

OpenGL®

Programming
on Mac OS® X

This page intentionally left blank

OpenGL®

Programming
on Mac OS® X
Architecture, Performance,
and Integration

Robert P. Kuehne
J. D. Sullivan

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the United States, please contact:

International Sales
(317) 382-3419
international@pearsontechgroup.com

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Kuehne, Robert P.
OpenGL programming on Mac OS X : architecture, performance, and integration / Robert P. Kuehne,

J. D. Sullivan.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-0-321-35652-9 (pbk. : alk. paper)
ISBN-10: 0-321-35652-7
1. Computer graphics. 2. OpenGL. 3. Mac OS. I. Sullivan, J. D. II. Title.
T385.K82 2007
006.6’6 dc22

2007011974
Copyright c© 2008 Robert P. Kuehne and J. D. Sullivan

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN 13: 978-0-321-35652-9
ISBN 10: 0-321-35652-7
Text printed in the United States on recycled paper at Donnelley in Crawfordsville, Indiana.
First printing, December 2007

http://www.awprofessional.com/safarienabled
www.awprofessional.com

For my family
—Bob

For my family
—John

In memory of democracy

This page intentionally left blank

Contents

List of Figures . xv
List of Tables . xix
List of Examples . xxi
Preface . xxv
Acknowledgments . xxix
About the Authors .xxxi

Chapter 1. Mac OpenGL Introduction 1

Why the Mac?. .2
Why OpenGL? . 3
The Book . 4

Chapter 2. OpenGL Architecture on OS X 7

Overview . 7
About OpenGL. .7

Mac OS X Implementation of the OpenGL Specification.11

OpenGL Feature Support. .14
API Layers . 15
The Mac OS OpenGL Plug-In Architecture . 17
Renderers . 18

Drivers . 21

Summary. .21

Chapter 3. Mac Hardware Architecture 23

Overview . 23
Data Flow and Limitations . 24

Problem Domains . 27

Know Thine OS Requirements . 27

CPU and Clock Rate . 28

vii

Bus . 28

Video Memory: VRAM . 30

RAM . 31

Summary. .32

Chapter 4. Application Programming on OS X 33

Overview . 33
Mac OS X Versions .33
System Configuration. .34
Power Management. .34
Filesystem. .38
Finding, Verifying, and Filing Bugs . 39
Threading . 41
Data Parallel Computation: SIMD. 42

PowerPC . 42

Intel . 43

Chapter 5. OpenGL Configuration and Integration 45

API Introductions and Overview . 46
Mac-Only APIs . 46

Cross-Platform APIs Supported on the Mac . 48

API Introduction and Overview Wrap-Up . 49

Configuration API Relationships. .49
Sharing OpenGL Data Between Contexts . 51

Framebuffers . 53

Chapter 6. The CGL API for OpenGL Configuration 55

Overview . 55
Error Handling . 57

Pixel Format Selection. .57
CGLChoosePixelFormat . 58

Policies and Buffer Sizing . 59

Render Targets . 60

Multisampling . 61

Stereo . 61

Selecting a Renderer . 61

viii Contents

Context Management .63
Renderer Information . 68

Sharing OpenGL Objects Across CGL Contexts 76

Drawables . 77
Pixel Buffers . 78

Off-Screen Drawables . 82

Full-Screen Drawables. .82

Virtual Screen Management . 83

Global CGL State Functions . 84

Using CGL Macros . 86
Summary. .86

Chapter 7. The AGL API for OpenGL Configuration 89

Overview . 89
Software Layering . 90
Pixel Format and Context . 91

Full-Screen Application . 92

Windowed Application . 101

Summary . 104

Additional Topics . 104
Renderers. .104

Context Sharing . 107

Alternative Rendering Destinations . 109
Off-Screen Surfaces . 109

Pbuffers . 110

Render-to/Copy-to-Texture . 114

Framebuffer Objects . 117

Summary . 120

Chapter 8. The Cocoa API for OpenGL Configuration 121

Overview. 122
NSOpenGLView. 122
NSView . 133
Additional Topics . 140

Manipulating Images and Pixels in OpenGL . 140

Context Sharing . 141

Full-Screen Surfaces. .149

Contents ix

Display Capture . 149

Event Handling . 151

Alternative Rendering Destinations . 152
Framebuffer Objects . 153

Copy-to-Texture . 158

Pbuffer, Off-Screen, and Other Intermediate Targets 161

Summary . 162

Chapter 9. The GLUT API for OpenGL Configuration 163

Overview. 164
Configuration and Setup . 165

Pixel Format . 167

Summary . 171

Chapter 10. API Interoperability 173

Overview. 173
Cocoa Image: NSImage . 174

Basic NSImage . 174

NSImage to OpenGL . 176

OpenGL to NSImage . 182

QuickTime . 184
Overview . 184

QuickTime to OpenGL . 185

OpenGL to QuickTime . 191

High-Performance QuickTime in OpenGL . 192

Summary . 193

Chapter 11. Performance 195

Overview. 195
Axioms for Designing High-Performance
OpenGL Applications . 196

Minimize State Changes . 196

Retained Mode versus Immediate Mode Rendering 198

Unidirectional Data Flow . 199

Use Shaders Where Possible . 200

OpenGL for Mac OS X Rules of Thumb for Performance 201
Minimize Data Copies . 201

x Contents

The OpenGL Multithreaded Engine .202
Minimizing Function Call Overhead . 204

Minimize CPU and GPU Idle Time by Using
Asynchronous Calls . 204

Share Data Across Contexts When Possible . 207

Metrics. .207
Frame Rate . 207

Throughput . 209

Efficient Data Management Using Mac OpenGL 209
Efficient Handling of Vertex Data. .210

A Brief History of the Evolution of Submitting Vertices
in OpenGL . 210

Which Methods Should You Use to Submit Vertices
for Drawing?. .213

Apple’s Methods of Vertex Submission, Past and Present.214

Efficient Handling of Texture Data . 221
Formats and Types . 221

Pixel Pipeline and Imaging Subset State . 223

Alignment Considerations .224

Textures . 225
Compressed Textures . 225

Alignment Considerations .225

Shaders . 226
Tools .226

System Tools . 227

Graphics Tools . 228
OpenGL Profiler . 228

OpenGL Driver Monitor . 235

Pixie . 236

Putting It All Together .237
About Please Tune Me. .237

Please Tune Me 1 . 238

Please Tune Me 2 . 240

Please Tune Me 3 . 240

Please Tune Me 4 . 241

Please Tune Me 5 . 241

Please Tune Me 6 . 243

Summary . 243

Contents xi

Chapter 12. Mac Platform Compatibility 245

Mac OS Versions . 245
10.0 through 10.1 . 245

10.2 (Jaguar) . 246

10.3 (Panther) . 246

10.4 (Tiger). .246

10.5 and Beyond . 248

OpenGL Platform Identification . 248
Mac OS Version Identification . 249
Summary . 251

Chapter 13. OpenGL Extensions 253

Overview. 253
Extension Design and API Integration . 254
Extension Styles and Types . 256
Identification, Selection, Query, and Usage. .257

Selecting Extensions . 257

Utilization and Binding . 262
Extension Management Libraries . 269

GLEW . 270

GLUT . 273

Summary . 275

Appendix A. X11 APIs for OpenGL Configuration 277

Installation .277
Building X11 Applications on OS X . 278
X11 Color Models . 279

Appendix B. Glossary 281

Appendix C. The Cocoa API for OpenGL Configuration
in Leopard, Mac OS X 10.5 283

Overview. 284
NSOpenGLView. 284
NSView . 294

xii Contents

Additional Topics . 300
Manipulating Images and Pixels in OpenGL . 300

Context Sharing . 301

Full-Screen Surfaces. .308

Display Capture . 309

Event Handling . 310

Alternative Rendering Destinations . 312
Framebuffer Objects . 313

Copy-to-Texture . 318

Pbuffer, Off-Screen, and Other Intermediate Targets 321

Summary . 322

Appendix D. Bibliography 323

Index . 325

Contents xiii

This page intentionally left blank

Figures

Figure 2-1 OpenGL Version History Timeline . 9
Figure 2-2 AGL, CGL, and AppKit Layered with OpenGL 16
Figure 2-3 The Mac OS OpenGL Plugin Architecture 18
Figure 3-1 Prototypical System Architecture Diagram.24
Figure 4-1 Threading Layer Cake: Thread Packages, on Top

of POSIX, on Top of Mach Threads. .42
Figure 5-1 OpenGL Configuration API Dependencies50
Figure 5-2 Framebuffer Strata . 54
Figure 6-1 CGL Renderer Selection . 56
Figure 7-1 AGL Software Dependencies . 90
Figure 7-2 AGL Full-Screen Example Results . 102
Figure 7-3 AGL Window Example Results . 105
Figure 7-4 AGL Pbuffer Example Results . 113
Figure 7-5 AGL Render-to-Texture Example Results 116
Figure 7-6 Results of Rendering to a Framebuffer Object and

Texturing a Quad with That Result in AGL 119
Figure 8-1 AppKit API and Framework in Overall OpenGL

Infrastructure on the Mac. .122
Figure 8-2 Subclassing NSOpenGLView in Interface Builder 123
Figure 8-3 Subclassed NSOpenGLView in Interface Builder 124
Figure 8-4 Instantiated OpenGL View Object in Interface Builder 124
Figure 8-5 Custom View Palette in Interface Builder 125
Figure 8-6 Adding a Custom View to a Window in Interface Builder . . . 125
Figure 8-7 Binding a Custom View to the NSOpenGLView

Subclass Object . 126
Figure 8-8 Teapot Rendered with NSOpenGLView Subclass 132
Figure 8-9 Subclassing NSOpenGLView in Interface Builder 134
Figure 8-10 Subclassed NSOpenGLView in Interface Builder 135
Figure 8-11 MyView Binding in Interface Builder . 135
Figure 8-12 Context Sharing: Two Windows and Two Custom

NSOpenGLViews in Interface Builder . 143

xv

Figure 8-13 Context Sharing: Two Custom NSOpenGLViews
in XCode . 144

Figure 8-14 Context Sharing: Set Visible on Launch for
Second Window . 145

Figure 8-15 Context Sharing: Two Windows Demonstrating
Common Shared Data and Unshared (Clear Color)
Context Data . 148

Figure 8-16 Results of Rendering to an FBO and Texturing a Quad
with That Result . 158

Figure 9-1 GLUT API and Framework in the Overall OpenGL
Infrastructure on the Mac. .164

Figure 9-2 New Project Creation for GLUT Application 165
Figure 9-3 Adding a Framework to This Project . 166
Figure 9-4 Resultant GLUT Project Showing Framework and

Sample Code . 166
Figure 9-5 GLUT Project Results Showing Visual Selection

and Rendered Object . 167
Figure 9-6 GLUT Project Results Showing Visual Selection

and Rendered Object for Anti-Aliased Pixel Format 171
Figure 10-1 NSImage Rendered Before setFlipped (left),

and After setFlipped (right). 178
Figure 10-2 First Frame of the Movie . 189
Figure 10-3 Subsequent Frames of the Movie . 190
Figure 10-4 Subsequent Frames of the Movie . 191
Figure 11-1 Vertex Submission Example Application 222
Figure 11-2 OpenGL Profiler Main Window with Launch

Settings Open . 229
Figure 11-3 OpenGL Profiler Breakpoints View . 230
Figure 11-4 OpenGL Profiler Statistics View . 232
Figure 11-5 OpenGL Profiler Trace View. .232
Figure 11-6 OpenGL Profiler Resources View . 233
Figure 11-7 OpenGL Pixel Format View . 234
Figure 11-8 OpenGL Profiler Buffer View . 235
Figure 11-9 OpenGL Profiler Scripts View . 235
Figure 11-10 OpenGL Driver Monitor . 236
Figure 11-11 Pixie . 237
Figure 11-12 Performance-Tuning Exercise Application: Please

Tune Me . 239

xvi Figures

Figure 11-13 ptm1 OpenGL Statistics . 239
Figure 11-14 ptm2 OpenGL Statistics . 240
Figure 11-15 ptm3 OpenGL Statistics . 241
Figure 11-16 ptm4 OpenGL Statistics . 242
Figure 11-17 ptm5 OpenGL Statistics . 243
Figure 13-1 Shader Extension Application Results if Successful 263
Figure 13-2 Shader Extension Application Results if Unsuccessful 264
Figure C-1 AppKit API and Framework in Overall OpenGL

Infrastructure on the Mac . 284
Figure C-2 Window and NIB Ready to be Edited in Leopard

Interface Builder. 285
Figure C-3 Selection, Layout, and Specialization of a CustomView

in Interface Builder . 286
Figure C-4 Create and Bind an Instance of our CustomView 287
Figure C-5 Custom View Derivation and Project Files in XCode 3.0 287
Figure C-6 Teapot Rendered with NSOpenGLView with Subclass 294
Figure C-7 Two Views, Contexts Shared . 303
Figure C-8 Final Two Window XCode Contents . 304
Figure C-9 Visible at Launch Enabled . 304
Figure C-10 Context Sharing: Two Windows Demonstrating

Common Shared Data and Unshared (Clear Color)
Context Data . 308

Figure C-11 Results of Rendering to an FBO and Texturing a
Quad with That Result .317

Figures xvii

This page intentionally left blank

Tables

Table 2-1 Versions of OpenGL in Which Extensions Were Promoted
to Core OpenGL . 9

Table 2-2 Mac OS Hardware Renderer Support for Versions of OpenGL . . 12
Table 2-3 Timeline of Mac OS X Releases, Drawing APIs,

and Windowing APIs . 17
Table 3-1 Processor Type and Graphics Bus Pairing . 30
Table 4-1 Mac OS X Versions and Code Names. .34
Table 5-1 API and Framework Locations . 50
Table 6-1 CGL Pbuffer Functions . 79
Table 7-1 Locations of AGL Headers and Frameworks 91
Table 7-2 Pixel Format Specifiers for Use with

aglChoosePixelFormat . 95
Table 7-3 Tokens for Use with aglDescribeRenderer 107
Table 7-4 AGL Pbuffer Functions . 110
Table 8-1 AppKit Cocoa Headers, Frameworks, and Overview 122
Table 8-2 Selection Policies and Behaviors . 127
Table 8-3 Common Pixel Format Qualifiers for Use with

NSOpenGLPixelFormat . 129
Table 9-1 GLUT Headers, Frameworks, and Overview 164
Table 9-2 glutInitDisplayMode Bit Field Tokens . 169
Table 9-3 glutInitDisplayString Policy and Capability Strings 170
Table 10-1 NSBitmapImageRep Accessors for OpenGL Texture Data 179
Table 11-1 Pixel Format Buffer Selection Mode . 208
Table 12-1 glGetString Tokens . 249
Table 13-1 Preprocessor Tokens for Extension Usage . 260
Table C-1 AppKit Cocoa Headers, Frameworks, and Overview 284
Table C-2 Selection Policies and Behaviors . 289
Table C-3 Common Pixel Format Qualifiers for Use with

NSOpenGLPixelFormat . 290

xix

This page intentionally left blank

Examples

Example 4-1 Power Management on OS X . 35
Example 6-1 CGLChoosePixelFormat Usage . 58
Example 6-2 Creating and Inspecting Renderer Info Objects 68
Example 6-3 Testing for Full-Screen Rendering Support 82
Example 7-1 Headers for OpenGL and AGL . 92
Example 7-2 AGL OpenGL Initialization and Draw Functions 92
Example 7-3 AGL Full-Screen Application main Method 93
Example 7-4 AGL Windowed main Example . 101
Example 7-5 AGL Renderer Query Example . 105
Example 7-6 Sharing One Context with Another in AGL 108
Example 7-7 Copying the Context State Between Two Contexts

in AGL . 109
Example 7-8 Pbuffer and Windowed Context Creation in AGL. 111
Example 7-9 OpenGL Context Initialization, Referencing a Pbuffer

as the Texture . 112
Example 7-10 AGL OpenGL Initialization and Draw Functions for

Copy-Texture Rendering . 114
Example 7-11 AGL Copy-Texture Render Call Sequence 116
Example 7-12 AGL Initialization and Draw for a Framebuffer Object

and Main Buffer . 117
Example 8-1 Configuration of an OpenGL View in initWithFrame . . 127
Example 8-2 Cocoa drawRect Rendering Method with Sample

OpenGL Content . 132
Example 8-3 MyView.h Final Header . 136
Example 8-4 MyView.m Final Code . 136
Example 8-5 Singleton Class Declaration for Managing a

Shared Context . 144
Example 8-6 Singleton Class Implementation for Managing a

Shared Context . 144
Example 8-7 Initialization of an OpenGL View with a Shared Context . 147
Example 8-8 Capturing and Releasing the Display. .150

xxi

Example 8-9 Custom Controller Event-Handling Loop in a
Full-Screen Context . 151

Example 8-10 Custom View Header for FBO Example Code 154
Example 8-11 OpenGL Setup for FBO Rendering . 155
Example 8-12 Cocoa drawRect Routine for FBOs . 156
Example 8-13 Cocoa Draw Methods for Contents of the FBO and the

Final Render . 156
Example 8-14 Custom View Header for Copy-to-Texture

Example Code . 159
Example 8-15 OpenGL Setup for Copy-to-Texture Rendering 159
Example 8-16 Cocoa drawRect Routine for Copy-to-Texture

Rendering . 160
Example 9-1 GLUT Header Inclusion on the Mac . 167
Example 9-2 Basic GLUT Sample Application . 168
Example 9-3 Initializing a GLUT Visual Using a String 171
Example 10-1 Two Sample NSImage Initialization Methods 174
Example 10-2 Initialize NSImages . 175
Example 10-3 Resizing an NSImage to a Power of Two 177
Example 10-4 Extracting a Bitmap from an NSImage 179
Example 10-5 Initialization and Creation of an NSImage 179
Example 10-6 Downloading an NSImage as an OpenGL Texture 180
Example 10-7 Capturing OpenGL Data as an NSImage 182
Example 10-8 Converting a Bitmap to an NSImage . 183
Example 10-9 Initialize QTMovie . 186
Example 10-10 Draw Rectangle Method Applying Movie Frames 187
Example 11-1 Querying Shader Limits . 201
Example 11-2 Enabling or Disabling the Multithreaded GL Engine 204
Example 11-3 Partial Buffer Object Flushing . 206
Example 11-4 Immediate Mode Vertex Submission: Begin/End 210
Example 11-5 Immediate Mode Vertex Submission: Vertex Arrays 211
Example 11-6 Immediate Mode Vertex Submission: Vertex

Buffer Objects . 212
Example 11-7 Inefficiencies of Not Using Vertex Array Objects 214
Example 11-8 Using Vertex Array Objects . 215
Example 11-9 Using Vertex Array Range . 216
Example 11-10 Apple Fence Extension . 216
Example 11-11 Double-Buffering Vertex Data Using the

APPLE vertex array range Extension 217

xxii Examples

Example 12-1 Unpack the OS X Version Number . 249
Example 13-1 Querying for Extensions in a Valid OpenGL Context 261
Example 13-2 Querying the OpenGL Version Number 262
Example 13-3 Querying for OpenGL Shader Extensions 263
Example 13-4 Creating a Dictionary of All Extensions 264
Example 13-5 Storage for the Discovered Symbols . 266
Example 13-6 Opening a Segment for Symbol Lookup 267
Example 13-7 Looking Up Symbols . 267
Example 13-8 Our Application’s OpenGL Initialization Code 267
Example 13-9 GLEW Headers . 271
Example 13-10 Our Application’s OpenGL Initialization Code

Using GLEW . 271
Example 13-11 Query for Shader Extensions Using GLEW. 273
Example 13-12 Query for OpenGL Version Information Using GLUT 274
Example 13-13 Query for Shader Extensions Using GLUT 274
Example C-1 Configuration of an OpenGL View in initWithFrame . . 288
Example C-2 Cocoa drawRect Rendering Method with Sample

OpenGL Content . 293
Example C-3 MyView.h Final Header . 296
Example C-4 MyView.m Final Code . 296
Example C-5 Singleton Class Declaration for Managing

a Shared Context . 303
Example C-6 Singleton Class Implementation for Managing a

Shared Context . 305
Example C-7 Initialization of an OpenGL View with a Shared Context . 306
Example C-8 Capturing and Releasing the Display . 310
Example C-9 Custom Controller Event-Handling Loop in a

Full-Screen Context . 311
Example C-10 Custom View Header for FBO Example Code 314
Example C-11 OpenGL Setup for FBO Rendering. .315
Example C-12 Cocoa drawRect Routine for FBOs . 316
Example C-13 Cocoa Draw Methods for Contents of the FBO and the

Final Render . 316
Example C-14 Custom View Header for Copy-to-Texture

Example Code . 319
Example C-15 OpenGL Setup for Copy-to-Texture Rendering.319
Example C-16 Cocoa drawRect Routine for Copy-to-Texture

Rendering . 320

Examples xxiii

This page intentionally left blank

Preface

The Mac is a computing platform that virtually defines ease of use, consistency,
and effortless computing. The story of OpenGL on the Mac has been, shall
we say, a bit more complex. With the arrival of OS X, the Mac platform sup-
ports even more ways of constructing OpenGL applications for the Mac. While
there has been an apparent proliferation of OpenGL interfaces for the Mac, the
platform itself has stabilized architecturally and programmatically and now
offers the best developer and user experience in the industry for develop-
ment of graphics applications. This is not just a statement of preference but
an observation that, in many ways, the Mac is an OpenGL platform with-
out peer. The Mac is a fun and efficient platform on which to develop appli-
cations, thanks to the set of OpenGL drivers at its core that support a rich
and deep feature set, great performance, and deep integration in OS X. The
Mac has excellent and usable tools for quickly monitoring OpenGL behavior,
rapidly prototyping shaders, and digging deep to analyze OpenGL behavior
in the application and driver. The Mac makes OpenGL development efficient
and fun.

Although the development tools and environment are powerful and helpful,
many corners of OpenGL on the Mac remain under-documented. A developer
must choose among several development languages, user interface (UI) tool-
kits, window managers, and additional Mac APIs such as QuickTime and Core
Image, yet still ensure that his or her software runs well on a variety of target
Mac platforms. All of these factors can make using OpenGL on the Mac a chal-
lenging task even for developers who have been writing OpenGL applications
on other platforms for years.

This book was put together with an eye toward simplifying and clarifying the
ways in which OpenGL can be used on the Mac. It is our hope that by codifying
all the information available about OpenGL on the Mac in one place and by
presenting each interface with clarity and depth, developers will have a one-
stop reference for all things OpenGL on the Mac.

Who Should Read This Book?
This book is intended for OpenGL programmers who wish to develop applica-
tions on Mac OS X. We target two categories of OpenGL programmers: those

xxv

who are new to OpenGL on the Mac and those who want to explore the specific
benefits of writing OpenGL programs on the Mac.

For those who are new to OpenGL on the Mac—either existing Mac developers
or those coming from other platforms—we provide advice on cross-platform
issues, portable interfaces, and ideas about choosing native interfaces for the
Mac. Existing Mac developers will find a single-source reference guide to all
OpenGL interfaces on the Mac. For developers wishing to explore the power
and richness of the Mac, we provide complete details on Mac-specific OpenGL
extensions and ways of integrating other Mac APIs (such as QuickTime and
Core Image) into applications.

Organization
This text is intended to be useful as both a programming guide and a reference
manual. The text contains several chapters focused on OpenGL on the Mac and
other chapters that cover related graphics information. A few appendices are in-
cluded to cover supplemental information in detail. The chapters are organized
as follows:

Architecture Chapters 1 through 4 describe the hardware and software archi-
tectures of the Mac. This part of the book also presents an introduction to
performance considerations as they relate to architecture.

Configuration and Integration Chapter 5 explores the interfaces to OpenGL on
the Mac in detail. Those new to OpenGL on the Mac should begin here.

CGL, AGL, Cocoa, GLUT Chapters 6 through 9 explore details behind the in-
dividual APIs. Each API is covered in detail in its own chapter, and the APIs
are compared and contrasted in each chapter. These chapters form the core
of this book.

Interoperability Chapter 10 collects a variety of interesting OpenGL and other
Mac API integration ideas. This chapter describes how to incorporate video
in an application with QuickTime, perform image effects on textures or
scenes with Core Image, and process CoreVideo data in an application.

Performance Chapters 11 and 12 describe the basics of analyzing performance
of OpenGL applications and offer tips about where common problems may
surface and how they might be resolved. Analysis, tools, architecture, data
types, and solutions are covered.

Extensions Chapter 13 presents a guide to detecting, integrating, and using
OpenGL extensions. This chapter introduces extension management princi-
ples and tools and provides details on how to perform such management
specifically on the Mac.

xxvi Preface

Additional Resources
As both OpenGL and the Mac platform evolve, so must developers’ appli-
cations. At our website, www.macopenglbook.com, we provide our example
OpenGL code as well as other OpenGL-related resources. Additionally, we track
and provide corrections for any errata and typos. Although we aspire to Knuth-
like greatness, we are open to the idea that bugs may yet lurk within these pages.
Should you find a possible gaffe, please bring it to our attention through our
website.

This book has been a project long in the making, and rumblings of Leopard,
Mac OS X 10.5, have been part of our plan since the beginning. However, due to
information embargoes, the paucity of information available to the public, and
publishing timelines, our best efforts at incorporating final, released Leopard-
specific details are thwarted. Although we’ve accounted for most major changes
to OpenGL programming for Leopard in this book, there was still some de-
gree of flux for Leopard features at the time this book was published. Never
fear, we’ve put together a detailed Leopard change synopsis for OpenGL, and
accounted for the flux in Leopard on our website in an extra chapter. You’ll find
this bonus chapter at our website: www.macopenglbook.com.

A few words on Leopard that we can say at this time with authority: First, Leop-
ard will provide OpenGL 2.0 and OpenGL ES support. OpenGL 2.0 is a great
baseline for OpenGL developers, providing the most modern of OpenGL foun-
dations upon which to develop. Also of interest is the inclusion of OpenGL ES
in this release. ES stands for embedded system, and is a nice, stripped-down ver-
sion of OpenGL, largely targeting handheld devices. At this time, if writing an
application for a desktop system, it would still be most sensible to target
OpenGL 2.0. However, if you’re building and testing a cross-platform device
that might be used for handheld devices, OpenGL ES would be a good OpenGL
SDK to develop against. Second, Apple’s tools for development and debugging
are a lot more comprehensive in Leopard. XRay, in particular, integrates a vari-
ety of debugging tools in one information view, making it much easier to target
certain types of bottlenecks, specifically those involving data transfer. Finally,
Leopard brings a lot of bug-fixes and feature enhancements. We’ve got informa-
tion on bits and pieces of the Leopard OpenGL throughout the book. But you’ll
have to read about the final and released version in our Leopard chapter on
the website.

So, once you have this book in your hands, please go to the website and get the
addendum. We think you’ll be pleased with the detail and additional informa-
tion it offers on the released version of Leopard. We consider it the definitive
source of independent information for OpenGL on Leopard, Mac OSX 10.5. Get
it by going to: www.macopenglbook.com.

Preface xxvii

www.macopenglbook.com
www.macopenglbook.com
www.macopenglbook.com

This page intentionally left blank

Acknowledgments

The first edition of this book owes many thanks to many people, beginning
with Bob’s good friend, Dave Shreiner. Dave and Bob have taught numerous
SIGGRAPH courses together over the years and worked together at SGI. Dave
encouraged Bob to take on this project with Addison-Wesley and was instru-
mental in getting it off the ground and providing advice, reviews, and encour-
agement along the way.

The reviewers of the book performed heroic feats of editing and have made
this book much better for their efforts. Many thanks go to Dave Shreiner,
Paul Martz, Thomas True, Terry Welsh, Alan Commike, Michel Castejon, and
Jeremy Sandmel.

Thanks, too, to the many other friends and relatives who contributed ideas, en-
couragement, and support. Finally, the authors would like to individually thank
a few people.

J. D.’s Acknowledgments

I cannot fully express my gratitude for the support of my wife Samantha.
She has been with me for the duration of this challenging project and always
responded to the rough patches with compassion and a smile.

I also wanted to extend a special thanks to my friend Alex Eddy who reviewed
this material with unmatched expertise on the subject matter of the current
OS X OpenGL implementation, its history, and its incarnations.

Finally, I wanted to thank my parents Andrew and Sue, who never wavered in
their support of my education and career. From their visionary gift in 1979 of
a Timex Sinclair computer that started me down the road to software develop-
ment to the present day, they have always been at my side.

Bob’s Acknowledgments

Thanks very much to my wife, Kim, for her support, encouragement, and love.
She’s been my muse and a voice of reason throughout the often arduous pro-
cess of shepherding a book from inception to publishing. I’d also like to thank
my parents for getting me raised well, and without major injury, and for main-
taining their encouragement throughout my life. Finally, thanks to my cats for
keeping me warm, grounded, and focused on the essentials of life: food, sleep,
and play.

xxix

This page intentionally left blank

About the Authors

Bob Kuehne is a graphics consultant and entrepreneur and currently works
as the head of a graphics consultancy, Blue Newt Software. Blue Newt works
with clients around the world to enhance their 3D graphics applications. Blue
Newt helps clients move from fixed-function programming to shader appli-
cations, from single- to multi-pipe, multi-display systems, and from baseline
OpenGL to scenegraphs as their needs change. Bob spends most of his time in
modern OpenGL working with clients to design new applications, develop new
features, and do performance engineering.

Before Blue Newt, Bob worked for nearly eight years at SGI in a variety of
roles. His work included leading the OpenGL Shader project, creating demos
for high-end multi-pipe graphics systems, and helping SGI developers create
high-performance, high-quality applications.

Bob has worked in the graphics industry and with graphics systems for more
than two decades and has been developing in OpenGL since it first existed. He
has been a developer on the Mac since the early 1990s, when he was finally able
to afford one. Bob has presented at numerous conferences over his career, in-
cluding SIGGRAPH, Graphic Hardware, SGI Developer Forum Worldwide, and
(the ex-conference) MacHack. He currently teaches OpenGL and scenegraph
training courses around the world as part of his work for Blue Newt.

When Bob is able to be pulled away from his Mac and graphics work, you’ll find
him either playing volleyball or sailing with his wife. Please don’t hesitate to
email him: (rpk@blue-newt.com) or visit his website (http://www.blue-
newt.com).

J. D. Sullivan is an OpenGL driver engineer who has been writing graphics soft-
ware professionally for more than 15 years. His experience with OpenGL began
with writing IrisGL applications for a finite element modeling and broadcast
animation lab in 1992. His experience developing on the Macintosh platform
began in 1988 with Symantec’s Think C and a 16 MHz SE/30 that boasted 4MB
of RAM and 1MB of video memory.

After three years working on a distributed renderer for the FEM and broad-
cast animation lab, J. D. joined Silicon Graphics, Inc., where he first focused on
performance and feature differentiation of graphics applications from ISVs that
were critical to SGI’s business. A considerable portion of this work centered

xxxi

http://www.bluenewt.com
http://www.bluenewt.com

on medical and GIS imaging. He was one of the original four designers and
implementers of SGI’s Volumizer API, and he earned a design patent for high
performance modulation of 3D textures. He then moved to SGI’s Consumer
Products Division, where he worked as part of the OpenGL software team dur-
ing the bring-up of both the Cobalt and Krypton graphics chipsets.

Since SGI, J. D. has worked on the Mac as his primary development platform.
He has been an OpenGL driver engineer for more than five years and serves on
the OpenGL Architecture Review board.

xxxii About the Authors

Chapter 1

Mac OpenGL
Introduction

Welcome to OpenGL on Mac OS X! This book is designed to be your one-stop
resource for all things OpenGL on the Mac. We wrote this book for Mac OpenGL
developers such as you. We wrote it for ourselves, too—let us explain. We have
always cherished having a comprehensive programming guide in hand that
provides the continuity and context of programming environments. We also ap-
preciate the concise, bulleted information found in most reference guides. The
analog learning experience of sitting back in a comfortable chair with a clear
mind and a cup of your beverage of choice is a great way to deeply understand
the intention and usage of an API or programming environment. We invite you
to sit back and enjoy learning what the exceptional pairing of the Mac OS and
OpenGL have to offer.

This book will serve both existing Mac developers and those new to the plat-
form. We are living proof of the former case: We’ve referenced it ourselves dur-
ing the writing of the book itself! We’ve consolidated a lot of information from a
variety of sources and our own experience into one complete guide. Developers
who are new to the Mac platform should appreciate both the comprehensive na-
ture of the material and the many comparisons and contrasts drawn with other
programming environments and operating systems.

Given the long history of OpenGL on the Mac (which we discuss later in the
book), you may be reading this book with an older application as your focus.
With this in mind, we’ve included content covering all OpenGL-related APIs in
OS X. The older APIs, however, may not be the preferred path for new develop-
ment on the Mac, and we’ll guide you accordingly. We cover all major OpenGL
window-system APIs on the Mac in depth, but with enough guidance that even
first-time Mac developers can get up to speed quickly.

1

Whatever type of developer you are, whatever the age of your code, and no
matter how you arrived at this title, we welcome you and hope you find our
book useful.

Why the Mac?
For those of you who are new to the Mac platform, we’d like to spend a moment
explaining a few of the reasons why the Mac makes a great platform on which to
develop your applications. Specifically, we’d like to explore some of the reasons
that you would target Mac OS X for a new OpenGL application.

The Mac has had a long and rich history. In fact, Apple recently celebrated its
thirtieth anniversary. The Mac has existed for more than 20 years of that 30-year
span and has itself undergone many transformations over that time. Through-
out it all, the Mac platform has exhibited a few key characteristics. Chief among
those is one characteristic in particular that defines the Mac—style. You prob-
ably thought that we’d say “simplicity” or “consistency,” but neither is as core
to the Mac as style. You’d be right, however, in assuming that both simplicity
and consistency are two key aspects of what makes developing for and using
the Mac such an exceptional experience. And it’s true that both consistency and
simplicity are aspects of the overarching style that is the Mac. Nevertheless,
we’d be doing a disservice to the Mac to suggest that there isn’t substance be-
hind that style, because there is. From its solid BSD underpinning through years
of evolution in software APIs, the Mac has remained a robust platform.

From a user perspective, the Mac has always been, at its core, a smooth, fun,
and stylish user experience. And now, with OS X, the Mac is also one of the best
development platforms available.

From the developer side of the equation, things have not always been so elegant,
of course. The Mac OS of the pre-OS X days was a much more “interesting”
development experience. Beginning from their roots in Pascal and through their
evolution into the C language, the OS 9 and its brethren from earlier days were
a lot more challenging. Partly in response to these difficulties, NextStep, a start-
up outgrowth of Apple in the early 1990s, worked hard to simplify the modern
development experience, and the results of its work are now available in Mac
OS X.

For us to describe the entire development history of the Mac would be a book
by itself, but there’s one key trend that the Mac has been tracking, on the
development side as well as the userside: style. The latest Mac APIs for user
interface (UI) development, for core application development, and, of course,
for graphics development are really quite sane, well integrated, and fun to use.
The intuitive user experience for which the Mac has always been known is for
now a cornerstone of the development experience as well. The developer tools,

2 Chapter 1: Mac OpenGL Introduction

such as XCode, Shark, and the various OpenGL debuggers and analyzers, bring
a sense of efficiency, fun, continuity, and style to today’s Mac developers.

So, back to the question of this section: Why the Mac? The authors of this
book have developed applications for numerous platforms over the years—
from Windows boxes, to generic Unix boxes, to SGI machines, Apple IIs, embed-
ded systems, and many others. It’s been our experience that, regardless of which
platform you develop for, great tools and a great user experience make for great
software. The answer to “Why the Mac?” is simple—the platform. Both elegant
hardware and solid software make the goal of creating great software much
easier to achieve. Once you’ve developed on the Mac, you’ll probably want to
develop all of your applications there first. You can get results so much more
quickly, and with so much better overall quality, that it’s truly eye-opening.1 If
you’re not initially a member of our target audience for this book, we’d sug-
gest that you give the Mac a try, developing a modern application from start to
finish, and see if you don’t agree.

Why OpenGL?
If you’re reading this book, chances are that you already know why you are us-
ing OpenGL. But if you’re reading this book and trying to make some decisions
about which 3D API to use, we’ll say a few words on why you should consider
OpenGL.

The reasons are very similar to those as to why you’d choose the Mac platform.
To reiterate, ease of development, ease of use, and solid, stylish tools make the
Mac development process easy. OpenGL is no exception.

OpenGL has a long history, like the Mac. Although the history of OpenGL is
covered in more detail later in the book, here’s an abbreviated version. OpenGL
was developed from the experience and foundation of IrisGL, an API for 3D
graphics first developed by SGI. OpenGL was developed to bring a fresh set
of eyes to the task of creating a clean, modern, and portable graphics API. The
designers of OpenGL did an excellent job with an API that is nicely orthogonal
in function, high performance in execution, and extensible in design.

It should be mentioned, too, that OpenGL is the only graphics API that exists on
virtually every hardware platform you might want to develop, from cell phone
to supercomputer. OpenGL exists on operating systems from Symbian to Mac
OS X, and many others. No other graphics API has that sort of ubiquity, so if

1. We’re not blind to the problems, mind you, but Apple is very responsive on the bug-fix side of
things. And no, the Mac platform is not perfect: There are plenty of legacy APIs to be had. However,
if you decide to write a modern Mac application, the development experience is hands-down better
than on any other platform. It’s quite simply a lot of fun.

Why OpenGL? 3

you have visions of developing for multiple platforms, OpenGL is really your
only option. Don’t feel too bad about that mandate, though, because once you
start working with OpenGL, you’ll see that its performance is as good as any
API out there.

In fact, from your perspective as a developer, one of the key strengths of
OpenGL is the way in which you can learn core techniques once and then reap-
ply them many times. For example, the way that you create and modify indi-
vidual and batched graphics primitives is something that you can learn once
and then apply to vertices, textures, shaders, and more. In many ways, OpenGL
is a great match for the Mac, because both allow you to learn techniques once
and reapply those same techniques repeatedly to many different object-types.
Consistency of technique is a key aspect of why it is so easy to be productive on
the Mac, and of why OpenGL is a great API to use.

Using an open standard graphics API like OpenGL means that its design today
and in the future will incorporate all of the rich and diversified design consid-
erations from various industry interests that only open standards can. Indeed,
these diversified corporate and educational interests contributions are the very
reason OpenGL runs on the widest array of devices. Furthermore, because de-
sign decisions are better decoupled from proprietary interests, the result is quite
simply a better and more generalized design.

If you’re new to the base OpenGL API, we won’t be much help to you in this
book because we’re focused on Mac-specific infrastructure. However, there are
other great books and resources on the subject out there. The canonical refer-
ence, the so-called Red Book [22], and the OpenGL website [2] provide a good
foundation for OpenGL developers. There are also other, more compact guides,
such as the recent OpenGL R© Distilled [19]. The bibliography lists a few other ref-
erence books of note, including those describing in detail how to use OpenGL
on other platforms [15, 18]. This book is a companion to those resources, focus-
ing on the infrastructure, performance, and integration of OpenGL on the Mac.

The Book
What we describe in this book is the essence of OpenGL usage and integration
on the Mac. We won’t try to motivate you to choose the Mac or OpenGL fur-
ther, but will rely on you to make your own informed decision after reading our
text. We will describe in detail the rendering architecture used by Mac OS X and
note how OpenGL integrates into it. We will explore in depth each of the major
OpenGL interface APIs on the Mac, showing how to use each in a sample appli-
cation and how to customize those applications for your specific needs. We will
also explore the surrounding OpenGL infrastructure on the Mac, from tools to
secondary APIs used to get data into OpenGL. Finally, we will attempt to bring

4 Chapter 1: Mac OpenGL Introduction

a sensibility and a practicality to all of our discussions—not trying to explain
everything there is in all APIs, examples, and tools, but just what’s necessary
and useful. We approach this entire topic from the perspective of an application
developer who is trying to get a high-performance, great application developed
on the Mac. OpenGL on the Mac is a large domain, but we have a good filter for
what is important and have written this book with an eye toward ensuring the
reader’s enjoyment of this learning experience.

The Book 5

This page intentionally left blank

Chapter 2

OpenGL Architecture
on OS X

Overview
The Mac hardware platform has historically varied widely with regard to CPU,
I/O devices, data busses, and graphics cards. The transition to Intel processors
brings yet another step in this evolution to developers, who now have ano-
ther Mac platform to consider with many different specifications. Despite the
fact that the underlying hardware on the Mac differs so widely, the software
architecture of OpenGL provides programmatic consistency for graphical ap-
plications across these varied configurations. OpenGL provides an abstraction
layer that insulates application developers from having to develop specific logic
for the unending array of systems and graphics devices.

At present, the Mac OS OpenGL implementation supports graphics devices
from four vendors: ATI, Intel, NVIDIA, and VillageTronic. And, of course, the
graphics drivers support either PowerPC or Intel CPUs feeding these devices.
The Mac also supports a virtual graphics device that processes OpenGL ren-
dering commands on the CPU of the system. This virtual device is canonically
known as the “software renderer.”

In this chapter, we’ll explore the software architecture of the OpenGL on the
Mac, including the history of OpenGL itself and the way in which the Mac
software architecture supports flexible graphics application development using
this API.

About OpenGL
To understand OpenGL on the Mac, let’s begin by looking back at the evolu-
tion of OpenGL itself. Silicon Graphics (SGI) began development on OpenGL
in 1990, with version 1.0 of the software being released in 1992. OpenGL was

7

a logical evolution from its predecessor, IrisGL—named in accordance with the
graphics hardware for which it was built. IrisGL was initially released by SGI in
1983. It included all of the necessary API entry points that, unlike OpenGL, han-
dled windowing system tasks unrelated to actual graphics pipeline rendering.
SGI soon realized that to grow its graphics workstation market share, the com-
pany needed to use a graphics API that was an industry standard. Ultimately,
the applications that independent software vendors (ISVs) were producing were
what sold the hardware they were building. By making IrisGL into an open
standard (OpenGL), SGI could greatly help lower the ISVs’ development costs
to reach multiple platforms, which in turn would encourage them to adopt the
use of the OpenGL API.

To make OpenGL an open standard, SGI formed the OpenGL Architecture
Review Board (ARB) in 1991 to oversee and develop the specification with a
broad range of industry interests in mind. The ARB includes both software- and
hardware-focused vendors in the graphics industry with an interest in further-
ing an open graphics API standard.

In its simplest form, OpenGL is a specification document. To develop the
OpenGL standard, a formal process has been established by which new func-
tionality may be added to the OpenGL specification. But where do these exten-
sions come from? Who decides they want one, and how do those new extensions
get put into the standard?

New extensions to OpenGL are typically created by individual companies or
organizations that are interested in including the new extension in the ver-
sion of OpenGL they ship. These extensions are known as vendor extensions.
They are specific to the company that created them and are named accordingly.
For instance, an extension unique to Apple is the GL APPLE texture range
extension. Other extensions are named for the companies that formulated and
specified them—for example, SGI, 3DLABS, or ATI.

Often ARB member companies will create parallel extensions—that is, two ex-
tensions with essentially the same functional purpose, but different interfaces.
If these companies wish to collaborate on consolidating these similar specifi-
cations into a single unified proposal, they will often create a working group
within the ARB so as to select the best aspects of each proposal and merge them
into one. When an extension is supported by more than one ARB member, it is
called an EXT extension. The GL EXT framebuffer object extension, which
is defined to do off-screen rendering, is an example of such an extension.

If a vendor or an EXT extension gains enough favor with the voting ARB mem-
bers, it can be put to a vote to approve it as an ARB extension. With the approval
of a two-thirds majority of the voting ARB members, the extension can gain ARB
status. Often, vendor extensions go through a process of gaining acceptance

8 Chapter 2: OpenGL Architecture on OS X

Ir
is

G
L

In
tr

od
uc

ed

O
pe

nG
L

1.
0

O
pe

nG
L

1.
1

O
pe

nG
L

1.
2

O
pe

nG
L

1.
3

O
pe

nG
L

1.
4

O
pe

nG
L

1.
5

O
pe

nG
L

2.
0

O
pe

nG
L

2.
1

1983 1992 1995 1998 2001 2002 2003 2004 2007

Figure 2-1 OpenGL Version History Timeline

as an EXT extension by other vendors before being promoted to the core
specification. Each of these stages of the extension process allows for indus-
try “soak time” to expose the extension’s strengths and weaknesses. At every
stage of the process—vendor, EXT, and ARB—the review board can (and often
does) make changes to remedy any weaknesses that were uncovered through
industry exposure.

As extensions are integrated into the core and other clarifying edits are made
to the OpenGL specification, the document is revised and its version number
updated. Version 1.0 of this specification was released in 1992, and Figure 2-1
details the timeline of versions since that time.

Each new revision of the core OpenGL API promoted extensions to core func-
tionality, as shown in Table 2-1.

Table 2-1 Versions of OpenGL in Which Extensions Were Promoted to Core
OpenGL

OpenGL Version Extension
1.1 Blending logical operations

GL EXT blend logic op

Framebuffer-to-texture copies
GL EXT copytexture

Polygon offset
GL EXT polygon offset

Subtexturing
GL EXT subtexture

Internal formats and component sizing for textures
GL EXT texture

Texture proxying
GL EXT texture

Replacement of output fragments by source texture values
GL EXT texture

Continued

About OpenGL 9

Table 2-1 Versions of OpenGL in Which Extensions Were Promoted to Core
OpenGL (Continued)

OpenGL Version Extension
Texture objects
GL EXT texture object

Vertex arrays
GL EXT vertex array

1.2.1 ARB extensions introduced to promotion process
1.3 BGRA pixel format

GL EXT bgra

Range-bounded vertex draw elements
GL EXT draw range elements

Multisampling
GL ARB multisample

Multitexturing
GL ARB multitexture

Texture environment modes: Add, Combine, Dot3
GL ARB texture env {add|combine|dot3}
Texture border clamp
GL ARB texture border clamp

Transpose matrix
GL ARB transpose matrix

1.4 Automatic mipmap generation
GL SGIS generate mipmap

Blend squaring
GL NV blend square

Depth textures
GL ARB depth texture

Fog coordinates
GL EXT fog coord

Multiple draw arrays
GL EXT multi draw arrays

Point parameters
GL ARB point parameters

Secondary color
GL EXT secondary color

Separate blend functions
GL EXT blend func separate

Shadows
GL ARB shadow

Stencil wrap
GL EXT stencil wrap

10 Chapter 2: OpenGL Architecture on OS X

OpenGL Version Extension
Texture crossbar environment mode
GL ARB texture env crossbar

Texture LOD bias
GL EXT texture lod bias

Texture mirrored repeat
GL ARB texture mirrored repeat

Window raster position
GL ARB window pos

1.5 Buffer objects
GL ARB vertex buffer object

Occlusion queries
GL ARB occlusion query

Shadow functions
GL EXT shadow funcs

2.0 Programmable shading
GL ARB shader objects
GL ARB vertex shader
GL ARB fragment shader

Multiple render targets
GL ARB draw buffers

Non-power-of-two textures
GL ARB texture non power of two

Point sprites
GL ARB point sprite

Separate stencil
GL ATI separate stencil

2.1 Programmable shading
Updated shading language to 1.20
Pixel buffer objects
GL ARB pixel buffer object

sRGB textures
GL EXT texture sRGB

Mac OS X Implementation of the OpenGL Specification

Once an extension or a version of the specification has been completed and rati-
fied by the required organization, the company or organization that will sup-
port the extension must then implement it. Naturally, there is some amount
of delay between the publishing of a specification and a vendor’s implemen-
tation of that published specification. We’ll explore extensions in detail in
Chapter 13.

About OpenGL 11

Table 2-2 Mac OS Hardware Renderer Support for Versions of OpenGL

Mac OS Version OpenGL Version Renderer
10.2.8 Jaguar 1.3 Radeon 9600/9700/9800

Radeon 9000/9200
Radeon 8500
Radeon 7000/7200/7500
Geforce FX
Geforce 4 Ti
Geforce 3

1.1 Apple Generic Renderer
Geforce 2 MX/4 MX
Rage 128

10.3.9 Panther 1.5 Geforce 6800
Geforce FX
Radeon X800
Radeon 9600/9700/9800

1.3 Radeon 9200
Radeon 9000
Radeon 8500
Radeon 7000/7200/7500
Geforce 4 Ti
Geforce 3

1.1 Apple Generic Renderer
Geforce 2 MX/4 MX
Rage 128

10.4.10 Tiger 2.0 Apple Float Renderera

Radeon HD 2400/HD 2600
Radon X1600/X1900b

Geforce 8600M
Geforce Quadro FX 4500b

Geforce 6600/6800b

Geforce FXb

1.5 Radeon X800
Radeon 9600/9700/9800

1.3 Radeon 9200
Radeon 9000
Radeon 8500
Radeon 7000/7200/7500
Geforce 4 Ti
Geforce 3

1.2 GMA 950
1.1 Geforce 2 MX/4 MX

Rage 128
(Continued)

12 Chapter 2: OpenGL Architecture on OS X

Table 2-2 Mac OS Hardware Renderer Support for Versions of OpenGL
(Continued)

Mac OS Version OpenGL Version Renderer
10.5 Leopard 2.1+ Apple Float Renderer

2.0+ Radeon HD 2400/HD 2600
Radon X1600/X1900
Radeon X800
Radeon 9600/9700/9800
Geforce 8800/8600M
Geforce Quadro FX 4500
Geforce 6600/6800
Geforce FX

1.3 Radeon 9200
Radeon 9000
Radeon 8500
Radeon 7000/7200/7500
Geforce 4 Ti
Geforce 3

1.2 GMA 950
1.1 Geforce 2 MX/4 MX

a This software renderer is limited to 1.21 compliance on PowerPC systems and was released
supporting 2.1 on the newer 8600M and HD 2400/HD 2600 systems.
b These are limited to 1.5 compliance on PowerPC systems.

Table 2-2 illustrates the rather complex version landscape of the relationship be-
tween devices (hardware renderers), software renderers, and Mac OS X software
releases. Version compliance for any hardware renderer or the latest software
renderer may change (we hope increase only!) for any major or minor release of
the Mac OS. Further, as the Tiger portion of the table shows, version compliance
for the software renderer can vary in apparent relationship with the hardware
renderer shipped for the system.

This apparent relationship is a false one, however. It merely reflects software
improvements that accompanied hardware that had shipped later in the prod-
uct cycle. In the software renderer case, its version will generally be consistent
across all hardware configurations as is shown in the Leopard portion of the
table.

Notice that the table references two different software renderers: the Apple
Generic Renderer and the Apple Float Renderer. The Apple Float Renderer is
simply a newer and much improved version of the Apple Generic Renderer.
Both are referred to as “the software renderer.” The software renderer was vastly
improved in both performance and capabilities moving from Panther to Tiger
and again moving from Tiger to Leopard.

About OpenGL 13

As you can see in Table 2-2, no particular version of OpenGL is standard across
all hardware in a particular release of Mac OS. Care must be taken when writing
an OpenGL application to always ensure that your baseline OpenGL implemen-
tation version requirements are met independently of the Mac OS version.

Note that only the last minor release version of each major release of OS X is
shown in Table 2-2. Minor releases in OS X are free downloads, so this table ac-
tually shows the “version potential,” if you will, for each of these major releases.
To obtain OpenGL version information for other minor releases, you must first
choose a pixel format with the hardware or software renderer in which you are
interested. Once you have created a context with the pixel format of interest,
you can retrieve the OpenGL version of the selected renderer as follows:

char *opengl_version_str =
strdup((const char *) glGetString(GL_VERSION));

// The OpenGL version number is the first
// space-delimited token in the string
opengl_version_str = strtok(opengl_version_str, " ");
if(!strcmp(opengl_version_str, "2.1"))
{

// OpenGL 2.1 Specific Application Configuration
}
else if (!strcmp(opengl_version_str, "2.0"))
{

// OpenGL 2.0 Specific Application Configuration
}
else
{

// Configuration for other versions of OpenGL
}
free(opengl_version_str);

OpenGL Feature Support
Every graphics card has different capabilities with regard to support of OpenGL
features. Naturally, the more advanced and modern the graphics card, the more
support it has for OpenGL features natively on its graphics processing unit
(GPU). Perhaps a bit surprisingly, the software renderer often has the most full-
featured support of OpenGL of the possible devices. As a result, and so as to
maintain compliance with the OpenGL specification, the software renderer is
often called upon by Mac OS OpenGL to handle rendering tasks that the GPU
installed in the system cannot. Thus, in many cases, even older Macs have rela-
tively modern versions of OpenGL running on them. However, this also means
that you may want to test the performance of crucial graphics features of your
application (perhaps the more modern features) on a variety of Macs to ensure
they meet your performance needs.

Software developers for OpenGL on the Mac OS don’t have the luxury of writ-
ing applications that will function on only graphics cards from a single graphics

14 Chapter 2: OpenGL Architecture on OS X

vendor. Fortunately, the additional burden of communicating with different de-
vices is largely shouldered by the implementation of OpenGL on the Mac OS.
At the same time, the decision to tailor an application for peak performance
or the cutting edge frequently requires reliance on features of specific graphics
cards. The choice to specialize is a decision that lies in the hands of the devel-
oper and must always be weighed against the size of the customer base that will
use the application and have the graphics devices so targeted. We’ll explore in
Chapter 13 how to take advantage of specific extensions for either performance
reasons or feature enhancements.

The architecture of OpenGL on Mac OS also provides developers with a
degree of consistency between the two windowing systems available to Mac
users: Quartz and X11. Under either windowing system, the Mac OS OpenGL
implementation can support multiple heterogeneous graphics cards concur-
rently and provide a virtualized desktop among multiple graphics devices.
This greatly simplifies application development when compared to creating and
maintaining display connections for each device installed in the system.

API Layers
OpenGL is defined as an abstracted software interface to graphics hardware. As
with most operating systems, OpenGL on the Mac OS is a software layer that
interfaces with hardware. Applications and other APIs depend on this layer
to provide a common interface to the varied graphics hardware they wish to
control. Unlike many operating systems, the Mac allows explicit selection of
specific rendering paths and has a few other unique features as well.

On Mac OS, the dependencies between the graphics driver stack layers, and
sometimes even just the names of those layers, can be tough to get a handle on.
Although OpenGL is defined to remain separate from the windowing system of
the operating system on which it runs, OpenGL must implicitly interface with
it to observe the rules of drawing in a windowed environment. This need for in-
teraction has a variety of implications, from application performance to window
selection, and we’ll explore those in later sections. The layering of the various
APIs on Mac OS X occurs in a specific way to allow this window–system inte-
gration and permit a bit of legacy interoperability. Hence, a few choices must be
made when deciding how to open a window for OpenGL rendering on the Mac.

Windowing systems primarily operate on a data structure known in OS X as
a “surface.” Surfaces are a logical construct that includes the memory and
metadata required to act as a destination for rendering. These surfaces may
correspond to visible pixels on the display or they may be invisible or off-screen
surfaces maintained as a backing store for pixel data. On the Mac OS, four APIs
manage or interact with surfaces:

API Layers 15

• Core Graphics
• CGL (Core OpenGL)
• AGL (Apple OpenGL)
• AppKit (or Cocoa)

Of these, only Core Graphics is not an OpenGL-specific interface. Of the
OpenGL-specific windowing (or surface)-related interfaces, CGL is the lowest
logical layer. It provides the most control when managing the interface between
OpenGL and the windowing system. GLUT is the highest-level and easiest to
use of these layers but has limited UI capabilities. This is followed by the App-
Kit (Cocoa) classes, which provide the highest-level fully functional windowing
interface to OpenGL on OS X. AGL lies somewhere in between these two ex-
tremes and is used primarily by legacy applications or applications that draw
their own user interface rather than using the Quartz window system compo-
nents defined in AppKit. Figure 2-2 is a basic diagram that shows the interaction
of these software layers.

There are some simple relationships between the layers in Figure 2-2 and some
not-so-simple relationships. For instance, AGL depends on and is defined in
terms of CGL commands. Pretty clear so far—this seems like a simple layering
with AGL atop CGL. But if you actually look at the CGL headers, there is no
(exposed) way for you to perform windowed rendering in CGL! If you’re doing
only full-screen or off-screen rendering, you can work exclusively with CGL
commands.

The point here is that there is more to these APIs than meets the eye, and that
the exposed API doesn’t necessarily allow you the same functionality that the
internal APIs can themselves access. We’ll go into more detail about the relation-
ships among these APIs in Chapter 5.

OpenGL Application

GLUT

AppKit AGL

CGL

OpenGL

Figure 2-2 AGL, CGL, and AppKit Layered with OpenGL

16 Chapter 2: OpenGL Architecture on OS X

The Mac OS OpenGL Plug-In Architecture
One important thing that the engineers at Apple responsible for the OpenGL im-
plementation realized early in development was that the computing landscape
is constantly under change. Consider just the six major versions of Mac OS X
that have emerged since 2001 (Table 2-3). Whether it’s market conditions, tech-
nical capabilities, costs, or other factors, the OpenGL implementation on OS X
has to adapt to a changing environment. Further, because the OS depends so
heavily on OpenGL, the implementation has many eyes on its performance. In
short, the OpenGL implementation needs to be adaptable, error free, and high
performance.

To adapt to the changing environment and to mitigate circumstances that give
rise to bugs, the Mac OS OpenGL implementation has been modularized as
a plug-in architecture at multiple levels (Figure 2-3). At the highest level, the
OpenGL interface is managed as a dispatch table of entry points. These entry
points can be changed out according to hints or other environmental factors.
The most common reason for changing these entry points arises when you are
using CGL macros to reduce the overhead of calling into the OpenGL API itself.
(Chapter 6 provides more discussion of CGL macros.)

Beneath the dispatch table, another plug-in layer exists. On OS X, this is referred
to as the OpenGL engine layer. This logical abstraction layer is responsible for
handling all of the device-independent OpenGL state. The OpenGL engine layer
checks the error state, maintains any client state required by the OpenGL spec-
ification, and is responsible for assembling OpenGL commands into a buffer
for submission to the underlying renderer. By logically separating this set of
functionality at the OpenGL engine layer, entire OpenGL engines can be loaded
or unloaded so as to most efficiently leverage the underlying CPU platform.
The multithreaded OpenGL engine announced at WWDC 2006 and available
for Leopard is an example of a functional module that can be selected for the
OpenGL engine interface.

Below the OpenGL engine exists another plug-in architecture for loading ren-
derers. These driver plug-ins are the most dynamic set of the various plug-in

Table 2-3 Timeline of Mac OS X Releases, Drawing APIs, and Windowing APIs

Mac OS Version Code Name Release Date
10.0 Cheetah March 24, 2001
10.1 Puma September 25, 2001
10.2 Jaguar August 24, 2002
10.3 Panther October 24, 2003
10.4 Tiger April 29, 2005
10.5 Leopard October, 2007

The Mac OS OpenGL Plug-In Architecture 17

OpenGL Application

Mac OS OpenGL Implementation

Dispatch Table

GL Engine
Plug-ins

Driver Plug-ins

glWindowPos3sv

GL Engine N

glAlphaFuncglAccum glBegin

GL Engine 0 GL Engine 1

Software
Renderer

ATI
Renderer

NVidia
Renderer

Figure 2-3 The Mac OS OpenGL Plug-in Architecture

layers, for two reasons:

• Plug-ins are selectable directly by the application at pixel format selection
time.

• Plug-ins are changed out according to the physical screen on which the appli-
cation resides.

Underlying your OpenGL application at any given time is a chain of logical
modules linked together to service your application according to its needs and
the environment in which the application is running.

Renderers
In the Mac OS drawing layers, we’ve started from the top and discussed what
Apple calls the “Windowing Layer.” Any drawing or drawing state calls made
into AGL, CGL, and the Cocoa Classes are deemed “Windowing Layer” calls.

Beneath this layer, and getting closer to the metal, is the Renderer Layer. A
renderer is the primary term used to describe the software object (or structure)
that graphics applications will interface with to perform rendering on OS X.
Each renderer represents a set of capabilities in terms of being able to process
and execute OpenGL commands. Renderers may or may not be associated with
a hardware device. They are configured, created, maintained, and destroyed
in CGL.

18 Chapter 2: OpenGL Architecture on OS X

Earlier we discussed the very capable software renderer—a purely software
path for rendering OpenGL commands. Hardware renderers are associated
with specific hardware devices and accordingly have the graphics process-
ing capabilities of those devices. One of the more notable capabilities of to-
day’s graphics cards is their ability to drive multiple physical displays. Accord-
ingly, the renderers associated with these devices support multiple displays as
well. In OS X, each physical display has an associated software virtual screen.
Renderers are always associated with exactly one virtual screen. Macs config-
ured with more than one graphics card will always have more than one virtual
screen.

Note that the Mac OS provides a mechanism to configure a virtualized desktop
from more than one graphics device. This virtual desktop allows users to drag
applications across the boundaries of the displays supported by the installed
display devices seamlessly. For your application, this means that an OpenGL
window can be dragged from one virtual screen to another, each of which has
different rendering capabilities! In this event, CGL will automatically switch the
renderer you are interacting with to a renderer representing the new territory
that your application now occupies.

This feature has obvious implications if this new renderer does not have the
same capabilities as your original renderer. If your application then proceeds to
draw but now lacks the capabilities it relies upon to render, all kinds of unpleas-
ant things could be displayed! For example, one consequence might be that your
application is running on a renderer that has half the texture resources, or that
your application is running with a surface that doesn’t have stencil capability.
If you relied on having stencil capability for some form of pixel test, your appli-
cation may not be able to get those results computed on this new renderer. In
the texture case, your application may suddenly begin swapping textures in and
out of graphics memory with each frame, yielding dramatically slower perfor-
mance. Of course, the most extensive set of consequences from changing virtual
screens could relate to a raw OpenGL capability change. It’s possible that an
OpenGL extension you were using on one screen will be unavailable on another
screen.

Fortunately, the Mac OS X software architecture will switch renderers for your
application to meet its needs automatically. For example, if the user moves
your application’s window from a screen supported by a higher-performance
graphics device such as a high-end ATI Radeon to a screen supported by a
lesser-performance graphics device, Mac OS X OpenGL can switch from us-
ing the Intel GPU to its native software renderer and perform your render-
ing on the host CPU. This performance is much slower, of course, but at
least it provides your application with logic capable of producing the correct
output.

Renderers 19

Whenever an application crosses a virtual screen boundary, it must make a call
to synchronize its OpenGL context across the two different renderers. In other
words, the context should be synchronized whenever your application win-
dows are moved. This is due to the fact that in addition to the OpenGL context
that you manage, every OpenGL application has a context that is maintained in
the OpenGL runtime engine. This context holds all of the application’s OpenGL
rendering state. The renderer for each virtual screen also contains a context of
rendering state.

When an application crosses a virtual screen boundary, the renderer is im-
plicitly changed by CGL. At this time the new renderer doesn’t know what’s
going on with the application’s rendering state. The explicit or implicit call to
CGLUpdateContext serves to synchronize the new renderer state to that of the
application context. The call to CGLUpdateContext or aglUpdateContext
must be done explicitly with Carbon applications but is done implicitly, on your
behalf, with Cocoa applications.

A word of caution here: Because implicit calls are made by the AppKit classes
that modify the internal graphics context state of a renderer, serious thread
safety issues arise that must be considered. If, for instance, your application has
a drawing thread that is modifying your application context, while in another
thread your NSOpenGLView instance is implicitly issuing calls to synchronize
your application context with that of the renderer, memory corruption and a
crash will likely result. To avoid these thread safety issues, CGLLockContext
and CGLUnlockContext can be called to resolve thread contention issues. You
can find out more about these functions in Chapter 6.

In addition to context synchronization, there is another key aspect to handling
virtual screen changes. If you plan to allow your application to move between
virtual screens (that is, between different graphics devices), you must create
a pixel format that is compatible with all graphics cards installed on the sys-
tem. In CGL, this is done by using a display mask (the kCGLPFADisplayMask
attribute). You’ll find more information on display masks in Chapter 6.

So we now must consider this common question: “What happens when my
application is straddling two different renderers?” In this case, whichever ren-
derer’s virtual screen has the majority of the application’s OpenGL windows
real estate is called upon to perform the rendering in full. In other words,
if your application has an OpenGL rendering area, and that window strad-
dles two virtual screens, the virtual screen/renderer that would be responsible
for rendering more than 50 percent of those pixels renders all the pixels. The
remaining pixels that are on the minority virtual screen are filled in by a copy
operation from the renderer associated with the majority virtual screen. There
are obvious performance consequences when such copying takes place. The
good news is that there is no performance penalty for having and using multiple

20 Chapter 2: OpenGL Architecture on OS X

virtual screens as long as your application’s OpenGL rendering area resides
entirely within one of them.

Choosing a renderer is the first logical step in creating an OpenGL application
for Mac OS. Several APIs are available to set up renderers on Mac OS, including
GLUT, CGL and AGL, and you can also use the OpenGL-capable Cocoa View
classes defined in AppKit. These methods of setting up a renderer for your ap-
plication are described in detail in Chapters 6, 7, and 8, respectively.

Drivers

The lowest layer in the rendering software hierarchy is the driver layer. This
layer contains all of the device-specific logic for the installed graphics hard-
ware of the system. The driver layer buffers rendering commands and render-
ing state commands until it becomes necessary to send them across the system
bus to the graphics hardware. The graphics hardware will then respond to the
commands by changing its rendering state, uploading or downloading data to
system memory, or rendering to the display. The driver also performs caching
of recently used data, manages data flow for cached data (e.g., display lists, ver-
tex buffers, and textures), and essentially does all the talking to and from the
hardware.

As an application writer, it is important that you understand the basic func-
tions of the driver layer when you are tuning performance or, on occasion, sub-
mitting bug reports. When using diagnostic tools from the CHUD framework
(discussed in detail later), you may see functions show up in a trace that are
clearly reminiscent of a particular type of graphics hardware. We’ll discuss and
interpret traces into the OpenGL drivers in Chapter 11.

Summary
The software architecture of OpenGL on Mac OS X reflects both the history and
the future of OpenGL as well as the diverse and ever-changing Mac hardware
platform itself.

From the dispatch table down to the device-specific driver modules, a basic un-
derstanding of the logical modules of the OpenGL implementation on Mac OS
X is the key to efficient usage of the software architecture as a whole. Under-
standing these software modules and their interactions will aid you in debug-
ging and allow you to make the most effective choices when configuring your
application.

Summary 21

This page intentionally left blank

Chapter 3

Mac Hardware
Architecture

Overview
We’ll now step back from the software side of things and look at hardware. Most
modern personal computers have at least two large processors in them; a central
processing unit (CPU) and a graphics processing unit (GPU—a term coined in
the late 1990s). In 2001, the number of transistors in GPUs caught up with and
surpassed the number within CPUs. Although this feat is in large part a result
of parallel logic in the GPUs, it still speaks loudly to the fact that more and more
processing in today’s computers is happening on the GPU. These are exciting
times to be a graphics developer!

Now that there are more transistors on the GPU than on the CPU, graphics
developers have been looking at many different ways to push computation to
the GPU. This trend toward more processing on the GPU was greatly catalyzed
by the introduction of programmable shaders in the late 1990s. Shading and
high-level shading languages opened the door to performing more generalized
computing tasks on the GPU. A necessary complement to complex shading was
a place to store those high-precision results. That need gave rise to the develop-
ment of floating-point framebuffers. The lack of precision storage was a signifi-
cant barrier to generalized computing on the GPU but is no longer an obstacle.
Furthermore, recent GPUs have been chipping away at other barriers, such as
conditionals, loops, rendering to multiple surfaces simultaneously, and entirely
virtualized shading engines. General-purpose computing on GPUs (GPGPU) is
a growing topic of importance in the graphics world.

The overall hardware architecture of today’s Macs consists of one or more CPUs
with memory, a GPU with memory, and a bus over which the two communicate.
Macs, like PCs, have a CPU northbridge and southbridge. The northbridge is the

23

Northbridge

M
em

or
y

CPU
Front-side BusMemory Bus

PCIe Link

PCIe Links

ATA Bus

GPU

SouthbridgePCle Card 0

PCle Card 1

PCle Card n

Serial ATA
Drive

Figure 3-1 Prototypical System Architecture Diagram

pathway to the memory controller and memory. The southbridge is the pathway
to all other devices installed in the system, including PCI, AGP, and PCI Express
(Peripheral Component Interconnect) devices such as graphics cards.

In this chapter, we’ll dig into the hardware architecture of modern and histori-
cal Macintoshes to provide context relevant to graphics developers. We’ll point
out some obvious bottlenecks and some ways of considering data flow within
a system so as to maximize graphics performance. Armed with a few observa-
tions about hardware and how your software interacts with it, you’ll be much
better prepared for developing high-performance applications now and in
the future.

Figure 3-1 presents a schematic of a typical system’s architecture. The reason we
point this out, even at this very abstract level, is to help you understand where
your graphics data lives and flows in a modern Mac. Understanding how the
CPU in your Mac communicates with and transfers data to and from the GPU
will help you optimize your graphics applications on Mac OS.

Data Flow and Limitations
It’s important to understand hardware architecture when evaluating how a
graphics application runs on a specific system. We will cover performance-
tuning case studies and methods in Chapter 11 but felt it worthwhile to

24 Chapter 3: Mac Hardware Architecture

discuss some macro-level concepts of graphics software performance consid-
erations here in the hardware architecture chapter. Our intention is to identify
some of the general classes of performance problems that graphics applications
face and to suggest how well (or badly) the available hardware solves these
problems. Specifically, it’s necessary to understand the fundamental limits of
the various processing units, buffers, and busses through which the applica-
tion’s data will pass.

There are two primary types of data in OpenGL: pixels and vertices. Each type
of data has a different logical flow through the system and can, therefore, be sub-
jected to different hardware and software limitations. We’ll begin where your
data originates, and walk through the process of getting that data to the GPU
for rendering.

We’ll first look at your chunk of data, either pixels or vertices, to be rendered.
We’ll assume that you’ve not loaded your data yet, so it currently lives on a disk
somewhere. Beginning by loading your data from disk, if there is not enough
system memory to hold the data resident, then you must take the disk I/O limit
into account.

Once the data is in the system memory, a memory bandwidth limit between the
CPU and the memory itself becomes important. Understanding system caching
and using it efficiently is key here. If the data is being streamed, managing the
caches becomes less significant. However, if you are frequently revisiting the
same data, keeping the CPU caches “hot” is critical to application performance.

When the data is in the primary cache of the CPU, the next limitation may well
be the instruction throughput, which relates directly to the clock rate of the
CPU itself. This constraint (and more loosely memory and cache access) is often
described as being “CPU bound.” Being CPU bound has two forms: bound by
code inside the application or bound by code inside the graphics system soft-
ware of the Mac.

After being processed by the CPU, the data is transferred to the GPU. During
this process, it may encounter a bandwidth limit between CPU and GPU. When
your application hits this limit, it is referred to as “upload limited” (sometimes
“download limited,” depending on if you view things differently) based on
the constraints of both setting up and transferring data between the host and
graphics processor.

Once your data is on the GPU, however, the graphics processor can directly
process the uploaded data for display or store it in VRAM. If the application
overcommits the VRAM by, for instance, defining a great deal of vertex, texture,
or framebuffer objects, the data will be continuously paged in, as needed, from
the host CPU/memory subsystem. The upload limit becomes a key bottleneck
at this point.

Data Flow and Limitations 25

We have now described the various forms of bottlenecks that can arise in getting
your data from the disk to the graphics. To review, the main data flow bottle-
necks your application will face from the system perspective are as follows:

• Disk I/O
• Memory I/O
• CPU I/O
• GPU I/O

Modern graphics cards internally look a lot like the host CPU architecture.
That is, they have a memory controller, sometimes several processors, a main
memory with various caches, busses connecting the various components, and a
bunch of other plumbing.

Let’s consider the processing of vertex data first. On older graphics cards,
the notion of being “transform limited” was quite common. This limit describes
the required time to transform in space, clip, and light vertices in the scene.
With the degree of parallelism in today’s CPU, this has become a less common
bottleneck for all but the heaviest users of geometry. However, shaders now
allow people to perform increasingly complex calculations during vertex trans-
formation, so this bottleneck should not be discounted—you can still become
bottlenecked by this phase.

The other primary data type, pixels (or texels, as pixels are known if they con-
sist of texture data), encounters performance limits during rendering as well.
When an application has to rasterize or “fill” a large amount of screen real es-
tate, the application may become “fill limited.” The term “fill” originates from
the need to fill polygons with pixels when drawing them. These rasterization-
stage output pixels are known as fragments in OpenGL. However, fill doesn’t
necessarily just refer to the fragments that you see; it also implies all the sec-
ondary data that is rendered per pixel, including stencil, depth, alpha, and
other capabilities of the visual you’re using. In short, a lot of secondary data is
moved around for every pixel that ends up reaching the fragment engines, and
too many fragments being processed can lead to a fill limitation. Fill-limited
applications are quite common these days, although not necessarily for your
application. As always, you will need to evaluate your specific application for
this risk.

The ultimate destination of the data in a graphics application is the display on
which it will be shown. These devices have their own limits in terms of refresh
rate or response time that will affect how fast you can render your graphics. A
common performance problem with graphics applications and monitor refresh
rate occurs when your application only achieves frame rates that are some in-
teger multiple of the refresh rate. For example, your monitor may be refreshing
at 60Hz, but your application only sees 30Hz or 20Hz; that is, you never see

26 Chapter 3: Mac Hardware Architecture

27Hz, or 34Hz, or 19Hz—only integer multiples. This is due to an effect called
“frame rate quantization,” which we’ll explore briefly in Chapter 11.

Problem Domains

Each domain from which a graphics application originates tends to have its own
points of early saturation limits for general-purpose graphics hardware like the
Mac. Here are some examples:

• Gaming: CPU bound when computing the physics of the characters and
objects in their scenes.

• Video editing: Upload limited when manipulating multiple high-definition
streams of video during transitions between video streams.

• CAD, CAE, and modeling: Transform limited. This software will take con-
structive solid geometry or surface models and create incredibly dense
meshes of tetrahedra or other 3D primitives for the purpose of stress analysis
by finite element engines. Each of these 3D primitives is represented by poly-
gons that must be transformed to manipulate the model.

• Medical imaging/volume rendering: Fill limited. Arrays of 2D image scans
from medical or seismic, oil and gas equipment are reconstructed into three
dimensions by this software for analysis. These arrays of images are rasterized
into large polygons for display and impose an enormous fill burden on the
system.

It is important to approach graphics application development with a good un-
derstanding of the limits of your domain and to design your application, its
logic, and its data structures accordingly. Keep in mind that once you eliminate
a bottleneck, some other portion of the system will inevitably provide a new
bottleneck: It’s always an iterative process, and one in which you’ll need to in-
vest some time to get the best results.

Know Thine OS Requirements

Any modern application you write will likely have to support multiple versions
of the Mac OS. It’s obviously easiest to support only one version, but your cus-
tomers will likely have multiple versions, which you must then accommodate.
If your application is expected to run on multiple Mac OSs such as Panther,
Tiger, or Leopard, each will have a different set of features, capabilities, and
baseline requirements. For your application, whether based on OpenGL or not,
understanding these baselines will have consequences for your software. For
this reason, each of these operating systems is published with a set of minimum
system requirements. Naturally, the minimum configuration is the most restric-
tive system that you will have to support and is what your application should

Data Flow and Limitations 27

be most concerned about. This section explores some of these baselines and ex-
plains their implications for your application.

CPU and Clock Rate

Consider this minimum configuration example with regard to CPU and clock
rate: On Mac OS 10.3 (also known as Panther), the minimum required CPU is a
300MHz G3 processor, 128MB of RAM, and no explicit requirements on VRAM
of the graphics card. What does it mean to you if the system has a G3 processor?
Aside from clock rates being lower, we know that a G3 processor has no vector
engines to process AltiVec code. If your application requires intense vector code
to sustain a minimum frame rate of 30 frames per second (FPS), it’s not going
to perform well—or maybe even at all—on a G3. (Note that G3 support was
dropped in Leopard.)

Also, you should recognize that the lack of a vector engine will create some
nonlinearities in what might be expected of a system based on its clock rate
alone. For instance, if performance on a G3-based system was estimated simply
by scaling the performance on a test run carried out on a G4, you may be in
for some surprises. To further aggravate these results, the Mac OS software itself
relies heavily on the AltiVec engines wherever possible. In the absence of these
vector units, the performance bottleneck of your application could shift from
somewhere in the graphics processing to the CPU.

How about having a G4 as a minimum requirement? A G4 does get you some
on-chip vector engines, but does your application do a great deal of high-
precision or 64-bit math? If so, then the G4 may not be sufficient, but G5 and
IA64-capable Intel CPU performance results are going to be very good.

Establishing the processor baseline will also give you some clues about the
available graphics bandwidth of the system. For instance, no Mac system with a
G3 processor supports greater than AGP 1x. No Mac system with a G4 processor
supports greater than AGP 4x. G5 processor-based Macs support up to AGP 8x
and PCI Express. Intel-based Macs support PCI Express throughout the prod-
uct line and have different characteristics for memory bandwidth as well. The
point here is that it’s important to consider the data rates that your application
may request of (and realistically attain from) the system. By knowing the basic
system CPU, you can make a few assumptions about how much bandwidth is
available.

Bus

Two primary busses come into play with today’s Mac computers: the memory
bus and the graphics bus.

28 Chapter 3: Mac Hardware Architecture

Memory

The physical data path between main memory, the CPU, and other subsystems
is known as the memory bus. The memory bus is the primary path over which
data flows when it is being loaded to and from a disk, a network, or graphics.
Memory bus speeds are implicitly related to the performance of the CPU, so
knowing one gives insight into the other. Historically, there has always been an
even multiplier between the clock rate of the memory bus and that of the CPU
such as a 2.5GHz processor using a 1.25GHz bus.

A very common scenario where the memory bus affects applications is as a re-
sult of implicit data copies. By “implicit,” we mean that within the framework,
the OpenGL runtime engine and graphics drivers make copies of your data dur-
ing the processing of that data for rendering. You don’t explicitly do anything in
your application except use a data type that has to be transformed into a card-
native format. Several additional copies of your data may be created, causing
both valuable memory and valuable memory bus bandwidth to be used.

Consider the architecture of a theoretical system containing two processors (one
CPU and one GPU) and two banks of memory (RAM and VRAM). The memory
for graphics data is initially allocated by the application itself and passed to one
of the OpenGL functions. When the OpenGL function is called, the OpenGL
runtime engine may make a copy of the data, the graphics driver may make a
copy of the data, and a copy of the data may be created in VRAM. With so many
data copies taking place, the memory bus becomes very busy.

For more information on controlling when and where data is copied in the Mac
OS OpenGL implementation, see the texture range extension and vertex data
copy information in Chapter 11.

Graphics

The latest graphics bus available on the Mac platform as of this writing is PCI
Express. Prior to PCI Express, modern Macs used the AGP (Advanced Graphics
Port) bus. The AGP bus has been around since 1997, when it was originally
developed by Intel. As we discussed a bit in the prior section on memory busses,
there’s a strong correlation between CPU type and graphics bus type. Table 3-1
shows this correlation.

The bandwidth numbers listed in Table 3-1 describe the theoretical maximum
throughput numbers. None of these numbers accounts for the protocol (AGP or
PCI Express) overhead implicit in managing the bus traffic. For instance, the
theoretical maximum bandwidth for 16-lane PCI Express is approximately
3.4GB/s when accounting for bus protocol overhead. If you then include the
overhead of managing and transferring OpenGL command and data packets,

Data Flow and Limitations 29

Table 3-1 Processor Type and Graphics Bus Pairing

CPU Bus Bandwidth (MB/s)
G3 AGP 1X 256
G4 AGP 4X 1024
G5 AGP 8X 2048
G5 16-lane PCI Express 4096
CoreDuo/Core2Duo 16-lane PCI Express 4096
Xeon 16-lane PCI Express 4096

the realizable data bandwidth throughput to these devices is approximately
2.2GB/s on modern hardware.

Despite the copious amounts of bandwidth available on modern hardware, the
graphics bus can still become a bottleneck. This problem is much less likely
if proper care is used to manage data copying, as described previously. How-
ever, if you’re downloading or updating a movie, or animating geometry, you
will most likely be transferring data per frame—there is no way around that.
There are only two solutions when the limits of the graphics bus are reached.
First, you can send less data using lower-fidelity images, compressed textures,
or decimated models. Alternatively, you can distribute the graphics data trans-
fers over a longer time span. That is, you can spread the data you’re down-
loading among multiple frames of rendering. You sometimes see the results of
a technique like this as a progressive improvement in image fidelity over sev-
eral frames rendered, as more and higher-fidelity models and textures are trans-
ferred and rendered.

A third bus also has relevance for graphics programmers: the bus bandwidth
available on the actual graphics card on which you’re rendering. Most modern
graphics hardware have much faster busses than either the graphics or mem-
ory busses described thus far. Typically, these are approximately an order of
magnitude faster than their counterparts farther upstream. Current GPUs have
memory bandwidths in the 10s of gigabytes per second. In most applications,
you probably won’t be bound by this bus, but, as always, it’s possible to get
bottlenecked here as well. Never say never! It’s vastly more common to see an
application have difficulties managing data computation, copies, and transfer
to the graphics card.

Video Memory: VRAM

Video memory on graphics hardware is a complex and opaque topic. Modern
graphics cards have lots of video memory—amounts that for old-timers in the
computing industry were once large amounts to have on complete computing

30 Chapter 3: Mac Hardware Architecture

systems, let alone subsystems like graphics. Even so, these large buffers are used
for lots of tasks, including not just display of resultant images but also storage of
various graphics data, from textures to geometry to the framebuffer itself. We’ll
explore some of the issues you should consider about VRAM from a hardware
perspective in this section.

Why does Mac OS 10.2 (also known as Jaguar) have a minimum VRAM re-
quirement, while Mac OS 10.1 does not? With the introduction of OS X and
Quartz 2D, Apple moved from a simple planar windowing environment to a
composited 3D window system. Today, everything you see—windows, icons,
the dock, and so on—is floating in 3D space on the Mac desktop. What once
were simple pixel maps now have representation as textures in VRAM.

This means that the OS is capable of a unique and rich user experience, albeit
at a cost. Quartz 2D, the main system 2D graphics rendering engine, is also an
OpenGL application and competes with your application for some of the same
graphics system resources.

Leopard continued to push forward with OpenGL usage, introducing Quartz
2D Extreme, which fully accelerated the Quartz layer in OpenGL. This feature
of the OS has pushed VRAM requirements into another echelon previously un-
known to personal computer operating systems. Quartz 2D Extreme is more or
less a wholesale replacement of the CPU/RAM backing store of the user desk-
top. Virtually everything displayed on your screen is rendered and stored on
the GPU—even individual glyphs are cached in VRAM! Undoubtedly, with the
enormous computing potential of modern GPUs and ever-larger VRAM con-
figurations of these GPUs, the trend toward shifting the burden of the visual
process to the GPU is expected to continue. If it does, you can expect the video
card minimum specifications to rise accordingly in the future.

The VRAM consideration is less important for full-screen applications that
essentially take over the graphics hardware, as they can swap out all the other
visual data from the GPU. However, if your application runs in a window, you
must take care to ensure it doesn’t require all of the OS’s minimum VRAM
requirements to run. If so, you’ll end up competing with the OS frequently for
precious GPU resources and consequently suffer poor performance.

RAM

Beginning with Mac OS Tiger, the minimum system RAM requirements were
raised from 128MB to 256MB. In one sense, this led to a sigh of relief from
application developers—that is, unless you had less free memory on your
256MB-configured Tiger or Leopard system than was available on your 128MB-
configured Panther system. Historically, each new version of the OS has used
more than the previous version. Monitoring and quantifying the available

Data Flow and Limitations 31

system memory in a minimally configured and quiescent Mac using the util-
ity application Activity Monitor or Big Top can give you a basis for determining
how much free memory you can reasonably expect to have available. Doing so
early in your development cycle may help you later diagnose memory-related
performance headaches.

Summary
Graphics application writers should have a solid understanding of the often
well-known hardware limitations for the software they are writing or intend to
write. If your application will handle a great deal of vertices, you should antic-
ipate the effects of potential transform or shader limitations for these vertices
and design your software and data structures accordingly. Similarly, if your ap-
plication is heavier on the back end of the OpenGL pipeline, where heavy raster-
ization is required, you can program defensively for those limits. In either case,
knowing the overall VRAM requirements of your application, the VRAM re-
quirements of Mac OS X itself, and the available VRAM of the target hardware
is as important to application performance as a consideration of the general
system’s RAM.

The hardware landscape for Macs is quite diverse. Nevertheless, it’s essential to
get a handle on these configurations so that you can develop applications that
are highly optimized, yet usable on a rather diverse class of Mac hardware.

32 Chapter 3: Mac Hardware Architecture

Chapter 4

Application
Programming

on OS X

Overview
The OS X revolution of the Mac operating system began in 2001. Darwin, the
open-source core of OS X, is derived from Berkeley Systems Division (BSD)
Unix. The introduction of a Unix core has had a profound—and arguably
positive—effect on software developers for the platform. Along with the time-
tested and industry standardized architecture of Unix, its multiprocessing capa-
bilities, and advanced virtual memory semantics came the diverse and powerful
shell programming environment, libraries, and tools familiar to Unix applica-
tion developers. The addition of scripting environments such as Perl, Ruby, and
Python can further catalyze the development and testing process.

The X11 window system is also supported on OS X. With an industry standard
OS kernel, windowing system, and graphics API, graphics applications written
on other Unix platforms can be ported to OS X with relative ease.

Mac OS X Versions
Mac OS X has gone through several major iterations and many more minor
iterations during its life so far. Each minor release number for OS X represents
a large chunk of functionality. Releases such as 10.1, 10.2, and 10.3 represent at
least a year of engineering time for Apple. Another way to think of it is that
each time there’s a new cat—such as Panther, Tiger, or Leopard—assigned to a
designated OS X, it represents a substantial software release for the OS.

In the developer community, and sometimes even in the popular press, these
major-release versions are interchangeably referred to by their code names.
Because we have been working on Mac OS X for years, these names are an in-
nate part of our lexicon, but we want to make sure we’re not confusing you,

33

Table 4-1 Mac OS X Versions and Code Names

Version Number Code Name
10.0 Cheetah
10.1 Puma
10.2 Jaguar
10.3 Panther
10.4 Tiger
10.5 Leopard
10.6 Ocelot?

Manx?
Margay?
Serval?

dear reader. So, for your viewing, edification, and entertainment, we present in
Table 4-1 a list of the Mac OS version numbers and release names current as of
this publishing. For fun, we’ve added some speculative suggestions for future
versions, too.

System Configuration
You can determine which GPU core your machine has by using the Apple
System Profiler. Go under the Apple menu and select “About this Mac . . . ”.
Click the “More Info . . . ” button. Under the hardware list, you will see
a category for PCI/AGP cards. An ATI part will have a label such as
ATY,Radeon X1600. We’ll discuss in detail both how this information can be
programmatically queried and how these tools work later in this book. Specifi-
cally, programmatic inquiry of hardware capabilities is discussed in Chapter 13,
and tools for inspecting and analyzing your OpenGL code and environment are
explored in Chapter 11.

Power Management
The Mac OS can be configured so as to conserve power by putting the CPU, the
display, and the hard drive to sleep. Many application writers do not need to
be concerned about the sleep semantics on the Mac. If, however, your applica-
tion needs to respond to the sleep, powering-up, or powering-down events, we
thought we would include some of the essentials here.

From a device driver perspective, consideration of power management can be
rather complex. Fortunately, for user applications, the task is much simpler. The
power management API is designed to accommodate a hierarchical set of power
domains. For application development, the root power domain, which covers
all system sleep and power-on events, is all you will likely need to consider.

34 Chapter 4: Application Programming on OS X

For symmetry, it is easiest to consider power-on events as wake-up events.
Sometimes, these events may be misunderstood to mean the system has pow-
ered up from an off state, based on the naming conventions used. In reality, a
wake-up event means that the system is coming out of a low-power mode and
is notifying your application of that state change.

So now that we have the sleep and wake-up terminology straight, let’s consider
sleep events. There are two kinds: active sleep events, which are generated from
the user selecting the “Sleep” option in the Apple menu, and idle sleep events,
which occur in response to an inactive system. Example 4-1 shows an example
of power management code on the Mac.

Example 4-1 Power Management on OS X

#include <stdio.h>
#include <mach/mach_interface.h>
#include <mach/mach_init.h>
#include <IOKit/pwr_mgt/IOPMLib.h>
#include <IOKit/IOMessage.h>

io_connect_t root_port;

void callback(void *x, io_service_t y,
natural_t messageType,
void *messageArgument)

{
float z = *((float *) x);

printf("z = %6.2f\n", z);

switch (messageType)
{

case kIOMessageSystemWillSleep:
printf("SystemWillSleep\n");
// Here can either cancel or allow
// IOCancelPowerChange(root_port, (long) messageArgument);
IOAllowPowerChange(root_port,(long)messageArgument);
break;

case kIOMessageCanSystemSleep:
printf("CanSystemSleep\n");
// Here can either cancel or allow
IOCancelPowerChange(root_port, (long) messageArgument);
// IOAllowPowerChange(root_port,(long)messageArgument);
break;

case kIOMessageServiceIsTerminated:
printf("ServiceIsTerminated\n");
break;

case kIOMessageServiceIsSuspended:
printf("ServiceIsSuspended\n");
break;

case kIOMessageServiceIsResumed:
printf("ServiceIsResumed\n");
break;

Power Management 35

case kIOMessageServiceIsRequestingClose:
printf("ServiceIsRequestingClose\n");
break;

case kIOMessageServiceIsAttemptingOpen:
printf("ServiceIsAttemptingOpen\n");
break;

case kIOMessageServiceWasClosed:
printf("ServiceWasClosed\n");
break;

case kIOMessageServiceBusyStateChange:
printf("ServiceBusyStateChange\n");
break;

case kIOMessageServicePropertyChange:
printf("ServicePropertyStateChange\n");
break;

case kIOMessageCanDevicePowerOff:
printf("CanDevicePowerOff\n");
break;

case kIOMessageDeviceWillPowerOff:
printf("DeviceWillPowerOff\n");
break;

case kIOMessageDeviceWillNotPowerOff:
printf("DeviceWillNotPowerOff\n");
break;

case kIOMessageDeviceHasPoweredOn:
printf("DeviceHasPoweredOn\n");
break;

case kIOMessageCanSystemPowerOff:
printf("CanSystemPowerOff\n");
break;

case kIOMessageSystemWillPowerOff:
printf("SystemWillPowerOff\n");
break;

case kIOMessageSystemWillNotPowerOff:
printf("SystemWillNotPowerOff\n");
break;

case kIOMessageSystemWillNotSleep:
printf("SystemWillNotSleep\n");
break;

case kIOMessageSystemHasPoweredOn:
printf("SystemHasPoweredOn\n");
break;

case kIOMessageSystemWillRestart:
printf("SystemWillRestart\n");
break;

case kIOMessageSystemWillPowerOn:
printf("SystemWillPowerOn\n");
break;

default:
IOAllowPowerChange(root_port, (long) messageArgument);
printf("messageType %08lx, arg %08lx\n",

(long unsigned int)messageType,
(long unsigned int) messageArgument);

}

36 Chapter 4: Application Programming on OS X

}

int main(int argc, char **argv)
{

IONotificationPortRef notify;
io_object_t anIterator;
float x = 5.81;

root_port = IORegisterForSystemPower (&x,¬ify,callback,&anIterator);

if (root_port == 0)
{

printf("IORegisterForSystemPower failed\n");
return 1;

}
CFRunLoopAddSource(CFRunLoopGetCurrent(),

IONotificationPortGetRunLoopSource(notify),
kCFRunLoopDefaultMode);

printf("waiting...\n\n");

CFRunLoopRun();

return 0;
}

Two OS X frameworks are central to the handling of sleep events: CoreFoun-
dation and IOKit. In particular, CoreFoundation is responsible for dispatch-
ing sleep and other system events. IOKit is used, in this case, to register your
application as a listener for these events.

The first step in the example is to write a callback routine that will handle power
management events that conform to the IOServiceInterestCallback
prototype:

• userData is data that can be sent to the handler when registering the callback
with IORegisterForSystemPower.

• service is the IOService whose state changed and resulted in the callback
being invoked.

• msg is the actual msg, or type of power event.
• msgArg is qualifying information for the message that, practically speaking,

is used to respond to the power event.

As far as this callback is concerned, aside from any housekeeping your applica-
tion may want to do, there are two possible responses the system is looking for:
allowing the power state change or disallowing the power state change. This is
where things get deceiving. The truth is that the only time you can disallow a
power state change is when an idle sleep event occurs. In this case, your appli-
cation will be sent a kIOMessageCanSystemSleep message. In response to

Power Management 37

this message, your application can cancel the power state change with a call to
IOCancelPowerChange.

In other words, if the user asks the system to sleep from the Apple menu,
calling IOCancelPowerChange will have no effect. In fact, for an active
sleep request on the part of the user, your application will not receive a
kIOMessageCanSystemSleep message as an event. You can, however, delay
the power event in any sleep scenario. If you choose not to respond to a power
event with either IOAllowPowerChange or IOCancelPowerChange, the
system will wait 30 seconds before effecting the power state change. By adding
a default condition on the power event switch, you will avoid this 30-second
delay on messages that you had not explicitly written logic to handle.

The second and final step specific to handling power events is to request
notifications of them from the CoreFoundation run loop. When a sleeping
Mac wakes up, your power event handler will first receive a
kIOMessageSystemWillPowerOn message and shortly after will receive a
kIOMessageSystemHasPoweredOn message.

For graphics applications, it is a good idea to consider calling CGLUpdate-
Context when your application receives power-on events. If, for instance,
a display was removed from the system while it was sleeping, the system
will do an implicit renderer change if your application was occupying the
display that was removed. In this case, you want to force a synchroniza-
tion between the OpenGL context of your application and that of the new
renderer.

Filesystem
There are a few surprises in store for Unix users who move to the Mac OS for
the first time. From a user or an application developer perspective, the biggest
difference is case insensitivity in the most common filesystem, HFS (and HFS+).
The problem to be aware of here is that HFS is case preserving but not case sensi-
tive. Thus, to the filesystem, you can create and save a file named Foo, but later
access that file by opening foo. That makes for some tricky errors, if you’re not
aware of that distinction. The Mac also supports a number of other filesystems
natively, including a few that are both case sensitive and case preserving. Again,
when accessing files on the Mac, it’s imperative to ensure that the file you asked
for is really the file you received.

From an administrative perspective, the tools used to manage and configure the
filesystem on the Mac OS are likely to be considerably different from the tools
available on other Unix workstations you may have used, simply due to the
diversity of filesystems available.

38 Chapter 4: Application Programming on OS X

Finding, Verifying, and Filing Bugs
Occasionally, while writing or porting your OpenGL application to OS X, you
may suspect you’ve found a bug in the OpenGL implementation or other parts
of the Mac OS. One great thing about the Apple OpenGL team is that they want
to help you succeed with your application on the Mac. With a collaborative
effort, you’ll get great results.

If you’re inclined to file an OpenGL bug, here are a few tips to support your
report. First, check the GL error state when you’re finished rendering a frame.
You can do so by adding the code to your application and recompiling or, even
easier, use the OpenGL Profiler application to break on OpenGL errors for you.
You can simply open the breakpoint view and check the “Break on Error” op-
tion. Your goal in this step is to ensure that you’re not causing an OpenGL error.
That is, you’re trying to validate that the bug actually lies in the rendering, not
in your usage of OpenGL.

The next step you can take to provide fortifying data for a bug re-
port is to try the new software renderer. You do so by selecting the
kCGLRendererGenericFloatID as your renderer ID. See Chapters 6, 7, and
8 for more information on choosing different renderers.

Once you’ve chosen the software renderer, compare the results you got when
rendering with the hardware renderer you were using. If the results are the
same, the problem most likely lies in your software rather than in Apple’s. If
they’re different, Apple will want to know about it.

You can also try your application out on different cards from different vendors
to fortify your bug report. In particular, you may want to test your application
on one machine—say, a laptop with an ATI part—and then compare the re-
sults with running your application on another machine—for example, a desk-
top that has an NVIDIA part.

To qualify your bug a step further, and if you have the machines at your dis-
posal, you can test your application on different GPU cores from the same
graphics hardware vendor. By and large, if you’ve tested your application on
one GPU core from a specific vendor, you’re going to get the same results on
other GPUs that use the same core.

When filing bugs, it’s imperative that you’ve verified that your application is
not relying on undefined behavior. Apple sees many bug reports filed where a
developer has written code that depends on OpenGL behavior that is explicitly
declared as undefined in the OpenGL specification. When behavior is specified
to be undefined, all bets are off. You truly don’t know what you’re going to get
for a rendering, and Apple isn’t going to be able to fix your problem.

Finding, Verifying, and Filing Bugs 39

Perhaps even more common than bugs filed where applications rely on unde-
fined behavior are bugs filed that state “Application X runs on OS 10.x.y, but not
on OS 10.x.z,” where z is a later revision than y. From a developer’s perspective,
this can feel like a certainty that there is a bug in OS 10.x.z. This may well be
the case, but consider this: The Mac OS OpenGL implementation gets stricter in
its compliance with the OpenGL specification (and arguably better) with each
release. If an application begins to misbehave after a software update, often this
is because the application wasn’t strictly adhering to the OpenGL specification.
That said, it’s entirely possible a regression was introduced with the software
update; again, Apple is eager to hear about such a problem.

A closely related cousin to this type of filing is the bug that is filed with the
rationale that “It works on this other platform; therefore it must be broken on
OS X.” This may be the case. It may also be the case that the other platform is
more lax in its compliance with the specification and is allowing behavior that
it probably shouldn’t. In any case, this is a great data point for a bug filing but
isn’t the proverbial “nail in the coffin” for identifying the source of the bug.

Suppose you’ve done some due diligence, and now you’re ready to file a bug.
Here are some tips to get satisfaction for your efforts. First, realize there are a
few layers of Apple engineers involved when it comes to bug processing. When
a bug report is filed, it is screened by the developer program to see if it can
resolve the problem. If not, the report will be sent to the appropriate engineer-
ing group within Apple. That group will also have a screener. The engineering
group screener knows what everyone is working on within the group and will
dispatch the bug to the appropriate engineer. By now, I hope you can see where
I’m going with this: Given the many people and many schedules involved, it
can take quite a while to validate and assign your bug.

You will want to short-circuit this process as much as possible by providing as
much essential information as possible. Honing your bug report, as described
earlier, by trying different renderers, trying different graphics cards, checking
the GL error state, and so on is a great start. The next thing is to specify the
precise steps to reproduce the bug. If you have a very complex environment
requiring a sophisticated license mechanism or hardware dongles, see if you
can pry the problem out of this environment and make it reproducible in a more
simple setting.

Other essential information includes the OS X build number, which can be ob-
tained by clicking the “Version . . . ” text of the “About This Mac” dialog you
can bring up from the Apple menu. Also, provide information on the graphics
hardware that is installed on the test system.

One final note on bug filing: Try to attain the holy grail of bug reporting—a
small test application. Sometimes this is impractical, but often it’s not too hard

40 Chapter 4: Application Programming on OS X

to create a small application with the offending OpenGL state that produces
the problem. Don’t hesitate to ask Apple for template applications that can be
augmented to create a test application. The company has templates that use all
of the windowing system interfaces to OpenGL on Mac OS X: CGL, AGL, and
Cocoa.

With a smart and informative title, some coverage testing as described earlier,
steps to reproduce the bug, and a test application, you’ll skip the maximum
number of people and get the best turnaround time for your bug report.

Threading
A thread on OS X, and on many other operating systems, contains all the re-
quired state elements for executing instructions on a processor. Threads have
an associated call stack, have their own set of register states, and share the vir-
tual address space of the process in which they are created.

Threads are quite lightweight and high performance. Provided you give them
some work to do, thread switching and synchronization overhead can be amor-
tized with relative ease. In this manner, threads are the doorway to full utiliza-
tion of multiprocessor Mac computers, which, unlike with some platforms, has
been a common configuration for many years.

At the lowest level, OS X threading is implemented as Mach threads. This level,
however, is generally not interesting for application development and should
be avoided if possible. Above Mach threads, OS X conforms to the industry
standard POSIX threading model. If you’re porting from other platforms, OS
X’s use of POSIX threads can be a real relief. POSIX threading is the foundation
of threading logic for application developers working on OS X.

Depending on whether your application is a Carbon application or an Objective-
C Cocoa application, there are different abstraction layers for threading above
the POSIX interface.

For Carbon, there are two threading packages: Threading Manager and Mul-
tiprocessing Services. Both of these threading packages are part of the Core-
Services framework. Multiprocessing services allows pre-emptive scheduling
of threads. Threading Manager will schedule threads cooperatively, sharing the
available resources among the threads.

Cocoa applications can and should leverage the NSThread class for pre-
emptively scheduled threads. This is part of the Foundation framework.

Threading Manager, Multiprocessing Services, and NSThread are all built on
top of the POSIX threading interface in OS X. This, in turn, is built on top of the
Mach threading interface (Figure 4-1).

Threading 41

NSThreads

pthreads

Mach Threads

Carbon Thread mgr

Figure 4-1 Threading Layer Cake: Thread Packages, on Top of POSIX, on Top
of Mach Threads

For OpenGL applications on OS X, only a single thread may generate OpenGL
commands for a given OpenGL context at one time. This, with some consider-
ation, is somewhat self-evident. Consider the rendering output you would get
if you interleaved rendering commands and OpenGL state changes from two
different threads at one time!

One of the more insidious threading problems for OpenGL applications on OS X
arises with the use of the Cocoa NSOpenGLView class. This class does some im-
plicit CGL and OpenGL calls and will modify the OpenGL context accordingly.
These implicit calls most frequently occur when your application window is
updated or resized. If your application creates a new thread that is distinct
from the main NSApplication thread and starts issuing OpenGL calls on this
thread, voila! A thread contention problem is created.

To avoid threading issues of this sort, Apple added the entry points
CGLLockContext and CGLUnlockContext as of OS X Tiger (10.4). If you
wish to perform OpenGL rendering or state changes in a thread that you’ve
created in your Cocoa application that uses an NSOpenGLView, you must
bracket those calls with calls to CGLLockContext and CGLUnlockContext
to avoid contention issues between the main thread and your ancillary thread.

Data Parallel Computation: SIMD
This section focuses on the programming paradigm know as Single Instruction,
Multiple Data (SIMD). In this model, data that has an intrinsic parallelism—say,
a color, vertex, or normal—has a computation applied to each of its elements
in parallel. Put differently, one instruction is applied to multiple data elements
simultaneously.

PowerPC

Modern PowerPC processors (i.e., G4 and later) have vector processing
units dubbed AltiVec units that work as we just described. That is, AltiVec

42 Chapter 4: Application Programming on OS X

instructions are vector instructions that allow the application of the same op-
eration to multiple data elements, in parallel. In some cases, if the data elements
are large enough, the instructions may operate on a single data element or even
a portion of a data element.

AltiVec units have a set of burly registers that are 128 bits in size. For the math-
adept among us, that’s four single-precision floating-point values that can be
processed per pass. AltiVec instructions work best on big chunks of data. AltiVec
units can issue instructions that operate on as small a chunk of data as a byte.
There are only a very few bit-level operations.

Not only are AltiVec-enabled functions fast at processing streaming data or big
data elements and fun to write (hee-hee), they are also faster at loading and
storing memory. The AltiVec instruction set is very well specified but takes some
skill to master. In particular, clever methods for economically loading the same
value into multiple data elements (byte, half-word, word, double) of an AltiVec
register are out there if you look for them. Apple’s Developer website is a great
place to start [12].

The engineers at Apple bust out the AltiVec and SSE big guns whenever seri-
ous performance and maximum efficiency needs to happen. You can, too, if you
have data that will fit that operational model, as the performance benefits of a
vectorized algorithm can be significant. Just keep in mind that if your applica-
tion is expected to run on a G3 system, you’ll need to code an alternative to your
AltiVec logic. In Chapter 11, we’ll investigate a tool that can help you generate
optimized code for AltiVec and SSE (which is introduced in the next section).
Any Mac with a G4 or later is AltiVec- or SSE-capable. Thus, if you’re writing
new code targeting newer Macs, consider these SIMD instruction sets for inten-
sive CPU processing. A detailed discussion of SIMD programming is beyond
the scope of this book, so for now we’ll simply provide you with a code sam-
ple at http://www.macopengl.com that can help you determine whether your
CPU has SIMD capabilities.

Intel

Streaming SIMD Extensions or SSE were introduced in 1999 by Intel. Numerous
versions of SSE exist (e.g., SSE, SSE2, SSE3), but the basic idea is the same as
with AltiVec coding: Vectorize your algorithm, and implement it as a chunk of
SSE assembly in your code. As with AltiVec, this is obviously not a graphics
function per se but may be related to your OpenGL development. For example,
if your application does compression or decompression of video, audio, or other
streaming data, and then displays this information on screen, you might want
to investigate SSE as a way of accelerating your codecs.

Data Parallel Computation: SIMD 43

http://www.macopengl.com

Apple provides two good references if you’re interested in learning the details
behind SSE. First, the performance analysis tool Shark, as described in Chapter
11, is a good way to see what’s going on in your code and find hints about
what might be candidates for vectorization. Shark also contains a very nice SSE
reference, containing all of the commands, their arguments, and results. Apple’s
second reference to SSE is found on the web, as part of its overall developer tools
[13]. Both resources will help you understand the commands and their usage.

44 Chapter 4: Application Programming on OS X

Chapter 5

OpenGL
Configuration and

Integration

This chapter explores in detail how to configure the necessary infrastructure to
begin drawing with OpenGL. Specifically, it describes use of the various Macin-
tosh APIs to window systems and off-screen render areas, and it examines how
to configure each API for the type of OpenGL data you plan to render. If you’ve
jumped to this chapter to get details on a particular API, skip the introduction
and dig right in. If you’ve arrived here wondering which API is right for you,
you’ll probably want to read the overview first to learn about the differences
among the many windowing APIs to OpenGL on Mac OS X.

The OpenGL configuration APIs presented here are classified into two groups:
Mac-specific APIs and cross-platform APIs supported on the Mac. Although
there are many interfaces to the window system and OpenGL configuration, all
APIs function using the same core ideas and ultimately run on the same drivers.
In essence, each of these interfaces uses the same concepts for its configuration,
though the details and capabilities of each are different.

We begin with the Mac-specific APIs, presented roughly in order of moder-
nity, from most to least modern. This is by no means a sorting meant to im-
ply preference—you should use whichever API best meets your application’s
needs. However, many of the examples later in this book do express a prefer-
ence and are written in Objective-C/Cocoa. Quite frankly, it’s the best UI toolkit
out there, and it’s really fun to write applications using it.

Let’s begin by reviewing the high-level concepts involved for all flavors of
OpenGL APIs on the Mac.

45

API Introductions and Overview
The Mac has a rich history of 2D and 3D graphics, and the sheer number of
API choices for drawing bears this out. Despite the many choices available,
these APIs differ both in design and implementation, so it’s not too difficult
to determine which is right for you. This section discusses each API specif-
ically with the idea in mind that you’ll be integrating it into an application.
That means the choices among these APIs largely revolve around how well they
will integrate with the rest of your application in general, and your windowing
system in particular. OpenGL is used consistently among these APIs, and the
standard OpenGL API is how you’ll be rendering graphics data. But when
considering OpenGL setup, configuration, and window management, the vari-
ous APIs differ dramatically.

We’ll begin by looking at each API and discussing the applicability of each, and
then dig into the details in later chapters.

Mac-Only APIs

Four key APIs for 3D graphics are available only on the Mac: Quartz Services,
Core OpenGL (CGL), Apple OpenGL (AGL), and Cocoa OpenGL (NSGL). If
you’re starting with a blank sheet of paper and writing an application from the
ground up for the Mac, one of these APIs is where you’ll want to focus your
energy for integrating OpenGL. Architecturally, both Cocoa OpenGL and AGL
are layered on top of CGL. For applications that require more comprehensive
access to the underlying infrastructure, direct access is always possible from
either Cocoa or AGL.

Quartz Services

Quartz Services is part of the Core Graphics framework. It succeeds the Mac-
intosh Display Manager and convention associated with DrawSprocket. The
Quartz Services API controls systemwide parameters for configuring the dis-
play hardware on a Macintosh computer. You may be interested in setting the
following parameters from your OpenGL application:

• Refresh rate
• Resolution
• Pixel depth
• Display capture
• Gamma setting (display fades)

Quartz Services also provides services for applications that do remote operation
of OS X. We won’t cover this topic in our book.

46 Chapter 5: OpenGL Configuration and Integration

In short, this API provides the functionality needed for your OpenGL applica-
tion to communicate with the Macintosh Quartz Window Server.

Core OpenGL

CGL is the foundation layer of the Quartz windowing system interface to the
OpenGL API. As with most foundation-layer APIs, CGL allows the greatest
amount of flexibility and control over how your OpenGL application is con-
figured, albeit at the cost of greater complexity.

The most important limitation—and one that neither AGL nor the Cocoa in-
terface to OpenGL has—is that there is no way to build a windowed OpenGL
application using only CGL. A CGL-only application can render full-screen or
off-screen images only.

Because AGL and Cocoa are layered on top of CGL, you may freely mix CGL
calls with an AGL application or a Cocoa application. Be aware that when doing
so, you have to be careful not to introduce bugs because your AGL or Cocoa
calls are undoing or redoing the same tasks as CGL.

In most cases you’ll find that AGL and Cocoa interfaces should provide enough
flexibility and control so that direct use of CGL is not required.

Apple OpenGL

AGL is the Carbon interface to OpenGL on the Mac. Carbon is a set of C-level
APIs to most Mac systems, and is the foundation of many an older Macintosh
application. Carbon is by no means a deprecated API set; in fact, quite the op-
posite is true. Carbon-layer APIs tend to be the first place you see lots of new
functionality for the Mac. You can also create full-featured, modern, Mac OS X
applications written entirely in Carbon. But the goal here is not to motivate to
you to either use or not use Carbon but rather to help you decide whether this
API is of relevance to you. The quick litmus test for using AGL is this: If you
have a Carbon application into which you’re adding OpenGL, then AGL is the
API for you.

Cocoa OpenGL

Cocoa is the hip, newer,1 and remarkably powerful user-interface API on the
Mac, as anyone following the Mac scene since OS X knows. If you’re writing an
application from scratch on the Mac, Cocoa makes it very easy to get a pretty

1. Or old, depending on how much attention you paid to the brief NeXT empire. Cocoa’s heritage
comes directly from NeXT, right down to the prefix NS that prepends every Cocoa API entry.

API Introductions and Overview 47

complex application up and running quickly. Cocoa offers other benefits as well,
but it’s the most modern of the user-interface choices on the Mac, with all the
associated object-oriented benefits you’d expect. Interestingly, many of the Mac
APIs for many other things start as lower-level APIs and are later incorporated
into high-level Cocoa classes that do a lot of the painful configuration work for
you. NSMovieView, for example, takes care of all of the QuickTime setup and
configuration necessary to get a movie loaded, playing, and on screen. Similarly,
NSOpenGLView takes care of all of the basic OpenGL infrastructure setup and
configuration so that you can launch into writing OpenGL code directly. It’s a
reasonably simple decision at this point: If you’re writing for a new or an exist-
ing Cocoa application, you should use the Cocoa OpenGL API. Taking a broader
view, Cocoa is the best place to begin if you’re starting a new application from
scratch on the Mac.

Cross-Platform APIs Supported on the Mac

If you’ve made it this far, you likely have an application that you’re bringing
to the Mac from another platform, or you want a simple, low-impact way of
setting up an OpenGL rendering area on the Mac. Either way, the next two
options provide ways for you to quickly get an application from another plat-
form running on the Mac.

GLUT

The OpenGL Utility Toolkit (GLUT) is a toolkit encapsulating OpenGL setup
and configuration (and many other things) that has existed for many years, on
many platforms. GLUT provides hooks for easily setting up a window, draw-
ing to it, capturing input device data such as mouse and keyboard events, and
even some extra goodies such as basic 3D shape rendering. GLUT also runs on
just about any platform you can think of—and if it doesn’t, the source code is
available so you can make it run there.

So far, so good! However, while GLUT is great for getting an application up and
running, it’s most useful as a test bed or demonstration system, as it provides
a lot of functionality but doesn’t integrate so seamlessly with other native win-
dow elements on most platforms. Nevertheless, because of GLUT’s simplicity
and portability, it’s very easy to find GLUT-based code examples that compile
and run on the Mac. In fact, Apple ships a set of GLUT examples in its developer
tools.

When should you use GLUT? If you’re developing some code that you need to
run on many platforms but that doesn’t require a complex UI, GLUT is appro-
priate. If you’re doing anything more complex than a keyboard or simple menu
interface, the Mac-specific OpenGL APIs and windowing systems are the place
to look.

48 Chapter 5: OpenGL Configuration and Integration

X11

The last major API set for graphics on the Mac is an old standby, X11. X11 APIs
for windowing and OpenGL have existed for many years, and Apple fully sup-
ports a set of them through its X11 SDK. If you’re bringing an application from
another Unix platform to the Mac, it’s likely that the application uses X11 at its
core. Apple has taken great effort with OpenGL and X11 on the Mac to ensure
that OpenGL runs at full speed within X, and because of this excellent perfor-
mance, a straightforward port of a legacy X11 application to the Mac is often
a very viable route to take. This strategy will get an application up and run-
ning on the Mac, but the look and feel of that application won’t fit well with
the rest of the Mac experience. Even so, this is an expedient path to bringing an
application to the Mac.

If you’ve got a code base that uses X11, then the X11 set of APIs is the right path
for you. By contrast, if you’re starting from scratch on the Mac, or porting an
application to the Mac and want to ensure the best look and feel, then one of the
Mac-only APIs is the right place to begin.

API Introduction and Overview Wrap-Up

In summary, there are five API choices for opening a window, choosing a
pixel format, creating a rendering context, and issuing OpenGL commands on
the Mac. Now that we’ve introduced the five Apple-supported APIs for doing
OpenGL setup and configuration on the Mac, we’ll explore a bit of the history
behind these window system integration APIs and describe each of them in
detail.

Configuration API Relationships
There are two types of windows on OS X: Carbon windows and Cocoa
windows. AGL provides the integration between OpenGL and Carbon win-
dows. AppKit provides the integration between OpenGL and Cocoa windows
(NSWindows). Unlike AGL and the AppKit interface to OpenGL, CGL has no
corresponding window type and, accordingly, no window event mechanism de-
fined. As a result, windowed OpenGL applications must rely on either AGL and
the Carbon framework or the AppKit framework to provide access to their re-
spective windows and the event mechanisms behind them.

The CoreGraphics framework, which is located in the /System/Library/
Frameworks/ApplicationServices.framework/CoreGraphics.frame
work directory, is the lowest-level interface to the Quartz window system on OS
X. CGL, AGL, and AppKit all depend on CoreGraphics for integration with the
windowing system. Whether the windows are visible, invisible, or full-screen
doesn’t affect this dependency. Typically, only the Quartz Services API of the
CoreGraphics framework will be called upon by your OpenGL application.

Configuration API Relationships 49

Core Graphics

CGL

NSGL AGL

Figure 5-1 OpenGL Configuration API Dependencies

Even these calls may be unnecessary because Carbon and AppKit provide an
abstraction for all of the window–server integration your API will likely need.
Exceptions to this rule may arise when you are controlling the event stream
directly or when you are requesting or setting windowing system-wide parame-
ters such as obtaining the ID of the main display, setting the display pixel depth
or resolution, or modifying display gamma values.

The dependency layering gets more interesting when you consider that AGL
and AppKit both rely on the CGL interface to OpenGL itself. To summarize,
AppKit, AGL, and CGL depend on CoreGraphics, and AppKit and AGL depend
on CGL. This means the dependency relationship isn’t a simple layering. It looks
more like the hierarchy shown in Figure 5-1.

Note that Figure 5-1 doesn’t reveal anything about the layout of the directory
structure of the frameworks within the /System/Library/Frameworks di-
rectory of OS X. AGL and AppKit are easy to understand: They have their own
frameworks and reside in the /System/Library/Frameworks directory.
CGL is part of OpenGL and, therefore, is contained in the /System/Library/
Frameworks/OpenGL.framework directory. Core Graphics is perhaps the
most difficult to find. Ruining the surprise, you can find this framework in
the/System/Library/Frameworks/ApplicationServices.framework/
frameworks directory. You’ll find this information important for linking but
probably even more crucial when you want to browse headers.

Table 5-1 summarizes the APIs, short names, nicknames, and framework paths
discussed in this section. Note that all frameworks are relative to /System/
Library/Frameworks, the standard Apple framework path.

Table 5-1 API and Framework Locations

Function
Long Name Prefix Nickname Framework Path
Cocoa NS AppKit AppKit.framework
Carbon AGL AGL.framework
Core OpenGL CGL OpenGL.framework
CoreGraphics CG ApplicationServices.framework

50 Chapter 5: OpenGL Configuration and Integration

Sharing OpenGL Data Between Contexts

To conserve VRAM and bandwidth throughout the system, it is a good idea to
share data across contexts whenever possible. Sharing resources across contexts
is one of the most commonly discussed topics in the OpenGL ARB, and with
good reason. Sharing falls under the purview of the windowing system inter-
face to OpenGL. These shared resources are created, managed, and destroyed by
OpenGL. ARB members, in a sense, represent different windowing systems be-
cause they come from IHVs and ISVs that are working with different platforms.
The convergence of all this information makes this one hot topic for debate.

When ARB members meet to discuss the sharing of objects across contexts
in OpenGL, the GLX specification is often at the center of that discussion.
Because these design discussions are almost always independent of any par-
ticular windowing system, the GLX specification, in a sense, becomes required
reading for any developer who works on OpenGL—not just those developers
who are developing applications under the X11 window system. If you
have uncertainty about behavior regarding shared objects, consult the GLX
specification—the architects of OpenGL do.

The following data can be shared across contexts:

• Display lists
• Texture objects
• Vertex array objects
• Vertex buffer objects
• Shader objects
• Pixel buffer objects
• Framebuffer objects

Sharing OpenGL resources across contexts is also a hot topic for developer dis-
cussion lists. This concern could well originate from the fact that sharing is not
currently in part of the OpenGL specification (though it is in OpenGL Longs
Peak). As a result, OpenGL implementations follow some guidelines for shared
objects but do not have to adhere to any strict rules.

The biggest controversy seems to be the following question: What happens
when an OpenGL object is deleted or modified in one context while being
concurrently referenced by another? For modifications, this question becomes:
When are the changes of an object in one context reflected in another context
that is sharing it? In the case of deletion, this conversation breaks down into
two questions: Should the object be deleted or should the ID for the object be
removed from the object namespace? If the shared object ID is deleted from the
namespace in one context but another context continues to reference the object,
what happens when a new object ID is then requested in either context?

Configuration API Relationships 51

The Apple OpenGL implementation maintains a reference count for shared
objects. For most shared objects, this count is kept according to bind calls to
those objects. In the vertex array object and framebuffer object cases, the ref-
erence counts are kept according to the attachment state of these objects. For
display lists, the reference count is maintained with respect to the glEndList
call. Thus, if context A is using a certain display list, while context B is concur-
rently redefining the contents of that display list, the change made by context B
will not be visible to context A until context B commits the changes with a call
to glEndList.

When a shared object is deleted, the Mac OpenGL implementation internally
tags it for deletion and the object’s ID is immediately made free in the
namespace. When the reference count for this tagged object reaches zero, the
object itself is deleted from memory.

If the reference count of a shared object tagged for deletion has not reached zero
and the now-freed object ID is reused, things get more complicated. If context A
deletes shared texture 2, binds shared texture 2 again, and then redefines its
contents, the share context B, which is still bound to texture 2, will be referring
to the original texture object that was backing texture ID 2. If share context B
then rebinds that same texture 2, because the binds are the reconciliation point,
it will now refer to the new texture that was defined for texture ID 2 back in
context A.

Things get really complicated if the shared object state is queried in the midst of
all of these concurrent operations. Again, this isn’t a problem unique to the Mac
OpenGL implementation, but consider this scenario:

• Context A and context B share texture object 2.
• Context B is currently bound to texture object 2.
• Context A calls glDeleteTexture(2).
• Context B calls glGet(GL TEXTURE BINDING); the return value is 2.
• If context A and context B now check the contents of texture object 2, they get

different answers.
• Context B calls glIsTexture(2); the return value is GL FALSE.

Now if context B rebinds to that same texture object 2, it will no longer be refer-
ring to the original texture object because context A deleted it and the binds are
the reconciliation point. So, rebinding to the same object ID gives you a different
object.

To avoid ever confronting the confusion of the preceding scenario, it’s a good
idea to strictly conform to the OpenGL specification when it comes to shared ob-
ject management. OpenGL applications are solely responsible for maintaining

52 Chapter 5: OpenGL Configuration and Integration

the integrity of shared objects across contexts. This is not a surprising
requirement as this situation is completely analogous to critical regions when
doing multithreaded programming.

The GLX specification has more information regarding this popular topic
among ARB members if you’re interested.

Framebuffers

When an OpenGL application performs its rendering, the output of that ren-
dering is directed to a buffer that contains the resulting pixels. In the language
of the OpenGL specification, the official name of this buffer is a framebuffer.
Given all of the other terminology sometimes used to describe this buffer, such
as window, pbuffer, logical buffer, and off-screen buffer, it is good to be clear
about the meaning of this term: A framebuffer is a destination for rendering.
Whether or not this buffer is visible and where this buffer physically resides are
not part of its definition.

Also, it’s important to distinguish a framebuffer from a framebuffer object. A
framebuffer object is a container of framebuffer meta-information rather than
the framebuffer itself. An analogue is a texture object, which is a convenient
reference to a parcel of texture data but not the actual data itself. OpenGL is
actually a really well-designed system, much like the Mac. Although its use
involves many terms and interfaces, once you’ve mastered a few key concepts,
you can reuse them again and again. Thus the distinction between a hypotheti-
cal OpenGL type foo and a foo-object is always the same across the API: The
-object is a handle to the base type and all its associated configuration state.

Another way to think of a framebuffer is as a collection of logical buffers
arranged in a stacked or stratified manner. Each logical buffer is a scalar field
containing values specific to this “layer” in the rendered output. Examples of
these logical buffers are color buffers (red, green, blue, or alpha), depth buffers,
stencil buffers, and accumulation buffers. An individual 1-pixel column through
each of these layers is known as a fragment. The related concepts of frame-
buffers and fragments are important in understanding both what’s written and
perhaps what’s read from the framebuffer when your OpenGL commands are
completed. There are performance considerations here as well, which we’ll
examine in later chapters.

Each scalar in these logical buffers is represented by some number of bits. For
instance, an 8-bit red color buffer contains width*height 8-bit scalar values,
and a 32-bit depth buffer contains width*height 32-bit depth values. The
composition of these mixed-size or same-size logical buffers makes up a frame-
buffer. Figure 5-2 depicts a typical framebuffer.

Configuration API Relationships 53

Width

Color24

Depth24Total
Fragment

Size

H
ei

gh
t

Figure 5-2 Framebuffer Strata

Framebuffers are a core resource for OpenGL. They, along with texture ob-
jects, vertex array objects, shader objects, and other OpenGL resources, must
be created, managed, and destroyed. To allocate, configure, and size them, their
attributes must be described. The set of attributes that describe a framebuffer is
collectively known as the framebuffer’s pixel format. Pixel format is the termi-
nology most commonly used to describe this idea on the Mac OS because that
is how it is referred to in the CGL interface. Given that X11 also runs on the Mac
OS, the term “visual” is used to describe the layout of a framebuffer. We’ll stick
with “pixel format” for our discussion, however.

54 Chapter 5: OpenGL Configuration and Integration

Chapter 6

The CGL API
for OpenGL

Configuration

Overview
Since the transition from IrisGL to OpenGL, this graphics API has been indepen-
dent of the windowing system of the operating system on which it runs. This
aspect of the API was the primary redesign requirement of IrisGL to make it an
open standard and multiplatform, rather than running on just the Iris worksta-
tions on which it originated.

When windowing functionality was first written out of the IrisGL API, it needed
a new home. This home is GLX, the interface between OpenGL and X11. Shortly
after this transition, WGL was created as an interface between OpenGL and
Windows.

On OS X, the original interface developed between the Quartz windowing
system and OpenGL was called CGL, short for Core OpenGL. The AGL
(Apple GL) interface for Carbon applications was written later and is layered
on top of CGL. Similarly, when Cocoa arrived, classes and data structures were
developed, again on top of CGL, to provide Cocoa applications with an OpenGL
interface.

Thus CGL lies at the heart of the window system interfaces to OpenGL on OS X
and, in fact, is part of the OpenGL framework. Because of this, you might think
that, like the foundation of other layered APIs like Xlib or perhaps Win32, CGL
can do all that the higher layers can do and more, albeit with more effort on the
part of the software engineer. This is mostly true, with one important exception:
Only full-screen or off-screen OpenGL applications can be written using exclu-
sively CGL. For windowed applications, the AGL or Cocoa interface to OpenGL
is required.

55

OpenGL Application

CGL

GLEngine0 GLEngine1 GLEngine0

NV DriverSW RendererATI Driver

ATI Hardware NV Hardware

Figure 6-1 CGL Renderer Selection

Because CGL lies beneath both AGL and the Cocoa interface to OpenGL, you
can freely use CGL in combination with either an AGL application or a Co-
coa application. CGL may also be freely used with GLUT applications be-
cause the OS X GLUT implementation relies on Cocoa, which in turn relies
on CGL. The only invalid combination of these four interfaces is to use the
AGL or Carbon interface to OpenGL in combination with the Cocoa interface to
OpenGL.

Generally speaking, you will find that both AGL and Cocoa provide enough
flexibility that you may not need any of the additional control that CGL allows.
If you’re doing simple prototyping of graphics techniques, you’ll probably find
GLUT to be the easiest API with which to get up and running.

CGL shares many things with other windowing interfaces to OpenGL: pixel
format selection, context creation and manipulation, and a pbuffer interface,
to name a few. On OS X, CGL also has to shoulder the burden of require-
ments that arise out of having a plug-in renderer architecture that supports a
heterogeneous set of installed graphics devices (Figure 6-1). Dragging a win-
dow from one display to another is a simple matter if both displays are being
driven by a single graphics device; it’s quite another matter if the displays are on
different devices with widely varying capabilities. On any OpenGL implemen-
tation, the context state that is maintained internally is a reflection of the capa-
bilities of the underlying hardware. Imagine how that context state varies when
you drag a window from a display supported by a high-end graphics device
built by one graphics hardware vendor to a display supported by a low-end
device built from another!

Linking with CGL is easy; it’s part of OpenGL.framework, which is typically
found in /System/Library/Frameworks but may also be in a path specific
to your SDK installation. Because CGL is part of the OpenGL framework, its

56 Chapter 6: The CGL API for OpenGL Configuration

headers are found in the Headers directory of the OpenGL.framework direc-
tory. Commonly used CGL headers include CGLTypes.h, CGLRenderers.h,
and CGLMacros.h. We’ll talk more about these headers in this chapter.

Error Handling

CGL error handling is based on the values returned from each of the CGL func-
tions. All CGL functions return 0 when successful. Upon failure, a number of
different return values may be returned that describe the nature of the failure.
The full list of possible error values is part of the CGLError enum and
can be found in /System/Libraries/Frameworks/OpenGL.framework/
Headers/CGLTypes.h:

/*
** Error return values from CGLGetError
*/
typedef enum _CGLError {

kCGLNoError = 0, /* no error */
/* invalid ... */
kCGLBadAttribute = 10000, /* pixel format attribute */
kCGLBadProperty = 10001, /* renderer property */
kCGLBadPixelFormat = 10002, /* pixel format */
kCGLBadRendererInfo = 10003, /* renderer info */
kCGLBadContext = 10004, /* context */
kCGLBadDrawable = 10005, /* drawable */
kCGLBadDisplay = 10006, /* graphics device */
kCGLBadState = 10007, /* context state */
kCGLBadValue = 10008, /* numerical value */
kCGLBadMatch = 10009, /* share context */
kCGLBadEnumeration = 10010, /* enumerant */
kCGLBadOffScreen = 10011, /* offscreen drawable */
kCGLBadFullScreen = 10012, /* offscreen drawable */
kCGLBadWindow = 10013, /* window */
kCGLBadAddress = 10014, /* pointer */
kCGLBadCodeModule = 10015, /* code module */
kCGLBadAlloc = 10016, /* memory allocation */
kCGLBadConnection = 10017 /* CoreGraphics connection */
} CGLError;

Pixel Format Selection
A pixel format is simply a set of attribute–value pairs that describe the de-
sired configuration for the framebuffer. All graphics hardware has limitations
in terms of the allowable framebuffer configurations it supports. For instance,
a specific video card may support an RGBA, 8 bits per component, double-
buffered pixel format, but it may not support an RGBA, 12 bits per component,
double-buffered pixel format. Because of these differences, pixel format APIs

Pixel Format Selection 57

such as CGL provide a selection mechanism that attempts to match a set of re-
quested attributes as closely as the underlying renderer can support.

The CGL pixel format API consists of three entry points for creating, querying,
and destroying pixels:

CGLChoosePixelFormat
CGLDescribePixelFormat
CGLDestroyPixelFormat

CGLChoosePixelFormat

CGLChoosePixelFormat creates a pixel format using a NULL-terminated
mixed array of attributes and, if applicable, the attribute’s value. Let’s look at
Example 6-1, which shows how to create a simple pixel format, before we dive
into the details of all the possible pixel format attributes.

Example 6-1 CGLChoosePixelFormat Usage

#include <OpenGL/CGLTypes.h>
...

CGLPixelFormatAttribute attribs[] =
{

kCGLPFADoubleBuffer,
kCGLPFAColorSize, 24,
kCGLPFADepthSize, 16,
kCGLPFAMinimumPolicy,
NULL

};

CGLPixelFormatObj pixelFormatObj;
long numPixelFormats;
CGLError cglError;

cglError = CGLChoosePixelFormat(attribs, &pixelFormatObj,
&numPixelFormats);

if(cglError != kCGLNoError)
{

printf("Unable to create pixel format." \
"Error is: 0x%0x\n", cglError);

}

Notice that the pixel format attribute constants are prefaced with “kCGLPFA.”
The “k” specifies that the value is a global constant. “CGL,” well, that just means
CGL. “PFA” stands for pixel format attribute.

Pixel format attributes are scalars that may be integer quantities or Boolean val-
ues. In our example, kCGLPFADoubleBuffer and kCGLPFAMinimumPolicy
are Boolean values. There’s a certain asymmetry in specifying Boolean versus
non-Boolean values, but you can’t argue that it doesn’t save on typing: Rather

58 Chapter 6: The CGL API for OpenGL Configuration

than having a value of true or false explicitly listed for Boolean attributes,
they are simply specified when true and not specified when false.

The design of Apple’s pixel format API is subtractive in nature. That is, you can
think of your attribute array as a set of constraints for the list of possible pixel
formats that will match, rather than trying to build up a pixel format containing
only these features.

typedef enum _CGLPixelFormatAttribute {
kCGLPFAAllRenderers = 1,
kCGLPFAOffScreen = 53,
kCGLPFAFullScreen = 54,
kCGLPFAAuxDepthStencil = 57,
kCGLPFAColorFloat = 58,
kCGLPFASupersample = 60,
kCGLPFASampleAlpha = 61,
kCGLPFARendererID = 70,
kCGLPFASingleRenderer = 71,
kCGLPFANoRecovery = 72,
kCGLPFAAccelerated = 73,
kCGLPFARobust = 75,
kCGLPFABackingStore = 76,
kCGLPFAMPSafe = 78,
kCGLPFAWindow = 80,
kCGLPFAMultiScreen = 81,
kCGLPFACompliant = 83,
kCGLPFADisplayMask = 84,
kCGLPFAPBuffer = 90,
kCGLPFARemotePBuffer = 91,
kCGLPFAVirtualScreenCount = 128,
} CGLPixelFormatAttribute;

Policies and Buffer Sizing

Each of the policies used in pixel format selection is a scoring system to nomi-
nate matching pixel format candidates.

Thepolicy attributeskCGLPFAMinimumPolicyandkCGLPFAMaximumPolicy
are applicable only to the color, depth, and accumulation buffer sizes. If you
specify the minimum policy, then these attributes must have at least the value
specified with the attribute. In our example, we’ve requested that the pixel for-
mat be chosen using only pixel formats that are double buffered, have at least
24 bits for the R/G/B color channels, and that there be at least 16 bits for the
depth buffer.

Here is the set of policy attributes:

kCGLPFAMinimumPolicy
kCGLPFAMaximumPolicy
kCGLPFAClosestPolicy

Pixel Format Selection 59

The minimum policy sets the low bar for acceptance, but there is another
asymmetry here: kCGLPFAMaximumPolicy doesn’t set the high bar for ac-
ceptance. Instead, it means that if kCGLPFAColorSize, kCGLPFADepthSize,
or kCGLPFAAccumSize is specified with a non-zero value, then the largest
possible corresponding buffer size will be chosen for your pixel format
object.

kCGLPFAClosestPolicy is applicable to only the color buffer size attribute
kCGLPFAColorSize; it does not consider the size specified for the depth or
accumulation buffers. With this attribute, the color buffer size of the returned
pixel format object will most closely match the requested size. This policy is
most similar to the behavior that the X11 window system uses when choosing
visuals.

As you may have gathered by now, kCGLPFAMinimumPolicy is the de-
fault policy for buffer sizing. Also, notice that neither of the nondefault poli-
cies kCGLPFAMaximumPolicy and kCGLPFAClosestPolicy is applicable to
the kCGLPFAAlphaSize or kCGLPFAStencilSize attribute. Apply a little
deductive reasoning and we have a new rule: The pixel format matching
semantics for kCGLPFAAlphaSize and kCGLPFAStencilSize follow the
kCGLPFAMinimumPolicy behavior only.

Render Targets

You may have noticed when running a game or other full-screen application
that only the primary display (the display with the Apple menu bar) is cap-
tured for the full-screen application. The reason for this is that full-screen ren-
dering is supported only with a single renderer on the Mac OS. Therefore, if you
include the kCGLPFAFullScreen attribute to qualify your pixel format, only
renderers capable of supporting full-screen rendering will be considered and
kCGLPFASingleRenderer is implied.

Mutually exclusive to kCGLPFAFullScreen are the kCGLPFAOffScreen and
kCGLPFAWindow attributes. On some platforms, the term “hidden window”
or “invisible window” is used when describing an off-screen destination. On
the Mac OS, if you’re rendering off screen, according to this mutual exclusivity
you’re not rendering to a window.

If you wish to restrict the list of renderers that will match your format to those
that can render off screen, specify the kCGLPFAOffScreen attribute. However,
be wary of this attribute if you are at all concerned about the performance of
your off-screen rendering. There are three ways to do off-screen rendering on
the Mac OS. If that’s not confusing enough, with the introduction of the frame-
buffer object specification in OpenGL, there are now four. See Chapter 5 for
more information.

60 Chapter 6: The CGL API for OpenGL Configuration

Finally, if you wish to restrict the renderer list to only those renderers that can
render on screen in a window, specify the kCGLPFAWindow attribute in your
format array.

Multisampling

If multisampling is desired, set the kCGLPFASampleBuffers attribute to 1
to indicate a preference for a multisample buffer. Set the kCGLPFASamples
attribute to the number of samples desired for each pixel. The policy attributes
are not applicable to these two multisampling attributes.

Stereo

For stereo rendering, also known as quad-buffering, the token kCGLPFAStereo
is used. This option produces a pixel format that contains two double-buffered
drawables, logically a left and a right, with a stereo offset to produce a 3D
projected rendering. If you haven’t experienced the LCD shutter glass type
of stereo rendering, it is as if the scene is floating in space in front of the
physical surface of the display. The stereo effect is achieved by providing two
buffers (left and right), each with a separate perspective frustum. Each frus-
tum is offset by the inter-ocular distance or, in English, the distance between
your eyes.

The NVidia Quadro FX 4500, which was introduced in 2005, was the first
hardware introduced on the Mac platform to support stereo in a window. The
alternative to stereo in a window is full-screen stereo. For any Mac configured
with hardware released prior to the FX 4500, kCGLPFAStereo implies
kCGLPFAFullScreen, which in turn implies kCGLPFASingleRenderer.

Selecting a Renderer

Another way of selecting a renderer is by explicitly choosing one for your
application. There are a number of possibilities when it comes to selecting
a renderer by ID, enumerated in the file CGLRenderers.h. You use the
kCGLPFARendererID attribute to select your own renderer ID. Here is a
snapshot of the evolving list of possible renderer IDs:

kCGLRendererGenericID
kCGLRendererGenericFloatID
kCGLRendererAppleSWID
kCGLRendererATIRage128ID
kCGLRendererATIRadeonID
kCGLRendererATIRageProID
kCGLRendererATIRadeon8500ID
kCGLRendererATIRadeon9700ID
kCGLRendererGeForce2MXID

Pixel Format Selection 61

kCGLRendererGeForce3ID
kCGLRendererGeForceFXID
kCGLRendererVTBladeXP2ID
kCGLRendererIntel900ID
kCGLRendererMesa3DFXID

The star of this show is the Apple software renderer, which was released as
part of Tiger. If you wish to use or test certain functionality that your hard-
ware doesn’t support, you can use this renderer. The new software renderer
is specified using kCGLRendererGenericFloatID. You may hear this ren-
derer described as “the float renderer” because of its support for floating-point
framebuffers and pixel formats. This software renderer is highly tuned for the
Mac platform. It uses a great deal of hand-tuned and hand-scheduled PowerPC
and Intel assembly. The performance of this renderer, though not comparable to
that of a dedicated hardware renderer, is quite astonishing.

The software renderer is a great tool to use when you are debugging your appli-
cation. If, for instance, you believe your OpenGL logic is correct yet the render-
ing doesn’t appear correct, try changing your renderer to the software renderer.
The software renderer allows you to cross-check the vendor-specific renderers
to determine whether your application has a bug that is specific to a certain
graphics card. If you see correct results in the software renderer but not in
the vendor-specific renderer, or vice versa, it’s time to file a bug report and let
Apple have a look at it. Keep in mind, however, that OpenGL is not a pixel-
exact specification, and minor differences between rendered images are always
possible, and even likely. However, gross differences are likely bugs—so please
file them.

There are two other renderer IDs that correspond to software renderers. The
software renderer preceding the current float renderer is referenced using
kCGLRendererAppleSWID. This older renderer is neither as fast nor as full
featured as the new software renderer but could prove useful as another
check when debugging or comparing results. Aside from this scenario, this
renderer should not be used unless you wish to hamstring your application
performance.

kCGLGenericID

kCGLGenericID corresponds to the original software renderer written for
OS X. If you are experiencing difficulty with the new software renderer and
your application doesn’t use features beyond OpenGL 1.2, you may have better
luck with this original renderer. Although not as highly tuned, the old software
renderer is better tested by virtue of its age alone. This older software renderer
can also be used as yet another data point in fortifying a bug submission if you
suspect a problem with one of the hardware renderers.

62 Chapter 6: The CGL API for OpenGL Configuration

kCGLRendererAppleSWID

Arguably, this renderer ID should not be published. It serves as a placeholder
(and a questionable one at that) for graphics driver writers for OS X.

kCGLRendererATIRage128ID
kCGLRendererATIRadeonID
kCGLRendererATIRageProID
kCGLRendererATIRadeon8500ID
kCGLRendererATIRadeon9700ID
kCGLRendererATIRadeonX1000ID
kCGLRendererGeForce2MXID
kCGLRendererGeForce3ID
kCGLRendererGeForceFXID
kCGLRendererGeForce8XXXID
kCGLRendererVTBladeXP2ID
kCGLRendererIntel900ID
kCGLRendererMesa3DFXID

If you wish to restrict pixel format matching to a device-specific hardware ren-
derer, you may use the list above to do so. When you ask for a specific renderer
ID of this sort, your software will run only on the requested hardware. On other
devices, your pixel format selection will fail.

Most graphics application developers are familiar with the ATI, NVIDIA, and
Intel graphics hardware described in the renderer ID strings above. Less famil-
iar is the kCGLRendererVTBladeXP2ID ID, which corresponds to the Village-
Tronic hardware renderer.

kCGLRendererMesa3DFXID is outdated and will eventually be removed from
the list of renderer IDs.

Context Management
The CGL type CGLContextObj is the fundamental data type for an OpenGL
context on the Mac. CGL contexts are created as follows:

CGLError CGLCreateContext(CGLPixelFormatObj pixelFormat, CGLContextObj
sharedContext, CGLContextObj *ctx);

Contexts may be duplicated with a call to

CGLError CGLCopyContext(CGLContextObj src, CGLContextObj dst, unsigned long
stateMask);

The stateMask parameter should be set using a bitwise OR of the enum values
used with the OpenGL call glPushAttrib. It provides a handy mechanism
to filter which state elements you wish to copy from the source context to the
destination context.

Context Management 63

Specifying GL ALL ATTRIB BITS for your state mask will yield as close as pos-
sible to a duplicate of your source context. The faithful reproduction of the
copy is limited only by the scope of state encapsulated by the glPushAttrib/
glPopAttrib state management API within OpenGL. Various OpenGL state
elements, such as feedback or selection settings, cannot be pushed and popped.
The OpenGL specification has a detailed description of this state management
API if you need to further scrutinize the details of your context copy.

To free a context and set the current context to NULL use, call

CGLError CGLDestroyContext(CGLContextObj ctx);

Setting or getting the current context in CGL is a simple matter of calling

CGLError CGLSetCurrentContext(CGLContextObj ctx);

or

CGLContextObj CGLGetCurrentContext(void);

You may find CGLGetCurrentContext() to be the most useful entry point in
the API. It’s very handy for debugging CGL, AGL, and NSOpenGLView-based
OpenGL applications. You can simply insert this call in your code anywhere
downstream of context initialization and use the result for the full gamut of
reasons you use contexts. It’s quite handy for debugging configuration-related
issues.

Context Parameters and Enables

Like any logical object, a CGLContextObj has an associated set of parameters
that are scoped to the context itself. Some parameters are read/write; others are
read-only and simply allow the application to inspect the running configuration
of the context. Here’s a code fragment from the CGLTypes.h file on a Tiger
system that lists the valid context parameter values:

/*
** Parameter names for CGLSetParameter and CGLGetParameter.
*/
typedef enum _CGLContextParameter {

kCGLCPSwapRectangle = 200,
/* 4 params. Set or get the swap rectangle {x, y, w, h} */
kCGLCPSwapInterval = 222,
/* 1 param. 0: Don’t sync, n: Sync every n retrace */
kCGLCPDispatchTableSize = 224,
/* 1 param. Get the dispatch table size */
kCGLCPClientStorage = 226,
/* 1 param. Context specific generic storage */
kCGLCPSurfaceTexture = 228,
/* 3 params. SID, target, internal_format */
kCGLCPSurfaceOrder = 235,
/* 1 param. 1: Above window, -1: Below Window */

64 Chapter 6: The CGL API for OpenGL Configuration

kCGLCPSurfaceOpacity = 236,
/* 1 param. 1: surface is opaque (default), 0: non-opaque */
kCGLCPSurfaceBackingSize = 304,
/* 2 params. Width/height of surface backing size */
kCGLCPSurfaceSurfaceVolatile = 306,
/* 1 param. Surface volatile state */
kCGLCPReclaimResources = 308,
/* 0 params. */
kCGLCPCurrentRendererID = 309,
/* 1 param. Retrieves the current renderer ID */
kCGLCPGPUVertexProcessing = 310,
/* 1 param. Currently processing vertices with GPU (get) */
kCGLCPGPUFragmentProcessing = 311
/* 1 param. Currently processing fragments with GPU (get) */

} CGLContextParameter;

Context parameters are set with

CGLError CGLSetParameter(CGLContextObj ctx, CGLContext Parameter
parameterName, const long *params);

and retrieved by

CGLError CGLGetParameter(CGLContextObj ctx, CGLContext Parameter
parameterName, long *params);

Notice that for each of the valid parameter values is prefaced by the string
“kCGL” followed by “CP”. “CP” stands for context parameter, but this note
will help you distinguish this CGL constant from others. Each value passed to
CGLSetParameter is either a parameter with a value specific to the parameter
or a Boolean enabled parameter that is controlled by calls to

CGLError CGLEnable(CGLContextObj ctx, CGLContextEnable enableName);
CGLError CGLDisable(CGLContextObj ctx, CGLContextEnable enableName);

A list of CGL context enables, also from CGLTypes.h, follows:

/*
** Enable names for CGLEnable, CGLDisable, and CGLIsEnabled.
*/
typedef enum _CGLContextEnable {

kCGLCESwapRectangle = 201,
/* Enable or disable the swap rectangle */
kCGLCESwapLimit = 203,
/* Enable or disable the swap async limit */
kCGLCERasterization = 221,
/* Enable or disable all rasterization */
kCGLCEStateValidation = 301,
/* Validate state for multi-screen functionality */
kCGLCESurfaceBackingSize = 305,
/* Enable or disable surface backing size override */
kCGLCEDisplayListOptimization = 307
/* Ability to turn off display list optimizer */
} CGLContextEnable;

Context Management 65

Read/Write Parameters

kCGLCPSwapRectangle

If your application occupies much more screen space (whether the full screen
or windowed) than you are typically drawing to, a kCGLCPSwapRectangle
may be specified as an optimization hint for OpenGL. When a swap rectangle
is defined, the Mac OpenGL implementation may be able to optimize your ap-
plication by only swapping the back to the front buffer in the region defined
by this swap rectangle. As with any hint, this behavior is not guaranteed. Fur-
thermore, the region outside the swap rectangle may be swapped (or flushed)
by the Quartz windowing system itself. This is often the case in a compositing
situation where windows overlap.

kCGLCPSwapInterval

The swap interval parameter allows applications to control the frequency at
which the buffers are swapped in a double-buffered application. The swap inter-
val allows your application to tie buffer swaps to the retrace rate of the display.
This behavior is often desirable for real-time applications that wish to guarantee
a specific frame rate rather than running “as fast as they can.” This mechanism
allows synchronization of your application with an external device that gener-
ates interrupts at a fixed time interval.

If the swap interval setting is 0, swaps are executed as early as possible without
regard to the refresh rate of the monitor. For any swap interval setting n that is
greater than 0, buffer swaps will occur every nth refresh of the display. A set-
ting of 1 will, therefore, synchronize your buffer swaps with the vertical retrace
of the display. This is often referred to as vertical blank synchronized or “VBL
sync’d.”

kCGLCPClientStorage

The client storage parameter allows for associating a single 32-bit value with
a context. Essentially this parameter allows applications to piggy-back an arbi-
trary pointer or other 4-byte value onto the context so as to allow logical group-
ing of data with a context.

kCGLCPSurfaceTexture

Surface texturing in OS X allows texturing from a drawable object that is
associated with a context. Thus, surface texturing is yet another mechanism to
render to a texture on OS X. Given the availability of pbuffer texturing and now
framebuffer objects, the now twice superseded surface texturing approach is the
oldest, least flexible, and least well-maintained render-to-texture method on the
Mac. If we haven’t dissuaded you yet, read on . . .

Surface texturing is typically done using AGL or GLUT, as both of these APIs
provide a direct interface to set up surface texturing—aglSurfaceTexture

66 Chapter 6: The CGL API for OpenGL Configuration

and glutSurfaceTexture, respectively. The Mac OpenGL surface texturing
API requires a surface ID. If you’re intent on using CGL only in your appli-
cation (recommended solely as an academic exercise, and not for production
code), your surface texturing will be limited to using pbuffers as the drawable
source of the surface texture itself. There are no other surface IDs obtainable
through CGL.

See Chapter 7 for more information on surface texturing.

kCGLCPSurfaceOrder

kCGLCPSurfaceOrder is used to control the overlay ordering of visible draw-
ables on the desktop. A value of 1 (the default) orders the surface in front of
existing windows. A value of −1 orders the surface behind existing windows.

kCGLCPSurfaceOpacity

kCGLCPSurfaceOpacity is used by the Quartz windowing system
when compositing the drawable associated with the current context.
kCGLCPSurfaceOpacity is a Boolean value describing whether the surface
is opaque (1) or has transparency (0).

kCGLCPReclaimResources

kCGLCPReclaimResources provides application writers with the flexibility
to free all data allocations associated with the current context. These resources
include memory allocated for

• Draw pixels (textures used for faster drawing)
• Display lists
• Texture objects
• Vertex buffer objects
• Vertex array objects
• Any device-specific data

Because the memory is released and pointers nullified for all of these resources,
you should expect a slowdown in your application if you subsequently use
OpenGL entry points that create, modify, or use the data described in the list
above.

Typically, kCGLCPReclaimResources is used when the context usage is ex-
pected to be much simpler after the resources have been freed. For instance,
perhaps your application no longer intends to use vertex buffer objects, vertex
array objects, or display lists but still makes calls to glDrawPixels(). In this
case, it’s worth the small amount of setup overhead needed to reestablish the
internal draw pixels state, given that you’ll be freeing a great deal of memory
associated with the other object types in the OpenGL driver.

Context Management 67

Read-Only Parameters

kCGLCPDispatchTableSize

Used internally by OS X and tools for memory allocation.

kCGLCPSurfaceBackingSize

Used to retrieve the amount of memory allocated to support the drawable
attached to the current context.

kCGLCPSurfaceSurfaceVolatile

Used internally by OS X for efficient surface management.

kCGLCPCurrentRendererID

Use as an argument to CGLGetParameter to retrieve the ID of the current
renderer.

kCGLCPGPUVertexProcessing

Use to determine whether the GPU associated with the renderer will be used
for vertex shading.

kCGLCPGPUFragmentProcessing

Use to determine whether the GPU associated with the renderer will be used
for fragment shading.

Renderer Information

Obtaining information about the renderers available on a Mac is a four-step
process. Here, we’ll show a simple example and then elaborate on the four steps
needed to complete this task and describe possible variations at each step. Many
readers will be able to just glance at the example and get all the information they
need. If so, you can skip the individual steps. In any case, immediately follow-
ing the steps is a full description of the complete set of renderer properties. Most
developers will be interested in reading through this list to determine the appli-
cability to their application.

Now the example:

Example 6-2 Creating and Inspecting Renderer Info Objects
#include <OpenGL/OpenGL.h>
#include <OpenGL/gl.h>
#include <OpenGL/glext.h>
#include <CoreGraphics/CGDirectDisplay.h>
#include <stdio.h>
#include <stdlib.h>

68 Chapter 6: The CGL API for OpenGL Configuration

int main(int argc, char **argv)
{

// Grab the display mask for the main display
// using kCGDirectMainDisplay
// (steps 1 & 2 of 4)
CGOpenGLDisplayMask displayMask =

CGDisplayIDToOpenGLDisplayMask(kCGDirectMainDisplay) ;
CGLPixelFormatAttribute attribs[] =
{

kCGLPFAFullScreen,
kCGLPFADisplayMask,
displayMask,
0

};

CGLPixelFormatObj pixelFormatObj ;
CGLContextObj contextObj ;
CGLRendererInfoObj rendererInfoObj;
long i, numPixelFormats, rendererCount, vram, texMem, rendererID ;

// Create the context
CGLChoosePixelFormat(attribs, &pixelFormatObj, &numPixelFormats);
CGLCreateContext(pixelFormatObj, NULL, &contextObj) ;
CGLDestroyPixelFormat(pixelFormatObj) ;
CGLSetCurrentContext(contextObj);

// Now that we have a context, populate the
// rendererInfoObj instance (step 3)
CGLQueryRendererInfo(displayMask, &rendererInfoObj, &rendererCount);

// Iterate over all of the renderers
// contained in the rendererInfoObj instance (step 4)
for(i = 0; i < rendererCount; i++)
{

CGLDescribeRenderer(rendererInfoObj, i, kCGLRPRendererID,
&rendererID);

CGLDescribeRenderer(rendererInfoObj, i, kCGLRPVideoMemory,
&vram);

CGLDescribeRenderer(rendererInfoObj, i, kCGLRPTextureMemory, &texMem);
printf("Renderer ID: 0x%lx \n\t%16s %ld b "\

"(%0.2f MB) \n\t%16s %ld b (%0.2f MB)\n\n",
rendererID, "Video Memory:", vram,
vram / (1024.0f * 1024.0f), "Texture Memory:",
texMem, texMem / (1024.0f * 1024.0f));

}
return 0;

}

Example 6-2 shows the simplest and most commonly used form of each of the
steps. Now let’s look at some of the options and details where the four steps
could vary.

Context Management 69

Step 1: Obtaining Display IDs

The first step is to obtain the display ID associated with the renderer you’re
interested in inspecting. The Quartz Services API provides several routines for
obtaining display IDs:

• CGMainDisplayID

• CGGetOnlineDisplayList

• CGGetActiveDisplayList

• CGGetDisplaysWithPoint

• CGGetDisplaysWithRect

CGMainDisplayID is the simplest of these calls. Its prototype is

CGDirectDisplayID CGMainDisplayID(void);

In a sense, a call to CGMainDisplayID, in the context of obtaining renderer
information, is redundant (and slow). If it is just the main display ID you wish
to use, the constant kCGDirectMainDisplay is defined for this purpose.

Displays on a Mac system employ a global coordinate system to describe
positional information independent of a specific device and display pairing.
The main display is defined as the display in this global coordinate space with
its screen location at (0,0).

Mac systems can perform display mirroring to display the same information
on two monitors. Alternatively, the display preferences pane allows you to
configure multiple monitors in an extended desktop mode. As a point of ref-
erence, in extended desktop mode, the display with the menu bar is the main
display of the system.

All other display retrieval functions, aside from CGMainDisplayID in the
Quartz Services API, return a list of displays. To obtain a list of displays that
can be rendered to, use

CGDisplayErr CGGetActiveDisplayList(CGDisplayCount activeDisplayArraySize,
CGDirectDisplayID *activeDisplayArray, CGDisplayCount activeDisplay-
ReturnCount);

This function uses the common data retrieval entry point parameters of an array,
the allocation size of the array, and a pointer for the return count of matching
items.

For a broader list of all displays connected to a system, call

CGDisplayErr CGGetOnlineDisplayList(CGDisplayCount onlineDisplayArraySize,
CGDirectDisplayID *onlineDisplayArray, CGDisplayCount onlineDisplay-
ReturnCount);

70 Chapter 6: The CGL API for OpenGL Configuration

CGGetOnlineDisplayList will return active displays, mirrored displays,
and sleeping displays. To distinguish this function from CGGetActiveDis-
playList, mirrored displays may or may not be drawable and sleeping
displays are not drawable.

Display IDs can also be obtained based on spatial parameters:

CGGetDisplaysWithPoint(CGPoint point, CGDisplayCount displayArraySize,
CGDirectDisplayID *displayArray, CGDisplayCount displayReturnCount);

CGGetDisplaysWithRect(CGRect rect, CGDisplayCount displayArraySize,
CGDirectDisplayID *displayArray, CGDisplayCount displayReturnCount);

In the point case, the display list will contain a single display in extended desk-
top mode. In mirrored mode, the display list may contain multiple displays that
encompass the same point. In the rect case, the display list returned will be all
displays intersected by the specified rectangle and behaves as the point case
does for mirrored mode.

Step 2: Obtaining an OpenGL Display Mask from a Display ID

The second step in the process of obtaining renderer information is to obtain an
OpenGL display mask. This step is a simple matter of calling

CGOpenGLDisplayMask CGDisplayIDToOpenGLDisplayMask(CGDirectDisplayID
display);

This function is invertible, if you will, by calling CGOpenGLDisplayMask-
ToDisplayID or CGGetDisplaysWithOpenGLDisplayMask. These rou-
tines use OpenGL display masks to obtain display IDs. OpenGL display masks
are created using display IDs and work in the same manner as the other display
ID retrieval entry points. Their signatures are as follows:

CGDirectDisplayID CGOpenGLDisplayMaskToDisplayID(CGOpenGLDisplayMask mask);

CGDisplayErr CGGetDisplaysWithOpenGLDisplayMask(CGOpenGLDisplayMask mask,
CGDisplayCount displayArraySize, CGDirectDisplayID *displayArray, CGDisplay
Count *displayReturnCount);

Step 3: Obtain Renderer Info Objects

Step 3 takes us from the Quartz Services API back to CGL. You must now re-
trieve a CGLRendererInfoObj from CGL. This is done with a call to

CGLError CGLQueryRendererInfo(CGOpenGLDisplayMask displayMask, CGLRenderer
InfoObj *rendererInfoObj, long *rendererCount);

Note that in the case of CGLQueryRendererInfo, despite the presence of the
rendererCount, the rendererInfoObj parameter is not an array. Instead,
rendererInfoObj, upon return from this function, will contain information
about all of the renderers matching the OpenGL display mask.

Context Management 71

The displayMask parameter is a 32-bit quantity. To obtain renderer informa-
tion about all renderers in the system, set all bits in displayMask to 1, or
0xFFFFFFFF.

Step 4: Probing the Renderer Information Object for Information

The CGLRendererInfoObj data type is an opaque pointer to a structure. To
extract information from this structure, use

CGLError CGLDescribeRenderer(CGLRendererInfoObj rendererInfoObj, long
rendererIndex, CGLRendererProperty property, long *value);

Seeing this function begs the obvious question: How do I obtain the
number of renderers referenced by the renderer info object? The answer to this
question is the same as for the question dealing with obtaining information
about the renderers themselves. That is, use an enumeration value from the
CGLRendererProperty enumerated array:

typedef enum _CGLRendererProperty {
kCGLRPOffScreen = 53,
kCGLRPFullScreen = 54,
kCGLRPRendererID = 70,
kCGLRPAccelerated = 73,
kCGLRPRobust = 75,
kCGLRPBackingStore = 76,
kCGLRPMPSafe = 78,
kCGLRPWindow = 80,
kCGLRPMultiScreen = 81,
kCGLRPCompliant = 83,
kCGLRPDisplayMask = 84,
kCGLRPBufferModes = 100,
kCGLRPColorModes = 103,
kCGLRPAccumModes = 104,
kCGLRPDepthModes = 105,
kCGLRPStencilModes = 106,
kCGLRPMaxAuxBuffers = 107,
kCGLRPMaxSampleBuffers = 108,
kCGLRPMaxSamples = 109,
kCGLRPSampleModes = 110,
kCGLRPSampleAlpha = 111,
kCGLRPVideoMemory = 120,
kCGLRPTextureMemory = 121,
kCGLRPRendererCount = 128,
} CGLRendererProperty;

The renderer count is obtained using the property kCGLRendererCount.

Let’s go through the remaining CGLRenderProperties:

kCGLRPOffScreen

Boolean indicating whether the renderer supports off-screen rendering.

72 Chapter 6: The CGL API for OpenGL Configuration

kCGLRPFullScreen

Boolean indicating whether the renderer supports full-screen rendering.

kCGLRPRendererID

The renderer ID being “described” by CGLDescribeRenderer.

kCGLRPAccelerated

Boolean indicating whether the renderer is hardware accelerated.

kCGLRPRobust

In the event that your current renderer is a hardware renderer, kCGLRobust
indicates whether it can fall back to software in the event that one of the limits of
the renderer is exceeded. kCGLRPRobust is a renderer selection attribute. That
is, if kCGLRobust is set to true at pixel format selection time, only renderers
that cannot fall back to software will be returned in the match list.

The vast majority of applications should ignore this attribute. It has historical
relevance for situations where two hardware devices, each with an attached
display, were installed in the system. If the less capable of these devices had one
of its limits exceeded (GL MAX TEXTURE SIZE, for instance), and kCGLRobust
was set to true, the more capable device would be used as a fallback renderer.
If kCGLRobust was set to false, the less capable device would fall back to the
software renderer to handle the situation where its limits were exceeded.

kCGLRPBackingStore

Boolean indicating whether the renderer can provide a back buffer, for color
information, that is the size of the drawable object associated with the con-
text using the renderer. If set to true, kCGLRPBackingStore guarantees that
the contents of this back buffer are valid after a call to CGLFlushDrawable is
made.

kCGLRPMPSafe

Historical Boolean indicating whether the renderer is thread safe. This renderer
property is no longer used, as all renderers are now thread safe.

kCGLRPWindow

Boolean used only by the AGL or Cocoa API that describes whether the renderer
is capable of rendering to a window. As CGL does not render to windows, this
renderer property should be irrelevant to your application.

kCGLRPMultiScreen

Boolean indicating whether the renderer is currently driving multiple displays.

kCGLRPCompliant

Boolean indicating whether the renderer is OpenGL compliant.

Context Management 73

kCGLRPDisplayMask

The display mask describing the physical displays to which the renderer is capa-
ble of rendering. Display masks are managed by the Direct Display API, which
is part of the Core Graphics API. See Steps 1 and 2 in Renderer Information
earlier in this chapter (pages 70–71) for information on display masks.

kCGLRPBufferModes

The bitwise OR of buffer mode bits for the renderer. The list of buffer mode bits
includes

• kCGLSingleBufferBit

• kCGLDoubleBufferBit

• kCGLMonoscopicBit

• kCGLStereoscopicBit

kCGLRPColorModes and kCGLRPAccumModes

Both kCGLRPColorModes and kCGLRPAccumModes are bitwise ORs of for-
mats supported by the renderer. They share the same list of constants:

kCGLRGB444Bit 0x00000040
/* 16 rgb bit/pixel, R=11:8, G=7:4, B=3:0 */
kCGLARGB4444Bit 0x00000080
/* 16 argb bit/pixel, A=15:12, R=11:8, G=7:4, B=3:0 */
kCGLRGB444A8Bit 0x00000100
/* 8-16 argb bit/pixel, A=7:0, R=11:8, G=7:4, B=3:0 */
kCGLRGB555Bit 0x00000200
/* 16 rgb bit/pixel, R=14:10, G=9:5, B=4:0 */
kCGLARGB1555Bit 0x00000400
/* 16 argb bit/pixel, A=15, R=14:10, G=9:5, B=4:0 */
kCGLRGB555A8Bit 0x00000800
/* 8-16 argb bit/pixel, A=7:0, R=14:10, G=9:5, B=4:0 */
kCGLRGB565Bit 0x00001000
/* 16 rgb bit/pixel, R=15:11, G=10:5, B=4:0 */
kCGLRGB565A8Bit 0x00002000
/* 8-16 argb bit/pixel, A=7:0, R=15:11, G=10:5, B=4:0 */
kCGLRGB888Bit 0x00004000
/* 32 rgb bit/pixel, R=23:16, G=15:8, B=7:0 */
kCGLARGB8888Bit 0x00008000
/* 32 argb bit/pixel, A=31:24, R=23:16, G=15:8, B=7:0 */
kCGLRGB888A8Bit 0x00010000
/* 8-32 argb bit/pixel, A=7:0, R=23:16, G=15:8, B=7:0 */
kCGLRGB101010Bit 0x00020000
/* 32 rgb bit/pixel, R=29:20, G=19:10, B=9:0 */
kCGLARGB2101010Bit 0x00040000
/* 32 argb bit/pixel, A=31:30 R=29:20, G=19:10, B=9:0 */
kCGLRGB101010_A8Bit 0x00080000
/* 8-32 argb bit/pixel, A=7:0 R=29:20, G=19:10, B=9:0 */
kCGLRGB121212Bit 0x00100000
/* 48 rgb bit/pixel, R=35:24, G=23:12, B=11:0 */

74 Chapter 6: The CGL API for OpenGL Configuration

kCGLARGB12121212Bit 0x00200000
/* 48 argb bit/pixel, A=47:36, R=35:24, G=23:12, B=11:0 */
kCGLRGB161616Bit 0x00400000
/* 64 rgb bit/pixel, R=63:48, G=47:32, B=31:16 */
kCGLRGBA16161616Bit 0x00800000
/* 64 argb bit/pixel, R=63:48, G=47:32, B=31:16, A=15:0 */
kCGLRGBFloat64Bit 0x01000000
/* 64 rgb bit/pixel, half float */
kCGLRGBAFloat64Bit 0x02000000
/* 64 argb bit/pixel, half float */
kCGLRGBFloat128Bit 0x04000000
/* 128 rgb bit/pixel, ieee float */
kCGLRGBAFloat128Bit 0x08000000
/* 128 argb bit/pixel, ieee float */
kCGLRGBFloat256Bit 0x10000000
/* 256 rgb bit/pixel, ieee double */
kCGLRGBAFloat256Bit 0x20000000
/* 256 argb bit/pixel, ieee double */

For all of the preceding constants, the color components occupy some multiple
of 16 bits. In most, the pixel size is simply the sum of the component widths.
In some, such as kCGLRGB444Bit, the pixel occupies more than the required
12 bits but is always stored in the low-order bits of the nearest 16-bit boundary—
in this case, 16 bits.

The relevant information in these constants is the component sizes themselves.
These sizes provide information on the level of quantization of the pixel data
you should expect to see when using a framebuffer configured in this format.
There is no programmatic interface through OpenGL or CGL to retrieve the
data—with the bit positions as they are described here remaining intact—from
the framebuffer. The layout of these pixels as they are retrieved from the frame-
buffer is controlled by tokens in OpenGL.

kCGLRPDepthModes and kCGLRPStencilModes

Both kCGLRPDepthModes and kCGLRPStencilModes are bitwise ORs speci-
fying the number of respective bits that are supported by the renderer. The range
of possible values includes

• kCGL0Bit
• kCGL1Bit
• kCGL2Bit
• kCGL3Bit
• kCGL4Bit
• kCGL5Bit
• kCGL6Bit
• kCGL8Bit
• kCGL10Bit

• kCGL12Bit
• kCGL16Bit
• kCGL24Bit
• kCGL32Bit
• kCGL48Bit
• kCGL64Bit
• kCGL96Bit
• kCGL128Bit

Context Management 75

kCGLRPMaxAuxBuffers

The maximum number of auxiliary buffers supported by the renderer.

kCGLRPMaxSampleBuffers

The maximum number of independent sample buffers supported by the ren-
derer. This renderer property generally reduces to a Boolean value. If a multi-
sample buffer exists for the renderer, kCGLRPMaxSampleBuffers will be set
to 1; otherwise, it is set to 0.

kCGLRPMaxSamples

For multisampling, kCGLRPMaxSamples indicates the maximum number of
samples per pixel that are supported by the renderer.

kCGLRPSampleModes

Bitwise OR of sampling modes supported by the renderer. The constants avail-
able for kCGLRPSampleModes include kCGLPFAMultisample, kCGLPFASu-
persample, and kCGLPFASampleAlpha.

kCGLRPSampleAlpha

When multisampling, this Boolean indicates whether the alpha component,
along with the color components, is multisampled.

kCGLRPVideoMemory

Indicates the number of bytes of video memory on the graphics card associated
with the renderer. For software renderers where host memory is used for video
memory, 0 is reported as this attribute’s value.

kCGLRPTextureMemory

Indicates the number of bytes of texture memory configured on the graphics
card associated with the renderer. Often this number will be some number less
than video memory, where the difference is accounted for in allocations for
framebuffer memory. For software renderers, where host memory is used for
texture memory, 0 is reported as this attribute’s value.

Sharing OpenGL Objects Across CGL Contexts

Sharing data across contexts is done by specifying a share context at
CGLCreateContext time. CGLCreateContext is defined in CGL.h:

CGLError CGLCreateContext(CGLPixelFormatObj pix, CGLContextObj shareCtx,
CGLContextObj *newCtx);

76 Chapter 6: The CGL API for OpenGL Configuration

CGLCreateContext also has an external definition in OpenGL.h of the
OpenGL.framework.

To successfully share data across contexts, the contexts must share the same
renderer. Another way of expressing this requirement is to say that the contexts
must have the same virtual screen list. A virtual screen is defined as the pairing
of one renderer and its associated set of physical displays. Given that there is
only one renderer per virtual screen, having the same virtual screen list means
having the same renderer. To determine the virtual screen list from a context,
use

CGLError CGLGetVirtualScreen(CGLContextObj ctx, long *screen);

To determine the renderer ID from this virtual screen, use

CGLError CGLDescribePixelFormat(CGLPixelFormatObj pix, long pix_num,
CGLPixelFormatAttribute attrib, long *value);

If the renderer IDs are the same between the contexts, data sharing will be
successful.

If your application has multiple contexts, it is more likely that you will also have
multiple threads. If so, remember to bracket your OpenGL calls in each thread
with calls to CGLLockContext() and CGLUnlockContext() to prevent state
collisions.

Drawables
Depending on which company representative you speak to, which conference
you’re attending, the context of the meeting you’re in, or perhaps even the time
of day or the weather, different people in 3D graphics frequently use different
terms for pretty much the same thing. One graphics concept that has many
names is the memory and state used and established as a destination for render-
ing. In some places, it’s referred to as a drawable; while in others, a surface or
perhaps a framebuffer. CGL refers to this rendering destination as a drawable.

There are three recognized types of drawables in CGL: pbuffers, off-
screen buffers, and full-screen buffers. The most fundamental operation for
drawables is associating them with a CGL context, which establishes the desti-
nation for rendering for OpenGL commands issued when that context is
current. These association functions are CGLSetPBuffer, CGLSetOffscreen,
and CGLSetFullscreen. Removing the drawable association with a context is
done with a call to

CGLError CGLClearDrawable(CGLContextObj ctx);

For double-buffered drawables, swapping the contents of the back buffer to the
front buffer is done by calling

Drawables 77

CGLError CGLFlushDrawable(CGLContextObj ctx);

CGLFlushDrawable causes an implicit flush of the OpenGL command stream.
The results of all previously submitted OpenGL commands are then executed
and reflected in the back buffer prior to it being copied to the front buffer.

As with most OpenGL implementations, performing complex application logic
immediately following a call to swap buffers is a good way to take advantage of
the latency inherent in the swap. The Mac OpenGL implementation has the ad-
ditional flexibility of specifying a swap interval. Read the details of the context
parameter kCGLCPSwapInterval on page 66 for more information on how the
swap interval affects the timing of the buffer swap.

Now let’s discuss each of three drawable types in more detail.

Pixel Buffers

Pixel buffers (pbuffers) are accelerated off-screen rendering drawables that are
defined in many OpenGL configuration APIs like CGL. These buffers exist be-
cause drawables, for any OpenGL implementation, have been resource man-
aged by the window system. This put them outside the realm of core OpenGL.

Aside from being a destination for rendering, CGL pbuffers can be used as a
source for texturing. Combine these two aspects, and you have the ability to
render to textures, which is useful in many graphics applications. More so than
textures of equivalent size, pbuffers are large resources and should be managed
with care so as not to introduce memory or performance problems in your appli-
cations. Rendering to them requires either switching the drawable of your CGL
context or doing a context switch from your main rendering context to a con-
text you’ve dedicated to the pbuffer. Neither of these operations is particularly
cheap.

Fortunately, pbuffers have been handily superseded by the introduction of
framebuffer objects in OpenGL 2.0. The framebuffer object extension to OpenGL
was one of the largest and most carefully considered additions in OpenGL’s his-
tory. Therefore, there is no reason to use pbuffers for new software development
on the Mac. Of course, there is plenty of existing software that uses the pbuffer
API, so it’s worthy of discussion here.

The pbuffer API in CGL consists of the entry points seen in Table 6-1.

To create a new pbuffer, use

CGLError CGLCreatePBuffer(long width, long height, unsigned long target,
unsigned long internalFormat, long maxLevel, CGLPBufferObj *pbuffer);

Notice the target and internalFormat parameters. target may be either
GL TEXTURE 2D, GL TEXTURE RECTANGLE EXT, or GL TEXTURE CUBE MAP.

78 Chapter 6: The CGL API for OpenGL Configuration

Table 6-1 CGL Pbuffer Functions

Function Description
CGLCreatePBuffer Creates an AGL pixel buffer for use with an

OpenGL texture type
CGLDestroyPBuffer Destroys an AGL pixel buffer
CGLDescribePBuffer Gathers information about an AGL pixel

buffer
CGLGetPBuffer Queries a context for the pixel buffer attached

to it
CGLSetPBuffer Sets the pixel buffer to be the target for the

specified context
CGLTexImagePBuffer Binds a pixel buffer as a texture; analogous to

glTexImage2D

internalFormat may be either of the two basic internal OpenGL texture for-
mats, GL RGBA or GL RGB. These two parameters give good insight into why
pbuffers exist in the CGL interface. They were specifically designed for render-
ing to textures—so much so that there isn’t a simplified interface for creating
them that is texturing agnostic!

Continuing with the texturing theme, the width and height parameters must
be powers of 2 when using either a GL TEXTURE 2D or GL TEXTURE CUBE MAP
target. Also, width must equal height for GL TEXTURE CUBE MAP targets,
because they must be square.

The last parameter constraint, also a texturing consideration, deals
with mipmaps. The maxLevel parameter must be commensurate with the
number of possible mipmap levels when using the provided width and
height parameters. If the number of mipmap levels is less than the value
specified in maxLevel or if any of the aforementioned constraints is violated,
CGLCreatePBuffer will return kCGLBadValue.

Freeing a pbuffer and its resources entails a simple call to

CGLError CGLDestroyPBuffer(CGLPBufferObj pbuffer);

Given that it has only one argument, only one thing can go wrong with this call:
If the pbuffer argument is NULL, kCGLBadAddress will be returned.

Getting information about an existing pbuffer is done using

CGLError CGLDescribePBuffer(CGLPBufferObj obj, long *width, long *height,
unsigned long *target, unsigned long *internalFormat, long *maxLevel);

Each of the pointer arguments to CGLDescribePBuffer is used by this func-
tion to fill in its corresponding value. The values for these parameters are fixed
at the time the pbuffer was created, so there should be no concerns while

Drawables 79

debugging that another CGL call has altered the configuration of the pbuffer.
Again, only a NULL pbuffer object parameter will cause CGLDescribePBuffer
to return its single possible error condition: kCGLBadAddress.

To associate a pbuffer with a CGL context for rendering, call

CGLError CGLSetPBuffer(CGLContextObj ctx, CGLPBufferObj pbuffer, unsigned
long face, long mipmapLevel, long virtualScreen);

Like most APIs, CGL defers as much work as it can until as late as is
logically possible. This is the case with the relationship between
CGLCreatePBuffer and CGLSetPBuffer. Despite its name,
CGLCreatePBuffer doesn’t do nearly as much work to establish a draw-
able for rendering as CGLSetPBuffer does. This difference arises because you
must call CGLSetPBuffer to associate it with a CGL context before render-
ing into it. This makes sense, because there is no CGL context argument to the
CGLCreatePBuffer function.

In addition to the context association, CGLSetPBuffer configures the current
face and level settings for pbuffers with targets of the respective types.

The virtualScreen argument to CGLSetPBuffer requires the most care
when setting it. Recall that there is one renderer per virtual screen. This argu-
ment serves to establish the renderer to be used when rendering to this pbuffer.
Often, you’ll wish to use the same renderer that is associated with your CGL
context to render to your pbuffer. This can be done inline with a simple call to
CGLGetVirtualScreen:

CGLGetVirtualScreen(CGLContextObj ctx, long *screen)

Using the same renderer as your main rendering context is essential for best
performance when texturing from your pbuffer. If the renderer used for your
context and pbuffer differs, it will likely result in a copy of the texture-level data
from the local storage of one renderer to the other. Pbuffers hold a lot of data, so
this copy may well cause considerable performance and memory problems for
your applications.

Once a pbuffer has been associated with a CGL context for rendering, you can
call

CGLError CGLGetPBuffer(CGLContextObj ctx, CGLPBufferObj *pbuffer, unsigned
long *face, long *mipmapLevel, long *screen);

to retrieve information about the pbuffer associated with ctx. If the target of the
pbuffer is GL TEXTURE CUBE MAP, face will be set to the cube map face of the
pbuffer. Otherwise, face will be set to zero. The level will be set to the mipmap
level that was last specified in a call to CGLSetPBuffer.

80 Chapter 6: The CGL API for OpenGL Configuration

Texturing with Pixel Buffers as the Source

If you wish to specify that your pbuffer is to be used as the current texture,
call

CGLError CGLTexImagePBuffer(CGLContextObj ctx, CGLPBufferObj pbuffer,
unsigned long sourceBuffer);

The semantics for this call are the undisputed champion of complexity of all
calls in CGL, and with good reason. CGLTexImagePBuffer is most similar to
one of the glTexImage(N)D calls of OpenGL. That is, it defines the texture
source for the currently bound texture ID to use the contents of the pbuffer for
rendering.

The ctx argument refers to the main rendering context that is using the pbuffer
as a data source for texturing. It does not refer to a context that you may
have dedicated to your pbuffer (which you would have then specified in a
call to CGLSetPbuffer). Having two such contexts is the typical pbuffer us-
age scenario. It requires a context switch from your main rendering context to
your pbuffer context whenever you wish to change the destination of rendered
output from, say, the visible screen to your pbuffer. This context switch is a con-
siderable performance disadvantage to using pbuffers as compared with frame-
buffer objects.

Some key differences in standard OpenGL texturing must be considered when
using CGLTexImagePBuffer. First, a texture ID of 0 (otherwise known as
the default texture) is off limits. You must bind a non-zero texture ID, gen-
erated through use of glGenTextures, by using glBindTexture to a tex-
ture with pbuffers. Second, you must use a clean, newly generated texture ID
that has not been populated (or, more accurately, “contaminated”) with data
from any OpenGL call that is capable of doing so. Examples are any variant of
glTexImage,glCopyTexImage,glCopyTexSubImage, orglTexSubImage.
You can purify a contaminated texture ID only by deleting the texture and, by
chance, getting the same ID back from a call to glGenTextures.

For clarity, the sourceBuffer argument should have been implemented in the
API with a type of GLenum. sourceBuffer refers to the source buffer for tex-
turing from the pbuffer. It must correspond to a valid OpenGL buffer that was
defined as part of the pixel format used to create the renderer for this pbuffer.
The set of possible values for sourceBuffer is simply GL FRONT or GL BACK.
If neither is specified, a kCGLBadValue error code will be returned.

Pbuffer contents may be read back by using a call to glGetTexImage2D when
the main rendering context is current and your pbuffer is bound as the cur-
rent texture, or by using a call to glReadPixels when the pbuffer’s context is
current.

Drawables 81

Off-Screen Drawables

Off-screen drawables are simply a block of host memory that is used as a desti-
nation for rendering. This block of memory must be allocated by your applica-
tion and submitted to CGL through a call to

CGLError CGLSetOffScreen(CGLContextObj ctx, long width, long height, long
rowBytes, void *buffer);

You must allocate a buffer that is at least rowBytes * height in size.

As you might expect, because the off-screen buffer is in host memory, off-screen
rendering is the slowest kind of rendering of all the possibilities.

If you wish to retrieve the off-screen buffer (as well as its size parameters) and
do some processing on the pixel data, you can do so with a call to

CGLError CGLGetOffscreen(CGLContextObj ctx, long *width, long *height, long
*rowBytes, void **buffer);

If a call is made to CGLGetOffscreen when the drawable associated with the
context is not an off-screen buffer, all size parameters are set to 0 and the buffer
pointer is set to NULL.

Full-Screen Drawables

Unlike pbuffers and off-screen drawables, full-screen drawables are not created
as separate entities from the context. Instead, they are created implicitly by spec-
ifying kCGLPFAFullScreen as a parameter for the pixel format you use to
create the context.

Not all renderers support full-screen rendering, with the Apple software ren-
derer being the most notable example. You can test for full-screen support of a
renderer during the pixel format selection process, as shown in Example 6-3.

Example 6-3 Testing for Full-Screen Rendering Support

CGLPixelFormatAttribute attribs[] =
{

kCGLPFAFullScreen,
kCGLPFARendererID, kCGLRendererGeForce3ID,
0

};

CGLPixelFormatObj pixelFormat;
long matchingPixelFormatsCount;

CGLChoosePixelFormat(attribs, &pixelFormat,
&matchingPixelFormatsCount);

// Test for matching pixel formats.

82 Chapter 6: The CGL API for OpenGL Configuration

if(pixelFormat == NULL)
{

// kCGLRendererGeForce3ID does NOT support full screen rendering
}
else
{

// kCGLRendererGeForce3ID supports full screen rendering
}

Example 6-3 is rigged because we know that kCGLRendererGeForce3ID sup-
ports full-screen rendering, so this test should never fail. Of course, you could
substitute your renderer of interest in this example.

Testing for support of any full-screen renderers is a simple matter of removing
the kCGLPFARendererID attribute and its value kCGLRendererGeForce3ID
from the attribute list. This leaves only the full-screen attribute
kCGLPFAFullScreen. Assuming your context was created with a renderer
that supports full-screen rendering, a call to

CGLError CGLSetFullScreen(CGLContextObj ctx);

will establish the associated full-screen drawable as the destination for
rendering.

Virtual Screen Management

A virtual screen, remember, is the pairing of a hardware renderer and the
physical displays that are driven by that renderer. In Mac laptop comput-
ers, for example, the graphics hardware is represented by a single renderer
and drives both the built-in display of the computer and any external mon-
itor attached to the laptop. In this scenario, there would be exactly one vir-
tual screen. Thus, regardless of the number of physical displays attached to
the computer, there is one virtual screen for each hardware device that drives
them.

Now that we have the terminology defined, consider that there are two types
of virtual screen changes as far as the OpenGL application programmer is con-
cerned: implicit and explicit. An implicit virtual screen change occurs when the
user of the application drags an application window used for OpenGL render-
ing from a display being driven by one hardware renderer to a different dis-
play being driven by a different hardware renderer. The implicit virtual screen
change that occurs is the reason your application should call CGLUpdateCon-
text whenever your application windows are moved. This behavior allows
CGL to update your context with the renderer information it needs to drive the
application on the new display.

Drawables 83

Explicit virtual screen changes are done with

CGLError CGLSetVirtualScreen(CGLContextObj ctx, long virtualScreen);

Such explicit virtual screen changes are a much less common occurrence than
implicit changes. Consider what happens when you force a virtual screen
change in your application. First, you’re changing the renderer from one hard-
ware renderer to another without regard to the location of the application
window where your drawing occurs. Consider what would happen if, in a
desktop system with an ATI and NVIDIA card installed, and the OpenGL
rendering window residing on a display connected to the ATI card, calls to
CGLSetVirtualScreen change the NVIDIA renderer. Because the window
location is not updated with this call, and because OpenGL commands and
rasterization occur on the NVIDIA hardware, the results of rendering must
be propagated by the Mac OpenGL implementation from the backing store re-
served for the NVIDIA hardware (the framebuffer) to that of the ATI hardware
for display. As a consequence, the rendering takes place on the NVIDIA hard-
ware and the results are copied to the ATI hardware.

The copying of framebuffer bits from the backing store of one device to the back-
ing store of another device will have major consequences for applications that
are performance sensitive. Use care when explicitly setting the virtual screen
configuration.

“If it is so costly, why would an application ever do an explicit virtual screen
change?” you may ask. In the event that one renderer is more capable than an-
other, yet you need to see the results of the more capable renderer on a less
capable device, explicit setting of the virtual screen may be the way to go. A
good example of this configuration is when you have one hardware device that
is capable of doing hardware shaders and another device that is not. Consider
an application that allows configuration of shaders in a tools window with some
parameter sliders to adjust the shader. Suppose you want to render a sphere
with the shader applied on the more capable renderer, yet maintain the tools
window itself on a less capable virtual screen. In this example, the sphere would
be updated infrequently and the size of the buffer being copied would be rela-
tively small, thus mitigating any performance dropoff.

You can retrieve the current virtual screen of a context as follows:

CGLError CGLGetVirtualScreen(CGLContextObj ctx, long *virtualScreen);

Global CGL State Functions

CGL allows for setting and retrieving global state parameters. Unlike all other
CGL API entry points, the global state functions are context independent. These
values can be set at any time and affect any subsequent CGL operations.

84 Chapter 6: The CGL API for OpenGL Configuration

CGLSetOption is used to set a global CGL option. Its function prototype is

CGLError CGLSetOption(CGLGlobalOption globalOption, long\break optionValue);

For retrieving global options, use

CGLError CGLGetOption(CGLGlobalOption globalOption, long optionValue);

The global options for CGL are as follows:

typedef enum _CGLGlobalOption {
kCGLGOFormatCacheSize = 501,
kCGLGOClearFormatCache = 502,
kCGLGORetainRenderers = 503,
kCGLGOResetLibrary = 504,
kCGLGOUseErrorHandler = 505,
} CGLGlobalOption;

kCGLGOFormatCacheSize corresponds to the number of pixel formats CGL
will maintain at any given time. The default number is 5, but it can be de-
creased or increased to match the number of pixel formats your application
uses. Most applications use only a single pixel format, so memory-conscious
applications of this general kind can set the kCGLGOFormatCacheSize to 1.
As a point of reference, at the time of this writing, each of these pixel format
data structures was approximately 60 bytes in size. This value, of course, is sub-
ject to change at any time. It is not likely that it will ever be less than its present
value, however.

You may clear the CGL format cache at any time by using
kCGLGOClearFormatCache. This will free the memory of the format cache
but has no effect on future allocations. For persistent control of these alloca-
tions, use kCGLGOFormatCacheSize. As it is essentially an operation, rather
than a parameter, CGLGetOption will return false for this constant.

kCGLGORetainRenderers is used to retain renderers in the Mac OpenGL en-
gine’s plug-in renderers list. Plug-in renderers maintain a reference count for
all contexts that are referencing them. When the last context referencing a ren-
derer is destroyed, the renderer is normally unloaded from the plug-in list and
its memory freed. This behavior, though good in the general case, is not suit-
able if your application frequently creates and destroys contexts that are unique
to a single renderer in the plug-in list. Setting kCGLGORetainRenderers will
result in much less plug-in management under the scenario described. You can
toggle the renderer retention mode by setting kCGLGORetainRenderers to
either true or false.

kCGLGOResetLibrary is the global reset button for CGL. It restores CGL to
its initial state, destroys all contexts, and releases all plug-in renderers from the
list. Pixel format objects and renderer information objects are not destroyed. If
it’s not obvious, here’s a warning: Use extreme care with this option. As this is

Drawables 85

another “action” constant, CGLGetOption will return false when queried
with this option.

Using CGL Macros
With OS X, Apple engineers came up with a way to avoid the cost of deter-
mining the CGL context from the current thread. The cost of this lookup is
significant because it must be done for every entry point in the OpenGL API.
Cumulatively speaking, this context determination logic adds up.

CGL macros allow you, as the application developer, to provide some valu-
able information to OpenGL and thereby avoid the cost of this lookup—in par-
ticular, the name of the current CGL context for the thread you are in. Using
such a macro requires two simple steps. First, you must include the header file
CGLMacros.h. Second, you must stick to a convention for the variable name
you use to define the current context. You may specify this context name by
defining CGL MACRO CONTEXT. For example:

#define CGL_MACRO_CONTEXT ctx
#include <OpenGL/CGLMacros.h>

Even easier, you can leave CGL MACRO CONTEXT undefined, and use the default
CGL context name cgl ctx.

CGL macros can make a profound difference in the performance of your ap-
plication. Generally speaking, the more immediate-mode rendering you do, the
bigger the improvement produced by using CGL macros. To be formulaic about
it, the larger the ratio of OpenGL function calls your application makes relative
to the amount of data referenced by those calls, the bigger your performance
gains will be using CGL macros. This, of course, doesn’t mean we’re advocat-
ing the use of immediate-mode rendering for the sake of big gains with CGL
macros! You’re much better off keeping your data in VRAM by doing as much
retained-mode rendering as you possibly can.

Summary
Whether you use CGL, AGL, or Cocoa for your OpenGL application on the
Mac, having at least some knowledge of CGL will improve your understand-
ing of the higher-level windowing system interfaces to OpenGL on OS X.
CGL-derived functions, data types, and constants make many appearances in
both the AGL and AppKit APIs. Therefore, if you keep in mind that this in-
formation is derived, you may be able to find the more detailed documenta-
tion you’re looking for by examining the CGL analog to whatever it is you’re
investigating.

86 Chapter 6: The CGL API for OpenGL Configuration

For example, try reading the AGL reference guide segment on aglChoosePix-
elFormat and then reading the CGL reference guide segment on CGL-
ChoosePixelFormat. You may or may not find additional information on
your topic, but it’s a good information path to keep in mind.

We hope we’ve disuaded you from using either the surface texturing or pbuffer
methods of rendering to textures on OS X in favor of using OpenGL framebuffer
objects. Taking pbuffers out of CGL simplifies its usage to renderer selection and
context management.

Popular belief says that Carbon applications are a thing of the past and that the
future belongs to Cocoa applications on OS X. While we’re not here to weigh in
on this opinion, remember that CGL is not part of the Carbon–Cocoa equation.
CGL is part of the OpenGL framework and will be supported with as much
vigilance as OpenGL itself.

Summary 87

This page intentionally left blank

Chapter 7

The AGL API
for OpenGL

Configuration

Overview
OS X has both Carbon and Cocoa windowing interfaces to OpenGL. AGL, or
“Apple OpenGL” is the Carbon windowing interface to OpenGL. Like CGL and
Cocoa, the AGL interface provides a set of routines for managing pixel formats,
OpenGL contexts, and drawables (a.k.a surfaces).

As far as Apple technologies are concerned, AGL is overshadowed by the more
modern and objectified Cocoa. Still, AGL has its place in today’s applications
and is still a first-class citizen when it comes to Apple’s ongoing support of
the API.

Despite AGL being “the old way” to do things from the perspective of hard-
core Apple technology buffs, it has its advantages. Because Cocoa is defined as
an Objective-C class hierarchy, there are some obvious reasons why adapting
an existing application not written in Objective-C would pose more challenges.
This is especially true if the existing application doesn’t have a distinct soft-
ware abstraction defining its view in the model-view-controller design pattern.
In other words, if the UI logic is not easily separated from the application logic,
it’s difficult to replace the UI logic with code from a different object-based UI
library like that of Cocoa.

Another potential challenge of using Cocoa is its use of Objective-C.
Although Objective-C applications can be written as a conglomeration of C,
C++, Objective-C, and even Java, moving between the syntax and semantics of
different programming languages always imposes some overhead to the soft-
ware development process.

AGL then, being defined as a simple, procedural C API, has its advantages. It
can more easily be integrated into existing C and C++ applications. Developing

89

a porting strategy from windowing interfaces of other platforms such as GLX
or WGL is relatively simple.

To make the Cocoa versus AGL decision even more complex, the Carbon event
model, in the humble opinion of the authors, is more complicated than the event
model used by Cocoa.

One of the most redeeming aspects of AGL is its clear and apparent similarity
to CGL. It has the simplicity of CGL with the additional logic and entry points
required to build windowed applications.

Software Layering
The composited desktop of Mac OS X arguably provides the best user experi-
ence of any OS available. The underpinnings of such an amazing user experi-
ence are necessarily more complex than conventional windowing systems. This
complexity manifests itself to some extent in the software layering of AGL and
its related APIs (see Figure 7-1).

As we’ve said, AGL is built on top of CGL. Because of the compositing interac-
tion of Quartz window server and drawables used as a destination for render-
ing in AGL applications, AGL also has dependencies on the Core Graphics API.
Add the obvious interaction with OpenGL, and you have all the pieces with
which AGL interacts.

The AGL API lives in either your particular SDK framework path or /System/
Library/Frameworks. As with other APIs, linking against AGL requires
specification of this framework path. Similarly, compiling using headers from
the AGL framework requires specification of the framework. Table 7-1 indicates
the relevant locations for building and linking with the AGL framework.

AGL is an interface for Carbon applications. It is incompatible with Cocoa ap-
plications. Because AGL is built on top of CGL, you may make CGL calls from
an AGL application so long as you respect the distinct data structures and types
for the two APIs.

OpenGLCoreGraphics

CGL

NSGL AGL

Figure 7-1 AGL Software Dependencies

90 Chapter 7: The AGL API for OpenGL Configuration

Table 7-1 Locations of AGL Headers and Frameworks

Framework path /System/Library/Frameworks/AGL.framework
Build flag -framework AGL
Header #include<AGL/agl.h>

With the fundamentals of AGL now described, and the locations in which to
fully explore the framework identified, let’s move directly into pixel format and
context configuration.

Pixel Format and Context
As we’ve discussed in earlier chapters of this book, the layer of “glue” between
your OpenGL code and the window system of your application performs two
key tasks: pixel format selection and OpenGL context creation. The name for
that layer, in this chapter at least, is AGL.

The pixel formats describe attributes, per pixel, of your OpenGL rendering
destination, and the context binds that pixel format to your window-system
drawable. To review, a drawable is an object such as a window, pixel buffer,
framebuffer object, or other graphics target used in OpenGL rendering. In
this chapter we’ll examine the APIs for basic pixel format selection and cre-
ation. We’ll explain all the enumerants used to specify the pixel format and
the functions necessary to configure them and create contexts using those pixel
formats.

The overview of how to use AGL to create the relevant glue code for rendering
should be familiar. In fact, this process, aside from the specifics of what function
calls to use, remains the same as that for CGL. Specifically, you perform four
simple steps:

1. Describe, create, and find a matching pixel format (AGLPixelFormat,
aglChoosePixelFormat).

2. Create an OpenGL context (AGLContext, aglCreateContext), using
the pixel format created in step 1.

3. Bind that context to a drawable (AGLDrawable, aglSetDrawable).
4. Initialize OpenGL, handle events, and render!

Here, we’ll look at the relevant application code to create and use a win-
dowed AGL application and a full-screen AGL application as examples of
the creation and use of pixel formats and contexts. In the Cocoa chapter
(Chapter 8), we’ll spend time walking through how to configure and create an
XCode project for that set of examples. For now, however, we’ll leave it to you
to create an XCode project on your own to insert these samples—Carbon event

Pixel Format and Context 91

management and plumbing are well beyond our scope. But without further ado,
let’s begin the construction of our application.

Full-Screen Application

We will begin by creating a full-screen AGL application, so we must create
a new XCode project and configure it to depend on the key libraries neces-
sary for OpenGL and AGL on the Mac—that is, the AGL.framework and
OpenGL.framework frameworks. Once it is configured, we can create a main
c program. You’ll next want to add code to include the OpenGL and AGL head-
ers, as in Example 7-1.

Example 7-1 Headers for OpenGL and AGL

#include <OpenGL/OpenGL.h>
#include <AGL/agl.h>

We’ll also configure a pair of standard methods we’ll use in a variety of exam-
ples to initialize our OpenGL state, once we’ve got a context, and to draw in our
main loop. With one minor exception, these methods look like other initializa-
tion and draw methods you’ve seen other places. Example 7-2 shows these two
routines, and their resultant bodies.

Example 7-2 AGL OpenGL Initialization and Draw Functions

void initGLstate()
{

glMatrixMode(GL_PROJECTION);
glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);

glClearColor(0.0, 0.5, 0.8, 1.0);
}

void draw(void)
{

glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(5.0, 0.0, 0.0, 1.0);
glColor4d(0.0, 1.0, 0.0, 1.0);
glRectd(0.1, 0.1, 0.9, 0.9);

aglSwapBuffers(context);
}

The difference between this code and code you’ve seen before, and will see
again later, is the method used to swap the implicitly double-buffered pixel
format we’re using. The call aglSwapBuffers() takes one argument, the
AGL context to be swapped, which for our purposes is declared in a globally
accessible variable outside this routine. We also have an externally declared

92 Chapter 7: The AGL API for OpenGL Configuration

pixel format that we use elsewhere, too. That’s all there is to our initialization
and draw methods; they’re pretty much boilerplate OpenGL.

Let’s now look at the entirety of our example application main method and see
how a pixel format is declared, described, and initialized.

Example 7-3 AGL Full-Screen Application main Method
int main(int argc, char **argv)
{

// create pixelformat
AGLPixelFormat pixelFormat;
GLint attribs[] =
{

AGL_DOUBLEBUFFER,
AGL_ACCELERATED,
AGL_NO_RECOVERY,
AGL_RGBA,
AGL_NONE

};
pixelFormat = aglChoosePixelFormat(NULL, 0, attribs);

// create context & bind to full-screen
context = aglCreateContext(pixelFormat, NULL);
aglDestroyPixelFormat(pixelFormat);
aglSetCurrentContext(context);
aglSetFullScreen(context, 0, 0, 0, 0);

// main loop
initGLstate();
draw();
sleep(3);

// cleanup
aglSetCurrentContext(NULL);
aglDestroyContext(context);
return 0;

}

In Example 7-3, we build code in a few main sections. The first of these meth-
ods creates and fills out an AGLPixelFormat structure. In it, we specify the
desired attributes of our OpenGL render target—in this case, that we would like
an RGBA, double-buffered, hardware-accelerated drawable. Each pixel format
specification must end with the AGL NONE token or you’ll encounter unexpected
pixel format selections at best, and crashes at worst.

Next, we issue the command to actually find a pixel format matching our cri-
teria using aglChoosePixelFormat. The last argument is our attribute list,
and the first two arguments are a handle to a list of graphics devices and the
number of devices, respectively. Specifying NULL as the list indicates that all
devices should be searched for matching visuals. In this example, that’s what
we’ll do, and see what we get back. The aglChoosePixelFormat call will

Pixel Format and Context 93

return an opaque handle that describes one or many pixel formats supported by
the devices-and-attribute combination in the call. If this were production code,
you’d want to ensure that the returned pixel format results were valid and, if
they were not, check for other pixel formats that would better meet your needs.
If a variety of pixel formats met the criteria you specified, you will want to call
aglNextPixelFormat to cycle through the pixel formats in the return value,
and then examine each of those options using aglDescribePixelFormat to
see which characteristics each has, and if any of them are particularly well-
suited to your needs.

One final note on pixel format specification and selection: A variety of AGL
functions can generate verbose errors (much like OpenGL does through its
glGetError mechanism). You should look at Apple’s reference documenta-
tion to see which calls can generate these errors and to learn when to query
them using aglGetError.

So what are all the tokens that you can specify in conjunction with aglChoose
PixelFormat? There are quite a few, and the Apple documentation describes
them reasonably well. We include our own descriptions of a useful selection
of these tokens in Table 7-2. Among the things that can be specified are stereo
or monoscopic rendering capabilities (also known as quad-buffering), stencil
planes, depth- and color-buffer sizes, floating-point pixels, anti-aliasing, and
even exact specification of the renderer and pixel format by ID. There’s quite
a lot of capability, and there are close analogs to any of the pixel format tokens
exposed in Cocoa as well. Read the table, experiment some, decide which best
fit your needs, and then customize your baseline code with your pixel format
requirements.

The second major component of the code in Example 7-3 creates and sets
the context for our rendering. We simply call aglCreateContext and clean
up our pixel format using aglDestroyPixelFormat, since our context is
bound to that pixel format. We then make the new context current by using
aglSetCurrentContext and bind our context to a full-screen drawable by
using aglSetFullScreen. As before, robust production code should check
for failure at any step in this process, and subsequently use aglGetError to
provide detailed error information for user feedback.

The final component of the code in Example 7-3 is a main loop, one in which
you’d handle events. For purposes of our example (that is, raw simplicity), our
event loop simply contains calls to initialize the OpenGL machine, draw our
scene, and display the results for a few seconds. Because this is a full-screen
application managed by Carbon, you’d need to create a Carbon event handler
to capture mouse and keyboard events. We’ll provide demo code on this book’s
website (www.macopenglbook.com) to show how this works and a preview in
the next section here showing a windowed visual selection and event-handling
loop.

94 Chapter 7: The AGL API for OpenGL Configuration

www.macopenglbook.com

Table 7-2 Pixel Format Specifiers for Use with aglChoosePixelFormat

Token Description
AGL ALL RENDERERS Choose from all available renderers. This can

include non-OpenGL-compliant renderers.
Usually better to specify.
Type: Boolean
n/a
Default: n/a
Policy: n/a

AGL BUFFER SIZE Number of bits per color buffer. If AGL RGBA
is specified, this value is the sum of all
components. If a color index pixel format is
specified, the buffer size is the size of the
color indices.
Type: Unsigned integer
n/a
Default: n/a
Policy: Greater than or equal to value.

AGL LEVEL Level in plane stacking. Used to specify
overlay or underlay planes.
Type: Integer
n/a
Default: n/a
Policy: Exact.

AGL RGBA Choose an RGBA format.
Type: Boolean
GL TRUE
Default: GL FALSE
Policy: If GL TRUE, search only RGBA pixel
formats; else search only color index pixel
formats.

AGL DOUBLEBUFFER Select double-buffered pixel formats.
Type: Boolean
GL TRUE
Default: GL FALSE
Policy: If GL TRUE, search only among
double-buffered pixel formats; else search
only single-buffered pixel formats.

AGL STEREO Select stereo pixel formats.
Type: Boolean
GL TRUE
Default: GL FALSE
Policy: If GL TRUE, search only among stereo
pixel formats; else search only monoscopic
pixel formats.

(Continued)

Pixel Format and Context 95

Table 7-2 Pixel Format Specifiers for Use with aglChoosePixelFormat
(Continued)

Token Description
AGL AUX BUFFERS Number of aux buffers.

Type: Unsigned integer
0 specifies no aux buffers.
Default: n/a
Policy: Greater than or equal to value.

AGL RED SIZE Number of red component bits.
Type: Unsigned integer
0 if AGL RGBA is GL FALSE.
Default: n/a
Policy: Closest.

AGL GREEN SIZE Number of green component bits.
Type: Unsigned integer
0 if AGL RGBA is GL FALSE.
Default: n/a
Policy: Closest.

AGL BLUE SIZE Number of blue component bits.
Type: Unsigned integer
0 if AGL RGBA is GL FALSE.
Default: n/a
Policy: Closest.

AGL ALPHA SIZE Number of alpha component bits.
Type: Unsigned integer
0 if AGL RGBA is GL FALSE.
Default: n/a
Policy: Closest.

AGL DEPTH SIZE Number of depth bits.
Type: Unsigned integer
n/a
Default: n/a
Policy: Closest.

AGL STENCIL SIZE Number of stencil bits.
Type: Unsigned integer
n/a
Default: n/a
Policy: Greater than or equal to value.

AGL ACCUM RED SIZE Number of red accum bits.
Type: Unsigned integer
n/a
Default: n/a
Policy: Closest.

96 Chapter 7: The AGL API for OpenGL Configuration

Token Description
AGL ACCUM GREEN SIZE Number of green accum bits.

Type: Unsigned integer
n/a
Default: n/a
Policy: Closest.

AGL ACCUM BLUE SIZE Number of blue accum bits.
Type: Unsigned integer
n/a
Default: n/a
Policy: Closest.

AGL ACCUM ALPHA SIZE Number of alpha accum bits.
Type: Unsigned integer
Value
Default: Default
Policy: AGL CLOSEST POLICY

AGL PIXEL SIZE Framebuffer bits per pixel, including unused
bits, ignoring alpha buffer bits.
Type: Unsigned integer
n/a
Default: n/a
Policy: n/a

AGL MINIMUM POLICY Never choose smaller buffers than the type
and size requested.
Type: Boolean
n/a
Default: GL FALSE
Policy: n/a

AGL MAXIMUM POLICY Choose largest buffers of type and size
requested. Alters default policy for color,
depth, and accumulation buffers.
Type: Token
n/a
Default: n/a
Policy: n/a

AGL CLOSEST POLICY Find the pixel format most closely matching
the specified size. Alters default policy and
size for color buffers.
Type: Unsigned integer
n/a
Default: n/a
Policy: Closest match.

(Continued)

Pixel Format and Context 97

Table 7-2 Pixel Format Specifiers for Use with aglChoosePixelFormat
(Continued)

Token Description
AGL OFFSCREEN Choose an off-screen renderer.

Type: Token
n/a
Default: n/a
Policy: Closest match.

AGL FULLSCREEN Choose a full-screen renderer.
Type: Token
n/a
Default: n/a
Policy: n/a

AGL SAMPLE BUFFERS ARB Number of multisample buffers.
Type: Unsigned integer
n/a
Default: n/a
Policy: n/a

AGL SAMPLES ARB Number of samples per multisample buffer.
Type: Unsigned integer
n/a
Default: n/a
Policy: n/a

AGL AUX DEPTH STENCIL Specify number of depth or stencil buffers
for the aux buffer.
Type: Unsigned integer
n/a
Default: n/a
Policy: n/a

AGL COLOR FLOAT Select pixel buffers with color buffers that
store floating-point pixels.
Type: n/a
n/a
Default: n/a
Policy: n/a

AGL MULTISAMPLE Select pixel formats with multisample
buffers.
Type: n/a
n/a
Default: n/a
Policy: Hint: prefer.

AGL SUPERSAMPLE Select pixel formats with supersample
buffers.
Type: n/a
n/a
Default: n/a
Policy: Hint: prefer.

98 Chapter 7: The AGL API for OpenGL Configuration

Token Description
AGL SAMPLE ALPHA Request alpha filtering

Type: n/a
n/a
Default: n/a
Policy: n/a

AGL RENDERER ID Choose renderer by a specific ID.
Type: Unsigned integer
One of AGL RENDERER * ID tokens
Default: n/a
Policy: Exact.

AGL SINGLE RENDERER Choose a single renderer for all screens.
Type: Boolean
GL TRUE
Default: n/a
Policy: n/a

AGL NO RECOVERY Disable all failure recovery systems. The
OpenGL driver layer will fall back to other
renderers if a drawable or surface cannot be
attached, typically due to insufficient
graphics memory resources. AGL would, in
this failure case, usually switch to another
renderer; however, specifying GL TRUE to
this option will prevent a failover to a
software renderer from occurring in this
instance.
Type: Boolean
GL TRUE: Disable failure modes.
GL FALSE: Fail to alternate renderers.
Default: n/a
Policy: Exact.

AGL ACCELERATED Choose a hardware-accelerated renderer.
Note that in a multiscreen system
configuration, it’s possible that you may not
get windows that span, because a spanning
window usually causes OpenGL to choose
the software renderer.
Type: Boolean
GL TRUE: Specify that only hardware
renderers are searched.
Default: GL FALSE
Policy: Exact.

(Continued)

Pixel Format and Context 99

Table 7-2 Pixel Format Specifiers for Use with aglChoosePixelFormat
(Continued)

Token Description
AGL ROBUST Choose a renderer that doesn’t have a

hardware failure mode due to lack of
graphics resources.
Type: Boolean
GL TRUE: Search renderers with no
hardware failure modes as described.
Default: GL FALSE
Policy: Exact.

AGL BACKING STORE Specify that only renderers with a back
buffer that accommodates the full size of the
drawable/surface object should be searched.
Ensure that the back buffer is copy-swapped
to the front buffer, meaning that the contents
are usable after a “swap buffers” command.
Type: Boolean
GL TRUE: Consider only renderers with this
capability.
Default: n/a
Policy: Exact.

AGL WINDOW Can be used to render to a window.
Type: n/a
n/a
Default: n/a
Policy: n/a

AGL MULTISCREEN A single window can span multiple screens.
Type: n/a
n/a
Default: n/a
Policy: n/a

AGL VIRTUAL SCREEN Specify a virtual screen number on which to
search for pixel formats.
Type: Integer
n/a
Default: n/a
Policy: Exact.

AGL PBUFFER Choose a renderer that can be used to render
to a pbuffer.
Type: Boolean
GL TRUE: Choose a pbuffer pixel format.
Default: n/a
Policy: Exact.

100 Chapter 7: The AGL API for OpenGL Configuration

Token Description
AGL REMOTE PBUFFER Specifies that the renderer can render to an

off-line pixel buffer.
Type: Boolean
n/a
Default: n/a
Policy: n/a

AGL NONE Token to signal the end of the pixel format
parameter array. Every pixel format attribute
list for AGL must end with this token.
Type: n/a
n/a
Default: n/a
Policy: n/a

The final piece of code we perform, after our main loop has exited, is to clean
up our context and return.

Using AGL can be as simple as that! If you’re coding along with this example,
your application should be essentially complete and ready to run. If you’ve fol-
lowed this discussion successfully, you’ll see results as in Figure 7-2, completely
covering your display.

There’s a lot more to discuss, so let’s move on to our next example, which in-
volves a windowed pixel format and event loop.

Windowed Application

If you’re writing example code in an application like we’ve talked you
through in the previous section, create another XCode project, and populate
it with headers, initialization methods, and draw methods as seen before in
Example 7-1 and Example 7-2. All of those pieces of code will remain exactly
the same, and the only differences are how we choose our pixel format, bind it
to the Carbon window, and process events. We’ll begin by presenting the main
routine seen in Example 7-4 and then we’ll walk through it.

Example 7-4 AGL Windowed main Example

int main(int argc, char **argv)
{

AGLPixelFormat pixelFormat;
GDHandle display = GetMainDevice();
Rect windowRect = { 100, 100, 100 + width, 100 + height };

Pixel Format and Context 101

Figure 7-2 AGL Full-Screen Example Results

WindowRef window;

GLint attribs[] =
{

AGL_DOUBLEBUFFER,
AGL_ACCELERATED,
AGL_NO_RECOVERY,
AGL_RGBA,
AGL_NONE

};

// Context creation
pixelFormat = aglChoosePixelFormat(&display, 1, attribs);
context = aglCreateContext(pixelFormat, NULL);
aglDestroyPixelFormat(pixelFormat);
aglSetCurrentContext(context);

// Window creation
CreateNewWindow(kDocumentWindowClass,

kWindowStandardDocumentAttributes |
kWindowStandardHandlerAttribute |
kWindowResizableAttribute |
kWindowLiveResizeAttribute |
kWindowCloseBoxAttribute,
&windowRect,
&window);

102 Chapter 7: The AGL API for OpenGL Configuration

SetWindowTitleWithCFString(window, CFSTR("AGL Window"));

ShowWindow(window);
aglSetDrawable(context, GetWindowPort(window));
aglUpdateContext(context);

// opengl setup and render
initGLstate();
draw();

// mainloop
while(!done)
{

processEvent();
}
// cleanup
aglSetCurrentContext(NULL);
aglDestroyContext(context);
return(0);

}

The first section of code performs some Carbon window management, nec-
essary later both to choose a pixel format from a specific device and then to
create a window on it. This section also chooses the pixel format, looking in
particular at a specific graphics device. First, we find the main graphics de-
vice and store it in a variable; we then set up a Rect defining our window
size; and finally we declare a handle to our window. The next part of this
code is familiar from our earlier full-screen example—that is, the declaration
of an AGLPixelFormat and the population of it with our desired pixel format
parameters. As a reminder, this list must end with the AGL NONE token. Finally,
we invoke aglChoosePixelFormat, but in a different form than in the full-
screen example; instead of passing it a NULL as the first argument, we specify
a particular device to be searched—in this case, our main device on the sys-
tem. Excepting that one addition, the same caveats from the full-screen example
apply: Check the return values for validity, and ensure that the resultant pixel
format matches your needs.

The second section of the code creates the AGL context, cleans up the pixel
format, creates a Carbon window, and binds the AGL context to the window,
also know as an AGL drawable.1 Creating a context is done as in our prior

1. It’s probably useful to mention the two data types in AGL that are remapped from basic Carbon
types for window and device management. When using AGL methods that interface with devices,
these two types are syntactically the same GDHandle and AGLDevice. Similarly, for AGL methods
referring to drawables, CGrafPtr and AGLDrawable are interchangable. In much of the code pre-
sented in this book and in Apple examples, these types are interchanged, but it’s not explained why,
directly. The reason they are interchangeable is that the AGL types are simply typedefs of their
Carbon base types. Please note, however, that QuickDraw is deprecated in Leopard.

Pixel Format and Context 103

full-screen example. Window creation, the next step, is just the standard Car-
bon window creation and is beyond the scope of this book. However, the
necessity of having our window setup is visible in the final step in this
section, in which we bind the AGL context to the AGL drawable. In our
full-screen example, we did this create-and-bind operation in a single step
through aglSetFullScreen; here, because we’re binding to an already-
created Window, we use aglSetDrawable. We use the Carbon adapter
GetWindowPort to convert our WindowRef into an AGLDrawable type. The
piece in this section is to call aglUpdateContext. This method is an AGL
required method used any time the AGL drawable changes size. As we just
created and bound our window, it’s prudent to ensure that the AGL context is
informed of the AGL drawable’s size at this point.

The final section of the code in Example 7-4 is also similar to our full-screen
example. The essence of this section is to initialize OpenGL, process events, and
clean up. We do this through two calls to code from our earlier example, fol-
lowed by a hand-crafted main loop. As before, we won’t go into detail about
the guts of processEvent except to say that this is how, for our example ap-
plication, we handle Carbon events from the mouse, keyboard, and so on. You
can see this code in our code archive online.

Finally, as in our full-screen example, we unbind our context, clean it up, and
exit.

If you were to compile and build that code, you’d see something that looked
like Figure 7-3. Windowed AGL is essentially as simple as full-screen AGL but
with a little more setup when binding the context.

Summary

So far, we’ve seen how to create and destroy pixel formats and contexts using
AGL. We’ve demonstrated how to use them together to create full-screen and
windowed AGL applications. With this knowledge you should be ready to cre-
ate AGL-based applications if you choose to do so. However, for those of you
with the opportunity to write new applications from scratch, we strongly rec-
ommend investigating the Cocoa options first.

Additional Topics
Renderers

AGL provides a few methods to access renderers directly, in addition to basic
pixel format and context handling. Why might you want to access a renderer?
Perhaps you’re curious about the theoretical memory made available to you by
your renderer of choice, or maybe you’d like to see how many overlay planes

104 Chapter 7: The AGL API for OpenGL Configuration

Figure 7-3 AGL Window Example Results

your renderer supports. You can query the renderer information independently
of any OpenGL context, and then you can use this discovered renderer informa-
tion with your AGL pixel format to customize it to your needs. We now present
some example code to search the list of renderers through AGL, and query some
properties in Example 7-5.

Example 7-5 AGL Renderer Query Example

int main(int argc, char **argv)
{

AGLRendererInfo ri = aglQueryRendererInfo(NULL, 0);
if (ri != NULL)
{

unsigned int ii=0;
while(ri != NULL)
{

GLint vram, tram, accel, id;
GLint mm = 1024*1024;
aglDescribeRenderer(ri, AGL_RENDERER_ID, &id);
aglDescribeRenderer(ri, AGL_ACCELERATED, &accel);
aglDescribeRenderer(ri, AGL_VIDEO_MEMORY, &vram);
aglDescribeRenderer(ri, AGL_TEXTURE_MEMORY, &tram);
cout << "renderer " << ii << ": "

Additional Topics 105

<< "id: " << id << " "
<< "hardware: " << accel << " " << endl;

cout << "\t"
<< "vram (Mb): " << vram/mm << " "
<< "tram (Mb): " << tram/mm << endl;

ri = aglNextRendererInfo(ri); ii++;
}

}
else
{

GLenum error = aglGetError();
cout << "error: " << error << endl;

}
return(0);

}

This code begins by getting the renderer information structure for all devices on
this Mac, using aglQueryRendererInfo with NULL to indicate all devices,
similarly to the way aglChoosePixelFormat operates. If we were particu-
larly interested in a specific device, we could customize this call to just query
that device, or a sublist of AGLDevices. This code then ensures that the result
isn’t NULL, which indicates the last of our AGLRendererInfo structures, and
walks through the list, invoking aglDescribeRenderer on a few properties.
The output from this example looks like the following, for the author’s Intel-
based iMac:

renderer 0: id: 137473 hardware: 1
vram (Mb): 128 tram (Mb): 128

renderer 1: id: 132096 hardware: 0
vram (Mb): 0 tram (Mb): 0

An AGL renderer query of this type, for video and texture memory, isn’t the
most useful, as these results indicate hardware limits (all of that memory may
not necessarily be available to a running application), but it’s an easy way to
demonstrate the concept. Furthermore, we derive certain satisfaction from pro-
grammatically validating that the hardware actually has the capabilities listed
on the marketing literature. From these results, we can see the renderer ID, de-
termine whether it has hardware acceleration, and learn about its video and tex-
ture memory limits. This method provides an easy way of querying supported
renderers on a particular platform. A complete and current list of tokens can
always be found in the AGL/agl.h header file, and we’ve also documented a
useful set of tokens in Table 7-3.

For the most part, querying renderers prior to their use is sometimes help-
ful if you have specific needs (say, pbuffers) and need to ensure that your
renderer can support them. Most commonly, however, you’ll want to use an
AGL ACCELERATED renderer, and keep within its capabilities, to have the best
performance possible. On systems with multiple graphics cards, you might

106 Chapter 7: The AGL API for OpenGL Configuration

Table 7-3 Tokens for Use with aglDescribeRenderer

Token Description
AGL FULLSCREEN Supports full-screen applications
AGL RENDERER ID Renderer ID value
AGL ACCELERATED Supports hardware acceleration
AGL ROBUST Has no failure mode for lack of resources
AGL BACKING STORE Has copy-on-swap back buffer
AGL WINDOW Supports render-to-window
AGL MULTISCREEN Can support multiple screens with the same AGL

context
AGL COMPLIANT Supports offline pixel-buffer rendering
AGL PBUFFER Supports pbuffer rendering
AGL BUFFER MODES Supports bitwise OR of mono, stereo, single, and

double constants from AGL/agl.h
AGL MIN LEVEL Minimum overlay (or maximum underlay, if negative)

plane value
AGL MAX LEVEL Maximum overlay plane value.
AGL COLOR MODES Supports bitwise OR of color mode constants from

AGL/agl.h color buffers
AGL ACCUM MODES Supports bitwise OR of color mode constants from

AGL/agl.h for accumulation buffers
AGL DEPTH MODES Supports bitwise OR of depth mode constants from

AGL/agl.h
AGL STENCIL MODES Supports bitwise OR of stencil mode constants from

AGL/agl.h
AGL MAX AUX BUFFERS Maximum number of aux buffers supported
AGL VIDEO MEMORY Maximum video memory available to renderer in bytes
AGL TEXTURE MEMORY Maximum texture memory available to renderer in

bytes

prefer to run on the most capable graphics card, or one with which you know
your code performs particularly well.

Context Sharing

Context sharing is an essential element to high-performance, resource-friendly
OpenGL applications. Context sharing allows sharable elements from one
context to be used in other OpenGL contexts. There is one primary reason to
share contexts: reuse of the same graphics data in two or more different win-
dows. One very common example of this is sharing data between a full-screen
version and a windowed version of the same application. There may be other
reasons, such as when a number of windows are all viewing the same OpenGL
data but from different views. Finally, you might want to share data among
multiple rendering destinations, such as windows and pbuffers.

Additional Topics 107

Context sharing is typically requested when a new OpenGL context is created,
and the context with which it will be sharing has been created and its sharable
resources have been initialized. The context with items you wish to access is
passed to some form of initialization for your new context, usually along with
a pixel format. For two contexts to be compatible, their pixel formats must be
compatible as well, which is why you see these two things specified together to
successfully enable sharing. So what makes pixel formats incompatible? On the
Mac usually it’s one thing: incompatible renderers. Thus, as a rule of thumb, if
you can choose pixel formats that use the same renderers, you can share contexts
created with those pixel formats.

As context sharing is a very simple feat to perform, we’ll simply look at the code
first and only then discuss what’s going on. Example 7-6 demonstrates how we
can create two contexts, the first shared with the second.

Example 7-6 Sharing One Context with Another in AGL

// create first context
pixelFormat = aglChoosePixelFormat(&display, 1, attribs);
context = aglCreateContext(pixelFormat, NULL);

// create second context, sharing with first
otherContext = aglCreateContext(pixelFormat, context);
aglDestroyPixelFormat(pixelFormat);

As you can see in Example 7-6, sharing a context is as simple as passing the con-
text to be shared into each subsequent context creation call. If, as in our example,
there are no errors, the sharable contents of the first context exist for the second.
In Example 7-6, we share a display list of the rendered object between two win-
dows. We clear each window to a different color to demonstrate that they are,
in fact, separate contexts, with separate states, except for sharable items. For
reference, the following items can be shared among contexts:

• Display lists
• Buffer objects (vertex buffer objects, fixer buffer objects)
• Texture objects
• Vertex and fragment programs and shaders
• Framebuffer objects

Like most windowing system interfaces to OpenGL, AGL exposes the ability
to duplicate context contents. Specifically, in Example 7-6, we took pains to
demonstrate that each context was different by setting a unique glClearColor
for each. However, if we’d like the rest of the state to be the same between
these two contexts, we’d use the AGL method aglCopyContext to specify
a copy from one context to another. This routine takes arguments for the

108 Chapter 7: The AGL API for OpenGL Configuration

source context, the destination context, and the attribute mask describing which
pieces of state to copy. Specifically, the mask and constants are the same ones
that the glPushAttrib() call uses. For our example, we’d write code as in
Example 7-7.

Example 7-7 Copying the Context State Between Two Contexts in AGL

aglCopyContext(context, otherContext, GL_ALL_ATTRIB_BITS);

One last note on shared contexts, which applies to the general concept of con-
text sharing, not to any particular implementation: When you are using con-
text sharing and you reach the point in your application where you need to
destroy the second (sharer) context, make sure that you do not delete the shared
contents within that context. If one context cleans up shared objects but another
context continues to use those contents, it’s possible that visual data corruption
or, even worse, a crash of the application could occur. The solution to this prob-
lem is that, as with data shared through pointers, only one application element
should be responsible for both construction and deletion of shared elements.
Thus, when you are sharing data between contexts, make sure that shared ob-
jects are created once, used many times, and then deleted once, only when the
last sharer of those contents has completed its usage.

Alternative Rendering Destinations
In AGL, as in CGL and Cocoa, an increasingly more popular OpenGL render-
ing technique is to render to a hardware-accelerated nonvisible buffer. There
are numerous reasons for doing so, most commonly to create an image to use
somewhere else as a texture. For example, you might create an image to rep-
resent a reflection image in service of creating nice shiny water. A variety of
rendering destinations can be used to create this sort of image for reuse, or for
any other purpose. In this section, we’ll look at techniques to render to modern
off-screen render destinations, as well as some bridge technology techniques,
such as render-to-texture, used for compatibility with older hardware.

Off-Screen Surfaces

Apple refers to “off-screen” buffers as a particular form of alternative render-
ing destinations. In Apple’s terminology, “off-screen” denotes a rendering tar-
get that is without hardware acceleration. For this reason, and because creat-
ing hardware-accelerated render targets with no on-screen footprint is so easy,
you’ll probably want to avoid pixel formats with “off-screen” attributes. We’ll
describe a few caveats of creating and managing these entities, but only for ref-
erence: If you see off-screen surfaces used in a modern application, it’s probably
a good time to consider refactoring to use framebuffer objects.

Alternative Rendering Destinations 109

Creation and use of off-screen surfaces begins with specification of the
GL AGL OFFSCREEN token when constructing a pixel format. Only an
AGLContext that has been successfully created with a pixel format using this
token can be used to perform true off-screen rendering. After creation of a con-
text, the next steps are to bind this off-screen render area, to make it active for
rendering, and to render. As with full-screen and windowed rendering, there
is an analogous command, aglSetOffScreen, to perform this binding. The
target of this binding is a memory buffer you specify in the call, rather than an
existing Carbon window. The Apple documentation pages have detailed infor-
mation on all the arguments these calls take. As this isn’t really recommended
practice, we won’t describe this technique in more detail. Consult the Apple
documentation for the most complete descriptions of the methods.

Pbuffers

Pixel buffers are another alternative rendering destination commonly used for
off-screen rendering. However, unlike the named “off-screen” areas, pbuffers
can be fully hardware accelerated. That makes them quite useful for real-time
generation of textures, among other things. Pbuffers are an invention of the late
1990s (circa 1997) and, though fully functional, they contain a bit of complexity
that more modern render implementations such as framebuffer objects do not.
In essence, pbuffers are useful analogs to framebuffer objects, but for modern
code, framebuffer objects are preferred.

Table 7-4 shows the list of functions within AGL useful for creation and use of
pbuffers.

Chapter 6 showed the same procedure necessary for this task, so we’ll simply
summarize and show some example code here. The basic process is as before:
Create a pbuffer (aglCreatePBuffer), make it active (aglSetPBuffer), and
perform some rendering into it. Example 7-8 demonstrates the main loop per-
forming the basic AGL context and AGL pbuffer context creation tasks.

Table 7-4 AGL Pbuffer Functions

Function Description
aglCreatePBuffer Creates an AGL pixel buffer for use with an OpenGL

texture type
aglDestroyPBuffer Destroy an AGL pixelbuffer
aglDescribePBuffer Gather information about an AGL pixelbuffer
aglGetPBuffer Query a context for the pixelbuffer attached to it
aglSetPBuffer Set the pixel buffer to be the target for the specified

context
aglTexImagePBuffer Binds a pixel buffer as a texture; analogous to

glTexImage2D

110 Chapter 7: The AGL API for OpenGL Configuration

Example 7-8 Pbuffer and Windowed Context Creation in AGL

int main(int argc, char **argv)
{

// setup the pixelformat
GLint attribs[] =
{

AGL_RGBA,
AGL_DOUBLEBUFFER,
AGL_ACCELERATED,
AGL_NO_RECOVERY,
AGL_DEPTH_SIZE, 16,
AGL_NONE

};
const int width = 451;
const int height = 123;
AGLPixelFormat pixelFormat;
AGLPbuffer pbuffer;
AGLContext context, pbContext;
long virtualScreen;

GDHandle display2 =
CGDisplayIDToOpenGLDisplayMask(CGMainDisplayID());

GDHandle display = GetMainDevice();
Rect windowRect = { 100, 100, 100 + width, 100 + height };
WindowRef window;

// pbuffer pixelformat and context setup and creation
printf("%d\n", display2);
pixelFormat = aglChoosePixelFormat(display2, 1, attribs);
pbContext = aglCreateContext(pixelFormat, NULL);
aglDestroyPixelFormat(pixelFormat);
aglCreatePBuffer(width, height, GL_TEXTURE_2D,

GL_RGBA, 0, &pbuffer);

// bind pbuffer
virtualScreen = aglGetVirtualScreen(pbContext);
aglSetCurrentContext(pbContext);
aglSetPBuffer(pbContext, pbuffer, 0, 0, virtualScreen);

// draw into pbuffer
drawPBuffer();

// window pixelformat and context setup and creation
pixelFormat = aglChoosePixelFormat(&display, 1, attribs);
context = aglCreateContext(pixelFormat, NULL);
aglDestroyPixelFormat(pixelFormat);
aglSetCurrentContext(context);

// window creation
CreateNewWindow(kDocumentWindowClass,

kWindowStandardDocumentAttributes |
kWindowStandardHandlerAttribute,
&windowRect, &window);

Alternative Rendering Destinations 111

SetWindowTitleWithCFString(window, CFSTR("AGL PBuffer Texture"));
ActivateWindow(window, true);
ShowWindow(window);

// bind context to window
aglSetDrawable(context, GetWindowPort(window));
aglUpdateContext(context);

// initialize window context & draw window
GLuint texid;
init(context, pbuffer, &texid);
drawWindow(context, texid);

// stub event loop
sleep(4.0);

// cleanup and exit
aglSetCurrentContext(NULL);
aglDestroyContext(context);
aglDestroyContext(pbContext);
aglDestroyPBuffer(pbuffer);

return(0);
}

At some point in the future, when you’re ready to use this result as data, ref-
erence the contents as the image portion of a texture (aglTexImagePBuffer).
Example 7-9 shows this process happening for our main OpenGL windowed
AGL context. This method shows the key step in pbuffer usage (CGL or AGL,
documented fully in Chapter 6 when generating a new texture ID.

Example 7-9 OpenGL Context Initialization, Referencing a Pbuffer as the
Texture

void init(AGLContext context,
AGLPbuffer pbuffer,
GLuint * textureID)

{
// Initialize the projection matrix
glMatrixMode(GL_PROJECTION);
glOrtho(-1, 1, -1, 1, -1, 1);
glMatrixMode(GL_MODELVIEW);

glClearColor(0.0f, 0.5f, 0.8f, 1.0);
glClear(GL_COLOR_BUFFER_BIT);

// Generate a texture ID to allow pbuffer texturing
glEnable(GL_TEXTURE_2D);
glGenTextures(1, textureID);
glBindTexture(GL_TEXTURE_2D, textureID);

// Set up the texturing environment
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);

112 Chapter 7: The AGL API for OpenGL Configuration

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
GL_CLAMP_TO_EDGE);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);

// Specify the pbuffer as the source for our texture data
// This acts as a substitute for a glTexImage2D call.
aglTexImagePBuffer(context, pbuffer, GL_FRONT);

}

The draw methods for each of the pbuffers and the main window are as you
would expect. In this case, our pbuffer clears to yellow (that’s what we draw
into it), and then we use that result as a texture on a GL QUAD, drawn as shown
in Figure 7-4. Many more interesting things can be done using this technique,
such as rendering reflection images for glass or water scenes and rendering
intermediate computations for use in GPGPU applications. However, this sec-
tion deals with the infrastructure for performing the rendering and that’s what
we’ve presented here

Figure 7-4 AGL Pbuffer Example Results

Alternative Rendering Destinations 113

Render-to/Copy-to-Texture

In this section we describe a very common and widely available technique
known as render-to-texture. Render-to-texture is as simple as it sounds: You
simply render your intermediate scene, copy it to a texture, and then later
use that texture in your final render. The method is simple and concise, with
the only downside being the “copy of pixels” phase. Of course, you must
deal with some details concerning how you target the texture into which you
want to render and, in some cases, how you move pixels around the sys-
tem and into your final texture. Nevertheless, on the whole, this process is
largely as simple as described. This technique is interesting because it is widely
available and offers relatively high performance. It has some problems, too: It’s
not as clean as the most modern OpenGL technique of framebuffer objects, and
there may be extra data copies. Overall, though, it works pretty well. Perfor-
mance is pretty good, too, albeit not as consistently good as using framebuffer
objects. Sometimes, you may run into problems on different cards from differ-
ent vendors where this technique is actually moderately expensive. However,
if you can’t use framebuffer objects, this method is a good option. We’ll now
explore the details of this technique and look at some example code and results.

Because we’re only going to render and copy into a texture, that’s the extent of
the information we need to keep track of throughout our methods. Because cre-
ation of textures is so universal, we present the initialization and draw code all
at once, in Example 7-10. This code shows three things: the overall initialization,
the draw methods for both the textured scene, and the texture itself.

Example 7-10 AGL OpenGL Initialization and Draw Functions for Copy-
Texture Rendering

void initGLstate()
{

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
glClearColor(0.0, 0.5, 0.8, 1.0);

// enable, generate, and bind our texture objects
glEnable(GL_TEXTURE_2D);
glGenTextures((GLsizei) 1, &textureID);
glBindTexture(GL_TEXTURE_2D, textureID);
const unsigned int texdim = 64;
const unsigned int nbytes = 3;
char data[texdim * texdim * nbytes];
memset(data, 0xff, texdim * texdim * nbytes);
unsigned int ii;
for(ii=0; ii<texdim*texdim; ii++)
{

data[ii*nbytes + 0] = 0xff;
}

114 Chapter 7: The AGL API for OpenGL Configuration

gluBuild2DMipmaps(GL_TEXTURE_2D, // 0,
GL_RGB, texdim, texdim, // 0,
GL_RGB, GL_UNSIGNED_BYTE, data);

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glBindTexture(GL_TEXTURE_2D, 0); // unbind texture

}

void drawTexture()
{

glClearColor(1.0, 1.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glBindTexture(GL_TEXTURE_2D, textureID);
glCopyTexSubImage2D(GL_TEXTURE_2D, 0,

0, 0,
0, 0,
64, 64);

}

void draw()
{

glClearColor(0.0, 0.5, 0.8, 1.0);
glClear(GL_COLOR_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(5.0, 0.0, 0.0, 1.0);

glBindTexture(GL_TEXTURE_2D, textureID);
glColor4d(0.0, 1.0, 0.0, 1.0);
glRectd(0.1, 0.1, 0.9, 0.9);

aglSwapBuffers(context);
}

We’ll spend a bit more time discussing this technique, its strengths, its weak-
nesses, and its applicability in Chapter 8, but for now a few words on what’s
happening should suffice. The initialization code performs two steps: (1) as seen
in our prior examples, setup of the projection matrix, and (2) a simple texture
generation (all white) and load of that texture. That’s all we do to prepare a tex-
ture for usage later. The drawTexture function performs our rendering into
our texture, and it’s as simple as it always has been, a clear to yellow tran-
sition. The last step in this function is the workhorse of this technique, and
simply copies the contents of the active framebuffer read target (set through
glReadBuffer) to the texture specified. We use the glTexSubImage2D fla-
vor of texture copy because it’s the most efficient way to replace some or all of
a texture with updated image pixels.

Finally, we see in Example 7-10 the draw code, which does the same draw as
in our earlier AGL examples. This time, however, it binds this texture before
rendering the main scene. The results are seen in Figure 7-5.

Alternative Rendering Destinations 115

Figure 7-5 AGL Render-to-Texture Example Results

One quick note: We must invoke this code in this order if we want to achieve
the proper results. This is a key step, and perhaps obvious, but Example 7-11
makes clear that you must first set up the texture, then draw contents into it,
and finally draw the main scene.

Example 7-11 AGL Copy-Texture Render Call Sequence

// opengl setup and render
initGLstate();
drawTexture();
draw();

There’s really not much else to this technique. Essentially, you render two
scenes, and copy the contents of one for use as a texture by the other. That ba-
sic idea is the premise behind all of these techniques, but rarely is there as little
configuration as in Example 7.11.

We’ve now finished our discussion of how to perform textured renders from
the contents of a texture filled by another render. The technique is very portable
but carries some overhead concerning texture and window sizes, and has some

116 Chapter 7: The AGL API for OpenGL Configuration

performance limitations based on the underlying OpenGL operations. This
technique is a capable fallback for when framebuffer objects are not available.

Framebuffer Objects

In this section we describe a modern and widely available technique for in-
termediate renders using framebuffer objects. The interfaces to framebuffer
objects were designed to closely resemble texture objects, provide a simple en-
able/disable mechanism that is similar in usage to textures, and yet offer a lot of
flexibility in terms of what can be rendered and how to use it later. Framebuffer
objects are also similar to pbuffers in terms of their usage. We have a more de-
tailed discussion of these objects in the Cocoa chapter (Chapter 8), so for now
we’ll simply say a few quick things.

First, framebuffer objects are the best thing since sliced bread, and really your
best consideration for new applications. They’re too easy, too familiar to texture
object users, and too widely supported to not use them. In fact, framebuffer ob-
jects are an easy port from pbuffers if your application already supports those,
but they will clean up some code and remove some worrying restrictions. So,
without further ado, let’s look at our original AGL windowed example, but ex-
tend it to use framebuffer objects.

In Example 7-12, we see code covering the main steps involved in config-
uring and setting up a framebuffer object. You’ll notice that this example
is virtually the same as the prior texture-copy example from Example 7-11.
The main differences occur after texture creation and initialization. The pieces
given here are the essential elements of how to create a framebuffer object.
You’ll notice the parallels to texture creation—specifically, that we generate a
unique framebuffer object ID, bind it, construct a framebuffer object linking it
with our texture, and then unbind it so we’re returned to a default state. The
draw method should look similar, too, except that in this case we first say where
we’re targeting our draw commands, much like making an OpenGL context ac-
tive, using glGenFramebuffersEXT. We draw into that target and then again
reset our state back to the default. Finally, our main draw method looks identi-
cal to that of Example 7-11. This is because we’ve drawn our contents directly
into the framebuffer. Using the texture linked with that framebuffer now gets
us the proper results, as seen in Figure 7-6.

Example 7-12 AGL Initialization and Draw for a Framebuffer Object and Main
Buffer

void initGLstate()
{

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

Alternative Rendering Destinations 117

glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
glClearColor(0.0, 0.5, 0.8, 1.0);

// enable, generate, and bind our texture objects
glEnable(GL_TEXTURE_2D);
glGenTextures((GLsizei) 1, &textureID);
glBindTexture(GL_TEXTURE_2D, textureID);
const unsigned int texdim = 64;
const unsigned int nbytes = 3;
char data[texdim * texdim * nbytes];
memset(data, 0xff, texdim * texdim * nbytes);
unsigned int ii;
for(ii=0; ii<texdim*texdim; ii++)
{

data[ii*nbytes + 0] = 0xff;
}
gluBuild2DMipmaps(GL_TEXTURE_2D, // 0,

GL_RGB, texdim, texdim, // 0,
GL_RGB, GL_UNSIGNED_BYTE, data);

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glBindTexture(GL_TEXTURE_2D, 0); // unbind texture

// generate & bind our framebuffer object to our texture object
glGenFramebuffersEXT(1, &fboID);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fboID);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT0_EXT,
GL_TEXTURE_2D, textureID, 0);

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); // unbind fbo
}

void drawFBO()
{

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fboID); // bind fbo
glClearColor(1.0, 1.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); // unbind fbo

}

void draw()
{

glClearColor(0.0, 0.5, 0.8, 1.0);
glClear(GL_COLOR_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(5.0, 0.0, 0.0, 1.0);

glBindTexture(GL_TEXTURE_2D, textureID);
glColor4d(0.0, 1.0, 0.0, 1.0);
glRectd(0.1, 0.1, 0.9, 0.9);

aglSwapBuffers(context);
}

118 Chapter 7: The AGL API for OpenGL Configuration

Figure 7-6 Results of Rendering to a Framebuffer Object and Texturing a Quad
with That Result in AGL

Before we leave the topic of framebuffer objects, we’d like to point out a few
reasons why they are superior to other forms of indirect rendering.

First, framebuffer objects consist of memory allocated on the graphics card itself
that is directly usable in its target form—for example, as a texture. This means
that you avoid not only off-card copies to and from the host but also avoid on-
card copies in good implementations of the extension.

Second, framebuffer objects present a consistent, platform-agnostic interface in
terms of their usage. There just isn’t a more simple interface to intermediate
rendering than these objects, largely due to the evolutionary process by which
OpenGL is developed.

Third, framebuffer objects avoid expensive context switching that can cost you
a great deal of performance. A variety of intermediate target rendering APIs
and implementations have been explored over the years, culminating in today’s
design and implementation. Framebuffer objects are the best choice for modern
rendering on the Mac, regardless of whether you’re using AGL, CGL, or Cocoa.

Alternative Rendering Destinations 119

Summary
In this chapter, we explored how to create and configure AGL-based OpenGL
rendering areas for on-screen and full-screen windows and for various interme-
diate render targets. We also saw how to create custom pixel formats, explored
some of the common flags that these pixel formats take, and demonstrated how
to configure and initialize contexts and pixel formats. In addition, we saw how
to integrate a variety of rendering destinations into an AGL application. We
learned how to share data among multiple contexts, and to configure full-screen
surfaces. Now that you have explored the fundamentals of AGL OpenGL setup
covered in this chapter, you should have a solid foundation from which to begin
building your own Carbon and AGL OpenGL applications.

120 Chapter 7: The AGL API for OpenGL Configuration

Chapter 8

The Cocoa API
for OpenGL

Configuration

Cocoa, also known as AppKit, is the Objective-C API for writing modern Mac
OS X applications. Cocoa provides a high-level, object-oriented set of classes
and interfaces for the OpenGL subsystem and for user–interface interaction.
Cocoa is the modern successor to the NextStep API from NeXT Computer; the
company’s initials explain the “NS” prefix on all of the class definitions and data
types. Cocoa provides a more object-oriented API than any other option on the
Mac, which is useful for building UIs, handling events, and functioning as an
interface to OpenGL.

We presume you’re reading this chapter with a fundamental understanding of
the Objective-C language and basic Cocoa, so we won’t spend any time review-
ing core Cocoa concepts like the Objective-C language, views, actions, outlets,
Interface Builder, and so on. We also assume you’ve already read one of the
many good books on these key background elements of Cocoa. If not, we’ve got
a reference or two for you in Appendix D. In the following sections, we’ll ex-
plore two ways of creating a Cocoa-based application: one that relies heavily on
Interface Builder and one that requires more code but yields a bit more flexibil-
ity and capability. We’ll also tackle some advanced OpenGL topics concerning
off-screen rendering, context sharing, and more.

One final note to the reader before you read this chapter: This chapter is de-
signed around Mac OS X 10.4, Tiger, the most current and relevant of the Mac
OS versions available at the time this book was produced. However the final
version of Leopard arrived late in the publishing cycle. Because of this, we were
faced with a tough decision—either update this section to show how things
work in Leopard, Mac OS X 10.5, and leave our Tiger 10.4 readers behind, or
leave our Leopard readers without updated content. Neither of those answers
satisfied us completely, so we did the next best thing.

The chapter you’re reading is focused on Tiger, Mac OS X 10.4, and the images
and text reflect that. Appendix C is an updated version of this chapter with new

121

CoreGraphics

CGL

NSGL AGL

Figure 8-1 AppKit API and Framework in Overall OpenGL Infrastructure on
the Mac

and relevant images, workflow, and text for Mac OS X 10.5. If you’re looking
for Mac OS X 10.4 content, read on, but if you’re looking for the same version
of this chapter, addressing Leopard-specific changes, and with a Leopard look-
and-feel, please read Appendix C.

Overview
The AppKit OpenGL API is part of the overall Apple OpenGL infrastructure.
It constitutes a layer above CGL but also has the ability to reach down into
both CGL and lower layers. Figure 8-1 shows where the AppKit (also known as
Cocoa or NSGL) API and framework reside relative to other API layers.

The AppKit framework is typically found at /System/Library/Frameworks
but may also be in a path specific to your SDK installation. As with other APIs,
linking against AppKit requires specification of this framework path (Table 8-1).

NSOpenGLView
In this section, we will create an XCode project showing how to create a cus-
tom view to handle OpenGL rendering using a Cocoa UI element. This project
will be a foundation project that we will return to when we create other exam-
ples with increased functionality later in the book. We’ll begin with the overall
project setup and creation—so launch XCode, and we’ll get started.

Create a new XCode project of type Cocoa Application. This action will cre-
ate your project, set it to link properly against the Cocoa frameworks, and create
a sample main program from which we’ll begin. If you do not feel like walking
through the steps or would like to see the finished product first, check out the
sample code from our website (www.macopenglbook.com).

Table 8-1 AppKit Cocoa Headers, Frameworks, and Overview

Framework path /System/Library/Frameworks/AppKit.framework
Build flag -framework AppKit
Header #include<AppKit/NSOpenGL.h>

122 Chapter 8: The Cocoa API for OpenGL Configuration

www.macopenglbook.com

Figure 8-2 Subclassing NSOpenGLView in Interface Builder

Open the Resources folder, and double-click on the MainMenu.nib icon. This
will open the nib file for this project in Interface Builder. Now switch to Interface
Builder.

In the MainMenu.nibwindow, click on the Classes tab, and navigate through
the three-pane system until you finally click on NSOpenGLView. The panes
should look like Figure 8-2 when selected.

Next click on the Classes menu and Subclass NSOpenGLView item to cre-
ate a new derived class based on the NSOpenGLView type. A new text entry
field will appear, suggesting the name MyOpenGLView. Accept the default
name by pressing the Enter key or choose something more interesting and type
away. Your results should look similar to Figure 8-3.

So what did we just do? We told Interface Builder that we wanted to sub-
class NSOpenGLView for our own purposes. NSOpenGLView is derived from
the NSView class. It provides the integration between OpenGL and Cocoa. By
subclassing it, we become able to customize many aspects of its behavior, in-
cluding pixel format selection and context sharing. But we’re getting ahead of
ourselves. First we’ve got to get MyOpenGLView into a form where we can write
some code.

We’ll now use Interface Builder to instantiate a default object when the nib file
is loaded, create some sample code, and arrange our view in the window.

First, let’s create an instance of our class. Return to the MainMenu.nib win-
dow, where you should still have MyOpenGLView selected. If not, navigate
through the hierarchy to re-select it. With MyOpenGLView selected, click on the
Classes menu and Instantiate MyOpenGLView item. This will create an

NSOpenGLView 123

Figure 8-3 Subclassed NSOpenGLView in Interface Builder

instance of this class in the nib, and the interface will update to return you to
the Instances tab in the MainMenu.nib window. You should see something
like Figure 8-4.

Now let’s create the actual headers and code. In the MainMenu.nib win-
dow, click on the Classes tab. If you’re lucky, MyOpenGLView will still be
selected, if not, navigate to it and select it. Click on the Classes menu and
Create Files for MyOpenGLView item. This will prompt you to create
files for both the header and the source for this view. Accept the defaults, and
we’ll begin laying out the view in a window.

Figure 8-4 Instantiated OpenGL View Object in Interface Builder

124 Chapter 8: The Cocoa API for OpenGL Configuration

Figure 8-5 Custom View Palette in Interface Builder

At this point, we’ve created the necessary infrastructure, but we still have to
place our view in our window. As with most Interface Builder tasks, we accom-
plish this by dragging and dropping and by applying a little customization. We
begin by dragging a Custom View into the window named Window. Go to the
Cocoa-Interfaces window (if it’s not visible, get there by clicking the menu
Tools, the submenu Palettes, and then the item Show Palettes) and
navigate to the Custom View pane. This palette can be seen in Figure 8-5. Drag
the CustomView icon from the palette into Window and arrange it as shown in
Figure 8-6.

The final step in this setup operation is to change the CustomView to be your
MyOpenGLView object. To do so, open the Inspector (if it’s not open, click

Figure 8-6 Adding a Custom View to a Window in Interface Builder

NSOpenGLView 125

Figure 8-7 Binding a Custom View to the NSOpenGLView Subclass Object

the Tools menu and Show Info item) and click on the CustomView you
just dragged into place. Choose the Custom Class pop-up menu entry in the
Inspector window, and navigate and choose MyOpenGLView from the list.
You should see results like those shown in Figure 8-7.

We could have handled all of this setup, configuration, and routing
programmatically—but this book isn’t about Cocoa plumbing, so we’ll stay
at this level for now. In a later section, we’ll explore Cocoa configuration of a
generic NSView, which allows us a bit more flexibility. For now, switch back to
XCode and we’ll dig into the code.

In XCode, open the file MyOpenGLView.m. We’ll now begin adding methods to
handle key elements of the OpenGL render cycle. We start by adding a method
to select pixel formats. This code performs pixel format selection in three steps:

1. A structure is created containing a list of pixel format configuration
parameters.

2. That structure is passed to an NSOpenGLPixelFormat constructor to create
a new pixel format object.

3. That pixel format object is passed on to the base NSOpenGLView method for
finishing the initialization of this view.

Either add the code yourself to your project or grab it from the sample code
provided in Example 8.1. Compile and run the code, and you should have a
window!

126 Chapter 8: The Cocoa API for OpenGL Configuration

Table 8-2 Selection Policies and Behaviors

Policy Description
Match Choose only from the set of pixel formats that match exactly.
Closest Choose a match closest to the size specified, but not necessarily an

exact match.
Minimum Require a match of at least this size. Can choose larger sizes.
Maximum Require a match of at most this size. Prefers larger sizes.

“But wait,” you say, “what about the rest of the key OpenGL configu-
ration pieces: the context and the drawable or surface?” By subclassing
NSOpenGLView, you’re getting the last two pieces configured for you, you
lucky dog—no extra work required. The base NSOpenGLView class creates a
context from the pixel format you passed in, and it creates a drawable such that
it can be visualized in the window we created with our CustomView back in
Interface Builder. Later, however, we’ll go through the process of specializing
an NSView so we can do the fun bits in creating a context and a drawable, too.
This step is necessary if you want to do more advanced context things, such as
share data with another context. More on that in later sections.

Moving along, now that you know how to choose a pixel format, it’s prob-
ably an appropriate time to discuss what the various flags mean to an
NSOpenGLPixelFormat. These flags are generally well documented by Ap-
ple, but we’re including a list of all the flags in one spot for handy reference
here. Take a look at Tables 8-2 and 8-3, see which values make sense for your
application, and try a few in the code we’ve just developed. Table 8-3 contains
a fair bit of exposition on these flags, including what the various values mean
and how you might use them—it’s worth a quick read.

In particular, pixel format selection can have a profound impact on both the per-
formance of and the video memory usage by your application. Keep in mind
that choosing pixel formats with more capabilities may lead to slower perfor-
mance than choosing pixel formats with fewer options and smaller buffers. For
example, if you have a choice between a pixel format with a color buffer size
of, say, 8 bits per color component (32 bits total) or one with a color buffer rep-
resented as a 32-bit floating-point number per component (128 bits total), it’s
pretty clear that writing to a single pixel in your drawable requires four times
the bandwidth just for color. We’ll get into these performance implications later
and explore issues like this one in more detail. For now, just realize that a good
rule of thumb for choosing pixel formats is to choose the one that most closely
matches your application’s needs.

Example 8-1 Configuration of an OpenGL View in initWithFrame

#include <OpenGL/gl.h>
#include <GLUT/glut.h>

NSOpenGLView 127

#include <math.h>
#import "MyOpenGLView.h"

@implementation MyOpenGLView

- (id) initWithFrame: (NSRect) frame
{

time = 0;
angle = 0;

GLuint attributes[] =
{

NSOpenGLPFAWindow,
// choose among pixelformats capable of rendering to windows
NSOpenGLPFAAccelerated,
// require hardware-accelerated pixelformat
NSOpenGLPFADoubleBuffer,
// require double-buffered pixelformat
NSOpenGLPFAColorSize, 24,
// require 24 bits for color-channels
NSOpenGLPFAAlphaSize, 8,
// require an 8-bit alpha channel
NSOpenGLPFADepthSize, 24,
// require a 24-bit depth buffer
NSOpenGLPFAMinimumPolicy,
// select a pixelformat which meets or exceeds these requirements
0

};

NSOpenGLPixelFormat* pixelformat =
[[NSOpenGLPixelFormat alloc] initWithAttributes:

(NSOpenGLPixelFormatAttribute*) attributes];

if (pixelformat == nil)
{

NSLog(@"No valid OpenGL pixel format");
NSLog(@"matches the attributes specified");
// at this point, we’d want to try different sets of
// pixelformat attributes until we got a match, or decide
// we couldn’t create a proper graphics environment for our
// application, and exit appropriately

}
// now init ourself using NSOpenGLViews
// initWithFrame:pixelFormat message
return self = [super initWithFrame: frame

pixelFormat: [pixelformat autorelease]];
}

We’ll finish this Cocoa example by adding a few more useful methods to our
code. These will allow two more key tasks—namely, context setup (that is,
things you might do in an OpenGL application, such as, glEnable certain
states and bind textures) and drawing.

128 Chapter 8: The Cocoa API for OpenGL Configuration

Table 8-3 Common Pixel Format Qualifiers for Use with
NSOpenGLPixelFormat

Token Description
NSOpenGLPFAAllRenderers Look in entire set of renderers to find a

match.
Type: Boolean
YES: Search entire set of available renderers,
including those that are potentially
non-OpenGL compliant.
Default: YES
Policy: Any

NSOpenGLPFADoubleBuffer Double buffer requirements.
Type: Boolean
YES: Search only for a double-buffered pixel
format.
NO: Require a single-buffered pixel format.
Default: NO
Policy: Any

NSOpenGLPFAStereo Stereo requirements.
Type: Boolean
YES: Require a stereo pixel format.
NO: Require a monoscopic pixel format.
Default: NO
Policy: Any

NSOpenGLPFAAuxBuffers Auxiliary buffer requirements.
Type: Unsigned integer
Number of auxiliary buffers required by this
pixel format.
Default: NA
Policy: Smallest

NSOpenGLPFAColorSize Color bits requirements.
Type: Unsigned integer
Number of color buffer bits required by all
color components together.
Default: If this token is not specified, a
ColorSize that matches the screen is
implied.
Policy: Closest

NSOpenGLPFAAlphaSize Unsigned integer: The value specified is the
number of alpha buffer bits required.
Default: If no value is specified, pixel
formats discovered may or may not have an
alpha buffer.
Selection policy: Pixel formats that most
closely match this size are preferred.

(Continued)

NSOpenGLView 129

Table 8-3 Common Pixel Format Qualifiers for Use with
NSOpenGLPixelFormat (Continued)

Token Description
NSOpenGLPFADepthSize Unsigned integer: The value specified is the

number of depth buffer bits required.
Default: If no value is specified, pixel formats
discovered may or may not have a depth
buffer.
Selection policy: Pixel formats that most
closely match this size are preferred.

NSOpenGLPFAStencilSize Unsigned integer: The value specified is the
number of stencil planes required.
Selection policy: The smallest stencil buffer of
at least the specified size is preferred.

NSOpenGLPFAAccumSize Unsigned integer: The value specified is the
number of accumulation buffer bits required.
Selection policy: An accumulation buffer that
most closely matches the specified size is
preferred.

NSOpenGLPFAMinimumPolicy YES: Change to the selection policy
described.
Selection policy: Consider only buffers
greater than or equal to each specified size of
the color, depth, and accumulation buffers.

NSOpenGLPFAMaximumPolicy YES: Change to the selection policy
described.
Selection policy: For non-zero buffer
specifications, prefer the largest available
buffer for each of color, depth, and
accumulation buffers.

NSOpenGLPFAOffScreen YES: Consider only renderers capable of
rendering to an off-screen memory area that
have a buffer depth exactly equal to the
specified buffer depth size. An implicit
change to the selection policy is as described.
Selection policy:
NSOpenGLPFAClosestPolicy

NSOpenGLPFAFullScreen YES: Consider only renderers capable of
rendering to a full-screen drawable.
Implicitly defines the
NSOpenGLPFASingleRenderer attribute.

NSOpenGLPFASampleBuffers Unsigned integer: The value specified is the
number of multisample buffers required.

130 Chapter 8: The Cocoa API for OpenGL Configuration

Token Description
NSOpenGLPFASamples Unsigned integer: The value specified is the

number of samples for each multisample
buffer required.

NSOpenGLPFAColorFloat YES: Consider only renderers capable of
using floating-point pixels.
NSOpenGLPFAColorSize should also be set
to 64 or 128 for half- or full-precision
floating-point pixels (Mac OS 10.4).

NSOpenGLPFAMultisample YES: Consider only renderers capable of
using supersample anti-aliasing.
NSOpenGLPFASampleBuffers and
NSOpenGLPFASamples also need to be set
(Mac OS 10.4).

NSOpenGLPFAAuxDepthStencil If present, searches for pixel formats for each
AuxBuffer that has its own depth stencil
buffer.

NSOpenGLPFARendererID Unsigned integer: ID of renderer.
Selection policy: Prefer renderers that match
the specified ID. Refer to CGLRenderers.h
for possible values.

NSOpenGLPFAAccelerated YES: Modify the selection policy to search for
pixel formats only among hardware-
accelerated renderers.
NO (default): Search all renderers, but adhere
to the selection policy specified.
Selection policy: Prefer accelerated renderers.

NSOpenGLPFAClosestPolicy YES: Modify the selection policy for the color
buffer to choose the closest color buffer size
preferentially. This policy will not take into
account the color buffer size of the current
graphics devices.
NO (default): No modification to selection
policy.

NSOpenGLPFABackingStore YES: Constrain the search of pixel formats to
consider only renderers that have a back
color buffer that is both the full size of the
drawable and guaranteed to be valid after a
call to a buffer flush.
NO (default): No modification to the
pixel buffer search.

NSOpenGLPFAWindow YES (default): Search only among renderers
that are capable of rendering to a window.
Note: This attribute is implied only if neither
NSOpenGLPFAFullScreen nor
NSOpenGLPFAOffScreen is specified.

NSOpenGLPFAPixelBuffer YES: Rendering to a pixel buffer is enabled.

NSOpenGLView 131

Figure 8-8 Teapot Rendered with NSOpenGLView Subclass

The first of these methods, which is named prepareOpenGL, is defined to be
the first opportunity that your class will have to make some OpenGL calls.
prepareOpenGL will be called once a valid pixel format, context, and draw-
able are all available, so you can go ahead and call anything you’d like there.
Keep in mind that this method will be called only once, so from that point on,
you’ll have to manage your OpenGL state changes on the fly.

The second method to implement is drawRect. This method will be called ev-
ery time a scene redraw is necessary; you will do the bulk of your OpenGL
work there. As part of the drawRect signature, you will be handed an NSRect
containing the current origin and size of the drawing area, in pixels.

With that introduction out of the way, we’ll simply point you at the code
(Example C-2) to add to your MyOpenGLView.m file, somewhere between the
@implementation and @end tokens. Once you’ve added this code, recompile
and run the code again, and you should see something like Figure 8-8.

Example 8-2 Cocoa drawRect Rendering Method with Sample OpenGL
Content

- (void) drawRect: (NSRect) rect
{

// adjust viewing parameters
glViewport(0, 0, (GLsizei) rect.size.width,

(GLsizei) rect.size.height);

132 Chapter 8: The Cocoa API for OpenGL Configuration

glClearColor(0, .5, .8, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

glTranslatef(0, 0, -1);

GLfloat green[4] = { 0, 1, 0, 0 };
glMaterialfv(GL_FRONT_AND_BACK,

GL_AMBIENT_AND_DIFFUSE, green);
glutSolidTeapot(.5);

[[self openGLContext] flushBuffer];
}

@end

If you see a teapot—success! In this section, we’ve explored one of the ways to
configure a Cocoa OpenGL Surface, delved into the details of how to specify a
pixel format, and constructed a functional application. This should serve as a
starting point in your exploration of Cocoa, pixel format selection, and OpenGL
rendering in these frameworks. In the next section, we’ll examine how you cre-
ate a custom NSView-derived class for even more flexibility.

NSView
Now that we’ve seen what NSOpenGLView can do for us, let’s create our
own NSView-based application to expose some of the functionality that
NSOpenGLView performed behind the scenes. Why expose this extra complex-
ity? You may want to take this path if your application features many OpenGL
views of the same data. The technique we’ll demonstrate here allows you to
share data between these multiple views. But whatever your needs, this explo-
ration will show you how to attach a context to an NSView, getting at the guts
of how contexts are created, and then do some rendering. If you need precise
management of a context, this is the way to do it in a Cocoa application. We’ll
end up exactly where we did before, with a cozy teapot on a calming blue back-
ground. We’ll also begin where we did last time as well, in XCode. Launch it,
and we’ll get started.

We begin with the big picture—an overview of where we’re going in this sec-
tion. If you’d like to try to do this chunk on your own before the walkthrough,
we encourage you to apply what we did in the last section to create a custom
view. This time, however, we’ll create our subclass based on NSView. Here are
the steps:

1. Create a subclass of NSView named MyView.
2. Create the files for this class.

NSView 133

3. Create an instance of this class in MainMenu.nib.
4. Write code in XCode to create a custom pixel format and context.
5. Write code to create the teapot and handle the OpenGL initialization.

We won’t say any more about how to accomplish the XCode project setup and
configuration at this point, but rather will leave you to try to figure it out on
your own. The walkthrough here will take you through all the details if you’d
prefer to try it this way.

Create a new XCode project of type Cocoa Application. This action will cre-
ate your project, set it to link properly against the Cocoa frameworks, and create
a sample main program from which we’ll begin. If you don’t feel like walking
through the steps or would like to see the finished product first, check out the
sample code from our website (www.macopenglbook.com).

Open the Resources folder, and double-click on the MainMenu.nib icon. This
will open the nib file for this project in Interface Builder. Now switch to Interface
Builder.

In the MainMenu.nibwindow, click on the Classes tab, and navigate through
the three-pane system until you finally click on NSView. The panes should look
like Figure 8-9 when selected.

Next click on the Classes menu and Subclass NSView item to create a new
derived class based on the NSView type. A new text entry field will appear,
suggesting the name MyView. Accept the default name by pressing the Enter
key or choose something more interesting. Your results should look similar to
Figure 8-10.

As before, we must create headers and code. In the MainMenu.nib window,
click on the Classes tab, navigate to MyView, and select it. Click on the
Classes menu and Create Files for MyView item. It will prompt you to

Figure 8-9 Subclassing NSOpenGLView in Interface Builder

134 Chapter 8: The Cocoa API for OpenGL Configuration

www.macopenglbook.com

Figure 8-10 Subclassed NSOpenGLView in Interface Builder

create files for both the header and the source for this view. Accept the defaults,
and we’ll begin laying out the view in a window.

We now need to place our view in our window, and designate it to be our
MyView object. Drag a Custom View into the window named Window. Go to
the Cocoa-Interfaces window as before, and navigate to the Custom View
pane. Drag one of those icons into your Window and arrange it as in Figure 8-6.
Finally, modify the CustomView to be your MyView object by opening the
Inspector as before. Choose the Custom Class pop-up menu entry in the
Inspector window, and navigate and choose MyView from the list. You
should see the results shown in Figure 8-11.

Figure 8-11 MyView Binding in Interface Builder

NSView 135

With that configuration out of the way, we move straight into the code
phase. Save your MainMenu.nib, and switch to XCode. As before with the
NSOpenGLView-derived project, we’ll do many of the same things, includ-
ing creating a pixel format and creating a subclassed version of drawRect.
We’ll also mimic some of the infrastructure automatically provided in
NSOpenGLView, so you can see how it does its work. This time around, we’ll
present all the code in the final versions of both the header file (Example 8-3)
and the source file (Example 8-4) first, and then walk you through each.

Example 8-3 MyView.h Final Header

#import <Cocoa/Cocoa.h>

@interface MyView : NSView
{

@private
NSOpenGLContext *_context;
NSOpenGLPixelFormat* _pixelformat;

}

- (NSOpenGLContext*) openGLContext;
- (void) prepareOpenGL;

@end

We begin by looking at the MyView.h header. We’ve inserted both a few
member variables and a few methods. We’ve also created member variables
to store pointers to our context and to our pixel format; we’ll create code
to initialize these variables in the source file. We also declare two methods,
openGLContext and prepareOpenGL, named to emulate the behavior of the
Cocoa-supplied NSOpenGLView. openGLContext will be used to return the
current context or to create one if none exists. prepareOpenGL will be used as
our first call to our OpenGL context to initialize the basic OpenGL functionality,
as we did before for our MyNSOpenGLView class.

That’s all there is to do in the header, so let’s look at the source, see which other
methods we’ve overloaded from NSView, and see how the code behind these
signatures works.

Example 8-4 MyView.m Final Code

#include <OpenGL/gl.h>
#include <GLUT/glut.h>

#import "MyView.h"

@implementation MyView

- (id)initWithFrame:(NSRect)frameRect

136 Chapter 8: The Cocoa API for OpenGL Configuration

{
NSLog(@"myView::initWithFrame");
if ((self = [super initWithFrame:frameRect]) != nil)
{

GLuint attributes[] =
{

NSOpenGLPFAWindow,
NSOpenGLPFAAccelerated,
NSOpenGLPFADoubleBuffer,
NSOpenGLPFAColorSize, 24,
NSOpenGLPFAAlphaSize, 8,
NSOpenGLPFADepthSize, 24,
NSOpenGLPFAMinimumPolicy,
// select a pixelformat which meets or
// exceeds these requirements
0

};
_pixelformat = [[NSOpenGLPixelFormat alloc]

initWithAttributes:
(NSOpenGLPixelFormatAttribute*) attributes];

if (_pixelformat == nil)
{

NSLog(@"No valid OpenGL pixel format");
NSLog(@"matching attributes specified");

}
}
// init the context for later construction
_context = nil;

return self;
}

- (NSOpenGLContext *) openGLContext
{

if (_context == nil)
{

// if this is our first time to initialize
_context = [[NSOpenGLContext alloc]

initWithFormat: _pixelformat shareContext: nil];

if (_context == nil)
{

NSLog(@"No valid OpenGL context can be");
NSLog(@"created with that pixelformat");
/*
we can fail a few ways:

1 - bogus parameters: nil pixelformat,
invalid sharecontext, etc.

2 - share context uses a different Renderer
than the specified pixelformat

recovery techniques:
1 - choose a different pixelformat

NSView 137

2 -proceed without a shared context
*/

}
}

return(_context);
}

- (void) lockFocus
{

NSLog(@"myView::lockFocus");

// ensure we are ready to draw
[super lockFocus];
// get our context
NSOpenGLContext *cxt = [self openGLContext];

// ensure we are pointing to ourself as the Drawable
if ([cxt view] != self)
{

[cxt setView: self];
}

// make us the current OpenGL context
[cxt makeCurrentContext];

}

- (void) prepareOpenGL
{

NSLog(@"myView::prepareOpenGL");

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-1,1,-1,1,-1,100);

}

- (void) drawRect: (NSRect) rect
{

// adjust viewing parameters
glViewport(0, 0,

(GLsizei) rect.size.width, (GLsizei) rect.size.height);

glClearColor(0, .5, .8, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

glTranslatef(0, 0, -1);

GLfloat green[4] = { 0, 1, 0, 0 };
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, green);
glutSolidTeapot(.5);

138 Chapter 8: The Cocoa API for OpenGL Configuration

[[self openGLContext] flushBuffer];
}

@end

In our MyView.m file, we start by looking at our initWithFrame overloaded
method. This method is called when our object is getting constructed, with the
desired layout of this particular view. As with our MyNSOpenGLView class, this
method is where we set up our pixel format and prepare the rest of our class for
subsequent use. In fact, the majority of the code in this method is identical to the
code given earlier, with a slight inversion: We initialize the parent first and then,
based on success there, create a pixel format. We end this method by initializing
our context member to nil in preparation for configuring it later.

The next method, openGLContext, is the body of what we declared in the
header. This method’s intent is to hand the caller a pointer to the context used
by this view. It begins by checking whether the existing context is empty; if so, it
creates a context using the existing pixel format we created earlier and calls the
NSOpenGLContext constructor initWithFormat: NSOpenGLContext *.
This constructor takes two parameters: a pixel format and either another
NSOpenGLContext pointer or nil. The pixel format parameter is used by the
context to configure itself with any specific information that may affect OpenGL
rendering, such as anti-aliasing or stencil capability. The second parameter, a
different NSOpenGLContext*, is used in the case that the context passed back
by this method will be shared with the context specified. Sharing a context will
be explained in further detail later. For our example here, we simply pass in nil,
indicating that we want a new context that does not share any resources with
any other context. In this case, the only failure mode for this routine would be if
the pixel format specified were invalid or nil. This routine ends by returning a
pointer to the new context.

The next method we will create is an overloaded method of NSView named
lockFocus. NSView uses this method to make the current view the focus so
that it’s the target of whatever drawing commands follow. Quoting the Co-
coa documentation, lockFocus “locks the focus on the receiver, so subsequent
commands take effect in the receiver’s window and coordinate system.” This
command essentially tells the windowing system that we will require some spe-
cific configuration to be set up and active before we render into this window.

Why do we need this? Well, every OpenGL context is essentially a snapshot of
the entire OpenGL state used during rendering. Thus, if you’ve painstakingly
configured some precise combination of OpenGL data, rendering paths, and
other information, the same context in which you’ve done that work is likely the
one in which you’d like your subsequent OpenGL commands to be executed.
Put more succinctly, you want your context to be active. In context parlance,

NSView 139

this is known as “making your context current.” lockFocus is the place in the
Cocoa framework where your view is made current, and where you can then
make your context current.

If we now look at our code, we can see that we need to overload this method
to do the usual lockFocus work when we call our superclasses lockFocus.
We then do work to get our OpenGL context and make it current. And that, as
they say, is that: We’ve got a context, it’s current, and we’re ready to finish this
exercise with two methods that we’ve seen before.

The last two methods we implement are identical to those we’ve used before.
The prepareOpenGL and drawRect methods contain the same code as in the
prior example. As before, they perform two tasks in your context—OpenGL
initialization and rendering, respectively. With their completion, you’re ready
to build and run the application. You should see the same teapot against a blue
background as in Figure 8-8.

Additional Topics
So far, we’ve explored ways to render directly to the screen using Cocoa. Now
we’ll dig into how to render somewhere off-screen. There are many reasons
why you might want to do this—for example, to create a cube map for re-
flection, to create shadow maps, or to create another form of dynamic tex-
ture. For off-screen rendering, we’ll be building on the foundation from the
Cocoa examples in previous sections, so if you’ve skipped to this point with-
out reading those sections, you may want to review them to gather additional
details.

Manipulating Images and Pixels in OpenGL

Before we get into specific techniques, let’s talk about the various ways that an
image of some sort can be moved around, rendered, and copied in OpenGL.
OpenGL provides two main paths for pixel data:

• Pixel path
• Texture path

These two paths are very different in the way they’re ultimately available to
be rendered. The pixel path consists of two basic calls, glDrawPixels and
glReadPixels, which allow for drawing and reading, respectively, of pixels
from the current write and read buffers. These pixel path calls are 2D only and
can read and write only screen-aligned data. By comparison, the texture path
differs from the pixel path specifically in that texture data can be rendered in
3D. Because the texture path can also be used to render screen-aligned images
as well, it is ultimately the more flexible of the two paths, so we’ll focus on the

140 Chapter 8: The Cocoa API for OpenGL Configuration

texture path here. The Red Book [22] has lots of details on the imaging pipeline,
if you’d like more information on that.

Any pixel data that you might want to render in an OpenGL scene, you can
handle through textures. To do so, you would download that image as a texture
using glTexImage[123]D calls. Let’s provide an overview of this process and
then translate it into code:

1. Create and configure a texture (glGenTextures, glBindTexture,
glTexImage2D, glTexEnv, glTexParameter).

2. Bind that texture (glBindTexture).
3. Draw using that texture (glBegin ... glTexCoord2f ... glEnd).

This book isn’t meant to teach you fundamental OpenGL rendering techniques,
but the preceding sequence is essential to understand for two key reasons. First,
texturing is the primary means by which you’ll access the data you render to
off-screen surfaces and the primary way by which you’ll re-render those data in
another form. Second, textures are chunks of data that are intimately bound to
OpenGL contexts, and we’ll need to know how to share data among contexts if
we want to use textures rendered in one context in another context. Essentially,
this section is a segue into sharing contexts, which is the topic we explore next.

Context Sharing

A key concept in many aspects of OpenGL rendering—on the Mac or
otherwise—is what lives in an OpenGL context and how to efficiently use that
data for multiple purposes. Essentially, a context contains all OpenGL state data
associated with rendering, such as the viewport dimensions, active color, and
rendering modes. A context also includes much heavier-weight items, such as
texture objects and vertex objects.

Large objects consume nontrivial amounts of memory on a graphics card, so
the designers of OpenGL anticipated the need to avoid duplicating resources
among multiple rendering areas. This anti-redundancy capability is exposed
at the window-system level as a feature called context sharing. This capability
is typically requested when a new OpenGL context is created, after the first
rendering context has been created and used. The context with items you wish
to access is passed into some form of initialization for your new context, usually
along with a pixel format. For two contexts to be compatible, their pixel formats
must be compatible, which is why you see these two things specified together
to successfully enable sharing.

What makes pixel formats incompatible? On the Mac, usually it’s one thing—
incompatible renderers. As a rule of thumb, if you can choose pixel formats that
use the same renderers, you can share contexts created with those pixel formats.

Additional Topics 141

So we’ve covered the how and why of sharing a context, but what, exactly, is
shared when context sharing is enabled? Interestingly enough, most OpenGL
objects are shared, but the overall context state is not. That’s not entirely intu-
itive, but it correlates well with what people usually want to do. You save valu-
able card memory by reusing heavyweight objects in multiple spots, but still
preserve the ability to customize each OpenGL view as needed. Specifically, the
following entities are shared:

• Display lists
• Vertex array objects (VAOs)
• Buffer objects (VBOs, PBOs)
• Texture objects
• Vertex and fragment programs and shaders
• Frame buffer objects (FBOs)

Now that we have an overview of how context sharing works, let’s walk
through some code. For purposes of this example, we will build a two-
windowed version of our earlier Cocoa example in which we created a custom
context. In this case we’ll modify the example to share the context between the
two views and surfaces, render some shared data (a display list), and visualize
the data in two views, each with a different-color background color. The plan is
to demonstrate what is and what isn’t shared in context sharing.

We begin by setting up a new project as we did for the simple Cocoa context
example. The exact process isn’t described here, except to say that you du-
plicate the steps from before but add a new window in your MainMenu.nib
and create two custom NSOpenGL-derived views. Your results should look like
Figure 8-12.

Working in XCode, add an OpenGL framework dependency, and ensure that
your frameworks and classes appear as shown in Figure 8-13. Try building and
running this application, knowing that we’ve not yet connected up the drawing
or context sharing. On the off-chance that you see only one window, make sure
you’ve added the “Visible at Launch” flag to your Interface Builder properties,
as in Figure 8-14.

Finally, let’s look at the code necessary for context sharing. There are a number
of techniques for deciding which context to share, but one approach that is par-
ticularly nice, from an architectural perspective, is to use an “external” context
provider. In this model, we configure and create a context in a separate class,
and then share it with any OpenGL view that needs to render using its shared
objects. In our example, we’ll use the pattern of a singleton—that is, an object-
based wrapper around a static object. This code is very straightforward, so we’ll

142 Chapter 8: The Cocoa API for OpenGL Configuration

Figure 8-12 Context Sharing: Two Windows and Two Custom NSOpenGLViews in Interface Builder

A
dditionalTopics

143

Figure 8-13 Context Sharing: Two Custom NSOpenGLViews in XCode

present it here and then discuss a bit more after presentation. The header code
lives in Example C-5 and the source code is found in Example C-6.

Example 8-5 Singleton Class Declaration for Managing a Shared Context

#import <Cocoa/Cocoa.h>
@interface SharedContext : NSObject
{

NSOpenGLPixelFormat* _pixelformat;
NSOpenGLContext * _context;

}

- (NSOpenGLPixelFormat *) pixelFormat;
- (NSOpenGLContext *) context;
+ (SharedContext *) instance;

@end

Example 8-6 Singleton Class Implementation for Managing a Shared Context

#import <AppKit/NSOpenGL.h>
#import <OpenGL/gl.h>

#import "SharedContext.h"

SharedContext *_sharedContext = nil;

144 Chapter 8: The Cocoa API for OpenGL Configuration

Figure 8-14 Context Sharing: Set Visible on Launch for Second Window

@implementation SharedContext

- (id) init
{

if (self = [super init])
{

_pixelformat = nil;
_context = nil;

GLuint attributes[] =
{

NSOpenGLPFAWindow, // windowed pixelformats
NSOpenGLPFAAccelerated, // hw-accel pixelformat
NSOpenGLPFADoubleBuffer, // double-buffered pixelformat
NSOpenGLPFAColorSize, 24, // 24 bits for color-channels
NSOpenGLPFAAlphaSize, 8, // 8-bit alpha channel
NSOpenGLPFADepthSize, 24, // 24-bit depth buffer

Additional Topics 145

NSOpenGLPFAMinimumPolicy, // meets or exceed reqs
0

};
_pixelformat = [[NSOpenGLPixelFormat alloc]

initWithAttributes:
(NSOpenGLPixelFormatAttribute*) attributes];

if (_pixelformat == nil)
{

NSLog(@"SharedContext: No valid OpenGL pixel" \
@"format matching attributes specified");

// at this point, we’d want to try different
// sets of pixelformat attributes until we
// got a match, or decided we couldn’t create
// a proper working environment for our
// application

}
else
{

_context = [[NSOpenGLContext alloc]
initWithFormat: _pixelformat shareContext: nil];

}
}
return self;

}

- (NSOpenGLPixelFormat *) pixelFormat
{

return(_pixelformat);
}

- (NSOpenGLContext *) context
{

return(_context);
}

+ (SharedContext *) instance
{

if (_sharedContext == nil)
{

_sharedContext = [[SharedContext alloc] init];
}
return _sharedContext;

}

@end

If you’re familiar with the singleton pattern, the instance method and idea
should be familiar to you. If not, consult the classic Design Patterns book by
the notorious Gang of Four [16]. Essentially, instance provides a handle to
our static context manager object. Upon its creation, this object allocates a pixel
format and a context based on that pixel format. This code should look familiar,

146 Chapter 8: The Cocoa API for OpenGL Configuration

as we’ve written code similar to it earlier in this book. The only caveat when
writing context-sharing code of your own is to keep in mind that any context
that is meant to be shared must be compatible with the other contexts. Compat-
ibility implies many things, but chiefly that the destination pixel depth, color
depth, and other factors are similar. We work around that problem in this ex-
ample by first exposing a common pixel format through the pixelFormat
method, and then using that method to construct our pixel format and context
for each window’s view.

Let’s revisit the code we used for our custom OpenGL view example for initial-
ization and setup. This code, with one minor twist, does everything we need
and is presented in Example C-7.

Example 8-7 Initialization of an OpenGL View with a Shared Context

@implementation MyView

- (id)initWithFrame:(NSRect)frameRect
{

NSLog(@"MyView::initWithFrame");

if ((self = [super initWithFrame:frameRect]) != nil)
{

_pixelformat = [[SharedContext instance] pixelFormat];

if (_pixelformat == nil)
{

NSLog(@"No valid OpenGL pixel format" \
"matching attributes specified");

// at this point, we’d want to try different
// sets of pixelformat attributes until we
// got a match, or decided we couldn’t create
// a proper working environment for our
// application

}
}

// init the context for later construction
_context = nil;

return self;
}

- (NSOpenGLContext *) openGLContext
{

if (_context == nil) // only if uninitialized
{

// if this is our first time to initialize
_context = [[NSOpenGLContext alloc]

initWithFormat: _pixelformat
shareContext: [[SharedContext instance] context]];

Additional Topics 147

if (_context == nil)
{

NSLog(@"No valid OpenGL context can be" \
"created with that pixelformat");

/*
we can fail a few ways:
1 - bogus parameters: nil pixelformat, invalid

sharecontext, etc.
2 - share context uses a different Renderer

than the specified pixelformat

recovery techniques:
1 - choose a different pixelformat
2 - proceed without a shared context
*/

}
}

return(_context);
}

As you can see in Example 8-7, the only changes we made from our origi-
nal custom view example are to use the [[SharedContext instance]
pixelFormat] accessor to create a pixel format for this view and then, sim-
ilarly, to use the [[SharedContext instance] context] accessor
when constructing our context. We should always, of course, confirm that all
pixel formats and contexts are successfully created for our production code
as well. So, add code like this to your existing code and then make one
last change—specifically, change the clear color in one of your custom View
drawRect methods. If everything works as planned, your application should
produce results like these shown in Figure 8-15.

Figure 8-15 Context Sharing: Two Windows Demonstrating Common Shared
Data and Unshared (Clear Color) Context Data

148 Chapter 8: The Cocoa API for OpenGL Configuration

Remember that the OS X OpenGL implementation follows the conventions es-
tablished in the GLX specification. Applications are responsible for synchroniz-
ing the state of objects between contexts. This implies that multithreaded ap-
plications with shared context establish mutex locks between the threads, use
glFlush to flush pending commands that modify object state, and call glBind
to realize changes to shared objects in other contexts. These may seem like a lot
of steps, but they are usually worth the resulting resource conservation and per-
formance gains.

In this section, we’ve seen how to configure context sharing in Cocoa, how to use
it with a custom OpenGL view, and under which circumstances you’d want to
share contexts. We’ve provided examples of how this sharing mechanism works
in Cocoa, and we’ll revisit this topic for AGL and CGL later. Context sharing is
a key principle we’ll use for a variety of on- or off-screen rendering techniques,
so you’ll likely revisit this section from time to time for hints when performing
full-screen and off-screen rendering.

Full-Screen Surfaces

Every now and again, you might want to put your Cocoa OpenGL application
into full-screen mode. There are lots of reasons why you might want to do this,
and Apple often uses this approach for many of its applications. Apple software
examples include QuickTime full-screen movie presentation, iPhoto/Finder
slideshows, DVD playback, and FrontRow set-top display. The most common
example of this technique in user software is found in games, usually where a
game takes over the display for a complete and unobstructed experience of slay-
ing dragons, flying through canyons at Mach 0.8, or conquering the galaxy. A
rule of thumb to decide when full-screen rendering is needed is this: Any time
you want to present a completely custom user interface, full-screen applications
are one way to go. In this section we’ll first tackle some plumbing details neces-
sary to render full-screen OpenGL surfaces and then demonstrate how to create
and use a full-screen OpenGL area.

Display Capture

One major reason for using a full-screen area is to coherently display some con-
tent without the distraction of other UI elements. A key element of this experi-
ence would be blocking interruption by other applications while in this mode.
Apple provides hooks to allow an application to essentially take over the dis-
play, preventing other applications from presenting their content over the top.
This behavior is known as display capture. Display capture exists at the Core-
Graphics level of graphics, typically a 2D layer, and is not part of our discussion
in this book. Nonetheless, the ability to capture the display is a useful—albeit
not required—element of a full-screen application, even in Cocoa. Performing

Additional Topics 149

display capture is a very easy task, but entails strict ordering of the tasks. Essen-
tially, the process proceeds as follows:

1. Capture the display.
2. Configure and display a full-screen window.
3. Handle events.
4. Release the display.

It’s important to ensure that both event handling and teardown (or display
release) occur. If they do not, you’ll probably get into a deadlock of some sort—
one in which either you can’t do anything with your application or other ap-
plications move to the foreground, respectively. You’re almost guaranteed to
experience this problem once unless you’re really listening to me here, and
you’ll never repeat the mistake—rebooting in the middle of your development
cycle is a pretty good deterrent. The specifics of display capture and release are
sketched out, in Example C-8. Please read Apple’s developer documentation on
the methods described here for additional information. Because these methods
are so fundamentally simple, we will just show you the code and have you use
it without further discussion.

Example 8-8 Capturing and Releasing the Display

/*!
Captures all displays, returning true/false for
success/failure.

*/
bool capturedDisplaysLoop()
{

bool error = false;
CGDisplayErr err = CGCaptureAllDisplays();
if (err != CGDisplayNoErr)
{

// failure - maybe another application is already
// fullscreen
error = true;

}
else
{

// your code here: open fullscreen window

// your code here: event handler loop.

// stay here until no longer in fullscreen mode.
// upon exit, we transition back to windowed mode, and
// release the display

CGReleaseAllDisplays();
}
return(error);

}

150 Chapter 8: The Cocoa API for OpenGL Configuration

For simplicity, we use the global form of display capture—that is, the form in
which all displays are captured. You may have a need or a preference to control
which display you capture more precisely. For those circumstances, Apple pro-
vides CGDisplayCapture and CGDisplayRelease to specify a particular
display. And that’s really all there is for display capture as it relates to OpenGL,
except for the event-handling part, which we’ll discuss next.

Event Handling

One key caveat to full-screen windows, regardless of the amount of OpenGL
window-system integration, relates to event handling: Who’s handling the
events now that your window-system and UI elements are hidden? Yes,
Virginia, this is another headache of full-screen windows, but you’ve got to do
it. Otherwise, nothing will be handling events, making it very difficult to even
quit your application. So what’s an application to do, especially in Cocoa? As
we do a number of times throughout the book, we will not go into the details of
this operation, as numerous Cocoa books deal with this topic. Here we simply
present Example 8-9, in which code modeled closely on an Apple source exam-
ple shows what you might do with events while you’re in a full-screen mode.

Example 8-9 Custom Controller Event-Handling Loop in a Full-Screen
Context

stayInFullScreenMode = YES;
while (stayInFullScreenMode)
{

NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];

// Check for and process input events.
NSEvent *event;
while (event =

[NSApp nextEventMatchingMask: NSAnyEventMask
untilDate: [NSDate distantPast]

inMode: NSDefaultRunLoopMode
dequeue: YES])

{
switch ([event type])
{

case NSLeftMouseDown:
[self mouseDown:event];

break;

case NSLeftMouseUp:
[self mouseUp:event];

break;

case NSLeftMouseDragged:
[self mouseDragged:event];

break;

Additional Topics 151

case NSKeyDown:
{

unichar cc =
[[event charactersIgnoringModifiers]

characterAtIndex:0];
switch (cc)
{

case 27: // escape key
stayInFullScreenMode = NO;

break;
default:
break;

}
}
break;

default:
break;

}
}

The basic idea is that while in full-screen mode, no external UI controls (Cocoa
or other) exist that have natural event-handling mechanisms, so you need to do
whatever your application requires when an event occurs. This includes mouse
handling, key handling, and external device (e.g., joystick, tablet) handling.
Example 8-9 does nothing more than simply handle the Escape key, quit the
render loop, and return to windowed mode. The example deals specifically with
key events, handling the Escape key by quitting full-screen mode, and calling
out to other methods (not shown) for handling mouse events.

This structure and code should be enough of a basis for you to get started. If you
need more detail, we provide a more comprehensive example on our website
(www.macopenglbook.com).

Alternative Rendering Destinations
In the following sections we’ll explore what it takes to render an intermediate
image for use later in your application. You’ll probably already know if this is
something you’re interested in. If not, let’s discuss a case or two in which you
might need to render intermediate results.

One example in which intermediate rendering results are useful is for render-
ing of reflections. Suppose you’ve got a scene with some watery bits and some
shiny bits in it. Picture a rainy street scene with puddles and a car: The pud-
dles would reflect the buildings across the street, and those shiny rims would
reflect the buildings behind the viewer. To reflect something on those wheels
and puddles, we have two options. One is to use a fake scene to create the
reflections, and the other is to use the real scene. Obviously the real scene is
the better option, so we’ll need to generate a view of the scene that contains

152 Chapter 8: The Cocoa API for OpenGL Configuration

the images to be reflected. This would be the image that we’d render in our
intermediate buffer.

In another example, we might want to render the same view of the street scene,
but perhaps after the viewer hit his or her head on something—a painful simula-
tion, to be sure! Perhaps your character was jogging and ran into a signpost. We
want to render the scene slightly blurred and wavy regardless of the method
of cranial impact. In this case, our intermediate scene would be the original
street scene rendering. We would then take that image and run it through our
BluntTrauma.frag shader.

Our example code will render scenes of similar complexity, or at least a teapot,
to demonstrate this process, but the idea remains the same. The basic path for
performing this render is as follows:

1. Render to an alternative destination.
2. Configure those results for use in the final scene render.
3. Render the final scene.

The following sections describe the various techniques available on the Mac for
alternative destination rendering and subsequent reuse of those data. We’ll pri-
oritize these strategies in terms of their modernity, encouraging you to use the
most modern of these, framebuffer objects, whenever possible. For a variety of
reasons (not least of which are simplicity and performance), framebuffer objects
are the best choice when your hardware supports them. However, as always
with more advanced OpenGL features, the most modern features are not al-
ways supported on the hardware your customers have, so choosing fallbacks
for those cases may require you to implement some of the other techniques.
We cover the basics of each below. Dive in.

Framebuffer Objects

In this section we describe a modern and widely available technique for in-
termediate renders using framebuffer objects (FBOs). Rendering to FBOs is
a technique born out of frustrations with the complexity of many of the
other intermediate rendering techniques. FBOs were designed to provide a
simple enable/disable mechanism that is familiar in usage to textures, and
yet provide a great deal of flexibility in terms of what can be rendered and
how to use it later. FBOs are an evolution from earlier extensions—namely,
GL ARB render texture. However, they are a vast improvement over the
older techniques, as you’ll hear shortly. FBOs are really the only choice for new
applications, as they offer high performance, are flexible, and are easy to use.

That’s our perspective on the matter, but for reference, you should defer to the
extension specification as the authority. The specification declares:

Alternative Rendering Destinations 153

Previous extensions that enabled rendering to a texture have
been much more complicated. One example is the combination of
GL ARB pbuffer and GL ARB render texture, both of which are
window-system extensions. This combination requires calling
glxMakeCurrent, an expensive operation used to switch between
the window and the pbuffer drawables. An application must cre-
ate one pbuffer per renderable texture in order to portably use
GL ARB render texture. An application must maintain at least one
GL context per texture format, because each context can operate on
only a single pixel format or FBConfig. All of these characteristics make
GL ARB render texture both inefficient and cumbersome to use.

GL EXT framebuffer object, on the other hand, is both sim-
pler to use and more efficient than GL ARB render texture. The
GL EXT framebuffer object API is contained wholly within the GL
API and has no (non-portable) window-system components. Under
GL EXT framebuffer object, it is not necessary to create a second GL
context when rendering to a texture image whose format differs from that
of the window. Finally, unlike the pbuffers of GL ARB render texture,
by changing color attachments, a single framebuffer object can facilitate
rendering to an unlimited number of texture objects.

We believe that this extension is the best way to render to texture and authori-
tatively settles the question of what to use when performing a render-to-texture
operation. Without further ado, let’s walk through how to use FBOs for inter-
mediate rendering and look at code to do so as well.

The overall algorithm for using FBOs is straightforward:

1. Build and initialize the target object to be used with this FBO. This object is
typically a texture.

2. Build and initialize the FBO by attaching the target objects.
3. Bind the FBO and render the FBO contents.
4. Unbind the FBO and render the final scene using the target object.

We’ll begin by revisiting our old standby Cocoa example and extending it to
configure and render to an FBO. We will then use those results on our final
rendered object. Example 8-10 shows our custom view header, which indicates
where we’ll store our texture object and FBO IDs.

Example 8-10 Custom View Header for FBO Example Code

#import <Cocoa/Cocoa.h>
#import <OpenGL/OpenGL.h>

@interface MyOpenGLView : NSOpenGLView

154 Chapter 8: The Cocoa API for OpenGL Configuration

{
GLuint fboID;
GLuint textureID;
float time;
float angle;

}

- (void) angleUpdate: (NSTimer*) tt;
- (void) reshape;

@end

We next look at the code in our prepareOpenGL method. As before, this is
the place where we create and initialize things that we need to set up once per
context. We look at the entire prepareOpenGL method in Example 8-11, so es-
sentially we see the first two phases of our outlined FBO usage: build and ini-
tialization for both our target texture and our FBO. We begin by creating and
initializing a texture object, which we’ll both bind to our FBO and use in our
final rendering. We then create an FBO and bind it to that texture for color ren-
dering. Finally, after configuration, we unbind our current FBO (by binding the
FBO ID of 0).

Example 8-11 OpenGL Setup for FBO Rendering

- (void) prepareOpenGL
{

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-1,1,-1,1,-1,100);

// enable, generate, and bind our texture objects
glEnable(GL_TEXTURE_2D);
glGenTextures((GLsizei) 1, &textureID);
glBindTexture(GL_TEXTURE_2D, textureID);
const unsigned int texdim = 64;
const unsigned int nbytes = 3;
char data[texdim * texdim * nbytes];
memset(data, 0xff, texdim * texdim * nbytes);
unsigned int ii;
for(ii=0; ii<texdim*texdim; ii++)
{

data[ii*nbytes + 0] = 0xff;
}
gluBuild2DMipmaps(GL_TEXTURE_2D, // 0,

GL_RGB, texdim, texdim, // 0,
GL_RGB, GL_UNSIGNED_BYTE, data);

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

// generate & bind our framebuffer object to our texture object
glGenFramebuffersEXT(1, &fboID);

Alternative Rendering Destinations 155

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fboID);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT0_EXT,
GL_TEXTURE_2D, textureID, 0);

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); // unbind fbo

// add a timer to oscillate the modelview
NSTimeInterval ti = .1;
[NSTimer scheduledTimerWithTimeInterval: ti

target: self
selector: @selector(angleUpdate:)
userInfo: nil
repeats: YES];

}

The OpenGL designers did a pretty good job of keeping the design clean and
consistent with that of other objects in the OpenGL system. Specifically, note the
parallels in the setup and configuration of FBOs and texture objects. In essence,
you simply bind the FBO, do some rendering, and unbind the FBO. At that
point, the texture bound to that FBO is ready to be used. We’ll demonstrate this
usage of the FBO next, even though we’ve really covered it all in the setup. It
couldn’t be much simpler. Example 8-12 shows our drawRect routine.

Example 8-12 Cocoa drawRect Routine for FBOs

- (void) drawRect: (NSRect) rect
{

// render to offscreen
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fboID);
[self drawIntermediateContents];
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);

// render to final
[self drawFinalContents];

// complete rendering & swap
glFlush();
[[self openGLContext] flushBuffer];

}

Finally, for interest, we present the code we actually draw with in those routines
in Example 8-13.

Example 8-13 Cocoa Draw Methods for Contents of the FBO and the Final
Render

- (void) drawIntermediateContents
{

glClearColor(1, 1, 0, 1);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);

156 Chapter 8: The Cocoa API for OpenGL Configuration

glLoadIdentity();
glTranslatef(0, 0, 1);
glColor3f(0, 1, 1);
glBegin(GL_QUADS);
float ww = .9;
float hh = .9;
float zz = 0.0;
glDisable(GL_TEXTURE_2D);
glVertex3f(-ww, -hh, zz);
glVertex3f(ww, -hh, zz);
glVertex3f(ww, hh, zz);
glVertex3f(-ww, hh, zz);
glEnd();

}

- (void) drawFinalContents
{

glClearColor(0, .5, .8, 1);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(angle, 0, 0, 1);

glTranslatef(0, 0, 1);
glColor3f(0, 1, 0);
glBindTexture(GL_TEXTURE_2D, textureID);
glEnable(GL_TEXTURE_2D);
glBegin(GL_QUADS);
float ww = .9;
float hh = .9;
float zz = 0.0;
glTexCoord2f(0, 0);
glVertex3f(-ww, -hh, zz);
glTexCoord2f(1, 0);
glVertex3f(ww, -hh, zz);
glTexCoord2f(1, 1);
glVertex3f(ww, hh, zz);
glTexCoord2f(0, 1);
glVertex3f(-ww, hh, zz);
glEnd();

}

So what does our example do? Our goal is to render a textured quad to the
screen, where the texture represents an intermediate rendered result. We begin
by configuring our FBO and texture so that they refer to each other. In the ren-
der loop, we make the FBO active, clear to yellow, and then unbind the FBO.
Because of the magic of FBOs, those results are now usable as a texture, so we
render a textured quad to the screen. When we set up the texture environment
parameters for texturing, we specified GL REPLACE to wholly replace any color
on the quad with the texture image. If everything works as we’ve described
(and it does), we should see the final rendered image as shown in Figure 8-16.

Alternative Rendering Destinations 157

Figure 8-16 Results of Rendering to an FBO and Texturing a Quad with That
Result (Texture Courtesy of NASA’s Earth Observatory)

You can do a lot more with FBOs, including capturing other rendering results
such as depth, stencil, and other render targets, but this kind of advanced usage
is beyond the scope of this book. We refer you to the OpenGL framebuffer object
extension for complete details.

Before we leave the topic of FBOs, we’d like to point out a few more reasons
why FBOs are superior to other forms of off-screen rendering. First, FBOs con-
sist of memory allocated on the graphics card itself that is directly usable in
its target form—for example, as a texture. As a consequence, you avoid any
off-card copies to and from the host: You can even avoid on-card copies in good
implementations of the extension. Second, FBOs present a consistent, platform-
agnostic interface. There just isn’t a simpler interface to intermediate render-
ing than FBO, largely due to the evolutionary process by which OpenGL is
developed. A variety of intermediate target rendering APIs and implementa-
tions were explored over the years, culminating in the design and implemen-
tation that exists today. FBOs are the best choice for modern rendering on the
Mac. Third, FBOs avoid expensive context switching that can cost you a great
deal of performance.

Copy-to-Texture

In this section we describe a very common and widely available technique
known as render-to-texture. Render-to-texture is as simple as it sounds:

158 Chapter 8: The Cocoa API for OpenGL Configuration

You simply render your intermediate scene, copy it to a texture, and then use
that texture in your final render. Elegant, simple, and concise. There are, of
course, details to deal with concerning how you target the texture into which
you want to render and, in some cases, how you move pixels around the sys-
tem into your final texture. Nevertheless, the process is largely as simple as
described. Render-to-texture is interesting because it’s a widely available tech-
nique and offers relatively high performance. There are problems with it, too:
It’s not as clean as the most modern OpenGL technique of FBOs, and there
may be extra data copies. Overall, however, it works pretty well. Performance
is pretty good, though not as consistently good as using FBOs. Even so, you
may sometimes run into problems when using cards from different vendors
on which this technique is actually moderately expensive. But if you can’t use
FBOs, and this is the best alternative available, you gotta do what you gotta do.

The essence of the render-to-texture technique is actually a bit simpler than the
FBO example presented earlier. The code is virtually the same, but we omit the
pieces of the rendering that relate to the FBO. We begin by looking at the header
for our custom view (Example 8-14).

Example 8-14 Custom View Header for Copy-to-Texture Example Code

#import <AppKit/NSOpenGL.h>

#import <Cocoa/Cocoa.h>

@interface MyOpenGLView : NSOpenGLView
{

GLuint textureID;

float time;
float angle;

}

- (void) angleUpdate: (NSTimer*) tt;
- (void) reshape;

@end

Because we’re only going to render and copy into a texture, that’s the extent of
the information we need to keep track of throughout our view class. We then
look at the initialization code, which is again very similar to the FBO example,
but now without the FBO configuration (Example 8-15).

Example 8-15 OpenGL Setup for Copy-to-Texture Rendering

- (void) prepareOpenGL
{

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

Alternative Rendering Destinations 159

glOrtho(-1,1,-1,1,-1,100);
glMatrixMode(GL_MODELVIEW);

// enable, generate, and bind our texture objects
glEnable(GL_TEXTURE_2D);
glGenTextures((GLsizei) 1, &textureID);
glBindTexture(GL_TEXTURE_2D, textureID);
const unsigned int texdim = 64;
const unsigned int nbytes = 3;
unsigned char data[texdim * texdim * nbytes];
memset(data, 0, texdim * texdim * nbytes);
unsigned int ii;
for(ii=0; ii<texdim*texdim; ii++)
{

data[ii*nbytes + 0] = 0xff;
}
gluBuild2DMipmaps(GL_TEXTURE_2D, // 0,

GL_RGB, texdim, texdim, // 0,
GL_RGB, GL_UNSIGNED_BYTE, data);

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

// add a timer to oscillate the modelview
NSTimeInterval ti = .1;
[NSTimer scheduledTimerWithTimeInterval: ti

target: self
selector: @selector(angleUpdate:)
userInfo: nil
repeats: YES];

}

As before, our main drawRect routine does the bulk of the work—but here is
where the code differs from the FBO version. Let’s look at it now in Example
8-16 and talk about the differences and caveats to this technique.

Example 8-16 Cocoa drawRect Routine for Copy-to-Texture Rendering

- (void) drawRect: (NSRect) rect
{

// setup and render the scene
[self drawIntermediateContents];

// copy it to a texture
glBindTexture(GL_TEXTURE_2D, textureID);
glCopyTexSubImage2D(GL_TEXTURE_2D, 0,

0, 0,
0, 0,
64, 64);

// render final scene
[self drawFinalContents];

// complete rendering & swap
glFlush();

160 Chapter 8: The Cocoa API for OpenGL Configuration

[[self openGLContext] flushBuffer];
}

Notice two things in Example 8-16. First, our draw routines are the same as the
FBO example, so we won’t present them again. The first method draws the stuff
to be used as a texture, and the second draws the scene using the texture gen-
erated from the first method. Second, there is no binding or other redirection of
where this routine renders. Instead, we do all of the rendering in the back buffer,
and then copy it to a texture. This approach has one important implication: This
technique really works only for double-buffered visuals.

Another consequence of the way this technique works is that we’re actually
copying the contents of the back buffer to a texture, so performance may be less
than that in the FBO case. Specifically, we perform this copy between each of
the[self draw*] methods. Thus performance is likely to be slower than in
the FBO case, but there’s a lot of bandwidth available in modern graphics hard-
ware, so if you can spare it, this technique will be pretty efficient. But the reason
we’re explaining this method at all is that the hardware on which you run po-
tentially might not support a real off-screen technique like FBO, so a technique
like render-to-texture may be required.

And that brings us to the final point: This technique is window-dependent.
You’ll notice that we’re copying only a fixed area of pixels from within our
drawing surface in our example. If we wanted to capture the entire area, we’d
have to monitor the size of the drawable area (using the reshape routine) and
ensure that the width and height of the copy call were updated accordingly.
Another way of looking at this problem is to consider texture resolution: You’ll
need a window at least as big as the texture size you want to use, because
you’re directly copying pixels from within it. Thus, if your user wants a win-
dow smaller than this texture size, either you have to fall back to a smaller-sized
texture or you have to limit the window minimum size. At any rate, the hairy
details of the bookkeeping surrounding pixel sizes are not the most fun part of
this technique, and constitute another way in which FBOs are a better solution.

In this section, we’ve covered how to perform textured renders from the con-
tents of a texture filled by another render. The technique is very portable, but
carries some overhead concerning texture and window sizes, and has some per-
formance limitations based on the underlying OpenGL operations. This tech-
nique is a capable fallback for when FBOs are not available.

Pbuffer, Off-Screen, and Other Intermediate Targets

There exist a variety of other ways of writing intermediate rendering results
for reuse in later final renderings in your OpenGL application. Among these
are pbuffers, off-screen render areas, and a variety of extensions for directly

Alternative Rendering Destinations 161

rendering into textures. Though many other choices are possible, we faced a
difficult decision when writing this book—either to cover them all or to cover
only a subset.

To free up some weekends, we chose the latter option. To be fair, since we
began this project, the FBO extension has really come of age, and we would
recommend it without hesitation for those cases when you need intermediate
rendering. The other techniques that we do not cover here are all genealogical
predecessors to the FBO extension and, in many ways, are inferior to it. Specif-
ically, off-screen render areas, regardless of the interface (CGL, AGL, or Cocoa)
are software renderers and so have only nominal performance. They should be
avoided for interactive or real-time applications. Pbuffers are complex and un-
wieldy to implement. Although they often perform at native hardware speeds,
the complexity of managing the interface is not worth the headache if you can
write to a modern render target like an FBO instead.

The pure simplicity, flexibility and generality, and raw performance of what
can be accomplished via FBO are unmatched by these alternative techniques. If
you’ve got older code that uses one of these approaches, a move to FBOs will
likely both simplify and accelerate your code. Take the leap.

Summary
In this chapter, we explored how to create and configure Cocoa-based OpenGL
rendering areas for on-screen windows and for various intermediate render tar-
gets. We saw how to create custom pixel formats, examined some of the flags
that these pixel formats take, and demonstrated how to configure and initialize
pixel formats. We also saw how to customize NSViews and NSOpenGLViews
to use custom pixel formats and create contexts. We considered how to share
data among multiple contexts, and we learned how to configure full-screen sur-
faces. Now that you know the fundamentals of OpenGL and Cocoa setup, you
have a solid foundation from which to begin building your own Cocoa OpenGL
applications.

162 Chapter 8: The Cocoa API for OpenGL Configuration

Chapter 9

The GLUT API
for OpenGL

Configuration

GLUT is an older, tried-and-true, cross-platform API for quick and dirty ac-
cess to OpenGL application infrastructure. GLUT provides a very simple and
straightforward CAPI to create windows, manage device input, monitor win-
dowing events, handle a run loop, and so on. It also provides low-level prim-
itive construction elements such as Spheres, Cubes, and Torii. This API is not
unique to the Mac: in fact, you’ll find it on most every platform. GLUT allows
you to quickly prototype some OpenGL code in such a way that you can test
it on every platform on which you must deploy. Although not really a good
infrastructure for more complex applications, it’s a great way to get started. In
this chapter, we’ll provide only a cursory examination of the API on the Mac
because, with only one or two extremely minor exceptions, GLUT on the Mac is
the same as GLUT on any platform.

GLUT first arrived in November 1994, as a creation of Mark Kilgard of SGI.
It was created as a basic infrastructure for quickly and simply bringing up a
window for OpenGL rendering. Over the years, GLUT evolved into a cross-
platform API, providing support through its same basic interface to bring win-
dows up for OpenGL rendering on most Unix systems, including Linux, and
eventually adding Windows and Mac support. GLUT evolved in scope, too,
as it grew beyond its windowing roots to provide a variety of other wrapper
functions. These wrapper functions focus on tasks such as device handling, from
keyboard and mouse, to SpaceBall, joysticks, and more. There are also wrap-
per functions for quick and easy creation of objects such as spheres, cones, and
cubes. In addition, font handling, video resize functions, render-to-texture ca-
pabilities, and basic dynamic function binding are all features that GLUT has
acquired over the years.

Although GLUT has evolved to have a lot of capability, the core of what GLUT is
remains unchanged: It is a simple and uniform way of bringing up an OpenGL
application in a platform-independent way.

163

CoreGraphics

CGL

GLUT

AppKit AGL

Figure 9-1 GLUT API and Framework in the Overall OpenGL Infrastructure
on the Mac

Overview
The GLUT API is part of the overall Apple OpenGL infrastructure. It leverages
AppKit for its windowing and event requirements. Figure 9-1 shows where the
GLUT API and framework reside relative to other API layers.

The GLUT API lives in your particular SDK framework path or in /System/
Library/Frameworks/GLUT.Framework. As with other APIs, linking
against GLUT requires specification of this framework path (in our code
examples, specifying the variable SDKROOT). Compiling using headers from
the GLUT framework will also require specification of the framework. The rele-
vant locations for building and linking with the GLUT framework are found in
Table 9-1.

GLUT is an interface for complete, stand-alone applications that provides a
comprehensive set of windowing, event management, device input, OpenGL
setup, OpenGL configuration, and a few other miscellaneous functions. If for
whatever reason you can’t find the interface you need within GLUT, you’re best
off investigating one layer beneath it, such as Cocoa or CGL. For the most part,
GLUT provides a rich feature set that can be used to meet all of your full-screen,
windowed, and accelerated off-screen needs. With the fundamentals of GLUT
described, and armed with the locations in which to fully explore the frame-
work, let’s move directly into GLUT configuration.

Table 9-1 GLUT Headers, Frameworks, and Overview

Framework path /System/Library/Frameworks/GLUT.framework
Build flag -framework GLUT
Header #include<GLUT/glut.h>

164 Chapter 9: The GLUT API for OpenGL Configuration

Configuration and Setup
Configuring and using GLUT is pretty straightforward, and given what we’ve
covered in prior chapters, it should all feel somewhat familiar. We’ll waste no
time in this section; we’ll just jump right into a code example and cover the only
Mac-specific change you’ll need to be aware of for GLUT applications on the
Mac.

Begin by going to XCode and creating a new project, of type C++ tool, as seen in
Figure 9-2. We’re choosing a C++ project just because we feel like it and prefer
some C++ idioms, rather than because GLUT requires C++. In fact, as men-
tioned earlier, GLUT is a C-API.

In Figure 9-2, we create a new project; in Figure 9-3, we add the GLUT frame-
work; and in Figure 9-4, we see what the resultant framework should look like.
Specifically, in Figure 9-3, navigate to /System/Library/Frameworks/ and
select GLUT.framework to add to the project.

Now that we’ve got a project, we must address the first Mac-specific element—
linking against the library. We do that as seen in Figure 9-3, with the result
shown in Figure 9-4. This specifies that we will use the GLUT framework to
resolve include files and link libraries. The only other Mac-specific element is
the way in which we include the headers, as seen in Figure 9-3. On other plat-
forms, the GLUT headers may live in different directories (in fact, they usually

Figure 9-2 New Project Creation for GLUT Application

Configuration and Setup 165

Figure 9-3 Adding a Framework to This Project

Figure 9-4 Resultant GLUT Project Showing Framework and Sample Code

166 Chapter 9: The GLUT API for OpenGL Configuration

live in the GL directory), so some wrangling is necessary to ensure that your
compiler can find the header file. The code in Example 9-1 performs this
operation to include the glut.h header using a preprocessor check to deter-
mine whether we’re building on the Mac and, if so, to adjust where we find
GLUT to use the framework-resolved path. Those are really the only two unique
elements to using GLUT on the Mac.

Simple enough. Now let’s look at fleshing out this code.

Example 9-1 GLUT Header Inclusion on the Mac

#if defined(__APPLE__)
#include <GLUT/glut.h>
#else
#include <GL/glut.h>
#endif

Pixel Format

We’ll now look at a complete application, from window creation to GL initial-
ization through swap buffers. This code is presented here for your edification,
but not because we plan to explain it in painstaking detail. As we’ve said before,
GLUT is GLUT is GLUT. You’ll find that the code we write here will function
on many platforms, and the GLUT examples on the Mac are a great way to
learn more about how to use the API. In fact, Apple ships a complete set of
GLUT examples with its developer tools; you’ll find them in /Developer/
Examples/OpenGL/GLUT/. Now, let’s move on to our code. It renders a

Figure 9-5 GLUT Project Results Showing Visual Selection and Rendered
Object

Configuration and Setup 167

simple animated shape, but doesn’t do much else. The results of Example 9-2
are seen in Figure 9-5.

Example 9-2 Basic GLUT Sample Application

void prepareOpenGL()
{

myAngle = 0;
myTime = 0;

}

void draw()
{

glClearColor(0, .5, .8, 1);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(myAngle, 0, 0, 1);

glTranslatef(0, 0, 1);
glColor3f(0, 1, 0);
glBegin(GL_QUADS);
float ww = .9;
float hh = .9;
glTexCoord2f(0, 0);
glVertex3f(-ww, -hh, 0);
glTexCoord2f(1, 0);
glVertex3f(ww, -hh, 0);
glTexCoord2f(1, 1);
glVertex3f(ww, hh, 0);
glTexCoord2f(0, 1);
glVertex3f(-ww, hh, 0);
glEnd();

glutSwapBuffers();
}

void angleUpdate(int delay)
{

float twopi = 2*M_PI;
myTime = (myTime>twopi)?0:myTime+.03;
myAngle = sinf(twopi*myTime);
glutTimerFunc(delay, angleUpdate, delay);
glutPostRedisplay();

}

int main (int argc, char * argv[])
{

glutInit(&argc, argv);

// choose a visual and create a window
glutInitDisplayString("stencil>=2 rgb8 double depth>=16");

168 Chapter 9: The GLUT API for OpenGL Configuration

// this is comparable to glutInitDisplayMode with the
// tokens below, and achieves a similar effect
// glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);

glutInitWindowSize(450, 300);
glutCreateWindow("GLUT Configuration Example");

// initialize our opengl (context is now valid)
prepareOpenGL();

// register callback functions
int delay = 50;
glutTimerFunc(delay, angleUpdate, delay);
glutDisplayFunc(draw);
glutMainLoop();

}

GLUT is a good way to bring up a rendering window quickly and efficiently. It
also provides a fair degree of specificity for window management. You can use
the glutInitDisplayMode, as shown in Example 9-2, to specify a variety of
flags to set the visual that is used. For example, you can use any combination
of the bit flags as described in Table 9-2 to customize which visual you use.
These bit fields are described in complete detail in the glutInitDisplayMode
manual page, and we present only a few in Table 9-2. A simplified version of
the use of this visual specification was presented in Example 9-2. This function,
along with its bit field settings, allows you a coarse degree of control in the
visual qualities of your application.

As we’ve seen in other chapters, selecting a visual can be a very detailed
process, and one that your application needs to specify fully. GLUT provides

Table 9-2 glutInitDisplayMode Bit Field Tokens

Token Description
GLUT RGBA / GLUT RGB Synonymous tokens to select a visual with RGBA pixel

formats. The default if no other format is specified.
GLUT SINGLE Single-buffered visual token. The default if neither

GLUT DOUBLE nor GLUT SINGLE is present.
GLUT DOUBLE Double-buffered visual token. Has priority if

GLUT SINGLE is also present.
GLUT ACCUM Token for accumulation buffer visuals.
GLUT ALPHA Token to choose alpha channel visuals.
GLUT DEPTH Token to select a depth-buffered visual.
GLUT STENCIL Token to select a stencil-buffered visual.
GLUT MULTISAMPLE Token to select a multisample visual. Automatically

degrades to another visual if multisampling is not
available.

GLUT STEREO Token to select a visual with stereo abilities.

Configuration and Setup 169

a limited form of this capability through a complementary function called
glutInitDisplayString. In no way is the GLUT process nearly as complete
as the CGL, AGL, or Cocoa methods, but it does allow you to exert a fair degree
of control. Among the capabilities exposed through this method, a caller can
specify the number of bits in various color or depth channels, the number of
samples in multisample visuals, and the policy regarding how to select which
visual matches. We present a selection of states that can be specified through
such a call in Table 9-3, and a complete description of these flags and their de-
faults can be found at the manual page: man glutInitDisplayString.

So how are these flags used to specify a visual? The tokens in Table 9-3 specify
the individual visual elements to be specified. With each, we can also attach
an optional policy. The code for doing so requires the use of a standard set of
operators with meanings equivalent to those operators’ meanings in C code.
For example, to specify a visual with all buffer bits, including alpha, of depth
8 or greater, we would write rgba>=8 as part of our overall string. For other
specifications, such as to consider visuals of other constraints, we would use
any one of <,>,<=,>=,=, or !=. A final syntax element, the character, is used
to specify a match that is greater than or equal to the number specified, but
preferring fewer bits rather than more. This is a good way of getting close to
your literal specification, but with some fail-over capability, preferring visuals
of better quality.

For a complete example of how this specification works, we’ll examine a re-
placement for the call glutInitDisplayString in our previous example but
now modify it to use this form of visual selection instead. Example 9-3 is set up
to try to find a visual with at least 2 bits of stencil precision, double buffered,
with an RGBA visual of 8 or greater bits, as closely matching 8 as possible, a
16-bit or greater depth, and multisample anti-aliasing. The results of this change

Table 9-3 glutInitDisplayString Policy and Capability Strings

Label Description
alpha Bits of alpha channel color buffer precision
red Bits of red channel color buffer precision
green Bits of green channel color buffer precision
blue Bits of blue channel color buffer precision
rgba Bits of red, green, blue, and alpha channels color buffer precision
acca Bits of RGBA channels accumulation buffer precision
depth Bits of depth channel buffer precision
stencil Bits of depth channel buffer precision
single Boolean enabling single buffer mode
double Boolean enabling double buffer mode
stereo Boolean enabling quad buffer stereo mode
samples Number of multisamples to use

170 Chapter 9: The GLUT API for OpenGL Configuration

Figure 9-6 GLUT Project Results Showing Visual Selection and Rendered
Object for Anti-Aliased Pixel Format

to Example 9-2 are subtle, because the only differences involve the addition
of the stencil and anti-aliasing. The results of the anti-aliasing are visible in
Figure 9-6.

For a much more verbose description of these flags, ways to use this
initialization call, and more, check the manual page for this call using man
glutInitDisplayString.

Example 9-3 Initializing a GLUT Visual Using a String

glutInitDisplayString("stencil>=2 rgb˜8 double depth>=16 samples");

Summary
In this chapter, we saw how GLUT works on the Mac, and pointed out the key
configuration differences from other platforms. GLUT is useful for rapid pro-
totyping, in that it lets you portably and efficiently bring up a window, config-
ure the visual with a fair degree of specificity, and draw. In essence, this API
gets you rendering quickly, although, it doesn’t mesh particularly well with the
more native ways of integrating OpenGL drawing into a window, especially
for the Mac. We devoted the majority of our discussion in this chapter to the
minor differences between the Mac and other platforms—specifically, how to
include and build with GLUT. This concludes our coverage of GLUT on Mac
OS X. We now return you to your regularly scheduled Mac OS X OpenGL
programming.

Summary 171

This page intentionally left blank

Chapter 10

API Interoperability

Overview
This chapter will cover a variety of topics related to using some of the powerful
(and cool) APIs on the Mac with your OpenGL application. You might be won-
dering what we really mean when we say “interoperability” in the chapter title.
Perhaps a better term might be “interfacing.” We’re going to explore how you
get data from other APIs, other subsystems, and other data formats you have
and use into your OpenGL application on the Mac.

That description, though general, is vague, so let’s consider a concrete example
of how this might be useful: You want to play a video in a scene. So how do
you play a video? It’s conceptually simple—you open a sequence of images and
draw them as textures on an object. But how do you open images? How do you
ensure that, regardless of the frame rate used, you still see your movie in real
time?

This example is probably not wholly unfamiliar to anyone in computing, as
we’ve all walked down that path from time to time. And as we get older and
ideally wiser, it becomes more apparent that using someone else’s expertise and
API in these subjects makes a lot of sense. Here we’ll focus on using Apple’s
expertise in image loading, media handling, and, in general, APIs to manage
this external data and exchange and use it in our OpenGL applications.

One of the mantras that we return to repeatedly when discussing the Mac is this:
“It just works.” That mantra is true with many Mac APIs as well. Of course,
not all of them are simple (or sometimes even sensible) in the way they seem
to work, but they do just work. In this chapter we’ll explore some of the more
modern APIs for graphics data, such as Cocoa’s NSImage, a class allowing arbi-
trary image loading and manipulation, and QuickTime, an API for playback of a
wide variety of time-based media. While in previous chapters we’ve taken great
pains to demonstrate all of the possible APIs and techniques for interacting with

173

OpenGL, in this chapter we’ll focus solely on the most actively developed and
most modern of Apple’s APIs: Cocoa. All examples will be in Cocoa, and we
won’t be shy about using Cocoa to its fullest benefit to get our job done with the
least amount of extra coding.

We begin by looking at images in Cocoa and considering how to populate and
use them with OpenGL.

Cocoa Image: NSImage
A fundamental way of interacting with 2D images in Cocoa is the class
NSImage. An NSImage is an object representing an image and is a funda-
mental data type used in interacting with a variety of Cocoa classes that perform
image manipulation. We’ll look at how images are represented in the NSImage
class and provide example methods for extracting data from and importing data
into NSImages. We’ll begin with an overview of how NSImage functions and
demonstrate a few common ways of using it in an application.

Basic NSImage

NSImage is an abstract representation of an image, but it also contains and
can create concrete instantiations of images. A concrete instantiation of an
NSImage is known as an NSImageRep, and any given NSImage may contain
several instantiations. For the purpose of interoperating with OpenGL, the most
common flavor of NSImageRep we’ll use will be the NSBitmapImageRep.
An NSBitmapImageRep contains the actual image pixels we’ll need to use in
OpenGL at lower levels. Let’s back up a step for now, and look at a few useful
ways to create NSImages.

NSImage contains a variety of helper methods to create images from common
sources. A few choices to get us started are found in Example 10-1.

Example 10-1 Two Sample NSImage Initialization Methods

%
- (id)initWithContentsOfFile:(NSString *)filename
- (id)initWithContentsOfURL:(NSURL *)aURL

Let’s look at these methods in a more complete example, using our old standby
cocoa simple example as a foundation. Our goal will be to extend the ex-
ample code so that we texture a quad using the contents of an NSImage. The
process we’ll follow will begin by instantiating objects of each of these types in
our prepareOpenGL method. As before, prepareOpenGL is where we should
do anything we want to do once per context, but not more often. Download-
ing textures is a good example of an operation that should not be performed

174 Chapter 10: API Interoperability

per frame, so it fits well in prepareOpenGL. Let’s add two NSImages, one
based on a URL and another based on a file (Example 10-2).

Example 10-2 Initialize NSImages

- (void) prepareOpenGL
{

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-1,1,-1,1,-1,100);

NSURL *url =
[NSURL URLWithString:

@"http://www.yosemite.org/vryos/turtleback1.jpg"];
NSImage *url_image = [[NSImage alloc]

initWithContentsOfURL: url];

NSImage *file_image =
[[NSImage alloc] initWithContentsOfFile:
@"/System/Library/Screen Savers/Cosmos.slideSaver/" \
@"Contents/Resources/Cosmos07.jpg"];

// resize our image to a power of 2
NSImage *file_image_resized =

[self transformImage: url_image
toSize: NSMakeSize(512, 512)];

// download an image as a texture
[self downloadImageAsTexture: file_image_resized];

// configure texture environment
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glEnable(GL_TEXTURE_2D);

// add a timer to oscillate the modelview
NSTimeInterval ti = .1;
[NSTimer

scheduledTimerWithTimeInterval: ti
target: self

selector: @selector(angleUpdate:)
userInfo: nil
repeats: YES];

}

There’s really not much to this phase of the example, and everything works as
expected. We should, however, take pains to validate that the results of each of
these alloc/init pairs succeeds. Each init* method will return nil if it fails to
find or acquire the resource specified, either a file or a URL. A third technique
commonly used to create an NSImage is initWithData—but we’ll explore it
later. For now, let’s move on to extracting the data from our NSImage and using
it with OpenGL.

Cocoa Image: NSImage 175

NSImage to OpenGL

Assuming we’ve got a valid NSImage from some source—either from initializ-
ing one from a file or URL, or from another Cocoa API somewhere—we poten-
tially need to do some data massaging and conversion to transform the image
data into a form that is compatible with OpenGL. The major phases of this pro-
cess are as follows:

1. Determine the basic NSImage parameters such as format, data size, and im-
age size.

2. Ensure that the NSImage is sized for use with OpenGL.
3. Extract the pixel data.
4. Download the pixel data as a texture.

We’ll begin by looking at what’s necessary to use any formatted image data
with OpenGL. We assume that you have a basic familiarity with the basics of
OpenGL texturing and refer other questions to [22]. As a quick refresher, recall
that unextended OpenGL (that is, any OpenGL version prior to 2.0 without non-
power-of-two extensions) requires textures to be sized as a power of two. If your
input image is not a power of two initially, and your OpenGL implementation
requires power-of-two data, several options are available to you:

• You can resize the image data to be a power of two, per side.
• You can create the next power-of-two size texture larger than the data,

subload the data, and use appropriate texture coordinates when texturing.
• You can check for and use the GL ARB non power of two extension to load

non-power-of-two data.

By far the most flexible of these solutions, especially with respect to preserv-
ing your data’s original quality and integrity, and minimizing the impact on
your hardware resources (by minimizing the texture size downloaded to the
hardware), is using the GL ARB non power of two extension. This extension
isn’t available on all graphics hardware, on all Mac computers, or on all ren-
derers, so a cautious approach is necessary. Be sure to query for the extension
before you attempt to use it. Aside from ensuring its existence, however, us-
ing GL ARB non power of two is as simple as downloading your data into a
texture.

The second most effective technique with respect to preserving your data’s in-
tegrity is to create a larger texture and subload your full image data into it. This
technique does waste precious texture resources, because you’re creating an im-
age that contains empty or unused pixels, which nevertheless require space in
the texture cache. Your image will be represented at full fidelity, however, and
there may be applications for which this requirement is paramount.

176 Chapter 10: API Interoperability

The final technique—resizing the data to be a power of two—is the most space-
efficient in terms of the hardware, but at the cost of some image quality loss.
However, this technique is the one most easily implemented, so we’ll explain
it here.

Resizing an NSImage to a Power of Two

Our goal in this section is to take an arbitrarily sized NSImage and resize it to a
power-of-two-sized NSImage. We’ll do so by exploiting the functionality of an
NSImage—specifically, its ability to paint itself in different ways. The code to
do this is fairly simple, so we’ll look at it in Example 10-3 and explain it after its
presentation.

Example 10-3 Resizing an NSImage to a Power of Two

- (NSImage *) transformImage: (NSImage *) image toSize: (NSSize) size
{

// get a new image, the same size as this one
// isFlipped - override to return YES to get
// coord sys in upper left
NSImage *newImage = [[NSImage alloc] initWithSize: size];
[newImage setFlipped: YES];

// Draw on the new Image.
[newImage lockFocus]; // create a draw context
[image drawInRect: NSMakeRect(0, 0, size.width, size.height)

fromRect: NSMakeRect(0, 0,
[image size].width, [image size].height)

operation: NSCompositeSourceOver
fraction: 1.0];

[newImage unlockFocus]; // release the draw context

// return it
return newImage;

}

This code takes an input NSImage and a target NSSize and creates a new image
by simply rendering the current image in the current Quartz render area. We
begin by creating a new NSImage, sized to our target size. We next take this
image and call its setFlipped method. This method causes coordinate system
wrangling. It performs a vertical flip, so that the Y=0 axis becomes the bottom
of the image, rather than the top, as is the default. Try commenting this line out
and recompiling your code to demonstrate the effect of not flipping the image.
Figure 10-1 shows what happens in both cases. In OpenGL, textures have their
bottom at the T=0 parameter so that (S,T)=(0,0) is the lower-left corner of
the image, and (S,T)=(1,1) is the upper-right corner.

Now that we’ve got a new image into which we can draw new contents,
we make this new image become an active target for rendering by using the

Cocoa Image: NSImage 177

Figure 10-1 NSImage Rendered Before setFlipped (left), and After
setFlipped (right).

lockFocus method. lockFocus (and its counterpart unlockFocus) are ele-
ments of how Quartz rendering works, and not really something we’ll explore
in detail. The Apple documentation has lots of details on Quartz rendering, so
check there if you are interested in other things you can do with Quartz.

We then tell the current image to draw itself at the new size into the current
Quartz target that is our existing newImage. Finally, we deactivate newImage
as a render target and return that image.

Now that we’ve computed a flipped image, we need to get the pixel data from
NSImage and download it to the hardware.

Extracting Pixel Data from an NSImage

OpenGL requires access to a raw array of pixels to download those data as ei-
ther texture or images to the hardware. For that reason, we must extract our
data from an NSImage and then use the resultant transformed version to pass
data down to the hardware. In Cocoa, a form of image data that allows direct
access to pixel data is NSBitmapImageRep and its subclasses. Specifically, an
NSBitmapImageRep has a variety of methods for determining the size and
extent of its contents, as seen in Table 10-1.

An NSBitmapImageRep can contain a lot more information, especially if its
originating data source is something like an animated GIF. We will assume the
use of a simple image in our examples here, but you can search the Apple refer-
ence pages for lots of details on all the stuff you can do in NSBitmapImageRep.
Given our simple image and the accessors in Table 10-1 for a bitmap image, how
do we go about getting an NSBitmapImageRep? Transforming our NSImage
into a bitmap is suprisingly simple, as we see in Example 10-4.

178 Chapter 10: API Interoperability

Table 10-1 NSBitmapImageRep Accessors for OpenGL Texture Data

Accessor Description
- (int)bitsPerPixel Number of bits per image pixel
- (int)bytesPerPlane Number of bytes in each image plane

(R, G, B, A, etc.)
- (int)bytesPerRow Number of bytes in an image pixel row
- (unsigned char *)bitmapData Pointer to contiguous buffer containing

all pixel data

Example 10-4 Extracting a Bitmap from an NSImage

NSBitmapImageRep *bitmap = [NSBitmapImageRep alloc]
initWithData : [image TIFFRepresentation]];

This function takes our existing image and requests that a TIFF representation
be generated. From that result we create, using the familiar Cocoa alloc/init
paradigm, a new NSBitmapImageRep. As you can see, the conversion process
is fairly heavyweight—first converting to a TIFFRepresentation, and then
creating a new NSBitmapImageRep from that data. A few copies later, and
we’re there.

Done. Our next, and final, step is to put all these pieces together in a code
example.

Downloading an NSImage as a Texture

In prior sections we’ve performed individual pieces of NSImagemanipulation—
first creating them, then discussing and performing resizing options, and finally
converting the NSImage into an NSImageBitmapRep so that bitmap data can
be fed into OpenGL. Let’s review our prepareOpenGL code from a few sec-
tions back, and add a conversion and a method that downloads an image to the
hardware. We begin by creating an NSImage (Example 10-5).

Example 10-5 Initialization and Creation of an NSImage

- (void) prepareOpenGL
{

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-1,1,-1,1,-1,100);

NSURL *url =
[NSURL URLWithString:

@"http://www.yosemite.org/vryos/turtleback1.jpg"];
NSImage *url_image = [[NSImage alloc]

initWithContentsOfURL: url];

Cocoa Image: NSImage 179

NSImage *file_image =
[[NSImage alloc] initWithContentsOfFile:
@"/System/Library/Screen Savers/Cosmos.slideSaver/" \
@"Contents/Resources/Cosmos07.jpg"];

// resize our image to a power of 2
NSImage *file_image_resized =

[self transformImage: url_image
toSize: NSMakeSize(512, 512)];

// download an image as a texture
[self downloadImageAsTexture: file_image_resized];

// configure texture environment
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glEnable(GL_TEXTURE_2D);

// add a timer to oscillate the modelview
NSTimeInterval ti = .1;
[NSTimer

scheduledTimerWithTimeInterval: ti
target: self

selector: @selector(angleUpdate:)
userInfo: nil
repeats: YES];

}

We’ve extended the initial example to accomplish three further tasks. The first
task is resizing the image using the method we developed earlier. The second
task is downloading the resultant scaled NSImage. We’ll develop the body of
that method in a moment. The final task is configuration of texturing in our
OpenGL context to enable it and to have the texture color replace the color of
the object to which it’s applied. The real meat of this section deals with what
it takes to download an image to the hardware, so let’s present that method in
Example 10-6 and walk through it.

Example 10-6 Downloading an NSImage as an OpenGL Texture

- (unsigned int) downloadImageAsTexture: (NSImage *) image
{

unsigned int tid = 0;
int texformat = GL_RGB;

// convert our NSImage to a NSBitmapImageRep
NSBitmapImageRep * imgBitmap =

[[NSBitmapImageRep alloc]
initWithData: [image TIFFRepresentation]];

[imgBitmap retain];

// examine & remap format
switch([imgBitmap samplesPerPixel])

180 Chapter 10: API Interoperability

{
case 4:

texformat = GL_RGBA;
break;

case 3:
texformat = GL_RGB;
break;

case 2:
texformat = GL_LUMINANCE_ALPHA;
break;

case 1:
texformat = GL_LUMINANCE;
break;

default:
break;

}

// generate a texture object
glGenTextures(1, (GLuint*)&tid);
glBindTexture(GL_TEXTURE_2D, tid);

// download the pixels
gluBuild2DMipmaps(GL_TEXTURE_2D, GL_RGBA,

[imgBitmap pixelsWide],
[imgBitmap pixelsHigh],
texformat,
GL_UNSIGNED_BYTE,
[imgBitmap bitmapData]);

// unregister interest in the bitmap - OpenGL has
// already downloaded the image
[imgBitmap release];

return(tid);
}

While there’s a bit of code here, it’s mostly focused on extracting data from
our NSBitmapImageRep object and formatting it into the traditional glTex
Image2D style. We begin by extracting a bitmap image representation from
our NSImage as we demonstrated in earlier sections. We then choose our pixel
data format enumerator based on the number of bytes per pixel in this bitmap.
The code from this point on is pretty standard OpenGL texture object manip-
ulation. We generate a new texture object for our use and then build mipmaps
using the ever-useful GL utility library function glBuild2DMipmaps.
Finally, we relinquish our interest in this new bitmap and return our texture
object ID.

In this section we’ve seen an end-to-end process for converting an NSImage
to an OpenGL texture. We’ve demonstrated a few techniques to generate
NSImages from common sources and then taken those images and created
code to allow for flexible manipulation and downloading of an NSImage to the

Cocoa Image: NSImage 181

graphics hardware. These fundamental techniques will be used again and again
as we look at other methods of manipulating images and video on the Mac.

OpenGL to NSImage

In the previous section, we saw how to create an OpenGL downloadable ob-
ject from an incoming NSImage. Of course, you might want to do the con-
verse as well. That is, you might want to extract an image from the graphics
hardware for later use elsewhere. The techniques demonstrated in this section
are primarily designed to cross from graphics hardware back to main-memory.
As a consequence, they’re not at all the right thing to do if you’re trying to
use an image already in hardware for another rendering pass or for another
graphics-hardware purpose. This caveat is important primarily because of the
issues we discussed regarding bandwidth to and from the graphics hardware
back in Chapter 3. For the purposes of our discussions here, we assume that
you do have a good reason for dragging pixels from the graphics hardware to
main memory.

That said, the major phases of this process are as follows:

1. Read the pixel data from OpenGL.
2. Create an NSBitmapImageRep from that data.
3. Create an NSImage from the NSBitmapImageRep.

In fact, in the space it took to describe these steps, we practically could have
coded the entire process. So, without further ado, let’s look at some code.
The code in Example 10-7 does all three of the previously described steps and
provides a physical validation of the process by writing the data to a file.

Example 10-7 Capturing OpenGL Data as an NSImage.

- (NSImage *) captureGraphicsAsImage: (NSRect) imageArea
{

// create a bitmap image rep with allocated
// space to contain our pixels
NSBitmapImageRep *bitmap =

[[NSBitmapImageRep alloc]
initWithBitmapDataPlanes: NULL

pixelsWide: imageArea.size.width
pixelsHigh: imageArea.size.height

bitsPerSample: 8
samplesPerPixel: 3

hasAlpha: NO
isPlanar: NO // NO==interleaved

colorSpaceName: NSDeviceRGBColorSpace
bytesPerRow: 0
bitsPerPixel: 0];

182 Chapter 10: API Interoperability

// ask the gl for the pixels, storing them in our bitmap image
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
unsigned char *bmdata = [bitmap bitmapData];
NSLog(@"bmd: %d %d\n",

imageArea.size.width, imageArea.size.height);

glReadPixels(0, 0, imageArea.size.width, imageArea.size.height,
GL_RGB, GL_UNSIGNED_BYTE, bmdata);

[self writeBitmapImageRep: bitmap
toFile: @"/tmp/test_bitmap.png"];

return([self convertBitmapImageRepToImage: bitmap]);
}

The most complex call here is the one made to initialize our
NSBitmapImageRep. In initWithBitmapDataPlanes, we set the image
width, height, bits per component, components per pixel, interleaved data, and
image representation, but we don’t fill in the data contents. The call in this for-
mat (with the data component set to NULL) makes the representation allocate
space but not fill it in. To fill in the data, we use the traditional formulation
of glReadPixels. We call this method with the same parameters (size, com-
ponents, bits per pixel) with which we configured our NSBitmapImageRep,
allowing us to read directly into the bitmap data store, pointed to by
[bitmap bitmapData]. Next, we convert our bitmap into an NSImage us-
ing another function we’ll present in Example 10-8.

Example 10-8 Converting a Bitmap to an NSImage

- (NSImage *) convertBitmapImageRepToImage:
(NSBitmapImageRep*) bitmap

{
// Create a new Image and draw the bitmap into it.
NSSize size = [bitmap size];
NSImage *newImage = [[NSImage alloc] initWithSize: size];
[newImage setFlipped: YES];
[newImage lockFocus]; // create a draw context
[bitmap drawInRect: NSMakeRect(0, 0,

size.width, size.height)];
[newImage unlockFocus]; // release the draw context

return(newImage);
}

This method simply renders our bitmap into an NSImage and returns this new
image. As in our prior example transformImage, we use Quartz to do the ren-
dering and use the lockFocus,unlockFocus pair to direct Quartz rendering
appropriately. Also as before, we use the setFlipped method to take care to
get the orientation of the image in native OpenGL coordinates. After those two

Cocoa Image: NSImage 183

manipulations, we end up with a lovely NSImage that we can use in another
part of a Cocoa application that takes an image.

QuickTime
In this section we’ll explore another way of integrating native Mac technol-
ogy with your OpenGL application. Specifically, we’ll look at how to integrate
video content using the QuickTime API. Although there are lots of image-based
techniques for performing video rendering, using Apple’s QuickTime API pro-
vides a number of benefits. Chief among these is the wide variety of codecs
available for easy reading and writing of a variety of video formats. Quick-
Time, provides a number of other nice features as well, including time manage-
ment, audio playback, and a full complement of easy video navigation controls.
Integration of QuickTime with OpenGL is a little tricky, but once you get it
working, the results include reliable, high-performance, seamless video play-
back as an OpenGL texture.

Overview

QuickTime was first introduced in late 1991. At the time, it represented a great
leap forward for multimedia not just on personal computers in general, but
for the Mac in particular. The architecture of QuickTime data is quite compre-
hensive, including a variety of features that were designed in from the start,
including multiple tracks of audio and video content, and extensibility through-
out. This extensibility will eventually allow QuickTime to evolve to support
modern compressors, such as AAC and MPEG4. In 1994, Apple introduced
QuickTime version 2.0 first for the Mac, and then later the same year for
Windows. This was both a clear shot across Microsoft’s media bow (if we may
clumsily use a nautical metaphor) and the first sign that Apple was serious
about making QuickTime into a real standard. Although QuickTime has always
been fighting an uphill battle in Microsoft’s backyard, it was very clear then,
and is still clear today, that the format, operation, and general standard that is
QuickTime are just flat-out better, regardless of the platform on which it is used.

In the years since then, QuickTime has continued to evolve, supporting more
advanced formats for audio, video, and images; parallel processing capabilities;
and better developer interfaces. Most recently, Apple introduced QuickTime 7,
which extended the QuickTime API to natively support Apple’s flagship API
set, Cocoa. QuickTime 7 continues to support the fundamental Movie Toolbox
for accessing time-based content but also introduced the Cocoa QTKit, which
will be our focus in this portion of the book.

QuickTime has evolved much since its early days, but it retains the good design
that set the foundation for the API that lies at the heart of Apple’s multimedia
engines.

184 Chapter 10: API Interoperability

QuickTime to OpenGL

As with other interoperability topics, we’ll try to focus on the most modern tech-
niques and the highest-level languages available to developers in our present
discussion. In this case, we’ll focus on Cocoa, but because of QuickTime’s his-
tory, we’ll make a brief diversion to explore how the legacy QuickTime routines
behave, too. This section will unfold similarly to earlier sections, demonstrat-
ing interoperability by showing examples of how to get QuickTime content into
your OpenGL application through code, and offering an examination of how
that code works and how you can tweak it.

As mentioned earlier, QuickTime 7 introduced a native Cocoa interface for
accessing QuickTime content through the QTKit framework. This framework
modernized and simplified the API for use with Cocoa and is a logical suc-
cessor to the Movie Toolbox API provided in all prior and current versions of
QuickTime. It’s also the logical successor to the existing wrappers provided in
Cocoa, NSMovie and NSMovieView. We’ll explore the QTKit API, the Movie
Toolbox, and the existing Cocoa NSMovie API here, starting with the core
Cocoa functionality for movie manipulation.

NSMovie is the Cocoa representation of a movie as managed by the Quick-
Time engine. NSMovieView is the visual representation, or view, of that
NSMovie QuickTime data. Both are legacy classes and, for new applications,
are not the best way of approaching the QuickTime rendering problem. They
are sufficient if you want to put video in a portion of a Cocoa application, but
these classes don’t have the depth and complexity necessary to get your data
into OpenGL (okay, it’s possible, but we don’t really want to encourage you
to follow this path). As another disincentive to use these classes, Apple has
publicly stated that it intends to deprecate them, so using these classes now
would be something of a poor choice. We won’t really focus on NSMovie and
NSMovieView any further, other than to say that they exist and that there’s a
lot of information available in the Apple developer documentation and website
if you really must know more. However, the modern way of doing this stuff is
the new QTKit, so we will focus on it for the central element of this section.

QTKit is Apple’s replacement for its other Cocoa NSMovie APIs. It supports
all of what was possible before with NSMovie APIs but adds numerous edit-
ing and movie manipulation capabilities. QTKit became available with Quick-
Time 7 and is part of Tiger (10.4) by default, but it is also available for Panther
(10.3) through installation of QuickTime 7 and the associated SDK. QTKit is a
very comprehensive and powerful API, and it simplifies the process of using
QuickTime by removing a lot of legacy Movie Toolbox data types, so that a
new programmer can simply focus on the Cocoa techniques. However, QTKit is
still a big API with lots of dark corners and complexity. In this section we’ll try
to remove as much of that complexity as possible and provide an example that

QuickTime 185

accomplishes our goal of rendering to OpenGL as efficiently as possible in terms
of both performance and overall amount of code.

Our plan of attack to integrate your QuickTime content in OpenGL is simple.
We’ll use similar baseline code as we included in our NSImage example but
take advantage of the fancy media-handling capabilities within QuickTime to
decide which frame we need to play and when to download it to the graphics.
The overall process is this:

1. Initialize OpenGL.
2. Create a Movie object with content.
3. Configure the Movie.
4. Grab the current display and use it as the texture.1

5. Render the OpenGL data using that texture.

It’s actually not that much more complex to do this in code, so let’s dive in!
We’ll begin by looking at a snippet of code to initialize our OpenGL buffer and
the QTMovie. We add code to our existing prepareOpenGL method, replac-
ing the NSImage initialization code from our prior interoperability example
with QTMovie initialization code. First the code (see Example 10-9), and then
a discussion:

Example 10-9 Initialize QTMovie

- (void) prepareOpenGL
{

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-1,1,-1,1,-1,100);

// open and configure our movie
movie =

[QTMovie movieWithFile: @"/tmp/Sample.mov" error: nil];
NSLog(@"%d\n", movie);
if (movie != nil)
{

[movie retain];
[movie play];

}

// configure texture environment

1. We’ve said it before and we’ll say it again. This is not the optimal technique for high-performance
movie playback in OpenGL on the Mac. There are other specialized APIs that enable full-rate play-
back of movies as textures within OpenGL. It just so happens that they’re pretty complex to set
up and get running, but at the end of the day the usage in your actual run loop is pretty similar.
That’s what we are trying to demonstrate here. If you are interested in the highest performance tech-
niques, see CoreVideo in Apple’s documentation, or check our website (www.macopenglbook.com)
for updates.

186 Chapter 10: API Interoperability

www.macopenglbook.com

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);
glEnable(GL_TEXTURE_2D);

// add a timer to oscillate the modelview
NSTimeInterval ti = .1;
[NSTimer scheduledTimerWithTimeInterval: ti

target: self
selector: @selector(angleUpdate:)
userInfo: nil
repeats: YES];

}

QTMovie is an API with a lot of entry points. There are dozens of ways to
use this API. Consider yourself lucky, however, as this number is down from
the more than 2500 entry points to the original QuickTime Movie Toolbox! At
any rate, our code for creating our movie is pretty simple and uses only a few
methods.

First, we create a movie using the class initializer methods. Next—and this is
important—we retain that movie because it’s allocated using an autorelease
pool, which means it may go out of scope at the end of the method and cause
you headaches later. As an aside, whenever you see weird memory issues (usu-
ally caused by a lack of documentation about how some method has allocated
and returned an object), think about the retain/release cycle, and start digging
into FAQs, message boards, and other sources.

At this point, we specify a method that can be used to set almost any param-
eter of a movie—in our case, to keep the movie playing. Finally, we provide a
method to launch the movie playback.

And that’s all there is to loading and playing a movie with QTKit. Now we’ll
look at how we take this playing movie (playing off in the background some-
where) and bind its graphics content to OpenGL.

The reason we introduced the NSImage accessor methods first in this chapter
was because we planned to revisit these techniques throughout the Cocoa API.
This reuse is also one of the reasons why Cocoa is so powerful for application
development: You learn a technique once and continue to apply it frequently.
We’ll do the same thing here. In our NSImage example, we created an image and
downloaded it once. In our current code, we’re obviously looking at a stream
of images, so we’ll need to continuously download images. There’s no real way
around this download step, and we’ll look at that in a bit more detail after ex-
ploring Example 10-10.

Example 10-10 Draw Rectangle Method Applying Movie Frames

- (void) drawRect: (NSRect) rect
{

glClearColor(0, .5, .8, 1);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

QuickTime 187

// flip texture
glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glScalef(1, -1, 1);

// grab the next frame from the movie
// and download it as a texture
if (movie != nil)
{

[movie play];
[self downloadImageAsTexture: [movie currentFrameImage]];

}

// configure the view matrix and draw a textured quad
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(angle, 0, 0, 1);

glTranslatef(0, 0, 1);
glColor3f(0, 1, 0);
glBegin(GL_QUADS);
float ww = .9;
float hh = .9;
glTexCoord2f(0, 0);
glVertex3f(-ww, -hh, 0);
glTexCoord2f(1, 0);
glVertex3f(ww, -hh, 0);
glTexCoord2f(1, 1);
glVertex3f(ww, hh, 0);
glTexCoord2f(0, 1);
glVertex3f(-ww, hh, 0);
glEnd();

glFlush();
[[self openGLContext] flushBuffer];

}

What do we see here? It’s the same draw method that we used in earlier exam-
ples, with one entry point to QTMovie, the currentFrame method. The rest
of the code massages the image returned so that it’s readily texturable. That’s
really all there is to using the new QTKit to get a movie ready and rendered by
OpenGL.

But what about performance? We use the same helper method we used for
our NSImage example, a method to download image data as a texture named
downloadImageAsTexture. That method does a variety of things, including
allocating a texture ID (also known as a texture name to old-school OpenGL
geeks), binding that name, and creating a texture and a stack of mipmaps.
That’s a lot of work, and something we do for every frame. Based on some
things we know about movies—for example, that their size doesn’t change—

188 Chapter 10: API Interoperability

Figure 10-2 First Frame of the Movie

we can improve this program’s performance significantly, but we’ll save that for
Chapter 11. Check there for all the optimizations we can make to streamline this
streaming media download. For now, we’re focusing on functionality, not trying
to prematurely optimize the application.

What do we see if we replace our prepareOpenGL and drawRect routines in
our earlier examples with the code in Example 10-10? With any luck, you see
something like Figures 10-2, 10-3, and 10-4.

If you don’t see those images, likely culprits are that the baked-in movie doesn’t
exist, couldn’t be found, or uses a codec the QuickTime doesn’t understand.
We’ve included a statement to log whether QuickTime thinks it can open this
particular file, and all subsequent usage of the loaded movie is enabled or
disabled by successful or unsuccessful loads, respectively. It’s probably a good
thing to check in your own applications, too, before going through the effort of
creating textures and loading movies.

Earlier, we mentioned NSMovie and explained why using it is undesirable, but
what about the Movie Toolbox? The Movie Toolbox has existed since the very
early 1990s. For those of you who are old enough to remember the early 1990s, it
was a very different coding world in general: C was prevalent, C++ wasn’t yet
a huge thing, and Objective-C hadn’t made its debut on the Mac in a big way.

QuickTime 189

Figure 10-3 Subsequent Frames of the Movie

NeXT was cranking away on Objective-C2 and a lot of really interesting ideas
for user interface libraries, which would (much later) become the Cocoa API for
Mac OS X. However, the mainline Mac world was still focused on Pascal and,
in some measure, C. At that time the Mac was known for many things but none
of them was ease of coding.

The QuickTime Movie Toolbox matches that expectation to this day. Though it
is possible to use the movie Toolbox with OpenGL, and we’ve done projects
for clients using it, we won’t discuss it here. The main reason for avoiding it at
this point is simplicity: We’re not writing this book so that you can learn eso-
teric corners of general Mac APIs but so you can get work done efficiently. The
QuickTime 7 QTKit API is a much cleaner way of doing all the Movie Toolbox
work and are the best way to work with media on the Mac.

So what have we accomplished here? We now have a technique to open any
QuickTime-accessible movie, to manipulate and play it, and to render the
frames as an OpenGL texture. We don’t have all the kinks worked out yet,
however. There was a fair bit of wrangling necessary with our final image, and
we paid a performance penalty for that effort, but there are ways to avoid that
work, too. For now, we’ve got function. We will have more to say on ways to im-
prove the download later, in Chapter 11, but for now we’ve achieved our basic
objectives.

2. The “NS” in all the Cocoa API names, such as NSMovie, stands for NextStep.

190 Chapter 10: API Interoperability

Figure 10-4 Final Frame of the Movie

OpenGL to QuickTime

In the previous section we learned how to integrate a movie into an OpenGL
application as a texture, which is then usable with any object. Now we’ll learn
how to take our rendered OpenGL data and configure it into a movie. Although
this task has little to do with OpenGL per se, it does build on our prior
NSImage experience in an earlier section, and it nicely rounds out the vari-
ous Cocoa API discussed in Chapter 8. Knowing how to write a movie from
an OpenGL application is a useful feature for lots of applications and not overly
difficult to accomplish.

QTMovie allows reading and writing of movie data. Earlier we were able to
export our data from our movie using an accessor returning an NSImage, and
now we’ll do a symmetric operation: We’ll fill a new movie using NSImages
gathered from our application. The steps are relatively simple, and we’ll outline
them here first, focusing solely on the image snap and Movie pieces:

1. Create an empty Movie object.
2. Read a frame from OpenGL.
3. Add a frame to the Movie.
4. When complete, write the results to disk.

The idea here is very basic: attach a bunch of image frames together to create
a Movie. QTKit, working through QTMovie, exposes a lot of capabilities with
which you can create movies using various codecs. At their core, however, the

QuickTime 191

contents of a movie are a simple sequence of images. We already know how to
read a frame from OpenGL into an NSImage, so we’re almost completely done
even before we’ve looked at the code. Let’s update that list with the code frag-
ments to do the actual work, and we’ll leave it as an exercise for you to assemble
and insert these bits and pieces in the proper places in your code. So that you’re
not flying completely blind, look at the earlier example that read data from
OpenGL into an NSImage, and then flesh out the following pseudocode in the
appropriate places:

myMovie = [[QTMovie alloc] init]; } }
myImage = [myView captureGraphicsAsImage: (NSRect) imageArea];
[myMovie addImage: myImage

forDuration: duration
withAttributes: attr];

[myMovie writeToFile: @"filename.mov" withAttributes: attr];

This pseudocode is all we’ll provide in the book. The technique is really just as
simple as we’ve described here, and we’re confident that you’ve got what you
need to proceed. If you’d like to see, build, and compile a complete example
of this technique, please check our website (www.macopenglbook.com) for an
up-to-date example.

High-Performance QuickTime in OpenGL

This chapter has described how to get the contents of a movie to play and be
read by OpenGL. A quick running of this example will make it clear that the
image data path is not the most optimized, however. In fact, it’s downright
slow. We’ve chosen to follow the NSImage path because it’s so nicely symmet-
ric across a variety of Mac OS X APIs. Unfortunately, it’s not the most perfor-
mance oriented and it’s not suitable, at this point, for real-time use. So what’s a
developer to do? Apple provides an excellent instructive example on its website
in the QTCoreVideo101 example [10].

The short version of this demo’s action is pretty simple: Let Core Video handle
the entire process, from loading and playing the movie to downloading those
images as textures. This may sound like delegating a lot to an API. In reality,
underneath all the fancy UI goodness that the Mac provides, it’s all OpenGL
already, so doing this does not present any extra work for the API. In fact, it
simplifies your life substantially, because you don’t have to care about the fastest
way to read and subload images from a movie. Please download and examine
this example for details. It’s a little bit complex to set up, but once the infra-
structure is in place, it’s fast and easy.

192 Chapter 10: API Interoperability

Summary

In this chapter, we saw how to read and write QuickTime movies, interfac-
ing their content with OpenGL. To do so, we relied on previously introduced
techniques for downloading textures, manipulating NSImages, and perform-
ing basic OpenGL configuration. You should now have a solid idea about how
to use any form of video content accessible via QuickTime with your OpenGL
application.

QuickTime 193

This page intentionally left blank

Chapter 11

Performance

Overview
Performance-tuning your OpenGL application for OS X may well be the most
satisfying part of your project. No other platform can compare with OS X’s great
set of performance tools, especially for OpenGL-based applications. Because
OpenGL is a first-class citizen on OS X, the implementation and tools have been
given years of scrutiny and improvements to make your optimization process,
dare we say, enjoyable.

Because the implementers of OpenGL—and, indeed, other 3D graphics APIs—
face the same performance challenges, the strategy for writing an application
that performs well using those APIs is often the same or at very least similar.
When it comes down to it, you are trying to get vertices and pixels from the
address space of your application to the screen for display. Moving that data
through the enormous state machine that is OpenGL may seem daunting at
first, but it’s simply a matter of staying on the paths most traveled.

The good thing about the most traveled paths is that like any good freeway, they
have the best pavement and get the most attention from the road crew. In this
case, our road crew is the Apple’s OpenGL engineering team plus the driver
engineers from the graphics vendors. The performance of your application is
one of their top priorities.

This chapter looks at some of the best practices to avoid common performance
pitfalls of OpenGL application programming on Mac OS X.

195

Axioms for Designing High-Performance
OpenGL Applications
Before describing the individual “blessed” logical paths in OpenGL, we thought
it best to put down, in black and white, some mantras you may want to repeat
to keep yourself on the straight and narrow. Wandering into the weeds can cost
you a lot of frame rate.

For any of these performance awareness axioms, you may find it best to think to
yourself, “If I were implementing OpenGL, which performance considerations
would I have to take into account when implementing this feature of the API?”
Put bluntly, OpenGL system software developers are just software developers
and computer hardware is, well, just computer hardware. Both can be clever,
but there is no real magic here. If your application must make a million calls
into OpenGL with every frame, it’s going to be slower than if it makes a thou-
sand calls with every frame while submitting the same amount of data. This
may seem to go without saying, but because it is such a common problem with
applications we thought it worth mentioning explicitly.

Let’s move on to those golden rules we keep talking about.

Minimize State Changes

The OpenGL ARB works hard to reduce the number of state dependencies in the
specification, especially when it comes to error handling. The engineers build-
ing the Mac OS OpenGL implementation work hard to reduce the overhead of
state changes in the system. Despite all of these efforts, the system is very large
and there is always a cost associated with thrashing the state.

OpenGL is a state machine. In code-speak, this means the implementation has
many data structures and branches that keep track of a lot of information. Each
time your application makes a state change, such as changing the current color,
turning lighting off, or binding a new texture, that change needs to be reflected
in all of those state data structures. Besides the obvious cost of reading and
writing to those data structures, these state changes effectively cool down your
caches, because whenever you touch different pieces of memory in the system
it has potential to evict cache lines (both instruction and data caches in this
case). Keeping caches hot is paramount to high-performance streaming of data
through the system.

The other undesirable artifact of making these state changes is that you always
affect two pieces of hardware when you make such changes. Both the CPU
and the GPU, and their respective memories, are affected. When the data struc-
tures inside OpenGL are altered, those changes inevitably have to be commu-
nicated to the GPU. This communication means more graphics bus traffic in

196 Chapter 11: Performance

the system and all the synchronization overhead inherent in bringing this state
up-to-date.

Consider also that deferral of updates is often a good strategy for any synchro-
nization task in a system. You may, therefore, be introducing costs into the equa-
tion that are realized at a later—and sometimes unpredictable—time. For exam-
ple, often the cost of a state change is not realized until a drawing command
is called that relies on that state. Textures are a good example. Defining a new
texture with a glTexImage2D() call sets up the texturing state on the cur-
rently bound texture object, but the data passed into this function—the actual
pixels making up this texture—are not uploaded to the graphics adapter until
the application draws using this texture. Thus, the first time you draw with that
texture bound, you could experience a much longer than usual draw time, as
the data is transferred to VRAM. For game developers, this performance hiccup
could show up as a sudden drop in frame rate, causing the faithful customer to
get picked off by the rail gun of his or her arch nemisis!

Wherever possible, you should attempt to group your state changes and es-
tablish a rendering “mode.” Once this mode, or grouping of related states, is
established, draw with as much data as possible before changing modes. This
means drawing with like primitives, like colors, like textures, and so on, in as
large a chunk as possible, before you make state changes.

Object-Oriented Programming and State Management

While we’re on the subject of minimizing state changes, we’d like to point
out a common conflict of design interest between OpenGL and object-oriented
programming (OOP) methodology. We believe strongly in the power of object-
oriented design for applications, but unless it is applied to OpenGL program-
ming judiciously, you can run into trouble.

Consider the primary goal of any OOP methodology—encapsulation. That is,
the goal is to put data and the operations that operate on that data in a common
locale and to restrict the interface to data so as to avoid debugging hassles.

Keeping this goal in mind, let’s consider an example. We’ve decided to write an
application for landscape design. For our landscape design program, suppose
we have an object defined for trees and another object defined for leaves. Our
leaf class knows how to draw a single oak leaf consisting of 10 vertices. The
method looks something like this:

void Leaves:draw()
{
int i;
float v[] = { 1.0f, 1.5f, 2.1f, 2.4f, 2.0f, };

glColor3f(0.0f, 0.5f, 0.0f);

Axioms for Designing High-Performance OpenGL Applications 197

glBegin(GL_POLYGONS);
for(i = 0; i < 10; i++)

glVertex2fv(v + i * 2);
glEnd();
}

Now consider the OpenGL efficiency of instantiating this leaf class 1000 times
for a small oak tree in your scene. First, it calls glColor3f() 1000 times, when
it needed to be called only once. Second, this code submits 10 vertices at a time,
when it could have submitted 10,000.

As contrived as this example may seem, it is far and away the most common
OpenGL performance programming problem: a large OOP class hierarchy that
was designed with objects that fit the model of the domain. The ignorance these
class instances have of one another has drastic state management consequences
for OpenGL applications. The moral of the story is that you should design your
application object hierarchy with an efficient scene graph that batches like state
elements and can be traversed at draw time, along with all that is required to
represent the objects in your problem domain.

Retained Mode versus Immediate Mode Rendering

Immediate mode rendering is the oldest and correspondingly most outdated
way to render graphics in OpenGL. We don’t mean to completely bash im-
mediate mode rendering, because it is definitely the easiest approach to get-
ting an application up and running and has its uses when you are submitting
limited amounts of data to OpenGL. Generally speaking, though, with a com-
bined 25 years of looking at this stuff, your authors have definitely seen egre-
gious overuse of this capability within OpenGL, and it definitely leads to slow
applications.

The simplicity of this mode of rendering is in that data are submitted through
OpenGL commands at the precise moment they are needed for rendering—
hence the “immediate” in immediate mode. Because of this, and knowing that
commands are executed in order in OpenGL, following this sort of OpenGL
logic is easiest. You do not need to keep any timing tables in your head,
nor do you need to worry about any asynchronicity between the CPU and
the GPU.

Because of this simplicity, as you probably well know, immediate mode render-
ing is the first thing taught to developers who are new to OpenGL. Our guess is
that the pervasive use of this style of code may be simply a matter of habit. At
some point, to prevent abuses and save all our companies a lot of money, imme-
diate mode rendering may even be removed from OpenGL entirely, or perhaps
relinquished to some layered API just to give it a scarlet letter.

198 Chapter 11: Performance

With immediate mode rendering, data are downloaded from host memory
to VRAM for every frame of rendering, whether its vertices between a
glBegin()–glEnd() pair, textures, images, or shaders. This redundant data
transfer limits your potential rendering performance to the bandwidth of the
graphics bus and, in some cases, the performance of the CPU and the host
memory system, as it manages state changes and state synchronization with
the graphics device.

We do advocate one habit—namely, retained mode rendering. Retained mode
rendering refers to any rendering that depends on a state that was established at
some time and then referenced for rendering at some time in the future. The first
retained mode rendering in OpenGL consisted of display lists, but additional
modes of this style of rendering have been added to OpenGL with nearly every
major release since display lists were introduced.

A big part of the “retention” in retained mode rendering for modern computers
is in keeping data and state resident on the graphics adapter. This residency
avoids all the travel time, by bus, between the computer’s CPU and the GPU of
the graphics adapter.

Here are the primary mechanisms for retained mode rendering in OpenGL:

• Display lists
• Texture objects
• Buffer objects (vertex and pixel)
• Shader objects
• Pixel buffer objects
• Framebuffer objects

The advantage of using retained mode rendering is that it allows you to get
as close as possible to the theoretical bandwidth limits between the GPU and
VRAM, eliminating as much correspondence with the CPU as possible. If
you’ve seen the theoretical bandwidth numbers for today’s modern graphics
chipsets, you know that these numbers are quite staggering. Typically, these
numbers are an order of magnitude greater than the graphics bus bandwidth
that feeds the chips. Correspondingly, it’s not unusual to see a 10 times perfor-
mance gain when moving an application from immediate mode rendering to
retained mode rendering.

In short, specify your data up front with one of the retained mode mechanisms
and reference it later while drawing to reap grand performance rewards.

Unidirectional Data Flow

Once you have your rendering modes established, your objective should be to
stream data (e.g., vertices, indices, textures/pixels) from the host system to the

Axioms for Designing High-Performance OpenGL Applications 199

graphics device as close to the theoretical bandwidth as is achievable. To keep
this stream of data flowing and going in one direction, it is important not to
issue any unnecessary queries or reads from the OpenGL implementation. The
rule of thumb here is that any OpenGL call that has a return value will likely
stall the rendering pipeline.

You may be wondering why said stalls would occur. To optimize throughput,
nearly any command or packet processing system—OpenGL included—will
buffer the information into batches and submit the batches simultaneously. This
strategy allows the best amortization of protocol overhead by having a rela-
tively large amount of data per quantum of protocol information. Now further
consider the state dependencies involved with any kind of query to OpenGL
that returns information, such as a glGet(). If the OpenGL implementation
has buffered 10 drawing commands and the eleventh command is a glGet(),
the implementation is forced to process and validate the previous 10 drawing
commands immediately with no further buffering allowed, because one of those
prior 10 OpenGL commands could change the value of the state being requested
in the eleventh command. Implementers of OpenGL have to decide how much
drawing command data is buffered. If that decision was, say, 500, and an appli-
cation forces that command buffer to be flushed every 10 commands, the overall
throughput will be terrible.

Optimally performing applications keep track of their own rendering state. This
behavior allows them to avoid using OpenGL as a ledger that they query when
they need to determine what the current state is. In essence, it avoids glGet()
calls, glPopAttrib() calls, or any other OpenGL commands that return state
data to the implementation.

Related to state retrieval, in that all prior commands need to be completed,
glReadPixels() or any of the glCopy() operations that source a frame-
buffer may also flush the command stream to some extent, because those prior
commands may modify the framebuffer that is being sourced.

Use Shaders Where Possible

Programmable hardware offers a myriad of possibilities for increasing the frame
rate. Many visual effects that were formerly achieved through multiple passes
through fixed-function hardware and very costly read-backs can now be done
simply in different shaders.

There are two shader types in OpenGL, fragment and vertex. Obviously, there
are typically far more fragments in a scene that there are vertices. In many cases,
a visual effect can be achieved using a vertex program, yet a fragment program
is used instead. Successfully using a vertex program to replace a fragment pro-
gram effect can have a profound impact on your application’s performance.

200 Chapter 11: Performance

Shader Instruction Limits

At present, we’re still relatively early in the shader evolutionary chain. Much
of the graphics hardware in circulation places limits on the number of shader
instructions supported. If those limits are exceeded, your application could very
unpleasantly find itself on a software rendering path.

Mac OS X has CGL parameters available to allow you to query this unfortunate
condition, as shown in Example 11-1.

Example 11-1 Querying Shader Limits

GLint gpuVertexProcessing, gpuFragmentProcessing;

CGLGetParameter(CGLGetCurrentContext(),
kCGLCPGPUVertexProcessing, &gpuVertexProcessing);

CGLGetParameter(CGLGetCurrentContext(),
kCGLCPGPUFragmentProcessing, &gpuFragmentProcessing);

Remember that when setting up your pixel format at OpenGL context creation
time, you can set kCGLPFANoRecovery (or its Cocoa and AGL analogs) to
avoid falling back to software paths. This would obviate the need to check for
hardware shader support but also has a small problem—your application may
simply not launch on some systems!

There is no mechanism, at present, to allow querying for the number of instruc-
tions supported by a given GPU. The general rule of thumb is that if you’re
targeting lower-end GPUs for your application, write your shaders with in-
struction count conservation in mind and use the methods in Example 11-1 to
empirically test your application on specific configurations.

OpenGL for Mac OS X Rules of Thumb
for Performance
With the disclaimer that some of the ideas presented in this section may be ap-
plicable to any platform, we’ll proceed with some Mac-based rules of thumb.
The OS X OpenGL implementation has some distinguishing features relative to
other platforms. Taking advantage of some of these features will likely make a
profound difference in the performance of your application.

Minimize Data Copies

To maintain compliance with the OpenGL specification, OpenGL implementa-
tions often need to make copies of submitted vertex and pixel data, and OpenGL
on OS X is no exception. This necessity arises from needing to return control to
an OpenGL application after data has been submitted, yet not needing to yet

OpenGL for Mac OS X Rules of Thumb for Performance 201

submit that data for rendering. Consider, as a simple example, what happens
when glVertex3f() is called between a glBegin()–glEnd() pair. Until
glEnd() is called, the vertex data must be retained by OpenGL until needed
for rendering.

This simple example can be extended to textures as well. Thus, if you consider
how large textures can be and how many vertices you typically submit, it’s easy
to see how much of a performance problem the copying of this data can be.

The OpenGL Multithreaded Engine

As mentioned earlier, the OS X OpenGL implementation has some unique fea-
tures that distinguish it from other implementations. One detail worth noting is
its long history of running on multiprocessor systems. This means if you thread
your application today, you’ll immediately have a sizable audience that will
benefit from your application.

A major benefit of threading an OpenGL application, aside from the obvi-
ous gains from having additional processing power, is the possibility of finer-
grained control over processing tasks. By having two or more threads, you
can limit the blocking that occurs when the GPU is waiting for the CPU, and
vice versa. The recommended approach for threading OpenGL applications is
to have all drawing commands originate from a single thread. Other threads
can then be used for handling application tasks such as culling and scene
management, processing of audio samples, or perhaps physics and collision
detection.

The more CPU processing your application needs to do—whether it’s to pre-
pare data for drawing or to carry out other, unrelated tasks—the bigger your
gains from threading will be. Gains in performance of 50 percent for properly
threaded applications are not unusual.

When threading your OpenGL application on Mac OS X, you must remember
to use the CGLLockContext() and CGLUnlockContext() calls to bracket
your OpenGL calls for each thread. This guarantees that you will not experience
state change collisions and bizarre unanticipated behavior when rendering with
multiple threads.

To relieve application developers of the burden and complexity of threading
their applications, the Apple OpenGL, engineering team decided to thread
OpenGL, with the first release being on the Mac Pro system and its initial
installed software (10.4.8). The complete form of the threaded engine will be
released with Mac OS 10.5 (Leopard). Threading done within OpenGL itself ef-
fectively achieves the same goal as threading your application—namely, rapid
return of control to the application after a function call into the OpenGL API.

202 Chapter 11: Performance

By minimizing the time needed to return control to the application, the threaded
OpenGL engine in the Mac OS allows more processing cycles for the application
logic.

The threaded OpenGL engine fundamentally does more work than the stan-
dard serial engine. It relies on an additional processor to handle this extra work.
The good news is that you don’t have to detect the number of processors on
the system to use it. If you attempt to enable the threaded OpenGL engine on
a single-processor system, it will automatically fail to enable, thus no logical
provisions need to be made by your application for uniprocessor Macs.

The other implication of the additional work imposed by the multithreaded en-
gine is that if your application, by way of the GL commands it submits, forces
the internal OpenGL threads to serialize with each other, you may find your
application actually running slower and using more memory than if you hadn’t
enabled the threaded OpenGL engine at all! Read on for details about whether
the threaded OpenGL engine is right for your application.

As in the threaded application case, using the threaded OpenGL engine is most
effective for applications that are CPU processing bound, which most appli-
cations are. Along with being CPU bounded, your application needs to be
“well written” to leverage the advantages offered by the multithreaded GL en-
gine. “Well written” means that the application infrequently stalls the graphics
pipeline; that is, it makes minimal calls to glFlush(), glFinish(), or any
type of glGet(). Furthermore, it means that your application uses retained
mode rendering wherever possible. Display lists, vertex buffer objects, pixel
buffer objects, and framebuffer objects are good examples of retained mode
rendering constructs.

Obviously, using some immediate mode calls in your application is acceptable.
If your application predominantly uses glBegin(), glEnd() pairs calling
individual vertices in between, however, you will see less benefit, or worse, your
application may be slightly slower when using the threaded engine.

If your application, rather than being CPU bound, is entirely GPU limited (say,
from fill constraints as in a volume rendering application), you will see little if
any benefit from the threaded engine. The simple litmus test for these conditions
is to run a typical scene or model through your OpenGL application and watch
the graph from Apple’s CPU monitoring application Activity Monitor. If
the CPUs are busy when rendering this scene, chances are very good that your
application might benefit from enabling the multiprocessor-capable OpenGL
engine.

The threaded OpenGL engine can be dynamically enabled per context from
CGL, AGL, or Cocoa applications. The enabling is dynamic in the sense that you

OpenGL for Mac OS X Rules of Thumb for Performance 203

don’t have to specify a parameter at context creation time to enable it. Rather,
you can turn the threaded engine on and off as often as you wish.

That said, turning the multithreaded engine on or off should be done judi-
ciously. Consider all of the state management, thread management, and mutex
management that accompanies a switch from rendering on a single-threaded
basis to rendering with two threads. In short, it’s expensive, performance-wise,
to turn the threaded engine on or off. We recommended you switch it on (or off)
once at initialization time using the code in Example 11-2.

Example 11-2 Enabling or Disabling the Multithreaded GL Engine

// Turn on the MT GL Engine
CGLEnable(CGLGetCurrentContext(), kCGLCEMPEngine);

// Turn off the MT GL Engine
CGLDisable(CGLGetCurrentContext(), kCGLCEMPEngine);

In short, use all the CPU hardware at your disposal—your users will thank you
for it. Besides, it’s fun to watch those CPU cores you paid for busily working
away!

Minimizing Function Call Overhead

When OpenGL calls are made, a small cost is associated with detecting the
current context from the current thread. Multiply this small cost by enough
OpenGL calls, and it becomes a big cost.

You can avoid this overhead by using the macros provided in CGLMacro.h
and maintaining your own current context. These macros bypass the top-level
framework layer entry points and go directly into the OpenGL engine. For
stand-alone tests that simply pound on the OpenGL API, we’ve observed 20
percent performance gains using CGL macros. You’ll find more information
about using CGL macros in Chapter 6.

Minimize CPU and GPU Idle Time by Using Asynchronous Calls

Asynchronous CPU and GPU operation is definitely the crown jewel when it
comes to getting the most performance out of the Mac OS X OpenGL implemen-
tation. Asynchronous features of the implementation minimize extremely costly
stalls between the CPU and the GPU. Nearly every application that keeps an eye
on the frame rate can benefit greatly from these interfaces and the methods to
use them.

At a higher level, asynchronous operations put more control in the hands of
your application and bring a bit more peril. The peril lies in the fact that

204 Chapter 11: Performance

asynchronous programming is a bit more difficult because data doesn’t move
in the system without you telling it to do so. The pattern is this: modify some
data, do some other stuff, check whether the data is ready for use, and then use
the data.

The flipside of this peril is that this additional control allows your application
to apply “smarts” about how its data are to be handled. Picking up the asyn-
chronous pen and putting down the synchronous club is essential in obtaining
peak overall system bandwidth.

Here’s a list of the asynchronous extensions and features of the Mac OS X
OpenGL API:

• Multithreaded OpenGL Engine
• Apple Texture Range
• Apple Vertex Array Range
• Apple Flush Buffer Range
• Apple Fence

The ultimate expression of asynchronicity of OpenGL on Mac OS X is the Multi-
threaded OpenGL Engine. Let’s move on to the “Range” extensions.

The Range Extensions

The Apple Texture Range and the Apple Vertex Array Range extensions are both
aggregation methods. They allow you to specify large chunks of memory in
which all of your texture or vertex data are aggregated so as to more efficiently
map the memory. This more efficient mapping improves direct memory access
(DMA) performance.

The other key aspect of Apple Texture Range, Apple Vertex Array Range, and
Apple Flush Buffer Range is the ability to update a subset within a block of data
and to flush only the modified data across the bus to the graphics device. This
partial update mechanism saves a tremendous amount of bus traffic. Without
these interfaces, updates to a portion of a texture, a vertex array, or, in the case
of Apple Flush Buffer Range, a vertex buffer object would set a flag indicating
that the entire contents of the object were stale. The GPU would then be forced
to transfer all of the data for the object over the bus.

The introduction of buffer objects to OpenGL, combined with the introduction
of Apple’s Flush Buffer Range extension, has effectively replaced the Apple Tex-
ture Range and Apple Vertex Array Range Extensions. Buffer objects for both
vertices and pixels and the Apple Flush Buffer Range extension provide a con-
sistent mechanism to perform partial updates and flushes between the two.
Buffer objects are easier to use, have better cross-platform compatibility, and
have a brighter future than the older mechanisms.

OpenGL for Mac OS X Rules of Thumb for Performance 205

Here’s an example of using Apple Flush Buffer Range to do partial flushing on
a buffer object. In Example 11-3, we arbitrarily chose to work with pixel buffer
objects. Vertex buffer objects work in exactly the same manner, albeit with some
simple substitutions of the type of data created and the target parameter of
the buffer object OpenGL calls (i.e., GL ARRAY BUFFER or GL ELEMENT ARRAY
BUFFER instead of GL PIXEL PACK BUFFER).

Example 11-3 Partial Buffer Object Flushing

GLuint pboID;
GLint width, height, channels;
GLubyte *textureData;

// 2048x2048 image - GL_RGBA
width = 2048; height = 2048; channels = 4;
textureData = (GLubyte *) malloc(width * height * channels);

// Generate ID for PBO
glGenBuffers(1, &pboID);

// Bind PBO, dimension it, and supply it data.
glBindBuffer(GL_PIXEL_PACK_BUFFER, pboID);
glBufferData(GL_PIXEL_PACK_BUFFER,

width * height * channels,
textureData,
GL_DYNAMIC_DRAW);

// Tell GL we want to do partial flushing on this object.
// Setting GL_BUFFER_FLUSHING_UNMAP_APPLE to false tells
// OpenGL not to flush the contents of the PBO to VRAM
// when the PBO is unmapped.
glBufferParameteriAPPLE(GL_PIXEL_PACK_BUFFER,

GL_BUFFER_FLUSHING_UNMAP_APPLE, GL_FALSE);

// We’re done with the PBO for now so unbind it.
glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);

// Don’t need to keep the malloc’d texture data buffer
// around now that the PBO has it.
free(textureData);

// ... later, modify the texture stored in the PBO ...

GLubyte *texturePtr;

glBindBuffer(GL_PIXEL_PACK_BUFFER, pboID);
texturePtr = glMapBuffer(GL_PIXEL_PACK_BUFFER,

GL_READ_WRITE);

// ... Use texturePtr to modify a portion of the texture ...

206 Chapter 11: Performance

// Flush the modified region to VRAM
glFlushMappedBufferRangeAPPLE(GL_PIXEL_PACK_BUFFER, 0,

width * height);

// Unmap and unbind
glUnmapBuffer(GL_PIXEL_PACK_BUFFER);
glBindBuffer(GL_PIXEL_PACK_BUFFER, 0);

Apple Fence Extension

Fences are tokens in the OpenGL command stream that act like tracer bullets;
they tell you where you are. Fencing is a key concept because it bridges the
world of the synchronous and the asynchronous. That is, it’s great to be as asyn-
chronous as possible, but ultimately drawing operations still need to be done in
order. If your GPU and CPU get too far out of whack with their asynchronicity,
fences serve to bring them back in line with each other.

Please see the section entitled Vertex Array Range later in this chapter for more
information and an example of using fences.

Share Data Across Contexts When Possible

If you have multiple contexts and all of them can use the same OpenGL re-
sources, be sure to share them across contexts to eliminate redundant copies of
the data. See Chapter 5 for more information.

Metrics
The overview introduced the idea of considering your application performance
from a variety of perspectives, including the perspective of the user as well as
the perspective of the system. Regardless of whether you have the same applica-
tion style as the one described in the overview, or something more demanding,
such as a visual flight or driving simulator, or game, you ultimately need to
measure performance. Defining a few metrics for performance is an essential
first step.

Frame Rate

The first metric useful in performance analysis is the frame rate. The frame
rate measures the number of frames per second your application displays.
Unlike most performance metrics, the frame rate is a discrete measurement.
You cannot, for instance, have a frame rate of 12.5 frames per second (FPS).

Metrics 207

Table 11-1 Pixel Format Buffer Selection Mode

API Double Buffer Single Buffer
CGL kCGLPFADoubleBuffer,

GL TRUE
kCGLPFADoubleBuffer,
GL FALSE

AGL AGL DOUBLEBUFFER, GL TRUE AGL DOUBLEBUFFER, GL FALSE
Cocoa NSOpenGLPFADoubleBuffer,

YES
NSOpenGLPFADoubleBuffer,
NO

GLUT GLUT DOUBLE GLUT SINGLE

Further, if your application is vertical blank synchronized your frame rate will
be quantized by the refresh rate of the display device you are using. For ex-
ample, a monitor can update its contents only at a fixed rate—say, 60Hz for a
particular monitor. If your application is attempting to display results on a mon-
itor as fast as possible, your application will never display more than 60 distinct
frames per second. Let’s look at frame rate and monitor refresh rates in more
detail. See information on KCGLSwapInternal in Chapter 6 for more details
on configuring your Mac OS X application to be vertical blank synchronized
(vbl-sync’d).

There are two basic ways of building a pixel format and ultimately choosing
a drawable or surface on which to render. Depending on whether you’re using
CGL, AGL, or Cocoa, you’ll specify a particular token indicating your interest in
using a single-buffered or a double-buffered pixel format, as seen in Table 11-1.
Typically, if you’re displaying data on screen, the only high-quality way to do so
is with double-buffered pixel formats. The primary reason for choosing double-
buffered drawing is to ensure that the user of your application doesn’t see image
“tearing,” a visual artifact that stems from the fact that your application drew
two partial images to the framebuffer as it was displayed. If your application
isn’t displaying data directly to the user, perhaps it is rendering graphics frames
in a nonvisible buffer, so a single-buffered pixel format may be the way to go.

Double-buffered, vertical blank synchronized applications can achieve a maxi-
mum frame rate that matches the refresh rate of the monitor on which the ap-
plication windows are displayed. This is a very important metric to be aware of,
because it means that even in the best case, you’ll still get only 60Hz on a mon-
itor with that refresh rate. Another consequence of this limitation when using
a double-buffered pixel format is that if your application takes one femtosec-
ond longer than a single frame (16.67 ms/frame) to draw, that frame will not
appear until the next swap boundary. Thus your application will be waiting for
almost a full frame for the swap to return. This effect is known as frame rate
quantization.

208 Chapter 11: Performance

Throughput

Throughput is another metric of performance that is related to frame rate but
is not dependent upon it. Throughput measures the data transfer rate that your
application achieves for a particular form of data. It is limited by the bandwidth
of the bus through which the data transfers. Some baseline transfer rates for the
main memory to graphics card path were described earlier in Chapter 2.

The best way to evaluate your application performance is to use the existing
Apple-written OpenGL throughput applications as benchmarks. These appli-
cations, which were written by Apple OpenGL engineers, will achieve max-
imum throughput, provide a number of switches and knobs that allow you
to experiment with different formats, and offer a benchmark with which you
can compare your application. The list of these applications available from
Apple’s developer website [4] is always evolving but two are particularly rel-
evant. The Texture Range sample application [7] is useful for examining and
comparing, as is the Vertex Performance Test application [8]. These two appli-
cations not only provide realistic estimates of performance rates but also are
available as source code. They provide examples of optimal coding techniques
and show you how to choose different techniques for rendering the same data.

Efficient Data Management Using Mac OpenGL
There are some commonalities between efficient handling of all kinds of data for
the Mac OpenGL implementation, whether the data is for vertices, pixels, or tex-
els. As mentioned earlier, the OpenGL specification allows for a lot of flexibility
for data and state management. At any time, an OpenGL application can query
the OpenGL server for a current state or data. From an application writer’s per-
spective, having this “data and state on tap” is convenient and relaxes the strict
need for the application to maintain its current graphics state. From an OpenGL
implementer’s perspective, however, this design imposes a great deal of over-
head because that data will likely need to be copied to make it readily available
to applications.

Another consideration along these lines is that for OpenGL entry points that
submit data to the drivers, the specification naturally requires that the imple-
mentation is finished accessing the data by the time the function returns con-
trol to the application. Take glTexImage2D(), for instance; by the time control
is returned to the application, OpenGL must have completed reading the tex-
els provided through this interface from the application address space. So if it
needs to comply with the specification, where does it put the texels? Does it
make a copy in host memory? Does it go to the kernel and ask for AGP space?
Does it just directly put the data into VRAM?

Efficient Data Management Using Mac OpenGL 209

The answer to each of these questions is “It depends.” But the important com-
mon thread is that a copy of the data is made. In many cases, if it makes sense,
multiple copies of the data are made. There may be a copy in the OpenGL frame-
work, one in the driver, and one in VRAM. All told, that’s four potential copies
of large data buffers.

The moral to this story can be summarized as follows: Efficient data handling
on the Mac means efficient use of memory by providing a clear usage model
of the memory to OpenGL using the available interfaces of both OpenGL and
Apple extensions.

Efficient Handling of Vertex Data
A Brief History of the Evolution of Submitting Vertices in OpenGL

The number of different ways to submit vertex information provided via the
OpenGL API through version 2.1 of the specification is staggering. From a per-
formance perspective, most of these methods are outdated. From a convenience
perspective, things are a bit more debatable.

Regardless of the outcome of the debate, the OpenGL ARB is convinced that
fewer “performance nooses” need to be present in the API. Over time, older
idioms will be purged from the API, leaving only the best practices intact.

Let’s start with the most primitive form of submitting vertex data in OpenGL:
use of immediate mode, as illustrated in Example 11-4.

Example 11-4 Immediate Mode Vertex Submission: Begin/End

// OpenGL context setup

glBegin(GL_TRIANGLES);
glVertex2i(0, 0);
glVertex2i(2, 0);
glVertex2i(1, 1);

// More batches of three vertices to follow for each
// triangle drawn ...

glEnd();

glFlush();

Taking this example apart, we can see its limitations. First, there is not only an
entire OpenGL function call to delimit the batch of triangles drawn but also
a function call for every vertex of those triangles! Furthermore, if this batch
of triangles represents a triangle mesh, all shared vertices are specified twice.
This immediate mode pattern typically is used for small batches of triangles

210 Chapter 11: Performance

such that the cost of handling the begin/end tokens in the OpenGL command
stream is relatively high when compared to the few triangles drawn to amortize
that cost.

A simple improvement in efficiency for this example is to replace the primi-
tive type GL TRIANGLES with the type GL TRIANGLE STRIP. This eliminates a
great deal of the submission of redundant shared vertices.

Even with triangle strips, there is a great deal of headroom for improvement. To
absorb the enormous function call overhead associated with the code in Exam-
ple 11-5, batch submission of vertices was added to the OpenGL interface. This
batching, which is known as vertex arrays, is shown in Example 11-5.

Example 11-5 Immediate Mode Vertex Submission: Vertex Arrays

// OpenGL context setup

// Preprocess vertex data as triangle strips into
// vertex buffer
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, vertex buffer);

// Draw triangle strip using ’n’ vertices of vertex Buffer
// starting at index 0
glDrawArrays(GL_TRIANGLE_STRIP, 0, n);

glFlush();

In both of the immediate mode examples, to draw the same data over again,
as with a static model, you must continually and redundantly send vertex
data over the bus or wire to the graphics device. Display lists were added to
OpenGL to allow reuse of data that was already submitted to a GPU and stored
in VRAM. Once the list has been specified, you can simply refer to the list
by ID to redraw it rather than resubmitting all of its often voluminous con-
tents. Display lists were the earliest form of retained mode rendering. Here’s an
example:

// OpenGL context setup

listID = glGenLists(1);

glNewList(GL_COMPILE, listID);

glBegin(GL_TRIANGLE_STRIP);
glVertex2i(0, 0);
glVertex2i(2, 0);
glVertex2i(1, 1);

// More batches of two vertices to follow for each
// triangle drawn ...

Efficient Handling of Vertex Data 211

glEnd();

glEndList();

// Now, as often as you wish, draw the list
glCallList(listID);

glFlush();

For static models, display lists yield an enormous performance gain because
they effectively eliminate the transfer of data between the host CPU and the
GPU. They also eliminate all of the internal copies and data management re-
quired for immediate mode vertex submission. Their drawbacks include the
space required to store the display list drawing commands in VRAM and the
inability to change the list contents if the data is dynamic.

Notice that the glBegin/glEndmethod of specifying polygonal data was used
in this example rather than the vertex array method cited earlier. Vertex arrays,
along with any other OpenGL client state, may not be used in display lists. As
a consequence, an OpenGL client application may reside in the address space
of one machine while the OpenGL server exists in the address space of another.
If a client address pointer showed up in a display list, the OpenGL server on
another system wouldn’t know how to resolve it.

Finally, we come to the latest and most general mechanism for submitting ver-
tices: vertex buffer objects (VBOs). VBOs are more sophisticated than other
retained mode or immediate mode rendering methods in that they provide
the performance benefits of display lists, yet support the dynamism of simple
immediate mode rendering.

When VBOs are created, they are initialized with parameters that character-
ize their anticipated pattern of use, which in turn allows the OpenGL imple-
mentation to allocate the most effective resources and choose the most effective
rendering paths for the data in the VBOs. Example 11-6 shows how to use VBOs.

Example 11-6 Immediate Mode Vertex Submission: Vertex Buffer Objects

// OpenGL context setup

// Preprocess vertex data as triangle strips into
// vertex buffer

// Create and bind a VBO ID
glGenBuffers(1, &bufID);
glBindBuffer(GL_ARRAY_BUFFER, bufID);

// Supply data to the VBO

212 Chapter 11: Performance

glBufferData(GL_ARRAY_BUFFER, VERTEX_CT, vertexBuffer,
GL_STATIC_DRAW);

glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, (char *) NULL);

...

// Now the VBO is initialized, when we’re ready to draw
// Bind the VBO for drawing
glBindBuffer(GL_ARRAY_BUFFER, bufID);

// Draw triangle strip using ’n’ vertices from the VBO
// starting at index 0
glDrawArrays(GL_TRIANGLE_STRIP, 0, n);

glFlush();

Notice that the glBufferData() call specifies GL STATIC DRAW to charac-
terize the usage of the VBO in Example 11-6. Notice, too, that the vertex
array nomenclature is used to characterize the memory layout of the VBO in
the same manner that it was used for vertex arrays. In this case, however,
glVertexPointer() is used not to specify the vertex data but rather to
specify an offset into the VBO data. For VBO usage in this example, we’re
simply specifying a zero offset and relying on the offsets implicit in the
glDrawArrays() call to access and draw the data of interest.

Modifying data in a VBO (it’s VBOs’ biggest advantage over display lists)
is done using one of three methods: glMap/UnmapBuffer(),
glBufferData(), or glBufferSubData(). In the case of glMap/
UnmapBuffer(), when the buffer is mapped, it may be modified by the
OpenGL application without concern for the state of drawing on that buffer.
Similarly, glBufferData() and glBufferSubData() can be used to directly
modify a VBO’s contents in much the same way that a call to glTexImage2D()
or glTexSubImage2D() would be used to modify a texture.

Which Methods Should You Use to Submit Vertices for Drawing?

As of OpenGL 2.0, you should consider methods of vertex submission other
than VBOs to be “syntactic sugar.” If you’re drawing 10 triangles on the screen
once, by all means use immediate mode rendering without vertex arrays. For
the rest of your applications, leverage VBOs and exploit their versatility and
performance. This approach will continue to pay dividends if you end up us-
ing the buffer object extension—the heart of VBOs—for pixel buffer objects
as well.

Efficient Handling of Vertex Data 213

Apple’s Methods of Vertex Submission, Past and Present

If you’re starting a new application, or if you’re porting a relatively modern and
well-written OpenGL application, there’s a good chance that you can just learn
the nuances of good VBO etiquette and forget about the now fairly complex
history of submitting vertices using Apple’s OpenGL implementation.

You may have noticed some limitations in the previous section with meth-
ods prior to VBOs for submitting vertices in OpenGL. Apple noticed them,
too, and responded with many of its own extensions to OpenGL. Thankfully,
most of these extensions are also recognized as necessary by the OpenGL ARB
and have been adopted into the specification core either directly or in some
other form.

If you wish to see an implementation of all methods Apple for submitting ver-
tices in the Mac OS, check out Apple’s VertexPerformanceTest application (see
http://developer.apple.com). This application provides a comprehen-
sive overview of different methods of submitting vertex data. Try not to get
too distracted by all the possibilities. Just use VBOs.

Vertex Array Objects

Vertex arrays are designed to accommodate a number of different types
of vertices, such as positional information, colors, texture coordinates, and
normals. Often it’s natural and, from an OpenGL perspective, efficient to
group the states associated with these arrays together. Consider a model
that includes positional information, texture coordinates, and normals. It’s
not very efficient to have to specify each of these pointers of these arrays to
OpenGL anew every time you draw a different model. We show this case in
Example 11-7.

Example 11-7 Inefficiencies of Not Using Vertex Array Objects

// Draw tortoise model
glVertexPointer();
glNormalPointer();
glTexCoordPointer();
glDrawArrays();

// Draw hare model
glVertexPointer();
glNormalPointer();
glTexCoordPointer();
glDrawArrays();

To remedy all of this redundant pointer setting, Apple introduced the Vertex
Array Object (VAO) extension. VAOs encapsulate all of the current vertex array

214 Chapter 11: Performance

http://developer.apple.com

state such that it can be simply recalled when needed to draw various objects in
a scene, as in Example 11-8.

Example 11-8 Using Vertex Array Objects

// Create and bind your VAO
glGenVertexArraysAPPLE(1, &tortoiseVAO_ID);
glBindVertexArrayAPPLE(tortoiseVAO_ID);
// Set up tortoise pointers
glVertexPointer();
glNormalPointer();
glTexCoordPointer();

// Do the same init sequence for the hare model ...

// Other stuff ...

// Now when you want to draw the tortoise
glBindVertexArrayAPPLE(tortoiseVAO_ID);
glDrawArrays(GL_TRIANGLE_STRIP, 0, n);

VAOs will likely evolve into the OpenGL core specification in some form or
another and are a good complement to using VBAs.

Vertex Array Range

Prior to VBOs, Apple introduced the Vertex Array Range (VAR) extension. VAR
has two key aspects that benefit the performance of vertex submission. First,
this aggregating extension improves the efficiency of mapping regions of mem-
ory dedicated to holding your vertex data. Second, VAR allows you to make
piecewise modifications to vertex arrays and to subsequently flush those spe-
cific changes up to the GPU. Suppose you have a vertex array with 10MB of
data that contains the vertex information for 10 different models in a scene. If a
user of your application modifies one of the 10 models, ideally your application
should modify the corresponding vertices of that single model and then send
the changes for that model over to the GPU. Without VAR, the vertex array is
treated atomically with regard to flushing the data to the GPU, leading to a great
deal of unnecessary bus traffic.

It’s somewhat ironic that this extension’s name does not generally denote its
most powerful feature. Along with the ability to modify and flush subregions
of a vertex array, the VAR extension allows you to characterize the usage of
vertex data, much as VBOs do, allowing the OpenGL driver to avoid making
unnecessary copies of your vertex array data. For instance, if the data in a vertex
array is static, it’s best to cache it in VRAM and eliminate any other copies the
driver may otherwise need to maintain. Example 11-9 demonstrates how we
might draw static vertex array data.

Efficient Handling of Vertex Data 215

Example 11-9 Using Vertex Array Range

// Standard vertex array setup
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, stride, vertexBuffer);

// Tell OpenGL data is mostly static so hang on to it in VRAM
glVertexArrayParameteriAPPLE(

GL_VERTEX_ARRAY_STORAGE_HINT_APPLE,
GL_STORAGE_CACHED_APPLE);

// Set up the VAR
glVertexArrayRangeApple(arrayLength, vertexBuffer);

// Tell OpenGL the data has changed so it knows it needs
// to upload it to the card
glFlushVertexArrayRangeAPPLE(arrayLength, vertexBuffer);

Notice that glVertexArrayParameteriAPPLE() is the key to characterizing
the vertex array memory and avoids unnecessary data transfers and copies. For
dynamic data, you can use the parameter GL STORAGE SHARED APPLE rather
than GL STORAGE CACHED APPLE. This powerful configuration instructs the
GPU to fetch vertex data directly from your application, making no interme-
diate copies along the way.

In any case, using VAR requires more smarts that regular vertex array
semantics. The VAR extension requires that you tell OpenGL when you’re
modifying data and when you’re finished with it. Unlike glFlush(),
glFlushVertexArrayRangeAPPLE() simply marks a region of memory as
modified (or “dirty” in driver-speak). To guarantee coherency of the data, you
must use either the Apple Fence extension (which will likely work its way into
the OpenGL core in the future) or a more heavy, club-handed way of guarantee-
ing coherency by calling glFinish().

Using Apple Fence is quite simple. Example 11-10 shows the use of fences with
Apple Vertex Array Range.

Example 11-10 Apple Fence Extension

GLuint drawCompleteFence;

void init()
{

glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY_RANGE_APPLE);
glVertexArrayRangeAPPLE(allocSize, vtxCoordArray);
glGenFencesAPPLE(1, &drawCompleteFence);

}

void draw()
{

216 Chapter 11: Performance

for(i = 0; i < vtxCt; i += stripCt)
glDrawArrays(GL_TRIANGLE_STRIP, i, stripCt);

// Set a fence here so that when we modify the
// data later, we can verify that drawing with this
// data has completed.
glSetFenceAPPLE(drawCompleteFence);

}

void modifyData()
{

glFinishFenceAPPLE(drawCompleteFence);

// Modify all or some portion of the data knowing
// that there are no pending drawing commands for
// the previous contents of that data.
glFlushVertexArrayRangeAPPLE(vtxCoordCt * sizeof(GL_FLOAT),

vtxCoordArray);
}

void main()
{

init();

while(!done)
{

draw();
modifyData();

}
}

In Example 11-10, glFinishFenceAPPLE() will block all operation until all
drawing has completed on the vertex array. In short, the VAR extension allows
more asynchronous behavior between CPU and GPU, permitting them to be
concurrently busy more often with less blocking, and effectively getting more
work done.

Historically, if you were an attendee at Apple’s WWDC Conference, or if you
have been an Apple Developer Connection member for some time, you may
have seen OpenGL performance talks that advocated the double buffering of
vertex data using the VAR extension. This method relies on VAR to provide the
asynchronous behavior needed to modify one copy of the data while drawing
with another. Example 11-11 shows the steps and stages involved to employ this
double-buffering technique with the APPLE vertex array range extension.

Example 11-11 Double-Buffering Vertex Data Using the APPLE vertex
array range Extension

// Specify a number of VERTICES that will by 4 KB
// page aligned. We’re using 4 byte floats for
// the vertices below so we will be page aligned.

Efficient Handling of Vertex Data 217

#define VERTICES 1024

// Define number of bytes for vertex data in our
// hypothetical model.
//
// GLint MODEL_BYTES = vertex_count * 3 (one for x, y, & z) *
// sizeof(GLfloat);
#define MODEL_BYTES (VERTICES * 3 * sizeof(GLfloat));

// Pointer to our vertex data buffer
GLfloat *vertexData;

// Drawing fence for coherency
GLuint drawingFence1, drawingFence2;

// Typical init routine for setting up double buffering VAR
void InitVAR()
{

// Multiply MODEL_BYTES by 2 to double buffer.
GLint totalBytes = MODEL_BYTES * 2;

// Create 2 duplicate sets of vertex data arranged
// sequentially in memory. We’ll have both copies of our
// model stored in this one buffer.
vertexData = (GLfloat *) malloc(totalBytes);

// InitModelData is a hypothetical routine to initialize our
// model data
// Initialize first copy of vertex data
InitModelData(MODEL_BYTES, vertexData);

// Initialize second copy of vertex data
// (offset 1/2 way into the vertexData buffer)
InitModelData(MODEL_BYTES,

vertexData + MODEL_BYTES / sizeof(GLfloat));

// Our data is dynamic, so specify the memory is SHARED
// (AGP mapped)
glVertexArrayParameteriAPPLE(

GL_VERTEX_ARRAY_STORAGE_HINT_APPLE,
GL_STORAGE_SHARED_APPLE);

// Configure the VAR
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY_RANGE_APPLE);
glVertexPointer(3, GL_FLOAT, 0, vertexData);
glVertexArrayRangeAPPLE(totalBytes, vertexData);
glFlushVertexArrayRangeAPPLE(totalBytes, vertexData);

// Create drawing fence
glGenFencesAPPLE(1, &drawingFence);

}

// Update routine for animating vertices in buffer

218 Chapter 11: Performance

void UpdateBuffer(GLuint fence, GLint first, GLint length,
GLfloat *currentVertexBuffer)

{
int i;

// Insure that we’re through drawing with the memory holding
// the vertices we’re about to update.
glFinishFenceAPPLE(fence);

for(i = 0; i < length; i++)
// Modify contents of currentVertexBuffer here

// Mark our updated region as modified so OpenGL knows how to
// establish coherency for drawing.
glFlushVertexArrayRangeAPPLE(length,

currentVertexBuffer + first * 3);
}

// Typical draw routine for setting up double buffering VAR
void Draw()
{

static unsigned int currentBuffer = 0;

if(!currentBuffer)
{

glDrawArrays(GL_QUADS, 0, VERTICES / 2);
glSetFenceAPPLE(drawingFence1);

// The first half of the buffer is now drawing so update
// the second half.
UpdateBuffer(drawingFence2, VERTICES / 2, VERTICES / 2,

vertexData);
}
else
{

glDrawArrays(GL_QUADS, VERTICES / 2, VERTICES / 2);
glSetFenceAPPLE(drawingFence2);

// The second half of the buffer is now drawing so update
// the first half.
UpdateBuffer(drawingFence1, 0, VERTICES / 2, vertexData);

}

currentBuffer = ˜currentBuffer;
}

// Typical clean-up / state reset routine for a VAR
// implementation.
void CleanUp()
{

glVertexArrayRangeAPPLE(0, NULL);
glDisableClientState(GL_VERTEX_ARRAY_RANGE_APPLE);
free(vertexData);

}

Efficient Handling of Vertex Data 219

This example shows a natural usage of the VAR extension. We’ve written pseu-
docode for this example because, like many of the other snippets, it describes
the way things used to be done on OS X. With the introduction of VBOs and the
APPLE flush buffer range extension, this same strategy can be employed
using the more modern and OpenGL standard VBO interface.

Using VBOs on OS X

As stated earlier, VBOs are the way to go for modern OpenGL applications.
They have been designed with all the flexibility and all of the performance ben-
efits associated with previous methods of vertex submission in OpenGL. We
will not go into details on using VBOs; these points are well covered in the
OpenGL specification and supporting documentation. We will highlight a few
things about them here, however.

Aside from the characterization of usage for VBOs when you initialize them,
you may notice that some of the relatively complex methods employed to obtain
top-notch performance on OS X become quite simple using VBOs. For instance,
the vertex double-buffering scheme described earlier is nearly free of charge:
You simply use two VBOs, each of which holds a copy of the same data. You
update the first copy of the data in the first VBO with glBufferData() and
then draw with it. You do the same thing with the second copy of the data in the
second VBO. As you switch between the two VBOs to modify and draw your
vertex data, in time you will get similar results as with double-buffered vertex
data using VARs.

Using two VBOs in this way relies on some implicit behavior of OpenGL to
achieve the same asynchronous gains that you would enjoy using VAR. No-
tice that using this method you’ll encounter some copying overhead when you
call glBufferSubData() to update the buffers as you march along. To avoid
this copy, and to precisely mirror the VAR double-buffer method using VBOs,
you can use the APPLE flush buffer range extension. This extension gives
you the most fine-grained control over your double-buffering strategy. Dou-
ble buffering with APPLE flush buffer range entails using a single ver-
tex buffer object with a usage value of GL DYNAMIC DRAW that is passed into
glBufferData(). Specifying GL DYNAMIC DRAW is equivalent to specifying a
vertex array storage hint of GL STORAGE SHARED APPLE. It maps your VBO
into AGP space, allowing the GPU to fetch vertex information directly from
your application-allocated buffer and thereby avoiding the copy described in
the two-VBO approach.

As with the VAR double-buffer approach, the APPLE flush buffer range
extension allows you to independently flush (mark as modified) the two halves
of your VBO, each of which contains a copy of your model’s vertex data.

220 Chapter 11: Performance

Again, this doubling-up strategy increases the asynchronicity between the CPU
modifying vertex data and the GPU drawing it.

We’ve prepared an extensive example that you can use to experiment with some
of the different modalities of updating and drawing with VBOs in our source
examples folder. Unlike most of the examples included with this book, the
vertex submission example contains a relatively large application to cover
the various possibilities in submitting vertices efficiently. It allows you to switch
between a single large VBO for double buffering or two small ones. When
using a single large VBO, you may also turn on the APPLE flush buffer
range extension.

The vertex submission example allows you to increase the complexity of
the model to load your system differently as well. NSSlider widgets permit
you to modify the width and height of the model, which, as you can see in the
logic, will increase the demand of the CPU to compute updated color vertices.
You may also increase the depth value of the cube. This parameter essentially
controls how many planes of GL QUADS are drawn. By increasing the depth
parameter, you force the GPU to fill more polygons, thereby shifting the perfor-
mance bottleneck away from the CPU and toward the GPU.

You should have fun playing with and modifying the vertex submission ex-
ample and watching the CPU history on OS X’s Activity Monitor applica-
tion, which is found in the /Applications/Utilities folder. Try increasing
the width/height parameter and watching the effect on CPU usage. Figure 11-1
shows one possible configuration of this example. Clicking the Test button in
the interface will provide a consistent performance measurement as it tumbles
the model in space and updates the Frame Rate field upon finishing. The fact
that the routine that modifies the vertex data and the fact that GL QUADS is used
rather than GL QUAD STRIPS are efforts to make the updates more costly and
push on the CPU harder. Again, the point of this example is to load the system
in various ways and move the performance bottleneck around so that you can
get a feel for how to manage vertex submission in your own applications.

Efficient Handling of Texture Data
Many applications are far more texture intensive than vertex intensive these
days. Here are some things to keep in mind when you are handling large quan-
tities of texture data.

Formats and Types

The number of pixel types and formats in OpenGL has been on the rise since
its inception. This increase has been driven, to a large extent, by scientific and
entertainment visualization work in which the data is acquired from a device

Efficient Handling of Texture Data 221

Figure 11-1 Vertex Submission Example Application

that works natively with the pixel format. The video acquisition of YCBCR-
formatted data is a good example. Another is high-fidelity single-component
pixel data used for medical imaging. In Mac OS X, there are about two dozen
pixel types; more than a dozen pixel formats can be specified for OpenGL.

Consider the architecture of OpenGL on the Mac OS with regard to handling
pixel data: The Mac OS implementation provides an abstraction layer over mul-
tiple types of graphics hardware, each with its own capacity for handling var-
ious types of pixel data. If an application requests a pixel format/type pairing
that cannot be handled natively by the graphics hardware, the hardware driver
will make a request of the Mac OS OpenGL layer to convert the pixel data from
the requested format into the hardware’s native format.

222 Chapter 11: Performance

Depending on your application’s performance needs, this can be a very expen-
sive operation indeed! Imagine that you’re uploading a stream of pixel data to
the graphics card, but instead of free flowing at close to PCI-express limits be-
tween system memory and graphics device, it stops to perform a format/type
transformation on the way there. At best, you’ve introduced a memcpy of the
pixel data into your pixel path. At worst, the conversion is a very expensive one
and is costly just from a CPU time perspective.

Determining which effective path you’re on for the pixel format and type you’re
using is a matter of measuring the performance. The large matrix of changing
possibilities between what the graphics hardware desires and which paths are
tuned within the OpenGL framework is an unbounded problem over time. In a
macroscopic sense, measuring OpenGL performance in general falls in the same
category. It must be benchmarked.

The key to high-performance drawing with pixel data is to match the most com-
mon formats and types of the graphics hardware such that a format/type trans-
formation does not take place. The tricky part is that the precise formats/types
that are handled natively are not very well published.

As a rule, the canonical 4-component, 8-bits-per-component types are very well
served. For any hardware made as recently as 2001, both ATI and NVIDIA
graphics hardware natively support GL BGRA, GL UNSIGNED INT 8 8 8 8 REV
pixels. They will also handle GL RGB and GL RGBA formats with the type
GL UNSIGNED BYTE. The 2001 cutoff date is somewhat arbitrary, of course. It’s
mostly a date chosen to represent “reasonably new” hardware that gives a great
deal of coverage for the Mac computers that are running OS X.

For 16-bit formats, graphics parts from both vendors have an affinity for
the GL UNSIGNED SHORT 1 5 5 5 REV type with a type of GL BGRA. They
also natively support the 16-bit YCBCR format with a gravity toward the
GL UNSIGNED SHORT 8 8 REV APPLE type. This type is essentially meant for
high-streaming performance to the graphics device for video feeds.

The very latest and highest-performance discrete graphics chips will handle
4-component, 32-bit single-precision floating-point pixels or texels throughout
the pipeline without costly conversions.

Pixel Pipeline and Imaging Subset State

In addition to the state involved with formats and types, the performance of
pixel data throughput will greatly be affected by any pixel transform state
that is enabled in the OpenGL pixel pipeline. The OpenGL 1.0 specification in
combination with the imaging subset state yields numerous stages in the pixel
pipeline for applying scales, biases, lookups, color matrices, convolutions, and
so on. If these “non-default” states are enabled, your pixel upload performance

Efficient Handling of Texture Data 223

will very likely suffer simply because these states are rarely used and, therefore,
are not represented in the silicon of the graphics hardware installed on the sys-
tems. As a result, these stages take the pixel upload off the fast path and require
modification by the CPU.

Alignment Considerations

It is quite important on any modern CPU architecture to pay attention to
pixel data alignment. Alignment is such an important consideration that, in the
opinion of the authors, it more often than not usurps video memory usage as a
primary performance consideration.

The most common misconception is the notion that, because alpha is not
needed, the developer should use RGB pixels rather than RGBA pixels to save
space. This does, indeed, save space in host memory, but it may not save any
space in VRAM considering that the silicon contains pathways for all four com-
ponents and doesn’t really care whether you are using all four as far as per-
formance is concerned. I can’t recall the last time I witnessed an application
running faster with RGB pixels than with RGBA pixels.

The worst part of the RGB pixels is the alignment. They are 3 bytes long—need
we say more? Thinking out loud: “Let’s see, how many RGB pixels fits in a
16-byte SIMD register?” Answer: 51/3. Not much logic works on 51/3 pixels at a
time, so there definitely needs to be some slower, special-case handling of these
pixel fragments when you invoke any transformation logic that uses the vector
units. You can be certain that as far as vector processing is concerned, it’s a lot
faster to handle 4 pixels atomically than it is to handle 51/3 pixels piecemeal.

The other alignment consideration is the base address of your pixel buffer to
OpenGL. Is it 16-byte aligned? Unless you’ve done something to tweak the
pointer, it should be. Malloc on OS X always returns 16-byte-aligned addresses
in the worst case. For allocations exceeding a page size, the malloc returns page-
aligned addresses.

What else can affect alignment? How about using glPixelStore() to affect
the unpacking of your pixel data? If your pointer address is aligned on a 16-byte
boundary and you specify a GL UNPACK SKIP PIXELS value of 3, then your
base address is effectively on a 12-byte boundary when you are using 4-byte
pixels.

Another performance problem can result if you have specified a GL UNPACK
ROW LENGTH that is greater than the image size. In this case, if you have a
base address in the image somewhere in this big buffer that is 16-byte aligned,
and the image dimension is, for example, 9 RGB unsigned byte pixels wide,
then the right end of each scanline of the image is 27 bytes past the beginning.
Because the buffer is not tightly packed in memory using the big row length,

224 Chapter 11: Performance

this non-aligned, ragged, 27-byte-aligned right side of each scanline of the im-
age will require special (in not so politically correct terms, “slow”) handling.

Textures
More than 5400 valid combinations of texture formats, types, and internal for-
mats can be specified via glTexImage() calls of OpenGL on the Mac OS. A
great deal of engineering has been done to increase the effective texture upload
performance on the Mac. If, however, you don’t choose wisely on your internal
format and external format/type, your texture upload performance may fall
victim to the same pitfalls described for the pixel format/type transformations
discussed in the previous section. Certainly, any pixel pipeline state that would
cause glDrawPixels() or glReadPixels() to be slow may have the same
effect on your texture upload performance.

Recall that the internal format parameter of a glTexImage() call is a format
“request.” That means the implementation will try to honor it but does not have
to. Ultimately, the request will be honored if the graphics hardware natively
supports the requested format. Note, however, that the fact that the graph-
ics hardware natively supports an internal format does not mean the texture
upload performance for the requested internal format will be fast. It may
undergo an expensive CPU transformation to go from the format/type to the
native internal format.

Compressed Textures

Graphics hardware from both ATI and NVIDIA supports S3TC compressed
types natively but not compression of other formats into these S3TC types in
hardware. If you specify a compressed internal format along with an uncom-
pressed external format, your texture data will undergo compression on the
CPU before it is handed off to the GPU.

The Mac OS texture compressor offers very high performance—at least 60MB/s
per CPU core—on modern Mac systems. Although this is a very high num-
ber, it is not comparable to the realizable upload bandwidth of PCI Express,
which exceeds 2GB/s. If the cited numbers satisfy your texture upload per-
formance requirements, you’re free to use OpenGL to compress your textures
on upload. If not, it is advisable to pre-compress your textures and use the
glCompressedTexImage() API to upload them.

Alignment Considerations

On the upside, the precedent for having power-of-two-sized textures relieves
some of the alignment problems you might see in the pixel paths. On the

Textures 225

downside, texturing can aggravate the alignment problem when you are doing
glTexSubImage() calls. By its very nature, glTexSubImage() replaces an
arbitrary region of pixels within the texture. The curse word in the previous
sentence is “arbitrary” when it comes to alignment concerns.

In short, you should try to subtexture such that the replacement of texels falls
on natural alignment boundaries if possible. Sometimes it can’t be done, but it’s
always worthy of consideration.

Shaders
Shader performance, like many features of OpenGL, depends on the gen-
eration of graphics hardware used. The introduction of shaders meant that
graphics hardware had to transition from fixed-function silicon, to hybridized
silicon consisting of both fixed-function and programmable silicon, to all-
programmable silicon. On modern graphics hardware, a fixed-function state is
handled using programs that are generated by the framework and/or driver
when that state is specified through the API.

There is a fair amount of residual wisdom from the hybridized time, when it
made sense to use fixed-function state wherever possible for performance rea-
sons. The confusion was somewhat compounded by the different paths chosen
to implement programmability by the different graphics vendors. Fortunately,
the industry has since found good footing with GLSL. R300- and NV30-class
hardware and better generally produce the same performance results for pro-
grams encoding what used to be a fixed-function state in shader programs.
Programmability is here to stay, and it seems likely that performance efforts
for shaders will at least keep pace with what had been traditionally known as
fixed-function state.

Aside from the performance comparisons of shaders versus fixed-function state,
all of the standard rules apply when you are dealing with shaders. In general,
you should avoid state changes whenever possible. With the introduction of
GLSL, and its stages of specifying, compiling, linking, and using shader pro-
grams, the need to minimize state changes in this area should be obvious.

Tools
Apple, as a company, is committed to a great platform experience. As a user,
this means an intuitive interface, consistency between applications, good aes-
thetic choices, and so forth. As a developer, platform experience is about great
tools that offer all of these same merits. OS X has really hit its stride as a great
development and tuning platform, and the proof is in the development tools
provided for it.

226 Chapter 11: Performance

System Tools

Shark

Shark, formerly known as Shakiri, is a system performance characterization
tool. Shark allows numerous types of statistical sampling of virtually anything
running on your system. If your binaries have not had their symbols stripped
away and your source files are available, Shark profiles can correlate perfor-
mance sampling values at the source and assembly levels. This tool will show
you the breakdown of time spent in your application, time spent in system li-
braries, and even time spent in the Mach kernel. Shark is capable of sampling
either PowerPC or x86 binaries, and it can provide valuable information on your
application’s performance on those different hardware architectures.

Getting useful information from Shark couldn’t be any easier:

1. Start your application.
2. Start Shark.
3. Click the Start button.
4. Time elapses . . .
5. Click the Stop button.

At this point, Shark will generate a table showing sampling times for the rou-
tines used in your application’s call stacks.

Using Shark is a snap in its simplest form (as described above). Becoming an
expert on all the intricacies of Shark is another matter, however. Thankfully,
most developers merely need to scratch the surface of Shark’s capabilities. For
those interested in more detail, the Shark user manual is an excellent resource;
you’ll find lots more information there. Suffice it to say that if you are suffering
a performance problem in your code, Shark is the most comprehensive tool for
examination and evaluation of those problems.

Activity Monitor

Activity Monitor is useful for monitoring the CPU activity of your ap-
plication. One favorite feature in this tool is the ability to switch the icon
view in the dock to CPU history. You’ll notice that both bars show activity on
single-threaded applications that use the multithreaded OpenGL engine. In fact,
Activity Monitor is a good tool to verify that you’ve successfully enabled
this engine.

Activity Monitor is also useful for sampling applications. In particular, if
you see an application hang and wish to report it to Apple, use Activity
Monitor to sample the hung process and submit your sample to Apple in the
bug report.

Tools 227

Quartz Debug

Quartz Debug allows for configuration and debugging of settings for the
Quartz window server. Some of the more interesting features you’ll want to
check out are the Window List tool and the User Interface Resolution tool. The
User Interface Resolution tool allows you to emulate displays having different
resolutions. As resolution independence is a standard feature of Leopard, it is
very important to qualify your application.

Graphics Tools
OpenGL Profiler

The OpenGL Profiler is probably the best thing about developing OpenGL ap-
plications on Mac OS X. This diagnostic tool is best in class for evaluating the
OpenGL state behavior of your application or, perhaps even better, for analyz-
ing another OpenGL application that you have to debug!

When OpenGL Profiler reached version 3.0, it really hit its stride. This marked
improvement over the version 2.x series boasts a greatly improved interface and
reliable “attach to” functionality for running applications.

OpenGL Profiler Main Window

For our tour of this application, let’s start with the main start-up window. We’ve
expanded the “Launch Settings” arrow for Figure 11-2.

You will probably find the “Launch Settings” drop-down menu of greatest in-
terest. This menu provides an incredibly powerful feature—the ability to test
the behavior of your application against graphics devices other than the one
installed in your system. In addition, this menu allows for a quick, easy com-
parison of the behavior of your application with the Apple Software Renderer.
This is a great thing to check out if you suspect there is a bug in the OpenGL
software itself. If the output is different, it probably indicates the presence of a
bug you should report to Apple.

Also notice the “Use custom pixel format” check box. This option allows you
to build a custom pixel format so that you can do a quick comparison of your
application with a different pixel format configuration.

There are two modes of operation for profiling: launching the application from
Profiler and attaching to a running application. When an application is launched
from Profiler, it retains the history of the application and its arguments for use in
the future. It’s a simple session mechanism but is often overlooked in other ap-
plications even though it is immensely useful. Adding or deleting applications

228 Chapter 11: Performance

Figure 11-2 OpenGL Profiler Main Window with Launch Settings Open

from the launchable list is done using the plus and minus icons. If you select the
“Attach to application” option, the launchable application list will switch to a
list of currently running processes that are candidates for being attached to.

Now, let’s go through the Views menu in Profiler, which is where we find the
substance of the application.

Breakpoints View

From the authors’ perspective, the Breakpoints view is the mothership of all
views (Figure 11-3). It is here that OpenGL Profiler steps out of the realm of
being a mere analysis tool and becomes a full-fledged debugger. The power of
Profiler is realized when the Breakpoints view is used in conjunction with the
other views to refine logical or performance problems in your application.

First things first: What’s the worst thing about OpenGL error state management
from a developer’s perspective? If you answered this question the way many
others do, you said, “You can’t tell where the error occurs without instrument-
ing the code with glGetError() calls.” The Breakpoints view allows you to
break on a GL error. When one occurs, you get a stack trace and the precise GL
function that generated the error—solid time saver, indeed.

Graphics Tools 229

Figure 11-3 OpenGL Profiler Breakpoints View

The next most useful thing in the authors’ opinion is the ability to delimit frames
of rendering with breakpoints. Most OpenGL applications follow a cycle in
making GL state changes that starts at the beginning of a rendered frame and
ends at the end of the rendered frame. Very often, all state changes that need to
be evaluated when debugging or doing performance evaluation will occur in a
single frame.

If you look at the Breakpoints view, you’ll notice that CGLFlushDrawable is
set in a bold font. This is because it is so special! CGLFlushDrawable is the
OS X version of swapping buffers and indicates that a frame has completed
rendering. Here’s where the combination of view usage becomes useful: By set-
ting a breakpoint before CGLFlushDrawable, clearing the Trace and Statistics
views, and then clicking “Continue” to resume execution, you will get precisely
one frame’s worth of GL function calls as a trace and as a collection of statistics.
This often simplifies the debugging and performance process such that it yields
the essential information only without any duplicate state changes.

In addition to collecting the trace and the statistics, the Breakpoints view pro-
vides state change information since the last breakpoint was encountered. If you
click the “State” tab on the rightmost pane of the Breakpoints view window,
all GL state settings that have changed since the last breakpoint was encoun-
tered will appear in a red typeface. All unchanged states remain in the normal
black typeface. This distinction allows you to quickly review state changes for a

230 Chapter 11: Performance

frame. You may be surprised at how often you see state changes that you hadn’t
anticipated.

Now we leave the raw utility class of operations in the Breakpoints view and
get to the “it’s just plain cool” functionality. Specifically, the Breakpoints view
allows you to execute a script before or after each invocation of a specified GL
function. Generally speaking, there’s no way to upload new data to GL in the
same way an application can with memory buffers, but you can make any GL
function calls that modify the GL state machine.

Let’s consider an example. Suppose you have a rendering logic problem be-
tween a call to glTranslated() and a call to glLineWidth(). You could at-
tach a script to be executed after the call to glTranslated() to set the current
color to green. You could then attach a script to be executed before the call to
glLineWidth() to set the current color to white. After attaching these scripts
and continuing execution, you would know that all geometry rendered in green
was subject to the logic problem and all geometry rendered in white was not.

Aside from GL function and GL error breakpoints, the Breakpoints view allows
breaking on thread conflicts and vertex array range errors. Thread conflicts oc-
cur when multiple threads concurrently modify the same GL state. This often
arises with multithreading and the use of NSOpenGLViews that internally must
modify GL state. These implicit state modifications are often not anticipated by
users of this Cocoa class.

Statistics View

The Statistics view accumulates and displays statistics on a per-GL-function
basis (Figure 11-4). This view is useful in characterizing your application’s usage
patterns related to the OpenGL API. Often, having this information yields sur-
prises and allows for reworking the application to achieve better performance.

For each OpenGL function called, both the execution time and the percentage of
time spent inside the implementation to execute the call are shown. Generally
speaking, if the percentage of time spent inside OpenGL is large, it indicates
that the logical path being followed for your usage of the GL function is subop-
timal. Large percentages of time spent in GL generally indicate a great deal of
intermediate processing of the vertex or pixel/texel data before it is uploaded
to the graphics hardware. This is known as being “off the fast path.”

Trace View

The Trace view allows you to record all OpenGL calls for your application on
a per-context basis (Figure 11-5). You can then filter the trace and save these
results. One of the more informative exercises using the Trace view is to set
a breakpoint in CGLFlushDrawable and continue to capture a single frame’s

Graphics Tools 231

Figure 11-4 OpenGL Profiler Statistics View

worth of tracing data. The key difference regarding what the Trace view can pro-
vide you relative to what the Statistics view can deliver is the order of OpenGL
calls, which, of course, can make all the difference when it comes to performance
tuning.

Figure 11-5 OpenGL Profiler Trace View

232 Chapter 11: Performance

Resources View

The Resources view allows inspection of textures and vertex or fragment pro-
grams that have been submitted to the GL API (Figure 11-6). The ability to in-
spect these resources can be immensely valuable in debugging. If, for instance,
a texture image has been procedurally generated and has never been viewed
prior to being applied as a texture, you can evaluate the data in its raw form
before its application as a texture to geometry and any transformations it may
have undergone in the process. This can assist you in deciding whether render-
ing anomalies are a result of the texture generation/loading process or rather
are part of the rasterization process.

Figure 11-6 OpenGL Profiler Resources View

Graphics Tools 233

Figure 11-7 OpenGL Pixel Format View

Pixel Format View

The Pixel Format view is a nice time saver. It shows a comprehensive list of
pixel format attributes for each context of the currently attached or launched
application (Figure 11-7).

Buffer View

The Buffer view allows inspection of the various planes that constitute a GL
framebuffer (Figure 11-8). At present these include the back buffer, the alpha
buffer, the depth buffer, and the stencil buffer. It will be interesting to see how
this view changes with the use of framebuffer objects and stereo rendering.

Scripts View

The Scripts view allows composition and saving of scripts (Figure 11-9). These
are attached to and executed before or after breakpoints.

234 Chapter 11: Performance

Figure 11-8 OpenGL Profiler Buffer View

OpenGL Driver Monitor

The OpenGL Driver Monitor is used to monitor various parameters of the
graphics devices available on your Mac (Figure 11-10). To use this tool, first
choose a driver from the Monitors menu, Driver Monitors submenu. Next, click

Figure 11-9 OpenGL Profiler Scripts View

Graphics Tools 235

Figure 11-10 OpenGL Driver Monitor

the “Parameters” button at the bottom-right corner of the main window. You’ll
see a long list of anything you could want to know about data traffic, resource
allocations, and various other parameters of the driver. One parameter of partic-
ular interest is “CPU Wait for GPU,” which tells you whether your application
is GPU bound and your application is stalled waiting for a response.

Driver Monitor also allows you to check the video memory currently available.

Pixie

Pixie is a tool that magnifies a portion of the screen (Figure 11-11). You can select
a multiplier to vary the degree of magnification. Pixie is a great tool for inspect-
ing individual pixels of your graphics application window.

236 Chapter 11: Performance

Figure 11-11 Pixie

Putting It All Together
In this section, the rubber meets the road. We’re going to guide you through a
performance-tuning example that incorporates many of the tuning techniques
introduced in this chapter. The example is called please tune me, and you
will find it in the examples folder that accompanies this book. In this folder
are six source files, ptm1.c through ptm6.c. They feature an increasing level
of optimization, with ptm1.c being the baseline and performing poorly and
ptm6.c performing very well.

Each stage of optimization is a response to many of the most common
performance-tuning questions and problems discussed on the Mac OS X
OpenGL list. It’s quite worthwhile to follow this example incrementally through
every stage.

We encourage you to use Apple’s stellar Filemerge tool to compare successive
versions in this series of examples. This will make the changing code easy to
follow.

About Please Tune Me

Please Tune Me may beg the question, “Why so complex?” The answer: be-
cause it’s a more comprehensive approach to looking at performance tuning.
By taking a naive implementation of an application that does more than draw a

Putting It All Together 237

triangle to the screen, we’re hoping to guide you through an environment that
is a closer match to real-world performance tuning.

Please Tune Me goes heavy on texturing and geometry to give it some real-
world weight. Here’s some pseudocode describing this application:

• Create a color gradient texture for the textured quad mesh referenced below.
• Clear the entire application window with alpha set to 0.0.
• For some number of iterations, do:

– Set the viewport to the left half of the application window.

– Draw a randomly placed quad with an alpha value of 1.0.

– Draw a textured quad mesh such that it fills the entire viewport.

– Use blending to discard all fragments from the mesh rendering that do
not lie within a previously drawn quad (where the framebuffer alpha is
now 1.0).

– Set the viewport to the right half of the application window.

– Source the left half of the window (random quads/mesh) as a texture.

– For all remaining texels of this texture that are still black:

∗ Apply a gray color ramp to the texture.
∗ Draw a teapot using texgen to apply the texture.

As the application runs, the teapot goes from gray, to a patchwork of textured
regions and gray, to fully textured. A snapshot of this application can be seen in
Figure 11-12.

Please Tune Me 1

Let’s get started with ptm1.c. Compiling and running this example on our test
system, we get less than 1

2 a frame per second performance. Let’s use OpenGL
Profiler to figure out where our application is spending its time. Please note
that in all example uses of Profiler, your results will vary from our test system
to some degree. The results should be similar to Figure 11-13.

Notice the monsterous 89 percent of our time being spent in glBegin(). You’ll
often see a disproportionate amount of time devoted to glBegin() because
of deferred validation. Notice, too, the 6 percent chunk at glTexImage2D().
This 6 percent is the time required to copy the texture data from application
memory to OpenGL memory. Recall that OpenGL must keep copies of your
data to be in compliance with the specification unless some extension relaxes
that requirement (which many Apple extensions do).

The 89 percent time spent at glBegin() is primarily due to programming
mistake numero uno in ptm1.c: use of a texture type that is not native to

238 Chapter 11: Performance

Figure 11-12 Performance-Tuning Exercise Application: Please Tune Me

the graphics hardware. In ptm1.c’s case, this texture type is GL UNSIGNED
SHORT 4 4 4 4. Often OpenGL programmers will use packed types such as
this because they don’t require the fidelity of 8 bits per component and
wish to save space. However, because this type is not native to the hard-
ware, a very costly transformation needs to take place to translate this data
into a hardware native form. This costly transformation is happening at
glBegin() time because that is when you first use the texture.

Figure 11-13 ptm1 OpenGL Statistics

Putting It All Together 239

Figure 11-14 ptm2 OpenGL Statistics

Please Tune Me 2

Moving on to ptm2.c, we’ve remedied the texture type problem by replacing
GL UNSIGNED SHORT 4 4 4 4with GL UNSIGNED BYTE. Again, we have twice
the storage requirements but the type is hardware native. Running ptm2 on our
test system, we see more than one frame per second: Not earth-shattering, but a
200 percent improvement at least over the performance of ptm1.

If we’re going to shatter earths, we need to keep tuning. Figure 11-14 shows an
OpenGL Profiler look at ptm2.

Notice that the landscape has changed profoundly. As you improve certain
areas of the code, other areas that were previously minor, such as the
glTexImage2D() call at 6 percent become significant. We’ve reduced our
glBegin() hit to 39 percent, but now our glTexImage2D() call has ballooned
to 39 percent. We also have a new player in the list: glVertex2f() is weighing
in at 17 percent OpenGL time.

Please Tune Me 3

To address the glTexImage2D() problem we saw in ptm2.c, ptm3.c moves
the texture definition logic out of the rendering loop and into the initialization
routine. In its place, we use texture binding. In effect, we’ve replaced immediate
mode logic with retained mode logic. Making this retained mode change gave
us a nice performance boost of 100 percent, moving us to nearly two frames per
second. Still not a galactic contender, but we can now see the teapot tumbling.

Let’s see what Profiler has to say about ptm3 in Figure 11-15. With ptm3, we’re
seeing a nice fadeaway of glTexImage2D(). There’s a new rogue at the top of

240 Chapter 11: Performance

Figure 11-15 ptm3 OpenGL Statistics

our list now: glVertex2f() accounts for more than 55 percent of the time
spent in OpenGL. Perhaps we can apply a retained mode technique for the
glVertex2f() problem as well.

Please Tune Me 4

Please Tune Me 4 takes a huge stride forward relative to ptm3. By encapsulat-
ing the huge number of mesh vertices in a display list, we’ve avoided a tremen-
dous amount of data copying, bus traffic, and function call overhead through
OpenGL. Display lists are a very easy way to get big performance gains when
rendering static geometry.

Making the display list change resulted in about an 1800 percent gain in
performance—in the vicinity of 36 frames per second. Our little application is
growing up! At this point, looking for more almost seems greedy, but let’s in-
dulge. Figure 11-16 shows the profile of ptm4:

The great thing about Profiler is the number of surprises it can uncover in your
software. We’ve heard innumerable times, “I didn’t even know I was calling
that!” Often, the revelations are more subtle. In this case, glReadPixels()
has made its way to the top of the list. Fortunately, there are ways to address
this problem.

Please Tune Me 5

To subdue the glReadPixels() problem, ptm5 introduces pixel buffer objects
(not to be confused with pbuffers). Pixel buffer objects (PBOs) can be used as

Putting It All Together 241

Figure 11-16 ptm4 OpenGL Statistics

retained mode containers of pixel or texture data, which can then be sourced for
rendering by texturing calls or glDrawPixels().

In this case we’ve established the PBO as a container for reading the contents
of the left side of the application window for later use as a texture on the
teapot. Because this is a VRAM-managed resource, the readback operation is
extremely fast. Notice that with the binding of the PBO, the data argument for
glReadPixels() is 0 because the PBO is now being used as the destination
for the read.

With the texture contents stored in the VBO, we still need to map the ob-
ject and update it to preserve the “gray ramp” color teapot semantics de-
scribed earlier. This is simply a matter of mapping, modifying, and unmap-
ping the PBO. Later, when we wish to texture with the VBO, we bind it
by using GL PIXEL UNPACK BUFFER rather than the GL PIXEL PACK BUFFER
binding that we used when reading the pixels. Using PBOs for readback
and as a texture source has brought Please Tune Me to more than 60 frames
per second. Pretty soon we’ll have to change the name to “Please Admire
Me.”

So what does our profile look like now (Figure 11-17)? We see what appears to
be some more deferral overhead in the big spike at CGLFlushDrawable. We
also have a big chunk sitting at glEvalMesh2(), which is a result of our call to
glutSolidTeapot. Sticking with things under our immediate control, despite
our PBO usage, we’re still seeing a 16 percent hit in glReadPixels().

242 Chapter 11: Performance

Figure 11-17 ptm5 OpenGL Statistics

Please Tune Me 6

The final installment in our quest for ultimate performance is ptm6, which in-
volves an architectural change. Sticking with the glReadPixels() track and
considering some of the earlier performance tips, is there any way we can avoid
reading this data back and touching it with the CPU altogether?

The answer is yes, and a fragment shader is the key to achieving this optimiza-
tion. Simply put, during readback of the pixel data we apply a gray ramp to the
texture data where it does not contain the colored-mesh readback information.
A fragment shader with a texture sampler can easily evaluate this condition and
apply the gray color for us.

Notice that we also change the filtering mode on the teapot texture to
GL NEAREST. This way we don’t get any interpolation bleed-through when at-
tempting to sample our texture and assign our gray color.

By eliminating the readback path altogether, “Please Admire Me” (ptm6)
reaches frame rates in excess of 100 frames per second.

We’ve left one exercise for the reader. For ptm6.c, what could be done to im-
prove the efficiency of the mesh rendering? We’ll give you a hint: There’s a more
efficient way to draw quadrilaterals in OpenGL without using the GL QUADS
token to glBegin().

Summary
Many of the steps required to build a high-performance OpenGL application
on OS X are shared with other platforms. Measures such as minimizing state

Summary 243

changes, using retained mode rendering, and including other OpenGL “best
practices” are platform-agnostic. To these known axioms, the Mac OS X OpenGL
implementation is an industry leader with its plethora of asynchronous data
submission interfaces and multithreaded OpenGL engine. Adding these capa-
bilities to the great OpenGL diagnostic, performance, and debugging tools on
OS X makes the platform first in its class for producing an optimally performing
OpenGL application.

244 Chapter 11: Performance

Chapter 12

Mac Platform
Compatibility

Mac OS Versions
Mac OS X has evolved significantly over its life span, but OS X has featured
OpenGL as a key piece of its foundation since day 1. As Mac OS X evolved,
the operating system itself has assumed increasingly more heavy usage of the
OpenGL layer, and the performance, features, and quality of the graphics sub-
system have continually improved. In this chapter, we’ll discuss which graphics
and OpenGL pieces have changed and been added in various versions of Mac
OS X since 10.0. We’ll also explore the compatibility of the various OpenGL
drivers and hardware, and introduce some ideas that will help you manage the
evolution of OpenGL hardware and software.

10.0 through 10.1

In the beginning, there was 10.0. It was released in March 2001, and lo, it was
good. But slow. But good! Versions 10.0 and 10.1 were Apple’s first releases of
Mac OS X and represented substantial leaps forward in architecture and design
from OS 9 and earlier. In their first versions, however, they had rough spots and
were not entirely complete. Because of the rapid evolution of the early OS X
versions, OpenGL also evolved a lot in these early versions. Some would ar-
gue that Mac OS X wasn’t really usable until 10.2; others would insist that the
OpenGL implementation really firmed up around 10.3; and so on. We’re not
taking sides in that particular flamewar, so we’ll focus our discussions on where
things are today, and what you need to know to develop applications for the
future. At the time of the writing of this book, considering targeting OpenGL
applications for versions 10.0 and 10.1 is really a bad idea: These versions, and
their OpenGL implementations, are so old as to be utterly obsoleted by later

245

versions. They served their purpose well at the time and we appreciate their
efforts, but time marches on, and so do we.

10.2 (Jaguar)

Jaguar was released in August 2002 and proved to be a really solid, fast, and
finally almost complete version of Mac OS X. In the span of a little more than a
year and a half, Mac OS X had improved from a fast but new operating system
to a stable, fast, and widely supported operating system. Its performance had
improved dramatically, too. Among the performance features added was an en-
hancement to its graphics layer Quartz, known as Quartz Extreme. Quartz Ex-
treme promised (and mostly delivered) a great performance boost by offloading
numerous UI elements to the graphics hardware. This was the first step Apple
would publicly take that yielded insight into how the UI and window manager
would evolve in the future.

10.3 (Panther)

Panther was released in October 2003. Apple continued to release numerous
performance and feature enhancements, but among the most notable for graph-
ics developers was the acceleration of UI elements through hardware (GPU)
rendering. Version 10.3 added a few other features for OpenGL developers, in-
cluding the ability to share a full-screen context with a windowed context on
the Mac. As we’ve described earlier, context sharing means that resources in
one context, such as textures and VBOs, can be used by another context with-
out incurring extra memory overhead. Version 10.3’s ability to share full and
windowed contexts meant a resource optimization for applications that needed
both modes to be supported.

Another new feature with 10.3 was the introduction of hardware-accelerated
pixel buffers. Pixel buffer operations are known on many platforms as pbuffers,
and on Mac OS X a specific extension exposed these hardware-accelerated off-
screen render targets. That extension, which was named GL APPLE pixel
buffer, was really the underpinning of how Apple itself achieved UI
acceleration.

10.4 (Tiger)

At the end of May 2005, Apple released Mac OS X 10.4, also known as Tiger. This
particular evolution of the operating system offered some significant enhance-
ments for those in the graphics world. In particular, Tiger brought high-level
programmable shading languages to the Mac, the latest OpenGL Architecture
Review Board extensions, and a continuing movement toward hardware-based

246 Chapter 12: Mac Platform Compatibility

acceleration of all elements of the UI through a technology known as Quartz
2D Extreme. Aside from the obvious performance benefits the later trend can
provide to user experiences through the windowing system, it raises an inter-
esting point for your application to consider: You are not alone. What we mean
by this statement is that your application and the window system itself share
the resources of the graphics card. As a consequence, both the graphics memory
and the graphics bandwidth are in use by the UI and your application simulta-
neously. Thus you have fewer resources in both areas when it comes time to run
your application, which has performance consequences. Another way of look-
ing at this same problem is to state that your application should “play nicely”
with the graphics hardware, as it will compete for resources with the window
system. To do so, use best software practices, draw only when you need to,
download data when only absolutely necessary, and so on. Not only will your
application performance benefit from judicious use of graphics resources, but
so will the rest of the user experience.

Beginning with version 10.4.4, Apple began officially supporting and shipping
Intel-based Macs. This shift in the underlying processor marked the beginning
of the latest processor transition for the Mac. Apple and Mac developers have
weathered numerous processor transitions over the years, including switches
from Motorola 680X0 processors to Motorola PowerPC 60X series processors
to IBM/Motorola G3/G4/G5 processors and now to Intel processors. Why did
Apple make this change? Theories abound, but a quote from Caroline Schoeder
sums up one point of view: “Some people change when they see the light, oth-
ers when they feel the heat.” Said differently, the G5 was one hot processor—
literally! Where there’s heat, there’s power being consumed, which has meant
problems for laptop processors. The PowerBook platform, upon which I’m typ-
ing this very sentence, had relatively little performance gain for more than
2 years. Obviously, something had to change, to keep portables in the game.

But we digress! Apple has been willing to change binary formats and host plat-
form many times over the years, but only most recently, with the change to Intel,
has a true multiplatform binary been possible. A regular, native, PowerPC appli-
cation can now run on an Intel processor through an emulation layer known as
Rosetta. Rosetta essentially translates PowerPC code into Intel code at runtime,
and only with relatively high-performance modern CPUs has it been possible
to do this at runtime. The details behind this code translation layer aren’t im-
portant, but suffice it to say that the performance of application running under
Rosetta isn’t nearly as good as the performance of a natively compiled applica-
tion. It’s good, to be sure—even remarkably good—but for performance-critical
applications (and a typical OpenGL application is) native code is the only way
to go. We’ll have more to say on this later.

Beginning with 10.4.4, Apple developers no longer have the luxury (as with
prior versions of 10.X) of assuming that they’re running on a PowerPC

Mac OS Versions 247

chip—the possibility exists that an application may be running on either chip.
Developers must account for this possibility because it affects many things,
among them endianness, vector code acceleration, and inline-assembly tweaks.
Primarily, however, it impacts performance.

10.5 and Beyond

Apple has announced its next revision in the Mac OS X sequence, 10.5, also
known as Leopard. We know Leopard will fully support PowerPC and Intel
Macs. Likely it will be faster, better, and more feature-complete in its OpenGL
implementation. At least OpenGL 2.1 will be supported. Even more computa-
tion may be offloaded to the GPU, so that graphics developers need to be all the
more conscientious about their place in the universe: Your application may not
be the only one expecting to use the GPU and, in fact, may always be operating
in conjunction with other GPU-intensive applications, specifically those within
the Mac OS itself. However, if applications are well written and aren’t resource
gluttons, they should continue to perform well.

OpenGL Platform Identification
We’ve just talked a bit about the various changes evident among the versions
of Mac OS X through the last few years, but let’s not talk about how you can
manage that change right now. In Chapter 13, we’ll see a key way of managing
change between OpenGL versions and ways of evolving your OpenGL func-
tionality gracefully. But what do you do if something graceless is happening,
for example, with a particular platform. For that matter, what is the definition
of the OpenGL platform? We’ll look at these questions, and even provide an-
swers to them, in this section.

Earlier in this book we discussed the ways in which OpenGL is integrated with
various window systems and APIs on the Mac. We looked at AGL, CGL, GLUT,
and Cocoa, yet underpinning all of these systems was the same OpenGL code.
Independently of how the image gets to the screen, the way we generate the im-
age is the same—pure, sweet, light, graphics goodness: OpenGL. The window-
ing layer above OpenGL is an obviously essential element in using a particular
platform. Yet OpenGL graphics commands are distinct, separate, and orthogo-
nal to windowing systems. That is a key piece of what makes the original-design
OpenGL so powerful.

Necessarily, then, we need ways of querying pieces of information about
OpenGL itself, independently of the window system in which it integrates, and
this information can be used to define the OpenGL. The OpenGL platform, as
defined by the OpenGL specification, is the unique combination of two strings
queried through the glGetString call. The OpenGL function glGetString

248 Chapter 12: Mac Platform Compatibility

Table 12-1 glGetString Tokens

Token Information
GL VENDOR The company responsible for this OpenGL implementation.

Technically, despite what this string reports (frequently ATI or
NVIDIA), Apple maintains the OpenGL driver and is the key
contact for any questions or problems. This string can provide a
useful hint in determining the underlying hardware used by this
context.

GL RENDERER A specific name defining the hardware used by this OpenGL
context.

GL VERSION OpenGL version information. Fields are space delimited within
this string. The first field contains a version number of either the
major.minor or major.minor.sub style. Additional fields are
optional after this first one.

GL EXTENSIONS Extensions available on this platform. The list is space delimited.

accepts the tokens defined in Table 12-1 and can be used to get the results for
the renderer and version; these results, when combined, uniquely define a tar-
get OpenGL graphics environment. Keep in mind that, as with any OpenGL
call, you must invoke this query only from an active context.

So what are some results for this command? A sampling of a few graphics cards
in our possession yielded strings like these:

• 1.5 ATI-1.4.18

• 1.1 APPLE-1.1

These strings can easily be parsed for extraction of the OpenGL version num-
ber and, therefore, for checking of baseline functionality, as seen in Chapter 13.
But the entirety of the string, version, and renderer label completely define an
OpenGL platform. On the Mac, it means that we’re using a specific code path
within a renderer. This is a useful piece of information to know not only when
filing bugs, but also when fixing them in your own code. You can check this
string at runtime. If some particular well-known problem exists in that renderer,
you can then avoid that rendering path.

Mac OS Version Identification
We’ve seen how to query our OpenGL environment to determine its platform—
now what about a particular version of the Mac OS itself? Can we determine its
version, and when it is appropriate to use for functionality queries and testing?
Turns out that there’s a Carbon method that’s been around since time immemo-
rial for exactly this purpose. This method can tell you a lot of information on a

Mac OS Version Identification 249

lot of aspects of your running Mac system, but we’ll use it for just the version
number here. That Carbon call is Gestalt.

It has been said that brevity is the soul of wit, so we may therefore assume that
the documentation of what the Gestalt method does is among the wittiest
on the Mac. The documentation pages say that Gestalt “obtains information
about the operating environment.” Now, that’s just the overview to the function,
but really all Gestalt does is return information about your Mac environment.
There is copious documentation on the zillions of queries that it can perform,
but our token to query is gestaltSystemVersion. This query returns a long
value with a hexadecimal representation of the Mac version. Note, however, that
this value encodes the version in a somewhat stylized form, which is not directly
usable as a value. For example, the return value for this function on Mac OS X
10.3.1 would be 0x1031 and on 10.4.4 would be 0x1044.

We coded a quick little version in Example 12-1, which unpacks the major (in
10.X.Y, the X value) and the minor (in 10.X.Y, the Y-value) and returns the raw
result. To use this function in your own application, make sure you include the
CarbonCarbon.h header file and link against the Carbon framework.

Example 12-1 Unpack the OS X Version Number

long macOSXVersion(unsigned int *major, unsigned int *minor)
{

long version = 0;
Gestalt(gestaltSystemVersion, &version);
*minor = version&0xf;
*major = version&0xf0>>4;
return(version);

}

A quick point of interest, for the curious: Which versions of Mac OS X have
existed and been released? Apple maintains a complete list, including version
numbers and build numbers, in Article Number 106176 [3]. Apple also main-
tains a really nice list of releases of hardware and software together in Article
Number 25517 [11]. These pieces of information may prove useful when you
are developing code that targets particular pieces of hardware and when your
customers and clients need to debug your application.

When should you use this kind of query? If you’re writing an application that
must run on multiple versions of Mac OS X, and you’re using some feature
that you think might be available only on a particular version of the operating
system, then this is what you’d do. There aren’t a lot of reasons why you might
search out version information, but working around a bug is one of them.
Using undocumented API calls is another, but that wouldn’t be a good idea in
general. Finally, you expressly don’t want to use this functionality to check for
features with Cocoa applications. Cocoa has a well-defined mechanism (part of

250 Chapter 12: Mac Platform Compatibility

its overall runtime goodness) for inquiring as to whether a particular object
or class responds to a particular method. These respondsToSelector and
instancesRespondToSelectormethods are thoroughly documented within
Apple’s developer documentation.

Summary
In this chapter we saw some of the differences between the various versions of
Mac OS X, and we learned how to identify both the running Mac version and the
OpenGL platform. With the combination of these identifying markers, you’re
well positioned to build features for specific combinations of Mac platform and
OpenGL platform, to work around bugs, and to enable and disable features as
appropriate. In Chapter 13, we’ll dig into the details of customizing OpenGL
rendering for particular versions of OpenGL. Taken in combination, these two
chapters will show you how to exercise complete control over which features
run on which platforms, for OpenGL and the Mac OS.

Summary 251

This page intentionally left blank

Chapter 13

OpenGL Extensions

Overview
In this chapter we’ll discuss a design feature of OpenGL known as OpenGL
extensions. We’ll describe how these extensions work, how to discover which
ones are available, and how to determine exactly how extensions operate. We’ll
also describe a few libraries for working with extensions that make your life as
a developer easier. But first, what are extensions, and why do they exist?

Extensions are a mechanism that the OpenGL Architecture Review Board cre-
ated for OpenGL to allow custom features beyond the scope of a particular
version of OpenGL. They enable the creation of new features, modify existing
features, expose capabilities on hardware that wasn’t present when the current
version of OpenGL was ratified, and more. In essence, an OpenGL extension
describes features beyond the scope of the current base OpenGL version. That’s
part of why extensions exist—but there’s another reason, and a fundamental
one at that. If you’ll indulge a minor rant, here’s the more exhaustive scoop on
the why of OpenGL extensions.

One complaint frequently leveled against OpenGL is that it is lagging the fea-
ture curve or is somehow farther off the leading edge than other APIs. The peo-
ple who make such complaints often use other platforms and other APIs (we
won’t name names—cough . . . Direct3D . . . cough) and usually obtain new
versions of their APIs every year or so. This is regarded as “progress” and de-
velopers who are enthralled with this model are usually quite excited to have
access to new features. Unfortunately, making frequent changes to the under-
lying API requires developers to change code, implement new design patterns,
and stay late at work. That’s not such a great thing, especially if you’re one of
those developers.

Not only is the perception that other APIs advance more rapidly than OpenGL
false, but OpenGL evolves in a way that developers have access to both features

253

and a compatibility path with older code. Thanks to a lot of really good up-front
design in the OpenGL specification, OpenGL doesn’t cause a major compatibil-
ity headache for the developer with each version1 and, in fact, it handles growth
and change in a very elegant and evolutionary fashion. The OpenGL mecha-
nism for adding new features and evolving the API is known as the OpenGL
process and is the focus of this chapter. We’ll see how extensions are incorpo-
rated into OpenGL from a graphics vendor’s perspective, which in turn yields
insight into our second key goal in this chapter—how to use OpenGL extensions
effectively.

Extension Design and API Integration
OpenGL extensions exist for a few key reasons:

• To allow OpenGL to evolve as fast as hardware developers push it
• To keep the core OpenGL API stable
• To give developers a consistent mechanism for accessing new features and

capabilities
• To support feature, API, and usage compatibility across a wide variety of API

versions and vendor hardware

These design parameters mean that if you work on the Mac, and on Linux, using
whichever vendor’s graphics hardware, you always use a very similar mecha-
nism to access specific features of that hardware. Another implication is that
if you are working on a platform that supports OpenGL 1.4, but the graphics
hardware in that box has features that are not yet found in OpenGL 1.4, the
vendor will provide extensions that enable you to use the full capabilities of
that graphics card. Furthermore, if you stick to writing to the base of a core
OpenGL version (say, 1.4) you can be assured that your results will be correct
(barring bugs) on a variety of platforms, provided all of those platforms support
that same version. Not to beat this point to death, but the OpenGL extension
mechanism—and by implication, the core design of OpenGL—exists to help
developers quickly write software that works wherever an application needs
to be along the feature-functionality continuum.

Before we explore the actual extension mechanisms and methods, we should
explain how extensions become parts of core OpenGL. An evolutionary process

1. This argument is the topic of an ongoing debate among OpenGL and DirectX programmers and
all we’ve just done is pour a little more gasoline on the fire. Of course, the truth of the situation
lies somewhere in the middle. However, despite the intense feelings on both sides, OpenGL has a
well-defined and clear mechanism for handling growth and has done so very successfully for quite
a long time.

254 Chapter 13: OpenGL Extensions

takes once-bleeding-edge features and, over time, migrates them so that
they become part of the OpenGL standard. Thus your application that uses
extensions to OpenGL today may in the future be able to satisfy its needs us-
ing a particular version of core OpenGL.

But let’s back up a step and describe how the core OpenGL specification evolves.
There are many paths to adding functionality to the core of OpenGL, but the
OpenGL API itself largely evolves through the process defined below. This pro-
cess may be familiar to some, as it’s modeled on School House Rock’s “How
a Bill Becomes a Law.” We kid, of course, but the process is fairly democratic,
and open to all good ideas from members of OpenGL’s governing body, the
OpenGL Architecture Review Board. Here’s the process for a hypothetical new
feature:

1. A new hardware or software feature exists.
2. A vendor creates an OpenGL extension: GL APPLE new feature name.

This is known as a vendor extension.
3. A specification is published describing tokens and API entry points.
4. Time elapses . . .
5. Other vendors adopt the vendor extension, and GL APPLE new feature

name becomes available on several platforms, at which point it is promoted
from a vendor extension to an “EXT” extension.

6. Several vendors lobby the OpenGL Architecture Review Board to standard-
ize the EXT extension as GL ARB new feature name. The extension is then
known as an “ABB” extension.

7. Time elapses. . . .
8. The extension’s purpose and utility become very clear to many developers

and vendors.
9. A quorum of vendors lobbies the OpenGL Architecture Review Board again

to include this ARB extension in the next version of the official OpenGL
specification.

10. The extension is incorporated into core OpenGL X.Y.
11. The extension may or may not continue to exist in versions beyond

OpenGL X.Y.

Of course, not all steps in this process are required, nor do all extensions wend
their way through this entire process. Many never make it past the stage of a
vendor defining and implementing a vendor-specific extension. Only if an ex-
tension is really useful to a wide variety of developers does it survive to become
part of the OpenGL specification.

One further note: Even if you find an extension useful, but it’s not yet an
OpenGL Architecture Review Board extension, you may still use it with hope

Extension Design and API Integration 255

for its future. Even when an extension grows up, moving from an EXT to an
ARB (sometimes from vendor straight to ARB) and finally into the specification
itself, the older ways of identifying it will still exist. Specifically, the OpenGL
specification says this on extension promotion:

ARB extensions can be promoted to required core features in later revisions of
OpenGL. When this occurs, the extension specifications are merged into the core
specification. Functions and enumerants that are part of such promoted extensions
will have the ARB affix removed.

GL implementations of such later revisions should continue to export the name
strings of promoted extensions in the EXTENSIONS string, and continue to sup-
port the ARB-affixed versions of functions and enumerants as a transition aid.

Now that we’ve seen the process that an extension goes through from concept
to core OpenGL, what happens in the middle? That is, what does an extension
define and provide, how do you determine what’s available, and how do you
implement an extension? Let’s look at these issues in order.

Extension Styles and Types
OpenGL extensions have many different forms and usage patterns. Some
extensions define new tokens for use with existing functions. One exam-
ple is GL ARB texture mirrored repeat, which defines a new token for
use with the glTexParameter suite of calls, allowing a new type of
GL TEXTURE WRAP style: GL MIRRORED REPEAT ARB. Other extensions define
new API functions. A good but complex example is the extensions for the
OpenGL Shading Language (GLSL). This language actually consists of a suite
of extensions, including GL ARB shader objects, GL ARB vertex shader,
GL ARB fragment shader, and GL ARB shading language 120. These ex-
tensions define both tokens (e.g., GL OBJECT COMPILE STATUS ARB) and API
entry points (e.g., glCompileShaderARB, glLinkProgramARB).

In essence, then, there are two styles of extensions:

• Extensions that define only tokens
• Extensions that define API entry points and (optionally) tokens

This classification is important to understanding how to use particular ex-
tensions. Token-only extensions are a bit easier to use, as no special runtime
function binding needs to occur, and you can simply pass these tokens to
your existing OpenGL commands. For those extensions defining entry points, a
slightly more complex procedure is necessary first to safely determine the func-
tion pointers and then to use them. We’ll get into that issue soon. First we’ll look
at how to pick an extension from the many choices available, especially as some
come in several versions even on the same platform!

256 Chapter 13: OpenGL Extensions

Identification, Selection, Query, and Usage
Deciding which extension to use can warrant entire books by itself. The sheer
number and similarity of the many extensions in existence makes this a daunt-
ing process. In this section we’ll explain how you determine which extensions
are available and how you decide which one is preferred in your particular case.
Though there’s no quick answer given all the parameters you must consider,
there’s always the phrase you might hear running through your head when
shopping for a yacht (a problem the authors would love to have): “If you have
to ask, you can’t afford it.” We’re kidding again, but the point is that while own-
ing and using a yacht may have certain benefits, it’s an expensive proposition.
Likewise, using OpenGL extensions carry a variety of direct and indirect costs,
including development time, compatibility evaluation, and testing. As should
be obvious by now, extensions can be vendor-, platform-, and driver-specific,
and your development, test, and maintenance costs will inevitably increase as
you try to manage that complexity. Thus the first rule of thumb is to be very
thorough in your exploration of the core OpenGL API to determine whether
there’s a way to meet your needs using just the base API. If you must use
extensions, however, you must then choose among the many options that
exist. To guide you in this process, we’ll explore some of the criteria to decide
which extension to use.

We typically begin by deciding what our priority for using this particular exten-
sion will be. For example, are we most interested in performance, cross-platform
availability, or ease of development? Each of these tacks (if we may be allowed
to continue the sailing metaphor) implies a different priority regarding which
extensions to investigate. We’ll focus on each in turn, and suggest strategies for
choosing among the various options.

Selecting Extensions

Whether your application is to be deployed on a single Mac platform (for exam-
ple, a desktop system only), across the entire Mac line, or even on multiple plat-
forms, your deployment target will most likely evolve over time. Making any
assumptions about what’s available in OpenGL at the moment you build and
ship your software is a poor idea. As the saying goes, “Trust, but verify.” Proba-
bly the safest, best, and easiest way to deploy a cross-platform application is to
rely solely on a baseline version of OpenGL to provide all of the application’s
functionality. For example, choose a baseline of OpenGL 1.5 and use features
only natively defined therein—no extensions. If you can stick to that criterion,
you’re in really good shape because a simple combination of compile-time and
runtime checks will get you access to all the features you require.

In a real-world application, you’ll likely want to use some newer OpenGL fea-
tures in subsequent revisions to your application, so you may have access to

Identification, Selection, Query, and Usage 257

these features on only some platforms, and in extension form. In this case, we
recommend you choose extensions based on the OpenGL Architecture Review
Board extension evolution process. By this, we mean that the OpenGL ARB
extension process defines the evolution of an extension, from concept to core
OpenGL. To be explicit, in a cross-platform or even a cross-Mac application, the
most compatible ways of choosing which features and extensions to use are,
in order:

1. Features satisfied by the core OpenGL version
2. Features satisfied by an ARB extension
3. Features satisfied by an EXT extension
4. Features satisfied by a vendor extension (e.g., ATI, nV, sGI)

In essence, there are three steps to choosing which extensions your appli-
cation will use. First, choose which fundamental features your application
needs, and which combinations of core OpenGL versions and extensions
satisfy those needs. Decide which of those combinations will be the pre-
ferred path, the alternative path, and the fallback. The fallback may not ac-
tually satisfy those features, so instead of the feature you want, you should
choose a plausible standby visualization—for example, simple texture ver-
sus shaded surface. Second, write code to make sure your application will
compile, regardless of which OpenGL tokens are available in the headers
on the system on which you’re building. This means you should protect re-
served tokens by using a combination of preprocessor tokens. Third, write
code for runtime validation of the features and fallback path you’re interested
in using.

We’ll now look at this process concretely and with code. Our first step is to
choose the extensions and the preferred combination of OpenGL version and
extensions, an alternative combination of OpenGL version and extensions, and
a fallback visualization, if neither the preferred nor the alternative path is avail-
able. In this example, we will begin with our standby quad visualization code
and decide to shade it.

What combination of extensions and versions will satisfy our needs? Well, we
look at the latest OpenGL specification for guidance. The OpenGL specification
is available at the OpenGL website [2]; for this example, we’ll use the OpenGL
2.0 specification [1] as our baseline. Shading is supported natively in this ver-
sion, so our preferred path will be to use OpenGL 2.0. We then look back in ear-
lier versions referenced by the specification, and find that prior to this version of
OpenGL, shading existed only as extensions. Because we’re likely to use shaders
in combination with multiple textures, we look at where we can satisfy that
need as well, and we find that multitexture is a core capability of OpenGL 1.3.

258 Chapter 13: OpenGL Extensions

Thus our alternative path will be OpenGL 1.3 plus the required extensions
for shading, GL ARB shading language 100, GL ARB program objects,
GL ARB vertex shader, and GL ARB fragment shader.

For simplicity, we will handle only this alternative rendering path in our appli-
cation. Handling OpenGL 2.0 and OpenGL 1.3 requires a fair bit of API man-
agement, as the entry points for shading are similar, but different enough that
there’s a fair bit of confusion. We could continue to use the extension,2 even if
we were using OpenGL 2.0 , so we’ll just present basic principles, follow the
1.3 path, and provide one fallback.

Good! So far we’ve chosen and figured out two of our three path elements.
The final step is determining a fallback visualization. We will not explore the
depths of OpenGL Shading Language shading, nor all the ways you could pos-
sibly simulate versions of your shaded visualization via OpenGL techniques. In-
stead, we’ll again opt for a simple solution: We’ll write shaders to transform the
quad as the standard OpenGL pipeline would, and color it with a constant color.
For illustration purposes, we will color our quad green if no shading is avail-
able (our fallback visualization) and color it yellow if shading is available. It’s
not a shiny, bumpy, infinitely detailed, anti-aliased shader, but it gets the point
across.

The second step is to write the combination of preprocessor token-checking op-
erations to ensure that, regardless of the machine on which we build our appli-
cation (even one without proper extension headers), the application still builds
properly. This may be something you want to leave broken (at least for now)
because if you do build your application in an environment without proper
tokens, you won’t get the behavior you want from your application on any plat-
form. We explicitly handle this possibility by adding an #error message in the
case that our OpenGL extension preprocessor checks fail. It will warn us that
the environment is not configured properly.

Next, we look at the tokens we need, based on our criteria for our OpenGL en-
vironment defined earlier. Table 13-1 shows our combination of preferred and
alternative rendering path preprocessor tokens. There’s a fairly straightforward
naming convention for preprocessor tokens in OpenGL, as the table illustrates.

2. Apple, in a very vague and informal way, in TechNote 2080 [6] says, “No extension should ever be
removed from the extensions string,” as part of a larger discussion about when an extension should
be used and when a core version of OpenGL should be used. Theoretically and currently, you can
continue to use the shader extensions, even in the latest version of OpenGL. However, as we’ve seen
with PowerPC, and with lots of API changes over the years, all good things must come to an end:
While this is the case today, it may not always be. The authors recommend that you try to use core
OpenGL features whenever possible, and modernize your code to take advantage of these features
directly, rather than hoping that your extensions will always exist.

Identification, Selection, Query, and Usage 259

Table 13-1 Preprocessor Tokens for Extension Usage

Path OpenGL Token Extension Token
Preferred GL VERSION 2 0 None
Alternative GL VERSION 1 3 GL ARB shading language 100,

GL ARB program objects,
GL ARB vertex shader,
GL ARB fragment shader

Fallback Any None

But in code, how do we wrap things? Well, anywhere code uses either tokens
or API entry points specified by these extensions, we need to check for their
existence prior to using that code. These tokens come from different places on
different platforms. On the Mac, all of the necessary extension tokens and
OpenGL version information are included with the gl.h header file. On other
platforms, such as Windows, Linux, and other versions of Unix, a similar sit-
uation may exist or there may be a companion glext.h header file. The Mac
also has a glext.h header file, although the baseline gl.h header files already
include these tokens.

At this point in the discussion, it turns out that bootstrapping the rest of the way
to a functional chunk of code is required to fully explain and demonstrate how
to use preprocessor and runtime checks. We’re in a bit of “chicken or egg” bind,
so we will simply show the code for shading setup without further ado. We’re
going to look at Example 13-1. We’ll gloss over a few runtime details here, and
focus on the preprocessing elements for now. We’ll circle around to the runtime
checks momentarily.

First, let’s look at an overview of this example. The code does three things, two
of which we’ve seen before. The shading section begins by checking the method
hasShaderExtensions to see if our platform has shader extension support.
We won’t dig into the hasShaderExtensions check now, as we’re just look-
ing at compile-time checks in this section. What do we see within this block?
Essentially, we validate that our compiler and header support at least OpenGL
1.3 and the required shader extensions. Within that block, the API and to-
ken definitions for baseline OpenGL 1.3 and all the shader extensions are de-
fined. Things get more complex when we try to intermingle various versions
of OpenGL support. With OpenGL and shading, in particular, some of the API
entry points change—which is why we’re not looking at that issue here. Within
the block, then, we do the things necessary to load, compile, link, and bind our
shaders. These are all fairly commonplace shader operations, and the interested
reader can find a much more detailed discussion of how those pieces work in a
companion book in this series [21].

260 Chapter 13: OpenGL Extensions

Finally, an else clause performs our preprocessing checks. We took this
tack because if we fail to compile this code, no shader code will ever be
executed—even on platforms that support it! Our preprocessing checks really
just validate that we know how to build our application so that it can move on
to the next step—runtime checking for these extensions, which we look at in the
next section.

Example 13-1 Querying for Extensions in a Valid OpenGL Context

- (void) prepareOpenGL
{

// setup projection
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-1,1,-1,1,-1,100);

// do we have shading extensions?
NSLog(@"Has OpenGL Shader: %d\n", [self hasShaderExtensions]);

if(TRUE == [self hasShaderExtensions])
{

//
NSBundle *res = [NSBundle mainBundle];
NSString *fragsource = [NSString stringWithContentsOfFile:

[res pathForResource:@"test" ofType:@"frag"]];
NSString *vertsource = [NSString stringWithContentsOfFile:

[res pathForResource:@"test" ofType:@"vert"]];

const char * fragsource_c = [fragsource UTF8String];
const char * vertsource_c = [vertsource UTF8String];

#if defined(GL_VERSION_1_3) && \
defined(GL_ARB_shader_objects) && \
defined(GL_ARB_shading_language_100) && \
defined(GL_ARB_vertex_shader) && \
defined(GL_ARB_fragment_shader)

vertexShader =
glCreateShaderObjectARB(GL_VERTEX_SHADER_ARB);

fragmentShader =
glCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);

glShaderSourceARB(vertexShader, 1, &vertsource_c, NULL);
glShaderSourceARB(fragmentShader, 1, &fragsource_c, NULL);

glCompileShaderARB(vertexShader);
glCompileShaderARB(fragmentShader);

programObject = glCreateProgramObjectARB();

glAttachObjectARB(programObject, vertexShader);
glAttachObjectARB(programObject, fragmentShader);

Identification, Selection, Query, and Usage 261

glLinkProgramARB(programObject);
glUseProgramObjectARB(programObject);

#else
#error "NO shading will be available."
#endif

}
// add a timer to oscillate the modelview
NSTimeInterval ti = .1;
[NSTimer scheduledTimerWithTimeInterval: ti

target: self
selector: @selector(angleUpdate:)
userInfo: nil
repeats: YES];

}

Utilization and Binding
An astute reader will notice that in the prior section we just checked that the
API entry points exist in headers at compile time. If our OpenGL library doesn’t
actually export those entries, we’ll fail at link time or runtime with some form
of unresolved symbol error. That’s not a good thing for a well-behaved appli-
cation to do, so how can we ensure at runtime that we’ve got a valid envi-
ronment (as defined by our OpenGL level and extensions) in which to run?
We perform a variety of checks, specifically those shown in Examples 13-2
and 13-3.

The basic process for ensuring that our runtime environment is valid is
this: Query the version number, and query the extension list to confirm that
our shading extensions are available. Because these are runtime checks, they
must take place within a valid OpenGL context, so we perform them within
prepareOpenGL, seen in Example 13-2. We first check whether our running
OpenGL version is inclusively greater than 1.3, our baseline version for OpenGL
functionality.

Example 13-2 Querying the OpenGL Version Number

- (float) openGLVersionNumber
{

NSString *versionstring =
[NSString stringWithUTF8String:

(char*)glGetString(GL_VERSION)];
NSArray *versioncomponents =

[versionstring componentsSeparatedByString: @" "];
return([[versioncomponents objectAtIndex: 0] floatValue]);

}

The next code fragment, in Example 13-3, uses our extension dictionary to
query for four key components of the OpenGL Shading Language. Each of these

262 Chapter 13: OpenGL Extensions

Figure 13-1 Shader Extension Application Results if Successful (Texture cour-
tesy of NASA’s Earth Observatory.)

extensions implies a combination of tokens, API entry points, and functionality.3

This code first builds a list of OpenGL extensions, queried by the call glGet-
String(GL EXTENSIONS), and then wrangles this list into a dictionary, as
shown in Example 13-4. We simply look up a value in the dictionary (for ex-
ample, GL ARB vertex shader), and if a nil comes back, we don’t have the
extension. Conversely, if all our extension queries succeed, then we’re off and
running. Example 13-3 calls the hasShaderExtensions method and, upon
its success, calls the various methods required to configure the shaders. If your
environment is configured with the baseline OpenGL and shading extensions,
you’ll see a result like that in Figure 13-1; if not, you’ll see our “fallback” ren-
dering, the baseline material color, as in Figure 13-2.

Example 13-3 Querying for OpenGL Shader Extensions

- (BOOL) hasShaderExtensions
{

BOOL has_shading = FALSE;

3. Because of some peculiarities in the Apple’s implementation of this shading language, only the
first three are really necessary to use shading. The last extension, GL ARB shading language 100,
defines whether the language is fully supported, and different graphics vendors interpret this dif-
ferently. Apple interprets it to mean that while the shading stuff works, its implementation (at the
time of this writing) is not completely compatible with the language flavor defined in that extension.
Other vendors expose this token despite the completeness or capability of their implementations.
Details, details. A truly portable application would ensure that all four tokens were available and
run only if that is the case.

Utilization and Binding 263

Figure 13-2 Shader Extension Application Results if Unsuccessful

float versionfloat = [self openGLVersionNumber];
if (versionfloat >= 1.21)
{

NSDictionary *extdict = createExtensionDictionary();
BOOL has_vs = [extdict objectForKey:

@"GL_ARB_vertex_shader"] != nil;
BOOL has_fs = [extdict objectForKey:

@"GL_ARB_fragment_shader"] != nil;
BOOL has_so = [extdict objectForKey:

@"GL_ARB_shader_objects"] != nil;
BOOL has_lang = [extdict objectForKey:

@"GL_ARB_shading_language_100"] != nil;
has_shading = has_vs && has_fs && has_so;

}
return(has_shading);

}

Example 13-4 Creating a Dictionary of All Extensions
NSDictionary * createExtensionDictionary()
{

NSString *extstring =
[NSString stringWithUTF8String:

(char*)glGetString(GL_EXTENSIONS)];
NSArray *extensions =

[extstring componentsSeparatedByString: @" "];
NSDictionary *extdict =

[NSDictionary dictionaryWithObjects: extensions
forKeys: extensions];

return(extdict);
}

264 Chapter 13: OpenGL Extensions

One final note about extensions that export API entries: What happens at run-
time? We’ve seen how we check for the validity of a particular extension at com-
pile, link, and runtimes, but where are the symbols defined on the platform on
which we’re now running? What guarantees do we have about symbol defini-
tions being valid? On the Mac, there’s an implicit guarantee that if you have the
extension defined and are linked with the OpenGL library, you’ll have proper
symbol resolution for all symbols exported by that extension. That’s all there is
to it—if you’re a Mac-only developer, life is pretty easy.

What about other platforms? What about a “standard” way of resolving sym-
bols across a variety of platforms? It turns out there are a variety of ways to
look up symbols at runtime on the Mac. The technique we need here is a query
of our loaded address space for a symbol matching the one that we want to use.
In our series of examples, we’re interested in building shaders, so we’ll look for
the symbol for glCompileShaderARB prior to using it. We’ll focus on only the
most modern techniques for symbol resolution in this chapter, as we’re making
this discussion as forward-looking as possible. If you need to target version 10.3
or earlier, there are well-documented techniques for querying and binding sym-
bols [5]. In version 10.4 and beyond, Apple has integrated the dlopen/dlsym
standard Unix-like technique for symbol loading and binding. It’s pretty easy
to do, so let’s take a look how it works.

The two functions dlopen and dlsym constitute a standard external symbol
addition and resolution package, integrated natively in 10.4 and found as part
of an external dlcompat library in 10.3. The nice thing about this API is that
you can find it on many other platforms, including Linux and most versions
of Unix. The two functions have detailed manual pages, which you can read for
exhaustive detail on how they operate. The overview of their function is simple,
though. The first function, dlopen, links and loads a dynamic chunk of code.
The second function, dlsym, finds and resolves a named symbol within that
code. Thus in Example 13-6 first we use dlopen to get a handle to our running
application, and then we use dlsym to resolve the passed-in function name. If
we get a NULL back, the symbol doesn’t exist and we shouldn’t call it, unless we
want a hasty exit from our application.

Two final notes on the dl* calls. First, notice that we symmetrically
dlclose at the end of our resolveSymbol function. This is absolutely a
good and necessary thing to do, but for performance reasons, you’d prefer to
dlopen/dlclose once and resolve a lot of symbols in the middle. For our
example, we do it for every symbol, within our resolveSymbol method, as
a demonstration, and for simplicity. There isn’t a huge performance penalty,
however, because you don’t/shouldn’t/wouldn’t call these methods each time
you need a symbol. Instead, you would cache the result of resolveSym-
bol (which is a function address) and simply use those cached results later in
your run loop.

Utilization and Binding 265

The second note on these calls relates to the symbol names. Function names
within libraries are changed (or, in compiler terms, mangled) into another
form stored within those libraries. The mangling scheme is usually something
you can learn about and figure out, but the dl* calls are designed to work
with the human-readable versions of these names. For example, in one cur-
rent version of the OpenGL library on one of our development machines,
the symbol corresponding to the API entry glCompileShaderARB is named
glCompileShaderARB. The string you’d pass to the dlsym call would not be

this mangled name, but rather the human-readable function name. The dlsym
call would then mangle and resolve the name appropriately.

Now let’s see the code that uses the dlopen/dlsym/dlclose API from start
to finish. First, in Example 13-5 we extend our class definition to provide storage
for the symbols. We allocate space for each of the symbols we use in our pre-
pareOpenGL method, as seen in Example 13-8. Looking at this code segment,
we see that we have the same preproccessor checks as before but add one more
runtime check to see if we’ve successfully bound the symbols we require to pro-
ceed. If we pass the extension check, we call resolveShaderSymbols, as seen
in Example 13-7, to resolve and cache the function entry symbols, and finally we
invoke our shader code. The code in Example 13-7 simply calls the method we
constructed earlier, resolveSymbol, to check whether each named symbol is
available.

There’s a lot of code here, but it really does three simple things, in a general
form that you can follow for your own extension wrangling:

1. Resolve symbols for each extension API entry.
2. Validate that all symbols exist together, for complete definition and usage of

that extension.
3. Store extension function pointers and use them later.

Example 13-5 Storage for the Discovered Symbols

@interface MyOpenGLView : NSOpenGLView
{

bool hasShader;
float time;
float angle;
GLhandleARB vShader, fShader, programObject;

GLhandleARB (*myglCreateShaderObjectARB)(GLenum);
void (*myglShaderSourceARB)();
void (*myglCompileShaderARB)();
GLhandleARB (*myglCreateProgramObjectARB)();
void (*myglAttachObjectARB)();
void (*myglLinkProgramARB)();
void (*myglUseProgramObjectARB)();

}

266 Chapter 13: OpenGL Extensions

- (BOOL) resolveShaderSymbols;
- (BOOL) hasExtension: (NSString*) ext inExtensions: (NSArray*) exts;
- (BOOL) hasShaderExtensions;
- (float) openGLVersionNumber;
- (void) angleUpdate: (NSTimer*) tt;
- (void) reshape;

@end

Example 13-6 Opening a Segment for Symbol Lookup

void * resolveSymbol(char * symname)
{

void *lib = dlopen((const char *)0L, RTLD_LAZY | RTLD_GLOBAL);
void *sym = dlsym(lib, symname);
dlclose(lib);
return(sym);

}

Example 13-7 Looking Up Symbols

- (BOOL) resolveShaderSymbols
{

myglCreateShaderObjectARB =
resolveSymbol("glCreateShaderObjectARB");

myglShaderSourceARB =
resolveSymbol("glShaderSourceARB");

myglCompileShaderARB =
resolveSymbol("glCompileShaderARB");

myglCreateProgramObjectARB =
resolveSymbol("glCreateProgramObjectARB");

myglAttachObjectARB =
resolveSymbol("glAttachObjectARB");

myglLinkProgramARB =
resolveSymbol("glLinkProgramARB");

myglUseProgramObjectARB =
resolveSymbol("glUseProgramObjectARB");

return(myglCreateShaderObjectARB &&
myglShaderSourceARB &&
myglCompileShaderARB &&
myglCreateProgramObjectARB &&
myglAttachObjectARB &&
myglLinkProgramARB &&
myglUseProgramObjectARB);

}

Example 13-8 Our Application’s OpenGL Initialization Code

- (void) prepareOpenGL
{

// setup projection
glMatrixMode(GL_PROJECTION);

Utilization and Binding 267

glLoadIdentity();
glOrtho(-1,1,-1,1,-1,100);

// do we have shading extensions?
if((TRUE == [self hasShaderExtensions]) &&

(TRUE == [self resolveShaderSymbols]))
{

// load shader from disk (bundle)
NSBundle *res = [NSBundle mainBundle];
NSString *fragfile = [res pathForResource:@"test"

ofType:@"frag"];
NSString *vertfile = [res pathForResource:@"test"

ofType:@"vert"];
NSString *fragsource =

[NSString stringWithContentsOfFile: fragfile];
NSString *vertsource =

[NSString stringWithContentsOfFile: vertfile];

const char * fragsource_c = [fragsource UTF8String];
const char * vertsource_c = [vertsource UTF8String];

#if defined(GL_VERSION_1_3) && \
defined(GL_ARB_shader_objects) && \
defined(GL_ARB_shading_language_100) && \
defined(GL_ARB_vertex_shader) && \
defined(GL_ARB_fragment_shader)

vShader = myglCreateShaderObjectARB(GL_VERTEX_SHADER_ARB);
fShader = myglCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);

myglShaderSourceARB(vShader, 1, &vertsource_c, NULL);
myglShaderSourceARB(fShader, 1, &fragsource_c, NULL);

myglCompileShaderARB(vShader);
myglCompileShaderARB(fShader);

programObject = myglCreateProgramObjectARB();

myglAttachObjectARB(programObject, vShader);
myglAttachObjectARB(programObject, fShader);

myglLinkProgramARB(programObject);
myglUseProgramObjectARB(programObject);

#else
#error "No shading available."

#endif
}

// add a timer to oscillate the modelview
NSTimeInterval ti = .1;
[NSTimer scheduledTimerWithTimeInterval: ti

target: self
selector: @selector(angleUpdate:)

268 Chapter 13: OpenGL Extensions

userInfo: nil
repeats: YES];

}

We’ve now seen how to determine which extensions to use; when they’re ap-
propriate; when you should use the baseline OpenGL versus extensions; which
checks to perform for compile-, link-, and run-time correctness; and how to dy-
namically bind symbols. In essence, we’ve taken the complete tour of OpenGL
extension selection and usage and shown how a lot of plumbing fits together.
We’ll now look at a simpler way to do things—that is, letting someone else do
all the work for us in a cross-platform extension toolkit.

Extension Management Libraries
In prior sections we looked at native ways of dealing with extensions on the
Mac, from the compile-time to runtime means of checking and using them. Dur-
ing this exploration, we made clear some of the complexity that is extension
(and version) management in OpenGL, and we offered advice on some ways to
manage that complexity. All of the express ways of managing extensions—from
preprocessor token checks to dynamic symbol loading and executing—are per-
fectly fine for managing extensions. In fact, if you’re using only a few extensions,
manually checking for them may be the easiest way to get up and running, as
our example has shown. However, if you write a large application and use a va-
riety of extensions, you’ll eventually end up writing a lot of code just to manage
extensions. At that point, you might start to wonder why you bothered in the
first place because you’re spending a lot of time writing infrastructure and not a
lot of time writing the next Killer App. Fortunately, a variety of people over the
years have encountered this same OpenGL extension management issue, and
decided to do something about it.

In this section, we’ll present two toolkits with capability for extension man-
agement: GLUT and an open-source project called the GL Extension Wrangler
(GLEW). GLEW and GLUT both wrap up the techniques we’ve discussed ear-
lier, not just for the Mac but on a variety of platforms. Both are a great way to get
up and running with extensions to OpenGL without writing the infrastructure
yourself. Other choices are also available out there, in the wilds, as every few
years someone else decides to take a crack at writing the definitive extension
management toolkit. Apple even has its own version of something like GLEW,
though it’s just example code. Apple has written a little tool it calls glCheck.
If you’re interested in learning the details of ways of managing extensions, it’s
worth a look [6].

Because GLEW and GLUT are supported on multiple platforms, those tools
are preferable, in the authors’ estimation. However, all OpenGL extension and

Extension Management Libraries 269

feature management toolkits tend to perform the same basic functions, so at the
time of this writing, GLEW will be our preferred toolkit due to its comprehen-
sive nature and modernity. Now, if you’re roped into thinking, “Man, ‘insert-
extension-management-API-name-here’ stinks (GLEW, for example); I guess I’ll
just have to rewrite my own toolkit from the ground up,” we hope you’ll at least
first consider trying to work with the authors of the package you choose in an
effort to make it better.

Okay, we now step down from our high horse. Let’s first look at the tool GLEW
and then explore an example in which we use it in an application.

GLEW

GLEW is a toolkit comprising a library for extension management and a few
tools for introspection of system graphics capabilities. GLEW is a cross-platform
tool that will build on Windows, Linux, various UNIXes, and, of course, the
Mac. In addition to handling extensions for OpenGL, GLEW manages ex-
tensions for window system layers such as WGL for Windows and GLX for
X-Windows systems. Our focus on using GLEW here will be on the OpenGL
extension management aspects of the library.

GLEW builds and maintains a list of current OpenGL extension tokens
and extension API entry points upon initialization of the library. The to-
ken list GLEW builds can be used to directly query whether a particular
extension exists; if you prefer, you can also perform functional queries to test
for groups of functionality. GLEW names tokens for extensions by defining a
companion token to the extension of interest in which the GLEW prefix re-
places the GL prefix. For instance, as per our earlier shader example, GLEW de-
fines GLEW ARB fragment shader to correspond to the GL ARB fragment
shader extension. If this token exists, a user is able to use all the functionality
that this extension provides.

GLEW also provides all the basic compile-time definitions needed for an
application—for example, the tokens defined by a particular extension. At run-
time, when the library is initialized, GLEW resolves the symbols for each of the
functions defined by a particular extension. It does so by exploiting the same
Core foundation methods that we used to do this task ourselves earlier. How-
ever, GLEW does this for each and every extension known in the universe (or at
least known to GLEW as of the version you’re using).

In summary, GLEW defines all aspects of the extensions known to it at the
time the library was created, including both extension tokens and extension
functional bindings. That’s a fair bit of complexity, but it’s nicely wrapped, and
using the library to query extensions is very straightforward.

270 Chapter 13: OpenGL Extensions

To use GLEW in an application, there are several ways of accomplishing the
same tasks. We’ll look at one approach that’s a close analog of the way we pre-
viously investigated shader support in an earlier example. The basic process
is this:

1. Initialize the library: glewInit().
2. Query for a particular extension: if (GL TRUE == GL ARB shader

objects).
3. Use that extension and its API calls: glCreateProgramObjectARB().

We’ll perform those steps in conjunction with using OpenGL Shading Language
shaders with our basic example as before. We begin with our prior example but
change the headers from including the GL extensions to including the GLEW
header, as shown in Example 13-9. The only caveat with GLEW is that because
of the way it manages extensions, it must include its header before any other
OpenGL header, as our example does.

Next, we modify our prepareOpenGL routine to initialize GLEW, and then
prepare our shaders as before, pending success. As you look at the code for
Example 13-10, you’ll notice that the only difference between this version and
our last version is that we initialize GLEW. We preserve our compile-time
checks, on the off-chance that we’re building under some broken environment;
this strategy will help us catch that error early. The runtime aspects are identical
to the earlier code: We just call the various OpenGL shading functions. Simple
enough, so we look at the next place where we had extension information—
namely, the method that checks whether the extension is valid, found in
hasShaderExtensions (Example 13-11).

Example 13-9 GLEW Headers

#include <GL/glew.h>
#include <OpenGL/gl.h>
#include <GLUT/glut.h>

Example 13-10 Our Application’s OpenGL Initialization Code Using GLEW

- (void) prepareOpenGL
{

GLenum err = glewInit();
if (GLEW_OK != err)
{

NSLog(@"GLEW Error: %s\n", glewGetErrorString(err));
}
NSLog(@"Status: Using GLEW %s\n", glewGetString(GLEW_VERSION));

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-1,1,-1,1,-1,100);

Extension Management Libraries 271

// do we have shading extensions?
NSLog(@"Has OpenGL Shader: %d\n", [self hasShaderExtensions]);
if(TRUE == [self hasShaderExtensions])
{

NSBundle *res = [NSBundle mainBundle];
NSString *fragsource = [NSString stringWithContentsOfFile:

[res pathForResource:@"test" ofType:@"frag"]];
NSString *vertsource = [NSString stringWithContentsOfFile:
[res pathForResource:@"test" ofType:@"vert"]];

const char * fragsource_c = [fragsource UTF8String];
const char * vertsource_c = [vertsource UTF8String];

#if defined(GL_VERSION_1_3) && \
defined(GL_ARB_shader_objects) && \
defined(GL_ARB_shading_language_100) && \
defined(GL_ARB_vertex_shader) && \
defined(GL_ARB_fragment_shader)

vertexShader =
glCreateShaderObjectARB(GL_VERTEX_SHADER_ARB);

fragmentShader =
glCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB);

glShaderSourceARB(vertexShader, 1, &vertsource_c, NULL);
glShaderSourceARB(fragmentShader, 1, &fragsource_c, NULL);

glCompileShaderARB(vertexShader);
glCompileShaderARB(fragmentShader);

programObject = glCreateProgramObjectARB();

glAttachObjectARB(programObject, vertexShader);
glAttachObjectARB(programObject, fragmentShader);

glLinkProgramARB(programObject);
glUseProgramObjectARB(programObject);

#else
#error "No shading extension information in headers"
#error "NO shading will be available. Only fallback"
#error "rendering provided in this binary."
#endif

}

// add a timer to oscillate the modelview
NSTimeInterval ti = .1;
[NSTimer scheduledTimerWithTimeInterval: ti

target: self
selector: @selector(angleUpdate:)
userInfo: nil
repeats: YES];

}

272 Chapter 13: OpenGL Extensions

The method hasShaderExtensions doesn’t really do anything conceptually
different from the action of our prior example, but the methodology is slightly
different. We first check our version number, but we don’t create an extension
dictionary; GLEW has already done that for us, and we can directly use the
code it provides. Thus we can directly check for the GLEW analog extensions
we described before—namely, those corresponding to our OpenGL extensions.
This method either succeeds or fails based on the existence of these extensions.
Back in prepareOpenGL, we use these extensions if the method is successful.

Example 13-11 Query for Shader Extensions Using GLEW

- (BOOL) hasShaderExtensions
{

BOOL has_shading = FALSE;

float versionfloat = [self openGLVersionNumber];
if (versionfloat >= 1.21)
{

BOOL has_vs = (GL_TRUE == GLEW_ARB_vertex_shader);
BOOL has_fs = (GL_TRUE == GLEW_ARB_fragment_shader);
BOOL has_so = (GL_TRUE == GLEW_ARB_shader_objects);
BOOL has_lang = (GL_TRUE == GLEW_ARB_shading_language_100);
has_shading = has_vs && has_fs && has_so;

}

return(has_shading);
}

That’s all there is to do as far as determining whether an extension exists and us-
ing it with GLEW goes. It’s simple, it’s compact, and it’s comprehensive. It’s also
highly recommended if you have to take the plunge into the depths of OpenGL
extensions.

GLUT

Another approach to extension testing and management is to use the GLUT API.
GLUT performs many features in a cross-platform fashion, but one of these,
which is not directly related to window management, is extension resolution
and binding. GLUT provides two entry points that allow quick and easy testing
of named-extension existence and function binding:

• glutExtensionSupported(ËXT string)̈ : Return non-zero if the exten-
sion exists, and zero if it does not.

• glutGetProcAddress(g̈lExtensionNameARB)̈ : Return a function
pointer for the named extension if it exists, and NULL otherwise.

These two API entries together constitute a complete set of extension testing
and API binding operations for extension functions in a cross-platform fashion.

Extension Management Libraries 273

If the complexity of GLEW isn’t something you need, and writing GL-level man-
agement isn’t your bag either, these tools may be just what you’re looking for.

In Example 13-12, we present C code for checking the OpenGL version number,
as a component of our example shading extension tests adapted for GLUT. In
Example 13-13, we reimplement our Cocoa shader test using the GLUT exten-
sions. As you can see, the code is very similar to that used for both Cocoa and
raw GL.

Example 13-12 Query for OpenGL Version Information Using GLUT

float openGLVersionNumber()
{

char *versionstring = (char*) glGetString(GL_VERSION);
std::string vs(versionstring);
return(atof(vs.substr(0, vs.find(" ")).c_str()));

}

Example 13-13 Query for Shader Extensions Using GLUT

bool hasShaderExtensions()
{

bool has_shading = false;

float versionfloat = openGLVersionNumber();
if (versionfloat >= 1.21)
{

bool has_vs =
glutExtensionSupported("GL_ARB_vertex_shader");

bool has_fs =
glutExtensionSupported("GL_ARB_fragment_shader");

bool has_so =
glutExtensionSupported("GL_ARB_shader_objects");

bool has_lang =
glutExtensionSupported("GL_ARB_shading_language_100");

has_shading = has_vs && has_fs && has_so;
}

return(has_shading);
}

The second piece of extension resolution performed by GLUT is the op-
tional binding of functions from the active GL library. The entry point
glutGetProcAddress allows this binding with a simple API. You just pass
in the name of your entry point of interest, and a non-NULL result indicates suc-
cess and the function pointer.

As we mentioned earlier, Apple has an implicit policy of not requiring ex-
plicit function lookup if the extension exists. Sometimes, however, your infra-
structure for a cross-platform application may require this capability. GLUT is
probably not the best layer for performing this task because you’ll probably

274 Chapter 13: OpenGL Extensions

end up linking in GLUT as an additional framework. Your memory footprint
may increase, as might your load times. The dlopen/dlsym route is prefer-
able, given that Apple probably does something like this internally in its imple-
mentation of this function. Although various implementations of GLUT exist
in source form, all of them indicate that glutGetProcAddress works only
for Windows and X11. However, despite the fact that Apple doesn’t document
this function in the manual pages, this API really does work, and yields correct
results. If you so choose, this is another option for GL function binding.

Summary
Whatever your level of OpenGL programming, sooner or later extensions will
be part of your future. And when you do have to use them, there are a number of
ways of addressing how to efficiently manage their complexity. In this chapter
on OpenGL extensions, we explored a variety of aspects of extensions on Mac
OS X. We looked at the particulars of how to find, choose, and use extensions
through native OpenGL mechanisms. We also explained how to perform the
same process with external extension management tools. Finally, we covered
both approaches with an eye toward Mac specifics but remained grounded in
the reality of multiplatform development.

At this point, you should be conversant in extensions, and well prepared to use
them to make your application faster, more well rounded through advanced
features, or more compatible with a variety of platforms. Extensions are a nec-
essary part of keeping your application up-to-date on the feature and compati-
bility curve of OpenGL development on the Mac.

Summary 275

This page intentionally left blank

Appendix A

X11 APIs for OpenGL
Configuration

X11 (X Window System, Version 11) is a network-transparent window system
that is widely used on Unix-based workstations. It is a client/server-based win-
dowing environment where a single server services multiple “client” windows
of applications written for X11.

The first windowing system on which OpenGL was supported was X11. This
windowing interface to OpenGL is called GLX. GLX running under X11 is anal-
ogous to Cocoa or Carbon running under the Quartz windowing system of the
Mac.

X11 was introduced to OS X in OS 10.2 (Jaguar). The X11 server runs within the
Quartz windowing system in either full-screen mode or windowed mode. The
X11 server also takes care to present some widgets and UI elements in the Aqua
style so that even if your application is just a simple port of another X11-based
application, at least some of the UI elements are rendered in the Mac style. This
behavior makes the X11 environment a possible alternative to a full-scale port.
However, no native Mac user will be fooled because X11 doesn’t have nearly
the visual richness of the native Mac UI elements. A better path to bringing an
OpenGL/X11 application to the Mac may be to start with the simple port, work
out some of the OpenGL bugs, and, as time and budget permit, rework the UI
in native Cocoa or Carbon.

In this appendix we’ll examine the capabilities, APIs, and behavioral character-
istics of using OpenGL on the Mac under GLX and X11.

Installation
X11 is available as an install option on OS X install disks versions 10.3 and later.
The system requirements for installing X11 are as follows:

277

• 256MB RAM
• 200MB of available hard disk space
• A built-in display or a display connected to an Apple-supplied video card

When the installation is complete, X11 is launched using the /Applications/
Utilities/X11.app application. In the Application menu, you’ll find the fa-
miliar “xterm” application. Xterm will set up the X11 execution environment
for you and makes it easy to launch your X11 applications. If you need more
information on configuring your X11 environment, see Apple’s comprehensive
guide on its website [9].

Like most X11 distributions, the X11 install comes with the Athena and Xt wid-
get sets. If your application uses another widget set (most commercial applica-
tions do), you’ll have to do a bit more installation work to configure your Mac.

One of these widget sets, Motif, is quite popular in the commercial X software
world. Motif is a layer above raw X11 that provides a variety of higher-level,
object-oriented (though not C++) rendering widgets. Many large-scale applica-
tions use Motif in the Unix world, and a compatible version of Motif for Mac
OS X, called OpenMotif, can be downloaded from the OpenMotif website [20].
This version of OpenMotif requires a complete compile process, however, so
you may prefer to use a precompiled version. IST makes a variety of pack-
aged versions of OpenMotif for many platforms, including an installer.dmg
for OS X. Despite this not being an official Open Group version of OpenMotif,
installing from the disk image is considerably easier than building Motif from
scratch. IST’s version of this packaged OpenMotif can be downloaded from the
company’s website [17].

Building X11 Applications on OS X
Once the software is installed, building your X11 applications on OS X is similar
to building them on any other Unix platform. By definition, this means that your
X11 application builds will look different from standard native OS X application
builds. Specifically, you will be linking against libraries in /usr/lib rather
than specifying frameworks.

Following is a sample makefile from our x11 simple example for an
OpenMotif/OpenGL application on OS X (Tiger):

Object files
CXXOBJS = main.o oglMotif.o

default: oglMotif

Compile
$(CXXOBJS): %.o: %.c++

278 Appendix A: X11 APIs for OpenGL Configuration

g++ -g -Wall -I/usr/OpenMotif/include \
-I/usr/X11R6/include -c $< -o $@

Link
oglMotif: $(CXXOBJS)
g++ -g -o $@ $(CXXOBJS) -L/usr/X11R6/lib \

-L/usr/OpenMotif/lib -lGL -lGLw -lXm -lXt -lX11

clean:
rm -f *.o oglMotif

Note the -I and -L options of the compile and link lines, respectively. They refer
to the default installation directories for both X11 and OpenMotif. Also note the
lack of any -framework options. You cannot mix and match references to the
Mac OS X OpenGL libraries for an X11 application.

As far as the build process goes, X11 on OS X is quite straightforward. It proba-
bly will not require many changes for the Mac when bringing applications from
other platforms running Unix.

X11 Color Models
X11 shows its age (or seniority, if you prefer) with the prevalence of color index
rendering. Two X11 color models use color index (or color mapped) rendering:
PseudoColor and DirectColor. PseudoColor is the more common of these two
and represents each pixel in the framebuffer as an index into a single colormap.
DirectColor, by contrast, has a separate color map for red, green, and blue. As
you would expect, each pixel in the framebuffer contains an index for each of
the three color maps.

If you wish to run an application that uses the PseudoColor model, you can
launch X11 in 256-color mode. To do so, select the output tab from the X11.app
preferences pane, and select “256 colors” from the Colors drop-down menu. You
must restart X11.app for this change to take effect.

The TrueColor color model stores a maximum of four color component intensity
values in the framebuffer—one each for red, green, blue, and alpha. Modern
graphics applications typically use this color model.

By default, X11.app is configured to take the color setting from the display. The
display setting is typically millions for 24-bit color. This setting is appropriate
for TrueColor X11 applications.

X11 Color Models 279

This page intentionally left blank

Appendix B

Glossary

API Acronym for application programming interface. An API is a set of func-
tions, classes, and tokens used to define a particular set of software tools.
OpenGL is an API for graphics.

ARB See OpenGL Architecture Review Board.
Context sharing Reusing resources from one OpenGL context in another

OpenGL context.
Deferred validation The caching or postponement of data or state changes in

OpenGL until these changes are required at drawing time.
Direct memory access A hardware-to-hardware fetching of data. In the con-

text of graphics, it usually entails the GPU fetching data from a region of
specially mapped or reserved host system memory.

Display capture To take over a particular display as part of a full-screen ap-
plication.

Fragment A collection of all framebuffer state information for a single pixel.
A fragment may have some or all of color, alpha, depth, stencil, and other re-
lated data. The data associated with a fragment is defined when the drawable
or surface for the framebuffer containing this fragment is constructed.

Framebuffer A destination buffer to which the results of OpenGL rendering
are written.

Frame rate quantization A description of the artifact observed when analyz-
ing the performance of double-buffered OpenGL windows, where the frame
rate moves between discrete states defined by integer divisors of the mon-
itor refresh rate. For example, a 60Hz monitor refresh may cause a double-
buffered application to run at 60Hz, 30Hz, or 20Hz.

GLSL Acronym for OpenGL Shading Language.
GLX The OpenGL and X-Windows interface layer. The GLX specification

describes how OpenGL contexts and drawables interact with X-Windows
widgets and windows.

281

Immediate mode rendering Rendering with objects passed from the host to
the GPU on a per-frame basis. Compared to retained mode rendering, imme-
diate mode rendering implies more function-calling overhead in each render-
ing frame in addition to more bus bandwidth used with each frame.

OpenGL Architecture Review Board The standards body that defines which
features, functionality, and APIs appear in core OpenGL versions, extensions,
and associated specifications.

OpenGL Shading Language The high-level shading language employed by
OpenGL.

Red Book The familiar name for the OpenGL programming guide.
Retained mode rendering Rendering with objects already cached on the

GPU. Typically glBind . . . Object calls invoke retained mode rendering.
Display lists are another form of this style of rendering.

Throughput The data transfer rate that an application achieves for a particu-
lar form of data over some data path. In graphics, throughput typically refers
to the rate at which data can be transferred from main memory to the graph-
ics processor.

vbl-sync Vertical blanking synchronized is a configuration option of graphics
applications that ties the redrawing of the framebuffer to the refresh rate of
the display device.

Virtualized desktop A single, continuous desktop that may span multiple,
potentially heterogeneous graphics devices. Dragging windows among the
displays attached to these graphics devices is seamless and continuous.

282 Appendix B: Glossary

Appendix C

The Cocoa API for
OpenGL

Configuration in
Leopard,

Mac OS X 10.5

Cocoa, also known as AppKit, is the Objective-C API for writing modern Mac
OS X applications. Cocoa provides a high-level, object-oriented set of classes
and interfaces for the OpenGL subsystem and for user–interface interaction.
Cocoa is the modern successor to the NextStep API from NeXT Computer; the
company’s initials explain the “NS” prefix on all of the class definitions and data
types. Cocoa provides a more object-oriented API than any other option on the
Mac, which is useful for building UIs, handling events, and functioning as an
interface to OpenGL.

We presume you’re reading this appendix with a fundamental understanding of
the Objective-C language and basic Cocoa, so we won’t spend any time review-
ing core Cocoa concepts like the Objective-C language, views, actions, outlets,
Interface Builder, and so on. We also assume you’ve already read one of the
many good books on these key background elements of Cocoa. If not, we’ve got
a reference or two for you in Appendix D. In the following sections, we’ll ex-
plore two ways of creating a Cocoa-based application: one that relies heavily on
Interface Builder and one that requires more code but yields a bit more flexibil-
ity and capability. We’ll also tackle some advanced OpenGL topics concerning
off-screen rendering, context sharing, and more.

This appendix is a repeat of the earlier chapter focused on Cocoa and OpenGL
but with a focus on Leopard. Though all the basic concepts from that chapter
still apply, Leopard does it a bit differently. Because of that, rather than trying
to integrate the two, we’ve broken them into two tracks. If you’re on Tiger or
earlier, read Chapter 8, but if you’re using Leopard, check out this appendix.

283

CoreGraphics

CGL

NSGL AGL

Figure C-1 AppKit API and Framework in Overall OpenGL Infrastructure on
the Mac

Overview
The AppKit OpenGL API is part of the overall Apple OpenGL infrastructure.
It constitutes a layer above CGL but also has the ability to reach down into
both CGL and lower layers. Figure C-1 shows where the AppKit (also known as
Cocoa or NSGL) API and framework reside relative to other API layers.

The AppKit framework is typically found at /System/Library/Frameworks
but may also be in a path specific to your SDK installation. As with other
APIs, linking against AppKit requires specification of this framework path
(Table C-1).

NSOpenGLView
In this section, we will create an XCode project showing how to create a cus-
tom view to handle OpenGL rendering using a Cocoa UI element. This project
will be a foundation project that we will return to when we create other exam-
ples with increased functionality throughout this appendix. We’ll begin with the
overall project setup and creation—so launch XCode, and we’ll get started.

Create a new XCode project of type Cocoa Application. This action will cre-
ate your project, set it to link properly against the Cocoa frameworks, and create
a sample main program from which we’ll begin. If you do not feel like walking
through the steps or would like to see the finished product first, check out the
sample code from our website (www.macopenglbook.com).

Open the Resources folder, and double-click on the MainMenu.nib icon. This
will open the NIB file for this project in Interface Builder. Now switch to Inter-
face Builder.

Table C-1 AppKit Cocoa Headers, Frameworks, and Overview

Framework path /System/Library/Frameworks/AppKit.framework
Build flag -framework AppKit
Header #include<AppKit/NSOpenGL.h>

284 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

www.macopenglbook.com

Figure C-2 Window and NIB Ready to be Edited in Leopard Interface Builder.

In the MainMenu.nib window, double-click on the Window icon, and you’ll
see the window that will be your application window open. Position and scale
it as you like, and you should end up with something like Figure C-2 when
finished.

Next bring up the Library and Inspector tools, both available in the Tools
menu. Navigate to the Inspector icon in the Library window and drag the
custom view out and into our window. Position and scale the view within the
window to suite your tastes. Finally, in the Inspector window, name your
class something sensible, like MyOpenGLView. Your results should look similar
to Figure C-3.

So what did we just do? We told Interface Builder that we wanted to create a
CustomView, arrange it in the window, and name it. We’re trying to get a custom
OpenGL view, specifically the NSOpenGLView class. It provides the integration
between OpenGL and Cocoa. By subclassing it, we become able to customize
many aspects of its behavior, including pixel format selection and context shar-
ing. But we’re getting ahead of ourselves. First we’ve got to get MyOpenGLView
into a form where we can write some code.

We’ll now use Interface Builder to instantiate a default object when the NIB file
is loaded, bind it to our CustomView and create some sample code.

First, let’s create an instance of our class. Return to the Library window and
find the blue cube icon. This stands for an arbitrary object to be instantiated on

NSOpenGLView 285

Figure C-3 Selection, Layout, and Specialization of a CustomView in Interface
Builder

our behalf. Drag that out and into the MainMenu window. Select the blue cube,
and look in the Inspector window. Type in the Class entry the name of our
custom view, MyOpenGLView. This creates a custom object, of our custom view
type in the NIB, and will recreate that when the NIB gets instantiated at runtime.
You should see something like Figure C-4.

Now let’s create the actual headers and code. In Interface Builder go to the
File menu and choose Write Class Files. This will prompt you to create files for
both the header and the source for this view. Accept the defaults, placed within
your project directory. Finally, drag those files into your XCode project and
we’re set to start coding. The final step in this setup operation is to change the
CustomView to derive from NSOpenGLView, the base Cocoa View class for ren-
dering OpenGL content. To do so, open the code you’ve just generated within
XCode, and change the MyOpenGLView.h header so your project and code look
like Figure C-5.

We could have handled all of this setup, configuration, and routing
programmatically—but this book isn’t about Cocoa plumbing, so we’ll stay
at this level for now. In a later section, we’ll explore Cocoa configuration of a

286 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

Figure C-4 Create and Bind an Instance of our CustomView

Figure C-5 Custom View Derivation and Project Files in XCode 3.0

NSOpenGLView 287

generic NSView, which allows us a bit more flexibility. For now, switch back to
XCode and we’ll dig into the code.

In XCode, open the file MyOpenGLView.m. We’ll now begin adding methods to
handle key elements of the OpenGL render cycle. We start by adding a method
to select pixel formats. This code performs pixel format selection in three steps:

1. A structure is created containing a list of pixel format configuration
parameters.

2. That structure is passed to an NSOpenGLPixelFormat constructor to create
a new pixel format object.

3. That pixel format object is passed on to the base NSOpenGLView method for
finishing the initialization of this view.

Either add the code yourself to your project or grab it from the sample code
provided in Example C-1. Compile and run the code, and you should have a
window!

Example C-1 Configuration of an OpenGL View in initWithFrame

#include <OpenGL/gl.h>
#include <GLUT/glut.h>

#include <math.h>
#import "MyOpenGLView.h"

@implementation MyOpenGLView

- (id) initWithFrame: (NSRect) frame
{

time = 0;
angle = 0;

GLuint attributes[] =
{

NSOpenGLPFAWindow,
// choose among pixelformats capable of rendering to windows
NSOpenGLPFAAccelerated,
// require hardware-accelerated pixelformat
NSOpenGLPFADoubleBuffer,
// require double-buffered pixelformat
NSOpenGLPFAColorSize, 24,
// require 24 bits for color-channels
NSOpenGLPFAAlphaSize, 8,
// require an 8-bit alpha channel
NSOpenGLPFADepthSize, 24,
// require a 24-bit depth buffer
NSOpenGLPFAMinimumPolicy,
// select a pixelformat which meets or exceeds these requirements
0

};

288 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

NSOpenGLPixelFormat* pixelformat =
[[NSOpenGLPixelFormat alloc] initWithAttributes:

(NSOpenGLPixelFormatAttribute*) attributes];

if (pixelformat == nil)
{

NSLog(@"No valid OpenGL pixel format");
NSLog(@"matches the attributes specified");
// at this point, we’d want to try different sets of
// pixelformat attributes until we got a match, or decide
// we couldn’t create a proper graphics environment for our
// application, and exit appropriately

}
// now init ourself using NSOpenGLViews
// initWithFrame:pixelFormat message
return self = [super initWithFrame: frame

pixelFormat: [pixelformat autorelease]];
}

“But wait,” you say, “what about the rest of the key OpenGL configuration
pieces: the context and the drawable or surface?” By subclassing NSOpen-
GLView, you’re getting the last two pieces configured for you, you lucky dog—
no extra work required. The base NSOpenGLView class creates a context from
the pixel format you passed in, and it creates a drawable such that it can be
visualized in the window we created with our CustomView back in Interface
Builder. Later, however, we’ll go through the process of specializing an NSView
so we can do the fun bits in creating a context and a drawable, too. This step is
necessary if you want to do more advanced context things, such as share data
with another context. More on that in later sections.

Moving along, now that you know how to choose a pixel format, it’s prob-
ably an appropriate time to discuss what the various flags mean to an
NSOpenGLPixelFormat. These flags are generally well documented by Ap-
ple, but we’re including a list of all the flags in one spot for handy reference
here. Take a look at Tables C-2 and C-3, see which values make sense for your
application, and try a few in the code we’ve just developed. Table C-3 contains
a fair bit of exposition on these flags, including what the various values mean
and how you might use them—it’s worth a quick read.

Table C-2 Selection Policies and Behaviors

Policy Description
Match Choose only from the set of pixel formats that match exactly.
Closest Choose a match closest to the size specified, but not necessarily an

exact match.
Minimum Require a match of at least this size. Can choose larger sizes.
Maximum Require a match of at most this size. Prefers larger sizes.

NSOpenGLView 289

Table C-3 Common Pixel Format Qualifiers for Use with
NSOpenGLPixelFormat

Token Description
NSOpenGLPFAAllRenderers Look in entire set of renderers to find a

match.
Type: Boolean
YES: Search entire set of available renderers,
including those that are potentially
non-OpenGL compliant.
Default: YES
Policy: Any

NSOpenGLPFADoubleBuffer Double buffer requirements.
Type: Boolean
YES: Search only for a double-buffered pixel
format.
NO: Require a single-buffered pixel format.
Default: NO
Policy: Any

NSOpenGLPFAStereo Stereo requirements.
Type: Boolean
YES: Require a stereo pixel format.
NO: Require a monoscopic pixel format.
Default: NO
Policy: Any

NSOpenGLPFAAuxBuffers Auxiliary buffer requirements.
Type: Unsigned integer
Number of auxiliary buffers required by this
pixel format.
Default: NA
Policy: Smallest

NSOpenGLPFAColorSize Color bits requirements.
Type: Unsigned integer
Number of color buffer bits required by all
color components together.
Default: If this token is not specified, a
ColorSize that matches the screen is
implied.
Policy: Closest

NSOpenGLPFAAlphaSize Unsigned integer: The value specified is the
number of alpha buffer bits required.
Default: If no value is specified, pixel
formats discovered may or may not have an
alpha buffer.
Selection policy: Pixel formats that most
closely match this size are preferred.

290 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

Token Description
NSOpenGLPFADepthSize Unsigned integer: The value specified is the

number of depth buffer bits required.
Default: If no value is specified, pixel formats
discovered may or may not have a depth
buffer.
Selection policy: Pixel formats that most
closely match this size are preferred.

NSOpenGLPFAStencilSize Unsigned integer: The value specified is the
number of stencil planes required.
Selection policy: The smallest stencil buffer of
at least the specified size is preferred.

NSOpenGLPFAAccumSize Unsigned integer: The value specified is the
number of accumulation buffer bits required.
Selection policy: An accumulation buffer that
most closely matches the specified size is
preferred.

NSOpenGLPFAMinimumPolicy YES: Change to the selection policy
described.
Selection policy: Consider only buffers
greater than or equal to each specified size of
the color, depth, and accumulation buffers.

NSOpenGLPFAMaximumPolicy YES: Change to the selection policy
described.
Selection policy: For non-zero buffer
specifications, prefer the largest available
buffer for each of color, depth, and
accumulation buffers.

NSOpenGLPFAOffScreen YES: Consider only renderers capable of
rendering to an off-screen memory area that
have a buffer depth exactly equal to the
specified buffer depth size. An implicit
change to the selection policy is as described.
Selection policy:
NSOpenGLPFAClosestPolicy

NSOpenGLPFAFullScreen YES: Consider only renderers capable of
rendering to a full-screen drawable.
Implicitly defines the
NSOpenGLPFASingleRenderer attribute.

NSOpenGLPFASampleBuffers Unsigned integer: The value specified is the
number of multisample buffers required.

NSOpenGLPFASamples Unsigned integer: The value specified is the
number of samples for each multisample
buffer required.

(Continued)

NSOpenGLView 291

Table C-3 Common Pixel Format Qualifiers for Use with
NSOpenGLPixelFormat (Continued)

Token Description
NSOpenGLPFAColorFloat YES: Consider only renderers capable of

using floating-point pixels.
NSOpenGLPFAColorSize should also be set
to 64 or 128 for half- or full-precision
floating-point pixels (Mac OS 10.4).

NSOpenGLPFAMultisample YES: Consider only renderers capable of
using supersample anti-aliasing.
NSOpenGLPFASampleBuffers and
NSOpenGLPFASamples also need to be set
(Mac OS 10.4).

NSOpenGLPFAAuxDepthStencil If present, searches for pixel formats for each
AuxBuffer that has its own depth stencil
buffer.

NSOpenGLPFARendererID Unsigned integer: ID of renderer.
Selection policy: Prefer renderers that match
the specified ID. Refer to CGLRenderers.h
for possible values.

NSOpenGLPFAAccelerated YES: Modify the selection policy to search for
pixel formats only among hardware-
accelerated renderers.
NO (default): Search all renderers, but adhere
to the selection policy specified.
Selection policy: Prefer accelerated renderers.

NSOpenGLPFAClosestPolicy YES: Modify the selection policy for the color
buffer to choose the closest color buffer size
preferentially. This policy will not take into
account the color buffer size of the current
graphics devices.
NO (default): No modification to selection
policy.

NSOpenGLPFABackingStore YES: Constrain the search of pixel formats to
consider only renderers that have a back
color buffer that is both the full size of the
drawable and guaranteed to be valid after a
call to a buffer flush.
NO (default): No modification to the
pixel buffer search.

NSOpenGLPFAWindow YES (default): Search only among renderers
that are capable of rendering to a window.
Note: This attribute is implied only if neither
NSOpenGLPFAFullScreen nor
NSOpenGLPFAOffScreen is specified.

NSOpenGLPFAPixelBuffer YES: Rendering to a pixel buffer is enabled.

292 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

In particular, pixel format selection can have a profound impact on both the per-
formance of and the video memory usage by your application. Keep in mind
that choosing pixel formats with more capabilities may lead to slower perfor-
mance than choosing pixel formats with fewer options and smaller buffers. For
example, if you have a choice between a pixel format with a color buffer size
of, say, 8 bits per color component (32 bits total) or one with a color buffer rep-
resented as a 32-bit floating-point number per component (128 bits total), it’s
pretty clear that writing to a single pixel in your drawable requires four times
the bandwidth just for color. We’ll get into these performance implications later
and explore issues like this one in more detail. For now, just realize that a good
rule of thumb for choosing pixel formats is to choose the one that most closely
matches your application’s needs.

We’ll finish this Cocoa example by adding a few more useful methods to our
code. These will allow two more key tasks—namely, context setup (that is,
things you might do in an OpenGL application, such as, glEnable certain
states and bind textures) and drawing.

The first of these methods, which is named prepareOpenGL, is defined to be
the first opportunity that your class will have to make some OpenGL calls. pre-
pareOpenGL will be called once a valid pixel format, context, and drawable are
all available, so you can go ahead and call anything you’d like there. Keep in
mind that this method will be called only once, so from that point on, you’ll
have to manage your OpenGL state changes on the fly.

The second method to implement is drawRect. This method will be called ev-
ery time a scene redraw is necessary; you will do the bulk of your OpenGL
work there. As part of the drawRect signature, you will be handed an NSRect
containing the current origin and size of the drawing area, in pixels.

With that introduction out of the way, we’ll simply point you at the code
(Example C-2) to add to your MyOpenGLView.m file, somewhere between the
@implementation and @end tokens. Once you’ve added this code, recompile
and run the code again, and you should see something like Figure C-6.

Example C-2 Cocoa drawRect Rendering Method with Sample OpenGL
Content

- (void) drawRect: (NSRect) rect
{

// adjust viewing parameters
glViewport(0, 0, (GLsizei) rect.size.width,

(GLsizei) rect.size.height);
glClearColor(0, .5, .8, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);

NSOpenGLView 293

Figure C-6 Teapot Rendered with NSOpenGLView with Subclass

glLoadIdentity();

glTranslatef(0, 0, -1);

GLfloat green[4] = { 0, 1, 0, 0 };
glMaterialfv(GL_FRONT_AND_BACK,

GL_AMBIENT_AND_DIFFUSE, green);
glutSolidTeapot(.5);

[[self openGLContext] flushBuffer];
}

@end

If you see a teapot—success! In this section, we’ve explored one of the ways to
configure a Cocoa OpenGL Surface, delved into the details of how to specify a
pixel format, and constructed a functional application. This should serve as a
starting point in your exploration of Cocoa, pixel format selection, and OpenGL
rendering in these frameworks. In the next section, we’ll examine how you cre-
ate a custom NSView-derived class for even more flexibility.

NSView
Now that we’ve seen what NSOpenGLView can do for us, let’s create our
own NSView-based application to expose some of the functionality that
NSOpenGLView performed behind the scenes. Why expose this extra complex-
ity? You may want to take this path if your application features many OpenGL

294 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

views of the same data. The technique we’ll demonstrate here allows you to
share data between these multiple views. But whatever your needs, this explo-
ration will show you how to attach a context to an NSView, getting at the guts
of how contexts are created, and then do some rendering. If you need precise
management of a context, this is the way to do it in a Cocoa application. We’ll
end up exactly where we did before, with a cozy teapot on a calming blue back-
ground. We’ll also begin where we did last time as well, in XCode. Launch it,
and we’ll get started.

We begin with the big picture—an overview of where we’re going in this
section. If you’d like to try to do this chunk on your own before the walk-
through, we encourage you to apply what we did in the last section to create
a custom view. This time, however, we’ll create our subclass based on NSView.
Here are the steps:

1. Create a custom View in Interface Builder, named to your liking.
2. Create a custom Object in your NIB, using this same class name.
3. Export this code into XCode.
4. Change the class derivation to NSView this time.
5. Write code to create the teapot and handle the OpenGL initialization.

We won’t say any more about how to accomplish the XCode project setup and
configuration at this point, but rather will leave you to try to figure it out on
your own. The walkthrough here will take you through all the details if you’d
prefer to try it this way.

Create a new XCode project of type Cocoa Application. This action will cre-
ate your project, set it to link properly against the Cocoa frameworks, and create
a sample main program from which we’ll begin. If you don’t feel like walking
through the steps or would like to see the finished product first, check out the
sample code from our website (www.macopenglbook.com).

Open the Resources folder, and double-click on the MainMenu.nib icon. This
will open the NIB file for this project in Interface Builder. Now switch to Inter-
face Builder.

In the MainMenu window, double-click the Window icon, and drag a Cus-
tomView from the Library palette to the window. In the Inspector, name this
custom view.

Now go back to MainMenu, and drag from the Library a custom Object into
the MainMenu window. In the Inspector change its Class name to that of the
custom view from the last step.

As before, we must create headers and code. From the File menu, Write Class
Files, and then import those files (by dragging them) to your XCode project.

NSView 295

www.macopenglbook.com

With that configuration out of the way, we move straight into the code
phase. Save your MainMenu.nib, and switch to XCode. As before with the
NSOpenGLView-derived project, we’ll do many of the same things, includ-
ing creating a pixel format and creating a subclassed version of drawRect.
We’ll also mimic some of the infrastructure automatically provided in
NSOpenGLView, so you can see how it does its work. This time around, we’ll
present all the code in the final versions of both the header file (Example C-3)
and the source file (Example C-4) first, and then walk you through each.

Example C-3 MyView.h Final Header

#import <Cocoa/Cocoa.h>

@interface MyView : NSView
{

@private
NSOpenGLContext *_context;
NSOpenGLPixelFormat* _pixelformat;

}

- (NSOpenGLContext*) openGLContext;
- (void) prepareOpenGL;

@end

We begin by looking at the MyView.h header. We’ve inserted both a few mem-
ber variables and a few methods. We’ve also created member variables to store
pointers to our context and to our pixel format; we’ll create code to initialize
these variables in the source file. We also declare two methods, openGLCon-
text and prepareOpenGL, named to emulate the behavior of the Cocoa-
supplied NSOpenGLView. openGLContext will be used to return the current
context or to create one if none exists. prepareOpenGL will be used as our first
call to our OpenGL context to initialize the basic OpenGL functionality, as we
did before for our MyNSOpenGLView class.

That’s all there is to do in the header, so let’s look at the source, see which other
methods we’ve overloaded from NSView, and see how the code behind these
signatures works.

Example C-4 MyView.m Final Code

#include <OpenGL/gl.h>
#include <GLUT/glut.h>

#import "MyView.h"

@implementation MyView

- (id)initWithFrame:(NSRect)frameRect

296 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

{
NSLog(@"myView::initWithFrame");
if ((self = [super initWithFrame:frameRect]) != nil)
{

GLuint attributes[] =
{

NSOpenGLPFAWindow,
NSOpenGLPFAAccelerated,
NSOpenGLPFADoubleBuffer,
NSOpenGLPFAColorSize, 24,
NSOpenGLPFAAlphaSize, 8,
NSOpenGLPFADepthSize, 24,
NSOpenGLPFAMinimumPolicy,
// select a pixelformat which meets or
// exceeds these requirements
0

};
_pixelformat = [[NSOpenGLPixelFormat alloc]

initWithAttributes:
(NSOpenGLPixelFormatAttribute*) attributes];

if (_pixelformat == nil)
{

NSLog(@"No valid OpenGL pixel format");
NSLog(@"matching attributes specified");

}
}
// init the context for later construction
_context = nil;

return self;
}

- (NSOpenGLContext *) openGLContext
{

if (_context == nil)
{

// if this is our first time to initialize
_context = [[NSOpenGLContext alloc]

initWithFormat: _pixelformat shareContext: nil];

if (_context == nil)
{

NSLog(@"No valid OpenGL context can be");
NSLog(@"created with that pixelformat");
/*
we can fail a few ways:

1 - bogus parameters: nil pixelformat,
invalid sharecontext, etc.

2 - share context uses a different Renderer
than the specified pixelformat

recovery techniques:
1 - choose a different pixelformat

NSView 297

2 -proceed without a shared context
*/

}
}

return(_context);
}

- (void) lockFocus
{

NSLog(@"myView::lockFocus");

// ensure we are ready to draw
[super lockFocus];
// get our context
NSOpenGLContext *cxt = [self openGLContext];

// ensure we are pointing to ourself as the Drawable
if ([cxt view] != self)
{

[cxt setView: self];
}

// make us the current OpenGL context
[cxt makeCurrentContext];

}

- (void) prepareOpenGL
{

NSLog(@"myView::prepareOpenGL");

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-1,1,-1,1,-1,100);

}

- (void) drawRect: (NSRect) rect
{

// adjust viewing parameters
glViewport(0, 0,

(GLsizei) rect.size.width, (GLsizei) rect.size.height);

glClearColor(0, .5, .8, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

glTranslatef(0, 0, -1);

GLfloat green[4] = { 0, 1, 0, 0 };
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, green);
glutSolidTeapot(.5);

298 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

[[self openGLContext] flushBuffer];
}

@end

In our MyView.m file, we start by looking at our initWithFrame overloaded
method. This method is called when our object is getting constructed, with the
desired layout of this particular view. As with our MyNSOpenGLView class, this
method is where we set up our pixel format and prepare the rest of our class
for subsequent use. In fact, the majority of the code in this method is identical
to the code given earlier, with a slight inversion: We initialize the parent first
and then, based on success there, create a pixel format. We end this method by
initializing our context member to nil in preparation for configuring it later.

The next method, openGLContext, is the body of what we declared in the
header. This method’s intent is to hand the caller a pointer to the context used
by this view. It begins by checking whether the existing context is empty; if so, it
creates a context using the existing pixel format we created earlier and calls the
NSOpenGLContext constructor initWithFormat: NSOpenGLContext *.
This constructor takes two parameters: a pixel format and either another
NSOpenGLContext pointer or nil. The pixel format parameter is used by the
context to configure itself with any specific information that may affect OpenGL
rendering, such as anti-aliasing or stencil capability. The second parameter, a
different NSOpenGLContext*, is used in the case that the context passed back
by this method will be shared with the context specified. Sharing a context will
be explained in further detail later. For our example here, we simply pass in nil,
indicating that we want a new context that does not share any resources with
any other context. In this case, the only failure mode for this routine would be if
the pixel format specified were invalid or nil. This routine ends by returning a
pointer to the new context.

The next method we will create is an overloaded method of NSView named
lockFocus. NSView uses this method to make the current view the focus
so that it’s the target of whatever drawing commands follow. Quoting the
Cocoa documentation, lockFocus “locks the focus on the receiver, so sub-
sequent commands take effect in the receiver’s window and coordinate sys-
tem.” This command essentially tells the windowing system that we will require
some specific configuration to be set up and active before we render into this
window.

Why do we need this? Well, every OpenGL context is essentially a snapshot of
the entire OpenGL state used during rendering. Thus, if you’ve painstakingly
configured some precise combination of OpenGL data, rendering paths, and
other information, the same context in which you’ve done that work is likely the
one in which you’d like your subsequent OpenGL commands to be executed.

NSView 299

Put more succinctly, you want your context to be active. In context parlance,
this is known as “making your context current.” lockFocus is the place in the
Cocoa framework where your view is made current, and where you can then
make your context current.

If we now look at our code, we can see that we need to overload this method
to do the usual lockFocus work when we call our superclasses lockFocus.
We then do work to get our OpenGL context and make it current. And that, as
they say, is that: We’ve got a context, it’s current, and we’re ready to finish this
exercise with two methods that we’ve seen before.

The last two methods we implement are identical to those we’ve used before.
The prepareOpenGL and drawRect methods contain the same code as in the
prior example. As before, they perform two tasks in your context—OpenGL
initialization and rendering, respectively. With their completion, you’re ready
to build and run the application. You should see the same teapot against a blue
background as in Figure C-6.

Additional Topics
So far, we’ve explored ways to render directly to the screen using Cocoa. Now
we’ll dig into how to render somewhere off-screen. There are many reasons why
you might want to do this—for example, to create a cube map for reflection,
to create shadow maps, or to create another form of dynamic texture. For off-
screen rendering, we’ll be building on the foundation from the Cocoa examples
in previous sections, so if you’ve skipped to this point without reading those
sections, you may want to review them to gather additional details.

Manipulating Images and Pixels in OpenGL

Before we get into specific techniques, let’s talk about the various ways that an
image of some sort can be moved around, rendered, and copied in OpenGL.
OpenGL provides two main paths for pixel data:

• Pixel path
• Texture path

These two paths are very different in the way they’re ultimately available to
be rendered. The pixel path consists of two basic calls, glDrawPixels and
glReadPixels, which allow for drawing and reading, respectively, of pixels
from the current write and read buffers. These pixel path calls are 2D only and
can read and write only screen-aligned data. By comparison, the texture path
differs from the pixel path specifically in that texture data can be rendered in
3D. Because the texture path can also be used to render screen-aligned images
as well, it is ultimately the more flexible of the two paths, so we’ll focus on the

300 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

texture path here. The Red Book [22] has lots of details on the imaging pipeline,
if you’d like more information on that.

Any pixel data that you might want to render in an OpenGL scene, you can
handle through textures. To do so, you would download that image as a texture
using glTexImage[123]D calls. Let’s provide an overview of this process and
then translate it into code:

1. Create and configure a texture (glGenTextures, glBindTexture,
glTexImage2D, glTexEnv, glTexParameter).

2. Bind that texture (glBindTexture).
3. Draw using that texture (glBegin . . . glTexCoord2f . . . glEnd).

This book isn’t meant to teach you fundamental OpenGL rendering techniques,
but the preceding sequence is essential to understand for two key reasons. First,
texturing is the primary means by which you’ll access the data you render to
off-screen surfaces and the primary way by which you’ll re-render those data in
another form. Second, textures are chunks of data that are intimately bound to
OpenGL contexts, and we’ll need to know how to share data among contexts if
we want to use textures rendered in one context in another context. Essentially,
this section is a segue into sharing contexts, which is the topic we explore next.

Context Sharing

A key concept in many aspects of OpenGL rendering—on the Mac or
otherwise—is what lives in an OpenGL context and how to efficiently use that
data for multiple purposes. Essentially, a context contains all OpenGL state data
associated with rendering, such as the viewport dimensions, active color, and
rendering modes. A context also includes much heavier-weight items, such as
texture objects and vertex objects.

Large objects consume nontrivial amounts of memory on a graphics card, so
the designers of OpenGL anticipated the need to avoid duplicating resources
among multiple rendering areas. This anti-redundancy capability is exposed
at the window-system level as a feature called context sharing. This capability
is typically requested when a new OpenGL context is created, after the first
rendering context has been created and used. The context with items you wish
to access is passed into some form of initialization for your new context, usually
along with a pixel format. For two contexts to be compatible, their pixel formats
must be compatible, which is why you see these two things specified together
to successfully enable sharing.

What makes pixel formats incompatible? On the Mac, usually it’s one thing—
incompatible renderers. As a rule of thumb, if you can choose pixel formats that
use the same renderers, you can share contexts created with those pixel formats.

Additional Topics 301

So we’ve covered the how and why of sharing a context, but what, exactly, is
shared when context sharing is enabled? Interestingly enough, most OpenGL
objects are shared, but the overall context state is not. That’s not entirely intu-
itive, but it correlates well with what people usually want to do. You save valu-
able card memory by reusing heavyweight objects in multiple spots, but still
preserve the ability to customize each OpenGL view as needed. Specifically, the
following entities are shared:

• Display lists
• Vertex array objects (VAOs)
• Buffer objects (VBOs, PBOs)
• Texture objects
• Vertex and fragment programs and shaders
• Frame buffer objects (FBOs)

Now that we have an overview of how context sharing works, let’s walk
through some code. For purposes of this example, we will build a two-
windowed version of our earlier Cocoa example in which we created a custom
context. In this case we’ll modify the example to share the context between the
two views and surfaces, render some shared data (a display list), and visualize
the data in two views, each with a different-color background color. The plan is
to demonstrate what is and what isn’t shared in context sharing.

We begin by setting up a new project as we did for the simple Cocoa context
example. The exact process isn’t described here, except to say that you duplicate
the steps from before but add a new window in your MainMenu.nib and create
two custom NSOpenGL-derived views. Your results should look like Figure C-7.

Working in XCode, add an OpenGL framework dependency, and ensure that
your frameworks and classes appear as shown in Figure C-8. Try building and
running this application, knowing that we’ve not yet connected up the drawing
or context sharing. On the off chance that you see only one window, make sure
you’ve added the “Visible at Launch” flag to your Interface Builder properties,
as in Figure C-9.

Finally, let’s look at the code necessary for context sharing. There are a number
of techniques for deciding which context to share, but one approach that is par-
ticularly nice, from an architectural perspective, is to use an “external” context
provider. In this model, we configure and create a context in a separate class,
and then share it with any OpenGL view that needs to render using its shared
objects. In our example, we’ll use the pattern of a singleton—that is, an object-
based wrapper around a static object. This code is very straightforward, so we’ll
present it here and then discuss a bit more after presentation. The header code
lives in Example C-5 and the source code is found in Example C-6.

302 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

Figure C-7 Two Views, Contexts Shared

Example C-5 Singleton Class Declaration for Managing a Shared Context

#import <Cocoa/Cocoa.h>
@interface SharedContext : NSObject
{

NSOpenGLPixelFormat* _pixelformat;
NSOpenGLContext * _context;

}

- (NSOpenGLPixelFormat *) pixelFormat;
- (NSOpenGLContext *) context;
+ (SharedContext *) instance;

@end

Additional Topics 303

Figure C-8 Final Two Window XCode Contents

Figure C-9 Visible at Launch Enabled

304 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

Example C-6 Singleton Class Implementation for Managing a Shared Context

#import <AppKit/NSOpenGL.h>
#import <OpenGL/gl.h>

#import "SharedContext.h"

SharedContext *_sharedContext = nil;
@implementation SharedContext

- (id) init
{

if (self = [super init])
{

_pixelformat = nil;
_context = nil;

GLuint attributes[] =
{

NSOpenGLPFAWindow, // windowed pixelformats
NSOpenGLPFAAccelerated, // hw-accel pixelformat
NSOpenGLPFADoubleBuffer, // double-buffered pixelformat
NSOpenGLPFAColorSize, 24, // 24 bits for color-channels
NSOpenGLPFAAlphaSize, 8, // 8-bit alpha channel
NSOpenGLPFADepthSize, 24, // 24-bit depth buffer
NSOpenGLPFAMinimumPolicy, // meets or exceed reqs
0

};
_pixelformat = [[NSOpenGLPixelFormat alloc]

initWithAttributes:
(NSOpenGLPixelFormatAttribute*) attributes];

if (_pixelformat == nil)
{

NSLog(@"SharedContext: No valid OpenGL pixel" \
@"format matching attributes specified");

// at this point, we’d want to try different
// sets of pixelformat attributes until we
// got a match, or decided we couldn’t create
// a proper working environment for our
// application

}
else
{

_context = [[NSOpenGLContext alloc]
initWithFormat: _pixelformat shareContext: nil];

}
}
return self;

}

- (NSOpenGLPixelFormat *) pixelFormat
{

return(_pixelformat);

Additional Topics 305

}

- (NSOpenGLContext *) context
{

return(_context);
}

+ (SharedContext *) instance
{

if (_sharedContext == nil)
{

_sharedContext = [[SharedContext alloc] init];
}
return _sharedContext;

}

@end

If you’re familiar with the singleton pattern, the instance method and idea
should be familiar to you. If not, consult the classic Design Patterns book by the
notorious Gang of Four [16]. Essentially, instance provides a handle to our
static context manager object. Upon its creation, this object allocates a pixel for-
mat and a context based on that pixel format. This code should look familiar, as
we’ve written code similar to it earlier in this book. The only caveat when writ-
ing context-sharing code of your own is to keep in mind that any context that is
meant to be shared must be compatible with the other contexts. Compatibility
implies many things, but chiefly that the destination pixel depth, color depth,
and other factors are similar. We work around that problem in this example
by first exposing a common pixel format through the pixelFormat method,
and then using that method to construct our pixel format and context for each
window’s view.

Let’s revisit the code we used for our custom OpenGL view example for initial-
ization and setup. This code, with one minor twist, does everything we need
and is presented in Example C-7.

Example C-7 Initialization of an OpenGL View with a Shared Context

@implementation MyView

- (id)initWithFrame:(NSRect)frameRect
{

NSLog(@"MyView::initWithFrame");

if ((self = [super initWithFrame:frameRect]) != nil)
{

_pixelformat = [[SharedContext instance] pixelFormat];

if (_pixelformat == nil)
{

306 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

NSLog(@"No valid OpenGL pixel format" \
"matching attributes specified");

// at this point, we’d want to try different
// sets of pixelformat attributes until we
// got a match, or decided we couldn’t create
// a proper working environment for our
// application

}
}

// init the context for later construction
_context = nil;

return self;
}

- (NSOpenGLContext *) openGLContext
{

if (_context == nil) // only if uninitialized
{

// if this is our first time to initialize
_context = [[NSOpenGLContext alloc]

initWithFormat: _pixelformat
shareContext: [[SharedContext instance] context]];

if (_context == nil)
{

NSLog(@"No valid OpenGL context can be" \
"created with that pixelformat");

/*
we can fail a few ways:
1 - bogus parameters: nil pixelformat, invalid

sharecontext, etc.
2 - share context uses a different Renderer

than the specified pixelformat

recovery techniques:
1 - choose a different pixelformat
2 - proceed without a shared context
*/

}
}

return(_context);
}

As you can see in Example C-7, the only changes we made from our original
custom view example are to use the [[SharedContext instance]
pixelFormat] accessor to create a pixel format for this view and then, sim-
ilarly, to use the [[SharedContext instance] context] accessor
when constructing our context. We should always, of course, confirm that all
pixel formats and contexts are successfully created for our production code
as well. So, add code like this to your existing code and then make one

Additional Topics 307

Figure C-10 Context Sharing: Two Windows Demonstrating Common Shared
Data and Unshared (Clear Color) Context Data

last change—specifically, change the clear color in one of your custom View
drawRect methods. If everything works as planned, your application should
produce results like these shown in Figure C-10.

Remember that the OS X OpenGL implementation follows the conventions
established in the GLX specification. Applications are responsible for synchro-
nizing the state of objects between contexts. This implies that multithreaded
applications with shared context establish mutex locks between the threads, use
glFlush to flush pending commands that modify object state, and call glBind
to realize changes to shared objects in other contexts. These may seem like a lot
of steps, but they are usually worth the resulting resource conservation and
performance gains.

In this section, we’ve seen how to configure context sharing in Cocoa, how to use
it with a custom OpenGL view, and under which circumstances you’d want to
share contexts. We’ve provided examples of how this sharing mechanism works
in Cocoa, and we’ll revisit this topic for AGL and CGL later. Context sharing is
a key principle we’ll use for a variety of on- or off-screen rendering techniques,
so you’ll likely revisit this section from time to time for hints when performing
full-screen and off-screen rendering.

Full-Screen Surfaces

Every now and again, you might want to put your Cocoa OpenGL application
into full-screen mode. There are lots of reasons why you might want to do this,
and Apple often uses this approach for many of its applications. Apple software

308 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

examples include QuickTime full-screen movie presentation, iPhoto/Finder
slideshows, DVD playback, and FrontRow set-top display. The most common
example of this technique in user software is found in games, usually where a
game takes over the display for a complete and unobstructed experience of slay-
ing dragons, flying through canyons at Mach 0.8, or conquering the galaxy. A
rule of thumb to decide when full-screen rendering is needed is this: Any time
you want to present a completely custom user interface, full-screen applications
are one way to go. In this section we’ll first tackle some plumbing details neces-
sary to render full-screen OpenGL surfaces and then demonstrate how to create
and use a full-screen OpenGL area.

Display Capture

One major reason for using a full-screen area is to coherently display some con-
tent without the distraction of other UI elements. A key element of this experi-
ence would be blocking interruption by other applications while in this mode.
Apple provides hooks to allow an application to essentially take over the dis-
play, preventing other applications from presenting their content over the top.
This behavior is known as display capture. Display capture exists at the Core-
Graphics level of graphics, typically a 2D layer, and is not part of our discussion
in this book. Nonetheless, the ability to capture the display is a useful—albeit
not required—element of a full-screen application, even in Cocoa. Performing
display capture is a very easy task, but entails strict ordering of the tasks. Essen-
tially, the process proceeds as follows:

1. Capture the display.
2. Configure and display a full-screen window.
3. Handle events.
4. Release the display.

It’s important to ensure that both event handling and teardown (or display
release) occur. If they do not, you’ll probably get into a deadlock of some sort—
one in which either you can’t do anything with your application or other ap-
plications move to the foreground, respectively. You’re almost guaranteed to
experience this problem once unless you’re really listening to me here, and
you’ll never repeat the mistake—rebooting in the middle of your development
cycle is a pretty good deterrent. The specifics of display capture and release are
sketched out, in Example C-8. Please read Apple’s developer documentation on
the methods described here for additional information. Because these methods
are so fundamentally simple, we will just show you the code and have you use
it without further discussion.

Additional Topics 309

Example C-8 Capturing and Releasing the Display

/*!
Captures all displays, returning true/false for
success/failure.

*/
bool capturedDisplaysLoop()
{

bool error = false;
CGDisplayErr err = CGCaptureAllDisplays();
if (err != CGDisplayNoErr)
{

// failure - maybe another application is already
// fullscreen
error = true;

}
else
{

// your code here: open fullscreen window

// your code here: event handler loop.

// stay here until no longer in fullscreen mode.
// upon exit, we transition back to windowed mode, and
// release the display

CGReleaseAllDisplays();
}
return(error);

}

For simplicity, we use the global form of display capture—that is, the form in
which all displays are captured. You may have a need or a preference to control
which display you capture more precisely. For those circumstances, Apple pro-
vides CGDisplayCapture and CGDisplayRelease to specify a particular
display. And that’s really all there is for display capture as it relates to OpenGL,
except for the event-handling part, which we’ll discuss next.

Event Handling

One key caveat to full-screen windows, regardless of the amount of OpenGL
window-system integration, relates to event handling: Who’s handling the
events now that your window-system and UI elements are hidden? Yes,
Virginia, this is another headache of full-screen windows, but you’ve got to do
it. Otherwise, nothing will be handling events, making it very difficult to even
quit your application. So what’s an application to do, especially in Cocoa? As
we do a number of times throughout the book, we will not go into the details of
this operation, as numerous Cocoa books deal with this topic. Here we simply
present Example C-9, in which code modeled closely on an Apple source exam-
ple shows what you might do with events while you’re in a full-screen mode.

310 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

Example C-9 Custom Controller Event-Handling Loop in a Full-Screen
Context

stayInFullScreenMode = YES;
while (stayInFullScreenMode)
{

NSAutoreleasePool *pool =
[[NSAutoreleasePool alloc] init];

// Check for and process input events.
NSEvent *event;
while (event =

[NSApp nextEventMatchingMask: NSAnyEventMask
untilDate: [NSDate distantPast]

inMode: NSDefaultRunLoopMode
dequeue: YES])

{
switch ([event type])
{

case NSLeftMouseDown:
[self mouseDown:event];

break;

case NSLeftMouseUp:
[self mouseUp:event];

break;

case NSLeftMouseDragged:
[self mouseDragged:event];

break;

case NSKeyDown:
{

unichar cc =
[[event charactersIgnoringModifiers]

characterAtIndex:0];
switch (cc)
{

case 27: // escape key
stayInFullScreenMode = NO;

break;
default:
break;

}
}
break;

default:
break;

}
}

The basic idea is that while in full-screen mode, no external UI controls (Cocoa
or other) exist that have natural event-handling mechanisms, so you need to do

Additional Topics 311

whatever your application requires when an event occurs. This includes mouse
handling, key handling, and external device (e.g., joystick, tablet) handling.
Example C-9 does nothing more than simply handle the Escape key, quit the
render loop, and return to windowed mode. The example deals specifically with
key events, handling the Escape key by quitting full-screen mode, and calling
out to other methods (not shown) for handling mouse events.

This structure and code should be enough of a basis for you to get started. If you
need more detail, we provide a more comprehensive example on our website
(www.macopenglbook.com).

Alternative Rendering Destinations
In the following sections we’ll explore what it takes to render an intermediate
image for use later in your application. You’ll probably already know if this is
something you’re interested in. If not, let’s discuss a case or two in which you
might need to render intermediate results.

One example in which intermediate rendering results are useful is for render-
ing of reflections. Suppose you’ve got a scene with some watery bits and some
shiny bits in it. Picture a rainy street scene with puddles and a car: The puddles
would reflect the buildings across the street, and those shiny rims would re-
flect the buildings behind the viewer. To reflect something on those wheels and
puddles, we have two options. One is to use a fake scene to create the reflec-
tions, and the other is to use the real scene. Obviously the real scene is the better
option, so we’ll need to generate a view of the scene that contains the images
to be reflected. This would be the image that we’d render in our intermediate
buffer.

In another example, we might want to render the same view of the street scene,
but perhaps after the viewer hit his or her head on something—a painful simula-
tion, to be sure! Perhaps your character was jogging and ran into a signpost. We
want to render the scene slightly blurred and wavy regardless of the method of
cranial impact. In this case, our intermediate scene would be the original street
scene rendering. We would then take that image and run it through our Blunt-
Trauma.frag shader.

Our example code will render scenes of similar complexity, or at least a teapot,
to demonstrate this process, but the idea remains the same. The basic path for
performing this render is as follows:

1. Render to an alternative destination.
2. Configure those results for use in the final scene render.
3. Render the final scene.

312 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

The following sections describe the various techniques available on the Mac for
alternative destination rendering and subsequent reuse of those data. We’ll pri-
oritize these strategies in terms of their modernity, encouraging you to use the
most modern of these, framebuffer objects, whenever possible. For a variety of
reasons (not least of which are simplicity and performance), framebuffer objects
are the best choice when your hardware supports them. However, as always
with more advanced OpenGL features, the most modern features are not al-
ways supported on the hardware your customers have, so choosing fallbacks
for those cases may require you to implement some of the other techniques. We
cover the basics of each below. Dive in.

Framebuffer Objects

In this section we describe a modern and widely available technique for in-
termediate renders using framebuffer objects (FBOs). Rendering to FBOs is a
technique born out of frustrations with the complexity of many of the other
intermediate rendering techniques. FBOs were designed to provide a simple
enable/disable mechanism that is familiar in usage to textures, and yet provide
a great deal of flexibility in terms of what can be rendered and how to use it
later. FBOs are an evolution from earlier extensions—namely, GLARBrender-
texture. However, they are a vast improvement over the older techniques, as
you’ll hear shortly. FBOs are really the only choice for new applications, as they
offer high performance, are flexible, and are easy to use.

That’s our perspective on the matter, but for reference, you should defer to the
extension specification as the authority. The specification declares:

Previous extensions that enabled rendering to a texture have been much more
complicated. One example is the combination of GLARBpbuffer and GLAR-
Brendertexture, both of which are window-system extensions. This com-
bination requires calling glxMakeCurrent, an expensive operation used to
switch between the window and the pbuffer drawables. An application must
create one pbuffer per renderable texture in order to portably use GLARBren-
dertexture. An application must maintain at least one GL context per tex-
ture format, because each context can operate on only a single pixel format or
FBConfig. All of these characteristics make GLARBrendertexture both ineffi-
cient and cumbersome to use.

GLEXTframebufferobject, on the other hand, is both simpler to use
and more efficient than GLARBrendertexture. The GLEXTframebuffer-
object API is contained wholly within the GL API and has no (non-portable)
window-system components. Under GLEXTframebufferobject, it is not
necessary to create a second GL context when rendering to a texture image
whose format differs from that of the window. Finally, unlike the pbuffers of

Alternative Rendering Destinations 313

GLARBrendertexture, by changing color attachments, a single framebuffer
object can facilitate rendering to an unlimited number of texture objects.

We believe that this extension is the best way to render to texture and authori-
tatively settles the question of what to use when performing a render-to-texture
operation. Without further ado, let’s walk through how to use FBOs for inter-
mediate rendering and look at code to do so as well.

The overall algorithm for using FBOs is straightforward:

1. Build and initialize the target object to be used with this FBO. This object is
typically a texture.

2. Build and initialize the FBO by attaching the target objects.
3. Bind the FBO and render the FBO contents.
4. Unbind the FBO and render the final scene using the target object.

We’ll begin by revisiting our old standby Cocoa example and extending it to
configure and render to an FBO. We will then use those results on our final
rendered object. Example C-10 shows our custom view header, which indicates
where we’ll store our texture object and FBO IDs.

Example C-10 Custom View Header for FBO Example Code

#import <Cocoa/Cocoa.h>
#import <OpenGL/OpenGL.h>

@interface MyOpenGLView : NSOpenGLView
{

GLuint fboID;
GLuint textureID;
float time;
float angle;

}

- (void) angleUpdate: (NSTimer*) tt;
- (void) reshape;

@end

We next look at the code in our prepareOpenGL method. As before, this is
the place where we create and initialize things that we need to set up once per
context. We look at the entire prepareOpenGL method in Example C-11, so
essentially we see the first two phases of our outlined FBO usage: build and ini-
tialization for both our target texture and our FBO. We begin by creating and
initializing a texture object, which we’ll both bind to our FBO and use in our
final rendering. We then create an FBO and bind it to that texture for color ren-
dering. Finally, after configuration, we unbind our current FBO (by binding the
FBO ID of 0).

314 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

Example C-11 OpenGL Setup for FBO Rendering

- (void) prepareOpenGL
{

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-1,1,-1,1,-1,100);

// enable, generate, and bind our texture objects
glEnable(GL_TEXTURE_2D);
glGenTextures((GLsizei) 1, &textureID);
glBindTexture(GL_TEXTURE_2D, textureID);
const unsigned int texdim = 64;
const unsigned int nbytes = 3;
char data[texdim * texdim * nbytes];
memset(data, 0xff, texdim * texdim * nbytes);
unsigned int ii;
for(ii=0; ii<texdim*texdim; ii++)
{

data[ii*nbytes + 0] = 0xff;
}
gluBuild2DMipmaps(GL_TEXTURE_2D, // 0,

GL_RGB, texdim, texdim, // 0,
GL_RGB, GL_UNSIGNED_BYTE, data);

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

// generate & bind our framebuffer object to our texture object
glGenFramebuffersEXT(1, &fboID);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fboID);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

GL_COLOR_ATTACHMENT0_EXT,
GL_TEXTURE_2D, textureID, 0);

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); // unbind fbo

// add a timer to oscillate the modelview
NSTimeInterval ti = .1;
[NSTimer scheduledTimerWithTimeInterval: ti

target: self
selector: @selector(angleUpdate:)
userInfo: nil
repeats: YES];

}

The OpenGL designers did a pretty good job of keeping the design clean and
consistent with that of other objects in the OpenGL system. Specifically, note
the parallels in the setup and configuration of FBOs and texture objects. In
essence, you simply bind the FBO, do some rendering, and unbind the FBO.
At that point, the texture bound to that FBO is ready to be used. We’ll demon-
strate this usage of the FBO next, even though we’ve really covered it all in
the setup. It couldn’t be much simpler. Example C-12 shows our drawRect
routine.

Alternative Rendering Destinations 315

Example C-12 Cocoa drawRect Routine for FBOs

- (void) drawRect: (NSRect) rect
{

// render to offscreen
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fboID);
[self drawIntermediateContents];
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);

// render to final
[self drawFinalContents];

// complete rendering & swap
glFlush();
[[self openGLContext] flushBuffer];

}

Finally, for interest, we present the code we actually draw with in those routines
in Example C-13.

Example C-13 Cocoa Draw Methods for Contents of the FBO and the Final
Render

- (void) drawIntermediateContents
{

glClearColor(1, 1, 0, 1);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0, 0, 1);
glColor3f(0, 1, 1);
glBegin(GL_QUADS);
float ww = .9;
float hh = .9;
float zz = 0.0;
glDisable(GL_TEXTURE_2D);
glVertex3f(-ww, -hh, zz);
glVertex3f(ww, -hh, zz);
glVertex3f(ww, hh, zz);
glVertex3f(-ww, hh, zz);
glEnd();

}

- (void) drawFinalContents
{

glClearColor(0, .5, .8, 1);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(angle, 0, 0, 1);

glTranslatef(0, 0, 1);
glColor3f(0, 1, 0);
glBindTexture(GL_TEXTURE_2D, textureID);

316 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

glEnable(GL_TEXTURE_2D);
glBegin(GL_QUADS);
float ww = .9;
float hh = .9;
float zz = 0.0;
glTexCoord2f(0, 0);
glVertex3f(-ww, -hh, zz);
glTexCoord2f(1, 0);
glVertex3f(ww, -hh, zz);
glTexCoord2f(1, 1);
glVertex3f(ww, hh, zz);
glTexCoord2f(0, 1);
glVertex3f(-ww, hh, zz);
glEnd();

}

So what does our example do? Our goal is to render a textured quad to the
screen, where the texture represents an intermediate rendered result. We begin
by configuring our FBO and texture so that they refer to each other. In the ren-
der loop, we make the FBO active, clear to yellow, and then unbind the FBO.
Because of the magic of FBOs, those results are now usable as a texture, so we
render a textured quad to the screen. When we set up the texture environment
parameters for texturing, we specified GLREPLACE to wholly replace any color
on the quad with the texture image. If everything works as we’ve described
(and it does), we should see the final rendered image as shown in Figure C-11.

Figure C-11 Results of Rendering to an FBO and Texturing a Quad with That
Result (Texture Courtesy of NASA’s Earth Observatory)

Alternative Rendering Destinations 317

You can do a lot more with FBOs, including capturing other rendering results
such as depth, stencil, and other render targets, but this kind of advanced usage
is beyond the scope of this book. We refer you to the OpenGL framebuffer object
extension for complete details.

Before we leave the topic of FBOs, we’d like to point out a few more reasons
why FBOs are superior to other forms of off-screen rendering. First, FBOs con-
sist of memory allocated on the graphics card itself that is directly usable in its
target form—for example, as a texture. As a consequence, you avoid any off-
card copies to and from the host: You can even avoid on-card copies in good
implementations of the extension. Second, FBOs present a consistent, platform-
agnostic interface. There just isn’t a simpler interface to intermediate render-
ing than FBO, largely due to the evolutionary process by which OpenGL is
developed. A variety of intermediate target rendering APIs and implementa-
tions were explored over the years, culminating in the design and implemen-
tation that exists today. FBOs are the best choice for modern rendering on the
Mac. Third, FBOs avoid expensive context switching that can cost you a great
deal of performance.

Copy-to-Texture

In this section we describe a very common and widely available technique
known as render-to-texture. Render-to-texture is as simple as it sounds:

You simply render your intermediate scene, copy it to a texture, and then use
that texture in your final render. Elegant, simple, and concise. There are, of
course, details to deal with concerning how you target the texture into which
you want to render and, in some cases, how you move pixels around the sys-
tem into your final texture. Nevertheless, the process is largely as simple as
described. Render-to-texture is interesting because it’s a widely available tech-
nique and offers relatively high performance. There are problems with it, too:
It’s not as clean as the most modern OpenGL technique of FBOs, and there
may be extra data copies. Overall, however, it works pretty well. Performance
is pretty good, though not as consistently good as using FBOs. Even so, you
may sometimes run into problems when using cards from different vendors
on which this technique is actually moderately expensive. But if you can’t
use FBOs, and this is the best alternative available, you gotta do what you
gotta do.

The essence of the render-to-texture technique is actually a bit simpler than the
FBO example presented earlier. The code is virtually the same, but we omit the
pieces of the rendering that relate to the FBO. We begin by looking at the header
for our custom view (Example C-14).

318 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

Example C-14 Custom View Header for Copy-to-Texture Example Code

#import <AppKit/NSOpenGL.h>

#import <Cocoa/Cocoa.h>

@interface MyOpenGLView : NSOpenGLView
{

GLuint textureID;

float time;
float angle;

}

- (void) angleUpdate: (NSTimer*) tt;
- (void) reshape;

@end

Because we’re only going to render and copy into a texture, that’s the extent of
the information we need to keep track of throughout our view class. We then
look at the initialization code, which is again very similar to the FBO example,
but now without the FBO configuration (Example C-15).

Example C-15 OpenGL Setup for Copy-to-Texture Rendering

- (void) prepareOpenGL
{

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-1,1,-1,1,-1,100);
glMatrixMode(GL_MODELVIEW);

// enable, generate, and bind our texture objects
glEnable(GL_TEXTURE_2D);
glGenTextures((GLsizei) 1, &textureID);
glBindTexture(GL_TEXTURE_2D, textureID);
const unsigned int texdim = 64;
const unsigned int nbytes = 3;
unsigned char data[texdim * texdim * nbytes];
memset(data, 0, texdim * texdim * nbytes);
unsigned int ii;
for(ii=0; ii<texdim*texdim; ii++)
{

data[ii*nbytes + 0] = 0xff;
}
gluBuild2DMipmaps(GL_TEXTURE_2D, // 0,

GL_RGB, texdim, texdim, // 0,
GL_RGB, GL_UNSIGNED_BYTE, data);

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

Alternative Rendering Destinations 319

// add a timer to oscillate the modelview
NSTimeInterval ti = .1;
[NSTimer scheduledTimerWithTimeInterval: ti

target: self
selector: @selector(angleUpdate:)
userInfo: nil
repeats: YES];

}

As before, our main drawRect routine does the bulk of the work—but here is
where the code differs from the FBO version. Let’s look at it now in Example
C-16 and talk about the differences and caveats to this technique.

Example C-16 Cocoa drawRect Routine for Copy-to-Texture Rendering

- (void) drawRect: (NSRect) rect
{

// setup and render the scene
[self drawIntermediateContents];

// copy it to a texture
glBindTexture(GL_TEXTURE_2D, textureID);
glCopyTexSubImage2D(GL_TEXTURE_2D, 0,

0, 0,
0, 0,
64, 64);

// render final scene
[self drawFinalContents];

// complete rendering & swap
glFlush();
[[self openGLContext] flushBuffer];

}

Notice two things in Example C-16. First, our draw routines are the same as the
FBO example, so we won’t present them again. The first method draws the stuff
to be used as a texture, and the second draws the scene using the texture gen-
erated from the first method. Second, there is no binding or other redirection of
where this routine renders. Instead, we do all of the rendering in the back buffer,
and then copy it to a texture. This approach has one important implication: This
technique really works only for double-buffered visuals.

Another consequence of the way this technique works is that we’re actually
copying the contents of the back buffer to a texture, so performance may be less
than that in the FBO case. Specifically, we perform this copy between each of
the [self draw*] methods. Thus performance is likely to be slower than
in the FBO case, but there’s a lot of bandwidth available in modern graphics
hardware, so if you can spare it, this technique will be pretty efficient. But the
reason we’re explaining this method at all is that the hardware on which you run

320 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

potentially might not support a real off-screen technique like FBO, so a tech-
nique like render-to-texture may be required.

And that brings us to the final point: This technique is window-dependent.
You’ll notice that we’re copying only a fixed area of pixels from within our
drawing surface in our example. If we wanted to capture the entire area, we’d
have to monitor the size of the drawable area (using the reshape routine) and
ensure that the width and height of the copy call were updated accordingly.
Another way of looking at this problem is to consider texture resolution: You’ll
need a window at least as big as the texture size you want to use, because
you’re directly copying pixels from within it. Thus, if your user wants a win-
dow smaller than this texture size, either you have to fall back to a smaller-sized
texture or you have to limit the window minimum size. At any rate, the hairy
details of the bookkeeping surrounding pixel sizes are not the most fun part of
this technique, and constitute another way in which FBOs are a better solution.

In this section, we’ve covered how to perform textured renders from the con-
tents of a texture filled by another render. The technique is very portable, but
carries some overhead concerning texture and window sizes, and has some per-
formance limitations based on the underlying OpenGL operations. This tech-
nique is a capable fallback for when FBOs are not available.

Pbuffer, Off-Screen, and Other Intermediate Targets

There exist a variety of other ways of writing intermediate rendering results
for reuse in later final renderings in your OpenGL application. Among these
are pbuffers, off-screen render areas, and a variety of extensions for directly
rendering into textures. Though many other choices are possible, we faced a
difficult decision when writing this book—either to cover them all or to cover
only a subset.

To free up some weekends, we chose the latter option. To be fair, since we
began this project, the FBO extension has really come of age, and we would
recommend it without hesitation for those cases when you need intermediate
rendering. The other techniques that we do not cover here are all genealogical
predecessors to the FBO extension and, in many ways, are inferior to it. Specif-
ically, off-screen render areas, regardless of the interface (CGL, AGL, or Cocoa)
are software renderers and so have only nominal performance. They should be
avoided for interactive or real-time applications. Pbuffers are complex and un-
wieldy to implement. Although they often perform at native hardware speeds,
the complexity of managing the interface is not worth the headache if you can
write to a modern render target like an FBO instead.

The pure simplicity, flexibility and generality, and raw performance of what
can be accomplished via FBO are unmatched by these alternative techniques.

Alternative Rendering Destinations 321

If you’ve got older code that uses one of these approaches, a move to FBOs will
likely both simplify and accelerate your code. Take the leap.

Summary
In this chapter, we explored how to create and configure Cocoa-based OpenGL
rendering areas for on-screen windows and for various intermediate render tar-
gets. We saw how to create custom pixel formats, examined some of the flags
that these pixel formats take, and demonstrated how to configure and initialize
pixel formats. We also saw how to customizeNSViews and NSOpenGLViews
to use custom pixel formats and create contexts. We considered how to share
data among multiple contexts, and we learned how to configure full-screen sur-
faces. Now that you know the fundamentals of OpenGL and Cocoa setup, you
have a solid foundation from which to begin building your own Cocoa OpenGL
applications.

322 Appendix C: The Cocoa API for OpenGL Configuration in Leopard

Appendix D

Bibliography

[1] The OpenGL Architecture Review Board. OpenGL 2.0 specification.
http://www.opengl.org/documentation/specs/version2.0/
glspec20.pdf.

[2] The OpenGL Architecture Review Board. OpenGL website.
http://www.opengl.org.

[3] Apple Computer. About this Mac build information.
http://docs.info.apple.com/article.html?artnum=106176.

[4] Apple Computer. Apple developer website.
http://developer.apple.com.

[5] Apple Computer. Apple technote 1188: getprocaddress and openGL entry
points.
http://developer.apple.com/qa/qa2001/qa1188.html.

[6] Apple Computer. Apple technote 2080: understanding and detecting
openGL functionality.
http://developer.apple.com/technotes/tn2002/tn2080.
html.

[7] Apple Computer. Apple texture range sample code.
http://developer.apple.com/samplecode/
TextureRange/TextureRange.html.

[8] Apple Computer. Apple Vertex performance sample code.
http://developer.apple.com/samplecode/
VertexPerformanceTest/VertexPerformanceTest.html.

[9] Apple Computer. Configuring and running X11 on Mac OS X.
http://developer.apple.com/opensource/tools/runningx11.
html.

323

http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
http://www.opengl.org/documentation/specs/version2.0/glspec20.pdf
http://www.opengl.org
http://docs.info.apple.com/article.html?artnum=106176
http://developer.apple.com
http://developer.apple.com/qa/qa2001/qa1188.html
http://developer.apple.com/technotes/tn2002/tn2080.html
http://developer.apple.com/technotes/tn2002/tn2080.html
http://developer.apple.com/samplecode/TextureRange/TextureRange.html
http://developer.apple.com/samplecode/TextureRange/TextureRange.html
http://developer.apple.com/samplecode/VertexPerformanceTest/VertexPerformanceTest.html
http://developer.apple.com/samplecode/VertexPerformanceTest/VertexPerformanceTest.html
http://developer.apple.com/opensource/tools/runningx11.html
http://developer.apple.com/opensource/tools/runningx11.html

[10] Apple Computer. Core video and QuickTime with OpenGL.
http://developer.apple.com/samplecode/QTCoreVideo101/
index.html.

[11] Apple Computer. Mac OS: Versions and builds since 1998.
http://docs.info.apple.com/article.html?artnum=25517.

[12] Apple Computer. Quick Start guide for AltiVec.
http://developer.apple.com/hardware/ve/quickstart.html.

[13] Apple Computer. SSE performance programming.
http://developer.apple.com/hardware/ve/sse.html.

[14] Alex Eddy. OpenGL version, renderer, GLSL table.
http://homepage.mac.com/arekkusu/bugs/GLInfo.html.

[15] Ron Fosner. OpenGL R© Programming for Windows 95 and Windows NT.
Boston, MA: Addison-Wesley, 1997.

[16] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Boston, MA: Addison-Wesley, 1995.

[17] IST. IST OpenMotif website.
http://www.istinc.com/DOWNLOADS/motif download.html.

[18] Mark J. Kilgard. OpenGL R© Programming for the X Window System. Boston,
MA: Addison-Wesley, 1996.

[19] Paul Martz. OpenGL R© Distilled. Boston, MA: Addison-Wesley, 2006.
[20] OpenMotif. OpenMotif website.

http://www.opengroup.org/openmotif/.
[21] Randi J. Rost. OpenGL R© Shading Language, Second Edition. Boston, MA:

Addison-Wesley, 2006.
[22] Dave Shreiner, Mason Woo, Tom Davis, and Jackie Neider. OpenGL R©

Programming Guide, Fifth Edition. Boston, MA: Addison-Wesley, 2006.

324 Appendix C: Bibliography

http://developer.apple.com/samplecode/QTCoreVideo101/index.html
http://developer.apple.com/samplecode/QTCoreVideo101/index.html
http://docs.info.apple.com/article.html?artnum=25517
http://developer.apple.com/hardware/ve/quickstart.html
http://developer.apple.com/hardware/ve/sse.html
http://homepage.mac.com/arekkusu/bugs/GLInfo.html
http://www.istinc.com/DOWNLOADS/motif_download.html
http://www.opengroup.org/openmotif/

Index

Note: Information presented in tables and figures is denoted by t and f respectively.

A
Activity Monitor, 227
Advanced Graphics Port, 29, 30t
AGL. see Apple OpenGL
AGL ACCELERATED, 99t
AGL ACCUM ALPHA SIZE, 97t
AGL ACCUM BLUE SIZE, 97t
AGL ACCUM GREEN SIZE, 97t
AGL ACCUM RED SIZE, 96t
AGL ALL RENDERERS, 95t
AGL ALPHA SIZE, 96t
AGL AUX BUFFERS, 96t
AGL AUX DEPTH STENCIL, 98t
AGL BACKING STORE, 100t
AGL BLUE SIZE, 96t
AGL BUFFER SIZE, 95t
AGL CLOSEST POLICY, 97t
AGL COLOR FLOAT, 98t
AGL DEPTH SIZE, 96t
AGL DOUBLEBUFFER, 95t
AGL FULLSCREEN, 98t
AGL GREEN SIZE, 96t
AGL LEVEL, 95t
AGL MAXIMUM POLICY, 97t
AGL MULTISAMPLE, 98t
AGL MULTISCREEN, 100t
AGL NO RECOVERY, 99t
AGL NONE, 101t
AGL OFFSCREEN, 98t
AGL PBUFFER, 100t
AGL PIXEL SIZE, 97t
AGL RED SIZE, 96t
AGL REMOTE PBUFFER, 101t

AGL RENDERER ID, 99t
AGL RGBA, 95t
AGL ROBUST, 100t
AGL SAMPLE ALPHA, 99t
AGL SAMPLE BUFFERS ARB, 98t
AGL SAMPLES ARB, 98t
AGL SINGLE RENDERER, 99t
AGL STENCIL SIZE, 96t
AGL STEREO, 95t
AGL SUPERSAMPLE, 98t
AGL VIRTUAL SCREEN, 100t
AGL WINDOW, 100t
aglChoosePixelFormat, 93–94,

95t–101t
aglCreatePBuffer, 110t
aglDescribePBuffer, 110t
aglDestroyPBuffer, 110t
aglGetPBuffer, 110t
aglSetPBuffer, 110t
aglTexImagePBuffer, 110t
AGP. see Advanced Graphics Port
alignment

pixel data, 224–25
texture, 225–26

alternative rendering destinations,
109–13, 312–22

AltiVec engines, 28, 42–43
API layers, 15–16, 16f
APIs

and surfaces, 15–16
cross-platform, 48–49
integration with, 254–55
Mac-only, 46–49
X11, 277–79

 325

AppKit, 16, 16f, 20, 122–33, 123f, 124f,
125f, 126f

Apple Fence, 216–17
Apple Float Renderer, 13
Apple Generic Renderer, 13
Apple OpenGL, 16, 16f, 47

alternative rendering destinations
in, 109–13

context sharing in, 107–9
framebuffer objects in, 117–19
full-screen application in, 91–101
pbuffers in, 110–13, 110t, 113f, 208t
renderers in, 104–7, 107t
software layering in, 90–91, 91f, 91t
windowed application in, 101–4

Apple Texture Range, 205–7
Apple Vertex Array Range, 205–7
APPLE flush buffer range, 220–21
APPLE vertex array range, 217–19
ARB. see Architecture Review Board (ARB)
Architecture Review Board (ARB)

and extensions, 8–9
creation of, 8

asynchronous calls, 204–7

B
best practice axioms, 196–201
BGRA pixel format, 10t
bitmap, to NSImage, 183–84
blend squaring, 10t
blending logical operations, 9t
Breakpoints view, 229–31, 230f
buffer flush, 205–7, 220–21
buffer sizing, 59–60
Buffer view, 234, 235f
bugs, in OS, 39–41
bus

bandwidth, 30
graphics, 29–30, 30t
memory, 29

C
C (programming language), 2, 89–90
C++, 89–90
cache, in CPU, 25
CAD limitations, 27
CAE limitations, 27
central processing unit (CPU)

and Activity Monitor, 227
and clock rate, 28
cache, 25

idle time minimization, 204–7
northbridge of, 23–24, 24f
southbridge of, 24, 24f
transistors in, 23

CGL. see Core OpenGL (CGL)
CGLChoosePixelFormat, 58–59
CGLFlushDrawable, 230, 231–32
CGLRendererInfoObj, 72
Cheetah. see also OS X

release of, 17t
clock rate, 28
Cocoa API in Leopard, 283–322
Cocoa Image, 174–84, 178f, 179t
Cocoa OpenGL, 47–48
color models, X11, 279
context enables, 64–65
context management, in CGL, 63–68
context parameters, 64–65
context sharing

in AGL, 107–9
in OpenGL, 141–49, 143f, 144f
in OpenGL Leopard, 301–8

copy-to-texture, 114–17, 158–61, 318–21
Core Graphics, 16, 49
Core OpenGL (CGL), 16, 16f, 18, 47, 53–54,

54f, 55–87
buffer sizing, 59–60
ChoosePixelFormat, 58–59
context management in, 63–68
error handling in, 57
global state functions in, 84–86
macros in, 86
pbuffer selection mode, 208t
pixel format selection in, 57–63
read-only parameters, 68
read/write parameters in, 66–67
virtual screen management in,

83–84
Core Video, 192
CoreFoundation, 37–38
CPU. see central processing unit (CPU)

D
Darwin, 33
data copy minimization, 201–2
data flow

across contexts, 51–53, 76–77
and hardware, 24–32
unidirectional, 199–200

data management, 209–10

326 Index

data parallel computation, 42
debugging, OpenGL, 39–41
dependency layering, 50, 50f
depth textures, 10t
development, history of Mac, 2–3
display capture, 149–51, 309–10
display IDs, 70–71
display masks, 20, 71
display release, 150
displays, 26–27
dl* calls, 265–66
dlopen, 265–66
dlsym, 265–66
double-buffered drawables, 77–78
downloadImageAsTexture, 188–89
drawables, 77–86
drawRect, 132–33
Driver Monitor, 235–36, 235f, 236f
driver plug-ins, 17–18
drivers, and renderers, 21

E
encapsulation, 197
error handling, in CGL, 57
event handling, 151–52, 310–12
EXT extensions, 8–9
extensions

and ARB, 8–9
creation of new, 8
design of, 254–55
EXT, 8–9
identification, 257–62
management libraries, 269–75
overview of, 253–54
parallel, 8
promotion of, to Core OpenGL,

9t–11t
query, 257–62
range, 205–7
selection, 257–62
styles, 256
tokens and, 259–60, 260t
types, 256
usage, 257–62
utilization and binding, 262–69

F
FBOs. see framebuffer objects
feature support, 14–15
fences, 207, 216–17
filesystem, 38

fill, 26
floating-point framebuffers, 23
Flush Buffer Range extension, 205–7,

220–21
fragment shaders, 200–201, 243
frame rate metrics, 207–8
frame rate quantization, 26–27, 208
framebuffer objects, 117–19, 153–58,

158f, 313–18
framebuffer-to-texture copy, 9t
framebuffers, 53–54, 54f
framework locations, 50t
full-screen application, in AGL, 91–101
full-screen drawables, 82–83
full-screen surfaces, 149, 308–9
function call overhead, 204

G
gaming limitations, 27
GL EXTENSIONS, 249t
GL RENDERER, 249t
GL TRIANGLE STRIP, 211
GL VENDOR, 249t
GL VERSION, 249t
GLARB non power of two, 176
GLEW, 270–73
glFinishFenceAPPLE, 217
global state functions, in CGL, 84–86
glReadPixels, 241–42, 242f
glTextImage2D, 197
GLUT, 16, 16f, 48

and extension management, 273–75
configuration of, 165–70
history of, 163
overview of, 164, 164f
pixel format in, 167–70, 167f, 169t, 170t
window management in, 169, 169t

GLUT ACCUM, 169t
GLUT ALPHA, 169t
GLUT DEPTH, 169t
GLUT DOUBLE, 169t
GLUT MULTISAMPLE, 169t
GLUT RGB, 169t
GLUT RGBA, 169t
GLUT SINGLE, 169t
GLUT STENCIL, 169t
GLUT STEREO, 169t
glutInitDisplayString, 170, 170t
glVertexArrayParameteriAPPLE, 216
GLX, 51

Index 327

GPU. see graphics processing unit (GPU)
graphics bus, 29–30, 30t
graphics device support, 7
graphics processing unit (GPU)

bandwidth limits with CPU, 25
idle time minimization, 204–7
increasing role of, 23
information lookup, 34
transistors in, 23

graphics tools, 228–36, 229f, 230f, 232f, 233f,
234f, 235f, 236f, 237f

H
hardware

and data flow, 24–32
image download to, 180–82
on Mac platform, 7
renderer support, 12t–13t, 13–14

hardware vs. software renderers, 19
history, of Mac platform, 2

I
idle time minimization, 204–7
image manipulation, 140–41
imaging subset state, 223–24
immediate mode rendering, 198–200
immediate mode vertex submission, 211–12
implicit data copies, 29
instance method, 146–47
intermediate rendering, 152–53, 321–22
IOKit, 37–38
IrisGL, 3, 8

J
Jaguar. see also OS X

improvements of, 246
release of, 17t
renderer support, 12t
VRAM requirements in, 31

K
Kilgard, Mark, 163

L
Launch Settings menu, 228–29, 229f
Leopard. see also OS X

Cocoa API on, 283–322
improvements of, 248
Quartz in, 31
release of, 17t
renderer support, 13t
threaded engine on, 202

M
Mac platform

advantages of, 3
development on, 2–3
hardware, 7
history of, 2
user experience, 2

Mach threads, 41
macros, in CGL, 86
medical imaging limitations, 27
memory

requirements, 31–32
video, 30–31

memory bandwidth limit, 25
memory bus, 29
metrics, 207–9
Movie Toolbox, 189–90
multisampling, 10t, 61
multithreaded engine, 202–4

N
NextStep, 2
northbridge, of CPU, 23–24, 24f
NSImage, 174–84, 178f, 179t
NSMovie, 185
NSOpenGLPFAAccelerated, 131t, 292t
NSOpenGLPFAAccumSize, 130t, 291t
NSOpenGLPFAAlphaSize, 129t, 290t
NSOpenGLPFAAuxBuffers, 129t, 290t
NSOpenGLPFAAuxDepthStencil, 131t, 292t
NSOpenGLPFABackingStore, 131t, 292t
NSOpenGLPFAClosestPolicy, 131t, 292t
NSOpenGLPFAColorFloat, 131t, 292t
NSOpenGLPFAColorSize, 129t, 290t
NSOpenGLPFADepthSize, 130t, 291t
NSOpenGLPFADoubleBuffer, 129t, 290t
NSOpenGLPFAFullScreen, 130t, 291t
NSOpenGLPFAllRenderers, 129t, 290t
NSOpenGLPFAMaximumPolicy, 130t, 291t
NSOpenGLPFAMinimumPolicy, 130t, 291t
NSOpenGLPFAMultisample, 131t, 292t
NSOpenGLPFAOffScreen, 130t, 291t
NSOpenGLPFAPixelBuffer, 131t, 292t
NSOpenGLPFARendererID, 131t, 292t
NSOpenGLPFASampleBuffers, 130t, 291t
NSOpenGLPFASamples, 131t, 292t
NSOpenGLPFAStencilSize, 130t, 291t
NSOpenGLPFAStereo, 129t, 290t
NSOpenGLPFAWindow, 131t, 292t
NSOpenGLPixelFormat, 129t, 290t–131t,

292t

328 Index

NSOpenGLView, 122–33, 123f, 124f, 125f,
126f, 284–93

NSSlider, 221
NSView, 133–40, 134f, 135f, 294–300

O
object-oriented programming, and state

management, 197–98
Objective-C, 89, 121
off-screen drawables, 82
off-screen rendering, 161–62, 321–22
off-screen surfaces, 109–10
OpenGL

advantages of, 3–4
as specification document, 8
debugging, 39–41
feature support, 14–15
graphics tools, 228–36, 229f, 230f, 232f,

233f, 234f, 235f, 236f, 237f
history of, 7–8, 9f
platform identification, 248–49, 249t

OpenGL Driver Monitor, 235–36, 235f, 236f
OpenGL Profiler, 228–34, 229f, 230f, 232f,

233f, 234f, 235f
OS 9, 2
OS requirements, 27–28
OS version identification, 249–51
OS X. see also Cheetah; Jaguar; Leopard;

Panther; Puma
10.0 through 10.1, 245–46
filesystem, 38
implementation of OpenGL specification,

11
power management in, 34–38
tools, 226–28
version history, 17t, 33–34, 34t

P
Panther. see also OS X

improvements of, 246
QTKit in, 185
renderer support, 12t

parallel extensions, 8
Pascal (programming language), 2
pbuffers, 78–81, 79t, 110–13, 110t, 113f,

161–62, 208t, 321–22
PCI Express, 29–30, 30t
pixel buffer objects, 11t, 241–42
pixel buffers, 78–81, 79t, 110–13, 110t, 113f
pixel data, from NSImage, 178–79, 179t
pixel data alignment, 224–25
pixel data processing, 26

pixel format
and texture data handling, 221–23
in AGL, 91–109
in CGL, 57–63
in GLUT, 167–70, 167f, 169t, 170t

Pixel Format view, 234, 234f
pixel manipulation, 140–41
pixel pipeline, 223–24
pixel types, 221–23
Pixie, 235, 236f
Please Tune Me, 237–43, 239f, 240f, 241f,

242f, 243f
plug-in architecture, 17–18, 18f
point parameters, 10t
polygon offset, 9t
power management, 34–38
PowerPC, 42–43
Profiler, 228–34, 229f, 230f, 232f, 233f,

234f, 235f
programmable shading, 11t
ptm1.c, 238–39, 239f
ptm2.c, 240, 240f
ptm3.c, 240–41, 241f
ptm4.c, 241
ptm5.c, 241–42, 242f
Puma. see also OS X

release of, 17t

Q
QTKit, 184–88, 191–92
QTMovie, 186–87, 191–92
quad-buffering, 61
Quartz, 15, 16, 46–47
Quartz 2D, 31
Quartz Debug, 228
QuickTime, 184–92

R
range extensions, 205–7
read-only parameters, 68
read/write parameters, 66–67
render targets, 60–61
render-to-texture, 114–17, 158–61
renderer support, 12t–13t, 13–14
renderers, 18–21

and intermediate rendering, 152–53
choosing, 21
definition of, 18
drivers, 21
hardware vs. software, 19
in AGL, 104–7, 107t
incompatibility of, 141–42

Index 329

renderers, (continued)
obtaining information on, 68–76
selection in CGL, 56f, 61–63
switching between, 19–21

rendering, retained vs. immediate mode,
198–200

rendering destinations, alternative, 152–62
Resources view, 233, 233f
retained mode rendering, 198–200

S
Scripts view, 234, 235f
secondary color, 10t
shader instruction limits, 201
shader performance, 226
shader use, 200–201
shadow functions, 11t
Shark, 3, 227
Single Instruction, Multiple Data (SIMD), 42
singleton, 142, 144, 146–47
software layering, in AGL, 90–91, 91f, 91t
software vs. hardware renderers, 19
southbridge, of CPU, 24, 24f
sRGB textures, 11t
state change minimization, 196–98
Statistics view, 231, 232f
stencil wrap, 10t
stereo rendering, 61
subset state, 223–24
subtexturing, 9t
surfaces, and windowing systems, 15–16
system tools, in OS X, 226–28

T
teardown, 150
texture

alignment considerations, 225–26
and data integrity, 176
compressed, 225

texture data handling, 221–25
texture ID, 188–89
texture LOD bias, 11t
texture objects, 10t
texture proxying, 9t
texture range extension, 205–7
texture, NSIMage as, 179–82
texturing, with pbuffers, 81
threading, 41–42, 42f

throughput, 209
Tiger. see also OS X

improvements of, 246–48
QTKit in, 185
RAM requirements, 31
release of, 17t
renderer support, 12t

tokens, and extensions, 259–60, 260t
Trace view, 231–32, 232f

U
unidirectional data flow, 199–200
Unix core, 33
user experience, on Mac, 2

V
VAR extension. see Vertex Array Range

extension
VBOs. see vertex buffer objects (VBOs)
vendor extensions, 8
version information access, 14
vertex array objects, 214–15
Vertex Array Range extension, 215–20
vertex arrays, 10t, 205–7, 211–12
vertex buffer objects (VBOs), 212–15,

220–21
vertex data handling, 210–21
vertex data processing, 26
vertex shaders, 200–201
vertex submission, 210–21
video editing limitations, 27
video memory, 30–31
virtual desktops, 19
virtual screen management, 83–84
VRAM. see video memory

W
window management, in GLUT, 169, 169t
windowed application, in AGL, 101–4
windowing systems

consistency between, 15
data structure of, 15–16

X
X11, 15, 49, 277–79
X11 APIs, 277–79
X11 color models, 279
XCode, 3

330 Index

OpenGL® Titles from Addison-Wesley

OpenGL® Programming Guide, Sixth Edition
The Offi cial Guide to Learning OpenGL® Version 2.1
OpenGL Architecture Review Board, Dave Shreiner,
Mason Woo, Jackie Neider, and Tom Davis
0-321-48100-3

OpenGL® Programming Guide, Sixth Edition, provides
defi nitive, comprehensive information on OpenGL and
the OpenGL Utility Library. This sixth edition of the best-
selling “red book” describes the latest features of OpenGL
Version 2.1.

OpenGL® Shading Language, Second Edition
Randi Rost
0-321-33489-2

OpenGL® Shading Language, Second Edition, is the experi-
enced application programmer’s guide to writing shaders.
Part reference, part tutorial, this book explains the shift
from fi xed-functionality graphics hardware to the new era
of programmable graphics hardware and the additions to
the OpenGL API that support it.

OpenGL® Library, Fourth Edition
0-321-51432-7

This special boxed set contains both OpenGL®

Programming Guide, Sixth Edition, and OpenGL®

Shading Language, Second Edition.

Available wherever technical books are sold. For more information, including free
sample chapters, go to www.awprofessional.com.

OpenGL® SuperBible, Fourth Edition
Comprehensive Tutorial and Reference
Richard S. Wright Jr., Benjamin Lipchak,
and Nicholas Haemel
0-321-49882-8

OpenGL® SuperBible, Fourth Edition, offers compre-
hensive coverage of applying and using OpenGL in your
day-to-day work. It covers topics such as OpenGL ES
programming for handhelds and OpenGL implementations
on multiple platforms, including Windows, Mac OS X, and
Linux/UNIX.

OpenGL® Distilled
Paul Martz
0-321-33679-8

OpenGL® Distilled provides the fundamental information
you need to start programming 3D graphics, from set-
ting up an OpenGL development environment to creating
realistic textures and shadows. Written in an engaging,
easy-to-follow style, you’ll quickly learn the essential and
most-often-used features of OpenGL, along with the best
coding practices and troubleshooting tips.

OpenGL® Programming on Mac® OS X
Architecture, Performance, and Integration
Robert P. Kuehne and J. D. Sullivan
0-321-35652-7

Apple’s highly effi cient, modern OpenGL implementation
makes Mac OS X one of today’s best platforms for OpenGL
development. OpenGL® Programming on Mac OS® X is the
fi rst comprehensive resource for every graphics program-
mer who wants to create, port, or optimize OpenGL
applications for this high-volume platform.

www.awprofessional.com

	OpenGL programming on Mac OS X
	Contents
	List of Figures
	List of Tables
	List of Examples
	Preface
	Acknowledgments
	About the Authors
	Chapter 1. Mac OpenGL Introduction
	Why the Mac?
	Why OpenGL?
	The Book

	Chapter 2. OpenGL Architecture on OS X
	Overview
	About OpenGL
	Mac OS X Implementation of the OpenGL Specification

	OpenGL Feature Support
	API Layers
	The Mac OS OpenGL Plug-In Architecture
	Renderers
	Drivers

	Summary

	Chapter 3. Mac Hardware Architecture
	Overview
	Data Flow and Limitations
	Problem Domains
	Know Thine OS Requirements
	CPU and Clock Rate
	Bus
	Video Memory: VRAM
	RAM

	Summary

	Chapter 4. Application Programming on OS X
	Overview
	Mac OS X Versions
	System Configuration
	Power Management
	Filesystem
	Finding, Verifying, and Filing Bugs
	Threading
	Data Parallel Computation: SIMD
	PowerPC
	Intel

	Chapter 5. OpenGL Configuration and Integration
	API Introductions and Overview
	Mac-Only APIs
	Cross-Platform APIs Supported on the Mac
	API Introduction and Overview Wrap-Up

	Configuration API Relationships
	Sharing OpenGL Data Between Contexts
	Framebuffers

	Chapter 6. The CGL API for OpenGL Configuration
	Overview
	Error Handling

	Pixel Format Selection
	CGLChoosePixelFormat
	Policies and Buffer Sizing
	Render Targets
	Multisampling
	Stereo
	Selecting a Renderer

	Context Management
	Renderer Information
	Sharing OpenGL Objects Across CGL Contexts

	Drawables
	Pixel Buffers
	Off-Screen Drawables
	Full-Screen Drawables
	Virtual Screen Management
	Global CGL State Functions

	Using CGL Macros
	Summary

	Chapter 7. The AGL API for OpenGL Configuration
	Overview
	Software Layering
	Pixel Format and Context
	Full-Screen Application
	Windowed Application
	Summary

	Additional Topics
	Renderers
	Context Sharing

	Alternative Rendering Destinations
	Off-Screen Surfaces
	Pbuffers
	Render-to/Copy-to-Texture
	Framebuffer Objects

	Summary

	Chapter 8. The Cocoa API for OpenGL Configuration
	Overview
	NSOpenGLView
	NSView
	Additional Topics
	Manipulating Images and Pixels in OpenGL
	Context Sharing
	Full-Screen Surfaces
	Display Capture
	Event Handling

	Alternative Rendering Destinations
	Framebuffer Objects
	Copy-to-Texture
	Pbuffer, Off-Screen, and Other Intermediate Targets

	Summary

	Chapter 9. The GLUT API for OpenGL Configuration
	Overview
	Configuration and Setup
	Pixel Format

	Summary

	Chapter 10. API Interoperability
	Overview
	Cocoa Image: NSImage
	Basic NSImage
	NSImage to OpenGL
	OpenGL to NSImage

	QuickTime
	Overview
	QuickTime to OpenGL
	OpenGL to QuickTime
	High-Performance QuickTime in OpenGL

	Summary

	Chapter 11. Performance
	Overview
	Axioms for Designing High-Performance OpenGL Applications
	Minimize State Changes
	Retained Mode versus Immediate Mode Rendering
	Unidirectional Data Flow
	Use Shaders Where Possible

	OpenGL for Mac OS X Rules of Thumb for Performance
	Minimize Data Copies
	The OpenGL Multithreaded Engine
	Minimizing Function Call Overhead
	Minimize CPU and GPU Idle Time by Using Asynchronous Calls
	Share Data Across Contexts When Possible

	Metrics
	Frame Rate
	Throughput

	Efficient Data Management Using Mac OpenGL
	Efficient Handling of Vertex Data
	A Brief History of the Evolution of Submitting Vertices in OpenGL
	Which Methods Should You Use to Submit Vertices for Drawing?
	Apple's Methods of Vertex Submission, Past and Present

	Efficient Handling of Texture Data
	Formats and Types
	Pixel Pipeline and Imaging Subset State
	Alignment Considerations

	Textures
	Compressed Textures
	Alignment Considerations

	Shaders
	Tools
	System Tools

	Graphics Tools
	OpenGL Profiler
	OpenGL Driver Monitor
	Pixie

	Putting It All Together
	About Please Tune Me
	Please Tune Me 1
	Please Tune Me 2
	Please Tune Me 3
	Please Tune Me 4
	Please Tune Me 5
	Please Tune Me 6

	Summary

	Chapter 12. Mac Platform Compatibility
	Mac OS Versions
	10.0 through 10.1
	10.2 (Jaguar)
	10.3 (Panther)
	10.4 (Tiger)
	10.5 and Beyond

	OpenGL Platform Identification
	Mac OS Version Identification
	Summary

	Chapter 13. OpenGL Extensions
	Overview
	Extension Design and API Integration
	Extension Styles and Types
	Identification, Selection, Query, and Usage
	Selecting Extensions

	Utilization and Binding
	Extension Management Libraries
	GLEW
	GLUT

	Summary

	Appendix A. X11 APIs for OpenGL Configuration
	Installation
	Building X11 Applications on OS X
	X11 Color Models

	Appendix B. Glossary
	Appendix C. The Cocoa API for OpenGL Configuration in Leopard, Mac OS X 10.5
	Overview
	NSOpenGLView
	NSView
	Additional Topics
	Manipulating Images and Pixels in OpenGL
	Context Sharing
	Full-Screen Surfaces
	Display Capture
	Event Handling

	Alternative Rendering Destinations
	Framebuffer Objects
	Copy-to-Texture
	Pbuffer, Off-Screen, and Other Intermediate Targets

	Summary

	Appendix D. Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

