motion quality. The first factor concerns the method by
which the actual geometry of the subject’s or character’s head is obtained. The sec-
ond factor concerns the method by which the data describing changes to the
geometry are obtained. The quality of the rendered image with respect to smooth-
ness and surface attributes is the third concern. The final concern is the corre-
sponding quality of the computed motion.

The model can be discussed in terms of its static properties and its dynamic
properties. The statics deal with the geometry of the model in its neutral form,
while the dynamics deal with the deformation of the geometry of the model dur-
ing animation. Three main methods have been used to deal with the geometry of
the model. Polygonal models are used most often for their simplicity (e.g., [55]
[56] [70] [71]); splines are chosen when a smooth surface is desired. Subdivision
surfaces have also been used recently with some success.

Figure 6.27 Cartoon face
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Polygonal models are relatively easy to create and can be deformed easily. How-
ever, the smoothness of the surface is directly related to the complexity of the
model, and polygonal models are visually inferior to other methods of modeling
the facial surface. Currently, data acquisition methods sample only the surface,
producing discrete data, and surface fitting techniques are subsequently applied.

Spline models typically use bicubic, quadrilateral surface patches, such as Bezier
or B-spline, to represent the face. While surface patches offer the advantage of low
data complexity in comparison to polygonal techniques when generating smooth
surfaces, they have several disadvantages when it comes to modeling an object such
as the human face. With standard surface patch technology, a rectangular grid of
control points is used to model the entire object. As a result, it is difficult to main-
tain low data complexity while incorporating small details and sharp localized fea-
tures, because entire rows and/or entire columns of control information must be
modified. Thus, a small addition to one local area of the surface to better represent
a facial feature means that information has to be added across the entire surface.

Hierarchical B-splines, introduced by Forsey and Bartels [27], are a mechanism
by which local detail can be added to a B-spline surface while avoiding the global
modifications required by standard B-splines. Finer resolution control points are
carefully laid over the coarser surface while continuity is carefully maintained. In
this way, local detail can be added to a surface. The organization is hierarchical, so
finer and finer detail can be added. The detail is defined relative to the coarser sur-
face so that editing can take place at any level. 

Subdivision surfaces (e.g., [19]) use a polygonal control mesh that is refined, in
the limit, to a smooth surface. The refinement can be terminated at an intermedi-
ate resolution and rendered as a polygonal mesh. Subdivision surfaces have the
advantage of being able to create local complexity without global complexity. They
provide an easy-to-use, intuitive interface for developing new models, and provi-
sions for discontinuity of arbitrary order can be accommodated [19]. However,
they are difficult to interpolate to a specific data set, which makes modeling a spe-
cific face problematic.

Implicitly defined surfaces have also been used to model faces, but such models
typically become increasingly complex when the animator tries to deal with small
details and sharp features. Where photorealism is not the objective and a caricature
or a more “cartoony” model is desired, implicits show promise as a modeling tech-
nique. However, the animation of such models remains a challenge.

6.3.2 Creating the Model
Creating a model of a human head from scratch is not easy. Not only must the
correct shape be generated, but when facial animation is the objective, the geomet-
ric elements (vertices, edges) must be placed appropriately so that the motion of
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the surface can be controlled precisely. If the model is dense in the number of geo-
metric elements used, then the placement becomes less of a concern, but in rela-
tively low resolution models it can be an issue. Of course, one approach is to use a
CAD system and let the user construct the model. This is useful when the model
to be constructed is a fanciful creature or a caricature or must meet some aesthetic
design criteria. While this approach gives an artist the most freedom in creating a
model, it requires the most skill.

Besides the CAD approach, there are two main methods for creating facial
models: digitization using some physical reference and modification of an existing
model. The former is useful when the model of a particular person is desired; the
latter is useful when animation control is already built into a generic model.

As with any model, a physical sculpture of the desired object can be generated
with clay, wood, or plaster and then digitized, most often using a mechanical or
magnetic digitizing device. A 2D surface-based coordinate grid can be drawn on
the physical model, and the polygons can be digitized on a polygon-by-polygon
basis. Postprocessing can identify unique vertices, and a polygonal mesh can be
easily generated. The digitization process can be fairly labor intensive when large
numbers of polygons are involved, which makes using an actual person’s face a bit
problematic. If a model is used, this approach still requires some artistic talent to
generate the physical model, but it is easy to implement at a relatively low cost if
small mechanical digitizers are used. 

Laser scanners use a laser to calculate distance to a model surface and can create
very accurate models. They have the advantage of being able to directly digitize a
person’s face. The scanners sample the surface at regular intervals to create an
unorganized set of surface points. The facial model can be constructed in a variety
of ways. Polygonal models are most commonly generated. Scanners have the
added advantage of being able to capture color information that can be used to
generate a texture map. This is particularly important with facial animation: a tex-
ture map can often cover flaws in the model and motion. Laser scanners also have
drawbacks; they are expensive, bulky, and require a physical model.

Muraki [51] presents a method for fitting a blobby model (implicitly defined
surface formed by summed, spherical density functions) to range data by minimiz-
ing an energy function that measures the difference between the isosurface and the
range data. By splitting primitives and modifying parameters, the user can refine
the isosurface to improve the fit. 

Models can also be generated from photographs. This has the advantage of not
requiring the presence of the physical model once the photograph has been taken,
and it has applications for video conferencing and compression. While most of the
photographic approaches modify an existing model by locating feature points, a
common method of generating a model from scratch is to take front and side
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images of a face on which grid lines have been drawn (Figure 6.28). Point corre-
spondences can be established between the two images either interactively or by
locating common features automatically, and the grid in three-space can be recon-
structed. Symmetry is usually assumed for the face, so only one side view is needed
and only half of the front view is considered.

Modifying an existing model is a popular technique for generating a face
model. Of course, someone had to first generate a generic model. But once this is
done, if it is created as a parameterized model and the parameters were well
designed, the model can be used to try to match a particular face, to design a face,
or to generate a family of faces. In addition, the animation controls can be built
into the model so that they require little or no modification of the generic model
for particular instances.

One of the most often used approaches to facial animation employs a parame-
terized model originally created by Parke [54] [55].The parameters for his model
of the human face are divided into two categories: conformational and expressive.
The conformational parameters are those that distinguish one individual’s head
and face from another’s. The expressive parameters are those concerned with ani-
mation of an individual’s face; these are discussed later. There are twenty-two con-
formational parameters in Parke’s model. Again, symmetry between the sides of
the face is assumed. Five parameters control the shape of the forehead, cheekbone,
cheek hollow, chin, and neck. There are thirteen scale distances between facial fea-
tures:1 head x,y,z; chin to mouth and chin to eye; eye to forehead; eye x and y;

Figure 6.28 Photographs from which a face may be digitized [56]

1. In Parke’s model, the z-axis is up, the x-axis is oriented from the back of the head toward the
front, and the y -axis is from the middle of the head out to the left side.
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widths of the jaw, cheeks, nose bridge, and nose nostril. Five parameters translate
features of the face: chin in x and z; end of nose x and z; eyebrow z. Even these are
not enough to generate all possible faces, although they can be used to generate a
wide variety.

Parke’s model was not developed based on any anatomical principles but from
the intuitions from artistic renderings of the human face. Facial anthropomorphic
statistics and proportions can be used to constrain the facial surface to generate
realistic geometries of a human head [18]. Variational techniques can then be used
to create realistic facial geometry from a deformed prototype that fits the con-
straints. This approach is useful for generating heads for a crowd scene or a back-
ground character. It may also be useful as a possible starting point for some other
character; however, the result will be influenced heavily by the prototype used.

The MPEG-4 standard proposes tools for efficient encoding of multimedia
scenes. It includes a set of Facial Definition Parameters (FDPs) [26] that are
devoted mainly to facial animation for purposes of video teleconferencing. Figure
6.29 shows the feature points defined by the standard. Once the model is defined
in this way, it can be animated by an associated set of Facial Animation Parameters
(FAPs) [25], also defined in the MPEG-4 standard. MPEG-4 defines sixty-eight
FAPs. The FAPs control rigid rotation of the head, eyeballs, eyelids, and mandible.
Other low-level parameters indicate the translation of a corresponding feature
point, with respect to its position in the neutral face, along one of the coordinate
axes [17].

One other interesting approach to generating a model of a face from a generic
model is fitting it to images in a video sequence [18]. While not a technique devel-
oped for animation applications, it is useful for generating a model of a face of a
specific individual. A parameterized model of a face is set up in a 3D viewing con-
figuration closely matching that of the camera that produced the video images.
Feature points are located on the image of the face in the video and are also located
on the 3D synthetic model. Camera parameters and face model parameters are
then modified to more closely match the video by using the pseudo inverse of the
Jacobian. (The Jacobian is the matrix of partial derivatives that relates changes in
parameters to changes in measurements.) By computing the difference in the mea-
surements between the feature points in the image and the projected feature points
from the synthetic setup, the pseudo inverse of the Jacobian indicates how to
change the parametric values to reduce the measurement differences.

6.3.3 Textures
Texture maps are very important in facial animation. Most objects created by com-
puter graphics techniques have a plastic or metallic look, which, in the case of
facial animation, seriously detracts from the believability of the image. Texture
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maps can give a facial model a much more organic look and can give the observer
more visual cues when interacting with the images. The texture map can be taken
directly from a person’s head; however, it must be registered with the geometry.
The lighting situation during digitization of the texture must also be considered.

Laser scanners are capable of collecting information on intensity as well as
depth, resulting in a high-resolution surface with a matching high-resolution tex-
ture. However, once the face deforms, the texture no longer matches exactly. Since

Figure 6.29 Feature points corresponding to the MPEG-4 Facial Definition Parameters [26]
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the scanner revolves around the model, the texture resolution is evenly spread over
the head. However, places are missed where the head is self-occluding (at the ears
and maybe the chin) and at the top of the head.

Texture maps can also be created from photographs by simply combining top
and side views using pixel blending where the textures overlap [1]. Lighting effects
must be taken into consideration, and, because the model is not captured in the
same process as the texture map, registration with a model is an issue. Using a
sequence of images from a video can improve the process. 

6.3.4 Approaches to Animating the Face
The simplest approach to facial animation is to define a set of key poses. Facial
animation is produced by selecting two of the key poses and interpolating between
the positions of their corresponding vertices in the two poses. This restricts the
available motions to be the interpolation from one key pose to another. To gener-
alize this a bit more, a weighted sum of two or more key poses can be used in
which the weights sum to one. Each vertex position is then computed as a linear
combination of its corresponding position in each of the poses whose weight is
nonzero. This can be used to produce facial poses not directly represented by the
keys. However, this is still fairly restrictive because the various parts of the facial
model are not individually controllable by the animator. The animation is still
restricted to those poses represented as a linear combination of the keys. If the ani-
mator allows for a wide variety of facial motions, the key poses quickly increase to
an unmanageable number. This raises the questions: What are the primitive
motions of the face? And how many degrees of freedom are there in the face?

The Facial Action Coding System
The Facial Action Coding System (FACS) is the result of research conducted by
the psychologists Ekman and Friesen [22] with the objective of deconstructing all
facial expressions into a set of basic facial movements. These movements, called
Action Units, or AUs, when considered in combinations, can be used to describe
all facial expressions. 

Forty-six AUs are identified in the study, and they provide a clinical basis from
which to build a facial animation system. Examples of AUs are brow lowerer, inner
brow raiser, wink, cheek raiser, upper lip raiser, and jaw drop. See Figure 6.30 for
an example of diagrammed AUs. Given the AUs, an animator can build a facial
model that is parameterized according to the motions of the AUs. A facial anima-
tion system can be built by giving a user access to a set of variables that are in one-
to-one correspondence with the AUs. A parametric value controls the amount of
the facial motion that results from the associated AU. By setting a variable for each
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AU, the user can generate all the facial expressions analyzed by Ekman and Frie-
sen. By using the value of the variables to interpolate the degree to which the
motion is realized and by interpolating their value over time, the user can then
animate the facial model. By combining the AUs in nonstandard ways, the user
can also generate many truly strange expressions.

While this work is impressive and is certainly relevant to facial animation, two
of its characteristics should be noted before it is used as a basis for such a system.
First, the FACS is meant to be descriptive of an expression, not generative. The
FACS is not time based, and facial movements are analyzed only relative to a neu-
tral pose. This means that the AUs were not designed to animate a facial model in
all the ways that an animator may want control. Second, the FACS describes facial
expressions, not speech. The movements for forming individual phonemes, the
basic units of speech, were not specifically incorporated into the system. While the
AUs provide a good start for describing the basic motions that must be in a facial
animation system, they were never intended for this purpose.

Parameterized Models
As introduced in the discussion of the FACS, parameterizing the facial model
according to primitive actions and then controlling the values of the parameters

Figure 6.30 Three Action Units of the lower face [22]

Team LRN



Facial Animation 349

over time is one of the most common ways to implement facial animation.
Abstractly, any possible or imaginable facial contortion can be considered as a
point in an n-dimensional space of all possible facial poses. Any parameterization
of a space should have complete coverage and be easy to use. Complete coverage
means that the space reachable by (linear) combinations of the parameters
includes all (at least most) of the interesting points in that space. Of course, the
definition of the word interesting may vary from application to application, so a
generally useful parameterization includes as much of the space as possible. For a
parameterization to be easy to use, the set of parameters should be as small as pos-
sible, the effect of each parameter should be independent of the effect of any other
parameter, and the effect of each parameter should be intuitive. Of course, in
something as complex as facial animation, attaining all of these objectives is prob-
ably not possible, so determining appropriate trade-offs is an important activity in
designing a parameterization. Animation brings an additional requirement to the
table: the animator should be able to generate common, important, or interesting
motions through the space by manipulating one or just a few parameters.

The most popular parameterized facial model is credited to Parke [54] [55] [56]
and has already been discussed in terms of creating facial models based on the so-
called conformational parameters of a generic facial model. In addition to the con-
formational parameters, there are expression parameters. Examples of expression
parameters are upper-lip position, eye gaze, jaw rotation, and eyebrow separation.
Figure 6.31 shows a diagram of the parameter set with the (interpolated) expres-

Figure 6.31 Parke model; * indicates interpolated parameters [56]
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sion parameters identified. Most of the parameters are concerned with the eyes
and the mouth, where most facial expression takes place. With something as com-
plex as the face, it is usually possible to animate interesting expressions with a sin-
gle parameter. Experience with the parameter set is necessary for understanding
the relationship between a parameter and the facial model. Higher-level abstrac-
tions can be used to aid in animating common motions.

Muscle Models
Parametric models encode geometric displacement of the skin in terms of an arbi-
trary parametric value. Muscle-based models are more sophisticated, although
there is wide variation in the reliance on a physical basis for the models. There are
typically three types of muscles that need to be modeled for the face: linear, sheet,
and sphincter. The linear model is a muscle that contracts and pulls one point (the
point of insertion) toward another (the point of attachment). The sheet muscle acts
as a parallel array of muscles and has a line of attachment at each of its two ends
rather than a single point of attachment as in the linear model. The sphincter
muscle contracts radially toward an imaginary center. The user, either directly or
indirectly, specifies muscle activity to which the facial model reacts. Three aspects
differentiate one muscle-based model from another: the geometry of the muscle-
skin arrangement, the skin model used, and the muscle model used. 

The main distinguishing feature in the geometric arrangement of the muscles is
whether they are modeled on the surface of the face or whether they are attached
to a structural layer beneath the skin (e.g., bone). The former case is simpler in
that only the surface model of the face is needed for the animation system (Figure
6.32). The latter case is more anatomically correct and thus promises more accu-
rate results, but it requires much more geometric structure in the model and is
therefore much more difficult to construct (Figure 6.33).

The model used for the skin will dictate how the area around the point of inser-
tion of a (linear) muscle reacts when that muscle is activated; the point of insertion
will move an amount determined by the muscle. How the deformation propagates
along the skin as a result of that muscle determines how rubbery or how plastic the

Figure 6.32 Part of the surface geometry of the face showing the point of attachment (A ) and 
the point of insertion (B ) of a linear muscle; point B is pulled toward point A.
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surface will appear. The simplest model to use is based on geometric distance from
the point and deviation from the muscle vector. For example, the effect of the
muscle may attenuate based on the distance a given point is from the point of
insertion and on the angle of deviation from the displacement vector of the inser-
tion point. See Figure 6.34 for sample calculations. A slightly more sophisticated
skin model might model each edge of the skin geometry as a spring and control
the propagation of the deformation based on spring constants. The insertion point
is moved by the action of the muscle, and this displacement creates restoring forces
in the springs attached to the insertion point, which moves the adjacent vertices,
which in turn moves the vertices attached to them, and so on. See Figure 6.35.
The more complicated Voight model treats the skin as a viscoelastic element by

Figure 6.33 Cross section of the trilayer muscle as presented by Parke and Waters [56]; 
the muscle only directly affects nodes in the muscle layer.

Figure 6.34 Sample attenuation: (a) insertion point I is moved d by muscle; (b) point A is moved dk 
based on linear distance from the insertion point; and (c) point B is moved dkφ based on the linear 
distance and the deviation from the insertion point displacement vector
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combining a spring and a damper in parallel (Figure 6.36). The movement
induced by the spring is damped as a function of the change in length of the edge.

The muscle model determines the function used to compute the contraction of
the muscle. The alternatives for the muscle model are similar to those for the skin,
with the distinction that the muscles are active elements, whereas the skin is com-
posed of passive elements. Using a linear muscle as an example, the displacement
of the insertion point is produced as a result of muscle activation. Simple models
for the muscle will simply specify a displacement of the insertion point based on
activation amount. More physically accurate muscle models will compute the
effect of muscular forces. The simplest dynamic model uses a spring to represent
the muscle. Activating the muscle results in a change of its rest length so as to
induce a force at the point of insertion. More sophisticated muscle models include

Figure 6.35 Spring mesh as skin model; the displacement of the insertion point propagates 
through the mesh according to the forces imparted by the springs

Figure 6.36 Voight viscoelastic model; the motion induced by the spring forces is damped; 
variables k and n are spring and damper constants, respectively; and di is the rest length for the 
spring
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damping effects. A muscle model developed by clinical observation is shown in
Figure 6.37.

A wide range of approaches can be used to model and animate the face. Which
to use depends greatly on how realistic the result is meant to be and what kind of
control the animator is provided. Results vary from cartoon faces to parameterized
surface models to skull-muscle-skin simulations. Realistic facial animation remains
one of the interesting challenges in computer animation. 

6.4 Overview of Virtual Human Representation

One of the most difficult challenges in computer graphics is the creation of virtual
humans. Efforts to establish standard representations of articulated bodies are now
emerging [17] [36]. Representing human figures successfully requires solutions to
several very different problems. The visible geometry of the skin can be created by
a variety of techniques, differing primarily in the skin detail and the degree of rep-
resentation of underlying internal structures such as bone and muscle. Geometry
for hair and clothing can be simulated with a clear trade-off between accuracy and
computational complexity. The way in which light interacts with skin, clothing,
and hair can also be calculated with varying degrees of correctness, depending on
visual requirements and available resources.

Techniques for simulating virtual humans have been created that allow for
extremely modest visual results but that can be computed in real time (i.e., 60
Hz). Other approaches may give extremely realistic results by simulating individ-
ual hairs, muscles, wrinkles, or threads. These methods may consequently also
require days of computation time to generate a single frame of animation. This
discussion focuses solely on the representation of virtual humans. It touches only

Figure 6.37 Hill’s model for the muscle 
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on animation issues where necessary to discuss how the animation techniques
affect the figure’s creation.

6.4.1 Representing Body Geometry
Many methods have been developed for creating and representing the geometry of
a virtual human’s body.  They vary primarily in visual quality and computational
complexity.  Usually these two measures are inversely proportionate.

The vast majority of human figures are modeled using a boundary repre-
sentation constructed from either polygons (often triangles) or patches (usually
NURBS). These boundary shell models are usually modeled manually in one of
the common off-the-shelf modeling packages (e.g., [2] [5] [39]). The purpose of
the model being produced dictates the technique used to create it. If the figure is
constructed for real-time display in a game on a low-end PC or gaming console,
usually it will be assembled from a relatively low number of triangular polygons,
which, while giving a chunky appearance to the model, can be rendered quickly. If
the figure will be used in an animation that will be rendered off-line by a high-end
rendering package, it might be modeled with NURBS patch data, to obtain
smooth curved contours. Factors such as viewing distance and the importance of
the figure to the scene can be used to select from various levels of detail at which to
model the figure for a particular sequence of frames.

Polygonal Representations
Polygonal models usually consist of a set of vertices and a set of faces. Polygonal
human figures can be constructed out of multiple objects (frequently referred to as
segments), or they can consist of a single polygonal mesh. When multiple objects
are used, they are generally arranged in a hierarchy of joints and rigid segments.
Rotating a joint rotates all of that joint’s children (e.g., rotating a hip joint rotates
all of the child’s leg segments and joints around the hip). If a single mesh is used,
then rotating a joint must deform the vertices surrounding that joint, as well as
rotate the vertices in the affected limb.

Various constraints may be placed on the polygonal mesh’s topology depending
on the software that will be displaying the human. Many real-time rendering
engines require polygonal figures to be constructed from triangles. Some modeling
programs require that the object remain closed.

Polygonal representations are primarily used either when rendering speed is of
the essence, as is the case in real-time systems such as games, or when topological
flexibility is required. The primary problem with using polygons as a modeling
primitive is that it takes far too many of them to represent a smoothly curving sur-
face. It might require hundreds or thousands of polygons to achieve the same
visual quality as could be obtained with a single NURBS patch.
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Patch Representations
Virtual humans constructed with an emphasis on visual quality are frequently
built from a network of cubic patches, usually NURBS. The control points defin-
ing these patches are manipulated to sculpt the surfaces of the figure. Smooth con-
tinuity must be maintained at the edges of the patches, which often proves
challenging. Complex topologies also can cause difficulties, given the rectangular
nature of the patches. While patches can easily provide much smoother surfaces
than polygons in general, it is more challenging to add localized detail to a figure
without adding a great deal more global data. Hierarchical splines provide a partial
solution to this problem [27].

Other Representations
Several other methods have been used for representing virtual human figures.
However, they are used more infrequently because of a lack of modeling tools or
because of their computational complexity.

Subdivision surfaces combine the topological flexibility of polygonal objects
with the resultant smoothness of patch data. They transform a low-resolution
polygonal model into a smooth form by recursively subdividing the polygons as
necessary [19] [23].

Implicit surfaces (frequently the term “metaballs” is used) can be employed as
sculpting material for building virtual humans. Metaballs resemble clay in their
ability to blend with other nearby primitives. While computationally expensive,
they provide an excellent organic look that is perfect for representing skin
stretched over underlying tissue [39] [43].

Probably the most computationally demanding representation method is volu-
metric modeling. While all of the above techniques merely store information
about the surface qualities of a virtual human, volumetric models store informa-
tion about the entire interior space as well. Because of its extreme computational
requirements, this technique is limited almost exclusively to the medical research
domain, where knowledge of the interior of a virtual human is crucial.

As computers continue to become more powerful, more attempts are being
made to more accurately model the interior of humans to get more realistic results
on the visible surfaces. There have been several “layered” approaches, where some
attempt has been made to model underlying bone and/or muscle and its effect on
the skin.

Chen and Zeltzer [15] use a finite element approach to accurately model a
human knee, representing each underlying muscle precisely, based on medical
data. Several authors have attempted to create visually reasonable muscles attached
to bones and then generate skin over the top of the muscle (e.g., [62] [73]). Thal-
mann’s lab takes the interesting hybrid approach of modeling muscles with meta-
balls, producing cross sections of these metaballs along the body’s segments, and
then lofting polygons between the cross sections to produce the final surface
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geometry [10]. Chadwick, Haumann, and Parent [14] use FFDs to produce artist-
driven muscle bulging and skin folding.

6.4.2 Geometry Data Acquisition
Geometric data can be acquired by a number of means. By far the most common
method is to have an artist create the figure using interactive software tools. The
quality of the data obtained by these means is of course completely dependent on
the artist’s skills and experience. Another method of obtaining data, digitizing real
humans, is becoming more prevalent as the necessary hardware becomes more
affordable. Data representing a specific individual are often captured using a laser
scanner or by performing image processing on video images [34] [38] [45].

There have also been various parametric approaches to human figure data gen-
eration. Virtual human software intended for use in ergonomics simulation tends
to use parameters with a strong anthropometric basis [6]. Software with an artistic
or entertainment orientation allows for more free-form parametric control of the
generated body data [39] [64]. A few projects are just starting to scratch the sur-
face of using exemplar-based models to allow for data generation by mixing
known attributes [9] [45].

6.4.3 Geometry Deformation
For a user to animate a virtual human figure, the figure’s subparts must be able to
be deformed. The method of deformation used is largely determined by the way
the figure is being represented. Very simple figures, usually used for real-time dis-
play, are often broken into multiple rigid subparts, such as a forearm, a thigh, or a
head. These parts are arranged in a hierarchy of joints and segments such that
rotating a joint rotates all of the child segments and joints beneath it in the hierar-
chy [36]. While this method is quick, it yields terrible visual results at the joints,
particularly if the body is textured.

A single skin is more commonly used for polygonal figures. When a joint is
rotated, the appropriate vertices are deformed to simulate rotation around the
joint. Several different methods can be used for this, and, as with most of these
techniques, they involve trade-offs of realism and speed. The simplest and fastest
method is to bind each vertex to exactly one bone. When a bone rotates, the verti-
ces move along with it [7]. Better results can be obtained, at the cost of additional
computation, if the vertices surrounding a joint are weighted so that their position
is affected by multiple bones [43]. While weighting the effects of bone rotations
on vertices results in smoother skin around joints, severe problems can still occur
with extreme joint bends. Free-form deformations have been used in this case to

Team LRN



Overview of Virtual Human Representation 357

simulate the skin-on-skin collision and the accompanying squashing and bulging
that occur when a joint such as the elbow is fully bent [14]. The precise placement
of joints within the body greatly affects the realism of the surrounding deforma-
tions. Joints must be placed strictly according to anthropometric data, or unrealis-
tic bulges will result [33] [58].

Some joints require more complicated methods for realistic deformation. Using
only a simple, single three-degrees-of-freedom rotation for a shoulder or vertebrae
can yield very poor results. A few systems have attempted to construct more com-
plex, anatomically based joints [24] [53]. The hands in particular can require sig-
nificantly more advanced deformation techniques to animate realistically [30].
Surface deformations that would be caused by changes in underlying material,
such as muscle and fat in a real human, can be produced in a virtual human by a
number of means. Methods range from those that simply allow an animator to
specify muscular deformations [14] to those that require complex dynamics simu-
lations of the various tissue layers and densities [62]. A great deal of muscle simu-
lation research has been conducted for facial animation. See the facial animation
section of this chapter for more details. Finally, deformations resulting from inter-
action with the environment have been simulated both with traditional dynamics
systems and with implicit surfaces [65].

6.4.4 Clothing
It is the rare application or animation that calls for totally nude figures. Simulating
clothing and its interaction with the surfaces of the figure is probably the most
computationally intensive part of representing virtual humans. As a result, virtual
humans to date usually appear to be sporting rigid geometric clothing or tight-
fitting spandex implemented as texture maps. In some real-time applications, rigid
segments of cloth have been jointed together and animated via key frames [64].
High-end off-line animation systems are starting to offer advanced cloth simula-
tion modules that attempt to calculate the effects of gravity as well as cloth-cloth
and cloth-body collisions by using mass-spring networks [2] [8] [52] [61]. See
Section 6.6 for more discussion of cloth and clothing.

6.4.5 Hair
The most significant hurdle for making virtual humans that are indistinguishable
from real ones is the accurate simulation of a full head of hair. Convincingly
emulating the complex interactions of thousands of hairs has proved exceedingly
difficult. The most common, visually poor, but computationally inexpensive, tech-
nique has been to merely construct a rigid piece of geometry in the rough shape of
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the volume of hair and attach it to the top of the head, like a helmet. Texture maps
with transparency information are sometimes used to improve this approach. The
next best option is similar to one of the simpler cloth techniques: animate a chain
of rigid hair segments. This technique is often seen with animated ponytails [64].
While real-time virtual humans usually employ one of the previous two techniques
for simulating hair, off-line hair modeling is beginning to employ either small geo-
metric tubes [4] [48] or particle trails [2] to generate individual strands. Correctly
lighting individual hair strands efficiently remains an active research problem.

6.4.6 Surface Detail
After the geometry for a virtual figure has been constructed, its surface properties
must also be specified. As with the figure’s geometry, surface properties can be pro-
duced by an artist, scanned from real life, or procedurally generated. Not only
color but also specular, diffuse, bump, and displacement maps may be generated.
Accurately positioning the resulting textures requires the generation of texture
coordinates [61]. The skin may be simulated using complex physically based simu-
lations [31] [46]. Wrinkles may also be simulated by different means [48] [65].

6.5 Layered Approach to Human Figure Modeling

A common approach to animating the human figure is to construct the figure in
layers consisting of skeleton, muscles, and skin. The skeletal layer is responsible for
the articulation of the form. The muscle layer is responsible for deforming the
shape as a result of skeletal articulation. The skin is responsible for carrying the
appearance of the figure.

Chadwick, Haumann, and Parent [14] introduce the layered approach to figure
animation by incorporating an articulated skeleton, surface geometry representing
the skin, and an intermediate muscle layer that ties the two together. The muscle
layer is not anatomically based, and its only function is to deform the surface
geometry as a function of joint articulation. The muscle layer implements a system
of free-form deformation lattices in which the surface geometry is embedded. The
lattice is organized with two planes on each end that are responsible for maintain-
ing continuity with adjoining lattices, and the interior planes are responsible for
deforming the skin to simulate muscle bulging (Figure 6.38). As the joint flexes,
the interior planes elongate perpendicular to the axis of the link. The elongation is
usually not symmetrical about the axis and is designed by the animator. For exam-
ple, the upper-arm FFD lattice elongates as the elbow flexes. Typically, the FFD
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z

deformation for the upper arm is designed to produce the majority of the skin
deformation in the region of the biceps. A pair of FFD lattices are used on either
side of each joint to isolate the FFDs responsible for muscle bulging from the
more rigid area around the joint. In addition, the joint FFDs are designed to
maintain continuity on the outside of the joint and create the skin crease on the
inside of the joint. See Figure 6.39

Recently, there has been more anatomically accurate modeling of the human
figure [62] [63] [73]. Scheepers [62] and Scheepers et al. [63] use artistic anatomy
to guide analysis of the human form. Bones, muscles, tendons, and fatty tissue are
modeled in order to occupy the appropriate volumes. Scheepers identifies the
types of muscles sufficient for modeling the upper torso of the human figure: lin-
ear muscles, sheet muscles, and bendable sheet muscles. Tendons are modeled as
part of the muscles and attach to the skeleton. Muscles deform according to the
articulation of the skeleton. See Figure 6.40 (Plate 9) for an example. These mus-
cles populate the skeletal figure in the same manner that actual muscles are
arranged in the human body (Figure 6.41 [Plate 10]). To deform the skin accord-
ing to the underlying structure (muscles, tendons, fatty tissue), the user defines
implicit functions so that the densities occupy the volume of the corresponding
anatomy. Ellipsoids are used for muscles, cylinders for tendons, and flattened ellip-
soids for fat pads. The implicits are summed to smooth the surface and further
model underlying tissue. The skin, modeled as a B-spline surface, is defined by
floating the control points of the B-spline patches to the isosurface of the summed
implicits. This allows the skin to distort as the underlying skeletal structure articu-
lates and muscles deform (Figure 6.42).

Figure 6.38 The basic FFD lattice [14]
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Figure 6.39 Deformation induced by FFDs as a result of joint articulation [14]

Figure 6.40 Linear muscle model [62]
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6.6 Cloth and Clothing

The clothes that protect and decorate the body contribute importantly to the
appearance of a human figure. For most human figures in most situations, cloth
covers the majority of the body. As in real life, cloth provides important visual
qualities for the synthetic figure and imparts certain attributes and characteristics
to it. The way in which cloth drapes over and highlights or hides aspects of the fig-
ure can make the figure more or less attractive. For an animated figure, the clothes
provide important visual cues that indicate the type and speed of its motion. For
example, the swirling of a skirt or the bouncing of a shirttail indicates the pace or
smoothness of a walk.

One of the simplest cases of modeling the behavior of cloth is the static draping
of a piece of material. Very specific ridges in the material will be created when sup-
ported at discrete points. Animating these points, in turn, animates the cloth. This
model for cloth is limited in that it does not address the folding, wrinkling, and
bending of material. A robust model for cloth must consider the constant state of

Figure 6.41 Muscles of upper torso [62] Figure 6.42 Skin model over muscles, tendons, 
and fatty tissue [62]
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collision between the material and the figure being clothed. The more robust
implementations of cloth typically use a mesh of triangles as the underlying
model, in which collisions are tested for continually. The simple draping model
does, however, help to illustrate the difference between levels of representation
possible when employing a model for animation. Simple draping identifies the
macro-features of cloth and models these directly, whereas triangulated polygonal
meshes model cloth at a much finer level of detail. With realistic modeling of these
fine-detail elements, the macro-features of the cloth will emerge from the simula-
tion without explicitly being modeled. In the discussion that follows, simple drap-
ing of cloth is discussed first, followed by the considerations involved in forming a
more robust model for clothing on a figure.

6.6.1 Simple Draping
In the special case of a cloth supported at a fixed number of constrained points,
the cloth will drape along well-defined lines. Weil [72] presents a geometric
method for hanging cloth from a fixed number of points. The cloth is represented
as a two-dimensional grid of points located in three-space with certain of the grid
points constrained to a fixed position. 

The procedure takes place in two stages. In the first stage, an approximation is
made to the draped surface within the convex hull of the constrained points. The
second stage is a relaxation process that continues until the maximum displace-
ment during a given pass falls below a user-defined tolerance.

Vertices on the cloth grid are classified as either interior or exterior, depending
on whether they are inside or outside the convex hull of the constrained points.
This inside/outside determination is based on two-dimensional grid coordinates.
The first step is to position the vertices that lie along the line between constrained
vertices. The curve of a thread hanging between two vertices is called a catenary
curve and has the form shown in Equation 6.2.

(Eq. 6.2)

Catenary curves traced between paired constrained points are generated using
vertices of the cloth that lie along the line between constrained vertices. The verti-
ces between the constrained vertices are identified in the same way that a line is
drawn between points on a raster display (Figure 6.43).

If two catenary curves cross each other in grid space (Figure 6.44), then the
lower of the two curves is simply removed. The reason for this is that the catenary
curves essentially support the vertices along the curve. If a vertex is supported by

y c a
x b–

a
----------- 

 cosh⋅ 
 –=
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two curves, but one curve supports it at a higher position, then the higher curve
takes precedence.

A catenary curve is traced between each pair of constrained vertices. After the
lower of two crossing catenary curves is removed, a triangulation is produced in
the grid space of the constrained vertices (Figure 6.45). The vertices of the grid
that fall on the lines of triangulation are positioned in three-space according to the
catenary equations. To find the catenary equation between two vertices (x1, y1),
(x2, y2), see Equation 6.3 [72]. Each of these triangles is repeatedly subdivided by
constructing a catenary from one of the vertices to the midpoint of the opposite
edge on the triangle. This is done for all three vertices of the triangle. The highest
of the three catenaries so formed is kept and the others are discarded. This breaks
the triangle into two new triangles (Figure 6.46). This continues until all interior
vertices have been positioned.

Figure 6.43 Constrained cloth and grid coordinate space

Figure 6.44 Two catenary curves supporting the same point

Cloth supported at two constrained points Constrained points in grid space
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y

z
curve to be removed
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(Eq. 6.3)

A relaxation process is used as the second and final step in positioning the ver-
tices. The effect of gravity is ignored; it has been used implicitly in the formation
of the catenary curves using the interior vertices. The exterior vertices are initially
positioned so as to effect a downward pull. The relaxation procedure repositions
each vertex to satisfy unit distance from each of its neighbors. For a given vertex,
displacement vectors are formed to each of its neighbors. The vectors are added to
determine the direction of the repositioning. The magnitude of the repositioning
is determined by taking the square root of the squares of the distance to each of the
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neighbors. Self-intersection of the cloth is ignored. To model material stiffness, the
user can add dihedral angle springs to bias the shape of the material.

Animation of the cloth is produced by animating the existence and/or position
of constrained points. In this case, the relaxation process can be made more effi-
cient by updating the position of points based on positions in the last time step.
Modeling cloth this way, however, is not appropriate for clothes because of the
large number of closely packed contact points that clothing material has with the
body. The formation of catenary curves is not an important aspect of clothing, and
there is no provision for the wrinkling of material above contact points. For cloth-
ing, a more physically based approach is needed.

6.6.2 Getting into Clothes
To simulate clothing, the user must incorporate the dynamic aspect of cloth into
the model to produce the wrinkling and bulging that naturally occur when cloth is
worn by an articulated figure. In order for the figure to affect the shape of the
cloth, extensive collision detection and response must be calculated as the cloth
collides with the figure and with itself almost constantly. The level of detail at
which clothes must be modeled to create realistic wrinkles and bulges requires rel-
atively small triangles. Therefore, it takes a large number of geometric elements to
clothe a human figure. As a result, one must attend to the efficiency of the meth-
ods used to implement the dynamic simulation and collision handling of the
clothing.

Modeling Dynamics
To achieve the realistic reaction of the cloth to the movements of the supporting
figure, the user must incorporate the characteristics of the cloth threads into the
model (e.g., [69]); these characteristics must be adjustable to model differences

Figure 6.45 Triangulation of constrained 
points in grid coordinates

Figure 6.46 Subdividing triangles
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among types of cloth. The characteristics of cloth are its ability to stretch, bend,
and skew. These tendencies can be modeled as springs that impart forces or as
energy functions that contribute to the overall energy of a given configuration.
Forces are used to induce accelerations on system masses. The energy functions
can be minimized to find optimal configurations or differentiated to find local gra-
dients. Whether forces or energies are used, the functional forms are similar and
are usually based on the amount some metrics deviate from rest values. 

Woven cloth is formed by the warp (parallel threads in the lengthwise principal
direction of the material) and weft (parallel filler threads in the direction orthogo-
nal to the warp threads) pattern of the threads, which creates a quadrilateral mesh.
Thus, cloth is suitably modeled by a quadrilateral mesh in which the vertices of
any given quadrilateral element are not necessarily planar. 

Stretching is usually modeled by simply measuring the amount that the length
of an edge deviates from its rest length. Equation 6.4 shows a commonly used
form for the force equation of the corresponding spring. v1* and v2* are the rest
positions of the vertices defining the edge; v1 and v2 are the current positions of
the edge vertices. Notice that the force is a vector equation, whereas the energy
equation is a scalar. The analogous energy function is given in Equation 6.5. The
metrics have been normalized by the rest length (v1* – v2*). 

(Eq. 6.4)

(Eq. 6.5)

Restricting the stretching of edges only controls changes to the surface area of
the mesh. Skew is in-plane distortion of the mesh, which still maintains the length
of the original edges (Figure 6.47a, b). To control such distortion (when using
forces), one may employ diagonal springs (Figure 6.47c). The energy function sug-
gested by DeRose, Kass, and Truong [19] to control skew distortion is given in
Equation 6.6.

(Eq. 6.6)

Edge and diagonal springs (energy functions) control in-plane distortions, but
out-of-plane distortions are still possible. These include the bending and folding
of the mesh along an edge that does not change the length of the edges or diagonal
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measurements. Bending can be controlled by either restricting the dihedral angles
(the angle between adjacent quadrilaterals) or controlling the separation among a
number of adjacent vertices. A spring-type equation based on deviation from the
rest angle can be used to control the dihedral angle: Fb = kb • (θi – θi

* )  (Figure
6.48). Bending can also be controlled by considering the separation of adjacent
vertices in the direction of the warp and weft of the material (Figure 6.49). See
Equation 6.7 for an example.

(Eq. 6.7)

Whether springlike forces or energy functions are used, the constants ks , kw,
and kb can be globally and locally manipulated to impart characteristics to the
mesh.

Figure 6.47 Original quadrilateral, skewed quadrilateral, and controlling skew 
with diagonal springs
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Collision Detection and Response

 Collisions with cloth are handled much like collisions with elements of any
complex environment. That is, they must be handled efficiently. One of the most
common techniques for handling collisions in a complex environment is to orga-
nize data in a hierarchy of bounding boxes. As suggested by DeRose, Kass, and
Truong [19], such a hierarchy can be built from the bottom up by first forming
bounding boxes for each of the faces of the cloth. Each face is then logically
merged with an adjacent face, forming the combined bounding box and establish-
ing a node one level up in the hierarchy. This can be done repeatedly to form a
complete hierarchy of bounding boxes for the cloth faces. Care should be taken to
balance the resulting hierarchy, as by making sure all faces are used when forming
nodes at each level of the hierarchy. Because the cloth is not a rigid structure, addi-
tional information can be included in the data structure to facilitate updating the
bounding boxes each time a vertex is moved. Hierarchies can be formed for rigid
and nonrigid structures in the environment. To test a vertex for possible collision
with geometric elements, compare it with all the object bounding box hierarchies,
including the hierarchy of the object to which it belongs.

Collisions are an almost constant occurrence for a figure wearing clothes. Cal-
culation of impulse forces that result from such collisions is costly for an animated
figure. Whenever a vertex is identified that violates a face in the environment, a

 

Figure 6.48

 

Control of bending by dihedral angle

 

Figure 6.49
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transient spring can be introduced that imparts a force to the vertex so that it is
restored to an acceptable position.

 

6.7 Motion Capture

 

Motion capture

 

 of an object involves sensing, digitizing, and recording that object
in motion [49]. As used here, it specifically refers to capturing human motion (or
the motion of other life forms), but some very creative animation can be accom-
plished by capturing the motion of structures other than biological life forms. In
motion capture, the subject’s movement is recorded. It should be noted that locat-
ing and extracting a figure’s motion directly from raw (unadulterated) video is
extremely difficult and is the subject of current research. As a result, the subject of
the motion capture is typically instrumented in some way so that positions of key
feature points can be easily detected and recorded. Usually, these positions are in
two-space. The 

 

x

 

-, 

 

y

 

-, 

 

z

 

-coordinates of joints and other strategic positions of the
figure are computed from the instrumented positions. An appropriate synthetic
figure can then be fitted to these positions and animated as the positions of the fig-
ure are made to follow the motion of the computed positions.

There are primarily two approaches to this instrumentation:

 

2

 

 

 

electromagnetic
sensors   and  optical markers  . Electromagnetic tracking, also simply called  magnetic
tracking

 
, uses sensors placed at the joints that transmit their positions and orienta-

tions back to a central processor to record their movements. While accurate theo-
retically, magnetic tracking systems require an environment devoid of magnetic
field distortions. To transmit their information, the sensors have to use either
cables or wireless transmission to communicate with the central processor. The
former requires that the subject be “tethered” with some kind of cabling harness.
The latter requires money. The advantage of electromagnetic sensors is that the
three-dimensional position and orientation of each sensor can be recorded and dis-
played in real time (with some latency). The drawbacks relate to the range and
accuracy of the magnetic field. Optical markers, on the other hand, have much
larger range, and the performers only have to wear reflective markers on their
clothes (see Figure 6.50). The optical approach does not provide real-time feed-
back, however, and the data from optical systems is error-prone and noisy. Optical
markers use video technology to record images of the subject in motion. Because
orientation information is not directly generated, more markers are required than
with magnetic trackers. Some combination of joint and midsegment markers is

 

2. There are several other technologies used to capture motion, including electromechanical suits, fiber-optic sensors,
and digital armatures [49]. However, electromagnetic sensors and (passive) optical markers are by far the most com-
monly used technologies for capturing full-body motion.
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used. While industrial strength systems may use infrared cameras, eight or more
cameras, and fast (up to 120 frames per second) cameras, basic optical motion
control can be implemented with consumer-grade video technology. Because the
optical approach can be low cost, at least in limited situations, this is the approach
that is discussed here.

The objective of motion control is to reconstruct the three-dimensional motion
of a physical object and apply it to a synthetic model. With optical systems, three
major tasks need to be undertaken. First, the images need to be processed so that
the animator can locate, identify, and correlate the markers in the 2D video
images. Second, the 3D locations of the markers need to be reconstructed from
their 2D locations. Third, the 3D marker locations must be constrained to a
model of the physical system whose motion is being captured (e.g., a stick figure
model of the performer). The first requires some basic image-processing tech-
niques, simple logic, and sometimes some luck. The second requires camera cali-
bration and enough care to overcome numerical inaccuracies. The third requires
satisfying constraints between relative marker positions.

 

Figure 6.50

 

Image from optical motion capture session [20]
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6.7.1 Processing the Images

 

Optical markers can be fashioned from Ping-Pong balls and coated to make them
stand out in the video imagery. They can be attached to the figure using Velcro
strips or some other suitable method. Colored tape can also be used. The markers
are usually positioned at the joints since these are the structures of interest in ani-
mating a figure. The difference between the position of the marker and that of the
joint is one source of error in motion capture systems. This is further complicated
if the marker moves relative to the joint during the motion of the figure. Once the
video is digitized, it is simply a matter of scanning each video image for evidence
of the optical markers. If the background image is static, then it can be subtracted
out to simplify the processing. Finding the position of a single marker in a video
frame in which the marker is visible is the easy part. This step gets messier the
more markers there are, the more often some of the markers are occluded, the
more often the markers overlap in an image, and the more the markers change
position relative to one another. With multimarker systems, the task is not only to
isolate the occurrence of a marker in a video frame but also to track a specific
marker over a number of frames even when the marker may not always be visible.

Once all of the visible markers have been extracted from the video, each indi-
vidual marker must be tracked over the video sequence. Sometimes this can be
done with simple domain knowledge. For example, if the motion is constrained to
be normal walking, then the ankle markers (or foot markers, if present) can be
assumed to always be the lowest markers and they can be assumed to always be
within some small distance from the bottom of the image. Frame-to-frame coher-
ence can be employed to track markers by making use of the position of a marker
in a previous frame and knowing something about the limits of its velocity and
acceleration. For example, knowing that the markers are on a walking figure and
knowing something about the camera position relative to the figure, one can esti-
mate the maximum number of pixels that a marker might travel from one frame to
the next and thus help track it over time. 

Unfortunately, one of the realities of optical motion capture systems is that peri-
odically one or more of the markers are occluded. In situations in which several
markers are used, this can cause problems in successfully tracking a marker
throughout the sequence. Some simple heuristics can be used to track markers that
drop from view for a few frames and that do not change their velocity much over
that time. But these heuristics are not foolproof (this is why they are called heuris-
tics). The result of failed heuristics can be markers swapping paths in mid-
sequence or the introduction of a new marker when, in fact, a marker is simply
reappearing again. Marker swapping can happen even when markers are not
occluded. If markers pass within a small distance of each other they may swap
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paths because of numerical inaccuracies of the system. Sometimes these problems
can be resolved when the three-dimensional positions of markers are constructed.
At other times user intervention is required to resolve ambiguous cases.

As a side note, there are optical systems that use active markers. The markers are
LEDs that flash their own unique identification code. There is no chance of
marker swapping in this case, but this system has its own limitations. The LEDs
are not very bright and cannot be used in bright environments. Because each
marker has to take the time to flash its own ID, the system captures the motion at
a relatively slow rate. Finally, there is a certain delay between the measurements of
markers, so the positions of each marker are not recorded at exactly the same
moment, which may present problems in animating the synthetic model.

A constant problem with motion capture systems is noise. Noise can arise from
the physical system; the markers can move relative to their initial positioning, and
the faster the performer moves, the more the markers can swing and reposition
themselves. Noise also arises from the sampling process; the markers are being
sampled in time and space, and errors can be introduced in all dimensions. A typ-
ical error might result in inaccurate positioning of a feature point by half a centi-
meter. For some animations, this can be a significant error.

To deal with the noise, the user can condition the data before they are used in
the reconstruction process. Data points that are radically inconsistent with typical
values can be thrown out, and the rest can be filtered. The objective is to smooth
the data without removing any useful features. A simple weighted average of adja-
cent values can be used to smooth the curve. The number of adjacent values to use
and their weights are a function of the desired smoothness. Generally, this must be
selected by the user.

 

6.7.2 Camera Calibration

 

Before the three-dimensional position of a marker can be reconstructed, it is nec-
essary to know the locations and orientations of cameras in world space as well as
the intrinsic properties of the cameras such as focal length, image center, and
aspect ratio [68].

A simple pinhole camera model is used for the calibration. This is an idealized
model that does not accurately represent certain optical effects often present in real
cameras, but it is usually sufficient for computer graphics and image-processing
applications. The pinhole model defines the basic projective geometry used to
describe the imaging of a point in three-space. For example, the camera’s coordi-
nate system is defined with the origin at the center of projection and the plane of
projection at a focal-length distance along the positive 

 

z

 

-axis, which is pointed
toward the camera’s center of interest (Figure 6.51). Equivalently, the projection
plane could be a focal length along the negative 

 

z

 

-axis on the other side of the cen-
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ter of projection from the center of interest; this would produce an inverted image,
but the mathematics would be the same.

The image of a point is formed by projecting a ray from the point to the center
of projection (Figure 6.52). The image of the point is formed on the image (pro-
jection) plane where this ray intersects the plane. The equations for this point, as
should be familiar to the reader, are formed by similar triangles. Camera calibra-
tion is performed by recording a number of image space points whose world space
locations are known. These pairs can be used to create an overdetermined set of
linear equations that can be solved using a least-squares solution method. See
Appendix B for further discussion.

 

6.7.3 3D Position Reconstruction

 

To reconstruct the three-dimensional coordinates of a marker, the user must locate
its position in at least two views relative to known camera positions. In the sim-

 

Figure 6.51

 

Camera model

Figure 6.52 Y-Z projection of a world space point onto the image plane in the camera 
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plest case, this requires two cameras to be set up to record marker positions (Figure
6.53). The greater the orthogonality of the two views, the better the chance for an
accurate reconstruction. 

If the position and orientation of each camera are known with respect to the
global coordinate system, along with the position of the image plane relative to the
camera, then the images of the point to be reconstructed (I1, I2) can be used to
locate the point, P, in three-space (Figure 6.53). Using the location of a camera,
the relative location of the image plane, and a given pixel location on the image
plane, the user can compute the position of that pixel in world coordinates. Once
that is known, a vector from the camera through the pixel can be constructed in
world space for each camera (Equation 6.8, Equation 6.9).

 (Eq. 6.8)

(Eq. 6.9)

By setting these equations equal to each other, C1 + k1 • (I1 – C1) = C2 + k2 •

(I2 – C2). This represents three equations with two unknowns that can be easily
solved—in an ideal world. Noise tends to complicate the ideal world. In practice,
these two equations will not exactly intersect, although if the noise in the system is
not excessive, they will come close. So, in practice, the points of closest encounter
must be found on each line. This requires that a P1 and a P2 be found such that P1

Figure 6.53 Two-camera view of a point 
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is on the line from Camera 1, P2 is on the line from Camera 2, and P2 – P1 is per-
pendicular to each of the two lines (Equation 6.10, Equation 6.11).

(Eq. 6.10)

(Eq. 6.11)

See Appendix B on solving for P1 and P2. Once the points P1 and P2 have been
calculated, the midpoint of the chord between the two points can be used as the
location of the reconstructed point. In the case of multiple markers in which
marker identification and tracking have not been fully established for all the mark-
ers in all the images, the distance between P1 and P2 can be used as a test for corre-
lation between I1 and I2. If the distance between P1 and P2 is too great, then this
indicates that I1 and I2 are probably not images of the same marker and a different
pairing needs to be tried. Smoothing can also be performed on the reconstructed
three-dimensional paths of the markers to further reduce the effects of noise on
the system.

Multiple Markers
The number and positioning of markers on a human figure depend on the
intended use of the captured motion. A simple configuration of markers for digi-
tizing gross human figure motion might require only fourteen markers (Figure
6.54). For more accurate recordings of human motion, markers need to be added
to the elbows, knees, chest, hands, toes, ankles, and spine. Figure 6.55 shows
thirty-one unique markers. Menache [49] suggests an addition of three per foot
for some applications.

Multiple Cameras
As the number of markers increases and the complexity of the motion becomes
more involved, there is greater chance for marker occlusion. To reconstruct the

Figure 6.54 Sample marker sets
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three-dimensional position of a marker, the user must see and identify it in at least
two images. As a result, a typical system may have eight cameras simultaneously
taking images. These sequences need to be synchronized either automatically or
manually. This can be done manually, for example, by noting the frame in each
sequence when a particular heel strike occurs. However, with manually synchro-
nized cameras the images could be a half a frame off from each other. 

6.7.4 Fitting to the Skeleton
Once the motion of the individual markers looks smooth and reasonable, the next
step is to attach them to the underlying skeletal structure that is to be controlled
by the digitized motion. In a straightforward approach, the position of each
marker in each frame is used to absolutely position a specific joint of the skeleton.
As a first approximation to controlling the motion of the skeleton, this works fine.
However, on closer inspection, a problem often exists. The problem with using the
markers to directly specify position is that, because of noise, smoothing, and gen-
eral inaccuracies, distances between joints of the skeleton will not be precisely
maintained over time. This change in bone length can be significant. Length
changes of 10 to 20 percent are common. In many cases, this is not acceptable. For
example, this can cause foot-sliding of the skeleton (also known as skating ). Inverse
kinematics used to lock the foot to the ground can counteract this skating. 

One source of the problem is that the markers are located, not at the joints of
the performers, but outside the joints at the surface. This means that the point
being digitized is displaced from the joint itself. While a constant distance is main-

Figure 6.55 Complete marker set [49]
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tained on the performer, for example, between the knee joint and the hip joint, it
is not the case that a constant distance is maintained between a point to the side of
the knee joint and a point to the side of the hip joint. 

The one obvious correction that can be made is logically relocating the digitized
positions so that they correspond more accurately to the positions of the joints.
This can be done by using marker information to calculate the joint position. The
distance from the marker to the actual joint can be determined easily by visual
inspection. However, the problem with locating the joint relative to a marker is
that there is no orientation information directly associated with the marker. This
means that, given a marker location and the relative distance from the marker to
the joint, the user does not know in which direction to apply the displacement in
order to locate the joint.

One solution is to put markers on both sides of the joint. With two marker
locations, the joint can be interpolated as the midpoint of the chord between the
two markers. While effective for joints that lend themselves to this approach, the
approach does not work for joints that are complex or more inaccessible (such as
the shoulder and spine), and it doubles the number of markers that must be
processed.

A little geometry can be used to calculate the displacement of the joint from the
marker. A plane formed by three markers can be used to calculate a normal to a
plane of three consecutive joints, and this normal can be used to displace the joint
location. Consider the elbow. If there are two markers at the wrist (commonly
used to digitize the forearm rotation) the position of the true wrist can be interpo-
lated between them. Then the wrist-elbow-shoulder markers can be used to calcu-
late a normal to the plane formed by those markers. Then the true elbow position
is calculated by offsetting from the elbow marker in the direction of the normal by
the amount measured from the performer. By recalculating the normal every
frame, the user can easily maintain an accurate elbow position throughout the per-
formance. In most cases, this technique is very effective. A problem with the tech-
nique is that when the arm straightens out the wrist-elbow-shoulder become
(nearly) colinear. Usually, the normal can be interpolated during these periods of
congruity from accurately computed normals on either side of the interval. This
approach keeps limb lengths much closer to being constant.

Now that the digitized joint positions are more consistent with the skeleton to
be articulated, they can be used to control the skeleton. To avoid absolute posi-
tioning in space and further limb-length changes, one typically uses the digitized
positions to calculate joint rotations. For example, in a skeletal hierarchy, if the
positions of three consecutive joints have been recorded for a specific frame, then
the third of the points in the hierarchy is used to calculate the rotation of that limb
relative to the limb represented by the first two points (Figure 6.56).
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After posing the model using the calculated joint angles, it might still be the
case that, because of inaccuracies in the digitization process, feature points of the
model violate certain constraints such as avoiding floor penetration. The potential
for problems is particularly high for end effectors, such as the hands or feet, which
must be precisely positioned. Often, these must be independently positioned, and
then the joints higher up the hierarchy (e.g., knee and hip) must be adjusted to
compensate for any change to the end effector position.

6.7.5 Modifying Motion Capture
There has been recent work (e.g., [13] [29] [74]) on modifying motion capture data
to fit individuals of various dimensions or to blend one motion into another. This
holds the promise of developing libraries of common digitized motions that can be
retrieved, modified, adapted, and combined to produce any desired motion for any
target figure. However, this remains an area of active research. Most often the
motion is recaptured if the original motion does not fit with its intended purpose.

6.7.6 Summary
Motion capture is a very powerful and useful tool. It will never replace the results
produced by a skilled animator, but its role in animation will expand and increase
as motion libraries are built and the techniques to modify, combine, and adapt
motion capture data become more sophisticated. Current research involves
extracting motion capture data from markerless video. This has the potential to
free the subject from instrumentation constraints and make motion capture even
more useful.

Figure 6.56 One-degree-of-freedom rotation joint
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6.8 Chapter Summary

The human figure is an interesting and complex form. It has a uniform structure
but contains infinite variety. As an articulated rigid structure, it contains many
degrees of freedom, but its surface is deformable. The pliable nature of the face
presents an immense animation challenge by itself. Modeling and animating hair
in any detail is also enormously complex. Moreover, the constant collision and
sliding of cloth on the surface of the body represents significant computational
complexity. 

One of the things that make human motion so challenging is that no single
motion can be identified as correct human motion. Human motion varies from
individual to individual for a number of reasons, but it is still recognizable as rea-
sonable human motion, and slight variations can seem odd or awkward. Research
in computer animation is just starting to delve into the nuances of human motion.
Many of these nuances vary from person to person but, at the same time, are very
consistent for a particular person, for a particular ethnic group, for a particular age
group, for a particular weight group, for a particular emotional state, and so on.
Computer animation is only beginning to analyze, record, and synthesize these
important qualities of movement. Most of the work has focused on modeling
changes in motion resulting from an individual’s emotional state (e.g., [3] [16]).

Human figure animation remains a challenge for computer animators and fer-
tile ground for graphics researchers. Developing a synthetic actor indistinguishable
from a human counterpart remains the Holy Grail of researchers in computer ani-
mation.
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T

 

his appendix presents rendering techniques for computing a series of images
that are played back as an animation sequence. It is assumed that the reader has a
solid background in rendering techniques and issues, namely, the use of frame
buffers, the 

 

z

 

-buffer display algorithm, and aliasing. The techniques presented
here concern smoothly displaying a sequence of images on a computer monitor
(

 

double buffering

 

), efficiently computing images of an animated sequence (

 

compos-
iting, drop shadows

 

), and effectively rendering moving objects (

 

motion blur

 

). An
understanding of this material is not necessary for understanding the techniques
and algorithms covered in the rest of the book, but computer animators should be
familiar with these techniques when considering the trade-offs involved in render-
ing images for animation.

 

A.1 Double Buffering

 

Not all computer animation is first recorded onto film or video for later viewing.
In many cases, image sequences are displayed in real time on the computer

 

Rendering
Issues
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A
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monitor. Computer games are a prime example of this, as is web animation. Real-
time display also occurs in simulators and for previewing animation for later high-
quality recording. In some of these cases, the motion is computed and images are
rendered as the display is updated; sometimes precalculated images are read from
the disk and loaded into the frame buffer. In either case, the time it takes to paint
an image on a computer screen can be significant (for various reasons). To avoid
waiting for the image to update, animators often paint the new image into an off-
screen buffer. Then a quick operation is performed to change the offscreen buffer
to on-screen (often with hardware display support); the previous on-screen buffer
becomes offscreen. This is called 

 

double buffering

 

. 
In double buffering, two (or more) buffers are used. One buffer is used to

refresh the computer display, while another is used to assemble the next image.
When the next image is complete, the two buffers switch roles. The second buffer
is used to refresh the display, while the first buffer is used to assemble the next
image. The buffers continue exchanging roles to ensure that the buffer used for
display is not actively involved in the update operations (see Figure A.1). 

Double buffering is often supported by the hardware of a computer graphics
system. For example, the display system may have two built-in frame buffers, both
of which are accessible to the user’s program and are program selectable for driving
the display. Alternatively, the graphics system may be designed so that the screen
can be refreshed from an arbitrary section of main memory. Double buffering is
also effective when implemented completely in software, as is popular in JAVA
applets. Pseudocode of simple double buffering using two frame buffers is shown
in Figure A.2.

 

A.2 Compositing

 

Compositing is the act of combining separate image layers into a single picture. It
allows the animator, or compositor, to combine elements obtained from different
sources to form a single image. It allows artistic decisions to be deferred until all
elements are brought together. Individual elements can be selectively manipulated
without the user having to regenerate the scene as a whole. As frames of computer
animation become more complex, the technique allows layers to be calculated sep-
arately and then composited after each has been finalized. Compositing provides
great flexibility and many advantages to the animation process. Figure A.3 (Plate
11) shows a frame from 

 

James and the Giant Peach

 

 in which computer graphics,
live action, and miniatures were combined. Before digital imagery, compositing
was performed optically in much the same way that a multiplane camera is used in
conventional animation. With digital technology, compositing operates on digital
image representations.
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Figure A.1

 

Double buffering

 

Figure A.2

 

Double buffering pseudocode

Load image 0 into buffer 0

. . .
image 0 image 1 image 2 image 3

buffer 0 buffer 1

screen

image 0 image 1 image 2 image 3

buffer 0 buffer 1

screen

. . .
image 0 image 1 image 2 image 3

buffer 0 buffer 1

screen

 

 

 

. . .
image 0 image 1 image 2 image 3

buffer 0 buffer 1

screen

Refresh screen from buffer 1; load 
image into buffer 0

. . .
. . .

Refresh screen from buffer 0; 
load image into buffer 1

Refresh screen from buffer 0; 
load image into buffer 1

open_window (w)
i=0;                               // start using buffer 0
j=0;                               // start with image 0
do {
   load_image(buffer[i],image[j]); // load the jth image into the ith frame buffer
   display_in_window(w,buffer[i]); // display the ith buffer
   i=1-i;                          // swap which buffer to load image into
   j= j+1;                         // advance to the next image
} until (done);
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One common and extremely important use of compositing is that of comput-
ing the foreground animation separately from the static background image. If the
background remains static it need only be computed and rendered once. Then, as
each frame of the foreground image is computed, it is composited with the back-
ground to form the final image. The foreground can be further segmented into
multiple layers so that each object, or even each object part, has its own layer. This
technique allows the user to modify just one of the object parts, rerender it, and
then recompose it with the previously rendered layers, thus potentially saving a
great deal of rendering time and expense. This is very similar to the 2

 

1

 

⁄

 

2

 

D approach
taken in conventional hand-drawn cell animation. 

Compositing offers a more interesting advantage when digital frame buffers are
used to store depth information in the form of 

 

z

 

-values, along with the color
information at each pixel. To a certain extent, this approach allows the animator to
composite layers that actually interleave each other in depth. The initial discussion
focuses on compositing without pixel depth information, which effectively mimics
the approach of the multiplane camera. Following this, compositing that takes the

 

z

 

-values into account is explored. 

 

Figure A.3

 

Composited image from 

 

James and the Giant Peach
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A.2.1 Compositing without Pixel Depth Information

 

Digital compositing attempts to combine multiple two-dimensional images of
three-dimensional scenes so as to approximate the visibility of the combined
scenes. Compositing will combine two images at a time with the desire of main-
taining the equilibrium shown in Equation A.1.

 

composite

 

(

 

render

 

(

 

scene

 

1), 

 

render

 

(

 

scene

 

2)) 

 

=

 

 

 

render

 

(

 

merge

 

(

 

scene

 

1, 

 

scene

 

2))

 

(Eq. A.1)

 

The 

 

composite

 

 operation on the left side of the equation refers to compositing
the two rendered images; the 

 

merge

 

 operation on the right side of the equation
refers to combining the geometries of the two scenes into one. The 

 

render

 

 function
represents the process of rendering an image based on the input scene geometries.
In the case in which the composite operator is used, the render function must tag
pixels not covered by the scene as transparent. The equality will hold if the scenes
are disjoint in depth from the observer and the composite operator gives prece-
dence to the image closer to the observer. The visibility between elements from the
different scenes can be accurately represented in 2

 

1

 

⁄

 

2

 

D. The visibility between dis-
joint planes can be accurately resolved by assigning a single visibility priority to all
elements within a single plane. 

The 

 

over

 

 operator places one image on top of the other. In order for 

 

over

 

 to
operate, there must be some assumption or some additional information indicat-
ing which part of the closer image (also referred to as the 

 

overlay plane

 

 or 

 

fore-
ground image

 

) occludes the image behind it (the 

 

background image

 

). In the
simplest case, all of the foreground image occludes the background image. This is
useful for the restricted situation in which the foreground image is smaller than
the background image. In this case, the smaller foreground image is often referred
to as a 

 

sprite

 

. There are usually 2D coordinates associated with the sprite that
locate it relative to the background image (see Figure A.4). 

However, for most cases, additional information in the form of an 

 

occlusion
mask

 

 (also referred to as a 

 

matte

 

 or 

 

key

 

) is provided along with the overlay image. A
one-bit matte can be used to indicate which pixels of the foreground image should
occlude the background during the compositing process (see Figure A.5). In frame
buffer displays, this technique is often used to overlay text or a cursor on top of an
image. 

Compositing is a binary operation, combining two images into a single image.
However, any number of images can be composited to form a final image. The
images must be ordered by depth and are operated on two at a time. Each opera-
tion replaces the two input images with the output image. Images can be compos-
ited in any order as long as the two composited during any one step are adjacent in
their depth ordering.
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Compositing the images using a one-bit occlusion mask, that is, the color of a
foreground image pixel in the output image, is an all-or-nothing decision. How-
ever, if the foreground image is calculated by considering semitransparent surfaces
or partial pixel coverage, then fractional occlusion information is available and
anti-aliasing during the pixel-merging process must be taken into account. Instead
of using a one-bit mask for an all-or-nothing decision, using more bits allows a
partial decision. This gray-scale mask is called 

 

alpha 

 

and is commonly maintained
as a fourth 

 

alpha channel

 

 in addition to the three (red, green, and blue) color chan-
nels. The alpha channel is used to hold an opacity factor for each pixel. Even this is
a shortcut; to be more accurate, an alpha channel for each of the three colors 

 

R, G,

 

and 

 

B

 

 is required. A typical size for the alpha channel is eight bits.
The fractional occlusion information available in the alpha channel is an

approximation used in lieu of detailed knowledge about the three-dimensional
geometry of the two scenes to be combined. Ideally, in the process of determining
the color of a pixel, polygons

 

1

 

 from both scenes are made available to the renderer
and visibility is resolved at the subpixel level. The combined scene is anti-aliased,
and a color for each pixel is generated. However, it is often either necessary or
more efficient to composite the images made from different scenes. Each scene is

 

Figure A.4

 

2

 

1

 

⁄

 

2

 

D compositing without transparency

 

1. To simplify the discussion and diagrams, one must assume that the scene geometry is defined by a collection of poly-
gons. However, any geometric element can be accommodated provided that coverage, occlusion, color, and opacity
can be determined on a subpixel basis.

Sprite positioning

“over”

Image 2Image 2

Scene 1 Scene 2
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anti-aliased independently, and, for each pixel, the appropriate color and opacity
values are generated in rendering the images. These pixels are then combined using
the opacity values (alpha) to form the corresponding pixel in the output image.
Note that all geometric relationships are lost between polygons of the two scenes
once the image pixels have been generated. Note also that the 

 

over

 

 operator in Fig-
ure A.6b could not produce the image of the combined scenes as it appears in Fig-
ure A.6a because the operator, as defined above, must give visibility priority to one
or the other partial scenes.

The compositing operator, 

 

over

 

, operates on a color value, 

 

RGB,

 

 and an alpha
value between 0 and 1 stored at each pixel. The alpha value can be considered
either the opacity of the surface that covers the pixel or the fraction of the pixel
covered by an opaque surface, or a combination of the two. The alpha channel can
be generated by visible surface algorithms that handle transparent surfaces and/or

 

Figure A.5

 

Compositing using a one-bit occlusion mask 

Foreground image

Background image

Occlusion mask

Output image

over

for each pixel (i,j)
 if (Occlusion[i][j] == 0)
   Output[i][j] = Foreground[i][j]
 else
   Output[i][j] = Background[i][j]
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perform some type of anti-aliasing. The alpha value for a given image pixel repre-
sents the amount that the pixel’s color contributes to the color of the output image
when composited with an image behind the given image. To characterize this value
as the fraction of the pixel covered by surfaces from the corresponding scene is not
entirely accurate. It actually needs to be the coverage of areas contributing to the
pixel color weighted by the anti-aliasing filter kernel.

 

2

 

 In the case of a box filter
over nonoverlapping pixel areas, the alpha value equates to the fractional coverage.

 

Figure A.6

 

Anti-aliasing combined scenes versus alpha channel compositing

 

2. The 

 

filter kernel

 

 is the weighting function used to blend color fragments that partially cover a pixel’s area.

Combine scenes

image

(a)   Without compositing: anti-alias the combined scenes to produce image

(b)   With compositing: anti-alias the partial scenes and then combine to produce image 

RGB

 

α

 

RGB

 

α

 

imageover

 

 

 

Anti-alias the 
combined scene

Anti-alias the 
partial scene

Anti-alias the 
partial scene

information about geometric 
relationships has been lost and only 
the depth priority of images is known
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To composite pixel colors based on the 

 

over

 

 operator, the user computes the
new alpha value for the pixel: 

 

α

 

 

 

=

 

 

 

α

 

F

 

 

 

+

 

 (1 – 

 

α

 

F

 

) 

 

•

 

 

 

α

 

B

 

. The composited pixel color
is then computed by Equation A.2.

  

 

(Eq. A.2)

 

where 

 

RGB

 

F

 

 is the color of the foreground, 

 

RGB

 

B

 

 is the color of the background,

 

α

 

F

 

 is the alpha channel of the foreground pixel, and 

 

α

 

B

 

 is the alpha channel of the
background pixel. The 

 

over

 

 operator is not commutative but associative (see
Equation A.3).

 

(Eq. A.3)

 

The compositing operator, 

 

over

 

, assumes that the fragments in the two input
images are uncorrelated. The assumption is that the color in the images comes
from randomly distributed fragments. For example, if the alpha of the foreground
image is 0.5, then the color fragments of what is behind the foreground image
will, on average, show through 50 percent of the time. Consider the case of a fore-
ground pixel and middle ground pixel, both with partial coverage in front of a
background pixel with full coverage (Figure A.7).

The result of the compositing operation is shown in Equation A.4.
 

(Eq. A.4)

 

If the color fragments are correlated, for example, if they share an edge in the
image plane, then the result of the compositing operation is incorrect. The com-
putations are the same, but the result does not accurately represent the configura-
tion of the colors in the combined scene. In the example of Figure A.8, none of the
background should show through. A similarly erroneous result occurs if the mid-
dle ground image has its color completely on the other side of the edge, in which
case none of the middle ground color should appear in the composited pixel.
Because geometric information has been discarded, compositing fails to handle
these cases correctly. 

αF RGBF⋅ 1 αF–( ) αB RGBB⋅ ⋅+( ) α⁄

F Bover
αF Bover αF 1 αF–( ) αB⋅+=

RGBF Bover αF RGBF⋅ 1 αF–( ) αB RGBB⋅ ⋅+( ) αF Bover⁄=
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
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When 

 

α

 

F

 

 and 

 

α

 

B

 

 represent full coverage opacities or uncorrelated partial cover-
age fractions, the 

 
over

 
 operator computes a valid result. However, if the alphas

represent partial coverages that share an edge, then the compositing  over  operator
does not have enough information to tell whether, for example, the partial cover-
ages overlap in the pixel area or whether the areas of coverage they represent are
partially or completely disjoint. Resolution of this ambiguity requires that addi-
tional information be stored at each pixel indicating which part of the pixel is cov-
ered by a surface fragment. For example, the A-buffer

 

3

 

 algorithm [1] provides this
information. 

 

Alpha channel

 

 is a term that represents a combination of the partial coverage
and the transparency of the surface or surfaces whose color is represented at the
pixel. Notice that when one composits colors, a color always appears in the equa-
tion multiplied by its alpha value. It is therefore expedient to store the color value

 

Figure A.7

 

Compositing randomly distributed color fragments for a pixel 

 

Figure A.8

 

Compositing correlated colors for a pixel

 

3. The 

 

A

 

-buffer is a 

 

Z

 

-buffer in which information recorded at each pixel includes the relative depth and coverage of all
fragments, in 

 

z

 

-sorted order, which contribute to the pixel’s final color.

Foreground Middle ground Background

αF = 0.5 αM = 0.5 αB = 1.0

Foreground Middle ground Background

αF = 0.5 αM = 0.5 αB = 1.0
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already scaled by its alpha value. In the following discussion, lowercase 

 

rgb

 

 refers to
a color value that has already been scaled by alpha. Pixels and images whose colors
have been scaled by alpha are called 

 

premultiplied

 

. Uppercase 

 

RGB

 

 refers to a color
value that has not been scaled by alpha. In a premultiplied image, the color at a
pixel is considered to already be scaled down by its alpha factor, so that if a surface
is white with an 

 

RGB

 

 value of (1, 1, 1) and it covers half a pixel as indicated by an
alpha value of 0.5, then the 

 

rgb

 

 stored at that pixel will be (0.5, 0.5, 0.5). It is
important to recognize that storing premultiplied images is very useful. 

 

A.2.2 Compositing with Pixel Depth Information

 

In compositing, independently generated images may sometimes not be disjoint in
depth. In such cases, it is necessary to interleave the images in the compositing
process. Duff [4] presents a method for compositing 3D rendered images in which
depth separation between images is not assumed. An 

 

rgb

 

α

 

z

 

 (premultiplied) repre-
sentation is used for each pixel that is simply a combination of an 

 

rgb

 

 value, the
alpha channel, and the 

 

z

 

-, or depth, value. The 

 

z

 

-value associated with a pixel is
the depth of the surface visible at that pixel; this value is produced by most render-
ing algorithms. 

Binary operators are defined to operate on a pair of images 

 

f

 

 and 

 

b

 

 on a pixel-
by-pixel basis to generate a resultant image (Equation A.5). Applying the operators
to a sequence of images in an appropriate order will produce a final image.

 

 

(Eq. A.5)

 

The first operator to define is the 

 

over

 

 operator. Here, it is defined using colors
that have been premultiplied by their corresponding alpha values. The 

 

over

 

 opera-
tor blends together the color and alpha values of an ordered pair of images on a
pixel-by-pixel basis. The first image is assumed to be “over” or “in front of” the
second image. The color of the resultant image is the color of the first image plus
the product of the color of the second image and the transparency (one minus
opacity) of the first image. The alpha value of the resultant image is computed as
the alpha value of the first image plus the product of the transparency of the first
and the opacity of the second. Values stored at each pixel of the image, resulting
from 

 

c

 

 

 

=

 

 

 

f

 

 

 

over b, are defined as shown in Equation A.6.

 (Eq. A.6)

For a given foreground image with corresponding alpha values, the foreground
rgb’s will be unattenuated during compositing with the over operator and the
background will show through more as αf decreases. Notice that when αf  = 1,

c f bop=

rgbc rgbf 1 αf–( ) rgbb⋅+=

αc αf 1 αf–( ) αb⋅+=
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then rgbc = rgbf  and αc = αf = 1; when αf = 0 (and therefore rgbf = 0, 0, 0), then
rgbc = rgbb and αc = αb . Using over with more than two layers requires that their
ordering in z be taken into account when compositing. The over operator can be
successfully used when compositing planes adjacent in z . If nonadjacent planes
are composited, a plane lying between these two cannot be accurately compos-
ited; the opacity of the closest surface is not separately represented in the compos-
ited image. Over is not commutative, although it is associative.

The second operator to define is the z -depth operator, zmin, which operates on
the rgb, alpha, and z -values stored at each pixel. The zmin operator simply selects
the rgbαz values of the closer pixel (the one with the minimum z). Values stored at
each pixel of the image resulting from c = f zmin b are defined by Equation A.7.

 (Eq. A.7)

The order in which the surfaces are processed by zmin is irrelevant; it is com-
mutative and associative and can be successfully used on nonadjacent layers.

Comp is an operator that combines the action of zmin and over. As before,
each pixel contains an rgb value and an α value. However, for an estimate of rela-
tive coverage, each pixel has z -values at each of its four corners. Because each z -
value is shared by four pixels, the upper left z -value can be stored at each pixel
location. This requires that an extra row and extra column of pixels be kept in
order to provide the z -values for the pixels in the rightmost row and bottommost
column of the image; the rgb and α values for these pixels in the extra row and col-
umn are never used.

To compute c = f comp b at a pixel, one must first compute the z -values at the
corners to see which is larger. There are 24 = 16 possible outcomes of the four cor-
ner comparisons. If the comparisons are not the same at all four corners, the pixel
is referred to as confused. This means that within this single pixel, the layers cross
each other in z. For any edge of the pixel whose endpoints compare differently, the
z -values are interpolated to estimate where along the edge the surfaces actually
meet in z. Figure A.9 illustrates the implied division of a pixel into areas of cover-
age based on the relative z -values at the corners of the foreground and background
pixels. 

Regarding symmetry, there are really four cases to consider in computing β, the
coverage fraction for the surface f: whole, corner, split, and two-opposite corners.
Whole refers to the simple cases in which the entire pixel is covered by one surface
(cases a and p in Figure A.9); in this case, β equals either 1 or 0. Corner refers to
the cases in which one surface covers the entire pixel except for one corner (cases b,
c, e, h, i, l, n, and o in Figure A.9). If f is the corner surface, then the coverage is
β = 1 ⁄ 2 • s • t , where s and t represent the fraction of the edge indicated by the z -
value interpolation as measured from the corner vertex. If b is the corner surface,

rgbαc if zf zb<( )= then rgbαf( ) else rgbαb( )

zc min zf zb,( )=
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then β = 1.0 – (1 ⁄ 2 • s • t ). Split refers to the situation in which the vertices of
opposite edges are tagged differently (cases d, g, j, and m in Figure A.9); the cover-
age of the surface is β = s + t ⁄ 2, where s and t represent the fraction of the edge
indicated by the z -value interpolation as measured from the vertices tagged the
same toward the other vertices. The fraction for the other surface would be β = 1.0
– s + t ⁄ 2. If diagonally opposite vertices are tagged differently (cases f and k in Fig-
ure A.9), the equation for β is the same as for the “split” case, with s and t mea-
sured from vertices tagged the same and calculated individually for each of the two
vertices. 

Figure A.9 Categories of pixels based on z comparisons at the corners; the label at each 
corner is sign(z f - zb).
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Once β is computed, then that fraction of the pixel is considered as having the
surface f as the front surface and the rest of the pixel is considered as having the sur-
face b as the front surface. The comp operator is defined as the linear blend, accord-
ing to the interpolant β, of two applications of the over operator—one with surface
f  in front and one with surface b in front (Equation A.8).

(Eq. A.8)

Comp decides on a pixel-by-pixel basis which image represents a surface in
front of the other, including the situation in which the surfaces change relative
depth within a single pixel. Thus, images that are not disjoint in depth can be suc-
cessfully composited using the comp operator, which is commutative (with β
becoming 1-β) as well as associative. 

A.3 Displaying Moving Objects: Motion Blur

If it is assumed that objects are moving in time, it is worth addressing the issue of
effectively displaying these objects in a frame of animation [5] [6]. In the same
way that aliasing is a sampling issue in the spatial domain, it is also a sampling
issue in the temporal domain. As frames of animation are calculated, the positions
of objects change in the image, and this movement changes the color of a pixel as a
function of time. In an animation, the color of a pixel is sampled in the time
domain. If the temporal frequency of a pixel’s color function is too high, then the
temporal sampling can miss important information. 

Consider an object moving back and forth in space in front of an observer.
Assume the animation is calculated at the rate of thirty frames per second. Now
assume that the object starts on the left side of the screen and moves to the right
side in one-sixtieth of a second and moves back to the left side in another one-
sixtieth of a second. This means that every thirtieth of a second (the rate at which
frames are calculated and therefore the rate at which positions of objects are sam-
pled) the object is on the left side of the screen. The entire motion of the object is
missed because the sampling rate is too low to capture the high-frequency motion
of the object, resulting in temporal aliasing. Even if the motion is not this con-
trived, displaying a rapidly moving object by a single instantaneous sample can
result in motions that appear jerky and unnatural. As mentioned in Chapter 1,
images of a fast-moving object can appear to be disjointed, resulting in jerky

rgbc β rgbf 1 αf–( ) rgbb⋅+( )⋅ 1 β–( ) rgbb 1 αb–( ) rgbf⋅+( )⋅+=

αc β αf 1 αf–( ) αb⋅+( )⋅ 1 β–( ) αb 1 αb–( ) αf⋅+( )⋅+=

zc min zf zb,( )=
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motion similar to that of live action under a strobe light (and this is often called
strobing ).

Conventional animation has developed its own techniques for representing fast
motion. Speed lines can be added to moving objects, objects can be stretched in
the direction of travel, or both speed lines and object stretching can be used [7]
(see Figure A.10). 

There is an upper limit on the amount of detail the human eye can resolve
when viewing a moving object. If the object moves too fast, mechanical limita-
tions of muscles and joints that control head and eye movement will fail to main-
tain an accurate track. This will result in an integration of various samples from
the environment as the eye tries to keep up. If the eye is not tracking the object
and the object moves across the field of view, receptors will again receive various
samples from the environment integrated together, forming a cumulative effect in
the eye-brain. Similarly, a movie camera will open its shutter for an interval of
time, and an object moving across the field of view will create a blurred image on
that frame of the film. This will smooth out the apparent motion of the object. In
much the same way, the synthetic camera can (and should) consider a frame to be
an interval of time instead of an instance in time. Unfortunately, accurately calcu-
lating the effect of moving objects in an image requires a nontrivial amount of
computation.

To fully consider the effect that moving objects have on an image pixel, one
must take into account the area of the image represented by the pixel, the time
interval for which a given object is visible in that pixel, the area of the pixel in
which the object is visible, and the color variation of the object over that time
interval in that area, as well as such dynamic effects as rotating textured objects,
shadows, and specular highlights [6]. 

There are two analytic approaches to calculating motion blur: continuous and
discrete. Continuous approaches attempt to be more accurate but are only tracta-
ble in limited situations. Discrete approaches, while less accurate, are more gener-
ally applicable and more robust; only discrete approaches are considered here. Ray

Figure A.10 Methods used in conventional animation for displaying speed

Speed lines Speed lines and object stretching
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tracing is probably the easiest domain in which to understand the discrete process.
It is common in ray tracing to generate more than one ray per pixel in order to
spatially anti-alias the image. These rays can be distributed in a regular pattern or
stochastically [2] [3] [8]. To incorporate temporal anti-aliasing, one need only take
the rays for a pixel and distribute them in time as well as in space. In this case, the
frame is not considered to be an instant in time but rather an interval. The interval
can be broken down into subintervals and the rays distributed into these subinter-
vals. The various samples are then filtered to form the final image. See Figure A.11
(Plate 12) for an example.

One of the extra costs associated with temporal anti-aliasing is that the motion
of the objects must be computed at a higher rate than the frame rate. For example,
if a 4x4 grid of subsamples are used for anti-aliasing in ray tracing and these are
distributed over separate time subintervals, then the motion of the objects must be
calculated at sixteen times the frame rate. If the subframe motion is computed
using complex motion control algorithms, this may be a significant computational
cost. Linear interpolation is often used to estimate the positions of objects at sub-
frame intervals.

Although discussed above in terms of distributed ray tracing, this same strategy
can be used with any display algorithm, as Korein and Badler [5] note. Multiple
frame buffers can be used to hold rendered images at subframe intervals. These can
then be filtered to form the final output image. The rendering algorithm can be a
standard z -buffer, a ray tracer, a scanline algorithm, or any other technique.
Because of the discrete sampling, this is still susceptible to temporal aliasing arti-

Figure A.11 An example of synthetic (calculated) motion blur
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facts if the object is moving too fast relative to the size of its features in the direc-
tion of travel; instead of motion blur, multiple images of the object may result
because intermediate pixels are effectively “jumped over” by the object during the
sampling process. 

In addition to analytic methods, hand manipulation of the object shape by the
animator can reduce the amount of strobing. For example, the animator can
stretch the object in the direction of travel. This will tend to reduce or eliminate
the amount of separation between images of the object in adjacent frames. 

A.4 Drop Shadows

The shadow cast by an object onto a surface is an important visual cue in estab-
lishing the distance between the two. Contact shadows, or shadows produced by
an object contacting the ground, are especially important. Without them, objects
appear to float just above the ground plane. In high-quality animation, shadow
decisions are prompted by lighting, cinematography, and visual understanding
considerations. However, for most other animations, computational expense is an
important concern and computing all of the shadows cast by all objects in the
scene onto all other objects in the scene is overkill. Much computation can be
saved if the display system supports the user specification of which objects in a
scene cast shadows onto which other objects in a scene. For example, the self-
shadowing4 of an object is often not important to understanding the scene visu-
ally. Shadows cast by moving objects onto other moving objects are also often not
of great importance. These principles can be observed in traditional hand-drawn
animation in which only a select set of shadows is drawn. In Figure A.12 (Plate
13), shadows on the ground beneath the characters help to locate them in the
environment, but the shadows of one character on another are not included in the
rendering.

By far the most useful type of shadow in animated sequences is the drop
shadow. The drop shadow is the shadow that an object projects to the ground
plane. The drop shadow lets the viewer know how far above the ground plane an
object is as well as the object’s relative depth and, therefore, relative size (see Fig-
ures A.13 [Plate 14] and A.14 [Plate 15]). 

Drop shadows can be produced in several different ways. When as object is per-
spectively projected from the light source to a flat ground plane, an image of the
object can be formed (see Figure A.15). If this image is colored dark and displayed

4. Self-shadowing refers to an object casting shadows onto its own surface.
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Figure A.12 Animation frame showing selective shadows

Figure A.13 Scene without drop shadows; without shadows, it is nearly impossible to 
estimate relative heights and distances if the sizes of the objects are not known
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on the ground plane (as a texture map, for example), then it is an effective short-
cut.

Another inexpensive method for creating a drop shadow is to make a copy of
the object, scale it flat vertically, color it black (or make it dark and transparent),
and position it just on top of the ground plane (see Figures A.16 and A.17 [Plate

Figure A.14 Scene with drop shadows indicating relative depth and, 
therefore, relative height and size 

Figure A.15 Computing the drop shadow by perspective projection
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16]). The drop shadow has the correct silhouette for a light source directly over-
head but without the computational expense of the perspective projection
method.

Figure A.16 Computing the drop shadow by flattening a copy of the object

Figure A.17 Drop shadow using a flattened copy of the object

flatten it

color it dark

make a copy

position it on 
the ground plane
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The drop shadow can be effective even if it is only an approximation of the real
shadow that would be produced by a light source in the environment. The height
of the object can be effectively indicated by merely controlling the relative size and
softness of a drop shadow, which only suggests the shape of the object that casts it.
For simple drop shadows, circles can be used, as in Figure A.18 (Plate 17).

Globular shapes that may more closely indicate the shapes of the original
objects can also be used as shadows. The drop shadow, however it is produced, can
be represented on the ground plane in several different ways. It can be colored
black and placed just above the ground plane. It can be made into a darkly colored
transparent object so that any detail of the ground plane shows through. It can be
colored darker in the middle with more transparency toward the edges to simulate
a shadow’s penumbra5 (Figure A.19).

When placing a shadow over the ground plane, one must take care to keep it
close enough to the ground so that it does not appear as a separate object and at
the same time does not conflict with the ground geometry. To avoid the problems
of using a separate geometric element to represent the drop shadow, the user can
incorporate the shadow directly into the texture map of the ground plane. 

5. The penumbra is the area partially shadowed by an opaque body; it receives partial illumination from a light source.
The umbra is the area completely shadowed by an opaque body; it receives no illumination from the light source. 

Figure A.18 Circular drop shadows
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A.5 Summary

Although these techniques are not concerned with specifying or controlling the
motion of graphical objects, they are important to the process of generating
images for computer animation. Double buffering helps to smoothly update a dis-
play of images. Compositing helps to conserve resources and combine elements
from different sources. Motion blur prevents fast-moving objects from appearing
jerky and distracting to the viewer. Shadows help to locate objects relative to sur-
faces, but only those shadows that effectively serve such a purpose need to be gen-
erated. 
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B.1 Vectors and Matrices

 

A 

 

vector

 

 is a one-dimensional list of values. This list can be shown as either a row vec-
tor or a column vector (e.g., Equation B.1). In general, a matrix is an 

 

n

 

-dimensional
array of values. For purposes of this book, a matrix is two-dimensional (e.g., Equa-
tion B.2).

 

(Eq. B.1)a b c
a
b
c
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(Eq. B.2)

 

Matrices are multiplied together by taking the 

 

i

 

th row of the first matrix and
multiplying each element by the corresponding element of the 

 

j

 

th column of the
second matrix and summing all the products to produce the 

 

i,j

 

th element. When
computing 

 

C

 

 

 

=

 

 

 

A

 

 

 

•
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 where 

 

A

 

 has 

 

v

 

 elements in each row and 

 

B

 

 has 

 

v

 

 elements in
each column, an element 

 

C

 

ij

 

 is computed according to Equation B.3.

 

(Eq. B.3)

 

The “inside” dimension of the matrices must match in order for the matrices to
be multiplied together. That is, if 

 

A

 

 and 

 

B

 

 are multiplied and 

 

A

 

 is a matrix with 

 

U

 

rows and 

 

V

 

 columns (a 

 

U

 

 

 

×

 

 

 

V

 

 matrix), then 

 

B

 

 must be a 

 

V

 

 

 

×

 

 

 

W

 

 matrix; the result
will be a 

 

U

 

 

 

×

 

 

 

W

 

 matrix. Said another way, the number of columns (the number of
elements in a row) of 

 

A

 

 must be equal to the number of rows (the number of ele-
ments in a column) of 

 

B.

 

 As a more concrete example, consider multiplying two
3x3 matrices. Equation B.4 shows the computation for the first element.

 

(Eq. B.4)

 

The 

 

transpose

 

 of a vector or matrix is the original vector or matrix with its rows
and columns exchanged (e.g., Equation B.5). The 

 

identity matrix

 

 is a square
matrix with ones along its diagonal and zeros elsewhere (e.g., Equation B.6). The

 

inverse

 

 of a square matrix when multiplied by the original matrix produces the
identity matrix (e.g., Equation B.7). The 

 

determinant

 

 of a 3x3 matrix is formed as
shown in Equation B.8. The determinant of matrices greater than 3x3 can be
defined recursively. First, define an element’s 

 

submatrix

 

 as the matrix formed when
removing the element’s row and column from the original matrix. The determi-
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nant is formed by considering any row, element by element. The determinant is
the first element of the row times the determinant of its submatrix, minus the sec-
ond element of the row times the determinant of its submatrix, plus the third ele-
ment of the row times the determinant of its submatrix, and so on. The sum is
formed for the entire row, alternating additions and subtractions.

 

(Eq. B.5)

(Eq. B.6)

(Eq. B.7)

(Eq. B.8)

 

B.1.1 Inverse Matrix and Solving Linear Systems

 

The inverse of a matrix is useful in computer graphics to represent the inverse of a
transformation and in computer animation to solve a set of linear equations. There
are various ways to compute the inverse. One common method, which is also use-
ful for solving sets of linear equations, is LU decomposition. The basic idea is that
a square matrix, for example, a 4x4, can be decomposed into a lower triangular
matrix times an upper triangular matrix. How this is done is discussed later. For
now, it is assumed that the LU decomposition is available (Equation B.9).

a b c
T

a
b
c

=
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d e f
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b e
c f

=
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0 1 0

0 0 1

a b c
d e f
g h i
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⋅
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⋅
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0 1 0
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= =

a b c
d e f
g h i

a e i⋅ f h⋅–( )⋅ b f g⋅ d i⋅–( )⋅– c d h⋅ e g⋅–( )⋅+=
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(Eq. B.9)

 

The decomposition of a matrix 

 

A

 

 into the 

 

L

 

 and 

 

U

 

 matrices can be used to eas-
ily solve a system of linear equations. For example, consider the case of 4
unknowns (

 

x

 

) and four equations shown in Equation B.10. Use of the decomposi-
tion permits the system of equations to be solved by forming two systems of equa-
tions using triangular matrices (Equation B.11).

 

(Eq. B.10)

(Eq. B.11)
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A21 x1⋅ A22 x2⋅ A23 x3⋅ A24 x4⋅+ + + b2=

A31 x1⋅ A32 x2⋅ A33 x3⋅ A34 x4⋅+ + + b3=

A41 x1⋅ A42 x2⋅ A43 x3⋅ A44 x4⋅+ + + b4=
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Team LRN



Vectors and Matrices 413

This solves the original set of equations. The advantage of doing it this way is
that both of the last two equations resulting from the decomposition involve tri-
angular matrices and, therefore, can be solved trivially with simple substitution
methods. For example, Equation B.12 shows the solution to L • y = b. Notice that
by solving the equations in a top to bottom fashion, the results from the equa-
tions of previous rows are used so that there is only one unknown in any equation
being considered. Once the solution for y has been determined, it can be used to
solve for x in U • x = y using a similar approach. Once the LU decomposition of A
is formed, it can be used repeatedly to solve sets of linear equations that differ
only in right-hand sides, such as those for computing the inverse of a matrix. This
is one of the advantages of LU decomposition over methods such as Gauss-Jordan
elimination.

(Eq. B.12)

The decomposition procedure sets up equations and orders them so that each is
solved simply. Given the matrix equation for the decomposition relationship, one
can construct equations on a term-by-term basis for the A matrix. This results in
N 2 equations with N 2 + N unknowns. As there are more unknowns than equa-
tions, N elements are set to some arbitrary value. A particularly useful set of values
is Lii = 1.0. Once this is done, the simplest equations (for A11, A12, etc.) are used
to establish values for some of the L and U elements. These values are then used in
the more complicated equations. In this way the equations can be ordered so there

L y⋅ b=

L11 0 0 0

L21 L22 0 0

L31 L32 L33 0

L41 L42 L43 L44

y1

y2

y3

y4

⋅

b1

b2

b3

b4

=

L11 y1⋅ b1=

y1 b1 L11⁄=

L21 y1⋅ L22 y2⋅+ b2=

y2 b2 L21 y1⋅( )–( ) L22⁄=

L31 y1⋅ L32 y2⋅ L33 y3⋅+ + b3=

y3 b3 L31 y1⋅( )– L32 y2⋅( )–( ) L33⁄=

L41 y1⋅ L42 y2⋅ L43 y3⋅ L44 y4⋅+ + + b4=

y4 b4 L41 y1⋅( )– L42 y2⋅( ) L43 y3⋅( )––( ) L44⁄=

First row:

Second row:

Third row:

Fourth row:
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is only one unknown in any single equation by the time it is evaluated. Consider
the case of a 4x4 matrix. Equation B.13 repeats the original matrix equation for
reference and then shows the resulting sequence of equations in which the under-
lined variable is the only unknown.

(Eq. B.13)

1 0 0 0
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L31 L32 1 0
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U11 A11=

L21 U11⋅ A21=

L31 U11⋅ A31=

L41 U11⋅ A41=

U12 A12=

L21 U12⋅ U22+ A22=

L31 U12⋅ L32 U22⋅+ A32=

L41 U12⋅ L42 U22⋅+ A42=

U13 A13=

L21 U13⋅ U23+ A23=

L31 U13⋅ L32 U23⋅ U33+ + A33=

L41 U13⋅ L42 U23⋅ L43 U33⋅+ + A43=

U14 A14=

L21 U14⋅ U24+ A24=

L31 U14⋅ L32 U24⋅ U34+ + A34=

L41 U14⋅ L42 U24⋅ L43 U34⋅ U44+ + + A44=

For the first column of A

For the second column of A

For the third column of A

For the fourth column of A
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Notice a two-phase pattern in each column in which terms from the U matrix
from the first row to the diagonal are determined first, followed by terms from the
L matrix below the diagonal. This pattern can be generalized easily to matrices of
arbitrary size [16], as shown in Equation B.14. The computations for each column
j must be completed before proceeding to the next column.

(Eq. B.14)

So far this is fairly simple and easy to follow. Now comes the complication—
partial pivoting. Notice that some of the equations require a division to compute
the value for the unknown. For this computation to be numerically stable (i.e., the
numerical error less sensitive to particular input values), this division should be by
a relatively large number. By reordering the rows, one can exert some control over
what divisor is used. Reordering rows does not affect the computation if the ma-
trices are viewed as a system of linear equations; reordering obviously matters if the
inverse of a matrix is being computed. However, as will be shown later, as long as
the reordering is recorded, it can easily be undone when the inverse matrix is
formed from the L and U matrices.

Consider the first column of the 4x4 matrix. The divisor used in the last three
equations is U11, which is equal to A11. However, if the rows are reordered, then a
different value might end up as A11. So the objective is to swap rows so that the
largest value (in the absolute value sense) of A11, A21, A31, A41 ends up at A11,
which makes the computation more stable. Similarly, in the second column, the
divisor is U22, which is equal to A22 – (L21 • U12). As in the case of the first col-
umn, the rows below this are checked to see if a row swap might make this value
larger. The row above is not checked because that row was needed to calculate U12,
which is needed in the computations of the rows below it. For each successive col-
umn, there are fewer choices because the only rows that are checked are the ones
below the topmost row that requires the divisor. 

There is one other modification to partial pivoting. Because any linear equation
has the same solution under a scale factor, an arbitrary scale factor applied to a lin-
ear equation could bias the comparisons made in the partial pivoting. To factor
out the effect of an arbitrary scale factor when comparing values for the partial
pivoting, one scales the coefficients for that row, just for the purposes of the com-
parison, so that the largest coefficient of a particular row is equal to one. This is
referred to as implicit pivoting.
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In the code that follows, the LU decomposition approach is used to solve a sys-
tem of linear equations and is broken down into several procedures. These proce-
dures follow those found in Numerical Recipes [16]. The first procedure
(LUdecomp) performs the actual decomposition by replacing the values of the
input matrix with the values of L and U (Figure B.1). Notice that the diagonal
elements of the L matrix do not have to be stored because they are routinely set to
one. If row exchanges take place, then the rows of the matrices in Figure B.1 will
be mixed up. For solving the linear system of equations, the row exchanges have
no effect on the computed answers. However, the row exchanges are recorded in a
separate array so that they can be undone for the formation of the inverse matrix. 

After the execution of LUdecomp, the A matrix contains the elements of the L
and U matrices. This matrix can then be used either for solving a linear system of
equations or for computing the inverse of a matrix. The previously discussed sim-
ple substitution methods can be used to solve the equations that involve triangular
matrices. In the code below, the subroutine LUsubstitute is called with the newly
computed A matrix, the dimension of A, the vector of row swaps, and the right-
hand vector (i.e., the b in A • x = b).

One of the advantages of the LU decomposition is that the decomposition
matrices can be reused if the only change in a system of linear equations is the
right-hand vector of values. In such a case, the routine LUdecomp only needs to
be called once to form the LU matrices. The substitution routine, LUsubstitute,
needs to be called with each new vector of values (remember to reuse the A matrix
that holds the LU decomposition).

To perform matrix inversion, use the L and U matrices repeatedly with the b
matrix holding column-by-column values of the identity matrix. In this way the
inverse matrix is built up column by column.

/* LU Decomposition
*  with partial implicit pivoting
*  partial means that the pivoting only happens by row
*  implicit means that the pivots are scaled by the maximum value in the
   row
*/

Figure B.1 In-place computation of the L and U values assuming no row exchanges 

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

U11 U12 U13 U14

L21 U22 U23 U24

L31 L32 U33 U34

L41 L42 L43 U44

⇒
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/* ================================================================= */
/* LUdecomp 
*  inputs: A matrix of coefficients 
*     n — dimension of A 
* outputs: A matrix replaced with L and U diagonal matrices (diagonal 
  values of L == 1)
*     Rowswaps — vector to keep track of row swaps
*     Val — indicator of odd/even number of row swaps
*/
int LUdecomp(float **A,int n,int *rowswaps,int *val)
{
   float  epsilon,*rowscale, temp;
   float  sum;
   float  pvt;
   int        ipvt;
   int        i,j,k;
   rowscale = (float *)malloc(sizeof(float)*n);

   epsilon = 0.00000000001;  /* small value to avoid division by zero */
   *val = 1;                       /* even/odd indicator (valence) */

   /* initialize the rowswap vector to indicate no swaps */
   for (i=0; i<n; i++) rowswaps[i] = i;

   /* for each row, find largest (in absolute value sense) element and 
      record in rowscale */
   for (i=0; i<n; i++) {
      temp = fabs(A[i][0]);
      for (j=1; j<n; j++)
         if (fabs(A[i][j]) > temp) temp = fabs(A[i][j]);
      if (temp == 0) return(-1); /* got a row of all zeros — can't deal 
      with that */
      rowscale[i] = 1/temp; /* later we need to divide by largest 
      element */
   }

   /*  loop through the columns  of A (and U) */
   for (j=0; j<n; j++) {
      /* do the rows down to the diagonal — these don't need a division 
      so no swap */
      for (i=0; i<j; i++) {
         sum = A[i][j];
         for (k=0; k<i; k++) sum = sum - A[i][k]*A[k][j];
         A[i][j] = sum;
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      }
      /* do the rows from the diagonal down */
      pvt = 0.0;
      ipvt = -1;
      for (i=j; i<n; i++) {
         sum = A[i][j];
         for (k=0; k<j; k++) sum = sum - A[i][k]*A[k][j];
         A[i][j] = sum;
         /* calculate the scaled value for pivoting consideration */
            temp = rowscale[i]*fabs(sum);
            if (temp >= pvt) {ipvt = i; pvt = temp;}
      }

      /* if a better pivot value is found, interchange the rows */ 
         if (j != ipvt) {
            for (k=0; k<n; k++) {
               temp = A[ipvt][k];
               A[ipvt][k] = A[j][k];
               A[j][k] = temp;
            }
            *val = -(*val);  /* keep track of even/odd number 
            interchanges  */ 
            rowscale[ipvt] = rowscale[j];  /* and record which was 
            swapped  */ 
         }
      rowswaps[j] = ipvt;

      if (A[j][j] == 0.0) A[j][j] = epsilon; /* to guard against 
      divisions by zero */
      /* now the row is ready for division */
      for (i=j+1; i<n; i++)  A[i][j] = A[i][j]/A[j][j];
   }
   return 1;
}

/* ================================================================= */
/* LUsubstitute
*  inputs: A — matrix holding the L and U matrix values as a result of 
   LUdecomp
*          n — dimension of A
*          Rowswaps — vector holding a record of the row swaps performed 
           in LUdecomp
*          b — vector of right-hand values as in Ax = b
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*/
void LUsubstitute(float **A,int n,int *rowswaps,float *b)
{
   int    i,j,ib;
   float  sum;
   int    m;

      /* row swap version */
      ib = -1;
      for (i=0; i<n; i++) {
         m = rowswaps[i];
         sum = b[m];
         b[m] = b[i];
         if (ib != -1) {
            for (j=ib; j<i; j++) sum = sum-A[i][j]*b[j];
         }
         else {
            if (sum != 0.0) ib = i;
         }
         b[i] = sum;
      }

      for (i=n-1; i>=0; i--) {
         sum = b[i];
         for (j=i+1; j<n; j++) sum = sum - A[i][j]*b[j];
         b[i] = sum/A[i][i];
      }
   return;
}

B.1.2 Singular Value Decomposition
Singular value decomposition (SVD) is a popular method used for solving linear
least-squares problems (A • x = b, where the number of rows of A is greater than the
number of columns). It gives the user information about how ill conditioned the
set of equations is and allows the user to step in and remove sources of numerical
inaccuracy. 

As with LU decomposition, the first step decomposes the A matrix into more
than one matrix (Equation B.15). In this case, an M × N A matrix is decomposed
into a column-orthogonal M × N U matrix, a diagonal N × M W matrix, and an
N × N orthogonal V matrix. 

(Eq. B.15)A U W V T⋅ ⋅=
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The magnitude of the elements in the W matrix indicates the potential for
numerical problems. Zeros on the diagonal indicate singularities. Small values
(where small is user defined) indicate the potential of numerical instability. It is the
user’s responsibility to inspect the W matrix and zero out values that are small
enough to present numerical problems. Once this is done, the matrices can be
used to solve the least-squares problem using a back substitution method similar
to that used in LU decomposition. The code for SVD is available in various soft-
ware packages and can be found in Numerical Recipes [16].

B.2 Geometric Computations

A vector (a one-dimensional list of numbers) is often used to represent a point in
space or a direction and magnitude in space (e.g., Figure B.2). A slight complica-
tion in terminology results because a direction and magnitude in space is also
referred to as a vector. As a practical matter, this distinction is usually not impor-
tant. A vector in space has no position, only magnitude and direction. For geomet-
ric computations, a matrix usually represents a transformation (e.g., Figure B.3).

B.2.1 Components of a Vector
A vector, A, with coordinates (Ax , Ay, Az ) can be written as a sum of vectors, as
shown in Equation B.16, in which i, j, k are unit vectors along the principal axes,
x, y, and z, respectively.

(Eq. B.16)

B.2.2 Length of a Vector
The length of a vector is computed as in Equation B.17. If a vector is of unit
length, then A  = 1.0, and it is said to be normalized. Dividing a vector by its
length, forming a unit-length vector, is said to be normalizing the vector.

(Eq. B.17)

B.2.3 Dot Product of Two Vectors
The dot product, or inner product, of two vectors is computed as in Equation B.18.
The computation is commutative (Equation B.19) and associative (Equation
B.20). The dot product of a vector with itself results in the square of its length

A Ax i⋅ Ay j⋅ Az k⋅+ +=

A Ax
2 Ay

2 Az
2

+ +=
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(Equation B.21). The dot product of two vectors, A and B, is equal to the lengths
of the vectors times the cosine of the angle between them (Equation B.22, Figure
B.4). As a result, the angle between two vectors can be determined by taking the
arccosine of the dot product of the two normalized vectors (or, if they are not nor-
malized, by taking the arccosine of the dot product divided by the lengths of the
two vectors). The dot product of two vectors is equal to zero if the vectors are per-
pendicular to each other, as in Figure B.5 (or if one or both of the vectors are zero
vectors). The dot product can also be used to compute the projection of one vector
onto another vector (Figure B.6). This is useful in cases in which the coordinates
of a vector are needed in an auxiliary coordinate system (Figure B.7).

(Eq. B.18)

(Eq. B.19)

(Eq. B.20)

(Eq. B.21)

 (Eq. B.22)

Figure B.2 A point and vector in two-space Figure B.3 A matrix representing a rotation

Figure B.4 Using the dot product to compute the cosine of the angle between two vectors
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B.2.4 Cross Product of Two Vectors
The cross product, or outer product, of two vectors can be defined using the deter-
minant of a 3x3 matrix as shown in Equation B.23, where i, j, and k are unit vec-
tors in the directions of the principal axes. Equation B.24 shows the definition as

Figure B.5 The dot product of perpendicular vectors

Figure B.6 Computing the length of the projection of vector A onto vector B

Figure B.7 Computing the coordinates of a vector in an auxiliary coordinate system
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an explicit equation. The cross product is not commutative (Equation B.25), but
it is associative (Equation B.26).

 (Eq. B.23)

(Eq. B.24)

(Eq. B.25)

(Eq. B.26)

The direction of A × B is perpendicular to both A and B (Figure B.8), and the
direction is determined by the right-hand rule (if A and B are in right-hand space).
If the thumb of the right hand is put in the direction of the first vector (A ) and the
index finger is put in the direction of the second vector (B ), the cross product of
the two vectors will be in the direction of the middle finger when it is held perpen-
dicular to the first two fingers.

The magnitude of the cross product is the length of one vector times the length
of the other vector times the sine of the angle between them (Equation ). A zero
vector will result if the two vectors are colinear or if either vector is a zero vector
(Equation B.28). This relationship is useful for determining the sine of the angle
between two vectors (Figure B.9) and for computing the perpendicular distance
from a point to a line (Figure B.10).

where θ is the angle from A to B, 0 < θ < 180 (Eq. B.27)

 if and only if A and B are colinear, 
i.e., sin θ = sin 0 = 0, or A = 0 or B = 0 (Eq. B.28)

Figure B.8 Vector formed by the 
cross product of two vectors

Figure B.9 Using the cross product to compute 
the sine of the angle between two vectors
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B.2.5 Vector and Matrix Routines

 Simple vector and matrix routines are given here. These are used in some of the
routines in this appendix.

 

Vector Routines

 

Some vector routines can be implemented just as easily as in-line code using

 

#define

 

.

 

/* Vector.c */

typedef   struct xyz_struct {
float     x,y,z;
xyz_td;

}

/* ================================================================= */
/* compute the cross product of two vectors */
xyz_td crossProduct(xyz_td v1,xyz_td v2)
{
   xyz_tdp;

   p.x = v1.y*v2.z - v1.z*v2.y;
   p.y = v1.z*v2.x - v1.x*v2.z;
   p.z = v1.x*v2.y - v1.y*v2.x;
   return p;
}

/* ================================================================= */
/* compute the dot product of two vectors */
float dotProduct(xyz_td v1,xyz_td v2)
{
   return v1.x*v2.x+v1.y*v2.y+v1.z*v2.z;
}

 

Figure B.10

 

Computing the perpendicular distance from a point to a line

P
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P2

s

s P P1– θsin⋅=
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------------------------------------------------------=
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/* ================================================================= */
/* normalize a vector */
void normalizeVector(xyz_td *v)
{
   float  len;

   len = sqrt(v->x*v->x + v->y*v->y + v->z*v->z);
   v->x /= len;
   v->y /= len;
   v->z /= len;
}

/* ================================================================= */
/* form the vector from the first point to the second */
xyz_td formVector(xyz_td p1, xyz_td p2)
{
   xyz_tdp;
   
   p.x = p2.x-p1.x;
   p.y = p2.y-p1.y;
   p.z = p2.z-p1.z;
   return p;
}

/* ================================================================= */
/* compute the length of a vector */
float length(xyz_td v)
{
   return sqrt(v.x*v.x+v.y*v.y+v.z*v.z);
}

 

Matrix Routines

 

/* Matrix.c */

/* ================================================================= */
/* Matrix multiplication */
/* C x B = A */
void Matrix4x4MatrixMult (float **C,float **B,float **A)
{
   int  i,j;

   for (i=0; i<4; i++) {
      for (j=0; j<4; j++) {
         A[i][j] = C[i][0]*B[0][j]+ C[i][1]*B[1][j]+ 
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                   C[i][2]*B[2][j]+ C[i][3]*B[3][j];
      }
   }
}

/* ================================================================= */
/* matrix-vector multiplication */
/* N = M x V */
void Matrix4x4Vector4Mult (float **M,float *V,float *N)
{
   N[0] = M[0][0]*V[0]+M[0][1]*V[1]+M[0][2]*V[2]+M[0][3]*V[3];
   N[1] = M[1][0]*V[0]+M[1][1]*V[1]+M[1][2]*V[2]+M[1][3]*V[3];
   N[2] = M[2][0]*V[0]+M[2][1]*V[1]+M[2][2]*V[2]+M[2][3]*V[3];
   N[3] = M[3][0]*V[0]+M[3][1]*V[1]+M[3][2]*V[2]+M[3][3]*V[3];
}

/* ================================================================= */
/* vector-matrix multiplication */
/* N = V x M */
void Vector4Matrix4x4Mult (float *V,float **M,float *N)
{
   N[0] = M[0][0]*V[0]+M[1][0]*V[1]+M[2][0]*V[2]+M[3][0]*V[3];
   N[1] = M[0][1]*V[0]+M[1][1]*V[1]+M[2][1]*V[2]+M[3][1]*V[3];
   N[2] = M[0][2]*V[0]+M[1][2]*V[1]+M[2][2]*V[2]+M[3][2]*V[3];
   N[3] = M[0][3]*V[0]+M[1][3]*V[1]+M[2][3]*V[2]+M[3][3]*V[3];
}

/* ================================================================= */
/* compute the inverse of a matrix */
void ComputeInverse4x4(float **M,float **Minv)
{
   int      rowswaps[4];
   int      val;
   float    b[4];
   int      i,j;
   float**A;

   A = (float **)malloc(sizeof(float *)*4);
   for (i=0; i<4; i++) {
      A[i] = (float *)malloc(sizeof(float)*4);
   }
   for (i=0; i<4; i++) {
      for (j=0; j<4; j++) {
         A[i][j] = M[i][j];
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      }
   }

   LUdecomp(A,4,rowswaps,&val);

   for (i=0; i<4; i++) {
      for (j=0; j<4; j++) b[j] = (i==j) ? 1:0;
      LUsubstitute(A,4,rowswaps,b);
      for (j=0; j<4; j++) Minv[j][i] = b[j];
   }

}

 
B.2.6 Closest Point between Two Lines in Three-Space

 

The intersection of two lines in three-space often needs to be calculated. Because
of numerical imprecision, the lines rarely, if ever, actually intersect in three-space.
As a result, the computation that needs to be performed is to find the two points,
one from each line, at which the lines are closest to each other. The points 

 

P

 

1 and

 

P

 

2 at which the lines are closest form a line segment perpendicular to both lines
(Figure B.11). They can be represented parametrically as points along the lines,
and then the parametric interpolants can be solved for by satisfying the equations
that state the requirement for perpendicularity (Equation B.29).

 

(Eq. B.29)
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B.2.7 Area Calculations

Area of a Triangle
The area of a triangle consisting of vertices V 1, V 2, V 3 is one-half times the
length of one edge times the perpendicular distance from that edge to the other
vertex. The perpendicular distance from the edge to a vertex can be computed
using the cross product. See Figure B.12. For triangles in 2D, the z -coordinates
are essentially considered zero and the cross product computation is simplified
accordingly (only the z -coordinate of the cross product is nonzero). 

The signed area of the triangle is required for computing the area of a polygon
(see below). In the 2D case, this is done simply by not taking the absolute value of
the z -coordinate of the cross product. In the 3D case, a vector normal to the poly-
gon can be used to indicate the positive direction. The direction of the vector pro-
duced by the cross product can be compared to the normal (using the dot
product) to determine whether it is in the positive or negative direction. The
length of the cross product vector can then be computed and the appropriate sign
applied to it. 

Figure B.11 Two lines are closest to each other at points P1 and P2

Figure B.12 Area of a triangle
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Area of a Polygon
The area of a polygon can be computed as a sum of the signed areas of simple ele-
ments. In the 2D case, the signed area under each edge of the polygon can be
summed to form the area (Figure B.13). The area under an edge is the average
height of the edge times its width (Equation B.30, where subscripts are computed
modulo n + 1). 

(Eq. B.30)

The area of a polygon can also be computed by using each edge of the polygon
to construct a triangle with the origin (Figure B.14). The signed area of the trian-
gle must be used so that edges directed clockwise with respect to the origin cancel
out edges directed counterclockwise with respect to the origin. Although this is
more computationally expensive than summing the areas under the edges, it sug-
gests a way to compute the area of a polygon in three-space. In the 3D case, one of
the vertices of the polygon can be used to construct a triangle with each edge, and
the 3D version of the vector equations of Figure B.12 can be used.

B.2.8 The Cosine Rule
The cosine rule states the relationship between the lengths of the edges of a trian-
gle and the cosine of an interior angle (Figure B.15). It is useful for determining
the interior angle of a triangle when the locations of the vertices are known.

Figure B.13 Computing the area of a polygon
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B.2.9 Barycentric Coordinates

 

Barycentric coordinates are the coordinates of a point in terms of weights associ-
ated with other points. Most commonly used are the barycentric coordinates of a
point with respect to vertices of a triangle. The barycentric coordinates (

 

u

 

1, 

 

u

 

2,

 

u

 

3) of a point, 

 

P,

 

 with respect to a triangle with vertices 

 

V

 

1, 

 

V

 

2, 

 

V

 

3 are shown in
Figure B.16. Notice that for a point inside the triangle, the coordinates always sum
to one. This can be extended easily to any convex polygon by a direct generaliza-
tion of the equations. However, it cannot be extended to concave polygons. 

 

Figure B.14

 

The area of a two-dimensional polygon; the edges are labeled with letters, 
triangles are constructed from each edge to the origin, and the areas of the triangles are signed 
according to the direction of the edge with respect to the origin

 

Figure B.15

 

The cosine rule 
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B.2.10 Computing Bounding Shapes

 

Bounding volumes are useful as approximate extents of more complex objects.
Often, simpler tests can be used to determine the general position of an object by
using bounding volumes, thus saving computation. In computer animation, the
most obvious example occurs in testing for object collisions. If the bounding vol-
umes of objects are not overlapping, then the objects themselves must not be pene-
trating each other. Planar polyhedra are considered here because the bounding
volumes can be determined by inspecting the vertices of the polyhedra. Nonplanar
objects require more sophisticated techniques. 

 

Axis-aligned bounding boxes

 

 (AABBs)
and bounding spheres are relatively easy to calculate but can be poor approxima-
tions of the object’s shape. Slabs and 

 

oriented bounding boxes

 

 (OBBs) can provide a
much better fit. OBBs are rectangular bounding boxes at an arbitrary orientation
[7]. For collision detection, bounding shapes are often hierarchically organized into
tighter and tighter approximations of the object’s space. A 

 
convex hull

 
, the smallest

convex shape bounding the object, provides an even tighter approximation but
requires more computation.

 

Bounding Boxes

 

Bounding box

 

 typically refers to a boundary cuboid (or rectangular solid) whose
sides are aligned with the principal axes. A bounding box for a collection of points
is easily computed by searching for minimum and maximum values for the 

 

x

 

-, 

 

y

 

-,
and 

 

z

 

-coordinates. A point is inside the bounding box if its coordinates are
between min/max values for each of the three coordinate pairs. While the bound-
ing box may be a good fit for some objects, it may not be a good fit for others (Fig-
ure B.17). How well the bounding box approximates the shape of the object is
rotationally variant, as shown in Figures B.17b and B.17c.

 

Figure B.16

 

The barycentric coordinates of a point with respect to vertices of a triangle
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Bounding Slabs
Bounding slabs are a generalization of bounding boxes. A pair of arbitrarily ori-
ented planes are used to bound the object. The orientation of the pair of planes is
specified by a user-supplied normal vector. 

The normal defines a family of planes that vary according to perpendicular dis-
tance to the origin. In the planar equation a • x + b • y + c • y = d, (a, b, c) repre-
sents a vector normal to the plane. If this vector has unit length, then d is the
perpendicular distance to the plane. If the length of (a, b, c) is not one, then d is
the perpendicular distance scaled by the vector’s length. Notice that d is equal to
the dot product of the vector (a, b, c) and a point on the plane.

Given a user-supplied normal vector, the user computes the dot product of that
vector and each vertex of the object and records the minimum and maximum val-
ues (Equation B.31). The normal vector and these min/max values define the
bounding slab. See Figure B.18 for a 2D diagram illustrating the idea. Multiple
slabs can be used to form an arbitrarily tight bounding volume of the convex hull
of the polyhedron. A point is inside this bounding volume if the result of the dot

Figure B.17 Sample objects and their bounding boxes in 2D 

Figure B.18 Computing a boundary slab for a polyhedron
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product of it and the normal vector is between the corresponding min/max values
for each slab (see Figure B.19 for an example in 2D).

(Eq. B.31)

Bounding Sphere
Computing the optimal bounding sphere for a set of points can be expensive.
However, more tractable approximate methods exist. A quick and fairly accurate
method of computing an approximate bounding sphere for a collection of points
is to make an initial guess at the bounding sphere and then incrementally enlarge
the sphere as necessary by inspecting each point in the set. The description here
follows Ritter [17]. 

The first step is to loop through the points and record the minimum and maxi-
mum points in each of the three principal directions. The second step is to use the
maximally separated pair of points from the three pairs of recorded points and cre-
ate an initial approximation of the bounding sphere. The third step is, for each
point in the original set, to adjust the bounding sphere as necessary to include the
point. Once all the points have been processed, a near-optimal bounding sphere
has been computed (Figure B.20). This method is fast and it is easy to implement. 

Figure B.19 Multiple bounding slabs 
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/* 
** Bounding Sphere Computation
*/
void boundingSphere(xyz_td *pnts,int n, xyz_td *cntr, float *radius)
{
   int     i,minxi,maxxi,minyi,maxyi,minzi,maxzi,p1i,p2i;
   float   minx,maxx,miny,maxy,minz,maxz;
   float   diam2,diam2x,diam2y,diam2z,rad,rad2;
   float   dx,dy,dz;
   float   cntrx,cntry,cntrz;
   float   delta;
   float   dist,dist2;
   float   newrad,newrad2;
   float   newcntrx,newcntry,newcntrz;

   /* step one: find minimal and maximal  points in each of 3 principal 
   directions */
   minxi = 0; minx = pnts[0].x;  maxxi = 0; maxx = pnts[0].x; 
   minyi = 0; miny = pnts[0].y;  maxyi = 0; maxy = pnts[0].y; 
   minzi = 0; minz = pnts[0].z;  maxzi = 0; maxz = pnts[0].z; 
   for (i=1; i<n; i++) {
      if (pnts[i].x < minx) { minx = pnts[i].x; minxi = i; }
      if (pnts[i].x > maxx) { maxx = pnts[i].x; maxxi = i; }
      if (pnts[i].y < miny) { miny = pnts[i].y; minyi = i; }
      if (pnts[i].y > maxy) { maxy = pnts[i].y; maxyi = i; }
      if (pnts[i].z < minz) { minz = pnts[i].z; minzi = i; }
      if (pnts[i].z > maxz) { maxz = pnts[i].z; maxzi = i; }
   }

   /* step two: find maximally separated points from the 3 pairs;  use 
   to initialize sphere */

Figure B.20 Computing a bounding circle for a set of points

Set of points Maximal points Initial circle Adjusted circle
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   /* find maximally separated points  by comparing the distance squared 
   between points */
   dx = pnts[minxi].x - pnts[maxxi].x;
   dy = pnts[minxi].y - pnts[maxxi].y;
   dz = pnts[minxi].z - pnts[maxxi].z;
   diam2x = dx*dx + dy*dy + dz*dz;
   dx = pnts[minyi].x - pnts[maxyi].x;
   dy = pnts[minyi].y - pnts[maxyi].y;
   dz = pnts[minyi].z - pnts[maxyi].z;
   diam2y = dx*dx + dy*dy + dz*dz;
   dx = pnts[minzi].x - pnts[maxzi].x;
   dy = pnts[minzi].y - pnts[maxzi].y;
   dz = pnts[minzi].z - pnts[maxzi].z;
   diam2z = dx*dx + dy*dy + dz*dz;
   diam2 = diam2x; p1i = minxi; p2i = maxxi;
   if (diam2y>diam2) { diam2 = diam2y; p1i=minyi; p2i=maxyi; }
   if (diam2z>diam2) { diam2 = diam2z; p1i=minzi; p2i=maxzi;}
   /* center  of initial sphere is average of two points */
   cntrx = (pnts[p1i].x+pnts[p2i].x)/2;
   cntry = (pnts[p1i].y+pnts[p2i].y)/2;
   cntrz = (pnts[p1i].z+pnts[p2i].z)/2;
   /* calculate radius and radius squared of initial sphere - from 
   diameter squared*/
   rad2 = diam2/4;
   rad = sqrt(rad2);
   printf("maximally separated pair: (%f,%f,%f):(%f,%f,%f),%f\n",
      pnts[p1i].x,pnts[p1i].y,pnts[p1i].z,
      pnts[p2i].x,pnts[p2i].y,pnts[p2i].z,diam2);
   printf("initial center: (%f,%f,%f)\n",cntrx,cntry,cntrz);
   printf("initial diam2: %f\n",diam2);
   printf("initial radius, radius2 = %f,%f\n",rad,rad2);

   /* third step: now step through the set of points and adjust bounding 
   sphere as necessary */
   for (i=0; i<n; i++) {
      dx = pnts[i].x - cntrx;
      dy = pnts[i].y - cntry;
      dz = pnts[i].z - cntrz;
      dist2 = dx*dx + dy*dy + dz*dz; /* distance squared of old 
      center to pnt */
      if (dist2 > rad2) { /* need to update sphere if this 
      point is outside  old radius*/
         dist = sqrt(dist2);
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         /* new radius is average of current radius and distance from 
         center to pnt */
         newrad = (rad + dist)/2;
         newrad2 = newrad*newrad;
         printf("new radius = %f\n",newrad);
         delta = dist - newrad;/* distance from old center to new 
         center */
         /* delta/dist and rad/dist are weights of pnt and old center to 
         compute new center */
         newcntrx = (newrad*cntrx+delta*pnts[i].x)/dist;
         newcntry = (newrad*cntry+delta*pnts[i].y)/dist;
         newcntrz = (newrad*cntrz+delta*pnts[i].z)/dist;

         /* test to see if new radius and center contain the point */
         /* this test should only fail by an epsilon due to numeric 
         imprecision */
         dx = pnts[i].x - newcntrx;
         dy = pnts[i].y - newcntry;
         dz = pnts[i].z - newcntrz;
         dist2 = dx*dx + dy*dy + dz*dz;
         if (dist2 > newrad2) {
            printf("ERROR by %lf\n",((double)(dist2))-newrad2);
            printf("   center - radius: (%f,%f,%f) - 
            %f\n",cntrx,cntry,cntrz,rad);
            printf("  New center - radius: (%f,%f,%f) - %f\n",
               newcntrx,newcntry,newcntrz,newrad);

         }
         cntrx = newcntrx;
         cntry = newcntry;
         cntrz = newcntrz;
         rad = newrad;
         rad2 = rad*rad;

      }
   }

   *radius = rad;
   cntr->x = cntrx;
   cntr->y = cntry;
   cntr->z = cntrz;
   return;
}
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Convex Hull
The convex hull of a set of points is the smallest convex polyhedron that contains
all the points. A simple algorithm for computing the complex hull is given here,
although more efficient techniques exist. Since this is usually a onetime code for
an object (unless the object is deforming), this is a case where efficiency can be
traded for ease of implementation. Refer to Figure B.21.

1. Find a point on the convex hull by finding the point with the largest y -
coordinate. Refer to the point found in this step as P1.

2. Construct an edge on the convex hull by using the following method. Find
the point that, when connected with P1, makes the smallest angle with the
horizontal plane passing through P1. Use L to refer to the line from P1 to the
point. Finding the smallest sine of the angle is equivalent to finding the
smallest angle. The sine of the angle between L and the horizontal plane
passing through P1 is equal to the cosine of the angle between L and the vec-
tor (0, –1, 0). The dot product of these two vectors is used to compute the
cosine of the angle between them. Refer to the point found in this step as P2,
and refer to the line from P1 to P2, as L.

Figure B.21 Computing the convex hull
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3. Construct a triangle on the convex hull by the following method. First, con-
struct the plane defined by L and a horizontal line perpendicular to L at P1.
The horizontal line is constructed according to (L × (0, –1, 0)). All of the
points are below this plane. Find the point that, when connected with P1,
makes the smallest angle with this plane. Use K to refer to the line from P1
to the point. The sine of the angle between K and the plane is equal to the
cosine of the angle between K and the downward-pointing normal vector of
the plane. This normal can be computed as N = (L × (0, –1, 0)) × L (in
right-hand space). Refer to the point found in this step as P3. The triangle
on the convex hull is defined by these three points. A consistent ordering of
the points should be used so that they, for example, compute an outward-
pointing normal vector (N = (P3 – P1) × (P2 – P1), Ny > 0.0) in right-hand
space. Initialize the list of convex hull triangles with this triangle and its
outward-pointing normal vector. Mark each of its three edges as unmatched
to indicate that the triangle that shares the edge has not been found yet.

4. Search the current list of convex hull triangles and find an unmatched edge.
Construct the triangle of the convex hull that shares this edge by the follow-
ing method. Find the point that, when connected by a line from a point on
the edge, makes the smallest angle with the plane of the triangle while creat-
ing a dihedral angle (interior angle between two faces measured at a shared
edge) greater than 90 degrees. The dihedral angle can be computed using the
angle between the normals of the two triangles. When the point has been
found, add the triangle defined by this point and the marked edge to the list
of convex hull triangles and the unmarked edge. The rest of the unmarked
edges in the list must be searched to see if the two other edges of the new
triangle already occur in the list. If either of the new edges does not have a
match in the list, then it should be marked as unmatched. Otherwise, mark
the edge as matched. Now go back through the list of convex hull triangles
and look for another unmatched edge and repeat the procedure to construct
a new triangle that shares that edge. When there are no more unmatched
edges in the list of convex hull triangles, the hull has been constructed.

Step 4 in the algorithm above does not handle the case in which there are more
than three coplanar vertices. To handle these cases, instead of forming a triangle,
form a convex hull polygon for the coplanar points. This is done similarly in two
and three dimensions. First, collect all of the coplanar points (all of the points
within some epsilon of being coplanar) into a set. Second, initialize the current
edge to be the unmatched edge of step 4 and add the first point of the current edge
to the set of coplanar points. Third, iteratively find the point in the set of coplanar
points that makes the smallest angle with the current edge as measured from the
first point of the edge to the second point of the edge to the candidate point.
When the point is found, remove it from the set of coplanar points and make the
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new current edge the edge from the second point of the old current edge to the
newly found point. Continue iterating until the first point of the original
unmatched edge is found. This will complete the convex hull polygon, which is
then added to the list of convex hull polygons; its newly formed edges are pro-
cessed as in step 4.

/* ConvexHull.c 
 * This code uses a brute force algorithm to construct the convex hull 
 * and does not handle more than three coplanar points
 */

#include "Vector.h"

typedef struct conHullTri_struct {
   int      pi[3];
   int      matched[3];
   xyz_td   normal;
   struct conHullTri_struct *next;
} conHullTri_td;

conHullTri_td *chtList;

/* =============================================================== */
/* CONVEX HULL */
int ConvexHull(xyz_td *pntList,int num,int **triangleList,int 
*numTriangles)
{
   int      i;
   int      p1i,p2i,p3i,pi;
   xyz_td   yaxis;
   xyz_td   v,n,nn,nnn,v1,v2;
   float    t,t1,t2;
   int      count;
   conHullTri_td *chtPtr,*chtPtrTail,*chtPtrNew,*chtPtrA;
   int      done;
   int      *triList;
   int      dummy,notError;

   yaxis.x = 0; yaxis.y = 1; yaxis.z = 0;

   /* find the highest point */
   p1i = 0; t = pntList[0].y;
   for (i=1; i<num; i++) {
      if (pntList[i].y > t) { p1i=i; t=pntList[i].y;}
   }
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   /* find point that makes minimum angle with horizontal plane */
   p2i = (p1i==0) ? 1:0;
   v = formVector(pntList[p1i],pntList[p2i]);
   normalizeVector(&v);
   t = v.y;
   if (t>0.0) {
      printf(" ERROR - found higher point\n");
      scanf("%d",&dummy);
      return 1;
   }
   for (i=p2i+1; i<num; i++) {
      if (i!=p1i) {
         v = formVector(pntList[p1i],pntList[i]);
         normalizeVector(&v);
         t1 = v.y;
         if (t1 > t) {p2i = i; t = t1;}
      }
   }

   /* find point that makes triangle with minimum angle with horizontal 
   plane through edge */
   v1 = formVector(pntList[p1i],pntList[p2i]);

   if ((p1i!=0) && (p2i!=0)) p3i=0;
   else if ((p1i!=1) && (p2i!=1)) p3i=1;
   else p3i=2;
   v2 = formVector(pntList[p2i],pntList[i]);
   n = crossProduct(v2,v1);
   normalizeVector(&n);
   if (n.y < 0) { 
      n.x = -n.x; n.y = -n.y; n.z = -n.z; 
   }
   for (i=p3i+1; i<num; i++) {
      if ((i!=p1i)&&(i!=p2i)) {
         v = formVector(pntList[p2i],pntList[i]);
         nn = crossProduct(v1,v);
         normalizeVector(&nn);
         if (nn.y < 0) { nn.x = -nn.x; nn.y = -nn.y; nn.z = -nn.z; }
         if (nn.y>n.y) {
            p3i=i; 
            n.x = nn.x; n.y = nn.y; n.z = n.z;
         }
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      }
   }

   /* compute outward-pointing normal vector in right-hand space for 
   clockwise triangle */
   /* recalculate the normal vector */
   v1 = formVector(pntList[p1i],pntList[p2i]);
   v2 = formVector(pntList[p2i],pntList[p3i]);
   n = crossProduct(v2,v1);
   normalizeVector(&n);
   if (n.y<0) {
      n.x = - n.x; n.y = -n.y; n.z = -n.z;
      pi = p1i; p1i = p2i; p2i = pi;
   }

   /* make a convex hull entry */
   count = 1;
   chtPtr = (conHullTri_td *)malloc(sizeof(conHullTri_td));
   if (chtPtr == NULL) {
      printf(" unsuccessful memory allocation 1\n");
      scanf("%d",&dummy);
      return 1;
   }
   chtPtr->pi[0] = p1i;
   chtPtr->pi[1] = p2i;
   chtPtr->pi[2] = p3i;
   chtPtr->matched[0] = FALSE;
   chtPtr->matched[1] = FALSE;
   chtPtr->matched[2] = FALSE;
   chtPtr->normal = n;

   /* initialize the convex hull triangle list with the triangle */
   chtList = chtPtr;
   chtPtr->next = NULL;
   chtPtrTail = chtPtr;

   /* check and make sure all vertices are 'underneath' the initial 
   triangle */
   for (i=0; i<num; i++) {
      if ((i!=chtPtr->pi[0]) &&
         (i!=chtPtr->pi[1]) &&
         (i!=chtPtr->pi[2])    ) {
         v = formVector(pntList[chtPtr->pi[0]],pntList[i]);
         t = dotProduct(v,n);
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      if (t>0.0) {
            /* ERROR - point above initial triangle */
            printf(" ERROR - found a point above initial triangle 
            (%d)\n",i);
            return 1;
      }
    }
   }

   /* now loop through the convex hull triangle list and process 
   unmatched edges */
   done = FALSE;
   chtPtr = chtList;
   while (chtPtr!=NULL) {
      /* look for first unmatched edge */
      if ( (!(chtPtr->matched[0])) ||
         (!(chtPtr->matched[1])) ||
         (!(chtPtr->matched[2]))   ) {

         /* set it now as matched, and record 3 points with unmatched as 
         first two */
         if (!(chtPtr->matched[0])) {
            p1i=chtPtr->pi[0]; p2i=chtPtr->pi[1]; p3i=chtPtr->pi[2];
            chtPtr->matched[0]  = TRUE;
         }
         else if (!(chtPtr->matched[1])) {
            p1i=chtPtr->pi[1]; p2i=chtPtr->pi[2]; p3i=chtPtr->pi[0];
            chtPtr->matched[1]  = TRUE;
         }
         else if (!(chtPtr->matched[2])) {
            p1i=chtPtr->pi[2]; p2i=chtPtr->pi[0]; p3i=chtPtr->pi[1];
            chtPtr->matched[2]  = TRUE;
         }

         /* get info of triangle of unmatched edge */
         n.x = chtPtr->normal.x;
         n.y = chtPtr->normal.y;
         n.z = chtPtr->normal.z;
         v1=formVector(pntList[p2i],pntList[p1i]);

         /* find new vertex which, with unmatched edge, makes 
         triangle */
         /* whose normal is closest to normal of triangle of unmatched 
         edge */
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         pi = -1;
         for (i=0; i<num; i++) {
            if ((i!=p1i)&&(i!=p2i)&&(i!=p3i)) {
               v=formVector(pntList[p1i],pntList[i]);
               /* test to see if point is above triangle */
               t1 = dotProduct(v,n);
               if (t1>0) {
                  /* ERROR - point above initial triangle */
                  printf(" ERROR - found a point above initial triangle 
                  (%d)\n",i);
                  return 1;
               }
               /* compute normal of proposed new triangle */
               nn = crossProduct(v,v1);
               normalizeVector(&nn);
               /* test for concave corner */
               nnn = crossProduct(n,nn);
               t2 = dotProduct(nnn,v1);
               if (t2<0.0) {
                  printf(" ERROR - concave corner found\n");
                  return 1;
               }
               /* compute angle made by faces (=angle made by normals) 
               */
               t1 = dotProduct(n,nn);
               /* printf(" %d: dot product of normals: %f\n",i,t1); */
               /* printf(" normal for comparison: %f %f 
               %f\n",n.x,n.y,n.z); */
               /* printf("     normal: %f %f %f\n",nn.x,nn.y,nn.z); */
               /* save smallest angle (largest cosine) */
               if (pi==-1) {pi=i; t=t1;}
               else if (t1>t) {pi=i; t=t1;}
            }
         }

         /* check and make sure all vertices are 'underneath' this 
         triangle */
         v=formVector(pntList[p1i],pntList[pi]);
         nn = crossProduct(v,v1);
         normalizeVector(&nn);
         for (i=0; i<num; i++) {
            if ((i!=p2i) &&
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               (i!=p1i) &&
               (i!=pi)    ) {
               v = formVector(pntList[p1i],pntList[i]);
               t = dotProduct(v,nn);
               if (t>0.0) {
                  /* ERROR - point above new triangle */
                  printf(" ERROR - found a point above new triangle 
                  (%d)\n",i);
                  return 1;
                }
            }
         }

         /* search for p2i-pi or pi-pi1 already in database - error 
         condition */
         chtPtrA = chtList; notError = TRUE;
         while ((chtPtrA!=NULL)&&notError) {
            if ((chtPtrA->pi[0]==p1i)&&(chtPtrA->pi[1]==pi)) notError = 
            FALSE;
            else if ((chtPtrA->pi[1]==p1i)&&(chtPtrA->pi[2]==pi)) 
            notError = FALSE;
            else if ((chtPtrA->pi[2]==p1i)&&(chtPtrA->pi[0]==pi)) 
            notError = FALSE;
            else if ((chtPtrA->pi[0]==pi)&&(chtPtrA->pi[1]==p2i)) 
            notError = FALSE;
            else if ((chtPtrA->pi[1]==pi)&&(chtPtrA->pi[2]==p2i)) 
            notError = FALSE;
            else if ((chtPtrA->pi[2]==pi)&&(chtPtrA->pi[0]==p2i)) 
            notError = FALSE;
            else chtPtrA = chtPtrA->next;
            /* end while */
         if (!notError) {
            printf(" ERROR - duplicating edge 
            (%d,%d,%d)\n",p1i,p2i,pi);
            return 1;
         }

         /* add p1i, p2i, pi */
         count++;
         chtPtrNew = (conHullTri_td *)malloc(sizeof(conHullTri_td));
         if (chtPtrNew == NULL) {
            printf(" unsuccessful memory allocation 2\n");

Team LRN



Geometric Computations 445

            return 1;
         }

         chtPtrTail->next = chtPtrNew;
         chtPtrNew->pi[0] = p2i;
         chtPtrNew->pi[1] = p1i;
         chtPtrNew->pi[2] = pi;
         chtPtrNew->matched[0] = TRUE;
         chtPtrNew->matched[1] = FALSE;
         chtPtrNew->matched[2] = FALSE;
         chtPtrNew->normal.x = nn.x;
         chtPtrNew->normal.y = nn.y;
         chtPtrNew->normal.z = nn.z;
         chtPtrNew->next = NULL;
         chtPtrTail = chtPtrNew;

         /* search for p2i-pi or pi-p1i already in database in reverse 
         order */
         chtPtrA = chtList;
         while (chtPtrA!=NULL) {
            if (!chtPtrA->matched[0]&&(chtPtrA->pi[0]==pi)&&(chtPtrA-
            >pi[1]==p1i)) {
               chtPtrA->matched[0] = TRUE;
               chtPtrNew->matched[1] = TRUE;
            }
            else if (!chtPtrA->matched[1]&&(chtPtrA-
            >pi[1]==pi)&&(chtPtrA->pi[2]==p1i)) {
               chtPtrA->matched[1] = TRUE;
               chtPtrNew->matched[1] = TRUE;
            }
            else if (!chtPtrA->matched[2]&&(chtPtrA-
            >pi[2]==pi)&&(chtPtrA->pi[0]==p1i)) {
               chtPtrA->matched[2] = TRUE;
               chtPtrNew->matched[1] = TRUE;
            }
            else if (!chtPtrA->matched[0]&&(chtPtrA-
            >pi[0]==p2i)&&(chtPtrA->pi[1]==pi)) {
               chtPtrA->matched[0] = TRUE;
               chtPtrNew->matched[2] = TRUE;
            }
            else if (!chtPtrA->matched[1]&&(chtPtrA-
            >pi[1]==p2i)&&(chtPtrA->pi[2]==pi)) {
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               chtPtrA->matched[1] = TRUE;
               chtPtrNew->matched[2] = TRUE;
            }
            else if (!chtPtrA->matched[2]&&(chtPtrA-
            >pi[2]==p2i)&&(chtPtrA->pi[0]==pi)) {
               chtPtrA->matched[2] = TRUE;
               vchtPtrNew->matched[2] = TRUE;
            }
            else {
               chtPtrA = chtPtrA->next;
            }
         } /* end while */

      } /* end endif */
      else {
         chtPtr = chtPtr->next;
      }
   }

   triList = (int *)malloc(sizeof(int)*count*3);
   chtPtr = chtList;
   for (i=0; i<count; i++) {
      if (chtPtr==NULL) {
         printf(" ERROR: count %d doesn't match data 
         structure\n",count);
         return 1;
      }
      triList[3*i] = chtPtr->pi[0];
      triList[3*i+1] = chtPtr->pi[1];
      triList[3*i+2] = chtPtr->pi[2];
      chtPtr=chtPtr->next;
   }
   *numTriangles = count;
   *triangleList = triList;
   return 0;
}

void printCHTlist(conHullTri_td *chtPtr)
{
   printf(" CHT list\n");
   while (chtPtr!=NULL) {
      printf(" %d:%d:%d ; %d:%d:%d ; %f,%f,%f\n",
         chtPtr->pi[0],chtPtr->pi[1],chtPtr->pi[2],
         chtPtr->matched[0],chtPtr->matched[1],chtPtr->matched[2],
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         chtPtr->normal.x,chtPtr->normal.y,chtPtr->normal.z);
      chtPtr = chtPtr->next;
   }
}

B.3 Transformations

B.3.1 Transforming a Point Using Vector-Matrix Multiplication
Vector-matrix multiplication is usually how the transformation of a point is repre-
sented. Because a vector is just an N x1 matrix, vector-matrix multiplication is
actually a special case of matrix-matrix multiplication. Vector-matrix multiplica-
tion is usually performed by premultiplying a column vector by a matrix. This is
equivalent to postmultiplying a row vector by the transpose of that same matrix.
Both notations are encountered in the graphics literature, but use of the column
vector is more common. The example in Equation  uses a 4x4 matrix and a point
in three-space using homogeneous coordinates, consistent with what is typically
encountered in graphics applications.

(Eq. B.32)
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B.3.2 Transforming a Vector Using Vector-Matrix Multiplication

 

In addition to transforming points, it is also often useful to transform vectors,
such as normal vectors, from one space to another. However, the computations
used to transform a vector are different from those used to transform a point. Vec-
tors have direction and magnitude but do not have a position in space. Thus, for
example, a pure translation has no effect on a vector. If the transformation of one
space to another is a pure rotation and uniform scale, then those transformations
can be applied directly to the vector. However, it is not so obvious how to apply
transformations that incorporate nonuniform scale.

The transformation of a vector can be demonstrated by considering a point,

 

 P,

 

which satisfies a planar equation (Equation B.33). Note that (

 

a, b, c

 

) represents a
vector normal to the plane. Showing how to transform a planar equation will, in
effect, show how to transform a vector. The point is transformed by a matrix, 

 

M

 

(Equation B.34). Because the transformations of rotation, translation, and scale
preserve planarity, the transformed point, 
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, will satisfy some new planar equa-
tion, 
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, in the transformed space (Equation B.35). Substituting the definition of
the transformed point, Equation B.34, into Equation B.35 produces Equation
B.36. If the transformed planar equation is equal to the original normal postmulti-
plied by the inverse of the transformation matrix (Equation B.37), then Equation
B.35 is satisfied, as shown by Equation B.38. The transformed normal vector is,
therefore, (

 

a

 

′

 

, 

 

b

 

′

 

, 

 

c

 

′

 

).

 

(Eq. B.33)

(Eq. B.34)

(Eq. B.35)

(Eq. B.36)

(Eq. B.37)

(Eq. B.38)

a x⋅ b y⋅ c z⋅ d+ + + 0=

a b c d

x
y
z
1

⋅ 0=

NT P⋅ 0=

P ′ M P⋅=

N ′T P ′⋅ 0=

N ′T M P⋅ ⋅ 0=

N ′T NT M 1–⋅=

NT M 1– M P⋅ ⋅ ⋅ NT P⋅ 0= =

Team LRN



Transformations 449

If one has a vector (a, b, c) to transform, one should just assume that it is a nor-
mal vector for a plane passing through the origin [a, b, c, 0] and postmultiply it by
the inverse of the transformation matrix (Equation B.37). If it is desirable to keep
all vectors as column vectors, then Equation B.39 can be used.

(Eq. B.39)

B.3.3 Axis-Angle Rotations
Given an axis of rotation  of unit length and an angle θ to rotate
by (Figure B.22), the rotation matrix M can be formed by Equation B.40. This is a
more direct way to rotate a point around an axis, as opposed to implementing the
rotation as a series of rotations about the global axes.

(Eq. B.40)

Figure B.22 Axis-angle rotation
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B.3.4 Quaternions
Quaternions are discussed in Chapters 2 and 3. The equations from those chap-
ters, along with additional equations, are collected here to facilitate the discussion.

Quaternion Arithmetic
Quaternions are four-tuples and can be considered as a scalar combined with a
vector (Equation B.41). Addition and multiplication are defined for quaternions
by Equation B.42 and Equation B.43, respectively. Quaternion multiplication is
associative (Equation B.44), but it is not commutative (Equation B.45). The mag-
nitude of a quaternion is computed as the square root of the sum of the squares of
its four components (Equation B.46). Quaternion multiplication has an identity
(Equation B.47) and an inverse (Equation B.48). The inverse distributes over
quaternion multiplication similarly to how the inverse distributes over matrix
multiplication (Equation B.49). A quaternion is normalized by dividing it by its
magnitude (Equation B.50).

(Eq. B.41)

(Eq. B.42)

(Eq. B.43)

(Eq. B.44)

(Eq. B.45)

(Eq. B.46)

(Eq. B.47)

(Eq. B.48)

(Eq. B.49)

(Eq. B.50)

Rotations by Quaternions
A point in space is represented by a vector quantity in quaternion form by using a
zero scalar value (Equation B.51). A quaternion can be used to rotate a vector
using quaternion multiplication (Equation B.52). Compound rotations can be

q s x y z, , ,[ ] s v,[ ]= =

s1 v1,[ ] s2 v2,[ ]+ s1 s2+ v1 v2+,[ ]=

s1 v1,[ ] s2 v2,[ ]⋅ s1 s2⋅ v1 v2•– s1 v2⋅ s2 v1⋅ v1 v2×+ +,[ ]=

q1 q2⋅( ) q3⋅ q1 q2 q3⋅( )⋅=

q1 q2⋅ q2 q1⋅≠

q s2 x2 y2 z2
+ + +=

s v, 1 0 0 0, ,( ),⋅ s v,=

q 1– 1 q⁄( )2 s v–,[ ]⋅=

q 1– q⋅ q q 1–⋅ 1 0 0 0, ,( ),= =

p q⋅( ) 1– q 1– p 1–⋅=

q q( )⁄
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implemented by premultiplying the corresponding quaternions (Equation B.53),
similar to what’s routinely done when rotation matrices are used. As should be
expected, compounding a rotation with its inverse produces the identity transfor-
mation for vectors (Equation B.54). An axis-angle rotation is represented by a unit
quaternion, as shown in Equation B.55. Any scalar multiple of a quaternion repre-
sents the same rotation. In particular, the negation of a quaternion (negating each
of its four components, –q = [–s, –x, y, –z]) represents the same rotation that the
original quaternion represents (Equation B.56).

(Eq. B.51)

(Eq. B.52)

(Eq. B.53)

(Eq. B.54)

(Eq. B.55)

(Eq. B.56)

Conversions
It is often useful to convert back and forth between rotation matrices and quater-
nions. Often, quaternions are used to interpolate between orientations, and the
result is converted to a rotation matrix so as to combine it with other matrices in
the display pipeline.

Given a unit quaternion (q = [s, x, y, z], s 2 + x 2 + y 2 + z 2 = 1), one can easily
determine the corresponding rotation matrix by rotating the three unit vectors

v 0 x y z, , ,[ ]=

v′ Rot v( ) q v q 1–⋅ ⋅= =

Rotq Rotp v( )( ) q p v p 1–⋅ ⋅( ) q 1–⋅ ⋅=

q p⋅( ) v p 1– q 1–⋅( )⋅ ⋅( )=

q p⋅( ) v q p⋅( ) 1–⋅ ⋅( )=

Rotqp v( )=

ot 1– Rot v( )( ) q 1– q v q 1–⋅ ⋅( ) q⋅ ⋅=

= q 1– q⋅( ) v q 1– q⋅( ) v=⋅ ⋅

Rot θ x y z, ,,[ ] θ 2⁄( )cos θ 2⁄( )sin x y z, ,( )⋅,[ ]=

q– Rot θ– x y z, ,( )–,[ ]=

θ– 2⁄( )cos θ–( ) 2⁄( )sin x y z, ,( )–( )⋅,[ ]=

θ 2⁄( )cos θ 2⁄( )sin– x y z, ,( )–( )⋅,[ ]=

θ 2⁄( )cos θ 2⁄( )sin x y z, ,⋅,[ ]=

Rot θ x y z, ,( ),[ ]=

q=
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that correspond to the principal axes. The rotated vectors are the columns of the
equivalent rotation matrix (Equation B.57).

(Eq. B.57)

Given a rotation matrix, one can use the definitions for the terms of the matrix
in Equation B.57 to solve for the elements of the equivalent unit quaternion. The
fact that the unit quaternion has a magnitude of one (s 2 + x 2 + y 2 + z 2 = 1),
makes it easy to see that the diagonal elements sum to 4 • s 2 – 1. Summing the
diagonal elements of the matrix in Equation B.58 results in Equation B.59. The
diagonal elements can also be used to solve for the remaining terms (Equation
B.60). The square roots of these last equations can be avoided if the off-diagonal
elements are used to solve for x, y, and z at the expense of testing for a divide by an
s that is equal to zero (in which case Equation B.60 can be used).

(Eq. B.58)

(Eq. B.59)

(Eq. B.60)
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B.4 Interpolating and Approximating Curves

 

This section covers many of the basic terms and concepts needed to interpolate
values in computer animation. It is not a complete treatise of curves but an over-
view of the important ones. While many of the terms and concepts discussed are
applicable to functions in general, they are presented as they relate to functions
having to do with the practical interpolation of points in Euclidean space as typi-
cally used in computer animation applications. For more complete discussions of
the topics contained here, see, for example, Mortenson [14], Rogers and Adams
[18], Farin [4], and Bartels, Beatty, and Barsky [1].

 

B.4.1 Equations: Some Basic Terms

 

For present purposes, there are three types of equations: 

 

explicit

 

, 

 

implicit

 

, and 

 

para-
metric

 

. 

 

Explicit equations

 

 are of the form 

 

y 

 

=

 

 f

 

(

 

x

 

). The explicit form is good for
generating points because it generates a value of 

 

y

 

 for any value of 

 

x

 

 put into the
function. The drawback of the explicit form is that it is dependent on the choice
of coordinate axes and it is ambiguous if there is more than one 

 

y

 

 for a given 

 

x

 

(such as 

 

,

 

 in which an input value of 4 would generate values of either 2
or –2). 

 

Implicit equations

 

 are of the form 

 

f

 

(

 

x, y

 

) 

 

=

 

 0. The implicit form is good for
testing to see if a point is on a curve because the coordinates of the point can easily
be put into the equation for the curve and checked to see if the equation is satis-
fied. The drawback of the implicit form is that generating a series of points along a
curve is often desired, and implicit forms are not generative. 

 

Parametric equations

 

are of the form 

 

x 

 

=

 

 f

 

(

 

t

 

), 

 

y

 

 

 

=

 

 

 

g

 

(

 

t

 

). For any given value of 

 

t,

 

 a point (

 

x, y

 

) is gener-
ated. This form is good for generating a sequence of points as ordered values of 

 

t

 

are given. The parametric form is also useful because it can be used for multivalued
functions of 

 

x,

 

 which are problematic for explicit equations.
Equations can be classified according to the terms contained in them. Equa-

tions that contain only variables raised to a power are 

 

polynomial

 

 equations. If the
highest power is one, then the equation is 

 

linear

 

. If the highest power is two, then
the equation is 

 

quadratic

 

. If the highest power is three, then it is 

 

cubic

 

. If the equa-
tion is not a simple polynomial but rather contains sines, cosines, log, or a variety
of other functions, then it is called 

 

transcendental

 

. In computer graphics, the most
commonly encountered type of function is the cubic polynomial.

 
Continuity

 
 refers to how well behaved the curve is in a mathematical sense. For

a value arbitrarily close to a  x  
0

  if the function is arbitrarily close to  f  (  x  
0
 ), then it

has 

 

positional

 

, or 

 

zeroth-order,

 

 continuity (

 

C

 

0

 

) at that point. If the slope of the
curve (or the first derivative of the function) is continuous, then the function has

 

tangential,

 

 or 

 

first-order,

 

 continuity (

 

C

 

1

 

). This is extended to all of the function’s

y x=

Team LRN



 

454

 

       

 

 B: Background Information and Techniques

 

derivatives, although for purposes of computer animation the concern is with first-
order continuity or, possibly, 

 

second-order,

 

 or 

 

curvature,

 

 continuity (

 

C

 

2

 

). Polyno-
mials are infinitely continuous.

If a curve is pieced together from individual curve segments, one can speak of

 

piecewise properties—

 

the properties of the individual pieces. For example, a
sequence of straight line segments, sometimes called a 

 

polyline

 

 or a 

 

wire

 

, is piece-
wise linear. A major concern regarding piecewise curves is the continuity condi-
tions at the junctions of the curve segments. If one curve segment begins where
the previous segment ends, then there is zeroth-order, or positional, continuity at
the junction. If the beginning tangent of one curve segment is the same as the end-
ing tangent of the previous curve segment, then there is first-order, or tangential,
continuity at the junction. If the beginning curvature of one curve segment is the
same as the ending curvature of the previous curve segment, then there is second-
order, or curvature, continuity at the junction. Typically, computer animation is
not concerned with continuity beyond second order.

Sometimes in discussions of the continuity at segment junctions, a distinction
is made between parametric continuity and geometric continuity (e.g., [14]). So far
the discussion has concerned parametric continuity. Geometric continuity is less
restrictive. First-order parametric continuity, for example, requires that the ending
tangent vector of the first segment be the same as the beginning tangent vector of
the second. First-order geometric continuity, on the other hand, requires that only
the direction of the tangents be the same, and it allows the magnitudes of the tan-
gents to be different. Similar definitions exist for higher-order geometric continu-
ity. One distinction worth mentioning is that parametric continuity is sensitive to
the rate at which the parameter varies relative to the length of the curve traced out.
Geometric continuity is not sensitive to this rate.

When a curve is constructed from a set of points and the curve passes through
the points, it is said to interpolate the points. However, if the points are used to
control the general shape of the curve, with the curve not necessarily passing
through them, then the curve is said to approximate the points. Interpolation is also
used generally to refer to all approaches for constructing a curve from a set of
points. For a given interpolation technique, if the resulting curve is guaranteed to
lie within the convex hull of the set of points, then it is said to have the convex hull
property.

B.4.2 Simple Linear Interpolation: 
Geometric and Algebraic Forms
Simple linear interpolation is given by Equation B.61 and shown in Figure B.23.
Notice that the interpolants, 1 – u and u, sum to one. This property ensures that
the interpolating curve (in this case a straight line) falls within the convex hull of
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the geometric entities being interpolated (in this simple case the convex hull is the
straight line itself ).

(Eq. B.61)

Using more general notation, one can rewrite the equation above as in Equation
B.62. Here F 0 and F 1 are called blending functions. This is referred to as the geo-
metric form because the geometric information, in this case P 0 and P 1, is explicit
in the equation.

(Eq. B.62)

The linear interpolation equation can also be rewritten as in Equation B.63.
This form is typical of polynomial equations in which the terms are collected
according to coefficients of the variable raised to a power. It is more generally writ-
ten as Equation B.64. In this case there are only linear terms. This way of express-
ing the equation is referred to as the algebraic form. 

(Eq. B.63)

(Eq. B.64)

Alternatively, both of these forms can be put in a matrix representation. The geo-
metric form becomes Equation B.65 and the algebraic form becomes Equation
B.66. The geometric form is useful in situations in which the geometric informa-
tion (the points defining the curve) needs to be frequently updated or replaced.
The algebraic form is useful for repeated evaluation of a single curve for different
values of the parameter. The fully expanded form is shown in Equation B.67. The
curves discussed below can all be written in this form. Of course, depending on
the actual curve type, the U (variable), M (coefficient), and B (geometric informa-
tion) matrices will contain different values.

 (Eq. B.65)

Figure B.23 Linear interpolation

P (0)

P (1)

P (u)

P 0

P 1

P u( ) 1 u–( ) P 0⋅ u P 1⋅+=

P u( ) F0 u( ) P 0⋅ F1 u( ) P1⋅+=

P u( ) P1 P 0–( ) u⋅ P 0+=

P u( ) a1 u⋅ a0+=

P u( )
F0 u( )

F1 u( )
P 0 P1 FBT

= =
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(Eq. B.66)

(Eq. B.67)

B.4.3 Parameterization by Arc Length
It should be noted that in general there is not a linear relationship between
changes in the parameter u and the distance traveled along a curve (its arc length).
It happens to be true in the example above concerning a straight line and the
parameter u. However, as Mortenson [14] points out, there are other equations
that trace out a straight line in space that are fairly convoluted in their relationship
between changes in the parameter and distance traveled. For example, consider
Equation B.68, which is linear in P 0 and P 1. That is, it traces out a straight line
in space between P 0 and P 1. However, it is nonlinear in u. As a result, the curve is
not traced out in a nice monotonic, constant-velocity manner. The nonlinear rela-
tionship is evident in most parameterized curves unless special care is taken to
ensure constant velocity. (See Chapter 3, “Controlling the Motion Along a
Curve.”)

(Eq. B.68)

B.4.4 Computing Derivatives
One of the matrix forms for parametric curves, as shown in Equation B.67 for lin-
ear interpolation, is UTMB. Parametric curves of any polynomial order can be put
into this matrix form. Often, it is useful to compute the derivatives of a parametric
curve. This can be done easily by taking the derivative of the U vector. For exam-
ple, the first two derivatives of a cubic curve, shown in Equation B.69, are easily
evaluated for any value of u.

 (Eq. B.69)

P u( ) u 1
a1

a0
UTA= =

P u( ) u 1
1– 1

1 0

P 0

P1
UTMB FB UTA= = = =

P u( ) P 0 1 u–( ) u⋅ u+( ) P1 P 0–( )⋅+=

P u( ) UTMB u3 u2 u 1= = MB

P ′ u( ) U ′TMB 3 u2⋅ 2 u⋅ 1 0 MB= =

P ″ u( ) U ″TMB 6 u⋅ 2 0 0 MB= =
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B.4.5 Hermite Interpolation
Hermite interpolation generates a cubic polynomial from one point to another. In
addition to specifying the beginning and ending points (Pi , Pi +1), the user needs
to supply beginning and ending tangent vectors (Pi′ , P ′i +1) as well (Figure B.24).
The general matrix form for a curve is repeated in Equation B.70, and the Her-
mite matrices are given in Equation B.71.

(Eq. B.70)

(Eq. B.71)

Continuity between beginning and ending tangent vectors of connected seg-
ments is ensured by merely using the ending tangent vector of one segment as the
beginning tangent vector of the next. A composite Hermite curve (piecewise cubic
with first-order continuity at the junctions) is shown in Figure B.25.

Trying to put a Hermite curve through a large number of points, which requires
the user to specify all of the needed tangent vectors, can be a burden. There are
several techniques to get around this. One is to enforce second-degree continuity.

Figure B.24 Hermite interpolation

P u( ) UTMB=

UT
u3 u2 u 1=

M

2 2– 1 1

3– 3 2– 1–

0 0 1 0

1 0 0 0

=

B

Pi

Pi 1+

Pi′
Pi 1+′

=

P (u)

P ′ = P ′(0)

Pi = P (0)

P ′i +1 = P ′(1)

Pi +1 = P (1)

Team LRN



458          B: Background Information and Techniques

This requirement provides enough constraints so that the user does not have to
provide interior tangent vectors; they can be calculated automatically. See Rogers
and Adams [18] or Mortenson [14] for alternative formulations. A more common
technique is the Catmull-Rom spline.

B.4.6 Catmull-Rom Spline
The Catmull-Rom curve can be viewed as a Hermite curve in which the tangents
at the interior control points are automatically generated according to a relatively
simple geometric procedure (as opposed to the more involved numerical tech-
niques referred to above). For each interior point, Pi , the tangent at that point, Pi′,
is computed as one-half the vector from the previous control point, Pi –1, to the
following control point, Pi +1 (Equation B.72), as shown in Figure B.26.1 The
matrices for the Catmull-Rom curve in general matrix form are given in Equation
B.73. A Catmull-Rom spline is a specific type of cardinal spline. 

(Eq. B.72)

Figure B.25 Composite Hermite curve

1. Farin [4] describes the Catmull-Rom spline curve in terms of a cubic Bezier curve by defining interior control points.
Placement of the interior control points is determined by use of an auxiliary knot vector. With a uniform distance
between knot values, the control points are displaced from the point to be interpolated by one-sixth of the vector from
the previous interpolated point to the following interpolated point. Tangent vectors are three times the vector from an
interior control point to the interpolated point. This results in the Catmull-Rom tangent vector described here.

Figure B.26 Catmull-Rom spline

Pi′ 1 2⁄( ) Pi 1+ Pi 1––( )⋅=

Pi

Pi +1
Pi +1 – Pi –1

Pi –1

Pi′
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(Eq. B.73)

For the end conditions, the user can provide tangent vectors at the very begin-
ning and at the very end of the cubic curve. Alternatively, various automatic tech-
niques can be used. For example, the beginning tangent vector can be defined as
follows. The vector from the second point (P1) to the third point (P2) is subtracted
from the second point and used as a virtual point to which the initial tangent is
directed. This tangent is computed by Equation B.74. Figure B.27 shows the for-
mation of the initial tangent curve according to the equation, and Figure B.28
shows a curve that uses this technique. 

 (Eq. B.74)

A drawback of the Catmull-Rom formulation is that an internal tangent vector
is not dependent on the position of the internal point relative to its two neighbors.
In Figure B.29, all three positions (Qi , Pi , Ri ) for the i th point would have the
same tangent vector. 

Figure B.27 Automatically forming the initial tangent of a Catmull-Rom spline
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An advantage of Catmull-Rom is that the calculation to compute the internal
tangent vectors is extremely simple and fast. However, for each segment the tan-
gent computation is a one-time-only cost. It is then used repeatedly in the compu-
tation for each new point in that segment. Therefore, it often makes sense to
spend a little more time computing more appropriate internal tangent vectors to
obtain a better set of points along the segment. One alternative is to use a vector
perpendicular to the plane that bisects the angle made by Pi–1 – Pi and Pi+1 – Pi
(Figure B.30). This can be computed easily by adding the normalized vector from
Pi–1 to Pi with the normalized vector from Pi to Pi+1. 

Figure B.28 Catmull-Rom spline with end conditions using Equation B.74

Figure B.29 Three curve segments, (Pi–1, Pi , Pi+1), (Pi–1, Qi , Pi+1), (Pi–1, Ri , Pi+1), using 
the standard Catmull-Rom form for computing the internal tangent

Figure B.30 Three curve segments, (Pi–1, Pi , Pi +1), (Pi–1, Q i , Pi +1), (Pi–1, Ri , Pi +1) using 
the perpendicular to the angle bisector for computing the internal tangent

Pi–1

Pi+1

Pi Ri

Q i

Pi–1

Pi +1

Pi Ri

Qi
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Another modification, which can be used with the original Catmull-Rom tan-
gent computation or with the bisector technique above, is to use the relative posi-
tion of the internal point (Pi ) to independently determine the length of the
tangent vector for each segment it is associated with. Thus, a point Pi has an end-
ing tangent vector associated with it for the segment from Pi–1 to Pi as well as a
beginning tangent vector associated with it for the segment Pi to Pi+1. These tan-
gents have the same direction but different lengths. This relaxes the C1 continuity
of the Catmull-Rom spline and uses G1 continuity instead. For example, an initial
tangent vector at an interior point is determined as the vector from Pi–1 to Pi+1.
The ending tangent vector for the segment Pi–1 to Pi is computed by scaling this
initial tangent vector by the ratio of the distance between the points Pi and Pi–1 to
the distance between points Pi–1 and Pi+1. Referring to the segment between Pi–1
and Pi as Pi–1(u) results in Equation B.75. A similar calculation for the beginning
tangent vector of the segment between Pi and Pi +1 results in Equation B.76. These
tangents can be seen in Figure B.31.The computational cost of this approach is
only a little more than the standard Catmull-Rom spline and seems to give more
intuitive results.

 (Eq. B.75)

(Eq. B.76)

B.4.7 Four-Point Form
Fitting a cubic segment to four points (P0, P1, P2, P3), assigned to user-specified
parametric values (u0, u1, u2, u3), can be accomplished by setting up the linear
system of equations for the points (Equation B.77) and solving for the unknown
coefficient matrix. In the case of parametric values of 0, 1/3, 2/3, and 1, the matrix

Figure B.31 Interior tangents based on relative segment lengths 
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Pi
Pi′(0.0)

Pi–1(u)
Pi (u)

P ′i–1(1.0)

P ′i 1– 1.0( )
Pi Pi 1––

Pi 1+ Pi 1––
-------------------------------- Pi 1+ Pi 1––( )⋅=

P ′i 0.0( )
Pi 1+ Pi–

Pi 1+ Pi 1––
-------------------------------- Pi 1+ Pi 1––( )⋅=
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is given by Equation B.78. However, with this form it is difficult to join segments
with C 1 continuity.

(Eq. B.77)

(Eq. B.78)

B.4.8 Blended Parabolas
Blending overlapping parabolas to define a cubic segment is another approach to
interpolating a curve through a set of points. In addition, the end conditions are
handled by parabolic segments, which is consistent with how the interior segments
are defined. Blending parabolas results in a formulation that is very similar to
Catmull-Rom in that each segment is defined by four points, it is an interpolating
curve, and local control is provided. Under the assumptions used here for
Catmull-Rom and the blended parabolas, the interpolating matrices are identical. 

For each overlapping triple of points, a parabolic curve is defined by the three
points. A cubic curve segment is created by linearly interpolating between the two
overlapping parabolic segments. More specifically, take the first three points, P0,
P1, P2, and fit a parabola, P (u), through them using the following constraints:
P (0.0) = P0, P (0.5) = P1, P (1.0) = P2. Take the next group of three points, P1, P2,
P3, which partially overlap the first set of three points, and fit a parabola, R (u),
through them using similar constraints: R (0.0) = P1, R (0.5) = P2, R (1.0) = P3.
Between points P1 and P2 the two parabolas overlap. Reparameterize this region
into the range [0.0, 1.0] and linearly blend the two parabolic segments (Figure
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B.32). The result can be put in matrix form for a cubic curve using the four points
as the geometric information together with the coefficient matrix shown in Equa-
tion B.79. To interpolate a list of points, calculate interior segments using this
equation. End conditions can be handled by constructing parabolic arcs at the
very beginning and very end (Figure B.33).

(Eq. B.79)

This form assumes that all points are equally spaced in parametric space. Often
it is the case that even spacing is not present. In such cases, relative cord length can
be used to estimate parametric values. The derivation is a bit more involved [18],
but the final result can still be formed into a 4x4 matrix and used to produce a
cubic polynomial in the interior segments.

B.4.9 Bezier Interpolation/Approximation
A cubic Bezier curve is defined by the beginning point and the ending point,
which are interpolated, and two interior points, which control the shape of the
curve. The cubic Bezier curve is similar to the Hermite form. The Hermite form
uses beginning and ending tangent vectors to control the shape of the curve; the
Bezier form uses auxiliary control points to define tangent vectors. A cubic curve is
defined by four points: P0, P1, P2, P3. The beginning and ending points of the
curve are P0 and P3, respectively. The interior control points used to control the
shape of the curve and define the beginning and ending tangent vectors are P1 and
P2. See Figure B.34. The coefficient matrix for a single cubic Bezier curve is shown
in Equation B.80. In the cubic case, P ′(0) = 3 • (P1 – P0) and P ′(1) = 3 • (P3 – P2)

Figure B.32 Parabolic blend segment Figure B.33 Multiple parabolic blend 
segments
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(Eq. B.80)

Continuity between adjacent Bezier segments can be controlled by colinearity
of the control points on either side of the shared beginning/ending point of the
two curve segments where they join (Figure B.35). In addition, the Bezier curve
form allows one to define a curve of arbitrary order. If three interior control points
are used, then the resulting curve will be quartic; if four interior control points are
used, then the resulting curve will be quintic. See Mortenson [14] for a more com-
plete discussion.

B.4.10 De Casteljau Construction of Bezier Curves
The de Casteljau method is a way to geometrically construct a Bezier curve. Figure
B.36 shows the construction of a point at u = 1 ⁄ 3. This method constructs a point
u along the way between paired control points (identified by a “1” in Figure B.36).
Then points are constructed u along the way between points just previously con-
structed. These new points are marked “2” in Figure B.36. In the cubic case, in
which there were four initial points, there are two newly constructed points. The
point on the curve is constructed by going u along the way between these two
points. This can be done for any values of u and for any order of curve. Higher-
order Bezier curves require more iterations to produce the final point on the curve.

Figure B.34 Cubic Bezier curve segment

Figure B.35 Composite cubic Bezier curve showing tangents and colinear control points
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B.4.11 Tension, Continuity, and Bias Control
Often an animator wants better control over the interpolation of key frames than
the standard interpolating splines provide. For better control of the shape of an
interpolating curve, Kochanek [11] suggests a parameterization of the internal tan-
gent vectors based on the three values tension, continuity, and bias. The three
parameters are explained by decomposing each internal tangent vector into an
incoming part and an outgoing part. These tangents are referred to as the left and
right parts, respectively, and are notated by Ti

L and Ti
R for the tangents at Pi. 

Tension controls the sharpness of the bend of the curve at Pi. It does this by
means of a scale factor that changes the length of both the incoming and outgoing
tangents at the control point (Equation B.81). In the default case, t = 0 and the
tangent vector is the average of the two adjacent chords or, equivalently, half of the
cord between the two adjacent points, as in the Catmull-Rom spline. As the ten-
sion parameter, t , goes to one, the tangents become shorter until they reach zero.
Shorter tangents at the control point mean that the curve is pulled closer to a
straight line in the neighborhood of the control point. See Figure B.37.

(Eq. B.81)

The continuity parameter, c, gives the user control over the continuity of the
curve at the control point where the two curve segments join. The incoming (left)
and outgoing (right) tangents at a control point are defined symmetrically with
respect to the chords on either side of the control point. Assuming default tension,
c blends the adjacent chords to form the two tangents, as shown in Equation B.82.

(Eq. B.82)

Figure B.36 De Casteljau construction of a point on a cubic Bezier curve
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The default value for continuity is c = 0, which produces equal left and right
tangent vectors, resulting in continuity at the joint. As c approaches –1, the left
tangent approaches equality with the chord to the left of the control point and the
right tangent approaches equality with the chord to the right of the control point.
As c approaches +1, the definitions of the tangents reverse themselves, and the left
tangent approaches the right chord and the right tangent approaches the left
chord. See Figure B.38.

Bias, b, defines a common tangent vector, which is a blend between the chord
left of the control point and the chord right of the control point (Equation B.83).
At the default value (b = 0), the tangent is an even blend of these two, resulting in
a Catmull-Rom type of internal tangent vector. Values of b approaching –1 bias
the tangent toward the chord to the left of the control point, while values of b
approaching +1 bias the tangent toward the chord to the right. See Figure B.39.

(Eq. B.83)

Figure B.37 The effect of varying the tension parameter
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The three parameters tension, continuity, and bias are combined in Equation B.84.

(Eq. B.84)

B.4.12 B-Splines
B-splines are the most flexible and useful type of curve, but they are also more dif-
ficult to grasp intuitively. The formulation includes Bezier curves as a special case.
The formulation for B-spline curves decouples the number of control points from

Figure B.38 The effect of varying the continuity parameter (with default tension)
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the degree of the resulting polynomial. It accomplishes this with additional infor-
mation contained in the 

 

knot vector

 

. An example of a 

 

uniform knot vector

 

 is [0, 1, 2,
3, 4, 5, 6, . . . , 

 

n 

 

+

 

 k

 

 – 1], in which the knot values are uniformly spaced apart. In
this knot vector, 

 

n

 

 is the number of control points and 

 

k

 

 is the degree of the B-
spline curve. The parametric value varies between the first and last values of the
knot vector. The knot vector establishes a relationship between the parametric
value and the control points. With replication of values in the knot vector, the
curve can be drawn closer to a particular control point up to the point where the
curve actually passes through the control point.

A particularly simple, yet useful, type of B-spline curve is a uniform cubic B-
spline curve. It is defined using four control points over the interval zero to one
(Equation B.85). A compound curve is generated from an arbitrary number of
control points by constructing a curve segment from each four-tuple of adjacent
control points: (

 

P

 

i

 

, P

 

i

 

+1

 

, 

 

P

 

i

 

+2

 

, 

 

P

 

i

 

+3

 

) for 

 

i

 

 

 

=

 

 1, 2, . . . , 

 

n

 

 – 3, where 

 

n

 

 is the total
number of control points (Figure B.40). Each section of the curve is generated by

 

Figure B.39
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multiplying the same 4x4 matrix by four adjacent control points with an interpo-
lating parameter between zero and one. In this case, none of the control points is
interpolated. 

 

(Eq. B.85)

 

NURBS, 

 

Nonuniform rational B-splines

 

, are even more flexible than basic B-
splines. NURBS allow for exact representation of circular arcs, whereas Bezier and
nonrational B-splines do not. This is often important in modeling, but for pur-
poses of animation, the basic periodic, uniform cubic B-spline is usually sufficient.

 

B.4.13 Fitting Curves to a Given Set of Points

 

Sometimes it is desirable to interpolate a set of points using a Bezier formulation.
The points to be interpolated can be designated as the endpoints of the Bezier
curve segments, and the interior control points can be constructed by forming tan-
gent vectors at the vertices, as with the Catmull-Rom formulation. The interior
control points can be constructed by displacing the control points along the tan-
gent lines just formed. For example, for the segment between given points 
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, can be positioned at
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 – 
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). See Figure B.41.

Other methods exist. Farin [4] presents a more general method of constructing
the Bezier curve and, from that, constructing the B-spline control points. Both
Farin [4] and Rogers and Adams [18] present a method of constructing a compos-
ite Hermite curve through a set of points that automatically calculates internal
tangent vectors by assuming second-order continuity at the segment joints.

 

Figure B.40
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B.5 Randomness

Introducing controlled randomness in both modeling and animation can often
produce more interesting, realistic, natural-looking imagery. The use of noise and
turbulence functions are often used in textures but also can be used in modeling
natural phenomena such as smoke and clouds. The code for noise and turbulence
that follows is from Peachey’s chapter in Ebert [3]. Random perturbations are also

Figure B.41 Constructing a Bezier segment that interpolates points
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useful in human-figure animation to make the motion less “robotic” looking.
There are various algorithms proposed in the literature for generating random
numbers; Gasch’s [6] is presented at the end of this section.

 

B.5.1 Noise

 

The 

 

noise

 

 function uses a table of pseudorandom numbers between –1 and 

 

+

 

1 to
represent the integer lattice values. The table is created by 

 

valueTableInit

 

 the first
time that 

 

noise

 

 is called. Lattice coordinates are used to index into a table of pseu-
dorandom numbers. A simple function of the coordinates, such as their sum, is
used to compute the index. However, this can result in unwanted patterns. To help
avoid these artifacts, a table of random permutation values is used to modify the
index before it is used. A four-point spline is used to interpolate among the lattice
pseudorandom numbers (

 
FPspline

 
).

 

#define TABSIZE              256
#define TABMASK              (TABSIZE-1)
#define PERM(x)              perm[(x)&TABMASK]
#define INDEX(ix,iy,iz)      PERM((ix)+PERM((iy)+PERM(iz)))
#define FLOOR(x)             (int)(x)

/* PERMUTATION TABLE */
static unsigned char perm[TABSIZE] = {
225, 155, 210, 108, 175, 199, 221, 144, 203, 116, 70, 213, 69, 158, 33, 
252, 5, 82, 173, 133, 222, 139, 174, 27, 9, 71, 90, 246, 75, 130, 91, 
191, 169, 138, 2, 151, 194, 235, 81, 7, 25, 113, 228, 159, 205, 253, 
134, 142, 248, 65, 224, 217, 22, 121, 229, 63, 89, 103, 96, 104, 156, 
17, 201, 129, 36, 8, 165, 110, 237, 117, 231, 56, 132, 211, 152, 20, 
181, 111, 239, 218, 170, 163, 51, 172, 157, 47, 80, 212, 176, 250, 87, 
49, 99, 242, 136, 189, 162, 115, 44, 43, 124, 94, 150, 16, 141, 247, 32, 
10, 198, 223, 255, 72, 53, 131, 84, 57, 220, 197, 58, 50, 208, 11, 241, 
28, 3, 192, 62, 202, 18, 215, 153, 24, 76, 41, 15, 179, 39, 46, 55, 6, 
128, 167, 23, 188, 106, 34, 187, 140, 164, 73, 112, 182, 244, 195, 227, 
13, 35, 77, 196, 185, 26, 200, 226, 119, 31, 123, 168, 125, 249, 68, 
183, 230, 177, 135, 160, 180, 12, 1, 243, 148, 102, 166, 38, 238, 251, 
37, 240, 126, 64, 74, 161, 40, 184, 149, 171, 178, 101, 66, 29, 59, 146, 
61, 254, 107, 42, 86, 154, 4, 236, 232, 120, 21, 233, 209, 45, 98, 193, 
114, 78, 19, 206, 14, 118, 127, 48, 79, 147, 85, 30, 207, 219, 54, 88, 
234, 190, 122, 95, 67, 143, 109, 137, 214, 145, 93, 92, 100, 245, 0, 
216, 186, 60, 83, 105, 97, 204, 52
};
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#define RANDNBR        (((float)rand())/RAND_MASK)

float  valueTab[TABSIZE];

/* ========================================================== */
/* VALUE TABLE INIT */
/* initialize the table of pseudorandom numbers */
void valueTableInit(int seed)
{
   float   *table = valueTab;
   int     i;

   srand(seed);
   for (i=0; i<TABSIZE; i++)
   *(table++) = 1.0 -2.0*RANDNBR;
}

/* ========================================================== */
/* LATTICE function */
/* returns a value corresponding to the lattice point */
float lattice(int ix, int iy, int iz)
{
   return valueTab[INDEX(ix,iy,iz)];
}

/* ========================================================== */
/* NOISE function */
float noise(float x, float y, float z)
{
   int   ix,iy,iz;
   int   i,j,k;
   float fx,fy,fz;
   float xknots[4],yknots[4],zknots[4];
   static int initialized = 0;

   if (!initialized) {
      valueTableInit(665);
      initialized = 1;
   }

   ix = FLOOR(x);
   fx = x - ix;
   iy = FLOOR(y);
   fy = y - iy;
   iz = FLOOR(z);
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   fz = z-iz;

   for (k=-1; k<=2; k++) {
      for (j=-1; j<=2; j++) {
         for (i=-1; i<=2; i++)
            xknots[i+1] = lattice(ix+i,iy+j,iz+k);
         yknots[j+1] = spline(fx,xknots);
      }
      zknots[k+1] = spline(fy,yknots);
   }
   return spline(fz,zknots);
}

#define   FP00  -0.5
#define   FP01   1.5
#define   FP02  -1.5
#define   FP03   0.5
#define   FP10   1.0
#define   FP11  -2.5
#define   FP12   2.0
#define   FP13  -0.5
#define   FP20  -0.5
#define   FP21   0.0
#define   FP22   0.5
#define   FP23   0.0
#define   FP30   0.0
#define   FP31   1.0
#define   FP32   0.0
#define   FP33   0.0

/* ========================================================== */
float spline(float u,float *knots)
{
   float   c3,c2,c1,c0;

   c3 = FP00*knots[0] + FP01*knots[1] + FP02*knots[2] + FP03*knots[3];
   c2 = FP10*knots[0] + FP11*knots[1] + FP12*knots[2] + FP13*knots[3];
   c1 = FP20*knots[0] + FP21*knots[1] + FP22*knots[2] + FP23*knots[3];
   c0 = FP30*knots[0] + FP31*knots[1] + FP32*knots[2] + FP33*knots[3];

   return ((c3*u + c2)*u + c1)*u + c0;
}

Team LRN



 

474

 

       

 

 B: Background Information and Techniques

 

B.5.2 Turbulence

 

Turbulence is a stochastic function with a “fractal” power spectrum [3]. The func-
tion is a sum of amplitude-varying frequencies. As frequency increases, the ampli-
tude decreases.

 

/* TURBULENCE */
float   turbulence (float x, float y, float z)
{
   float   f;
   float   value = 0;
   for (f = MINFREQ; f < MAXFREQ;  f *= 2)
      value += fabs(noise(x*f, y*f, z*f))/f;
   return value;
}

 

B.5.3 Random Number Generator

 

This random number generator returns a random number in the range 0 to
999999999. An auxiliary routine maps this number into an arbitrary range of
integers.

 

int r[100];          /* “global” pseudo-random table -- */
                     /* must be visible to rand and init_rand */

/* ========================================================== */
/* RAND */
/* return a random number in the range 0 to 999999999 */
 int rand (void) 
 {
   int i = r[98];
   int j = r[99];
   int k;
   int t;

   if ((t = r[i] - r[j]) < 0) t += 1000000000L;

   r[i] = t;

   r[98]--; r[99]--;
      if (r[98] == 0) r[98] = 55;
      if (r[99] == 0) r[99] = 55;

   k = r[100] % 42 + 56;
   r[100] = r[k];
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   r[k] = t;

   return(r[100]);
 }

/* ========================================================== */
/* INIT RAND */
/* seed the random number table */
int init_rand (char *seed) 
{
   char buf[101];
   int i, j, k;

   if (strlen(seed) > 85) return(0);
   sprintf(buf, “aEbFcGdHeI%s”, seed);
   while (strlen(buf) < 98) strcat(buf, “Q”);

   for (i = 1; i < 98; i++)
      r[i] = buf[i] * 8171717 + i * 997;

   i = 97; j = 12;
   for (k = 1; k < 998; k++) {
      r[i] -= r[j];
      if (r[i] < 0) r[i] += 1000000000;

      i--; j--;
      if (i == 0) i=97;
      if (j == 0) j=97;
   }

   r[98] = 55;
   r[99] = 24;
   r[100] = 77;
}

/* ========================================================== */
/* RAND INT */
/* return a random int between a and b */
/* assumes init_rand already called.  */
int rand_int(int a, int b) 
{
   return (a + rand() % (b - a + 1));
}
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B.6 Physics Primer

 

Physically based motion is a limited simulation of physical reality. This can be as
simple or as complex as the implementation requires. Below are some of the equa-
tions of importance in simple physics simulation that can be found in any one of
several standard texts. 

 

The Mechanical Universe

 

 [5] is used as the source for the
brief discussion that follows.

 

B.6.1 Position, Velocity, and Acceleration

 
The fundamental equation relating position, distance, and speed is shown in
Equation B.86. This can be used to control the positioning of an object for any
particular frame of the animation because the frame number is tied directly to
time (Equation B.87). The average velocity of a body is the distance moved
divided by the time it took to move, as stated by Equation B.88. Notice that the
unit of velocity is distance per time, for example, feet/second.

 

(Eq. B.86)

(Eq. B.87)

(Eq. B.88)

 

For this discussion, distance as a function of time is 

 

s

 

(

 

t

 

); the average velocity
from time 

 

t1 to t 2 is (s (t 2) – s (t1)) ⁄ (t 2 –t1). The instantaneous velocity is deter-
mined by moving t 2 closer and closer to t1. In the limiting case this becomes the
derivative of the distance function with respect to time. Similarly, the average
acceleration of an object is the change in velocity divided by the time it took to
effect the change. This is presented in Equation B.89, where v (t) is a function that
gives the velocity of the object at time t. Notice that the unit of acceleration is
velocity per time or distance per time per time, for example, feet/second2. In the
same way, instantaneous acceleration is the derivative of v (t) with respect to time
(Equation B.90). In the case of motion due to gravity, g is the acceleration due to
gravity—a constant that has been measured to be 32 feet/second2 or 9.8 meters/
second2 (Equation B.91) 

 (Eq. B.89)

(Eq. B.90)

distance speed time⋅=

time frameNumber timePerFrame⋅=

averageVelocity distanceTraveled/time=

average_acceleration v t2( ) v t1( )–( ) t 2 t1–( )⁄=

a t( ) v′ t( ) s″ t( )= =
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(Eq. B.91)

B.6.2 Circular Motion
Circular motion is important in physics and arises for a variety of phenomena,
including the movement of planets and robotic armatures. Circular motion is eas-
ily specified by using polar coordinates. The position of a particle orbiting the ori-
gin at a distance r can be described using Equation B.92. Here, i and j are
orthonormal unit vectors (at right angles to each other and unit length) and p (t) is
the positional vector of the particle. In a constant radius circular orbit, θ(t) varies
as a function of time, and the distance r is constant. During uniform circular
motion, θ(t) changes at a constant rate, and angular velocity is said to be constant.
Angular velocity is referred to here as Ω(t) (Equation B.93). As for constant-
velocity linear motion, in which the distance equals speed multiplied by time, for
constant angular velocity the angle equals angular velocity multiplied by time
(Equation B.94). If θ(t) is measured in radians and time in seconds, then ω(t) is
measured in radians per second. To simplify the following equations, the func-
tional dependence on time will often be omitted when the dependence is obvious
from the context.

(Eq. B.92)

(Eq. B.93)

(Eq. B.94)

Taking the derivative of Equation B.92 with respect to time gives the instanta-
neous velocity (Equation B.95). Notice that the velocity vector, v (t), is perpendic-
ular to the position vector p (t). This can be demonstrated by taking the dot
product of the two vectors v (t) and p (t) and showing that it is identically zero.

(Eq. B.95)

Computing the length of v (t) shows that v  r • ω and, therefore, that the veloc-
ity is independent of t (i.e., constant). Notice, however, that a constant circular
motion still gives rise to an acceleration. Taking the derivative of Equation B.95
produces Equation B.96, which is called the centripetal acceleration. The centrip-
etal acceleration resulting from uniform circular motion is directed radially inward

a t( ) g=

v t( ) g t⋅=

s t( ) 1 2⁄( ) g t2⋅ ⋅=

p t( ) r θ t( )( )cos⋅( )i r θ t( )( )sin⋅( )j+=

td
d θ t( ) ω t( )=

θ t( ) ω t⋅=

v t( )
td

dp r– ω ω t⋅( )sin⋅ ⋅( )i r ω ω t⋅( )cos⋅ ⋅( )j+= =
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and has constant magnitude. With the equation for the length of v (t) from above,
the magnitude of the acceleration can be written using Equation B.97.

(Eq. B.96)

(Eq. B.97)

For any particle in a rigid mass undergoing a rotation, that particle is undergo-
ing the same rotation about its own center. In addition, if the particle is displaced
from the center of rotation, then it is also undergoing an instantaneous positional
translation as a result of its circular motion (Figure B.42).

B.6.3 Newton’s Laws of Motion
It is useful to review Newton’s laws of motion. The first law is the principle of iner-
tia. The second law relates force to the acceleration of a mass (Equation B.98). In
another form, this law relates force to change in momentum (Equation B.99),
where momentum is mass times velocity (m • v). The third law states that when an
object pushes with a force on another object, the second object pushes back with
an equal but opposite force. It is important to note that the force F used here is
considered to be the sum of all external forces acting on an object. Force is a vector
quantity, and these equations really represent three sets of equations, one for each
coordinate (Equation B.100). Newton’s laws of motion are stated as follows:

Figure B.42 Motion of particle in a rotating rigid mass

Rotating rigid mass

Center of rotation Position vector of particle 
relative to center of rotation

Instantaneous linear 
velocity of particle induced 
by angular velocity

Angular velocity vector at 
center of rotation

Angular velocity of particle 
displaced from center of 
rotation
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td
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First Law: If no force is acting on an object, then it will not accelerate. It will main-
tain a constant velocity.
Second Law: The change of motion of an object is proportional to the forces applied
to it.
Third Law: To every action there is always opposed an equal and opposite reaction.

 

(Eq. B.98)

(Eq. B.99)

(Eq. B.100)

 

B.6.4 Inertia and Inertial Reference Frames

 

An 

 

inertial frame

 

 is a frame of reference (e.g., a local coordinate system of an
object) in which the principle of inertia holds. Any frame that is not accelerating is
an inertial frame. In an inertial frame one observes the laws of motion and has no
way of determining whether one is at rest or moving in an “absolute” sense (but
then, what is “absolute”?).

 

B.6.5 Center of Mass

 

The center of mass of an object is that point at which the object is balanced in all
directions. If an external force is applied in line with the center of mass of an
object, then the object moves as if all the mass were concentrated at the center (“

 

c

 

”
in Figure B.43).

 

Figure B.43
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B.6.6 Torque

 

The tendency of a force to produce circular motion is called 

 

torque

 

. Torque is pro-
duced by a force applied off-center from the center of mass of an object (Figure
B.44) and is computed by Equation B.101.

 

(Eq. B.101)

 

It is important to note that 

 

torque

 

 refers to a specific axis of rotation and is per-
pendicular to both 

 

r

 

 and 

 

F

 

 in Figure B.44. The same force can exert different
torques about different axes of rotation if it is applied at different locations on an
object. A given torque vector for a rigid body is position independent. That is, for
any particle in a rigid mass, the particle is undergoing that same torque.

 

B.6.7 Equilibrium: Balancing Forces

 

In the absence of acceleration, there is no change in the motion of an object (New-
ton’s first law). In such cases, the net force and the torque acting on a body vanish
(Equation B.102, Equation B.103). There may be forces present, but the vector
sum is equal to zero.

 

(Eq. B.102)

(Eq. B.103)

 

B.6.8 Gravity

 

Equation B.104 is Newton’s law of universal gravitation. It calculates the force of
gravity between two masses (

 

m

 

1

 

 and 

 

m

 

2

 

) whose centers of mass are a distance 

 

r

 

apart. 

 

G

 

 is the universal gravitational constant equal to 6.67 

 

×

 

 10

 

–11

 

 Newton
meter

 

2

 

/kilogram

 

2

 

. When two objects are not touching, each acts on the other as if
all its mass were concentrated at its center of mass. When an object is on (or near)
the earth’s surface, the distance of the object to the center of mass of the earth, the

 

Figure B.44

 

Applying a force off-center induces a torque
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mass of the earth, and the gravitational constant of Equation B.104 can all be
combined to produce the object’s acceleration (Equation B.105). This acceleration
is usually denoted as 

 

g.

 

(Eq. B.104)

 

 

 

(Eq. B.105)

 

B.6.9  Centripetal force

 

Centripetal force is any force that is directed inward, toward the center of an
object’s motion (centripetal means 

 

center seeking

 

). In the case of a body in orbit,
gravity is the centripetal force that holds the body in the orbit. Consider a body,
such as the moon, with mass 

 

M

 

m

 

 and a distance 

 

r 

 

away from the earth. The unit
vector from the earth to the moon is 

 

R.

 

 The earth has a mass 

 

M

 

e

 

. Equation B.106
calculates the force vector that results from gravity. The acceleration induced by a
circular orbit always points toward the center (centripetal), as in Equation B.107.
As previously shown, the acceleration due to circular motion has magnitude 

 
v

 

2

 
⁄

 
r

 (Equation B.96). This can be used to solve for velocity (Equation B.108).  

(Eq. B.106)

(Eq. B.107)

(Eq. B.108)

 

B.6.10 Contact Forces

 

Gravity is one of the four fundamental forces (gravity, electromagnetic, strong,
and weak) that act at a distance. Another important category is 

 

contact forces

 

. The
tension in a wire or rope is an example of a contact force, as is the compression in
a rigid rod. These forces arise from the complex interactions of electric forces that
tend to keep atoms a certain distance apart. The empirical law that governs such
forces, and that is familiar when dealing with springs, is 

 

Hooke’s law
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B.109). Variable x is the change from the equilibrium length of the spring, k is the
spring constant, and F is the restoring force of the spring to return to rest length.
The constant k is a measure of the stiffness of the spring; the larger k is, the more
sensitive the spring is to motion away from the rest position.

(Eq. B.109)

Another example of contact force, known as the normal force, is the result of
repulsion between any two objects pressed against each other. It arises from the
repulsion of the atoms of the two objects. It is always perpendicular to the sur-
faces, and its magnitude is proportional to how hard the two objects are pressed
against each other. When objects in motion come in contact, an impulse force due
to collision is produced. The impulse force is a short-duration force that is applied
normal to the surface of contact on each of the two objects. Calculation of the
impulse force due to collision is discussed in Chapter 4. Other important exam-
ples of contact forces are friction and viscosity.

Friction
Friction arises from the interaction of surfaces in contact. It can be thought of as
resulting from the multitude of collisions of molecules caused by the unevenness
of the surfaces at the microscopic level. 

The frictional force works against the relative motion of the two objects. Fric-
tional forces from a surface do not exceed an amount proportional to the normal
force exerted by the surface on the object. This is stated in Equation B.110, where
s is the coefficient of static friction and fN is the normal force (component of the
force that is perpendicular to the surface). Variable s varies according to the two
materials that are in contact. 

(Eq. B.110)

The frictional forces acting between surfaces at rest with respect to each other
are called forces of static friction. For a force applied to an object sitting on another
object that is parallel to the surfaces in contact, there will be a specific force at
which the block starts to slip. As the force increases from zero up to that threshold
force, the lateral force is counteracted by an equal force of friction in the opposite
direction. Once the object begins to move, kinetic friction acts on the object and
approximately obeys the empirical law of Equation B.111, where k is the coeffi-
cient of kinetic friction and fN is the force normal to the surface. Kinetic friction is
typically less than static friction. The force of kinetic friction is always opposite to
the velocity of the object.

(Eq. B.111)
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Viscosity
The resistive force of an object moving in a medium is viscosity. It is another con-
tact force and is extremely difficult to model accurately. When an object moves at
low velocity through a fluid, the viscosity is approximately proportional to the
velocity (Equation B.112); K is the constant of proportionality, which depends on
the size and the shape of the object, and n is the coefficient of viscosity, which
depends on the properties of the fluid. The coefficient of viscosity, n, decreases
with increasing temperature for liquids and increases with temperature for gases.
Stokes’s law for a sphere of radius R is given in Equation B.113.

(Eq. B.112)

(Eq. B.113)

An object dropping through a liquid attains a constant speed, called the limit-
ing or terminal velocity, at which gravity, acting downward, and the viscous force,
acting upward, balance each other and there is no acceleration (e.g., Equation
B.114 for a sphere). Terminal velocity is given by Equation B.115. In a viscous
medium, heavier bodies fall faster than lighter bodies. For spherical objects falling
at a low velocity in a viscous medium, not necessarily at terminal velocity, momen-
tum is given by Equation B.116.

(Eq. B.114)

(Eq. B.115)

(Eq. B.116)

B.6.11 Centrifugal Force
Consider an object (a frame of reference) that rotates in uniform circular motion
with respect to a post (an inertial frame) because it is held at a constant distance by
a rope. Relative to the inertial frame, each point in the uniformly rotating frame
has centripetal acceleration expressed by Equation B.117; r is the distance of the
point from the axis of rotation, R is the unit vector from the inertial frame to the
rotating frame, and v is the speed of the point. The tension in the rope supplies the
force necessary to produce the centripetal acceleration. Relative to the rotating
frame (not an inertial frame), the frame itself does not move and therefore the cen-
trifugal force necessary to counteract the force supplied by the rope is calculated by
using Equation B.118.

(Eq. B.117)
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(Eq. B.118)

B.6.12 Work and Potential Energy
For a constant force of magnitude F moving an object a distance h parallel to the
force, the work W performed by the force is shown in Equation B.119. If a mass m
is lifted up so that it does not accelerate, then the lifting force is equal to the
weight (mass times gravitational acceleration) of the object. Since the weight is
constant, the work done to raise the object up to a height h is presented in Equa-
tion B.120. Energy that a body has by virtue of its location is called potential
energy. The work in this case is converted into potential energy.

(Eq. B.119)

(Eq. B.120)

B.6.13 Kinetic Energy
Energy of motion is called kinetic energy and is shown in Equation B.121. The
velocity of a falling body that started at a height h is calculated by Equation B.122.
Its kinetic energy is therefore calculated by Equation B.123.

(Eq. B.121)

(Eq. B.122)

(Eq. B.123)

B.6.14 Conservation of Energy
Potential plus kinetic energy of a closed system is conserved (Equation B.124).
This is useful, for example, when solving for an object’s current height (current
potential energy) when its initial height (initial potential energy), initial velocity
(initial kinetic energy), and current velocity (current kinetic energy) are known.

(Eq. B.124)

B.6.15 Conservation of Momentum
In a closed system, total momentum (mass times velocity) is conserved. This
means that it does not change (Equation B.125) and that the momenta of all
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objects in a closed system always sum to the same amount (Equation B.126). This
is useful, for example, when solving for velocities after a collision when the veloci-
ties before the collision are known.

(Eq. B.125)

(Eq. B.126)

B.6.16 Oscillatory Motion
In some systems, the stability of an object is subject to a linear restoring force, F.
The force is linearly proportional (using k as the constant of proportionality) to
the distance x the object has been displaced from its equilibrium position (Equa-
tion B.127). Associated with this force is the potential energy (Equation B.128)
that results from the object’s displacement. These systems have the property that,
if they are disturbed from equilibrium, the restoring force that acts on them tends
to move them back into equilibrium. When disturbed from equilibrium, they
tend to overshoot that point when they return, due to inertia. Then the restoring
force acts in the opposite direction, trying to return the system to equilibrium.
The result is that the system oscillates back and forth like a mass on the end of a
spring or the weight at the end of a pendulum.

(Eq. B.127)

(Eq. B.128)

Combining the basic equations of motion (force equals mass times acceleration)
with Equation B.127, one can derive the differential equation for oscillatory motion.
This equation is satisfied by the displacement function x (t) (Equation B.129).

(Eq. B.129)
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B.6.17 Damping
The damping force can be modeled after Stokes’s law, in which resistance is
assumed to be linearly proportional to velocity (Equation B.130). This is usually
valid for oscillations of sufficiently small amplitude. The damping force opposes
the motion. The constant, kd , is called the damping coefficient. Adding the damp-
ing force to the spring force produces Equation B.131. Dividing through by m
and collecting terms results in Equation B.132, where b = kd ⁄ m and a 2 = k ⁄ m.

(Eq. B.130)

(Eq. B.131)

(Eq. B.132)

If there is a spring force but no damping, the general solution can be written as
x = C • cos(a • t + θ0). If there is damping but no spring force, the general solution
turns out to be x = C • e–b • t + D, with C and D constant. If both the spring force
and the damping force are present, the solution takes the form shown in Equation
B.133.

(Eq. B.133)

B.6.18 Angular Momentum
Angular momentum is the rotational equivalent of linear momentum and can be
computed by Equation B.134, where r is the vector from the center of rotation
and p is momentum (mass times velocity). The temporal rate of change of angular
momentum is equal to torque (Equation B.135). Angular momentum, like linear
momentum, is conserved in a closed system (Equation B.136).

 (Eq. B.134)

(Eq. B.135)
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(Eq. B.136)

B.6.19 Inertia Tensors
An inertia tensor, or angular mass, describes the resistance of an object to a change
in its angular momentum [5][13]. It is represented as a matrix when the angular
mass is related to the principal axes of the object (Equation B.137). The terms of
the matrix describe the distribution of the mass of the object relative to a local
coordinate system (Equation B.138). For objects that are symmetrical with respect
to the local axes, the off-diagonal elements are zero (Equation B.139). For a rect-
angular solid of dimensions a, b, and c along its local axes, the inertia tensor at the
center of mass is given by Equation B.140. For a sphere with radius R, the inertia
tensor is given by Equation B.141. If the inertia tensor is known at one position
by I, then the inertia tensor I ′ for parallel axes at a new position (X, Y, Z ) relative
to the original position is calculated by Equation B.142. If the inertia tensor for
one set of axes is known by I, then the inertia tensor for a rotated frame is calcu-
lated by Equation B.143, where M is the rotation matrix describing the rotated
frame relative to the original frame.

(Eq. B.137)

(Eq. B.138)

(Eq. B.139)
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(Eq. B.140)

(Eq. B.141)

(Eq. B.142)

(Eq. B.143)

B.7 Numerical Integration Techniques

Numerical integration is useful for finding the arc length of the curve or for updat-
ing the position of an object over time. A useful technique for the former is Gauss-
ian quadrature; for the latter, the Runge-Kutta method. As with many numerical
techniques, Press et al. [16] is extremely valuable.

B.7.1 Function Integration
Given a function f (x), Gaussian quadrature can be used to produce an arbitrarily
close approximation to the integral of the function between two values, , if
the function is sufficiently well behaved [16]. Gaussian quadrature approximates
the integral as a sum of weighted evaluations of the function at specific values
(abscissas). The number of evaluations controls the error in the approximation. In
its general form, Gaussian quadrature incorporates a multiplicative function,
W(x), which can condition some functions for the approximation (Equation
B.144). Gauss-Legendre integration is a special case in which W (x) = 1.0, and it
results in Equation B.145. The code in Figure B.45 for n = 10 duplicates that used
in Chapter 3 for computing arc length. Figure B.46 gives the code for computing
Gauss-Legendre weights and abscissas for arbitrary n.
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(Eq. B.144)

(Eq. B.145)

B.7.2 Integrating Ordinary Differential Equations
Integrating ordinary differential equations (ODEs) in computer animation typi-
cally means that the derivative function f ′(x) is available and that a numerical
approximation to the function f (x) is desired. For example, in a physically based
simulation, the time-varying acceleration of an object is computed from the
object’s mass and the forces acting on the object in the environment. From the
acceleration (the derivative function), the velocity (the function) is numerically

Figure B.45 Gauss-Legendre integration for n = 10

 
 
 
 
 
 

 

/* ------------------------------------------------------------------------
INTEGRATE FUNCTION
use gaussian quadrature to integrate square root of given function in the given 
interval
*/
double integrate_func(polynomial_td *func,interval_td *interval)
{
   double   x[5]={.1488743389,.4333953941,.6794095682,.8650633666,.9739065285};
   double   w[5]={.2966242247,.2692667193,.2190863625,.1494513491,.0666713443};
   double   length, midu, dx, diff;
   int      i;
   double  evaluate_polynomial();
   double  u1,u2;

   u1 = interval->u1;
   u2 = interval->u2;

   midu = (u1+u2)/2.0;
   diff = (u2-u1)/2.0;
   length = 0.0;
   for (i=0; i<5; i++) {
      dx = diff*x[i];
      length += w[i]*(sqrt(evaluate_polynomial(func,midu+dx)) + 
      sqrt(evaluate_polynomial(func,midu-dx)));
   }
   length *= diff;

   return (length);
}
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calculated over time. Similarly, once the time-based velocity function is known
(the derivative function), the time-varying position of the object (the function)
can be calculated numerically. 

The simple form of an ordinary differential equation involves a first-order
derivative of a function of a single variable. In addition, it is usually the case that
conditions at an initial point in time are known and that the numerical integration
is used in a simulation of a system as time moves forward. Such problems are
referred to as initial value problems. 

The Euler method is the most basic technique used for solving such simple ODE
initial value problems. The Euler method is shown in Equation B.146, where h is
the time step such that xn +1 = h + xn. This method is not symmetrical in that it
uses information at the beginning of the time step to advance to the end of the
time step. The derivative at the beginning of the time step produces the vector,

Figure B.46 Computing Gauss-Legendre weights and abscissas 

 
/* GAUSS-LEGENDRE */

#define  EPSILON  0.00000000001
/* calculate the weights and abscissas of the Gauss-Legendre n-point form *
void gaussWeights(float a, float b, float *x, float *w, int n)
{
   int       i,j,m;
   float     p1,p2,p3,p;
   float     z,z1;
   float     xave,xdiff;

   m = (n+1)/2;
   xave = (b+a)/2;
   xdiff = (b-a)/2;
   for (i = 0; i<m; i++) {
      z = cos(PI*((i+1)-0.25)/(n+0.5));
      do {
         p1 = 1.0;
         p2 = 0.0;
         for (j=0; j<n; j++) {
            p3 = p2;
            p2 = p1;
            p1 = ((2*(j+1) - 1.0)*z*p2-j*p3)/(j+1);
         }
         pp = n*(z*p1-p2)/(z*z-1);
         z1 = z;
         z = z1-p1/pp;
      } while (fabs(z-z1) > EPSILON);
      x[i] = xave - xdiff*z;
      x[n-1-i] = xave + xdiff*z;
      w[i] = 2.0*xdiff/((1.0-z*z)*pp*pp);
      w[n-l-i] = w[i];
   }
}
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which is tangent to the curve representing the function at that point in time. The
tangent at the beginning of the interval is used as a linear approximation to the
behavior of the function over the entire interval (Figure B.47). The Euler method
is neither stable nor very accurate. Other methods, such as Runge-Kutta, are more
accurate for equivalent computational cost.

(Eq. B.146)

Runge-Kutta is a family of methods that is symmetrical with respect to the inter-
val. The second-order Runge-Kutta, or midpoint method, is presented in Chapter
4 in the discussion of physically based simulations. The most useful method is
fourth-order Runge-Kutta [16], shown in Equation B.147 and Figure B.48. It is
referred to as a fourth-order method because its error term is on the order of the
interval h to the fifth power. The advantage of using the method is that although
each step requires more computation, larger step sizes can be used, resulting in an
overall computational savings.

(Eq. B.147)

Figure B.47 The Euler method
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Figure B.48 Fourth-order Runge-Kutta
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average with 3 previous derivatives to step 
from initial point to next function value

h h

Team LRN



Standards for Moving Pictures 493

B.8 Standards for Moving Pictures

When producing computer animation, one must decide what format to use for
storing the sequence of images. Years ago the images were captured on film either
by taking pictures of refresh vector screens or by plotting the images directly onto
the film. This was a long and expensive process requiring single-frame film cam-
eras and the developing of nonreusable film stock. The advent of frame buffers and
video encoders made recording on videotape a convenient alternative. With
today’s cheap disks, memory, and CPU cycles, all-digital desktop video production
is a reality. While the entertainment industry is still based on film, most of the rest
of computer animation is produced using digital images intended to be displayed
on a raster-scan device in such forms as broadcast video, DVD video, animated
Web banners, and streaming video. This section is intended to give the reader
some idea of the various standards used for recording moving pictures. Standards
related to the digital image are emphasized.

B.8.1 In the Beginning, There Was Analog
Before the rise of digital video, the two common formats for moving pictures were
film and (analog) video. Over the years there have been almost a hundred film for-
mats. The formats differ in the size of the frame, in the placement, size, and num-
ber of perforations, and in the placement and type of audio tracks [15]. Silent film
is played at 16 frames per second (fps). Some sound film is played at 18 fps, but
24 fps is more common. Film played at 24 fps is typically doubly projected; that
is, each frame is displayed twice to reduce the effects of flicker.

Some of the film sizes (widths) are listed in Table B.1. Note that there are often
several formats for each film size. Only the most popular film formats are listed
here. See the Web pages of Norwood [15] and Rogge [19] for more information.
With the rise of desktop video production, film is less of an issue for home-brew
computer animation, although it remains useful for conventional animation and,
of course, is still the standard medium for display of feature-length films in the-
aters, although even this is starting to change.

Broadcast Video Standard
In 1941 NTSC established 525-line, 60.00-Hz field rate, 2:1 interlaced mono-
chrome television in the United States. In 1953, 525-line, 59.94-Hz field rate, 2:1
interlaced, composite color television signals were established as a standard. The
image is displayed top to bottom, with each scanline displayed left to right.

Team LRN



494          B: Background Information and Techniques

2:1 interlaced refers to the scanning pattern, with the information on the odd scan-
lines followed by the information on the even scanlines. Each set of scanlines is
referred to as a field; there are two fields per frame. This standard is typically
referred to by the initials of the committee—NTSC. Broadcast video in the
United States must correspond to this standard. The standard sets a specific dura-
tion for a horizontal scanline, a frame time, the amplitude and duration of the var-
ious synch pulses, and so on. Home video recording units typically generate much
sloppier signals and would not qualify for broadcast. There are encoders that can
strip old synch signals off a video signal and reencode it so that it conforms to
broadcast quality standards.

There are a total of 525 scanline times per frame time in the NTSC format. The
number of frames transmitted per second is 29.97. There is a 2:1 interlace of the
scanlines in alternate fields. Of the 525 total scanline times, approximately 480
contain picture information. The remainder of the scanline times are occupied by
the overhead involved in the scanning pattern: the time it takes the beam to go

Table B.1 Film Formats

Film Width Notes

8mm An old format, introduced in 1932, 8mm is used for inexpensive home mov-
ies. Cameras for regular 8mm are no longer manufactured. Regular 8mm uses 
16mm stock, which is recorded on both sides after flipping the film in the 
camera. This allows the 16mm film stock to be split down the middle to pro-
duce two 8mm reels. The frame is 0.192′′ x 0.145′′. Super-8 was introduced 
in 1965 as an improvement over regular 8mm. The perforations (the holes in 
the film stock used to advance and register the film) were made smaller and the 
frame size was increased to 0.224′′ x 0.163′′. The film was placed into cassettes 
instead of on the reels of regular 8mm film.

16mm 16mm is used for television and low-budget theatrical productions. It was 
introduced in 1923 and has a frame size of 0.404′′ x 0.295′′.

35mm 35mm has been a standard film size since the turn of the twentieth century 
[19]. It first became popular because it could be derived from the original 
70mm film made by Kodak. It is the standard for theatrical work as well as 
television. The standard Academy frame, the most popular of several 35mm 
formats, is 0.864′′ x 0.630′′.

65mm 65mm is gaining in popularity in venue rides and IMAX theaters. It is run 
through the projector sideways at 48 fps. The IMAX camera frame is 
2.772′′ x 2.072′′.

70mm 70mm film is often a blowup print of 35mm film, produced for improved 
audio, better registration, and less grain of the release print. With better sound 
technology (e.g., digital) and the advent of multiplex theaters with smaller 
screen sizes, there is less demand for 70mm film. The frame size 
is 1.912′′ x 0.870′′. 
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from the end of one scanline to the beginning of the next and the time it takes for
the beam to go from the bottom of the image to the top. The aspect ratio of a 525-
line television picture is 4:3, so equal vertical and horizontal resolutions are
obtained at a horizontal resolution of 480 times 4/3, or 640 pixels per scanline.
PAL and SECAM are the other two standards in use around the world (Table B.2).
They differ from NTSC in specifics like the number of scanlines per frame, the
field rate, and the frequency of the color subcarrier, but both are interlaced raster
formats. One of the reasons that television technology uses interlaced scanning is
that, when a camera is providing the image, the motion is updated every field, thus
producing smoother motion.

 Black-and-White Signal
A black-and-white video signal is basically a single line that has the synch informa-
tion and intensity signal (luminance) superimposed on one signal. The vertical
and horizontal synch pulses are negative with respect to a reference level, with ver-
tical synch being a much longer pulse than horizontal synch. On either side of the
synch pulses are reference levels called the front porch and the back porch. The
active scanline interval is the period between horizontal synch pulses. During the
active scanline interval, the intensity of the signal controls the intensity of the elec-
tron beam of the monitor as it scans out the image. 

Incorporating Color into the Black-and-White Signal
When color came on the scene in broadcast television, engineers were faced with
incorporating the color information in such a way that black-and-white television
sets could still display a color signal and color sets could still display black-and-
white signals. The solution is to encode color into a high-frequency component
that is superimposed on the intensity signal of the black-and-white video. 

A reference signal for the color component, called the color burst, is added to the
back porch of each horizontal synch pulse, with a frequency of 3.58 Mz. The color
is encoded as an amplitude and phase shift with respect to this reference signal. A
signal that has separate lines for the color signals is referred to as a component sig-
nal. A signal such as the color TV signal with all of the information superimposed
on one line is referred to as a composite signal.

Table B.2 Video Format Comparison [10]

Standard Lines Scan Pattern Field Rate (Hz) Aspect Ratio

NTSC 525 2:1 interlaced 59.94 4:3
PAL 625 2:1 interlaced 50 4:3
SECAM 625 2:1 interlaced 50 4:3
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Because of the limited room for information in the color signal of the compos-
ite signal, the TV engineers optimized the color information for a particular hue
they considered most important: Caucasian skin tone. Because of that, the RGB
information has to be converted into a different color space: YUV. Y is luminance
and is essentially the intensity information found in the black-and-white signal. It
is computed by Equation B.148.

(Eq. B.148)

The U and V of television are scaled and filtered versions of B-Y and R-Y,
respectively. U and V are used to modulate the amplitude and phase shift of the
3.58-Mz color frequency reference signal. The phase of this chroma signal, C, con-
veys a quantity related to hue, and its amplitude conveys a quantity related to
color saturation. In fact, the I and Q stand for “in phase” and “quadrature,”
respectively. The NTSC system mixes Y and C together and conveys the result on
one piece of wire. The result of this addition operation is not theoretically revers-
ible; the process of separating luminance and color often confuses one for the
other (e.g., the appearance of color patterns seen on TV shots of people wearing
black-and-white seersucker suits).

Videotape Formats
The size and speed of the tape and the encoding format contribute to the quality
that can be supported by a particular video format. Common tape sizes are 1/2",
3/4", 1", and 2". The first two sizes are of cassette tapes, and the other two are of
open reel tapes. One-half inch supports consumer-grade formats (e.g., VHS, S-
VHS, and the less popular Betamax), 3/4" is industrial strength (U-Matic), and 1"
and 2" are professional broadcast-quality formats. One inch is the newer technol-
ogy and has replaced some 2" systems.

The common 1/2" video formats are VHS and S-VHS. S-VHS is a format in
which the Y and C signals are kept separate when played back, thus avoiding the
problems created when the signals are superimposed. All video equipment actually
records signals this way, but S-VHS allows the Y signal (luminance) to be recorded
at a higher resolution than color. The color information is recorded with the same
fidelity as on VHS. In addition, the sound is encoded differently than on regular
VHS, also resulting in greater fidelity. The advantages of S-VHS are especially pro-
nounced when it is played back on an S-VHS-compatible television.

High-Definition Television
The basic idea behind high-definition television (HDTV) is to increase the per-
centage of the visual field occupied by the image [12]. Most HDTV systems
approximately double the number of pixels in both the horizontal and vertical
directions over the current NTSC standard and change the aspect ratio from 4:3
to 16:9. 

Y 0.299 R⋅ 0.587 G⋅ 0.114 B⋅+ +=
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B.8.2 In the Digital World
Full-color (24 bits per pixel), video resolution (640x480), video rate (30 fps) ani-
mation requires approximately 1.6 gigabytes of information per minute of anima-
tion when stored as uncompressed RGB images. The problem is how to store and
play back the animation. Various trade-offs must be considered when choosing a
format, including the amount of compression, the time it takes for the compres-
sion/decompression, and the color and spatial resolution supported. The objective
here is to provide an overview of the terminology, the important issues, and the
most popular standards in recording animation. The discussion is at the level of

Figure B.49 Video signal
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consumer-grade technology and is not intended for professionals involved in the
production of high-quality digital material.

Digital video sometimes refers specifically to digital versions of video to be
broadcast for reception by television sets. In some literature this is also referred to
as digital TV (DTV ), which is the term used here. On the other hand, digital video
(DV ) is also used in the sense of computer-generated moving images intended to
be played back on an RGB computer monitor. DV is used here to specifically
denote material intended to be displayed by a computer. These two categories of
digital representations, DTV and DV, have much in common. One of the most
important common issues is the use of compression/decompression (codec) tech-
nology (described below). Standards related to DTV have two additional con-
cerns. First, the standards are concerned with images that will be encoded for
broadcast. As a result, they rarely deal directly with RGB images. When destined
for television, digital images are at least partially encoded in a format related to the
broadcast video standard (NTSC) soon after they leave the camera (e.g., YUV).
Digital images synthesized for playback on a computer are typically generated as
RGB images, compressed for storage and transmission, and then decompressed for
playback on RGB monitors. Second, DTV standards are concerned with an asso-
ciated recording format of the images and audio on tape, tape being the common
storage medium for broadcast video studios. Because images for computer play-
back are typically stored digitally on a hard disk or removable disk, DV standards
do not cover tape formats. However, there are DV standards for file formats and
for digital movies. Digital movie formats organize the image and audio data into
tracks with associated timing information.

Compression/Decompression 
The recent explosion in multimedia applications, especially as a result of the Web,
has led to the development of a variety of compression/decompression schemes
[25]. After the frames of an animation are computed, they are compressed and
stored on a hard disk or CD-ROM. When playback of the animation is requested,
the compressed animation is sent to the compute box, using disk I/O or over the
Web, where the frames are decompressed and displayed. The decompression and
playback can take place in real time as the data is being transmitted. In this case it
is referred to as streaming video. If the decompression is not fast enough to support
streaming video, the compressed animation is transmitted in its entirety to the
compute box, decompressed into the complete animation, and then played back.
In either case, the compression not only saves space on the storage device but also
allows animation to be transferred to the computer much faster. Several of the
codecs are proprietary and are used in workstation-based video products. The dif-
ferent schemes have various strengths and weaknesses and thus involve trade-offs,
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the most important of which are compression level, quality of video, and compres-
sion/decompression speed [21].

The amount of compression is usually traded off for image quality. With some
codecs, the amount of compression can be set by a user-supplied parameter so
that, with a trial-and-error process, the best compression level for the particular
images at hand can be selected. Codecs with greater compression levels usually
incorporate interframe compression as well as intraframe compression. Intraframe
compression means that each frame is compressed individually. Interframe compres-
sion refers to the temporal compression possible when one processes a series of
similar still images using techniques such as image differencing. However, when
one edits a sequence, interframe compression means that more frames must be
decompressed and recompressed to perform the edits. 

The quality of the video after decompression is, of course, a big concern. The
most fundamental feature of a compression scheme is whether it is lossless or lossy.
With lossless compression, in which the final image is identical to the original,
only nominal amounts of compression can be realized, usually in the range of 2:1.
The codecs commonly used for video are lossy in order to attain the 500:1 com-
pression levels necessary to realize the transmission speeds for pumping animations
over the Web or from a CD-ROM. To get these levels of compression, the quality
of the images must be compromised. Various compression schemes might do bet-
ter than others with such image features as edges, large monochrome areas, or
complex outdoor scenes. The amount of color resolution supported by the com-
pression is also a concern. Some, such as animated GIF format, support only 8-bit
color.

The compression and decompression speed is a concern for obvious reasons,
but decompression speed is especially important in some applications, for exam-
ple, streaming video. On the other hand, real-time compression is useful for appli-
cations that store compressed images as they are captured. If compression and
decompression take the same amount of time, the codec is said to be symmetric. In
some applications such as streaming video, it is acceptable to take a relatively long
time for compression as long as the resulting decompression is very fast. In the case
of unequal times for compression and decompression, the codec is said to be asym-
metric. To attain acceptable decompression speeds on typical compute boxes, some
codecs require hardware support.

A variety of compression techniques form the basis of the codec products. Run-
length encoding is one of the oldest and most primitive schemes that have been
applied to computer-generated images. Whenever a value repeats itself in the
input stream, the string of repeating values is replaced by a single occurrence of the
value along with a count of how many times it occurred. This was sufficient for
early graphic images, which were simple and contained large areas of uniform
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color. The technique does not perform well with today’s complex imagery. The
LZW (Lempel-Ziv-Welch) technique was developed for compressing text. As the
input is read in, a dictionary of strings and associated codes is generated and then
used as the rest of the input is read in. Vector quantization simply refers to any
scheme that uses a sample value to approximate a range of values. YUV-9 is a tech-
nique in which the color is undersampling, so that, for example, a single color
value is recorded for each 4x4 block of pixels. DCT (discrete cosine transform) is a
very popular technique that breaks a signal into a sum of cosine functions of vari-
ous frequencies at specific amplitudes. The signal can be compressed by throwing
away low-amplitude and/or high-frequency components. DCT is an example of
the more general wavelet compression, in which the form of the base component
function can be selected according to its properties. Fractal compression is based on
the fact that many signals are self-similar under scale. A section of the signal can be
composed of transformed copies of other sections of the signal. This is applied to
rectangular blocks of the image. In fact, most of the compression schemes break
the image into blocks and then compress the blocks.

Codecs employ one or more of the techniques mentioned above. The names of
some of the more popular codecs are Video I, RLE, GIF, Motion JPEG, MPEG,
Cinepak, Sorenson, and Indeo 3.2. Microsoft products are Video I and RLE.
Video I employs DCT compression, and RLE uses run-length encoding. GIF is an
8-bit color image compression scheme based on the LZW compression. JPEG uses
DCT compression. Motion JPEG (MJPEG) is simply the application of JPEG for
still images applied to a series of images. The compression/decompression is sym-
metric and is done in one-thirtieth of a second. JPEG compression can introduce
some artifacts into some images with hard edges. The MPEG (Moving Pictures
Expert Group) standards were designed specifically for digital video. MPEG uses
the same algorithms as JPEG for intraframe compression of individual frames,
called I-frames. MPEG then uses interframe compression to create B (bidirec-
tional) and P (predicted) frames. MPEG allows quality settings to specify the
amount of compression to use [24] and can be set individually for each frame type
(I, P, B). MPEG-1 is designed for high-quality CD video, MPEG-2 is designed for
high-quality DVD video, and MPEG-4 is designed for low-bandwidth Web appli-
cations [22]. Cinepak and Sorenson are products initially targeted for the MAC
world, although Cinepak is now available for the PC. Cinepak uses block-oriented
vector quantization. Sorenson uses YUV compression with 4x4 blocks and
employs interframe compression [20]. Indeo 3.2 is an Intel product that also uses
block-oriented vector quantization. Cinepak and Indeo are highly asymmetric,
requiring on the order of three hundred times longer for compression than for
their efficient decompression. Indeo also incorporates color blending and run-
length encoding into its scheme.
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Digital Video Formats
The codec products (as opposed to the underlying codec techniques) used for DV
have an associated file format. Some formats also include timing information, the
ability to animate overlay images (sprites), and the ability to loop over a series of
frames. MPEG and MJPEG are both common DV formats. GIF89a-based anima-
tion (animated GIF) is basically a number of GIF images stored in one file with
interframe timing information but no interframe compression. Compressing
continuous-tone images can result in color banding. The compression does well
on line drawings but not on complex outdoor scenes. GIF animations can use
delta frames, which, for example, overlay images on a previously transmitted back-
ground. This saves retransmitting static information for some animations. As used
here, movie format refers to a format that is codec independent and that can handle
audio as well as imagery. Both Quicktime (MOV) and Video for Windows (AVI)
[2] are movie formats designed as open codec architectures. Any codec can be used
with these standards as long as a compatible plug-in is available. Cinepak has been
a standard codec used with Quicktime, but Quicktime can also accommodate
other codecs such as Sorenson and JPEG [24]. Quicktime organizes data into
tracks and includes timing information. Video for Windows from Microsoft uses
Video I and RLE as standard codecs but can also accommodate others. Video for
Windows allows interleaving of image and audio information.

Digital Television Formats
Most of the DTV formats are based on sampling scaled versions of the color dif-
ference signals (B-Y, R-Y ). Luminance and the scaled color difference signals are
referred to as YUV. Common formats are D1, D2, D3, D5, D6, Digital Betacam,
Ampex DCT, Digital8, DV, DVCam, and DVCPRO. When digitally sampled,
the YUV signals are referred to as YCrCb. A typical sampling scheme is 4:2:2, in
which the color difference signals (Cr, Cb) are sampled at half the sampling rate of
luminance (Y ) in the horizontal direction. 4:1:1 sampling means that the color
difference signals are also sampled at half the rate in the vertical direction, result-
ing in one-quarter of the luminance sampling.

The D1 standard was developed when the broadcast television industry thought
it would make the composite-analog-to-component-digital transition in one fell
swoop. But that did not happen because the cost was prohibitive. D1 uses YUV
coding, so-called 4:2:2, which means that the U and V components are horizon-
tally subsampled 2:1. Luminance is sampled at 13.5 MHz, resulting in 720 sam-
ples per picture width. There is no compression other than undersampling the
chroma information. Aggregate data rate is roughly 27 MB/s (megabytes per sec-
ond). The D2 standard was developed as a low-cost alternative to D1. D2 is a
composite NTSC digital format (i.e., digitized NTSC). The composite signal is
sampled at four-times-color-subcarrier, about 14.318 MHz at one byte per sample
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(aggregate data rate, of course, 14.318 MB/s). It has all the impairment of NTSC
but the reliability and performance of digital. It uses the same 3/4" cassette as D1.
As with D1, D2 uses no compression other than undersampling the chroma infor-
mation. Other uncompressed digital formats include D3, D5, and D6. D3 is a
composite format that uses 1/2" tape. D5 is a component format that uses 1/2"
tape. D6 is a component HDTV format.

Common compressed DTV formats include Digital Betacam, Ampex DCT, and
Digital8 [9]. Digital Betacam uses 1/2" tapes similar to the Betacam SP format with
2:1 compression based on DCT. Ampex DCT is a proprietary format; the DCT in
its name stands for Digital Component Technology and not the compression scheme.
The trio of DV, DVCam, and DVCPRO are similar formats using DCT compres-
sion. Depending on image content, the encoder decides whether to compress two
fields separately or as a unit. Digital8 is a consumer-grade version of the DV format
but uses cheaper Hi8 tapes. Newer formats include W-VHS, Digital S, Betacam
SX, Sony HDD-1000, and D-VHS. 

In the United States the HDTV standard is being facilitated by the Grand Alli-
ance, a group of manufacturers and research labs. It is based on the MPEG-2
codec and is to be fully available by 2003 [8].

B.9 Camera Calibration

For digitally capturing motion from a camera image, one must have a transforma-
tion from the image coordinate system to the global coordinate system. This
requires knowledge of the camera’s intrinsic parameters (focal length and aspect
ratio) and extrinsic parameters (position and orientation in space). In the capture
of an image, a point in global space is projected onto the camera’s local coordinate
system and then mapped to pixel coordinates. To establish the camera’s parame-
ters, one uses several points whose coordinates are known in the global coordinate
system and whose corresponding pixel coordinates are also known. By setting up a
system of equations that relates these coordinates through the camera’s parameters,
one can form a least-squares solution of the parameters [23].

Calibration is performed by imaging a set of points whose global coordinates
are known and identifying the image coordinates of the points and the correspon-
dence between the two sets of points. This results in a series of five-tuples, (xi , yi ,
zi , ci , ri ) consisting of the 3D global coordinates and 2D image coordinates for
each point. The 2D image coordinates are a mapping of the local 2D image plane
of the camera located a distance f in front of the camera (Equation B.149). The
image plane is located relative to the 3D local coordinate system (u, v, w) of the
camera (Figure B.50). The imaging of a 3D point is approximated using a pinhole
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camera model. The 3D local coordinate system of the camera is related to the 3D
global coordinate system by a rotation and translation (Equation B.150); the ori-
gin of the camera’s local coordinate system is assumed to be at the focal point of
the camera. The 3D coordinates are related to the 2D coordinates by the transfor-
mation to be determined. Equation B.151 expresses the relationship between a
pixel’s column and row number and the global coordinates of the point. These
equations are rearranged and set equal to zero in Equation B.152. They can be put
in the form of a system of linear equations (Equation B.153) so that the unknowns
are isolated (Equation B.154) by using substitutions common in camera calibra-
tion (Equation B.155, Equation B.156). Temporarily dividing through by t 3
ensures that t 3 ≠ 0.0 and therefore that the global origin is in front of the camera.
This step results in Equation B.157, where A ′ is the first 11 columns of A; B ′ is
the last column of A; and W ′ is the first 11 rows of W. Typically, enough points are
captured to ensure an overdetermined system. Then a least-squares method, such
as Singular Value Decomposition, can be used to find the W ′ that satisfies Equa-
tion B.158. W ′ is related to W by Equation B.159, and the camera parameters
can be recovered by undoing the substitutions made in Equation B.155 by Equa-
tion B.160. Because of numerical imprecision, the rotation matrix recovered may
not be orthonormal, so it is best to reconstruct the rotation matrix first (Equation
B.161), massage it into orthonormality, and then use the new rotation matrix to
generate the rest of the parameters (Equation B.162).

(Eq. B.149)

Figure B.50 Coordinate systems used in the projection of a global point to pixel coordinates 
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(Eq. B.150)

(Eq. B.151)
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 (Eq. B.155)
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W0 fu R0⋅ c0 R2⋅+ w0 w1 w2

T
= =

W3 fv R1⋅ r0 R2⋅+ w3 w4 w5

T
= =

W6 R2 w6 w7 w8

T
= =

w9 fu t0⋅ c0 t2⋅+=

w10 fv t1⋅ r0 t2⋅+=

w11 t2=

W w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11

T
=

A′ W ′⋅ B ′+ 0=

min A′ W ′⋅ B ′+
w

W

W0

W3

W6

w9

w10

w11

1
W6′

--------------

W0′
W3′
W6′
w9′
w10′

1

⋅= =
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(Eq. B.160)

(Eq. B.161)

(Eq. B.162)

Given an approximation to a rotation matrix, , the objective is to find the
closest valid rotation matrix to the given matrix (Equation B.163). This is of the
form shown in Equation B.164, where the matrices C and D are notated as shown
in Equation B.165. To solve this, define a matrix B as in Equation B.166. If
q = (q0, q1, q2, q3)T is the eigenvector of B associated with the smallest eigenvalue,
R is defined by Equation B.167 [26].

c0 W 0
T W6⋅=

r0 W 1
T W6⋅=

fu W0 c0 W6⋅––=

fv W3 r0 W6⋅–=

t0 w9 c0–( ) fu⁄=

t1 w10 r0–( ) fv⁄=

t2 w11=

R0 W0 c0 W⋅ 6–( ) fu⁄=

R1 W3 r0 W⋅ 6–( ) fv⁄=

R2 W6=

R0 W ′0 c0 W ′⋅ 6–( ) fu⁄=

R1 W ′3 r0 W ′⋅ 6–( ) fv⁄=

R2 W ′6=

c0 W0
T R2⋅=

r0 W1
T R2⋅=

fu W0 c0 R2⋅––=

fv W3 r0 R2⋅–=

t0 w9 c0–( ) fu⁄=

t1 w10 r0–( ) fv⁄=

t2 w11=

R̃
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(Eq. B.163)

(Eq. B.164)

(Eq. B.165)

(Eq. B.166)

(Eq. B.167)
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Numbers

 

2D grid deformation. 

 

See

 

 grid deforma-
tion (2D)

2D morphing. 

 

See

 

 morphing (2D)
3D bucket sort, flocking behavior and, 

251
3D shape interpolation. 

 

See

 

 shape inter-
polation (3D)

4x4 transformation matrix. 

 

See

 

 transfor-
mation matrices

 

A

 

AABBs (axis-aligned bounding boxes), 
431

 

Abyss, The,

 

 26
acceleration

average acceleration, 476
for bodies in free fall, 205, 

206–207
constant (parabolic ease-in/

ease-out), 89–92
equations for, 476– 477
particle animation and, 244
relative, resting contact and, 230
sine interpolation and, 87
sinusoidal pieces for, 87–89

 

See also

 

 ease-in/ease-out

acceleration-time curves, distance-time 
functions and, 92–94

ACM (Association for Computing 
Machinery), 1

Action Units (AUs), 347–348
active optical markers for motion 

capture, 372
actor-based animation languages, 

123–124
Adams, J., 458
adaptive approach to arc length 

computation, 76–77
adaptive Gaussian integration of arc 

length, 79–83
advanced algorithms

automatic camera control, 
174–175

controlling groups of objects, 
241–261

enforcing soft and hard constraints, 
231–241

hierarchical kinematic modeling, 
175–203

implicit surfaces, 261–267
rigid body simulation, 203–231

 

Adventures of Andre and Wally B., The,

 

 
25

AFFD objects, 138

affine transformations
defined, 40
matrix representation for, 42
object deformation and, 124–125
overview, 40– 42

 

See also

 

 

 

specific transformations

 

afterimages, 2
Airy model for waves, 289
alpha channel for compositing, 390, 

391–395
Ampex DCT DTV standard, 501, 502
analog standards for moving pictures, 

493, 494
analytic approach to arc length 

computation, 72–73
anatomical terms, 318
angle of view, 34, 35
angular mass. 

 

See

 

 inertia tensors
angular momentum

of bodies in free fall, 212, 213–214
overview, 486– 487

angular velocities
of bodies in free fall, 209–211
circular motion equations, 

477– 478
defined, 209, 477
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angular velocities (

 

continued

 

)
impulse forces and, 226
induced by joint axis rotation, 

196–197
Jacobian and, 195–197
proximity of axis of rotation and, 

209–210
ANIMA II, 23, 122
animated FFDs, 137–143

AFFD objects, 138
animating the FFD, 140– 143
deformation tools, 138–140
moving the object, 140, 141
moving the tool, 138–139
overview, 137

animatic, 13
animation, defined, 4
animation languages, 120– 124

actor-based, 123–124
advantages of, 120– 121
articulation variables in, 122
artist-oriented, 121–122
general-purpose languages vs., 

120– 121
graphical, 123
MEL, 121
support for existing languages in, 

122
typical features, 120

animation production, 12–21
computer animation tasks, 15–17
computer vs. conventional 

animation, 13–14
digital editing, 17–20
digital video, 20– 21
hierarchy, 12
rendering for previews, 14–15
steps, 12–13

ankle-toe joints, 332, 335
optical markers for, 375, 376

anti-aliasing
compositing and, 390– 392
temporal, 400

anticipation, 11

 

Ants,

 

 28
appeal, 11
approximation

defined, 454
interpolation vs., 64–65, 454

 

See also

 

 curves, interpolating and 
approximating

arbitration in autonomous behavior, 
260

arc length
defined, 71, 456
normalized arc length parameter, 84
notation for, 71
parameter, arc length pairs (table), 

74
parameterization by, 456

parametric value and, 72
as speed control function’s output, 

84
arc length computation, 69–84

adaptive approach to, 76–77
adaptive Gaussian integration for, 

79–83
analytic approach to, 72–73
distance-time function, 70– 71
finding 

 

u

 

 given 

 

s,

 

 83–84
forward differencing approach, 

73–76

 

LENGTH

 

 function, 71, 72
numeric computation, 77–79
parametric value and arc length, 72
sampling parametric values for, 

73–76
space curve, 70– 71
uses for, 69–70

arc length integral, evaluating, 72–73
arc length parameterization

approaches to, 69
defined, 71
need for, 68–69

arcs
defined, 11
in hierarchical linkages, 177, 178, 

179–181

 

See also

 

 joints
area calculations

polygon, 429, 430
triangle, 428

arm modeling, 318–321
basic model, 319
coordinated movement and, 

324–325
degrees of freedom, 318, 319, 320, 

321
forearm rotation, 318–319
inverse kinematics for, 319–320
joint limits, 319
wrist orientation and, 320

articulated figures, 317–384
anatomical terms, 318
arm modeling, 318–321
challenges for computer animation, 

317
cloth and clothing, 361–369
comfort metrics, 326–327
coordinated movement, 324–325
defined, 14, 176
facial animation, 339–353
hand modeling, 321–324
hierarchical modeling of, 175–183
layered approach to human figure 

modeling, 358–361
motion capture, 369–378
obstacles, reaching around, 

325–326
reaching and grasping, 318–327

shoulder joint modeling, 321, 322
strength criteria, 326–327
summary, 379
transformations for arcs leading to 

nodes, 179
virtual human representation over-

view, 353–358
walking, 327–339

 

See also

 

 hierarchical modeling
articulation, 176
articulation variables (avars), 116, 122
artist-oriented animation languages, 

121–122
ASAS system, 124
assemble editing, 19
Association for Computing Machinery 

(ACM), 1
asymmetric vs. symmetric compression/

decompression, 499
attachment point for muscles, 350
attenuation functions for warping 

objects, 125, 126
attributes of particles, 244
AUs (Action Units), 347–348
automatic camera control, 174–175
autonomous behavior, 257–260

arbitration between competing 
intentions, 260

characteristics of, 242
defined, 257
degrees of freedom, 259, 260
emergent behavior and, 257–258
internal state, 259
keeping behavior under control, 

259–260
knowing the environment, 

258–259
levels of behavior, 259, 260
motor activities, 259, 260
movement coordinator, 259, 260
overview, 242, 257–258
planner, 259, 260
reasoning unit, 259, 260
strategies, 259, 260
uses for, 258

avars (articulation variables), 116, 122
average acceleration, 476
average velocity, 476
Avery, Tex, 11
AVI (Video for Windows) standard, 

501
axial slices shape interpolation, 

159–160
coordinate system, 159
interpolating slices, 160, 161
multiple 2D slices example, 162
parameterization for, 159–160
projection lines, 160

axis-aligned bounding boxes (AABBs), 
431
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axis-angle representation, 57–58
axis-angle rotations, 449

 

B

 

B-splines
arc length parameterization and, 72
facial models, 342
fitting to position-time pairs, 

95–97
NURBS (Nonuniform rational 

B-splines), 354, 355, 469
overview, 467– 469
second-order continuity in, 66
smoothing paths by B-spline 

approximation, 114

 

Babe,

 

 26
background image, 389
Badler, N., 22, 259, 400
ball-and-socket joints

as complex joints, 176
degrees of freedom, 177, 190, 191
DH notation for, 190– 191
shoulder joint modeling, 321, 322

Baraff, D., 228, 231
Barr, A., 130, 236, 237, 238
Bartels, R., 342
barycentric coordinates, 430– 431
basic techniques

3D shape interpolation, 153–169
animation languages, 120– 124
controlling motion along a curve, 

68–97
deforming objects, 124–143
interpolation, 63–68
key-frame systems, 116–120
morphing (2D), 143–153
path following, 102–116
summary, 169–170

 

Batman Returns,

 

 27
BBOP, 23

 

Beauty and the Beast,

 

 28
bends, global deformation for, 132
Betacam SX DTV standard, 502
Betamax videotape format, 479, 496
Bezier curves

composite cubic, 464
constrained, 68
constructing in four-dimensional 

spherical space, 101–102
de Casteljau construction of, 

100– 101, 464–465
first-order continuity and, 66
Hermite form vs., 463
between two interpolated points, 

100
Bezier interpolation/approximation, 

463–464
bias controls for curves, 466– 467
bilinear interpolation, 2D grid 

deformation and, 127, 128

binary subdivision for finding 

 

u

 

 given 

 

s,

 

 
83

 

Black and White,

 

 29
black-and-white video standard, 495
Blackton, J. Stuart, 6
blended parabolas. 

 

See

 

 parabolic 
blending

blending functions, 455
Bloomenthal, J., 263
Blumberg, J., 259
bodies in contact, 216–231

colliding bodies, 216–227
contact forces, 481– 483
friction, 227–228
resting contact, 228–231
types of contact, 216

 

See also

 

 colliding bodies
bodies in free fall, 204–216

acceleration function, 204, 205
angular velocity, 209–211
center of mass, 211–212
equations of motion for, 208–216
forces acting on, 205, 208, 212
improving simulation accuracy, 

206–208
inertia tensor, 209, 214
momentum, 208, 212–214
numeric approximation and, 

206–208
orientation and rotational move-

ment, 209–211
Runge-Kutta integration for, 

207–208
simple example, 205–206
standard physics vs. computer 

animation and, 204
time function, 204, 205
torque, 208, 212
updating orientation for, 215–216
velocity function, 204, 205

boids, 246
bounding boxes, 431– 432
bounding shape computations, 

431– 447
bounding boxes, 431– 432
bounding slabs, 432– 433
bounding sphere, 433–436
convex hull, 437– 447

bounding slabs, 432– 433
bounding sphere

for collision avoidance, 252–254
computing, 433–436

bracketed L-systems, 277–278, 279
Bray, John, 6–7
bucket sort, flocking behavior and, 251

 

Bud Bowl

 

 commercials, 27
buds, plant, 274

 

Bug’s Life, A,

 

 28

 

Bunny,

 

 28
Burtnyk, Nestor, 23, 127, 132

Burton, Tim, 10

 

C

 

CAD system, 343
camera calibration for motion capture, 

372–373, 502–507
camera position

3D position reconstruction, 
373–376

automatic camera control, 
174–175

camera calibration for motion 
capture, 372–373, 502–507

to check facial expressions and eye 
movements, 175

defined, 33
for inspecting motion of other 

objects, 175
orientation along a path, 102–108

 

See also

 

 eye position (EYE)
Carlson, W., 156

 

Caspar,

 

 26, 28
catenary curves for cloth draping, 

362–364
Catmull, Ed, 22, 23
Catmull-Rom splines

for coordinate grid morphing, 144, 
146

first-order continuity and, 66
internal tangent vectors and, 

459– 461
as interpolating splines, 68
overview, 458– 461

cell growth in plants, 274
cellular descent in plants, 274
cels, 7
Center for Human Modeling and 

Simulation, 22
center of interest (COI)

for automatic camera control, 174
for camera path following, 

106–108
constant global offset vector for, 

175
for groups of objects, 174, 175
look-to point, 33
separate path for, 107–108
up vector and, 33, 34, 106–107
view direction and, 33

center of mass
for bodies in free fall, 211–212
defined, 211, 479
polyhedra collision and, 220

centrifugal force, 483–484
centripetal force, 481
CFD (computational fluid dynamics), 

296, 298
CGRG (Computer Graphics Research 

Group), 22–23
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Chadwick, J., 140, 143, 358
chained objects, hierarchical modeling 

of, 176
channels. 

 

See

 

 articulation variables 
(avars)

Chen, D., 355
Chen, E., 159, 160
child node, 178
chorus line effect in flocking behavior, 

248
Cinepak codec, 500
circular motion, 477– 478
cirrus clouds, 299, 306–308
clavicle joint, 322
clipping, 47– 48
clipping distance, 34, 35
closest point between two lines in three-

space, 427– 428
cloth and clothing, 361–369

catenary curves for, 362–364
collision detection and response for, 

368–369
modeling dynamics for, 365–368
relaxation process for, 364–365
simple draping, 362–365
virtual human representation, 357

clouds, 299–310
animating volumetric procedural 

clouds, 308–310
basic types, 299
cirrus, 299, 306–308
convective, 299, 301
cumulus, 299, 302, 304–306
dynamics, 308
early approaches to modeling, 

300– 301
implicit functions for modeling, 

303–304
physics, 299
rendering issues for, 299–300
stratus, 299, 308
visual characteristics of, 299–300
volumetric modeling, 301–308

codecs, 500– 501
Cohl, Emile, 6
COI. 

 

See

 

 center of interest (COI)
colliding bodies, 216–227

collision detection, 216–217, 
220– 222

collision response, 216, 217–227
impulse force of collision, 222–227
issues involved, 216
kinematic response, 217–218
particle-plane collision, 217–218, 

222–224
penalty method, 217, 218–220
testing planar polyhedra, 220– 222

 

See also

 

 bodies in contact
collision detection

for cloth and clothing, 368–369

for colliding bodies, 216–217, 
220– 222

flocking behavior collision avoid-
ance, 247, 248–249, 251–255

for implicit surfaces, 264–265
by plants, 274
testing planar polyhedra, 220– 222

collision response
articulated figures and, 325
for cloth and clothing, 368–369
implicit surface deforming, 

265–267
impulse force of collision, 222–227
issues involved, 216
kinematic, 217–218
particle-plane collision, 217–218, 

222–224
penalty method, 217, 218–220

color burst, 485
color incorporation into black-and-

white signal, 495–496
comfort metrics for articulated figures, 

326–327

 

comp

 

 operator for compositing, 
396–398

competing intentions in autonomous 
behavior, 260

complex joints, 176–177
complexity

in arm modeling, 325
in autonomous behavior modeling, 

258
in cloud modeling, 299
in facial animation, 339
in fire modeling, 310
in hair modeling, 357–358
in hand modeling, 322
interpolation issues, 65

 

n

 

-squared, in flocking behavior, 251
in natural phenomena modeling, 

271–272
of plant modeling, 272
of walking, 325, 327

component signal, 495
components of a vector, 420
composite cubic Bezier curves, 464
composite Hermite curves, 457, 458

 

composite

 

 operation, 389
composite signal, 495–496
compositing

alpha channel for, 390, 391–395
anti-aliasing and, 390– 392

 

comp

 

 operator for, 396–398
defined, 386
digital, 20– 21, 386, 388–398
FFDs, sequential vs. hierarchical, 

136–137, 138
for foreground animation with 

static background, 388

 

over

 

 operator for, 389, 391–394, 
395–396, 398

with pixel depth information, 388, 
395–398

without pixel depth information, 
389–395

 

zmin

 

 operator for, 396
compound global deformations, 133
compound Hermite curves, 66
compound implicit surfaces, 262, 263
compound transformations

extracting transformations from a 
matrix, 45–46

overview, 39
compressibility of gaseous phenomena, 

296
compression. 

 

See

 

 image compression
computational fluid dynamics (CFD), 

296, 298
computer animation

heritage of, 4–12
history of, 21–29
principles, 10– 12
production tasks, 15–17
uses for, 1
values as candidates for, 1–2

Computer Graphics Research Group 
(CGRG), 22–23

computer monitors, double buffering 
for, 385–386, 387

conformational parameters for facial 
modeling, 349

conforming, 18
connectivity constraints, hierarchical 

modeling and, 175–176
conservation of energy, 484
conservation of momentum, 484–485
constant acceleration (parabolic ease-in/

ease-out), 89–92
constant global offset vector for COI, 

175
constant-speed rotation, 98
constraints

for automatic camera control, 175
for energy minimization, 236–239
enforcing soft and hard constraints, 

231–241
floating attachment, 238
for hierarchical modeling, 175
locally abutting, 238
motion, 94, 96
moving point, 119
overconstrained systems, 192
pelvis and feet, 336
point-to-fixed-point, 238
point-to-point, 238
position-time, 96
on resting contact forces, 228, 

229–230
space-time, 239–241
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for speed control, 85
underconstrained systems, 192

 

See also

 

 enforcing soft and hard 
constraints

contact, bodies in. 

 

See

 

 bodies in contact
contact forces, 481– 483

friction, 227–228, 482
Hooke’s law, 481– 482
impulse force of collision, 222–227, 

482
normal, 482
viscosity, 483

contact shadows, 401
context-free L-systems, 275, 277
context-sensitive L-systems, 280
continuity

controls for curves, 465–466, 467
defined, 453
first-order or tangential, 66, 

453–454
free-form deformation (FFD) and, 

135
geometric, 454
interpolation and, 65–67
parametric, 454
second-order or curvature, 66, 454
between segments, 66
zeroth-order or positional, 65–66, 

453, 454
continuous approach to motion blur 

calculation, 399
control points for slerping, 99–100
controlling groups of objects. 

 

See

 

 
groups of objects

controlling motion along a curve. 

 

See

 

 
motion along a curve

convective clouds, 299, 301
conventional animation

computer animation vs., 13–14
defined, 6
Disney innovations, 7–9
early days of, 6–7
fast motion representation in, 399
studio contributions, 9

convex hull computation, 437– 447
convex hull property, 454
convolution kernels for path 

smoothing, 111–114
integral calculation, 113
sample kernels, 113
step function for, 111–112
tent kernel, 113–114

coordinate grid deformation
2D grid deformation, 127–129
free-form deformation (FFD), 

132–143
global deformations, 130– 132
initial configuration, 125–126
local coordinate system for, 

125–127

polyline deformation, 129–130

 

See also

 

 free-form deformation 
(FFD)

coordinate grid morphing, 143–148
for animated images, 148, 150
auxilliary grid formation, 144, 146
column-by-column process 

(second pass), 148, 149
cross dissolve for final image 

generation, 143, 145, 148
distorting pixels in 

 

x

 

-direction (first 
pass), 144, 146–148

grid definitions, 143, 144
intermediate image generation, 

143–148
two-pass procedure, 143–148

coordinate space
camera calibration for motion 

capture, 372–373, 502–507
homogenous representations of 

points, 36–39
left- vs. right-handed, 32
orientation along a path and, 

102–103

 

y

 

- vs. 

 

z

 

-axis as “up,” 32
coordinated movement

in articulated figures, 324–325
in hand modeling, 322, 324

Coquillart, S., 138
coronal plane, 318
correspondence problem for shape 

interpolation, 156
cosine rule, 429– 430
cross product of two vectors, 422– 424
Csuri, Chuck, 22, 23
cubic B-spline curves, second-order 

continuity in, 66
cubic Bezier curves

composite, 464
de Casteljau algorithm for interpo-

lation, 100– 101, 464–465
first-order continuity and, 66
between two interpolated points, 

100
cubic curves

arc length computation using 
Gaussian quadrature, 79

arc length integral and, 73
equation for, 109
for path smoothing, 109–111

cubic equations, 453
cubic interpolation for smoothing 

paths, 109–111
end point estimation, 110– 111
equation for cubic curves, 109
geometric construction of a cubic 

estimate, 109–110
geometric construction of a 

parabolic estimate, 111
parabolic interpolation, 110– 111

cumulus clouds, 299, 302, 304–306
algorithm for, 304–305

curvature (second-order) continuity, 
66, 454

curves, interpolating and 
approximating, 453–470

B-splines, 467– 469
Bezier interpolation/

approximation, 463–464
bias controls, 466– 467
blended parabolas, 462– 463
Catmull-Rom spline, 458– 461
continuity controls, 465–466, 467
de Casteljau construction of Bezier 

curves, 100– 101, 464–465
derivatives, computing, 456
fitting curves to a given set of 

points, 469– 470
four-point form, 461– 462
Hermite interpolation, 457– 458
parameterization by arc length, 456
simple linear interpolation, 

454–456
tension controls, 465, 466, 467
terminology, 453–454

curves, motion along. 

 

See

 

 motion along 
a curve

 

D

 

D-VHS DTV standard, 502
D0L-systems

described, 275
geometric interpretation of, 

275–277
predecessor, 275
production rules, 275
successor, 275

D1 DTV standard, 501
D2 DTV standard, 501–502
D3 DTV standard, 501, 502
D5 DTV standard, 501, 502
D6 DTV standard, 501, 502
dampers

PDCs with, 235–236
spring-mass-damper modeling of 

flexible objects, 234–235
damping coefficient, 486
damping force, 486
database amplification, bracketed 

L-systems and, 278
DCT (Digital Component 

Technology), 502
DCT (discrete cosine transform), 500
de Casteljau construction of Bezier 

curves, 100– 101, 464–465

 

Debut of Thomas Cat, The,

 

 7
deceleration

constant (parabolic ease-in/
ease-out), 89–92
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deceleration (

 

continued

 

)
sine interpolation and, 87
sinusoidal pieces for, 87–89

 

See also

 

 ease-in/ease-out
DeFanti, Tom, 24
default up vector, 34
deformation tools, 138–140

defined, 138
moving the object, 140, 141
moving the tool, 138–139

deforming objects, 124–143
2D grid deformation, 127–129
coordinate grid deformation, 

125–143
free-form deformation (FFD), 

125–127, 132–143, 358–361
geometric deformation for virtual 

human figures, 356–357
global deformations, 130– 132
implicit surfaces, as collision 

response, 265–267
initial configuration, 125–126
local coordinate system for, 

125–127
overview, 124–125
polyline deformation, 129–130
warping, 125, 126

 

See also

 

 free-form deformation 
(FFD)

degrees of freedom (DOFs)
in arm modeling, 318, 319, 320, 

321
in autonomous behavior, 259, 260
in ball-and-socket joints, 177, 190, 

191
defined, 54
fixed angle representation and, 

53–54
in hand modeling, 321, 323
in joints, 176–177
motion capture and, 377–378
in shoulder joint modeling, 321
walking dynamics and, 337

Denavit-Hartenberg (DH) notation
for ball-and-socket joint, 190– 191
joint angle parameter, 186, 187, 

188, 190, 191
link length parameter, 186, 187, 

188, 190, 191
link offset parameter, 187, 188
link twist parameter, 187, 188, 190, 

191
overview, 186–190
screw transformations, 188
three-joint manipulator example, 

188–190
derivatives, computing, 456
DeRose, T., 368
detailed story, 13
determinant of a 3x3 matrix, 410– 411

Deussen, O., 283
dextrous workspace, 192
DH notation. 

 

See

 

 Denavit-Hartenberg 
(DH) notation

Digital Betacam DTV standard, 501, 
502

Digital Component Technology 
(DCT), 502

digital compositing, 20– 21
digital editing, 17–20

assemble, 19
EDL (edit decision list), 18
electronic, 17–18
insert, 19
nonlinear, 17
off-line, 18
on-line, 18–19
on-line nonlinear, 19–20

Digital S DTV standard, 502
digital television (DTV), 498, 501–502
digital video

compression/decompression, 
498–500

formats, 21, 501
overview, 20– 21, 497–501

Digital8 DTV standard, 501, 502
discrete approach to motion blur 

calculation, 399– 401
discrete cosine transform (DCT), 500
Disney studio innovations, 7–9
Disney, Walt, 7–9
display pipeline, 32–36

defined, 32
eye space, 34–35
eye space to image space transfor-

mation, 35–36, 37, 47
field of view, 34
image space, 35–36
image space to screen space 

transformation, 36, 37, 47– 48
object space, 33
object space to world space 

transformation, 33, 35, 37, 43, 
46, 48

ray casting and, 36, 38
round-off error considerations, 

48–51
transformations in, 37, 46– 48
up vector, 33–34
user-supplied up direction, 33
world space, 33–34
world space to eye space transfor-

mation, 34, 37, 46– 47
distal, 318
distance-based implicit surfaces, 

262–263
distance function

for resting contact analysis, 
228–229

for warping objects, 125

distance-time curve. 

 

See

 

 distance-time 
functions

distance-time functions
defined, 70– 71
general functions, 92–94
normalized, 84, 85–86
for parabolic ease-in/ease-out, 92
samples, 95
for speed control, 84–86

Dobashik, Y., 301
DOFs. 

 

See

 

 degrees of freedom (DOFs)

 

Don’t Touch Me,

 

 27
dot product of two vectors, 420– 422, 

424
double buffering, 385–386, 387

defined, 386
pseudocode for, 387

downhill motion of water, 292–295
first-order implicit numerical 

integration solution, 294–295
Navier-Stokes equations for, 

292–293
three-dimensional case, 295
two-dimensional case, 292–295
volume preservation and, 295

downhill vector for path along a 
surface, 115–116

drag in flight modeling, 256

 

Dragonheart,

 

 27
draping of clothing, 362–365

 

Dream Flight,

 

 23
drop shadows, 401– 406

approximating, 405–406
flattening object copy for creating, 

403–404
perspective projection for creating, 

401, 403
placing over ground plane, 405
usefulness of, 401, 402, 403

DTV (digital television), 498, 501–502
DV. 

 

See

 

 digital video
DV DTV standard, 501, 502
DVCam DTV standard, 501, 502
DVCPRO DTV standard, 501, 502
dynamic control, 174
dynamics

in cloth and clothing, 365–368
forward dynamic control, 338–339
particle system, 308
qualitative, 308
for realistic walking motion, 

336–338

 

E

 

ease-in/ease-out
defined, 11
for motion along a curve, 86–92
parabolic, 89–92
sine interpolation for, 86–87
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sinusoidal, 87–89
for speed control, 84

ease of use, control as trade-off with, 
175

Ebert, D., 301, 302
Edison, Thomas, 6
EDL (edit decision list), 18
Ekman, P., 347, 348
elbow joint, 322
electromagnetic sensors for motion 

capture, 369
emergent behavior, 241, 246
Emshwiller, Ed, 23
end effector

arm modeling and, 319–320
defined, 176
dextrous workspace for, 192
for Jacobian applied to linked 

appendage, 196
joint angle and rotational change 

in, 196
reachable workspace for, 192

energy
conservation of, 484
kinetic, 484
potential, 484

energy minimization constraints, 
236–239

floating attachment, 238
gradient determination, 237
implicit function, 237
locally abutting, 238
non-negative smooth functions for, 

236
parametric position function, 237
point-to-fixed-point, 238
point-to-point, 238
soft constraint drawbacks, 238–239
surface normal function, 237

enforcing soft and hard constraints, 
231–241

difficulties posed by hard con-
straints, 231

for energy minimization, 236–239
for flexible objects, 232–235
space-time constraints, 239–241
for virtual springs, 235–236

environment
autonomous behavior and, 

258–259
collision avoidance using feelers, 

255
flocking behavior interactions, 

248–249, 255
forces in particle systems, 246
plant interaction with, 282–283

equilibrium, 480
Euler angle representation, 56–57

Euler method for solving ODEs, 
490– 491

Eulerian formulations for gaseous 
phenomena, 296–297

Evans, David, 22
exaggeration, 11
explicit equations, 453
exposure sheet, 13
expression parameters for facial 

modeling, 349–350
extension, 318
exterior vertices of cloth grid, 362
extracting transformations from 

matrices, 45–46
extremes, 13
eye position (EYE)

defined, 33
look-from point, 33
up vector and, 33
view direction and, 33

eye space
defined, 34–35
overview, 34–35
in this text, 35
transformation to image space, 

35–36, 37, 47
truncated pyramid in, 35
world space transformation to, 34, 

36–37

 

F

 

Facial Action Coding System (FACS), 
347–348

facial animation, 339–353
creating the model, 342–345
difficulties of, 339
Facial Action Coding System 

(FACS), 347–348
muscle models, 350– 353
parameterized models, 348–350
textures, 345–347
types of facial models, 341–342
uses for, 339

Facial Animation Parameters (FAPs) in 
MPEG-4, 345

Facial Definition Parameters (FDPs) in 
MPEG-4, 345

facial expressions, camera position for 
checking, 175

FACS (Facial Action Coding System), 
347–348

 

Fantasia,

 

 9
FAPs (Facial Animation Parameters) in 

MPEG-4, 345
far (yon) clipping distance, 34, 35
FDPs (Facial Definition Parameters) in 

MPEG-4, 345
feature-based morphing, 148–153

code for, 155

crossed feature lines and, 153
intermediate feature lines, 148, 

150, 151, 152
intermediate frames, 153
mapping feature lines, 148, 150
user-supplied parameters for, 153
using multiple line pairs, 151–153
using single feature line, 150– 151, 

152
FFD. 

 

See

 

 free-form deformation (FFD)
field of view, 34
film sizes, 493, 494
fire, 310– 311
first-order (tangential) continuity, 66, 

453–454
fitting curves to a given set of points, 

469– 470
Fiume, E., 301, 311
fixed angle representation

degrees of freedom and, 54–55
gimbal lock effect, 55
interpolation issues, 55–56
overview, 42– 43, 53–54

Flanders, M., 320
Fleischer, Max, 7, 9
Fleisher, K., 236, 237, 238
flexible objects, 232–235

dampers, 234–235
simple spring-mass model, 

233–234
spring-mass-damper modeling of, 

232–235
flexion

defined, 318
finger, 324
knee, 332

flicker, 2, 3
flicker rate, 2
flight modeling, 255–257
flipbooks, 4
floating attachment constraints, 238
flock centering, 247
flocking behavior, 246–257

boids, 246
characteristics of, 242, 246
chorus line effect, 248
collision avoidance, 247, 248–249, 

251–255
described, 241–242
emergent behavior, 241, 246
flight modeling, 255–257
flight modules, 250
flock centering, 247
flock leader, changing, 249
global control, 249
interacting with the environment, 

248–249
interacting with other members, 

248
local control, 247
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flocking behavior (

 

continued

 

)

 

n

 

-squared complexity, 251
navigation module, 249, 250
negotiating the motion, 249–250
perception and, 247, 248
pilot module, 250
reasoning and reaction, 247
splitting and rejoining, 255
uses for, 246

 

Flubber,

 

 27
fluid dynamics

computational (CFD), 296, 298
overview, 296

 

See also

 

 gaseous phenomena
Foldes, Peter, 23, 127
Foley, J., 34
follow through/overlapping action, 11
foot-sliding, 376
force field collision avoidance, 

251–252, 253
forces

on bodies in free fall, 205, 208, 212
centrifugal force, 483–484
centripetal force, 481
collision response, 216, 217–227
contact, 228–231, 481– 483
dampers, 234–235
damping, 486
in flight modeling, 256
friction, 227–228, 482
gravity, 256, 257, 282, 292–295, 

480– 481
Hooke’s law, 481– 482
impulse force, 222–227, 482
linear, 212
normal force, 482
particle system, 246
resting contact, 228–231, 481– 483
soft constraints as, 231–232
spring-mass-damper modeling of 

flexible objects, 232–235
torque, 208, 212, 220, 230, 235, 

326–327, 480
viscosity, 483

 

See also

 

 colliding bodies; 

 

specific 
forces

 

forearm rotation, 318–319
foreground image, 389

 

Forrest Gump,

 

 26
Forsey, D., 342
forward differencing, arc length 

computation using, 73–76
forward kinematics, 184–185
Foster, N., 301
four-point form, 461– 462
Fourier synthesis for cloud modeling, 

300– 301
fractal compression, 500
fractal synthesis for cloud modeling, 

300

frames
context and meaning of, 103
defined, 12
key, 13, 116
key-frame systems, 116–120
local coordinate, 185–192
in robotics, 176
speed/quality trade-offs, 14
in storyboard, 12

free fall. 

 

See

 

 bodies in free fall
free-form deformation (FFD), 132–143

AFFD objects, 138
animated FFDs, 137–143
for Bezier solids, 135
compositing FFDs, 136–137, 138
continuity and, 135
cylindrical grid for, 135–136
deformation by passing through 

FFD space, 140, 141
deformation tools, 138–140
deforming a surface around an 

articulated joint, 140– 143
grid of control points for, 134
hierarchical organization, 136–137, 

138
in human figure modeling, 

358–359, 360
initial configuration, 125–126
interpolation functions for, 133, 

135
local coordinate system for, 

125–127, 133–134
moving control points, 134–135
reconstructing a point’s position, 

134
sequential organization, 136, 137

Frenet frames, 103–106
calculating, 103–104
defined, 103
interpolating for undefined 

segments, 104–105
segments without curvature and, 

104–105
unnaturalness of motions using, 

105–106
friction

kinetic, 228, 482
overview, 482
static, 227–228, 482

Friesen, W., 347, 348
function integration, 488– 489

 

Future World,

 

 24

 

G

 

gains, pseudo inverse Jacobian and, 202
Galyean, T., 259
Gardner, G., 300
gaseous phenomena, 296–311

clouds, 299–310

compressibility issues, 296
computational fluid dynamics, 298
fire, 310– 311
general approaches to modeling, 

296–298
grid-based method, 296–297
hybrid method, 298
particle-based method, 297–298
steady state flow, 296
vortices, 296

 

See also

 

 clouds
Gauss-Legendre integration, 488, 489, 

490
Gaussian integration, adaptive, for arc 

length computation, 79–83
Gaussian quadrature for arc length 

computation, 77–79
generally perpendicular, 115
generating particles, 243
genesis effect, 310
genetic algorithms for path planning, 

325
geometric computations, 420– 447

area calculations, 428– 429
barycentric coordinates, 430– 431
bounding shapes, 431– 447
closest point between two lines in 

three-space, 427– 428
components of a vector, 420
cosine rule, 429– 430
cross product of two vectors, 

422– 424
dot product of two vectors, 

420– 422, 424
length of a vector, 420, 425
matrix routines, 425–427
vector routines, 424–425

geometric construction
of cubic estimate, 109–110
of parabolic estimate, 111

geometric continuity, 454
geometric flight, 256
geometric information, shape 

interpolation and, 157
geometric interpretation of L-systems, 

275–277
geometric replacement for L-systems, 

275
geotropism, 274

 

Geri’s Game,

 

 25

 

Gertie the Dinosaur,

 

 6

 

Getting into Art,

 

 340
GIF standard, 500, 501
GIF89a standard, 501
gimbal lock effect, 55
Girard, M., 322, 336
global control

defined, 67
of flocking behavior, 249
interpolation and, 67
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global deformations, 130– 132
bend operation, 132
compound operations, 133
taper operation, 131
transformation matrix for, 130
twist about an axis, 131

global offset vector, constant, for center 
of interest, 175

gradient for energy minimization 
constraints, 237

Grand Alliance, 502
graphical animation languages, 123
Graphical Symbiosis System (GRASS), 

24
grasping. 

 

See

 

 reaching and grasping
GRASS (Graphical Symbiosis System), 

24
gravity

downhill motion of water, 292–295
in flight modeling, 256, 257
Newton’s law of universal 

gravitation, 480– 481
overview, 480– 481
in plant modeling, 282

Greenberg, Jim, 23
grid-based method for gaseous 

phenomena, 296–297
grid deformation (2D), 127–129

bilinear interpolation, 127, 128
initial configuration, 127
local coordinate system, 127
moving grid vertices, 127–129

ground plane, drop shadow placement 
over, 405

groups of objects, 241–261
autonomous behavior, 257–260
center of interest for, 174, 175
characteristics of group types, 242
emergent behavior, 241
flocking behavior, 246–257
particle systems, 242–246

 

See also

 

 autonomous behavior; 
flocking behavior; particle 
systems

 

H

 

hair, 357–358
hand modeling, 321–324

coordinating movement for, 322, 
324

degrees of freedom, 321, 323
grasping and, 322, 324
opposable thumb and, 322

handedness of coordinate spaces, 32
hard constraints, 231.

 

 See also

 

 enforcing 
soft and hard constraints

Harryhausen, Ray, 10
Haumann, D., 140, 358

HCI (human-computer interaction), 
339

HDTV (high-definition television), 
496

herbaceous plants, 273
heritage of animation, 4–12

Disney innovations, 7–9
early “conventional” animation, 

6–7
early devices, 4–6
principles of computer animation, 

10– 12
stop-motion techniques, 9–10
studio contributions, 9
video art, 10

Hermite curves, 66
Hermite interpolation, 457– 458
hierarchical FFD organization, 

136–137, 138
hierarchical kinematic modeling, 

175–203
forward kinematics, 184–185
hierarchical modeling overview, 

175–177
inverse kinematics, 185, 192–203
local coordinate frames, 185–192
representing hierarchical models, 

177–183
summary, 203

 

See also

 

 inverse kinematics; local 
coordinate system

hierarchical modeling, 175–183
defined, 175
degrees of freedom, 176–177
joints, 176–177
simple example (two-dimensional, 

three-link), 179–183
transformations, 179–185
tree structure for, 177–179, 181
types of, 175–176
world space and, 180– 181

hierarchy of animation levels, 12
high-definition television (HDTV), 

496
Hill’s muscle model, 353
hips. 

 

See

 

 pelvis
history of computer animation, 21–29

coming of age, 26–29
early activity, 21–24
middle years, 24–26

hither (near) clipping distance, 34, 35
Hooke’s law, 481– 482
Houdini system, 123

 

Howard the Duck,

 

 26
human-computer interaction (HCI), 

339
human representation. 

 

See

 

 articulated 
figures; virtual human represen-
tation

human visual system, 2–3

 

Hummingbird,

 

 23

 

Hunger,

 

 23, 28, 127
Hurd, Earl, 7
hybrid method for gaseous phenomena, 

298

 

I

 

identity matrix
4x4 matrix, 38
defined, 410, 411

IK. 

 

See

 

 inverse kinematics
image compression

codecs, 500– 501
compression/decompression 

standards, 498–500
DCT (discrete cosine transform), 

500
for digital video, 21
fractal, 500
interframe, 499
intraframe, 499
lossless vs. lossy, 499
LZW, 500
run-length encoding (RLE), 

499–500, 501
symmetric vs. asymmetric, 499
vector quantization, 500
wavelet, 500

image space
eye space transformation to, 35–36, 

37, 47
overview, 35–36
transformation to screen space, 36, 

37, 47– 48
implicit equations, 453
implicit functions

for cloud modeling, 303–304, 
305–306

density functions, 303, 304, 305
for energy minimization, 237
for implicit surfaces, 261

implicit pivoting, 415
implicit primitives

for cloud modeling, 303–304, 
305–306, 308

implicit surfaces and, 261–263
metaball, 261–262

implicit surfaces, 261–267
animation using implicitly defined 

objects, 263–264
basic formulation, 261–263
collision detection, 264–265
compound, 262, 263
defined, 261
deforming as collision response, 

265–267
distance-based, 262–263
implicit function, 261
implicit primitives, 261–263
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implicit surfaces (

 

continued

 

)
metaball implicit primitive, 

261–262
penetration region, 265–266
propagation region, 265, 267
for virtual human representation, 

355
impulse, 224
impulse force of collision, 222–227

backing up to point of impact, 
222–224

computing impulse forces, 
224–227

defined, 482
for point-plane collision, 222–224

in-betweening, 13
Indeo 3.2 codec, 500
inertia tensors

angular momentum and, 208–209, 
214

equations for, 214
overview, 487– 488

inertial frame, 479
initial configuration for deforming 

objects, 125–126
inking, 13
Inman, V., 333
inner product of two vectors, 420– 422, 

424
insert editing, 19
insertion point for muscles, 350, 351
integrating ordinary differential 

equations (ODEs), 489– 492
integration, numerical. 

 

See

 

 numerical 
integration techniques

intelligence, group types and, 242
interframe compression, 499
interior vertices of cloth grid, 362
interlacing in NTSC format, 3
internal state in autonomous behavior, 

259
interpolated points, 99
interpolation

approximation vs., 64–65, 454
of arc length from parameter/

arc-length pair table, 73–76
bilinear, 127, 128
choosing the appropriate function, 

64–68
complexity issues, 65
continuity issues, 65–67
of curves, interpolating and 

approximating, 453–470
defined, 454
global vs. local control, 67
Hermite, 457– 458
magnitude and, 97
nontriviality of, 63–64
orientation representation issues, 

53, 55–56

overview, 63–68
polynomials and, 65
of rotations represented by quater-

nions, 97–102
shape interpolation (3D), 153–169
shape interpolation in key-frame 

systems, 117–120
sine interpolation for ease-in/

ease-out, 86–87
for smoothing paths, 108–111
spherical linear interpolation 

(slerp), 99
summary, 169–170
varying the parameter at a constant 

rate, 68, 69

 

See also

 

 curves, interpolating and 
approximating

 

Interview with a Vampire,

 

 26
intraframe compression, 499
inverse Jacobian, 199–201

arm modeling and, 319–320
linkage changes and accuracy of, 

201
pseudo inverse, 200– 203
singularities and, 199–200

inverse kinematics, 192–203
adding more control, 201–203
advantages of, 185
analytic solution, 193–194
arm modeling and, 319–320
defined, 185
dextrous workspace, 192
inverse Jacobian solution, 199–201
Jacobian, the, 194–201
local coordinate frames for, 

185–192
number of solutions for, 192
overconstrained systems, 192
reachable workspace, 192
simple Jacobian solution, 197–199
skating counteracted by, 376
underconstrained systems, 192

inverse of a matrix, 411– 419, 
426– 427

inverse of a quaternion, 59, 60
Iwerks, Ub, 9

 

J

 

Jack,

 

 22
Jackson, Michael, 29
Jacobian, the, 194–201

arm modeling and, 319–320
control expression with pseudo 

inverse, 201–203
defined, 193, 195
inverse, 199–201, 319–320
as mapping of velocities, 195
overview, 194–197
pseudo inverse, 200– 203
simple example, 197–199

 

James and the Giant Peach,

 

 10, 386, 388
jerky motion (strobing), 3
Jodoin, Rene, 23
joint angles

DH notation parameter, 186, 187, 
188, 190, 191

end effector rotational change and, 
196

for Jacobian applied to linked 
appendage, 196

for simple linkages, 194
joints

ankle-toe joints, 332, 335
arm modeling, 318–321
ball-and-socket, 176, 177, 

190– 191
complex, 176–177
coordinated movement and, 

324–325
degrees of freedom in, 176–177
DH notation for, 186–191
displacement in motion capture, 

376–377
FFDs for, 358–359, 360
geometric deformation for virtual 

human figures, 356–357
hand modeling, 321–324
hierarchical modeling of, 177–183
human joint limits, 319
knee, 332, 334
local coordinate system for, 

185–192
overview, 176–177
pelvic, 329–331
planar, 176–177, 186
prismatic, 176, 183, 192
revolute, 176, 181–183, 186, 192
in robotics, 176
shoulder joint modeling, 321, 322
telescoping, for leg dynamics, 

337–338
tree structure for, 178–179
typical in computer animation, 176
variable rotations at, 181, 182

 

See also

 

 arcs; articulated figures; 
optical markers for motion 
capture; 

 

specific types

 

Jones, Chuck, 9
JPEG compression, 500, 501

 

Jumanji,

 

 27

 

Jurassic Park,

 

 27

 

K

 

Kajiya, J., 301
Kass, M., 239, 240, 313, 368
Kent, J., 156
key. 

 

See

 

 occlusion mask
key-frame systems, 116–120

articulation variables (avars), 116
linear interpolation for, 117–119
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moving point constraints for imme-
diate curves, 119

shape interpolation, 117–120
simple interface for interpolation of 

values, 116
simple key and intermediate frames, 

117
as track based, 116

key frames, 13, 116
kinematic collision response, 217–218
kinematic control, 173–174
kinematic modeling, hierarchical.

 

See

 

 hierarchical kinematic 
modeling

kinematics of walking, 333–336
joint angles, 333–335
lateral displacement of pelvis, 333
overview, 328
pelvis and feet constraints, 336
segment lengths and, 336

kinetic energy, 484
kinetic friction, 228, 482

 

King Kong,

 

 10
Kluyskens, T., 301
knees

angles, 334
flexion, 332
optical markers for, 375, 376

 

Knick Knack,

 

 25
Knowlton, Ken, 23
Kochanek, D., 465
Koga, Y., 320
Kondo, K., 320
Korein, J., 259, 400

 

L

 

L-systems
for animating plant growth, 

281–283
bracketed, 277–278, 279
context-free, 275, 277
context-sensitive, 280
D0L-systems, 275
database amplification, 278
deterministic, 275
geometric interpretation of, 

275–277
geometric replacement, 275
global time variable, 281, 282
local age value, 282
for modeling plants, 275–280
nondeterministic, 277–278
open, 283
parametric, 281
stochastic, 278–279
summary, 283
timed, 281–282
turtle graphics, 276–277

Lacquaniti, F., 320
Lagrangian formulations for gaseous 

phenomena, 296, 297–298
Lantz, Walter, 7, 9
laser scanners for facial modeling, 343, 

346
Lasseter, J., 10

 

Last Starfighter, The,

 

 25
lateral displacement of pelvis, 333

 

Lawnmower Man,

 

 27
laws of motion, Newton’s, 478– 479
layered approach to human figure 

modeling, 358–361
leaf node, 178
leaves, plant, 274
LEDs for motion capture, 372
left-handed coordinate space, 32
left stance phase

of run cycle, 328–329, 330
of walk cycle, 328, 329

 

LENGTH

 

 function, 71, 72
length of a vector, 420, 425
levels of autonomous behavior, 259, 

260
life span of particles, 242, 243, 244, 

246
lift in flight modeling, 256–257
Lindenmayer, A., 276
lineage, plant, 274
linear acceleration, resting contact and, 

230
linear equations

defined, 453
LU decomposition for solving, 

411– 419
linear force, bodies in free fall and, 212
linear interpolation

algebraic form, 455
geometric form, 454–455
for key-frame systems, 117–119
matrix representation, 455–456
for smoothing paths, 108–109
for wave modeling, 291

linear least squares problems, 419– 420
linear momentum of bodies in free fall, 

212–213
linear velocities

impulse forces and, 226
induced by joint axis rotation, 

196–197
Jacobian and, 195–197
particle animation and, 244

link length parameter (DH notation), 
186, 187, 188, 190, 191

link offset parameter (DH notation), 
187, 188

link twist parameter (DH notation), 
187, 188, 190, 191

links
in prismatic joints, 176

in revolute joints, 176
in robotics, 176
tree structure for, 177–179

 

Lion King,

 

 27
lip-synch animation

facial models and, 339
sampling rate for, 3
sound track for, 13

 

Little Nemo,

 

 6
local control

defined, 67
of flocking behavior, 247
interpolation and, 67

local coordinate system
for 2D grid deformation, 127
for ball-and-socket joint, 190– 191
constructing the frame description, 

191–192
for deforming objects, 125–127, 

133–134
Denavit-Hartenberg (DH) nota-

tion, 186–190
for free-form deformation (FFD), 

133–134
for hierarchical kinematic model-

ing, 185–192
for intermediate joints, 192
offset vector relative to, 175
for three-joint manipulator, 

188–190
locomotion mechanisms. 

 

See

 

 
mechanisms of locomotion

look-from point, 33. 

 

See also

 

 eye 
position (EYE)

look-to point, 33. 

 

See also

 

 center of 
interest (COI)

 

Looker, 24
lossless vs. lossy image compression, 

499
low-albedo illumination, clouds and, 

299–300
LU decomposition, 411– 419
Lucasfilm, 25
LUdecomp procedure, 416, 417– 418
LUsubstitute subroutine, 416, 

418– 419
Luxo Jr., 25
LZW compression, 500

M
Maciejewski, A., 336
MAGI (Mathematical Application 

Group Inc.), 24
magic lanterns, 6
Magnenat-Thalmann, Nadia, 23, 120
magnetic tracking for motion capture, 

369
manipulators, 176
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map to sphere shape interpolation, 
160– 166

associating intersections with edges, 
163–164

configurations possible, 166
current face, 164–165
by fixing key vertices, 162–166
generating new polyhedral 

definitions, 165
intersection-candidate list for, 

163–164
locating the initial vertex, 163
mapping back to the original 

object, 165
projection method, 161
recursive subdivision for, 166–169

Mars Attacks, 27
mass

center of, 211–212, 220, 479
penalty method for collision 

response, 218–219
spring-mass-damper modeling of 

flexible objects, 232–235
matching topology shape interpolation, 

157
Mathematical Application Group Inc. 

(MAGI), 24
matrices

defined, 409
determinant of a 3x3 matrix, 

410– 411
of direction cosines, 43–45
identity matrix, 38, 410, 411
inverse, 411– 419, 426– 427
LU decomposition, 411– 419
matrix representation of linear 

interpolation, 455–456
matrix-vector multiplication, 426
multiplying, 410, 425–426
routines, 425–427
singular value decomposition 

(SVD), 419– 420
transpose of, 410, 411
vector-matrix multiplication, 426
See also transformation matrices

matrix-vector multiplication, 426
matte. See occlusion mask
Max, Nelson, 23, 24
May, Steve, 120, 122
Maya animation system, 301, 308–310, 

320
McCay, Winsor, 6
Mech, R., 283
mechanisms of locomotion, 328–332

ankle-toe joints, 332
knee flexion, 332
pelvic list, 331
pelvic rotation, 329–331
pelvic transport, 329, 330, 331

run cycle, 328–329, 330
walk cycle, 328, 329

MEL animation language, 121, 308
Méliès, Georges, 6
memory, modeling for autonomous 

behavior, 259
Men in Black, 26
Menache, A., 375
merge operation, 389
message passing, flocking behavior and, 

251
Messmer, Otto, 7
metaball implicit primitive, 261–262
Metaxas, D., 301
Miller, G., 293, 294
MJPEG compression, 500, 501
model sheet, 13
momentum

angular, 212, 213–214, 486– 487
of bodies in free fall, 212–214
conservation of, 484–485
impulse and, 224

momentum of bodies in free fall, 
212–214

angular momentum, 212, 213–214
conservation of, 208, 212–213
inertia tensor and, 208–209, 214
linear momentum, 212–213

monitors, double buffering for, 
385–386, 387

morphing (2D), 143–153
coordinate grid approach, 143–148
defined, 143
feature-based, 148–153
films using, 28–29
See also coordinate grid morphing; 

feature-based morphing
Mortenson, M., 456, 458, 464
motion along a curve, 68–97

arc length computation, 69–84
constant acceleration, 89–92
curve fitting to position-time pairs, 

94–97
distance-time functions, 92–94
ease-in/ease-out, 86–89
parabolic ease-in/ease-out, 89–92
specifying positions and speeds at 

specific times, 94
speed control, 84–86

motion blur
calculating, 3, 399– 401
camera operation and, 399
continuous approach, 399
discrete approach, 399– 401
human vision and, 3
perception and, 399
ray tracing and, 399– 400
rendering issues, 398– 401
temporal anti-aliasing and, 400

motion capture, 369–378
3D position reconstruction, 

373–376
active optical markers for, 372
camera calibration, 372–373, 

502–507
defined, 369
electromagnetic sensors for, 369
fitting to the skeleton, 376–378
modifying motion capture data, 

378
noise issues, 372
objective of, 370
optical markers for, 369–370, 

371–372
processing the images, 371–372
summary, 378

motion constraints, 94, 96
Motion JPEG compression, 500, 501
motion of space-time particles, 

239–240
motion perception

motion blur, 3, 398– 401
persistence of vision and, 2–3
strobing, 3

motor activities in autonomous 
behavior, 259, 260

MOV (Quicktime) standard, 501
movement coordinator for autonomous 

behavior, 259, 260
moving picture standards. See standards 

for moving pictures
moving point constraints for immediate 

curves, 119
MPEG-1 standard, 500
MPEG-2 standard, 500
MPEG-4 standard, 345, 500
multiplane camera animation, 7–8
multiplicative identity, 59
multiplying matrices

for compound transformations, 39
matrix-vector multiplication, 426
overview, 410
premultiplying vs. postmultiplying, 

38–39
vector-matrix multiplication, 426

Muraki, S., 343
muscle models for facial animation, 

350– 353
Muybridge, Eadweard, 6

N
n-squared complexity in flocking 

behavior, 251
Nakamae, E., 301
National Television Standards Commit-

tee (NTSC) format
interlacing, 3
on-line editing for, 18–19
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overview, 493–495
playback rate, 3

natural phenomena, 271–315
difficulties of modeling, 271–272
gaseous phenomena, 296–311
plants, 272–283
water, 283–296

Navier-Stokes equations, 292, 298
near (hither) clipping distance, 34, 35
negative velocities, 93
negotiating flocking motion, 249–250
New York Institute of Technology 

(NYIT), 23
Newton-Raphson iteration, 83
Newton’s laws

of motion, 478– 479
of universal gravitation, 480– 481

Neyret, F., 301
Nightmare Before Christmas, 10
Nishita, T., 301
nodes in hierarchical linkages, 177–178
noise, motion capture issues, 372
noise functions

for cloud modeling, 303
overview, 471– 473

Nolan, Bill, 9
Noll, A. M., 23
nondeterministic L-systems, 277–278
nonlinear editing

defined, 17
on-line, 19–20

Nonuniform rational B-splines 
(NURBS), 354, 355, 469

nonuniform scale transformations, 40, 
42

normal force, 482
normal vector perturbation for small-

amplitude waves, 284
normalized arc length parameter, 84
normalizing a vector, 425
NS (Navier-Stokes) equations, 292, 

298
NTSC format. See National Television 

Standards Committee (NTSC) 
format

numeric arc length computation, 
77–79

numerical integration techniques, 488–
492

Euler method, 490– 491
function integration, 488– 489
Gauss-Legendre integration, 488, 

489, 490
integrating ordinary differential 

equations (ODEs), 489– 492
Runge-Kutta methods, 491– 492

Numerical Recipes: The Art of Scientific 
Computing, 207, 416, 420

NURBS (Nonuniform rational 
B-splines), 354, 355, 469

NYIT (New York Institute of 
Technology), 23

O
OBBs (oriented bounding boxes), 431
object space

defined, 33
overview, 33
transformation to world space, 33, 

35, 37, 43, 46, 48
object stretching, 399
O’Brien, Willis, 10
observer position

defined, 33
view frustum and, 34, 35
See also eye position (EYE)

obstacles
plants’ response to, 274
reaching around, 325–326
wave displacement from, 285–287

occlusion mask
alpha channel for, 390, 391–395
defined, 389
one-bit, 390, 391

ocean waves
Airy model for, 289
anatomy of, 288–289
breaking, 289
modeling, 289–291
shoreline and, 289
spray and foam modeling, 291
transport of water and, 288
wave refraction, 289

ODEs (ordinary differential equations), 
integrating, 489– 492

off-line editing, 18
offset vector, for automatic camera 

control, 175
on-line editing

nonlinear, 19–20
overview, 18–19

opaquing, 13
open L-systems, 283
optical markers for motion capture

3D position reconstruction, 
373–376

active markers, 372
fitting to the skeleton, 376–378
number required, 375, 376
overview, 369–370
processing the images, 371–372

ordinary differential equations (ODEs), 
integrating, 489– 492

orientation along a path, 102–108
COI for camera path following, 

106–108
Frenet frame for, 103–106
quality of motion vs., 173

orientation of bodies in free fall, 
209–211

orientation representation, 51–60
4x4 transformation matrix for, 

51–53
along a path, 102–108
axis-angle, 57–58
of bodies in free fall, 209–211
Euler angle, 56–57
fixed angle, 42– 43, 53–56
interpolation issues, 53
quality of motion vs., 173
quaternions, 58–60, 97–102

oriented bounding boxes (OBBs), 431
orthonormalization, 50– 51, 52
oscillatory motion, 485
outer product of two vectors, 422– 424
over operator for compositing

with pixel depth information, 
395–396, 398

without pixel depth information, 
389, 391–394

overconstrained systems, 192
overlapping action, 11
overlay plane, 389

P
painting, 13
PAL standard, 495
panning, 7
parabolic blending

first-order continuity and, 66
interpolation and, 68
overview, 462– 463

parabolic ease-in/ease-out, 89–92
parabolic interpolation for smoothing 

paths, 110– 111
parallax effect, multiplane camera and, 

7–8
parameterization by arc length, 456
parameterized models for facial 

animation, 344–345, 348–350
parametric continuity, 454
parametric curves, derivative 

computation for, 456
parametric equations, 453
parametric L-systems, 281
parametric position function, 237
parametric values

parameter, arc length pairs (table), 
74

sampling to estimate arc length, 
73–76

parent node, 178
Parent, R., 140, 156, 159, 160, 358
Park, Nick, 10
Parke, F., 22, 340, 344–345, 349
partial pivoting, 415
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particle-based method for gaseous 
phenomena, 297–298

particle pair forces, 246
particle-plane collision

impulse force for, 222–224
kinesthetic response for, 217–218

particle systems, 242–246
animating particles, 244
assumptions for, 242
attributes of particles, 244
characteristics of, 242
cloud animation and, 308
defined, 241
emergent behavior, 241
films using, 27
for fire modeling, 310– 311
forces, 246
frame of motion computation for, 

242–243
for fuzzy objects, 243
generating particles, 243
life span of particles, 242, 243, 244, 

246
overview, 241
randomness in, 242, 243
rendering particles, 244–245
representation, 245
terminating particles, 244
updating particle states, 245
updating system status, 245

patch virtual human representations, 
354, 355

path following, 102–116
center of interest for, 106–108
determining a path along a surface, 

114–116
Frenet frame for, 103–106
issues for, 102
orientation along a path, 102–108
smoothing a path, 108–114

path planning for reaching around 
obstacles, 325–326

PDCs (proportional derivative 
controllers), 235–236

Peachey, D., 289
pelvis

constraints satisfied by inverse kine-
matics, 336

hip angles, 334
lateral displacement of, 333
pelvic list, 331
pelvic rotation, 329–331
pelvic transport, 329, 330, 331

penalty method for collision response, 
218–220

described, 217
disadvantages of, 219
mass and, 218–219
penalty spring, 218–220
polyhedra objects and, 220

velocity and, 219
as virtual spring, 235

pencil tests, 13, 14
penetration region of implicit surfaces, 

265–266
perception

flocking behavior and, 247, 248
motion blur and, 399
overview, 2–3

persistence of vision
defined, 2
early animation devices based on, 

4–6
motion perception and, 2–3

perspective divide, 47
perspective foreshortening, 36
perspective matrix multiply, 47
perspective transformation

defined, 35–36
perspective divide, 47
perspective foreshortening, 36
perspective matrix multiply, 47

phenakistoscopes, 4, 6
photographic approaches to facial 

modeling, 343–344, 347
phototropism, 274
physics

of clouds, 299
in flocking behavior, 247
group types and, 242
motion equations, computer 

animation and, 204
physics primer, 476– 488

angular momentum, 486– 487
center of mass, 479
centrifugal force, 483–484
centripetal force, 481
circular motion, 477– 478
conservation of energy, 484
conservation of momentum, 

484–485
contact forces, 481– 483
damping force, 486
equilibrium, 480
gravity, 480– 481
inertia tensors, 487– 488
inertial frame, 479
kinetic energy, 484
Newton’s laws of motion, 478– 479
oscillatory motion, 485
position, velocity, and acceleration, 

476– 477
potential energy, 484
torque, 480
work, 484

piecewise properties of curves, 454
pinhole camera model, 372–373
pitch in flight modeling, 255, 256, 257
Pixar, 10, 15, 17, 25
pixel depth information

compositing with, 388, 395–398
compositing without, 389–395

planar joints
defined, 176–177
DH notation for, 186

planar polyhedra
collision detection for, 220– 222
impulse force of collision for, 

222–227
particle-plane collision, 217–218, 

222–224
penalty method for collision 

response and, 220
swept volume for, 222, 223

planes relative to the human figure, 318
planetary systems, hierarchical 

modeling of, 175–176
planner for autonomous behavior, 259, 

260
plants, 272–283

animating growth, 280– 283
botany background for, 273–274
branching topology of, 272–273
buds, 274
cell growth in, 274
cellular descent, 274
challenges for computer animation, 

272
herbaceous, 273
interacting with the environment, 

282–283
L-systems, 275–280
leaves, 274
lineage, 274
obstacles, response to, 274
roots, 273
stems, 274
structural components of, 273–274
systems for modeling, 272
tropisms, 274
woody, 273
See also L-systems

playback rate, 3
point of attachment for muscles, 350
point of insertion for muscles, 350, 351
point-plane collision. See particle-plane 

collision
point-to-fixed-point constraints, 238
point-to-point constraints, 238
point transformation using vector-

matrix multiplication, 447
points, fitting curves to a given set, 

469– 470
polygon, area of, 429, 430
polygon mesh surfaces, determining 

paths along, 114–116
polygonal facial models, 341–342
polygonal human figures, 354
polyline, 129, 454
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polyline deformation, 129–130
mapping to the polyline, 129
repositioning the polyline, 129–130

polynomial equations, 453
polynomials, interpolation ease and, 65
pose, 185
pose-to-pose technique, 11–12
pose vector

calculating analytically, 192, 
193–194

defined, 185
position

equations for, 476
See also camera position; eye posi-

tion (EYE); observer position
position-time constraints, 96
position-time pairs, curve fitting to, 

94–97
positional (zeroth-order) continuity, 

65–66, 453, 454
positive afterimage, 2
postmultiplying

for compound transformations, 39
premultiplying vs., 38–39

potential energy, 484
Potts, W., 248
praxinoscopes, 4, 6
predecessor in D0L-systems, 275
preliminary story, 12
premultiplying

alpha channel and, 395
arc transformations, 184
for compound transformations, 39
postmultiplying vs., 38–39

Press, W., 207
Prince of Egypt, 28
principles of computer animation, 

10– 12
prismatic joints

defined, 176
frames for intermediate joints, 192
in human figures, 183

production. See animation production
production rules for D0L-systems, 275
propagation region of implicit surfaces, 

265, 267
proportional derivative controllers 

(PDCs), 235–236
proximal, defined, 318
Prusinkiewicz, P., 276, 283
pseudo inverse Jacobian, the

control expression with, 201–203
for matrices not square, 200– 201

Q
quadratic equations, 453
quadratic programming, resting contact 

and, 231
qualitative dynamics, 308

quality of motion, orientation and 
positioning vs., 173

quaternions, 58–60, 450– 452
addition, 59
arithmetic, 450
axis-angle representation and,

58–59
conversions between rotation matri-

ces and, 451– 452
defined, 58
interpolation of rotations 

represented by, 97–102
inverse of, 59, 60
multiplication, 59
multiplicative identity, 59
rotating vectors using, 59–60, 

450– 451
rotation representation using, 60
unit, 59, 97–99

Quicktime (MOV) standard, 501

R
radially symmetric standing waves, 284, 

285
radioulnar joint, 321, 322
Ralson, H., 333
randomness, 470– 475

noise functions, 303, 471– 473
in particle systems, 242, 243
random number generator, 

474–475
turbulence functions, 303, 474
uses for, 470– 471

raster displays, 21
ray casting

defined, 36
display pipeline transformations vs., 

36, 38
ray tracing, motion blur and, 399– 400
reachable workspace

defined, 192
for simple linkage, 193

reaching and grasping, 318–327
arm modeling, 318–321
comfort metrics, 326–327
coordinated movement, 324–325
hand modeling, 321–324
obstacles, reaching around, 

325–326
shoulder joint modeling, 321, 322
strength criteria, 326–327

reaction in flocking behavior, 247
reasoning in flocking behavior, 247
reasoning unit for autonomous 

behavior, 259, 260
recursive subdivision for shape 

interpolation, 166–169
mapping between vertices, 

167–169

overview, 166–167
recursively dividing the meshes, 169
splitting objects into front and back 

meshes, 167
vertex-to-vertex interpolation, 169

Red’s Dream, 25
Reeves, W., 119
rejoining (flocking behavior), 255
relative acceleration, resting contact 

and, 230
render function, 389
RenderFarm, 17
rendering issues

for clouds, 299–300
compositing, 386, 388–398
double buffering, 385–386, 387
drop shadows, 401– 406
motion blur, 398– 401
for particles, 244–245
shortcuts for previewing, 14–15

Rendez-vous à Montréal, 23, 27
representation of particle systems, 245
resting contact, 228–231

constraints on forces, 228, 229–230
defined, 227
difficulty of computing forces for, 

228
distance function for analysis, 

228–229
normal forces for, 228
quadratic programming for, 231
relative acceleration and, 230

revolute joints
animating, 181–183
defined, 176
DH notation for, 186
frames for intermediate joints, 192

Reynolds, C., 124, 246, 247, 249, 250, 
251

right-handed coordinate space, 32
right stance phase

of run cycle, 328–329, 330
of walk cycle, 328, 329

right swing phase of walk cycle, 328
rigid body simulation, 203–231

bodies in contact, 216–231
bodies in free fall, 204–216
overview, 203–204
standard physics vs. computer 

animation and, 204
update cycle, 204
See also bodies in contact; bodies in 

free fall
rigid transformations

defined, 41– 42
orthonormalization, 50– 51, 52

Rijpkema, H., 322
RLE (run-length encoding), 499–500, 

501
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robotics, hierarchical modeling and, 
176

Rogers, D., 458
roll in flight modeling, 255, 256–257
root arc, 178
root node, 177
roots, plant, 273
rotate transformations

applying incremental rotation 
matrices to points, 48– 49

for arcs leading to nodes, 179
axis-angle representation, 57–58
axis-angle rotations, 449
basic, 40
constant-speed rotation, 98
converting between matrices and 

quaternions, 451– 452
direction of rotation, 41
Euler angle representation, 56–57
fixed angle representation, 42– 43, 

53–56
forming the rotation matrix anew 

for each frame, 49–50
in hierarchical modeling, 179, 

181–183
incrementally updating the rotation 

matrix, 49, 50
interpolation of rotations repre-

sented by quaternions, 97–102
left- vs. right-handed coordinate 

space and, 32
with nonuniform scale transforma-

tions, 42
quaternions for, 58–60, 97–102, 

450– 451
rigid transformations and, 41
round-off error considerations, 

48–51
in screw transformations, 188
shear transformations and, 42
with translate transformations, 41–

42
rotoscoping, 7
round-off error considerations, 48–51
route sheet, 13
run-length encoding (RLE), 499–500, 

501
Runge-Kutta integration for bodies in 

free fall, 207–208
Runge-Kutta methods for solving 

ODEs, 491– 492

S
S-VHS videotape format, 496, 497
sagittal plane, 318
sampling rate, 3
scale transformations

nonuniform, 40, 42
rigid transformations and, 41– 42

uniform, 40– 42, 46
scapula, 322
Scheepers, F., 321, 322, 359
Schwartz, Lillian, 23
scratch track, 13
screen space, image space transforma-

tion to, 36, 37, 47– 48
screw transformations, 188
script, 12
SECAM standard, 495
second-order (curvature) continuity, 

66, 454
secondary actions, 11
Sederberg, T., 125, 133
sequences, 12
sequential FFD organization, 136, 137
Sextone for President, 27
shadows

contact, 401
drop, 401– 406

shape interpolation (3D), 153–169
axial slices, 159–160
control mechanism for, 156–157
correspondence problem for, 156
interpolation problem for, 156
in key-frame systems, 117–120
map to sphere, 160– 166
matching topology, 157
recursive subdivision, 166–169
star-shaped polyhedra, 157–159
summary, 169
surface-based techniques, 153, 155
terminology, 156
topological vs. geometrical 

information, 157
volume-based techniques, 156

shear transformations, 42
Shoemake, K., 99
shots

defined, 12
test shots, 13, 14

shoulder joint modeling, 321, 322
SIGGRAPH (Special Interest Group on 

Computer Graphics), 1, 23, 24
Simpsons, The, 28
sine interpolation for ease-in/ease-out, 

86–87
singular value decomposition (SVD), 

419– 420
sinusoidal ease-in/ease-out, 87–89
skating, 376
skeleton, motion capture fitting to, 

376–378
Skeleton Dance, 9
skin

muscle models for facial animation 
and, 350– 352

textures for facial animation, 
345–347

in virtual human representation, 
353, 358, 359, 361

slerp (spherical linear interpolation), 
99, 101–102

slow in & slow out, 11. See also ease-in/
ease-out

smell, modeling for autonomous 
behavior, 258–259

Smith, Alvy Ray, 23
smoke, volumetric modeling of, 301
smoothing paths, 108–114

for automatic camera control, 175
by B-spline approximation, 114
with convolution kernels, 111–114
with cubic interpolation of adjacent 

values, 109–111
with linear interpolation of adjacent 

values, 108–109
smoothness, interpolation and, 65–67
Society of Motion Picture and Televi-

sion Engineers (SMPTE) time 
code, 19

Soechting, J. F., 320
soft constraints

as additional forces, 231–232
defined, 231
for energy minimization, 237–239
for flexible objects, 232–235
See also enforcing soft and hard 

constraints
“solids of revolution” objects, defined, 

14
Sony HDD-1000 DTV standard, 502
Sorenson codec, 500, 501
sound

importance of, 13
for lip-synch animation, 13
modeling for autonomous behavior, 

258–259
scratch track, 13

source point for waves, 284
space curves

arc length integral and, 72–73
arc length parameterization of, 71
defined, 70– 71
finding u given s, 83–84
parameterized interpolation 

function as, 70
speed control curve independence 

from, 94
space-time constraints, 239–241

numerical solution for, 240– 241
space-time particles, 239–240

space-time particles, 239–240
spaces (overview)

coordinate space, 32
eye space, 34–35
image space, 35–36
naming convention for, 33
object space, 33
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ray casting and, 36, 38
screen space, 36
transformations in the display 

pipeline, 37, 46– 48
world space, 33–34
See also display pipeline; specific 

spaces
Special Interest Group on Computer 

Graphics (SIGGRAPH), 1, 23, 
24

Species, 26
speed

controlling for motion along a 
curve, 84–86

of curve tracing, 68
flocking behavior perception and, 

248
parameterizing interpolating func-

tions by arc length and, 68–69
See also angular velocities; linear 

velocities
speed control

constraints, 85
defined, 84
distance-time function for, 84–86
by fixing velocities at key points, 93
See also ease-in/ease-out

speed lines, 399
spherical coordinate system for arm 

modeling, 320
spherical linear interpolation (slerp), 

99, 101–102
spline facial models, 341, 342
splitting (flocking behavior), 255
spray from waves, 291
springs

in cloth modeling, 366–367
Hooke’s law, 481– 482
modeling external forces, 

drawbacks for, 232–233
penalty, 218–220
spring-mass-damper modeling of 

flexible objects, 232–235
spring mesh skin model, 351, 352
virtual, 235–236

squash & stretch, 11
staging, 11
Stallings, George, 7, 9
Stam, J., 301, 311
stance

defined, 328
pelvic rotation and, 329–330, 331
pelvic transport and, 329, 330
run cycle phases, 328–329, 330
walk cycle phases, 328, 329
walking dynamics and, 337–338

standards for moving pictures, 493–
502

analog, 493, 494
black-and-white video, 495

color incorporation into black-and-
white signal, 495–496

compression/decompression, 
498–500

digital television (DTV), 498, 501–
502

digital video, 497–501
high-definition television (HDTV), 

496
NTSC, 3, 18–19, 493–495
PAL, 495
SECAM, 495
videotape formats, 496, 497

Stanford University, 231
star-shaped polygons, 157
star-shaped polyhedra

defined, 157
shape interpolation, 157–159

Star Trek: Deep Space Nine, 27
Star Trek II: The Wrath of Khan, 27, 310
Star Trek IV: The Voyage Home, 28
Star Wars, 24
Star Wars: Episode I, 28
Starship Troopers, 27
static cameras, tracking objects with, 

174
static friction, 227–228, 483
Staudhammer, John, 23
steady state flow, 296
steam, volumetric modeling of, 301
Steamboat Willie, 7
steer-to-avoid procedure for collision 

avoidance, 252–253
stems, plant, 274
stochastic L-systems, 278–279
stochastic perturbation for spray and 

foam modeling, 291
stop-motion techniques, 9–10
storage tubes, 21
story reel, 13
storyboard, 12–13
straight ahead technique, 11
strategies for autonomous behavior, 

259, 260
stratus clouds, 299, 308
streaming video, 498
strength criteria for articulated figures, 

326–327
stretching

modeling in cloth, 366
squash & stretch, 11

stride, 328
strobing, 3
subdivision surfaces

for facial models, 341, 342
for virtual human representation, 

355
successor in D0L-systems, 275
Sunstone, 23
surface normal function, 237

surfaces
deforming around an articulated 

joint, 140– 143
determining paths along, 114–116
implicit, 261–267
subdivision, 341, 342, 355
surface-based techniques for shape 

interpolation, 153, 155
virtual human representation, 358
See also implicit surfaces

Sutherland, Ivan, 22
SVD (singular value decomposition), 

419– 420
swept volume, 222, 223
symmetric vs. asymmetric compression/

decompression, 499
synthetic actors, films using, 27–28

T
tangential (first-order) continuity, 66, 

453–454
tapering, global deformation for, 131
Tarzan, 28
technical background, 31–61

orientation representation, 51–60
spaces and transformations, 31–51

Technological Threat, 25, 28
telescoping joint for leg dynamics, 

337–338
temporal anti-aliasing, 400
tension controls for curves, 465, 466, 

467
terminating particles, 244
Terminator II, 26, 28
Terry, Paul, 7, 9
test shots, 13, 14
textures

cloud, 301
for facial animation, 345–347
for fire modeling, 311

Thalmann, Daniel, 23, 120
thaumatropes, 4, 5
three-dimensional computer graphics, 

films using, 28
thrust in flight modeling, 256
timed L-systems, 281–282
timing, 11
Tin Toy, 10, 25
Titanic, 27
Todd, F., 333
toe and ankle joints, 332, 335

optical markers for, 375, 376
Tony de Peltrie, 23, 27
topological information, shape interpo-

lation and, 157
torque

bodies in free fall and, 212
defined, 208, 212, 480
overview, 480
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torque (continued )
penalty method of collision 

response and, 220
resting contact and, 230
in spring-mass-damper modeling of 

flexible objects, 235
strength criteria for articulated 

figures and, 326–327
touch, modeling for autonomous 

behavior, 258
Toy Story, 15, 17, 28
Toy Story 2, 28
tracks. See articulation variables (avars)
transcendental equations, 453
transformation matrices

4x4 matrix for, 32, 37–38
for compound transformations, 39
extracting transformations from, 

45–46
fixed angle representation, 42– 43
for global deformations, 130
homogenous coordinates and, 

36–39
identity matrix (4x4), 38
matrix of direction cosines, 43–45
multiplying, 39
for orientation representation, 

51–53
perspective matrix multiply, 47
premultiplying vs. postmultiplying 

and, 38–39
round-off error considerations, 

48–51
See also matrices

transformations, 31–51, 447– 452
affine, 40– 42
axis-angle rotations, 449
basic, 40– 42
compounding, 39
display pipeline, 32–36, 37, 46– 48
extracting from a matrix, 45–46
eye space to image space, 35–36, 

37, 47
fixed angle representation for, 

42– 43
in hierarchical modeling, 179–185
homogenous coordinates for, 

36–39
image space to screen space, 36, 37, 

47– 48
matrix of direction cosines for, 

43–45
object space to world space, 33, 35, 

37, 43, 46, 48
orthonormalization, 50– 51, 52
overview, 31–32
perspective transformation, 35–36
point, using vector-matrix 

multiplication, 447
quaternions for, 58–60, 450– 452

ray casting for, 36, 38
representing orientations, 42– 45
round-off error considerations, 

48–51
screw, 188
types of, 31–32
vector, using vector-matrix multi-

plication, 448– 449
world space to eye space, 34, 37, 

46– 47
See also display pipeline; specific 

types
translate transformations

basic, 40
in hierarchical modeling, 179, 181, 

183
rigid transformations and, 41
with rotate transformations, 41
in screw transformations, 188

transpose of vectors or matrices, 410, 
411

transverse plane, 318
tree structure for hierarchical modeling, 

177–179, 181
triangle, area of, 428
TRON, 24–25
tropisms, plant, 274
True Lies, 26
truncated pyramid, 35
Truong, T., 368
turbulence functions

for cloud modeling, 303
overview, 474

turtle graphics, 276–277
Twister, 27
twists, global deformation for, 131

U
unary forces in particle systems, 246
underconstrained systems, 192
uniform scale transformations

extracting transformations from 
matrices and, 46

overview, 40– 41
as rigid transformations, 41– 42

unit quaternions, 59, 97–99
University of Utah, 22
up vector

center of interest and, 33, 34, 
106–107

computing, 33
default, 34
defined, 33
for orientation along a path, 103
path for, 108
user-supplied up direction vs., 33

updating
orientation for bodies in free fall, 

215–216
particle state, 245

particle system status, 245
rigid body simulation update cycle, 

204
rotation matrix incrementally, 49, 

50
user-supplied up direction, 33

V
Van Der Beek, S., 23
vector displays, 21–22
vector-matrix multiplication

routine for, 426
transforming a point using, 447
transforming a vector using, 

448– 449
vector quantization, 500
vectors

components of, 420
context and meaning of, 36
cross product of, 422– 424
defined, 409
dot product of, 420– 422, 424
length of, 420, 425
matrix-vector multiplication, 426, 

447– 449
normalizing, 425
rotating using quaternions, 59–60, 

450– 451
routines, 424–425
transforming using vector-matrix 

multiplication, 448– 449
transpose of, 410, 411
vector-matrix multiplication, 426
view vector, 103, 107

velocities. See angular velocities; linear 
velocities

velocity-time curves
distance-time functions and, 92–94
nonintuitive results for user-

specified values, 93
VHS videotape format, 496, 497
video

digital, 20– 21, 497–501
streaming, 498

video art, 10
Video for Windows (AVI) standard, 

501
Video I codec, 500, 501
video sequences for facial modeling, 

345
videotape formats, 496, 497
view direction

for camera path following with 
COI, 107

overview, 33
view frustum and, 34, 35

view frustum, 34, 35
view vector

for camera path following with 
COI, 107
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for orientation along a path, 103
virtual human representation, 353–358

body geometry, 354–356
clothing, 357
computation time required for, 353
free-form deformation (FFD) for, 

358–359, 360
geometry data acquisition, 356
geometry deformation, 356–357
hair, 357–358
implicit surfaces for, 355
patch representations, 354, 355
polygonal representations, 354
subdivision surfaces for, 355
surface detail, 358
volumetric modeling for, 355
See also articulated figures

virtual springs, 235–236
PDCs, 235–236
penalty method for collision 

response, 218–220
uses for, 235–236
with zero rest lengths, 235

viscosity, 483
vision

modeling for autonomous behavior, 
258

obstacle avoidance and, 325
visual characteristics of clouds, 

299–300
Voight viscoelastic model, 351–352
volume-based techniques for shape 

interpolation, 156
volumetric cloud modeling, 301–310

animating volumetric procedural 
clouds, 308–310

cirrus clouds, 306–308
cumulus clouds, 302, 304–306
example system, 302–308
overview, 301–302
stratus clouds, 308

volumetric modeling for virtual human 
representation, 355

vortices in fluid dynamics, 296
Voss, R., 300
Voyager, 23

W, X
W-VHS DTV standard, 502
walk cycle, 328, 329
walking, 327–339

ankle-toe joints, 332
complexity of, 325, 327
cyclic and acyclic components of, 

327
dynamics for realistic motion, 

336–338
forward dynamic control, 338–339
kinematics of, 328, 333–336

knee flexion, 332
mechanisms of locomotion, 

328–332
pelvic list, 331
pelvic rotation, 329–331
pelvic transport, 329, 330, 331
reaching vs., 327
run cycle, 328–329, 330
state transition diagrams for, 

327–328
summary, 339
walk cycle, 328, 329
whole-body actions during, 325

Wallace and Gromit, 10
warping objects, 125, 126
water, 283–296

anatomy of waves, 288–289
challenges for computer animation, 

283–284
downhill motion of, 292–295
ocean waves, 289–291
still waters and small-amplitude 

waves, 284–287
Waters, K., 340
wavelet compression, 500
waves

Airy model for, 289
anatomy of, 288–289
breaking, 289
displacement from obstructions, 

285–287
ocean, 289–291
overlapping ripples, 284–285
radially symmetric standing waves, 

284, 285
shoreline and, 289
small-amplitude, 284–287
source point for, 284
spray and foam modeling, 291
transport of water and, 288
wave refraction, 289
wind waves, 288

Weil, J., 362
Weiler, K., 156
Wein, Marceli, 23, 127
Wessler, Barry, 22
Whitney, John, Sr., 23
Whitted, Turner, 24
Willow, 26, 28
wire, 454
Witkin, A., 236, 237, 238, 239, 240
Wolberg, G., 148
woody plants, 273
work, equation for, 484
Works, The, 23
world space

camera calibration for motion 
capture, 372–373, 502–507

camera position, 33
defined, 33

eye position (EYE), 33
field of view, 34
hierarchical modeling and, 

180– 181
object space transformation to, 33, 

35, 37, 43, 46, 48
observer position, 33
overview, 33–34
round-off error considerations, 

48–51
transformation to eye space, 34, 37, 

46– 47
up vector, 33–34
user-supplied up direction, 33
view frustum, 34
visible area of, 34

Y
y -axis, as “up,” 32
yaw in flight modeling, 255, 256
yon (far) clipping distance, 34, 35
Young Sherlock Holmes, 26

Z
z -axis, as “up,” 32
Zeltzer, D., 259, 355
zeroth-order (positional) continuity, 

65–66, 453, 454
zmin operator for compositing, 396
zoetropes, 4, 5
zoopraxinoscopes, 6
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