
OpenGL
R©

Graphics with the X Window System
R©

(Version 1.4)

Editors (versions 1.0-1.2): Phil Karlton, Paula Womack
Editors (version 1.3): Paula Womack, Jon Leech

Editor (version 1.4): Jon Leech

Copyright c© 1992-2005 Silicon Graphics, Inc.

This document contains unpublished information of
Silicon Graphics, Inc.

This document is protected by copyright, and contains information proprietary to
Silicon Graphics, Inc. Any copying, adaptation, distribution, public performance,
or public display of this document without the express written consent of Silicon
Graphics, Inc. is strictly prohibited. The receipt or possession of this document
does not convey any rights to reproduce, disclose, or distribute its contents, or to
manufacture, use, or sell anything that it may describe, in whole or in part.

U.S. Government Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions set forth
in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013 and/or in similar or succes-
sor clauses in the FAR or the DOD or NASA FAR Supplement. Unpublished rights
reserved under the copyright laws of the United States. Contractor/manufacturer is
Silicon Graphics, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043.

OpenGL is a registered trademark of Silicon Graphics, Inc.
Unix is a registered trademark of The Open Group.

The ”X” device and X Windows System are trademarks of
The Open Group.

Contents

1 Overview 1

2 GLX Operation 2
2.1 Rendering Contexts and Drawing Surfaces 2
2.2 Using Rendering Contexts . 3
2.3 Direct Rendering and Address Spaces 4
2.4 OpenGL Display Lists . 4
2.5 Texture Objects . 6
2.6 Aligning Multiple Drawables . 7
2.7 Multiple Threads . 7

3 Functions and Errors 9
3.1 Errors . 9
3.2 Events . 10
3.3 Functions . 10

3.3.1 Initialization . 10
3.3.2 GLX Versioning . 11
3.3.3 Configuration Management 12
3.3.4 On Screen Rendering . 21
3.3.5 Off Screen Rendering 22
3.3.6 Querying Attributes . 25
3.3.7 Rendering Contexts . 25
3.3.8 Events . 31
3.3.9 Synchronization Primitives 33
3.3.10 Double Buffering . 33
3.3.11 Access to X Fonts . 34
3.3.12 Obtaining Extension Function Pointers 35

3.4 Backwards Compatibility . 35
3.4.1 Using Visuals for Configuration Management 36

i

ii CONTENTS

3.4.2 Off Screen Rendering 39
3.5 Rendering Contexts . 40

4 Encoding on the X Byte Stream 42
4.1 Requests that hold a single extension request 42
4.2 Request that holds multiple OpenGL commands 43
4.3 Wire representations and byte swapping 43
4.4 Sequentiality . 45

5 Extending OpenGL 48

6 GLX Versions 49
6.1 Version 1.1 . 49
6.2 Version 1.2 . 50
6.3 Version 1.3 . 50
6.4 Version 1.4 . 50

7 Glossary 51

Version 1.4 - December 16, 2005

List of Figures

2.1 Direct and Indirect Rendering Block Diagram. 4

4.1 GLX byte stream. 43

iii

List of Tables

3.1 GLXFBConfig attributes. 13
3.2 Types of Drawables Supported by GLXFBConfig 14
3.3 Mapping of Visual Types to GLX tokens. 15
3.4 Default values and match criteria for GLXFBConfig attributes. . 19
3.5 Context attributes. 30
3.6 Masks identifying clobbered buffers. 32
3.7 GLX attributes for Visuals. 37
3.8 Defaults and selection criteria used by glXChooseVisual. 38

6.1 Relationship of OpenGL and GLX versions. 49

iv

Chapter 1

Overview

This document describes GLX, the OpenGL extension to the X Window System.
It refers to concepts discussed in the OpenGL specification, and may be viewed
as an X specific appendix to that document. Parts of the document assume some
acquaintance with both OpenGL and X.

In the X Window System, OpenGL rendering is made available as an exten-
sion to X in the formal X sense: connection and authentication are accomplished
with the normal X mechanisms. As with other X extensions, there is a defined
network protocol for the OpenGL rendering commands encapsulated within the X
byte stream.

Since performance is critical in 3D rendering, there is a way for OpenGL ren-
dering to bypass the data encoding step, the data copying, and interpretation of that
data by the X server. This direct rendering is possible only when a process has
direct access to the graphics pipeline. Allowing for parallel rendering has affected
the design of the GLX interface. This has resulted in an added burden on the client
to explicitly prevent parallel execution when such execution is inappropriate.

X and OpenGL have different conventions for naming entry points and macros.
The GLX extension adopts those of OpenGL.

1

Chapter 2

GLX Operation

2.1 Rendering Contexts and Drawing Surfaces

The OpenGL specification is intentionally vague on how a rendering context (an
abstract OpenGL state machine) is created. One of the purposes of GLX is to pro-
vide a means to create an OpenGL context and associate it with a drawing surface.

In X, a rendering surface is called a Drawable. X provides two types of
Drawables: Windows which are located onscreen and Pixmaps which are
maintained offscreen. The GLX equivalent to a Window is a GLXWindow and
the GLX equivalent to a Pixmap is a GLXPixmap. GLX introduces a third
type of drawable, called a GLXPbuffer, for which there is no X equivalent.
GLXPbuffers are used for offscreen rendering but they have different seman-
tics than GLXPixmaps that make it easier to allocate them in non-visible frame
buffer memory.

GLXWindows, GLXPixmaps and GLXPbuffers are created with respect to
a GLXFBConfig; the GLXFBConfig describes the depth of the color buffer
components and the types, quantities and sizes of the ancillary buffers (i.e., the
depth, accumulation, auxiliary, multisample, and stencil buffers). Double buffering
and stereo capability is also fixed by the GLXFBConfig.

Ancillary buffers are associated with a GLXDrawable, not with a rendering
context. If several rendering contexts are all writing to the same window, they will
share those buffers. Rendering operations to one window never affect the unob-
scured pixels of another window, or the corresponding pixels of ancillary buffers
of that window. If an Expose event is received by the client, the values in the
ancillary buffers and in the back buffers for regions corresponding to the exposed
region become undefined.

A rendering context can be used with any GLXDrawable that it is compati-

2

2.2. USING RENDERING CONTEXTS 3

ble with (subject to the restrictions discussed in the section on address space and
the restrictions discussed under glXCreatePixmap). A drawable and context are
compatible if they

• support the same type of rendering (e.g., RGBA or color index)

• have color buffers and ancillary buffers of the same depth. For example, a
GLXDrawable that has a front left buffer and a back left buffer with red,
green and blue sizes of 4 would not be compatible with a context that was
created with a visual or GLXFBConfig that has only a front left buffer
with red, green and blue sizes of 8. However, it would be compatible with
a context that was created with a GLXFBConfig that has only a front left
buffer if the red, green and blue sizes are 4.

• were created with respect to the same X screen

As long as the compatibility constraint is satisfied (and the address space re-
quirement is satisfied), applications can render into the same GLXDrawable, us-
ing different rendering contexts. It is also possible to use a single context to render
into multiple GLXDrawables.

For backwards compatibility with GLX versions 1.2 and earlier, a rendering
context can also be used to render into a Window. Thus, a GLXDrawable is the
union {GLXWindow, GLXPixmap, GLXPbuffer, Window}. In X, Windows
are associated with a Visual. In GLX the definition of Visual has been ex-
tended to include the types, quantities and sizes of the ancillary buffers and infor-
mation indicating whether or not the Visual is double buffered. For backwards
compatibility, a GLXPixmap can also be created using a Visual.

2.2 Using Rendering Contexts

OpenGL defines both client state and server state. Thus a rendering context consists
of two parts: one to hold the client state and one to hold the server state.

Each thread can have at most one current rendering context. In addition, a ren-
dering context can be current for only one thread at a time. The client is responsible
for creating a rendering context and a drawable.

Issuing OpenGL commands may cause the X buffer to be flushed. In particular,
calling glFlush when indirect rendering is occurring, will flush both the X and
OpenGL rendering streams.

Some state is shared between the OpenGL and X. The pixel values in the X
frame buffer are shared. The X double buffer extension (DBE) has a definition
for which buffer is currently the displayed buffer. This information is shared with

Version 1.4 - December 16, 2005

4 CHAPTER 2. GLX OPERATION

GLX. The state of which buffer is displayed tracks in both extensions, independent
of which extension initiates a buffer swap.

2.3 Direct Rendering and Address Spaces

One of the basic assumptions of the X protocol is that if a client can name an object,
then it can manipulate that object. GLX introduces the notion of an Address Space.
A GLX object cannot be used outside of the address space in which it exists.

In a classic UNIX environment, each process is in its own address space. In a
multi-threaded environment, each of the threads will share a virtual address space
which references a common data region.

An OpenGL client that is rendering to a graphics engine directly connected
to the executing CPU may avoid passing the tokens through the X server. This
generalization is made for performance reasons. The model described here specifi-
cally allows for such optimizations, but does not mandate that any implementation
support it.

When direct rendering is occurring, the address space of the OpenGL imple-
mentation is that of the direct process; when direct rendering is not being used (i.e.,
when indirect rendering is occurring), the address space of the OpenGL implemen-
tation is that of the X server. The client has the ability to reject the use of direct
rendering, but there may be a performance penalty in doing so.

In order to use direct rendering, a client must create a direct rendering context
(see figure 2.1). Both the client context state and the server context state of a direct
rendering context exist in the client’s address space; this state cannot be shared
by a client in another process. With indirect rendering contexts, the client context
state is kept in the client’s address space and the server context state is kept in the
address space of the X server. In this case the server context state is stored in an
X resource; it has an associated XID and may potentially be used by another client
process.

Although direct rendering support is optional, all implementations are required
to support indirect rendering.

2.4 OpenGL Display Lists

Most OpenGL state is small and easily retrieved using the glGet* commands. This
is not true of OpenGL display lists, which are used, for example, to encapsulate a
model of some physical object. First, there is no mechanism to obtain the contents
of a display list from the rendering context. Second, display lists may be large and

Version 1.4 - December 16, 2005

2.4. OPENGL DISPLAY LISTS 5

GLX Client
Xlib

Application
and Toolkit

GLX
(client state)

X Server
X Renderer

GL Renderer

(server state)

Dispatch

Framebuffer

Direct GL
Renderer

(server state)

Figure 2.1. Direct and Indirect Rendering Block Diagram.

Version 1.4 - December 16, 2005

6 CHAPTER 2. GLX OPERATION

numerous. It may be desirable for multiple rendering contexts to share display lists
rather than replicating that information in each context.

GLX provides for limited sharing of display lists. Since the lists are part of
the server context state they can be shared only if the server state for the sharing
contexts exists in a single address space. Using this mechanism, a single set of lists
can be used, for instance, by a context that supports color index rendering and a
context that supports RGBA rendering.

When display lists are shared between OpenGL contexts, the sharing extends
only to the display lists themselves and the information about which display list
numbers have been allocated. In particular, the value of the base set with glList-
Base is not shared.

Note that the list named in a glNewList call is not created or superseded until
glEndList is called. Thus if one rendering context is sharing a display list with
another, it will continue to use the existing definition while the second context is in
the process of re-defining it. If one context deletes a list that is being executed by
another context, the second context will continue executing the old contents of the
list until it reaches the end.

A group of shared display lists exists until the last referencing rendering context
is destroyed. All rendering contexts have equal access to using lists or defining
new lists. Implementations sharing display lists must handle the case where one
rendering context is using a display list when another rendering context destroys
that list or redefines it.

In general, OpenGL commands are not guaranteed to be atomic. The operation
of glEndList and glDeleteLists are exceptions: modifications to the shared context
state as a result of executing glEndList or glDeleteLists are atomic.

2.5 Texture Objects

OpenGL texture state can be encapsulated in a named texture object. A tex-
ture object is created by binding an unused name to one of the texture targets
(GL TEXTURE 1D, GL TEXTURE 2D or GL TEXTURE 3D) of a rendering context.
When a texture object is bound, OpenGL operations on the target to which it is
bound affect the bound texture object, and queries of the target to which it is bound
return state from the bound texture object.

Texture objects may be shared by rendering contexts, as long as the server
portion of the contexts share the same address space. (Like display lists, texture
objects are part of the server context state.) OpenGL makes no attempt to synchro-
nize access to texture objects. If a texture object is bound to more than one context,
then it is up to the programmer to ensure that the contents of the object are not be-

Version 1.4 - December 16, 2005

2.6. ALIGNING MULTIPLE DRAWABLES 7

ing changed via one context while another context is using the texture object for
rendering. The results of changing a texture object while another context is using
it are undefined.

All modifications to shared context state as a result of executing glBindTexture
are atomic. Also, a texture object will not be deleted until it is no longer bound to
any rendering context.

2.6 Aligning Multiple Drawables

A client can create one window in the overlay planes and a second in the main
planes and then move them independently or in concert to keep them aligned. To
keep the overlay and main plane windows aligned, the client can use the following
paradigm:

• Make the windows which are to share the same screen area children of a
single window (that will never be written). Size and position the children
to completely occlude their parent. When the window combination must be
moved or resized, perform the operation on the parent.

• Make the subwindows have a background of None so that the X server will
not paint into the shared area when you restack the children.

• Select for device-related events on the parent window, not on the children.
Since device-related events with the focus in one of the child windows will
be inherited by the parent, input dispatching can be done directly without
reference to the child on top.

2.7 Multiple Threads

It is possible to create a version of the client side library that is protected against
multiple threads attempting to access the same connection. This is accomplished
by having appropriate definitions for LockDisplay and UnlockDisplay. Since
there is some performance penalty for doing the locking, it is implementation-
dependent whether a thread safe version, a non-safe version, or both versions of
the library are provided. Interrupt routines may not share a connection (and hence
a rendering context) with the main thread. An application may be written as a set
of co-operating processes.

X has atomicity (between clients) and sequentiality (within a single client) re-
quirements that limit the amount of parallelism achievable when interpreting the

Version 1.4 - December 16, 2005

8 CHAPTER 2. GLX OPERATION

command streams. GLX relaxes these requirements. Sequentiality is still guar-
anteed within a command stream, but not between the X and the OpenGL com-
mand streams. It is possible, for example, that an X command issued by a single
threaded client after an OpenGL command might be executed before that OpenGL
command.

The X specification requires that commands are atomic:

If a server is implemented with internal concurrency, the overall effect
must be as if individual requests are executed to completion in some
serial order, and requests from a given connection must be executed
in delivery order (that is, the total execution order is a shuffle of the
individual streams).

OpenGL commands are not guaranteed to be atomic. Some OpenGL rendering
commands might otherwise impair interactive use of the windowing system by the
user. For instance calling a deeply nested display list or rendering a large texture
mapped polygon on a system with no graphics hardware could prevent a user from
popping up a menu soon enough to be usable.

Synchronization is in the hands of the client. It can be maintained with mod-
erate cost with the judicious use of the glFinish, glXWaitGL, glXWaitX, and
XSync commands. OpenGL and X rendering can be done in parallel as long as
the client does not preclude it with explicit synchronization calls. This is true even
when the rendering is being done by the X server. Thus, a multi-threaded X server
implementation may execute OpenGL rendering commands in parallel with other
X requests.

Some performance degradation may be experienced if needless switching be-
tween OpenGL and X rendering is done. This may involve a round trip to the
server, which can be costly.

Version 1.4 - December 16, 2005

Chapter 3

Functions and Errors

3.1 Errors

Where possible, as in X, when a request terminates with an error, the request has
no side effects.

The error codes that may be generated by a request are described with that
request. The following table summarizes the GLX-specific error codes that are
visible to applications:

GLXBadContext A value for a Context argument does not name a
Context.

GLXBadContextState An attempt was made to switch to another rendering
context while the current context was in glRenderMode GL FEEDBACK or
GL SELECT, or a call to glXMakeCurrent was made between a glBegin and
the corresponding call to glEnd.

GLXBadCurrentDrawable The current Drawable of the calling thread is a
window or pixmap that is no longer valid.

GLXBadCurrentWindow The current Window of the calling thread is a win-
dow that is no longer valid. This error is being deprecated in favor of
GLXBadCurrentDrawable.

GLXBadDrawable The Drawable argument does not name a Drawable
configured for OpenGL rendering.

GLXBadFBConfig The GLXFBConfig argument does not name a
GLXFBConfig.

9

10 CHAPTER 3. FUNCTIONS AND ERRORS

GLXBadPbuffer The GLXPbuffer argument does not name a
GLXPbuffer.

GLXBadPixmap The Pixmap argument does not name a Pixmap that is ap-
propriate for OpenGL rendering.

GLXUnsupportedPrivateRequest May be returned in response to either
a glXVendorPrivate request or a glXVendorPrivateWithReply request.

GLXBadWindow The GLXWindow argument does not name a GLXWindow.

The following error codes may be generated by a faulty GLX implementation,
but would not normally be visible to clients:

GLXBadContextTag A rendering request contains an invalid context tag.
(Context tags are used to identify contexts in the protocol.)

GLXBadRenderRequest A glXRender request is ill-formed.

GLXBadLargeRequest A glXRenderLarge request is ill-formed.

3.2 Events

GLX introduces one new event:

GLX PbufferClobber The given pbuffer has been removed from framebuffer
memory and may no longer be valid. These events are generated as a result
of conflicts in the framebuffer allocation between two drawables when one
or both of the drawables are pbuffers.

3.3 Functions

GLX functions should not be called between glBegin and glEnd operations. If a
GLX function is called within a glBegin/glEnd pair, then the result is undefined;
however, no error is reported.

3.3.1 Initialization

To ascertain if the GLX extension is defined for an X server, use

Bool glXQueryExtension(Display *dpy, int

*error base, int *event base);

Version 1.4 - December 16, 2005

3.3. FUNCTIONS 11

dpy specifies the connection to the X server. False is returned if the extension
is not present. error base is used to return the value of the first error code and
event base is used to return the value of the first event code. The constant error
codes and event codes should be added to these base values to get the actual value.

The GLX definition exists in multiple versions. Use

Bool glXQueryVersion(Display *dpy, int *major,
int *minor);

to discover which version of GLX is available. Upon success, major and minor
are filled in with the major and minor versions of the extension implementation.
If the client and server both have the same major version number then they are
compatible and the minor version that is returned is the minimum of the two minor
version numbers.

major and minor do not return values if they are specified as NULL.
glXQueryVersion returns True if it succeeds and False if it fails. If it fails,

major and minor are not updated.

3.3.2 GLX Versioning

The following functions are available only if the GLX version is 1.1 or later:

const char *glXQueryExtensionsString(Display *dpy,
int screen);

glXQueryExtensionsString returns a pointer to a string describing which GLX
extensions are supported on the connection. The string is zero-terminated and con-
tains a space-seperated list of extension names. The extension names themselves
do not contain spaces. If there are no extensions to GLX, then the empty string is
returned.

const char *glXGetClientString(Display *dpy, int
name);

glXGetClientString returns a pointer to a static, zero-terminated string describing
some aspect of the client library. The possible values for name are GLX VENDOR,
GLX VERSION, and GLX EXTENSIONS. If name is not set to one of these values
then NULL is returned. The format and contents of the vendor string is imple-
mentation dependent, and the format of the extension string is the same as for
glXQueryExtensionsString. The version string is laid out as follows:

<major version.minor version><space><vendor-specific info>

Version 1.4 - December 16, 2005

12 CHAPTER 3. FUNCTIONS AND ERRORS

Both the major and minor portions of the version number are of arbitrary length.
The vendor-specific information is optional. However, if it is present, the format
and contents are implementation specific.

const char* glXQueryServerString(Display *dpy, int
screen, int name);

glXQueryServerString returns a pointer to a static, zero-terminated string de-
scribing some aspect of the server’s GLX extension. The possible values for name
and the format of the strings is the same as for glXGetClientString. If name is not
set to a recognized value then NULL is returned.

3.3.3 Configuration Management

A GLXFBConfig describes the format, type and size of the color buffers and an-
cillary buffers for a GLXDrawable. When the GLXDrawable is a GLXWindow
then the GLXFBConfig that describes it has an associated X Visual; for
GLXPixmaps and GLXPbuffers there may or may not be an X Visual as-
sociated with the GLXFBConfig.

The attributes for a GLXFBConfig are shown in Table 3.1. The constants
shown here are passed to glXGetFBConfigs and glXChooseFBConfig to specify
which attributes are being queried.

GLX BUFFER SIZE gives the total depth of the color buffer in bits. For
GLXFBConfigs that correspond to a PseudoColor or StaticColor vi-
sual, this is equal to the depth value reported in the core X11 Visual.
For GLXFBConfigs that correspond to a TrueColor or DirectColor
visual, GLX BUFFER SIZE is the sum of GLX RED SIZE, GLX GREEN SIZE,
GLX BLUE SIZE, and GLX ALPHA SIZE. Note that this value may be larger than
the depth value reported in the core X11 visual since it may include alpha planes
that may not be reported by X11. Also, for GLXFBConfigs that correspond
to a TrueColor visual, the sum of GLX RED SIZE, GLX GREEN SIZE, and
GLX BLUE SIZE may be larger than the maximum depth that core X11 can sup-
port.

The attribute GLX SAMPLE BUFFERS indicates the number of multisample
buffers, which must be zero or one. The attribute GLX SAMPLES gives the number
of samples per pixel; if GLX SAMPLE BUFFERS is zero, then GLX SAMPLES will
also be zero. If GLX SAMPLE BUFFERS is one, then the number of color, depth,
and stencil bits for each sample in the multisample buffer are as specified by the
GLX * SIZE attributes.

There are no single-sample depth or stencil buffers for a multisample
GLXFBConfig; the only depth and stencil buffers are those in the multisample

Version 1.4 - December 16, 2005

3.3. FUNCTIONS 13

Attribute Type Notes
GLX FBCONFIG ID XID XID of GLXFBConfig
GLX BUFFER SIZE integer depth of the color buffer

GLX LEVEL integer frame buffer level
GLX DOUBLEBUFFER boolean True if color buffers

have front/back pairs
GLX STEREO boolean True if color buffers

have left/right pairs
GLX AUX BUFFERS integer no. of auxiliary color buffers
GLX RED SIZE integer no. of bits of Red in the color buffer

GLX GREEN SIZE integer no. of bits of Green in the color buffer
GLX BLUE SIZE integer no. of bits of Blue in the color buffer
GLX ALPHA SIZE integer no. of bits of Alpha in the color buffer
GLX DEPTH SIZE integer no. of bits in the depth buffer

GLX STENCIL SIZE integer no. of bits in the stencil buffer
GLX ACCUM RED SIZE integer no. Red bits in the accum. buffer

GLX ACCUM GREEN SIZE integer no. Green bits in the accum. buffer
GLX ACCUM BLUE SIZE integer no. Blue bits in the accum. buffer
GLX ACCUM ALPHA SIZE integer no. of Alpha bits in the accum. buffer
GLX SAMPLE BUFFERS integer number of multisample buffers

GLX SAMPLES integer number of samples per pixel
GLX RENDER TYPE bitmask which rendering modes are supported.
GLX DRAWABLE TYPE bitmask which GLX drawables are supported.
GLX X RENDERABLE boolean True if X can render to drawable
GLX X VISUAL TYPE integer X visual type of the associated visual
GLX CONFIG CAVEAT enum any caveats for the configuration

GLX TRANSPARENT TYPE enum type of transparency supported
GLX TRANSPARENT INDEX VALUE integer transparent index value
GLX TRANSPARENT RED VALUE integer transparent red value

GLX TRANSPARENT GREEN VALUE integer transparent green value
GLX TRANSPARENT BLUE VALUE integer transparent blue value
GLX TRANSPARENT ALPHA VALUE integer transparent alpha value

GLX MAX PBUFFER WIDTH integer maximum width of GLXPbuffer
GLX MAX PBUFFER HEIGHT integer maximum height of GLXPbuffer
GLX MAX PBUFFER PIXELS integer maximum size of GLXPbuffer

GLX VISUAL ID integer XID of corresponding Visual

Table 3.1: GLXFBConfig attributes.

Version 1.4 - December 16, 2005

14 CHAPTER 3. FUNCTIONS AND ERRORS

GLX Token Name Description
GLX WINDOW BIT GLXFBConfig supports windows
GLX PIXMAP BIT GLXFBConfig supports pixmaps
GLX PBUFFER BIT GLXFBConfig supports pbuffers

Table 3.2: Types of Drawables Supported by GLXFBConfig

buffer. If the color samples in the multisample buffer store fewer bits than are
stored in the color buffers, this fact will not be reported accurately. Presumably a
compression scheme is being employed, and is expected to maintain an aggregate
resolution equal to that of the color buffers.

The attribute GLX RENDER TYPE has as its value a mask indicating what type
of GLXContext a drawable created with the corresponding GLXFBConfig
can be bound to. The following bit settings are supported: GLX RGBA BIT and
GLX COLOR INDEX BIT. If both of these bits are set in the mask then drawables
created with the GLXFBConfig can be bound to both RGBA and color index
rendering contexts.

The attribute GLX DRAWABLE TYPE has as its value a mask indicating the draw-
able types that can be created with the corresponding GLXFBConfig (the config
is said to “support” these drawable types). The valid bit settings are shown in
Table 3.2.

For example, a GLXFBConfig for which the value of the
GLX DRAWABLE TYPE attribute is

GLX WINDOW BIT | GLX PIXMAP BIT | GLX PBUFFER BIT

can be used to create any type of GLX drawable, while a GLXFBConfig for which
this attribute value is GLX WINDOW BIT can not be used to create a GLXPixmap
or a GLXPbuffer.

GLX X RENDERABLE is a boolean indicating whether X can be used to render
into a drawable created with the GLXFBConfig. This attribute is True if the
GLXFBConfig supports GLX windows and/or pixmaps.

If a GLXFBConfig supports windows then it has an associated X Visual.
The value of the GLX VISUAL ID attribute specifies the XID of the Visual and
the value of the GLX X VISUAL TYPE attribute specifies the type of Visual.
The possible values are shown in Table 3.3. If a GLXFBConfig does not
support windows, then querying GLX VISUAL ID will return 0 and querying
GLX X VISUAL TYPE will return GLX NONE.

Note that RGBA rendering may be supported for any of the six Visual types
but color index rendering is supported only for PseudoColor, StaticColor,

Version 1.4 - December 16, 2005

3.3. FUNCTIONS 15

GLX Token Name X Visual Type
GLX TRUE COLOR TrueColor

GLX DIRECT COLOR DirectColor
GLX PSEUDO COLOR PseudoColor
GLX STATIC COLOR StaticColor
GLX GRAY SCALE GrayScale
GLX STATIC GRAY StaticGray

GLX NONE No associated Visual

Table 3.3: Mapping of Visual Types to GLX tokens.

GrayScale, and StaticGray visuals (i.e., single-channel visuals). If RGBA
rendering is supported for a single-channel visual (i.e., if the GLX RENDER TYPE at-
tribute has the GLX RGBA BIT set), then the red component maps to the color buffer
bits corresponding to the core X11 visual. The green and blue components map to
non-displayed color buffer bits and the alpha component maps to non-displayed
alpha buffer bits if their sizes are nonzero, otherwise they are discarded.

The GLX CONFIG CAVEAT attribute may be set to one of the following val-
ues: GLX NONE, GLX SLOW CONFIG or GLX NON CONFORMANT CONFIG. If the
attribute is set to GLX NONE then the configuration has no caveats; if it is
set to GLX SLOW CONFIG then rendering to a drawable with this configura-
tion may run at reduced performance (for example, the hardware may not sup-
port the color buffer depths described by the configuration); if it is set to
GLX NON CONFORMANT CONFIG then rendering to a drawable with this configu-
ration will not pass the required OpenGL conformance tests.

Servers are required to export at least one GLXFBConfig that sup-
ports RGBA rendering to windows and passes OpenGL conformance
(i.e., the GLX RENDER TYPE attribute must have the GLX RGBA BIT

set, the GLX DRAWABLE TYPE attribute must have the GLX WINDOW BIT

set and the GLX CONFIG CAVEAT attribute must not be set to
GLX NON CONFORMANT CONFIG). This GLXFBConfig must have at least
one color buffer, a stencil buffer of at least 1 bit, a depth buffer of at least 12
bits, and an accumulation buffer; auxillary buffers are optional, and the alpha
buffer may have 0 bits. The color buffer size for this GLXFBConfig must be
as large as that of the deepest TrueColor, DirectColor, PseudoColor,
or StaticColor visual supported on framebuffer level zero (the main image
planes), and this configuration must be available on framebuffer level zero.

If the X server exports a PseudoColor or StaticColor visual on frame-

Version 1.4 - December 16, 2005

16 CHAPTER 3. FUNCTIONS AND ERRORS

buffer level 0, a GLXFBConfig that supports color index rendering to windows
and passes OpenGL conformance is also required (i.e., the GLX RENDER TYPE at-
tribute must have the GLX COLOR INDEX BIT set, the GLX DRAWABLE TYPE at-
tribute must have the GLX WINDOW BIT set, and the GLX CONFIG CAVEAT at-
tribute must not be set to GLX NON CONFORMANT CONFIG). This GLXFBConfig
must have at least one color buffer, a stencil buffer of at least 1 bit, and a depth
buffer of at least 12 bits. It also must have as many color bitplanes as the deepest
PseudoColor or StaticColor visual supported on framebuffer level zero,
and the configuration must be made available on level zero.

The attribute GLX TRANSPARENT TYPE indicates whether or not the config-
uration supports transparency, and if it does support transparency, what type
of transparency is available. If the attribute is set to GLX NONE then win-
dows created with the GLXFBConfig will not have any transparent pix-
els. If the attribute is GLX TRANSPARENT RGB or GLX TRANSPARENT INDEX

then the GLXFBConfig supports transparency. GLX TRANSPARENT RGB

is only applicable if the configuration is associated with a TrueColor
or DirectColor visual: a transparent pixel will be drawn when the
red, green and blue values which are read from the framebuffer are
equal to GLX TRANSPARENT RED VALUE, GLX TRANSPARENT GREEN VALUE and
GLX TRANSPARENT BLUE VALUE, respectively. If the configuration is associated
with a PseudoColor, StaticColor, GrayScale or StaticGray visual
the transparency mode GLX TRANSPARENT INDEX is used. In this case, a transpar-
ent pixel will be drawn when the value that is read from the framebuffer is equal to
GLX TRANSPARENT INDEX VALUE.

If GLX TRANSPARENT TYPE is GLX NONE or GLX TRANSPARENT RGB,
then the value for GLX TRANSPARENT INDEX VALUE is undefined. If
GLX TRANSPARENT TYPE is GLX NONE or GLX TRANSPARENT INDEX, then the
values for GLX TRANSPARENT RED VALUE, GLX TRANSPARENT GREEN VALUE,
and GLX TRANSPARENT BLUE VALUE are undefined. When defined,
GLX TRANSPARENT RED VALUE, GLX TRANSPARENT GREEN VALUE, and
GLX TRANSPARENT BLUE VALUE are integer framebuffer values between
0 and the maximum framebuffer value for the component. For example,
GLX TRANSPARENT RED VALUE will range between 0 and (2**GLX RED SIZE)-1.
(GLX TRANSPARENT ALPHA VALUE is for future use.)

GLX MAX PBUFFER WIDTH and GLX MAX PBUFFER HEIGHT indicate the max-
imum width and height that can be passed into glXCreatePbuffer and
GLX MAX PBUFFER PIXELS indicates the maximum number of pixels (width times
height) for a GLXPbuffer. Note that an implementation may return a value for
GLX MAX PBUFFER PIXELS that is less than the maximum width times the max-
imum height. Also, the value for GLX MAX PBUFFER PIXELS is static and as-

Version 1.4 - December 16, 2005

3.3. FUNCTIONS 17

sumes that no other pbuffers or X resources are contending for the framebuffer
memory. Thus it may not be possible to allocate a pbuffer of the size given by
GLX MAX PBUFFER PIXELS.

Use

GLXFBConfig *glXGetFBConfigs(Display *dpy, int
screen, int *nelements);

to get the list of all GLXFBConfigs that are available on the specified screen. The
call returns an array of GLXFBConfigs; the number of elements in the array is
returned in nelements.

Use

GLXFBConfig *glXChooseFBConfig(Display *dpy, int
screen, const int *attrib list, int

*nelements);

to get GLXFBConfigs that match a list of attributes.
This call returns an array of GLXFBConfigs that match the specified at-

tributes (attributes are described in Table 3.1). The number of elements in the
array is returned in nelements.

If attrib list contains an undefined GLX attribute, screen is invalid, or dpy does
not support the GLX extension, then NULL is returned.

All attributes in attrib list, including boolean attributes, are immediately fol-
lowed by the corresponding desired value. The list is terminated with None. If an
attribute is not specified in attrib list, then the default value (listed in Table 3.4)
is used (it is said to be specified implicitly). For example, if GLX STEREO is not
specified then it is assumed to be False. If GLX DONT CARE is specified as an
attribute value, then the attribute will not be checked. GLX DONT CARE may be
specified for all attributes except GLX LEVEL. If attrib list is NULL or empty (first
attribute is None), then selection and sorting of GLXFBConfigs is done accord-
ing to the default criteria in Tables 3.4 and 3.1, as described below under Selection
and Sorting.

Selection of GLXFBConfigs

Attributes are matched in an attribute-specific manner, as shown in Table 3.4.
The match criteria listed in the table have the following meanings:

Smaller GLXFBConfigs with an attribute value that meets or exceeds the speci-
fied value are returned.

Version 1.4 - December 16, 2005

18 CHAPTER 3. FUNCTIONS AND ERRORS

Larger GLXFBConfigs with an attribute value that meets or exceeds the speci-
fied value are returned.

Exact Only GLXFBConfigs whose attribute value exactly matches the requested
value are considered.

Mask Only GLXFBConfigs for which the set bits of attribute include all the bits
that are set in the requested value are considered. (Additional bits might be
set in the attribute).

Some of the attributes, such as GLX LEVEL, must match the specified value ex-
actly; others, such as GLX RED SIZE must meet or exceed the specified minimum
values.

To retrieve an GLXFBConfig given its XID, use the GLX FBCONFIG ID at-
tribute. When GLX FBCONFIG ID is specified, all other attributes are ignored, and
only the GLXFBConfig with the given XID is returned (NULL is returned if it
does not exist).

If GLX MAX PBUFFER WIDTH, GLX MAX PBUFFER HEIGHT,
GLX MAX PBUFFER PIXELS, or GLX VISUAL ID are specified in attrib list,
then they are ignored (however, if present, these attributes must still be followed
by an attribute value in attrib list). If GLX DRAWABLE TYPE is specified in
attrib list and the mask that follows does not have GLX WINDOW BIT set, then the
GLX X VISUAL TYPE attribute is ignored.

If GLX TRANSPARENT TYPE is set to GLX NONE in attrib list, then inclu-
sion of GLX TRANSPARENT INDEX VALUE, GLX TRANSPARENT RED VALUE,
GLX TRANSPARENT GREEN VALUE, GLX TRANSPARENT BLUE VALUE, or
GLX TRANSPARENT ALPHA VALUE will be ignored.

If no GLXFBConfig matching the attribute list exists, then NULL is returned.
If exactly one match is found, a pointer to that GLXFBConfig is returned.

Sorting of GLXFBConfigs

If more than one matching GLXFBConfig is found, then a list of
GLXFBConfigs, sorted according to the best match criteria, is returned. The list
is sorted according to the following precedence rules that are applied in ascending
order (i.e., configurations that are considered equal by lower numbered rule are
sorted by the higher numbered rule):

1. By GLX CONFIG CAVEAT where the precedence is GLX NONE,
GLX SLOW CONFIG, GLX NON CONFORMANT CONFIG.

Version 1.4 - December 16, 2005

3.3. FUNCTIONS 19

Attribute Default Selection Sort
and Sorting Priority

Criteria
GLX FBCONFIG ID GLX DONT CARE Exact
GLX BUFFER SIZE 0 Smaller 3

GLX LEVEL 0 Exact
GLX DOUBLEBUFFER GLX DONT CARE Exact 4

GLX STEREO False Exact
GLX AUX BUFFERS 0 Smaller 5
GLX RED SIZE 0 Larger 2

GLX GREEN SIZE 0 Larger 2
GLX BLUE SIZE 0 Larger 2
GLX ALPHA SIZE 0 Larger 2
GLX DEPTH SIZE 0 Larger 8

GLX STENCIL SIZE 0 Smaller 9
GLX ACCUM RED SIZE 0 Larger 10

GLX ACCUM GREEN SIZE 0 Larger 10
GLX ACCUM BLUE SIZE 0 Larger 10
GLX ACCUM ALPHA SIZE 0 Larger 10
GLX SAMPLE BUFFERS 0 Smaller 6

GLX SAMPLES 0 Smaller 7
GLX RENDER TYPE GLX RGBA BIT Mask
GLX DRAWABLE TYPE GLX WINDOW BIT Mask
GLX X RENDERABLE GLX DONT CARE Exact
GLX X VISUAL TYPE GLX DONT CARE Exact 11
GLX CONFIG CAVEAT GLX DONT CARE Exact 1

GLX TRANSPARENT TYPE GLX NONE Exact
GLX TRANSPARENT INDEX VALUE GLX DONT CARE Exact
GLX TRANSPARENT RED VALUE GLX DONT CARE Exact

GLX TRANSPARENT GREEN VALUE GLX DONT CARE Exact
GLX TRANSPARENT BLUE VALUE GLX DONT CARE Exact
GLX TRANSPARENT ALPHA VALUE GLX DONT CARE Exact

Table 3.4: Default values and match criteria for GLXFBConfig attributes.

Version 1.4 - December 16, 2005

20 CHAPTER 3. FUNCTIONS AND ERRORS

2. Larger total number of RGBA color bits (GLX RED SIZE, GLX GREEN SIZE,
GLX BLUE SIZE, plus GLX ALPHA SIZE). If the requested number of bits in
attrib list for a particular color component is 0 or GLX DONT CARE, then the
number of bits for that component is not considered.

3. Smaller GLX BUFFER SIZE.

4. Single buffered configuration (GLX DOUBLEBUFFER being False) precedes
a double buffered one.

5. Smaller GLX AUX BUFFERS.

6. Smaller GLX SAMPLE BUFFERS.

7. Smaller GLX SAMPLES.

8. Larger GLX DEPTH SIZE.

9. Smaller GLX STENCIL SIZE.

10. Larger total number of accumulation buffer color
bits (GLX ACCUM RED SIZE, GLX ACCUM GREEN SIZE,
GLX ACCUM BLUE SIZE, plus GLX ACCUM ALPHA SIZE). If the re-
quested number of bits in attrib list for a particular color component is
0 or GLX DONT CARE, then the number of bits for that component is not
considered.

11. By GLX X VISUAL TYPE where the precedence is GLX TRUE COLOR,
GLX DIRECT COLOR, GLX PSEUDO COLOR, GLX STATIC COLOR,
GLX GRAY SCALE, GLX STATIC GRAY.

Use XFree to free the memory returned by glXChooseFBConfig.
To get the value of a GLX attribute for a GLXFBConfig use

int glXGetFBConfigAttrib(Display *dpy, GLXFBConfig
config, int attribute, int *value);

If glXGetFBConfigAttrib succeeds then it returns Success and the value for
the specified attribute is returned in value; otherwise it returns one of the following
errors:

GLX BAD ATTRIBUTE attribute is not a valid GLX attribute.

Version 1.4 - December 16, 2005

3.3. FUNCTIONS 21

Refer to Table 3.1 and Table 3.4 for a list of valid GLX attributes.
A GLXFBConfig has an associated X Visual only if the

GLX DRAWABLE TYPE attribute has the GLX WINDOW BIT bit set. To retrieve
the associated visual, call:

XVisualInfo *glXGetVisualFromFBConfig(Display
*dpy, GLXFBConfig config);

If config is a valid GLXFBConfig and it has an associated X visual then informa-
tion describing that visual is returned; otherwise NULL is returned. Use XFree to
free the data returned.

3.3.4 On Screen Rendering

To create an onscreen rendering area, first create an X Window with a visual that
corresponds to the desired GLXFBConfig, then call

GLXWindow glXCreateWindow(Display *dpy,
GLXFBConfig config, Window win, const int

*attrib list);

glXCreateWindow creates a GLXWindow and returns its XID. Any GLX render-
ing context created with a compatible GLXFBConfig can be used to render into
this window.

attrib list specifies a list of attributes for the window. The list has the same
structure as described for glXChooseFBConfig. Currently no attributes are recog-
nized, so attrib list must be NULL or empty (first attribute of None).

If win was not created with a visual that corresponds to config, then a
BadMatch error is generated. (i.e., glXGetVisualFromFBConfig must return
the visual corresponding to win when the GLXFBConfig parameter is set to con-
fig.) If config does not support rendering to windows (the GLX DRAWABLE TYPE

attribute does not contain GLX WINDOW BIT), a BadMatch error is generated. If
config is not a valid GLXFBConfig, a GLXBadFBConfig error is generated. If
win is not a valid window XID, then a BadWindow error is generated. If there
is already a GLXFBConfig associated with win (as a result of a previous glX-
CreateWindow call), then a BadAlloc error is generated. Finally, if the server
cannot allocate the new GLX window, a BadAlloc error is generated.

A GLXWindow is destroyed by calling

glXDestroyWindow(Display *dpy, GLXWindow win);

Version 1.4 - December 16, 2005

22 CHAPTER 3. FUNCTIONS AND ERRORS

This request deletes the association between the resource ID win and the GLX
window. The storage will be freed when it is not current to any client.

If win is not a valid GLX window then a GLXBadWindow error is generated.

3.3.5 Off Screen Rendering

GLX supports two types of offscreen rendering surfaces: GLXPixmaps and
GLXPbuffers. GLXPixmaps and GLXPbuffers differ in the following ways:

1. GLXPixmaps have an associated X pixmap and can therefore be rendered
to by X. Since a GLXPbuffer is a GLX resource, it may not be possible to
render to it using X or an X extension other than GLX.

2. The format of the color buffers and the type and size of any associ-
ated ancillary buffers for a GLXPbuffer can only be described with a
GLXFBConfig. The older method of using extended X Visuals to de-
scribe the configuration of a GLXDrawable cannot be used. (See sec-
tion 3.4 for more information on extended visuals.)

3. It is possible to create a GLXPbuffer whose contents may be asyn-
chronously lost at any time.

4. If the GLX implementation supports direct rendering, then it must support
rendering to GLXPbuffers via a direct rendering context. Although some
implementations may support rendering to GLXPixmaps via a direct ren-
dering context, GLX does not require this to be supported.

5. The intent of the pbuffer semantics is to enable implementations to allo-
cate pbuffers in non-visible frame buffer memory. Thus, the allocation of
a GLXPbuffer can fail if there is insufficient framebuffer resources. (Im-
plementations are not required to virtualize pbuffer memory.) Also, clients
should deallocate GLXPbuffers when they are no longer using them – for
example, when the program is iconified.

To create a GLXPixmap offscreen rendering area, first create an X Pixmap
of the depth specified by the desired GLXFBConfig, then call

GLXPixmap glXCreatePixmap(Display *dpy,
GLXFBConfig config, Pixmap pixmap, const
int *attrib list);

Version 1.4 - December 16, 2005

3.3. FUNCTIONS 23

glXCreatePixmap creates an offscreen rendering area and returns its XID. Any
GLX rendering context created with a GLXFBConfig that is compatible with
config can be used to render into this offscreen area.

pixmap is used for the RGB planes of the front-left buffer of the resulting GLX
offscreen rendering area. GLX pixmaps may be created with a config that includes
back buffers and stereoscopic buffers. However, glXSwapBuffers is ignored for
these pixmaps.

attrib list specifies a list of attributes for the pixmap. The list has the same
structure as described for glXChooseFBConfig. Currently no attributes are recog-
nized, so attrib list must be NULL or empty (first attribute of None).

A direct rendering context might not be able to be made current with a
GLXPixmap.

If pixmap was not created with respect to the same screen as config, then a
BadMatch error is generated. If config is not a valid GLXFBConfig or if it
does not support pixmap rendering then a GLXBadFBConfig error is generated.
If pixmap is not a valid Pixmap XID, then a BadPixmap error is generated.
Finally, if the server cannot allocate the new GLX pixmap, a BadAlloc error is
generated.

A GLXPixmap is destroyed by calling

glXDestroyPixmap(Display *dpy, GLXPixmap
pixmap);

This request deletes the association between the XID pixmap and the GLX pixmap.
The storage for the GLX pixmap will be freed when it is not current to any client.
To free the associated X pixmap, call XFreePixmap.

If pixmap is not a valid GLX pixmap then a GLXBadPixmap error is gener-
ated.

To create a GLXPbuffer call

GLXPbuffer glXCreatePbuffer(Display *dpy,
GLXFBConfig config, const int *attrib list);

This creates a single GLXPbuffer and returns its XID. Like other drawable types,
GLXPbuffers are shared; any client which knows the associated XID can use a
GLXPbuffer.

attrib list specifies a list of attributes for the pbuffer. The list has the same
structure as described for glXChooseFBConfig. Currently only four attributes
can be specified in attrib list: GLX PBUFFER WIDTH, GLX PBUFFER HEIGHT,
GLX PRESERVED CONTENTS and GLX LARGEST PBUFFER.

Version 1.4 - December 16, 2005

24 CHAPTER 3. FUNCTIONS AND ERRORS

attrib list may be NULL or empty (first attribute of None), in which case all
the attributes assume their default values as described below.

GLX PBUFFER WIDTH and GLX PBUFFER HEIGHT specify the pixel width and
height of the rectangular pbuffer. The default values for GLX PBUFFER WIDTH and
GLX PBUFFER HEIGHT are zero.

Use GLX LARGEST PBUFFER to get the largest available pbuffer when the
allocation of the pbuffer would otherwise fail. The width and height of the
allocated pbuffer will never exceed the values of GLX PBUFFER WIDTH and
GLX PBUFFER HEIGHT, respectively. Use glXQueryDrawable to retrieve the di-
mensions of the allocated pbuffer. By default, GLX LARGEST PBUFFER is False.

If the GLX PRESERVED CONTENTS attribute is set to False in attrib list, then
an unpreserved pbuffer is created and the contents of the pbuffer may be lost at
any time. If this attribute is not specified, or if it is specified as True in attrib list,
then when a resource conflict occurs the contents of the pbuffer will be preserved
(most likely by swapping out portions of the buffer from the framebuffer to main
memory). In either case, the client can register to receive a pbuffer clobber event
which is generated when the pbuffer contents have been preserved or have been
damaged. (See glXSelectEvent in section 3.3.8 for more information.)

The resulting pbuffer will contain color buffers and ancillary buffers as speci-
fied by config. It is possible to create a pbuffer with back buffers and to swap the
front and back buffers by calling glXSwapBuffers. Note that pbuffers use frame-
buffer resources so applications should consider deallocating them when they are
not in use.

If a pbuffer is created with GLX PRESERVED CONTENTS set to False, then
portions of the buffer contents may be lost at any time due to frame buffer resource
conflicts. Once the contents of a unpreserved pbuffer have been lost it is considered
to be in a damaged state. It is not an error to render to a pbuffer that is in this state
but the effect of rendering to it is the same as if the pbuffer were destroyed: the
context state will be updated, but the frame buffer state becomes undefined. It
is also not an error to query the pixel contents of such a pbuffer, but the values
of the returned pixels are undefined. Note that while this specification allows for
unpreserved pbuffers to be damaged as a result of other pbuffer activity, the intent
is to have only the activity of visible windows damage pbuffers.

Since the contents of a unpreserved pbuffer can be lost at anytime with only
asynchronous notification (via the pbuffer clobber event), the only way a client can
guarantee that valid pixels are read back with glReadPixels is by grabbing the X
server. (Note that this operation is potentially expensive and should not be done
frequently. Also, since this locks out other X clients, it should be done only for
short periods of time.) Clients that don’t wish to do this can check if the data
returned by glReadPixels is valid by calling XSync and then checking the event

Version 1.4 - December 16, 2005

3.3. FUNCTIONS 25

queue for pbuffer clobber events (assuming that these events had been pulled off of
the queue prior to the glReadPixels call).

When glXCreatePbuffer fails to create a GLXPbuffer due to insuffi-
cient resources, a BadAlloc error is generated. If config is not a valid
GLXFBConfig then a GLXBadFBConfig error is generated; if config does not
support GLXPbuffers then a BadMatch error is generated.

A GLXPbuffer is destroyed by calling:

void glXDestroyPbuffer(Display *dpy, GLXPbuffer
pbuf);

The XID associated with the GLXPbuffer is destroyed. The storage for the
GLXPbuffer will be destroyed once it is no longer current to any client.

If pbuf is not a valid GLXPbuffer then a GLXBadPbuffer error is gener-
ated.

3.3.6 Querying Attributes

To query an attribute associated with a GLXDrawable call:

void glXQueryDrawable(Display *dpy, GLXDrawable
draw, int attribute, unsigned int *value);

attribute must be set to one of GLX WIDTH, GLX HEIGHT,
GLX PRESERVED CONTENTS, GLX LARGEST PBUFFER, or GLX FBCONFIG ID.

To get the GLXFBConfig for a GLXDrawable, first retrieve the XID for the
GLXFBConfig and then call glXChooseFBConfig.

If draw is not a valid GLXDrawable then a GLXBadDrawable error
is generated. If draw is a GLXWindow or GLXPixmap and attribute is set
to GLX PRESERVED CONTENTS or GLX LARGEST PBUFFER, then the contents of
value are undefined.

3.3.7 Rendering Contexts

To create an OpenGL rendering context, call

GLXContext glXCreateNewContext(Display *dpy,
GLXFBConfig config, int render type,
GLXContext share list, Bool direct);

Version 1.4 - December 16, 2005

26 CHAPTER 3. FUNCTIONS AND ERRORS

glXCreateNewContext returns NULL if it fails. If glXCreateNewContext suc-
ceeds, it initializes the rendering context to the initial OpenGL state and returns a
handle to it. This handle can be used to render to GLX windows, GLX pixmaps
and GLX pbuffers.

If render type is set to GLX RGBA TYPE then a context that supports RGBA ren-
dering is created; if render type is set to GLX COLOR INDEX TYPE then a context
that supports color index rendering is created.

If share list is not NULL, then all display lists and texture objects except tex-
ture objects named 0 will be shared by share list and the newly created rendering
context. An arbitrary number of GLXContexts can share a single display list and
texture object space. The server context state for all sharing contexts must exist in
a single address space or a BadMatch error is generated.

If direct is true, then a direct rendering context will be created if the implemen-
tation supports direct rendering and the connection is to an X server that is local.
If direct is False, then a rendering context that renders through the X server is
created.

Direct rendering contexts may be a scarce resource in some implementations.
If direct is true, and if a direct rendering context cannot be created, then glXCre-
ateNewContext will attempt to create an indirect context instead.

glXCreateNewContext can generate the following errors: GLXBadContext
if share list is neither zero nor a valid GLX rendering context;
GLXBadFBConfig if config is not a valid GLXFBConfig; BadMatch if
the server context state for share list exists in an address space that cannot be
shared with the newly created context or if share list was created on a different
screen than the one referenced by config; BadAlloc if the server does not have
enough resources to allocate the new context; BadValue if render type does not
refer to a valid rendering type.

To determine if an OpenGL rendering context is direct, call

Bool glXIsDirect(Display *dpy, GLXContext ctx);

glXIsDirect returns True if ctx is a direct rendering context, False otherwise. If
ctx is not a valid GLX rendering context, a GLXBadContext error is generated.

An OpenGL rendering context is destroyed by calling

void glXDestroyContext(Display *dpy, GLXContext
ctx);

If ctx is still current to any thread, ctx is not destroyed until it is no longer current.
In any event, the associated XID will be destroyed and ctx cannot subsequently be
made current to any thread.

Version 1.4 - December 16, 2005

3.3. FUNCTIONS 27

glXDestroyContext will generate a GLXBadContext error if ctx is not a
valid rendering context.

To make a context current, call

Bool glXMakeContextCurrent(Display *dpy,
GLXDrawable draw, GLXDrawable read,
GLXContext ctx);

glXMakeContextCurrent binds ctx to the current rendering thread and to the draw
and read drawables. draw is used for all OpenGL operations except:

• Any pixel data that are read based on the value of GL READ BUFFER. Note
that accumulation operations use the value of GL READ BUFFER, but are not
allowed unless draw is identical to read.

• Any depth values that are retrieved by glReadPixels or glCopyPixels.

• Any stencil values that are retrieved by glReadPixels or glCopyPixels.

These frame buffer values are taken from read. Note that the same
GLXDrawable may be specified for both draw and read.

If the calling thread already has a current rendering context, then that context
is flushed and marked as no longer current. ctx is made the current context for the
calling thread.

If draw or read are not compatible with ctx a BadMatch error is generated. If
ctx is current to some other thread, then glXMakeContextCurrent will generate
a BadAccess error. GLXBadContextState is generated if there is a cur-
rent rendering context and its render mode is either GL FEEDBACK or GL SELECT.
If ctx is not a valid GLX rendering context, GLXBadContext is generated. If
either draw or read are not a valid GLX drawable, a GLXBadDrawable er-
ror is generated. If the X Window underlying either draw or read is no longer
valid, a GLXBadWindow error is generated. If the previous context of the call-
ing thread has unflushed commands, and the previous drawable is no longer valid,
GLXBadCurrentDrawable is generated. Note that the ancillary buffers for
draw and read need not be allocated until they are needed. A BadAlloc er-
ror will be generated if the server does not have enough resources to allocate the
buffers.

In addition, implementations may generate a BadMatch error under the fol-
lowing conditions: if draw and read cannot fit into framebuffer memory simulta-
neously; if draw or read is a GLXPixmap and ctx is a direct rendering context; if
draw or read is a GLXPixmap and ctx was previously bound to a GLXWindow or

Version 1.4 - December 16, 2005

28 CHAPTER 3. FUNCTIONS AND ERRORS

GLXPbuffer; if draw or read is a GLXWindow or GLXPbuffer and ctx was
previously bound to a GLXPixmap.

Other errors may arise when the context state is inconsistent with the draw-
able state, as described in the following paragraphs. Color buffers are treated spe-
cially because the current GL DRAW BUFFER and GL READ BUFFER context state
can be inconsistent with the current draw or read drawable (for example, when
GL DRAW BUFFER is GL BACK and the drawable is single buffered).

No error will be generated if the value of GL DRAW BUFFER in ctx indicates a
color buffer that is not supported by draw. In this case, all rendering will behave as
if GL DRAW BUFFER was set to NONE. Also, no error will be generated if the value
of GL READ BUFFER in ctx does not correspond to a valid color buffer. Instead,
when an operation that reads from the color buffer is executed (e.g., glReadPixels
or glCopyPixels), the pixel values used will be undefined until GL READ BUFFER

is set to a color buffer that is valid in read. Operations that query the value of
GL READ BUFFER or GL DRAW BUFFER (i.e., glGet, glPushAttrib) use the value
set last in the context, independent of whether it is a valid buffer in read or draw.

Note that it is an error to later call glDrawBuffer and/or glReadBuffer (even if
they are implicitly called via glPopAttrib or glXCopyContext) and specify a color
buffer that is not supported by draw or read. Also, subsequent calls to glReadPix-
els or glCopyPixels that specify an unsupported ancillary buffer will result in an
error.

If draw is destroyed after glXMakeContextCurrent is called, then subsequent
rendering commands will be processed and the context state will be updated, but
the frame buffer state becomes undefined. If read is destroyed after glXMake-
ContextCurrent then pixel values read from the framebuffer (e.g., as result of
calling glReadPixels, glCopyPixels or glCopyColorTable) are undefined. If the
X Window underlying the GLXWindow draw or read drawable is destroyed, ren-
dering and readback are handled as above.

To release the current context without assigning a new one, set ctx to NULL and
set draw and read to None. If ctx is NULL and draw and read are not None, or if
draw or read are set to None and ctx is not NULL, then a BadMatch error will be
generated.

The first time ctx is made current, the viewport and scissor dimensions are set
to the size of the draw drawable (as though glViewport(0, 0, w, h) and glScissor(0,
0, w, h) were called, where w and h are the width and height of the drawable, re-
spectively). However, the viewport and scissor dimensions are not modified when
ctx is subsequently made current; it is the clients responsibility to reset the viewport
and scissor in this case.

Note that when multiple threads are using their current contexts to render to
the same drawable, OpenGL does not guarantee atomicity of fragment update op-

Version 1.4 - December 16, 2005

3.3. FUNCTIONS 29

erations. In particular, programmers may not assume that depth-buffering will au-
tomatically work correctly; there is a race condition between threads that read and
update the depth buffer. Clients are responsible for avoiding this condition. They
may use vendor-specific extensions or they may arrange for separate threads to
draw in disjoint regions of the framebuffer, for example.

To copy OpenGL rendering state from one context to another, use

void glXCopyContext(Display *dpy, GLXContext
source, GLXContext dest, unsigned long
mask);

glXCopyContext copies selected groups of state variables from source to dest.
mask indicates which groups of state variables are to be copied; it contains the bit-
wise OR of the symbolic names for the attribute groups. The symbolic names are
the same as those used by glPushAttrib, described in the OpenGL Specification.
Also, the order in which the attributes are copied to dest as a result of the glXCopy-
Context operation is the same as the order in which they are popped off of the stack
when glPopAttrib is called. The single symbolic constant GL ALL ATTRIB BITS

can be used to copy the maximum possible portion of the rendering state. It is not
an error to specify mask bits that are undefined.

Not all GL state values can be copied. For example, client side state such as
pixel pack and unpack state, vertex array state and select and feedback state cannot
be copied. Also, some server state such as render mode state, the contents of the
attribute and matrix stacks, display lists and texture objects, cannot be copied. The
state that can be copied is exactly the state that is manipulated by glPushAttrib.

If source and dest were not created on the same screen or if the server context
state for source and dest does not exist in the same address space, a BadMatch
error is generated (source and dest may be based on different GLXFBConfigs
and still share an address space; glXCopyContext will work correctly in such
cases). If the destination context is current for some thread then a BadAccess
error is generated. If the source context is the same as the current context of the
calling thread, and the current drawable of the calling thread is no longer valid, a
GLXBadCurrentDrawable error is generated. Finally, if either source or dest
is not a valid GLX rendering context, a GLXBadContext error is generated.

glXCopyContext performs an implicit glFlush if source is the current context
for the calling thread.

Only one rendering context may be in use, or current, for a particular thread
at a given time. The minimum number of current rendering contexts that must
be supported by a GLX implementation is one. (Supporting a larger number of
current rendering contexts is essential for general-purpose systems, but may not be
necessary for turnkey applications.)

Version 1.4 - December 16, 2005

30 CHAPTER 3. FUNCTIONS AND ERRORS

Attribute Type Description
GLX FBCONFIG ID XID XID of GLXFBConfig associated with context
GLX RENDER TYPE int type of rendering supported

GLX SCREEN int screen number

Table 3.5: Context attributes.

To get the current context, call

GLXContext glXGetCurrentContext(void);

If there is no current context, NULL is returned.
To get the XID of the current drawable used for rendering, call

GLXDrawable glXGetCurrentDrawable(void);

If there is no current draw drawable, None is returned.
To get the XID of the current drawable used for reading, call

GLXDrawable glXGetCurrentReadDrawable(void);

If there is no current read drawable, None is returned.
To get the display associated with the current context and drawable, call

Display *glXGetCurrentDisplay(void);

If there is no current context, NULL is returned.
To obtain the value of a context’s attribute, use

int glXQueryContext(Display *dpy, GLXContext
ctx, int attribute, int *value);

glXQueryContext returns through value the value of attribute for ctx. It may cause
a round trip to the server.

The values and types corresponding to each GLX context attribute are listed in
Table 3.5.

glXQueryContext returns GLX BAD ATTRIBUTE if attribute is not a valid
GLX context attribute and Success otherwise. If ctx is invalid and a round trip
to the server is involved, a GLXBadContext error is generated.

glXGet* calls retrieve client-side state and do not force a round trip to the X
server. Unlike most X calls (including the glXQuery* calls) that return a value,
these calls do not flush any pending requests.

Version 1.4 - December 16, 2005

3.3. FUNCTIONS 31

3.3.8 Events

GLX events are returned in the X11 event stream. GLX and X11 events are selected
independently; if a client selects for both, then both may be delivered to the client.
The relative order of X11 and GLX events is not specified.

A client can ask to receive GLX events on a GLXWindow or a GLXPbuffer
by calling

void glXSelectEvent(Display *dpy, GLXDrawable
draw, unsigned long event mask);

Calling glXSelectEvent overrides any previous event mask that was set by the
client for draw. Note that the GLX event mask is private to GLX (separate from
the core X11 event mask), and that a separate GLX event mask is maintained in the
server state for each client for each drawable.

If draw is not a valid GLXPbuffer or a valid GLXWindow, a
GLXBadDrawable error is generated.

To find out which GLX events are selected for a GLXWindow or
GLXPbuffer call

void glXGetSelectedEvent(Display *dpy, GLXDrawable
draw, unsigned long *event mask);

If draw is not a GLX window or pbuffer then a GLXBadDrawable error is gen-
erated.

Currently only one GLX event can be selected, by setting event mask to
GLX PBUFFER CLOBBER MASK. The data structure describing a pbuffer clobber
event is:

typedef struct {
int event type; /* GLX DAMAGED or GLX SAVED */
int draw type; /* GLX WINDOW or GLX PBUFFER */
unsigned long serial; /* number of last request processed by server */
Bool send event; /* event was generated by a SendEvent request */
Display *display; /* display the event was read from */
GLXDrawable drawable; /* XID of Drawable */
unsigned int buffer mask; /* mask indicating which buffers are affected */
unsigned int aux buffer; /* which aux buffer was affected */
int x, y;
int width, height;
int count; /* if nonzero, at least this many more */

Version 1.4 - December 16, 2005

32 CHAPTER 3. FUNCTIONS AND ERRORS

Bitmask Corresponding buffer
GLX FRONT LEFT BUFFER BIT Front left color buffer
GLX FRONT RIGHT BUFFER BIT Front right color buffer
GLX BACK LEFT BUFFER BIT Back left color buffer
GLX BACK RIGHT BUFFER BIT Back right color buffer

GLX AUX BUFFERS BIT Auxillary buffer
GLX DEPTH BUFFER BIT Depth buffer

GLX STENCIL BUFFER BIT Stencil buffer
GLX ACCUM BUFFER BIT Accumulation buffer

Table 3.6: Masks identifying clobbered buffers.

} GLXPbufferClobberEvent;

If an implementation doesn’t support the allocation of pbuffers, then it doesn’t
need to support the generation of GLXPbufferClobberEvents.

A single X server operation can cause several pbuffer clobber events to be
sent (e.g., a single pbuffer may be damaged and cause multiple pbuffer clobber
events to be generated). Each event specifies one region of the GLXDrawable
that was affected by the X Server operation. buffer mask indicates which color or
ancillary buffers were affected; the bits that may be present in the mask are listed
in Table 3.6. All the pbuffer clobber events generated by a single X server action
are guaranteed to be contiguous in the event queue. The conditions under which
this event is generated and the value of event type varies, depending on the type of
the GLXDrawable.

When the GLX AUX BUFFERS BIT is set in buffer mask, then aux buffer is
set to indicate which buffer was affected. If more than one aux buffer was af-
fected, then additional events are generated as part of the same contiguous event
group. Each additional event will have only the GLX AUX BUFFERS BIT set in
buffer mask, and the aux buffer field will be set appropriately. For non-stereo
drawables, GLX FRONT LEFT BUFFER BIT and GLX BACK LEFT BUFFER BIT are
used to specify the front and back color buffers.

For preserved pbuffers, a pbuffer clobber event, with event type GLX SAVED, is
generated whenever the contents of a pbuffer has to be moved to avoid being dam-
aged. The event(s) describes which portions of the pbuffer were affected. Clients
who receive many pbuffer clobber events, referring to different save actions, should
consider freeing the pbuffer resource in order to prevent the system from thrashing
due to insufficient resources.

Version 1.4 - December 16, 2005

3.3. FUNCTIONS 33

For an unpreserved pbuffer a pbuffer clobber event, with event type
GLX DAMAGED, is generated whenever a portion of the pbuffer becomes invalid.

For GLX windows, pbuffer clobber events with event type GLX SAVED occur
whenever an ancillary buffer, associated with the window, gets moved out of off-
screen memory. The event contains information indicating which color or ancillary
buffers, and which portions of those buffers, were affected. GLX windows don’t
generate pbuffer clobber events when clobbering each others’ ancillary buffers,
only standard X11 damage events

3.3.9 Synchronization Primitives

To prevent X requests from executing until any outstanding OpenGL rendering is
done, call

void glXWaitGL(void);

OpenGL calls made prior to glXWaitGL are guaranteed to be executed before
X rendering calls made after glXWaitGL. While the same result can be achieved
using glFinish, glXWaitGL does not require a round trip to the server, and is there-
fore more efficient in cases where the client and server are on separate machines.

glXWaitGL is ignored if there is no current rendering context. If the draw-
able associated with the calling thread’s current context is no longer valid, a
GLXBadCurrentDrawable error is generated.

To prevent the OpenGL command sequence from executing until any outstand-
ing X requests are completed, call

void glXWaitX(void);

X rendering calls made prior to glXWaitX are guaranteed to be executed be-
fore OpenGL rendering calls made after glXWaitX. While the same result can
be achieved using XSync, glXWaitX does not require a round trip to the server,
and may therefore be more efficient.

glXWaitX is ignored if there is no current rendering context. If the draw-
able associated with the calling thread’s current context is no longer valid, a
GLXBadCurrentDrawable error is generated.

3.3.10 Double Buffering

For drawables that are double buffered, the contents of the back buffer can be made
potentially visible (i.e., become the contents of the front buffer) by calling

Version 1.4 - December 16, 2005

34 CHAPTER 3. FUNCTIONS AND ERRORS

void glXSwapBuffers(Display *dpy, GLXDrawable
draw);

The contents of the back buffer then become undefined. This operation is a no-op
if draw was created with a non-double-buffered GLXFBConfig, or if draw is a
GLXPixmap.

All GLX rendering contexts share the same notion of which are front buffers
and which are back buffers for a given drawable. This notion is also shared with
the X double buffer extension (DBE).

When multiple threads are rendering to the same drawable, only one of them
need call glXSwapBuffers and all of them will see the effect of the swap. The
client must synchronize the threads that perform the swap and the rendering, using
some means outside the scope of GLX, to insure that each new frame is completely
rendered before it is made visible.

If dpy and draw are the display and drawable for the calling thread’s cur-
rent context, glXSwapBuffers performs an implicit glFlush. Subsequent OpenGL
commands can be issued immediately, but will not be executed until the buffer
swapping has completed, typically during vertical retrace of the display monitor.

If draw is not a valid GLX drawable, glXSwapBuffers generates a
GLXBadDrawable error. If dpy and draw are the display and drawable asso-
ciated with the calling thread’s current context, and if draw is a window that is no
longer valid, a GLXBadCurrentDrawable error is generated. If the X Window
underlying draw is no longer valid, a GLXBadWindow error is generated.

3.3.11 Access to X Fonts

A shortcut for using X fonts is provided by the command

void glXUseXFont(Font font, int first, int
count, int list base);

count display lists are defined starting at list base, each list consisting of a single
call on glBitmap. The definition of bitmap list base + i is taken from the glyph first
+ i of font. If a glyph is not defined, then an empty display list is constructed for it.
The width, height, xorig, and yorig of the constructed bitmap are com-
puted from the font metrics as rbearing-lbearing, ascent+descent,
-lbearing, and descent respectively. xmove is taken from the widthmetric
and ymove is set to zero.

Note that in the direct rendering case, this requires that the bitmaps be copied
to the client’s address space.

glXUseXFont performs an implicit glFlush.

Version 1.4 - December 16, 2005

3.4. BACKWARDS COMPATIBILITY 35

glXUseXFont is ignored if there is no current GLX rendering context.
BadFont is generated if font is not a valid X font id. GLXBadContextState
is generated if the current GLX rendering context is in display list construction
mode. GLXBadCurrentDrawable is generated if the drawable associated with
the calling thread’s current context is no longer valid.

3.3.12 Obtaining Extension Function Pointers

The GL and GLX extensions which are available to a client application may vary at
runtime. Therefore, the address of extension functions may be queried at runtime.
The function

void (*glXGetProcAddress(const ubyte

*procname))();

returns the address of the extension function named by procName. procName must
be a NULL-terminated string. The pointer returned should be cast to a function
pointer type matching the extension function’s definition in that extension specifi-
cation. A return value of NULL indicates that the specified function does not exist
for the implementation.

A non-NULL return value for glXGetProcAddress does not guarantee that an
extension function is actually supported at runtime. The client must also query
glGetString(GL EXTENSIONS) or glXQueryExtensionsString to determine if an
extension is supported by a particular context.

GL function pointers returned by glXGetProcAddress are independent of the
currently bound context and may be used by any context which supports the exten-
sion.

glXGetProcAddress may be queried for all of the following functions:

• All GL and GLX extension functions supported by the implementation
(whether those extensions are supported by the current context or not).

• All core (non-extension) functions in GL and GLX from version 1.0 up to
and including the versions of those specifications supported by the imple-
mentation, as determined by glGetString(GL VERSION) and glXQueryVer-
sion queries.

3.4 Backwards Compatibility

GLXFBConfigs were introduced in GLX 1.3. Also, new functions for managing
drawable configurations, creating pixmaps, destroying pixmaps, creating contexts

Version 1.4 - December 16, 2005

36 CHAPTER 3. FUNCTIONS AND ERRORS

and making a context current were introduced. The 1.2 versions of these func-
tions are still available and are described in this section. Even though these older
function calls are supported their use is not recommended.

3.4.1 Using Visuals for Configuration Management

In order to maintain backwards compatibility, visuals continue to be over-
loaded with information describing the ancillary buffers and color buffers for
GLXPixmaps and Windows. Note that Visuals cannot be used to create
GLXPbuffers. Also, not all configuration attributes are exported through visuals
(e.g., there is no visual attribute to describe which drawables are supported by the
visual.)

The set of extended Visuals is fixed at server start up time. Thus a server can
export multiple Visuals that differ only in the extended attributes. Implementors
may choose to export fewer GLXDrawable configurations through visuals than
through GLXFBConfigs.

The X protocol allows a single VisualID to be instantiated at multi-
ple depths. Since GLX allows only one depth for any given VisualID, an
XVisualInfo is used by GLX functions. An XVisualInfo is a {Visual,
Screen, Depth} triple and can therefore be interpreted unambiguously.

The constants shown in Table 3.7 are passed to glXGetConfig and glXChoo-
seVisual to specify which attributes are being queried.

To obtain a description of an OpenGL attribute exported by a Visual use

int glXGetConfig(Display *dpy, XVisualInfo

*visual, int attribute, int *value);

glXGetConfig returns through value the value of the attribute of visual.
glXGetConfig returns one of the following error codes if it fails, and Success

otherwise:

GLX NO EXTENSION dpy does not support the GLX extension.

GLX BAD SCREEN screen of visual does not correspond to a screen.

GLX BAD ATTRIBUTE attribute is not a valid GLX attribute.

GLX BAD VISUAL visual does not support GLX and an attribute other than
GLX USE GL was specified.

GLX BAD VALUE parameter invalid

Version 1.4 - December 16, 2005

3.4. BACKWARDS COMPATIBILITY 37

Attribute Type Notes
GLX USE GL boolean True if OpenGL rendering supported

GLX BUFFER SIZE integer depth of the color buffer
GLX LEVEL integer frame buffer level
GLX RGBA boolean True if RGBA rendering supported

GLX DOUBLEBUFFER boolean True if color buffers have front/back pairs
GLX STEREO boolean True if color buffers have left/right pairs

GLX AUX BUFFERS integer number of auxiliary color buffers
GLX RED SIZE integer number of bits of Red in the color buffer

GLX GREEN SIZE integer number of bits of Green in the color buffer
GLX BLUE SIZE integer number of bits of Blue in the color buffer
GLX ALPHA SIZE integer number of bits of Alpha in the color buffer
GLX DEPTH SIZE integer number of bits in the depth buffer

GLX STENCIL SIZE integer number of bits in the stencil buffer
GLX ACCUM RED SIZE integer number Red bits in the accumulation buffer
GLX ACCUM GREEN SIZE integer number Green bits in the accumulation buffer
GLX ACCUM BLUE SIZE integer number Blue bits in the accumulation buffer
GLX ACCUM ALPHA SIZE integer number Alpha bits in the accumulation buffer
GLX SAMPLE BUFFERS integer number of multisample buffers

GLX SAMPLES integer number of samples per pixel
GLX FBCONFIG ID integer XID of most closely associated GLXFBConfig

Table 3.7: GLX attributes for Visuals.

Version 1.4 - December 16, 2005

38 CHAPTER 3. FUNCTIONS AND ERRORS

Attribute Default Selection Criteria
GLX USE GL True Exact

GLX BUFFER SIZE 0 Smaller
GLX LEVEL 0 Exact
GLX RGBA False Exact

GLX DOUBLEBUFFER False Exact
GLX STEREO False Exact

GLX AUX BUFFERS 0 Smaller
GLX RED SIZE 0 Larger

GLX GREEN SIZE 0 Larger
GLX BLUE SIZE 0 Larger
GLX ALPHA SIZE 0 Larger
GLX DEPTH SIZE 0 Larger
GLX STENCIL SIZE 0 Smaller
GLX ACCUM RED SIZE 0 Larger

GLX ACCUM GREEN SIZE 0 Larger
GLX ACCUM BLUE SIZE 0 Larger
GLX ACCUM ALPHA SIZE 0 Larger
GLX SAMPLE BUFFERS 0 Smaller

GLX SAMPLES 0 Smaller

Table 3.8: Defaults and selection criteria used by glXChooseVisual.

A GLX implementation may export many visuals that support OpenGL. These
visuals support either color index or RGBA rendering. RGBA rendering can be
supported only by Visuals of type TrueColor or DirectColor (unless
GLXFBConfigs are used), and color index rendering can be supported only by
Visuals of type PseudoColor or StaticColor.

glXChooseVisual is used to find a visual that matches the client’s specified
attributes.

XVisualInfo *glXChooseVisual(Display *dpy, int
screen, int *attrib list);

glXChooseVisual returns a pointer to an XVisualInfo structure describing the
visual that best matches the specified attributes. If no matching visual exists, NULL
is returned.

The attributes are matched in an attribute-specific manner, as shown in Ta-
ble 3.8. The definitions for the selection criteria Smaller, Larger, and Exact

Version 1.4 - December 16, 2005

3.4. BACKWARDS COMPATIBILITY 39

are given in section 3.3.3.
If GLX RGBA is in attrib list then the resulting visual will be TrueColor or

DirectColor. If all other attributes are equivalent, then a TrueColor visual
will be chosen in preference to a DirectColor visual.

If GLX RGBA is not in attrib list then the returned visual will be
PseudoColor or StaticColor. If all other attributes are equivalent then a
PseudoColor visual will be chosen in preference to a StaticColor visual.

If GLX FBCONFIG ID is specified in attrib list, then it is ignored (however, if
present, it must still be followed by an attribute value).

If an attribute is not specified in attrib list, then the default value is used. See
Table 3.8 for a list of defaults.

Default specifications are superseded by the attributes included in attrib list.
Integer attributes are immediately followed by the corresponding desired value.
Boolean attributes appearing in attrib list have an implicit True value; such at-
tributes are never followed by an explicit True or False value. The list is termi-
nated with None.

To free the data returned, use XFree.
NULL is returned if an undefined GLX attribute is encountered.

3.4.2 Off Screen Rendering

A GLXPixmap can be created using by calling

GLXPixmap glXCreateGLXPixmap(Display *dpy,
XVisualInfo *visual, Pixmap pixmap);

Calling glXCreateGLXPixmap(dpy, visual, pixmap) is equivalent to calling glX-
CreatePixmap(dpy, config, pixmap, NULL) where config is the GLXFBConfig
identified by the GLX FBCONFIG ID attribute of visual. Before calling glXCre-
ateGLXPixmap, clients must first create an X Pixmap of the depth specified
by visual. The GLXFBConfig identified by the GLX FBCONFIG ID attribute of
visual is associated with the resulting pixmap. Any compatible GLX rendering
context can be used to render into this offscreen area.

If the depth of pixmap does not match the depth value reported by core X11
for visual, or if pixmap was not created with respect to the same screen as visual,
then a BadMatch error is generated. If visual is not valid (e.g., if GLX does not
support it), then a BadValue error is generated. If pixmap is not a valid pixmap
id, then a BadPixmap error is generated. Finally, if the server cannot allocate the
new GLX pixmap, a BadAlloc error is generated.

A GLXPixmap created by glXCreateGLXPixmap can be destroyed by call-
ing

Version 1.4 - December 16, 2005

40 CHAPTER 3. FUNCTIONS AND ERRORS

void glXDestroyGLXPixmap(Display *dpy, GLXPixmap
pixmap);

This function is equivalent to glXDestroyPixmap; however, GLXPixmaps cre-
ated by calls other than glXCreateGLXPixmap should not be passed to glXDe-
stroyGLXPixmap.

3.5 Rendering Contexts

An OpenGL rendering context may be created by calling

GLXContext glXCreateContext(Display *dpy,
XVisualInfo *visual, GLXContext share list,
Bool direct);

Calling glXCreateContext(dpy, visual, share list, direct) is equivalent to call-
ing glXCreateNewContext(dpy, config, render type, share list, direct) where
config is the GLXFBConfig identified by the GLX FBCONFIG ID attribute of
visual. If visual’s GLX RGBA attribute is True then render type is taken as
GLX RGBA TYPE, otherwise GLX COLOR INDEX TYPE. The GLXFBConfig iden-
tified by the GLX FBCONFIG ID attribute of visual is associated with the resulting
context.

glXCreateContext can generate the following errors: GLXBadContext if
share list is neither zero nor a valid GLX rendering context; BadValue if visual
is not a valid X Visual or if GLX does not support it; BadMatch if share list
defines an address space that cannot be shared with the newly created context or
if share list was created on a different screen than the one referenced by visual;
BadAlloc if the server does not have enough resources to allocate the new con-
text.

To make a context current, call

Bool glXMakeCurrent(Display *dpy, GLXDrawable
draw, GLXContext ctx);

Calling glXMakeCurrent(dpy, draw, ctx) is equivalent to calling glXMakeCon-
textCurrent(dpy, draw, draw, ctx). Note that draw will be used for both the draw
and read drawable.

If ctx and draw are not compatible then a BadMatch error will be generated.
Some implementations may enforce a stricter rule and generate a BadMatch error
if ctx and draw were not created with the same XVisualInfo.

Version 1.4 - December 16, 2005

3.5. RENDERING CONTEXTS 41

If ctx is current to some other thread, then glXMakeCurrent will generate
a BadAccess error. GLXBadContextState is generated if there is a current
rendering context and its render mode is either GL FEEDBACK or GL SELECT. If ctx
is not a valid GLX rendering context, GLXBadContext is generated. If draw is
not a valid GLXPixmap or a valid Window, a GLXBadDrawable error is gener-
ated. If the previous context of the calling thread has unflushed commands, and the
previous drawable is a window that is no longer valid, GLXBadCurrentWindow
is generated. Finally, note that the ancillary buffers for draw need not be allocated
until they are needed. A BadAlloc error will be generated if the server does not
have enough resources to allocate the buffers.

To release the current context without assigning a new one, use NULL for ctx
and None for draw. If ctx is NULL and draw is not None, or if draw is None and
ctx is not NULL, then a BadMatch error will be generated.

Version 1.4 - December 16, 2005

Chapter 4

Encoding on the X Byte Stream

In the remote rendering case, the overhead associated with interpreting the GLX
extension requests must be minimized. For this reason, all commands have been
broken up into two categories: OpenGL and GLX commands that are each imple-
mented as a single X extension request and OpenGL rendering requests that are
batched within a GLXRender request.

4.1 Requests that hold a single extension request

Each of the commands from <glx.h> (that is, the glX* commands) is encoded by
a separate X extension request. In addition, there is a separate X extension request
for each of the OpenGL commands that cannot be put into a display list. That list
consists of all the glGet* commands plus

glAreTexturesResident
glDeleteLists
glDeleteTextures
glEndList
glFeedbackBuffer
glFinish
glFlush
glGenLists
glGenTextures
glIsEnabled
glIsList
glIsTexture
glNewList

42

4.2. REQUEST THAT HOLDS MULTIPLE OPENGL COMMANDS 43

glPixelStoref
glPixelStorei
glReadPixels
glRenderMode
glSelectBuffer

The two PixelStore commands (glPixelStorei and glPixelStoref) are exceptions.
These commands are issued to the server only to allow it to set its error state appro-
priately. Pixel storage state is maintained entirely on the client side. When pixel
data is transmitted to the server (by glDrawPixels, for example), the pixel storage
information that describes it is transmitted as part of the same protocol request.
Implementations may not change this behavior, because such changes would cause
shared contexts to behave incorrectly.

4.2 Request that holds multiple OpenGL commands

The remaining OpenGL commands are those that may be put into display lists.
Multiple occurrences of these commands are grouped together into a single X ex-
tension request (GLXRender). This is diagrammed in Figure 4.1.

The grouping minimizes dispatching within the X server. The library packs as
many OpenGL commands as possible into a single X request (without exceeding
the maximum size limit). No OpenGL command may be split across multiple
GLXRender requests.

For OpenGL commands whose encoding is longer than the maximum X re-
quest size, a series of GLXRenderLarge commands are issued. The structure of
the OpenGL command within GLXRenderLarge is the same as for GLXRender.

Note that it is legal to have a glBegin in one request, followed by glVertex
commands, and eventually the matching glEnd in a subsequent request. A com-
mand is not the same as an OpenGL primitive.

4.3 Wire representations and byte swapping

Unsigned and signed integers are represented as they are represented in the core X
protocol. Single and double precision floating point numbers are sent and received
in IEEE floating point format. The X byte stream and network specifications make
it impossible for the client to assure that double precision floating point numbers
will be naturally aligned within the transport buffers of the server. For those archi-

Version 1.4 - December 16, 2005

44 CHAPTER 4. ENCODING ON THE X BYTE STREAM

GLX

Render

GLXCore
X

data
single

data cmd data cmd data

Figure 4.1. GLX byte stream.

Version 1.4 - December 16, 2005

4.4. SEQUENTIALITY 45

tectures that require it, the server or client must copy those floating point numbers
to a properly aligned buffer before using them.

Byte swapping on the encapsulated OpenGL byte stream is performed by the
server using the same rule as the core X protocol. Single precision floating point
values are swapped in the same way that 32-bit integers are swapped. Double
precision floating point values are swapped across all 8 bytes.

4.4 Sequentiality

There are two sequences of commands: the X stream, and the OpenGL stream. In
general these two streams are independent: Although the commands in each stream
will be processed in sequence, there is no guarantee that commands in the separate
streams will be processed in the order in which they were issued by the calling
thread.

An exception to this rule arises when a single command appears in both
streams. This forces the two streams to rendezvous.

Because the processing of the two streams may take place at different rates,
and some operations may depend on the results of commands in a different stream,
we distinguish between commands assigned to each of the X and OpenGL streams.

The following commands are processed on the client side and therefore do not
exist in either the X or the OpenGL stream:

glXGetClientString
glXGetCurrentContext
glXGetCurrentDisplay
glXGetCurrentDrawable
glXGetCurrentReadDrawable
glXGetConfig
glXGetFBConfigAttrib
glXGetFBConfigs
glXGetProcAddress
glXGetVisualFromFBConfig

The following commands are in the X stream and obey the sequentiality guar-
antees for X requests:

glXChooseFBConfig
glXChooseVisual
glXCreateContext

Version 1.4 - December 16, 2005

46 CHAPTER 4. ENCODING ON THE X BYTE STREAM

glXCreateGLXPixmap
glXCreateNewContext
glXCreatePbuffer
glXCreatePixmap
glXCreateWindow
glXDestroyContext
glXDestroyGLXPixmap
glXDestroyPbuffer
glXDestroyPixmap
glXDestroyWindow
glXMakeContextCurrent
glXMakeCurrent
glXIsDirect
glXQueryContext
glXQueryDrawable
glXQueryExtension
glXQueryExtensionsString
glXQueryServerString
glXQueryVersion
glXSelectEvent
glXWaitGL
glXSwapBuffers (see below)
glXCopyContext (see below)

glXSwapBuffers is in the X stream if and only if the display and drawable
are not those belonging to the calling thread’s current context; otherwise it is in
the OpenGL stream. glXCopyContext is in the X stream alone if and only if its
source context differs from the calling thread’s current context; otherwise it is in
both streams.

Commands in the OpenGL stream, which obey the sequentiality guarantees for
OpenGL requests are:

glXWaitX
glXSwapBuffers (see below)
All OpenGL Commands

glXSwapBuffers is in the OpenGL stream if and only if the display and draw-
able are those belonging to the calling thread’s current context; otherwise it is in
the X stream.

Version 1.4 - December 16, 2005

4.4. SEQUENTIALITY 47

Commands in both streams, which force a rendezvous, are:

glXCopyContext (see below)
glXUseXFont

glXCopyContext is in both streams if and only if the source context is the
same as the current context of the calling thread; otherwise it is in the X stream
only.

Version 1.4 - December 16, 2005

Chapter 5

Extending OpenGL

OpenGL implementors may extend OpenGL by adding new OpenGL commands
or additional enumerated values for existing OpenGL commands. When a new
vendor-specific command is added, GLX protocol must also be defined. If the
new command is one that cannot be added to a display list, then protocol for a
new glXVendorPrivate or glXVendorPrivateWithReply request is required; oth-
erwise protocol for a new rendering command that can be sent to the X Server as
part of a glXRender or glXRenderLarge request is required.

The OpenGL Architectural Review Board maintains a registry of vendor-
specific enumerated values; opcodes for vendor private requests, vendor private
with reply requests, and OpenGL rendering commands; and vendor-specific error
codes and event codes.

New names for OpenGL functions and enumerated types must clearly indicate
whether some particular feature is in the core OpenGL or is vendor specific. To
make a vendor-specific name, append a company identifier (in upper case) and any
additional vendor-specific tags (e.g. machine names). For instance, SGI might
add new commands and manifest constants of the form glNewCommandSGI and
GL NEW DEFINITION SGI. If two or more licensees agree in good faith to imple-
ment the same extension, and to make the specification of that extension publicly
available, the procedures and tokens that are defined by the extension can be suf-
fixed by EXT.

Implementors may also extend GLX. As with OpenGL, the new names must
indicate whether or not the feature is vendor-specific. (e.g., SGI might add
new GLX commands and constants of the form glXNewCommandSGI and
GLX NEW DEFINITION SGI). When a new GLX command is added, protocol for
a new glXVendorPrivate or glXVendorPrivateWithReply request is required.

48

Chapter 6

GLX Versions

Each version of GLX supports all versions of OpenGL up to at least the version
shown in Table 6.1 corresponding to the given GLX version. Later versions of
OpenGL may be supported as well, with some limitations. In particular, if the
underlying GLX implementation does not define indirect rendering protocol for all
the functions in a later version of OpenGL, it cannot fully support that version on
indirect contexts.

6.1 Version 1.1

The following GLX commands were added in GLX Version 1.1:

glXQueryExtensionsString
glXGetClientString
glXQueryServerString

GLX Version Highest OpenGL
Version Supported

GLX 1.0 OpenGL 1.0
GLX 1.1 OpenGL 1.0
GLX 1.2 OpenGL 1.1
GLX 1.3 OpenGL 1.2
GLX 1.4 OpenGL 1.3

Table 6.1: Relationship of OpenGL and GLX versions.

49

50 CHAPTER 6. GLX VERSIONS

6.2 Version 1.2

The command glXGetCurrentDisplay was added in GLX Version 1.2.

6.3 Version 1.3

The following GLX commands were added in GLX Version 1.3:

glXGetFBConfigs
glXChooseFBConfig
glXGetFBConfigAttrib
glXGetVisualFromFBConfig
glXCreateWindow
glXDestroyWindow
glXCreatePixmap
glXDestroyPixmap
glXCreatePbuffer
glXDestroyPbuffer
glXQueryDrawable
glXCreateNewContext
glXMakeContextCurrent
glXGetCurrentReadDrawable
glXGetCurrentDisplay
glXQueryContext
glXSelectEvent
glXGetSelectedEvent

6.4 Version 1.4

The command glXGetProcAddress was added in GLX Version 1.4, promoted
from the GLX ARB get proc address extension.

The GLX SAMPLE BUFFERS and GLX SAMPLES attributes were added, enabling
implementations to export GLXFBConfigs and Visuals with multisample ca-
pability. These attributes were promoted from the GLX ARB multisample exten-
sion.

Version 1.4 - December 16, 2005

Chapter 7

Glossary

Address Space the set of objects or memory locations accessible through a single
name space. In other words, it is a data region that one or more processes
may share through pointers.

Client an X client. An application communicates to a server by some path. The
application program is referred to as a client of the window system server.
To the server, the client is the communication path itself. A program with
multiple connections is viewed as multiple clients to the server. The resource
lifetimes are controlled by the connection lifetimes, not the application pro-
gram lifetimes.

Compatible an OpenGL rendering context is compatible with (may be used to
render into) a GLXDrawable if they meet the constraints specified in sec-
tion 2.1.

Connection a bidirectional byte stream that carries the X (and GLX) protocol
between the client and the server. A client typically has only one connection
to a server.

(Rendering) Context a OpenGL rendering context. This is a virtual OpenGL ma-
chine. All OpenGL rendering is done with respect to a context. The state
maintained by one rendering context is not affected by another except in
case of shared display lists and textures.

GLXContext a handle to a rendering context. Rendering contexts consist of client
side state and server side state.

Similar a potential correspondence among GLXDrawables and rendering con-
texts. Windows and GLXPixmaps are similar to a rendering context are

51

52 CHAPTER 7. GLOSSARY

similar if, and only if, they have been created with respect to the same
VisualID and root window.

Thread one of a group of processes all sharing the same address space. Typically,
each thread will have its own program counter and stack pointer, but the text
and data spaces are visible to each of the threads. A thread that is the only
member of its group is equivalent to a process.

Version 1.4 - December 16, 2005

Index of GLX Commands

BadAccess, 27, 29, 41
BadAlloc, 21, 23, 25–27, 39–41
BadFont, 35
BadMatch, 21, 23, 25–29, 39–41
BadPixmap, 23, 39
BadValue, 26, 39, 40
BadWindow, 21

GL ALL ATTRIB BITS, 29
GL BACK, 28
GL DRAW BUFFER, 28
GL EXTENSIONS, 35
GL FEEDBACK, 9, 27, 41
GL NEW DEFINITION SGI, 48
GL READ BUFFER, 27, 28
GL SELECT, 9, 27, 41
GL TEXTURE 1D, 6
GL TEXTURE 2D, 6
GL TEXTURE 3D, 6
GL VERSION, 35
glAreTexturesResident, 42
glBegin, 9, 10, 43
glBindTexture, 7
glBitmap, 34
glCopyColorTable, 28
glCopyPixels, 27, 28
glDeleteLists, 6, 42
glDeleteTextures, 42
glDrawBuffer, 28
glDrawPixels, 43
glEnd, 9, 10, 43
glEndList, 6, 42
glFeedbackBuffer, 42
glFinish, 8, 33, 42
glFlush, 3, 29, 34, 42
glGenLists, 42

glGenTextures, 42
glGet, 28
glGet*, 4, 42
glGetString, 35
glIsEnabled, 42
glIsList, 42
glIsTexture, 42
glListBase, 6
glNewCommandSGI, 48
glNewList, 6, 42
glPixelStoref, 43
glPixelStorei, 43
glPopAttrib, 28, 29
glPushAttrib, 28, 29
glReadBuffer, 28
glReadPixels, 24, 25, 27, 28, 43
glRenderMode, 9, 43
glScissor, 28
glSelectBuffer, 43
glVertex, 43
glViewport, 28
glX*, 42
GLX * SIZE, 12
GLX ACCUM ALPHA SIZE, 13, 19,

20, 37, 38
GLX ACCUM BLUE SIZE, 13, 19, 20,

37, 38
GLX ACCUM BUFFER BIT, 32
GLX ACCUM GREEN SIZE, 13, 19,

20, 37, 38
GLX ACCUM RED SIZE, 13, 19, 20,

37, 38
GLX ALPHA SIZE, 12, 13, 19, 20, 37,

38
GLX ARB get proc address, 50
GLX ARB multisample, 50

53

54 INDEX

GLX AUX BUFFERS, 13, 19, 20, 37,
38

GLX AUX BUFFERS BIT, 32
GLX BACK LEFT BUFFER BIT, 32
GLX BACK RIGHT BUFFER BIT, 32
GLX BAD ATTRIBUTE, 20, 30, 36
GLX BAD SCREEN, 36
GLX BAD VALUE, 36
GLX BAD VISUAL, 36
GLX BLUE SIZE, 12, 13, 19, 20, 37, 38
GLX BUFFER SIZE, 12, 13, 19, 20, 37,

38
GLX COLOR INDEX BIT, 14, 16
GLX COLOR INDEX TYPE, 26, 40
GLX CONFIG CAVEAT, 13, 15, 16,

18, 19
GLX DAMAGED, 31, 33
GLX DEPTH BUFFER BIT, 32
GLX DEPTH SIZE, 13, 19, 20, 37, 38
GLX DIRECT COLOR, 15, 20
GLX DONT CARE, 17, 19, 20
GLX DOUBLEBUFFER, 13, 19, 20,

37, 38
GLX DRAWABLE TYPE, 13–16, 18,

19, 21
GLX EXTENSIONS, 11
GLX FBCONFIG ID, 13, 18, 19, 25,

30, 37, 39, 40
GLX FRONT LEFT BUFFER BIT, 32
GLX FRONT RIGHT BUFFER BIT,

32
GLX GRAY SCALE, 15, 20
GLX GREEN SIZE, 12, 13, 19, 20, 37,

38
GLX HEIGHT, 25
GLX LARGEST PBUFFER, 23–25
GLX LEVEL, 13, 17–19, 37, 38
GLX MAX PBUFFER HEIGHT, 13,

16, 18
GLX MAX PBUFFER PIXELS, 13,

16–18
GLX MAX PBUFFER WIDTH, 13,

16, 18
GLX NEW DEFINITION SGI, 48
GLX NO EXTENSION, 36

GLX NON CONFORMANT CONFIG,
15, 16, 18

GLX NONE, 14–16, 18, 19
GLX PBUFFER, 31
GLX PBUFFER BIT, 14
GLX PBUFFER CLOBBER MASK,

31
GLX PBUFFER HEIGHT, 23, 24
GLX PBUFFER WIDTH, 23, 24
GLX PbufferClobber, 10
GLX PIXMAP BIT, 14
GLX PRESERVED CONTENTS, 23–

25
GLX PSEUDO COLOR, 15, 20
GLX RED SIZE, 12, 13, 16, 18–20, 37,

38
GLX RENDER TYPE, 13–16, 19, 30
GLX RGBA, 37–40
GLX RGBA BIT, 14, 15, 19
GLX RGBA TYPE, 26, 40
GLX SAMPLE BUFFERS, 12, 13, 19,

20, 37, 38, 50
GLX SAMPLES, 12, 13, 19, 20, 37, 38,

50
GLX SAVED, 31–33
GLX SCREEN, 30
GLX SLOW CONFIG, 15, 18
GLX STATIC COLOR, 15, 20
GLX STATIC GRAY, 15, 20
GLX STENCIL BUFFER BIT, 32
GLX STENCIL SIZE, 13, 19, 20, 37, 38
GLX STEREO, 13, 17, 19, 37, 38
GLX TRANSPARENT ALPHA VALUE,

13, 16, 18, 19
GLX TRANSPARENT BLUE VALUE,

13, 16, 18, 19
GLX TRANSPARENT GREEN VALUE,

13, 16, 18, 19
GLX TRANSPARENT INDEX, 16
GLX TRANSPARENT INDEX VALUE,

13, 16, 18, 19
GLX TRANSPARENT RED VALUE,

13, 16, 18, 19
GLX TRANSPARENT RGB, 16
GLX TRANSPARENT TYPE, 13, 16,

Version 1.4 - December 16, 2005

INDEX 55

18, 19
GLX TRUE COLOR, 15, 20
GLX USE GL, 36–38
GLX VENDOR, 11
GLX VERSION, 11
GLX VISUAL ID, 13, 14, 18
GLX WIDTH, 25
GLX WINDOW, 31
GLX WINDOW BIT, 14–16, 18, 19, 21
GLX X RENDERABLE, 13, 14, 19
GLX X VISUAL TYPE, 13, 14, 18–20
GLXBadContext, 9, 26, 27, 29, 30, 40,

41
GLXBadContextState, 9, 27, 35, 41
GLXBadContextTag, 10
GLXBadCurrentDrawable, 9, 27, 29,

33–35
GLXBadCurrentWindow, 9, 41
GLXBadDrawable, 9, 25, 27, 31, 34, 41
GLXBadFBConfig, 9, 23, 25, 26
GLXBadLargeRequest, 10
GLXBadPbuffer, 10, 25
GLXBadPixmap, 10, 23
GLXBadRenderRequest, 10
GLXBadWindow, 10, 22, 27, 34
glXChooseFBConfig, 12, 17, 20, 21, 23,

25, 45, 50
glXChooseVisual, 36, 38, 45
GLXContext, 14
glXCopyContext, 28, 29, 46, 47
glXCreateContext, 40, 45
glXCreateGLXPixmap, 39, 40, 46
glXCreateNewContext, 25, 26, 40, 46,

50
glXCreatePbuffer, 16, 23, 25, 46, 50
glXCreatePixmap, 3, 22, 23, 39, 46, 50
glXCreateWindow, 21, 46, 50
glXDestroyContext, 26, 46
glXDestroyGLXPixmap, 40, 46
glXDestroyPbuffer, 25, 46, 50
glXDestroyPixmap, 23, 40, 46, 50
glXDestroyWindow, 21, 46, 50
GLXDrawable, 2, 3, 12, 22, 25, 27, 31,

32, 36, 51

GLXFBConfig, 2, 3, 9, 12–23, 25, 26,
29, 30, 34–40, 50

glXGet*, 30
glXGetClientString, 11, 12, 45, 49
glXGetConfig, 36, 45
glXGetCurrentContext, 30, 45
glXGetCurrentDisplay, 30, 45, 50
glXGetCurrentDrawable, 30, 45
glXGetCurrentReadDrawable, 30, 45,

50
glXGetFBConfigAttrib, 20, 45, 50
glXGetFBConfigs, 12, 17, 45, 50
glXGetProcAddress, 35, 45, 50
glXGetSelectedEvent, 31, 50
glXGetVisualFromFBConfig, 21, 45, 50
glXIsDirect, 26, 46
glXMakeContextCurrent, 27, 28, 40, 46,

50
glXMakeCurrent, 9, 40, 41, 46
glXNewCommandSGI, 48
GLXPbuffer, 2, 3, 10, 12, 14, 16, 22, 23,

25, 28, 31, 36
GLXPbufferClobberEvent, 32
GLXPixmap, 2, 3, 12, 14, 22, 23, 25, 27,

28, 34, 36, 39–41, 51
glXQuery*, 30
glXQueryContext, 30, 46, 50
glXQueryDrawable, 24, 25, 46, 50
glXQueryExtension, 10, 46
glXQueryExtensionsString, 11, 35, 46,

49
glXQueryServerString, 12, 46, 49
glXQueryVersion, 11, 35, 46
GLXRender, 42
glXSelectEvent, 24, 31, 46, 50
glXSwapBuffers, 23, 24, 34, 46
GLXUnsupportedPrivateRequest, 10
glXUseXFont, 34, 47
glXWaitGL, 8, 33, 46
glXWaitX, 8, 33, 46
GLXWindow, 2, 3, 10, 12, 21, 25, 27,

28, 31

None, 17, 21, 23, 24, 28, 30, 39, 41

PixelStore, 43

Version 1.4 - December 16, 2005

56 INDEX

Screen, 36
Success, 20, 30, 36

Visual, 3, 12, 14, 15, 21, 22, 36–38, 40
VisualID, 36
Visuals, 50

Window, 2, 3, 9, 21, 27, 28, 34, 41
Windows, 36

XFree, 20, 21, 39
XFreePixmap, 23
XSync, 8, 24, 33
XVisualInfo, 36

Version 1.4 - December 16, 2005

	Overview
	GLX Operation
	Rendering Contexts and Drawing Surfaces
	Using Rendering Contexts
	Direct Rendering and Address Spaces
	OpenGL Display Lists
	Texture Objects
	Aligning Multiple Drawables
	Multiple Threads

	Functions and Errors
	Errors
	Events
	Functions
	Initialization
	GLX Versioning
	Configuration Management
	On Screen Rendering
	Off Screen Rendering
	Querying Attributes
	Rendering Contexts
	Events
	Synchronization Primitives
	Double Buffering
	Access to X Fonts
	Obtaining Extension Function Pointers

	Backwards Compatibility
	Using Visuals for Configuration Management
	Off Screen Rendering

	Rendering Contexts

	Encoding on the X Byte Stream
	Requests that hold a single extension request
	Request that holds multiple OpenGL commands
	Wire representations and byte swapping
	Sequentiality

	Extending OpenGL
	GLX Versions
	Version 1.1
	Version 1.2
	Version 1.3
	Version 1.4

	Glossary

