
COPYRIGHT

Ultimate Game Programming with DirectX® Second Edition
Allen Sherrod

Publisher and General Manager, Course Technology PTR: Stacy L. Hiquet

Associate Director of Marketing: Sarah Panella

Content Project Manager: Jessica McNavich

Marketing Manager: Jordan Casey

Senior Acquisitions Editor: Emi Smith

Project Editor: Kate Shoup

Technical Reviewer: Wendy Jones

Editorial Services Coordinator: Jen Blaney

Copy Editor: Ruth Saavedra

Interior Layout: Shawn Morningstar

Cover Designer: Mike Tanamachi

CD-ROM Producer: Brandon Penticuff

Indexer: Broccoli Information Services

Proofreader: Kate Shoup

Printed in the United States of America
1 2 3 4 5 6 7 11 10 09

© 2009 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be

reproduced, transmitted, stored, or used in any form or by any means graphic, electronic,

or mechanical, including but not limited to photocopying, recording, scanning, digitizing,
taping, Web distribution, information networks, or information storage and retrieval

systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at

Cengage Learning Customer and Sales Support, 1-800-354-9706.

For permission to use material from this text or product, submit all requests online at

cengage.com/permissions.

Further permissions questions can be e-mailed to permissionrequest@cengage.com.

../permissions
mailto:permissionrequest@cengage.com

DirectX is a registered trademark of Microsoft. All other trademarks are the property of their

respective owners.

Library of Congress Control Number: 2008929226

ISBN-10: 1-58450-559-1

eISBN-10: 1-58450-620-2

Course Technology
25 Thomson Place

Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions with office locations
around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and

Japan. Locate your local office at international.cengage.com/region.

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

For your lifelong learning solutions, visit courseptr.com. Visit our corporate Web site at
cengage.com.

DEDICATION

This book is dedicated to my parents and my younger sister.

All that I do is to make those who came before us proud, especially my

grandparents.

ACKNOWLEDGMENTS

Writing and publishing a book takes a lot of effort from many different individuals. Having a
book published is a very rewarding experience but one must work long and hard to see the

project through to completion. I would like to thank everyone at Course Technology and
Cengage Learning, especially Kate and Emi for all of their patience and help throughout this

process. I am sure I did not make it easy for them.

I would like to thank my friends Courtney and Marie for all they have taught me and the

motivation they have given me to take a risk and become something more than I’ve ever
thought possible. Also, I would like to thank Heather, Shireen, and Nicole for always being

there for me when I needed it. Without them it would have been hard to work those late

hours trying to complete this project. Thanks for always listening. I would also like to thank
Professor Chris Howard for his friendship and for everything he has taught me throughout

the years.

ABOUT THE AUTHOR

Allen Sherrod is an experienced writer on the topic of game development with several

titles published on video game graphics, engineering, and game programming. A DeVry

graduate, Allen has researched game development since he was in high school. Allen is
currently developing multiple independent game titles.

../region
../default0.htm
../default1.htm

ABOUT THIS BOOK

This book is the second edition of Ultimate Game Programming with DirectX. In the first

edition, the main goal was to teach beginner- and intermediate-level C++ hobby
programmers how to make games using DirectX 9.0. Throughout that book readers learned

everything from drawing shapes to applying images on surfaces to the creation of their own
extremely simple game engine and game project.

This book aims to build on the parts of the first edition that made it so successful while at

the same time improving on all areas in which the first edition came up short. What
separates this book from other books on DirectX that are targeted toward beginners is that

this book is targeted toward the intermediate-level programmer. This book has relevance
and importance to anyone coming to it from the first edition or from other DirectX 9 or

DirectX 10 books. For readers coming from OpenGL, there is still a lot of knowledge to gain
from this book because the prerequisite is that you are familiar with the basics of game and

graphics programming and that you have a willingness to learn a new technology, DirectX
10. Complete beginners can still follow this book and learn a lot, but be aware that the pace

is faster than your average novice-level book and is intended to go beyond what most
beginner-level books offer.

Those coming to this book from another DirectX book can take comfort in noting that this
book not only covers DirectX 10 in detail but also topics such as graphical interfaces,

animation paths, level loading and rendering, lighting and shadows, and various surface
mapping techniques.

By the end of this book you should have a firm understanding of DirectX 10 and each of its

subsystems. You will be able to walk away from this book with a true sense of
accomplishment and confidence that the knowledge you have gained will be useful to you in

the future and that this book actually taught you something of interest, which is always a
challenge when it comes to game-development–related books. Of course, this book is only

the beginning, because everything dealing with modern game development could not
possibly fit in one book. These topics cover everything from advanced computer graphics, to

physics and collisions, to advanced artificial intelligence, and more.

The purpose of this book is to surpass what was done in the first edition as well as to

surpass what is available on the market at the time of this writing. Game development is a
complex and growing field, so the sooner you are able to stand on your feet knowledge-

wise, the sooner you can further develop your skills and build the game you’ve always
envisioned.

RECOMMENDED KNOWLEDGE AND BACKGROUND

Creating real-time interactive software is a tough and challenging business. A lot of talent
and dedication go into creating even simple video games (compared to modern commercial

video games). To create a video game, it is important to have the tools and experience
necessary to take a vision and make it a playable product.

This book is targeted toward the intermediate-level programmer. This means it is important
to have at least some prior knowledge and experience to get the most out of the text.

Although it is not necessary to be a high-level intermediate or advanced programmer, it
does help if you already have some knowledge that you can bring to the table. This includes

the following.

 Beginner- to intermediate-level C++ skills (e.g., you know what a class is, are

comfortable with pointers and references, and so forth)

 Experience debugging applications, which is key to being able to track and fix bugs in

the code you write

 High comfort level with the development tool of your choice such as Microsoft’s Visual

Studio .NET 2008, which is used in this book

 High comfort level with Windows Vista

 High-school–level mathematics, at the least

 A desire to learn and grow by pushing your skills to the limit and beyond

This book assumes that you’ve never used DirectX 10 before and that you have some level
of C++ experience. Although not necessary, to really help solidify your knowledge of 3D

game programming, it would be extremely beneficial to readers to have experience in the
following:

 Win32 application programming

 Some DirectX 9 or XNA experience

 Some OpenGL experience if you don’t have DirectX 9 in your background

 Experience with algebra, calculus, and physics

 Experience with programmable shaders

The goal of this book is to take you from being a newcomer to DirectX 10 or a beginner-

level DirectX 10 programmer to being an intermediate DirectX 10 programmer.

CHAPTER BREAKDOWN

This book is composed of 14 chapters and two appendixes. They break down as follows:

 Chapter 1, ―Introduction to DirectX 10,‖ offers a general overview and introduction to

DirectX, the Windows Vista operating system, and programmable shaders.

 Chapter 2, ―Direct3D 10,‖ covers the basics of rendering 3D graphics and text using the

Direct3D 10 graphics API. In this chapter you learn how to create a Direct3D window

and how to display text to the screen.

 Chapter 3, ―Rendering Geometry,‖ covers what primitives are and how to render them,

how to implement simple programmable shaders, and how to work with colors.

 Chapter 4, ―Shader Model 4.0,‖ is entirely dedicated to the new Shader Model 4.0,

which was introduced in Direct3D 10 and is now also included as part of OpenGL. In this
chapter you learn about the features, functions, keywords, and other aspects of vertex,

pixel, and geometry shaders.

 Chapter 5, ―Transformations,‖ teaches you transformations and coordinate spaces. In

this chapter you learn about projections, views, and world transformations and how they

can be combined to represent a scene.

 Chapter 6, ―Shading Surfaces,‖ teaches how to load and render image data known as

textures onto a surface in Direct3D 10. Also in this chapter, you learn how to use

../ch01#ch01
../ch02#ch02
../ch03#ch03
../ch04#ch04
../ch05#ch05
../ch06#ch06

multiple textures on a single surface as well as how to render an entire scene to an off-

screen surface, a technique known as render-to-texture.

 Chapter 7, ―Additional Texture Mapping,‖ builds off of Chapter 6 and expands your

knowledge of texturing surfaces to include being able to use alpha transparencies on the
pixel level through alpha mapping, sprites, and geometry displacement. You also learn

how to render dynamic reflections on the objects in your scene.

 Chapter 8, ―Game Math,‖ reviews the common game mathematics that you will

encounter when making video games. The main topics covered in this chapter include
vectors, matrices, planes, rays, quaternion rotations, and bounding geometry. Also

covered in this chapter are 3D virtual cameras—how they are defined, created, and
manipulated (i.e., moved and rotated).

 Chapter 9, ―Sound in DirectX,‖ covers how to play sound and music in your games using

the Direct Sound API and XACT API. In this chapter you learn how to load, play, pause,

and stop your sounds as well as how to use both APIs to play 3D audio. 3D audio is
audio that is dynamically manipulated based on its 3D properties, which include its

position in the virtual world. This chapter also covers how to use the XACT cross-
platform tool, how to play audio cues and music, and how to stream music into your

gaming applications. XACT is a new API added to DirectX 10 and is also part of

Microsoft’s XNA framework.

 Chapter 10, ―Game Input,‖ covers how to detect and respond to input in your games

using DirectX. In this chapter you learn how to detect input from Xbox 360 game
controllers using XINPUT, which works on both the PC and the Xbox 360. XINPUT is used

for any Xbox 360 controller that includes game pads (for wired and, now, wireless game
pads), guitar controllers, steering wheels, and so forth.

 Chapter 11, ―3D Models,‖ covers how to load and render complex 3D models to the

screen using Direct3D 10. This chapter also covers the creation of 3D geometry using

various software packages.

 Chapter 12, ―Animations,‖ covers how to perform various animation techniques in

Direct3D 10. This includes key-framed animations, skeleton or bone animations,
interpolations, and animation paths. Animation paths are used to move 3D objects along

predefined paths. This is seen in modern video games in, for example, enemies
patrolling an area and in real-time cut-scenes. Also in this chapter is a discussion on

how to calculate the frames per second of your application, which can be useful for
simple benchmarking tests.

 Chapter 13, ―Lighting,‖ covers how to perform real-time lighting in Direct3D 10 using

programmable shaders. This chapter covers various types of lights, such as point lights,

spot lights, area lights, and directional lights. In addition, this chapter covers how to

compute and use different lighting contributions and surface materials on 3D objects.
Chapter 13 also includes a discussion on light mapping and shadowing.

 Chapter 14, ―Conclusions,‖ discusses what the next recommended steps are in your

game-development education. It talks briefly about topics such as scene management,

game engines, multi-player games, and advanced game programming.

 Appendix A, ―Answers to Chapter Questions,‖ includes the answers to each of the book’s

chapter questions.

 Appendix B, ―Recommended Resources,‖ suggests resources that you can explore to

increase your knowledge in various game-development–related areas.

../ch07#ch07
../ch06#ch06
../ch08#ch08
../ch09#ch09
../ch10#ch10
../ch11#ch11
../ch12#ch12
../ch13#ch13
../ch13#ch13
../ch14#ch14
../app01#app01
../app02#app02

CONTENTS OF THE CD-ROM

On the CD-ROM that accompanies this book you can find all the chapter samples that are
discussed. The samples are organized by chapter and have programming projects for

Microsoft’s Visual Studio Visual Studio .NET 2008. The programming language used
throughout this book and with the chapter samples is C++.

ERRATA

I and the men and women of Charles River Media work very hard to ensure that your book
is error-free and of the highest quality. Sometimes errors do slip by our radar and make it

into the final print, however. If you notice any errors, please feel free to submit your
feedback at http://www.UltimateGameProgramming.com or to

http://www.charlesriver.com, where you can also look at the current errata. If you don’t see
your error on the list, please let us know of it as soon as you can. These errors can include

typos, mislabeled figures or listings, or anything else that you notice that you feel is not

quite right. Your reporting of any errors allows us to make the necessary changes and helps
future readers avoid confusion if they come across the same issue in their texts.

1. INTRODUCTION TO DIRECTX 10

In This Chapter

 Overview of Graphics and Game Development

 A Look at Windows Vista

 Microsoft’s DirectX Technology

 Programmable Shaders

 About This Book

Game development has come a long way since the early days of video games. Today,

modern video games are on par with the movie industry in terms of popularity, cinematic
visuals, and sales. With the increased popularity video games are seeing in the hardcore

and casual gaming arenas comes higher the demand by companies to find talented
individuals who can keep up with the fast growing pace of the gaming industry. This

includes all areas that contribute to a video game product, including but not limited to the
following.

 Game graphics

 Artificial intelligence

 Scripting

 Engineering

 Physics

 Game design

 Storytelling

../default2.htm
../default3.htm
../ch01lev1sec1#ch01lev1sec1
../ch01lev1sec2#ch01lev1sec2
../ch01lev1sec3#ch01lev1sec3
../ch01lev1sec4#ch01lev1sec4

 Art

Video games are on par with the movie industry when it

comes to sales. In 2007, the preorders for Halo 3 for the
Xbox 360 broke records across the entertainment industry,

thus allowing Halo 3 to beat Spider Man 3 at its launch.

The purpose of this book is to teach DirectX 10 game programming to beginner-and

intermediate-level DirectX 9 and C++ programmers as well as beginner-level DirectX 10

programmers coming to this book from another text. In this book, topics ranging from
graphical user interfaces to rendering complex virtual environments to advanced graphical

effects using shaders are explored in great detail in a manner that is easy to follow and
easy to pick up on and learn.

OVERVIEW OF GRAPHICS AND GAME DEVELOPMENT

Modern video games are often made with large budgets and large development teams
composed of very talented and bright individuals. Budgets for some modern video games

are in excess of $10 million. The large amount of money involved often times makes it hard
for publishers to take a risk on new development studios and new game ideas.

Not all modern video games exceed the $10-million mark,

but some do.

Recently the casual games market has been on the rise. Casual games are often far cheaper
to create, and some require only a few individuals on a development team. Thanks to the

popularity and success of the Nintendo Wii and the Nintendo DS, casual games and the
gamers who play those games are starting to take up a large piece of the market share.

Today most AAA large-budget games are 3D games, while some, although not all, casual
games are 2D.

AAA has various meanings, but it mostly refers to a game

with a budget over $10 million.

A casual game is a game that is simple in its mechanics and

is easy to pick up and play for fun. Hardcore games are more
complex in their mechanics and often require a great deal of

skill and practice to master.

2D AND 3D GAMES

2D and 3D video games can be found all over the industry. Today, 3D games are standard
on PCs, arcades, and home consoles, and they are also starting to be used more on mobile

devices such as hand-held consoles, cell-phones, and PDAs. Although 3D games are the
main focus in the professional industry, there is still plenty of opportunity for developers

looking to make 2D video games. Nintendo took the idea one step further and created
Super Paper Mario for the Nintendo Wii, which is a game that combines both 2D and 3D

visuals to deliver a unique experience to the gamer.

In this book we look briefly at drawing 2D elements to the screen, while the main focus is

on 3D rendering and effects. We use 2D elements for text and graphical user interfaces
such as heads-up displays and main menus. Although not covered, it is not a stretch to take

the topics and ideas learned in this book and use them to create a 2D video game.

Microsoft’s XNA, which is a game development framework
and toolset, allows for easy and rapid game development on

Windows XP, Windows Vista, and the Xbox 360 gaming
console. The creation of a 2D game is fairly straightforward

using XNA, and XNA can prove to be a very valuable game

development technology.

PARTS OF A GAME

Modern video games are very complex pieces of software engineering. Today many parts of
a video game require dedicated professionals who often make careers out of their area of

expertise. For example, video game jobs include, but are not limited to, the following areas.

 Graphics programmers

 Engine programmers

 Physics programmers

 Artificial intelligence programmers

 Networking programmers

 Scripting programmers

 Artists

 Animators

 Sound engineers

 Quality assurance specialists

 Game designers

 Writers

 Level designers

The main focus of this book is game graphics, input, and sound with DirectX 10. By the end

of this book you will have all the tools necessary to create your own fun 3D video game.

A LOOK AT WINDOWS VISTA

Windows Vista (see Figure 1.1) is the latest operating system from Microsoft Corporation.

With Vista, users get more features and options than ever before. The features that affect
PC video games include but are not limited to the following.

FIGURE 1.1. THE VISTA DESKTOP.

 The Windows Game Explorer

 Windows Live (i.e., Xbox Live for the PC)

 Flexible parental controls

 Connectivity between Windows Vista/Media Center and Xbox 360 consoles

 DirectX 10

One of the biggest additions that affect gamers and game developers is support for

Microsoft’s DirectX 10 technology framework. DirectX has been a huge force in game
development since its incarnation in the mid 1990s and has been a major piece of

technology for Windows-based video games, simulations, and multimedia applications. With
DirectX 10, Microsoft looks to reinvent game development, and thus the game industry,

with a new and more powerful version of DirectX that has been built from the ground up for
Windows Vista. Along with DirectX 10 comes a new class in hardware, often dubbed DirectX

10–class hardware, and a new programmable shader version, Shader Model 4.0.

javascript:moveTo('ch01fig01');

MICROSOFT’S DIRECTX TECHNOLOGY

DirectX is a set of technologies that was created by Microsoft in the mid 1990s and was

released for their Windows 95 operating system. This set of technologies included several
application programming interfaces (APIs) that could be used in game development and

other multimedia applications developed on their Windows 95 operating system and were
able to talk directly to the hardware using a layer known as the Component Object Model

(COM).

All versions of DirectX from 1 through 10 have been

released, with the exception of DirectX 4, which was dropped
since DirectX 5 was also being developed during the same

period.

Before DirectX, developers used DOS to program at a very low level directly to the
hardware. Prior to the release of Windows 95, Microsoft developed, fairly quickly, the first

version of DirectX for multimedia programming. Because Windows 95 was developed with a
different model than DOS, the old DOS ways of doing things were being phased out. With

Windows 95, it was still possible to run DOS applications, but eventually future Windows
operating systems dropped DOS altogether.

Before DirectX and during its release, OpenGL, which today

is one of the top graphics APIs along with Direct3D, was
primarily used only by high-end work stations, mostly for

engineering purposes. Once graphics hardware came along
and consumers started to embrace it, both OpenGL and

Direct3D evolved to keep up with the trend in the increases
in computer power.

DirectX is composed of 2D and 3D graphics, input, sound, and networking functionality. The
2D graphics were once performed using DirectDraw, which has since been combined into

Direct3D, which is the 3D graphical component of DirectX. Together the graphics API for

DirectX is commonly referred to as just Direct3D. Even though all areas of DirectX are
explored in this book, the bulk of the book deals with 3D graphics using Direct3D 10.

DirectX is a general set of libraries and utilities that is used for computer graphics, input,
sound, and networking functionality.

Input in DirectX is performed using DirectInput, networking was performed with the now
obsolete API DirectPlay, and sound is performed using DirectMusic and DirectSound, which

are now combined into one. Another API that was once part of DirectX, DirectShow, was
used for the manipulation of multimedia files such as videos. In April 2005 DirectShow was

removed from DirectX and is now part of the Windows platform software development kit
(SDK).

Recently Microsoft has added two new APIs that are included with the DirectX SDK. These
new APIs are XINPUT and XACT. XINPUT allows developers to code applications using the

Xbox 360 game controllers. These controllers include game pads, steering wheels, guitar
controllers, and anything else that can and will be developed as an Xbox 360 controller.

XACT is an audio creation and playback tool that comes complete with a graphical user

interface–based tool and API.

DirectInput is being phased out over time in favor of XINPUT, and DirectSound will be

replaced by XACT. Both XINPUT and XACT can also be found on Microsoft’s XNA framework,
which is a new technology based on Microsoft’s C# programming language and their Visual

Studio toolset for game development on Windows and the Xbox 360. Since DirectInput and
DirectSound are not completely phased out of DirectX, they will be discussed later in this

book along with XINPUT and XACT. DirectSound is being replaced by a new low-level sound
API called XAudio 2 for the XDK (Xbox development kit) and DirectX SDK.

Throughout this book we discuss each of the APIs that make up DirectX. DirectShow and
DirectPlay are no longer part of DirectX, so those APIs are not covered in this book.

There is also DirectSetup, which is not an API but is used for

the installation of DirectX components on a Windows PC.

DIRECTX 9 VERSUS DIRECTX 10

All versions prior to DirectX 10 were backward compatible with graphics drivers. When

DirectX 10 was developed and released, it was no longer backward compatible and was not
compatible with operating systems prior to Windows Vista. DirectX 10 does currently include

versions of Direct3D 9, so Direct3D 9 applications can still be developed and executed on

Windows Vista.

Microsoft’s Xbox game console used a version of DirectX 8,
while their Xbox 360 used a version of DirectX 9. The original

Xbox had the code name DirectXbox since it used DirectX.
The Direct was dropped and we now just have Xbox.

Originally, DirectX was planned to end with DirectX 9 after a Vista version of 9 (DirectX 9L)

was released. The Direct3D 10 we know today started out as the Windows Graphics
Foundation (WGF). WGF was a graphics API that was built from the ground up and was not

compatible with prior versions of Direct3D. Today it is known as Direct3D 10 instead of
WGF; the name change occurred sometime before the release of Windows Vista and before

the completion of what we know now as DirectX 10.

DirectX 9L was given an L at the end of its name because at
the time, Vista was known by its code name, which was

Longhorn.

There are several differences between DirectX 9 and DirectX 10 aside from DirectX 10 being

Windows Vista (and later) only. The major difference is that DirectX 10 has Direct3D 10,
while many of the other aspects of Direct X such as DirectInput and DirectSound have not

been updated since DirectX 8. Therefore, it is really Direct3D 10 that is exclusive to

Windows Vista since XINPUT and XACT are also available on previous versions of Windows
(e.g., Windows XP), and all other areas except Direct3D have not been updated since or

before DirectX 8. Each piece of DirectX can be upgraded without affecting the others and
the major upgrade in DirectX 10 is the new graphics API Direct3D 10.

One of Direct3D 10’s major selling points is that it features a new shading model called
Shader Model 4.0. Graphics hardware that supports this new technology is new itself, and

the promise of Shader Model 4.0 is hyped quite a bit. This brings us to another difference:
DirectX 10 can only use programmable shading technology, while previous versions of

DirectX offered what is known as the fixed-function pipeline. Programmable shading
technologies and the fixed-function pipeline are discussed later in this chapter. A shader

model refers to the version of the shading language that the hardware supports.

INSTALLING THE DIRECTX SDK

It is important to have all the necessary tools ready to begin working in this book.
This includes having a development integrated development environment (IDE) such as

Visual Studio .NET 2005, which is the tool used for the code projects for this book. The
book’s sample code and projects can be found on the accompanying CD-ROM.

If you are using Visual Studio .NET 2005, be sure to have the
Platform SDK installed. If you have been successfully using

.NET 2005 for Win32 development, then the Platform SDK is
already installed.

To code DirectX-powered applications, you need the DirectX SDK. This can be downloaded

from Microsoft’s Web site along with the most recent run-time version of DirectX. Also be
sure you have the latest graphics drivers installed for your hardware. To use Direct3D 10 in

hardware mode, you also need DirectX 10–compatible graphics hardware, such as NVIDIA’s
GeForce 8800. You can use Direct3D in reference mode if you have older graphics hardware

that does not support Direct3D 10, but this is not recommended because reference mode
runs extremely slowly since Direct3D 10 in this state is essentially falling back to a software

rendering mode instead of a hardware rendering mode. To install the DirectX SDK you only
need to download the installer, run it, and follow the onscreen prompts.

THE DIRECTX SDK SAMPLE BROWSER

The DirectX SDK Sample Browser is one of the tools you receive when you install the

DirectX SDK. This tool is full of sample source applications that cover many areas of DirectX
as well as detailed documentation and references. These source samples include C++ and

C# versions and can prove to be a great starting point when learning DirectX or expanding
your knowledge about a particular topic. There are many samples in the SDK Sample

Browser, and once you have installed the SDK it is recommended that you look through it

and check out what it has to offer, which ranges from beginner topics to advance subjects.
A screenshot of the DirectX SDK Sample Browser is shown in Figure 1.2.

FIGURE 1.2. THE DIRECTX SDK SAMPLE BROWSER.

javascript:moveTo('ch01fig02');

MANAGED DIRECTX

Microsoft has developed DirectX support for managed code. Managed code is code that is

compiled into an intermediate language by using a shared unified set of class libraries. In a
managed environment, a run-time–aware compiler takes the intermediate code and

translates it to native code during the application’s execution. During translation, functions

such as array bounds checking, garbage collection, type safety, exception handling, and so
forth are handled. The languages that are part of Microsoft’s managed .NET framework

include:

 .NET C++

 .NET C#

 .NET J#

 .NET JScript

 .NET Visual Basic

The DirectX SDK the toolset comes with examples in both unmanaged C++ code and in
managed C# code. In this book we focus on the C++ programming language for all code

samples. Managed DirectX is also commonly known as MDX. Currently DirectX10 cannot be
coded using a managed language.

Managed code does not use the COM layer, which can,

according to Microsoft’s managed DirectX documentation,

improve performance, reduce the volume of code, and
increase a developer’s productivity.

XNA

Microsoft has developed a new game development framework called XNA, which builds off
of the ideas of managed DirectX. XNA is a framework and set of tools used to make creating

games for Windows XP, Windows Vista, and the Xbox 360 much easier. XNA uses a
managed development environment and the C# programming language. XNA is becoming

very popular and is gaining support. Although XNA is a very powerful framework, it is not a
replacement for DirectX and is actually a higher-level technology that is built on top of it.

XNA is not an acronym.

PROGRAMMABLE SHADERS

In the late 1990s and early 2000s, programmable graphics hardware started to emerge on

the common marketplace. These graphics cards allowed developers to write and execute
their own custom code directly on the graphics hardware. This flexibility in control allowed

graphics programmers in all industries to push the limits of computer graphics by creating
visuals that otherwise did not exist and were neither possible nor reasonable using a fixed-

function pipeline.

Before programmable graphics hardware, graphics programmers relied on the fixed-function

pipeline, which is a series of algorithms and states (e.g., lighting, materials, and so forth)
that is provided with a graphics API to render geometry to the screen. The fixed-function

pipeline came down to essentially enabling and disabling states and features as needed by
an application. Unfortunately, having a fixed-function pipeline was highly restrictive because

it could not be customized.

When programmable graphics hardware hit the scene, it helped change the way graphics

programmers create visuals. This was extremely important in the game industry, where
graphics are an important aspect of a game. Programmable graphics hardware allowed

individual art styles to emerge in games that weren’t possible with the fixed-function

pipeline. One example can be seen in the game Team Fortress 2, where the developers use
a cartoon-like art style for the game’s graphics.

With programmable hardware, it is possible for developers to create shaders. A shader is a
custom-written shading algorithm that can be executed on the graphics hardware. Starting

with Direct3D 10, all graphics programming is done using shaders. This means there is no
longer a fixed-function pipeline. This is also true with Microsoft’s XNA framework.

LOW-LEVEL SHADERS

Low-level shader developers created graphical effects on programmable hardware using a

reduced instruction set computer (RISC)-oriented assembly language. Using assembly
language gives developers a lot of control over the instructions on a lower level but at a

cost of being harder to develop and maintain than a high-level language such as C or C++.
However, before high-level shading languages became commonplace, developers had to

work with low-level shaders. Each graphics API had a slightly different syntax, which meant
developers couldn’t just create one effect and use it in different projects regardless of the

API. Low-level shaders, when compared to high-level shaders, have the following generally
accepted truths:

 Low-level shaders are harder to implement.

 Low-level shaders are harder to maintain.

 Low-level shaders give low-level control over the instructions, thus giving developers

more control over performance.

 High-level shaders are faster to develop.

 High-level shaders are easier to read, especially without comments.

 The syntax of a higher-level language is much more developer friendly overall.

Fortunately low-level shaders are a thing of the past in DirectX. In Direct3D 10, Microsoft’s

High Level Shading Language (HLSL) is the only option available to graphics programmers
and developers. Throughout this book we examine HLSL.

HIGH-LEVEL SHADERS

High-level shading languages have a higher level than the assembly used in low-level
shaders. These higher-level shading languages are often modeled after the C programming

language. High-level shading languages have become a very important tool in computer
graphics programming and are generally considered a major step forward from when

developers were faced with assembly-based shading languages.

Three main shading languages are used with OpenGL and
Direct3D. These are Direct3D’s HLSL, OpenGL’s GLSL

(OpenGL Shading Language), and NVIDIA’s cross
platform/API Cg (which stands for C for graphics). Cg and

HLSL started off as the same language that was developed
by both Microsoft and NVIDIA, but they eventually took

separate paths.

Three types of shaders can be used to operate on the various pieces of information that

compose a virtual scene: vertex, geometry, and pixel shaders. When combined, these
shaders together form one effect, known as a shader program. During the rendering of a

scene, only one shader type can be active at one time. For example, this means it is not

possible to enable two vertex shaders at the same time to operate on the same data. The
same goes for geometry and pixel shaders.

VERTEX SHADERS

Vertex shaders are code that is executed on each vertex (i.e., point) of a piece of geometry

that is passed to the rendering hardware. The input of a vertex shader comes from the

application itself, whereas the other types of shaders receive their input from the shader

that comes before it, excluding uniform and constant variables, which we discuss in more
detail later on in this book. Vertex shaders are often used to transform vertex positions

using various mathematical matrices such as the model-view project matrix, and they are
used to perform calculations that need to be performed once per vertex. Examples of

operations that are often done on a per-vertex level include:

 Per-vertex level lighting

 GPU animations

 Vertex displacements

 Calculating values that can be interpolated across the surface in the pixel shader (e.g.,

texture coordinates, vertex colors, vertex normals)

GEOMETRY SHADERS

Geometry shaders sit between vertex shaders and pixel shaders. Once data has been

operated on by the vertex shader, it is passed to the geometry shader, if one exists, since
their existence is optional. Geometry shaders can be used to create (actually generate) new

geometry and can operate on entire primitives. Geometry shaders can emit zero or more
primitives, where emitting more than the incoming primitive generates new geometry and

emitting zero primitives discards the original primitive that was passed to the geometry

shader. Geometry shaders are a new type of shader that is available in Shader Model 4.0,
which is currently supported by the Direct3D 10 and OpenGL 3.0 graphical APIs.

A primitive is a simple piece of geometry. In modern video

games this often refers to a three-point (three-vertex)
polygon known as a triangle.

PIXEL SHADERS

The last type of shader is the pixel shader, also known as the fragment shader. A pixel

shader operates on each shaded pixel displayed on the screen that makes up a piece of
geometry. The input for the pixel shader can be either the output from the vertex shader or,

if one exists, the output from the geometry shader.

We discuss programmable shaders in much more detail in Chapter 4, ―Shader Model 4.‖ We

also discuss in more detail the rasterization process and common game mathematics such
as vectors and matrices in Chapter 5, ―Transformations,‖ and Chapter 8, ―Game Math.‖

SUMMARY

The goal of this book is to learn DirectX 10 in a fun and exciting manner. By the time you

are finished reading this book you should have an intermediate level of knowledge of the
technology and be ready to proceed to more advanced topics in game and graphics

programming. In this chapter we covered:

 What DirectX is

../ch04#ch04
../ch05#ch05
../ch08#ch08

 The history of DirectX

 A brief discussion of Vista

 A brief introduction to shading technology

CHAPTER QUESTIONS

Answers to the following chapter review questions can be found in Appendix A.

1. What is DirectX? When was DirectX released and for what operating system?

2. What does COM stand for?

3. List at least four APIs that make up DirectX 10.

4. List two APIs that are no longer part of DirectX 10 but were part of previous

versions of DirectX.

5. What are XINPUT and XACT? How do they fit into the DirectX technology?

6. Describe what a shader is and why it is so important to graphics programmers.

7. Describe what a vertex shader is. Describe how the vertex shader is used in

relation to the geometry and pixel shaders.

8. Describe what a geometry shader is. Describe how the geometry shader is used in

relation to the vertex and pixel shaders.

9. Describe what a pixel shader is. Describe how the pixel shader is used in relation

to the vertex and geometry shaders.

10. What is the difference between managed and unmanaged code? List at least three

programming languages that are supported by the .NET managed environment.

11. What does MDX stand for? What does XNA stand for?

12. What is WGF? What new name did it get?

13. What was the code name for Windows Vista? What was the codename for the

original Xbox?

../app01#app01
../app01lev1sec1#app01qa1q1a1
../app01lev1sec1#app01qa1q2a2
../app01lev1sec1#app01qa1q3a3
../app01lev1sec1#app01qa1q4a4
../app01lev1sec1#app01qa1q5a5
../app01lev1sec1#app01qa1q6a6
../app01lev1sec1#app01qa1q7a7
../app01lev1sec1#app01qa1q8a8
../app01lev1sec1#app01qa1q9a9
../app01lev1sec1#app01qa1q10a10
../app01lev1sec1#app01qa1q11a11
../app01lev1sec1#app01qa1q12a12
../app01lev1sec1#app01qa1q13a13

14. List the three high-level shading languages discussed in this chapter.

15. List four of the five features we’ve discussed for Windows Vista.

16. True or false: The first version of DirectX was released for Windows 3.1.

17. True or false: All versions of DirectX, versions 1 through 10, have been released.

18. True or false: Direct3D 10 uses Shader Model 4.0 for programmable shaders along

with a fixed-function pipeline.

19. True or false: Geometry shaders were first introduced in Shader Model 3.0 and are

now being used in Direct3D 10 and OpenGL 3.0.

20. True or false: XNA is a high-level framework built from DirectX.

2. DIRECT3D 10

In This Chapter

 Direct3D 10 Basics

 Font and Text

 Additional DirectX Topics

Video games of any nature are heavily based on their visual representations. Through these
visuals we are able to interact with the virtual story or world that we are being presented.

Using visuals, we are able to manipulate objects based on what we see through various

input devices. Couple input with sound, and it is easy for gamers to get immersed in a world
outside of their own.

The purpose of this chapter is to discuss the basics of how to use the visual component of
DirectX, called Direct3D. Direct3D handles all visual representations of DirectX dealing with

2D and 3D graphics. In this chapter you will learn the following:

 What Direct3D 10 is

 The difference between Direct3D 9 and 10

 Rendering primitives

 Displaying text

 Working with colors

 Using transformations

 The basics of effects

../app01lev1sec1#app01qa1q14a14
../app01lev1sec1#app01qa1q15a15
../app01lev1sec1#app01qa1q16a16
../app01lev1sec1#app01qa1q17a17
../app01lev1sec1#app01qa1q18a18
../app01lev1sec1#app01qa1q19a19
../app01lev1sec1#app01qa1q20a20
../ch02lev1sec1#ch02lev1sec1
../ch02lev1sec2#ch02lev1sec2
../ch02lev1sec3#ch02lev1sec3

This book is based on the August 2007 DirectX SDK, which you can find on the CD-ROM or

on Microsoft’s DirectX Web site. On the DirectX Web site you can also find newer versions of
the DirectX SDK as they become available, which I recommend that you use.

DIRECT3D 10 BASICS

DirectX Graphics, also commonly known as Direct3D, includes Direct3D 9 for Vista and

Direct3D 10. Direct3D 9 for Vista was once known as Direct3D 9L, where the L represented

Vista’s development codename called Longhorn. Because so many Direct3D 9 applications
are on the market and in development, it is important for Microsoft to continue its support

in Windows Vista. Direct3D 10, the major advancement in DirectX 10, is a new API that
aims to reinvent the way computer graphics are created in real-time applications on

Windows-based products.

For readers who are new to DirectX, Direct3D is the tool we developers use to communicate

directly with the hardware in a standardize way. In the past, before major graphics APIs
became the de facto standard in the games industry, development studios had to write

many routines themselves for the devices they wished to support. This extended past
graphics and also included audio, input, and so forth. This made it very difficult to develop

games because development teams had to develop, test, and debug code for many
hardware configurations that were sometimes written in low-level code. If new hardware

was released after a game, development teams had the additional burden of either having
to patch their games or do without support for that hardware.

Patching of a game has traditionally been done primarily to

fix bugs discovered on some configurations, devices, and so

on after a game’s release. Patching is also used to add
content and features to a game.

Standardization makes development of any type of application easier. With a standard API
for graphics, for example, it is up to the hardware manufacturers to write compatible drivers

that work for a specific piece of hardware. This places the burden of developing,

maintaining, and optimizing graphics routines on the manufacturers rather than the game
developers, and that is mostly what DirectX is: a standard set of APIs that can be used to

communicate with a host of different hardware devices without any additional work on the
part of the developer. Of course, this means hardware makers have to supply drivers for

specific operating systems and hardware specifications, which today is normal and is
commonly done in many types of applications.

Direct3D can also fall back to software emulation if hardware

is not found. This is great for testing features that your
hardware does not support but it is extremely inefficient for

commercial products.

Direct3D was added to the DirectX family of APIs in DirectX 2.0. Before DirectX 8.0 there
existed two APIs for graphics: Direct3D and DirectDraw. DirectDraw was a low-level API

that was mostly used for 2D game graphics. As Direct3D evolved, so did its abilities to do
both 2D and 3D graphics efficiently. Today, starting with DirectX 8.0 and higher, both APIs

have been merged into one. Although it is known as DirectX Graphics, it is simply called
Direct3D. In DirectX 7.0 a new feature called hardware-accelerated transformations and

lighting, or T&L, was added to the graphics of DirectX. Transformations are the algorithms

that transform geometry from its local representation to one that can be displayed in screen

pixels, which was handled by the hardware in and after DirectX 7.0, and lighting was done
with built-in lighting algorithms that could be enabled to shade the geometry of a scene

based on specified lighting and surface properties. These lighting algorithms were based on
Blinn and Phong, which are classic diffuse and specular lighting algorithms that are

discussed, among others, in Chapter 13, ―Lighting.‖

Before hardware-accelerated T&L, developers had to perform
these functions manually using the CPU. Hardware support

allowed that work load to be placed in the rendering pipeline
of the graphics hardware’s fixed-function pipeline, which

allowed the CPU to focus on other tasks.

Along with the merger of the DirectX graphics APIs, later DirectX 8.0 gained support for

programmable shading languages. Prior to 2000, graphics hardware relied on a set of
prebundled algorithms that together were known as the fixed-function pipeline. For

example, to use hardware lighting you simply enabled it with a few function calls; to draw
an object you simply sent the geometry down the rendering pipeline with a draw call, and

transformations, shading, and so on were taken care of for you. The fixed-function pipeline

was truly about enabling and disabling features in your application as desired.

Around the end of the last millennium, video games started to grow in complexity at a fast

rate. Game developers required more control over what they could do in their applications,
and when it came to graphics, this was restricted by the fixed-function pipeline. Using the

fixed-function pipeline, developers came up with many tricks and ways around certain
limitations, but they were still extremely limited in what they could do. Graphics hardware

that could be programmable to the metal, as the saying goes, was the solution to this
problem. By allowing graphics programmers to replace the fixed-function pipeline with their

own algorithms, developers were freed of the graphical shackles that had restricted them
since the dawn of graphics hardware and graphics APIs.

The programmable shading technology evolved along with the game development industry.
In the beginning of programmable shading technology, developers used low-level assembly

language to program to the metal of the hardware with limited support in terms of hardware
capabilities. Today we have complex high-level languages that resemble popular

programming languages such as C and C++, with much highly evolved graphics hardware.

Cg was the first OpenGL/Direct3D high-level programmable

shading language. Cg was originally developed jointly by
Microsoft and NVIDIA, but somewhere along the way

Microsoft broke off from the development of Cg and
developed HLSL, which explains why the two languages exist

and why they are so much alike.

Today, programmable shading languages and the ability to create your own algorithms are

at the forefront of computer graphics. In video games specifically they have been of the
utmost importance. Programmable technology is so important that Direct3D 10 is the first

graphics API to completely remove any support for a fixed-function pipeline. XNA, another
of Microsoft’s game development technologies that is built on top of DirectX, also takes a

programmable shading-only approach.

../ch13#ch13

Working strictly with programmable shading technology is considered a good thing. The

mathematics is not difficult to grasp and, in the past, to be a great graphics programmer
you had to be at least somewhat familiar with what was going on behind the scenes to be

able to accurately dictate in code what you wanted to do. Of course, today graphics
programmers need knowledge of computer graphics that goes beyond the API of their

choice, but again, this is a good thing for game developers and the games they produce.

Graphics programmers always had to have knowledge of
computer graphics beyond API calls, but today they also

need to be able to efficiently implement it themselves,
whereas before the fixed-function pipeline took care of

enough details that almost anyone could create scenes.

SETTING UP DIRECT3D 10

To use Direct3D 10 in an application, you need to set it up in code. This requires a Win32
development environment and the DirectX SDK, both of which should be set up and ready

at this point.

Direct3D 10 uses the header files d3d10.h and d3dx10.h, which are installed when you

install the DirectX SDK. The first file, d3d10.h, is the main Direct3D header file. The second

file, d3dx10.h, contains Direct3D utility-related header information. The Direct3D X utility is
very useful and is mostly a set of functions that makes performing certain tasks faster by

using one function call. An example of this is loading shading effects with the

D3DX10CreateEffectFromFile() function, which we discuss in more detail later on in

this chapter.

Along with the header files, Direct3D 10 also requires that the application use the Direct3D

10 dynamic link libraries (DLLs). This is done by linking to the libraries d3d10.lib and, if
using any of the Direct3D 10 X functions, d3d10x.lib.

Inside the application itself is an object that is created to allow Direct3D to be used. This
object is the Direct3D 10 device. The Direct3D 10 device uses the object type

ID3D10Device* and is a pointer to the device itself. Once created, the device object is

used to perform all hardware tasks in Direct3D.

Those experienced with Direct3D 9 and previous versions
know that there were two objects that had to be created: the

device and an object used to initialize the SDK.

A Direct3D 10 device can be either in hardware or in software rendering mode. As the

names imply, hardware mode runs everything on your graphics hardware, while software
mode, also known as reference or REF mode, runs everything on the CPU. In Direct3D 9

and earlier versions, the hardware mode was executed through the Hardware Abstraction
Layer (HAL), while reference mode was run through the Hardware Emulation Layer (HEL).

Direct3D 10 does not have these layers, as it is a new API built from the ground up for
Vista. When creating a Direct3D 10 device, it is common to try to create a hardware device

first and, if that fails, fall back to software. If the game cannot run in software mode, which
none, if any, can, then software mode can be left out or used as a means to display a

message to the users informing them that the application requires hardware acceleration.

A function called D3D10CreateDeviceAndSwapChain() is used to create the Direct 3D

device. This function creates the device as well as the window’s swap chain. We discuss
swap chains in more detail in the following section. The function prototype for the

D3D10CreateDeviceAndSwapChain() function is as follows:

HRESULT D3D10CreateDeviceAndSwapChain(

 IDXGIAdapter *pAdapter,

 D3D10_DRIVER_TYPE DriverType,

 HMODULE Software,

 UINT Flags,

 UINT SDKVersion,

 DXGI_SWAP_CHAIN_DESC *pSwapChainDesc,

 IDXGISwapChain **ppSwapChain,

 ID3D10Device **ppDevice

);

The D3D10CreateDeviceAndSwapChain() function’s first parameter is the address to

an adapter object that can be created upon success of this function call. The adapter is used
for the creation of subsystem resources such as additional graphics-processing units (GPUs)

and video memory. This parameter can be optionally set to NULL.

The second parameter for the D3D10CreateDeviceAndSwapChain() function is the

driver type. The driver type specifies if the device will run in hardware or software rendering
mode and can be one of the following values, where the last value,

D3D10_DRIVER_TYPE_SOFTWARE, is not used but is reserved by Direct3D for possible

future use:

typedef enum D3D10_DRIVER_TYPE

{

 D3D10_DRIVER_TYPE_HARDWARE = 0,

 D3D10_DRIVER_TYPE_REFERENCE = 1,

 D3D10_DRIVER_TYPE_NULL = 2,

 D3D10_DRIVER_TYPE_SOFTWARE = 3,

} D3D10_DRIVER_TYPE;

Don’t confuse D3D10_DRIVER_TYPE_REFERENCE with

D3D10_DRIVER_TYPE_SOFTWARE. The former is for

software rendering (reference), while the latter is reserved.

The third parameter is a handle to a DLL that implements a software rasterizer. This

parameter and must be set to NULL if you are using hardware rendering. You do not need

to use this parameter in reference mode unless you are using a specific external DLL that

implements the software rasterizer, which is outside the scope of this book.

The fourth parameter is the optional device creation flag. These flags can be used for

setting Direct3D in single-threaded mode, debug mode, and so forth. The flags that can be
used for this parameter are as follows.

typedef enum D3D10_CREATE_DEVICE_FLAG

{

 D3D10_CREATE_DEVICE_SINGLETHREADED = 0×1,

 D3D10_CREATE_DEVICE_DEBUG = 0×2,

 D3D10_CREATE_DEVICE_SWITCH_TO_REF = 0×4,

 D3D10_CREATE_DEVICE_PREVENT_INTERNAL_THREADING_OPTIMIZATIONS

= 0×8,

} D3D10_CREATE_DEVICE_FLAG;

By default, Direct3D is set to multi-threaded mode, but you can set it to single-threaded

mode. The debug flag is used to have Direct3D generate additional information that can be
useful for the debugging process. The flag used to switch to reference mode tells the

D3D10CreateDeviceAndSwapChain() function to create two devices, one hardware

and one reference, so that the application can freely switch between the two modes. The

last flag is reserved by Direct3D.

The fifth parameter of the, D3D10CreateDeviceAndSwapChain() function, which

should be set to D3D_SDK_VERSION, tells Direct3D which DirectX SDK version it is using.

The sixth parameter is a description of how the swap chain is created by the

D3D10CreateDeviceAndSwapChain() function, while the seventh parameter is the

swap chain object that is created upon success of this function. We discuss swap chains in
more detail in the next section of this chapter.

The last parameter is the Direct3D 10 rendering device that is created upon this function’s

success. If the D3D10CreateDeviceAndSwapChain() function returns anything other

than S_OK or if the Direct3D device or swap chain is NULL, it means the function failed to

set up Direct3D.

If you want to create only a Direct3D 10 device and not a swap chain at the same time, you

can use the function D3D10CreateDevice(). The function prototype for the

D3D10CreateDevice() function is as follows.

HRESULT D3D10CreateDevice(

 IDXGIAdapter *pAdapter,

 D3D10_DRIVER_TYPE DriverType,

 HMODULE Software,

 UINT Flags,

 UINT SDKVersion,

 ID3D10Device **ppDevice

);

The parameters between the D3D10CreateDevice() function and the

D3D10CreateDeviceAndSwapChain() function are identical except for the swap chain

parameters.

SWAP CHAINS

Each window that is created can have a scene displayed to it. A swap chain is an object
made up of various rendering buffers that is tied to a specific window. You can think of a

swap chain as a window, and in order to render to a window in Direct3D 10 you must create
a swap chain. In previous versions of Direct3D a swap chain was tied to a window, and a

swap chain could be switched between windows (i.e., tied to another window). In Direct3D

10 a swap chain is tied to a device, and a change in the swap chain—that is, if the swap

chain is to change the device it is tied to—requires the swap chain to be released and then
re-created.

The creation of a swap chain requires a swap chain description of the type

DXGI_SWAP_CHAIN_DESC. Swap chains are part of the DirectX Graphics Infrastructure

(DXGI), which is discussed at the end of this chapter. A swap chain has the following
structure.

typedef struct DXGI_SWAP_CHAIN_DESC {

 DXGI_MODE_DESC BufferDesc;

 DXGI_SAMPLE_DESC SampleDesc;

 DXGI_USAGE BufferUsage;

 UINT BufferCount;

 HWND OutputWindow;

 BOOL Windowed;

 DXGI_SWAP_EFFECT SwapEffect;

 UINT Flags;

} DXGI_SWAP_CHAIN_DESC;

The first property of the swap chain description is the buffer description. The buffer
description is made up of properties that describe the rendering buffer, which includes the

buffer’s width and height, the window refresh rate (i.e., how many times it is updated), the
buffer’s internal format, and the method by which each line of pixels that make up the

display is rendered (i.e., the order, progressive scan, etc.). A buffer is an array of pixels, in
this case, that is drawn to during the rendering. This property of the swap chain description

controls how it is created and used. The buffer description has the following structure:

typedef struct DXGI_MODE_DESC {

 UINT Width;

 UINT Height;

 DXGI_RATIONAL RefreshRate;

 DXGI_FORMAT Format;

 DXGI_MODE_SCANLINE_ORDER ScanlineOrdering;

 DXGI_MODE_SCALING Scaling;

} DXGI_MODE_DESC, *LPDXGI_MODE_DESC;

The second property in the swap chain description is the sample description, which

describes how the device handles multi-sampling. Multi-sampling is a graphics-hardware-
optimized form of anti-aliasing. We discuss anti-aliasing more in Chapter 7, ―Additional

Texture Mapping.‖

The third property of the swap chain description is the DXGI usage flag. This flag specifies

CPU usage options and tells Direct3D how the swap chain will be used. For example, a

rendering destination in the swap chain can be set to be used as an input into an effect. The
valid values for this flag are:

 DXGI_USAGE_SHADER_INPUT, which uses the surface or resource as an input to a

shader

 DXGI_USAGE_RENDER_TARGET_OUTPUT, which uses the surface or resource as an

output render target

../ch07#ch07

 DXGI_USAGE_BACK_BUFFER, which uses the surface or resource as a rendering back

buffer

 DXGI_USAGE_SHARED, which shares the surface or resource

 DXGI_USAGE_READ_ONLY, which specifies the swap chain for read only, no writing

DXGI_USAGE is implemented as a typedef to an integer.

The fourth property of the swap chain description is the number of buffers. To render

anything you need at least one buffer. In video games we traditionally use two or more
buffers for smooth animations. The problem with using one buffer is that the display can

need to be updated before the rendering of the next frame of the scene is complete. If this
happens, artifacts can appear, and the scene can be visibly distorted between the half that

makes up the last frame and the half that makes up the next frame. By using two rendering
buffers, one buffer can be used for display while the other is being operated on. Once the

buffer is ready, the new content, which is rendered to the secondary buffer when you have
two buffers, is transferred to the primary buffer, which is the buffer that is displayed to the

screen. Figure 2.1 shows a visual of buffers.

FIGURE 2.1. RENDERING USING A PRIMARY AND SECONDARY BUFFER.

The technique of copying the contents from an off-screen secondary back buffer to the

primary buffer is known as double buffering. Copying large amounts of data can be
expensive, so another technique is used, called page flipping. Page flipping is a technique

where you don’t copy data from one buffer to another, but you simply switch between the
buffers so that the one being rendered to is automatically considered the secondary buffer,

and the one that is not being rendered to is considered the primary buffer. A visual of this is
shown in Figure 2.2. Direct3D handles the page flipping of buffers internally, which we see

how to do later in this chapter.

FIGURE 2.2. DOUBLE BUFFERING VERSUS PAGE FLIPPING.

javascript:moveTo('ch02fig01');
javascript:moveTo('ch02fig02');

The key ideas to take from this are that you must have one buffer, or the creation of the

device will fail. If you have more than one buffer (two is the standard), they allow smooth
renderings of multiple frames to occur without artifacts. (A frame is a single rendered

image.) Adding more buffers consumes more video memory, so do so keeping that in mind.

The fifth property of the swap chain description is the window handle. All Win32 windows

create a window handle when the window is first created. This property takes that handle
and is used to tie the swap chain to the window.

The sixth property of the swap chain description is a Boolean flag for whether Direct3D
should enter full-screen or windowed mode. If this flag is true, the window is not full-

screen; if it is false, the window is full-screen. To support full-screen rendering, which is a
window that takes up the entire display, this flag simply needs to be set to false. The

resolution of the buffer description determines the full-screen window’s display resolution. If
the application is using a different resolution than the desktop, the resolution is changed

while the application is running. The resolution is returned once the application exits,
assuming the resolution that it attempted to change to is supported by the hardware.

The seventh property of the swap chain description tells Direct3D how the contents behave

once they are displayed to the screen. The values can be any one of these enumerations.

typedef enum DXGI_SWAP_EFFECT

{

 DXGI_SWAP_EFFECT_DISCARD = 0,

 DXGI_SWAP_EFFECT_SEQUENTIAL = 1,

} DXGI_SWAP_EFFECT, *LPDXGI_SWAP_EFFECT;

If the discard flag is used, Direct3D will determine the best way to present the scene for the

swap chain. If the sequential flag is used, the swap chain cannot be used with multi-
sampling.

The eighth and last property of the swap chain description is the swap chain flag. This is
used to turn off automatic image rotations and to allow full-screen mode switches in the

application. Automatic image rotation deals with full-screen applications. When rendering

the contents of a buffer, the buffer might need to be rotated and changed to match that of
the monitor. This is automatically done, but this property can be turned off in Direct3D. The

other flag for full-screen mode allows the application to try to match the closest resolution
to what the window was before the change in window mode. Without this flag the resolution

of the desktop is used if the application is changed to full-screen mode.

Once you have a swap chain description you can call

D3D10CreateDeviceAndSwapChain() to create the Direct3D device and the swap

chain. A swap chain has the type IDXGISwapChain. The next step is to create a render

target view, which is discussed in the next section.

RENDERING TARGET VIEWS

Later in this book we discuss how to create rendering targets that allow us to render the
contents of a scene to an image that can then be used on top of any surface in the virtual

scene. This practice is known as off-screen rendering, and it can be used to create effects

such as mirrors, TV monitors, and many more interesting things in a rendered scene.

Although we do not cover off-screen rendering in this chapter, there is information related

to it that is important to being able to render anything in Direct3D, and this topic is called
render target views. Once a swap chain is created, we must create a render target view out

of the swap chain’s back buffer, which is the buffer that is not being displayed but that is
being rendered to. To do this we first get the swap chain’s buffer with a call to the swap

chain object’s member function GetBuffer(), which has the following function prototype.

HRESULT GetBuffer(

 UINT Buffer,

 REFIID riid,

 void **ppSurface

);

The GetBuffer() function takes as parameters the buffer index, the ID, and a pointer to

the address that points to the buffer. Since we are rendering to a texture, which is another

word for image, we would use the following for the ID.

_uuidof(ID3D10Texture2D)

The _uuidof() function is used to get the ID of any structure, which for a 2D image

texture is ID3D10Texture2D (discussed in more detail in Chapter 6, ―Shading and

Surfaces‖). The ID allows the function to know what type of resource is being fetched.

Once the buffer is obtained, a call to CreateRenderTargetView() is made to create

the render target out of the swap chain buffer’s destination image. The function takes as its
first parameter the resource that acts as the rendering target destination, which must have

been created using the flag D3D10_BIND_RENDER_TARGET. The second parameter is the

render target description, and the last parameter is a pointer to the created render target’s

address. The CreateRenderTargetView() function has the following function

prototype.

HRESULT CreateRenderTargetView(

 ID3D10Resource *pResource,

 const D3D10_RENDER_TARGET_VIEW_DESC *pDesc,

../ch06#ch06

 ID3D10RenderTargetView **ppRTView

);

The render target description can be set to NULL to access the entire resource. If you were

to fill out the description, it would have the following structure.

typedef struct D3D10_RENDER_TARGET_VIEW_DESC {

 DXGI_FORMAT Format;

 D3D10_RTV_DIMENSION ViewDimension;

 union {

 D3D10_BUFFER_RTV Buffer;

 D3D10_TEX1D_RTV Texture1D;

 D3D10_TEX1D_ARRAY_RTV Texture1DArray;

 D3D10_TEX2D_RTV Texture2D;

 D3D10_TEX2D_ARRAY_RTV Texture2DArray;

 D3D10_TEX2DMS_RTV Texture2DMS;

 D3D10_TEX2DMS_ARRAY_RTV Texture2DMSArray;

 D3D10_TEX3D_RTV Texture3D;

 };

} D3D10_RENDER_TARGET_VIEW_DESC;

The description for render target views deals a lot with textures, so a discussion of this

structure occurs in Chapter 6. Once a render target is created, it can be set as the current

render target for the display at any time using the function OMSetRenderTargets() of

the Direct3D 10 device. The first parameter of the function takes the number of views that
will be set, an array of one or more views to set, and an array of one or more depth or

stencil views to set for each view. The function prototype for the

OMSetRenderTargets() function is as follows.

void OMSetRenderTargets(

 UINT NumViews,

 ID3D10RenderTargetView *const *ppRenderTargetViews,

 ID3D10DepthStencilView *pDepthStencilView

);

Once a render target view is created and set, the application is ready to begin rendering. To

review, the steps used to create a Direct3D 10 device are:

1. Create the device.

2. Create the swap chain, which can be done during the creation of the device with the

function D3D10CreateDeviceAndSwapChain().

3. Get the swap chain’s back buffer.

4. Create a render target view from the swap chain’s buffer.

5. Set the render target view when you are ready to start rendering graphics.

../ch06#ch06

By creating a render target that points to the swap chain, which is essentially the window,

you can set the rendering of different windows at will. You can also set the renderings to
occur to surfaces that are not a swap chain or tied to the window, which is what off-screen

rendering (discussed in Chapter 6) is. It is important to keep in mind that render targets tell
Direct3D where to draw. If each of the steps mentioned above is successful, you are ready

to start rendering 3D scenes.

To avoid memory leaks, be sure every object that is created, such as the Direct3D 10

device and any render targets, is freed at the end of the application or whenever you no

longer need it. This can be done by calling the Release() member function of the objects.

For the Direct3D device object you must first call ClearState() on the device before

calling Release(), which returns the device to the state it was at when it was created.

CLEARING AND DISPLAYING SCREENS

Once a scene has been rendered, you can display it to the window by calling the swap

chain’s Present() function. Present() has always been the function in Direct3D used

to display a scene once you are finished rendering, and it takes as parameters the sync
interval and the presentation flags. The sync interval can be 0, which tells Direct3D to

display immediately, or it can be 1, 2, 3, or 4, which tell Direct3D to display after the nth
vertical blank. A vertical blank is when the monitor blanks for each line of vertical pixels

that make up the display.

The flags for the Present() function can be 0, which presents the contents of each buffer,

DXGI_PRESENT_DO_NOT_SEQUENCE, which presents a frame from the current buffer to

the output, DXGI_PRESENT_RESTART, which presents a frame from each buffer, starting

with the first buffer, to the output, and DXGI_PRESENT_TEST, which does not display the

results but is used to test the swap chain when switching from an idle state. During the
development of your applications, you’ll find yourself often using 0 for both of the

parameters for the Present() function.

Before you display a scene, you’ll want to render something first. The most basic rendering

that can be performed is the clearing of the screen to a specified color, which can be any

color you want. You can clear a scene by calling the ClearRenderTargetView()

function of the Direct3D 10 device, which has the following function prototype.

void ClearRenderTargetView(

 ID3D10RenderTargetView *pRenderTargetView,

 const FLOAT ColorRGBA[4]

);

The ClearRenderTargetView() function takes as parameters the render target view

object, which for the clearing of the screen should be the swap chain’s render target view

that was created, and a color. The color is filled across the entire surface and is a red,
green, blue, alpha color value. We discuss colors in more detail later on in this chapter. An

example of clearing and the display of a scene using a Direct3D 10 device object is shown
as follows, where the scene is set to all black (specified by the color 0, 0, 0, 0).

ID3D10Device *g_d3dDevice = … Create Device …;

IDXGISwapChain *g_swapChain = … Create Swap Chain …;

ID3D10RenderTargetView *g_renderTargetView = … Create RT View …;

…

float col[4] = { 0, 0, 0, 0 };

../ch06#ch06

… START DRAWING …

g_d3dDevice->ClearRenderTargetView(g_renderTargetView, col);

g_swapChain->Present(0, 0);

In the following sections we use the information discussed so far to create 3D applications

using Direct3D 10. These applications are simple demos that consist of a demo used to
render a blank window and a demo used to display text. This chapter serves mostly as an

introduction to setting up and beginning to use the Direct3D API.

BLANK WINDOW DEMO

The first demo implemented in this chapter is the Blank Window demo, which can be
found on the CD-ROM in the Chapter 2 folder. The Blank Window demo creates a Direct3D

application that displays an empty window. This demo application uses each of the Direct3D
functions mentioned up to this point in this chapter.

The demo is made up of a single C++ source file called main.cpp. The main source file
starts by including the Windows and Direct3D header files followed by the Direct3D library

files. Direct3D uses d3d10.lib and, if using the Direct3D utility, d3dx10.lib. The header files
used include windows.h, d3d10.h, and d3dx10.h. The headers and libraries from the global

section of the Blank Window demo application are shown in Listing 2.1.

LISTING 2.1. THE GLOBAL SECTION OF THE BLANK WINDOW DEMO

#include<windows.h>

#include<d3d10.h>

#include<d3dx10.h>

#pragma comment(lib, "d3d10.lib")

#pragma comment(lib, "d3dx10.lib")

The Blank Window demo only displays a blank window. Since the demo is limited in its
application, the only objects needed are the Direct3D device, a swap chain, and a render

target view so that Direct3D can be told to render to the swap chain (window) as the
destination. Each of these objects are discussed in this chapter, and they are shown in

Listing 2.2 for the Blank Window demo. Notice how the demo uses pointers, which are freed
later on, as will be seen in an upcoming section.

LISTING 2.2. THE GLOBAL OBJECTS FROM THE BLANK WINDOW DEMO

#define WINDOW_NAME "Blank Window"

#define WINDOW_WIDTH 800

#define WINDOW_HEIGHT 600

ID3D10Device *g_d3dDevice = NULL;

IDXGISwapChain *g_swapChain = NULL;

ID3D10RenderTargetView *g_renderTargetView = NULL;

The first function from the Blank Window demo that will be discussed is the demo’s

InitializeD3D10() function. This function’s purpose is to initialize the Direct3D

../ch02#ch02
javascript:moveTo('ch02list1');
javascript:moveTo('ch02list2');

rendering device, swap chain, and render target view. As a parameter, it takes a window

handle that is created in the main function of the demo later on in this section.

The device initialization function starts by creating a swap chain description based on the

type of device to be created. The swap chain is created at a resolution of 800 × 600, with a
buffer format of RGBA8 and two buffers (primary and secondary). Once the swap chain

description is created, the function uses a loop to try to create the Direct3D device. In the
first attempt the loop tries to create a hardware device. If that fails, it tries to create a

software reference device. If this fails, Direct3D could not be initialized.

If the device is created successfully, the final steps, mentioned in detail earlier in this

chapter, are to create the render target view from the swap chain’s rendering buffer and to
set that target as the current rendering destination. The device initialization function ends

by calling another function, which we discuss later, that sets the rendering viewport. The

entire InitializeD3D10() function from the Blank Window demo is shown in Listing

2.3.

LISTING 2.3. THE DIRECT3D DEVICE INITIALIZATION FUNCTION FROM THE
BLANK WINDOW DEMO

bool InitializeD3D10(HWND hwnd)

{

 DXGI_SWAP_CHAIN_DESC swapDesc;

 ZeroMemory(&swapDesc, sizeof(swapDesc));

 // A swap chain needs to be created first. Once created

 // we can create a rendering target that can allow us to

 // actually draw to the swap chain (the window).

 swapDesc.BufferCount = 2;

 swapDesc.BufferDesc.Width = WINDOW_WIDTH;

 swapDesc.BufferDesc.Height = WINDOW_HEIGHT;

 swapDesc.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;

 swapDesc.BufferDesc.RefreshRate.Numerator = 60;

 swapDesc.BufferDesc.RefreshRate.Denominator = 1;

 swapDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;

 swapDesc.OutputWindow = hwnd;

 swapDesc.SampleDesc.Count = 1;

 swapDesc.SampleDesc.Quality = 0;

 swapDesc.Windowed = TRUE;

 HRESULT hr = S_OK;

 unsigned int flags = 0;

 // This next flag gives us debug information

 // during development. Not used in release versions.

#ifdef _DEBUG

 flags |= D3D10_CREATE_DEVICE_DEBUG;

#endif

 D3D10_DRIVER_TYPE driverType = D3D10_DRIVER_TYPE_NULL;

 D3D10_DRIVER_TYPE driverTypes[] =

javascript:moveTo('ch02list3');
javascript:moveTo('ch02list3');
javascript:moveTo('ch02list3');

 {

 D3D10_DRIVER_TYPE_HARDWARE,

 D3D10_DRIVER_TYPE_REFERENCE,

 };

 // Loop through each device type and see if we can create

 // at least one of them. If they all fail then there is

 // a huge problem with your hardware or DirectX runtime

 // installation.

 unsigned int numDriverTypes = sizeof(driverTypes) /

 sizeof(driverTypes[0]);

 for(unsigned int i = 0; i < numDriverTypes; i++)

 {

 driverType = driverTypes[i];

 hr = D3D10CreateDeviceAndSwapChain(NULL, driverType, NULL,

 flags,

D3D10_SDK_VERSION,

 &swapDesc,

&g_swapChain,

 &g_d3dDevice);

 if(SUCCEEDED(hr))

 break;

 }

 if(FAILED(hr))

 return false;

 // Get the back buffer from the rendering swap chain so we

 // can create a destination rendering target from it.

 ID3D10Texture2D *buffer = NULL;

 hr = g_swapChain->GetBuffer(0, __uuidof(ID3D10Texture2D),

 (LPVOID*)&buffer);

 // Check for problems creating the previous object.

 if(FAILED(hr))

 return false;

 // Create the default render destination for the drawing

calls.

 hr = g_d3dDevice->CreateRenderTargetView(buffer, NULL,

&g_renderTargetView);

 // No longer need this.

 buffer->Release();

 // Check for problems creating the previous object.

 if(FAILED(hr))

 return false;

 // Set default render target. Can be set during the rendering

 // but since there is only 1 render target it can be set

once.

 g_d3dDevice->OMSetRenderTargets(1, &g_renderTargetView,

NULL);

 // Ensure window is ready to be drawn to.

 ResizeD3D10Window(WINDOW_WIDTH, WINDOW_HEIGHT);

 return true;

}

The next functions in the Blank Window demo are ResizeD3D10Window(),

InitializeDemo(), and Update(). The ResizeD3D10Window() function is used to

set the view port and any view-related information that affects the size of a window.
Whenever a window is resized, this function is called to tell Direct3D about the change. A

viewport specifies the area of the rendering target that will be rendered to. In this demo

this starts at the beginning of the window, which is the upper-left corner of the screen, and
renders to the entire surface, which goes until the lower-right of the screen. Viewports are

set by creating a D3D10_VIEWPORT object and passing it to the Direct3D device object’s

function RSSetViewports(), which takes as parameters the number of viewports that

are being passed to the function and an array of one or more D3D10_VIEWPORT objects.

In a geometry shader we can choose which viewport we want to use by specifying the array

index if more than one viewport is set.

Later on we create a split-screen, multi-view scene using
“player 1” and “player 2” style cameras. This can be done in

part by using viewports. For the top player you can have a

viewport that renders only to the top half of the window
(instead of the entire window), while the second view

displays to the bottom half. Using viewports and rendering
the scene once for each player’s camera, you can create a

split-screen game.

The demo-specific initialize and updating functions are empty in this demo since its purpose

is to render a completely blank window, which does not need any special loading or
updating functionality. Future demos use these functions, so for now they act as a

placeholder. When coding along with future demos, you can use the Blank Window demo as
a template to fill out the specifics of whatever it is you are trying to create. Everything in

this demo appears in all future demos, so there is no need to rewrite what you’ve already
written for each demo. The purpose of the demo initialize function is to load demo-specific

assets and resources, such as models, images, effects, and environments. The purpose of
the updating function is to perform update operations before rendering each frame, such as

animation updates and artificial intelligence. The resizing, demo-initialize, and update

functions are shown in Listing 2.4.

LISTING 2.4. THE RESIZING, DEMO-SPECIFIC INITIALIZATION, AND

UPDATING FUNCTIONS

void ResizeD3D10Window(int width, int height)

{

 if(g_d3dDevice == NULL)

 return;

 D3D10_VIEWPORT vp;

 vp.Width = width;

 vp.Height = height;

 vp.MinDepth = 0.0f;

 vp.MaxDepth = 1.0f;

 vp.TopLeftX = 0;

 vp.TopLeftY = 0;

 g_d3dDevice->RSSetViewports(1, &vp);

}

bool InitializeDemo()

{

 // Nothing to initialize.

 return true;

}

void Update()

{

 // Nothing to update.

}

The next two functions from the Blank Window demo are the RenderScene() and

Shutdown() functions. The rendering function, RenderScene(), clears the rendering

target to a solid bright red color and displays that result to the screen. The color (1, 0, 0, 1)
specifies 100% for the red channel, 0% for the green and blue channels, and 100% for the

alpha channel. Since alpha is not used in this demo, using 0 for the alpha channel will have
no effect. Alpha, along with colors in general, is discussed in more detail in Chapter 3,

―Rendering Geometry.‖ After the render target is cleared, which is set to the swap chain’s
window as the destination, the rendered image is composed of a single color across the

surface. Normally, more rendering would take place with models, levels, and so on, but for

this demo Present() is called after the clearing to display the solid color.

The shutdown function Shutdown() is used to release all allocated objects that were used

in the demo. This includes the Direct3D device, the window’s swap chain, and the render

target’s view. The rendering and shutdown functions are shown in Listing 2.5.

LISTING 2.5. THE BLANK WINDOW’S RENDERING AND SHUTDOWN
FUNCTIONS

void RenderScene()

{

javascript:moveTo('ch02list4');
../ch03#ch03
javascript:moveTo('ch02list5');

 float col[4] = { 1, 0, 0, 1 };

 // Clear the rendering destination to a specified color.

 g_d3dDevice->ClearRenderTargetView(g_renderTargetView, col);

 // Display the results to the target window (swap chain).

 g_swapChain->Present(0, 0);

}

void Shutdown()

{

 // Release all used memory.

 if(g_d3dDevice) g_d3dDevice->ClearState();

 if(g_swapChain) g_swapChain->Release();

 if(g_renderTargetView) g_renderTargetView->Release();

 if(g_d3dDevice) g_d3dDevice->Release();

}

The last two functions are the main function and the windows callback function. In this book
it is assumed that you are familiar with Win32 programming. In this section we briefly

discuss the Win32 code from this demo before moving on. The first function we look at is
the window’s callback function. Win32 applications can specify a callback function that is

used to respond to operating system messages. Each callback function that is defined must
have a specific function prototype, which can be seen in the callback function’s

implementation in Listing 2.6. In this demo, and most demos in this book, the callback
function responds to close and destroy messages that are used to close the application

when the X button is clicked (or a force quit occurs) on the window, to sizing messages that
are used to inform the application that the window was resized, and, for now, to key-down

messages that are used to detect keyboard input. In the chapters dealing with input, we

replace the key-down message handler with DirectX code in the Update() function. For

now, the key-down handler is used to detect when the Esc key is pressed so that it can

force the application to shut down. The window’s callback function for the Blank Window
demo is shown in Listing 2.6.

LISTING 2.6. THE BLANK WINDOW’S CALLBACK FUNCTION

LRESULT CALLBACK WndProc(HWND hwnd, UINT m, WPARAM wp, LPARAM

lp)

{

 // Window width and height.

 int width, height;

 switch(m)

 {

 case WM_CLOSE:

 case WM_DESTROY:

 PostQuitMessage(0);

 return 0;

 break;

javascript:moveTo('ch02list6');
javascript:moveTo('ch02list6');

 case WM_SIZE:

 height = HIWORD(lp);

 width = LOWORD(lp);

 if(height == 0)

 height = 1;

 ResizeD3D10Window(width, height);

 return 0;

 break;

 case WM_KEYDOWN:

 switch(wp)

 {

 case VK_ESCAPE:

 PostQuitMessage(0);

 break;

 default:

 break;

 }

 break;

 default:

 break;

}

 // Pass remaining messages to default handler.

 return (DefWindowProc(hwnd, m, wp, lp));

}

The last function from the demo application is the WinMain() function, which is the Win32

main function. The main function creates the window class and the window itself. The

window handle that is created is passed to the InitializeD3D10() function discussed

earlier in this chapter. If the Direct3D device is created, the demo initialization function is
called. If that function passes, the application enters the message loop, where it updates

and renders the scene during each pass. Outside of the message loop is the shutdown
function, which is called during the final stages of the application’s execution. The main

function for the Blank Window demo application is shown in Listing 2.7. Figure 2.3 shows a
screenshot of the demo application.

LISTING 2.7. THE BLANK WINDOW’S MAIN FUNCTION

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE prev,

 LPSTR cmd, int show)

{

 MSG msg;

 // Describes a window.

 WNDCLASSEX windowClass;

 memset(&windowClass, 0, sizeof(WNDCLASSEX));

 windowClass.cbSize = sizeof(WNDCLASSEX);

 windowClass.style = CS_HREDRAW | CS_VREDRAW;

javascript:moveTo('ch02list7');
javascript:moveTo('ch02fig03');

 windowClass.lpfnWndProc = WndProc;

 windowClass.hInstance = hInstance;

 windowClass.hIcon = LoadIcon(NULL, IDI_APPLICATION);

 windowClass.hCursor = LoadCursor(NULL, IDC_ARROW);

 windowClass.lpszClassName = "DX10CLASS";

 windowClass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 if(!RegisterClassEx(&windowClass))

 return 0;

 // Create the window.

 HWND hwnd = CreateWindowEx(NULL, "DX10CLASS", WINDOW_NAME,

 WS_OVERLAPPEDWINDOW | WS_VISIBLE | WS_SYSMENU |

 WS_CLIPCHILDREN | WS_CLIPSIBLINGS, 100, 100,

 WINDOW_WIDTH, WINDOW_HEIGHT, 0, 0, hInstance, NULL);

 if(!hwnd)

 return 0;

 ShowWindow(hwnd, SW_SHOW);

 UpdateWindow(hwnd);

 // If initialize fail don't run the program.

 if(InitializeD3D10(hwnd) == true)

 {

 if(InitializeDemo() == true)

 {

 // This is the messsage loop.

 while(1)

 {

 if(PeekMessage(&msg, 0, 0, 0, PM_REMOVE))

 {

 // If a quit message then break;

 if(msg.message == WM_QUIT) break;

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 else

 {

 Update();

 RenderScene();

 }

 }

 }

 }

 // Release all resources and unregister class.

 Shutdown();

 UnregisterClass("DX10CLASS", windowClass.hInstance);

 return (int)msg.wParam;

}

FIGURE 2.3. A SCREENSHOT FROM THE BLANK WINDOW DEMO.

FONT AND TEXT

In-game text is one of the most common objects that is rendered in video games. Before
moving on to geometry, the first topic to discuss is the rendering of text. Text can be used

to give video game players textual feedback that can be used for a host of different
purposes including:

 Game play information

 Player information

 Titles

 Menus and menu controls (e.g., buttons, text boxes, etc.)

 Player and game statistics

 Timers

 Character dialog

A visual example of what text looks like as part of a larger interface is shown in Figure 2.4.

In Direct3D there are two ways you can display text to the screen. You can opt to manually
create and render your text by using textured 2D (or even 3D) geometry. This is often an

optimal way of rendering text, but the topic of textures does not come until later on in this

book, so an implementation of a custom text system could not be covered in this chapter
without jumping quickly in many different topics.

FIGURE 2.4. AN EXAMPLE OF TEXT.

javascript:moveTo('ch02fig04');

The second option is to use Direct3D to render text to the screen. This is the easiest method

because Direct3D function calls can be used to perform the work of rendering text. In this
chapter we see how to use Direct3D to display 2D text to the application’s window.

TEXT DEMO

On the book’s accompanying CD-ROM is a demo application called Text in the
Chapter 2 folder. The Text demo uses Direct3D to display text to the screen. Text is created

and rendered using a Direct3D object of the type ID3DX10Font. The ID3DX10Font

object, which is a global variable in the Text demo, can be used for all text drawing

operations. The global section from the Text demo is shown in Listing 2.8. If you are coding
along with this section, you can use the Blank Window demo’s main source file as a

template source file to work with when implementing Direct3D text.

LISTING 2.8. THE GLOBAL SECTION FROM THE TEXT DEMO

#include<windows.h>

#include<d3d10.h>

#include<d3dx10.h>

#pragma comment(lib, "d3d10.lib")

#pragma comment(lib, "d3dx10.lib")

#define WINDOW_NAME "Direct3D 10 Text"

#define WINDOW_WIDTH 800

#define WINDOW_HEIGHT 600

// Direct3D 10 objects.

ID3D10Device *g_d3dDevice = NULL;

../ch02#ch02
javascript:moveTo('ch02list8');

IDXGISwapChain *g_swapChain = NULL;

ID3D10RenderTargetView *g_renderTargetView = NULL;

// Renderable font for text display.

ID3DX10Font *g_font = NULL;

The two functions we need to examine are the demo’s initialization and rendering functions.
Every other function that was seen in the Blank Window demo is identical to the Text demo

and goes mostly unchanged throughout the book. The InitializeDemo() function is

used to create the Direct3D 10 font object, while the rendering function uses it to draw text.

The Direct3D 10 font is created by calling the Direct3D utility function

D3DX10CreateFont(). The D3DX10CreateFont() function returns a flag that

determines its success or failure and has the following function prototype.

HRESULT D3DX10CreateFont(

 ID3D10Device *pDevice,

 UINT Height,

 UINT Width,

 UINT Weight,

 UINT MipLevels,

 BOOL Italic,

 UINT CharSet,

 UINT OutputPrecision,

 UINT Quality,

 UINT PitchAndFamily,

 LPCTSTR pFaceName,

 LPD3DX10FONT *ppFont

);

The D3DX10CreateFont() function takes as its first parameter the Direct3D rendering

device. The second and third parameters are the font’s size in logical units. The fourth
parameter is the weight, which controls the boldness of the font. The fifth parameter

controls the number of mip map levels the font should have. Mip maps are discussed in
detail in Chapter 6. The sixth parameter is a flag for indicating whether italics are to be used

with the font. The seventh parameter is the character set, which can be ANSI_CHARSET if

you are using ANSI strings, or you can use Unicode strings. The eighth parameter is the

output precision, which controls how Windows decides how to match desired font sizes with

the actual fonts. Using OUT_TT_ONLY_PRECIS for the eighth parameter gives you a

TrueType font. The ninth and tenth parameters are used for matching the font’s desired

quality with the font’s default quality and to set the font’s pitch and family indexes. The last
two parameters are used to specify the name of a font that is installed on your system and

the output address for the font object to be created by this function.

Once the font has been created, it can be rendered to the screen. Rendering text to the

screen can be done by using the font’s member function DrawText(). The function

DrawText() is actually a typedef for DrawTextA(), which uses an ANSI character set,

opposed to DrawTextW(), which uses a Unicode character set. The function prototypes for

both text drawing functions are the same, with the exception of the string parameter’s data

type. The function prototype for the DrawText() function is as follows.

INT DrawText(

 LPD3DX10SPRITE pSprite,

 LPCTSTR pString,

../ch06#ch06

 INT Count,

 LPRECT pRect,

 UINT Format,

 D3DXCOLOR Color

);

The DrawText() function takes as its first parameter a Direct3D 10 sprite object that

contains the string to be drawn, which is optional and can be NULL, and can be used to

speed up the rendering of text if that text is to be rendered more than once. The second

parameter is the string that is to be displayed to the screen. The third parameter is the
number of characters in the string. The fourth parameter is a rectangle area that specifies

the region in which the text can be drawn, which essentially specifies the starting location
for the text and how far right and downward the text can be drawn. Text that does not fit in

this rectangle is cropped. The fifth parameter is the format in which the text should be

displayed, which can use any of the following flags.

 DT_BOTTOM justifies the text to the bottom of the rectangle and must be combined

with DT_SINGLELINE.

 DT_CALCRECT has Direct3D calculate the rectangle instead of you having to specify it.

Using this flag does not cause any text to actually render.

 DT_CENTER centers text horizontally.

 DT_EXPANDTABS expands tab characters (the default is eight characters per tab).

 DT_LEFT left-aligns the text.

 DT_NOCLIP draws text without clipping, which can sometimes be faster to render.

 DT_RIGHT right-aligns the text.

 DT_RTLREADING displays text in right-to-left reading order for bi-directional text for

Hebrew or Arabic fonts. The default is left-to-right.

 DT_SINGLELINE displays text on one line and ignores any new-line characters.

 DT_TOP top-justifies the text.

 DT_VCENTER centers text vertically and can only be used with single-line-only text.

 DT_WORDBREAK adds word breaks for lines of text that do not fit on the line specified

by the rectangle.

The last parameter is the RGBA color in which the text should be displayed. With two

functions, one to create the font and one to render the text, we can display strings using
Direct3D. Once you are completely done with a font object, it is important to call the

object’s Release() function to release it from memory. The Text demo’s initialization,

rendering, and shutdown functions are shown in Listing 2.9. Figure 2.5 shows a screenshot

of the demo’s results.

LISTING 2.9. THE DEMO’S INITIALIZATION FUNCTION

javascript:moveTo('ch02list9');
javascript:moveTo('ch02fig05');

bool InitializeDemo()

{

 HRESULT hr;

 // Create the font.

 hr = D3DX10CreateFont(g_d3dDevice, 24, 0, FW_NORMAL, 0,

 false, ANSI_CHARSET,

OUT_OUTLINE_PRECIS,

 PROOF_QUALITY, VARIABLE_PITCH |

FF_SWISS,

 "Arial", &g_font);

 if(FAILED(hr))

 return false;

 return true;

}

void RenderScene()

{

 float col[4] = { 0, 0, 0, 1 };

 // Clear the rendering destination to a specified color.

 g_d3dDevice->ClearRenderTargetView(g_renderTargetView, col);

 // Display the text.

 D3DXCOLOR textCol = D3DXCOLOR(1, 1, 1, 1);

 RECT rect;

 rect.left = 300; rect.right = 800;

 rect.top = 300; rect.bottom = 800;

 char *str = "Hello World from DirectX 10";

 // NOTE you can have the rectangle calculated by using

 // DT_CALCRECT for the format. Keep in mind that using

 // that will not draw that text so you will need two calls

 // With one using DT_CALCRECT and another using, for example,

 // DE_LEFT.

 g_font->DrawText(NULL, str, -1, &rect, DT_LEFT, textCol);

 // Display the results to the target window (swap chain).

 g_swapChain->Present(0, 0);

}

void Shutdown()

{

 // Release all used memory.

 if(g_d3dDevice) g_d3dDevice->ClearState()

 if(g_swapChain) g_swapChain->Release()

 if(g_renderTargetView) g_renderTargetView->Release();

 if(g_font) g_font->Release();

 if(g_d3dDevice) g_d3dDevice->Release();

}

FIGURE 2.5. A SCREENSHOT FROM THE TEXT DEMO.

The rectangle, which uses the RECT type, allows each corner of the rectangle to be

specified. It is not necessary to fill in this object if you are using DT_CALCRECT as the flag

in the rendering. If this flag is used, you must use the draw call twice, once with the flag
and once without it. Using the flag causes the text not to draw, so that the call can be used

for calculating the RECT. Calling the text drawing function a second time with the RECT

object that was passed to the first call draws the text to the screen. Using ?1 for the

string’s length causes the string’s length to be calculated internally by the drawing function.

ADDITIONAL DIRECTX TOPICS

A few additional DirectX-related topics should be discussed before moving on. These topics
include the DXGI and DXUT.

DXGI

The DirectX Graphics Infrastructure’s (DXGI) main goal is to manage low-level tasks related

to rendering that is independent of the run-time. The DXGI is used to support future
graphics components through a common framework. In an application the DXGI is used to

talk directly to the kernel mode of the operating system, which at the time of writing this is

Windows Vista.

The Direct3D 10 core uses the DXGI for you. You have the option of talking directly to the

DXGI, allowing you to bypass the Direct3D 10 core, which can be useful if your application
needs direct control over the enumeration, acquiring, and control of graphics-related

devices. We saw an example of the DXGI in the function

D3D10CreateDeviceAndSwapChain(), where the first parameter is an adapter that

can be used to enumerate multiple GPU devices.

Advanced use of the DXGI is beyond the scope of this book. It might be worth looking into

advanced DXGI uses if a machine has more than one device, such as a graphics card, and
the application is able to use them independently of one another.

Swap chains are part of the DXGI.

DXUT FRAMEWORK

The DirectX Utility (DXUT) is a utility layer built on top of Direct3D. The purpose of the

DXUT is to make it easier to create devices and windows and to manage messages in an
application. Along with device and window creation and management, optional components

are part of the DXUT, such as cameras, graphical user-interface systems, and mesh

handling. The DXUT works by exposing a range of callback functions that programmers can
implement for their applications. A screenshot of an application using the DXUT is shown in

Figure 2.6.

FIGURE 2.6. A SCREENSHOT FROM AN APPLICATION USING THE DXUT.

javascript:moveTo('ch02fig06');

A project using the DXUT can be created through the DirectX SDK Sample Browser. It is

recommended that you use the DirectX SDK Sample Browser to create an empty DXUT

project in order to examine its code. The DXUT is not used in this book. Instead, all of the
demos are manually created the long way for educational purposes. Once you are familiar

and comfortable with DirectX, it might be useful to look into using the DXUT.

SUMMARY

The following elements were discussed in this chapter:

 Direct3D 9

 Direct3D 10

 DirectDraw

 HAL and HEL

 Direct3D devices

 Swap chains

 Render target views

 Hardware versus reference mode

 Rendering buffers

 Clearing and displaying rendering targets

 Double buffering

 Page flipping

 Viewports

 Text and font in Direct3D 10

 DXGI

 DXUT

CHAPTER QUESTIONS

Answers to the following chapter review questions can be found in Appendix A.

1. What is Direct3D? What is DirectDraw? How are Direct3D and DirectDraw related?

../app01#app01
../app01lev1sec2#app01qa2q1a1

2. What does HAL stand for?

A. Hardware Application Layer

B. Hardware Abstraction Layer

C. It is not short for anything

D. None of the above

3. What does HEL stand for?

A. Hardware Emulation Layer

B. Hardware Experience Layer

C. It is not short for anything

D. None of the above

4. What is the name of the Direct3D 9 version from Vista?

A. Direct3D 9V

B. Direct3D 9 Vista

C. Direct3D 9L

D. Vista is Direct3D 10 only

5. What does REF stand for in Direct3D?

6. Describe page flipping.

7. Describe double buffering.

8. What are swap chains? How do they differ from Direct3D 9 and Direct3D 10?

9. What are render target views? What is their purpose in Direct3D?

10. When drawing text, what flag can be used to calculate the rectangle of the text?

What is the side effect of using this flag when it comes to drawing text?

11. List three high-level programmable shading languages.

12. What is T&L? When was T&L added to Direct3D?

13. List four purposes to displaying text in a video game.

../app01lev1sec2#app01qa2q2a2
../app01lev1sec2#app01qa2q3a3
../app01lev1sec2#app01qa2q4a4
../app01lev1sec2#app01qa2q5a5
../app01lev1sec2#app01qa2q6a6
../app01lev1sec2#app01qa2q7a7
../app01lev1sec2#app01qa2q8a8
../app01lev1sec2#app01qa2q9a9
../app01lev1sec2#app01qa2q10a10
../app01lev1sec2#app01qa2q11a11
../app01lev1sec2#app01qa2q12a12
../app01lev1sec2#app01qa2q13a13

14. List the two functions needed to create and display text using Direct3D 10.

Describe each of the parameters the functions take.

15. True or false: HAL and HEL were introduced in Direct3D 10.

16. True or false: Direct3D supports software rendering and hardware graphics.

17. True or false: Direct3D 9 is the first API to do away with the fixed-function

pipeline.

18. True or false: Page flipping copies data from one buffer to another when it is time

to display a rendered scene.

19. True or false: A swap chain in Direct3D 10 is tied to the window.

20. True or false: Render targets inform Direct3D where to store the results of a

rendering.

CHAPTER EXERCISES

Exercise 1: Change the clear color in the Blank Window demo to blue. Change it again to
gray.

Exercise 2: Using the Text demo, display a paragraph of text, at least four lines, using
word wrap. Allow Direct3D to calculate the rectangle for the text you are trying to draw.

Exercise 3: Add two additional font objects to the Text demo. Make each font a different
type (i.e., Times New Roman, Arial, etc.) and make each one twice as big as the one before

it.

3. RENDERING GEOMETRY

In This Chapter

 Primitives

 Colors

Rendering geometry is highly important to the success of all modern video games. Let’s face

it, video games today have a tremendous amount of data that must be stored, maintained,
and processed to create the visuals necessary for the products we enjoy. The rendering of a

scene needs to be efficient to allow the application to get the most performance from the
drawing of any environment.

The purpose of this chapter is to discuss the basics of rendering geometry using Direct3D
10. This chapter will be the basis for most of the chapters that follow. In this chapter you

will learn how to render geometry and work with colors, and you’ll get a brief introduction to

../app01lev1sec2#app01qa2q14a14
../app01lev1sec2#app01qa2q15a15
../app01lev1sec2#app01qa2q16a16
../app01lev1sec2#app01qa2q17a17
../app01lev1sec2#app01qa2q18a18
../app01lev1sec2#app01qa2q19a19
../app01lev1sec2#app01qa2q20a20
../ch03lev1sec1#ch03lev1sec1
../ch03lev1sec2#ch03lev1sec2

effect files. Throughout this book we will look at more advanced rendering techniques and

topics as we progress.

PRIMITIVES

In computer graphics there is this notion of primitives. A primitive is a very simple shape
that when combined with other shapes can create more complex objects. The geometry of a

3D scene is defined entirely by primitives in modern video games.

The top three most common types of primitives include:

 Points

 Lines

 Triangles

Other types of primitives exist in other systems. For example, in ray tracing, which is a way
of generating images out of 3D data, most ray tracers offer primitives for spheres, boxes,

and other simple shapes. In Direct3D the most complex primitive is the triangle. To render
more complex shapes than that, such as spheres and boxes, an array of triangles is often

used to create the virtual representation.

Points and lines are the least common types of basic primitives in most 3D games, while

triangles are the most abundant. In this section we briefly discuss each of these types of
primitives that can be rendered using Direct3D.

POINTS

Points are the smallest and most basic primitive that can be rendered in computer graphics.

Points can be individual pixel locations or they can be 2D or 3D points in a virtual space.
Points are the building blocks that are used to define other shapes, where the points of a

shape are connected together and the area that fills in that shape is shaded. An example of
this is shown in Figure 3.1.

FIGURE 3.1. POINTS BEING CONNECTED TO CREATE A SHAPE.

javascript:moveTo('ch03fig01');

A single point that is part of a larger piece of geometry is known as a vertex point, and a

vertex can be made up of any number of axes (e.g., the X and Y axis for a 2D vertex). In a
3D game using 3D data, this point is a 3D vertex. All geometry in a game defines vertex

points, and in order to draw anything to the screen you must learn to define the vertex
points of a piece of geometry. For complex objects such as character models and entire

levels, modeling applications are usually used to create this geometry, which is then saved
out to a file so that it can be loaded at runtime. Although complex models such as these use

triangles, a triangle is made up of three connected points.

A vertex is a structure that defines a number of axes. In a 2D game, a 2D vertex has an X

axis and a Y axis. In a 3D game, a vertex has an X axis, Y axis, and Z axis. An example of
defining a 3D vertex in C++ can take on the following form.

struct Vertex3D

{

 float x;

 float y;

 float z;

};

Usually, floating-point variables are used for the members of a vertex for their precision and

are what Direct3D expects. Specifying a point using axis positions is similar to plotting
points on a piece of graph paper in school. For example, if given a vertex at 1 unit for the X

axis, 3 units for the Y axis, and 0 units for the Z axis, we can plot the position. A unit is a
virtual form of measurement and is used as a means to give us a label much like inches and

feet are used in the real world.

As mentioned previously, all geometry is defined by vertex positions that are connected

together to form the outline of a shape. This shape is then shaded in using whatever
technique you decide (e.g., with a solid color, with the color data of an image, etc.). Vertex

points and vectors go hand-in-hand, and the terms are sometimes used synonymously.
Vectors are discussed in more detail in Chapter 8, ―Game Math.‖ A vertex is a point that

makes up a piece of geometry, while a vector is a direction.

LINE LISTS AND LINE STRIPS

A line is the second most basic primitive that exists in computer graphics. A line is defined
by two connected points, where one point is often referred to as the starting point and the

other is the ending point. A visual of a line is shown in Figure 3.2.

FIGURE 3.2. A LINE DEFINED BY TWO CONNECTED POINTS.

../ch08#ch08
javascript:moveTo('ch03fig02');

Two types of lines can be rendered in Direct3D: line lists and line strips. A line list is a list of

lines. If you had an array of line objects, you would have a line list. A line list is a line where
each pair of vertex points specifies a unique line. A visual of a line list is shown in Figure

3.3.

FIGURE 3.3. LINE LIST.

The second type of line is a line strip. The difference between a line strip and a line list is
that a strip does not define two vertex points for each line separately. For example, for a

line list it doesn’t matter if one line shares a point with another line because that point has
to be defined twice, uniquely for each line. In a line strip the first two points of the strip

represent the first line. The third point marks the end of the second line because in a line
strip the next line is defined by the ending point of the last line and the current point. The

fourth point in a line strip specifies the third line because the third point, which is the end
point of the second line, and the fourth point define yet another line. By using line strips

that create one large connected line, you can save bandwidth because fewer vertex points
are being used to create the shape. This occurs because the strip is reusing data instead of

re-defining it for each line primitive. The key ideas to note are that a line strip cannot define
disconnected lines, while a line list can have lines appear connected or disconnected. A

visual of a line strip is shown in Figure 3.4.

FIGURE 3.4. A LINE STRIP.

javascript:moveTo('ch03fig03');
javascript:moveTo('ch03fig03');
javascript:moveTo('ch03fig03');
javascript:moveTo('ch03fig04');

TRIANGLE LISTS, STRIPS, AND FANS

A triangle is a three-point, or three-vertex, polygon. A polygon is any shape that is made up

of three or more connecting points. This means a line is not considered a polygon because
each line is essentially just two points. Also, for a primitive to be considered a polygon, it

has to be a shape where each of the connecting points forms a closed area, which means it
creates a solid shape with no holes leading out into the virtual universe. Three different

types of triangles can be rendered in Direct3D: the triangle list, triangle strip, and triangle
fan.

A triangle list is similar to a line list in the sense that it is an array of separately defined
triangles where the triangle that came before and the triangle that comes after have no

impact on the current triangle being rendered. A triangle strip is also like a line strip in the
sense that the first three points make up the first triangle, the fourth point, when combined

with the second and third point, make up the second triangle, and so forth. An example of a
triangle list is shown in Figure 3.5, and an example of a triangle strip is shown in Figure 3.6.

Notice how each triangle polygon creates a closed shape of connecting points.

FIGURE 3.5. A TRIANGLE LIST.

FIGURE 3.6. A TRIANGLE STRIP.

javascript:moveTo('ch03fig05');
javascript:moveTo('ch03fig06');

Because of the nature of triangle strips, they are often used to render terrain. Terrain in

video games is the outside landscape of a virtual world. For example, to create a simple

terrain, you can take a grid of triangles specified as a triangle strip (note that you could also
use a list, but strips save more storage memory) and simply vary the Y axis for each point.

The last type of triangle is the triangle fan. A triangle fan is similar to a triangle strip, but
the difference lies in how the points are connected. In a triangle fan the first three points

represent the first triangle. The second triangle is defined by taking the first and third points
and the fourth point, the third triangle is found by taking the first and fourth points and the

fifth point, and so forth. This creates a fan-like object where all triangles of the object
connect directly to the first vertex point. An example of this is shown in Figure 3.7.

FIGURE 3.7. A TRIANGLE FAN.

In this book we work extensively with triangles to create and draw complex objects such as
characters, level objects, and level environments.

VERTEX BUFFERS AND INPUT LAYOUTS

Geometry in Direct3D must be stored and passed to the graphics hardware to be rendered.

The storage of geometry is done using objects known as vertex buffers. A vertex buffer is
essentially a buffer of memory that is used to store the geometry of a model. When you

create a vertex buffer in Direct3D, you can send that buffer to the Direct3D device for

rendering at any time.

A vertex buffer is an object of the type ID3D10Buffer. In fact, any type of buffer can be

represented by the ID3D10Buffer type, which we discuss throughout this book. When

using a vertex buffer, you can fill it with any vertex structure you want that you use to

describe the geometry of your objects. Because of this, something known as an input layout
is also used to tell Direct3D how your vertex points are represented. This allows developers

to create their own vertex structures however they choose. A vertex point can be made up
of more than just a position.

javascript:moveTo('ch03fig07');

Other common attributes are properties for applying texture images, colors, directions, etc.

An input layout is an object that uses the type ID3D10InputLayout. An example of

creating two different types of vertex structures can be seen in the following, where the first

structure creates a vertex that defines just a position property, while the second defines a
structure that defines a position and color property.

struct DX10_Vertex

{

 float x, y, z;

};

struct DX10_VertexCol

{

 float x, y, z;

 char red, green, blue;

};

To create a vertex buffer we must first create a buffer description. A buffer description tells
Direct3D how the buffer should be created; in this case we are discussing the creation of a

vertex buffer. The buffer description takes on the following form and has the type

D3D10_BUFFER_DESC.

typedef struct D3D10_BUFFER_DESC {

 UINT ByteWidth;

 D3D10_USAGE Usage;

 UINT BindFlags;

 UINT CPUAccessFlags;

 UINT MiscFlags;

} D3D10_BUFFER_DESC;

The first member of the buffer description is the number of vertex points in bytes. For a
vertex buffer this number can be calculated by taking the number of vertex points and

multiplying it by the size of your vertex structure in bytes. If you had six vertex points that
you were defining this could have the following form.

D3D10_BUFFER_DESC.ByteWidth = sizeof(DX10_Vertex) * 6;

The second member of the buffer description is the usage flag, which tells Direct3D how the

buffer is going to be used. This flag can be any one of the following values, where the

DEFAULT states that the buffer needs read/write access by the GPU, IMMUTABLE states

that the buffer can only be read by the GPU, DYNAMIC states that the buffer can be

accessed by both the GPU (read-only) and CPU (write-only), and STAGING supports data

transfer from the GPU to the CPU.

typedef enum D3D10_USAGE

{

 D3D10_USAGE_DEFAULT = 0,

 D3D10_USAGE_IMMUTABLE = 1,

 D3D10_USAGE_DYNAMIC = 2,

 D3D10_USAGE_STAGING = 3,

} D3D10_USAGE;

The third member of the buffer description is the BIND flag, which tells Direct3D how the

buffer will be bound to the pipeline. This flag can be any one of the following values:

VERTEX_BUFFER states that the buffer is a vertex buffer, INDEX_BUFFER states that the

buffer is an index buffer (more on this later), CONSTANT_BUFFER is a buffer used by

shaders (more on this in Chapter 6, ―Shading and Surfaces‖), SHADER_RESOURCE means

the buffer has data used as a resource to a shader (e.g., texture, matrix, etc),

STREAM_OUTPUT is an output buffer that is written to, RENDER_TARGET is a rendering

destination, and DEPTH_STENCIL are additional types of destination buffers that are

discussed later in this book.

typedef enum D3D10_BIND_FLAG

{

 D3D10_BIND_VERTEX_BUFFER = 0×1L,

 D3D10_BIND_INDEX_BUFFER = 0×2L,

 D3D10_BIND_CONSTANT_BUFFER = 0×4L,

 D3D10_BIND_SHADER_RESOURCE = 0×8L,

 D3D10_BIND_STREAM_OUTPUT = 0×10L,

 D3D10_BIND_RENDER_TARGET = 0×20L,

 D3D10_BIND_DEPTH_STENCIL = 0×40L,

} D3D10_BIND_FLAG;

The fourth member of the buffer description is the CPU access flag. A value of 0 can be

used, which states that there is no access to this buffer by the CPU. If 0 is not used, the
buffer’s CPU flag can be set as CPU read or CPU write by using one of the following values.

typedef enum D3D10_CPU_ACCESS_FLAG

{

 D3D10_CPU_ACCESS_WRITE = 0×10000L,

 D3D10_CPU_ACCESS_READ = 0×20000L,

} D3D10_CPU_ACCESS_FLAG;

The last member of the buffer description is the buffer’s MISC flag. A value of 0 can be

used if this flag is unused by the application, or else it can be any of the following values,
where the first and third enumerations are used by texture resources (discussed in Chapter

6) and the SHARED miscellaneous flag means the buffer can be shared by multiple GPU

devices.

typedef enum D3D10_RESOURCE_MISC_FLAG

{

 D3D10_RESOURCE_MISC_GENERATE_MIPS = 0×1L,

 D3D10_RESOURCE_MISC_SHARED = 0×2L,

 D3D10_RESOURCE_MISC_TEXTURECUBE = 0×4L,

} D3D10_RESOURCE_MISC_FLAG;

An example of creating a vertex buffer using the buffer description follows.

D3D10_BUFFER_DESC buffDesc;

../ch06#ch06
../ch06#ch06
../ch06#ch06
../ch06#ch06

buffDesc.Usage = D3D10_USAGE_DEFAULT;

buffDesc.ByteWidth = sizeof(DX10_Vertex) * g_total_points;

buffDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER;

buffDesc.CPUAccessFlags = 0;

buffDesc.MiscFlags = 0;

Using one of the sample vertex descriptions from earlier in this section, you can create a list

of vertex points by using the following, which creates six vertices.

DX10_Vertex vertices[] =

{

 { D3DXVECTOR3(0.5f, 0.5f, 0.5f) },

 { D3DXVECTOR3(0.5f, -0.5f, 0.5f) },

 { D3DXVECTOR3(-0.5f, -0.5f, 0.5f) },

 { D3DXVECTOR3(-0.5f, -0.5f, 0.5f) },

 { D3DXVECTOR3(-0.5f, 0.5f, 0.5f) },

 { D3DXVECTOR3(0.5f, 0.5f, 0.5f) }

};

Vertices is the plural of vertex.

D3DXVECTOR3 is a structure that defines a 3D vector, where a vector is a vertex that does

not describe a point but instead describes a direction. Since vectors and vertex points have

the same structure, they are often used synonymously. The D3DXVECTOR3 structure is

part of the Direct3D utility (D3DX).

Once a buffer description is filled and you have a list of geometry that makes up some

object, with the example above creating a square shape (more on this later in this chapter),
we are ready to create the vertex buffer itself. A vertex buffer is created by calling the

Direct3D device function CreateBuffer(), which has the following function prototype.

HRESULT CreateBuffer(

 const D3D10_BUFFER_DESC *pDesc,

 const D3D10_SUBRESOURCE_DATA *pInitialData,

 ID3D10Buffer **ppBuffer

);

The first parameter for the CreateBuffer() function is the buffer description object, the

second parameter is the data that makes up the geometry, and the last parameter is the

address to the buffer object that will be created upon this function’s success. The vertex

data is passed to the CreateBuffer() function by using a

D3D10_SUBRESOURCE_DATA object, which has the following structure, where the first

member is a void pointer to the actual data, the second member is the size in bytes of the

system memory’s pitch (which is only used by textures, as discussed in Chapter 6), and the

last member is the system memory slice in bytes (which is only used by 3D textures).

typedef struct D3D10_SUBRESOURCE_DATA {

 const void *pSysMem;

 UINT SysMemPitch;

 UINT SysMemSlicePitch;

} D3D10_SUBRESOURCE_DATA;

Using each of the examples above you can take an array that makes up your geometry and

create a vertex buffer out of it using the following example.

DX10_Vertex vertices[] =

{

 { D3DXVECTOR3(0.5f, 0.5f, 0.5f) },

 { D3DXVECTOR3(0.5f, -0.5f, 0.5f) },

 { D3DXVECTOR3(-0.5f, -0.5f, 0.5f) },

 { D3DXVECTOR3(-0.5f, -0.5f, 0.5f) },

 { D3DXVECTOR3(-0.5f, 0.5f, 0.5f) },

 { D3DXVECTOR3(0.5f, 0.5f, 0.5f) }

};

// Create the vertex buffer.

D3D10_BUFFER_DESC buffDesc;

ID3D10Buffer *vertexBuffer;

buffDesc.Usage = D3D10_USAGE_DEFAULT;

buffDesc.ByteWidth = sizeof(DX10_Vertex) * 6;

buffDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER;

buffDesc.CPUAccessFlags = 0;

buffDesc.MiscFlags = 0;

D3D10_SUBRESOURCE_DATA resData;

resData.pSysMem = vertices;

hr = g_d3dDevice->CreateBuffer(&buffDesc, &resData,

&vertexBuffer);

if(FAILED(hr))

 return false;

To render the vertex buffer, we also need to create the input layout. An input layout can be

created by calling the CreateInputLayout() function, which has the following function

prototype.

HRESULT CreateInputLayout(

 const D3D10_INPUT_ELEMENT_DESC *pInputElementDescs,

 UINT NumElements,

../ch06#ch06

 const void *pShaderBytecodeWithInputSignature,

 SIZE_T BytecodeLength,

 ID3D10InputLayout **ppInputLayout

);

The first parameter of the CreateInputLayout() function is the input element

description. An input element description tells Direct3D how each property of the vertex is
defined. Since, as we’ve seen earlier in this section, it is possible to create your own vertex

structures however you wish, it is important to tell Direct3D how these structures are laid
out so that it knows how to access its data. An input element description uses the type

D3D10_INPUT_ELEMENT_DESC and has the following structure.

typedef struct D3D10_INPUT_ELEMENT_DESC {

 LPCSTR SemanticName;

 UINT SemanticIndex;

 DXGI_FORMAT Format;

 UINT InputSlot;

 UINT AlignedByteOffset;

 D3D10_INPUT_CLASSIFICATION InputSlotClass;

 UINT InstanceDataStepRate;

} D3D10_INPUT_ELEMENT_DESC;

In the input element description, the first member is the name of the property that is

referred to from within a shader file, which is discussed later in this chapter. The next
member is the index for the element, which can be used if you have more than one element

with the same name. The third member is the format (i.e., the data type of the element),

and it can be any of the many DXGI_FORMAT types. The fourth member is a value between

0 and 15 that is used as the input assembler slot, which can be used for using multiple

buffers at the same time. The fifth member is the byte offset, which is the total number of
bytes between each element. The sixth member tells Direct3D if the element is used for

each vertex (D3D10_INPUT_PER_VERTEX_DATA) or by each instance of an object

(D3D10_INPUT_PER_INSTANCE_DATA). The last member, which also has to do with

instancing, is the number of instances to draw using the same per-instance data. Instancing
is discussed later in this book. An example of creating an input element description is as

follows.

D3D10_INPUT_ELEMENT_DESC layout[] =

{

 { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,

 D3D10_INPUT_PER_VERTEX_DATA, 0 },

};

In this example of an input element description, a single element is defined, which is the
vertex position property. The first member in the element is the name that can be

referenced by the shader followed by the index, format type, input slot, bytes between
positions, input class (which states that the position is specified for each point), and

instance rate, which is 0 since this example is not on instancing. Instancing is generally the
ability to draw multiple objects to the screen using a single draw call and the same

geometric data. An example of this can be seen by using instancing to draw a forest of trees
or an asteroid field. Geometry instancing can greatly increase an application’s performance,

and the topic is discussed elsewhere in this book.

The second parameter to the CreateInputLayout() function is the number of

elements, or properties, that make up the vertex structure. If you are specifying a position
and a color, this would be two elements.

The third and fourth parameters deal with shaders. The third parameter is a pointer to
compiled shader code, while the fourth parameter is the size of the compiled shader code in

bytes. The last parameter is the address to the input buffer layout object that will be
created upon this function’s success.

For the third and fourth parameter of the CreateInputLayout() function, the data can

be obtained from a loaded shader. Each shader, once loaded, has an input signature. This

input signature is essentially used for these two parameters of this function. For example, if
you have a shader technique, which is discussed in detail in Chapter 4, ―Shader Model 4,‖

you can get a pass description from it that also supplies us with the input signature of the
shader. An example of doing so is as follows.

D3D10_PASS_DESC passDesc;

g_technique->GetPassByIndex(0)->GetDesc(&passDesc);

hr = g_d3dDevice->CreateInputLayout(layoutDesc, numElements,

 passDesc.pIAInputSignature,

passDesc.IAInputSignatureSize,

 &input_layout);

An example of putting the creation of the input layout with the creation of a vertex buffer
follows.

g_technique = g_shader->GetTechniqueByName("PassThrough");

// Create the geometry. The layout of each vertex is made up

// of just a position so that is all we need.

D3D10_INPUT_ELEMENT_DESC layoutDesc[] =

{

 { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,

 D3D10_INPUT_PER_VERTEX_DATA, 0 },

};

unsigned int numElements = sizeof(layout) / sizeof(layout[0]);

D3D10_PASS_DESC passDesc;

ID3D10InputLayout *input_layout = NULL;

g_technique->GetPassByIndex(0)->GetDesc(&passDesc);

hr = g_d3dDevice->CreateInputLayout(layoutDesc, numElements,

 passDesc.pIAInputSignature,

passDesc.IAInputSignatureSize,

 &input_layout);

../ch04#ch04

if(FAILED(hr))

 return false;

To recap, the steps to prepare geometry for rendering are to create an input layout using

the information of the vertex structure you’ve created and the input signature of the shader,
which is a validation that they are compatible, and the creation of a vertex buffer. The input

layout is created by calling CreateInputLayout() on the Direct3D device, and the

vertex buffer is created by calling CreateBuffer() and specifying that a vertex buffer is

being created in the buffer description.

DRAWING PRIMITIVES

Drawing primitives in Direct3D 10 requires up to four calls. The steps to draw geometry are

to set the input layout, set the vertex buffer, set the type of primitives you are drawing

(e.g., triangle lists, line lists, etc.), and draw the geometry with the Draw() function of the

Direct3D device. Before drawing the actual geometry with Draw(), the data is set to the

device using the input assembler. The input assembler functions start with the prefix IA.

To set the input layout you use a call to the Direct3D device’s function

IASetInputLayout(). This function takes as a parameter the input layout object

created when you created the vertex buffer. The function prototype for the

IASetInputLayout() function can be seen as follows.

void IASetInputLayout(

 ID3D10InputLayout *pInputLayout

);

To set the vertex buffer the Direct3D device, call the device’s IASetVertexBuffers()

function. The IASetVertexBuffers() function’s first parameter, the start slot, can

allow you to set the first vertex buffer to one of 16 slots, which allows you to set multiple
buffers at the same time. By default, this value is 0. The second parameter is for the

number of vertex buffers you are setting with the function call. The third parameter is a list
of one or more vertex buffers to set. The fourth parameter is the size of each vertex for

each vertex buffer, and the last parameter is an offset from the start of the buffer to the
first element you want to start with for each vertex buffer. The function prototype for the

IASetVertexBuffers() function is as follows.

void IASetVertexBuffers(

 UINT StartSlot,

 UINT NumBuffers,

 ID3D10Buffer *const *ppVertexBuffers,

 const UINT *pStrides,

 const UINT *pOffsets

);

Before you can draw geometry, Direct3D has to know what type of primitives are being

drawn. This is done by calling the function IASetPrimitiveTopology(), which takes

as a parameter the type of primitive that is being drawn. The function prototype for

IASetPrimitiveTopology() is:

void IASetPrimitiveTopology(

 D3D10_PRIMITIVE_TOPOLOGY Topology

);

The type of geometry you are drawing determines the value for the

PRIMITIVE_TOPOLOGY function. This value can be any one of the following.

typedef enum D3D10_PRIMITIVE_TOPOLOGY

{

 D3D10_PRIMITIVE_TOPOLOGY_UNDEFINED = 0,

 D3D10_PRIMITIVE_TOPOLOGY_POINTLIST = 1,

 D3D10_PRIMITIVE_TOPOLOGY_LINELIST = 2,

 D3D10_PRIMITIVE_TOPOLOGY_LINESTRIP = 3,

 D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST = 4,

 D3D10_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP = 5,

 D3D10_PRIMITIVE_TOPOLOGY_LINELIST_ADJ = 10,

 D3D10_PRIMITIVE_TOPOLOGY_LINESTRIP_ADJ = 11,

 D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST_ADJ = 12,

 D3D10_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP_ADJ = 13,

} D3D10_PRIMITIVE_TOPOLOGY;

Once the input layout, vertex buffer, and topology have been set, the last step is to draw

the actual geometry. Again this is done by calling the Direct3D device’s Draw() function.

Direct3D draws the data in the input assembler, which was set with the three functions

discussed in this section. The two parameters the function takes are the total number of
vertices that are to be drawn and the index for the starting vertex. Specifying the starting

index allows you to partially draw a model, or else you can use 0 to draw the entire model.

The function prototype for the Draw() function is as follows.

void Draw(

 UINT VertexCount,

 UINT StartVertexLocation

);

RENDERING STATES

Before concluding the discussion on the basics of rendering geometry, we will also discuss
rendering states. A rendering state, or in Direct3D 10 terms, a rasterizer state, allows you

to specify special states that affect how geometry is drawn. A rendering state is represented

by an object of type ID3D10RasterizerState, and the description of the state uses the

object type D3D10_RASTERIZER_DESC. The description is filled in, a function is called,

and the rasterizer state object is created. This object can then be set at any time for

Direct3D.

In versions before Direct3D 10, rasterizer states were called

rendering states and were simply flags

The creation of a rasterizer state object is done with a call to the device’s function

CreateRasterizerState(), which takes as parameters the address to the state

description and the address to the object that will be created by the function. The state can

then be set with a call to the RSSetState() function of the rendering device, which takes

only the state object as a parameter.

The states that can be set include the cull and fill mode, depth bias, depth clipping, scissor
test, and anti-aliasing properties. The cull mode can be set to front face culling or back face

culling. Front face culling means that any polygon facing toward the camera will not be
rendered, while back face culling, which is a popular way to increase performance in some

scenes, does not render geometry facing away from the camera. When working with 3D
models, this is important since polygons facing away from the camera are often blocked by

polygons facing the camera. By not rendering them, an application can potentially increase
performance by not drawing geometry that can’t be seen anyway. The flags for the cull

mode can be either D3D10_CULL_NONE for no culling, D3D10_CULL_FRONT for front

face culling, or D3D10_CULL_BACK for back face culling. You can also set a property that

tells Direct3D if clockwise or counterclockwise order is used for the polygons. Clockwise

order means the first, second, and third vertex points of a triangle, for example, move in
the same direction the hands of a clock move, while counterclockwise order is the opposite.

An example is shown in Figure 3.8. You can specify vertex points in any order, so the only
way Direct3D knows which order is front facing and which is back facing is through this

property. We’ll see how to set it later in this section.

FIGURE 3.8. CLOCKWISE VERSUS COUNTERCLOCKWISE ORDER.

The fill mode can be set to either D3D10_FILL_SOLID for normal solid rendering or

D3D10_FILL_WIRE for wireframe rendering. Wireframe rendering draws just the outline

of polygons instead of the surface that makes them up, while solid renders the inside of the

surface. An example of fill mode versus wireframe mode is shown in Figure 3.9.

FIGURE 3.9. FILL VERSUS WIREFRAME.

javascript:moveTo('ch03fig08');
javascript:moveTo('ch03fig09');

The remaining properties deal with topics that are discussed throughout this book. For now,

an example of creating a rasterizer state object and description and of setting the state are

shown in the following example.

ID3D10RasterizerState *rsState;

D3D10_RASTERIZER_DESC rsStateDesc;

rsStateDesc.FillMode = D3D10_FILL_SOLID;

rsStateDesc.CullMode = D3D10_CULL_NONE;

rsStateDesc.FrontCounterClockwise = true;

rsStateDesc.DepthBias = false;

rsStateDesc.DepthBiasClamp = 0;

rsStateDesc.SlopeScaledDepthBias = 0;

rsStateDesc.DepthClipEnable = true;

rsStateDesc.ScissorEnable = false;

rsStateDesc.MultisampleEnable = false;

rsStateDesc.AntialiasedLineEnable = false;

g_d3dDevice->CreateRasterizerState(&rsStateDesc, &rsState);

g_d3dDevice->RSSetState(rsState);

Although we do not have any need for rasterizer states in this chapter, we see a simple
example of how to use them in the next demo. Later on, we dive deeper in rasterizer states.

PRIMITIVES DEMO

On the accompanying CD-ROM is a demo called Primitives in the Chapter 3 folder.

This demo draws two triangles in wireframe mode. In the demo’s main source file the global
section defines an input layout, vertex buffer, and vertex structure. The vertex structure is

the custom structure used to define each individual vertex. In this demo we only specify

vertices with positions, which are done using the type D3DXVECTOR3. Technically, we can

use just the D3DXVECTOR3 structure, but in future demos we add properties to the vertex

structure seen in this demo. The global section from the Primitives demo application is

shown in Listing 3.1. The code also specifies a shader and a shader technique, both of which
are discussed in more detail in Chapter 4. Shaders are created by using the

ID3D10Effect type. A technique is created using the type ID3D10EffectTechnique.

A shader can have multiple effects or variations of effects, known as techniques, so we must
tell Direct3D which one to use. Shaders are a complex topic and are discussed in more

detail in the next chapter.

LISTING 3.1. THE GLOBAL SECTION FROM THE PRIMITIVES DEMO

#include<windows.h>

#include<d3d10.h>

#include<d3dx10.h>

../ch03#ch03
javascript:moveTo('ch03list1');
../ch04#ch04

#pragma comment(lib, "d3d10.lib")

#pragma comment(lib, "d3dx10.lib")

#define WINDOW_NAME "Primitives"

#define WINDOW_WIDTH 800

#define WINDOW HEIGHT 600

// Direct3D 10 objects.

ID3D10Device *g_d3dDevice = NULL;

IDXGISwapChain *g_swapChain = NULL;

ID3D10RenderTargetView *g_renderTargetView = NULL;

// Effect objects.

ID3D10Effect *g_shader = NULL;

ID3D10EffectTechnique *g_technique = NULL;

// Display object to store scene geometry.

ID3D10InputLayout *g_layout = NULL;

ID3D10Buffer *g_vertexBuffer = NULL;

// Structure used to represent a single vertex.

struct DX10_Vertex

{

 D3DXVECTOR3 pos;

};

The initialization function from the Primitives demo starts by loading the shader that will be

used for rendering. The shader is loaded by calling the function

D3DX10CreateEffectFromFile(). This function takes as its first parameter the file

name of the shader and as the next to last parameter the shader object to be created. The

remaining parameters of this function are discussed in the shader chapter (Chapter 4).
Once a shader is loaded, the technique specified in the file is obtained by name.

After the shader is loaded and prepared, the input layout is created. This is followed by the
creation of a vertex buffer, which specifies two triangles to create the shape of a square.

Once the shader, input layout, and vertex buffer are created, the initialization is complete.
The demo’s initialization function is shown in Listing 3.2.

LISTING 3.2. THE DEMO’S INITIALIZATION FUNCTION

bool InitializeDemo()

{

 // Load the shader.

 DWORD shaderFlags = D3D10_SHADER_ENABLE_STRICTNESS;

#if defined(DEBUG) || defined(_DEBUG)

 shaderFlags |= D3D10_SHADER_DEBUG;

#endif

 HRESULT hr = D3DX10CreateEffectFromFile("shader.fx", NULL,

NULL,

 "fx_4_0", shaderFlags,

../ch04#ch04
javascript:moveTo('ch03list2');

0,

 g_d3dDevice, NULL,

NULL,

 &g_shader, NULL,

NULL);

 if(FAILED(hr))

 return false;

 // There is only one technique in this shader. Since this

 // is the only effect we can grab it once now.

 g_technique = g_shader->GetTechniqueByName("PassThrough");

 // Create the geometry. The layout of each vertex is made

up

 // of just a position so that is all we need.

 D3D10_INPUT_ELEMENT_DESC layout[] =

 {

 { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,

 D3D10_INPUT_PER_VERTEX_DATA, 0 },

 };

 unsigned int numElements = sizeof(layout) /

sizeof(layout[0]);

 D3D10_PASS_DESC passDesc;

 g_technique->GetPassByIndex(0)->GetDesc(&passDesc);

 hr = g_d3dDevice->CreateInputLayout(layout, numElements,

 passDesc.pIAInputSignature,

passDesc.IAInputSignatureSize,

 &g_layout);

 if(FAILED(hr))

 return false;

 DX10_Vertex vertices[] =

 {

 { D3DXVECTOR3(0.5f, 0.5f, 0.5f) },

 { D3DXVECTOR3(0.5f, -0.5f, 0.5f) },

 { D3DXVECTOR3(-0.5f, -0.5f, 0.5f) },

 { D3DXVECTOR3(-0.5f, -0.5f, 0.5f) },

 { D3DXVECTOR3(-0.5f, 0.5f, 0.5f) },

 { D3DXVECTOR3(0.5f, 0.5f, 0.5f) }

 };

 // Create the vertex buffer.

 D3D10_BUFFER_DESC buffDesc;

 buffDesc.Usage = D3D10_USAGE_DEFAULT;

 buffDesc.ByteWidth = sizeof(DX10_Vertex) * 6;

 buffDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER;

 buffDesc.CPUAccessFlags = 0;

 buffDesc.MiscFlags = 0;

 D3D10_SUBRESOURCE_DATA resData;

 resData.pSysMem = vertices;

 hr = g_d3dDevice->CreateBuffer(&buffDesc, &resData,

 &g_vertexBuffer);

 if(FAILED(hr))

 return false;

 return true;

}

The next function is the rendering function. The rendering function from the Primitives demo
application starts by clearing the rendering target for the screen. Next it sets the rasterizer

state to render in wireframe mode. Technically only the FillMode property needs to be

set to D3D10_FILL_WIREFRAME for this effect. Since the purpose is to show how to work

with rasterizer states, all of the states are set to their default values so that you can see

how they are set and with what values.

After the rasterizer state is set, the rendering function proceeds to set up the input layout

and vertex buffer using the input assembler functions. Once that is set, the function renders

the geometry using the Draw() method. In a shader an effect can be implemented in

multiple passes, so a loop is used to render the geometry once for all necessary passes.
Most effects seen in this book are done using one pass, so this is optional in those cases.

Looping through the passes of an effect technique is done here to show how it is done.
There is no harm in looping through the passes of a shader if the shader only has one pass.

(The discussion on everything dealing with shaders, effects, and techniques is in Chapter 4.)
In a game situation you might not be able to assume that the shaders loaded use only one

pass, so looping will become necessary in those situations.

In addition to the other Direct3D objects released in past demos, this demo also releases
the vertex buffer, input layout, and shader effect from memory. These objects consume

allocated resources, and their release is important. The rendering and shutdown functions
from the Primitives demo application are shown in Listing 3.3.

LISTING 3.3. THE RENDERING FUNCTION FROM THE PRIMITIVES DEMO

void RenderScene()

{

 float col[4] = { 0, 0, 0, 1 };

 // Clear the rendering destination to a specified color.

 g_d3dDevice->ClearRenderTargetView(g_renderTargetView, col);

 // Do not need to set the render state each frame but this

 // is here so it doesn't get lost in the long initialize

../ch04#ch04
javascript:moveTo('ch03list3');

code.

 // Don't want readers overlooking it.

 ID3D10RasterizerState *rsState;

 D3D10_RASTERIZER_DESC rsStateDesc;

 //rsStateDesc.FillMode = D3D10_FILL_SOLID;

 rsStateDesc.FillMode = D3D10_FILL_WIREFRAME;

 rsStateDesc.CullMode = D3D10_CULL_NONE;

 rsStateDesc.FrontCounterClockwise = true;

 rsStateDesc.DepthBias = false;

 rsStateDesc.DepthBiasClamp = 0;

 rsStateDesc.SlopeScaledDepthBias = 0;

 rsStateDesc.DepthClipEnable = true;

 rsStateDesc.ScissorEnable = false;

 rsStateDesc.MultisampleEnable = false;

 rsStateDesc.AntialiasedLineEnable = false;

 g_d3dDevice->CreateRasterizerState(&rsStateDesc, &rsState);

 g_d3dDevice->RSSetState(rsState);

 unsigned int stride = sizeof(DX10_Vertex);

 unsigned int offset = 0;

 // Setup the geometry buffer that will be rendered.

 g_d3dDevice->IASetInputLayout(g_layout);

 g_d3dDevice->IASetVertexBuffers(0, 1, &g_vertexBuffer,

&stride,

 &offset);

 g_d3dDevice->IASetPrimitiveTopology(

 D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

 // Prepare the effect we will use to draw the geometry.

 D3D10_TECHNIQUE_DESC techDesc;

 g_technique->GetDesc(&techDesc);

 // Loop through each pass of the technique and draw.

 for(unsigned int i = 0; i < techDesc.Passes; i++)

 {

 g_technique->GetPassByIndex(i)->Apply(0);

 g_d3dDevice->Draw(6, 0);

 }

 // Display the results to the target window (swap chain).

 g_swapChain->Present(0, 0);

}

void Shutdown()

{

 // Release all used memory.

 if(g_d3dDevice) g_d3dDevice->ClearState();

 if(g_swapChain) g_swapChain->Release();

 if(g_renderTargetView) g_renderTargetView->Release();

 if(g_shader) g_shader->Release();

 if(g_layout) g_layout->Release();

 if(g_vertexBuffer) g_vertexBuffer->Release();

 if(g_d3dDevice) g_d3dDevice->Release();

}

In this chapter we briefly discuss the shader-related code without any detail. This changes

in the next chapter when we discuss shaders and their related code in detail. The topic is
large and requires a chapter all to itself. Although it is assumed that you have no

experience with shaders, we will look at the simple shader used for this demo to see what a
shader looks like. This shader is written in Direct3D’s shading language HLSL and uses

Shader Model 4.0, each of which are discussed further in the next chapter.

The shader for the Primitives demo is stored in a file called shader.fx. In this file it starts by

declaring an incoming vertex, which matches the vertex structure used to define the vertex

data in the application. In this demo the incoming vertex only specifies a position, which is
what the shader expects as well. Along with an input vertex, it also specifies an input to the

pixel shader, which is supplied by the vertex shader, and an output to the pixel shader. The
pixel shader’s output is a single color that is used to color in that pixel on the screen. The

input to the pixel shader, which is the vertex shader’s output, simply passes the
transformed vertex down the pipeline.

The vertex shader is responsible for passing along the data down the pipeline, and the pixel
shader is responsible for passing along a color to the shader for the screen pixel. The color

used for the pixel shader’s output is yellow. Because no special operations need to take
place on the incoming vertex, it is simply passed along. The final vertex is stored in the

register marked by the tag SV_POSITION. The final color value from a pixel shader is

stored in the register marked by the tag SV_TARGET. These are known as semantics and

are discussed in more detail in the next chapter.

Once the vertex and pixel shaders have been defined, the shader ends by defining a
technique. A technique is an effect. In a shader you can have multiple code functions for

vertex, pixel, and geometry shaders. You can mix and match these to create different
effects (techniques). In the application you can choose which effect you want to use from

the shader. Declaring a technique requires the use of the technique10 keyword followed

by any name you choose. This name is referenced by the application when obtaining a

technique object.

Inside the technique you set the vertex, geometry, and pixel shader. This is done by calling

the SetVertexShader(), SetGeometryShader(), and SetPixelShader() HLSL

functions, which take as parameters the compiled code from the vertex, geometry, and

pixel shader functions, respectively. To compile a function to be used by one of these set

shader functions, you call the HLSL function CompileShader(), which takes as a

parameter the shader version you want to use (4_0 if using Shader Model 4.0) and a

function that stores the shader’s code. The NULL keyword can be used for any shader that

is not specified, such as the geometry shader in this demo. The Primitives demo’s shader is

shown in Listing 3.4. Figure 3.10 shows a screenshot of the demo. Again, HLSL and
everything dealing with shaders in Direct3D 10 are discussed in the next chapter.

javascript:moveTo('ch03list4');
javascript:moveTo('ch03fig10');

LISTING 3.4. THE PRIMITIVES DEMO’S SHADER

struct VS_INPUT

{

 float4 Pos : POSITION;

};

struct PS_INPUT

{

 float4 Pos : SV_POSITION;

};

PS_INPUT VS(VS_INPUT input)

{

 PS_INPUT output = (PS_INPUT)0;

 output.Pos = input.Pos;

 return output;

}

float4 PS(PS_INPUT input) : SV_Target

{

 return float4(1, 0, 1, 1);

}

technique10 PassThrough

{

 pass P0

 {

 SetVertexShader(CompileShader(vs_4_0, VS()));

 SetGeometryShader(NULL);

 SetPixelShader(CompileShader(ps_4_0, PS()));

 }

}

FIGURE 3.10. A SCREENSHOT FROM THE PRIMITIVES DEMO.

INDICES AND PRIMITIVES

So far, the geometry of objects has been defined entirely by specifying vertex points. Many
of these vertex points tend to overlap one another. For example, the two triangles in the

Primitives demo application share two vertex points. Instead of defining those points more

than once, wouldn’t it be great if they could be defined only once and used multiple times?
If we had a complex object, such as a terrain or a character, there could be hundreds if not

thousands of duplicate points, each costing memory resources. In Direct3D this can be
solved by using something known as a vertex index.

A vertex index (indices for its plural form) is an array index. When you give Direct3D a list
of vertex points, it essentially receives an array of vertices. Each triangle of an object can

be defined as having an array of unique vertex points and an indices list. The indices list
specifies each primitive of the object by indexing each vertex from the vertex list. Using

indices, each vertex can be used as many times as necessary. Without indices, each vertex
that shares a specific position must be duplicated.

On the CD-ROM in the Chapter 3 folder is a demo application called Indices. In this
section we briefly discuss the demo application, which is built on top of the Primitives demo.

To create an index list you can literally create an array of integers. Direct3D 10 supports
32-bit and 16-bit unsigned integers for indices. An example of using 32-bit indices and a

reduced vertex count from the Primitives demo can be seen in Listing 3.5.

LISTING 3.5. DEFINING THE INDICES AND VERTICES FROM THE INDICES

DEMO

unsigned int indices[] = { 0, 1, 2, 2, 3, 0 };

DX10_Vertex vertices[] =

{

../ch03#ch03
javascript:moveTo('ch03list5');

 { D3DXVECTOR3(0.5f, 0.5f, 0.5f) },

 { D3DXVECTOR3(0.5f, -0.5f, 0.5f) },

 { D3DXVECTOR3(-0.5f, -0.5f, 0.5f) },

 { D3DXVECTOR3(-0.5f, 0.5f, 0.5f) },

};

The index list from Listing 3.5 specifies, using triangles as an example, that the first triangle
is composed of the first, second, and third vertex points in the vertex list. The second

triangle is specified by the third, fourth, and first vertex points. Each index in the index list
is an array index that matches the data in the vertex list. You can specify the vertices in any

order you want since vertex indices are used to specify each primitive, and not the vertex
order, as was the case in the Primitives demo.

Earlier we mentioned that the ID3D10Buffer can be used to create a vertex buffer as

well as other types of buffers and in the Indices demo it is also used to specify an index

buffer. The index buffer is created in the same manner as the vertex buffer, with the

exception of using the D3D10_BIND_INDEX_BUFFER flag for the BindFlags member of

the D3D10_BUFFER_DESC structure. The creation of the index buffer, as well as the

vertex buffer, from the Indices demo is shown in Listing 3.6.

LISTING 3.6. THE CREATION OF THE INDEX AND VERTEX BUFFER FROM THE

INDICES DEMO

D3D10_BUFFER_DESC vbBuffDesc, ibBuffDesc;

vbBuffDesc.Usage = D3D10_USAGE_DEFAULT;

vbBuffDesc.ByteWidth = sizeof(DX10_Vertex) * 4;

vbBuffDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER;

vbBuffDesc.CPUAccessFlags = 0;

vbBuffDesc.MiscFlags = 0;

ibBuffDesc.Usage = D3D10_USAGE_DEFAULT;

ibBuffDesc.ByteWidth = sizeof(unsigned int) * 6;

ibBuffDesc.BindFlags = D3D10_BIND_INDEX_BUFFER;

ibBuffDesc.CPUAccessFlags = 0;

ibBuffDesc.MiscFlags = 0;

D3D10_SUBRESOURCE_DATA vbResData, ibResData;

vbResData.pSysMem = vertices;

ibResData.pSysMem = indices;

hr = g_d3dDevice->CreateBuffer(&vbBuffDesc, &vbResData,

 &g_vertexBuffer);

if(FAILED(hr))

 return false;

hr = g_d3dDevice->CreateBuffer(&ibBuffDesc, &ibResData,

 &g_indexBuffer);

if(FAILED(hr))

 return false;

The index buffer must be set to the input assembler just as the vertex buffer was. This is

done using the function IASetIndexBuffer(), and it takes as parameters the index

javascript:moveTo('ch03list5');
javascript:moveTo('ch03list6');

buffer, the format of the index buffer, and the offset. The offset can be used to specify

which index you want to start with. The format can be either DXGI_FORMAT_R32_UINT

for 32-bit unsigned integers or DXGI_FORMAT_R16_UINT for 16-bit unsigned integers.

Setting the index buffer, along with the other input assembler objects, is shown in Listing
3.7 from the Indices demo.

LISTING 3.7. SETTING THE INDEX BUFFER WITH THE VERTEX BUFFER, INPUT
LAYOUT, AND TOPOLOGY

g_d3dDevice->IASetInputLayout(g_layout);

g_d3dDevice->IASetVertexBuffers(0, 1, &g_vertexBuffer, &stride,

 &offset);

g_d3dDevice->IASetIndexBuffer(g_indexBuffer,

DXGI_FORMAT_R32_UINT,

 0);

g_d3dDevice->IASetPrimitiveTopology(

 D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

The last step is to render the data. Since we are using indexed geometry, we cannot use the

Draw() function, which is for nonindexed geometry. To draw indexed geometry, we use

DrawIndexed(), which takes as parameters the total number of indices, the starting

index, and the starting vertex. The drawing method from the Indices demo application is

shown in Listing 3.8.

LISTING 3.8. THE DRAWING METHOD FROM THE INDICES DEMO’S RENDERING

FUNCTION

g_d3dDevice->DrawIndexed(6, 0, 0);

The remaining code from the indices demo is the same as the Primitives demo. A

screenshot from the Indices demo is shown in Figure 3.11.

FIGURE 3.11. A SCREENSHOT FROM THE INDICES DEMO.

javascript:moveTo('ch03list7');
javascript:moveTo('ch03list7');
javascript:moveTo('ch03list7');
javascript:moveTo('ch03list8');
javascript:moveTo('ch03fig11');

COLORS

The first property, aside from vertex positions, that we will discuss is vertex colors. In

Direct3D a structure called D3DXCOLOR is used to represent colors. The D3DXCOLOR

structure is an RGBA (which represents the Red, Green, Blue, and Alpha components of a
color where Alpha is used for transparency) structure with floating-point members. A value

of 0 represents the absence of color, while 1 represents full color. Anything in between is a

percentage between the two extremes. A value of 1, or 100%, represents 255 when

working with 8-bit color modes. The D3DXCOLOR structure is as follows.

typedef struct D3DXCOLOR {

 FLOAT r;

 FLOAT g;

 FLOAT b;

 FLOAT a;

} D3DXCOLOR, *LPD3DXCOLOR;

COLORS DEMO

On the book’s accompanying CD-ROM is a demo application called Colors in the Chapter 3

folder. This demo application builds off of the Primitives demo and adds a color property to
the vertices that are rendered. In the Primitives demo the pixel shader used yellow for the

rendering. In this demo the color is specified per vertex. The first change in the Colors

demo is the addition of a D3DXCOLOR object to the vertex structure. The addition of colors

to the vertex structure is shown in Listing 3.9.

LISTING 3.9. THE GLOBAL SECTION FROM THE COLORS DEMO

// Direct3D 10 objects.

ID3D10Device *g_d3dDevice = NULL;

IDXGISwapChain *g_swapChain = NULL;

ID3D10RenderTargetView *g_renderTargetView = NULL;

// Effect objects.

ID3D10Effect *g_shader = NULL;

ID3D10EffectTechnique *g_technique = NULL;

// Display object to store scene geometry.

ID3D10InputLayout *g_layout = NULL;

ID3D10Buffer *g_vertexBuffer = NULL;

// Structure used to represent a single vertex.

struct DX10_Vertex

{

 D3DXVECTOR3 pos;

 D3DXCOLOR col;

};

../ch03#ch03
javascript:moveTo('ch03list9');

Since the vertex structure requires a color now, the data that makes up the object must be

updated to reflect this. This can be seen in the initialize function for the Colors demo, where
the input layout is given a different property and the list of vertices specifies a color for

each vertex point. The initialization code that is specific to the Colors demo is shown in
Listing 3.10. Note that the alignment offset (third to last property for each input element) is

12 for the color element. This is because the element that comes before it takes up 12
bytes, so to get to the color data, Direct3D must move past the first 12 bytes of each vertex

to obtain the start of the color.

LISTING 3.10. THE INITIALIZE CODE SPECIFIC TO THE COLORS DEMO

bool InitializeDemo()

{

 // Load the shader.

 …

 // Create the geometry. The layout of each vertex is made up

 // of just a position so that is all we need.

 D3D10_INPUT_ELEMENT_DESC layout[] =

 {

 { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,

 D3D10_INPUT_PER_VERTEX_DATA, 0 },

 { "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 12,

 D3D10_INPUT_PER_VERTEX_DATA, 0 },

 };

 …

 DX10_Vertex vertices[] =

 {

 { D3DXVECTOR3(0.0f, 0.5f, 0.5f), D3DXCOLOR(1, 0, 0, 1) },

 { D3DXVECTOR3(0.5f, -0.5f, 0.5f), D3DXCOLOR(0, 1, 0, 1) },

 { D3DXVECTOR3(-0.5f, -0.5f, 0.5f), D3DXCOLOR(0, 0, 1, 1) },

 };

 // Create the vertex buffer.

 D3D10_BUFFER_DESC buffDesc;

 buffDesc.Usage = D3D10_USAGE_DEFAULT;

 buffDesc.ByteWidth = sizeof(DX10_Vertex) * 3;

 buffDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER;

 buffDesc.CPUAccessFlags = 0;

 buffDesc.MiscFlags = 0;

 D3D10_SUBRESOURCE_DATA resData;

 resData.pSysMem = vertices;

 hr = g_d3dDevice->CreateBuffer(&buffDesc, &resData,

 &g_vertexBuffer);

javascript:moveTo('ch03list10');

 if(FAILED(hr))

 return false;

 return true;

}

The rendering code from the Colors demo is the same as the Primitives demo, with the
exception that we are rendering three vertices instead of six. The shader for the Colors

demo is slightly different than the Primitives demo. We have added a color semantic to the
vertex and pixel shader input structures. This occurs because now we are bringing in a

vertex color from the application into the vertex shader input, and we are sending the color
from the vertex shader into the pixel shader input. The pixel shader simply uses this

incoming vertex color instead of specifying a hard-coded value like the Primitives demo did
for its output color value. The shader from the Colors demo is shown in Listing 3.11. Figure

3.12 shows a screenshot from the Colors demo. To get a better appreciation of the demo in
action it is recommended that you execute it.

LISTING 3.11. THE COLORS DEMO’S SHADER

struct VS_INPUT

{

 float4 Pos : POSITION;

 float4 Color : COLOR;

};

struct PS_INPUT

{

 float4 Pos : SV_POSITION;

 float4 Color : COLORO;

};

PS_INPUT VS(VS_INPUT input)

{

 PS_INPUT output = (PS_INPUT)0;

 output.Pos = input.Pos;

 output.Color = input.Color;

 return output;

}

float4 PS(PS_INPUT input) : SV_Target

{

 return input.Color;

}

technique10 PassThrough

{

 pass P0

 {

javascript:moveTo('ch03list11');
javascript:moveTo('ch03fig12');
javascript:moveTo('ch03fig12');
javascript:moveTo('ch03fig12');

 SetVertexShader(CompileShader(vs_4_0, VS()));

 SetGeometryShader(NULL);

 SetPixelShader(CompileShader(ps_4_0, PS()));

 }

}

FIGURE 3.12. A SCREENSHOT FROM THE COLORS DEMO.

SUMMARY

Rendering primitives is important to all modern video games. In this chapter we discussed
the basics of rendering in Direct3D 10. Because Direct3D 10 is shader only, a detailed

discussion of programmable shaders is necessary. This discussion comes in the next
chapter.

This chapter only covered the basics of rendering. Throughout this book we progress to
more complicated and advanced topics. After rendering, we discuss other areas of games

such as input and sound before moving on to the final section, the creation of a DirectX 10

video game.

The following elements were discussed in this chapter:

 Primitives

 Points

 Lines

 Triangles

 Indices

 Shaders

 Effects and techniques

 Colors

CHAPTER QUESTIONS

Answers to the following chapter review questions can be found in Appendix A.

1. Define a primitive.

2. List three types of primitives that Direct3D supports.

3. List the different types of lines. Describe each one.

4. List the different types of triangles. Describe each one.

5. What is a vertex? What is a vector? How are the two similar?

6. What is an input layout?

7. What is a vertex buffer?

8. What is the input assembler, and how is it used to set up geometry in Direct3D?

9. What are indices, and how are they used in the rendering of geometry?

10. Describe techniques.

11. True or false: A vertex is a point’s position.

12. True or false: There are eight bytes in a bit.

13. True or false: Indices are vertex index positions of each primitive’s vertex points.

14. True or false: Rasterizer states control how Direct3D is set up.

../app01#app01
../app01lev1sec3#app01qa3q1a1
../app01lev1sec3#app01qa3q2a2
../app01lev1sec3#app01qa3q3a3
../app01lev1sec3#app01qa3q4a4
../app01lev1sec3#app01qa3q5a5
../app01lev1sec3#app01qa3q6a6
../app01lev1sec3#app01qa3q7a7
../app01lev1sec3#app01qa3q8a8
../app01lev1sec3#app01qa3q9a9
../app01lev1sec3#app01qa3q10a10
../app01lev1sec3#app01qa3q11a11
../app01lev1sec3#app01qa3q12a12
../app01lev1sec3#app01qa3q13a13
../app01lev1sec3#app01qa3q14a14

15. True or false: The alpha channel is often a control for transparency.

16. True or false: HLSL is Direct3D’s high level programmable shading language.

17. True or false: Back face culling is the ability to not draw polygons far away from

the camera.

18. True or false: The fill mode controls how the surface is shaded.

19. True or false: A technique defined in an HLSL shader is an effect with one or more

passes.

20. True or false: Topology is a term used to describe the primitive type of geometry.

4. SHADER MODEL 4

In This Chapter

 Shader Model 4

 Shaders in Direct3D 10

Real-time computer graphics have evolved over the generations. Today, game graphics are
performed by executing custom-written code directly onto the graphics processing unit.

These graphical code programs written for graphics hardware are known as programmable
shaders. With programmable shaders just about any visual effect can be created in real

time for a host of different applications. This allows developers a level of flexibility that was
unseen before the turn of the millennium.

In this chapter we will discuss Direct3D’s shading language, known as the High-Level
Shading Language (HLSL). Direct3D 10 requires HLSL programmable graphics shaders to be

written and used with the application programming interface (API), whereas in Direct3D 9,
for example, their use was optional. It is essential that all graphics programmers know how

to program the graphics processing unit, and the sooner they are exposed to this the better,
since the industry is at a point where experience with and knowledge of shaders are

essential. Although in Direct3D 10 newcomers have no choice but to learn shaders, OpenGL

and XNA users still have the option to defer this learning until they are ready. XNA does not
offer a fixed-function pipeline, but it does offer classes that are part of the framework and

are used to implement basic effects without directly using HLSL in applications.

SHADER MODEL 4

Direct3D 10 uses Shader Model 4 and HLSL, which is a high-level language similar to the C
programming language but for graphics hardware. In the early days of game graphics,

graphical algorithms were implemented in graphics APIs as a series of states that could be

enabled or disabled. This series of built-in algorithms and states is known as the fixed-
function pipeline, and for many years it was the way hardware graphical effects were

performed inside video game scenes.

../app01lev1sec3#app01qa3q15a15
../app01lev1sec3#app01qa3q16a16
../app01lev1sec3#app01qa3q17a17
../app01lev1sec3#app01qa3q18a18
../app01lev1sec3#app01qa3q19a19
../app01lev1sec3#app01qa3q20a20
../ch04lev1sec1#ch04lev1sec1
../ch04lev1sec2#ch04lev1sec2

For example, to use hardware lighting in a scene, a programmer could enable lighting in

OpenGL by calling a function such as glEnable(GL_LIGHTING) and calling additional

functions to set the specific states and properties of the scene’s various lights. To use depth

testing while rendering a scene, the API’s depth-testing feature could be either enabled to
activate its use it or disabled to turn it off, for example. Many features of the major graphics

APIs worked in this manner.

The fixed-function pipeline hid the underlying implementation from the user. Therefore,

anyone using, for example, OpenGL or Direct3D did not need to know the math or
processes behind a lighting algorithm or how to program it because it was as simple as

calling one or a few API functions. On the plus side, using the fixed-function pipeline was
simple and often straightforward, but it did have its negatives, which for professional game

developers far out-weighted its pros. Some of these negatives include the following issues.

 Developers had no control over what a graphics API offered and had to either use what

was in the API or use clever tricks to attempt to create effects not supported by the tool.

 Developers had no direct control over when new features were added.

 Individuals could not modify the algorithms that make up the fixed-function pipeline.

 Individuals could not extend the graphical effects an API could perform.

 Some graphical effects were either very tricky or impossible to perform with the fixed-

function pipeline.

 Having only a fixed-function pipeline limits what the API can do and what it is capable of

graphically.

 It was not possible to perform new effects that were hardware accelerated unless the

API somehow allowed for the effect to take place.

 Non-graphics-related calculations could not be performed on the GPU using a graphics

API that supports only the fixed-function pipeline.

Shader Model 4 and HLSL, will be discussed in this chapter and used often throughout this

book.

SHADER MODEL 4 VERSUS PRE-4

When graphics APIs and hardware started to embrace and support programmable shaders,
it was originally done by programming directly to the GPU using low-level assembly

language. The earlier graphics hardware that supported programmable shaders had very
limited instruction counts, registers, texture reads, and so forth. Because low-level shaders

used assembly language, they suffered from the same or similar drawbacks as applications
created using assembly language. These issues include a few of the following.

 Assembly is harder to read than a high-level language such as C++.

 Assembly is harder to modify than a high-level language such as C++, especially by

someone who did not originally write the software.

 Assembly is harder to maintain.

 Writing an application in assembly can take more time due to the number of instructions

and registers that are used to obtain a meaningful result.

 It is harder to track down bugs and errors that are not syntax based in graphical

shaders written in assembly.

 It is tricky to find ways to reduce the instruction count in an effort to do more within a

shader.

NVIDIA’s C for graphics (Cg) was the first high-level shading language that was available to

developers, and HLSL soon followed. HLSL and Cg are similar because they were both
developed by Microsoft (along with NVIDIA for Cg) at the same time. HLSL is to Direct3D

what the OpenGL Shading Language (GLSL) is to the OpenGL standard.

A shader model is a version of shading technology; almost each generation of DirectX saw

one or two shader models. Direct3D 10 brought forth Shader Model 4, Direct3D 9 saw
Shader Model 2 and 3, and Direct3D 8 saw Shader Model 1. Many of the differences

between the first three models include instruction and register count increases, while Model
4 completely changed shading technology, especially for the technical side in its

implementation.

Shader Model 1 was the first shading version for programmable hardware. It was limited to

128 instructions, and the number of registers often depended on the hardware device
because some cards can have more registers than others, meaning that if you write an

effect that has to work on multiple pieces of hardware, you will have to write for the lower

register count of the target hardware. Shader Model 2 added to the instruction and register
count and added some new capabilities such as fetching from a texture multiple times.

Shader Model 2 also has some very limited flow control that was improved up in Shader
Model 3.

Shader Model 3 again increased the register and instruction counter of version 2 and added
many new features (some of which have limitations and are improved upon in version 4)

such as dynamic branching, better flow control, floating-point buffers, texture formats, and
so forth. Dynamic branching in shaders allows for branching instructions such as conditional

statements and loops. Shader Model 3 also allowed for the ability to create floating-point
buffers that make it possible to create high dynamic range (HDR) images.

Shader Model 4 is a superset of version 3 but with new capabilities and a unified shader
core for each of the shader types. This means each of the shader types has a unified

instruction set, whereas previous versions did not. Unlike previous versions of Direct3D and
shader models, version 4 for Direct3D can only be implemented using HLSL; previous

versions could be implemented in either HLSL or in low-level assembly language. HLSL is

compiled down into assembly, though, which can be viewed using the PIX tool from the
DirectX software development kit (SDK). That means you can load compiled shaders in

Direct3D at run-time or have them compiled at run-time by the application. Shader Model 4
greatly differs from the previous versions and offers the following features.

 Unified shader core (architecture)

 A new type of shader, the geometry shader

 Parallel processing and multi-core GPUs

 Improved version 3 features (e.g., improved dynamic branching, unlimited instruction

count, etc.)

 The new constant and texture buffers instead of registers

 No restrictions in the instruction count of shaders

SHADER TYPES

In Shader Model 4 you can create three types of shaders: vertex shaders, pixel shaders
(also known as fragment shaders), and geometry shaders. Prior to Shader Model 4 there

were only vertex and pixel shaders. Direct3D 10 was the first graphics API to support
geometry shaders and Shader Model 4.

A vertex shader takes the incoming vertex of a surface and executes an algorithm on it to
prepare it for later processing stages, including the geometry shader stage and the pixel

shader stage. Usually this includes taking a vertex and transforming its position from local
(object) space to screen space and calculating other properties that the vertex will need to

possess for the later rendering stages. Spaces, transformations, and matrices will be
discussed in Chapter 8, ―Game Math.‖ A vertex is literally a point that makes up the

primitive being rendered. A primitive is a small piece of a larger model such as a single
triangle. A vertex can have many properties, but the one property that is always required is

a position. In the vertex shader this position is transformed between different spaces, and
other calculations can be performed based on what the pixel or geometry shader needs to

produce whatever graphical effects you are attempting to create. For example, the vertex

shader can calculate the light vector that the pixel shader uses in diffuse lighting. Vectors
will also be discussed in Chapter 8, while lighting will be discussed in Chapter 13, ―Lighting.‖

A geometry shader is an optional shader that can be created and used. A geometry shader
takes an incoming primitive, such as a triangle, and executes some algorithm on it. You

might use the geometry shader to take an incoming triangle and split it up into smaller
pieces to increase its geometric detail or to perform some other action that you need to

occur on the primitive level. The geometry shader sits between the vertex shader and the
pixel shader stages, which means the incoming geometry to the geometry shader is the

transformed geometric output from the vertex shader, and its output goes to the pixel
shader. The output from the geometry shader is zero or more primitives. This means the

geometry shader can output no geometry or the incoming primitive it was given or even
generate one or more pieces of new geometry and output that.

The pixel shader is responsible for shading the pixels that make up the surface of the
primitive using the algorithm of your choice. A pixel shader can texture map the surface

(i.e., place an image across the surface), shade the surface to a specified color, light the

surface, bump map a surface, and much more. Pixel shaders output color values, which are
stored on the screen for all visible and affected pixels. The pixel shader comes after the

vertex shader and receives as input the vertex shader’s output only if a geometry shader
does not exist. If the geometry shader does exist, then that is the stage from which the

pixel shader receives its input.

The three types of shader stages are shown in Figure 4.1.

FIGURE 4.1. VERTEX, GEOMETRY, AND PIXEL SHADER STAGES.

INTRINSIC FUNCTIONS

../ch08#ch08
../ch08#ch08
../ch13#ch13
javascript:moveTo('ch04fig01');

HLSL has a list of intrinsic functions available to use in effect shaders. Many of these

functions perform mathematical operations, while a few of them are used for texture
mapping. Some of these topics have yet to be discussed, such as texture mapping, vectors,

and matrices, and will be discussed in later chapters in this book.

For now, use Table 4.1, which lists the intrinsic HLSL functions, as a reference and

remember that each function that deals with a topic that is yet to be discussed will be
reviewed in subsequent chapters.

TABLE 4.1. HLSL INTRINSIC FUNCTIONS.

ret abs(x) Finds the absolute value of the input parameter. Takes

as input a float, vector, or matrix and returns those

same types.

ret acos(x) Finds the arccosine of the input parameter. Takes as

input a float, vector, or matrix with floating-point

components and returns the same type as the input

type.

ret all(x) Returns true or false if all components of the input

parameter are nonzero. Takes as input a float, vector,

or matrix and returns a Boolean.

ret any(x) Same as ret all(x) but returns true if any of the

input components are nonzero.

ret asfloat(x) Converts the input components to a floating-point

value. This assumes the input components are integer-

based.

ret asin(x) Returns the arcsine value of the input parameter. Takes

as input a float, vector, or matrix.

ret asint(x) Takes the input parameter and converts its components

to an integer. Assumes the components are originally a

float or an unsigned integer.

ret asuint(x) The same as ret asint(x) but converts components

to an unsigned integer.

ret atan(x) Returns the arctangent of the components of the input

parameter. Takes as input a float, vector, or matrix.

ret atan2(x, y) Same as ret atan(x) but returns the arctangent of

(x, y).

javascript:moveTo('ch04table01');

TABLE 4.1. HLSL INTRINSIC FUNCTIONS.

ret abs(x) Finds the absolute value of the input parameter. Takes

as input a float, vector, or matrix and returns those

same types.

ret ceil(x) Returns the smallest integer value of the input

parameter. For example, if the input is 0.3, then 0 is

returned.

ret clamp(x, min, max) Clamps the input x to the minimum and maximum

range specified by the last two parameters.

clip(x) Discards the current pixel if the value for this function’s

input parameter is less than 0. Used by the pixel shader

only.

ret cos(x) Returns the cosine value of the input parameter.

ret cosh(x) Returns the hyperbolic cosine of the input parameter.

ret cross(x, y) Returns the cross product of the two input parameters.

The parameters must be vectors.

ret D3DCOLORtoUBYTE4(x) Converts a D3DCOLOR parameter to a UBYTE4.

UBYTE4 has an integer component format.

ret ddx(x) Returns the partial derivative with respect to the input

parameter, which is the X axis of the screen coordinate.

ret ddy(x) Same as ret ddx(x) but with respect to the Y axis of

the screen coordinate.

ret degrees(x) Converts the input parameter from radians to degrees,

assuming the input is in radians.

ret determinant(m) Returns the determinant of the input matrix parameter.

The input type must be a matrix.

ret distance(x, y) Returns the distance between two vectors specified in

the x and y parameters. Their types must be a vector.

ret dot(x, y) Returns the dot product between two input vectors

specified in the x and y parameters. Their type must be

a vector.

TABLE 4.1. HLSL INTRINSIC FUNCTIONS.

ret abs(x) Finds the absolute value of the input parameter. Takes

as input a float, vector, or matrix and returns those

same types.

ret exp(x) Returns the base-e exponential value of the input

floating-point parameters (x).

ret exp2(x) Same as ret exp(x) but returns the base-2

exponential value.

ret faceforward(n, i,

ng)

Flips a surface normal (ng) to face the direction

opposite specified by i. Returns the result in n. All

parameters are vectors.

ret floor(x) Same as ret ceil(x) but returns the largest integer

component of the input parameter.

ret fmod(x, y) Returns the floating-point remainder of x/y.

ret frac(x) Returns the fractional (value after the decimal point) of

the input parameter. The value is a floating-point

number between 0 and 1.

ret frexp(x, exp) Returns the mantissa and exponent of the x input

parameter and stores the result in exp.

ret fwidth(x) Returns the absolute value of the partial derivatives of

the X screen coordinate. In other words abs(ddx(x)) +

abs(ddy(x)). This function is only supported in the pixel

shader.

ret GetRenderTarget

SamplePosition (index)

Returns the (X, Y) location of the render target that is

being sampled. The target is specified by the index

parameter.

UINT GetRenderTarget

SampleCount()

Returns the number of samples for a render target.

ret isinfinite(x) Returns true or false if the floating-point parameter is

infinite.

ret isinf(x) The same as ret isinfinite(x) but returns true if

the parameter is +INF or ?INF. Returns false for all

TABLE 4.1. HLSL INTRINSIC FUNCTIONS.

ret abs(x) Finds the absolute value of the input parameter. Takes

as input a float, vector, or matrix and returns those

same types.

other values.

ret isnan(x) Returns true if the parameter equals NAN or QNAN.

ret ldexp(x, exp) Returns the x parameter multiplied by two and raised to

the exponent specified by exp.

ret length(x) Returns the length of the specified parameter, which

has to be a vector. The length of a vector is also known

as its magnitude.

ret lerp(x, y, s) Performs linear interpolation between x and y using s,

where s is between 0 and 1. The component types for

the input parameters (which can be vectors, matrices,

or floats) must be floating point.

ret lit(n_dot_l,

n_dot_h, m)

Returns the lighting coefficient vector, where the

ambient light is assumed to be 1, n_dot_l is the diffuse

value, n_dot_h is the specular value, and m is the

specular exponent.

ret log(x) Returns the base-e logarithm of the input parameter.

ret log2(x) Same as ret log(x) but returns the base-2

logarithm.

ret log10(x) Same as ret log2(x) but returns the base-10

logarithm.

ret max(x, y) Returns x if x is greater than y, or else it returns y.

ret min(x, y) Same as ret max(x, y) but returns the parameter

that is the smaller of the two.

ret modf(x, ip) Spits a floating-point value specified by the x parameter

into its integer and fractional parts. The integer part is

returned to ip, and the fractional part is returned by the

function.

TABLE 4.1. HLSL INTRINSIC FUNCTIONS.

ret abs(x) Finds the absolute value of the input parameter. Takes

as input a float, vector, or matrix and returns those

same types.

ret mul(x, y) Multiplies two matrices together and returns the result.

The matrices must have the same number of rows and

columns.

ret noise(x) Returns a random value between ?1 and 1 based on x

using the perlin noise algorithm.

ret normalize(x) Returns the normalized vector of the input parameter x.

This essentially equates to x/length(x).

ret pow(x, y) Returns the value specified by x to the y power.

ret radians(x) Converts the parameter x from degrees to radians.

ret reflect(i, n) Returns the reflection vector based on the ray’s

direction (i) and the surface normal (n).

ret refract(i, n,

index)

Returns the refraction vector based on the ray’s

direction (i), the surface normal (n), and the index of

refraction (index).

ret round(x) Rounds the value in x to the nearest integer.

ret rsqrt(x) Returns the reciprocal of the square root of x. In other

words 1/sqrt(x).

ret saturate(x) Clamps the value of x to 0 and 1.

ret sign(x) Returns ?1 if x is less than zero, 0 if x is zero, and 1 if x

is greater than zero.

ret sin(x) Returns the sine value of x.

ret sincos(x, out s,

out c)

Returns the sine value of x in the s parameter and the

cosine value of x in the c parameter.

ret sinh(x) Returns the hyperbolic value of x.

ret smoothstep(min, Returns the Hermite interpolation between min and max

TABLE 4.1. HLSL INTRINSIC FUNCTIONS.

ret abs(x) Finds the absolute value of the input parameter. Takes

as input a float, vector, or matrix and returns those

same types.

max, x) using x as a scalar. If x < min, then min is returned,

else if x > max, then max is returned, or else some

value between min and max.

ret sqrt(x) Returns the square root of x.

ret step(y, x) Compares the two parameters and returns 0 or 1

depending on which parameter is greater.

ret tan(x) Returns the tangent of x.

ret tanh(x) Returns the hyperbolic tangent of x.

ret tex1D(s, t)

ret tex1Dbias(s, t)

ret tex1Dlod(s, t)

ret tex1Dgrad(s, t,

ddx, ddy)

ret tex1Dproj(s, t)

Samples a 1D texture(s) using texture coordinates (t)

and returns a color.

ret tex2D(s, t)

ret tex2Dbias(s, t)

ret tex2Dlod(s, t)

ret tex2Dgrad(s, t,

ddx, ddy)

ret tex2Dproj(s, t)

Samples a 2D texture(s) using texture coordinates (t)

and returns a color.

ret tex3D(s, t)

ret tex3Dbias(s, t)

ret tex3Dlod(s, t)

ret tex3Dgrad(s, t,

ddx, ddy)

ret tex3Dproj(s, t)

Samples a 3D texture(s) using texture coordinates (t)

and returns a color.

ret texCUBE(s, t)

ret texCUBEbias(s, t)

ret texCUBElod(s, t)

ret texCUBEgrad(s, t,

ddx, ddy)

ret texCUBEproj(s, t)

Samples a cube texture(s) using texture coordinates (t)

and returns a color.

ret transpose(x) Finds the transpose of the input parameter x, which has

to be a matrix.

TABLE 4.1. HLSL INTRINSIC FUNCTIONS.

ret abs(x) Finds the absolute value of the input parameter. Takes

as input a float, vector, or matrix and returns those

same types.

ret trunc(x) Truncates a floating-point value to an integer.

SHADER CONSTANTS AND TEXTURE BUFFERS

In Shader Model 4 there are what are known as constant and texture buffers. Buffers are a

way of optimizing data variables that are used by the shader program. A constant buffer is
used to store constant variables, and a texture buffer is more suitable for texture images.

By placing variables in buffers based on their usage and CPU access, Direct3D 10 can
optimize how they are stored to improve performance and shader efficiency.

Creating a buffer is similar to creating a C structure and can take the following form:

BufferType[name] : register(b#)

{

 VariableDeclaration[packetoffset(c#.xyzw)];

}

The BufferType refers to cbuffer for constant buffer and tbuffer for texture buffer.

The name refers to an optional unique name that you can give the buffer. The register is an

optional piece of information used to manually pack constant data into specific register

indexes. VariableDeclaration is a normal variable declaration in the shader file, and

packetoffset is an optional piece of information used to manually pack constant data

into specific registers. An example of a constant buffer minus the optional information is as

follows.

cbuffer cbChangesEveryFrame

{

 float4 color;

};

In the example above cbuffer declares a constant buffer, cbChangesEveryFrame tells

Direct3D that the variables in the constant buffer will be changed for each rendering frame

(or set for each frame but not necessarily changed in value per se), and the variable inside
the constant buffer is bound to that constant buffer. An example of using constant buffers in

Direct3D 10 will be shown later in this chapter. Other types of usage types include

cbChangeOnResize and cbNeverChanges.

VARIABLES AND DATA TYPES

HLSL offers a number of data types for variables. Some of these are the same as the C
programming language and include the following scalar types.

 bool

 int

 uint

 half

 float

 double

There is also a string type in HLSL for storing strings of ASCII characters. HLSL also adds an

additional data type known as Buffer, which is shown in the following example.

Buffer<float4> g_buffer;

float4 elementOne = g_buffer.Load(1);

A Buffer object is treated like an array in which you can store information in the object

and read information from it using the Load() function. The index you send to the

Load() function determines the array index element that is returned.

Other additional data types offered by HLSL include vector types, matrix types, sampler

types, and texture types, and also structures. A structure in HLSL can be created in the
same way a structure is created in C. For texture types they include the following.

 texture (which is untyped for backward compatibility)

 Texture1D

 Texture1DArray

 Texture2D

 Texture2DArray

 Texture3D

 TextureCube

Textures will be discussed in more detail in Chapter 6, ―Shading and Surfaces,‖ and Chapter
7, ―Additional Texture Mapping,‖ along with the sampler types. The vector types include

between one and four component vectors specified by either the vector keyword followed by
the number of components or by the data type followed by the number of components.

Therefore, a vector can have float components, integer components, and any of the other
scalar types. Examples of declaring three- and four-component vectors are as follows:

int3 vec3; // 3-component vector

float4 vec1; // 4-component vector

vector<float, 4> vec2; // 4-component vector

The components of a vector can be accessed in the same way the member variables of a C

structure can be accessed: by using the dot (.) operator followed by the name of the

../ch06#ch06
../ch07#ch07
../ch07#ch07
../ch07#ch07

component. Vectors in HLSL can have an X for 1D vectors; X and Y for 2D vectors; X, Y, and

Z for 3D vectors; and X, Y, Z, and W for 4D vectors.

The matrix types are similar to the vector types, where a matrix is an object made up of

rows and columns. You can have 3 × 3, 4 × 4, 3 × 4, and so on matrices in HLSL. Think of
a matrix as a 2D table in which elements are accessed by row and column. Matrices can be

created using any of the scalar types like vectors but they are declared using the keyword
matrix or by defining two numbers for the rows and columns following the data type. An

example of creating 3 × 4 and 4 × 4 matrices is as follows.

float3×4 matrix1;

float4×4 matrix2;

matrix<float, 4, 4> matrix3;

Vectors and matrices will be discussed in Chapter 8 in more

detail.

Variable syntax includes specifying a storage class, data type, variable name, and semantic.
The data types we’ve already discussed include the scalar types, vectors, and matrices. The

storage class by default for global variables is uniform, so you don’t have to actually use the
uniform keyword before declaring variables in the global scope. Other storage classes

include:

 extern, which cannot be combined with static and is used to mark a variable as being

available for input externally (by the application) and is the default for global variables

 static, which is the same as it is for C/C++ and is used to keep the variable in scope

even once the function it is in loses scope (cannot be used for globals)

 nointerpolation, which means to not interpolate the outputs used by the pixel

shader

 shared, which marks a variable for being shared by different effects

 uniform, which is another default type that marks a variable’s data as constant

throughout the shader’s execution

 volatile, which is used to mark a variable as being changed frequently

The semantic of a variable is an optional piece of information used to bind shader inputs and
outputs by the HLSL compiler. This means we can use the semantic to bind variables to

vertex attributes such as the position, color, direction (normal), and so on of a vertex point.
Semantics are used for variables on the global scope only. Semantics of variables not part

of the global scope are ignored. An example of a semantic follows, where the pos variable

is given the semantic POSITION, which can be used by the application to store the

incoming vertex positions in that variable as geometry is rendered.

float4 pos : POSITION

../ch08#ch08

You can name a semantic whatever you like. Special reversed semantics are built into HLSL

such as SV_POSITION. The SV at the beginning of the reserved semantics stands for

system value. Other system-value semantics include the following.

 SV_ClipDistance[n]: Used for clip distance data

 SV_CullDistance[n]: Used for cull distance data

 SV_Coverage: The output coverage mask

 SV_Depth: The pixel’s depth stored in the depth buffer

 SV_IsFrontFace: A flag indicating that the primitive is visible

 SV_Position: The vertex position

 SV_RenderTargetArrayIndex: The render target’s array index that is currently

being rendered to

 SV_SampleIndex: The sample frequency index data

 SV_Target[n]: A render target array (SV_RenderTargetArrayIndex is its

index)

 SV_ViewportArrayIndex: The index to the current camera view-port being used

 SV_InstanceID: The per-instance identifier

 SV_PrimitiveID: The per-primitive identifier

 SV_VertexID: The per-vertex identifier

Semantics will be discussed more when we look at the first shader example for this chapter.

Additional information that can be paired with a variable is an annotation that is used by the
effects framework and ignored by HLSL, an initial value that simply sets a value to the

variable at its declaration, a constant register index, and a packet offset.

FLOW CONTROL AND FUNCTIONS

Functions can be created in HLSL just like they can in C/C++. You can create whatever
functions you want, and in the HLSL technique, you specify the main entry points for the

vertex, geometry, and pixel shaders. This will be shown later during the discussion of
techniques. The flow control statements that are supported by HLSL include the following:

 if

 break

 continue

 discard

 do

 while

 for

 stop

 switch

The discard statement is used to instruct the pixel shader to not output the results and to

discard them. The stop statement is used to stop the execution of the current statement

and return its output immediately.

SHADERS IN DIRECT3D 10

In the following sections we will examine three simple Direct3D 10 HLSL shaders:

the Shader Example demo, the Constant Buffer demo, and the Uniform Variables demo. The
Shader Example demo will demonstrate how to create a straightforward vertex, pixel, and

geometry shader that is used to render geometry using a solid color. The Uniform Variables
demo will demonstrate how to set the color of the geometry that is being rendered by using

uniform variables. The Constant Buffer demo will demonstrate how to use constant buffers
with uniform variables in HLSL. Each of these demos can be found on this book’s

accompanying CD-ROM in the Chapter 4 folder.

SHADER EXAMPLE DEMO

The goal of the Shader Example demo is to render a triangle using a color that is specified

by the pixel shader. The demo will also create the most basic geometry shader that can be
created, which will take the incoming geometry and pass it along to the pixel shader without

doing anything to it.

The input for the vertex shader expects a single position for each vertex of the geometry

that is being rendered. The geometry shader takes as input the output of the vertex shader,
which also happens to be the position. In other words, the vertex shader passes along the

position directly to the geometry shader. The pixel shader then shades any pixel between
the vertex points with a purple color, which is created by using full red and full blue for the

return color.

The body of the vertex shader takes the input and passes it directly to the output for the

geometry shader. The pixel shader’s output is a four-component color. The input from the
geometry shader isn’t used because the pixel shader does not need to calculate anything

specific for the vertex attribute. On the other hand, algorithms such as lighting and other

techniques that will be performed throughout this book need information from either the
vertex or geometry shaders.

For the geometry shader, the function looks slightly different than for the vertex and pixel
shaders. Before the start of the function, the geometry shader requires the

maxvertexcount keyword followed by a number to tell HLSL the vertex count of what

the shader will be writing out. Therefore, if we are outputting a single triangle, this value

will be 3. The declaration of the geometry shader function starts with the primitive type it is
to expect followed by the input geometry (which is the output from the vertex shader on the

primitive level) and a stream object. The primitive type can be one of the following

keywords, where adj stands for adjacent or index geometry (discussed in Chapter 8):

../ch04#ch04
../ch08#ch08

 point

 line

 triangle

 lineadj

 triangleadj

The triangle stream object is used to write out vertices that will be used by the pixel shader.

The number used for the maxvertexcount should be the largest number of vertices that

is outputted. A call to the stream object’s function Append() is used to write a vertex.

When declaring the triangle stream, the type the stream will write needs to be specified

between angle brackets (< >). The HLSL shader from the Shader Example demo is shown

in Listing 4.1. The inputs for each shader are represented by structures that store the
various variables that make up the input, along with their semantics.

LISTING 4.1. THE SHADER EXAMPLE DEMO’S HLSL SHADER FILE

struct VS_INPUT

{

 float4 Pos : POSITION;

};

struct GS_INPUT

{

 float4 Pos : SV_POSITION;

};

struct PS_INPUT

{

 float4 Pos : SV_POSITION;

};

// VERTEX SHADER

GS_INPUT VS(VS_INPUT input)

{

 GS_INPUT output = (GS_INPUT)0;

 output.Pos = input.Pos;

 return output;

}

// GEOMETRY SHADER

[maxvertexcount(3)]

void GS(triangle GS_INPUT input[3],

 inout TriangleStream<PS_INPUT> triStream)

{

 PS_INPUT output = (PS_INPUT)0;

javascript:moveTo('ch04list1');

 output.Pos = input[0].Pos;

 triStream.Append(input[0]);

 output.Pos = input[1].Pos;

 triStream.Append(input[1]);

 output.Pos = input[2].Pos;

 triStream.Append(input[2]);

 triStream.RestartStrip();

}

// PIXEL SHADER

float4 PS(PS_INPUT input) : SV_Target

{

 return float4(1.0f, 0.0f, 1.0f, 1.0f);

}

technique10 PassThroughShader

{

 pass P0

 {

 SetVertexShader(CompileShader(vs_4_0, VS()));

 SetGeometryShader(CompileShader(gs_4_0, GS()));

 SetPixelShader(CompileShader(ps_4_0, PS()));

 }

}

The application uses the POSITION semantic to bind the vertex position to the Pos

variable of the vertex shader input on the application side, and SV_POSITION is the

reserved output position semantic used by both the geometry and vertex shaders. In the

geometry shader the function RestartStrip() of the triangle stream is used to mark

the beginning of a new primitive. For a three-point triangle, this function should be called

after each complete triangle (or after every three vertices) has been appended to the output
stream.

At the end of the shader is a technique declaration. A technique in HLSL is used to specify
an effect, and an effect file can have more than one technique inside of it. The keyword

technique10 is used for Direct3D 10 techniques and is followed by the name of the

technique. This name can be anything you want it to be. Inside the technique you can
specify one or more passes starting with P0 (and going to P1, P2, etc.). In each pass you

must specify the name of the functions that mark the entry point for each shader type. If a

geometry shader is not used, specify NULL.

The CompileShader() HLSL function compiles the functions that mark the entry point

into the appropriate shader type, and SetVertexShader(), SetGeometryShader,

and SetPixelShader() set the output of the CompileShader() function to the

appropriate shader type. The CompileShader() function takes the shader version flag

and entry function as parameters.

On the application side we need objects that represent the shader in an ID3D10Effect

object, one that is used to bind to the effect technique that will be used in an object of the

type ID3D10EffectTechnqiue, and an input layout in an object of type

ID3D10InputLayout. The input layout is used to access the input data for the input

assembler stage. This will be discussed later in this chapter. The global variables from the

Shader Example demo are shown in Listing 4.2.

LISTING 4.2. GLOBALS FROM THE SHADER EXAMPLE DEMO

#include<d3d10.h>

#include<d3dx10.h>

#pragma comment(lib, "d3d10.lib")

#pragma comment(lib, "d3dx10.lib")

#define WINDOW_NAME "Shader Example"

#define WINDOW_CLASS "UPGCLASS"

#define WINDOW_WIDTH 800

#define WINDOW_HEIGHT 600

// Global window handles.

HINSTANCE g_hInst = NULL;

HWND g_hwnd = NULL;

// Direct3D 10 objects.

ID3D10Device *g_d3dDevice = NULL;

IDXGISwapChain *g_swapChain = NULL;

ID3D10RenderTargetView *g_renderTargetView = NULL;

ID3D10Effect *g_shader = NULL;

ID3D10EffectTechnique *g_passThroughTech = NULL;

ID3D10InputLayout *g_shaderInputLayout = NULL;

ID3D10Buffer *g_triVB = NULL;

The InitializeDemo() function starts by loading the shader file and then making sure

it does not contain any errors. If any exist, they are displayed in a message box so the user
knows what is wrong and they can be fixed afterwards. Errors are stored in an object of the

type ID3D10Blob, and calling its GetBufferPointer() function allows for the

retrieval of the text describing the errors in the shader file.

The technique PassThroughShader from the effect file is obtained, and the input layout

is created after the successful loading of the effect file. Since the vertex shader requires a

vertex with just a position, the input layout matches that and binds to the POSITION

semantic that was seen in the vertex shader’s input structure. The remainder of the function

loads the triangle geometry and prepares it for rendering. The InitializeDemo()

function is shown in Listing 4.3.

LISTING 4.3. THE SHADER EXAMPLE DEMO’S INITIALIZEDEMO() FUNCTION

bool InitializeDemo()

{

 // Load the shader.

javascript:moveTo('ch04list2');
javascript:moveTo('ch04list3');

 DWORD shaderFlags = D3D10_SHADER_ENABLE_STRICTNESS;

#if defined(DEBUG) || defined(_DEBUG)

 shaderFlags |= D3D10_SHADER_DEBUG;

#endif

 ID3D10Blob *errors = NULL;

 HRESULT hr = D3DX10CreateEffectFromFile("shader.fx", NULL,

NULL,

 "fx_4_0", shaderFlags,

0,

 g_d3dDevice, NULL,

NULL,

 &g_shader, &errors,

NULL);

 if(errors != NULL)

 {

 MessageBox(NULL, (LPCSTR)errors->GetBufferPointer(),

 "Error in Shader!", MB_OK);

 errors->Release();

 }

 if(FAILED(hr))

 return false;

 g_passThroughTech = g_shader->GetTechniqueByName(

 "PassThroughShader");

 // Create the geometry.

 D3D10_INPUT_ELEMENT_DESC layout[] =

 {

 { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,

 D3D10_INPUT_PER_VERTEX_DATA, 0 },

 };

 unsigned int numElements = sizeof(layout) /

sizeof(layout[0]);

 D3D10_PASS_DESC passDesc;

 g_passThroughTech->GetPassByIndex(0)->GetDesc(&passDesc);

 hr = g_d3dDevice->CreateInputLayout(layout, numElements,

passDesc.pIAInputSignature,

passDesc.IAInputSignatureSize,

 &g_shaderInputLayout);

 if(FAILED(hr))

 return false;

 D3DXVECTOR3 vertices[] =

 {

 D3DXVECTOR3(0.0f, 0.5f, 0.5f),

 D3DXVECTOR3(0.5f, -0.5f, 0.5f),

 D3DXVECTOR3(-0.5f, -0.5f, 0.5f),

 };

 // Create the vertex buffer.

 D3D10_BUFFER_DESC buffDesc;

 buffDesc.Usage = D3D10_USAGE_DEFAULT;

 buffDesc.ByteWidth = sizeof(D3DXVECTOR3) * 3;

 buffDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER;

 buffDesc.CPUAccessFlags = 0;

 buffDesc.MiscFlags = 0;

 D3D10_SUBRESOURCE_DATA resData;

 resData.pSysMem = vertices;

 hr = g_d3dDevice->CreateBuffer(&buffDesc, &resData,

&g_triVB);

 if(FAILED(hr))

 return false;

 return true;

}

The last two functions in the Shader Example demo are the RenderScene() and

Shutdown() functions. The rendering function starts by clearing the rendering target to

black, applies the input layout, applies the vertex buffer, and applies the primitive type

(primitive topology) to the input assembler. The function then gets the pass description
from the techniques from the shader and uses this to loop through the passes specified by

the effect file. For each pass specified the geometry is rendered using the Draw() function

of the Direct3D10 device. The rendering function is shown in Listing 4.4. The

Shutdown() function releases each of the Direct3D 10 objects that were created when the

application shut down and is also shown in Listing 4.4. A screenshot from the demo is

shown in Figure 4.2.

LISTING 4.4. SHADER EXAMPLE DEMO’S RENDERSCENE() AND SHUTDOWN()

FUNCTIONS

void RenderScene()

{

 float col[4] = { 0, 0, 0, 1 };

 g_d3dDevice->ClearRenderTargetView(g_renderTargetView, col);

javascript:moveTo('ch04list4');
javascript:moveTo('ch04list4');
javascript:moveTo('ch04fig02');

 unsigned int stride = sizeof(D3DXVECTOR3);

 unsigned int offset = 0;

 g_d3dDevice->IASetInputLayout(g_shaderInputLayout);

 g_d3dDevice->IASetVertexBuffers(0, 1, &g_triVB,

 &stride, &offset);

 g_d3dDevice->IASetPrimitiveTopology(

 D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

 D3D10_TECHNIQUE_DESC techDesc;

 g_passThroughTech->GetDesc(&techDesc);

 for(unsigned int i = 0; i < techDesc.Passes; i++)

 {

 g_passThroughTech->GetPassByIndex(i)->Apply(0);

 g_d3dDevice->Draw(3, 0);

 }

 g_swapChain->Present(0, 0);

}

void Shutdown()

{

 if(g_d3dDevice) g_d3dDevice->ClearState();

 if(g_swapChain) g_swapChain->Release();

 if(g_renderTargetView) g_renderTargetView->Release();

 if(g_shader) g_shader->Release();

 if(g_shaderInputLayout) g_shaderInputLayout->Release();

 if(g_triVB) g_triVB->Release();

 if(g_d3dDevice) g_d3dDevice->Release();

}

FIGURE 4.2. SCREENSHOT FROM THE SHADER EXAMPLE DEMO.

UNIFORM VARIABLES SHADER DEMO

The Uniform Variables Shader demo builds off of the last demo and adds the ability to allow
the color of the rendered geometry to be set through a uniform global variable. Because the

default type for global variables is extern uniform, it is only necessary to specify the data

type and its name. The Uniform Variables Shader demo’s shader has the new global variable
added to the top of the file, and the variable is used by the pixel shader to output the color,

which is shown in Listing 4.5. The output of the pixel shader is a float4, which is

essentially a four-component vector that can be used to store the red, green, blue, and

alpha values of a color just like it can be used to store the position of a vector and so on.

LISTING 4.5. THE UNIFORM VARIABLES SHADER DEMO’S SHADER FILE

float4 color;

struct VS_INPUT

{

 float4 Pos : POSITION;

};

struct GS_INPUT

{

 float4 Pos : SV_POSITION;

};

struct PS_INPUT

{

 float4 Pos : SV_POSITION;

};

javascript:moveTo('ch04list5');

GS_INPUT VS(VS_INPUT input)

{

 GS_INPUT output = (GS_INPUT)0;

 output.Pos = input.Pos;

 return output;

}

[maxvertexcount(3)]

void GS(triangle GS_INPUT input[3],

 inout TriangleStream<PS_INPUT> triStream)

{

 PS_INPUT output = (PS_INPUT)0;

 output.Pos = input[0].Pos;

 triStream.Append(input[0]);

 output.Pos = input[1].Pos;

 triStream.Append(input[1]);

 output.Pos = input[2].Pos;

 triStream.Append(input[2]);

 triStream.RestartStrip();

}

float4 PS(PS_INPUT input) : SV_Target

{

 return color;

}

technique10 PassThroughShader

{

 pass P0

 {

 SetVertexShader(CompileShader(vs_4_0, VS()));

 SetGeometryShader(CompileShader(gs_4_0, GS()));

 SetPixelShader(CompileShader(ps_4_0, PS()));

 }

}

To bind to the shader’s new global variable, we use an object of type

ID3D10EffectVectorVariable on the application side. This variable is used to bind to

the shader’s extern uniform variable and allows us to set its value from the application

side before the shader is used to render any geometry. The data type used in the shader

dictates the object type used by the application. So for a vector we will use

ID3D10EffectVectorVariable, for a matrix we will use

ID3D10EffectMatrixVariable, and so forth. The shader-related globals are shown in

Listing 4.6. A list of effect variable interfaces is as follows:

 ID3D10EffectVectorVariable

javascript:moveTo('ch04list6');

 ID3D10EffectMatrixVariable

 ID3D10EffectBlendVariable

 ID3D10EffectDepthStencilVariable

 ID3D10EffectRasterizerVariable

 ID3D10EffectRenderTargetViewVariable

 ID3D10EffectSamplerVariable

 ID3D10EffectScalarVariable

 ID3D10EffectShaderResourceVariable

 ID3D10EffectShaderVariable

 ID3D10EffectStringVariable

The various effect variables such as

ID3D10EffectMatrixVariable and so forth will be

discussed as they are encountered throughout this book.

Each effect variable is used to access the corresponding
variable in the shader’s effect file.

LISTING 4.6. THE SHADER-RELATED GLOBALS FROM THE UNIFORM
VARIABLES SHADER DEMO

ID3D10Effect *g_shader = NULL;

ID3D10EffectVectorVariable *g_colorEffectVar = NULL;

ID3D10EffectTechnique *g_passThroughTech = NULL;

ID3D10InputLayout *g_shaderInputLayout = NULL;

To bind to the effect variable, we call the effect object’s (of type ID3D10Effect)

GetVariableByName() function. This function will return access to any variable in the

shader that the application can access. The object that is returned is of type

ID3D10EffectVariable, the base type for all effect variables. So, we call the base

object’s AsVector() function to return access to our ID3D10EffectVectorVariable

object. Aside from getting a variable by name, we can also get it by index or by semantic.

The modified and shader-specific code in the InitializeDemo() function for the

Uniform Variables Shader demo is shown in Listing 4.7. The base

(ID3D10EffectVariable) object that is returned has As*() functions for each of the

effect variable types that was listed earlier in this section.

LISTING 4.7. MODIFIED INITIALIZEDEMO() FROM THE UNIFORM

VARIABLES SHADER DEMO

bool InitializeDemo()

{

javascript:moveTo('ch04list7');

 // Load the shader.

 DWORD shaderFlags = D3D10_SHADER_ENABLE_STRICTNESS;

#if defined(DEBUG) || defined(_DEBUG)

 shaderFlags |= D3D10_SHADER_DEBUG;

#endif

 ID3D10Blob *errors = NULL;

 HRESULT hr = D3DX10CreateEffectFromFile("shader.fx", NULL,

NULL,

 "fx_4_0", shaderFlags,

0,

 g_d3dDevice, NULL,

NULL,

 &g_shader, &errors,

NULL);

 if(errors != NULL)

 {

 MessageBox(NULL, (LPCSTR)errors->GetBufferPointer(),

 "Error in Shader!", MB_OK);

 errors->Release();

 }

 if(FAILED(hr))

 return false;

 g_passThroughTech = g_shader->GetTechniqueByName(

 "PassThroughShader");

 g_colorEffectVar = g_shader->GetVariableByName(

 "color")->AsVector();

 …

}

The last modified function from the Uniform Variables Shader demo is the

RenderScene() function. In this function the only new code is the code that sets the

uniform variable in the shader. This is done by calling the

ID3D10EffectVectorVariable object’s SetFloatVector(), which takes as a

parameter a four-component floating-point array that has the values that are to be set to
the shader’s variable. In this demo the values that are used will set the color to red, where

the first array element is the red (set to the max of 1.0), the second is the green, the third

is the blue, and the last is the alpha component. The RenderScene() function is shown in

Listing 4.8.

LISTING 4.8. THE UNIFORM VARIABLES SHADER DEMO’S RENDERSCENE()

FUNCTION

javascript:moveTo('ch04list8');

void RenderScene()

{

 float col[4] = { 0, 0, 0, 1 };

 g_d3dDevice->ClearRenderTargetView(g_renderTargetView, col);

 unsigned int stride = sizeof(D3DXVECTOR3);

 unsigned int offset = 0;

 g_d3dDevice->IASetInputLayout(g_shaderInputLayout);

 g_d3dDevice->IASetVertexBuffers(0, 1, &g_triVB,

 &stride, &offset);

 g_d3dDevice->IASetPrimitiveTopology(

 D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

 D3D10_TECHNIQUE_DESC techDesc;

 g_passThroughTech->GetDesc(&techDesc);

 float redCol[4] = { 1.0f, 0.0f, 0.0f, 1.0f };

 g_colorEffectVar->SetFloatVector(redCol);

 for(unsigned int i = 0; i < techDesc.Passes; i++)

 {

 g_passThroughTech->GetPassByIndex(i)->Apply(0);

 g_d3dDevice->Draw(3, 0);

 }

 g_swapChain->Present(0, 0);

}

Each effect variable has its own set of functions for setting the type of variable in question.

Using the vector variable, for example, there are the following get (retrieves the variable’s
value) and set (sets the variable’s value) functions:

 GetFloatVector()

 GetFloatVectorArray()

 SetFloatVector()

 SetFloatVectorArray()

 GetIntVector()

 GetIntVectorArray()

 SetIntVector()

 SetIntVectorArray()

 GetBoolVector()

 GetBoolVectorArray()

 SetBoolVector()

 SetBoolVectorArray()

The array versions of these functions are used if you have an array of global variables that

you want to set at one time. An example is float4 colors[10] for an array of 10

colors.

CONSTANT BUFFER SHADER DEMO

The Constant Buffer demo builds off of the Uniform Variables Shader demo and adds

a few different features. The demo can be found on the CD-ROM in the Chapter 4 folder
under the name Constant Buffer.

In the shader’s source file, three matrices are added to the code for the world, view, and

projection. Matrices will be discussed in more detail in Chapter 8. For now it is enough to
know that the world matrix is used to position and orient geometry in the environment, the

view matrix represents the virtual camera, and the projection matrix represents properties
of the camera such as the field of view, aspect ratio, and so forth.

The projection matrix usually doesn’t change much, and in most of the demos in this book it
only changes upon the resizing of the application’s window. Because of this, the projection

matrix is placed in a constant buffer that is specified using the cbChangeOnResize,

which tells HLSL that the contents in the constant buffer only change when the application’s

window resizes. The world and view matrices tend to change or at least be set often, and
they are set in a constant buffer that is marked to change for every frame using

cbChangesEveryFrame.

Matrices are used to transform a vertex from one coordinate space to another. In the vertex

shader the vertex position is transformed from its local space to world space using the world

matrix, then to view space using the view matrix, then to screen space using the projection
matrix. Coordinate spaces and transformations will be discussed in more detail in Chapter 8.

The Constant Buffer demo’s shader is shown in Listing 4.9.

LISTING 4.9. THE CONSTANT BUFFER DEMO’S SHADER

float4 color;

cbuffer cbChangesEveryFrame

{

 matrix World;

 matrix View;

};

cbuffer cbChangeOnResize

{

 matrix Projection;

};

../ch04#ch04
../ch08#ch08
../ch08#ch08
javascript:moveTo('ch04list9');

struct VS_INPUT

{

 float4 Pos : POSITION;

};

struct GS_INPUT

{

 float4 Pos : SV_POSITION;

};

struct PS_INPUT

{

 float4 Pos : SV_POSITION;

};

GS_INPUT VS(VS_INPUT input)

{

 GS_INPUT output = (GS_INPUT)0;

 float4 Pos = mul(input.Pos, World);

 Pos = mul(Pos, View);

 output.Pos = mul(Pos, Projection);

 return output;

}

[maxvertexcount(3)]

void GS(triangle GS_INPUT input[3],

 inout TriangleStream<PS_INPUT> triStream)

{

 PS_INPUT output = (PS_INPUT)0;

 output.Pos = input[0].Pos;

 triStream.Append(input[0]);

 output.Pos = input[1].Pos;

 triStream.Append(input[1]);

 output.Pos = input[2].Pos;

 triStream.Append(input[2]);

 triStream.RestartStrip();

}

float4 PS(PS_INPUT input) : SV_Target

{

 return color;

}

technique10 PassThroughShader

{

 pass P0

 {

 SetVertexShader(CompileShader(vs_4_0, VS()));

 SetGeometryShader(CompileShader(gs_4_0, GS()));

 SetPixelShader(CompileShader(ps_4_0, PS()));

 }

}

Since the Constant Buffer demo has three new effect variables, the application has to supply

that information. Matrix variables are created using ID3D10EffectMatrixVariable.

The global variables, including the new matrices, are shown in Listing 4.10.

LISTING 4.10. THE GLOBAL VARIABLES FROM THE CONSTANT BUFFER DEMO

ID3D10Effect *g_shader = NULL;

ID3D10EffectTechnique *g_passThroughTech = NULL;

ID3D10EffectMatrixVariable *g_worldEffectVar = NULL;

ID3D10EffectMatrixVariable *g_viewEffectVar = NULL;

ID3D10EffectMatrixVariable *g_projEffectVar = NULL;

ID3D10EffectVectorVariable *g_colorEffectVar = NULL;

ID3D10InputLayout *g_shaderInputLayout = NULL;

We can bind the new matrix effect variables to the shader inputs. This is done by calling the

GetVariableByName() function and calling the function AsMatrix() on the object

that is returned. Remember to match the function call (such as AsMatrix() or

AsVector()) with the proper variable type to correctly obtain and set the variable’s data.

Once the application has access to the matrix variables, they can be set using the

SetMatrix() function. This function takes a 16-element floating-point array, which can

also be represented by a D3DXMATRIX object. To clear a matrix we must create what is

known as an identity matrix, which is done by calling the function

D3DXMatrixIdentity(). The modified InitializeDemo() function is shown in

Listing 4.11. All of this will be reviewed in detail in Chapter 8.

LISTING 4.11. THE MODIFIED INITIALIZEDEMO() FUNCTION FOR THE

CONSTANT BUFFER DEMO

bool InitializeDemo()

{

 // Load the shader.

 DWORD shaderFlags = D3D10_SHADER_ENABLE_STRICTNESS;

#if defined(DEBUG) || defined(_DEBUG)

 shaderFlags |= D3D10_SHADER_DEBUG;

#endif

 ID3D10Blob *errors = NULL;

 HRESULT hr = D3DX10CreateEffectFromFile("shader.fx", NULL,

NULL,

javascript:moveTo('ch04list10');
javascript:moveTo('ch04list11');
../ch08#ch08

 "fx_4_0", shaderFlags, 0, g_d3dDevice, NULL, NULL,

 &g_shader, &errors, NULL);

 if(errors != NULL)

 {

 MessageBox(NULL, (LPCSTR)errors->GetBufferPointer(),

 "Error in Shader!", MB_OK);

 errors->Release();

 }

 if(FAILED(hr))

 return false;

 g_passThroughTech = g_shader->GetTechniqueByName(

 "PassThroughShader");

 g_worldEffectVar = g_shader->GetVariableByName(

 "World")->AsMatrix();

 g_viewEffectVar = g_shader->GetVariableByName(

 "View")->AsMatrix();

 g_projEffectVar = g_shader->GetVariableByName(

 "Projection")->AsMatrix();

 g_colorEffectVar = g_shader->GetVariableByName(

 "color")->AsVector();

 …

 D3DXMatrixIdentity(&g_worldMat);

 D3DXMatrixIdentity(&g_viewMat);

 g_projEffectVar->SetMatrix((float*)&g_projMat);

 return true;

}

The rendering function for the Constant Buffer demo adds functions that set the extern

uniform variables for the world and view matrices. This is done by calling the function

SetMatrix(). Since the world and view matrices in the demo are D3DXMATRIX objects,

you can cast them to float to send to the SetMatrix() function. This is shown Listing

4.12.

LISTING 4.12. THE CONSTANT BUFFER DEMO’S RENDERING FUNCTION

void RenderScene()

{

 float col[4] = { 0, 0, 0, 1 };

 g_d3dDevice->ClearRenderTargetView(g_renderTargetView, col);

javascript:moveTo('ch04list12');
javascript:moveTo('ch04list12');
javascript:moveTo('ch04list12');

 unsigned int stride = sizeof(D3DXVECTOR3);

 unsigned int offset = 0;

 g_d3dDevice->IASetInputLayout(g_shaderInputLayout);

 g_d3dDevice->IASetVertexBuffers(0, 1, &g_triVB,

 &stride, &offset);

 g_d3dDevice->IASetPrimitiveTopology(

 D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

 D3D10_TECHNIQUE_DESC techDesc;

 g_passThroughTech->GetDesc(&techDesc);

 float redCol[4] = { 1.0f, 0.0f, 0.0f, 1.0f };

 g_colorEffectVar->SetFloatVector(redCol);

 g_worldEffectVar->SetMatrix((float*)&g_worldMat);

 g_viewEffectVar->SetMatrix((float*)&g_viewMat);

 for(unsigned int i = 0; i < techDesc.Passes; i++)

 {

 g_passThroughTech->GetPassByIndex(i)->Apply(0);

 g_d3dDevice->Draw(3, 0);

 }

 g_swapChain->Present(0, 0);

}

The last thing to note in this demo is that the projection matrix is calculated and set on a

resize event. For now, know that the projection matrix controls the appearance of objects as
they are rendered to the screen. Perspective projection adds perspective to the scene,

which is what we usually want, while orthogonal projection does not use perspective.
Orthogonal projection renders objects the same size regardless of how far away they are

moving, while perspective naturally gives the impression that objects are getting smaller

with distance.

To set the projection matrix to the shader effect, we set the projection effect variable we’ve

created the same way we’ve done for the view and world matrices: using the

SetMatrix() function. To create a perspective matrix we can use the function

D3DXMatrixPerspectiveFovLH(), which is shown here but will be discussed in more

detail in Chapter 8. The function prototype for D3DXMatrixPerspectiveFovLH() and

the updated resize function for the demo that uses it are shown in Listing 4.13.

LISTING 4.13. UPDATED RESIZE FUNCTION FOR THE CONSTANT BUFFER

DEMO

void ResizeD3D10Window(int width, int height)

{

 if(g_d3dDevice == NULL)

 return;

 D3D10_VIEWPORT vp;

 vp.Width = width;

../ch08#ch08
javascript:moveTo('ch04list13');

 vp.Height = height;

 vp.MinDepth = 0.0f;

 vp.MaxDepth = 1.0f;

 vp.TopLeftX = 0;

 vp.TopLeftY = 0;

 g_d3dDevice->RSSetViewports(1, &vp);

 D3DXMatrixPerspectiveFovLH(&g_projMat, (float)D3DX_PI *

0.25f,

 width/(FLOAT)height, 1.0f,

1000.0f);

 if(g_projEffectVar != NULL)

 g_projEffectVar->SetMatrix((float*)&g_projMat);

}

D3DXMATRIX * D3DXMatrixPerspectiveFovLH(

 D3DXMATRIX *pOut,

 FLOAT fovy,

 FLOAT Aspect,

 FLOAT zn,

 FLOAT zf

);

The D3DXMatrixPerspectiveFovLH() function returns the address to the projection

matrix or can have it returned to the address of the first parameter and takes the field of
view, the aspect ratio, the near plane (how close to the camera objects can be drawn), and

the far plane (to what distance objects can be drawn) of the camera.

SUMMARY

Shaders are a very important part of computer graphics, and in the video games industry
programmable shaders are a common and standard part of any game. Direct3D 10 requires

at least a basic understanding of HLSL and shaders to display geometry properly to the
screen. Throughout the remainder of this book shaders play a crucial role in the scenes that

will be rendered.

In this chapter we took a look at Direct3D’s HLSL along with features specific to Shader

Model 4 such as geometry shaders. Throughout the remainder of this book we will be using
shaders to create various effects that include but are not limited to the following.

 Per-pixel lighting

 Shadows

 Image filters as a post-processing effect

 Texture mapping

 Bump mapping

The following elements were discussed in this chapter.

 Shaders in general

 Direct3D’s High-Level Shading Language

 Vertex shaders

 Pixel shaders

 Geometry shaders

 Constant buffers

CHAPTER QUESTIONS

Answers to the following chapter review questions can be found in Appendix A.

1. Define programmable shaders.

2. What does HLSL stand for?

3. What does GLSL stand for?

4. What is a shader model? What are the versions discussed in this chapter?

5. What is the difference between low-level and high-level shaders?

6. List three of the issues discussed in this chapter that occur when working with

low-level programmable shaders.

7. Define a vertex shader. What stage(s) accepts the vertex shader’s output as

input?

8. Define a geometry shader. What stage(s) accepts the geometry shader’s output

as input?

9. Define a pixel shader. What stage(s) accepts the pixel shader’s output as input?

10. What is the input layout of the input assembler?

11. What data type is used for effect shaders in Direct3D 10?

12. What is the fixed-function pipeline?

../app01#app01
../app01lev1sec4#app01qa4q1a1
../app01lev1sec4#app01qa4q2a2
../app01lev1sec4#app01qa4q3a3
../app01lev1sec4#app01qa4q4a4
../app01lev1sec4#app01qa4q5a5
../app01lev1sec4#app01qa4q6a6
../app01lev1sec4#app01qa4q7a7
../app01lev1sec4#app01qa4q8a8
../app01lev1sec4#app01qa4q9a9
../app01lev1sec4#app01qa4q10a10
../app01lev1sec4#app01qa4q11a11
../app01lev1sec4#app01qa4q12a12

13. List three of the limitations of the fixed-function pipeline that were discussed in

this chapter.

14. What does it mean to have a unified shader core (architecture)?

15. Between which stages does the geometry shader sit?

16. List the various data types in the vector type.

17. List the various data types in the scalar type.

18. List the various data types in the matrix type.

19. List the seven data types in the sampler type.

20. What is a constant buffer, and what use does it have in shaders?

21. List and define the three constant buffer usages discussed in this chapter.

22. What is a texture buffer?

23. Define semantics.

24. What is the Buffer type used for in the HLSL syntax?

25. List and define four of the storage classes with which a variable can be defined.

26. Static cannot be used for what type of variables in an HLSL effect shader?

27. Define dynamic branching.

28. What does the SV in SV_POSITION stand for?

29. Define a perspective projection as discussed in this chapter.

30. Define an orthogonal projection as discussed in this chapter.

CHAPTER EXERCISES

Exercise 1: Change the output color to blue in the Shader Example demo.

../app01lev1sec4#app01qa4q13a13
../app01lev1sec4#app01qa4q14a14
../app01lev1sec4#app01qa4q15a15
../app01lev1sec4#app01qa4q16a16
../app01lev1sec4#app01qa4q17a17
../app01lev1sec4#app01qa4q18a18
../app01lev1sec4#app01qa4q19a19
../app01lev1sec4#app01qa4q20a20
../app01lev1sec4#app01qa4q21a21
../app01lev1sec4#app01qa4q22a22
../app01lev1sec4#app01qa4q23a23
../app01lev1sec4#app01qa4q24a24
../app01lev1sec4#app01qa4q25a25
../app01lev1sec4#app01qa4q26a26
../app01lev1sec4#app01qa4q27a27
../app01lev1sec4#app01qa4q28a28
../app01lev1sec4#app01qa4q29a29
../app01lev1sec4#app01qa4q30a30

Exercise 2: Add a uniform variable to the Uniform Variables Shader demo that is a single

float that represents the color’s brightness. Set this variable to a value between 0.0 and 1.0
and multiply it by the color in the pixel shader. The closer to 0.0 this new variable is, the

darker the color should appear.

Exercise 3: Change the single color to an array of colors in the Uniform Variables Shader

demo and add another uniform variable that will serve as an index into that array. In the
application allow the index to be set for which color the user wants displayed and use that

index to access a color value in the colors array. You can use any colors you want, but don’t
use two of the same colors when setting the colors array.

5. TRANSFORMATIONS

In This Chapter

 Projection Transformations

 World Transformations

 View Transformations

 Transformation Demo

As geometry is passed to the vertex shader, it is often operated on by various pieces of
information to prepare it for its final rendering position. This information often includes

adding projections to the scene, positioning objects throughout the 3D scene, and view or
camera information.

The purpose of this chapter is to cover projection, world, and view transformations. These
transformations often take place in the vertex shader and are a very important topic to

discuss. All of these topics deal with matrices, which are discussed in detail in Chapter 8,
―Game Math.‖

PROJECTION TRANSFORMATIONS

Projection transformations affect how a rendered scene looks when displayed to the screen.
The two main types of projections are orthogonal projections and perspective projections,

both of which are supported by Direct3D. A projection is a matrix that stores projection
information. To apply the projection to the geometry in the scene, we multiply the

projection matrix and vertices of the geometry, which is a process known as transformation.
A projection is a representation of how objects are viewed when rendered. The second type,

orthogonal projection, will be discussed next.

ORTHOGONAL PROJECTION

Orthogonal projection causes all objects to be rendered to the screen at the same size

regardless of how far away an object is. In the real world, as objects move farther away
from you, they appear smaller. An example of this is shown in Figure 5.1.

FIGURE 5.1. AN EXAMPLE OF OBJECTS GETTING SMALLER AS THEY MOVE
FARTHER AWAY.

../ch05lev1sec1#ch05lev1sec1
../ch05lev1sec2#ch05lev1sec2
../ch05lev1sec3#ch05lev1sec3
../ch05lev1sec4#ch05lev1sec4
../ch08#ch08
javascript:moveTo('ch05fig01');

In orthogonal projection, the size of the objects does not change due to distance. Many

times, this effect is desired, but for most 3D scenes in modern video games it is often

important to have a different type of projection. Orthogonal projection can be a great type
of projection for 2D elements such as menus, heads-up displays, and any other type of

rendering where the geometry is not to change in size with distance. An example of
orthogonal projection is shown in Figure 5.2.

FIGURE 5.2. AN EXAMPLE OF ORTHOGONAL PROJECTION.

In Direct3D there are four different functions for creating an orthogonal matrix. The first

two functions are D3DXMatrixOrthoLH() and D3DXMatrixOrthoRH(). The LH

version creates a left-handed projection matrix, while RH creates a right-handed projection
matrix. Their function prototypes are as follows.

D3DXMATRIX * D3DXMatrixOrthoLH(

 D3DXMATRIX *pOut,

 FLOAT w,

 FLOAT h,

 FLOAT zn,

 FLOAT zf

);

D3DXMATRIX * D3DXMatrixOrthoRH(

 D3DXMATRIX *pOut,

 FLOAT w,

 FLOAT h,

 FLOAT zn,

 FLOAT zf

);

The parameters of the functions start with the D3DXMATRIX object, which is the structure

that represents matrices in Direct3D, which will be created from the function call, the width

javascript:moveTo('ch05fig02');

and height of the desired view volume, and the near and far plane. The near plane

determines how close to the viewer an object can be before it is seen, while the far plane
determines how far away an object can be before it disappears. The width and height, which

is normally the width and height of the screen or rendering area, in addition to the near and
far values collectively represent the view volume. The view volume is an area in which

objects are visible. (see Figure 5.3)

FIGURE 5.3. AN EXAMPLE OF A VIEW VOLUME.

The left- and right-handedness of the functions refer to coordinate systems. A coordinate

system essentially tells the graphics API which direction, left or right, the positive X axis
travels and which direction, toward or away, the positive Z axis travels. An illustration is

shown in Figure 5.4.

FIGURE 5.4. LEFT- AND RIGHT-HANDED COORDINATE SYSTEMS.

javascript:moveTo('ch05fig03');
javascript:moveTo('ch05fig04');

OpenGL uses a right-handed coordinate system, while

Direct3D traditionally used a left-handed system.

Direct3D allows developers to use either left- or right-hand coordinates. Using a right-

handed system allows developers to use the same data in OpenGL and Direct3D applications
without modification of the geometry’s X and Z axes. This is the reason behind the multiple

versions of the orthogonal projection functions. The last two orthogonal projection functions
are as follows.

D3DXMATRIX * D3DXMatrixOrthoOffCenterLH(

 D3DXMATRIX *pOut,

 FLOAT l,

 FLOAT r,

 FLOAT b,

 FLOAT t,

 FLOAT zn,

 FLOAT zf

);

D3DXMATRIX * D3DXMatrixOrthoOffCenterRH(

 D3DXMATRIX *pOut,

 FLOAT l,

 FLOAT r,

 FLOAT b,

 FLOAT t,

 FLOAT zn,

 FLOAT zf

);

The l and r parameters represent the minimum and maximum width, while b and t

represent the minimum and maximum height. zn and zf are the near and far values. The

D3DXMatrixOrthoLH() and D3DXMatrixOrthoRH() functions are special cases of

D3DXMatrixOrthoOffCenterLH() and D3DXMatrixOrthoOffCenterRH(). The

off center functions allow more customizability than the other two seen earlier in this

section.

PERSPECTIVE PROJECTION

The other type of projection is perspective projection. This type of projection adds
perspective to scenes. Perspective projection allows objects to shrink as they move farther

away from the viewer. Objects also distort as they are viewed at an angle. Figure 5.5 shows
an example of perspective projection. Perspective projection is a type of projection that can

be seen in all modern 3D video games.

FIGURE 5.5. PERSPECTIVE PROJECTION.

javascript:moveTo('ch05fig05');

Perspective projection is the same as the idea behind

perspective in drawing art.

The perspective projection matrix functions are as follows, where the parameters match

those of the orthogonal counterparts.

D3DXMATRIX * D3DXMatrixPerspectiveLH(

 D3DXMATRIX *pOut,

 FLOAT w,

 FLOAT h,

 FLOAT zn,

 FLOAT zf

);

D3DXMATRIX * D3DXMatrixPerspectiveRH(

 D3DXMATRIX *pOut,

 FLOAT w,

 FLOAT h,

 FLOAT zn,

 FLOAT zf

);

D3DXMATRIX * D3DXMatrixPerspectiveOffCenterLH(

 D3DXMATRIX *pOut,

 FLOAT l,

 FLOAT r,

 FLOAT b,

 FLOAT t,

 FLOAT zn,

 FLOAT zf

);

D3DXMATRIX * D3DXMatrixPerspectiveOffCenterRH(

 D3DXMATRIX *pOut,

 FLOAT l,

 FLOAT r,

 FLOAT b,

 FLOAT t,

 FLOAT zn,

 FLOAT zf

);

WORLD TRANSFORMATIONS

In modern video games many different 3D objects can be found throughout a scene. Some
of these objects are dynamic, such as character models and vehicles, while others are

static. Dynamic objects are objects that move either by player control, game physics, or
artificial control. Static objects cannot move at all. A static object can be a building, the

terrain, or some other object that the designer does not mean to be dynamic.

When objects are created in 3D modeling and animation applications, they are saved out

and imported by the game. The vertex positions of these objects are not necessarily the
positions they need to be in the game. For example, if a box is created around the origin (0,

0, 0) and that box needs to be in the second story of a virtual building, unless that position
just happens to be around the origin, the data needs to be altered. If complex models are

created and need to be rendered more than once—for example, having the same box

appear 50 times in a level—then it would be inefficient to create the exact same geometry
but at different positions again and again so that the boxes load in the correct spots in a

game. To further complicate things, dynamic objects need to be moved on the fly. When it
comes to character models, how and where these objects move are unpredictable.

The purpose of a world matrix transformation is to position and rotate objects in a 3D
scene. This allows characters to move through the world, allows objects to be rendered at

multiple locations, and so on. The world matrix represents an object’s position in the game
world. This means objects can be created in a modeling package such as 3D Studio Max and

moved, rotated, and scaled as necessary so that they appear how the designer requires in a
game. This is often done in a level editor, where objects can be positioned, rotated, and

scaled. A visual of using world positions to place objects is shown in Figure 5.6.

FIGURE 5.6. DIFFERENT WORLD POSITIONS FOR THE SAME OBJECT.

Scaling refers to changing an object’s size from its original size. To scale a matrix you call

the function D3DXMatrixScaling(), which has the following prototype.

D3DXMATRIX * D3DXMatrixScaling(

 D3DXMATRIX *pOut,

 FLOAT sx,

 FLOAT sy,

 FLOAT sz

);

javascript:moveTo('ch05fig06');

The D3DXMatrixScaling() function parameters are the matrix that is being scaled and

the X, Y, and Z axis factors. To set the position, also known as translation, of a matrix, you

use the function D3DXMatrixTranslation(). The function takes the matrix and the

positions X, Y, and Z value of the scaling factors. The function prototype for the

D3DXMatrixTranslation() can be seen as follows.

D3DXMATRIX* D3DXMatrixTranslation(

 D3DXMATRIX *pOut,

 FLOAT x,

 FLOAT y,

 FLOAT z

);

Rotations and other matrix-related topics and functions will be discussed in more detail in

Chapter 8.

VIEW TRANSFORMATIONS

The view transformation matrix is a matrix that represents the viewer. The viewer is
commonly known as the game’s camera. A camera is represented by a position and a

direction in which it is pointing. In OpenGL and Direct3D, camera matrices are often known
as look-at matrices. In Direct3D a look-at matrix can be created using either a left- or right-

handed function much like the projection matrix. These functions are called

D3DXMatrixLookAtLH() and D3DXMatrixLookAtRH() and have the following

prototypes.

D3DXMATRIX * D3DXMatrixLookAtLH(

 D3DXMATRIX *pOut,

 CONST D3DXVECTOR3 *pEye,

 CONST D3DXVECTOR3 *pAt,

 CONST D3DXVECTOR3 *pUp

);

D3DXMATRIX * D3DXMatrixLookAtRH(

 D3DXMATRIX *pOut,

 CONST D3DXVECTOR3 *pEye,

 CONST D3DXVECTOR3 *pAt,

 CONST D3DXVECTOR3 *pUp

);

The eye vector is the 3D position of the camera. The look-at vector is the position in 3D

space at which you are looking. The position you are located at and the position you are
looking at define the view’s direction. The up vector is a vector that represents which

direction is up. The up vector can be used to allow the camera to be rotated. In a first-
person camera, this can be used to rotate the position you are looking at (look-at point)

around the up vector to look around you from left to right.

We’ll hold off on discussing the details about views, as well as matrices in general, until the

mathematics chapter, Chapter 8. The purpose of this demo is to see how to transform

../ch08#ch08
../ch08#ch08

vectors in a vertex shader; the details and math behind it beyond what was discussed in

this chapter come later.

The concatenation of the projection, world, and view
matrices forms the model-view projection matrix. This is also

known as the MVP matrix.

TRANSFORMATION DEMO

On the book’s accompanying CD-ROM is a demo application called Transformations

that demonstrates how to create a projection, view, and world matrix and how to use them
in a vertex shader. The demo application builds off of the Primitives demo. If you want to

follow along with the coding of this demo, you can use the Primitives demo’s source code as
a starting point.

The global section of the Transformations demo starts by adding matrices for the projection,

view, and world. It also adds effect variables that allow these matrices to be bound to the
shader. The global section from the Transformations demo is shown in Listing 5.1. Effect

matrix variables are represented by the type ID3D10EffectMatrixVariable.

LISTING 5.1. THE GLOBAL SECTION FROM THE TRANSFORMATIONS DEMO

#include<windows.h>

#include<d3d10.h>

#include<d3dx10.h>

#pragma comment(lib, "d3d10.lib")

#pragma comment(lib, "d3dx10.lib")

#define WINDOW_NAME "Transformations"

#define WINDOW_WIDTH 800

#define WINDOW_HEIGHT 600

// Direct3D 10 objects.

ID3D10Device *g_d3dDevice = NULL;

IDXGISwapChain *g_swapChain = NULL;

ID3D10RenderTargetView *g_renderTargetView = NULL;

// Effect objects and variables.

ID3D10Effect *g_shader = NULL;

ID3D10EffectTechnique *g_technique = NULL;

ID3D10EffectMatrixVariable *g_worldEffectVar = NULL;

ID3D10EffectMatrixVariable *g_viewEffectVar = NULL;

ID3D10EffectMatrixVariable *g_projEffectVar = NULL;

// Display object to store scene geometry.

ID3D10InputLayout *g_layout = NULL;

javascript:moveTo('ch05list1');

ID3D10Buffer *g_vertexBuffer = NULL;

// Structure used to represent a single vertex.

struct DX10_Vertex

{

 D3DXVECTOR3 pos;

};

// Projection, world, and view transformations.

D3DXMATRIX g_worldMat, g_viewMat, g_projMat;

The projection matrix depends on the window’s dimensions. Because of this, the projection

matrix is set in the demo’s resizing function, ResizeD3D10Window(). This function in

the Transformations demo adds a line of code at the end that creates a left-handed

projection matrix using D3DXMatrixPerspectiveFOVLH(), which is shown in Listing

5.2.

LISTING 5.2. THE RESIZING FUNCTION FROM THE TRANSFORMATIONS DEMO

void ResizeD3D10Window(int width, int height)

{

 if(g_d3dDevice == NULL)

 return;

 D3D10_VIEWPORT vp;

 vp.Width = width;

 vp.Height = height;

 vp.MinDepth = 0.0f;

 vp.MaxDepth = 1.0f;

 vp.TopLeftX = 0;

 vp.TopLeftY = 0;

 g_d3dDevice->RSSetViewports(1, &vp);

 D3DXMatrixPerspectiveFovLH(&g_projMat, (float)D3DX_PI *

0.25f,

 width/(FLOAT)height, 0.1f,

1000.0f);

}

The demo’s initialization function adds code to bind the effect variables and to set the two

remaining matrices. The projection matrix is set and updated by the

ResizeD3D10Window() function, so it is not included in the initialize function. The world

matrix is not set to anything, so it is cleared by calling D3DXMatrixIdentity(). The

D3DXMatrixIdentity() function is essentially used to clear matrices, which is

discussed mathematically in Chapter 8. The view matrix is set 15 units back, which places

the view farther back in the scene than what it was in the Primitives demo. The square
looks smaller in the scene because perspective projection is being used. There is no

difference between the square geometry in the Transformations demo and that in the
Primitives demo. The difference is in the camera’s position. The demo’s initialize function is

shown in Listing 5.3. Effect variables are obtained by calling the GetVariableByName()

function, which takes as a parameter the name used in the shader file for the variable.

javascript:moveTo('ch05list2');
javascript:moveTo('ch05list2');
javascript:moveTo('ch05list2');
../ch08#ch08
javascript:moveTo('ch05list3');

LISTING 5.3. THE DEMO’S INITIALIZE FUNCTION

bool InitializeDemo()

{

 …

 g_technique = g_shader->GetTechniqueByName("PassThrough");

 g_worldEffectVar = g_shader->GetVariableByName(

 "World")->AsMatrix();

 g_viewEffectVar = g_shader->GetVariableByName(

 "View")->AsMatrix();

 g_projEffectVar = g_shader->GetVariableByName(

 "Proj")->AsMatrix();

 …

 // Clear the matrices.

 D3DXMatrixIdentity(&g_worldMat);

 D3DXMatrixIdentity(&g_viewMat);

 D3DXVECTOR3 eye(0, 0, -15);

 D3DXVECTOR3 lookAt(0, 0, 0);

 D3DXVECTOR3 up(0, 1, 0);

 D3DXMatrixLookAtLH(&g_viewMat, &eye, &lookAt, &up);

 return true;

}

In the rendering function, three added lines of code are used to set the matrices to the
shader. Technically, it is only necessary to set effect variables when they change or when

you switch shaders. The matrices are set by using the effect variable’s function

SetMatrix(), which takes as a parameter the matrix represented by a float array. This

can be done by casting the matrix to a float pointer. The rendering function from the

Transformations demo is shown in Listing 5.4.

LISTING 5.4. THE RENDERING FUNCTION FROM THE TRANSFORMATIONS

DEMO

void RenderScene()

{

 float col[4] = { 0, 0, 0, 1 };

 // Clear the rendering destination to a specified color.

 g_d3dDevice->ClearRenderTargetView(g_renderTargetView, col);

 unsigned int stride = sizeof(DX10_Vertex);

 unsigned int offset = 0;

 // Setup the geometry buffer that will be rendered.

 g_d3dDevice->IASetInputLayout(g_layout);

javascript:moveTo('ch05list4');

 g_d3dDevice->IASetVertexBuffers(0, 1, &g_vertexBuffer,

 &stride, &offset);

 g_d3dDevice->IASetPrimitiveTopology(

 D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

 // Prepare the effect we will use to draw the geometry.

 g_viewEffectVar->SetMatrix((float*)&g_viewMat);

 g_projEffectVar->SetMatrix((float*)&g_projMat);

 g_worldEffectVar->SetMatrix((float*)&g_worldMat);

 D3D10_TECHNIQUE_DESC techDesc;

 g_technique->GetDesc(&techDesc);

 // Loop through each pass of the technique and draw.

 for(unsigned int i = 0; i < techDesc.Passes; i++)

 {

 g_technique->GetPassByIndex(i)->Apply(0);

 g_d3dDevice->Draw(6, 0);

 }

 // Display the results to the target window (swap chain).

 g_swapChain->Present(0, 0);

}

The last code that needs to be seen is the Transformations demo’s shader. This shader

starts by defining three variables (World, View, and Proj), each of which are obtained by

the application by name. These variables are used by the vertex shader to multiply the

matrices against the incoming vertex position. The vertex is transformed by the world

matrix first, then the view, and then the projection. If the world, view, and projection
matrices where concatenated into one, then one multiplication would be used. In this demo

we’ll see the longer form by multiplying against each in order. The rest of the shader is the
same from the Primitives demo. The shader from the Transformation demo is shown in

Listing 5.5. Figure 5.7 shows a screenshot of the demo.

LISTING 5.5. THE TRANSFORMATIONS DEMO’S SHADER

/*

 Chapter 5 - Transformations

 Ultimate Game Programming with DirectX 2nd Edition

 Created by Allen Sherrod

*/

matrix World;

matrix View;

matrix Proj;

struct VS_INPUT

{

 float4 Pos : POSITION;

};

javascript:moveTo('ch05list5');
javascript:moveTo('ch05fig07');

struct PS_INPUT

{

 float4 Pos : SV_POSITION;

};

PS_INPUT VS(VS_INPUT input)

{

 PS_INPUT output = (PS_INPUT)0;

 output.Pos = mul(input.Pos, World);

 output.Pos = mul(output.Pos, View);

 output.Pos = mul(output.Pos, Proj);

 return output;

}

float4 PS(PS_INPUT input) : SV_Target

{

 return float4(1, 0, 1, 1);

}

technique10 PassThrough

{

 pass P0

 {

 SetVertexShader(CompileShader(vs_4_0, VS()));

 SetGeometryShader(NULL);

 SetPixelShader(CompileShader(ps_4_0, PS()));

 }

}

FIGURE 5.7. A SCREENSHOT FROM THE TRANSFORMATIONS DEMO.

SUMMARY

Transformations are very important in video game graphics. The vertex shader is often
responsible for forming the transformation of vectors against various matrices. By

transforming our data we are able to represent cameras, view projections, local orientations
for both static and dynamic geometry, and more.

The following elements were discussed in this chapter:

 Transformations in general

 Projection transformations

 World transformations

 View transformations

CHAPTER QUESTIONS

Answers to the following chapter review questions can be found in Appendix A.

1. What are projection transformations?

2. Describe orthogonal projection.

../app01#app01
../app01lev1sec5#app01qa5q1a1
../app01lev1sec5#app01qa5q2a2

3. Describe perspective projection.

4. In what shader does transformation often take place?

A. Geometry

B. Vertex

C. Pixel

5. Multiplying a vector and a matrix together is known as what?

A. Vector-matrix multiplication

B. Vector transform

C. Concatenation

D. None of the above

6. What are the two types of coordinate systems? Describe each.

7. What is the purpose of a world matrix?

8. What is the purpose of the view matrix?

9. What is the name of the concatenation result of the projection, world, and view

matrices?

10. What three elements can be used to build a view matrix in Direct3D?

11. True or false: Matrices can be concatenated together.

12. True or false: Vectors can be concatenated into a matrix.

13. True or false: There are generally three types of projections.

14. True or false: World and local are two different names for the same type of

matrix.

15. True or false: The order in which matrices are multiplied matters.

CHAPTER EXERCISES

Exercise 1: Change from perspective projection in the Transformations demo to orthogonal
projection.

../app01lev1sec5#app01qa5q3a3
../app01lev1sec5#app01qa5q4a4
../app01lev1sec5#app01qa5q5a5
../app01lev1sec5#app01qa5q6a6
../app01lev1sec5#app01qa5q7a7
../app01lev1sec5#app01qa5q8a8
../app01lev1sec5#app01qa5q9a9
../app01lev1sec5#app01qa5q10a10
../app01lev1sec5#app01qa5q11a11
../app01lev1sec5#app01qa5q12a12
../app01lev1sec5#app01qa5q13a13
../app01lev1sec5#app01qa5q14a14
../app01lev1sec5#app01qa5q15a15

Exercise 2: Place the information needed to represent a view in a class. Call this class a

camera class.

Exercise 3: Build off of Exercise 2 and allow the view’s position to be controlled by the

keyboard. Use the Win32 function GetAsyncKeyState() to detect input from the

keyboard, which has the following function prototype:

SHORT GetAsyncKeyState(int vKey);

Use the virtual key codes VK_LEFT, VK_RIGHT, VK_UP, and VK_DOWN for the parameter

to detect input from the arrow keys.

6. SHADING AND SURFACES

In This Chapter

 Textures

 Types of Textures

 Textures in Direct3D 10

 Implementing Texture Mapping

 Additional Texturing Topics

The simulation and variation of detail is very important when creating 3D environments for
players to experience. To realistically represent something such as a brick wall using

nothing more than colored polygons would take such a tremendous amount of data that it
would be not only impractical but impossible to represent the types of scenes we see in

today’s games in that manner. What is needed is a way to simulate detail in game objects
and structures without overwhelming the user’s hardware with millions upon millions of

polygons just for one object.

In this chapter we will discuss a very important technique that is used in video game

graphics to simulate this detail across surfaces. This technique is known as texture
mapping, and it is the basis for a lot of effects in video games. When creating complex

virtual scenes, the topic of texture mapping is unavoidable and is something that all

graphics programmers will have to tackle early on in their education.

TEXTURES

A texture is data that is used during the shading process of surfaces to give them more
detail. Textures are usually images that are loaded from image file formats such as .JPG,

.TGA, .BMP, .DDS, and .PNG. The images themselves are usually created using an
application such as Adobe Photoshop CS 3 or Microsoft Paint. Images that are not loaded

from files can be created using mathematical algorithms, which are common for textures

known as procedural textures. The topic of generating textures using algorithms is beyond
the scope of this book, as they can become quite mathematically intense and require a lot

of background knowledge.

The purpose of this chapter is to describe how to load textures into Direct3D 10 and how to

apply them to surfaces in real time within our virtual environments. This is important

../ch06lev1sec1#ch06lev1sec1
../ch06lev1sec2#ch06lev1sec2
../ch06lev1sec3#ch06lev1sec3
../ch06lev1sec4#ch06lev1sec4
../ch06lev1sec5#ch06lev1sec5

because textures and their various uses are critical to many of the graphical techniques

commonly used in video games. Throughout this book, textures will come up repeatedly in
the contexts of various topics, so a firm understanding of them is of the utmost importance

before moving on.

TYPES OF TEXTURES

Several types of images can be loaded and used in Direct3D. Each of these texture types

has its own purpose, each of which will be discussed in this section. The types of textures

that can be used in Direct3D include the following texture types, but what each texture type
is used for depends on what purpose the texture serves in the application, which can be

different than storing color information of a surface:

 1D textures

 2D textures

 3D textures

 Cube maps

 Sphere maps

1D TEXTURES

A 1D texture is akin to a 1D array of values. A 1D texture is often used as a look-up table in

one or more shaders. A look-up table in this sense refers to sending an array of data to a
shader so the shader can look up the values in the array to compute whatever value it is

meant to compute. For example, let’s say you filled in an array with 10 color values. You
can then use some attribute of the vertex—for example, its height—as an array index into

the color array to select the prespecified color. This can be done by taking the range of the
height (where the height falls within the minimum and maximum possible) as a percentage

and then multiplying that percentage by the size of the array. The integer result could then
be used as an array index to select a color from the look-up table.

2D TEXTURES

2D textures are the most common types of textures that you will likely work with in your
game projects. A 2D texture is essentially an ordinary image. Technically, anything can be

stored in a texture that includes information not used for color, which we’ll discuss later
(e.g., the alpha mapping technique in Chapter 7, ―Additional Texture Mapping,‖ and bump

mapping in Chapter 13, ―Lighting‖).

The best way to understand a 2D texture as an image is to open up any image file you have

on your computer that has a width and a height. In a 1D texture, the data can be thought
of as rows without columns or widths without heights, but a 2D texture has both a width

and a height. An example of a 2D texture created in Adobe Photoshop is shown in Figure
6.1.

FIGURE 6.1. A 2D TEXTURE.

../ch07#ch07
../ch13#ch13
javascript:moveTo('ch06fig01');
javascript:moveTo('ch06fig01');
javascript:moveTo('ch06fig01');

In this chapter we will focus on the loading and rendering of these 2D texture images. The

textures loaded in this chapter will be used to color a surface to increase the surface details.
Textures used in this manner are known as color maps or decal maps.

3D TEXTURES

3D textures are also called volume textures. A 3D texture is a texture that has a width, a

height, and a depth. The depth part of the 3D texture is what makes it a volume rather than
a flat slice like a 2D texture image. 3D textures can be used for the following graphical

effects:

 Volumetric fog

 Volumetric clouds

 Various other environmental effects such as 3D textures used to light an environment

 Visualization for scientific analysis instruments

3D textures have traditionally required a lot of processing power and memory in

applications such as video games. Therefore, not many games use many 3D textures. For
example, a 2D texture of 128 × 128 is relatively small, especially considering that many

textures in today’s games exceed the resolution of 1024 × 1024. A 128 × 128 2D texture
has 16,384 pixels. If each pixel is three bytes in size, then a 128 × 128 2D texture is

49,152 bytes, or almost 50 kilobytes. If you had a 3D texture with the same size across all
dimensions, such as 128 wide, 128 high, and 128 deep, you would end up with a texture

that has 2,097,152 pixels and would be 6,291,456 bytes in size assuming 3 bytes per pixel.

In other words, a 3D texture with the resolution of 128 × 128 × 128 would be 6 megabytes
in size for a single, relatively low-resolution 3D texture. Imagine how big a 512 × 512 ×

512 3D texture would be. Even at a cubic size of 128, the difference between 6 megabytes
and 50 kilobytes is beyond tremendous. If you had a 3D texture with a cubic size of 512,

more memory (over to 380 megabytes, assuming 24 bits) would be required for that one
texture than some games have for entire game levels. Even if you assumed a 600-

megabyte budget of texture data for each game level in your game, a single 512 resolution
3D texture would consume more than half that budget.

CUBE AND SPHERE MAPS

A cube map is a collection of six 2D texture images that together often represent the view
of an environment from a point in space. A 3D texture is a volume, but a cube map is just

six 2D images that create not a volume but rather what is known as an environment map.
An environment map can be created dynamically by placing the camera in the game world

and saving the view’s render as a texture six times for the forward, backward, up, down,
left, and right directions.

Technically the data in a cube map can be used however you choose, but cube maps are
commonly used for storing the scene’s environment so that other graphical techniques such

as reflection mapping (simulating reflections using textures) can be performed on objects.
An example of a cube map is shown in Figure 6.2. A cube map can be six separate images

or one large image. Later in this chapter you’ll see how to create and load cube maps in
Direct3D 10.

FIGURE 6.2. A CUBE MAP.

A sphere map is a 2D texture image in which the contents are spherical. When sampling
from the texture, specific equations are used to retrieve the information in a way that allows

the sphere map to be used to texture a sphere or some other object with volume. Sphere

maps and cube maps tend to serve the same purpose, which is to store an environment’s
information in an image. An example of a sphere map is shown in Figure 6.3.

FIGURE 6.3. A SPHERE MAP.

javascript:moveTo('ch06fig02');
javascript:moveTo('ch06fig03');

TEXTURES IN DIRECT3D 10

In this chapter we will load texture images that were created from tools such as

Adobe Photoshop and display them on surfaces in Direct3D 10. The topic of actually creating
texture images is beyond the scope of this book and is more suited for a text that deals with

digital art. Since this book focuses on programming, we will focus on the code necessary to
load and display textures. All of the sample demos in this chapter come with one or more

texture images on the CD-ROM.

TEXTURES COORDINATES

To properly display textures on surfaces, we use texture coordinates. A texture coordinate is

an attribute of the vertex in the same way the position is an attribute that is used to specify
how textures are to be mapped onto surfaces. When performing texture mapping, we must

specify, along with the positions of each vertex, the texture coordinates.

In Figure 6.4, four vertices form the shape of the square. The position property of the

vertex specifies how the shape appears in the 3D virtual world. The texture coordinates for
each vertex, on the other hand, specify how the texture image is displayed on the rendered

surface.

FIGURE 6.4. A SQUARE DISPLAYING VERTICES.

A 1D texture has a single value for the texture coordinate of a vertex, a 2D texture uses

two values (one for the width and one for the height), and a 3D texture uses three values.
Cube maps use three values since the six images make up a single cube texture map

whereas a cube map is made up of six 2D textures, and sphere maps use two since sphere
maps are just 2D images.

A texture coordinate is essentially a percentage and is defined using floating-point data

types. Using 2D texture coordinates as an example, the first value in the texture coordinate

javascript:moveTo('ch06fig04');

is the percentage from 0.0 to 1.0 (in other words, 0% to 100%) of how far along the width

this vertex is mapped onto the image, and the second value is the percentage for the
height. These are the S and T texture coordinates for 2D textures. They are also known as

the U and V or the TU and TV texture coordinates. For 3D textures, you have S, T, and Q or
TU, TV, and TW. The value of a texture coordinate can go below 0.0 or above 1.0, which can

be useful for tiling a texture so that it appears across a surface repeatedly.

In Figure 6.5 the upper-left vertex point has a texture coordinate of 0.0 for the S and 0.0

for the T. This tells graphics APIs such as Direct3D where in the image the mapping should
be for that vertex. The upper-right vertex has 1.0 and 0.0 for the coordinates; that is, the

upper-right vertex should have the upper-right portion of the textured image mapped to it
(i.e., 100% of the width but 0% of the height).

FIGURE 6.5. TEXTURE COORDINATES FOR A SURFACE’S VERTICES.

When a primitive is mapped, the relationship of all the vertices of the shape determines how
the object will look. So using the example in Figure 6.5, the image is displayed on the

surface as if it was opened up normally in an image editor. However, in Figure 6.6, you can
see that changing the texture coordinates will alter how the image is mapped unto the

surface. How the image appears mapped on the surface is solely dependent on the

relationship of all the vertices.

FIGURE 6.6. CHANGING THE TEXTURE COORDINATES ALTERS THE OUTPUT.

javascript:moveTo('ch06fig05');
javascript:moveTo('ch06fig05');
javascript:moveTo('ch06fig06');

In Direct3D, 0.0 for the S (TU) texture coordinate represents the left-most part of the

image, and 1.0 is the right-most part. For the T (TV) coordinate 0.0 is the top-most part

and 1.0 is the bottom-most part. Any value between 0.0 and 1.0 falls within that range.

Up to this point we’ve specified vertices using three floating-point values for the position.

From here on, whenever texture mapping is used, we will need five floating-point values for
2D textures, where the first three are for the position and the last two values are the S and

T texture coordinates. Throughout the remainder of this book, we will refer to the texture
coordinates for a 2D texture as the TU and TV pair since many books use that terminology.

TEXTURE FILTERING

Texture filtering is algorithms used by graphics hardware that affect how the mapped

image’s contents appear on the surface. They are commonly supported by graphics
hardware. By using the right texture filtering, you can improve the quality of textured

mapped surfaces. Because images are not displayed to the rendered screen at a 1:1 ratio,
artifacts can appear on textured mapped surfaces as objects move away from the camera,

close to the camera, or are tilted at an angle. This means that every screen pixel is not
shaded with an individual pixel in the image. As the surface with the texture moves away, a

single screen pixel can actually have multiple image pixels fall within it. This can cause the

images to distort slightly and display artifacts that can damage the rendered look. Among
these are aliasing artifacts, which will be discussed in more detail later in this book.

The fastest filtering algorithm is called nearest-neighbor interpolation filtering, also
commonly referred to as point-filtering. Point-filtering essentially selects the closest pixel to

the point being sampled and uses that as the color. This is the fastest type of filtering
because no additional equations need to be solved to compute the color. It simply uses the

texture coordinates to find the closest pixel.

The second-fastest type of filtering is called bilinear interpolation, and the third-fastest is

called trilinear interpolation. Bilinear interpolation averages each pixel with four surrounding
pixels and displays the average instead of the original. This has the effect of slightly

softening the images by using a very simple blur and helps reduce various artifacts such as
aliasing artifacts, as shown in Figure 6.7. Trilinear interpolation does the same, but it also

includes interpolation between mip maps (multi-resolution maps). Mip maps will be
discussed in more detail in the upcoming section. We’ll discuss how to specify hardware

filtering later on in this chapter.

javascript:moveTo('ch06fig07');

FIGURE 6.7. ALIASING ARTIFACTS.

MULTI-RESOLUTION MAPS

A mip map is a multi-resolution map of a texture image. Let’s say you have a 2D texture
that is 512 × 512. In computer graphics you can load the same texture at smaller

resolutions and store them all in a single texture object so that the graphics hardware can
choose which resolution of the image (hence multi-resolution map) to use. The reasoning

for this is fairly straightforward. As objects move away from the camera, their high-
resolution detail is not as visible as if you opened the image in an editor such as Adobe

Photoshop or if you viewed the image up close. Therefore, if you have an image that is 1024
× 1024, and if that texture is being displayed on a surface that is so far away that the

texture looks the way it would if it was 128 × 128, then why send the 1024 × 1024 image
down the rendering pipeline? The larger the textures, the larger the bottleneck on the

graphics hardware, along with other factors such as the amount of geometry. Figure 6.8
shows how detail from a far-away texture cannot be seen as easily.

FIGURE 6.8. DETAIL IS LOST AS THE OBJECT MOVES FAR AWAY.

The purpose of mip maps is to reduce the amount of texture data that is processed and
passed down the graphics hardware when rendering surfaces at a distance. When mip maps

javascript:moveTo('ch06fig08');

are enabled, the graphics hardware performs all operations and chooses the best resolution

to display surfaces that are rendered in a scene. So when using an API such as OpenGL or
Direct3D, all you have to do is supply the API with the mip maps or tell the API to generate

them if you don’t have multiple resolutions. Reducing the amount of data that is passed
down the graphics hardware can lead to better performance, and that is the purpose of mip

maps.

Mip maps can be created by choosing a texture format that saves mip maps such as the

.DDS image file format. The mip maps can be manually loading from individual images one
at a time into a texture object, or they can be generated by the graphics hardware, which is

an option OpenGL and Direct3D offer. Mip maps have resolutions that are a factor of 2, and
every level of resolution is half the size as the one before it. So if you had a 1024 × 1024

texture and four levels of mip maps, the highest level would be 1024 × 1024, the second
level would be 512 × 512, the third level would be 256 × 256, and the fourth level would be

128 × 128. An example of mip maps as they would look side-by-side is shown in Figure 6.9.

FIGURE 6.9. EXAMPLE OF MIP MAPS (512 × 512, 256 × 256, 128 × 128, 64 ×

64).

LOADING TEXTURES

There are three main ways to create a texture in Direct3D 10. Programmers have the option
of loading a texture from a file, loading a texture from memory, or generating one in a pixel

shader. The generation of a texture in a shader is called procedural texture generation, and
these textures are created using an algorithm.

Direct3D 10 offers a number of texture-related functions, each of which we’ll briefly look at
in this chapter. Throughout the rest of this book we focus on the function

D3DX10CreateShaderResourceViewFromFile(). We will use this function to load

2D textures, but it also works on the other texture types discussed in the beginning of this

chapter. The texture functions Direct3D offers include the following.

 D3DX10CreateShaderResourceViewFromFile()

 D3DX10CreateShaderResourceViewFromMemory()

 D3DX10CreateShaderResourceViewFromResource()

 D3DX10CreateTextureFromFile()

 D3DX10CreateTextureFromMemory()

javascript:moveTo('ch06fig09');

 D3DX10CreateTextureFromResource()

 D3DX10LoadTextureFromTexture()

 D3DX10GetImageInfoFromFile()

 D3DX10GetImageInfoFromMemory()

 D3DX10GetImageInfoFromResource()

 D3DX10CreateAsyncTextureInfoProcessor()

 D3DX10CreateAsyncTextureProcessor()

 D3DX10FilterTexture()

 D3DX10ComputeNormalMap()

 D3DX10SaveTextureToFile()

 D3DX10SaveTextureToMemory()

To use textures we need a texture object and a shader resource view. The texture object is

the texture itself, and the shader resource view is used to allow the shader to access the

resource. The D3DX10CreateShaderResourceViewFromFile(),

D3DX10CreateShaderResourceViewFromMemory(), and

D3DX10CreateShaderResourceViewFromResource() functions are used to create

a shader resource view along with a texture object. The result of calling this function is the

shader resource view object that has the type ID3D10ShaderResourceView. If you use

one of these three functions, you don’t have to create and load the texture object (of type

ID3D10Texture2D for 2D textures) separately because these functions will do all of the

work of preparing the shader resource view and texture object for you. Later, when we free

the texture, we will see that when using this function, we must use the shader resource
view to obtain a pointer to the texture so that the texture can be freed from the shader

resource view.

The D3DX10CreateShaderResourceViewFromFile() function takes as parameters

the Direct3D device object, the name of the texture file to load, an optional

D3DX10_IMAGE_LOAD_INFO structure that is used to specify the characteristics of the

texture, a thread pump used by multi-threading applications (beyond the scope of this

book), the address to the shader resource view that will be created as a result of this
function, and an optional address that will store the return value of the function in a multi-

threading application if the thread pump was created. The function’s memory has slightly
different parameters, offering the size and image pixel data instead of the file name. The

resource version has a parameter that represents the resource’s name rather than a texture

file name. The D3DX10CreateShaderResourceViewFromFile() function is the most

commonly used function in this book.

The D3DX10CreateTextureFromFile(), D3DX10CreateTextureFromMemory(),

and D3DX10CreateTextureFromResource() functions are used to create a texture

object but do not create the shader resource view object. In contrast, other functions,

including the D3DX10CreateShaderResourceViewFromFile() function, create the

shader resource view and internally set the texture object to it. If you call one of the shader
resource view creation functions, you do not need to call any of these functions that directly

create the texture object since it is done automatically. These functions essentially create

the texture without the shader resource view.

The D3DX10LoadTextureFromTexture() function is used to load a new texture from

an existing texture and takes as parameters the source texture, a

D3DX10_TEXTURE_LOAD_INFO descriptor, and an address at which to store the new

texture.

The D3DX10GetImageInfoFromFile(), D3DX10GetImageInfoFromMemory(),

and D3DX10GetImageInfoFromResource() functions are used to retrieve image

information from a texture. This information is stored in a D3DX10_IMAGE_INFO object

and includes the image’s width, height, depth, size in bytes, total mip map levels, file

format, color format, dimensions, and miscellaneous flags. The resource dimensions can be
any of the following:

 D3D10_RESOURCE_DIMENSION_UNKNOWN

 D3D10_RESOURCE_DIMENSION_BUFFER

 D3D10_RESOURCE_DIMENSION_TEXTURE1D

 D3D10_RESOURCE_DIMENSION_TEXTURE2D

 D3D10_RESOURCE_DIMENSION_TEXTURE3D

The format can be any of the D3D10FORMAT types discussed in Chapter 3, ―Rendering

Geometry,‖ and the miscellaneous flags can be

D3D10_RESOURCE_MISC_GENERATE_MIPS, D3D10_RESOURCE_MISC_SHARED, or

D3D10_RESOURCE_MISC_TEXTURECUBE.

The D3DX10CreateAsyncTextureInfoProcessor() and

D3DX10CreateAsyncTextureProcessor() functions are used to create data

processors that are used in multi-threaded applications to load a texture. This is an
advanced topic that requires an understanding of multi-threading, which is beyond the

scope of this book.

The next two texture functions are used to manipulate a texture that is already loaded. The

D3DX10FilterTexture() function takes as parameters the texture object to filter, the

mip map level of the original texture being filtered, and flags for the filter. The flags can be
one of the following values:

 D3DX10_DEFAULT

 D3DX10_FILTER_NONE

 D3DX10_FILTER_POINT (nearest neighbor filtering)

 D3DX10_FILTER_LINEAR (bilinear filtering)

 D3DX10_FILTER_TRIANGLE

 D3DX10_FILTER_BOX

 D3DX10_FILTER_MIRROR_U

../ch03#ch03

 D3DX10_FILTER_MIRROR_V

 D3DX10_FILTER_MIRROR_W

 D3DX10_FILTER_MIRROR (same as D3DX10_FILTER_MIRROR_U /

D3DX10_FILTER_MIRROR_V / D3DX10_FILTER_MIRROR_W)

 D3DX10_FILTER_DITHER

 D3DX10_FILTER_DITHER_DIFFUSION

 D3DX10_FILTER_SRGB_IN

 D3DX10_FILTER_SRGB_OUT

 D3DX10_FILTER_SRGB (same as D3DX10_FILTER_SRGB_IN /

D3DX10_FILTER_SRGB_OUT)

The second function is the D3DXComputeNormalMap(), which is used to take a texture

and to convert it to a normal map image. This function will be discussed in more detail in

Chapter 13 when bump and normal mapping is covered.

The last texture functions are used to save a texture to a file or to memory. The

D3DX10SaveTextureToFile() function takes as parameters the texture object that is

to be saved, a D3DX10_IMAGE_FILE_FORMAT description object, and the name of the

file that will be created. The second texture-saving function is called

D3DX10SaveTextureToMemory(), and it takes as parameters the texture object to be

saved, the image format description, an out address to a ID3D10BLOG object that will

store the texture in memory, and optional flags.

If you want to create the texture and shader resource view separately, you can call

D3DX10CreateTextureFromFile() to create the texture, or you can call one of the

other texture creation functions—for example, CreateShaderResourceView()—to

create only the resource view. The CreateShaderResourceView() takes as

parameters the resource (such as the ID3D10Texture2D texture that is created by

calling the D3DX10CreateTextureFromFile() function), the

D3D10_SHADER_RESOURCE_VIEW_DESC, which is the descriptor object that specifies

the characteristics of the shader resource view object is being created, and the address at

which to store the shader resource view as an ID3D10ShaderResourceView object.

APPLYING TEXTURES

Objects and surfaces are rendered in Direct3D 10 using effect shaders as discussed in
Chapter 4, ―Shader Model 4.‖ The effect shaders themselves are objects of the

ID3D10Effect type. Inside each shader there can be one or more techniques, which are

essentially implementations of rendering effects.

To apply a texture to a technique so that a shader bound to that technique can access it, we

need to create an ID3D10EffectShaderResourceVariable object. This variable will

bind the application to the shader so that a value can be stored inside it and be accessed by

the shaders. As discussed in Chapter 4, this is done by calling the technique object’s

GetVariableByName() function (or an equivalent access function) and calling

AsShaderResource() on the returned object to gain access to the

../ch13#ch13
../ch04#ch04
../ch04#ch04

ID3D10EffectShaderResourceVariable object that will be used to set the variable

or in this case the texture.

Once access to the shader variable is obtained, we set the texture by calling the

SetResource() function on the ID3D10EffectShaderResourceVariable object.

For example, if the ID3D10EffectShaderResourceVariable object was named

g_decalEffectVar, and if we had a texture object named g_decal, we could set it like

so:

g_decalEffectVar->SetResource(g_decal);

When initially creating the ID3D10EffectShaderResourceVariable object, we

create it after the shader has been initially loaded like so:

HRESULT hr = D3DX10CreateEffectFromFile("TextureMap.fx",

 NULL, NULL, "fx_4_0", shaderFlags, 0, g_d3dDevice, NULL,

NULL,

 &g_shader, NULL, NULL);

if(FAILED(hr))

 return false;

g_effect = g_shader->GetTechniqueByName("TextureMapping");

g_decalEffectVar = g_shader->GetVariableByName(

 "decal")->AsShaderResource();

When you access the shader variable, the name passed into GetVariableByName()

must match the variable name that is defined inside the shader.

FREEING TEXTURES

To free a texture, you can call Release() on the ID3D10Texture2D object. This will

work if you manually created the texture object directly, but if you loaded the texture from

a file using a Direct3D 10 helper function such as

D3DX10CreateShaderResourceViewFromFile(), then instead of an

ID3D10Texture2D object, you would have an ID3D10ShaderResource object. Even

with the shader resource view object, you still have to release the ID3D10Texture2D

object it contains. To do this, if you don’t have a pointer to the texture but have one to the

shader resource view, you call the GetResource() function of the

ID3D10ShaderResource object and pass to it an ID3D10Resource pointer that will

point to the texture resource object.

Since ID3D10Resource is a base class of ID3D10Texture2D, you can call Release()

on this returned base object to release the texture asset. You can then call Release() on

the ID3D10ShaderResource object to release the shader resource view from memory.

Keep in mind that releasing only the shader resource view will not release the texture object

to which the shader resource view is attached, so this must be done as a separate task. An

example of this is shown next, where g_decal is assumed to be the shader resource view

that was created as a result of calling the

D3DX10CreateShaderResourceViewFromFile() function.

if(g_decal)

{

 ID3D10Resource *pRes;

 g_decal->GetResource(&pRes);

 pRes->Release();

 g_decal->Release();

}

You only need to call GetResource() to obtain a pointer

to the texture object if you don’t already have it. If you

already have the ID3D10Texture2D object, you can call

Release() on that and Release() on any shader

resource view that uses it.

IMPLEMENTING TEXTURE MAPPING

In this section we will discuss the chapter demos that perform texture mapping. The first
demo is called Texture Mapping, and the second is called Multi Texture.

You can find both of these demos on the accompanying CD-ROM in the Chapter 6
folder.

2D TEXTURE MAPPING DEMO

The Texture Mapping demo builds off of the Transformations demo source code from

Chapter 5, ―Transformations,‖ and adds the ability to texture-map the rendered surface.
The demo starts by declaring a 2D vector in the vertex structure that will be used to hold

the per-vertex texture coordinates. Also added to the global section is the

ID3D10ShaderResourceView object, which will hold the texture, and an

ID3D10EffectShaderResourceVariable object that will be used to allow the

texture to be bound to a variable in the shader file. The remainder of the global section is

comparable to the global section from the Transformations demo and is shown in Listing

6.1.

LISTING 6.1. THE GLOBAL SECTION FROM THE TEXTURE MAPPING DEMO

#include<d3d10.h>

#include<d3dx10.h>

#pragma comment(lib, "d3d10.lib")

#pragma comment(lib, "d3dx10.lib")

#define WINDOW_NAME "Texture Mapping"

#define WINDOW_CLASS "UPGCLASS"

#define WINDOW_WIDTH 800

#define WINDOW_HEIGHT 600

../ch06#ch06
../ch05#ch05
javascript:moveTo('ch06list1');
javascript:moveTo('ch06list1');
javascript:moveTo('ch06list1');

// Global window handles.

HINSTANCE g_hInst = NULL;

HWND g_hwnd = NULL;

// Direct3D 10 objects.

ID3D10Device *g_d3dDevice = NULL;

IDXGISwapChain *g_swapChain = NULL;

ID3D10RenderTargetView *g_renderTargetView = NULL;

struct DX10Vertex

{

 D3DXVECTOR3 pos;

 D3DXVECTOR2 tex0;

};

ID3D10InputLayout *g_layout = NULL;

ID3D10Buffer *g_squareVB = NULL;

ID3D10ShaderResourceView *g_squareDecal = NULL;

ID3D10Effect *g_shader = NULL;

ID3D10EffectTechnique *g_textureMapTech = NULL;

ID3D10EffectShaderResourceVariable *g_decalEffectVar = NULL;

ID3D10EffectMatrixVariable *g_worldEffectVar = NULL;

ID3D10EffectMatrixVariable *g_viewEffectVar = NULL;

ID3D10EffectMatrixVariable *g_projEffectVar = NULL;

D3DXMATRIX g_worldMat, g_viewMat, g_projMat;

In the InitializeDemo() function we add code to load the texture from a file using the

Direct3DX function D3DX10CreateShaderResourceViewFromFile(), which loads

the texture and creates a shader resource view in one call. Access to the shader variable is

obtained by calling GetVariableByName() and sending to it the name of the texture in

the shader file, which in this demo is decal. The result of the GetVariableByName()

function call returns a base object that we can call AsShaderResource() to get a

pointer to the object using the correct object type. A partial look at the top half of the

InitializeDemo() function is shown in Listing 6.2, where only a few lines were added

to support loading the texture image. Listing 6.3 shows the remainder of the

InitializeDemo() function, where the surface was modified from a triangle shape to a

square. Also, each vertex has a texture coordinate set attached to it.

LISTING 6.2. THE FIRST HALF OF THE INITIALIZEDEMO() FUNCTION

bool InitializeDemo()

{

 // Load the shader.

 DWORD shaderFlags = D3D10_SHADER_ENABLE_STRICTNESS;

#if defined(DEBUG) || defined(_DEBUG)

 shaderFlags |= D3D10_SHADER_DEBUG;

#endif

javascript:moveTo('ch06list2');
javascript:moveTo('ch06list3');

 ID3D10Blob *errors = NULL;

 HRESULT hr = D3DX10CreateEffectFromFile(

 "TextureMapDemoEffects.fx", NULL, NULL, "fx_4_0",

 shaderFlags, 0, g_d3dDevice, NULL, NULL, &g_shader,

&errors,

 NULL);

 if(errors != NULL)

 {

 MessageBox(NULL, (LPCSTR)errors->GetBufferPointer(),

 "Error in Shader!", MB_OK);

 errors->Release();

 }

 if(FAILED(hr))

 return false;

 g_textureMapTech = g_shader->GetTechniqueByName(

 "TextureMapping");

 g_worldEffectVar = g_shader->GetVariableByName(

 "World")->AsMatrix();

 g_viewEffectVar = g_shader->GetVariableByName(

 "View")->AsMatrix();

 g_projEffectVar = g_shader->GetVariableByName(

 "Projection")->AsMatrix();

 g_decalEffectVar = g_shader->GetVariableByName(

 "decal")->AsShaderResource();

 // Load the texture.

 hr = D3DX10CreateShaderResourceViewFromFile(g_d3dDevice,

 "brick.dds", NULL, NULL, &g_squareDecal, NULL);

 if(FAILED(hr))

 return false;

 …

}

LISTING 6.3. THE SECOND HALF OF THE INITIALIZEDEMO() FUNCTION

bool InitializeDemo()

{

 …

 // Create the geometry.

 D3D10_INPUT_ELEMENT_DESC layout[] =

{

 { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,

 D3D10_INPUT_PER_VERTEX_DATA, 0 },

 { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12,

 D3D10_INPUT_PER_VERTEX_DATA, 0 },

};

unsigned int numElements = sizeof(layout) / sizeof(layout[0]);

D3D10_PASS_DESC passDesc;

g_textureMapTech->GetPassByIndex(0)->GetDesc(&passDesc);

hr = g_d3dDevice->CreateInputLayout(layout, numElements,

 passDesc.pIAInputSignature, passDesc.IAInputSignatureSize,

 &g_layout);

if(FAILED(hr))

 return false;

DX10Vertex vertices[] =

{

 { D3DXVECTOR3(0.5f, 0.5f, 1.5f), D3DXVECTOR2(1.0f, 0.0f) },

 { D3DXVECTOR3(0.5f, -0.5f, 1.5f), D3DXVECTOR2(1.0f, 1.0f) },

 { D3DXVECTOR3(-0.5f, -0.5f, 1.5f), D3DXVECTOR2(0.0f, 1.0f) },

 { D3DXVECTOR3(-0.5f, -0.5f, 1.5f), D3DXVECTOR2(0.0f, 1.0f) },

 { D3DXVECTOR3(-0.5f, 0.5f, 1.5f), D3DXVECTOR2(0.0f, 0.0f) },

 { D3DXVECTOR3(0.5f, 0.5f, 1.5f), D3DXVECTOR2(1.0f, 0.0f) }

};

// Create the vertex buffer.

 D3D10_BUFFER_DESC buffDesc;

 buffDesc.Usage = D3D10_USAGE_DEFAULT;

 buffDesc.ByteWidth = sizeof(DX10Vertex) * 6;

 buffDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER;

 buffDesc.CPUAccessFlags = 0;

 buffDesc.MiscFlags = 0;

 D3D10_SUBRESOURCE_DATA resData;

 resData.pSysMem = vertices;

 hr = g_d3dDevice->CreateBuffer(&buffDesc, &resData,

 &g_squareVB);

 if(FAILED(hr))

 return false;

 // Set the shader matrix variables that won't change once

here.

 D3DXMatrixIdentity(&g_worldMat);

 D3DXMatrixIdentity(&g_viewMat);

 g_viewEffectVar->SetMatrix((float*)&g_viewMat);

 g_projEffectVar->SetMatrix((float*)&g_projMat);

 return true;

}

In the RenderScene() function, one line of code was added to bind the texture object to

the shader variable. This is done by calling the SetResource() function of the

ID3D10EffectShaderResourceVariable object that is bound to the variable and

passing to its parameter the shader resource view texture object. The texture must be set

before rendering occurs so that the shaders that use the texture have access to it and its

image contents. The RenderScene() function is shown in Listing 6.4.

LISTING 6.4. THE RENDERSCENE() FUNCTION FROM THE TEXTURE MAPPING

DEMO

void RenderScene()

{

 float col[4] = { 0, 0, 0, 1 };

 g_d3dDevice->ClearRenderTargetView(g_renderTargetView, col);

 g_worldEffectVar->SetMatrix((float*)&g_worldMat);

 g_decalEffectVar->SetResource(g_squareDecal);

 unsigned int stride = sizeof(DX10Vertex);

 unsigned int offset = 0;

 g_d3dDevice->IASetInputLayout(g_layout);

 g_d3dDevice->IASetVertexBuffers(0, 1, &g_squareVB, &stride,

 &offset);

 g_d3dDevice->IASetPrimitiveTopology(

 D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

 D3D10_TECHNIQUE_DESC techDesc;

 g_textureMapTech->GetDesc(&techDesc);

 for(unsigned int i = 0; i < techDesc.Passes; i++)

 {

 g_textureMapTech->GetPassByIndex(i)->Apply(0);

 g_d3dDevice->Draw(6, 0);

 }

 g_swapChain->Present(0, 0);

}

javascript:moveTo('ch06list4');

In the Shutdown() function, to free the texture, we call the GetResource() function

on the shader resource view to gain access to the ID3D10Texture2D object. With a

pointer to this object, we can free its contents by calling its Release() function. Once the

texture is released, we can release the shader resource view object as well. This is shown in
Listing 6.5.

LISTING 6.5. THE SHUTDOWN() FUNCTION FROM THE TEXTURE MAPPING

DEMO

void Shutdown()

{

 if(g_d3dDevice) g_d3dDevice->ClearState();

 if(g_swapChain) g_swapChain->Release();

 if(g_renderTargetView) g_renderTargetView->Release();

 if(g_shader) g_shader->Release();

 if(g_layout) g_layout->Release();

 if(g_squareVB) g_squareVB->Release();

 if(g_squareDecal)

 {

 ID3D10Resource *pRes;

 g_squareDecal->GetResource(&pRes);

 pRes->Release();

 g_squareDecal->Release();

 }

 if(g_d3dDevice) g_d3dDevice->Release();

}

The last file to look at is the HLSL effect file for the Texture Mapping demo. In this file a 2D
texture is defined in the global section so that the shaders can have access to it. This object

has the HLSL data type Texture2D. A sampler state object of type SamplerState is

used to sample a pixel from the texture. When creating a SamplerState object, you can

specify the filtering mode, address mode (should it repeat, not repeat, etc.), border color,
minimum and maximum level of detail in the image, and maximum anisotropy, which deals

with filtering quality.

In the Texture Mapping demo we set the Filter state to MIN_MAG_MIP_LINEAR, which

sets the min (surfaces that are minimized), mag (surfaces that are magnified), and mip
map layers to linear. Linear interpolation applied to all three of these areas is known as

trilinear filtering. The min filter is the filter used on the image when the image is drawn on a

surface that is smaller than the original size of the image (i.e., the image is not drawn to
scale). The mag filter is used when images are drawn on surfaces that are larger than the

image’s original size and thus need to be magnified. Mip filtering occurs on the mip map
levels. Remember, trilinear filtering is bilinear filtering with an additional interpolation taking

place between the mip maps.

The other states that are set are the AddressU and AddressV states, and they are set to

wrap. Wrap means that if the texture coordinate for the U or V is over 1.0 or under 0.0, the
texture will wrap around the surface.

The entire shader file used in the Texture Mapping demo is shown in Listing 6.6. In the
vertex shader we pass along the texture coordinates to the output without performing any

javascript:moveTo('ch06list5');
javascript:moveTo('ch06list6');

additional work on them because nothing needs to be done to prepare the texture

coordinates for the pixel shader. In the pixel shader we call the Sample() function on the

2D texture object, and we send to it the sampler state and the vertex’s texture coordinate.

Keep in mind that the sampler state tells the graphics hardware what properties you want
to have on the texture (e.g., filtering etc.) when it is sampled. The return result is a color

value that we can use as the output of the pixel shader. The final result is a textured
surface as shown in the screenshot in Figure 6.10.

LISTING 6.6. THE TEXTURE MAPPING DEMO’S SHADER FILE

Texture2D decal;

SamplerState DecalSampler

{

 Filter = MIN_MAG_MIP_LINEAR;

 AddressU = Wrap;

 AddressV = Wrap;

};

cbuffer cbChangesEveryFrame

{

 matrix World;

 matrix View;

};

cbuffer cbChangeOnResize

{

 matrix Projection;

};

struct VS_INPUT

{

 float4 Pos : POSITION;

 float2 Tex : TEXCOORD;

};

struct PS_INPUT

{

 float4 Pos : SV_POSITION;

 float2 Tex : TEXCOORD0;

};

PS_INPUT VS(VS_INPUT input)

{

 PS_INPUT output = (PS_INPUT)0;

 output.Pos = mul(input.Pos, World);

 output.Pos = mul(output.Pos, View);

 output.Pos = mul(output.Pos, Projection);

 output.Tex = input.Tex;

 return output;

javascript:moveTo('ch06fig10');

}

float4 PS(PS_INPUT input) : SV_Target

{

 return decal.Sample(DecalSampler, input.Tex);

}

technique10 TextureMapping

{

 pass P0

 {

 SetVertexShader(CompileShader(vs_4_0, VS()));

 SetGeometryShader(NULL);

 SetPixelShader(CompileShader(ps_4_0, PS()));

 }

}

FIGURE 6.10. SCREENSHOT FROM THE TEXTURE MAPPING DEMO.

MULTI TEXTURE DEMO

Multi-texturing is a technique that is used to display multiple textures on one surface. In

Direct3D 10 this can be done by loading a second texture image and sending it to the pixel

shader. Inside the pixel shader both shaders are sampled, and the results are blended
together. How you blend them is up to you. You can multiply the colors together, add them,

interpolate between them, and so forth. An example of multi-texturing is shown in Figure
6.11. The demo that performs multi-texturing on the CD-ROM is called the Multi Texture

demo and can be found in the Chapter 6 folder.

FIGURE 6.11. TEXTURE A (LEFT), TEXTURE B (MIDDLE), AND A AND B MULTI-

TEXTURED (RIGHT).

javascript:moveTo('ch06fig11');
javascript:moveTo('ch06fig11');
javascript:moveTo('ch06fig11');
../ch06#ch06

In the Multi Texture demo’s shader file we declare a second Texture2D object. Inside the

pixel shader we sample from both shaders using the same sampler state and the same
texture coordinates. This is shown in Listing 6.7. If you wanted, you could use different

sampler states and even different texture coordinates. In the pixel shader we combine
colors by multiplying them together. Since colors are in the range of 0.0 to 1.0, two white

colors will be white, two black colors will be black, and anything in between will be a blend.
We could also have added them together to get a different effect, subtracted, linearly

interpolated, and so forth.

LISTING 6.7. THE SHADER FROM THE MULTI TEXTURE DEMO

Texture2D decal1;

Texture2D decal2;

SamplerState DecalSampler

{

 Filter = MIN_MAG_MIP_LINEAR;

 AddressU = Wrap;

 AddressV = Wrap;

};

cbuffer cbChangesEveryFrame

{

 matrix World;

 matrix View;

};

cbuffer cbChangeOnResize

{

 matrix Projection;

};

struct VS_INPUT

{

 float4 Pos : POSITION;

 float2 Tex : TEXCOORD;

};

struct PS_INPUT

{

 float4 Pos : SV_POSITION;

 float2 Tex : TEXCOORD0;

};

javascript:moveTo('ch06list7');

PS_INPUT VS(VS_INPUT input)

{

 PS_INPUT output = (PS_INPUT)0;

 output.Pos = mul(input.Pos, World);

 output.Pos = mul(output.Pos, View);

 output.Pos = mul(output.Pos, Projection);

 output.Tex = input.Tex;

 return output;

}

float4 PS(PS_INPUT input) : SV_Target

{

 return decal1.Sample(DecalSampler, input.Tex) *

 decal2.Sample(DecalSampler, input.Tex);

}

technique10 MultiTextureMapping

{

 pass P0

 {

 SetVertexShader(CompileShader(vs_4_0, VS()));

 SetGeometryShader(NULL);

 SetPixelShader(CompileShader(ps_4_0, PS()));

 }

}

The source code from the Multi Texture demo builds directly off of the code from the

Texture Mapping demo. In the global section another shader resource view and shader
resource variable were added for the second texture. This addition is shown in Listing 6.8.

In the InitializeDemo() function the second texture is loaded along with binding to

the shader variable decal2, which is shown in Listing 6.9.

LISTING 6.8. THE ALTERED GLOBALS IN THE MULTI TEXTURE DEMO FROM
TEXTURE MAPPING

ID3D10ShaderResourceView *g_squareDecal1 = NULL;

ID3D10ShaderResourceView *g_squareDecal2 = NULL;

ID3D10EffectShaderResourceVariable *g_decalEffectVar1 = NULL;

ID3D10EffectShaderResourceVariable *g_decalEffectVar2 = NULL;

LISTING 6.9. THE ALTERED INITIALIZEDEMO() FUNCTION FROM THE

MULTI TEXTURE DEMO.

bool InitializeDemo()

{

 …

javascript:moveTo('ch06list8');
javascript:moveTo('ch06list9');

 g_textureMapTech = g_shader->GetTechniqueByName(

 "MultiTextureMapping");

 g_worldEffectVar = g_shader->GetVariableByName(

 World")->AsMatrix();

 g_viewEffectVar = g_shader->GetVariableByName(

 "View")->AsMatrix();

 g_projEffectVar = g_shader->GetVariableByName(

 "Projection")->AsMatrix();

 g_decalEffectVar1 = g_shader->GetVariableByName(

 "decal1")->AsShaderResource();

 g_decalEffectVar2 = g_shader->GetVariableByName(

 "decal2")->AsShaderResource();

 // Load the textures.

 hr = D3DX10CreateShaderResourceViewFromFile(g_d3dDevice,

 "brick.dds", NULL, NULL, &g_squareDecal1, NULL);

 if(FAILED(hr))

 return false;

 hr = D3DX10CreateShaderResourceViewFromFile(g_d3dDevice,

 "wavystars.dds", NULL, NULL, &g_squareDecal2, NULL);

 if(FAILED(hr))

 return false;

 …

}

The last modified code in the Multi Texture demo from the Texture Mapping demo can be

seen in the RenderScene() and Shutdown() functions. In the RenderScene()

function a new line of code is added to send the second texture to the decal2 shader

variable. In the Shutdown() function the second shader resource view and its texture

object are released from memory directly under the first texture. Both of these functions

are shown in Listing 6.10. A screenshot of the application is shown in Figure 6.12.

LISTING 6.10. THE RENDERSCENE() AND SHUTDOWN() FUNCTIONS FROM

THE MULTI TEXTURE DEMO

void RenderScene()

{

 float col[4] = { 0, 0, 0, 1 };

 g_d3dDevice->ClearRenderTargetView(g_renderTargetView, col);

 g_worldEffectVar->SetMatrix((float*)&g_worldMat);

 g_decalEffectVar1->SetResource(g_squareDecal1);

javascript:moveTo('ch06list10');
javascript:moveTo('ch06fig12');

 g_decalEffectVar2->SetResource(g_squareDecal2);

 unsigned int stride = sizeof(DX10Vertex);

 unsigned int offset = 0;

 g_d3dDevice->IASetInputLayout(g_layout);

 g_d3dDevice->IASetVertexBuffers(0, 1, &g_squareVB,

 &stride, &offset);

 g_d3dDevice->IASetPrimitiveTopology(

 D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

 D3D10_TECHNIQUE_DESC techDesc;

 g_textureMapTech->GetDesc(&techDesc);

 for(unsigned int i = 0; i < techDesc.Passes; i++)

 {

 g_textureMapTech->GetPassByIndex(i)->Apply(0);

 g_d3dDevice->Draw(6, 0);

 }

 g_swapChain->Present(0, 0);

}

void Shutdown()

{

 if(g_d3dDevice) g_d3dDevice->ClearState();

 if(g_swapChain) g_swapChain->Release();

 if(g_renderTargetView) g_renderTargetView->Release();

 if(g_shader) g_shader->Release();

 if(g_layout) g_layout->Release();

 if(g_squareVB) g_squareVB->Release();

 if(g_squareDecal1)

 {

 ID3D10Resource *pRes;

 g_squareDecal1->GetResource(&pRes);

 pRes->Release();

 g_squareDecal1->Release();

 }

 if(g_squareDecal2)

 {

 ID3D10Resource *pRes;

 g_squareDecal2->GetResource(&pRes);

 pRes->Release();

 g_squareDecal2->Release();

 }

 if(g_d3dDevice) g_d3dDevice->Release();

}

FIGURE 6.12. SCREENSHOT FROM THE MULTI TEXTURE DEMO.

ADDITIONAL TEXTURING TOPICS

There are a few additional texturing techniques to discuss in this chapter. A tremendous

number of texture-based techniques can be performed in computer graphics. In this section
we will examine a few very common techniques to give you an idea of what else can be

done with textures. Throughout this book we are looking at additional techniques such as
bump mapping, shadow mapping, and so forth.

MANUALLY LOADING AND GENERATING TEXTURES

There might come a time when you do not want to use Direct3D functions to load your

textures, but instead you want to do so manually. Loading your own data into a texture
object is fairly straightforward, and in this section you will see how to do it by calling the

CreateTexture2D() function to create the 2D texture object and the

CreateShaderResourceView() to create the shader resource view. This discussion

will be kept brief since manually loading textures essentially requires two function calls.

Keep in mind that this information and the information

throughout this chapter apply to all types of textures. We are
using 2D textures simply as examples, but it doesn’t matter

what type of texture you are working with.

So far, we have loaded images from files using D3DX utility functions. If you wanted to

manually place color data into an ID3D10Texture2D object, you would need a texture

description of the type D3D10_TEXTURE2D_DESC and a subresource description of type

D3D10_SUBRESOURCE_DATA. Once you’ve created the ID3D10Texture2D object, you

can create the shader resource view and use the texture as normal. The

D3D10_TEXTURE2D_DESC object represents the characteristics of the texture being

created such as its width, height, and size in bytes. An example of creating and filling in

such an object is as follows.

D3D10_TEXTURE2D_DESC textureDesc;

textureDesc.ArraySize = 1;

textureDesc.BindFlags = D3D10_BIND_SHADER_RESOURCE;

textureDesc.Usage = D3D10_USAGE_DYNAMIC;

textureDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;

textureDesc.Width = image_width;

textureDesc.Height = image_height;

textureDesc.MipLevels = 1;

textureDesc.SampleDesc.Count = 1;

textureDesc.SampleDesc.Quality = 0;

textureDesc.CPUAccessFlags = D3D10_CPU_ACCESS_WRITE;

textureDesc.MiscFlags = 0;

The width and height from the texture description is the image’s resolution. MipLevels is

the number of mip maps contained in the data. ArraySize is the number of textures

created by the CreateTexture() function call. Format is the color format of the image.

SampleDesc describes the image’s multi-sampling (discussed later in this chapter).

Usage describes how the image will be read or written to. BindFlags are flags describing

how the data will be used in the rendering pipeline. CPUAccessFlags determines if the

CPU can read or write to the texture. MiscFlags can be any of the miscellaneous flags

that were discussed earlier in this chapter.

The CPUAccessFlags can be D3D10_CPU_ACCESS_READ, D3D10_CPU_ACCESS-

WRITE, or both using the logical OR operator.

The UsageFlags can be D3D10_USAGE_DEFAULT (the resource uses read and write

operations), D3D10_USAGE_IMMUTABLE (the resource can only be read by the GPU),

D3D10_USAGE_DYNAMIC (the resource can be read by the GPU and written by the CPU),

and D3D10_USAGE_STAGING (the resource can have data transfer from the GPU to the

CPU). You can combine flags using the logical OR operator as long as the flags do not

conflict with each other. For example, you cannot use D3D10_USUAGE_IMMUTABLE,

which says the only read access can occur using the GPU, with another type that allows

writing by the GPU or read/write by the CPU.

The BindFlags can be any of the following:

 D3D10_BIND_VERTEX_BUFFER if we are creating a vertex buffer

 D3D10_BIND_INDEX_BUFFER if it’s an index buffer

 D3D10_BIND_CONSTANT_BUFFER for constant buffers

 D3D10_BIND_SHADER_RESOURCE for shader resources

 D3D10_BIND_STREAM_OUTPUT if the object is to be used for output

 D3D10_BIND_RENDER_TARGET for rendering targets

 D3D10_BIND_DEPTH_STENCIL for binding a texture as a depth and stencil buffer

output

With the texture description object filled in, the next object you will need is the subresource

description. In the D3D10_SUBRESOURCE_DATA structure we can set the pSysMem

variable, which will hold the actual image data, the SysMemPitch variable, which

represents the number of bytes for a row of image data (width × the number of

components, where RGB would be 3 and RGBA would be 4), and the SysMemSlicePitch

variable, which is the depth of the image multiplied by the number of components for each

pixel. The SysMemSlicePitch variable is only used for 3D textures. An example of

creating and filling in a D3D10_SUBRESOURCE_DATA object and calling

CreateTexture2D() to create a 2D texture is shown as follows. image_data is

assumed to be an array of bytes, and image_width is the width of the image.

D3D10_SUBRESOURCE_DATA resData;

resData.pSysMem = (void*)image_data;

resData.SysMemPitch = image_width * 4;

resData.SysMemSlicePitch = 0;

ID3D10Texture2D *texture;

hr = g_d3dDevice->CreateTexture2D(&textureDesc, &resData,

&texture);

Keep in mind that the number of components depends on the format type you’ve specified

when creating the texture descriptor. With the ID3D10Texture2D object created, you can

then create a shader resource view by calling CreateShaderResourceView(). Once

you have the shader resource view, you can use the texture as normal. An example of

creating a shader resource view is shown as follows, where Format is the texture’s format,

MipLevels is the total number of mip maps, MostDetailedMip is the mip map level

with the largest resolution, and ViewDimension describes the resource type:

D3D10_SHADER_RESOURCE_VIEW_DESC svDesc;

svDesc.Format = textureDesc.Format;

svDesc.Texture2D.MipLevels = 1;

svDesc.Texture2D.MostDetailedMip = 0;

svDesc.ViewDimension = D3D10_SRV_DIMENSION_TEXTURE2D;

ID3D10ShaderResourceView *shaderResourceView = NULL;

g_d3dDevice->CreateShaderResourceView(texture, &svDesc,

 &shaderResourceView);

COMPRESSED TEXTURES

Compression is a term used to refer to algorithms that take a source data and represent it

using fewer bytes. The two main types of compression are lossless and lossy.

Lossless compression does not affect the original quality. If you view something with

lossless compression, it not only has the same quality as the original, but re-compression
shouldn’t degrade the quality of the data.

For a simple example of lossless compression, let’s say you have an image with 100 pixels
made up of only 10 unique colors. The original image would be 300 bytes if you assume 3

bytes per-pixel. If you place those 10 colors in an array of RGB values, you need 30 bytes
to store the unique colors. If you used 1-byte array indexes for each pixel of the image, you

would need 130 bytes to store the image (100 for the pixel indexes and 30 for the array of
unique colors). This is a difference of 170 bytes. If you used 4 bits for the array index

instead of a byte (where four bits can store a range from 0 to 16, which would be more than
enough for a 0 to 9 array index), it would take 30 bytes for the unique colors array and 40

bytes for the image. This means you could have taken a 300-byte image and reduced it to
70 bytes using lossless compression.

You can perfectly re-create the original image using this data, which means quality wasn’t

reduced. If you used fewer bits for the indexes, that would not be enough to represent the
entire index range. For example, three bits (0 to 7) caused you to have to choose to drop

some colors since the number of bits cannot be used to index every element in the array.
You could then choose to clamp the colors where the highest index in the array is used for

all pixels that originally referenced colors above that element. For example, you can drop
the last two colors, and any image pixels that use those values can use the eighth (index 7)

color instead. This is lossy compression: the data is reduced in a way that cannot be
decompressed perfectly to match the original source since those values were dropped and

replaced. The replaced data can change the image so that under close examination it is
clearly not accurate.

Lossy compression compresses data by altering it so that compressed data does not retain
its original quality. Lossy compression works by sacrificing quality and accuracy for file size.

If you recompress data that is already lossy compressed, the quality will suffer even more
because the data being compressed is not the original data but is data that already has

reduced quality. Therefore, if you need to recom-press data, it is best to only compress the

original data rather than trying to compress data that is already lossy compressed.

Take a JPEG image, for example, which uses lossy compression. The quality decreases as

the compression ratio increases. The higher the compression ratio that is used, the smaller
the file size and thus the worse the image quality for JPEG images. This is illustrated in

Figure 6.13, which shows the original image, the compressed version, and the image
recompressed from an already compressed version.

FIGURE 6.13. ORIGINAL (LEFT), COMPRESSED (MIDDLE), AND RE-
COMPRESSED FROM AN ALREADY COMPRESSED IMAGE (RIGHT).

Compression is an extremely important topic in video game development. For example, if

you are able to compress all textures by a factor of four to one, making the textures 25%
the size of the originals, you can reduce the disk space and memory requirements for your

javascript:moveTo('ch06fig13');

game. This means that the amount of data that needs to be processed by the rendering

pipeline is reduced, disk space is reduced, loading times are reduced since there is not as
much information to load, texture streaming technology can work faster, and so forth.

Looking at the issue strictly from a graphics rendering perspective, this also means that the
reduced data size allows developers to use four times as many textures in a game level

(assuming all textures are the same size and you compressed them all by 25%). It could
also mean that developers have more room to use textures that are four times larger in

resolution since you reduced all textures by one-fourth.

All major graphics hardware for the past few generations has supported compressed

textures. To use compressed textures in Direct3D, you do not need to enable anything or
provide any special code. The only thing you need to do is save your images using a

compressed file format. When Direct3D 10 loads the compressed images that the hardware
supports, they are used directly in the graphics hardware. The graphics hardware itself

handles the decompressing and returning the correct color value when a compressed
texture is sampled. To create compressed textures you can save your textures in a tool

such as Adobe Photoshop, or you can use the DirectX Texture tool that comes with the

DirectX SDK.

Modern graphics hardware supports the S3 Texture Compression (S3TC) algorithms. There

are five versions of these algorithms, DXT1 through DXT5. To save your images to one of
these formats, you can save your .DDS images using Photoshop, the DirectX Texture tool,

and so on and specifying one of these format types.

The DXT1 format uses four bits for each pixel in the image and is the format that can give

the largest compression and the worst quality, depending on the image. The DXT1 format
did not originally support an alpha channel, but there is an extended version that does.

DXT1 offers eight-to-one compression without the alpha channel and six-to-one with the
alpha channel.

The DXT2 and DXT3 formats use an additional four bits for an alpha channel. The DXT2
format’s alpha is premultiplied with the color, while the DXT3 format has an explicit alpha

that is not premultiplied. DXT2 and DXT3 offer a four-to-one compression ratio.

DXT4 uses an interpolated alpha channel that is premultiplied with the color. DTX5 is similar

to DXT4 but without the premultiplication. DXT4 and DXT5 also offer a four-to-one

compression ratio.

The DXT compression formats are great for color images but are not necessarily the best

option for normal map images. In Chapter 13 we’ll look at normal map compression formats
such as 3Dc, which is used to retain much more quality than the DXT formats. We’ll discuss

why the DXT formats are not good to use for normal maps and why 3Dc is a great
alternative.

When looking at compressed textures, keep in mind that there is nothing you need to do
with Direct3D 10 to use them other than to save your textures using DXT1 through DXT5.

Some images will look better with some formats than others, and usually you can
experiment when saving textures to see which formats give you the best compression while

retaining an acceptable level of quality. The 3Dc and S3TC (DXT) compression algorithms
use lossy compression.

MULTI-SAMPLING

Multi-sampling is any technique where a texture is sampled more than once to find the

averages of colors and decrease blocky artifacts in images. You can enable multi-sampling

in the texture description so that when a texture is sampled in the pixel shader, instead of
sampling a single color around the pixel to use, the hardware sends an average color value

../ch13#ch13

based on the surrounding pixels. For example, if 2 × 2 multi-sampling is used to sample the

pixel above, below, and to each side of each pixel, the color that is fetched is not the center
(original) pixel but the average of all pixels that surround it plus itself.

Multi-sampling aims to smooth out color differences of nearby pixels. For example, in Figure
6.14 the color from one pixel to the next can change quite sharply. By averaging the

neighboring pixels, you can blur these sharp edges so that the blocky staircase rendering
artifacts do not show up or at least are not as noticeable. This is simply a blurring operation

and in some cases can help improve the quality of textured surfaces.

FIGURE 6.14. ORIGINAL (TOP) CENTER PIXEL VERSUS AVERAGED (BOTTOM)

CENTER PIXEL.

Multi-sampling is a hardware-accelerated technique, and to use it you simply enable it when
creating textures in the texture description. Texture filtering such as bilinear, trilinear, and

so on also averages pixels to create this effect of smoothing out sharp variations. You can
also multi-sample the rendering targets so that the entire rendered scene is smoothed out a

little.

Adaptive super-sampling is essentially multi-sampling that

only occurs on pixels that require it, rather than all pixels in
the image.

SUMMARY

Texture mapping is one of the most important topics in computer graphics. In this chapter
we saw how to perform basic texture mapping in Direct3D 10 by defining texture

coordinates to vertices, how to load a texture image from a file or manually place data in a
texture object, how to make the texture accessible to the pixel shader, and how to free the

texture resources once we are done with it.

Throughout the remainder of this book textures will be used in nearly every demo. Most of

these demos will load a 2D texture from a file and display that image on various surfaces in

the rendered scenes.

The following elements were discussed in this chapter:

 Types of textures

javascript:moveTo('ch06fig14');
javascript:moveTo('ch06fig14');
javascript:moveTo('ch06fig14');

 Texture mapping in Direct3D 10

 Texture coordinates

 Texture filtering

 Mip maps

 Multi-texturing

 Compressed textures

 Multi-sampling

CHAPTER QUESTIONS

Answers to the following chapter review questions can be found in Appendix A.

1. What is the purpose of texture mapping?

2. List three ways textures can be used in computer graphics.

3. What are texture coordinates, and why are they necessary for texture mapping?

4. What is the purpose of texture filtering?

5. What is the min texture filter?

6. What is the mag texture filter?

7. What are mip maps?

8. Describe point filtering.

9. Describe bilinear filtering.

10. Describe trilinear filtering.

11. What are 1D textures?

12. What are 2D textures?

13. What are 3D textures?

../app01#app01
../app01lev1sec6#app01qa6q1a1
../app01lev1sec6#app01qa6q2a2
../app01lev1sec6#app01qa6q3a3
../app01lev1sec6#app01qa6q4a4
../app01lev1sec6#app01qa6q5a5
../app01lev1sec6#app01qa6q6a6
../app01lev1sec6#app01qa6q7a7
../app01lev1sec6#app01qa6q8a8
../app01lev1sec6#app01qa6q9a9
../app01lev1sec6#app01qa6q10a10
../app01lev1sec6#app01qa6q11a11
../app01lev1sec6#app01qa6q12a12
../app01lev1sec6#app01qa6q13a13

14. What are cube maps? How do they differ from 3D textures?

15. What are sphere maps? How do they differ from 2D textures?

16. What is multi-texturing?

17. What is multi-sampling?

18. What are the S3TC texture compression formats? How do they differ from each

other?

19. What is the difference between lossy and lossless compression?

20. Why is it a bad idea to compress data that is already compressed when using a

lossy algorithm?

CHAPTER EXERCISES

Exercise 1: Modify the Multi Texture demo to add the textures instead of multiplying them.

Exercise 2: Modify the Multi Texture demo and add a third texture.

Exercise 3: Modify the Multi Texture demo and add another set of texture coordinates so
that all of the textures use a different set when sampling in the pixel shader.

7. ADDITIONAL TEXTURE MAPPING

In This Chapter

 Alpha Mapping

 Sprites

 Image Filters

Texture mapping is a very important part of video game graphics. It is used to simulate

complex detail on surfaces in real time. Texture mapping is used in many ways in computer
graphics, including some of the following.

 Color maps

 Lighting (bump and normal mapping will be discussed in Chapter 13, ―Lighting‖)

 Detail preservation (normal mapping)

../app01lev1sec6#app01qa6q14a14
../app01lev1sec6#app01qa6q15a15
../app01lev1sec6#app01qa6q16a16
../app01lev1sec6#app01qa6q17a17
../app01lev1sec6#app01qa6q18a18
../app01lev1sec6#app01qa6q19a19
../app01lev1sec6#app01qa6q20a20
../ch07lev1sec1#ch07lev1sec1
../ch07lev1sec2#ch07lev1sec2
../ch07lev1sec3#ch07lev1sec3
../ch13#ch13

 Look-up tables (i.e., storing any type of value for any purpose in a texture so that it can

be passed to the graphics hardware and retrieved by a shader using texture sample
functions)

 Gloss mapping (i.e., specular lighting using textures, also discussed in Chapter 13)

 Alpha mapping

 Environment maps (reflection mapping, refraction mapping, etc.)

 Displacement maps

The purpose of this chapter is to examine and implement a few additional texture-based
graphical effects. So many graphical effects exist in computer graphics that the subject

could span multiple books. In this chapter we will look at a few to give you an idea of the
different ways textures can be used inside graphical applications such as video games that

go beyond simply coloring a surface.

ALPHA MAPPING

Alpha mapping is a technique in which you use another image or the alpha channel of the

decal image to specify areas of the image that are to be visible, transparent, and
semitransparent. Therefore, an alpha map is used to specify the pixel-level transparency of

a surface, while the color map specifies the pixel-level color values of a surface.

CREATING ALPHA MAPS

There are two ways to specify per-pixel alpha values. The first is to use the alpha channel of
a 32-bit RGBA image. This can be done in any image editor, and the alpha values typically

range between 0 for transparent and 255 for visible. Anything between 0 and 255
represents a level of transparency between the two extremes. In fact, you can consider 0 to

be 0% and 255 to be 100% visible. An example of an alpha channel from a texture created
in Adobe Photoshop is shown in Figure 7.1. If this alpha map was used, there would be

many semi-transparent areas (any gray area in the alpha map), only a few fully visible

areas, and even fewer fully transparent areas.

FIGURE 7.1. THE ALPHA MAP CHANNEL IN ADOBE PHOTOSHOP.

../ch13#ch13
javascript:moveTo('ch07fig01');

Another way to create an alpha map is to create a separate texture image. If you use an

RGB image, these images are typically grayscale images (black and white). More
specifically, it means the red, green, and blue components have equal values (e.g., R:200

G:200 B:200, R:123 G:123 B:123, etc.). When you use a grayscale image, it does not

matter which color channel you use for the alpha value since it is the same value across the
channels. If the image is not in black and white, it would be difficult to determine how the

alpha map would affect the rendered object unless you were looking solely at one
component at a time.

Creating an alpha map using a 24-bit RGB image is wasteful memory-wise if you are only
using one component because the alpha channel is one byte; having RGBA images just to

use that one channel means that the other channels (the RGB channels) are not used, which
results in three wasted bytes per pixel. Therefore, it is better to use either a one-component

image or the alpha channel of an RGBA image. That way each pixel is 1 byte instead of 3. If
semitransparent pixels are not needed, you can replace that 1 byte per pixel with 1 bit,

where 0 represents invisible and 1 represents visible (i.e., true or false).

ALPHA MAPPING DEMO

On the CD-ROM, in the Chapter 7 folder, is a demo called Alpha Mapping that
demonstrates how to perform alpha mapping. The demo places the alpha values in the

alpha channel of the image to avoid having to load a separate image, and the alpha map
used is the one from Figure 7.1. The image in Figure 7.1 was copied into the alpha channel

of the decal image in Photoshop and saved as an RGBA DXT5 texture.

../ch07#ch07
javascript:moveTo('ch07fig01');
javascript:moveTo('ch07fig01');

Alpha mapping is done by using alpha blending. In Direct3D 10 this can be set on the

application side or through HLSL. Throughout this chapter we will set states in HLSL, but if

you were to do it on the application side, you would create a D3D10_BLEND_DESC object,

set each of its member states (variables), and send it to Direct3D by calling

OMSetBlendState().

In HLSL a blend state can be created by creating a BlendState descriptor and naming it

whatever you like. In the Alpha Mapping demo for this chapter, the BlendState

descriptor is called AlphaBlending. Inside the descriptor we can set a host of related

states that include the following.

 AlphaToCoverageEnable

 BlendEnable

 SrcBlend

 DstBlend

 BlendOp

 SrcBlendAlpha

 DstBlendAlpha

 BlendOpAlpha

 RenderTargetWriteMask[n]

Alpha to coverage is a term in computer graphics that deals with multisampling and refers

to the way alpha-mapped surfaces are rendered in scenes that have many overlapping
polygons. Alpha to coverage can be used even if the application is not using multisampling,

in which case it is used to draw overlapping polygons that have transparency without the
need for you to render them in a specific order to get the correct results.

The keyword BlendEnable enables or disables the blending feature, while SrcBlend,

SrcBlendAlpha, DstBlend, and DstBlendAlpha set the blend options of the source

1 (SRC) and source 2 (DST) colors and alphas. The blend options can be one of the

following. Note that the HLSL keywords are the same minus the D3D10_BLEND_ part of

each option.

 D3D10_BLEND_ZERO: The data source is black.

 D3D10_BLEND_ONE: The data source is white.

 D3D10_BLEND_SRC_COLOR: The data source is the color from the pixel shader.

 D3D10_BLEND_INV_SRC_COLOR: The data source is 1 minus the color from the

pixel shader.

 D3D10_BLEND_SRC_ALPHA: The data source is the alpha value from the pixel

shader.

 D3D10_BLEND_INV_SRC_ALPHA: The data source is 1 minus the alpha value from

the pixel shader.

 D3D10_BLEND_DEST_ALPHA: The data source is the alpha value from the rendering

target.

 D3D10_BLEND_INV_DEST_ALPHA: The data source is 1 minus the alpha value from

the rendering target.

 D3D10_BLEND_DEST_COLOR: The data source is the color value that is already

stored in the rendering target.

 D3D10_BLEND_INV_DEST_COLOR: The data source is 1 minus the render target’s

color value.

 D3D10_BLEND_SRC_ALPHA_SAT: The data source is the clamped alpha value from

the pixel shader.

 D3D10_BLEND_BLEND_FACTOR: The data source is the blend factor that was set by

the Direct3D function OMSetBlendState() in the second parameter (the first

parameter is the blend descriptor, and the last is the blend mask).

 D3D10_BLEND_INV_BLEND_FACTOR: The data source is 1 minus the blend factor

set by the Direct3D function OMSetBlendState().

 D3D10_BLEND_SRC1_COLOR: The data source is both color values outputted by the

pixel shader (used in dual-source color blending).

 D3D10_BLEND_INV_SRC1_COLOR: The data source is 1 minus the color values from

the pixel shader.

 D3D10_BLEND_SRC1_ALPHA: The same as D3D10_BLEND_SRC1_COLOR but using

the alpha values from the pixel shader.

 D3D10_BLEND_INV_SRC1_ALPHA: One minus D3D10_BLEND_SRC1_ALPHA.

BlendOp and BlendOpAlpha from the blend state are used to set the blend operation.

This means the two sources can be added using D3D10_BLEND_OP_ADD, subtracted using

D3D10_BLEND_OP_SUBTRACT (or D3D10_BLEND_OP_REV_SUB-TRACT, which

subtracts source 2 from source 1), set to the minimum of the two sources using

D3D10_BLEND_OP_MIN, or set to the maximum of the two sources using

D3D10_BLEND_OP_MAX.

The last member of the blend description, RenderTargetWriteMask[n], is used to set

the per-pixel write mask that is used to determine which components of the rendering

target can be written to during rendering. A value of 0×0F can be used to specify that all
components are to be written to. The value 0×0F is essentially the logical OR result of

D3D10_COLOR_WRITE_ENABLE_RED | D3D10_COLOR_WRITE_ENABLE_GREEN |

D3D10_COLOR_WRITE_ENABLE_BLUE | D3D10_COLOR_WRITE_ENABLE_ALPHA.

The shader from the Alpha Mapping demo is shown in Listing 7.1. The only difference

between this shader and the Texture Mapping shader in Chapter 6, ―Shading and Surfaces,‖

is the addition of a BlendState descriptor. This object is set by calling the HLSL function

SetBlendState(), which is the same as calling the Direct3D function

javascript:moveTo('ch07list1');
../ch06#ch06

OMSetBlendState() on the application side. The function takes the blend state

description, a blend factor, and a blend mask. The mask is set to 0xFFFFFF to allow for all
components. Note that you can set the blend state either in HLSL, which is what we are

doing in this demo, or on the application side using OMSetBlendState(). You don’t have

to do both.

LISTING 7.1. THE ALPHA MAPPING DEMO’S SHADER

 /*

 Alpha Mapping Demo's HLSL Shader

 Ultimate Game Programming with DirectX 2nd Edition

 Created by Allen Sherrod

 */

 Texture2D decal;

 SamplerState DecalSampler

 {

 Filter = MIN_MAG_MIP_LINEAR;

 AddressU = Wrap;

 AddressV = Wrap;

 };

 BlendState AlphaBlending

 {

 AlphaToCoverageEnable = FALSE;

 BlendEnable[0] = TRUE;

 SrcBlend = SRC_ALPHA;

 DestBlend = INV_SRC_ALPHA;

 BlendOp = ADD;

 SrcBlendAlpha = ZERO;

 DestBlendAlpha = ZERO;

 BlendOpAlpha = ADD;

 RenderTargetWriteMask[0] = 0×0F;

 };

cbuffer cbChangesEveryFrame

 {

 matrix World;

 matrix View;

 };

 cbuffer cbChangeOnResize

 {

 matrix Projection;

 };

 struct VS_INPUT

 {

 float4 Pos : POSITION;

 float2 Tex : TEXCOORD;

 };

 struct PS_INPUT

 {

 float4 Pos : SV_POSITION;

 float2 Tex : TEXCOORD0;

 };

 PS_INPUT VS(VS_INPUT input)

 {

 PS_INPUT output = (PS_INPUT)0;

 output.Pos = mul(input.Pos, World);

 output.Pos = mul(output.Pos, View);

 output.Pos = mul(output.Pos, Projection);

 output.Tex = input.Tex;

 return output;

 }

float4 PS(PS_INPUT input) : SV_Target

{

 return decal.Sample(DecalSampler, input.Tex);

}

technique10 AlphaMapping

{

 pass P0

 {

 SetBlendState(AlphaBlending, float4(0.0f, 0.0f, 0.0f,

0.0f),

 0xFFFFFFFF);

 SetVertexShader(CompileShader(vs_4_0, VS()));

 SetGeometryShader(NULL);

 SetPixelShader(CompileShader(ps_4_0, PS()));

 }

}

The Alpha Mapping demo builds off of the Texture Mapping demo in Chapter 6. In the Alpha
Mapping demo the only difference is in the HLSL effect shader. The main source file from

the demo is the same except for a few object name changes. The relevant code form the
Alpha Mapping demo’s main source file is shown in Listing 7.2. Figure 7.2 shows a

screenshot from the demo.

LISTING 7.2. THE RELEVANT CODE IN THE ALPHA MAPPING DEMO’S SOURCE

FILE

/*

 Alpha Mapping

 Ultimate Game Programming with DirectX 2nd Edition

 Created by Allen Sherrod

../ch06#ch06
javascript:moveTo('ch07list2');
javascript:moveTo('ch07fig02');

*/

#include<d3d10.h>

#include<d3dx10.h>

#pragma comment(lib, "d3d10.lib")

#pragma comment(lib, "d3dx10.lib")

#define WINDOW_NAME "Alpha Mapping"

#define WINDOW_CLASS "UPGCLASS"

#define WINDOW_WIDTH 800

#define WINDOW_HEIGHT 600

// Global window handles.

HINSTANCE g_hInst = NULL;

HWND g_hwnd = NULL;

// Direct3D 10 objects.

ID3D10Device *g_d3dDevice = NULL;

IDXGISwapChain *g_swapChain = NULL;

ID3D10RenderTargetView *g_renderTargetView = NULL;

struct DX10Vertex

{

 D3DXVECTOR3 pos;

 D3DXVECTOR2 tex0;

};

ID3D10InputLayout *g_layout = NULL;

ID3D10Buffer *g_squareVB = NULL;

ID3D10ShaderResourceView *g_squareDecal = NULL;

ID3D10Effect *g_shader = NULL;

ID3D10EffectTechnique *g_alphaMapTech = NULL;

ID3D10EffectShaderResourceVariable *g_decalEffectVar = NULL;

ID3D10EffectMatrixVariable *g_worldEffectVar = NULL;

ID3D10EffectMatrixVariable *g_viewEffectVar = NULL;

ID3D10EffectMatrixVariable *g_projEffectVar = NULL;

D3DXMATRIX g_worldMat, g_viewMat, g_projMat;

bool InitializDemo()

{

 // Load the shader.

 DWORD shaderFlags = D3D10_SHADER_ENABLE_STRICTNESS;

#if defined(DEBUG) || defined(_DEBUG)

 shaderFlags |= D3D10_SHADER_DEBUG;

#endif

 HRESULT hr = D3DX10CreateEffectFromFile(

 "AlphaMapDemoEffects.fx", NULL, NULL, "fx_4_0",

shaderFlags,

 0, g_d3dDevice, NULL, NULL, &g_shader, NULL, NULL);

 if(FAILED(hr))

 return false;

 g_alphaMapTech = g_shader-

>GetTechniqueByName("AlphaMapping");

 g_worldEffectVar = g_shader->GetVariableByName(

 "World")->AsMatrix();

 g_viewEffectVar = g_shader->GetVariableByName(

 "View")->AsMatrix();

 g_projEffectVar = g_shader->GetVariableByName(

 "Projection")->AsMatrix();

 g_decalEffectVar = g_shader->GetVariableByName(

 "decal")->AsShaderResource();

 // Load the texture.

 hr = D3DX10CreateShaderResourceViewFromFile(g_d3dDevice,

 "AlphaBrick.dds", NULL, NULL, &g_squareDecal, NULL);

 if(FAILED(hr))

 return false;

 // Create the geometry.

 D3D10_INPUT_ELEMENT_DESC layout[] =

 {

 { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,

 D3D10_INPUT_PER_VERTEX_DATA, 0 },

 { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 12,

 D3D10_INPUT_PER_VERTEX_DATA, 0 },

 };

 unsigned int numElements = sizeof(layout) / sizeof(layout[0]);

 D3D10_PASS_DESC passDesc;

 g_alphaMapTech->GetPassByIndex(0)->GetDesc(&passDesc);

 hr = g_d3dDevice->CreateInputLayout(layout, numElements,

 passDesc.pIAInputSignature, passDesc.IAInputSignatureSize,

 &g_layout);

 if(FAILED(hr))

 return false;

 DX10Vertex vertices[] =

 {

 { D3DXVECTOR3(0.5f, 0.5f, 1.5f), D3DXVECTOR2(1.0f, 0.0f)

},

 { D3DXVECTOR3(0.5f, -0.5f, 1.5f), D3DXVECTOR2(1.0f, 1.0f)

},

 { D3DXVECTOR3(-0.5f, -0.5f, 1.5f), D3DXVECTOR2(0.0f, 1.0f)

},

 { D3DXVECTOR3(-0.5f, -0.5f, 1.5f), D3DXVECTOR2(0.0f, 1.0f)

},

 { D3DXVECTOR3(-0.5f, 0.5f, 1.5f), D3DXVECTOR2(0.0f, 0.0f)

},

 { D3DXVECTOR3(0.5f, 0.5f, 1.5f), D3DXVECTOR2(1.0f, 0.0f) }

 };

 // Create the vertex buffer.

 D3D10_BUFFER_DESC buffDesc;

 buffDesc.Usage = D3D10_USAGE_DEFAULT;

 buffDesc.ByteWidth = sizeof(DX10Vertex) * 6;

 buffDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER;

 buffDesc.CPUAccessFlags = 0;

 buffDesc.MiscFlags = 0;

 D3D10_SUBRESOURCE_DATA resData;

 resData.pSysMem = vertices;

 hr = g_d3dDevice->CreateBuffer(&buffDesc, &resData,

 &g_squareVB);

 if(FAILED(hr))

 return false;

 // Set the shader matrix variables that won't change once

here.

 D3DXMatrixIdentity(&g_worldMat);

 D3DXMatrixIdentity(&g_viewMat);

 g_viewEffectVar->SetMatrix((float*)&g_viewMat);

 g_projEffectVar->SetMatrix((float*)&g_projMat);

 return true;

}

void RenderScene()

{

 float col[4] = { 0, 0, 0, 1 };

 g_d3dDevice->ClearRenderTargetView(g_renderTargetView, col);

 g_worldEffectVar->SetMatrix((float*)&g_worldMat);

 g_decalEffectVar->SetResource(g_squareDecal);

 unsigned int stride = sizeof(DX10Vertex);

 unsigned int offset = 0;

 g_d3dDevice->IASetInputLayout(g_layout);

 g_d3dDevice->IASetVertexBuffers(0, 1, &g_squareVB, &stride,

 &offset);

 g_d3dDevice->IASetPrimitiveTopology(

 D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

 D3D10_TECHNIQUE_DESC techDesc;

 g_alphaMapTech->GetDesc(&techDesc);

 for(unsigned int i = 0; i < techDesc.Passes; i++)

 {

 g_alphaMapTech->GetPassByIndex(i)->Apply(0);

 g_d3dDevice->Draw(6, 0);

 }

 g_swapChain->Present(0, 0);

}

void Shutdown()

{

 if(g_d3dDevice) g_d3dDevice->ClearState();

 if(g_swapChain) g_swapChain->Release();

 if(g_renderTargetView) g_renderTargetView->Release();

 if(g_shader) g_shader->Release();

 if(g_layout) g_layout->Release();

 if(g_squareVB) g_squareVB->Release();

 if(g_squareDecal)

 {

 ID3D10Resource *pRes;

 g_squareDecal->GetResource(&pRes);

 pRes->Release()

 g_squareDecal->Release()

 }

 if(g_d3dDevice) g_d3dDevice->Release()

}

FIGURE 7.2. SCREENSHOT FROM THE ALPHA MAPPING DEMO.

SPRITES

A sprite is a 2D image displayed on the screen. Sprites are more common in 2D games,
where the images act solely as the various game objects, characters, and environments. In

3D we usually have 3D geometry with texture images applied to them to simulate detail
where none exists. In some 3D games, sprites can be seen as screen interface graphics

such as health bars, shield bars, and so on.

In the early days of 3D video games, sprites were used more like they are for 2D games,

where sprite characters and objects populate the game world. This can be seen in early 3D
games such as Id Software’s Doom, Duke Nuke ’Em 3D, and many more. Today sprites are

used mostly for particle effects such as snow, rain, smoke, dust, fire, weapon effects, and

so forth.

TYPES OF SPRITES

There are two main types of sprites: sprites that can orient themselves in 3D space and
those that cannot. The sprites that cannot orient in 3D are known as billboard sprites. In

other words, a billboard sprite always faces the camera but can be positioned anywhere.
Characters in the game Doom were billboard sprites; no matter how the player was

oriented, the enemies and many world objects would always face the player.

The decision to use billboard sprites or not depends on the application. For most particle

systems the particles are so small that changing their rotation might have a negative effect
on the scene or, possibly, no effect at all. In 3D you can draw a textured square to act as a

sprite. In this chapter we will create billboard sprites in Direct3D 10 using the sprite image
in Figure 7.3 since learning that will give us something new to cover rather than drawing yet

another textured square.

FIGURE 7.3. AN EXAMPLE OF A SPRITE.

javascript:moveTo('ch07fig03');

To create a sprite you simply create a 2D image. If any part of the image is to be

transparent or semitransparent, then you can create a 32-bit RGBA image to represent the

object. In the image in Figure 7.3 the black areas are set to transparent in the alpha
channel in Adobe Photoshop, while the orb itself is the only visible part of the texture

image.

POINT SPRITES

Direct3D 9 and OpenGL have what are known as point sprites. A point sprite is essentially a
sprite that is generated from a point and, in the case of Direct3D 9 and OpenGL, is also

hardware accelerated. This means the hardware handles keeping the sprite facing the
camera, and all the programmer has to do is enable the point sprite feature, specify the

properties (such as size etc.), and supply a list of points to the graphics hardware.

Direct3D 10, however, does not have this point sprite feature. To use hardware-accelerated

point sprites in Direct3D 10, we must use the geometry shader to create the sprites from a
list of points. Since the geometry shader is doing the work, the effect is technically GPU

hardware accelerated since no CPU processing is used for the creation of the geometry.

SPRITES DEMO

On the CD-ROM, in the Chapter 7 folder, is a demo called Billboard Sprites. The

Billboard Sprites demo builds off of the Alpha Mapping demo and makes several
modifications to the original source code.

In the shader effect file, a new global uniform variable is created to represent the size of the
sprite. Also added to the effect file is a geometry shader. The geometry shader is set up to

accept an input of a single point, and it outputs six vertices because it creates two triangles
(three points each) that form the square shape. The body of the geometry shader will use

the input point’s position as the center position and will use the global size to create four
points around the center point. It outputs each triangle using the stream object’s

Append() function, and once a triangle has been fully outputted, the RestartStrip()

function is called to mark the start of the next triangle. Keep in mind that each triangle is

separated by a RestartStrip() call in a geometry shader.

To ensure that the triangles are always facing the camera, we use the billboard technique.

This is done by taking the right and up vectors (i.e., directions) of the view matrix. These

vectors act as directions, where -right is left, right is right, up is up, and -up is down.
Therefore, to generate the point that goes in the upper left, we add the center position to

the -right + up vectors (e.g., pos + [-right + up]) to move the center position to the upper

left. We can then pass that position to the triangle stream output using Append(). We do

this for the upper-left, upper-right, lower-left, and lower-right positions of the square that
will act as the sprite.

javascript:moveTo('ch07fig03');
../ch07#ch07

Vectors and matrices will be discussed in more detail in the next chapter. The view matrix

represents the camera. By taking the first column (right vector) and the first row (up
vector), we can use those directions in 3D space to move the center point around in a way

that gives the impression that the resulting square is facing the camera. Mathematically,
what is happening is that we determine which directions are considered right of and up from

the camera, and we generate a square in those directions so that no matter where the
camera is facing, we can always generate geometry that looks directly at the camera. You

can see this by holding up a pencil and moving it to the left and up (upper left) of where
you are facing. Then move it right and up from its original position and so forth. The view

matrix uses the same idea. As long as you move the object with respect to what the view
(your eyes) considers right and up or down and left, the resulting geometry is always facing

you.

The HLSL shader from the Billboard Sprite demo is shown in Listing 7.3. Note that the

geometry shader also generates texture coordinates so that the square can be textured
properly. Also, since the size is set every frame, it is added to the constant buffer that is

marked for change on a frame-by-frame basis. Since the geometry coming into the

geometry shader is the transformed data from the vertex shader, we must use the original
transformed W of each point for the pixel shader to get the correct data. Once the data has

been transformed by the vertex shader, we don’t have to alter it in a way that changes its
meaning and therefore alters our output in ways we don’t expect.

LISTING 7.3. THE BILLBOARD SPRITE’S HLSL EFFECT SHADER

/*

 Billboard Sprite Demo's Shader

 Ultimate Game Programming with DirectX 2nd Edition

 Created by Allen Sherrod

*/

uniform Texture2D decal;

SamplerState DecalSampler

{

 Filter = MIN_MAG_MIP_LINEAR;

 AddressU = Wrap;

 AddressV = Wrap;

};

BlendState AlphaBlending

{

 AlphaToCoverageEnable = FALSE;

 BlendEnable[0] = TRUE;

 SrcBlend = SRC_ALPHA;

 DestBlend = INV_SRC_ALPHA;

 BlendOp = ADD;

 SrcBlendAlpha = ZERO;

 DestBlendAlpha = ZERO;

 BlendOpAlpha = ADD;

 RenderTargetWriteMask[0] = 0×0F;

};

cbuffer cbChangesEveryFrame

javascript:moveTo('ch07list3');

{

 matrix World;

 matrix View;

 float size;

};

cbuffer cbChangeOnResize

{

 matrix Projection;

};

struct VS_INPUT

{

 float4 Pos : POSITION;

};

struct GS_INPUT

{

 float4 Pos : SV_POSITION;

};

struct PS_INPUT

{

 float4 Pos : SV_POSITION;

 float2 Tex : TEXCOORD0;

};

GS_INPUT VS(VS_INPUT input)

{

 GS_INPUT output = (GS_INPUT)0;

 output.Pos = mul(input.Pos, World);

 output.Pos = mul(output.Pos, View);

 output.Pos = mul(output.Pos, Projection);

 return output;

}

[maxvertexcount(6)]

void GS(point GS_INPUT input[1],

 inout TriangleStream<PS_INPUT> triStream)

{

 PS_INPUT output = (PS_INPUT)0;

 matrix modelView = World * View;

 // Used for generating billboard geometry aligned to the

camera.

 float3 right = float3(modelView._m00, modelView._m10,

 modelView._m20);

 float3 up = float3(modelView._m01, modelView._m11,

 modelView._m21);

 float3 pos = input[0].Pos.xyz;

 // Must use transformed vertex W. Start first triangle.

 output.Pos = float4(pos + (-right + up) * size,

input[0].Pos.w);

 output.Tex = float2(0.0, 1.0);

 triStream.Append(output);

 output.Pos = float4(pos + (right + up) * size,

input[0].Pos.w);

 output.Tex = float2(0.0, 0.0);

 triStream.Append(output);

 output.Pos = float4(pos + (right - up) * size,

input[0].Pos.w);

 output.Tex = float2(1.0, 0.0);

 triStream.Append(output);

 // Start next triangle.

 triStream.RestartStrip();

 output.Pos = float4(pos + (right - up) * size,

input[0].Pos.w);

 output.Tex = float2(1.0, 0.0);

 triStream.Append(output);

 output.Pos = float4(pos + (-right - up) * size,

input[0].Pos.w);

 output.Tex = float2(1.0, 1.0);

 triStream.Append(output);

 output.Pos = float4(pos + (-right + up) * size,

input[0].Pos.w);

 output.Tex = float2(0.0, 1.0);

 triStream.Append(output);

 triStream.RestartStrip();

}

float4 PS(PS_INPUT input) : SV_Target

{

 return decal.Sample(DecalSampler, input.Tex);

}

technique10 Billboard

{

 pass P0

 {

 SetBlendState(AlphaBlending, float4(0.0f, 0.0f, 0.0f,

0.0f),

 0xFFFFFFFF);

 SetVertexShader(CompileShader(vs_4_0, VS()));

 SetGeometryShader(CompileShader(gs_4_0, GS()));

 SetPixelShader(CompileShader(ps_4_0, PS()));

 }

}

On the application side, the Billboard Sprite demo sends four points to Direct3D 10. Each of

these points acts as the center of a sprite, and, when rendered, the geometry shader
generates squares around each of these points. Since the geometry shader also generates

the texture coordinates, the only thing we need to render is a list of positions. The global
section of the demo’s main.cpp source file is shown in Listing 7.4, where an effect variable

for the sprite’s size has been added to the mix. Also in Listing 7.4, you can see the modified

InitializeDemo() function and RenderScene() function. Notice that in the

RenderScene() function the flag D3D10_PRIMITIVE_TOPOLOGY_POINTLIST is used

to specify that we are sending points, not triangles, to the Direct3D 10 API. Even though the
geometry shader generates triangles, technically, we are rendering points with this function

call, and therefore Direct3D 10 should expect points as the input, not triangle primitives.
Listing 7.4 shows the code that was modified to create the Billboard Sprite demo and was

built from the Alpha Mapping demo. To avoid listing too much redundant code, we have

listed the InitializeDemo() function up until the point at which the vertex buffer is

created.

LISTING 7.4. THE MODIFIED CODE OF THE BILLBOARD SPRITE DEMO’S MAIN

SOURCE FILE

/*

 Billboard Sprites

 Ultimate Game Programming with DirectX 2nd Edition

 Created by Allen Sherrod

*/

#include<d3d10.h>

#include<d3dx10.h>

#pragma comment(lib, "d3d10.lib")

#pragma comment(lib, "d3dx10.lib")

#define WINDOW_NAME "Billboard Sprites"

#define WINDOW_CLASS "UPGCLASS"

#define WINDOW_WIDTH 800

#define WINDOW_HEIGHT 600

// Global window handles.

HINSTANCE g_hInst = NULL;

HWND g_hwnd = NULL;

// Direct3D 10 objects.

javascript:moveTo('ch07list4');
javascript:moveTo('ch07list4');
javascript:moveTo('ch07list4');

ID3D10Device *g_d3dDevice = NULL;

IDXGISwapChain *g_swapChain = NULL;

ID3D10RenderTargetView *g_renderTargetView = NULL;

struct DX10Vertex

{

 D3DXVECTOR3 pos;

};

ID3D10InputLayout *g_layout = NULL;

ID3D10Buffer *g_pointsVB = NULL;

ID3D10ShaderResourceView *g_spriteDecal = NULL;

ID3D10Effect *g_shader = NULL;

ID3D10EffectTechnique *g_billboardTech = NULL;

ID3D10EffectShaderResourceVariable *g_decalEffectVar = NULL;

ID3D10EffectScalarVariable *g_pointSpriteSize = NULL;

ID3D10EffectMatrixVariable *g_worldEffectVar = NULL;

ID3D10EffectMatrixVariable *g_viewEffectVar = NULL;

ID3D10EffectMatrixVariable *g_projEffectVar = NULL;

D3DXMATRIX g_worldMat, g_viewMat, g_projMat;

bool InitializeDemo()

{

 // Load the shader.

 DWORD shaderFlags = D3D10_SHADER_ENABLE_STRICTNESS;

#if defined(DEBUG) || defined(_DEBUG)

 shaderFlags |= D3D10_SHADER_DEBUG;

#endif

 HRESULT hr = D3DX10CreateEffectFromFile(

 "BillboardSpritesShader.fx",

 NULL, NULL, "fx_4_0", shaderFlags, 0, g_d3dDevice, NULL,

 NULL, &g_shader, NULL, NULL);

 if(FAILED(hr))

 return false;

 g_billboardTech = g_shader->GetTechniqueByName("Billboard");

 g_worldEffectVar = g_shader->GetVariableByName(

 "World")->AsMatrix();

 g_viewEffectVar = g_shader->GetVariableByName(

 "View")->AsMatrix();

 g_projEffectVar = g_shader->GetVariableByName(

 "Projection")->AsMatrix();

 g_decalEffectVar = g_shader->GetVariableByName(

 "decal")->AsShaderResource();

 g_pointSpriteSize = g_shader->GetVariableByName(

 "size")->AsScalar();

 // Load the texture.

 hr = D3DX10CreateShaderResourceViewFromFile(g_d3dDevice,

 "sprite.dds", NULL, NULL, &g_spriteDecal, NULL);

 if(FAILED(hr))

 return false;

 // Create the geometry.

 D3D10_INPUT_ELEMENT_DESC layout[] =

 {

 { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,

 D3D10_INPUT_PER_VERTEX_DATA, 0 },

 };

 unsigned int numElements = sizeof(layout) /

sizeof(layout[0]);

 D3D10_PASS_DESC passDesc;

 g_billboardTech->GetPassByIndex(0)->GetDesc(&passDesc);

 hr = g_d3dDevice->CreateInputLayout(layout, numElements,

 passDesc.pIAInputSignature, passDesc.IAInputSignatureSize,

 &g_layout);

 if(FAILED(hr))

 return false;

 DX10Vertex vertices[] =

 {

 { D3DXVECTOR3(0.5f, 0.5f, 3.0f) },

 { D3DXVECTOR3(0.5f, -0.5f, 3.0f) },

 { D3DXVECTOR3(-0.5f, -0.5f, 3.0f) },

 { D3DXVECTOR3(-0.5f, -0.5f, 3.0f) },

 { D3DXVECTOR3(-0.5f, 0.5f, 3.0f) },

 { D3DXVECTOR3(0.5f, 0.5f, 3.0f) }

 };

 …

 return true;

}

void RenderScene()

{

 float col[4] = { 0, 0, 0, 1 };

 g_d3dDevice->ClearRenderTargetView(g_renderTargetView, col);

 g_worldEffectVar->SetMatrix((float*)&g_worldMat);

 g_decalEffectVar->SetResource(g_spriteDecal);

 g_pointSpriteSize->SetFloat(0.3f);

 unsigned int stride = sizeof(DX10Vertex);

 unsigned int offset = 0;

 g_d3dDevice->IASetInputLayout(g_layout);

 g_d3dDevice->IASetVertexBuffers(0, 1, &g_pointsVB, &stride,

 &offset);

 g_d3dDevice->IASetPrimitiveTopology(

 D3D10_PRIMITIVE_TOPOLOGY_POINTLIST);

 D3D10_TECHNIQUE_DESC techDesc;

 g_billboardTech->GetDesc(&techDesc);

 for(unsigned int i = 0; i < techDesc.Passes; i++)

 {

 g_billboardTech->GetPassByIndex(i)->Apply(0);

 g_d3dDevice->Draw(6, 0);

 }

 g_swapChain->Present(0, 0);

}

Figure 7.4 shows a screenshot of the Billboard Sprite demo.

FIGURE 7.4. SCREENSHOT FROM THE BILLBOARD SPRITE DEMO.

javascript:moveTo('ch07fig04');

IMAGE FILTERS

The next topic we will discuss is image filters. An image filter is an algorithm that is
executed to convert a picture from its original input to some type of output, which is

dependent on the algorithm itself. Examples of some image filters are color inversion filters,
black-and-white (luminance) filters, sepia filters, edge detection filters, blur filters, and so

forth.

In this section we will look at a few simple image filters and apply them to textures being

rendered on square surfaces to keep the code short and simple. Each of these image-
filtering demos is a modified version of the Texture Mapping demo in Chapter 6, so the only

new code is in the effect files.

COLOR INVERSION

Color inversion is a simple effect to create when it comes to image filters. To perform this

effect we only have to use 1 minus the color in the pixel shader. This makes colors that are
1 equal to 0 and colors that are 0 equal to 1. In other words, it flips the colors around, so

dark becomes light and light becomes dark.

On the CD-ROM, in the Chapter 7 folder, is a demo called Color Inversion. The effect

shader file from the demo is shown in Listing 7.5. Figure 7.5 shows a screenshot of the
effect.

LISTING 7.5. COLOR INVERSION DEMO’S EFFECT SHADER FILE

/*

 Color Inversion Filter Demo's HLSL Shader

../ch06#ch06
../ch07#ch07
javascript:moveTo('ch07list5');
javascript:moveTo('ch07fig05');

 Ultimate Game Programming with DirectX 2nd Edition

 Created by Allen Sherrod

*/

Texture2D decal;

SamplerState DecalSampler

{

 Filter = MIN_MAG_MIP_LINEAR;

 AddressU = Wrap;

 AddressV = Wrap;

};

cbuffer cbChangesEveryFrame

{

 matrix World;

 matrix View;

};

cbuffer cbChangeOnResize

{

 matrix Projection;

};

struct VS_INPUT

{

 float4 Pos : POSITION;

 float2 Tex : TEXCOORD;

};

struct PS_INPUT

{

 float4 Pos : SV_POSITION;

 float2 Tex : TEXCOORD0;

};

PS_INPUT VS(VS_INPUT input)

{

 PS_INPUT output = (PS_INPUT)0;

 output.Pos = mul(input.Pos, World);

 output.Pos = mul(output.Pos, View);

 output.Pos = mul(output.Pos, Projection);

 output.Tex = input.Tex;

 return output;

}

float4 PS(PS_INPUT input) : SV_Target

{

 return 1 - decal.Sample(DecalSampler, input.Tex);

}

technique10 ColorInversion

{

 pass P0

 {

 SetVertexShader(CompileShader(vs_4_0, VS()));

 SetGeometryShader(NULL);

 SetPixelShader(CompileShader(ps_4_0, PS()));

 }

}

FIGURE 7.5. SCREENSHOT FROM THE COLOR INVERSION DEMO.

LUMINANCE FILTER

The next filter is known as a luminance filter. This effect is used to convert a color
picture to black and white. You can find the Luminance demo on the CD-ROM in the Chapter

7 folder.

The algorithm for the luminance filter works by taking each color in the pixel shader and

multiplying each component by the luminance constant. You then add the result of each
multiplied component together to get the value that will act as the grayscale pixel output.

The luminance constant is 0.30 for the red, 0.59 for the green, and 0.11 for the blue

components. Multiplying the color’s red, green, and blue components by this luminance
constant and then adding the results of all components will create a result that appears

black and white for all pixels. The operations are shown as follows, where color is the
original pixel color and lum is the luminance constant (0.30, 0.59, 0.11).

Luminance = color.red * lum.red + color.green * lum.green + color.blue *
lum.blue

../ch07#ch07
../ch07#ch07
../ch07#ch07

This operation is essentially the dot product of two vectors, or in this case two colors. You

can use the HLSL dot() function to perform this operation, which will be discussed in more

detail in the next chapter for vectors. For now, know that the dot() function takes each

component from the two vectors (color and the luminance constant in this example) and
multiplies them together and adds up the results. The resulting value is used for the output

color. The Luminance demo’s effect shader file is shown in Listing 7.6. Figure 7.6 shows a
screenshot of the demo in action.

LISTING 7.6. THE LUMINANCE DEMO’S EFFECT SHADER FILE

/*

 Luminance Filter

 Ultimate Game Programming with DirectX 2nd Edition

 Created by Allen Sherrod

*/

Texture2D decal;

SamplerState DecalSampler

{

 Filter = MIN_MAG_MIP_LINEAR;

 AddressU = Wrap;

 AddressV = Wrap;

};

cbuffer cbChangesEveryFrame

{

 matrix World;

 matrix View;

};

cbuffer cbChangeOnResize

{

 matrix Projection;

};

struct VS_INPUT

{

 float4 Pos : POSITION;

 float2 Tex : TEXCOORD;

};

struct PS_INPUT

{

 float4 Pos : SV_POSITION;

 float2 Tex : TEXCOORD0;

};

PS_INPUT VS(VS_INPUT input)

{

 PS_INPUT output = (PS_INPUT)0;

 output.Pos = mul(input.Pos, World);

 output.Pos = mul(output.Pos, View);

javascript:moveTo('ch07list6');
javascript:moveTo('ch07fig06');

 output.Pos = mul(output.Pos, Projection);

 output.Tex = input.Tex;

 return output;

}

float4 PS(PS_INPUT input) : SV_Target

{

 float3 lumConst = float3(0.30, 0.59, 0.11);

 float3 color = decal.Sample(DecalSampler, input.Tex);

 float dp = dot(color, lumConst);

 return float4(dp, dp, dp, 1);

}

technique10 LuminanceFilter

{

 pass P0

 {

 SetVertexShader(CompileShader(vs_4_0, VS()));

 SetGeometryShader(NULL);

 SetPixelShader(CompileShader(ps_4_0, PS()));

 }

}

The luminance filter is also known as the black-and-white
transfer function.

FIGURE 7.6. A SCREENSHOT FROM THE LUMINANCE DEMO.

SEPIA TONE FILTER

The sepia tone effect is used to color a black-and-white image with a brownish tone
to give it the appearance of and old photograph. It does this by taking the original color and

a brown tone, and using the two to color a black-and-white version of the image to create
the effect. As the description implies, the sepia tone builds off of the luminance filter. The

Sepia demo can be found on the accompanying CD-ROM in the Chapter 7 folder.

The sepia tone filter works in the following steps.

1. Convert the image to black and white.

2. Use the luminance (black-and-white) value as a percent between a light and dark set of

colors to create the sepia constant, where 0% (0.0) means we use the dark color, 100%

(1.0) means we use the light color, and any percentage between 0% and 100% will be

a color value between the light and dark colors.

3. Take the original color and the luminance color and find a color that is halfway between

the two. Let’s call this the half color.

4. Use the half color and the sepia constant and find a color that is halfway between those

two. This will be the output color.

In HLSL you can find a color that is between two colors by using the lerp() function. The

lerp() function takes as parameters the first vector (or color in this demo, which is

represented by a vector; i.e., they’re the same thing from a structure point of view), the
second vector, and a percentage to interpolate between the two. Finding a color between

../ch07#ch07

two colors is another way of mixing colors because the result will be a blend of the two

colors. When you find a color that is halfway between two other colors, it is like you are
equally mixing the colors together.

The term lerp stands for linear interpolation. For a simple example, let’s say we are
interpolating between the values 0 and 100. The percentage is used to find a value between

these two, where a percentage of 0.0 will return 0, and a percent of 1.0 will return 100. So
if the percentage is 0.65, then 65 will be returned since 65% into the range of 0 and 100 is

65. The lerp() function does this operation, but on two vectors to obtain a vector that is

some percentage between the two parameters. Therefore, to find a color between two

colors using lerp(), you just specify the two colors and a percentage between the two for

which you want to look. Since we are using colors, the result will be a blend between the

two.

The sepia tone effect is shown in Listing 7.7 in the demo’s shader file. This demo builds off

of the Luminance demo and adds a few extra lines of code to the pixel shader. Figure 7.7

shows a screenshot of the demo. We recommend that you run the demo applications to see
the results in color to be able to fully appreciate the differences between each image filter.

LISTING 7.7. THE SEPIA DEMO’S HLSL EFFECT SHADER FILE

/*

 Sepia Filter Demo's HLSL Shader

 Ultimate Game Programming with DirectX 2nd Edition

 Created by Allen Sherrod

*/

Texture2D decal;

SamplerState DecalSampler

{

 Filter = MIN_MAG_MIP_LINEAR;

 AddressU = Wrap;

 AddressV = Wrap;

};

cbuffer cbChangesEveryFrame

{

 matrix World;

 matrix View;

};

cbuffer cbChangeOnResize

{

 matrix Projection;

};

struct VS_INPUT

{

 float4 Pos : POSITION;

 float2 Tex : TEXCOORD;

};

struct PS_INPUT

javascript:moveTo('ch07list7');
javascript:moveTo('ch07fig07');

{

 float4 Pos : SV_POSITION;

 float2 Tex : TEXCOORD0;

};

PS_INPUT VS(VS_INPUT input)

{

 PS_INPUT output = (PS_INPUT)0;

 output.Pos = mul(input.Pos, World);

 output.Pos = mul(output.Pos, View);

 output.Pos = mul(output.Pos, Projection);

 output.Tex = input.Tex;

 return output;

}

float4 PS(PS_INPUT input) : SV_Target

{

 float3 lumConst = float3(0.30, 0.59, 0.11);

 float3 light = float3(1, 0.9, 0.5);

 float3 dark = float3(0.2, 0.05, 0);

 float3 color = decal.Sample(DecalSampler, input.Tex);

 float luminance = dot(color, lumConst);

 float3 sepia = lerp(dark, light, luminance);

 float3 halfColor = lerp(color, luminance, 0.5);

 float3 final = lerp(halfColor, sepia, 0.5);

 return float4(final, 1);

}

technique10 SepiaFilter

{

 pass P0

 {

 SetVertexShader(CompileShader(vs_4_0, VS()));

 SetGeometryShader(NULL);

 SetPixelShader(CompileShader(ps_4_0, PS()));

 }

}

FIGURE 7.7. A SCREENSHOT FROM THE SEPIA DEMO.

SUMMARY

In this chapter we looked at several fairly straightforward ways to use texture mapping in
game graphics. The possibilities for texture mapping seem endless. Throughout the

remainder of this book we will look at a few additional uses for textures when discussing
topics such as lighting (specifically, bump and normal mapping) and shadows (specifically,

shadow mapping).

The following elements were discussed in this chapter.

 Alpha mapping

 Sprites

 Billboard sprites

 Point sprites

 Color inversion filters

 Black-and-white (luminance) filters

 Sepia tone filters

In the next chapter we will take a deeper look into the common mathematics used in video

games. We’ve already looked briefly at the commonly used math objects, but in the next

chapter you will gain a much deeper understanding of what they are, why they exist, and
how to use them.

CHAPTER QUESTIONS

Answers to the following chapter review questions can be found in Appendix A.

1. List at least five ways textures can be used in game graphics outside of directly

coloring a surface.

2. What is alpha mapping?

3. What are the two ways alpha blending can be enabled in Direct3D 10?

4. What two ways to store alpha map values were discussed in this chapter?

5. Why would you use 1 bit for alpha values rather than using 1 byte?

6. What is alpha to coverage, and what part does it play in game graphics?

7. List and describe five of the blend options that can be used for SrcBlend in the

blend descriptor.

8. What is a sprite?

9. What is a point sprite?

10. How does Direct3D 10 point sprite support differ from Direct3D 9?

11. What is a billboard sprite? How do you calculate a sprite that always faces the

camera?

12. How did we create point sprites in Direct3D 10 in this chapter?

13. Describe the luminance filter algorithm.

14. Describe the color inversion filter algorithm.

15. Describe the sepia tone filter algorithm.

CHAPTER EXERCISES

../app01#app01
../app01lev1sec7#app01qa7q1a1
../app01lev1sec7#app01qa7q2a2
../app01lev1sec7#app01qa7q3a3
../app01lev1sec7#app01qa7q4a4
../app01lev1sec7#app01qa7q5a5
../app01lev1sec7#app01qa7q6a6
../app01lev1sec7#app01qa7q7a7
../app01lev1sec7#app01qa7q8a8
../app01lev1sec7#app01qa7q9a9
../app01lev1sec7#app01qa7q10a10
../app01lev1sec7#app01qa7q11a11
../app01lev1sec7#app01qa7q12a12
../app01lev1sec7#app01qa7q13a13
../app01lev1sec7#app01qa7q14a14
../app01lev1sec7#app01qa7q15a15

Exercise 1: Create a demo that allows the user to choose the inversion amount. Allow the

user to specify a value between 0.0 and 1.0 instead of always using 1.0 as the inversion
amount (which was seen in the Color Inversion demo as 1 minus color).

Exercise 2: Build off of Exercise 1 and allow the user to choose which color component to
invert. Allow the user to use the red channel, green channel, blue channel, or all channels.

Do this by creating different techniques that use slightly different pixel shaders. That way
the user can choose which technique he wants to use on the application side.

Exercise 3: Create a new demo that combines your color inversion code from Exercise 2
and the sepia tone effect.

8. GAME MATH

In This Chapter

 Vectors

 Planes

 Matrices

 Bounding Geometry

 Additional Mathematics

Mathematics is the foundation of everything in video game development. Mathematics is

used for everything from computer graphics to artificial intelligence, physics, game logic,
and so forth. To be successful in video game programming, especially graphics

programming, it is essential that you have a strong mathematics background. If you do not
have a strong mathematics background, it is important to learn as much as you can

because that will only make creating the types of environments that you dream of easier in
the long run.

In this chapter we will briefly review the most common types of mathematic structures and
topics that you will encounter as a game and graphics programmer. The topic of game

mathematics could fill its own book, so if you do not have a strong math background, we

recommend that you obtain a good book on the subject.

You do not need to be familiar with the mathematics topics
discussed in this chapter to use the various math structures

and functions. It would help to have a better understanding
of “why” if you pick up a good book on the topic. It would

also help to be able to code your own math implementations
instead of using DirectX’s code. Since DirectX provides the

technical implementation for these common math objects,
the details are hidden from you unless you decide to write

your own custom math code.

VECTORS

../ch08lev1sec1#ch08lev1sec1
../ch08lev1sec1#ch08lev2sec5
../ch08lev1sec2#ch08lev1sec2
../ch08lev1sec3#ch08lev1sec3
../ch08lev1sec4#ch08lev1sec4

A vector is a mathematical structure that is used to represent a direction. There are

different types of vectors, and the most common kind you will see in computer graphics are
2D, 3D, and 4D vectors. The type of vector determines the number of axes or dimensions it

represents. Therefore, a 3D vector is a vector that exists in 3D space and has X, Y, and Z
axes.

At its heart a vector is a direction, and in computer graphics the structures used to define
vectors are often used to represent positions as well. Taking a 3D vector as an example, the

X, Y, and Z axes can be used to mark a position just as they can mark a direction. The
difference lies in what the programmer intends to use the data for. In math and physics a

vector is an object with a direction and a length. A simple visual of this is shown in Figure
8.1, where the vector moves from the origin (the origin in 3D space has an X axis of 0, Y of

0, and Z of 0) along the positive Y axis 10 units, making its final position X:0, Y:10, Z:0.
The direction of the vector is

FIGURE 8.1. A SIMPLE LOOK AT A VECTOR AS A DIRECTION AND A LENGTH.

X:0, Y:1, and Z:0. Since the vector only moves long the Y axis (Y:1), only the Y has a

value.

In this chapter we’ll look at 3D vectors, but keep in mind that everything discussed here
also applies to 2D and 4D vectors. A 2D vector is made up of X and Y axes, and a 4D vector

is made up of X, Y, Z, and W axes. The Direct3D 3D vector is called D3DXVECTOR3, and it
has the following structure according to the DirectX 10 documentation.

typedef struct D3DXVECTOR3 {

 FLOAT x;

 FLOAT y;

 FLOAT z;

} D3DXVECTOR3, *LPD3DXVECTOR3;

This structure can be used to represent both positions and directions. In the case of a
vertex, this structure is often used to represent the position attribute of each vertex of a

primitive. In the upcoming subsections of this discussion on vectors, we will briefly discuss a
few of the most common mathematical operations performed on vector objects. To view a

complete list of the mathematical functions offered by the DirectX SDK vector objects, refer
to the DirectX documentation.

javascript:moveTo('ch08fig01');
javascript:moveTo('ch08fig01');

Vectors are used for all types of mathematical objects,

especially in game physics. This includes directions,

positions, tensors, pseudovectors, and other vector-like
objects. In other words, if it has an X, Y, and Z property

(using 3D vectors as an example), then most likely
programmers will use their vector code to represent it rather

than creating another structure with the same properties
(member variables). This makes it easier to get started if you

do not have strong math skills.

VECTOR ADDITION AND SUBTRACTION

The first operations we’ll look at in vector mathematics are adding and subtracting.
Mathematically, adding and subtracting are very elementary. To add two vectors together,

again using 3D vectors as an example, you add each of the matching axes together, and the
result is stored in a new vector holding the solution. In other words, you take the X axis

from vectors A and B and add them together and store answer in a result vector’s X axis.
You do the same with the Y and Z axes. This is shown in the following example.

Vector3D A = (10, 5, 8)

Vector3D B = (3, 1, 11)

Vector3D Result = A + B

or

Result = (13, 6, 19)

or

Result.x = A.x + B.x

Result.y = A.y + B.y

Result.z = A.z + B.z

Using the vectors from the addition example, subtraction is the same, but instead of adding

you are literally subtracting each axis from its matching counterpart in the other vector. If
vector A is (10, 5, 8) and vector B is (3, 1, 11), the resulting vector when subtracting is (7,

4, –3).

Vectors in DirectX are added using the function D3DXVec3Add() and subtracted using the

D3DXVec3Subtract function. These functions have the following function prototypes

where the function returns the result as a vector. The first parameter is the address for the

vector that will store the result of the operation, the second parameter is the first vector in
the operation (vector A), and the last parameter is the second vector in the operation

(vector B).

D3DXVECTOR3 * D3DXVec3Add(

 D3DXVECTOR3 * pOut,

 CONST D3DXVECTOR3 * pV1,

 CONST D3DXVECTOR3 * pV2

);

D3DXVECTOR3 * D3DXVec3Subtract(

 D3DXVECTOR3 * pOut,

 CONST D3DXVECTOR3 * pV1,

 CONST D3DXVECTOR3 * pV2

);

The result from these functions can be obtained by their return value or by passing the

address of the object to hold the result in the first parameter. Alternatively, you can use the
structure’s overloaded operators to perform addition and subtraction instead of calling these

functions. This would result in the following in code.

D3DXVECTOR3 vectorA, vectorB, result;

result = vectorA + vectorB;

result = vectorA - vectorB;

VECTOR NORMALIZATION

The length of a vector is called its magnitude. To find the length of a vector you multiply
each component of a vector with itself and add all of the axes. The square root of this result

is the magnitude of the vector. This is shown in the following pseudo-code example.

length = square_root(vector.x * vector.x + vector.y * vector.y +

vector.z * vector.z)

This equation gives you the inner product. The square root of this is the length of a vector.
When a vector has a length that equals 1, it is said that the vector is unit-length. Another

term for this is normalized vector (normal for short). The length itself is a floating-point

value.

A normal has many uses in video game development. Later in this book you’ll see how

normal vectors contribute to the lighting equation. In this chapter we will briefly discuss
how to convert a vector to a normal.

To convert a vector to a normal, the first step is to find the vector’s length. If the length
equals 1, the vector is already unit-length, and nothing else needs to be calculated. If the

length is not 1, you can divide each axis of the vector by the length, which will result in
scaling the vector to unit-length. This is done as follows.

D3DXVECTOR3 vectorA, normal;

float length = D3DXVec3Length(&vectorA);

normal = vectorA / length;

The D3DXVec3Length() function can be used to find the length of a D3DXVECTOR3

object. Alternatively, you can normalize a vector by calling the DirectX function

D3DXVec3Normalize(), which takes as parameters the address of the vector that will

store the result of the operation and the vector to normalize. Normalized vectors are used
for many mathematical equations, such as lighting for example. The function prototype for

the D3DXVec3Normalize() function is shown as follows.

D3DXVECTOR3 * D3DXVec3Normalize(

 D3DXVECTOR3 *pOut,

 CONST D3DXVECTOR3 *pV

);

COMMON ADDITIONAL VECTOR OPERATIONS

We’ll look at a few other vector operations in this chapter that will come up later in this
book in discussions of various topics. These operations include the following.

 Dot product

 Cross product

 Lerp

The dot product is result of multiplying two vectors and adding the resulting axes. The dot

product of two vectors can be found as follows using 3D vectors as an example.

float dot = vectorA.x * vectorB.x + vectorA.y * vectorB.y +

vectorA.z *

vectorB.z;

In Chapter 13, ―Lighting,‖ you will see how we use the dot product to get the angle between
two vectors and use that information for determining how a surface should be lit.

The cross product of two vectors, put simply, is obtained by cross multiplying the axes of
one vector with the axes of another. The cross product is used to find a vector that is

perpendicular to two source vectors, which can be useful when you need such a vector in
relation to two other vectors. The cross product, also known as the vector product, is shown

below, where the axes that are multiplied are cross multiplied with one vector to another.

cross.x = vectorA.y * vectorB.z - vectorA.z * vectorB.y

cross.y = vectorA.z * vectorB.x - vectorA.x * vectorB.z

cross.z = vectorA.x * vectorB.y - vectorA.y * vectorB.x

Lerp is short for linear interpolation. It is an operation that is used to find a value that lies
somewhere between two source values. The idea is to take a start value, an end value, and

a percentage from 0.0 to 1.0 (i.e., 0 to 100%). If the percentage supplied is 0.0, the start
vector is returned. If the percentage is 1.0, the ending value is returned, but if the

percentage is a value between the two, a vector that lies in the percentage between the two
will be returned.

For example, using single values, let’s say we have a start value of 6 and an end value of
18. If we supply a percentage of 50%, that is like saying what is 50% into the range of 6

and 18. The answer is 12, since 12 lies halfway between 6 and 18. The same concept is

used for linear interpolation with vectors, but this concept is applied to each axis of the
vector. When using linear interpolation, you are linearly finding a value between two vectors

based on the percentage, which often has the notation t in game development books. The
equation for finding the linear interpolated vector between vector A and B is shown in the

following example.

result = (vectorB - vectorA) * percentage + vectorA

../ch13#ch13

The equation for the linear interpolation is quite simple. It works by finding the range total

between values (vectors) A and B, multiplying that by the percentage (t), and adding that

to the starting vector. So if we wanted to lerp between the values 13 and 57 by 0.4 (40%),
we would first find the range (57 – 13, which equals 44) and then multiply 44 by 0.4, which

is 17.6. We would then add 17.6 to the starting value to get the value that lies 40% into the
range, which would result in 30.6.

Linear interpolation is sometimes used for animations, where time is used as t. So if an
animation had to occur within a certain time frame, for example, you could interpolate

between two vertex positions to find where the vertex would be at a specific time. If you do
this for all vertices in a model, you get the type of animation used in many early 3D video

games before bone animation (discussed later in the book) became the standard.

DIRECTX 3D VECTOR FUNCTIONS

The DirectX SDK offers a number of functions for vector objects. In this section we will look
briefly at the 3D vector functions. The 2D and 4D vectors have equivalent functions,

although a few 3D functions do not have a 2D or 4D counterpart. For example, there is no

D3DXVec2Cross(). Table 8.1 lists the 3D vector functions in the DirectX SDK.

TABLE 8.1. THE 3D VECTOR FUNCTIONS FROM THE DIRECTX SDK

Function Definition

D3DXVec3Add() Vector addition

D3DXVec3BaryCentric() Returns a point in Barycentric coordinates

D3DXVec3CatmullRom() Performs CatmullRom interpolation

D3DXVec3Cross() Performs the cross product of two vectors

D3DXVec3Dot() Performs the dot product between two vectors

D3DXVec3Hermite() Performs Hermite spline interpolation

D3DXVec3Length() Calculates the length (magnitude) of a vector

D3DXVec3LengthSq() Calculates the square of the vector’s length

D3DXVec3Lerp() Performs linear interpolation

D3DXVec3Maximize() Finds the maximum vector of two source

vectors

javascript:moveTo('ch08table01');

TABLE 8.1. THE 3D VECTOR FUNCTIONS FROM THE DIRECTX SDK

Function Definition

D3DXVec3Minimize() Finds the minimum vector of two source

vectors

D3DXVec3Normalize() Normalizes a vector to unit-length

D3DXVec3Project() Projects a vector from object space to screen

space

D3DXVec3ProjectArray() Projects a float array from object space to

screen space

D3DXVec3Scale() Scales a vector

D3DXVec3Subract() Vector subtraction

D3DXVec3TransformArray() Transforms a float array by a matrix

D3DXVec3TransformCoord() Transforms a vector by a matrix and projects

back into the w = 1

D3DXVec3TransformCoordArray() Transforms a float array by a matrix and

projects back into the w = 1

D3DXVec3TransformNormal() Performs a 3 × 3 vector/matrix transformation

to transform a normal vector by a matrix

D3DXVec3TransformNormalArray() Performs a 3 × 3 vector/matrix transformation

to transform a normal vector represented as a

float array by a matrix

D3DXVec3UnProject() Projects a vector from screen space back to

object space

D3DXVec3UnProjectArray() Projects a vector represented as a float array

from screen space back to object space

D3DXVec3Transform() Transforms a vector by a matrix

PLANES

A plane can be thought of as an infinitely thin surface that extends forever alone two axes.

Planes have many uses in video games, many of which fall under the subject of collision
detection, where a plane can be used to test if an object of some type travels from one side

of the plane to the other.

Planes are not rendered; they are used mathematically for tests. These tests are essentially

set up to test which side of the plane an object is on or if the object penetrates the plane.
Take, for example, a game in which a cut scene is triggered when a player walks into a

room. This can be done as simply as defining a plane and testing every frame to see if the
player is on a different side of the plane than before. If so, the cut scene is triggered.

The plane equation is defined as ax + by + cz + dw = 0. In code a plane can be defined as
a structure with coefficients a, b, c, and d. These coefficients are usually floating-point

values. In DirectX the D3DXPLANE structure is defined as follows:

typedef struct D3DXPLANE {

 FLOAT a;

 FLOAT b;

 FLOAT c;

 FLOAT d;

} D3DXPLANE, *LPD3DXPLANE;

You can think of a plane as a normal that is defined by the first three coefficients, a, b, and
c, and a distance defined by the last coefficient d. You can manually specify this information

or you can create a plane from a primitive or surface. It is very common to create a plane
out of a triangle and then use that plane for some purpose such as collision detection.

PLANE OPERATIONS

The DirectX SDK has several functions that can be used with plane objects. The definition of

these functions (see Table 8.2) can give you an idea of what you can do with planes.

TABLE 8.2. DIRECTX SDK PLANE OBJECT

Function Definition

D3DXPlaneDot(const D3DXPLANE *pP,

const D3DXVECTOR4 *pV)

Computes the dot product of a

plane and a 4D vector.

D3DXPlaneDotCoord(const D3DXPLANE *pP,

const D3DXVECTOR3 *pV)

Computes the dot product of a

plane and a 3D vector. This is the

same as the D3DXPlaneDot()

function but assumes a w of 1.

D3DXPlaneDotNormal(const D3DXPLANE

*pP, const D3DXVECTOR3 *pV)

The same as

D3DXPlaneDotCoord() but

assumes a w of 0.

D3DXPlaneFromPointNormal(D3DXPLANE Computes a plane from a point and

javascript:moveTo('ch08table02');

TABLE 8.2. DIRECTX SDK PLANE OBJECT

Function Definition

*pP, const D3DXVECTOR3 *pPoint, const

D3DXVECTOR3 *pNormal)

a normal.

D3DXPlaneFromPoints(D3DXPLANE *pP,

const D3DXVECTOR3 *v1, const

D3DXVECTOR3 *v2, const D3DXVECTOR3

*v3)

Creates a plane from three points.

This can be used to define a plane

from a triangle.

D3DXPlaneIntersectLine (const

D3DXVECTOR3 *pOut, const D3DXPLANE

*pP, const D3DXVECTOR3 *v1, const

D3DXVECTOR3 *v2)

Tests to see if a line intersects with

the plane. If it does, the point of

intersection in 3D space is returned.

The point v1 is the start of the line,

and v2 is the end of the line. The

pOut parameter stores the position

of the intersection.

D3DXPlaneNormalize(D3DXPLANE *pOut,

const D3DXPLANE *pP)

Normalizes a plane so that its

coefficients are unit-length. If the a,

b, and c of a plane are its normal,

this function essentially normalizes

it.

D3DXPlaneScale(D3DXPLANE *pOut, const

D3DXPLANE *pP, FLOAT s)

Scales a plane by a specified

amount.

D3DXPlaneTransform(D3DXPLANE *pOut,

const D3DXPLANE *pP, const D3DXMATRIX

*pM)

Transforms a plane by a matrix

(see the upcoming ―Matrices‖

section).

D3DXPlaneTransformArray (D3DXPLANE

*pOut, UINT OutStride, const D3DXPLANE

*pP, UINT PStride, const D3DXMATRIX *

pM, UINT n)

Transforms an array of planes by a

matrix.

MATRICES

A matrix (plural matrices) is a rectangular table of elements that is used for mathematical

purposes. Put another way, a matrix in computer graphics is a 2D array of values that are
used primarily to perform various operations on vectors. Direct3D and OpenGL traditionally

expect a 2D array of floating-point values for arrays, but HLSL and GLSL support matrices

of other data types such as integers and Booleans. Matrices can be 4 × 4 (four columns and
four rows), 3 × 4 (three columns and four rows), 3 × 3 (three columns and three rows),

and so forth. Matrices were first discussed in Chapter 4, ―Shader Model 4,‖ in the discussion
of HLSL. Refer to that chapter to see how matrices are defined in HLSL if you do not

remember.

One of the primary uses for a matrix is to perform a math operation on a vector to change

that vector in some meaningful way. Matrices can store rotation, scaling, and translational
(positional) information. A 3 × 3 matrix, that is, a matrix (2D array) with three rows and

three columns, is used to store rotational and scaling information. When you apply this
matrix to a vector, a process known as vector-matrix transformation, you can essentially

rotate the vector or scale it any way you want. A 4 × 4 matrix has this same information
with the addition of positional information in the last row of the 2D array. Figure 8.2 shows

a visual of a matrix.

FIGURE 8.2. A 2D ARRAY AS A MATRIX, WHERE THE LAST ROW STORES THE

X, Y, AND Z POSITIONAL INFO.

When you transform a vector by a 4 × 4 matrix, you can apply scaling, rotations, and

translations on any vector. Translation is the process of moving a vector from one location
to another. Since a vector and vertex can be used the same way, you can transform the

vertices of a 3D model using a matrix to change the model’s position and orientation in the
3D world. For example, let’s say you’ve created a 3D cube in an application such as

Softimage XSI. The position of the vertices is stored in what is known as local or model
space. This means the positions of the vertices are not related to anything other than the

application in which the model was created. So if you create a box around the origin, you
can create something in XSI that looks like Figure 8.3.

FIGURE 8.3. A CUBE CREATED IN XSI.

../ch04#ch04
javascript:moveTo('ch08fig02');
javascript:moveTo('ch08fig03');

Now let’s say you want to use this new model that you’ve created in a game. Let’s also
assume you will be placing more than one box in your 3D scene. You have the option of

modeling the box in its unique position in XSI so that when the data is loaded, the boxes
and other objects will be in their correct positions.

This method is inefficient and ineffective for the following reasons:

 It would be a waste of time to model an object more than once throughout a scene just

so you can have more than one instance of the object.

 If the base object changes (let’s say you want spheres instead of boxes), you’ll have to

repeat the process all over again by deleting all the objects you’ve created and starting

again.

 What if the objects are dynamic and are supposed to move around the scene? How can

this happen in code? The solution is the purpose of this discussion, as you will see.

 If the objects are made up of thousands of polygons, why load what is essentially the

same object multiple times? This can lead to wasted memory and resources. If you have
100 instances of this object in a scene, that is 99 more objects than you need if the

objects are all exactly the same.

 Current hardware supports hardware instancing, which generally means drawing an

object with one draw call and mesh multiple times throughout the scene. If each object
has its own unique vertex data, there is no way to take advantage of this feature.

When you model an object in model space, you only need to create an object once. You can
then use a matrix to set the position of each instance of the object that is to appear in the

scene. So, for example, you load the model once and create 10 matrices. Each of these

matrices represents the instance of the object as it is to appear rotated, scaled, and
translated in that position. In other words, you still have 10 objects, but those 10 objects all

share the same model data. You simply change the matrix before drawing the object, and

the scene will render as you’ve intended. This is the primary purpose of matrices.

Since each object can have its own matrix, each object can move, rotate, and be sized

(scaled) independently of all other objects. When applying physics and collision detection,
you can take into account the forces acting upon an object in relation to the world around it

to create simulations that mimic what we observe in nature. To move one of these box
examples around in a 3D scene, we simply change the X, Y, Z translation of the matrix that

represents that object. This matrix is known as the model matrix. It is also sometimes
referred to as the world matrix, as it defines where in the world the object is positioned and

how it is rotated and scaled.

MATRICES AS CAMERAS

Matrices can be used for other effects as well. In 3D games there exists the idea of a virtual
camera. This camera is actually a matrix called the view matrix that is applied to the

vertices of a scene to rotate and position objects on a global level to give the illusion of a
camera moving around in the virtual world. Take a look at Figure 8.4. On the left is the

scene located at the default origin. The middle is the scene where the position of the view

matrix has been moved forward by 20 along the Z axis, and the right is the scene from the
middle rotated to the left around the Y axis. The combination of the model and view matrix

is called the model-view matrix, and it is used to position and orient objects based on their
own world transformation as well as being manipulated by the view matrix to simulate a 3D

camera affect.

FIGURE 8.4. SCENE AT THE ORIGIN (LEFT), TRANSLATED (MIDDLE), AND

ROTATED (RIGHT).

Another type of matrix called the projection matrix can further simulate a camera. This
matrix is used to add orthogonal or perspective projection to the objects being rendered.

Orthogonal projection essentially renders objects the same size on the screen regardless of
how far back they are from one another. This is useful in 2D scenes or 2D elements such as

menus since the depth of each object can be used to ensure the visual ordering of
overlapping objects on the screen, but it is not realistic when rendering 3D scenes. In

nature, objects appear smaller with distance. This is your perspective on the world around
you. A perspective matrix essentially simulates this effect by scaling objects smaller as they

move away from the virtual camera. The projection matrix also adds a field of view to the

camera and far and near clipping planes. The near and far clipping planes of the projection
matrix represent how far away from the camera an object can be and still be considered

visible.

By combining the model, view, and projection matrices, you get model-view-projection

(MVP) matrix. This matrix is commonly used in vertex shaders to transform the incoming
vertices before moving on to the geometry shader (if one is present) and the pixel shader.

javascript:moveTo('ch08fig04');

Keep in mind that the model matrix is used to position, scale,

and rotate objects on an individual (personal) basis. The

view matrix is used to further adjust the vertices of the
geometry in a scene to simulate a 3D camera. The projection

matrix is used to further simulate lens effects for the 3D
virtual camera.

When you transform a model matrix from its local space, which is nothing more than the
data you’ve loaded from a file created by an application such as XSI, you are converting the

data from local space to world space. When you apply a view matrix to that, you are
converting the data to view space. When you apply a projection matrix to that data, you are

converting the data to screen space. These spaces are known as transformation spaces. In
Chapter 13, when we discuss bump mapping, you will see another transformation space

called texture space, which is used to transform a vector into texture space so that
consistent bump mapping can be calculated for a surface.

The transformation space of a vertex is dictated by the

matrices that have so far been applied to the vertex.

Direct3D uses a left-handed coordinate system, while

OpenGL uses a right-handed system. In Direct3D you can
change to a right-handed system, which essentially changes

the direction of the positive and negative X and Z axes.

MATRIX OPERATIONS

Matrices are very useful in 3D games. You can combine matrices together using a process

called matrix concatenation. Mathematically, this means multiplying matrices together. In

Direct3D 10 you can use the D3DXMATRIX structure to represent a matrix, and you can

use the multiplication symbol (*) to concatenate matrices together. Therefore, the model-

view-projection matrix is essentially the model matrix times the view matrix times the
projection matrix. The result is a single matrix that represents everything each of the

matrices it is made up of. So, a single vector-matrix transformation can be used to move a
vertex in local space to screen space. Optionally, you can transform the vectors by each

matrix individually, which is what some of the demos in this book do in the beginning of the
vertex shaders.

The DirectX SDK documentation specifies 34 matrix-related functions, which is a lot to cover
all at once, especially considering that most of these functions will not be used for any

demos in this book. In this chapter we will examine the functions relevant to the topics
discussed in this book. We will look at additional functions as they arise in demos. We

recommend that you read the DirectX SDK documentation for a brief overview of each of
these matrix-related functions so that when you do need to use one, you can refer to the

documentation and move on from there.

../ch13#ch13

To start, a matrix that will have no effect on a vector is known as an identity matrix. Just

like how adding a vector to another vector that has all zeros for the X, Y, and Z axes will not
affect the original vector, transforming a vector by an identity matrix will have no effect on

that vector. An identity matrix can be thought of as a default ―empty‖ matrix. It is created

by calling the D3DXMatrixIdentity() function. This function takes a single parameter,

the output address to the matrix being set to an identity matrix. To test if a matrix is an

identity matrix you can call the function D3DXMatrixIsIdentity(), which takes as a

parameter the matrix to test and returns true if the matrix is an identity matrix or false

if it is not.

To create a view matrix, you can call the function D3DXMatrixLookAtLH() to create a

left-handed coordinate system view matrix or D3DXMatrixLookAtRH() to create a right-

handed version. The D3DXMatrixLookAtLH() and RH functions take as parameters the

output address of the matrix being created by the function call, the position of the camera,
the location at which the camera is looking, and the direction that is considered up.

To multiply (concatenate) two matrices together you can use the * multiplication operator

or the D3DXMatrixMultiply() function, which takes as parameters the output address

of the matrix being created by this function call, the first matrix in the operation, and the
second matrix in the operation.

To set a matrix’s position (translation), you call the D3DXMatrixTranslation()

function, which takes as parameters the output address matrix and the X, Y, and Z position

that is being set in the matrix. The X, Y, and Z positions are floating-point values.

A matrix can be rotated by calling the D3DXMatrixRotationAxis() function, which

takes as parameters the out matrix, the vector axis to rotate around, and an angle amount

to rotate by specified in radians (not degrees). To use angles measured in degrees, you can

use the DirectX macro D3DXToRadian(degrees). To use this macro, you send the

degrees in the parameter, and during compilation the macro will be replaced with the
mathematical equation necessary to change degrees to radians.

Other functions you can use to rotate a matrix are D3DXMatrixRotateX(),

D3DXMatrixRotateY(), and D3DXMatrixRotateZ(). These functions are used to

rotate along a specific unit-axis while D3DXMatrixRotationAxis() takes a vector that

can be used to specify one or more axes to rotate around at once in a single

D3DXVECTOR3 object. Each of these rotation functions takes as parameters the out matrix

and a floating-point angle defined in radians.

The last rotation functions are D3DXMatrixRotationQuaternion(), which rotates a

matrix by a quaternion, and D3DXMatrixRotationYawPitchRoll(). The quaternion

will be discussed later in this chapter. To rotate along the yaw, pitch, and roll basically

means that the order of rotation will occur on the Z axis (yaw), followed by the X (pitch)
and Y (roll) axes. These terms should be familiar to anyone who has played or developed a

flight simulator game.

To scale a matrix you can call the D3DXMatrixScaling() function, which takes as

parameters the out matrix and the X, Y, and Z scales to apply to the matrix.

The last functions we will discuss deal with the projection matrix. Although only the left-
handed versions of these functions will be discussed, keep in mind that each of these

functions has right-handed equivalents. The orthogonal and perspective projection functions
from the DirectX SDK are as follows:

D3DXMATRIX * D3DXMatrixOrthoLH(

 D3DXMATRIX *pOut,

 FLOAT w,

 FLOAT h,

 FLOAT zn,

 FLOAT zf

);

D3DXMATRIX * D3DXMatrixOrthoOffCenterLH(

 D3DXMATRIX *pOut,

 FLOAT l,

 FLOAT r,

 FLOAT b,

 FLOAT t,

 FLOAT zn,

 FLOAT zf

);

D3DXMATRIX * D3DXMatrixPerspectiveLH(

 D3DXMATRIX *pOut,

 FLOAT w,

 FLOAT h,

 FLOAT zn,

 FLOAT zf

);

D3DXMATRIX * D3DXMatrixPerspectiveFovLH(

 D3DXMATRIX *pOut,

 FLOAT fovy,

 FLOAT Aspect,

 FLOAT zn,

 FLOAT zf

);

D3DXMATRIX * D3DXMatrixPerspectiveOffCenterLH(

 D3DXMATRIX *pOut,

 FLOAT l,

 FLOAT r,

 FLOAT b,

 FLOAT t,

 FLOAT zn,

 FLOAT zf

);

Since each of these projection functions has overlapping parameters, we will discuss them
all at once in the following list.

 pOut refers to the output address to the matrix that will store the result of the function

call.

 w is the width of the view.

 h is the height of the view.

 zn is the near plane distance.

 zf is the far plane distance.

 l is the minimum value for the width (the minimum X of the view volume).

 r is the maximum value for the width (the maximum X of the view volume).

 b is the minimum value for the height (the minimum Y of the view volume).

 t is the maximum value for the height (the maximum Y of the view volume).

 fovy is the field of view of the camera specified in radians.

 Aspect is the aspect ratio, which can be width/height or whatever value you deem

appropriate.

BOUNDING GEOMETRY

Collision detection and response is a very important topic in 3D video games. Models and

objects in a video game are usually made up of thousands of polygons. The environments

themselves can be in the high thousands or millions of polygons. When detecting collision
between triangles, the operation is usually a very CPU-expensive process, even for just a

single triangle, let alone thousands upon thousands of them. What is needed is a way to
quickly detect collisions between objects, along with other factors such as visibility

determination. This is where bounding geometry comes into play.

The idea behind bounding geometry is that the bounding geometry serves as a very simple

representation of a more complex object. Bounding geometry is any simple shape that
surrounds an object so that the object fits inside the bounding geometry’s volume as tightly

as possible. These shapes include spheres, boxes, ellipsoids, and so forth. An example of a
bounding box and sphere, the most common types of bounding geometry used, is shown in

Figure 8.5.

FIGURE 8.5. AN EXAMPLE OF A BOUNDING BOX (LEFT) AND BOUNDING

SPHERE (RIGHT).

The need to simplify various tests such as collision detection is extremely important in video
games because everything has to run as efficiently and effectively as possible. This requires

performing tests as fast as possible to avoid slowing down the CPU and to get the most out

javascript:moveTo('ch08fig05');

of the processing power of the machine. This is the purpose of using bounding geometry,

which is significantly faster than working on the polygon level of models and objects.
Mathematically, a box can be tested quickly for whether it is in view or is touching another

box far faster than the triangles of a model, so using the simplified shape is a very fast
substitution.

The DirectX SDK includes functions to create a bounding box and bounding sphere around a
piece of geometry. In this section we’ll discuss the DirectX bounding box and bounding

sphere support.

BOUNDING BOXES

A box can be defined using two vectors, where the first vector stores the minimum X, Y,
and Z values for the box and the second vector stores the maximum X, Y, and Z values. If

you know the minimum X and maximum X, for example, you will be able to know where
each of the box’s corners is along the X axis. If you also know the minimum and maximum

Y and Z values, you can generate a box out of them. To test if a point or another object
intersects (touches) the box, you can test if the point or object falls entirely within this

minimum and maximum range that defines the bounding box. Looking at a 2D example,

you can see that the object being tested falls within both the X and Y axes of the bounding
box, meaning the object is inside of it. This is shown in Figure 8.6. Objects with volume,

such as another box, touch the bounding box only if any part of it is on the surface of the
bounding box or inside it.

FIGURE 8.6. A 2D EXAMPLE OF A POINT (LEFT) AND AN OBJECT (RIGHT)
FALLING WITHIN A BOX.

A box can be any size along the width, height, and depth

axes, which are defined by the two vectors that represent
the box. A cube, on the other hand, is a box that has the

same value for the width, height, and depth, forming a
perfectly even shape along all axes. To represent a cube, you

only need to know the center position and the size of the
cube. This size is used for the width, height, and depth.

javascript:moveTo('ch08fig06');

To calculate the bounding box you can call the D3DXComputeBoundingBox() function.

This function takes as parameters a list of points specified as D3DXVECTOR3 3D vectors,

the total number of vertices in the list, the size of each vertex, and output addresses that

will store the minimum and maximum values of the computed bounding box. The

D3DXComputeBoundingBox() function has the following function prototype according to

the DirectX SDK.

HRESULT D3DXComputeBoundingBox(

 CONST D3DXVECTOR3 *pFirstPosition,

 DWORD NumVertices,

 DWORD dwStride,

 D3DXVECTOR3 *pMin,

 D3DXVECTOR3 *pMax

);

You can test if a ray hits the bounding box by calling the D3DXBoxBoundProbe()

function. This function takes as parameters the minimum and maximum values of the
bounding box, the position (origin) of the ray, and the direction vector of the ray. Rays will

be discussed briefly later in this chapter. The function prototype for the

D3DXBoxBoundProbe() function is as follows according to the DirectX SDK.

BOOL D3DXBoxBoundProbe(

 CONST D3DXVECTOR3 *pMin,

 CONST D3DXVECTOR3 *pMax,

 CONST D3DXVECTOR3 *pRayPosition,

 CONST D3DXVECTOR3 *pRayDirection

);

BOUNDING SPHERES

A bounding sphere can be defined as a center position and a radius, where a radius
represents the size of the sphere from the center to the outer surface. This is shown in

Figure 8.7. Keep in mind that the difference between the radius and the diameter is that the
diameter is the size of the sphere from one end of the surface to the other side as it crosses

the center. The radius is essentially half the diameter.

FIGURE 8.7. A SPHERE DEFINED BY A POSITION AND A RADIUS.

javascript:moveTo('ch08fig07');

The benefit of using spheres is that mathematically you can test for things such as collisions

and visibility faster than you can test boxes or other shapes. The downside to spheres is

that depending on the shape, there can be more wasted space within the sphere’s volume,
or even the box. An example of this is shown in Figure 8.8, in which the same object has a

box around it (left) and a sphere (right).

FIGURE 8.8. AN OBJECT THAT WASTES LESS SPACE USING A BOX (LEFT)

THAN A SPHERE (RIGHT).

Because one shape (depending on the object) can lead to more wasted space than other
shapes, using them can also be a little less accurate in various tests. For example, in Figure

8.9 two objects might register collision when testing only their bounding spheres when in
reality they do not touch. There are solutions to this, which will be discussed in the next

section, ―Bounding Hierarchies.‖

FIGURE 8.9. OBJECTS THAT REGISTER AS COLLIDING EVEN THOUGH THEY

ARE NOT.

To calculate a bounding sphere in DirectX, we can use the function

D3DXComputeBoundingSphere(), which takes as parameters a list of 3D vectors that

represent the entire model, the total number of vertices in the model, the size of each

javascript:moveTo('ch08fig08');
javascript:moveTo('ch08fig09');
javascript:moveTo('ch08fig09');
javascript:moveTo('ch08fig09');

vertex, and the output addresses that will store the center position of the model or

bounding sphere and the bounding sphere’s radius. The

D3DXComputeBoundingSphere() function has the following function prototype

according to the DirectX SDK.

HRESULT D3DXComputeBoundingSphere(

 CONST D3DXVECTOR3 *pFirstPosition,

 DWORD NumVertices,

 DWORD dwStride,

 D3DXVECTOR3 *pCenter,

 FLOAT *pRadius

);

You can test a ray for collision with the bounding sphere by calling the

D3DXSphereBoundProbe() function, which takes as parameters the center position and

radius of the sphere and the ray’s position and direction. The

D3DXSphereBoundProbe() function has the following function prototype according to

the DirectX SDK.

BOOL D3DXSphereBoundProbe(

 CONST D3DXVECTOR3 *pCenter,

 FLOAT Radius,

 CONST D3DXVECTOR3 *pRayPosition,

 CONST D3DXVECTOR3 *pRayDirection

);

BOUNDING HIERARCHIES

Using one of the simple shades as bounding geometry can lead to very fast tests such as for
collision detection, but these tests are not the most accurate in many situations. Not only

can there be wasted space within the volume of the shape, but it is difficult to determine
much information from tests on a single bounding geometry. For example, in a first-person

shooter game, what if you wanted to know if the player was shot in the arm, leg, head, and
so on so that an appropriate animation can be played?

The solution is to use bounding hierarchies. The simple method requires you to break your
model into pieces, each of which can have its own bounding geometry. For example, take a

3D character model. You can place bounding boxes around the arms, legs, feet, head, torso,
hands, and so forth. This makes it much easier to detect the specific region of impact

because more bounding geometry pieces are used in the model (see Figure 8.10). The
amount of detail needed determines what parts of the model have their own bounding

geometry. If you need to know which finger was hit, you could have bounding geometry

around each finger of both hands, even if that might be overkill in most games.

FIGURE 8.10. A HIERARCHY OF BOUNDING GEOMETRY.

javascript:moveTo('ch08fig10');

Also, you can efficiently combine a hierarchy of geometry with one large bounding box or

sphere to improve performance when you must use the hierarchy for specific or more
accurate tests. For example, you can use the larger bounding box or sphere of a model to

determine if something is possible (e.g., possible collision, possible visibility, possible
occlusion) and then use the bounding hierarchy to obtain more accurate results if that first

test passes. This method can be very useful in games for which you must have more
detailed information (such as a fighting game) if you don’t want to do those more accurate

tests unless they are necessary.

If you do not need to go as far as bounding geometry hierarchies, you can take just a

bounding box and sphere and use those. For example, you can use the very fast bounding
sphere to determine if something is possible and then test the bounding box if the first test

passes to get slightly more accurate results. If that is accurate enough for the application
you are developing, you could stop there and assume that whatever you are testing is true.

ADDITIONAL MATHEMATICS

We will now briefly discuss some common mathematics in video games. Because the topic

of game math is complex and large, we highly recommend that you obtain a book on the
subject if you are unfamiliar with or unsure of any math that is commonly used in video

games. A good book on game math can also serve as reference material for those already
familiar with the various topics.

THE RAY

A ray is defined by its starting position, called the origin, and a direction. A ray is a

mathematical structure that begins at the origin and moves in a direction infinitely or for a

specified length. For example, if you look forward, you can assume that the ray that defines
your sight begins at your eyes (let’s say right between your eyes for clarity), and the

direction of the ray is the direction in which you are looking. In 3D the view ray of the
camera starts at the camera’s position and moves in the camera’s direction. A visual of a

ray is shown in Figure 8.11.

FIGURE 8.11. A VISUAL EXAMPLE OF A RAY.

javascript:moveTo('ch08fig11');

Rays have many uses in video games. One straightforward example is the firing of a gun in

a shooting game. When the player fires his gun, a ray starting at the gun’s position with a

direction that matches where the gun is pointing is created. You can use this ray to test for
collision with the objects of the scene. If the ray’s intersection test with an object passes, it

can be determined that the gun has fired and hit that object. If that object is another
character, such as a game enemy, you can then deduct health from the enemy character

every time it is hit by such a ray until the enemy is considered dead. Once the enemy is
dead, you can take the appropriate action, such as playing a death animation.

To create a ray you need two vectors—one for the origin position and one for the direction.
You could also use a floating-point value that acts as the ray’s length if the ray is not to be

infinite. That way if the ray hits an object that is beyond the length of the ray, it can be
assumed that the ray does not reach the object. In a shooting game this can be used to

keep players from shooting objects far away across the map—for example, keeping
weapons that are suppose to act as pistols from having infinite ranges like an endless sniper

bullet.

THE QUATERNION

A quaternion is used to represent rotations. A quaternion’s structure is made up of four

floating-point values just like a 4D vector. In a quaternion the structure is made up of W, X,
Y, and Z, while a 4D vector is made up of a X, Y, Z, and W. In other words, in mathematics

a quaternion usually specifies the W first.

Because a quaternion uses only four floating-point values instead of 16 like a matrix, the

quaternion can be more efficient to use in terms of memory storage. Not only can you save
memory using essentially a quarter of the size of a matrix, but mathematically a quaternion

can be calculated more quickly than a matrix. The benefits to using a quaternion are enough
to make them useful in most applications.

Assuming scaling is not used, if you have objects that have a rotation and a position, you
can use essentially a 3D vector for the position and a quaternion (which has the same

memory footprint as a 4D vector) instead of 16 floating-point values. The memory savings
can add up, especially for mobile devices, in which memory is not as abundant as in PCs.

Also, quaternion calculations are faster, so this can lead to performance boosts when
computing things such as animations. When sending the information to the graphics device

in Direct3D, you can convert the quaternion to a matrix so that the information can be used

by the vertex shader to transform the vertices appropriately. Also, a quaternion does not
suffer from gimble lock like a matrix. Gimble lock occurs when two of three axes that are

used to compensate for rotations are moving toward the same direction, which occurs out of
an error from rotation calculations. For example, rotating can cause the X and Y axes to be

pointing in the same direction—but as they are not actually the same direction, any object
in motion will not rotate as it should. In other words you can warp one axis to point in the

direction of another inadvertently.

GAME PHYSICS

Game physics is a very complex and downright cool part of many modern 3D games.
Physics in games includes applying forces such as gravity and friction to 3D objects, the

force of objects acting on each other, wind, and so forth. Physics can also include collision
response, where the force of two objects colliding in virtual space can cause new forces to

be applied to objects to create the kind of simulation gamers expect to see. For example, if

the player hits a box with a rocket from a rocket launcher, the resulting force of that
collision is expected to be applied to the box, and any physics updates that occur on the box

should send it flying through the air until it reaches its resting position as the force dies
down. The same can be said for the friction of that box against the ground as it tumbles

around the environment. The friction as it collides with other surfaces is what will eventually
cause the object to stop, unless the environment is a space-like one where there is little or

nothing to stop an object in motion.

Game physics could be book on its own but is beyond the scope of this book. However,

when you are creating games that could benefit from this feature, we highly recommended
that you research this subject because it can lead to very impressive and realistic results

that can add a great deal of value to your game.

SUMMARY

The use of mathematics in video games is very important to programmers looking to enter
the video game development industry. The current level of your math skills will determine

how much work you have to do to become competent in this area. But make no mistake
about it—having a firm understanding of math is essential to game developers. Many areas

of game development require math skills, and there is no way to avoid learning this subject.
In this chapter we’ve briefly discussed a few topics that have functions and structure in the

DirectX SDK, but to make it far in the video game industry we highly recommended picking
up one or more references on the topic.

The following elements were discussed in this chapter:

 Vectors

 Matrices

 Transformations

 Coordinate systems

 Rays

 Planes

 Quaternion rotations

 Virtual cameras

 Bounding geometry

CHAPTER QUESTIONS

Answers to the following chapter review questions can be found in Appendix A.

1. What are vectors?

../app01#app01
../app01lev1sec8#app01qa8q1a1

2. What structures does the DirectX SDK offer for vectors?

3. What is a plane? What main purpose do planes serve as described in this chapter?

4. What is a matrix?

5. What is the difference between a 3 × 3 and 4 × 4 matrix?

6. What is bounding geometry and how is it used in computer graphics?

7. What coordinate system does Direct3D use traditionally?

8. What is the model matrix?

9. What is the view matrix?

10. What is the projection matrix?

11. What is the MVP matrix?

12. What three properties does Direct3D use to create a view matrix that represents a

camera?

13. What is a ray, and what two components make up a ray object?

14. How can you limit a ray’s infinite direction?

15. What is a quaternion used for? List two benefits of using quaternion rotations

versus matrices.

9. SOUND IN DIRECTX

In This Chapter

 Overview of Microsoft Audio Technologies

 Direct Sound

 XACT3

 XAudio2

In modern video games, sound is as important to the virtual experience as all the other

areas of the game. Audio is used for so many different things that some gamers might take

../app01lev1sec8#app01qa8q2a2
../app01lev1sec8#app01qa8q3a3
../app01lev1sec8#app01qa8q4a4
../app01lev1sec8#app01qa8q5a5
../app01lev1sec8#app01qa8q6a6
../app01lev1sec8#app01qa8q7a7
../app01lev1sec8#app01qa8q8a8
../app01lev1sec8#app01qa8q9a9
../app01lev1sec8#app01qa8q10a10
../app01lev1sec8#app01qa8q11a11
../app01lev1sec8#app01qa8q12a12
../app01lev1sec8#app01qa8q13a13
../app01lev1sec8#app01qa8q14a14
../app01lev1sec8#app01qa8q15a15
../ch09lev1sec1#ch09lev1sec1
../ch09lev1sec2#ch09lev1sec2
../ch09lev1sec3#ch09lev1sec3
../ch09lev1sec4#ch09lev1sec4

it for granted. This includes ambient music, weapon sound effects, character voice chatter,

animal sounds, water splashing, footsteps, and hundreds of other sound effects that can
exist in a virtual world. For many years the audio in video games has been very important

to the experience, and sound can be just as impressive as the game’s graphics, game-play,
and so forth.

The purpose of this chapter is to demonstrate how to play sound using XACT3 and XAudio2,
each of which are sound APIs that can be found in the DirectX SDK. XACT3 and XAudio2 are

recent additions to the DirectX SDK, while Direct Sound has existed unchanged since
DirectX 9.0. These days, you will find all you need in XACT3 for high-level audio control and

in XAudio2 for low-level audio control. XACT3 and XAudio2 can both be used on the PC and
the Xbox 360.

XACT is also recognized by Microsoft XNA Game Studio.

OVERVIEW OF MICROSOFT AUDIO TECHNOLOGIES

The audio technologies that Microsoft provides include a few APIs and tools that are used to
play and manipulate sound on Windows-based PCs and Xbox 360 video game consoles.

These audio APIs build upon each other, so they are not technically different technologies,
but rather are different levels of audio APIs. For example, XAudio2 is a low-level sound API.

Everything you can do with sound can be done with this API with the utmost control. XACT3
is an API and a GUI tool that provides high-level control over sound, and it is built on top of

XAudio2. In other words, XACT3 is high-level enough that a lot of work happens behind the
scenes through XAudio2, while if you use XAudio2, you have to directly do that work

yourself. XACT3 uses XAudio2 internally and essentially saves you the work of using
XAudio2 directly with the trade-off of low-level control.

You can view the various audio systems’ documentation in
the DirectX SDK, XNA SDK, or XDK (Xbox 360 Development

Kit) documentation.

XACT3 and XAudio2 can play the following audio formats:

 Pulse code modulation (PCM)

 Adaptive differential pulse code modulation (ADPCM) on Windows

 XMA on Xbox 360

 xWMA (a subset of Microsoft’s WMA)

Additional Microsoft audio technologies include X3DAudio, XAPO, XAPOFX, and the
XMAEncoder Library. X3DAudio is used by XAudio2 and XACT3 to play sounds in 3D—that is,

to play audio so that it sounds like it is emanating from a specific position rather than being

ambient and global. An example of X3DAudio for XAudio2 called XAudio2Sound3D can be

found in the DirectX SDK Sample Browser.

XAPO is an API used to create audio effects for XACT3 and XAudio2. XAPOFX is a library of

XAPO sound effects ready to be used with audio.

The XMAEncoder Library is a statically linked library that developers can use to give

applications the ability to encode XMA content. The XMAEncoder is available in the Xbox
Development Kit.

DIRECT SOUND

Direct Sound is a sound API that is part of the DirectX SDK. Direct Sound is deprecated,

which means it is no longer being updated and presumably will eventually be dropped from
the DirectX SDK. Although you can still use Direct Sound, it has been replaced with

XAudio2, which will be discussed later in this chapter. Other deprecated audio technologies
include the original XAudio, which was used in the original Xbox video game console and

has also been replaced with XAudio2 (now used for the Xbox 360 and PC), and XACT, which
has been replaced with XACT3. This information is according to Microsoft’s documentation

on their audio technologies, which can be found in the DirectX SDK documentation.

WHY NOT USE DIRECT SOUND?

Long ago there were two audio APIs in the DirectX SDK: Direct Music and Direct Sound.
Direct Music allowed low-level control over audio playback, and Direct Sound was a higher-

level API that gave developers an easy way to play sound in their applications. Direct Music
was eventually dropped (and merged with Direct Sound), and Direct Sound became the

main audio API in DirectX. When the Xbox video game console hit the market, XAudio was

the main API used for audio on that console. XAudio was eventually replaced with XAudio2,
which was packaged with the DirectX SDK. XACT3 is built on top of XAudio2 and gives

developers a ready-made high-level API and tool for audio playback and control.

The big question is why would you choose XAudio2 over XACT3? Put in simple terms,

XAudio2 is good for developers looking to build something like XACT3, while XACT3 is a
ready-to-go high-level tool and API that can be used on the PC and the Xbox 360. In

addition to being available in the DirectX SDK, XACT is available in the XNA Game Studio
SDK. For advanced developers the low-level control of XAudio2 might prove to be attractive

enough to use it.

Another way to think about it is that XACT3 is useful for developers who want a ready-made

audio content creation API and tools instead of developing their own implementation. It is
also possible to use XACT3 and XAudio2 at the same time if the need arises—for example, if

you need signal processing, mixing, and so forth, which XACT3 does not offer but XAudio2
does.

XACT3

XACT3 is available in XNA, which is a C#-based game development tool, and C++. You can

obtain XACT3 by installing either the XNA SDK or the DirectX SDK. XACT3 is Microsoft’s
high-level audio technology that allows programmers and sound designers to use the same

code and audio content files on both Windows-based PCs and Xbox 360 video game
consoles. XACT3 is composed of an audio API and as a stand-alone GUI toolset used to

create the audio files that are used by the audio API. When you compile audio content with

the XACT toolset, you can create output audio files for both the PC and the Xbox 360.

When using XNA, you don’t have to compile the files using

the XACT toolset because the XNA content pipeline does that

job for you and prepares the necessary files whether you are
compiling for the Xbox 360 or Windows PC platforms.

For those familiar with previous versions of XACT, XACT3 has had the following features

added to it.

 Uses XAudio2 internally

 Supports the xWMA compressed format, which is a subset of WMA

 Allows filters to be applied to sounds

XACT3 TOOLS

The XACT3 toolset is called the Microsoft Cross-Platform Audio Creation Tool, and it is a GUI

application that is used, as mentioned earlier, to create the audio files that will be loaded
and used by the XACT3 API code base. This tool creates files that can be used by either the

Xbox 360 or Windows-based PCs (XP and Vista). With the XACT3 tool you can group sound
files into cues that can be played any time in a game, and you can set various properties of

each cue such as pitch and volume. XACT3 has both a GUI tool and a command-line tool.
Both tools perform the same task, but the GUI tool is much more convenient to use.

XACT3 allows developers to organize audio content into packages called banks. Later we will
talk about these banks, which include sound and wave banks, and how to create them in

XACT3. The audio content itself includes the following audio formats.

 WAV

 AIFF

 ADPCM

 XMA

 xWMA

There is one thing to consider when working with audio files created by XACT3. The

Windows PC and the Xbox 360 use different byte ordering for variables. In other words the
number 12 on the Xbox 360 would not read as 12 on a Windows PC without reversing the

bytes of the integer. This is because the Xbox 360 uses big-endian order because of its
PowerPC hardware, while Windows-based PCs uses little-endian order, which is the byte

ordering used by x86 processors. Endian order is an important topic for programmers and
engineers who create cross-platform applications, such as writing an application that works

on Windows and porting it to Mac (PowerPC-based Mac, that is).

Since this book focuses on DirectX 10 running on Windows-based PCs, the issue of endian

order will not arise. Fortunately, if the issues ever does arise, all that needs to be done to
translate between byte ordering is to read a variable (such as a float, integer, etc.) from a

file, cast that variable to a character pointer, and use array indexes to swap the first
element with the last and the second element with the third. In other words, reverse the

array of characters. This would only be done if you know you were reading a file that was

written in an incompatible endian order, which is the responsibility of the programmer since

there is no way of knowing what endian order a file’s data is in unless you purposely write
some type of flag in your custom file formats for this purpose (e.g., a single byte where 0

means little endian or 1 means big endian). The same holds true for data sent over a
network between two machines that use different endian orders.

The XACT3 toolset creates files in both endian orders. Since

the Xbox 360 and Windows-based PCs use different endian
orders, this is convenient and means you do not have to

write code to translate the byte ordering between the
platforms. The Windows files are saved in a folder called Win,

and Xbox 360 files are saved in a folder called Xbox when
you build XACT3 projects.

A screenshot of the XACT3 GUI tool is shown in Figure 9.1. You can launch the tool from the
Start menu on Windows XP or Vista by navigating to the DirectX SDK or XNA SDK folder,

the DirectX Utilities folder if you are using the DirectX SDK, or the Tools folder if you are
using XNA or Microsoft Cross-Platform Audio Creation Tool (XACT).

FIGURE 9.1. SCREENSHOT OF THE XACT GUI TOOL.

CREATING XACT AUDIO PROJECTS

To create a new audio project, the first step is to open the XACT tool and select New Project

from the File menu. A dialog box should appear prompting you to choose a name for your
project for the project file that will be saved and the location where you want this project

saved (see Figure 9.1). Save the project and name it TestXACT. If you are following along
with the creation of this chapter’s XACT demo, create a folder called XACT in your My

Documents folder (or wherever you wish) and save the XACT3 audio project in this folder.
When you save the audio project, there should be a TestXACT.xap file, which is the XACT

javascript:moveTo('ch09fig01');
javascript:moveTo('ch09fig01');

project file, and two folders titled Win (for Windows) and Xbox (for Xbox 360) that were

created by the tool as a result.

On the CD-ROM is a demo called XACT in the Chapter 9 folder. In this chapter we will create

this demo, and it will load the XACT audio files we are about to create. Before discussing the
code, we will start by creating the audio content so that data is ready when we begin coding

the demo application.

CREATING XACT WAVE BANKS AND SOUND BANKS

With the project created, you can create a wave bank and a sound bank. A wave bank is
used to take multiple audio files and package them into a single file. These wave bank files

have the extension .XWB and allow developers to manage a single file rather than many
files. A sound bank has the extension .XSB and packages multiple cues into a single file. The

file format is documented for wave banks for those interested in using it for purposes
outside of XACT, but the sound bank files are not documented.

A cue in XACT3 is like an action. You play cues in XACT, and a cue has properties associated
with it that include the audio sound from the wave bank that it will play when called and its

volume and pitch. This is useful because you can have multiple cues that are used to play a

sound different ways in a game. For example, you can take the sound of an engine and
create multiple cues that alter how that engine sounds so that in a game the one sound clip

is used to create different sound effects.

The two types of wave banks are in-memory and streaming. In-memory is used to store

sounds that are loaded and used in memory, while streaming is used to dynamically load
audio from the wave bank while it is being played. Streaming wave banks are great for

playing audio files that are large in size and in length. In this book we’ll focus on in-memory
wave banks, but once you are familiar with playing audio in XACT3, you can follow the

streaming wave bank XACT3 sample from the DirectX SDK Sample Browser to see how to
utilize a wave bank for streaming.

To begin, create a new wave bank and sound bank by following these instructions.

1. Select Wave Banks > New Wave Bank from the menu.

2. Select Sound Banks > New Sound Bank from the menu.

3. Select Window > Tile Horizontally from the menu to organize the newly created

windows.

You should have a window that appears similar to Figure 9.2. From this point you can
manually add audio files to the wave bank and then add cues to the sound bank.

FIGURE 9.2. XACT AFTER CREATING WAVE AND SOUND BANKS.

../ch09#ch09
javascript:moveTo('ch09fig02');

To add a sound to the wave bank, choose Wave Banks > Insert Wave File(s). From the
dialog box choose the file you want to add, and it will insert a new entry in the wave bank

window. To create a sound in the sound bank, select Sound Banks > New Sound. To create
a new cue, select Sound Banks > New Cue from the menu. To associate the audio file from

the wave bank to the sound in the sound bank, simply drag and drop the audio from the

wave bank window to the sound entry in the sound bank. To associate a sound with a cue,
you do the same thing by dragging the sound entry from the top of the sound bank to the

cue. Remember, the cue is used by XACT to access the sound to play it, stop it, and so
forth. The sound in the sound bank stores various properties such as volume, pitch, and so

on. The audio in the wave bank is the actual audio data.

You can set the name for the sound and wave banks in the
properties section of each.

There is a shortcut to creating a sound and cue in the sound bank. Once you’ve inserted the

audio in the wave bank, you can drag and drop that entry to an empty region in the cue
window and, when you release the mouse button, an entry for the sound and cue will be

automatically created with the same name as the audio file that was in the wave bank. This
method is commonly used since you have to have all three to play sounds in XACT, and this

method is faster than creating each entry manually, especially if they use the same name
anyway.

At this point save the project and select File > Build to build the project. Once it is built (if
you’re developing it for Windows), you will have a file for the sound bank, a file for the wave

bank, and a file with the extension .XGS. The XGS file stores global settings and variables

that XACT3 can load and use. You can set the variables in the variables section of the
properties panel. You can set variables such as the speed of the sound, the number of

instances, the orientation angle, and so forth. You don’t need these settings to play a

sound, but you can use them, which is done in the DirectX SDK Sample Browser in a demo

called XACT Tutorial 3: Categories and Variables.

XACT3 DEMO

XACT3 is a great tool that allows developers to focus on game-play rather than on audio
technology and hardware. XACT3 is so easy to use that all it takes to get simple sounds up

and playing is to invoke the audio by cue name. At the minimum this could translate to a
line of code to play a sound once it has been loaded. We recommend that you take the time

to open up XACT3 and explore the GUI tool to see what you can do with it. Once you are
comfortable using it, you can do a lot with audio in your gaming projects. As you become

more advanced in game development audio, you might need to use XAudio2 since it offers a
lower level of control than XACT3 does.

A demo called XACT can be found on the accompanying CD-ROM in the Chapter 9 folder. In
this section we will cover the XACT3 API as we cover the XACT demo.

The header file for the XACT3 API is <xact3.h> and is part of the DirectX SDK, so no
additional setup is necessary to begin coding with XACT. In code you’ll need three objects: a

wave bank, a sound bank, and an audio engine.

The wave bank is represented by the DirectX type IXACT3WaveBank, and the sound bank

is represented by IXACT3SoundBank. When you load wave and sound bank files, you

load their contents into objects of these two types. The audio engine is an object that is
created to process and control everything dealing with XACT3. This object is of the type

IXACT3Engine. For readers familiar with earlier versions of XACT, the only difference in

these names is the addition of the number 3 after XACT (for example, IXACT3Engine

instead of the previous IXACTEngine).

In the XACT demo’s main source file these three objects are created and defined in the

global section. A structure was created to hold the wave bank and sound bank in one object

along with void pointers. The void pointers will be memory mapped data pointing to the
file’s data, which we’ll discuss later in this section. The global section from the XACT demo

is shown in Listing 9.1.

LISTING 9.1. THE GLOBAL SECTION OF THE XACT DEMO’S MAIN SOURCE FILE

struct stXACTAudio

{

 IXACT3WaveBank *m_waveBank;

 IXACT3SoundBank *m_soundBank;

 void *m_waveBankData;

 void *m_soundBankData;

};

stXACTAudio g_xactSound;

IXACT3Engine *g_soundEngine = NULL;

A few functions are created in the demo to make the setup and loading of XACT3 and the

XACT files straightforward. In the first function, called SetupXACT(), the first step is to

initialize COM with a call to CoInitializeEx().COM must be initialized to use COM

libraries, which include many DirectX SDK libraries like XACT.

The next step is to create the XACT3 audio engine. This is done with a call to

XACT3CreateEngine(), and it takes as parameters the creation flags and a pointer to

../ch09#ch09
javascript:moveTo('ch09list1');

the IXACT3Engine object that will be created by the function. The creation flags can be 0

to specify no additional flags, or they can be XACT_FLAG_API_AUDITION_MODE to

create the audio engine in audition mode or XACT_FLAG_API_DEBUG_MODE to specify

debug. You can use the logical OR operator to combine the two flags.

The remainder of the SetupXACT() function initializes the audio engine and loads the

wave and sound banks. The loading of the wave and sound banks is done in separate
functions that will be discussed later. The initialization of the XACT audio engine is done by

calling the IXACT3Engine object’s Initialize() function. This function takes runtime

parameters that are specified by the XACT_RUNTIME_PARAMETERS structure. This

structure can be seen as follows.

typedef struct XACT_RUNTIME_PARAMETERS {

 DWORD lookAheadTime;

 void *pGlobalSettingsBuffer;

 DWORD globalSettingsBufferSize;

 DWORD globalSettingsFlags;

 DWORD globalSettingsAllocAttributes;

 XACT_FILEIO_CALLBACKS fileIOCallbacks;

 XACT_NOTIFICATION_CALLBACK fnNotificationCallback;

 PWSTR pRendererID;

 IXAudio2 *pXAudio2;

 IXAudio2MasteringVoice *pMasteringVoice;

} XACT_RUNTIME_PARAMETERS, *LPXACT_RUNTIME_PARAMETERS;

Some of the runtime parameters deal with XAudio2, which will be discussed later in this

chapter. The SetupXACT() function is shown in Listing 9.2.

LISTING 9.2. THE SETUPXACT() FUNCTION FROM THE XACT DEMO

bool SetupXACT(char *waveBank, char *soundBank)

{

 ZeroMemory(&g_xactSound, sizeof(stXACTAudio));

 if(FAILED(CoInitializeEx(NULL, COINIT_MULTITHREADED)))

 return false;

 if(FAILED(XACT3CreateEngine(XACT_FLAG_API_AUDITION_MODE,

 &g_soundEngine)))

 return false;

 if(g_soundEngine == NULL)

 return false;

 XACT_RUNTIME_PARAMETERS xparams = {0};

 xparams.lookAheadTime = 250;

 if(FAILED(g_soundEngine->Initialize(&xparams)))

 return false;

 if(!LoadWaveBank(waveBank))

 return false;

javascript:moveTo('ch09list2');

 if(!LoadSoundBank(soundBank))

 return false;

 return true;

}

The loading of the wave and sound banks is performed in the LoadWaveBank() and

LoadSoundBank() functions defined in the demo’s main source file. To load the file’s

data, the demo uses memory-mapped file handling. This is a fast way to load memory data
into XACT, and the functions are Win32 functions that are fairly straightforward to

understand.

To start, a call to CreateFile() is used to create a file handle. This function takes the

file’s name, the access flag that specifies the type of object, the shared flag that specifies
how subsequent calls are allowed to access the file while the file handle is still active,

security attributes (which are ignored, so they’re not used and can be set to NULL),

creation flags, attributes flags, and the template file, which is also not used and therefore

can be set to NULL.

The next part of the function retrieves the file size with a call to GetFileSize(), which

takes the file handle and a pointer to a variable where the high-order double-word of the file

size is returned. The last parameter can be set to NULL, and the return value of the

function will return the size of the file.

The next step is to create the file mapping by first calling CreateFileMapping(), which

takes as parameters the file’s handle, the optional security attributes, the file protection

with the view, the high order of the maximum file size, which can be 0, the low order of the

maximum file size, which can be the file size we read before, and the name of the object,

which is optional. The next step in the file mapping is to call MapViewOfFile(), which

takes the file mapping handle, the access flags, the high and low offsets, and the number of
bytes to map. If the number of bytes to map is 0, then the mapping extends to the end of

the file.

With a pointer to the mapped file data, the XACT3 audio engine is ready to load its

contents. This is done with a call to CreateInMemoryWaveBank() and

CreateInMemorySoundBank() to create in-memory banks. Both functions take as

parameters void pointers to the mapped file data, the size of the file, a flag that can be 0 or

XACT_FLAG_API_CREATE_MANAGEDATA to specify that the data is freed when the wave

bank is released (which we must do since we are using mapped data and must unmap it

first), memory buffer allocation attributes, and the out pointer address to the bank that will

be created. The LoadWaveBank() and LoadSoundBank() functions are shown in

Listing 9.3.

LISTING 9.3. THE XACT DEMO’S LOADWAVEBANK() AND LOADSOUNDBANK()

bool LoadWaveBank(char *fileName)

{

 HANDLE file = CreateFile(fileName, GENERIC_READ,

 FILE_SHARE_READ, NULL,

 OPEN_EXISTING, 0, NULL);

 if(file == INVALID_HANDLE_VALUE)

 return false;

javascript:moveTo('ch09list3');

 DWORD fileSize = GetFileSize(file, NULL);

 if(fileSize == -1)

 {

 CloseHandle(file);

 return false;

 }

 HANDLE mapFile = CreateFileMapping(file, NULL, PAGE_READONLY,

 0, fileSize, NULL);

 if(!mapFile)

 {

 CloseHandle(file);

 return false;

 }

 void *ptr = MapViewOfFile(mapFile, FILE_MAP_READ, 0, 0, 0);

 if(!ptr)

 {

 CloseHandle(mapFile);

 CloseHandle(file);

 return false;

 }

 g_xactSound.m_waveBankData = ptr;

 if(FAILED(g_soundEngine->CreateInMemoryWaveBank(

 g_xactSound.m_waveBankData,

 fileSize, 0, 0, &g_xactSound.m_waveBank)))

 {

 CloseHandle(mapFile);

 CloseHandle(file);

 return false;

 }

 CloseHandle(mapFile);

 CloseHandle(file);

 return true;

}

bool LoadSoundBank(char *fileName)

{

 …

 g_xactSound.m_soundBankData = ptr;

 if(FAILED(g_soundEngine->CreateSoundBank(

 g_xactSound.m_soundBankData,

 fileSize, 0, 0, &g_xactSound.m_soundBank)))

 {

 CloseHandle(mapFile);

 CloseHandle(file);

 return false;

 }

 CloseHandle(mapFile);

 CloseHandle(file);

 return true;

}

The last function in the demo is the main() function. In this function XACT is set up, and

the wave and sound banks are loaded before the audio is played. To play the sound a sound

cue is obtained by calling GetCueIndex() on the sound bank object. This function takes

as a parameter the name of the sound cue, which was specified when you created the cue

in the XACT GUI tool, and it returns the index of the sound as an XACTINDEX object.

The sound itself is played by calling the sound bank’s Play() function. The Play()

function takes as parameters the cue index as an XACTINDEX variable, playback flags,

offset start time in milliseconds, and, optionally, a pointer to the address of an IXACTCue

object that will be returned by this function.

Alternatively, you can create an IXACTCue object and

obtain a cue using that. Therefore, to play a sound you just

call Play() on the IXACTCue object. To stop it you call

Stop(), and so on.

XACT3 requires frequent updates to the audio engine to work properly. This means that in

the demo we need to specify a loop that keeps calling DoWork() often enough for the

audio to play. To accomplish this the XACT demo calls the audio engine’s DoWork()

function inside a loop. Once the sound has finished playing, the loop breaks, and the

application proceeds to exit. To determine if the sound is playing, we get the audio state of

the sound bank by calling GetState(), which returns an unsigned long variable

representing the state. We can then test this state for the flag

XACT_CUESTATE_PLAYING to see if the sound bank is playing audio. When it stops

playing audio, the loop terminates, so be sure that inside the XACT3 GUI tool you don’t
specify any sounds to loop infinitely for this demo.

The remainder of the main() function frees all resources and quits. This means the audio

engine must be released by first calling the Shutdown() function of the object and the

object’s Release() function to free it. It also means we must call CoUninitialize()

to uninitialize COM, and we must call UnmapViewOfFile() to unmap the file data that

we obtained when we loaded the wave and sound banks. The main() function from the

XACT demo is shown in Listing 9.4.

LISTING 9.4. THE XACT DEMO’S MAIN() FUNCTION

int main(int args, char* argc[])

{

javascript:moveTo('ch09list4');

 cout << "XACT Demo: Playing clip.wav" << endl << endl;

 cout << "Demo will end when the sound is done." << endl <<

endl;

 if(!SetupXACT("Win/Wave Bank.xwb", "Win/Sound Bank.xsb"))

 return 0;

 XACTINDEX g_clipCue = g_xactSound.m_soundBank->GetCueIndex(

 "clip");

 unsigned long state = 0;

 do

 {

 g_soundEngine->DoWork();

 if(!(state && XACT_CUESTATE_PLAYING))

 g_xactSound.m_soundBank->Play(g_clipCue, 0, 0, NULL);

 g_xactSound.m_soundBank->GetState(&state);

 } while(state && XACT_CUESTATE_PLAYING);

 if(g_soundEngine)

 {

 g_soundEngine->ShutDown();

 g_soundEngine->Release()

 }

 if(g_xactSound.m_soundBankData)

 {

 UnmapViewOfFile(g_xactSound.m_soundBankData);

 g_xactSound.m_soundBankData = NULL;

 }

 if(g_xactSound.m_waveBankData)

 {

 UnmapViewOfFile(g_xactSound.m_waveBankData);

 g_xactSound.m_waveBankData = NULL;

 }

 CoUninitialize();

 return 1;

}

XAUDIO2

XAudio2 is the Direct Sound replacement for Windows developers and is an

enhanced version of the XAudio API that Xbox developers have been enjoying for some
time. On the CD-ROM you will find the XAudio2 demo in the Chapter 9 folder. In this

chapter we will create a demo that will play a sound file once and then exit. This demo will
show you how to get XAudio2 up and working to play sound inside any application.

../ch09#ch09

XAudio2 does not have a way to detect and convert audio

files between incompatible endian orders. This means that if

you are working directly with XAudio2 on Xbox 360 and
Windows, you must handle endian order carefully.

XAUDIO2 DEMO

Like XACT3, XAudio2 has an interface that you create to use XAudio2. This interface is

called IXAudio2, and it is created by calling the SDK function XAudio2Create(). On the

Xbox 360 this is an actual API function, while on Windows, according to the DirectX

documentation, it is a convenient inline function defined in XAudio2.h. XAudio2Create()

has the following function prototype and takes as parameters the IXAudio2 object that will

be created, creation flags (defaults to 0 or XAUDIO2_DEBUG_ENGINE for debug mode),

and an audio processor that specifies which CPU XAudio2 should use, which has a default

value of XAUDIO2_DEFAULT_PROCESSOR.

HRESULT XAudio2Create(

 IXAudio2 **ppXAudio2,

 UINT32 Flags = 0,

 XAUDIO2_PROCESSOR XAudio2Processor = XAUDIO2_DEFAULT_PROCESSOR

);

On the Xbox 360, XAudio2 is implemented as a statically
linked library, while on Windows it is a COM object

implemented by a dynamic link library.

XAudio2 uses something known as voices to manipulate and control audio. There are three

types of these voices in the XAudio2 API: source voices, submix voices, and mastering
voices. A source voice is used to send sound data to the other types of voices, and it

represents an audio stream of data. A submix voice is used to process audio data from a
source voice to perform various effects (e.g., sample rate conversion) and can also be used

as an input voice to another submix voice or to a mastering voice. A mastering voice is the
voice that is audible, and it sends that data it receives from source and submix voices to the

audio hardware. The mastering voice is the only voice that allows you to hear anything, so
you must create this voice in XAudio2 to hear anything.

As far as the basics of XAudio2 are concerned this is essentially what you need to play audio

in the API. In the XAudio2 demo’s main source file the function calls CoInitializeEx()

because XAudio2 is a COM object in Windows. It creates the XAudio2 engine, and it creates

the mastering voice that will play the actual sound. In the demo the loading and playing of

the actual file are done in a function called PlayPCM(), which will be discussed later in this

section.

The creation of the mastering voice is done with a call to CreateMasteringVoice(),

which takes as parameters an address to an IXAudio2MasteringVoice object that will

store the created voice object, the audio channels, the audio sample rate, flags for the voice

(which must be set to 0), the output device index the voice will use, and an optional audio

effects chain using the structure XAUDIO2_EFFECT_CHAIN. The audio channels are set to

XAUDIO2_DEFAULT_CHANNELS and default to 5.1 surround on Xbox 360. In Windows,

XAudio2 attempts to determine the speaker configuration.

The main() function in the XAudio2 demo is shown in Listing 9.5. To recap, the function

initializes COM, creates the audio engine, creates the mastering voice, loads and plays the

sound with a call to PlayPCM() that will be implemented next, and exits the application

after releasing the audio engine and uninitializing COM.

LISTING 9.5. THE XAUDIO2 DEMO’S MAIN() SOURCE FILE

int main(int args, char* argc[])

{

 cout << "XAudio2 Demo: Playing clip.wav" << endl << endl;

 cout << "Demo will end when the sound is done." << endl <<

endl;

 if(FAILED(CoInitializeEx(NULL, COINIT_MULTITHREADED)))

 return 0;

 IXAudio2* xAudio2Engine = NULL;

 UINT32 flags = 0;

#ifdef _DEBUG

 flags |= XAUDIO2_DEBUG_ENGINE;

#endif

 if(FAILED(XAudio2Create(&xAudio2Engine)))

 {

 cout << "XAudio2 engine was not created!" << endl;

 CoUninitialize();

 return 0;

 }

 IXAudio2MasteringVoice *masterVoice = NULL;

 if(FAILED(xAudio2Engine->CreateMasteringVoice(&masterVoice,

 XAUDIO2_DEFAULT_CHANNELS, XAUDIO2_DEFAULT_SAMPLERATE,

 0, 0, NULL)))

 {

 cout << "Master voice was not created!" << endl;

 if(xAudio2Engine != NULL)

 xAudio2Engine->Release()

 CoUninitialize();

 return 0;

 }

 if(PlayPCM(xAudio2Engine, "clip.wav") == false)

 {

 cout << "clip.wav failed to load!" << endl;

javascript:moveTo('ch09list5');

 if(xAudio2Engine != NULL)

 xAudio2Engine->Release()

 CoUninitialize();

 return 0;

 }

 if(xAudio2Engine != NULL)

 xAudio2Engine->Release()

 CoUninitialize();

 return 1;

 }

An audio file is loaded and played with a call to PlayPCM(). This function is a

modified version of the PlayPCM() function offered in the Microsoft DirectX SDK sample

XAudio2BasicSound. To load and play sounds we will use this function as well as the files

SDKwavefile.h and SDKwavefile.cpp. The SDKwavefile files are part of the DirectX Utility
(DXUT) library and can be found in any of the DXUT samples in the DirectX SDK. Since

these files are part of DirectX, we will use them instead of writing some very long and
complicated code for loading audio files. Since the files use DXUT, they have been slightly

altered so that the use of the SDKwavefile files does not require any of the other DXUT
headers or source files. You can find the modified versions of the SDKwavefile.h and

SDKwavefile.cpp files in the XAudio2 folder under Chapter 9 on the CD-ROM.

The PlayPCM() function uses the CWaveFile class defined in SDKwavefile.h to open the

audio file. The file is read by calling the Read() function, which takes as parameters a

buffer to read into, the size to read in bytes, and an out pointer to the size of bytes read by
the function.

Once the file is loaded, the source voice is created. Keep in mind that the source voice
represents a stream of audio data. To create the source voice, which has an interface of

IXAudio2SourceVoice, we call the CreateSourceVoice() function of the XAudio2

engine object. This function takes the source voice that will be created, the format of the

audio (using the WAVEFORMATEX structure provided by Windows), behavior flags, the

maximum frequency ratio, a callback interface function, a send list of source voices for the

destination of the audio date (optional), and an audio effect chain. The behavior flags can

have one of the following values:

 XAUDIO2_VOICE_NOPITCH for no pitch control

 XAUDIO2_VOICE_NOSRC for no sample rate conversion

 XAUDIO2_VOICE_USEFILTER to enable filter effects on the sound

 XAUDIO2_VOICE_MUSIC to state that the voice is used to play background music

Once the source voice is created, an audio buffer using the XAudio2 structure

XAUDIO2_BUFFER is created. This buffer will take the sound data and submit it to the

sound voice, which can only happen after a valid sound voice has been created by

CreateSoundVoice(). The audio buffer has the audio data assigned to the

pAudioData variable, the audio flags to the Flags variable, and the size of the audio to

../ch09#ch09

the AudioBytes variable. The flag of XAUDIO2_END_OF_STREAM tells XAudio2 that

there is no more data to follow after the sound has played.

To submit the data to the source voice, you call SubmitSourceBuffer() on the source

voice object, which takes as a parameter the XAUDIO_BUFFER object. If all is successful,

you can start processing the sound by calling Start() on the source voice. The Start()

function takes as parameters behavior flags that must be set to 0 and an operation set. The

operation set can be XAUDIO2_COMMIT_NOW to apply the operation immediately or

XAUDIO2_COMMIT_ALL to apply all pending operations.

When a source voice is processing, it is being played. You can test the state of the sound by

calling the GetState() function on the source voice object. This will return an

XAUDIO2_VOICE_STATE object that you can test for various states. To test if the sound

is still playing you can test if the BuffersQueued variable is greater than 0.

Once you are done with a source voice, you free it by calling DestroyVoice(). The

entire PlayPCM() function is shown in Listing 9.6 with all the code we’ve just discussed in

the previous few paragraphs. This function essentially loads a sound, plays it, and then
frees it from memory. As a bonus exercise you should separate the loading and playing

code into their own functions and allow the sound to be played multiple times before it is
freed.

LISTING 9.6. THE PLAYPCM() FUNCTION

bool PlayPCM(IXAudio2* xAudio2Engine, char *filename)

{

 CWaveFile wav;

 if(FAILED(wav.Open(filename, NULL, WAVEFILE_READ)))

 return false;

 WAVEFORMATEX *format = wav.GetFormat();

 unsigned long wavSize = wav.GetSize();

 unsigned char *wavData = new unsigned char[wavSize];

 if(FAILED(wav.Read(wavData, wavSize, &wavSize)))

 {

 if(wavData)

 delete[] wavData;

 return false;

 }

 IXAudio2SourceVoice *srcVoice;

 if(FAILED(xAudio2Engine->CreateSourceVoice(&srcVoice, format,

 0, XAUDIO2_DEFAULT_FREQ_RATIO, NULL, NULL, NULL)))

 {

 if(wavData)

 delete[] wavData;

 return false;

 }

javascript:moveTo('ch09list6');

 XAUDIO2_BUFFER buffer = {0};

 buffer.pAudioData = wavData;

 buffer.Flags = XAUDIO2_END_OF_STREAM;

 buffer.AudioBytes = wavSize;

 if(FAILED(srcVoice->SubmitSourceBuffer(&buffer)))

 {

 srcVoice->DestroyVoice();

 if(wavData)

 delete[] wavData;

 return false;

 }

 HRESULT hr = srcVoice->Start(0, XAUDIO2_COMMIT_NOW);

 bool isRunning = true;

 while(SUCCEEDED(hr) && isRunning)

 {

 XAUDIO2_VOICE_STATE state;

 srcVoice->GetState(&state);

 isRunning = (state.BuffersQueued > 0) != 0;

 }

 srcVoice->DestroyVoice();

 if(wavData)

 delete[] wavData;

 return true;

}

SUMMARY

Audio in video games is a very important topic. When it comes to playing sounds using the
basics, XACT3 and XAudio2 are fairly straightforward. If you plan on getting advanced with

audio engineering, you will need to read more than a chapter because there is a lot that
goes into game audio. Even the basic demos in this chapter brought up topics such as

sample rate, frequency, streaming, and compression and formats that are key for advanced
audio engineers. This chapter served as a very useful introduction to programming with

Microsoft’s XACT3 and XAudio2 APIs.

The following elements were discussed in this chapter.

 Microsoft audio technologies

 Direct Sound

 XACT3

 XAudio2

CHAPTER QUESTIONS

Answers to the following chapter review questions can be found in Appendix A.

1. List the various sound technologies that can be found in the various game

development SDKs provided by Microsoft.

2. Describe the XAudio2 API. What does this technology replace?

3. Describe XACT3. What does this technology replace?

4. Describe the audio effects technologies.

5. Describe Direct Sound and its current role as an audio technology.

6. What does XACT stand for?

7. List the audio formats supported by XACT3 and XAudio2.

8. What is endian order, and how does it affect audio files (or files in general) and

networking data?

9. What is a wave bank?

10. What is a sound bank?

11. What is a sound cue, and what is it used for in XACT3?

12. What is the main difference between XACT3 and XAudio2 discussed in this

chapter?

13. What is the mastering voice, and what is it used for in XAudio2?

14. What is the source voice, and what is it used for in XAudio2?

15. True or false: XAudio2 internally takes care of the endian issue for programmers.

CHAPTER EXERCISES

../app01#app01
../app01lev1sec9#app01qa9q1a1
../app01lev1sec9#app01qa9q2a2
../app01lev1sec9#app01qa9q3a3
../app01lev1sec9#app01qa9q4a4
../app01lev1sec9#app01qa9q5a5
../app01lev1sec9#app01qa9q6a6
../app01lev1sec9#app01qa9q7a7
../app01lev1sec9#app01qa9q8a8
../app01lev1sec9#app01qa9q9a9
../app01lev1sec9#app01qa9q10a10
../app01lev1sec9#app01qa9q11a11
../app01lev1sec9#app01qa9q12a12
../app01lev1sec9#app01qa9q13a13
../app01lev1sec9#app01qa9q14a14
../app01lev1sec9#app01qa9q15a15

Exercise 1: Use the DirectX SDK Sample Browser’s XACT Tutorial 2: Streaming to add

streaming wave bank support to the XACT demo from this chapter.

Exercise 2: Use the DirectX SDK Sample Browser’s XACT Tutorial 3: Categories and

Variables to add the ability to use the XGS file created by XACT to use categories and
variables in the demo you created in Exercise 1.

Exercise 3: Use the XAudio2Sound3D sample from the DirectX SDK Sample Browser to add
the ability to play 3D sounds to the XAudio2 demo from this chapter.

10. GAME INPUT

In This Chapter

 Win32 Input

 XInput

Input is a very important topic for video game development. Not only must input be
detected from devices so that the user can control their experience, but the input must be

detected accurately and quickly to keep the simulation smooth. A vast array of input types
can be used in video games. These types of input include but are not limited to the

following.

 Keyboards

 Mice

 Game pads

 Steering wheels

 Flight joysticks

 Guitars (e.g., Guitar Hero/Rock Band controller)

 Drums (e.g., Rock Band)

 Dance pads (e.g., Dance-Dance Revolution)

 Motion sensitive devices (e.g., the Wii-mote)

 Microphones for voice recognition

The purpose of this chapter is to briefly review how to detect input on a Windows-based PC

to use in video games. The XInput discussion is valid for Xbox 360 input detection as well as
for the PC.

WIN32 INPUT

On the PC, numerous devices can be used for input in applications. The most common types
of input on PCs are the keyboard and mouse because they are standard when buying or

building a PC. When developing games for the PC, developers often focus on these two
controller types, while additional controllers such as game pads, steering wheels, and so on

../ch10lev1sec1#ch10lev1sec1
../ch10lev1sec2#ch10lev1sec2

are often optional means of input that the users can use if they own and connect such a

device to their machines. In this chapter we will focus on keyboard and mouse input in
Win32, as well as game input for users with Xbox-compatible controllers and devices.

There are three main ways to detect input in a Win32 application. You can use the message
pump of the application, you can obtain the state of the device using various Win32

functions, or you can use an API such as XInput, DirectInput, and so forth. In this chapter
we will discuss each of these very common means of detecting and responding to input.

We’ll also discuss their differences, advantages, and disadvantages.

DIRECTINPUT

DirectInput is an API that is part of the DirectX SDK that is used to detect input from
various devices including the mouse, keyboard, game controllers (e.g., steering wheels,

game pads, etc.), and force-feedback devices. DirectInput has traditionally been very
beneficial to Windows-based game developers. It has the following benefits that should be

taken into consideration.

 DirectInput talks directly with the hardware.

 Any input device can work with DirectInput without knowledge of the specific device

being used.

 DirectInput allows for a wide range of devices to be used in an application, each with

different features.

 Outside of using the extended features and services of a device (such as force-

feedback), it is fairly simple to use the API to detect input from devices, although the
process is more involved than it would be for the XInput API.

One of the most important features of a game’s input system is speed. DirectInput allows
developers to talk directly to the hardware, which allows for fast input-state acquiring.

Whenever developers make a game, input, although seemingly minor to the inexperienced,
is extremely important to get right. Unresponsive input can really hurt player’s experience

of a game. Speed is one of the most critical aspects of many different parts of a game,
including input.

The major benefit of using DirectInput, aside from its speed, is that DirectInput is an API
that allows developers to take advantage of an input device’s extended features and

services. Many hardware companies make different devices, and some of these devices
have features that many other devices of the same type do not. By following the standard,

DirectInput can use devices released on the market without any change to the API. In other

words, devices released next year will still work with DirectInput if they follow the standard
set forth.

The biggest problem with DirectInput is the difficulty accessing these extended features and
services. This includes force-feedback, additional buttons (e.g., a five-button mouse),

additional keys, and anything added to the device that is not standard among all devices of
the same type (e.g., displays on a keyboard). If you are using DirectInput to detect input

from a keyboard and mouse without any additions of a specific device, then there is no
benefit because, as we will see later in this chapter, you can directly obtain the state of a

keyboard and mouse device using two Win32 functions for both the keyboard and mouse.
This is a long way from all of the setup necessary for DirectInput to do the same thing, and

since speed in detecting input exists in both cases, using DirectInput for standard, everyday
keyboards and mice has no benefit.

Another thing to consider when using DirectInput is that, like Direct Sound, it is being

depreciated. XInput is the new API that allows for game controller input detection on
Windows PCs and the Xbox 360. XInput will be discussed in more detail later in this chapter.

Also, DirectInput has not been updated since DirectX 8.0. It might prove beneficial to use
DirectInput to access the features of a device that you cannot access or cannot easily

access otherwise, but for everything else it would be beneficial to use the input API. The
fact that there is no benefit to using DirectInput in this case is even stated in the DirectX

SDK in the DirectInput Introduction section (―The Power of DirectInput‖). This fact most
likely is one contributing factor to the API’s deprecation.

WINDOWS MESSAGE PUMP

In Win32 applications, the programmer can use the message pump to obtain messages

from the window or from the Windows operating system. These messages include input
events such as button presses on a keyboard, button clicks on a mouse, and so forth.

Win32 applications have a feature known as the application loop. This loop runs endlessly
until some condition is met to cause the loop to break and the application to quit. What this

condition is depends on the specific application and the programmers who have developed

it. This condition could be as simple as the user pressing the Esc key, clicking a menu item
such as File or Exit, clicking on the Close button, and so on.

In the application loop, as you should already know, a callback procedure is called every
time an event is passed to the application’s message pump. The callback is a function that

usually executes specific code depending on the event that is passed to it, and it is only
called by the application, not by the user.

An example of the callback procedure used for most of the demos in this book can be seen
in the following:

LRESULT CALLBACK WndProc(HWND hwnd, UINT m, WPARAM wp, LPARAM

lp)

{

 // Window width and height.

 int width, height;

 switch(m)

 {

 case WM_CLOSE:

 case WM_DESTROY:

 PostQuitMessage(0);

 return 0;

 break;

 case WM_SIZE:

 height = HIWORD(lp);

 width = LOWORD(lp);

 if(height == 0)

 height = 1;

 ResizeD3D10Window(width, height);

 return 0;

 break;

 case WM_KEYDOWN:

 switch(wp)

 {

 case VK_ESCAPE:

 PostQuitMessage(0);

 break;

 default:

 break;

 }

 break;

 default:

 break;

 }

 // Pass remaining messages to default handler.

 return (DefWindowProc(hwnd, m, wp, lp));

}

In the callback procedure for most of the demos in this book, the events checked for are the

close (WM_CLOSE), destroy (WM_DESTROY), resize (WM_SIZE), and keyboard button

presses (WM_KEYDOWN) events. As far as input is concerned, you can check for keys being

pressed by checking if the event is a WM_KEYDOWN (or WM_KEYUP for released buttons)

event. The WPARAM parameter for the callback procedure stores the value of the event, so

for button presses you can check this variable for specific key presses and respond to them

accordingly. In the demos the callback procedure checks for the Esc key (VK_ESCAPE), and

when this key is pressed, the demos quit their execution.

There are 256 keys on the standard keyboard, and a list of all of the virtual key codes for
each button can be found in the MSDN documentation at http://msdn.microsoft.com/en-

us/default.aspx. The constants are also defined in windows.h.

Events are passed by the operating system to the application. This is a problem in video

games because the time it takes for the OS to notify the application of an event can have a
serious impact on input detection and response time. In addition, there is no guarantee of

how long it will take the OS to notify the application of an event, so input might not be as
fast as real-time applications require. Therefore, it is not recommended that you use the

callback procedure for input in your video game applications.

OBTAINING KEY STATES IN WIN32

You can obtain the states of buttons and keys on the keyboard and mouse by using various

Win32 functions that will be discussed briefly in this section. You can use DirectInput, but
this requires more work to set up, which might not be necessary if you just want standard

button and key presses.

The first function we will examine is GetAsyncKeyState(). This function takes as a

parameter the virtual key code of the keyboard key or mouse button that you want to test
for being pressed. This function tests if the key or button is down at the time the function

was called and tests if the key was pressed during a previous call to the function. The value
returned by this function is a short integer. If the most significant bit is set, then the key is

../default.aspx
../default.aspx

down; if the least significant bit is set, then the key is up. The function prototype for the

GetAsyncKeyState() function is as follows.

SHORT GetAsyncKeyState(int vKey);

An example of testing if the up arrow key is pressed by testing the most significant bit is as
follows.

if(GetAsyncKeyState(VK_UP) & 0×80) /* */

An alternative to the GetAsyncKeyState() function is the GetKeyState() function,

which does the same thing, with the exception that the GetKeyState() function returns

the key or button information and status that does not reflect the interrupt-level state

associated with the hardware.

Another function that can be used to get the state of keyboard keys is the

GetKeyboardState() function. This function takes an address as a parameter to a 256-

element array that will store the state of all keyboard keys. If the function succeeds in the

gathering this keyboard information, the GetKeyboardState() function returns true;

if not, it returns false. The function prototype for this function is as follows.

BOOL GetKeyboardState(PBYTE lpKeyState);

For the mouse, it is possible to obtain the mouse’s position by calling the

GetCursorPos() function, which takes as a parameter the address to the POINT object

that will store the X and Y position of the cursor and returns true or false for whether or

not the function succeeded. The function prototype for the GetCursorPos() function is

as follows.

BOOL GetCursorPos(LPPOINT lpPoint);

The GetKeyState() and GetAsyncKeyState()

functions can be used to return the key state of keyboard
keys and mouse buttons.

XINPUT

XInput is an API that is now part of the DirectX and XNA SDKs and allows Windows and
Xbox 360-based applications to detect input from Xbox 360 controllers. These controllers

include any device available now or in the future that can be used on the Xbox 360. Such

devices are game pads, guitars, big-button controllers, drums, and so forth. XInput also
supports controller vibrations (force-feedback) and voice input and output using the Xbox

360 headset.

All Xbox 360 controllers are compatible with Windows XP and Vista and are USB devices.

These devices can be used like traditional game controllers (such as in DirectInput), or they
can be used using XInput, which is the recommended API for these controllers.

XInput is the replacement for DirectInput when it comes to game controllers. XInput has
several benefits over DirectInput, including the following.

 XInput is easier to use.

 XInput is faster to set up and detect input from.

 XInput can be used on both Windows PCs and Xbox 360 consoles.

 The vibration functionality of Xbox controllers can only be set using XInput.

 Future Xbox controllers that are released will work with the API.

No real setup code is necessary for getting XInput running in a gaming application. The only

requirement is that the USB controller is plugged into the machine and a call to

XInputGetState() is made. (The XInputGetState() function will be discussed in

the next section.) You can, however, enable XInput’s reporting state by calling the function

XInputEnable(). By default, XInput’s reporting state is set to true, which means that

calls to XInputGetState() will return the state of the device. If the reporting state is

set to false, only natural data is sent. In other words, XInput will ignore the state of the

device, which can be useful, for example, when the window is minimized but the game is

still technically running. The XInputEnable() function is as follows.

void XInputEnable(BOOL enable);

You can use DirectInput to detect input from Xbox controllers, but DirectInput will not be
able to access the vibration functionality. It will treat the left and right triggers as a single

button instead of separately, and you cannot access audio from the Xbox 360 headset using
DirectInput.

SETTING UP XBOX 360 CONTROLLERS

All of the devices have buttons and so on. You can think of, for example, the guitar

controller as a game pad in the shape of a guitar without the left and right analog sticks or
the left and right triggers. A game pad has four face buttons, two triggers, two bumper

buttons (buttons in front of the triggers), two analog sticks, each with a digital button
(accessed by pushing the stick inward), a guide button, a directional pad, and start and

back buttons.

The XInput function XInputGetState() is used to get the state of an Xbox controller.

The function takes as parameters the index of the player and the address of an

XINPUT_STATE object that stores the state information. The player index can be between

0 and 3 for players one through four. The return value for the XInputGetState()

function can be either ERROR_SUCCESS if a controller is connected to the machine at that

player index or ERROR_FAIL if no device is connected. The function prototype for the

XInputGetState() function is as follows.

DWORD XInputGetState(DWORD dwUserIndex, XINPUT_STATE* pState);

The XINPUT_STATE structure has fields that store the state of the controller’s various

buttons, sticks, and so on. The information in this structure is the state of the device when

the XInputGetState() function was called. The structure has the following definition,

where wButtons is a flag that can store all information of the buttons, which includes face

buttons, bumpers, and the start and back buttons.

typedef struct _XINPUT_GAMEPAD {

 WORD wButtons;

 BYTE bLeftTrigger;

 BYTE bRightTrigger;

 SHORT sThumbLX;

 SHORT sThumbLY;

 SHORT sThumbRX;

 SHORT sThumbRY;

} XINPUT_GAMEPAD, *PXINPUT_GAMEPAD;

XInput has flags that correspond to the various input states of an Xbox controller. These
flags are as follows.

 XINPUT_GAMEPAD_DPAD_UP

 XINPUT_GAMEPAD_DPAD_DOWN

 XINPUT_GAMEPAD_DPAD_LEFT

 XINPUT_GAMEPAD_DPAD_RIGHT

 XINPUT_GAMEPAD_START

 XINPUT_GAMEPAD_BACK

 XINPUT_GAMEPAD_LEFT_THUMB

 XINPUT_GAMEPAD_RIGHT_THUMB

 XINPUT_GAMEPAD_LEFT_SHOULDER

 XINPUT_GAMEPAD_RIGHT_SHOULDER

 XINPUT_GAMEPAD_A

 XINPUT_GAMEPAD_B

 XINPUT_GAMEPAD_X

 XINPUT_GAMEPAD_Y

DETECTING BUTTON PRESSES

Once you have the controller’s state, you can test the individual buttons to see if they are

being pressed or not. The state for each button is stored in the XINPUT_STATE object’s

GamePad.wButtons field. The wButtons field is a short integer whose bits represent

each button. You can use the button flags mentioned in the previous section and the logical

AND operator (&) to test if a bit is set. If a bit is set, this means the button is being

pressed. An example of obtaining the current input state and testing if the left and right

bumper buttons are being pressed follows.

XINPUT_STATE state;

XInputGetState(0, &state);

if(state.Gamepad.wButtons & XINPUT_GAMEPAD_LEFT_SHOULDER)

 // Do Something…

if(state.Gamepad.wButtons & XINPUT_GAMEPAD_RIGHT_SHOULDER)

 // Do Something…

If the conditional statements equal true, the button is currently being pressed. You can test

if the back, start, and face buttons are being pressed by using their corresponding button
flags as shown in the following.

// Back and start.

if(state.Gamepad.wButtons & XINPUT_GAMEPAD_BACK)

 // Do Something…

if(state.Gamepad.wButtons & XINPUT_GAMEPAD_START)

 // Do Something…

// Face buttons (a, b, x, y).

if(state.Gamepad.wButtons & XINPUT_GAMEPAD_A)

 // Do Something…

if(state.Gamepad.wButtons & XINPUT_GAMEPAD_B)

 // Do Something…

if(state.Gamepad.wButtons & XINPUT_GAMEPAD_X)

 // Do Something…

if(state.Gamepad.wButtons & XINPUT_GAMEPAD_Y)

 // Do Something…

The game pad controllers along with a few other controller types (e.g., the guitar) also have

a directional pad on them. These directional pads are considered buttons, where you can
press the up, down, left, and right arrow buttons independently or at the same time. An

example of testing the controller state for these button presses is shown in the following.

// Arrow pad.

if(state.Gamepad.wButtons & XINPUT_GAMEPAD_DPAD_UP)

 // Do Something…

if(state.Gamepad.wButtons & XINPUT_GAMEPAD_DPAD_DOWN)

 // Do Something…

if(state.Gamepad.wButtons & XINPUT_GAMEPAD_DPAD_LEFT)

 // Do Something…

if(state.Gamepad.wButtons & XINPUT_GAMEPAD_DPAD_RIGHT)

 // Do Something…

The last remaining buttons are the left and right thumb stick’s digital buttons. These

buttons are pressed by pushing the thumb stick in. You can test if these thumb stick digital
buttons are pressed independently of testing for thumb stick movement. An example of

testing the thumb stick digital buttons is as follows.

// Thumb buttons (pushing in left and right joysticks).

if(state.Gamepad.wButtons & XINPUT_GAMEPAD_LEFT_THUMB)

 // Do Something…

if(state.Gamepad.wButtons & XINPUT_GAMEPAD_RIGHT_THUMB)

 // Do Something…

DETECTING TRIGGERS

Triggers are not buttons in the traditional sense. A trigger is more of a pressure-sensitive

button, and XInput allows you to detect just how much pressure is being applied to these
triggers. Currently, there are two triggers on an Xbox 360 controller on the top of the game

pad device.

To test if a trigger is being pressed, you test the XINPUT_STATE object’s

Gamepad.bLeftTrigger for the left trigger and Gamepad.bRightTrigger for the

right trigger. These values are represented by unsigned char variables and if their value is

over 0, the trigger is being pressed. If these trigger values are 255, the trigger is being held
all the way down, while anything in between 0 (0%) and 255 (100%) determines the

amount of pressure being applied to the trigger. The trigger values are obtained as follows.

unsigned char lt = state.Gamepad.bLeftTrigger;

unsigned char rt = state.Gamepad.bRightTrigger;

DETECTING THUMB STICK MOVEMENTS

The Xbox 360 game pad has two thumb sticks. The X and Y position information of the left

thumb stick is stored in Gamepad.sThumbLX and Gamepad.sThumbLY, while the right

thumb stick information is stored in Gamepad.sThumbRX and Gamepad.sThumbRY.

If the X and Y value of a thumb stick is equal to 0, the stick is centered along that axis.

Therefore, an X and Y value of 0 for each means the thumb stick has not moved. The
minimum value the thumb stick’s axes can have is –32768, and its maximum value is

32768. This means that if you are looking at the X axis, a value of –32768 indicates that the
thumb stick is being moved all the way to the left, while a value of 32768 indicates that the

stick is being moved all the way to the right. For the Y axis, a value of –32768 means the
stick is being moved all the way down, while a value of 32768 means the stick is being

moved all the way up. Keep in mind that a value of 0 (or near 0 since the sticks are highly
sensitive) means the stick is not being moved at all. An example of reading the thumb stick

information is shown as follows, where the values themselves are represented by short
integers.

short lx = state.Gamepad.sThumbLX;

short ly = state.Gamepad.sThumbLY;

short rx = state.Gamepad.sThumbRX;

short ry = state.Gamepad.sThumbRY;

Not all joysticks will read zero when centered, especially for
game pads that have been used frequently over time. One

way of accounting for this is to use what is known as a dead
zone. A dead zone is just a range of values that you will

ignore and consider zero. For example, if the joystick reads a
value between –20 and 20 then you can clamp any value

between that range of dead zone values to 0. The same can

be done to account for micro joystick changes from the
center where the user might not be moving the thumb stick

intentionally but movement is being registered.

CONTROLLER VIBRATIONS

The Xbox controller can have two vibration modes. Some controllers, like the guitar, do not
have vibration support, so setting this would not result in anything happening when using

some non-game pad controllers. Each game pad controller has a left motor and a right
motor. The differences between the motors are that the left motor is for low frequency

vibrations (such as footsteps) while the right motor is stronger and used for higher
frequency vibrations (such as explosions).

Setting the controller’s vibration is easy. You first create an XINPUT_VIBRATION object

and set its left and right motor speeds from 0 to 65,535. If 0 is used, the controller does not

vibrate. If 65,535 is used, the controller vibrates at 100% of its maximum power. Anything
within that range will be a percentage between no vibration and maximum power. The

XINPUT_VIBRATION structure is as follows.

typedef struct _XINPUT_VIBRATION {

 WORD wLeftMotorSpeed;

 WORD wRightMotorSpeed;

} XINPUT_VIBRATION, *PXINPUT_VIBRATION;

Once you’ve created an XINPUT_VIBRATION object and specified the left and right motor

speeds, you are ready to apply it to any controller attached to the machine. To set the

vibration, you can use XInputSetState(), and you pass to it the index of the controller

to set the vibration state and the address to the vibration state object. This sets the motor
speed for the specified controller. If you want to turn the vibration off, you have to call this

function again and set both the left and right motors to 0. The function prototype for the

XInputSetState() function is as follows.

DWORD XInputSetState(DWORD dwUserIndex, XINPUT_VIBRATION*

pVibration);

CONTROLLER CAPABILITIES

You can obtain the capabilities of the controller (i.e., features) by calling the

XInputGetCapabilities() function. This function takes the player index, input flags

that can only be XINPUT_FLAG_GAMEPAD at this time, and the output address to the

XINPUT_CAPABILITIES object that will store the features of the controller. The function

prototype for the XInputGetCapabilities() function is as follows.

DWORD XInputGetCapabilities(DWORD dwUserIndex, DWORD dwFlags,

XINPUT_CAPABILITIES* pCapabilities);

The XINPUT_CAPABILITIES structure is as follows.

typedef struct _XINPUT_CAPABILITIES {

 BYTE Type;

 BYTE SubType;

 WORD Flags;

 XINPUT_GAMEPAD Gamepad;

 XINPUT_VIBRATION Vibration;

} XINPUT_CAPABILITIES, *PXINPUT_CAPABILITIES;

The Type can only be XINPUT_DEVTYPE_GAMEPAD.

The SubType can be XINPUT_DEVSUBTYPE_ARCADE_STICK if it is an arcade stick

controller, XINPUT_DEVSUBTYPE_GAMEPAD if it is a game pad controller, or

XINPUT_DEVSUBTYPE_WHEEL if it is a steering wheel. Other controllers such as guitars

and so on fall under the game pad type.

The Flags can only be XINPUT_CAPS_VOICE_SUPPORTED. The XINPUT_GAMEPAD

stores the controller button/thumb stick and other states for the device, while the

XINPUT_VIBRATION stores the current vibration state for the device.

SUMMARY

Input in video games is very important to the overall experience. On Windows systems and
the Xbox 360 a few APIs can be used to quickly and effectively detect and respond to input

from a large array of devices. On Windows you can also use Win32 functions to obtain
button and key states from keyboards and mice. Once an application has an efficient means

of detecting input, the next challenge is how the application responds to that input, which is
game specific.

The following elements were discussed in this chapter.

 Game input in general

 Keyboards in Win32

 Mice in Win32

 DirectInput

 XInput

CHAPTER QUESTIONS

Answers to the following chapter review questions can be found in Appendix A.

1. What is DirectInput?

2. What advantage does DirectInput offer when you are using standard keyboards

and mice when compared to Win32 functions as discussed in this chapter?

3. What is XInput?

4. What are the benefits to using XInput over DirectInput as described in this

chapter?

5. What are the steps necessary to set up XInput in code? How is XInput enabled

and disabled?

6. What XInput function is used to obtain the state of a controller device?

7. What field is used to detect button presses on an Xbox controller? How do the

button flags factor in when determining if a button is pressed?

8. What fields are used to store the thumb stick locations of an Xbox controller?

9. What are the minimum and maximum pressure values a trigger can be on an

Xbox controller?

10. List the steps to setting the motor speed in an Xbox controller.

11. What is the minimum and maximum power the motors can move at in an Xbox

controller?

12. What XInput function is used to obtain the controller device’s capabilities?

13. List the three Xbox controller subtypes that were discussed in regard to obtaining

device capabilities.

CHAPTER EXERCISES

Exercise 1: Create a demo that allows you to move a 3D box from side to side and up and

down using the arrow keys of the keyboard.

../app01#app01
../app01lev1sec10#app01qa10q1a1
../app01lev1sec10#app01qa10q2a2
../app01lev1sec10#app01qa10q3a3
../app01lev1sec10#app01qa10q4a4
../app01lev1sec10#app01qa10q5a5
../app01lev1sec10#app01qa10q6a6
../app01lev1sec10#app01qa10q7a7
../app01lev1sec10#app01qa10q8a8
../app01lev1sec10#app01qa10q9a9
../app01lev1sec10#app01qa10q10a10
../app01lev1sec10#app01qa10q11a11
../app01lev1sec10#app01qa10q12a12
../app01lev1sec10#app01qa10q13a13

Exercise 2: Create a demo that allows you to move a 3D box from side to side and up and

down using the directional pad of an Xbox controller.

Exercise 3: Create a demo that allows you to move a 3D box from side to side and up and

down using the left joystick of an Xbox controller.

11. 3D MODELS

In This Chapter

 Overview of 3D Models

 Files in C++

 Token Stream

 OBJ Models

3D models are what make up 3D scenes in modern video games. 3D objects, characters,

and environments are carefully sculpted polygons placed within an environment to
represent whatever is going on. In today’s games these polygons are often triangles, and

they often have lots of texture data that is used to simulate a large degree of detail and
quality. 3D geometry is usually created expensively with off-the-self tools such as

Softimage XSI, Autodesk 3D Studio Max, and so forth, or the geometry is created using a
tool built in-house or algorithmically.

In this chapter we will look at how to load 3D geometry from a file. Direct3D 9.0 and
previous versions supported loading .X models using the DirectX Utility library. In Direct3D

10 there is no .X loading support, so we have to write code to load our models ourselves. By
the end of this chapter you will have all the tools necessary to load any geometry file format

you wish. The only requirement is that you understand the format of the file you want to
load. With that knowledge you can load and use any file.

OVERVIEW OF 3D MODELS

Some games have their own file formats that are used for storing 3D information. This
allows the developers to create a format that has all of the information needed by a

particular gaming application. What this information is may vary from game to game, so it
really depends on the application.

For example, if you have models in your game that require the position, texture
coordinates, normals, and material information, you can create a file format that suits your

needs by specifying this information. The game can then load this data and render the

geometry with its material in real time.

TOOLS USED FOR CREATING 3D GEOMETRY

Another option is to utilize an already existing file format. This is convenient because any
tools available on the market that save information to the format of your choice can be used

to create game assets. If you use an existing file format, it might not suit your needs, or it
might specify more information than you need for your assets. This is often the case with

formats saved by general-purpose tools, where a lot of information can appear in the file
that you would not need in an actual game. Some of the most popular applications used to

create 3D geometry include the following.

../ch11lev1sec1#ch11lev1sec1
../ch11lev1sec2#ch11lev1sec2
../ch11lev1sec3#ch11lev1sec3
../ch11lev1sec4#ch11lev1sec4

 3D Studio Max

 Lightwave

 XSI

 Maya

 ZBrush

 Truespace

Along with using existing tools and formats, you can also write your own file exporters and

converters to change a file to a format that your game is ready to use. This is a very
common practice in video games, as it allows developers to use powerful and complex tools

such as 3D Studio Max and save the content created in a format the game is able to read
and use.

FILES IN C++

In this section we will briefly review how C++ loads file data. C++ uses the standard

ifstream and ofstream classes. The ifstream class represents an input file stream,

and ofstream represents an output file stream. Both classes derive from the base class,

ifstream, and are part of the C++ standard.

In this section we will take a quick look at loading and saving files in C++ as a brief

refresher since the code samples in this chapter will depend on the ability to load data from

files using the ifstream class.

INPUT AND OUTPUT STREAMS

On the CD-ROM, in the Chapter 11 folder, is a demo called Files that demonstrates how to

save data to a file and how to read it back using the ifstream and ofstream classes. If

you are already familiar with the file stream classes you can skip to the next section.

The data is loaded into the demo and displayed within the function LoadFileData().

This function creates an ifstream object, opens the file, checks if the file actually opened,

determines the size of the file, and then reads the file’s data into memory. Once loaded, the

text that was loaded from the file is displayed, the allocated memory that was used to store
the file’s data is deleted, and the function returns.

To open a file using ifstream or ofstream, you call the open() function. This function

takes as parameters the file name and the file mode. The file mode can be one of the

following flags:

 app: This flag tells the stream object to open a file and append new information to it.

 ate: This flag sets the file pointer to the end of the file stream upon opening it.

 binary: This flag indicates that the file being opened is considered a binary file and

not a text file.

../ch11#ch11

 in: This flag is used to specify that the file is being used for reading rather than

writing.

 out: This flag specifies that the file is being used for writing rather than reading.

 trunc: This flag discards data upon opening.

To check if the file successfully opened, you can use the function is_open(), which

returns true if the file stream is open or false if it is not.

In the Files demo the next step calculates the file size. This can be done by setting the file

pointer to the end of the file stream by calling the function seekg(), calling tellg() to

get the number of bytes at that position, and then calling seekg() again to return us to

the beginning of the file stream so that we are ready to read the information from the

beginning. The seekg() function takes as parameters the file position to set, an offset

from that position to set, and a seeking direction. In this demo we are using one of the

overloaded versions that accepts an offset and a seek direction. The seek direction can be

either beg, which stands for the beginning of the stream, end, which is the end of the

stream, or cur, which is the current position in the stream. The function tellg() gets the

file position, which can be used to represent the byte position at the current location. So if

we seek to the end of the file, a call to tellg() will tell us the total bytes in the file. We

seek back to the start so we can begin reading since reading occurs where the file pointer is

located.

With the size of the file, we can allocate a buffer to hold that information, and then we can

read it with a call to read(). The read() function takes as parameters a pointer to a

buffer to read the data into and the amount you want to read. To read the entire file we use
the file’s size from the beginning of the stream in this demo. Once the information is read,

the file is closed, the allocated memory is deleted, and the function returns.

Other functions that are part of the ifstream class include the following that are inherited

from the istream class.

 gcount(): This function returns the number of characters extracted by the last input

operation.

 get(): This function is used to read unformatted data from the input file stream.

 getline(): This function is used to read data from the input stream into an array.

 ignore(): This function is used to read data from the stream and then discard it.

 peek(): This function returns the next character in the stream but does not extract it

(i.e., doesn’t move the file pointer).

 readsome(): This function reads data up to the size of the array even if the end of

the file or the number of bytes to read has yet to be reached.

 putback(): This function decrements the file pointer back one and makes the

character passed to its parameter the next character to be read from the stream.

 unget(): This function decrements the file pointer back one.

 sync(): This function synchronizes the input buffer with a source of characters.

 sentry(): This function performs exception-safe prefix and suffix operations on the

stream.

The ofstream class has many of the same functions minus the ones dealing with input.

The ofstream class also has a function called write() that is used to write data to a file.

The write() function takes as parameters the buffer to write and the amount of bytes to

write. The ofstream class also has a function called flush(), which is used to force the

object to write out all unwritten data as soon as possible.

The main.cpp source file for the Files demo is shown in Listing 11.1. The demo’s main()

function saves data to a file by calling the demo’s SaveFileData() function, and then it

reads it back by calling the demo’s LoadFileData() function. The data that has been

read is displayed inside LoadFileData().

LISTING 11.1. THE MAIN.CPP SOURCE FILE FOR THE FILES DEMO

/*

 Files in C++

 Ultimate Game Programming with DirectX 2nd Edition

 Created by Allen Sherrod

*/

#include<iostream>

#include<fstream>

using namespace std;

bool LoadFileData()

{

 ifstream fileStream;

 int fileSize = 0;

 // Open file then test that it actually opened.

 fileStream.open("test.txt", ifstream::in);

 if(fileStream.is_open() == false)

 return false;

 // Get file size.

 fileStream.seekg(0, ios::end);

 fileSize = fileStream.tellg();

 fileStream.seekg(0, ios::beg);

 if(fileSize <= 0)

 return false;

 // Allocate memory for text data.

 char *buffer = new char[fileSize];

 memset(buffer, 0, fileSize);

 if(buffer == NULL)

 return false;

javascript:moveTo('ch11list1');

 // Read data and close the file.

 fileStream.read(buffer, fileSize);

 fileStream.close();

 buffer[fileSize - 1] = '\0';

 // Display the data.

 cout << "test.txt (" << fileSize << " bytes) contents:" <<

endl;

 cout << buffer << endl;

 delete[] buffer;

 return true;

}

bool SaveFileData()

{

 ofstream fileStream;

 // Open file then test that it actually opened.

 fileStream.open("test.txt", ofstream::out);

 if(fileStream.is_open() == false)

 return false;

 char buffer[] = { "This is saved out to the file!" };

 // Write information to the file then close the file.

 fileStream.write(buffer, sizeof(buffer));

 fileStream.close();

 return true;

}

int main(int args, char *argc[])

{

 cout << "Loading files example in C++." << endl << endl;

 // Try to save the file.

 if(!SaveFileData())

 {

 cout << "Could not save file!" << endl << endl;

 }

 // Try to load the file.

 if(!LoadFileData())

 {

 cout << "Could not read file!" << endl << endl;

 }

 cout << "Press enter to quit." << endl;

 char c;

 cin >> c;

 return 1;

}

BINARY FILES AND BYTE ORDERING

Loading text files consists of loading data in a stream of characters, where a character is a

single byte. This assumes the file has ASCII text, which essentially means there are no
values that take up more than a byte of space. Binary files, on the other hand, or any file

that assumes more than one byte per value, can have multibyte values saved to the file.
Therefore, if an integer variable is 4 bytes in C++, you can save the entire variable to a file.

To read it you would read the 4 bytes that make up the integer.

The problem with multibyte values is in their byte ordering. Different hardware works on

different byte ordering. For example, big endian is the byte ordering used by PowerPC

processors, while little endian is used by processors. When saving information to a file, the
byte ordering from one piece of hardware is not translated automatically to another. This

means that if you try to load a value that is in big endian on a little endian machine, the
value will not be what you expect.

The solution to this problem is fairly straightforward. To start, you have to be aware of what
byte ordering the machine uses and what order the file was saved in. If the two orders are

different, you can simply swap the bytes that make up the variable when you read it. This
can be done by simply casting the variable to a character pointer and swapping the bytes

using array indexes just like you would if you had an array of four characters. When
swapping, the fourth byte becomes the first, the third becomes the second, the second

becomes the third, and the first byte becomes the last.

In this book we will not be loading multibyte values, and in this chapter the file format we

will load, in which our 3D geometry is defined, is a text file. However, when reading and
writing multibyte values across different platforms, even if they are being transmitted over

a network such as in a multiplayer game, you have to take byte ordering into consideration.

TOKEN STREAM

In a text file exported from a 3D modeling application, the data is usually presented in a
human-readable form. In this type of file there can be line breaks, spaces, tabs, words,

numbers, curly braces and other symbols, and so on. Regardless of what information is in
the file, it is useful to be able to effectively read the information you care about. In most

binary file formats the data is tightly packed, with only the data necessary to represent its

purpose. In a text file there can exist comments, new lines, spaces, and so on that are at
times more for the benefit of someone reading the text file’s contents than for the

application loading it.

In this section we will cover the creation of a class that will take a series of text and split it

up into separate pieces of text. In other words, we will create a list of all words, numbers,
and symbols that appear in the text file, without any delimiters. Delimiters are things such

as new lines, spaces, tabs, and any other characters that can appear in the file that mark
the end of a piece of text (such as a word). Consider, for example, the following.

"She sells sea shells by the sea shore"

This text is made up of eight individual pieces of text. These pieces are known as tokens,

pieces of text (letters, numbers, and symbols) that are separated by delimiters. A delimiter
can be anything you define it to be, but they are commonly the examples mentioned

earlier; spaces, end-of-file markers, new lines, and so on. In the example above the only
delimiters are the white spaces between each word.

For the class we will create, we want the ability to extract each token between delimiters.
Using the example from earlier, we want a class that we can use to call a function to get

each word from the text, one at a time. To do this we will define a function that can test
each character of the complete text to see if it is a delimiter and not part of a token. While

reading, we read each character until we come to such a delimiter, and then we return that

token, which we’ll call GetNextToken() in the class. Every time GetNextToken() is

called, a new token from the file will be returned. Consider the following example.

"VertexPos 100 50 30"

If we called get GetNextToken() for the first time on the above example, the token

VertexPos will be returned. If we were looking for the next vertex position, we would

know that the next three calls to GetNextToken() would return the X, Y, and Z values,

which would be 100, 50, and 30. If we defined a 3D model this way, we could have each
vertex position of each triangle on a line in the text file, and we simply would call one

function, GetNextToken(), to extract each piece of information, one at a time.

This class will be called TokenStream, and it will have a function to load a file’s data into

memory or to set the data using an array, to get the next token, and to move to the next

line in the file. A file will be loaded by calling LoadTokenStream(), which will only need

to take as a parameter the name of the file being loaded. Another way to set the data

stream is to manually set it by calling SetTokenStream(), which will take a character

pointer to an array of text to set. That way you can set the data stream from a file or from

an array of characters already in the application.

There will also be two GetNextToken() functions, where the first will return the next

token that appears in the file while the overloaded version will search for a specific token

and return the token that immediately follows. The MoveToNextLine() function for

moving to a new line in the text data will read characters until a new-line character is found
and will return the entire line to the caller. This can be useful if you have data specified

strictly line by line such as the ―VertexPos 100 50 30‖ example from earlier. If you

read the entire line, you could use another TokenStream object to break that line down

into individual tokens for further processing.

Another function that is part of the class includes a function to reset the token stream,

which means moving the reading indexes that are used to read tokens to the beginning of

the file (i.e., set to 0). There is also a function pointer that is used to allow the programmer
to set a function that is used to test characters for a delimiter by testing whether what they

consider a valid token character is being read. Since a delimiter can be anything you define
it to be, this might be useful for reading different types of files, where what you consider a

delimiter might change depending on the file being read.

There is also a function, called DefaultIsValidIdentifier(), that is not part of the

class. This function will be set to the class’s function pointer by default and will essentially
consider white spaces, new lines, end-of-file markers, tabs, and any other non-letter, -

number, or -symbol as a delimiter. That way anyone using this class can use the default
function instead of always having to write their own to do the same thing.

The class declaration for TokenStream is shown in Listing 11.2. The class has member

variables for the start and ending indexes that are used internally for the reading of tokens
(more on this coming up) and a string that holds the entire text data that was set to the

token stream.

LISTING 11.2. THE TOKENSTREAM CLASS DECLARATION

/*

 Token Stream

 Ultimate Game Programming with DirectX 2nd Edition

 Created by Allen Sherrod

*/

 #ifndef _TOKEN_STREAM_H_

 #define _TOKEN_STREAM_H_

 bool DefaultIsValidIdentifier(char c);

 class TokenStream

 {

 public:

 TokenStream(bool (*IdentiferFuncPtr)(char c));

 ~TokenStream();

 void ResetStream();

 bool LoadTokenStream(char *fileName);

 void SetTokenStream(char *data);

 bool GetNextToken(std::string *buffer);

 bool GetNextToken(std::string *token, std::string

*buffer);

 bool MoveToNextLine(std::string *buffer);

 private:

 int m_startIndex, m_endIndex;

 std::string m_data;

 bool (*isValidIdentifier)(char c);

 };

 #endif

In the class the constructor sets the read indexes to 0 and sets the function pointer. If

NULL is passed to the constructor, DefaultIsValidIdentifier(), which is the

default function, is used. DefaultIsValidIdentifier() is a simple function that

considers everything in the ASCII code range between 32 (the ! symbol) and 127 (the ~

symbol) as a valid part of a token. This means anything outside that range such as white
spaces is considered a delimiter. Therefore, if the character passed as the parameter to this

function is a valid token character, the function will return true; otherwise, it returns

false if it considers the character to be a delimiter. The code functions for the

DefaultIsValidIdentifier() function, class constructor, and class destructor are

javascript:moveTo('ch11list2');

shown in Listing 11.3 along with the ResetStream() function, which just sets the two

indexes to a value of 0.

LISTING 11.3. THE CLASS CONSTRUCTOR, DESTRUCTOR, STREAM RESET,

AND VALID TOKEN CHECK

/*

 Token Stream

 Ultimate Game Programming with DirectX 2nd Edition

 Created by Allen Sherrod

*/

#include<string>

#include<fstream>

#include"TokenStream.h"

using namespace std;

bool DefaultIsValidIdentifier(char c)

{

 // ASCII from ! to ~.

 if((int)c > 32 && (int)c < 127)

 return true;

 return false;

}

TokenStream::TokenStream(bool (*IdentiferFuncPtr)(char c))

{

 ResetStream();

 if(IdentiferFuncPtr == NULL)

 isValidIdentifier = DefaultIsValidIdentifier;

 else

 isValidIdentifier = IdentiferFuncPtr;

}

TokenStream::~TokenStream()

{

}

void TokenStream::ResetStream()

{

 m_startIndex = m_endIndex = 0;

}

The next functions we will be looking at, which are shown in Listing 11.4, are

SetTokenStream() and LoadTokenStream(). The SetTokenStream() function

resets the stream indexes and sets the text data to the function’s parameter. The

LoadTokenStream() function opens a file, reads its contents, sets the file’s contents to

javascript:moveTo('ch11list3');
javascript:moveTo('ch11list4');

the class’s data string, deletes the temporary allocated memory that was used to read from

the file, closes the file, and returns. This code is essentially the same as that in the Files

demo but is now being used as the TokenStream class’s loading function.

LISTING 11.4. THE SETTOKENSTREAM() AND LOADTOKENSTREAM()

FUNCTIONS

void TokenStream::SetTokenStream(char *data)

{

 ResetStream();

 m_data = data;

}

bool TokenStream::LoadTokenStream(char *fileName)

{

 ResetStream();

 ifstream fileStream;

 int fileSize = 0;

 fileStream.open(fileName, ifstream::in);

 if(fileStream.is_open() == false)

 return false;

 fileStream.seekg(0, ios::end);

 fileSize = fileStream.tellg();

 fileStream.seekg(0, ios::beg);

 if(fileSize <= 0)

 return false;

 char *buffer = new char[fileSize];

 memset(buffer, 0, fileSize);

 if(buffer == NULL)

 return false;

 fileStream.read(buffer, fileSize);

 buffer[fileSize - 1] = '\0';

 fileStream.close();

 m_data = buffer;

 delete[] buffer;

 return true;

}

The GetNextToken() functions are not difficult, but they are where all the work occurs

when you use the class. The first of these two functions starts off by setting the starting
index to the last position of the ending index, and it goes on to test that we have not

reached the end of the text data. When this function is first called, both the start and end

are 0, but as reading occurs, the starting index is set to wherever the function last left off,

which is at the ending index position.

Assuming there is information to parse, the function then reads all characters until it

reaches a valid token character. For every character that is a delimiter, the start index is
moved forward. This allows the code to skip all delimiters until it reaches the start of the

next token. Therefore, if the text had a bunch of white spaces before the data begins, let’s
say for formatting purposes in the original text file, those delimiters are skipped so the

function can find the start of the next token. Once the start is found, the new end index will
be one past the new starting index.

With the starting location of the next valid token found, the next step is to reach the entire
text that makes up that token. This involves reading characters until a delimiter is found.

Each time the code reads a valid token identifier, the end index is incremented. Once a
delimiter is found, the text between the start index and end index represents the token. So

if you were reading the following line:

" This is a line"

the start index will be 4 since the first three white spaces are skipped and the ―T‖ is the
fourth character, and the end index is 7, which is the position of the first ―s.‖ The next time

GetNextToken() is called, using the text above, the white spaces between ―This‖ and

―is‖ are skipped, and the starting index is set to the ―i‖ in ―is,‖ while the ending index is,
after the function completes, set to the ―s‖ in ―is.‖ This would continue until the

TokenStream object reaches the end of the data stream. If it was at the end of the data

stream, the function would continue to return false during future calls unless the indexes

are reset by calling ResetStream().

The last part after the code identifies the start and end indexes that make up the token is to

return the token’s text. This is done by setting the function’s parameter, which is a pointer
to where the token is to be saved, to the characters between the start and end indexes that

make up the token. If NULL is passed to the function, the token is discarded, which can be

useful if you wanted to move past the next token without actually storing it because you

want to discard or ignore it. As long as the function is able to find a token, it returns true;

otherwise, it will return false. The first GetNextToken() function is shown in Listing

11.5.

LISTING 11.5. THE FIRST GETNEXTTOKEN()

bool TokenStream::GetNextToken(std::string *buffer)

{

 m_startIndex = m_endIndex;

 int length = (int)m_data.length();

 // Make sure we are not at the end.

 if(m_startIndex >= length)

 return false;

 // Skip all delimiters.

 while(m_startIndex < length &&

 isValidIdentifier(m_data[m_startIndex]) == false)

 {

 m_startIndex++;

 }

javascript:moveTo('ch11list5');
javascript:moveTo('ch11list5');
javascript:moveTo('ch11list5');

 // The end is one past where we are starting (for 1

character).

 m_endIndex = m_startIndex + 1;

 // If we haven't reached the end of the data stream to begin.

 if(m_startIndex < length)

 {

 // Read until we reach a delimiter or the end.

 while(m_endIndex < length &&

 (isValidIdentifier(m_data[m_endIndex])))

 {

 m_endIndex++;

 }

 // If we are returning this token, save it.

 if(buffer != NULL)

 {

 int size = (m_endIndex - m_startIndex);

 int index = m_startIndex;

 buffer->reserve(size + 1);

 buffer->clear();

 for(int i = 0; i < size;

 {

 buffer->push_back(m_data[index++]);

 }

 }

 return true;

 }

 return false;

}

The overloaded GetNextToken() function has a parameter for a token to search for and

a pointer address to where to store the token that follows it. The function calls the original

GetNextToken() until it finds the search token. Once found, GetNextToken() is

called again to return the token that immediately follows. Using the ―VertexPos 100 50

30‖ example from above, if you used this function to search for VertexPos, it will return

the token after it, which is 100. The overloaded GetNextToken() function is shown in

Listing 11.6.

LISTING 11.6. THE OVERLOADED GETNEXTTOKEN() FUNCTION

bool TokenStream::GetNextToken(std::string *token,

 std::string *buffer)

{

 std::string tok;

 if(token == NULL)

 return false;

javascript:moveTo('ch11list6');

 // Read tokens until…

 while(GetNextToken(&tok))

 {

 // …we find the one after what we are looking for.

 if(strcmp(tok.c_str(), token->c_str()) == 0)

 return GetNextToken(buffer);

 }

 return false;

}

The overloaded GetNextToken() function can be useful when you need information after

a specific token but not the token itself—for example, if somewhere in the file you had a file
ID as seen in the following.

"ID 1001"

If the application needs to check the validity of the file ID, it could use the overloaded

GetNextToken() function to search for ID, which will return the information of real

interest, 1001.

The last function of the TokenStream class is the MoveToNextLine() function. This

function is useful if you want to reach a single line of text at a time from a file. This function

is similar to the GetNextToken() function, but instead of stopping at a white space, it

keeps going until one of the other delimiters is reached such as a new line, end-of-file

marker, and so on. The MoveToNextLine() function is shown in Listing 11.7.

LISTING 11.7. THE TOKENSTREAM ’S MOVETONEXTLINE() FUNCTION

bool TokenStream::MoveToNextLine(std::string *buffer)

{

 int length = (int)m_data.length();

 // Read the entire line until we reach a newline character.

 // Read only if we are not at the end.

 if(m_startIndex < length && m_endIndex < length)

 {

 m_endIndex = m_startIndex;

 while(m_endIndex < length &&

 (isValidIdentifier(m_data[m_endIndex]) ||

 m_data[m_endIndex] == ' '))

 {

 m_endIndex++;

 }

 if((m_endIndex - m_startIndex) == 0)

 return false;

javascript:moveTo('ch11list7');

 if(m_endIndex - m_startIndex >= length)

 return false;

 // Return the line's data.

 if(buffer != NULL)

 {

 int size = (m_endIndex - m_startIndex);

 int index = m_startIndex;

 buffer->reserve(size + 1);

 buffer->clear();

 for(int i = 0; i < size; i++)

 {

 buffer->push_back(m_data[index++]);

 }

 }

 }

 else

 {

 return false;

 }

 m_endIndex++;

 m_startIndex = m_endIndex + 1;

 return true;

}

On the CD-ROM, in the Chapter 11 folder, is a demo application called Token Stream

that demonstrates the TokenStream class created in this section. The demo loads a file

called tokens.txt, which is also in the folder, and displays each token to the screen, one at a

time, using a loop. The loop continues to call and display the result of GetNextToken()

until GetNextToken() returns false, which means there are no more tokens left to

read. The main source file from the Token Stream demo is shown in Listing 11.8. Listing

11.9 shows the file contents from tokens.txt.

LISTING 11.8. THE MAIN SOURCE FILE FOR THE TOKEN STREAM DEMO

/*

 Token Stream

 Ultimate Game Programming with DirectX 2nd Edition

 Created by Allen Sherrod

*/

#include<iostream>

#include<string>

#include"TokenStream.h"

using namespace std;

int main(int args, char *argc[])

../ch11#ch11
javascript:moveTo('ch11list8');
javascript:moveTo('ch11list9');
javascript:moveTo('ch11list9');
javascript:moveTo('ch11list9');

{

 cout << "Stream of Tokens…" << endl << endl;

 TokenStream tokenStream(DefaultlsValidldentifier);

 tokenStream.LoadTokenStream("tokens.txt");

 string token;

 while(tokenStream.GetNextToken(&token))

 {

 cout << token.c_str() << " ";

 }

 cout << endl << endl;

 return 1;

}

LISTING 11.9. THE TOKENS.TXT FILE

Hi hello "wow" ! $%&*

this

 is

a

 test 100

OBJ MODELS

In this book we will use the Wavefront OBJ file format for storing 3D geometry that will be
loaded and rendered in scenes. The OBJ file format is a simple-to-understand ASCII text-

based format that we will parse and extract information from using our new TokenStream

class. Throughout the remainder of this book, most of the 3D models in the demo scenes

will be loaded from OBJ files. Many 3D modeling applications support this file format, so if
you have such a tool, you’ll be able to create your own geometry and load it in Direct3D.

UNDERSTANDING THE OBJ MODEL FORMAT

The Wavefront OBJ file format is fairly straightforward. The file has support for comments,

which work like C comments, where an entire line can be commented out. In the OBJ file

commented lines start with a # symbol and are used for adding remarks to the file that are
not supposed to be interpreted by the tool importing the geometry.

In an OBJ file, information is separated line by line. This means each vertex position has its
own line, each texture coordinate has its own line, each vertex normal has its own line, and

so forth. Each line in the model’s file starts with a keyword that tells the tool loading the file
what information is present on that line. The keywords we will focus on in this book that are

important to loading the triangle geometry for models include the following.

 mtllib: This keyword is used to define a material. When you see this keyword, you’ll

know that what follows is the file name for the material properties, which we’ll cover
later in this section.

 v: This keyword is used to define a vertex position. Every v keyword is followed by

three numbers that represent the X, Y, and Z position of the vertex point.

 vt: This keyword is used to define a vertex’s texture coordinate. Each vt keyword is

followed by the U and V texture coordinate.

 vn: This keyword is used to define a vertex’s normal direction. Each vn keyword is

followed by three floating-point values that represent a unit-length normal.

 g: This keyword is used to define the name of a mesh in the file. The OBJ file can have

more than one mesh defined inside of it.

 usemtl: This keyword is used to define what material the mesh is using. Different

meshes can use different materials, and the materials themselves are defined in the

material file that follows the mtllib keyword.

 f: This keyword is used to define a face. Following the f keyword are three sets of

indices for triangles or four sets of indices if the information is represented by quads. In

this book we will only support loading triangle information. If your tool by default
exports quads instead of triangles, you can change the options if that is allowed, or you

can tweak the OBJ loading to support quads by creating two triangles for each f

keyword instead of just one.

For each face there are three sets of indices. Each of these specifies three values separated

by a slash (/). These values are array indexes into the vertex, texture coordinate, and
normal list. For example, if you see the following

"f 1/2/3 4/5/6 7/8/9"

it would be interpreted as having three vertices that make up the face (a triangle), where

the first vertex uses the first position in the positions list (i.e., all the v keywords), the

second value is an index for the texture coordinate list, and the third is an index for the

normal list. The second vertex uses the fourth position in the positions list, the fifth texture
coordinate from the texture coordinate list, and the sixth normal from the normal list to

define the vertex. This continues for all vertices specified for the face.

This means that each token that follows f defines a vertex of the surface. Each of

these tokens can be further broken down to define which position, texture coordinate, and
normal from their respective lists are attributes of that vertex. A sample OBJ file and the

one we will be loading in the upcoming chapter demo are shown in Listing 11.10. The
sample OBJ model is a 3D cube made up of 12 triangles, two for each side of the cube. This

OBJ file was exported by MilkShape 3D. The demo that loads this sample OBJ model is
called OBJ Models and can be found on the CD-ROM in the Chapter 11 folder.

LISTING 11.10. A SAMPLE OBJ FILE

Wavefront OBJ exported by MilkShape 3D

mtllib box.mtl

javascript:moveTo('ch11list10');
../ch11#ch11

v -2.000000 -2.000000 -2.000000

v 2.000000 -2.000000 -2.000000

v -2.000000 2.000000 -2.000000

v 2.000000 2.000000 -2.000000

v -2.000000 -2.000000 2.000000

v 2.000000 -2.000000 2.000000

v -2.000000 2.000000 2.000000

v 2.000000 2.000000 2.000000

8 vertices

vt 1.000000 0.000000

vt 1.000000 1.000000

vt 0.000000 1.000000

vt 0.000000 0.000000

4 texture coordinates

vn 0.000000 -0.000000 -1.000000

vn -0.000000 -1.000000 0.000000

vn -1.000000 0.000000 -0.000000

vn 1.000000 0.000000 0.000000

vn 0.000000 1.000000 0.000000

vn 0.000000 0.000000 1.000000

6 normals

g cube

usemtl material

s 1

f 1/1/1 3/2/1 4/3/1

f 1/1/1 4/3/1 2/4/1

f 1/4/2 2/1/2 6/2/2

f 1/4/2 6/2/2 5/3/2

f 1/4/3 5/1/3 7/2/3

f 1/4/3 7/2/3 3/3/3

f 2/1/4 4/2/4 8/3/4

f 2/1/4 8/3/4 6/4/4

f 3/3/5 7/4/5 8/1/5

f 3/3/5 8/1/5 4/2/5

f 5/4/6 6/1/6 8/2/6

f 5/4/6 8/2/6 7/3/6

12 triangles in group

12 triangles total

The material file is similar to the model file. In the material file the name of the material is

specified by the newmtl keyword. The diffuse color for the material is specified by the Kd

keyword, the ambient term by the Ka keyword, and the specular term by the Ks keyword.

The Ns keyword specifies the shininess of the specular term, or in other words the specular

power, and the illum keyword specifies the illumination, where 1 means the specular term

is not used and 2 means it is used. The map_Kd keyword is used to specify a color texture

image’s file name. The last keyword that can appear in an OBJ material file is the d

keyword, which specifies the material’s transparency (alpha) value. Some tools use Tr

instead of d, which is the same thing.

The topics of diffuse, specular, and ambient terms deal with lighting, which will be covered

in Chapter 13, ―Lighting.‖ A sample material file that was created when the cube model was
created is shown in Listing 11.11.

LISTING 11.11. A SAMPLE OBJ MATERIAL FILE

newmtl material

Ka 0.300000 0.3000000 0.300000

Kd 0.700000 0.7000000 0.700000

Ks 1.000000 1.0000001 1.000000

Ns 50.000000

Tr 0.000000

illum 2

map_Kd decal.dds

LOADING OBJ FILES

Loading an OBJ file is fairly simple, but a lot of text parsing needs to be done. In the OBJ

Models demo we will load the sample cube and its material. We will only search for the
material’s texture file name since the other information would be irrelevant until we talk

about lighting later in the book.

Two files specify the OBJ loading code: objLoader.h and objLoader.cpp. In the header file

there are two classes, one used to store a mesh and one used to store all meshes in the file.

The mesh class is called ObjMesh, and it stores all of the vertices, normals, and texture

coordinates that are ready to be used to create a Direct3D 10 vertex buffer and the texture

file name in a string. This mesh class is fairly straightforward and only has functions for

accessing the member variables. The ObjMesh class is shown in Listing 11.12.

LISTING 11.12. THE OBJMESH CLASS

class ObjMesh

{

 public:

 ObjMesh()

 {

 m_vertices = NULL;

 m_normals = NULL;

 m_texCoords = NULL;

 m_totalVerts = 0;

 }

 ~ObjMesh()

 {

 Release()

 }

 void Release()

 void SetVertices(float *verts) { m_vertices = verts; }

 void SetNormals(float *normals) { m_normals = normals; }

 void SetTexCoords(float *coords) { m_texCoords = coords; }

../ch13#ch13
javascript:moveTo('ch11list11');
javascript:moveTo('ch11list12');

 void SetTotalVerts(int total) { m_totalVerts = total; }

 void SetName(string name) { m_name = name; }

 void SetTextureName(string name) { m_decalFile = name; }

 float *GetVertices() { return m_vertices; }

 float *GetNormals() { return m_normals; }

 float *GetTexCoords() { return m_texCoords; }

 int GetTotalVerts() { return m_totalVerts; }

 string GetName() { return m_name; }

 string GetTextureName() { return m_decalFile; }

 private:

 float *m_vertices;

 float *m_normals;

 float *m_texCoords;

 int m_totalVerts;

 string m_name;

 string m_decalFile;

};

The model list class is called ObjModel, and it stores a list of ObjMesh objects. The

model class is also going to be used to load the OBJ file, which is done by calling the

function LoadOBJ(). All of the other functions except for Release() in the class are

used to access individual mesh information such as getting a specific mesh’s texture file

string, getting a specific mesh’s vertex list, and so on. The Release() function that you

will see in the class is used to free all allocated memory. The mesh list itself is a list of

pointers that are allocated during the loading of the model file. The ObjModel class is

shown in Listing 11.13. The model list class is only used to load all of the information from
an OBJ file and have its data ready so that vertex buffers can be created out of the OBJ

files. Once those vertex buffers are created, the model list class object would not be
needed. Later in the main source file you’ll see how this class is used to temporarily hold

the geometric information until the vertex buffers are created.

LISTING 11.13. THE OBJMODEL CLASS

class ObjModel

{

 public:

 ObjModel() { }

 ~ObjModel() { Release() }

 bool LoadOBJ(char *fileName);

 void Release()

 ObjMesh *GetMeshByIndex(int index);

 float *GetMeshVertices(int index);

 float *GetMeshNormals(int index);

 float *GetMeshTexCoords(int index);

 int GetMeshTotalVerts(int index);

 int GetMeshCount();

javascript:moveTo('ch11list13');

 string GetMeshTextureFile(int index);

 private:

 vector<ObjMesh*> m_meshList;

};

The first functions to look at in the objLoader.cpp file are the Release() functions. For the

mesh, this function deletes all allocated memory (i.e., vertices, normals, and texture

coordinates), and for the model class a Standard Template Library (STL) algorithm is used
to delete all allocated memory from the container. The list of meshes is stored in an

std::vector object that is part of the C++ standard and is part of the STL. By calling

the STL algorithm function for_each() and sending it a user-defined structure that will

operate on each of the elements in the std::vector array, we can create a structure

that will delete each element that exists. This is a nice trick that can be used to delete all
elements of a container by taking advantage of the efficiency of the STL algorithms. The

Release() functions are shown in Listing 11.14.

LISTING 11.14. THE RELEASE() FUNCTIONS

// Used to delete allocated objects in an STL container.

struct DeleteMemObj

{

 template<typename T>

 void operator()(const T* ptr) const

 {

 if(ptr != NULL)

 delete ptr;

 ptr = NULL;

 }

};

void ObjMesh::Release()

{

 m_totalVerts = 0;

 if(m_vertices != NULL)

 {

 delete[] m_vertices;

 m_vertices = NULL;

 }

 if(m_normals != NULL)

 {

 delete[] m_normals;

 m_normals = NULL;

 }

 if(m_texCoords != NULL)

 {

 delete[] m_texCoords;

 m_texCoords = NULL;

 }

javascript:moveTo('ch11list14');

}

void ObjModel::Release()

{

 for_each(m_meshList.begin(), m_meshList.end(),

DeleteMemObj());

}

The mesh-accessing functions of the ObjModel class are fairly straightforward and use

array indexes to return the information of interest. The class has a function to return a

mesh by array index and functions to return a specific mesh’s vertex positions, normals,
texture coordinates, vertex count, and texture file name. These accessing functions are

shown in Listing 11.15 for the ObjModel class.

LISTING 11.15. THE OBJMODEL CLASS’S ACCESSING FUNCTIONS

ObjMesh *ObjModel::GetMeshByIndex(int index)

{

 if(index < 0 || index > (int)m_meshList.size())

 return NULL;

 return m_meshList[index];

}

float *ObjModel::GetMeshVertices(int index)

{

 if(index < 0 || index > (int)m_meshList.size())

 return 0;

 return m_meshList[index]->GetVertices();

}

float *ObjModel::GetMeshNormals(int index)

{

 if(index < 0 || index > (int)m_meshList.size())

 return 0;

 return m_meshList[index]->GetNormals();

}

float *ObjModel::GetMeshTexCoords(int index)

{

 if(index < 0 || index > (int)m_meshList.size())

 return 0;

 return m_meshList[index]->GetTexCoords();

}

int ObjModel::GetMeshTotalVerts(int index)

{

 if(index < 0 || index > (int)m_meshList.size())

javascript:moveTo('ch11list15');

 return 0;

 return m_meshList[index]->GetTotalVerts();

}

int ObjModel::GetMeshCount()

{

 return (int)m_meshList.size();

}

string ObjModel::GetMeshTextureFile(int index)

{

 if(index < 0 || index > (int)m_meshList.size())

 return 0;

 return m_meshList[index]->GetTextureName();

}

The last function in the objLoader.cpp source file is the LoadOBJ() function. This function

is the biggest, but it is all fairly straightforward. To make it easier to understand we’ll look
at the function in sections.

In the first section the OBJ file is sent to a token stream object. There are two token
streams in the function, with the first holding the OBJ file and the second being a temp

stream used to further parse individual lines. The main token stream that has the entire file

will extract each line from the OBJ file using the MoveToNextLine() function of the

TokenStream class. The temp stream object will take that line and further break it down

into individual tokens on a line-by-line basis.

A loop is used in the first section to read each line from the file. The first token of each line
that is read from the OBJ file is examined to see what information is on that line of text. If

the line starts with a #, then it is a comment and can be ignored. If the line starts with a v,

then it is a vertex position, and we will need to read the next three tokens and convert the

strings to floats to extract that information. The same is done for vertex normals (vn) and

texture coordinates (vt). All read information is stored in temporary std::vector arrays

and used later in the function. Also, the material file name is read and stored in a string

called materialFile. The first section of the LoadOBJ() function is shown in Listing

11.16.

LISTING 11.16. THE FIRST SECTION OF THE LOADOBJ() FUNCTION

bool ObjModel::LoadOBJ(char *fileName)

{

 TokenStream tokenStream(NULL), tempStream(NULL);

 std::string tempLine, token;

 tokenStream.LoadTokenStream(fileName);

 std::vector<float> verts, norms, texC;

 // This will store the material file location

 // so we can use it to read the texture file name later.

 string materialFile;

javascript:moveTo('ch11list16');
javascript:moveTo('ch11list16');
javascript:moveTo('ch11list16');

 // Loop through and read all positions, normals, tex coords.

 while(tokenStream.MoveToNextLine(&tempLine))

 {

 tempStream.SetTokenStream((char*)tempLine.c_str());

 tokenStream.GetNextToken(NULL);

 if(!tempStream.GetNextToken(&token))

 continue;

 if(strcmp(token.c_str(), "v") == 0)

 {

 tempStream.GetNextToken(&token);

 verts.push_back((float)atof(token.c_str()));

 tempStream.GetNextToken(&token);

 verts.push_back((float)atof(token.c_str()));

 tempStream.GetNextToken(&token);

 verts.push_back((float)atof(token.c_str()));

 }

 else if(strcmp(token.c_str(), "mtllib") == 0)

 {

 tempStream.GetNextToken(&materialFile);

 }

 else if(strcmp(token.c_str(), "vn") == 0)

 {

 tempStream.GetNextToken(&token);

 norms.push_back((float)atof(token.c_str()));

 tempStream.GetNextToken(&token);

 norms.push_back((float)atof(token.c_str()));

 tempStream.GetNextToken(&token);

 norms.push_back((float)atof(token.c_str()));

 }

 else if(strcmp(token.c_str(), "vt") == 0)

 {

 tempStream.GetNextToken(&token);

 texC.push_back((float)atof(token.c_str()));

 tempStream.GetNextToken(&token);

 texC.push_back((float)atof(token.c_str()));

 }

 token[0] = '\0;;

 }

 …

}

The second section of the LoadOBJ() function resets the stream, and this time it loops

through and looks for mesh declarations by searching for g and triangle faces by searching

for f. Every time a g is encountered, a new mesh is added to the ObjModel class’s mesh

list. Every time an f is encountered, a new face is added to the last mesh added to the

mesh list. That way all meshes receive their correct faces since each mesh in an OBJ file is

followed by its list of faces. This code assumes that the file uses only three point triangles,
so keep that in mind.

To store the information of a mesh that will be read, the function creates a temporary
structure to hold the data. This structure holds the name of the mesh (optional), the

material name the mesh uses from the material file, and the face indexes. During this

second section of the LoadOBJ() function, all mesh information is stored in an array of

these temporary structure objects.

When reading a mesh, a new object is pushed (added) to the mesh list, and the current

mesh index is saved. This index is used for the face parsing, so we always know which

mesh was the last one added to the list. At the end of the mesh’s conditional statement the

name of the mesh is extracted, which always follows the g keyword.

When reading the faces, the three tokens are extracted one at a time. Each token that is
extracted is further broken down, and each face index (the first being for the position, the

second for the normal, and the third for the texture coordinates) is stored in the temporary
mesh’s faces array. This is done by looping through the token and reading the indexes until

we come across a slash (/) that marks the end of an index or until all indexes have been
read for the current face vertex.

The second section from the LoadOBJ() function is shown in Listing 11.17. The face

parsing looks complex, but it is nothing more than reading the characters between the

slashes, converting them to integers, and saving them in the temporary face array for the
current mesh.

LISTING 11.17. THE SECOND SECTION FROM THE LOADOBJ() FUNCTION

bool ObjModel::LoadOBJ(char *fileName)

{

 …

 // Temp struct used to store file faces per-mesh.

 struct TempOBJMesh

 {

 string name, material;

 std::vector<int> faces;

 };

 std::vector<TempOBJMesh> tempMeshes;

 int tempMeshlndex = 0;

 // Start from the beginning.

 tokenStream.ResetStream();

 // Read each mesh.

 while(tokenStream.MoveToNextLine(&tempLine))

 {

 tempStream.SetTokenStream((char*)tempLine.c_str());

 tokenStream.GetNextToken(NULL);

 if(!tempStream.GetNextToken(&token))

 continue;

javascript:moveTo('ch11list17');

 if(strcmp(token.c_str(), "g") == 0)

 {

 // Add a new mesh to the list.

 TempOBJMesh tempMesh;

 tempMeshes.push_back(tempMesh);

 tempMeshIndex = (int)tempMeshes.size() - 1;

tempStream.GetNextToken(&tempMeshes[tempMeshIndex].name);

 }

 else if(strcmp(token.c_str(), "usemtl") == 0 &&

 !tempMeshes.empty())

 {

 // Get the material for the current mesh.

 tempStream.GetNextToken(

 &tempMeshes[tempMeshIndex].material);

 }

 else if(strcmp(token.c_str(), "f") == 0 &&

 !tempMeshes.empty())

 {

 // Add a new face to the current mesh.

 int index = 0;

 for(int i = 0; i < 3; i++)

 {

 tempStream.GetNextToken(&token);

 int len = (int)strlen(token.c_str());

 for(int s = 0; s < len + 1; s++)

 {

 char buff[24];

 if(token[s] != '/' && s < len)

 {

 buff[index] = token[s];

 index++;

 }

 else

 {

 buff[index] = '\0';

 tempMeshes[tempMeshIndex].faces.push_back(

 (int)atoi(buff));

 index = 0;

 }

 }

 }

 }

 token[0] = '\0';

 }

 …

}

The third and last section of the LoadOBJ() function takes all of the loaded OBJ data that

is stored in the temporary arrays and creates each ObjMesh object out of them. This

section starts by allocating enough room on the mesh list array by calling reserve(). The

function then loops through each mesh in the temp mesh list, allocates the real mesh we

will be using, and allocates memory to store the vertex positions, normals, and texture
coordinates in triangle list form. Inside the loop a triangle list mesh is essentially being

created, as that process is very straightforward. In the OBJ file the information is specified
in a way that can’t be sent directly to Direct3D. In this section we are creating the

ObjMesh that will have its data formatted in a way that can be sent to Direct3D as a

triangle list model.

In an OBJ file only unique positions, texture coordinates, and normals are used, and when

you use index geometry in Direct3D or OpenGL, the indexes for a face vertex have to be the
same for each attribute. So, for example, if you have 100 vertices, there should be 100

positions, normals, and texture coordinates, even in an index model where index 1 in all
arrays references attributes for the same vertex point. However, in an OBJ file you can have

four texture coordinates that are reused, six normals, and eight positions, which wouldn’t be
right for Direct3D since all attributes must have the same index. You can even have one

normal, 20 vertices, and so on in an OBJ file. Since the attribute indexes are not the same
across each array for a single vertex point, we have to take this extra step to set things up

for rendering later on.

Once the face information has been expanded so that we have a triangle list’s worth of

information, this information is set to the allocated ObjMesh object, and that object is

added to the mesh list. Since we already know the material’s file name and since we know

the name of the material the mesh uses, we create another token stream object to load the

material file, and we search for the texture’s file name. This can be done by using the

overloaded GetNextToken() function to move to the start of the material information the

mesh uses and then calling the same function again to search for the token Kd_map. The

token that follows Kd_map is the name of the texture file, which is also stored in the

ObjMesh object.

The third and final section of the LoadOBJ() function is shown in Listing 11.18.

LISTING 11.18. THE THIRD SECTION OF THE LOADOBJ() FUNCTION

bool ObjModel::LoadOBJ(char *fileName)

{

 …

 // "Unroll" the loaded obj information into a list

 // of triangles for each mesh.

 m_meshList.reserve(tempMeshes.size());

 for(int i = 0; i < (int)tempMeshes.size(); i++)

 {

javascript:moveTo('ch11list18');

 ObjMesh *mesh = new ObjMesh();

 int vIndex = 0, nIndex = 0, tIndex = 0;

 int numFaces = (int)tempMeshes[i].faces.size() / 9;

 int totalVerts = numFaces * 3;

 mesh->SetTotalVerts(totalVerts);

 float *vertices = new float[totalVerts * 3];

 float *normals = NULL, *texCoords = NULL;

 if((int)norms.size() != 0)

 normals = new float[totalVerts * 3];

 if((int)texC.size() != 0)

 texCoords = new float[totalVerts * 2];

 // Generate triangle list.

 for(int f = 0; f < (int)tempMeshes[i].faces.size(); f+=3)

 {

 vertices[vIndex + 0] =

 verts[(tempMeshes[i].faces[f + 0] - 1) * 3 + 0];

 vertices[vIndex + 1] =

 verts[(tempMeshes[i].faces[f + 0] - 1) * 3 + 1];

 vertices[vIndex + 2] =

 verts[(tempMeshes[i].faces[f + 0] - 1) * 3 + 2];

 vIndex += 3;

 if(texCoords)

 {

 texCoords[tIndex + 0] =

 texC[(tempMeshes[i].faces[f + 1] - 1) * 2 + 0];

 texCoords[tIndex + 1] =

 texC[(tempMeshes[i].faces[f + 1] - 1) * 2 + 1];

 tIndex += 2;

 }

 if(normals)

 {

 normals[nIndex + 0] =

 norms[(tempMeshes[i].faces[f + 2] - 1) * 3 + 0];

 normals[nIndex + 1] =

 norms[(tempMeshes[i].faces[f + 2] - 1) * 3 + 1];

 normals[nIndex + 2] =

 norms[(tempMeshes[i].faces[f + 2] - 1) * 3 + 2];

 nIndex += 3;

 }

 }

 // Set info to mesh object.

 mesh->SetName(tempMeshes[i].name);

 mesh->SetVertices(vertices);

 mesh->SetNormals(normals);

 mesh->SetTexCoords(texCoords);

 TokenStream materialStream(NULL);

materialStream.LoadTokenStream((char*)materialFile.c_str());

 string searchKeyword = "map_Kd";

 string textureFile;

 // Use the first call to move to the material's section.

 if(materialStream.GetNextToken(&tempMeshes[i].material,

 NULL))

 {

 // Then use this call to get the texture name.

 // All mat info is kept in one section so once we find

 // the mat's name we can just move right to the

texture

 // file name since that will appear before any other

mat.

 materialStream.GetNextToken(&searchKeyword,

&textureFile);

 mesh->SetTextureName(textureFile);

 }

 m_meshList.push_back(mesh);

 }

 verts.clear();

 norms.clear();

 texC.clear();

 tempMeshes.clear();

 return true;

}

The next file to examine is the main.cpp source file for the OBJ Models demo. In this file the

global section has a new structure added to it called DX10Mesh, as well as a list of these

meshes. Inside this mesh are a D3D10 vertex buffer, the total vertices count, and a texture.

The global section from the OBJ Models demo’s main.cpp source file is shown in Listing
11.19. Each vertex from an OBJ file specifies a position, normal, and texture coordinate. For

models that do not use one or more of these, most 3D modeling applications use a single
value for those attributes even if the attribute isn’t used. In our loader those arrays would

javascript:moveTo('ch11list19');
javascript:moveTo('ch11list19');
javascript:moveTo('ch11list19');

have been filled with that single value for attributes that are not specified in the model, so

the vertex structure specifies each.

LISTING 11.19. GLOBAL SECTION FROM THE OBJ MODELS DEMO’S MAIN

SOURCE FILE

#include<d3d10.h>

#include<d3dx10.h>

#include<vector>

#include"objLoader.h"

#pragma comment(lib, "d3d10.lib")

#pragma comment(lib, "d3dx10.lib")

#define WINDOW_NAME "Loading OBJ Models"

#define WINDOW_CLASS "UPGCLASS"

#define WINDOW_WIDTH 800

#define WINDOW_HEIGHT 600

// Global window handles.

HINSTANCE g_hInst = NULL;

HWND g_hwnd = NULL;

// Direct3D 10 objects.

ID3D10Device *g_d3dDevice = NULL;

IDXGISwapChain *g_swapChain = NULL;

ID3D10RenderTargetView *g_renderTargetView = NULL;

ID3D10DepthStencilView *g_depthStencilView = NULL;

ID3D10Texture2D *g_depthStencilTex = NULL;

struct DX10Vertex

{

 D3DXVECTOR3 pos;

 D3DXVECTOR3 normal;

 D3DXVECTOR2 tex0;

};

ID3D10InputLayout *g_layout = NULL;

struct DX10Mesh

{

 DX10Mesh()

 {

 m_vertices = NULL;

 m_decal = NULL;

 m_totalVerts = 0;

 }

 ID3D10Buffer *m_vertices;

 ID3D10ShaderResourceView *m_decal;

 int m_totalVerts;

};

vector<DX10Mesh> g_meshes;

ID3D10Effect *g_shader = NULL;

ID3D10EffectTechnique *g_textureMapTech = NULL;

ID3D10EffectShaderResourceVariable *g_decalEffectVar = NULL;

ID3D10EffectMatrixVariable *g_worldEffectVar = NULL;

ID3D10EffectMatrixVariable *g_viewEffectVar = NULL;

ID3D10EffectMatrixVariable *g_projEffectVar = NULL;

D3DXMATRIX g_worldMat, g_viewMat, g_projMat;

// Scene rotations.

float g_xRot = 0.0f;

float g_yRot = 0.0f;

PREPARING OBJ FILES FOR DIRECT3D

In the IntializeDemo() function, the shader and input layout is first created as usual.

After that the OBJ file is loaded in an ObjModel object. A loop then follows that loops

through each mesh of the model and creates a vertex buffer and texture out of it. This

vertex buffer and texture is added to the DX10Mesh list and is what we render later in the

rendering function. The InitializeDemo() function is shown in Listing 11.20, where the

order of the function’s execution is as follows.

1. Load the shader.

2. Create the input layout.

3. Load the OBJ file.

4. Loop through each mesh.

5. Load the mesh’s texture.

6. Create a temp array of DX10Vertex and fill it with the vertex information (you could

use the mesh itself, but additional information is in it that Direct3D 10 does not need).

7. Create the mesh’s vertex buffer.

8. Delete the temporary memory.

9. Set the view and projection matrices.

LISTING 11.20. THE INITIALIZEDEMO() FUNCTION FROM THE OBJ MODELS

DEMO

bool InitializeDemo()

{

 // Load the shader.

javascript:moveTo('ch11list20');

 DWORD shaderFlags = D3D10_SHADER_ENABLE_STRICTNESS;

#if defined(DEBUG) || defined(_DEBUG)

 shaderFlags |= D3D10_SHADER_DEBUG;

#endif

 ID3D10Blob *errors = NULL;

 HRESULT hr = D3DX10CreateEffectFromFile("TextureMap.fx",

NULL,

 NULL, "fx_4_0", shaderFlags, 0, g_d3dDevice, NULL, NULL,

 &g_shader, &errors, NULL);

 if(errors != NULL)

 {

 MessageBox(NULL, (LPCSTR)errors->GetBufferPointer(),

 "Error in Shader!", MB_OK);

 errors->Release()

 }

 if(FAILED(hr))

 return false;

 g_textureMapTech = g_shader->GetTechniqueByName(

 "TextureMapping");

 g_worldEffectVar = g_shader->GetVariableByName(

 "World")->AsMatrix();

 g_viewEffectVar = g_shader->GetVariableByName(

 "View")->AsMatrix();

 g_projEffectVar = g_shader->GetVariableByName(

 "Projection")->AsMatrix();

 g_decalEffectVar = g_shader->GetVariableByName(

 "decal")->AsShaderResource();

 // Create the layout.

 D3D10_INPUT_ELEMENT_DESC layout[] =

 {

 { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0,

 D3D10_INPUT_PER_VERTEX_DATA, 0 },

 { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12,

 D3D10_INPUT_PER_VERTEX_DATA, 0 },

 { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 24,

 D3D10_INPUT_PER_VERTEX_DATA, 0 },

 };

 unsigned int numElements = sizeof(layout) /

sizeof(layout[0]);

 D3D10_PASS_DESC passDesc;

 g_textureMapTech->GetPassByIndex(0)->GetDesc(&passDesc);

 hr = g_d3dDevice->CreateInputLayout(layout, numElements,

 passDesc.pIAInputSignature, passDesc.IAInputSignatureSize,

 &g_layout);

 if(FAILED(hr))

 return false;

 // Load the model from the file.

 ObjModel model;

 if(model.LoadOBJ("box.ob] ") == false)

 return false;

 g_meshes.reserve(model.GetMeshCount());

 D3D10_BUFFER_DESC buffDesc;

 D3D10_SUBRESOURCE_DATA resData;

 // Loop through and create vertex buffers for each mesh.

 for(int m = 0; m < model.GetMeshCount(); m++)

 {

 DX10Mesh mesh;

 g_meshes.push_back(mesh);

 // Load the texture.

 string textureFile = model.GetMeshTextureFile(m);

 hr = D3DX10CreateShaderResourceViewFromFile(g_d3dDevice,

 textureFile.c_str(), NULL, NULL,

 &g_meshes[m].m_decal, NULL);

 if(FAILED(hr))

 return false;

 g_meshes[m].m_totalVerts = model.GetMeshTotalVerts(m);

 DX10Vertex *vertices =

 new DX10Vertex[g_meshes[m].m_totalVerts];

 float *modelVerts = model.GetMeshVertices(m);

 float *modelNorms = model.GetMeshNormals(m);

 float *modelTexC = model.GetMeshTexCoords(m);

 for(int i = 0; i < g_meshes[m].m_totalVerts;

 {

 vertices[i].pos.x = *(modelVerts + 0);

 vertices[i].pos.y = *(modelVerts + 1);

 vertices[i].pos.z = *(modelVerts + 2);

 modelVerts += 3;

 vertices[i].normal.x = *(modelNorms + 0);

 vertices[i].normal.y = *(modelNorms + 1);

 vertices[i].normal.z = *(modelNorms + 2);

 modelNorms += 3;

 vertices[i].tex0.x = *(modelTexC + 0);

 vertices[i].tex0.y = *(modelTexC + 1);

 modelTexC +=2;

 }

 // Create the vertex buffer.

 buffDesc.Usage = D3D10_USAGE_DEFAULT;

 buffDesc.ByteWidth = sizeof(DX10Vertex) *

 g_meshes[m].m_totalVerts;

 buffDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER;

 buffDesc.CPUAccessFlags = 0;

 buffDesc.MiscFlags = 0;

 resData.pSysMem = vertices;

 hr = g_d3dDevice->CreateBuffer(&buffDesc, &resData,

 &g_meshes[m].m_vertices);

 if(FAILED(hr))

 return false;

 delete[] vertices;

 }

 // Set the shader matrix variables that won't change once

here.

 D3DXMatrixIdentity(&g_worldMat);

 D3DXMatrixIdentity(&g_viewMat);

 g_viewEffectVar->SetMatrix((float*)&g_viewMat);

 g_pro]EffectVar->SetMatrix((float*)&g_projMat);

 return true;

}

RENDERING OBJ MODELS

The last piece of this demo deals with the rendering and shutdown functions. In this demo
the model is rotating. This is done by creating the world matrix for the model that rotates a

little bit along the X and Y axis each frame. This is done in the Update() function, which is

called after the rendering to slightly update the world matrix. The Update() function is

shown in Listing 11.21.

LISTING 11.21. THE UPDATE() FUNCTION FROM THE OBJ MODELS DEMO

javascript:moveTo('ch11list21');

void Update()

{

 g_xRot += 0.0001f;

 g_yRot += 0.0002f;

 if(g_xRot < 0) g_xRot = 359;

 else if(g_xRot >= 360) g_xRot = 0;

 if(g_yRot < 0) g_yRot = 359;

 else if(g_yRot >= 360) g_yRot = 0;

 D3DXMATRIX trans, rotX, rotY;

 D3DXMatrixRotationX(&rotX, g_xRot);

 D3DXMatrixRotationY(&rotY, g_yRot);

 D3DXMatrixTranslation(&trans, 0, 0, 6);

 g_worldMat = (rotX * rotY) * trans;

}

The rendering function is pretty much the same as in previous demos, with the exception
that there is now a loop that loops through and sets the vertex buffer and texture for each

mesh in the mesh list. Each mesh is rendered out one at a time in this manner. The

Shutdown() function is also the same as in previous demos, with the exception of a loop

being used to release the vertex buffers and textures that were loaded in the

InitializeDemo() function. The RenderScene() and Shutdown() functions from

the OBJ Models demo are shown in Listing 11.22.

LISTING 11.22. THE RENDERSCENE() AND SHUTDOWN() FUNCTIONS

void RenderScene()

{

 float col[4] = { 0, 0, 0, 1 };

 g_d3dDevice->ClearRenderTargetView(g_renderTargetView, col);

 g_d3dDevice->ClearDepthStencilView(g_depthStencilView,

 D3D10_CLEAR_DEPTH, 1.0f,

0);

 g_d3dDevice->IASetInputLayout(g_layout);

 g_d3dDevice->IASetPrimitiveTopology(

 D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

 D3D10_TECHNIQUE_DESC techDesc;

 g_textureMapTech->GetDesc(&techDesc);

 unsigned int stride = sizeof(DX10Vertex);

 unsigned int offset = 0;

 for(int m = 0; m < (int)g_meshes.size(); m++)

 {

javascript:moveTo('ch11list22');

 g_worldEffectVar->SetMatrix((float*)&g_worldMat);

 g_decalEffectVar->SetResource(g_meshes[m].m_decal);

 g_d3dDevice->IASetVertexBuffers(0, 1,

 &g_meshes[m].m_vertices, &stride, &offset);

 for(unsigned int i = 0; i < techDesc.Passes; i++)

 {

 g_textureMapTech->GetPassByIndex(i)->Apply(0);

 g_d3dDevice->Draw(g_meshes[m].m_totalVerts, 0);

 }

 }

 g_swapChain->Present(0, 0);

 Update();

}

void Shutdown()

{

 if(g_d3dDevice) g_d3dDevice->ClearState();

 if(g_swapChain) g_swapChain->Release()

 if(g_renderTargetView) g_renderTargetView->Release()

 if(g_depthStencilTex) g_depthStencilTex->Release()

 if(g_depthStencilView) g_depthStencilView->Release()

 if(g_shader) g_shader->Release()

 if(g_layout) g_layout->Release()

 for(int m = 0; m < (int)g_meshes.size(); m++)

 {

 if(g_meshes[m].m_vertices)

 g_meshes[m].m_vertices->Release()

 if(g_meshes[m].m_decal)

 {

 ID3D10Resource *pRes;

 g_meshes[m].m_decal->GetResource(&pRes);

 pRes->Release()

 g_meshes[m].m_decal->Release()

 }

 }

 if(g_d3dDevice) g_d3dDevice->Release()

}

To conclude this demo we must take a look at the shader’s file. The shader is the texture-

mapping HLSL effect from Chapter 6, ―Shading and Surfaces,‖ with the addition of a

DepthStencilState added to the technique. Because we are rendering a model with

volume, we must set the depth buffer state so that the geometry renders correctly. Without
it we must render the triangles from back to front order to ensure that triangles behind

other triangles are not rendered on top, but with the depth buffer the hardware ensures
that primitives are drawn correctly.

../ch06#ch06

Depth testing is a technique used to avoid having to render primitives in a specific order. In

Direct3D and other APIs, a depth buffer is an actual buffer in the graphics card memory,
similar to the color buffer that is the rendered image that is written to every time an object

is rendered. The depth buffer stores depth values on the pixel level, which are the projected
distances between the surface and the camera. Thus, when new primitives are rendered,

Direct3D can look at the depth buffer (depth testing) and determine if the new primitive is
in front of or behind one that was already rendered. If it is in front of the old primitive, then

the new primitive is rendered; if it is not, the rendered scene is not affected.

The OBJ Models demo’s HLSL effect file is shown in Listing 11.23. The

DepthStencilState is set in the technique by calling the HLSL function

SetDepthStencilState(). Just like with the rendering state in the Alpha Mapping

demo in Chapter 7, ―Additional Texture Mapping,‖ you can do this either on the application
side or in HLSL. A screenshot of the OBJ Models demo is shown in Figure 11.1.

LISTING 11.23. THE OBJ MODELS DEMO’S HLSL EFFECT SHADER

/*

 Texture Mapping HLSL Shader

 Ultimate Game Programming with DirectX 2nd Edition

 Created by Allen Sherrod

*/

Texture2D decal;

SamplerState DecalSampler

{

 Filter = MIN_MAG_MIP_LINEAR;

 AddressU = Wrap;

 ddressV = Wrap;

};

DepthStencilState DepthStencilInfo

{

 DepthEnable = true;

 DepthWriteMask = ALL;

 DepthFunc = Less;

 // Set up stencil states

 StencilEnable = true;

 StencilReadMask = 0xFF;

 StencilWriteMask = 0×00;

 FrontFaceStencilFunc = Not_Equal;

 FrontFaceStencilPass = Keep;

 FrontFaceStencilFail = Zero;

 BackFaceStencilFunc = Not_Equal;

 BackFaceStencilPass = Keep;

 BackFaceStencilFail = Zero;

};

cbuffer cbChangesEveryFrame

{

javascript:moveTo('ch11list23');
../ch07#ch07
javascript:moveTo('ch11fig01');

 matrix World;

 matrix View;

};

cbuffer cbChangeOnResize

{

 matrix Projection;

};

struct VS_INPUT

{

 float4 Pos : POSITION;

 float3 Norm : NORMAL;

 float2 Tex : TEXCOORD;

};

struct PS_INPUT

{

 float4 Pos : SV_POSITION;

 float2 Tex : TEXCOORDO;

};

PS_INPUT TextureMapVS(VS_INPUT input)

{

 PS_INPUT output = (PS_INPUT)0;

 float4 Pos = mul(input.Pos, World);

 Pos = mul(Pos, View);

 output.Pos = mul(Pos, Projection);

 output.Tex = input.Tex;

 return output;

}

float4 TextureMapPS(PS_INPUT input) : SV_Target

{

 return decal.Sample(DecalSampler, input.Tex);

}

techniquel0 TextureMapping

{

 pass P0

 {

 SetDepthStencilState(DepthStencilInfo, 0);

 SetVertexShader(CompileShader(vs_4_0, TextureMapVS()));

 SetGeometryShader(NULL);

 SetPixelShader(CompileShader(ps_4_0, TextureMapPS()));

 }

}

FIGURE 11.1. THE OBJ LOADER.

SUMMARY

Loading 3D geometry from files is essential in video games. With the wide range of tools
available on the market, anyone can create geometry that can be loaded into video game

scenes.

The key concept to get from this chapter is that as long as you understand the format of the

file you want to load, you can load it. Not all file formats for many 3D modeling applications
are publicly documented, but it might be worth using those that are if they suit your needs

or at least can be written to your own file format and you can create exporters for the tools
of your choice.

The following elements were discussed in this chapter.

 Reading files

 Writing files

 Tokens

 The OBJ ASCII text file format for geometry

In the next chapter we will build upon what you learned in this chapter and take a look at
animations in video games.

CHAPTER QUESTIONS

Answers to the following chapter review questions can be found in Appendix A.

../app01#app01

1. What object is used to create a file stream for input in C++?

2. What object is used to create a file stream for output in C++?

3. How does the ReadSome() function work from the input file stream class?

4. What flag is used to create a file stream that is used for binary files?

5. What key reason was given for the use of seekg() and tellg() from the Files

demo?

6. Define a token.

7. Define a delimiter.

8. Describe how the TokenStream class extracts the next token in the data

stream.

9. Describe how the TokenStream class extracts the next line in the data stream

and how it differs from token extraction.

10. Describe the OBJ file format. How are faces represented in an OBJ file?

CHAPTER EXERCISES

Exercise 1: Expand the OBJ loading code to be able to parse all the information in the OBJ
material files.

Exercise 2: Write your own custom 3D file format.

Exercise 3: Research another text-based file format of your choice and load its 3D
geometry into an application.

12. ANIMATIONS

In This Chapter

 Introduction to Animations

 Time-Based Simulations

 Additional Animation Topics for the Future

../app01lev1sec11#app01qa11q1a1
../app01lev1sec11#app01qa11q2a2
../app01lev1sec11#app01qa11q3a3
../app01lev1sec11#app01qa11q4a4
../app01lev1sec11#app01qa11q5a5
../app01lev1sec11#app01qa11q6a6
../app01lev1sec11#app01qa11q7a7
../app01lev1sec11#app01qa11q8a8
../app01lev1sec11#app01qa11q9a9
../app01lev1sec11#app01qa11q10a10
../ch12lev1sec2#ch12lev1sec2
../ch12lev1sec3#ch12lev1sec3

Animation is one of the driving forces in modern 3D video games. The term animation can

take on various meanings ranging from character animation through a series of poses to
animating a character’s translation and orientation as it interacts with the virtual world

around it.

Animation in games describes some form of movement or a change in pattern in the scene

of an object or objects. Animations are what give our scenes life and energy. Since the
dawn of video games there has been some form of animation, from simple object

movements to complex character animations. In the early days most game animations
consisted of displaying a different texture image of a 2D character to the screen to give the

impression of movement, like what a cartoonist does. Since then, game animations have
become much more complex. Today we have animations of textures, characters, body

parts, particles, lights, and much more. These animations can be created using many tools
that are available on the market. For example, to animate 3D characters, one option is to

use a 3D modeling application package, such as 3D Studio Max, and specify all the
animations that are to take place in the game for the character. Developers can take that

animation information and load it into their games. This information can be stored in the

model file or some external file, depending on the file format that is used to store the data.

In this chapter we will depart from learning about DirectX to briefly cover animation in the

virtual realm. Animation can become a complex topic, especially when adding other topics
such as physics and artificial behavior, but the basics of animation will be covered in this

chapter to give you an overview of the subject.

INTRODUCTION TO ANIMATION

Animation comes in many different forms and techniques. We can have an animation of a

texture image being changed over time across a surface or an animation of a piece of
geometry being physically moved around the virtual world, such as a platform. We can even

create the appearance of animation by displaying a 3D model in various poses over time
that represent something meaningful to our senses. As long as it visibly changes over time,

it is animation.

One of the ways we can animate objects is by moving them along predefined paths, which

starts to move us toward something known as cut-scenes. Cut-scenes generally consist of
objects (e.g., characters, models, etc.) being moved along predefined paths and performing

different animation poses along those paths (e.g., running, shooting, talking, etc.), and they
often animate the camera’s view to follow some action along a predefined path. Also in cut-

scenes are sound effects and other things that drive what is being portrayed. Therefore, at
their basic level, cut-scenes generally move objects and the camera along predefined paths

to tell part of a story. Cut-scenes were used to great effect in the 2008 PlayStation 3 game

Metal Gear Solid 4 by Konami. Some cut-scenes are done in real time, while others are
prerecorded and played back using video playback technology, as was highly popular in the

first-generation PlayStation games.

When we think of animation, we often think of characters that are animated by displaying

various poses throughout the scene. In the early days of 3D games, this was done using
key-frame animation, which boiled down to taking the same character represented by

multiple models, each being its own pose, and interpolating between them over time to give
the sensation of movement. Today most characters are animated using bone animation

(also known as skeleton animation), which is a far more efficient and effective technique
than what was used in the earlier days of video games.

TIME-BASED SIMULATIONS

Time and the measurements that are based on it are very important in video games. When

it comes to animation, time-based calculations allow for consistent updates to occur in real
time. When calculations are based on the frame rate, the simulation can slow down or

speed up based on the frame rate change. On PCs there is no way to guarantee that a game
will run at the same performance rate from one machine to another.

The term frame-based calculation refers to calculating some value every frame—for
example, if the position of an object was moved every frame like the following.

position += direction;

Therefore, the speed at which the object moves is solely dependent on the frame rate. If

there is a sudden drop in the frame rate, the object will appear to move slower. Usually this
is not the effect developers have in mind, especially when they intend for an object or some

other calculation to be updated at a specific rate of speed.

If you use time-based calculations, it does not matter if a game’s frame rate suddenly drops

to a crawl or jumps to very high levels because the simulation updates consistently. For
example, if an object is being moved five units per second, it doesn’t matter what the frame

rate is because a second is still a second, regardless of frame rate. Therefore, when the
next update call is made, the elapsed time is examined and the object is moved the

distance it would have moved during the time frame.

If too much time goes by between update calls, the object can appear to jump from one

location to another. This can also be seen in online games where a lot of lag causes the

updates of some players to occur so far apart that a jumping effect can be observed.
However, by using time-based calculations, we can keep updates consistent and accurate.

Throughout this chapter we will discuss animations along predefined paths. The code
created in this chapter can be used as the basis of a simple cut-scene system.

LINE PATH ANIMATIONS

The animations in this chapter will be performed along paths. The first type of animation

path we will look at is a simple straight-line path. A straight line is made up of two end
points that go from point A to point B. When we move an object, we move the object

starting at point A, and it continues until it reaches point B. We use linear interpolation to
gradually move the object’s position from point A to point B. For example, if an object has

been linearly interpolated between two points at 50%, then the object’s position is midway
between point A and point B. Take a look at Figure 12.1 for an example of this.

FIGURE 12.1. AN EXAMPLE OF A STRAIGHT-LINE PATH.

javascript:moveTo('ch12fig01');

To interpolate between two numbers, we can use linear interpolation. Linear interpolation

has been used for many things, from moving objects to character animation. To perform

linear interpolation, we need three pieces of information. The first two pieces of information
are the two numbers between which we are interpolating. The third piece of information

needed is a scalar value that is a value from 0 to 1, with 1 being 100%. Using 0% will
basically say we are at point A, and using 100% means we are at point B. Any value

between 0% and 100% will place us somewhere between point A and point B. The following
equation makes up linear interpolation, where Final is the interpolated value, A is point A, B

is point B, and dt is a percentage to interpolate between A and B.

Final = (B - A) * dt + A;

To perform straight-line animation, we need point A, point B, and a percentage. We can
have a bunch of straight lines that form a complete path, such a guard patrolling an area or

a car driving around a neighborhood block. For the mathematics we can use 3D vectors for
the end points and a floating-point value for the percent of interpolation. Interpolating

between a 3D vector is not that much different than what we did for single numbers. The
only real difference is that we are interpolating three values (X, Y, and Z axes) instead of

just the one. An example of this can be seen as follows:

Final.x = (B.x - A.x) * Scalar + A.x;

Final.y = (B.y - A.y) * Scalar + A.y;

Final.z = (B.z - A.z) * Scalar + A.z;

CURVE PATH ANIMATIONS

The next type of animation path we will look at is the curve path. This path goes from point

A to point B in a curve instead of a straight line. To create a curve with straight lines would
take a lot of very small lines connected to each another. The more lines you use, the

smoother the curve will look. The problem is that this is still not perfect and would take a

huge amount of data. A different way to create a curve path is to use two points for point A
to point B and two control points that define the curve, giving it a total of four points. This

type of curve is known as a cubic Bezier curve. The control points are used to bend the line
into a curve, so these two values determine how the curve will appear, while the end points

specify the starting and ending locations. Take a look at Figure 12.2 for an example of a
cubic Bezier curve.

FIGURE 12.2. AN EXAMPLE OF A CUBIC BEZIER CURVE.

javascript:moveTo('ch12fig02');

The straight line uses two points and a scalar value to calculate the final position of the

object. For the cubic Bezier curve we use four points and a scalar value. The curve can bend
and twist in any way based on the position of the control points. Like the straight-line path,

a value of 0% places our object at point A, and a value of 100% places our object at point
B. The equation used to calculate a position along this curve is not as simple as it is with a

straight line. The equation is shown as follows, where the points in the equation are A for
point A, B for point B, C1 for control point 1, and C2 for control point 2. Also in the equation

is S for the scalar, S2 for (scalar * scalar) and S3 for (scalar * scalar * scalar).

Final = A * (1 – S)3 + C1 * 3 * S * (1 – S)2 + C2 * 3 * S2 * (1 – s) + B *

S3

ROUTES

So far we’ve look at a few different paths that can be used for moving objects in a 3D
scene. The paths by themselves are not really helpful in representing a lot of different

movements. It is only when we string them together that we get something useful for our
games. Using multiple paths allows us to define an entire route of animation along which an

object can travel. This route can be made up of a lot of straight lines or curve paths and,

when character animation is applied, can add a huge amount of detail and believability to
our 3D games. Additional types of paths that can be created to add to the mix include:

 Circular paths

 Splines

 Graphs used for path-finding (such as A* for artificial intelligence)

 Elliptical paths

 Any other path that can be defined by a start and end position

To create a route, we need to list the paths that make up that route, and we then travel

through each path. Once we hit that end of a specific path, we move to the next path, reset
the start time, and travel along that until we hit the end of it. We keep doing this until

we’ve hit the last path, which would complete the route. At this point we can either stop the
movement, or we can loop and start it all over again from the beginning. Starting from the

beginning is the best bet if we want to have our patrolling guards or other characters
moving around nonstop until something forces them to perform another action—for

example, if the gamer shoots at the character or anything else that can cause the AI to take
action.

Once we have a route system, we can take things one step further by allowing the route

information to be read in by a file, and we can apply a route to our camera. This is an
optional exercise that you can do at the end of the chapter. Creating routes this way will

move us toward creating cut-scenes, which is something that is very popular in today’s
games. In this chapter we will create a simple route system that will allow us to string

together straight- and curved-line paths.

ANIMATION PATHS DEMO

Animation paths are predefined paths that, when put together, create a route from one
location to another along which a character or object can travel. A collection of routes for a

scene can constitute a cut-scene if the routes are used for story-telling purposes. Add a
walking animation to characters when using animation paths, and you will have the type of

behavior that we see in many games. An example of this can be seen in Call of Duty 4 for
the Xbox 360 and PlayStation 3, where enemy characters walk around patrolling an area.

When you walk in their field of view, the enemies react. This reaction is mostly aggression
on the part of the enemy AI character, but the reaction can be anything such as running

away, running from the character’s current location to the location of the nearest alarm

button, taking cover from possible enemy gun fire, and so on.

We will create a class for each type of animation path in our system. We will then create a

class that will store a list of paths that make up an entire route. The types of paths we will
be creating are straight-line paths and curve paths.

On the CD-ROM, in the Chapter 12 folder, is a demo application called Animation
Paths that demonstrates creating an animation route using a collection of line and curve

paths.

THE ANIMATION PATH CLASSES

The demo specifies a base class called Path that has two classes that derive from it called

StraightLinePath and CurvePath. The Path base class has two functions and three

variables.

The Release() function from the Path class is used to delete the next path in the list.

The paths are specified by using a simple link list setup, where each path has a pointer to

the next path in the list. The Release() function’s purpose is to delete the path that is

next in the link. Since we are not using arrays, we need a way to release these objects from

memory, and in a link list this is done by traversing the nodes one at a time and deleting
them. Also, using a link list allows us to add paths to the list without having to allocate or

re-allocate an array every time the list grows.

The GetPathPos() function from the Path class is used to get the position within the

path based on the percentage (dt) that is passed in the parameter. This is used to return to

the caller the time-based position that marks where the object is while it travels along the

current path.

The variables of the Path class are straightforward. The first variable is the next pointer,

which is used for the link list behavior. The second variable is the start time of the

animation for the path. The third variable is the total time it takes to travel along the
animation path. The start time is equal to 0 if this is the first path in the list, but if it is not

the first in the list, the start time equals the last path’s start time plus the last path’s total
time. In other words, the path, assuming it’s not the first in the list, has a start time that

equals the end time of the path that came before it.

../ch12#ch12

The Path base class is shown in Listing 12.1. Listing 12.2 shows the Path class’s

constructor, destructor, and Release() functions. The GetPathPos() function is a

virtual function that is to be implemented by each class that derives from the Path base

class.

LISTING 12.1. THE PATH BASE CLASS

class Path

{

 public:

 Path();

 ~Path();

 void Release()

 virtual Vector3D GetPathPos(float dt) = 0;

 public:

 float m_start;

 float m_total;

 Path *m_next;

};

LISTING 12.2. THE PATH CLASS’S FUNCTIONS

path::path()

{

 m_start = 0;

 m_total = 0;

 m_next = NULL;

}

Path::~Path()

{

 Release()

}

void Path::Release()

{

 if(m_next)

 {

 m_next->Release()

 delete m_next;

 m_next = NULL;

 }

}

The StraightLinePath class has a member variable for the start position and one for

the end position, and it implements the GetPathPos() function from the Path base

class. The StraightLinePath class declaration is shown in Listing 12.3. Listing 12.4

shows the class’s constructor, which sets the two member variables, and the

GetPathPos() function. In the GetPathPos() function, the equation we looked at

earlier for the linear interpolation is used for the line.

javascript:moveTo('ch12list1');
javascript:moveTo('ch12list2');
javascript:moveTo('ch12list3');
javascript:moveTo('ch12list4');

LISTING 12.3. THE STRAIGHTLINEPATH CLASS DECLARATION

class StraightLinePath : public Path

{

 public:

 StraightLinePath(Vector3D start, Vector3D end);

 Vector3D GetPathPos(float dt);

 public:

 Vector3D m_startPos;

 Vector3D m_endPos;

};

LISTING 12.4. THE STRAIGHTLINEPATH CLASS FUNCTIONS

StraightLinePath::StraightLinePath(Vector3D start, Vector3D end)

{

 m_startPos = start;

 m_endPos = end;

}

Vector3D StraightLinePath::GetPathPos(float dt)

{

 return ((m_endPos - m_startPos) * dt + m_startPos);

}

The CurvePath class has a member variable for the start position, one for the end

position, and two positions for each control point, and it implements the GetPathPos()

function from the Path base class. The CurvePath class declaration is shown in Listing

12.5, and the class’s functions are shown in Listing 12.6. As with the line path, the curve

path equation seen earlier in this chapter is used for the CurvePath class’s

implementation of the GetPathPos() function.

LISTING 12.5. THE CURVEPATH CLASS DECLARATION

class CurvePath : public Path

{

 public:

 CurvePath(Vector3D p1, Vector3D c1,

 Vector3D c2, Vector3D p2);

 Vector3D GetPathPos(float dt);

 public:

 Vector3D m_p1;

 Vector3D m_control1;

 Vector3D m_control2;

 Vector3D m_p2;

};

LISTING 12.6. THE CURVEPATH CLASS FUNCTIONS

javascript:moveTo('ch12list5');
javascript:moveTo('ch12list5');
javascript:moveTo('ch12list5');
javascript:moveTo('ch12list6');

CurvePath::CurvePath(Vector3D p1, Vector3D c1,

 Vector3D c2, Vector3D p2)

{

 m_p1 = p1;

 m_control1 = c1;

 m_control2 = c2;

 m_p2 = p2;

}

Vector3D CurvePath::GetPathPos(float dt)

{

 return (m_p1 * (1.0f - dt) * (1.0f - dt) * (1.0f - dt) +

 m_control1 * 3.0f * dt * (1.0f - dt) * (1.0f - dt) +

 m_control2 * 3.0f * dt * dt * (1.0f - dt) +

 m_p2 * dt * dt * dt);

}

Each of these classes can be found in Route.h and Route.cpp of the Animation Paths demo’s

source files.

THE ROUTE CLASS

The purpose of the Route class is to store a list of paths that form the animation route.

The Route class has the functions AddLinePath(), which adds a StraightLinePath

object to the list, AddCurvePath(), which adds a CurvePath object to the list,

GetStartTime() to get the time of the animation for time-based updates, and

GetPosition(), which returns the current position based on the time passed in as a

parameter. The Route class also has two member variables: a pointer to the Path class,

which acts as the root node in the link list, and a timer variable. The Route class

declaration is shown in Listing 12.7.

LISTING 12.7. THE ROUTE CLASS

class Route

{

 public:

 Route();

 ~Route();

 bool AddLinePath(Vector3D start, Vector3D end);

 bool AddCurvePath(Vector3D p1, Vector3D cnt1,

 Vector3D cnt2, Vector3D p2);

 float GetStartTime();

 Vector3D GetPosition(float time);

 void Release()

 private:

 Path *m_path;

 float m_startTime;

javascript:moveTo('ch12list7');

};

The Route class’s GetStartTime() function returns the class’s timer value, the

constructor initializes the two variables, and the destructor calls the Release() function.

In the Release() function the Release() function of the Path class object is called to

cause a recursive transversal through the link list to delete all nodes. Once that has

occurred, the root node itself is deleted and set to NULL. The constructor, destructor, and

GetStartTime() and Release() functions are shown in Listing 12.8.

LISTING 12.8. THE ROUTE CLASS’S CONSTRUCTOR, DESTRUCTOR,

GETSTARTTIME() FUNCTION AND RELEASE() FUNCTION

Route::Route()

{

 m_path = NULL;

 m_startTime = 0;

}

Route::~Route()

{

 Release()

}

float Route::GetStartTime()

{

 return m_startTime;

}

void Route::Release()

{

 if(m_path)

 {

 m_path->Release()

 delete m_path;

 m_path = NULL;

 }

}

The AddLinePath() and AddCurvePath() functions are fairly straightforward. They

begin by testing if the root node of the link list is NULL. If it is, then we can simply allocate

the node to a new instance of the type of path we are creating and set the node’s start and

total times. The start time is 0 in this case, and the total time is set to depend on the length
of the path.

If the root node is not NULL, then a pointer to the root node is created, and we use that

pointer to move through the link list until we find a free spot. Once we find that spot, it is

allocated to the appropriate path type, the total time is set to the length of the path, and
the start time is set to the start time plus the total time of the previous path. This allows us

to know when each path starts, how long it is, and when it ends. The ending time of a path
isn’t stored, since the next path in the list will have that same value as its start time.

The AddLinePath() function is shown in Listing 12.9, and AddCurvePath is shown in

Listing 12.10.

javascript:moveTo('ch12list8');
javascript:moveTo('ch12list9');
javascript:moveTo('ch12list10');

LISTING 12.9. THE ADDLINEPATH() FUNCTION

bool Route::AddLinePath(Vector3D start, Vector3D end)

{

 Path *ptr = NULL;

 if(m_path == NULL)

 {

 // Allocate data for the root node.

 m_path = new StraightLinePath(start, end);

 // Make sure all went well.

 if(m_path == NULL)

 return false;

 // Since this is the start node, its start m_total is 0.

 m_path->m_start = 0;

 m_path->m_total = Vector3D(start - end).Magnitude();

 }

 else

 {

 // Prepare to move through root until we find a NULL spot.

 ptr = m_path;

 // Search to a node without a next pointer.

 while(ptr->m_next != NULL)

 ptr = ptr->m_next;

 // Create the m_next path.

 ptr->m_next = new StraightLinePath(start, end);

 // Error checking.

 if(ptr->m_next == NULL)

 return false;

 // This start is determined by the total of the last path.

 ptr->m_next->m_start = ptr->m_total + ptr->m_start;

 ptr->m_next->m_total = Vector3D(start - end).Magnitude();

 }

 return true;

}

LISTING 12.10. THE ADDCURVEPATH() FUNCTION

bool Route::AddCurvePath(Vector3D p1, Vector3D cnt1,

 Vector3D cnt2, Vector3D p2)

{

 Path *ptr = NULL;

 if(m_path == NULL)

 {

 // Allocate data for the root node.

 m_path = new CurvePath(p1, cnt1, cnt2, p2);

 // Make sure all went well.

 if(m_path == NULL)

 return false;

 // Since this is the start node, its start is 0.

 m_path->m_start = 0;

 float Length01 = Vector3D(cnt1 - p1).Magnitude();

 float Length12 = Vector3D(cnt2 - cnt1).Magnitude();

 float Length23 = Vector3D(p2 - cnt2).Magnitude();

 float Length03 = Vector3D(p2 - p1).Magnitude();

 m_path->m_total = (Length01 + Length12 + Length23) *

 0.5f + Length03 * 0.5f;

 }

 else

 {

 // Prepare to move through root until we find a NULL spot.

 ptr = m_path;

 // Search to a node without a next pointer.

 while(ptr->m_next != NULL)

 ptr = ptr->m_next;

 // Create the m_next path in our list.

 ptr->m_next = new CurvePath(p1, cnt1, cnt2, p2);

 // Error checking.

 if(ptr->m_next == NULL)

 return false;

 // This start is determined by the total of the last path.

 ptr->m_next->m_start = ptr->m_total + ptr->m_start;

 float Length01 = Vector3D(cnt1 - p1).Magnitude();

 float Length12 = Vector3D(cnt2 - cnt1).Magnitude();

 float Length23 = Vector3D(p2 - cnt2).Magnitude();

 float Length03 = Vector3D(p2 - p1).Magnitude();

 ptr->m_next->m_total = (Length01 + Length12 + Length23) *

 0.5f + Length03 * 0.5f;

 }

 return true;

}

The last function in the Route class is the GetPosition() function. This function takes

the time as a parameter and loops through each path until it finds a path that falls within
the time passed in the parameter of the function. Once it finds this path, it calls the path’s

GetPathPos() to return the interpolated position of the path within which the time falls.

The function also resets the Route class’s timer once the animation is complete to simulate

a looping effect. The GetPosition() function is shown in Listing 12.11.

LISTING 12.11. THE GETPOSITION() FUNCTION

Vector3D Route::GetPosition(float time)

{

 Path *ptr = m_path;

 Vector3D nullPos;

 // Error checking.

 if(m_path == NULL)

 return nullPos;

 // Initialize the start time if it has not been already.

 if(m_startTime == 0)

 m_startTime = (float)timeGetTime();

 // Loop through each path to see where this object is.

 do

 {

 // Check if the object falls in along this path.

 if(time >= ptr->m_start &&

 time < ptr->m_start + ptr->m_total)

 {

 // Calculate distance traveled within this path.

 time -= ptr->m_start;

 // Parameter as a percent traveled.

 return ptr->GetPathPos(time / ptr->m_total);

 }

 else

 {

 // Reset to loop through the route again.

 if(ptr->m_next == 0)

 m_startTime = (float)timeGetTime();

 }

 ptr = ptr->m_next;

 }while(ptr != NULL);

 return nullPos;

}

THE MAIN SOURCE FILE

The last file left is the main source file. This demo builds off of the OBJ Models demo from

Chapter 11, ―3D Models.‖ It is the same code, with the exception of a few lines added for
the object to be moved along the animation route.

javascript:moveTo('ch12list11');
../ch11#ch11

Two new objects were added in the global section of the main source file. The first object is

an instance of the animation route called g_animationPath, and the second is a

Vector3D object used to store the current position of the object. The global section of the

Animation Paths demo’s main source file is shown in Listing 12.12.

winmm.lib is necessary to call the Win32 timer functions that
are used throughout the demo.

LISTING 12.12. THE MAIN.CPP GLOBALS THAT WERE ADDED TO THE END

#include<d3d10.h>

#include<d3dx10.h>

#include<vector>

#include"objLoader.h"

#include"Route.h"

#pragma comment(lib, "d3d10.lib")

#pragma comment(lib, "d3dx10.lib")

#pragma comment(lib, "winmm.lib")

#define WINDOW_NAME "Animation Paths"

#define WINDOW_CLASS "UPGCLASS"

#define WINDOW_WIDTH 800

#define WINDOW_HEIGHT 600

…

// Animation Paths.

Route g_animationPath;

Vector3D objPos;

In the InitializeDemo() function, several lines of code were added to the end of the

function. Each of these lines of code adds a different path to the animation list by calling

either AddLinePath() or AddCurvePath(). The animation being played starts at the

top left of the screen, moves to the top right, moves to the bottom right, curves back up to

the top left, moves back to the bottom right, and finally moves back to the top left. Since
the animation ends where it begins, when the animation loops it looks like one endless

motion over and over until the application closes. The InitializationDemo() function

from the Animation Paths demo is shown in Listing 12.13.

LISTING 12.13. THE INITIALIZEDEMO() FUNCTION

bool InitializeDemo()

{

 …

javascript:moveTo('ch12list12');
javascript:moveTo('ch12list13');

 // Set the shader matrix variables that won't change once

here.

 D3DXMatrixIdentity(&g_worldMat);

 D3DXMatrixIdentity(&g_viewMat);

 g_viewEffectVar->SetMatrix((float*)&g_viewMat);

 g_projEffectVar->SetMatrix((float*)&g_projMat);

 // Create the first path.

 g_animationPath.AddLinePath(Vector3D(-20.0f, 10.0f, 0.0f),

 Vector3D(20.0f, 10.0f, 0.0f));

 // Our next path will be a straight line down.

 g_animationPath.AddLinePath(Vector3D(20.0f, 10.0f, 0.0f),

 Vector3D(20.0f, -10.0f, 0.0f));

 // The third path will be a curved path.

 g_animationPath.AddCurvePath(Vector3D(20.0f, -10.0f, 0.0f),

 Vector3D(-17.5f, -5.0f, 0.0f),

 Vector3D(-15.5f, 0.0f, 0.0f),

 Vector3D(-20.0f, 10.0f, 0.0f));

 // Our next path will be a straight line down diagonally.

 g_animationPath.AddLinePath(Vector3D(-20.0f, 10.0f, 0.0f),

 Vector3D(20.0f, -10.0f, 0.0f));

 // Our next path will be a straight line up diagonally.

 g_animationPath.AddLinePath(Vector3D(20.0f, -10.0f, 0.0f),

 Vector3D(-20.0f, 10.0f, 0.0f));

 return true;

}

The Update() function will calculate the current time that is passed to the route’s

GetPosition() function. This time is adjusted by the start time because the start time is

the system time since Windows was last started. Subtracting from that time gives us a time

since the last time we called the timer function instead of the OS starting time. Once the
object’s position is known, it is applied to the world matrix.

The Update() function is shown in Listing 12.14. Listing 12.15 shows the

RenderScene() function, which is the same as in the OBJ Models demo. Figure 12.3 is a

screenshot from the Animation Paths demo.

LISTING 12.14. THE UPDATE() FUNCTION

void Update()

{

 // Calculate animation time, slow down by 0.03f;

 float time = (float)timeGetTime();

 time = (time - g_animationPath.GetStartTime()) * 0.03f;

 // Get the time-based position from the route.

 objPos = g_animationPath.GetPosition(time);

javascript:moveTo('ch12list14');
javascript:moveTo('ch12list15');
javascript:moveTo('ch12fig03');

 D3DXMATRIX objTrans;

 D3DXMatrixTranslation(&objTrans, objPos.x, objPos.y,

objPos.z);

 D3DXMatrixTranslation(&g_worldMat, 0, 0, 50);

 g_worldMat *= objTrans;

}

LISTING 12.15. THE RENDERSCENE() FUNCTION

void RenderScene()

{

 float col[4] = { 0, 0, 0, 1 };

 g_d3dDevice>ClearRenderTargetView(g_renderTargetView, col);

 g_d3dDevice>ClearDepthStencilView(g_depthStencilView,

 D3D10_CLEAR_DEPTH, 1.0f, 0);

 g_d3dDevice>IASetInputLayout(g_layout);

 g_d3dDevice>IASetPrimitiveTopology(

 D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

 D3D10_TECHNIQUE_DESC techDesc;

 g_textureMapTech->GetDesc(&techDesc);

 unsigned int stride = sizeof(DX10Vertex);

 unsigned int offset = 0;

 for(int m = 0; m > (int)g_meshes.size(); m++)

 {

 g_worldEffectVar>SetMatrix((float*)&g_worldMat);

 g_decalEffectVar>SetResource(g_meshes[m].m_decal);

 g_d3dDevice>IASetVertexBuffers(0, 1,

 &g_meshes[m].m_vertices, &stride, &offset);

 for(unsigned int i = 0; i > techDesc.Passes; i++)

 {

 g_textureMapTech->GetPassByIndex(i)->Apply(0);

 g_d3dDevice>Draw(g_meshes[m].m_totalVerts, 0);

 }

 }

 g_swapChain>Present(0, 0);

 Update();

}

FIGURE 12.3. A SCREENSHOT FROM THE ANIMATION PATHS DEMO.

ADDITIONAL ANIMATION TOPICS FOR THE FUTURE

Character animation is most likely the type of animation that comes to mind when one
thinks of animations in games. As previously mentioned, earlier 3D games used key-frame

animation, while more recent games use bone, or skeleton, animation. In this section we
will briefly discuss both as they relate to character animation.

KEY-FRAME ANIMATION

The idea behind key-frame animation for characters is simple. You take a mesh with x

number of vertices. You pose this character many times to represent an animation. When
you display the animation, you interpolate between the vertices of the current pose and the

next pose using linear interpolation, just like we’ve done with the straight-line path code.

What this means is that each vertex is interpolated between itself and its corresponding
vertex in the ―next pose‖ mesh. Therefore, the linear interpolation code we’ve used in the

GetPathPos() function from the StraightLinePath class earlier in this chapter is

essentially all you would need to perform on each vertex of the two meshes. The

interpolated ―new‖ mesh is the one that is displayed. You can think of a mesh in a specific
pose as a path. If you have a list of these paths, you have a character’s animation (e.g.,

walking, running, swimming, dying, etc.). You use time to determine at which of two poses
the animation is, and then you use linear interpolation between those two poses to get the

mesh that is to be displayed.

There are a number of problems with this approach. For starters, the animations are static.

Since the mesh has to be in a static pose for the interpolation, we can’t apply physics and
forces on the vertices to create realistic behavior like that seen in modern video games

because applying such forces on the individual vertices of a complex model is just not
practical or efficient. This behavior includes some of the following actions that gamers are

starting to take for granted.

 A body realistically falling down stairs

 A body being dragged around the environment

 A body colliding with objects and surfaces in the scene and reacting realistically

With bone animation you can apply forces on individual bones, which then affect the
individual vertices of a mesh more efficiently and effectively. That is why games like Grand

Theft Auto 4 have dynamic animations that are affected by the collisions within the
environment (such as the different reactions when a car rams into a character and when it

gently pushes a character). Applying these forces directly on individual triangles or vertices
while keeping the character model intact (i.e., triangles or body parts are not flying off of

the character) is a nightmare. Applying these forces on a few matrices, which is what bones
are, is far easier and more efficient.

Another major issue is storage. If you have a model with 1,000 vertices, which is considered
low-polygonal by today’s standards, and if that model has only 100 frames of animation,

you will need to load that model 100 times, once for each animation pose. So if a model has
10 different animations that it can do, which is very few, then each animation has to

somehow be represented in 10 frames, which might not be enough to create high-quality
animation. However, assuming it is enough, loading a single model 100 times is inefficient.

If many characters in a scene are animated in this manner, you’ll have hundreds of

instances of model data that might or might not be used. Imagine if the character had
10,000 polygons or more. That is a tremendous amount of used memory for no advantage

when you compare this technique to techniques like bone animation.

With bone animation, each hierarchy can be represented in a few bytes, and lots of

animation data can be specified using less space than a single character would for its
polygons. Therefore, for space reasons alone, bone animation is the better option by far.

For argument’s sake, let’s say a mesh is composed of 1,000 vertices, where each vertex is
32 bytes (i.e., 12 bytes for the position, 12 for the normal, and 8 for the texture

coordinates). This means a single mesh would require 32,000 bytes for 1,000 vertices,
which if you were using polygons would be in the 300 range if index geometry is not used.

If that model had 100 frames of animation, we would need to store 3,200,000 bytes of data
for that one simple character.

Now let’s assume we have a hierarchy of bones in bone animation, where each bone is 132
bytes in size (two matrices that total 32 floats, which equals 128 bytes, and a parent ID

integer). If the hierarchy has 30 bones, each pose of animation in bone animation would

require 3,960 bytes. If there were 100 frames of animation, we would only be using
396,000 bytes for the character’s animation, instead of the over 3 million bytes if we used

key-frame data. This number would jump dramatically as the character’s polygon count
increased, but even then, the amount of bytes used to store its animation data would not

increase for bone animation since the number of bones used to specify the animation would
not change just because the polygon count increased. It only increases for the key-frame

animation technique. We’ll discuss the other benefits of bone animation later in this chapter.

So let’s do the math using the same theoretical numbers if the model had 10,000 vertices

instead of 1,000. This would mean each model takes up 320,000 bytes, and the amount of
memory to store all 100 animation poses would equal 32,000,000 bytes. For bone

animation, since the number of bones would not increase, this same model would only
require 360,000 bytes instead of 32 million. That is a huge difference. Now image you have

a game level with 20 character models that need to be animated in this manner. If the
characters visually perform the same animation, you can use the same animation data and

hierarchy for all models in bone animation. This means you load the animation data once

and can apply it to any model that has a compatible skeleton hierarchy. In our simple

example the animation data would not increase even if there were 100 characters that were

animated in our scene.

From a programming standpoint, animating a model using key-frame data is fairly simple

when compared to bone animation because essentially we are just performing linear
interpolation between vertices, a technique we used for the Animation Paths demo earlier in

this chapter. Unfortunately for the key-frame animation crowd, that is probably the only
advantage it has over bone animation.

You can specify the bones in a hierarchy in key-frame poses

and interpolate between them. The interpolation used in this
case is usually spherical interpolation, not linear

interpolation. However, since physics and collisions can be
easily applied to bones to create dynamic animations, the

key-frames are used almost as a template for how the
animation should behave while the forces acting on it further

modify it in real time.

BONE ANIMATIONS

Animations in games are essential to creating the simulations we all see and enjoy. In

recent years many games have used a technique known as bone or skeleton animation.
Bone animation allows programmers to animate a model using a hierarchy of nodes known

as bones or joints. Hierarchies of connected bones or joints form a skeleton. These
skeletons are attached to a mesh and are animated realistically in 3D modeling and

animation packages. The results are saved to a file and loaded by the game at run-time.

In the past developers used key-frame animation, as previously discussed, for characters

and other objects. To do this the developers needed to store a copy of an entire mesh for
every frame of animation that made up everything the object can do. When you have to

precalculate object positions like that, is very hard to have an object realistically interact
with the world or with any physics. Many gamers can still remember a time when they could

kill a game character and the character would fall through walls and objects around it. For
example, if a player shot a character near a wall and it fell, half of the body could be on the

floor while the other half was through the wall. This is very unrealistic, and it takes up a lot
of memory to store that many copies of a mesh. Remember that a character in a game has

to have animations for every action or interaction you want supported using key-frame

animation. Add this to the fact that you can have many different objects in a game, and you
quickly find yourself running low on memory just to unrealistically animate characters in

your game.

With bone animation the animations are calculated at run-time rather than preprocessed.

This allows programmers to apply physics and collisions to the bones along with other forces
that can dynamically affect the animation playback. With bone animation, programmers can

take that example of shooting a character near a wall and fix the problem by taking into
account environment collisions. If the character starts to fall and collides with the wall, the

model will stop and slide down the wall realistically. Also, if a character is shot, it is not
necessary to create animation data for it. What is needed is to apply some physics forces to

the model and let ―virtual nature‖ take its course.

Games can also have objects interacting with other objects. For example, if the player

shoots a character whose body falls on top of another character, the results would be much
more realistic with some collisions and physics applied than if you did not use bone

animation. There would be no way to stack bodies on top of each other realistically using

key-frame animation.

With bone animation we are not actually animating the geometry data when we create our

character animations. What we are doing instead is animating the bones, which basically are
nothing more then a list of matrices and other values. When we alter our bones, we then

apply those final matrices to the vertices we’ve ―attached‖ to those bones. This alters the
position of the model’s geometry and gives us animation. Since bones are small in memory

and can each be applied to a large number of vertices, we can apply things like physics to
them that allow us to have more realistic movements in our games. This simply isn’t

practical with a key-framed mesh using the old-school animation techniques for characters.

A bone in bone animation can be thought of as an extended matrix. A bone can have a lot

of information in it that is specific to the developer’s needs, but at the basic level a bone is
made up of a parent ID so that the code can access the parent bone and two matrices. The

two matrices of a bone are the relative and absolute matrices.

The absolute matrix is the final matrix of a bone and is calculated by multiplying the relative

matrix of the bone with the absolute matrix of the bone’s parent. The relative matrix of a
bone is what positions the bone individually. For example, if you rotate a bone 30 degrees,

the relative matrix will store that result. However, since the matrix is attached to a

hierarchy, when we use the bone we must apply the parent’s final matrix with the child’s
(current bone) relative matrix so that the parent bone can affect the child. Think of rotating

your arm. If you rotate your arm, your hand also moves even though your hand is not being
moved, relatively speaking. Your hand’s relative matrix is not being changed, but the hand’s

parent bone, the arm, is being altered. Because of this, the mesh we call our hand is being
moved around in space when we move our arm, but the hand itself, when talking about just

the hand’s relative position, is not moving at all. This is the difference between relative and
absolute matrices. The absolute matrix takes into consideration the parent bone, and the

relative matrix just deals with itself.

SUMMARY

Animations are a very important part of 3D video games. Animations are as much of an
artistic as a programming problem and undertaking. Like textures, animations require

talented artists on the team to create visuals comparable to what is seen in professional
commercial games.

The following elements were discussed in this chapter.

 Line paths

 Curve paths

 Key-frame animations

 Bone and skeleton animations

CHAPTER QUESTIONS

Answers to the following chapter review questions can be found in Appendix A.

1. What is the benefit of using time-based calculations over frame-based ones?

../app01#app01
../app01lev1sec12#app01qa12q1a1

2. Describe linear interpolation.

3. Write down the equation for linear interpolation.

4. Write down the equation for cubic Bezier curves as described in this chapter.

5. What are key-frame animations when it comes to character animation?

6. Describe bone and skeleton animation.

7. What benefits does bone animation have over key-frame animation?

8. A series or collection of paths is known as what?

9. A series or collection of routes is known as what?

10. What is the difference between the absolute and relative matrices in bone

animation?

CHAPTER EXERCISES

Exercise 1: Build off of the Animation Paths demo and add five more objects to the scene,
each with their own route.

Exercise 2: Build off of Exercise 1 and allow the camera to have its own route for the
camera’s position and look-at position.

Exercise 3: Build off of Exercise 2 and create a cut-scene class. In the class specify a list of
routes and create a function that allows the route information to be loaded from a file. The

specifics of the file format are up to you. Allow each object to obtain its route position by
index. This will mark the start of a simple cut-scene system.

13. LIGHTING

In This Chapter

 Overview of Lighting

 Light Types

 Basic Lighting Information

 Implementing Per-Pixel Lighting

 Additional Lighting Topics

../app01lev1sec12#app01qa12q2a2
../app01lev1sec12#app01qa12q3a3
../app01lev1sec12#app01qa12q4a4
../app01lev1sec12#app01qa12q5a5
../app01lev1sec12#app01qa12q6a6
../app01lev1sec12#app01qa12q7a7
../app01lev1sec12#app01qa12q8a8
../app01lev1sec12#app01qa12q9a9
../app01lev1sec12#app01qa12q10a10
../ch13lev1sec1#ch13lev1sec1
../ch13lev1sec2#ch13lev1sec2
../ch13lev1sec3#ch13lev1sec3
../ch13lev1sec4#ch13lev1sec4
../ch13lev1sec5#ch13lev1sec5

Computer graphics have come along way over the past decade. Many games today place a

lot of importance on art style and realism. As time progresses, so do the expectations of the
graphics seen in top-of-the-line video games. Games will continue pushing the envelope,

and there does not seem to be an end in sight. Although we are exiting the ―graphics arms
race‖ of the previous generation when many developers focused on creating visually

impressive games instead of fun games, graphics is and will remain (at least in the
foreseeable future) an important part of any commercial 3D video game. Today games don’t

sell just because they are visually impressive; many other factors contribute to a game’s
success.

Part of cutting-edge computer graphics are lighting and shadows. In this chapter we will
briefly discuss lighting and shadows in video games. The topic can become quite

mathematically expensive and is more suitable for more advanced books on computer
graphics.

OVERVIEW OF LIGHTING

Lighting in computer graphics involves algorithms that for shading surfaces in a scene to
lighten or darken the colors that are rendered based on some set of attributes. Lighting in

video game graphics is usually evaluated on a per-vertex or per-pixel level. In the following
section we will discuss these two methods in more detail as they relate to lighting.

PROS AND CONS OF PER-VERTEX LIGHTING

Per-vertex lighting essentially means executing a lighting algorithm on each vertex of a

piece of geometry. The resulting colors are usually interpolated across the surface during

shading. An example of per-vertex lighting is shown in Figure 13.1.

FIGURE 13.1. AN EXAMPLE OF AN OBJECT LIT BY PER-VERTEX LIGHT.

Per-vertex lighting has some good and some bad qualities. From a programming point of

view, the complexity of using an algorithm per vertex rather than per pixel is not increased
or decreased, thanks mostly to the current nature of shading technology and languages. If

anything, per-vertex lighting could be faster than per-pixel lighting if the algorithm executes
fewer times in a frame, because fewer vertices are being processed than pixels in per-pixel

lighting, not to mention other issues such as fill rate that can affect performance. The
downside to using per-vertex lighting includes some of the following.

 Depending on the object’s topology, the quality of per-vertex lighting can be less than

that of per-pixel lighting.

javascript:moveTo('ch13fig01');

 Increasing lighting quality using a per-vertex approach usually requires an increase in

polygon count, which can lead to performance side effects such as the need for
increased and polished results.

 Per-pixel lighting has various extensions that allow for the simulation of lots of detail

without the actual detail being present, while retaining a positive performance and frame

rate.

Since the lighting algorithm is evaluated on the per-vertex level, the quality of the rendered

surfaces depends on the polygon count of objects. Therefore, theoretically, the closer a
polygon is to the size of a pixel, the better the results will be. Making many small polygons

to get small details and quality is not often acceptable in video games, however. Increasing
the polygon count introduces a host of issues such as increasing geometry bandwidth,

increasing the possibility of over-draw many times (i.e., drawing lots of polygons on top of
each other unnecessarily), and the dramatic increase of extra data, which can create all

types of problems with the application’s performance.

On today’s hardware, simulating detail using a pixel
approach is more efficient than using a vertex approach. A

case in point can be seen with the normal mapping technique

used to simulate high-polygon geometry using low polygon
numbers. This is being done in many games such as Gears of

War 2.

Take, for example, a wall defined by four vertices. If this wall’s surface takes up a large

portion of the rendering canvas, the lack of lighting evaluations will cause the surface to
have an unrealistic look, especially when the lights and cameras change orientation in

relation to one another. In other words, the change in color for one or two vertices can
cause a color shift across large portions of the surface that can occur faster than what looks

believable. If the color of one vertex of this wall changes, a huge portion of the wall’s color
will instantly change awkwardly.

With more lighting evaluations, the lighting simulation can appear more consistent and
accurate (relatively speaking). And since we cannot render anything less than a pixel, what

else can be better to use to evaluate lighting than to do it on the per-pixel level?

Per-vertex light is lighting that is performed in a vertex
shader or manually on the vertices of objects.

PER-PIXEL LIGHTING

Real-time per-pixel lighting is commonly performed within the pixel shader. By executing
the lighting algorithm on the pixel level, the polygon count in terms of lighting quality

becomes irrelevant. Of course, polygon count still matters in terms of the curvature and

symmetry of the geometry. An example of an object lit by per-pixel lighting is shown in
Figure 13.2.

FIGURE 13.2. AN EXAMPLE OF PER-VERTEX (LEFT) AND PER-PIXEL (RIGHT)
LIGHT.

javascript:moveTo('ch13fig02');

LIGHT TYPES

In computer graphics, different types of lights can be rendered, with each type altering the

lighting algorithm to create a specific type of effect. In this section we will briefly discuss the
following light types.

 Directional

 Point

 Spot

 Area

DIRECTIONAL LIGHTS

A directional light in computer graphics appears to come from a direction but has no specific

point of origin. Directional lights are the types of lights used to simulate light coming from

far away. This type of lighting can be useful for situations where light does not decrease
over distance and retains intensity anywhere in the scene. Figures 13.1 and 13.2 use this

type of light source.

POINT LIGHTS

A point light emits from a point in space, where the light decreases in intensity over
distance. This type of light can be a light bulb, candle, light from a TV screen, and so forth.

In computer graphics, a point light usually emits light equally across a radius in all
directions, while a directional light emits light in a specific direction with no fall-off in

intensity with distance.

Light decreasing over distance is known as light attenuation, and it is the property of a point

light that creates the point light affect. In other words, if you take a directional light and
apply attenuation, you can create the point light effect.

SPOT LIGHTS

A spot light is essentially a point light that is restricted to a direction, often in the shape of a

cone, instead of shining in all directions. In real life we use objects to block light’s ability to

shine in certain directions. In computer graphics various mathematical equations can be
used to simulate the spot light effect.

AREA LIGHTS

../ch13lev1sec1#ch13fig01
../ch13lev1sec1#ch13fig02

An area light in computer graphics is an array of lights that collectively cover an area. Areas

lights are commonly used to produce soft shadows in a scene by allowing the various
surfaces of a scene to be sampled not only by more than one light but also by slightly

varying the positions of these lights. This causes the surfaces to be rendered in a way that
softens sharp shadows since the lighting contribution for the discreet points throughout an

area light source affect those dark areas. In other words, the shadows themselves receive
light that gradually lightens them up, giving a soft shadow appearance.

Therefore, if you use a large array of many point lights, the shadows in the scene will
receive light from some of the area light points more than others, creating the softening

effect. This occurs because single light sources shade pixels so that those pixels are either
in light or in shadow, which creates hard shadows. By creating an area of lights and by

accumulating the results, the ―in shadow‖ or ―in light‖ question becomes what percentage is
in light versus in shadow, which creates the varying shades of gray necessary for soft

shadows.

In real life, light bounces around the environment so many times that shadows are soft

because the shadows are not actually the result of no light at all, but instead are the result

of some surfaces not being lit as much as others. Light bouncing around the scene falls
under the topic of global illumination, which is a highly advanced computer graphics topic.

Area lights do not bounce off of surfaces and therefore are not considered global
illumination. Area lights, basically, are just a lot of lights covering an area.

Area lights are used more in ray-traced scenes than in video game scenes since the number
of light sources in an area light necessary to create believable soft shadows can be far more

expensive than what is reasonable for a game’s real-time requirements. Lighting can
become expensive, and area lights can be very costly.

BASIC LIGHTING INFORMATION

A lighting algorithm is the specific mathematical operation performed on a surface to shade

it to produce the desired lighting effect. Lighting algorithms can be used to represent the
different values of the lighting equation. Commonly this includes, but is not limited to, the

following lighting values.

 Ambient

 Diffuse

 Specular

A few lighting algorithms exist in computer graphics. Later in this chapter we’ll discuss a
very popular diffuse and specular lighting algorithm known as Blinn-Phong.

The lighting equation itself really depends on what attributes you want to include. Many of
the lighting terms such as the visibility value, the geometric value, and so on are better

suited for advanced graphics books and are terms you’ll encounter when talking about
topics such as global illumination. In this chapter we’ll briefly discuss a few of the common

terms that you’ll encounter when you begin researching lighting in computer graphics.

AMBIENT LIGHT

The ambient value of the lighting equation is used for various purposes. In simple lighting

algorithms, it is often used to add a fill color to lighten the scene. This fill color is a way to

simulate basic area light by using nothing more than a single color value. This does not lead

to realistic lighting conditions and is just a value used to brighten the scene.

On the other hand, the ambient value can be used as the occluding factor. This means the

ambient value is used to store a percentage of how many surfaces in the scene can possibly
block light rays from reaching the surface. This technique is known as ambient occlusion.

In ambient occlusion you essentially trace many rays from the surface being evaluated into
the scene. The percentage of those rays that hit some surface in the scene is recorded and

used as the ambient occlusion value. This value is multiplied by the other lighting terms to
create shadows in the scene. These shadows appear soft when many rays going in many

different directions from the surface are used. This is because some points on a surface
might be lit differently than others, creating a smooth gradient of gray values across the

surface.

Regardless of whether the algorithm used involves nothing more than adding a static color

value to the scene or is as complicated as ambient occlusion, the ambient value itself is
generally used to simulate light coming to the surface from the environment. Global

illumination algorithms go a step further to account for light bouncing off of a surface and

evaluate the resulting color bleed onto the surface. An example of this is to take a bright
blue ball and place it on a plain sheet of paper. If you place a bright light on top of the ball

so that the light is shinning down on it, the white piece of paper should have some tints of
blue on it because the blue reflecting off of the ball is reaching the paper. This color

bleeding effect is common in global illumination.

DIFFUSE LIGHT

The diffuse lighting value is light that has reached a surface and has reflected off of it
evenly, or at least it seems even. When light hits a surface, it is scattered back into the

scene. The smoother the surface is, the more light reflects in the direction from which it
came. Surfaces such as mirrors are extremely smooth, and lights reflect back so that a

mirror image appears on the surface. For surfaces that are not as smooth, light often hits
microscopic grooves along the surface that cause the light to scatter in different directions.

Since so much light is hitting such a surface from so many different angles, diffusely lit
surfaces look as if light is being evenly reflected in all directions.

SPECULAR LIGHT

Specular light is light that hits a smooth surface and reflects sharply in specific directions.
With diffuse light, the millions of light rays in nature strike the surface and scatter in so

many different directions that objects look evenly lit regardless of the viewing angle as far
as light reflection is concerned.

With specular light the sharp reflection of light, instead of the scattering reflection, in many
angles is what creates a highlight on the surface. Mirrors are so smooth that the light can

create clear reflections on them. For objects that are smooth enough to reflect light more
sharply than others, highlights appear that can be seen from certain orientations. Since light

reflects more sharply in some directions than others, the appearance of the highlight can
change depending on your viewing angle. This differs from diffuse light, because a diffusely

lit object looks the same regardless of the viewing angle (aside from shadows, but we’ll
assume shadows are not present), but an object reflecting specular highlights looks

different as the object’s orientation or the viewing orientation changes. This is similar to
rotating a plastic soda bottle while standing in sunlight. The highlights from the light hitting

the object shimmer and change as the orientation changes since the reflection isn’t evenly

dispersed in all directions.

LAMBERT DIFFUSE MODEL

The Lambertian reflection model is used to simulate light rays striking a surface and

reflecting back into the scene, where the brightness of a point on that surface looks the
same regardless of where the observer is located. In other words, Lambertian reflection is

ideal for diffuse light, where the nature of diffuse light is to illuminate a surface so that it
looks the same around all angles.

The Lambert equation for diffuse light is fairly straightforward and very popular. To calculate
the diffuse contribution, you need the light vector and the surface normal. With these two

pieces of information you can calculate the dot product between them, and the resulting
floating-point value is what you use as the diffuse contribution. This is commonly referred to

as N dot L, where N is the normal and L is the light vector. You take this dot product value
and multiply it by the surface color, material color (e.g., textures etc.), and so forth.

BLINN-PHONG SPECULAR MODEL

The Blinn-Phong reflection model is used to perform real-time lighting in computer graphics.

The Blinn-Phong reflection model is actually a modification of the Phong reflection model. A
reflection model can be thought of as an algorithm that is used to describe how light reflects

off of objects.

The Blinn-Phong reflection model is used to create the specular contribution of the lighting
equation. The steps to create the specular contribution using the Blinn-Phong model are as

follows.

1. Retrieve the normal vector.

2. Compute the light vector as the light’s position minus the vertex position and normalize

it.

3. Compute the view vector as the light’s position minus the camera’s position and

normalize it.

4. Compute the half vector that is necessary for the Blinn-Phong algorithm as the light

vector plus the view vector.

5. The specular value is the dot product of the normal and the half vector raised to a

specific power (this power is known as the specular power and is used for shininess).

To use the Blinn-Phong reflection model, the first pieces of data necessary are the normal,
the view vector, and the light vector. The normal is the surface normal. The view vector is

the vector that describes the direction from the camera’s position to the point being shaded,
which allows the specular contribution to be view-based. The last vector, the light vector, is

a vector from the light’s position to the point being shaded. If these vectors are calculated
in the vertex shader and sent to the pixel shader, the results can be interpolated to point

not from the original vertex position but from the pixel’s point being shaded. You could also
calculate them in the pixel shader, but the interpolated values from the vertex shader work

just as well.

Once you have these vectors, you calculate a new vector called the half vector. This vector

is used instead of finding the reflection vector as is done in the Phong reflection model. It is

faster to calculate than the method used in the Phong reflection model. Like the diffuse
contribution that is calculated using N dot L, the specular value is found using N dot H,

where N is the normal and H is the half vector. Raising this value by a power, known as the
specular power, allows us to control the amount of shine an object has.

We’ll use the Lambert diffuse and Blinn-Phong reflection models in the demo application

later in this chapter.

MATERIALS

Material is a term used to describe the representation of a surface. For example, a brick wall
in a video game might have as part of the ―brick‖ material a texture image of bricks, a

normal map used for bump mapping to increase the detail of the bricks, a diffuse modifier,
and anything else the artist creates to make the wall look like a brick wall.

These days a material is a collection of pieces of data used to create the look of a surface.
In the early days of 3D graphics, most games used textures as the main or sole source of

the material. Materials can include, but are not limited to, the following.

 Decal color texture map

 Normal map

 Alpha map

 Diffuse color

 Specular color

 Emissive color

 Ambient color

 Vertex shader

 Pixel shader

 Geometry shader

In today’s games, materials are complex assets, and some game engines have their own

material systems built into the rendering system. With the amount of content that goes into
games, materials will most likely continue to grow in complexity as the amount of data

necessary to represent certain surfaces increases.

IMPLEMENTING PER-PIXEL LIGHTING

On the companion CD-ROM, in the Chapter 13 folder, is a demo application called
Lighting. The Lighting demo uses the Lambertian reflection model for diffuse reflection and

the Blinn-Phong reflectance model for specular highlights. The demo builds off of the source
code from the OBJ Models demo in Chapter 11, ―3D Models.‖ In this section we will discuss

the code added to modify the OBJ Models demo to display lighting on an object.

CREATING THE SHADERS

The HLSL code for the effects is stored in LambertBlinnPhong.fx. In the vertex shader, the

code starts off by transforming the vertex position as usual, and then it moves on to
compute the transformed normal vector to account for the object rotating. It computes the

light vector, which is computed by normalizing the light position from the vertex position,

../ch13#ch13
../ch11#ch11

and the view vector, which is the normalized difference of the camera position and the

vertex position. The vectors are interpolated across the surface as they are passed to the
pixel shader from the vertex shader, which is the same as if we calculated the vectors in the

pixel shader using the computed pixel position. We hold off on normalizing until we reach
the pixel shader stage since the interpolation could possibly de-normalize the vectors, and

we’d have to re-normalize anyway just to keep this from happening.

In the pixel shader all vectors are normalized, and the half vector is computed for the Blinn-

Phong algorithm. Once the vectors are normalized, the diffuse contribution is computed by
calculating N dot L, and the specular contribution is computed from N dot H raised to a

power that represents the shininess factor, which in this demo is 25. Since this demo is just
a simple example of lighting, the diffuse and specular values are multiplied by the color

white and stored as the output color. We could have multiplied them by a specific object
color, light color, texture color, and so forth.

The LambertBlinnPhong.fx shader is shown in Listing 13.1.

LISTING 13.1. THE LAMBERTBLINNPHONG.FX SHADER

float4 lightPos;

float4 eyePos;

DepthStencilState DepthStencilInfo

{

 DepthEnable = true;

 DepthWriteMask = ALL;

 DepthFunc = Less;

};

cbuffer cbChangesEveryFrame

{

 matrix World;

 matrix View;

};

cbuffer cbChangeOnResize

{

 matrix Projection;

};

struct VS_INPUT

{

 float4 Pos : POSITION;

 float3 Norm : NORMAL;

 float2 Tex : TEXCOORD;

};

struct PS_INPUT

{

 float4 Pos : SV_POSITION;

 float3 Norm : NORMAL;

javascript:moveTo('ch13list1');

 float3 LightVec : TEXCOORD0;

 float3 ViewVec : TEXCOORD1;

};

PS_INPUT VS(VS_INPUT input)

{

 PS_INPUT output = (PS_INPUT)0;

 float4 Pos = mul(input.Pos, World);

 Pos = mul(Pos, View);

 output.Pos = mul(Pos, Projection);

 output.Norm = mul(input.Norm, World);

 output.Norm = mul(output.Norm, View);

 output.LightVec = lightPos.xyz - Pos.xyz;

 output.ViewVec = eyePos.xyz - Pos.xyz;

 return output;

}

float4 PS(PS_INPUT input) : SV_Target

{

 float3 normal = normalize(input.Norm);

 float3 lightVec = normalize(input.LightVec);

 float3 viewVec = normalize(input.ViewVec);

 float3 halfVec = normalize(lightVec + viewVec);

 float diffuse = saturate(dot(normal, lightVec));

 float specular = pow(saturate(dot(normal, halfVec)), 25);

 float4 white = float4(1, 1, 1, 1);

 return white * diffuse + white * specular;

}

technique10 BlinnPhongSpecular

{

 pass P0

 {

 SetDepthStencilState(DepthStencilInfo, 0);

 SetVertexShader(CompileShader(vs_4_0, VS()));

 SetGeometryShader(NULL);

 SetPixelShader(CompileShader(ps_4_0, PS()));

 }

}

THE MAIN SOURCE FILE

In the main source file, two new objects are added to the global section: one to pass the

light position to the shaders and one to pass the camera position. The end of the global
section with the new variables in the Lighting demo are shown in Listing 13.2. In the

InitializeDemo() function, these effect variables are obtained so we can use them to

actually pass data to the shaders. The InitializeDemo() function is partially shown in

Listing 13.3. The only new code in it is the effect variable calls that obtain access so we can
set the light and camera position.

LISTING 13.2. PARTIAL LOOK AT THE LIGHTING DEMO’S GLOBAL VARIABLES

…

ID3D10Effect *g_shader = NULL;

ID3D10EffectTechnique *g_lightingTech = NULL;

ID3D10EffectVectorVariable *g_lightPosEffectVar = NULL;

ID3D10EffectVectorVariable *g_eyePosEffectVar = NULL;

ID3D10EffectMatrixVariable *g_worldEffectVar = NULL;

ID3D10EffectMatrixVariable *g_viewEffectVar = NULL;

ID3D10EffectMatrixVariable *g_projEffectVar = NULL;

D3DXMATRIX g_worldMat, g_viewMat, g_projMat;

// Scene rotations.

float g_xRot = 0.0f;

float g_yRot = 0.0f;

LISTING 13.3. PARTIAL LOOK AT THE INITIALIZEDEMO() FUNCTION

bool InitializeDemo()

{

 // Load the shader.

 DWORD shaderFlags = D3D10_SHADER_ENABLE_STRICTNESS;

#if defined(DEBUG) || defined(_DEBUG)

 shaderFlags |= D3D10_SHADER_DEBUG;

#endif

 ID3D10Blob *errors = NULL;

 HRESULT hr =

D3DX10CreateEffectFromFile("LambertBlinnPhong.fx",

 NULL, NULL, "fx_4_0", shaderFlags, 0, g_d3dDevice, NULL,

 NULL, &g_shader, &errors, NULL);

 if(errors != NULL)

 {

 MessageBox(NULL, (LPCSTR)errors->GetBufferPointer(),

 "Error in Shader!", MB_OK);

 errors->Release()

 }

javascript:moveTo('ch13list2');
javascript:moveTo('ch13list3');

 if(FAILED(hr))

 return false;

 g_lightingTech = g_shader->GetTechniqueByName(

 "BlinnPhongSpecular");

 g_worldEffectVar = g_shader->GetVariableByName(

 "World")->AsMatrix();

 g_viewEffectVar = g_shader->GetVariableByName(

 "View")->AsMatrix();

 g_projEffectVar = g_shader->GetVariableByName(

 "Projection")->AsMatrix();

 g_lightPosEffectVar = g_shader->GetVariableByName(

 "lightPos")->AsVector();

 g_eyePosEffectVar = g_shader->GetVariableByName(

 "eyePos")->AsVector();

 …

 return true;

}

In the Update() function the world matrix is rotated along the X and Y axes so we can see

the specular lighting changes as the orientation moves in real time. In the

RenderScene() function the only new code is the code that passes the light and camera

positions to the shaders. The light position is located 5 units along the negative Z axis, while

the camera position is located at the origin. The object itself is positioned 6 units along the

Z axis, which can be seen in the Update() function.

The Update() and RenderScene() functions are shown in Listing 13.4. Figure 13.3

shows a screenshot from the running demo.

LISTING 13.4. THE UPDATE() AND RENDERSCENE() FUNCTIONS FROM THE

LIGHTING DEMO

void Update()

{

 g_xRot += 0.0001f;

 g_yRot += 0.0002f;

 if(g_xRot < 0) g_xRot = 359;

 else if(g_xRot >= 360) g_xRot = 0;

 if(g_yRot < 0) g_yRot = 359;

 else if(g_yRot >= 360) g_yRot = 0;

 D3DXMATRIX trans, rotX, rotY;

javascript:moveTo('ch13list4');
javascript:moveTo('ch13fig03');

 D3DXMatrixRotationX(&rotX, g_xRot);

 D3DXMatrixRotationY(&rotY, g_yRot);

 D3DXMatrixTranslation(&trans, 0, 0, 6);

 g_worldMat = (rotX * rotY) * trans;

}

void RenderScene()

{

 float col[4] = { 0, 0, 0, 1 };

 g_d3dDevice->ClearRenderTargetView(g_renderTargetView, col);

 g_d3dDevice->ClearDepthStencilView(g_depthStencilView,

 D3D10_CLEAR_DEPTH, 1.0f, 0);

 g_d3dDevice->IASetInputLayout(g_layout);

 g_d3dDevice->IASetPrimitiveTopology(

 D3D10_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

 D3D10_TECHNIQUE_DESC techDesc;

 g_lightingTech->GetDesc(&techDesc);

 unsigned int stride = sizeof(DX10Vertex);

 unsigned int offset = 0;

 float lightPos[4] = { 0, 0, -5, 1 };

 float eyePos[4] = { 0, 0, 0, 1 };

 g_worldEffectVar->SetMatrix((float*)&g_worldMat);

 g_lightPosEffectVar->SetFloatVector(lightPos);

 g_eyePosEffectVar->SetFloatVector(eyePos);

 for(int m = 0; m < (int)g_meshes.size(); m++)

 {

 g_d3dDevice->IASetVertexBuffers(0, 1,

 &g_meshes[m].m_vertices, &stride, &offset);

 for(unsigned int i = 0; i < techDesc.Passes; i++)

 {

 g_lightingTech->GetPassByIndex(i)->Apply(0);

 g_d3dDevice->Draw(g_meshes[m].m_totalVerts, 0);

 }

 }

 g_swapChain->Present(0, 0);

 Update();

}

FIGURE 13.3. SCREENSHOT FROM THE LIGHTING DEMO.

ADDITIONAL LIGHTING TOPICS

A few additional lighting-related topics are important to video game graphics programming.
In this section we’ll briefly discuss the following topics and their roles in game graphics.

 Bump mapping

 Light mapping

 Shadows

BUMP MAPPING

Bump and normal mapping are very popular techniques that can be seen in many of today’s
video games. Their goal is to simulate fine detail on surfaces that are actually flat. In other

words, it is a way to simulate detail where that detail does not exist, similar to the original
purpose of texture mapping.

A bump map is a texture where a height map is used to represent the pixel-level depth of

the detail. This height map is converted into an image of normal vectors, where the normals
can vary from pixel to pixel. When lighting a surface using this per-pixel normal data from a

bump map image, you can slightly adjust the shading of a surface to give the impression of
depth and detail even though it is really just a lighting trick used to simulate that detail.

Bump and normal mapping are essentially clever extensions to per-pixel lighting, where
instead of using the interpolated normal of vectors across a surface like we did for the

Lighting demo, we fetch the normals from a texture known as a bump or normal map. The
terms bump map and normal map are sometimes used to mean the same thing. These days

the term normal map is used more often. Although the terms are sometimes used to refer
to the same thing, how an image is created determines if it is a bump or a normal map.

Bump maps are usually created from height maps (i.e., grayscale images of a texture or

pattern) that are converted to an image of normal vectors, where the X, Y, and Z of the
normal are stored in the R, G, and B channels of the image. A normal map is different in

that a normal map image is created by examining the difference between a low-polygonal
object and a high-polygonal object and capturing its curvature information. When you apply

the normal map to the low-polygon object, it can give the appearance of having high detail
like the high-polygonal object, even though it’s just a simulation and that detail isn’t there.

It’s like taking an object with 1 million polygons and a lower-resolution version with just
10,000. As long as the basic shape and curvature are similar—in other words, you are not

trying to normal map a sphere on a box—you can make the low-polygon object look like the
high-polygon one. This has been made popular by video games such as Crysis, Gears of

War 2, and many other titles.

Essentially, the difference between bump and normal maps is how they are computed. The

shaders themselves are the same, and usually a texture known as texture-space (also
known as tangent-space) bump or normal mapping is used to render the surface

consistently. A bump map is usually created from another image such as a height map,

while a normal map is created using two geometric objects. The goal for both is to use
those pixel-level normal vectors to create the illusion of detail across the surface so that the

detail does not actually have to be there, which can lead to performance gains. Like with the
example of the 1–million-polygon object versus the 10,000-polygon object, if you can

capture that detail and display it using less while making it look exactly or almost the same,
the performance gains will be enormous.

Sometimes the terms bump mapping and normal mapping

are used interchangeably.

LIGHT MAPPING

Light mapping is a technique used to display lighting in a scene that is not calculated at run-

time but is precomputed and displayed during execution. The idea behind light mapping is
to use textures to represent the illumination of a surface. That way lighting can be displayed

in a scene by using textures instead of by calculating the actual illumination. What is
important about this is that it allows complex and extremely expensive lighting and

shadowing algorithms to be precomputed and displayed at run-time at a performance
acceptable for games.

Light mapping is a way to display static lighting in a scene using algorithms that are, at this

time, either impossible or impractical to do in real time. This allows for very realistic
renderings without a performance hit. The main downfall to this method is that the scene’s

geometry and lights that are light mapped are static since they are precomputed and can’t
change in position or orientation without being computed again. Light mapping is a great

way to display global illumination in a video game’s scenes.

SHADOWS

Shadows are created in nature by a lack of light striking some surfaces in relation to others.
In computer graphics, shadows do not come for free. It is not enough to shine lights in a

scene to develop shadows in graphics. To create shadows in computer graphics we must
account for the visibility value of the lighting equation. This allows us to determine how

much light reaches a surface by testing the visibility of a point on a surface to each light
source in the scene. In other words, we must take steps to calculate shadows because

shadows themselves are independent of the lighting algorithms discussed. They are their

own effects. Just because a scene has lighting does not mean it automatically has shadows.

The following are the most common shadowing topics you’ll likely encounter in computer

graphics.

 Faking shadows

 Shadow volumes

 Shadow mapping

 Soft shadows

 Global illumination

Shadows can be faked in a number of ways. Imposters, which are stand-in geometry (for
shadows they are often solid-color pieces of geometry that follow the character), can be

used to represent shadows or can be painted by artists into textures. Faking shadows is
computationally cheaper because shadowing algorithms are usually more expensive. The

problem with fake shadows is that they are not realistic and are not ideal in most cases.

Shadow volumes are a shadowing technique used in games such as Id Software’s Doom 3.

The main concept behind shadow volumes is that a volume of geometry is created by
extruding polygons around the silhouette of an object in a direction dictated by the position

of a light. In other words, the geometry is extruded in the direction of the light vector. A
shadow volume is then rendered to graphics buffers such as the stencil buffer of the

graphics API and used as a rendering mask to determine which areas of the scene are in

light or shadow. Pixels in shadow are rendered in the shadow color, while the rest of the
screen is rendered normally using lighting. By rendering the shadow volume to the stencil

buffer, the pixels that make up that buffer can be used to determine where the shadows
exist.

Shadow mapping is a shadowing technique that works by rendering the scene from the
light’s perspective and storing only depth values into a texture that is referred to as a

shadow map. During the rendering of the scene, the depths from the shadow map are
projected onto the scene. The depth of each rendered pixel is compared to the projected

shadow map depth to see if there is a surface between the one being rendered and the light
source. If the test passes and the depth from the shadow map is closer than the depth of

the pixel being rendered, then a shadow color is used; otherwise, rendering proceeds as
usual.

Soft shadows are a style of shadow, not a specific technique or algorithm. Soft shadows are
not hard. In other words, soft shadows often display a gradient of gray values from light to

dark across the shadow’s surface. Soft shadows are often light, subtle, and blurry. To create

soft shadows you can fake it by blurring the shadow map, for example, or you can go
through the extra processing to create more dynamic soft shadows. One way this is done is

by calculating the penumbra and umbra that make up the hard and soft areas of the
shadow and using that data for rendering. Some algorithms use these two pieces of data in

shadow mapping, shadow volumes, and so forth to create soft shadows.

The last item on the list is global illumination. Global illumination is the act of representing

illumination in a scene as it interacts with the environment on a global level. This includes
surfaces being lit by light sources, surfaces being lit by light bouncing off of other surfaces

(sometimes leading to color bleeding, as mentioned earlier in this chapter), and so forth.
Global illumination techniques and algorithms produce some of the most believable scenes

in computer graphics because they attempt to account for much of what we see in nature.
Global illumination is usually stored in static images such as light maps since global

illumination in real time is not suitable for video games at this time. (Global illumination is

not calculated in real-time because it can take minutes, hours, or days to calculate scenes,
whereas in a video game it would have to take milliseconds at the most. It takes too long to

calculate global illumination for it to be done on-the-fly in real-time.)

SUMMARY

Lighting and shadows are very important in computer graphics, especially in terms of

adding realism. In this chapter you’ve received a brief overview of real-time lighting in

Direct3D. As you begin to research more advanced topics in computer graphics, you will
undoubtedly encounter various other lighting and shadowing topics.

The following were discussed in this chapter:

 Per-vertex lighting

 Per-pixel lighting

 Ambient lighting

 Ambient occlusion

 Materials

 Diffuse lighting

 Specular lighting

 Shadows

CHAPTER QUESTIONS

Answers to the following chapter review questions can be found in Appendix A.

1. Define per-vertex lighting.

2. Define per-pixel lighting.

3. Describe directional lights in computer graphics.

4. Describe point lights in computer graphics.

5. Describe spot lights in computer graphics.

6. Describe area lights in computer graphics.

../app01#app01
../app01lev1sec13#app01qa13q1a1
../app01lev1sec13#app01qa13q2a2
../app01lev1sec13#app01qa13q3a3
../app01lev1sec13#app01qa13q4a4
../app01lev1sec13#app01qa13q5a5
../app01lev1sec13#app01qa13q6a6

7. What is global illumination?

8. What is diffuse light? How does it differ from ambient light?

9. What is specular light? How does it differ from diffuse and ambient light?

10. Describe the Blinn-Phong lighting algorithm.

11. What does the term material mean in modern computer graphics?

12. List two ways shadows can be faked in games.

13. Generally describe the shadow volumes technique.

14. Generally describe the shadow mapping algorithm.

15. Describe two ways to produce soft shadows.

CHAPTER EXERCISES

Exercise 1: Build off of the Lighting demo and add the ability to specify the light color
through a uniform variable that is supplied by the application.

Exercise 2: Build off of the Lighting demo and add three more lights to the shader.

Exercise 3: Build off of the Lighting demo and render multiple lights using a multipass

approach. Use color blending to blend the results into one.

14. CONCLUSIONS

In This Chapter

 Improvements to the Game

 Additional Techniques and Topics

 Moving Forward

Game development is a very challenging and rewarding industry to participate in. From the
perspective of a hobbyist or student making video games, making that first game playable

brings a great sense of accomplishment and pride. Making any type of game, from the hard-

core genres to the casual game types, is never easy, and the completion of any type of
game brings a lot more than something that can be shown to your friends. It brings

experience, knowledge, and unique insight that is difficult at best to learn from a book. It
also feels really good to have something playable that you’ve created through hardware and

dedication.

../app01lev1sec13#app01qa13q7a7
../app01lev1sec13#app01qa13q8a8
../app01lev1sec13#app01qa13q9a9
../app01lev1sec13#app01qa13q10a10
../app01lev1sec13#app01qa13q11a11
../app01lev1sec13#app01qa13q12a12
../app01lev1sec13#app01qa13q13a13
../app01lev1sec13#app01qa13q14a14
../app01lev1sec13#app01qa13q15a15
../ch14lev1sec1#ch14lev1sec1
../ch14lev1sec2#ch14lev1sec2
../ch14lev1sec3#ch14lev1sec3

With every game you create, you are placing yourself in a position that helps you become

the professional game developer you’ve always wanted to be. This is true regardless of the
role you play on the development team. If you can design and implement a game from start

to finish, even if the game turns out to be a dud, it will never be in vain, as long as you’ve
learned something in the process. The more you learn, the better your chances are for

creating a successful title in the future. There is no substitute for experience when it comes
to any profession.

It is important to know where your game falls short and to understand all aspects (both
positive and negative) of your project. This is very valuable because if you don’t see both

the good and bad in your games, how do you learn and grow in an industry that is fast
moving, fast paced, and dynamic? The goal of this chapter is to briefly look at what you can

do to improve this game project or start a new one.

IMPROVEMENTS TO THE GAME

The purpose of this chapter is to look at what we accomplished throughout this book and

what you can do after you’re done with this book.

GAME-PLAY IDEAS

Placing effort in the game experience is essential to making the game more fun for those
playing it. When starting off in game development, the idea is often to create a simple

casual game as a way to gain experience in designing and finishing a video game.
Therefore, most improvements that you make to your initial ideas will include looking at all

aspects of the game and trying to figure out what could be enhanced or added without

going overboard, without unintentionally compromising the original design, or without being
unnecessary. Some improvements that can be added to the game include:

 Additional controls

 New weapons and items to improve the game-play

 Adding strategy

 Adding difficulty

Not every gamer is the same, and the controls offered can have an impact on how gamers
play your game. Giving players the option to customize their controls can be a very useful

and straightforward improvement that can be a welcome addition to your game. In Bungie’s
Halo 3 for example, the button layouts affect the game-play so much that player tactics can

change when using one type rather than the other. It is no wonder that many aggressive
and serious players choose Halo 3’s bumper jumper control type, which gives them reflex

and control possibilities that affect how they approach the game.

New weapons and items can be added to improve the game-play and allow for shifts in the

game’s momentum and pacing with great effect. Such items can include invisibility, extra
weapon damage, health regeneration, and so forth. Nothing that is added should make the

game either too easy or unnecessarily difficult, and balance always needs to be taken into
consideration in these areas.

When it comes to adding strategy, the game-play will change when a player is given the

opportunity to dynamically make decisions in the moment that can affect the pacing of the
game. This can include using power-ups wisely, picking up weapons based on their effect on

the enemies currently being encountered, taking advantage of obstacles in the game world
(e.g., using them for cover from enemy fire), and so forth.

Difficulty can be added to the game by tweaking ammo and health, weapon rate of fire,

weapon and enemy accuracy, enemy and player speeds, power-up and item durations and
strength, and so forth. This can be done during testing while you observe how the different

difficulty levels stack up to the skill and abilities of those playing your game. It is possible
that what you find to be difficult is fairly easy for the average gamer or that what you find

to be easy is more difficult than you thought it would be for the target audience.

GAME DESIGN IMPROVEMENTS

Making changes to the game’s design is probably not the best course of action. You could
probably get away with designing either a sequel that implements your design

improvements or even an entirely different game, depending on what you have in mind. If
you find your game lacking in the fun and interaction department and want to improve it,

there are a few things you can do without taking on too much as a beginner.

 Follow the leader. Look at what other games of the same genre do well and, if

feasible, try to incorporate those things in your game. You can get ideas for how to
make the enemies more challenging, balance weapons, intensify the game experience,

and so forth.

 Get feedback for real-world players. Allow others to play your game and suggest

what they would like to have changed or tweaked. Minor tweaks can lead to significant

changes in the way people play your game and could contribute to the overall
improvement of your project. It is difficult for you to make positive changes to your

game without first seeing for yourself how people interact with your game. Sometimes
players will experience your game in ways you didn’t know were possible. This insight is

very important.

 Properly test your game. You can discover flaws in your game’s design (e.g., level

design, weapon design, etc.) that can make or break your game’s success. It is
important to test your game and fix anything that can break your game. This includes

not just bugs but also exploits, unbalanced weapons and equipment, unbalanced level
design (important for multiplayer games), and so forth.

If you find yourself making changes that completely change the project, we recommend
considering making a new game. If you are making games for fun and for the experience,

always be open to creating more games once you’ve finished one.

ADDING TO THE GAME

Many features can be added to the game. It is important when coming up with new features

to not go overboard and try to do more than is reasonable. When working on a game that
you are creating for yourself, it is very tempting to continually add or aspire to add features,

but doing so can create more negatives than positives. Here are a few things to keep in
mind when extending the game you have created.

 If the changes you are making are dramatic, consider making a sequel or a different

game altogether. That way you can have multiple items for your resume and can offer

what you’ve learned from each one, which can help a lot during an interview.

 Be mindful of your limits. It is very tempting to create the next Halo or the next Gears

of War, but is it realistic? If you try to do too much too fast, you can end up wasting a
lot of time working on a project that is above your skill and experience level.

 Think carefully about what you add or change in your game. If you add features that do

not positively affect the game or the experience of those playing it, you may be adding

them at the expense of features that would have made for a stronger product. No game

has to do everything all at once, and it often is overkill to attempt such a goal.

 Plan carefully. It is never a good idea to start or continue a project without hard

guidelines, goals, and steps that you want to take. Without a solid plan of action, it is
easy for the hobbyist or student game developer to enter a loop where there is no

defined end to the project, and features are constantly being added for the sake of
adding them. Once a project is done, don’t be afraid to end it and move on to the next

project when it comes to creating games for experience.

A number of other features can be added to the game that would have a positive impact on

the project and can also benefit your resume. These additional features are not necessarily
the easiest for beginner but can serve as the next step. These can include the following.

 Multiplayer support. Many games today are as popular as they are in part or entirely

because of their multiplayer support. Halo 3, Gears of War 2, and Call of Duty 5 are a

few examples where multiplayer is essential to the game’s experience, especially for
games that are competitive.

 Improved use of audio effects. Audio has always been a very powerful way to

immerse a gamer in the experience. Making the most of the audio and sounds in a game

can make the game experience more exciting and intense.

 Improved graphics and interface design. Graphics have played an important role in

video games for a long time and will always be important to gamers. If the game looks

good, it could attract the eye of many gamers who would otherwise have missed out on
the title. Of course, how far you go with this depends on time, skill, and necessity.

 Dynamic environments. These can help add to the intensity and experience of the

game-play. This can include background explosions, rocks falling from mountain tops,

and so forth.

A lot can be added to a game project, and we recommend that you think about what you

would like to see in the game and attempt to implement it without going overboard.
Remember, a degree might help in some fields, but experience is the most valuable trait

when starting out in the games industry. It could never hurt to be able to demonstrate to
potential employers what you can do and what skills you possess, so try to diversify your

experience.

ADDITIONAL TECHNIQUES AND TOPICS

Some of these topics are fairly common to almost all games for reasons we will explore
next, and their uses and benefits cannot be ignored when creating more complex video

games.

In this section we will briefly look at each of these topics and how they can play a role in

games in general. These topics include but are not limited to the following.

 Scene management

 Artificial intelligence

 Game physics

 Networking

SCENE MANAGEMENT

Scene management is a general term that often describes steps taken algorithmically to
manage the game’s data and information in a way that optimizes their use. This can come

in a number of forms, and all games include some form of scene management, especially
3D games.

Some of the more common forms of scene management include the following.

 State management

 Level-of-detail

 Game updates

 Optimizing assets

 Geometry culling

State management refers to managing how game states and changes on a per-frame basis
occur and usually is a topic dealing with the management of graphics API state switches. In

graphics APIs, changing between some assets such as textures and shaders can prove fairly
expensive. If these changes occur many times per-frame, this could possibly have an

impact on the game’s overall frame rate and performance. By switching states only when
necessary, a game developer can attempt to avoid some of the costly overhead associated

with this action. This can include sorting all objects that need to be rendered by their
texture so that all objects with texture A are rendered first, followed by all objects that use

texture B, and so forth. Although it is impossible to eliminate all state changes in most

complex games, it is possible and worthwhile to look into avoiding them as much as
possible.

Level-of-detail refers to displaying versions of an object based on certain conditions in the
game world. For example, as objects move further away from the camera, a lot of their

detail cannot be seen. If you have a crack on a rock, it is possible that such a small detail
cannot be seen across the level, even if the rock itself can be seen. If we continue using

camera distance as an example, you can imagine that as objects move away they appear
smaller on the screen. Using fewer pixels to make up the object means less detail, and if an

object can be rendered using a version of the model that has less polygons, smaller
resolution textures, and so forth, then a game can improve performance by processing less

data while at the same time being completely transparent to the gamer. If the gamers
cannot see detail as objects move away anyhow, they are not likely to notice that the object

they are seeing at a distance is not the same model they see up close. Sometimes it is
possible to notice the sudden change when high-resolution objects are used in place of

lower-resolution ones. This type of geometry switching is very common in major 3D games

such as Assassins Creed by Ubisoft, where if you look carefully enough from the right
elevation, you can tell that the textures and geometry seen in the distance are of a much

lower level-of-detail than if you were up close to them.

Game updates refer to executing algorithms that do not necessarily need to be updated as

often as a frame-by-frame action such as rendering. One example of this can be seen in
artificial intelligence. Depending on the game, it is unlikely that each of the AI characters

will need to think for every single frame that is processed. Therefore, one might schedule AI
updates to happen every x number of frames or after a certain amount of time has passed.

Alternatively, maybe the game only updates a few characters each frame until all characters
have been updated. The same can be true for physics and collision detection, where the

frame-by-frame differences are so small that they don’t have to take place each frame for
all objects in the game environment.

Optimizing assets is a general term referring to actions such as compressing textures,

adjusting texture resolution to smaller sizes wherever possible, optimizing the geometry of
a polygonal model (reducing triangle count, using index geometry, etc.), optimizing shader

instructions and taking advantage of the hardware wherever possible (e.g., using dynamic
branching for early-out execution), and so forth.

Geometry culling is any technique that can determine if an object or section of geometry
should or should not be rendered. For example, if the game determines that object A is

behind the player and out of view, then the game would not bother passing that object to
the graphics hardware since the object will not be rendered. This can prevent unnecessary

transfers of data and CPU/GPU processing for objects that have no effect on the final
rendered scene. Geometry culling commonly takes one of the following forms.

 Occlusion culling

 View frustum culling

 Geometry partitioning

Occlusion culling is a technique that is used to determine if one object is blocking the view

of another object in the scene from the camera’s point of view and, if so, discards it from
the rendering process. For example, if your scene had two buildings, where one building

completely blocked the view of the second (even if both are in the view range), then it

would be wasteful to process and attempt to render the second building since it will have no
impact on the final rendered scene.

View frustum culling is a technique in which you don’t draw any geometry that is not within
the view range of the camera. This essentially means rendering any object we can actually

see in the direction we are looking, but not those outside that volume. Most 3D games have
a lot of data in their scenes, only a section of which can be visible at any given time

depending on the position and direction of the camera. No complex 3D scene seen in any
major video game would be possible without culling because there is so much information

that it would overwhelm even the most powerful of today’s computers. This topic along with
occlusion culling and geometry partitioning are discussed in the book Game Graphics

Programming, by this author. The view-frustum culling demo in that book shows that
attempting to draw several thousand objects at once can have a huge impact on the demo’s

performance, but that culling out objects that can’t be seen results in an obvious leap in
frame rate.

Geometry partitioning is the technique of taking a set of geometry, such as the level’s entire

geometry, and splitting it up into smaller, more manageable chunks. These chunks can be
view frustum culled to avoid drawing sections of the game level that can not be seen.

Geometry partitioning is important not only for rendering geometry but also for performing
other updates such as physics and collision detection. For physics, if you can determine a

small area of the level where an object is located, then the object can be tested for collision
on the geometry in that small chunk of the level instead of every piece of geometry, which

would not only be very costly but would be impractical with today’s hardware and scenes.

Geometry partitioning uses what is known as data structures and algorithms. A data

structure is essentially a way data is stored in memory, while an algorithm is an operation
that occurs on a data structure. The simplest data structure is the array, where data is

stored sequentially in memory, and the simplest algorithm (using arrays as an example) is
the insertion algorithm, which places values in the array’s elements. Each data structure can

have algorithms that are common among other data structures (e.g., insertion, deletion,
sorting, searching, etc.) and some that are unique to the specific data structure being used

(e.g., hashing keys in a hash table, node traversal in a tree, etc.). Some common data

structures used in game development include the following.

 Octrees

 Quad trees

 BSP trees

 Portals

 Scene graphs

Some data structures that are common to general application development include:

 Arrays

 Link lists

 Stacks

 Queues

 Hash tables

 Trees (binary, k-dimensional, etc.)

 Graphs (technically a type of tree)

We recommend that you study various data structures and algorithms, for they can prove
quite useful when you are developing complex software applications, especially for video

games.

ARTIFICIAL INTELLIGENCE

Artificial intelligence depends greatly on the game that is being developed. This was briefly
touched on in Chapter 12, ―Animations,‖ which discussed how using nothing more than

animation techniques can be a powerful tool in faking the appearance of virtual intelligence.
Other fairly straightforward actions can include the following.

 Playing situation-based audio

 Playing situational animations

 Animation paths

Playing situation-based audio can have a profound impact on the game experience. For

example, in Unreal Tournament III, during a match AI game characters can call out

different things such as ―I’m under fire!‖ or ―Enemy flag carrier is near!‖ In a game, these
situational facts can be easily determined (e.g., true or false if the character is being

attacked, true or false if an enemy with the flag is within a certain distance, etc.), and the
game can therefore play a predefined audio clip randomly when they happen. This can give

the illusion that the AI characters are really talking to you and are intelligent, whereas in
reality it is just an example of clever design.

Playing situational animations can also have a profound impact on the realism the game is
trying to convey to the player. For example, in Metal Gear Solid 4, if an enemy thinks he

spotted or heard something, he will move toward the source of the sight or sound. During
this movement the enemy is often moving slowly and displaying a set of animations to give

../ch12#ch12

the appearance of being cautious and alert. Again, like with situation-based audio, this is

merely an example of creative and clever design.

The use of animation paths was discussed in Chapter 12 and can be as simple as moving a

character linearly throughout the game world while playing an animation such as a walking
movement to give the appearance that the character is a living, breathing inhabitant of the

virtual world. In its simplest form, this technique doesn’t even have to use any AI
processing, other than to check if some condition is true to break the character out of its

pattern, such as an attack or an enemy character moving within the character’s view.

By mixing and matching these techniques as well as other AI techniques that are common

to video games, you can easily find yourself designing complex behavior that is not always
easy to efficiently implement. Not only must nonplayable characters give the illusion that

they have intelligence, but they must demonstrate it in some games in the form of path
finding, squad-based behaviors, strategy, and so forth. Artificial intelligence can become

quite challenging as its design becomes more complex.

GAME PHYSICS

Game physics can be tricky. On the one hand, the feature can really add to the experience

of a video game. On the other hand, it can be overkill and completely unnecessary for some
projects.

Game physics can be far more complex than moving objects linearly and bounding
geometry collisions and can include topics such as point masses, rigid bodies, and soft

bodies. Rigid and soft bodies are beyond the scope of this book. They are great for games
with objects that must collide and interact with the scene and environmental forces

realistically, as seen in Valve’s Portal. Soft bodies are used for objects that can be deformed
and morphed in a scene. A very common example of a soft body is a piece of cloth such as

a large curtain in a game scene.

Instead of attempting to add physics features to a game, we could probably do more by

adding visual effects to the avatars when moving forward, backward, and side to side. One
simple example of this is to rotate the player’s ship a little as it moves side to side to give it

a leaning appearance.

NETWORKING

The online component of commercial video games is very important to the success of many

titles. Playing with other gamers can add to the fun factor and extend the life of the game.
The online component has become a standard feature in today’s commercial games and

very few don’t offer online connectivity.

Networking and multiplayer gaming can be very beneficial to your future game projects.

With online multiplayer games, things can become more complex. When transmitting
information across a network, it takes time for the data to go from the sending machine to

the receiving machine. This time is measured in milliseconds and is called latency or lag.
The challenge with many online games is that this delay can affect the updating of game

objects on all machines connected to the gaming session. Locally, this is not an issue since
the information does not have to leave the machine, but across the Internet things become

complex. Other issues that need to be addressed in an online game are:

 What to do with packets (transmitted information) that are dropped (never received)

 What to do about and during long periods of time between the receipt of new

information

../ch12#ch12

 How to ensure that all machines connected to the game are using the same or

reasonably accurate information

 How to improve networking performance with the data sent across the network

 How to send all the information necessary for the game while staying within the user’s

hardware and bandwidth limits

 How to prevent cheating when it comes to the information received from another

machine across the Internet

MOVING FORWARD

Congratulations on making it through this book. We hope you have already begun work on
your own DirectX 10–based gaming project. To take your potential to new heights, there

are a few very important general areas of study that should follow this book. These include

formally learning video game design and learning about game engines and technology.
Although these topics are separate professions on their own, as an individual or as a

member of a small team working on a game, it is important that you understand more than
just game and graphics programming.

GAME DESIGN

Game design is a very complex and challenging subject, and it will become more complex

as games evolve in future generations. Although we all would like to think we can design
gold, the truth is that game design is a process best learned through experience and a lot of

dedication and hard work.

Designing a video game is more than creating a cool leading character or cool quests. There

is also level and environment design, back and plot stories, puzzles, weapons and items,
controls and game mechanics, and much more. Game design is all about creating a game

that people would like to play. Unfortunately, making a game fun and engaging is one of
those things that sounds easier than it is. Poor design can lead to repetitive game-play, bad

controls, bad story, uninspired characters, and an overall negative experience. It is far

easier to design a bad game than it is to design a good one.

GAME ENGINES

If you are going to work in the games industry, even as a hobby, you are inevitably going to
encounter the term game engine. A game engine is a framework that game developers use

as a foundation when developing their games. This allows game developers to abstract
parts of their game into a framework (e.g., rendering algorithms, input detection, and so

forth) that can be used in multiple projects or licensed to other developers.

A game engine essentially takes services that need to be performed and places them in a

high-level framework. In a game engine you might have the following features and abilities.

 Material system

 Code for streaming information from a source such as a DVD

 High-level rendering system that can efficiently display the geometry given with various

materials

 Audio system (e.g., playing sounds, mixing effects, streaming audio, etc.)

 Networking system

 Physics system

 Cinematic system (i.e., real-time cut-scenes)

 Scripting language and tools (e.g., virtual machine, compiler, text editor, etc.)

 Game tools and editors (e.g., level editor, material editor, etc.)

Some development companies offer middleware solutions to other game developers, and
this has proven to be a big business. One of the many main reasons a company would

license a game engine is to save the time and resources required to develop the technology
themselves. If the technology already exists and is proven, then licensing it could be more

beneficial than trying to develop a game engine.

XNA

XNA is a game development framework created by Microsoft for the development of games
on Windows-based PCs and the Xbox 360 home gaming console. XNA is not a replacement

for DirectX; rather it is built on top of it. XNA uses C# and the Visual Studio toolset and is
available for free to anyone interested in using it to create their own video games.

XNA can be a great way for hobbyist and independent game developers to get started in
video game development. Microsoft has made it easy for anyone to join their Creators Club

Web site, where they can upload their games for review (which can land the game on the
Xbox 360) and review and play games created by other members. Although XNA is a

framework, it is not a game engine like Epic’s Unreal 3.0 engine. XNA is not very high level

and is more general than what would be considered a game engine. Also, it does not have
the technology that some commercial game engines have such as streaming data from a

disk, a level editor, information and game management data structures, and so forth.

XNA is something to consider if you are a hobbyist or small game developer because it is a

useful tool. It is also one of the best ways to get your smaller game ideas into the Xbox Live
marketplace.

SUMMARY

The following elements were discussed in this chapter:

 Possible game-play improvements

 Possible game-design improvements

 Possible additions to a basic game

 Scene management

 Geometry culling

 Artificial intelligence, game physics, and networking

 Game engines

 XNA

CHAPTER QUESTIONS

Answers to the following chapter review questions can be found in Appendix A.

1. List the four examples of what can be added to improve game-play. Explain each

one.

2. List the three examples of what can be added to improve game design. Explain

each one.

3. Why would it not be the best idea to make major changes to a game design once

the game has been created?

4. What is the benefit to adding multiplayer support to a game project?

5. Define the general term scene management.

6. Define level-of-detail and explain why it is so useful in video games.

7. What is geometry culling?

8. What are some examples given in this chapter that can be used to cull geometry

from rendering?

9. List and describe four topics one would have to take into consideration when

taking a game online.

10. What is a game engine?

11. List five possible features of a game engine that were mentioned in this chapter.

12. Why would a developer license a game engine?

13. What is XNA?

14. For what platforms is XNA available?

15. For what main reason stated in this chapter would an individual or a small

development team look into using XNA?

../app01#app01
../app01lev1sec14#app01qa14q1a1
../app01lev1sec14#app01qa14q2a2
../app01lev1sec14#app01qa14q3a3
../app01lev1sec14#app01qa14q4a4
../app01lev1sec14#app01qa14q5a5
../app01lev1sec14#app01qa14q6a6
../app01lev1sec14#app01qa14q7a7
../app01lev1sec14#app01qa14q8a8
../app01lev1sec14#app01qa14q9a9
../app01lev1sec14#app01qa14q10a10
../app01lev1sec14#app01qa14q11a11
../app01lev1sec14#app01qa14q12a12
../app01lev1sec14#app01qa14q13a13
../app01lev1sec14#app01qa14q14a14
../app01lev1sec14#app01qa14q15a15

APPENDIX A. ANSWERS TO CHAPTER QUESTIONS

Chapter 1 Answers

Chapter 2 Answers

Chapter 3 Answers

Chapter 4 Answers

Chapter 5 Answers

Chapter 6 Answers

Chapter 7 Answers

Chapter 8 Answers

Chapter 9 Answers

Chapter 10 Answers

Chapter 11 Answers

Chapter 12 Answers

Chapter 13 Answers

Chapter 14 Answers

CHAPTER 1 ANSWERS

1. What is DirectX? When was DirectX released and for what operating system?

Answer: DirectX is a multimedia technology created by Microsoft, originally for Windows

95, in the early to mid 1990s.

2. What does COM stand for?

Answer: Component Object Model.

3. List at least four APIs that make up DirectX 10.

Answer: Direct3D, XInput, XACT, DInput, DirectSound.

4. List two APIs that are no longer part of DirectX 10 but were part of previous

versions of DirectX.

../app01lev1sec1#app01lev1sec1
../app01lev1sec2#app01lev1sec2
../app01lev1sec3#app01lev1sec3
../app01lev1sec4#app01lev1sec4
../app01lev1sec5#app01lev1sec5
../app01lev1sec6#app01lev1sec6
../app01lev1sec7#app01lev1sec7
../app01lev1sec8#app01lev1sec8
../app01lev1sec9#app01lev1sec9
../app01lev1sec10#app01lev1sec10
../app01lev1sec11#app01lev1sec11
../app01lev1sec12#app01lev1sec12
../app01lev1sec13#app01lev1sec13
../app01lev1sec14#app01lev1sec14
javascript:moveTo('app01qa1q1a1');
../ch01lev1sec6#ch01qa1q1
javascript:moveTo('app01qa1q2a2');
../ch01lev1sec6#ch01qa1q2
javascript:moveTo('app01qa1q3a3');
../ch01lev1sec6#ch01qa1q3
javascript:moveTo('app01qa1q4a4');

Answer: DirectDraw, DirectPlay, DirectShow, DirectMusic.

5. What are XINPUT and XACT? How do they fit into the DirectX technology?

Answer: XInput is used to detect input from game controllers such as Xbox 360 game

pads, steering wheels, and so forth. It is a replacement for DirectInput when

using game controllers. XACT is a new high-level audio technology that replaces

DirectSound. Actually, XAudio2 is the replacement for DirectSound, and XACT3

is a high-level tool built from XAudio2.

6. Describe what a shader is and why it is so important to graphics programmers.

Answer: A shader is a piece of code executed by the graphics hardware during the

rendering pipeline to manipulate data in a way desired by the graphics

programmers. They are used to allow developers to write their own effects and

GPU-based code that can be executed by an application.

7. Describe what a vertex shader is. Describe how the vertex shader is used in

relation to the geometry and pixel shaders.

Answer: The vertex shader is code executed on each rendered vertex in the rendering

pipeline. The vertex shader sits before the geometry shader and is the first out

of the three DirectX 10 shaders.

8. Describe what a geometry shader is. Describe how the geometry shader is used

in relation to the vertex and pixel shaders.

Answer: A geometry shader is executed on each rendered primitive in the rendering

pipeline. The geometry shader falls after the vertex shader but before the pixel

shader.

9. Describe what a pixel shader is. Describe how the pixel shader is used in relation

to the vertex and geometry shaders.

Answer: A pixel shader is executed on each rendered pixel. The pixel shader comes after

the vertex shader if no geometry shader exists. If a geometry shader does exist,

then the pixel shader will follow the geometry shader instead of the vertex

shader.

10. What is the difference between managed and unmanaged code? List at least

three programming languages that are supported by the .NET managed

environment.

Answer: Managed code is code that is compiled into an intermediate language by using a

../ch01lev1sec6#ch01qa1q4
javascript:moveTo('app01qa1q5a5');
../ch01lev1sec6#ch01qa1q5
javascript:moveTo('app01qa1q6a6');
../ch01lev1sec6#ch01qa1q6
javascript:moveTo('app01qa1q7a7');
../ch01lev1sec6#ch01qa1q7
javascript:moveTo('app01qa1q8a8');
../ch01lev1sec6#ch01qa1q8
javascript:moveTo('app01qa1q9a9');
../ch01lev1sec6#ch01qa1q9
javascript:moveTo('app01qa1q10a10');
../ch01lev1sec6#ch01qa1q10

shared unified set of class libraries. In a managed environment, a run-time-

aware compiler takes the intermediate code and translates it to native code

during the application’s execution. During translation, things such as array

bounds checking, garbage collection, type safety, exception handling, and so

forth are handled. Languages include .NET C++, .NET C#, .NET J#, .NET Visual

Basic, and .NET JScript.

11. What does MDX stand for? What does XNA stand for?

Answer: Managed DirectX is also commonly known as MDX. XNA does not stand for

anything; it is the name of one of Microsoft’s more recent game development

technologies.

12. What is WGF? What new name did it get?

Answer: Windows Graphics Foundation. DirectX.

13. What was the code name for Windows Vista? What was the codename for the

original Xbox?

Answer: The code name was Longhorn for Vista and DirectXbox for the Xbox.

14. List the three high-level shading languages discussed in this chapter.

Answer: GLSL, HLSL, and Cg.

15. List four of the five features we’ve discussed for Windows Vista.

Answer: The Windows Game Explorer, Windows LIVE, flexible parental controls, DirectX

10, and Windows/Xbox connectivity.

16. True or false: The first version of DirectX was released for Windows 3.1.

Answer: False

17. True or false: All versions of DirectX, versions 1 through 10, have been released.

Answer: False (DirectX 4 was not released.)

18. True or false: Direct3D 10 uses Shader Model 4.0 for programmable shaders

along with a fixed-function pipeline.

javascript:moveTo('app01qa1q11a11');
../ch01lev1sec6#ch01qa1q11
javascript:moveTo('app01qa1q12a12');
../ch01lev1sec6#ch01qa1q12
javascript:moveTo('app01qa1q13a13');
../ch01lev1sec6#ch01qa1q13
javascript:moveTo('app01qa1q14a14');
../ch01lev1sec6#ch01qa1q14
javascript:moveTo('app01qa1q15a15');
../ch01lev1sec6#ch01qa1q15
javascript:moveTo('app01qa1q16a16');
../ch01lev1sec6#ch01qa1q16
javascript:moveTo('app01qa1q17a17');
../ch01lev1sec6#ch01qa1q17
javascript:moveTo('app01qa1q18a18');

Answer: False

19. True or false: Geometry shaders were first introduced in Shader Model 3.0 and

are now being used in Direct3D 10 and OpenGL 3.0.

Answer: False

20. True or false: XNA is a high-level framework built from DirectX.

Answer: True

APPENDIX A. ANSWERS TO CHAPTER QUESTIONS

Chapter 1 Answers

Chapter 2 Answers

Chapter 3 Answers

Chapter 4 Answers

Chapter 5 Answers

Chapter 6 Answers

Chapter 7 Answers

Chapter 8 Answers

Chapter 9 Answers

Chapter 10 Answers

Chapter 11 Answers

Chapter 12 Answers

Chapter 13 Answers

Chapter 14 Answers

CHAPTER 1 ANSWERS

1. What is DirectX? When was DirectX released and for what operating system?

Answer: DirectX is a multimedia technology created by Microsoft, originally for Windows

95, in the early to mid 1990s.

../ch01lev1sec6#ch01qa1q18
javascript:moveTo('app01qa1q19a19');
../ch01lev1sec6#ch01qa1q19
javascript:moveTo('app01qa1q20a20');
../ch01lev1sec6#ch01qa1q20
../app01lev1sec1#app01lev1sec1
../app01lev1sec2#app01lev1sec2
../app01lev1sec3#app01lev1sec3
../app01lev1sec4#app01lev1sec4
../app01lev1sec5#app01lev1sec5
../app01lev1sec6#app01lev1sec6
../app01lev1sec7#app01lev1sec7
../app01lev1sec8#app01lev1sec8
../app01lev1sec9#app01lev1sec9
../app01lev1sec10#app01lev1sec10
../app01lev1sec11#app01lev1sec11
../app01lev1sec12#app01lev1sec12
../app01lev1sec13#app01lev1sec13
../app01lev1sec14#app01lev1sec14
javascript:moveTo('app01qa1q1a1');
../ch01lev1sec6#ch01qa1q1

2. What does COM stand for?

Answer: Component Object Model.

3. List at least four APIs that make up DirectX 10.

Answer: Direct3D, XInput, XACT, DInput, DirectSound.

4. List two APIs that are no longer part of DirectX 10 but were part of previous

versions of DirectX.

Answer: DirectDraw, DirectPlay, DirectShow, DirectMusic.

5. What are XINPUT and XACT? How do they fit into the DirectX technology?

Answer: XInput is used to detect input from game controllers such as Xbox 360 game

pads, steering wheels, and so forth. It is a replacement for DirectInput when

using game controllers. XACT is a new high-level audio technology that replaces

DirectSound. Actually, XAudio2 is the replacement for DirectSound, and XACT3

is a high-level tool built from XAudio2.

6. Describe what a shader is and why it is so important to graphics programmers.

Answer: A shader is a piece of code executed by the graphics hardware during the

rendering pipeline to manipulate data in a way desired by the graphics

programmers. They are used to allow developers to write their own effects and

GPU-based code that can be executed by an application.

7. Describe what a vertex shader is. Describe how the vertex shader is used in

relation to the geometry and pixel shaders.

Answer: The vertex shader is code executed on each rendered vertex in the rendering

pipeline. The vertex shader sits before the geometry shader and is the first out

of the three DirectX 10 shaders.

8. Describe what a geometry shader is. Describe how the geometry shader is used

in relation to the vertex and pixel shaders.

Answer: A geometry shader is executed on each rendered primitive in the rendering

pipeline. The geometry shader falls after the vertex shader but before the pixel

shader.

9. Describe what a pixel shader is. Describe how the pixel shader is used in relation

javascript:moveTo('app01qa1q2a2');
../ch01lev1sec6#ch01qa1q2
javascript:moveTo('app01qa1q3a3');
../ch01lev1sec6#ch01qa1q3
javascript:moveTo('app01qa1q4a4');
../ch01lev1sec6#ch01qa1q4
javascript:moveTo('app01qa1q5a5');
../ch01lev1sec6#ch01qa1q5
javascript:moveTo('app01qa1q6a6');
../ch01lev1sec6#ch01qa1q6
javascript:moveTo('app01qa1q7a7');
../ch01lev1sec6#ch01qa1q7
javascript:moveTo('app01qa1q8a8');
../ch01lev1sec6#ch01qa1q8
javascript:moveTo('app01qa1q9a9');

to the vertex and geometry shaders.

Answer: A pixel shader is executed on each rendered pixel. The pixel shader comes after

the vertex shader if no geometry shader exists. If a geometry shader does exist,

then the pixel shader will follow the geometry shader instead of the vertex

shader.

10. What is the difference between managed and unmanaged code? List at least

three programming languages that are supported by the .NET managed

environment.

Answer: Managed code is code that is compiled into an intermediate language by using a

shared unified set of class libraries. In a managed environment, a run-time-

aware compiler takes the intermediate code and translates it to native code

during the application’s execution. During translation, things such as array

bounds checking, garbage collection, type safety, exception handling, and so

forth are handled. Languages include .NET C++, .NET C#, .NET J#, .NET Visual

Basic, and .NET JScript.

11. What does MDX stand for? What does XNA stand for?

Answer: Managed DirectX is also commonly known as MDX. XNA does not stand for

anything; it is the name of one of Microsoft’s more recent game development

technologies.

12. What is WGF? What new name did it get?

Answer: Windows Graphics Foundation. DirectX.

13. What was the code name for Windows Vista? What was the codename for the

original Xbox?

Answer: The code name was Longhorn for Vista and DirectXbox for the Xbox.

14. List the three high-level shading languages discussed in this chapter.

Answer: GLSL, HLSL, and Cg.

15. List four of the five features we’ve discussed for Windows Vista.

Answer: The Windows Game Explorer, Windows LIVE, flexible parental controls, DirectX

10, and Windows/Xbox connectivity.

../ch01lev1sec6#ch01qa1q9
javascript:moveTo('app01qa1q10a10');
../ch01lev1sec6#ch01qa1q10
javascript:moveTo('app01qa1q11a11');
../ch01lev1sec6#ch01qa1q11
javascript:moveTo('app01qa1q12a12');
../ch01lev1sec6#ch01qa1q12
javascript:moveTo('app01qa1q13a13');
../ch01lev1sec6#ch01qa1q13
javascript:moveTo('app01qa1q14a14');
../ch01lev1sec6#ch01qa1q14
javascript:moveTo('app01qa1q15a15');
../ch01lev1sec6#ch01qa1q15

16. True or false: The first version of DirectX was released for Windows 3.1.

Answer: False

17. True or false: All versions of DirectX, versions 1 through 10, have been released.

Answer: False (DirectX 4 was not released.)

18. True or false: Direct3D 10 uses Shader Model 4.0 for programmable shaders

along with a fixed-function pipeline.

Answer: False

19. True or false: Geometry shaders were first introduced in Shader Model 3.0 and

are now being used in Direct3D 10 and OpenGL 3.0.

Answer: False

20. True or false: XNA is a high-level framework built from DirectX.

Answer: True

CHAPTER 2 ANSWERS

1. What is Direct3D? What is DirectDraw? How are Direct3D and DirectDraw

related?

Answer: Direct3D is the 3D rendering API that is part of DirectX. DirectDraw was used for

low-level graphics, mainly 2D, in DirectX. DirectDraw and Direct3D were

combined into one API.

2. What does HAL stand for?

A. Hardware Application Layer

B. Hardware Abstraction Layer

C. It is not short for anything

D. None of the above

Answer: B

javascript:moveTo('app01qa1q16a16');
../ch01lev1sec6#ch01qa1q16
javascript:moveTo('app01qa1q17a17');
../ch01lev1sec6#ch01qa1q17
javascript:moveTo('app01qa1q18a18');
../ch01lev1sec6#ch01qa1q18
javascript:moveTo('app01qa1q19a19');
../ch01lev1sec6#ch01qa1q19
javascript:moveTo('app01qa1q20a20');
../ch01lev1sec6#ch01qa1q20
javascript:moveTo('app01qa2q1a1');
../ch02lev1sec5#ch02qa1q1
javascript:moveTo('app01qa2q2a2');
../ch02lev1sec5#ch02qa1q2

3. What does HEL stand for?

A. Hardware Emulation Layer

B. Hardware Experience Layer

C. It is not short for anything

D. None of the above

Answer: A

4. What is the name of the Direct3D 9 version from Vista?

A. Direct3D 9V

B. Direct3D 9 Vista

C. Direct3D 9L

D. Vista is Direct3D 10 only

Answer: C

5. What does REF stand for in Direct3D?

Answer: Reference mode

6. Describe page flipping.

Answer: Page flipping is where you render to one buffer, display it, render to another

buffer, then display that, and repeat.

7. Describe double buffering.

Answer: Double buffering is where the contents from one buffer are copied to another

before being displayed.

8. What are swap chains? How do they differ from Direct3D 9 and Direct3D 10?

Answer: A swap chain is an object that is made up of various rendering buffers that is

tied to a specific window. In Direct3D 10 you have to create a swap chain for the

main rendering, but in Direct3D 9 you do not have to manually do this unless

you want additional swap chains.

9. What are render target views? What is their purpose in Direct3D?

javascript:moveTo('app01qa2q3a3');
../ch02lev1sec5#ch02qa1q3
javascript:moveTo('app01qa2q4a4');
../ch02lev1sec5#ch02qa1q4
javascript:moveTo('app01qa2q5a5');
../ch02lev1sec5#ch02qa1q5
javascript:moveTo('app01qa2q6a6');
../ch02lev1sec5#ch02qa1q6
javascript:moveTo('app01qa2q7a7');
../ch02lev1sec5#ch02qa1q7
javascript:moveTo('app01qa2q8a8');
../ch02lev1sec5#ch02qa1q8
javascript:moveTo('app01qa2q9a9');

Answer: Render targets are surfaces that are rendered to. In Direct3D 10 you have to

create a render target even for the back buffer, although in Direct3D 9 you do

not have to manually do this for the back buffer.

10. When drawing text, what flag can be used to calculate the rectangle of the text?

What is the side effect of using this flag when it comes to drawing text?

Answer: The flag used is DT_CALCRECT. The side effect is that the function needs to be

called twice.

11. List three high-level programmable shading languages.

Answer: Cg, HLSL, GLSL.

12. What is T&L? When was T&L added to Direct3D?

Answer: T&L is transformations and lighting. It was added in DirectX 7.

13. List four purposes to displaying text in a video game.

Answer: Displaying player information, game play information, player-to-player

communications, timers.

14. List the two functions needed to create and display text using Direct3D 10.

Describe each of the parameters the functions take.

Answer: D3DX10CreateFont() and DrawText(). The D3DX10CreateFont()

function takes as its first parameter the Direct3D rendering device. The second

and third parameters are the font’s size in logical units. The fourth parameter is

the weight, which controls the boldness of the font. The fifth parameter controls

the number of mip map levels. The sixth parameter is a flag for whether italics

are to be used with the font or not. The seventh parameter is the character set,

which can be ANSI_CHARSET if using an ANSI strings, or you can use Unicode

strings. The eighth parameter is the output precision, which controls how

Windows decides how to match desired font sizes with the actual fonts. The

ninth and tenth parameters are used for matching the font’s desired quality with

the font’s default quality and to set the font’s pitch and family indexes. The last

two parameters are used to specify the name of a font that is installed on your

system and the output address for the font object to be created by this function.

The DrawText() function takes as its first parameter a Direct3D 10 sprite

object that contains the string to be drawn. The second parameter is the string

that is to be displayed to the screen. The third parameter is the number of

characters in the string. The fourth parameter is a rectangle area that specifies

the region in which the text can be drawn. The fifth parameter is the format of

../ch02lev1sec5#ch02qa1q9
javascript:moveTo('app01qa2q10a10');
../ch02lev1sec5#ch02qa1q10
javascript:moveTo('app01qa2q11a11');
../ch02lev1sec5#ch02qa1q11
javascript:moveTo('app01qa2q12a12');
../ch02lev1sec5#ch02qa1q12
javascript:moveTo('app01qa2q13a13');
../ch02lev1sec5#ch02qa1q13
javascript:moveTo('app01qa2q14a14');
../ch02lev1sec5#ch02qa1q14

how the text should be displayed. The last parameter is the RGBA color with

which the text should be displayed.

15. True or false: HAL and HEL were introduced in Direct3D 10.

Answer: False

16. True or false: Direct3D supports software rendering and hardware graphics.

Answer: True

17. True or false: Direct3D 9 is the first API to do away with the fixed-function

pipeline.

Answer: False

18. True or false: Page flipping copies data from one buffer to another when it is

time to display a rendered scene.

Answer: False

19. True or false: A swap chain in Direct3D 10 is tied to the window.

Answer: True

20. True or false: Render targets inform Direct3D where to store the results of a

rendering.

Answer: True

CHAPTER 3 ANSWERS

1. Define a primitive.

Answer: A primitive is a simple shape that can be rendered.

2. List three types of primitives that Direct3D supports.

Answer: Points, lines, and triangles.

javascript:moveTo('app01qa2q15a15');
../ch02lev1sec5#ch02qa1q15
javascript:moveTo('app01qa2q16a16');
../ch02lev1sec5#ch02qa1q16
javascript:moveTo('app01qa2q17a17');
../ch02lev1sec5#ch02qa1q17
javascript:moveTo('app01qa2q18a18');
../ch02lev1sec5#ch02qa1q18
javascript:moveTo('app01qa2q19a19');
../ch02lev1sec5#ch02qa1q19
javascript:moveTo('app01qa2q20a20');
../ch02lev1sec5#ch02qa1q20
javascript:moveTo('app01qa3q1a1');
../ch03lev1sec4#ch03qa1q1
javascript:moveTo('app01qa3q2a2');
../ch03lev1sec4#ch03qa1q2

3. List the different types of lines. Describe each one.

Answer: Line lists, which are lists of individual lines, and line strips, which are connected

lines that build off of the end point of the previous line.

4. List the different types of triangles. Describe each one.

Answer: Triangle lists, which are lists of individual triangles, triangle strips, which are

connected triangles that build off of the end edge of the previous triangle, and

triangle fans, which are triangles that connect to a common point.

5. What is a vertex? What is a vector? How are the two similar?

Answer: A vertex is a point of a primitive that makes up its shape’s definition. Vertices

often have various attributes including positions, normals, texture coordinates,

and so on. A vector is a direction in space. For example, a normal is a vector

because it describes a direction.

6. What is an input layout?

Answer: An input layout is the layout of the data being sent to Direct3D.

7. What is a vertex buffer?

Answer: A vertex buffer is a buffer that stores vertex information that is to be rendered

to Direct3D.

8. What is the input assembler, and how is it used to set up geometry in Direct3D?

Answer: The input assembler is used to bind data to Direct3D to prepare it for rendering

through various function calls.

9. What are indices, and how are they used in the rendering of geometry?

Answer: Indices are array indexes that are used to specify the primitives of an object

from a list of vertices, where the orders of the vertices themselves are

unimportant.

10. Describe techniques.

Answer: A technique is an implementation of an effect in a shader file. You can have

different technique declarations that perform the same graphical effect. For

example, you can perform an effect that uses code targeted to different

javascript:moveTo('app01qa3q3a3');
../ch03lev1sec4#ch03qa1q3
javascript:moveTo('app01qa3q4a4');
../ch03lev1sec4#ch03qa1q4
javascript:moveTo('app01qa3q5a5');
../ch03lev1sec4#ch03qa1q5
javascript:moveTo('app01qa3q6a6');
../ch03lev1sec4#ch03qa1q6
javascript:moveTo('app01qa3q7a7');
../ch03lev1sec4#ch03qa1q7
javascript:moveTo('app01qa3q8a8');
../ch03lev1sec4#ch03qa1q8
javascript:moveTo('app01qa3q9a9');
../ch03lev1sec4#ch03qa1q9
javascript:moveTo('app01qa3q10a10');
../ch03lev1sec4#ch03qa1q10

platforms.

11. True or false: A vertex is a point’s position.

Answer: False (Vertices can have a position but also many more attributes.)

12. True or false: There are eight bytes in a bit.

Answer: False (There are eight bits in a byte.)

13. True or false: Indices are vertex index positions of each primitive’s vertex

points.

Answer: True (They are array positions.)

14. True or false: Rasterizer states control how Direct3D is set up.

Answer: False (They control rasterizer operations, not API setup.)

15. True or false: The alpha channel is often a control for transparency.

Answer: True

16. True or false: HLSL is Direct3D’s high level programmable shading language.

Answer: True (when discussing shading languages that are part of the API’s framework)

17. True or false: Back face culling is the ability to not draw polygons far away from

the camera.

Answer: False

18. True or false: The fill mode controls how the surface is shaded.

Answer: True

19. True or false: A technique defined in an HLSL shader is an effect with one or

more passes.

Answer: True

javascript:moveTo('app01qa3q11a11');
../ch03lev1sec4#ch03qa1q11
javascript:moveTo('app01qa3q12a12');
../ch03lev1sec4#ch03qa1q12
javascript:moveTo('app01qa3q13a13');
../ch03lev1sec4#ch03qa1q13
javascript:moveTo('app01qa3q14a14');
../ch03lev1sec4#ch03qa1q14
javascript:moveTo('app01qa3q15a15');
../ch03lev1sec4#ch03qa1q15
javascript:moveTo('app01qa3q16a16');
../ch03lev1sec4#ch03qa1q16
javascript:moveTo('app01qa3q17a17');
../ch03lev1sec4#ch03qa1q17
javascript:moveTo('app01qa3q18a18');
../ch03lev1sec4#ch03qa1q18
javascript:moveTo('app01qa3q19a19');
../ch03lev1sec4#ch03qa1q19

20. True or false: Topology is a term used to describe the primitive type of

geometry.

Answer: True

CHAPTER 4 ANSWERS

1. Define programmable shaders.

Answer: A shader is code that is executed on the GPU.

2. What does HLSL stand for?

Answer: High-Level Shading Language.

3. What does GLSL stand for?

Answer: OpenGL Shading Language.

4. What is a shader model? What are the versions discussed in this chapter?

Answer: A shader model is a version of shading technology. Almost every generation of

DirectX had one or two shader models.

5. What is the difference between low-level and high-level shaders?

Answer: Low-level shaders use an assembly type language for their syntax, while high-

level shaders use a high-level language such as C++.

6. List three of the issues discussed in this chapter that occur when working with

low-level programmable shaders.

Answer: Harder to read, harder to maintain, and takes more time to develop.

7. Define a vertex shader. What stage(s) accepts the vertex shader’s output as

input?

Answer: If present, the geometry shader takes the vertex shader’s output as its input,

but if not, the pixel shader takes the vertex shader’s output as input.

javascript:moveTo('app01qa3q20a20');
../ch03lev1sec4#ch03qa1q20
javascript:moveTo('app01qa4q1a1');
../ch04lev1sec4#ch04qa1q1
javascript:moveTo('app01qa4q2a2');
../ch04lev1sec4#ch04qa1q2
javascript:moveTo('app01qa4q3a3');
../ch04lev1sec4#ch04qa1q3
javascript:moveTo('app01qa4q4a4');
../ch04lev1sec4#ch04qa1q4
javascript:moveTo('app01qa4q5a5');
../ch04lev1sec4#ch04qa1q5
javascript:moveTo('app01qa4q6a6');
../ch04lev1sec4#ch04qa1q6
javascript:moveTo('app01qa4q7a7');
../ch04lev1sec4#ch04qa1q7

8. Define a geometry shader. What stage(s) accepts the geometry shader’s output

as input?

Answer: A geometry shader is a shader that is executed for each primitive. The pixel

shader takes the output from the geometry shader if one is present.

9. Define a pixel shader. What stage(s) accepts the pixel shader’s output as input?

Answer: The output of the pixel shader goes to the rendering surface that is to be

displayed.

10. What is the input layout of the input assembler?

Answer: The input layout describes the input structured and used to define a vertex.

11. What data type is used for effect shaders in Direct3D 10?

Answer: ID3D10Effect.

12. What is the fixed-function pipeline?

Answer: It is a set of fixed algorithms and rendering states that are part of the rendering

API.

13. List three of the limitations of the fixed-function pipeline that were discussed in

this chapter.

Answer: Developers had no control over what a graphics API offered and had to either

use what was in the API or use clever tricks to attempt to create effects not

supported by the tool. Developers also had no direct control over when new

features were added, and individuals could not modify the algorithms that make

up the fixed-function pipeline.

14. What does it mean to have a unified shader core (architecture)?

Answer: Unified shader core means that each of the shader types has a unified

instruction set, whereas previous versions did not.

15. Between which stages does the geometry shader sit?

Answer: It sits between the vertex shader and the pixel shader.

javascript:moveTo('app01qa4q8a8');
../ch04lev1sec4#ch04qa1q8
javascript:moveTo('app01qa4q9a9');
../ch04lev1sec4#ch04qa1q9
javascript:moveTo('app01qa4q10a10');
../ch04lev1sec4#ch04qa1q10
javascript:moveTo('app01qa4q11a11');
../ch04lev1sec4#ch04qa1q11
javascript:moveTo('app01qa4q12a12');
../ch04lev1sec4#ch04qa1q12
javascript:moveTo('app01qa4q13a13');
../ch04lev1sec4#ch04qa1q13
javascript:moveTo('app01qa4q14a14');
../ch04lev1sec4#ch04qa1q14
javascript:moveTo('app01qa4q15a15');
../ch04lev1sec4#ch04qa1q15

16. List the various data types in the vector type.

Answer: Any of the scalar types (e.g., float, half, int, bool, double, and uint).

17. List the various data types in the scalar type.

Answer: float, half, int, bool, double, and uint.

18. List the various data types in the matrix type.

Answer: Any of the scalar types followed by the number of rows and columns (e.g.,

float3×3, float4×4, int3×4, and so forth).

19. List the seven data types in the sampler type.

Answer: texture, Texture1D, Texture1DArray, Texture2D, Texture2DArray,

Texture3D, and TextureCube.

20. What is a constant buffer, and what use does it have in shaders?

Answer: A constant buffer tells the API how the variable stored inside of it is used by the

shaders. This allows constant buffer variables to be optimized based on their

use.

21. List and define the three constant buffer usages discussed in this chapter.

Answer: cbChangeOnResize, cbChangesEveryFrame, and cbNeverChanges

22. What is a texture buffer?

Answer: Texture buffers are specialized buffers for textures.

23. Define semantics.

Answer: The semantics of a variable are an optional piece of information used to bind

shader inputs and outputs by the HLSL compiler.

24. What is the Buffer type used for in the HLSL syntax?

Answer: A Buffer object is treated like an array, where you can store information into

the object and read information from it using the Load() function.

javascript:moveTo('app01qa4q16a16');
../ch04lev1sec4#ch04qa1q16
javascript:moveTo('app01qa4q17a17');
../ch04lev1sec4#ch04qa1q17
javascript:moveTo('app01qa4q18a18');
../ch04lev1sec4#ch04qa1q18
javascript:moveTo('app01qa4q19a19');
../ch04lev1sec4#ch04qa1q19
javascript:moveTo('app01qa4q20a20');
../ch04lev1sec4#ch04qa1q20
javascript:moveTo('app01qa4q21a21');
../ch04lev1sec4#ch04qa1q21
javascript:moveTo('app01qa4q22a22');
../ch04lev1sec4#ch04qa1q22
javascript:moveTo('app01qa4q23a23');
../ch04lev1sec4#ch04qa1q23
javascript:moveTo('app01qa4q24a24');
../ch04lev1sec4#ch04qa1q24

25. List and define four of the storage classes with which a variable can be defined.

Answer: Extern, static, shared, and uniform.

26. Static cannot be used for what type of variables in an HLSL effect shader?

Answer: Static cannot be used for global variables.

27. Define dynamic branching.

Answer: Dynamic branching is when instructions are used to change the flow of

execution.

28. What does the SV in SV_POSITION stand for?

Answer: System value.

29. Define a perspective projection as discussed in this chapter.

Answer: Perspective projection adds perspective to surfaces that are rendered to give

them the appearance of depth as objects move away from the viewer.

30. Define an orthogonal projection as discussed in this chapter.

Answer: Orthogonal projection does not account for depth as surfaces move away from

the viewer. In other words, surfaces appear to be the same distance apart even

when they are not.

CHAPTER 5 ANSWERS

1. What are projection transformations?

Answer: They are matrices that transform vertices by applying a projection (perspective

or orthogonal) to the geometry.

2. Describe orthogonal projection.

Answer: Orthogonal projection projects geometry onto a plane to where the depths of the

geometry do not change with distance.

javascript:moveTo('app01qa4q25a25');
../ch04lev1sec4#ch04qa1q25
javascript:moveTo('app01qa4q26a26');
../ch04lev1sec4#ch04qa1q26
javascript:moveTo('app01qa4q27a27');
../ch04lev1sec4#ch04qa1q27
javascript:moveTo('app01qa4q28a28');
../ch04lev1sec4#ch04qa1q28
javascript:moveTo('app01qa4q29a29');
../ch04lev1sec4#ch04qa1q29
javascript:moveTo('app01qa4q30a30');
../ch04lev1sec4#ch04qa1q30
javascript:moveTo('app01qa5q1a1');
../ch05lev1sec6#ch05qa1q1
javascript:moveTo('app01qa5q2a2');
../ch05lev1sec6#ch05qa1q2

3. Describe perspective projection.

Answer: Perspective projection projects geometry onto a plane where objects appear

smaller with distance.

4. In what shader does transformation often take place?

A. Geometry

B. Vertex

C. Pixel

Answer: B

5. Multiplying a vector and a matrix together is known as what?

A. Vector-matrix multiplication

B. Vector transform

C. Concatenation

D. None of the above

Answer: B

6. What are the two types of coordinate systems? Describe each.

Answer: The left-handed system, where the X, Y, and Z axes point in the right, up, and

forward directions, respectively, and the right-handed system, where the X, Y,

and Z axes point in the left, up, and back directions.

7. What is the purpose of a world matrix?

Answer: To transform geometry from its local position to its world position.

8. What is the purpose of the view matrix?

Answer: The view matrix is used to represent a virtual camera.

9. What is the name of the concatenation result of the projection, world, and view

matrices?

Answer: MVP, or model-view-projection matrix.

javascript:moveTo('app01qa5q3a3');
../ch05lev1sec6#ch05qa1q3
javascript:moveTo('app01qa5q4a4');
../ch05lev1sec6#ch05qa1q4
javascript:moveTo('app01qa5q5a5');
../ch05lev1sec6#ch05qa1q5
javascript:moveTo('app01qa5q6a6');
../ch05lev1sec6#ch05qa1q6
javascript:moveTo('app01qa5q7a7');
../ch05lev1sec6#ch05qa1q7
javascript:moveTo('app01qa5q8a8');
../ch05lev1sec6#ch05qa1q8
javascript:moveTo('app01qa5q9a9');
../ch05lev1sec6#ch05qa1q9

10. What three elements can be used to build a view matrix in Direct3D?

Answer: Camera position, look-at position, and up direction.

11. True or false: Matrices can be concatenated together.

Answer: True

12. True or false: Vectors can be concatenated into a matrix.

Answer: False

13. True or false: There are generally three types of projections.

Answer: False

14. True or false: World and local are two different names for the same type of

matrix.

Answer: True

15. True or false: The order in which matrices are multiplied matters.

Answer: True

CHAPTER 6 ANSWERS

1. What is the purpose of texture mapping?

Answer: It simulates detail on surfaces without adding the actual detail.

2. List three ways textures can be used in computer graphics.

Answer: Color decals, bump maps, and specular maps.

3. What are texture coordinates, and why are they necessary for texture mapping?

Answer: They are used to define how the texture image should be projected onto the

surface’s plane.

javascript:moveTo('app01qa5q10a10');
../ch05lev1sec6#ch05qa1q10
javascript:moveTo('app01qa5q11a11');
../ch05lev1sec6#ch05qa1q11
javascript:moveTo('app01qa5q12a12');
../ch05lev1sec6#ch05qa1q12
javascript:moveTo('app01qa5q13a13');
../ch05lev1sec6#ch05qa1q13
javascript:moveTo('app01qa5q14a14');
../ch05lev1sec6#ch05qa1q14
javascript:moveTo('app01qa5q15a15');
../ch05lev1sec6#ch05qa1q15
javascript:moveTo('app01qa6q1a1');
../ch06lev1sec7#ch06qa1q1
javascript:moveTo('app01qa6q2a2');
../ch06lev1sec7#ch06qa1q2
javascript:moveTo('app01qa6q3a3');
../ch06lev1sec7#ch06qa1q3

4. What is the purpose of texture filtering?

Answer: Texture filtering samples data from nearby pixels in a texture and combines the

results.

5. What is the min texture filter?

Answer: Min stands for minifying and represents cases where the texture is moving away

from the viewer.

6. What is the mag texture filter?

Answer: Mag stands for magnification and represents cases where the texture is being

magnified on screen (moving closer to the viewer).

7. What are mip maps?

Answer: Multi-resolution maps (i.e., multiple versions of the texture at different

resolutions).

8. Describe point filtering.

Answer: Point filtering (also known as nearest-neighbor filtering) samples the closet pixel

at the sample point defined by the texture coordinates.

9. Describe bilinear filtering.

Answer: Bilinear filtering averages nearby pixels around the sample point defined by the

texture coordinates.

10. Describe trilinear filtering.

Answer: Trilinear filtering averages nearby pixels around the sample point defined by the

texture coordinates and averages between the mip map levels.

11. What are 1D textures?

Answer: 1D texture images are images with data along a single axis (e.g., just a width

but no height or depth).

12. What are 2D textures?

javascript:moveTo('app01qa6q4a4');
../ch06lev1sec7#ch06qa1q4
javascript:moveTo('app01qa6q5a5');
../ch06lev1sec7#ch06qa1q5
javascript:moveTo('app01qa6q6a6');
../ch06lev1sec7#ch06qa1q6
javascript:moveTo('app01qa6q7a7');
../ch06lev1sec7#ch06qa1q7
javascript:moveTo('app01qa6q8a8');
../ch06lev1sec7#ch06qa1q8
javascript:moveTo('app01qa6q9a9');
../ch06lev1sec7#ch06qa1q9
javascript:moveTo('app01qa6q10a10');
../ch06lev1sec7#ch06qa1q10
javascript:moveTo('app01qa6q11a11');
../ch06lev1sec7#ch06qa1q11
javascript:moveTo('app01qa6q12a12');

Answer: 2D textures are images with an X and Y axis.

13. What are 3D textures?

Answer: 3D textures have a width, height, and a depth.

14. What are cube maps? How do they differ from 3D textures?

Answer: A cube map is a set of six 2D images that combine to create a texture whose

pixels can be accessed using 3D texture coordinates. 3D textures have a

volume, while cube maps do not.

15. What are sphere maps? How do they differ from 2D textures?

Answer: A sphere map is used for spherical mapping. The data is stored in a 2D texture,

but the projection used causes the image to map differently.

16. What is multi-texturing?

Answer: Texturing a surface with multiple images.

17. What is multi-sampling?

Answer: Sampling of data multiple times and averaging the results.

18. What are the S3TC texture compression formats? How do they differ from each

other?

Answer: DXT1 through DXT5. Each version compresses data differently than the one that

came before it, but each of them uses a lossy compression algorithm.

19. What is the difference between lossy and lossless compression?

Answer: Lossy compression results in quality loss, while lossless compression retains the

quality of the original data.

20. Why is it a bad idea to compress data that is already compressed when using a

lossy algorithm?

Answer: Because lossy compression results in a loss of quality, and compressing already

compressed data will result in worse quality.

../ch06lev1sec7#ch06qa1q12
javascript:moveTo('app01qa6q13a13');
../ch06lev1sec7#ch06qa1q13
javascript:moveTo('app01qa6q14a14');
../ch06lev1sec7#ch06qa1q14
javascript:moveTo('app01qa6q15a15');
../ch06lev1sec7#ch06qa1q15
javascript:moveTo('app01qa6q16a16');
../ch06lev1sec7#ch06qa1q16
javascript:moveTo('app01qa6q17a17');
../ch06lev1sec7#ch06qa1q17
javascript:moveTo('app01qa6q18a18');
../ch06lev1sec7#ch06qa1q18
javascript:moveTo('app01qa6q19a19');
../ch06lev1sec7#ch06qa1q19
javascript:moveTo('app01qa6q20a20');
../ch06lev1sec7#ch06qa1q20

CHAPTER 7 ANSWERS

1. List at least five ways textures can be used in game graphics outside of directly

coloring a surface.

Answer: Bump and normal mapping, specular mapping, alpha mapping, environment

mapping, and displacement mapping.

2. What is alpha mapping?

Answer: Specifying alpha values on the pixel level and storing it in an image.

3. What are the two ways alpha blending can be enabled in Direct3D 10?

Answer: Through the Direct3D device object or in the HLSL file.

4. What two ways to store alpha map values were discussed in this chapter?

Answer: They can be stored in a separate image or in the alpha channel of an image.

5. Why would you use 1 bit for alpha values rather than using 1 byte?

Answer: The 1-bit value can act as an off/on flag if the alpha values can be either visible

or invisible.

6. What is alpha to coverage, and what part does it play in game graphics?

Answer: Alpha to coverage is a term in computer graphics that deals with multi-sampling

and refers to the way alpha mapped surfaces are rendered in scenes that have

many overlapping polygons.

7. List and describe five of the blend options that can be used for SrcBlend in the

blend descriptor.

Answer: D3D10_BLEND_ZERO, D3D10_BLEND_ONE,

D3D10_BLEND_SRC_COLOR, D3D10_BLEND_INV_SRC_COLOR,

D3D10_BLEND_SRC_ALPHA, and D3D10_BLEND_INV_SRC_ALPHA.

8. What is a sprite?

Answer: A sprite is a 2D textured surface, usually of a character or an object related to

the game or application.

javascript:moveTo('app01qa7q1a1');
../ch07lev1sec5#ch07qa1q1
javascript:moveTo('app01qa7q2a2');
../ch07lev1sec5#ch07qa1q2
javascript:moveTo('app01qa7q3a3');
../ch07lev1sec5#ch07qa1q3
javascript:moveTo('app01qa7q4a4');
../ch07lev1sec5#ch07qa1q4
javascript:moveTo('app01qa7q5a5');
../ch07lev1sec5#ch07qa1q5
javascript:moveTo('app01qa7q6a6');
../ch07lev1sec5#ch07qa1q6
javascript:moveTo('app01qa7q7a7');
../ch07lev1sec5#ch07qa1q7
javascript:moveTo('app01qa7q8a8');
../ch07lev1sec5#ch07qa1q8

9. What is a point sprite?

Answer: A point sprite is a hardware-accelerated sprite.

10. How does Direct3D 10 point sprite support differ from Direct3D 9?

Answer: Direct3D 10 does not support it directly, but you can create sprites on the

hardware using the geometry shader.

11. What is a billboard sprite? How do you calculate a sprite that always faces the

camera?

Answer: A billboard is a surface that is rendered to face the viewer. It can be calculated

by projecting the geometry using a matrix built from the view information that

allows the object to face toward the viewer.

12. How did we create point sprites in Direct3D 10 in this chapter?

Answer: Using the geometry shader, we rendered a list of points from which triangles

were generated.

13. Describe the luminance filter algorithm.

Answer: It is used to convert an image to black and white. It does this by calculating the

dot product of the color value with the luminance constant.

14. Describe the color inversion filter algorithm.

Answer: The color inversion filter works by negating the values of the color components.

Therefore, white becomes black and black becomes white.

15. Describe the sepia tone filter algorithm.

Answer: The sepia tone filter builds off of the luminance filter and adds a brownish tone

to it.

CHAPTER 8 ANSWERS

1. What are vectors?

Answer: A vector is a mathematical structure that represents a direction.

javascript:moveTo('app01qa7q9a9');
../ch07lev1sec5#ch07qa1q9
javascript:moveTo('app01qa7q10a10');
../ch07lev1sec5#ch07qa1q10
javascript:moveTo('app01qa7q11a11');
../ch07lev1sec5#ch07qa1q11
javascript:moveTo('app01qa7q12a12');
../ch07lev1sec5#ch07qa1q12
javascript:moveTo('app01qa7q13a13');
../ch07lev1sec5#ch07qa1q13
javascript:moveTo('app01qa7q14a14');
../ch07lev1sec5#ch07qa1q14
javascript:moveTo('app01qa7q15a15');
../ch07lev1sec5#ch07qa1q15
javascript:moveTo('app01qa8q1a1');
../ch08lev1sec6#ch08qa1q1

2. What structures does the DirectX SDK offer for vectors?

Answer: D3DXVECTOR2, D3DXVECTOR3, and D3DVECTOR4.

3. What is a plane? What main purpose do planes serve as described in this

chapter?

Answer: A plane lies infinitely along two axes. They can be used for collision detection.

4. What is a matrix?

Answer: A matrix is a mathematical structure that is used to transform vectors from one

space to another.

5. What is the difference between a 3 × 3 and 4 × 4 matrix?

Answer: A 3 × 3 matrix has three rows and three columns, while a 4 × 4 matrix has four

rows and columns.

6. What is bounding geometry and how is it used in computer graphics?

Answer: A piece of bounding geometry is used to surround objects in an effort to act as a

simplified representation of the object. One use is collision detection.

7. What coordinate system does Direct3D use traditionally?

Answer: Left-handed.

8. What is the model matrix?

Answer: The model matrix is used to represent the local transformation of objects.

9. What is the view matrix?

Answer: The view matrix is a transformation that is used to represent the viewer.

10. What is the projection matrix?

Answer: The projection matrix adds either perspective or orthogonal projection to

rendered objects.

javascript:moveTo('app01qa8q2a2');
../ch08lev1sec6#ch08qa1q2
javascript:moveTo('app01qa8q3a3');
../ch08lev1sec6#ch08qa1q3
javascript:moveTo('app01qa8q4a4');
../ch08lev1sec6#ch08qa1q4
javascript:moveTo('app01qa8q5a5');
../ch08lev1sec6#ch08qa1q5
javascript:moveTo('app01qa8q6a6');
../ch08lev1sec6#ch08qa1q6
javascript:moveTo('app01qa8q7a7');
../ch08lev1sec6#ch08qa1q7
javascript:moveTo('app01qa8q8a8');
../ch08lev1sec6#ch08qa1q8
javascript:moveTo('app01qa8q9a9');
../ch08lev1sec6#ch08qa1q9
javascript:moveTo('app01qa8q10a10');
../ch08lev1sec6#ch08qa1q10

11. What is the MVP matrix?

Answer: It is the model-view-projection matrix, which is the concatenation of the model,

view, and projection matrices.

12. What three properties does Direct3D use to create a view matrix that represents

a camera?

Answer: The position, look-at position, and up direction vectors.

13. What is a ray, and what two components make up a ray object?

Answer: A ray is a structure with an origin and a direction, both of which can be

represented as vectors.

14. How can you limit a ray’s infinite direction?

Answer: By using the length of the intersection and testing it against the maximum

length desired.

15. What is a quaternion used for? List two benefits of using quaternion rotations

versus matrices.

Answer: A quaternion is used for efficient rotations. Computationally, they are faster than

matrices, and they consume less memory since a quaternion is made up of four

floating-point variables, while a matrix can have 16.

CHAPTER 9 ANSWERS

1. List the various sound technologies that can be found in the various game

development SDKs provided by Microsoft.

Answer: XAudio2, XACT3, XAPO, XAPOFX, X3DAudio, and DirectSound.

2. Describe the XAudio2 API. What does this technology replace?

Answer: It is a replacement for DirectSound. XAudio2 is a low-level sound API for the PC

and the Xbox 360.

3. Describe XACT3. What does this technology replace?

javascript:moveTo('app01qa8q11a11');
../ch08lev1sec6#ch08qa1q11
javascript:moveTo('app01qa8q12a12');
../ch08lev1sec6#ch08qa1q12
javascript:moveTo('app01qa8q13a13');
../ch08lev1sec6#ch08qa1q13
javascript:moveTo('app01qa8q14a14');
../ch08lev1sec6#ch08qa1q14
javascript:moveTo('app01qa8q15a15');
../ch08lev1sec6#ch08qa1q15
javascript:moveTo('app01qa9q1a1');
../ch09lev1sec6#ch09qa1q1
javascript:moveTo('app01qa9q2a2');
../ch09lev1sec6#ch09qa1q2
javascript:moveTo('app01qa9q3a3');

Answer: XACT3 is also a replacement for DirectSound, but it is a high-level audio API

built from XAudio2.

4. Describe the audio effects technologies.

Answer: An audio effect is an object that takes incoming audio data and performs some

operation on the data before passing it on.

5. Describe Direct Sound and its current role as an audio technology.

Answer: Direct Sound is an audio API that was updated in the DirectX SDK until DirectX

8. Newer audio APIs have since taken its place, and the API is deprecated.

6. What does XACT stand for?

Answer: The Microsoft Cross-Platform Audio Creation Tool (XACT).

7. List the audio formats supported by XACT3 and XAudio2.

Answer: WAV, AIFF, ADPCM, XMA, and xWMA.

8. What is endian order, and how does it affect audio files (or files in general) and

networking data?

Answer: The endian order is the byte ordering of multi-byte variables. If data is

transmitted or stored in a different order from the machine reading it, then the

destination machine will have to swap the byte ordering to use the correct value.

9. What is a wave bank?

Answer: A wave bank is a file with a collection of audio files that are to be played by the

application.

10. What is a sound bank?

Answer: A sound bank holds a list of sounds and sound cues that reference audio from

the wave banks.

11. What is a sound cue, and what is it used for in XACT3?

Answer: A sound cue is used to play a sound from the XACT sound bank.

../ch09lev1sec6#ch09qa1q3
javascript:moveTo('app01qa9q4a4');
../ch09lev1sec6#ch09qa1q4
javascript:moveTo('app01qa9q5a5');
../ch09lev1sec6#ch09qa1q5
javascript:moveTo('app01qa9q6a6');
../ch09lev1sec6#ch09qa1q6
javascript:moveTo('app01qa9q7a7');
../ch09lev1sec6#ch09qa1q7
javascript:moveTo('app01qa9q8a8');
../ch09lev1sec6#ch09qa1q8
javascript:moveTo('app01qa9q9a9');
../ch09lev1sec6#ch09qa1q9
javascript:moveTo('app01qa9q10a10');
../ch09lev1sec6#ch09qa1q10
javascript:moveTo('app01qa9q11a11');
../ch09lev1sec6#ch09qa1q11

12. What is the main difference between XACT3 and XAudio2 discussed in this

chapter?

Answer: XACT3 is high-level, while XAudio2 is low-level for audio API.

13. What is the mastering voice, and what is it used for in XAudio2?

Answer: A mastering voice is the voice that is audible. It sends data it receives from

source and submix voices to the audio hardware. The mastering voice is the only

voice that allows you to hear anything, so you must create this voice in XAudio2

to hear anything.

14. What is the source voice, and what is it used for in XAudio2?

Answer: A source voice is used to send sound data to the other types of voices, and it

represents an audio stream of data.

15. True or false: XAudio2 internally takes care of the endian issue for

programmers.

Answer: False

CHAPTER 10 ANSWERS

1. What is DirectInput?

Answer: DirectInput is an input API for using keyboards, mice, and game controllers in

applications.

2. What advantage does DirectInput offer when you are using standard keyboards

and mice when compared to Win32 functions as discussed in this chapter?

Answer: DirectInput allows special device features to be accessed and used in

applications.

3. What is XInput?

Answer: XInput is a newer input API for game controllers.

4. What are the benefits to using XInput over DirectInput as described in this

chapter?

javascript:moveTo('app01qa9q12a12');
../ch09lev1sec6#ch09qa1q12
javascript:moveTo('app01qa9q13a13');
../ch09lev1sec6#ch09qa1q13
javascript:moveTo('app01qa9q14a14');
../ch09lev1sec6#ch09qa1q14
javascript:moveTo('app01qa9q15a15');
../ch09lev1sec6#ch09qa1q15
javascript:moveTo('app01qa10q1a1');
../ch10lev1sec4#ch10qa1q1
javascript:moveTo('app01qa10q2a2');
../ch10lev1sec4#ch10qa1q2
javascript:moveTo('app01qa10q3a3');
../ch10lev1sec4#ch10qa1q3
javascript:moveTo('app01qa10q4a4');

Answer: XInput is easier and faster to set up, is updated (DirectInput has not been

updated since DirectX 8), and supports any Xbox 360–compatible input device.

5. What are the steps necessary to set up XInput in code? How is XInput enabled

and disabled?

Answer: No steps are necessary to set up XInput in code. By default it is enabled, but it

can be disabled and enabled by calling XInputEnable().

6. What XInput function is used to obtain the state of a controller device?

Answer: XInputGetState().

7. What field is used to detect button presses on an Xbox controller? How do the

button flags factor in when determining if a button is pressed?

Answer: wButtons.

8. What fields are used to store the thumb stick locations of an Xbox controller?

Answer: sThumbLX, sThumbRX, sThumbLY, sThumbRY.

9. What are the minimum and maximum pressure values a trigger can be on an

Xbox controller?

Answer: Minimum of 0 and maximum of 255.

10. List the steps to setting the motor speed in an Xbox controller.

Answer: Create an XINPUT_VIBRATION object and call XInputSetState().

11. What is the minimum and maximum power the motors can move at in an Xbox

controller?

Answer: 0 to 65,535.

12. What XInput function is used to obtain the controller device’s capabilities?

Answer: XInputGetCapabilities().

13. List the three Xbox controller subtypes that were discussed in regard to

../ch10lev1sec4#ch10qa1q4
javascript:moveTo('app01qa10q5a5');
../ch10lev1sec4#ch10qa1q5
javascript:moveTo('app01qa10q6a6');
../ch10lev1sec4#ch10qa1q6
javascript:moveTo('app01qa10q7a7');
../ch10lev1sec4#ch10qa1q7
javascript:moveTo('app01qa10q8a8');
../ch10lev1sec4#ch10qa1q8
javascript:moveTo('app01qa10q9a9');
../ch10lev1sec4#ch10qa1q9
javascript:moveTo('app01qa10q10a10');
../ch10lev1sec4#ch10qa1q10
javascript:moveTo('app01qa10q11a11');
../ch10lev1sec4#ch10qa1q11
javascript:moveTo('app01qa10q12a12');
../ch10lev1sec4#ch10qa1q12
javascript:moveTo('app01qa10q13a13');

obtaining device capabilities.

Answer: Arcade stick, gamepad, and steering wheel.

CHAPTER 11 ANSWERS

1. What object is used to create a file stream for input in C++?

Answer: ifstream.

2. What object is used to create a file stream for output in C++?

Answer: ofstream.

3. How does the ReadSome() function work from the input file stream class?

Answer: ReadSome() reads characters from a buffer into an array until all characters

have been read or until the memory buffer associated with the stream runs out.

4. What flag is used to create a file stream that is used for binary files?

Answer: ios_base::binary.

5. What key reason was given for the use of seekg() and tellg() from the

Files demo?

Answer: To use the two together to obtain the file size.

6. Define a token.

Answer: A block of characters between delimiters.

7. Define a delimiter.

Answer: A character that is used to separate tokens in a stream of characters.

8. Describe how the TokenStream class extracts the next token in the data

stream.

../ch10lev1sec4#ch10qa1q13
javascript:moveTo('app01qa11q1a1');
../ch11lev1sec6#ch11qa1q1
javascript:moveTo('app01qa11q2a2');
../ch11lev1sec6#ch11qa1q2
javascript:moveTo('app01qa11q3a3');
../ch11lev1sec6#ch11qa1q3
javascript:moveTo('app01qa11q4a4');
../ch11lev1sec6#ch11qa1q4
javascript:moveTo('app01qa11q5a5');
../ch11lev1sec6#ch11qa1q5
javascript:moveTo('app01qa11q6a6');
../ch11lev1sec6#ch11qa1q6
javascript:moveTo('app01qa11q7a7');
../ch11lev1sec6#ch11qa1q7
javascript:moveTo('app01qa11q8a8');

Answer: It reads characters until it finds a delimiter. Once a delimiter is found, the text

that was read is returned to the caller.

9. Describe how the TokenStream class extracts the next line in the data stream

and how it differs from token extraction.

Answer: It reads characters until a delimiter is reached, at which point the characters

that were read are returned as a string.

10. Describe the OBJ file format. How are faces represented in an OBJ file?

Answer: The OBJ file format is a text file that specifies geometry information on each line

of the file. The beginning of each line starts with a keyword that describes the

data on the line, followed by the data itself.

CHAPTER 12 ANSWERS

1. What is the benefit of using time-based calculations over frame-based ones?

Answer: The simulations can remain more consistent and independent of the frame rate.

2. Describe linear interpolation.

Answer: To interpolate between two numbers we can use linear interpolation. To perform

linear interpolation we need three pieces of information. The first two pieces of

information are the two numbers between which we are interpolating. The third

piece of information needed is a scalar value that is a percentage from 0 to 1,

with 1 being 100%. Using 0% basically says we are at point A, and using 100%

means we are at point B. Any value between 0% and 100% places the value

somewhere between point A and point B.

3. Write down the equation for linear interpolation.

Answer: Final = (B – A) * dt + A.

4. Write down the equation for cubic Bezier curves as described in this chapter.

Answer: Final = A * (1 – S)3 + C1 * 3 * S * (1 – S)2 + C2 * 3 * S2 * (1 – s) + B * S3.

5. What are key-frame animations when it comes to character animation?

../ch11lev1sec6#ch11qa1q8
javascript:moveTo('app01qa11q9a9');
../ch11lev1sec6#ch11qa1q9
javascript:moveTo('app01qa11q10a10');
../ch11lev1sec6#ch11qa1q10
javascript:moveTo('app01qa12q1a1');
../ch12lev1sec5#ch12qa1q1
javascript:moveTo('app01qa12q2a2');
../ch12lev1sec5#ch12qa1q2
javascript:moveTo('app01qa12q3a3');
../ch12lev1sec5#ch12qa1q3
javascript:moveTo('app01qa12q4a4');
../ch12lev1sec5#ch12qa1q4
javascript:moveTo('app01qa12q5a5');

Answer: Key-frame animations are used to display a character in different poses, where

each frame of animation is a different pose.

6. Describe bone and skeleton animation.

Answer: Bone animation uses a hierarchy of matrices to transform the geometry of an

object to give the appearance of animation.

7. What benefits does bone animation have over key-frame animation?

Answer: Bone animation allows for more realistic simulations with less memory footprint

and more efficiency than traditional key-frame data stored as separate meshes.

8. A series or collection of paths is known as what?

Answer: A route.

9. A series or collection of routes is known as what?

Answer: A cut-scene (as described in this book).

10. What is the difference between the absolute and relative matrices in bone

animation?

Answer: The relative matrix is relative to the bone it represents, while the absolute

matrix takes into account the relative matrix of the bone and the absolute

matrix from its parent bone.

CHAPTER 13 ANSWERS

1. Define per-vertex lighting.

Answer: Per-vertex lighting is lighting done on each vertex of each primitive.

2. Define per-pixel lighting.

Answer: Per-pixel lighting is lighting that is computed on the pixel level rather than the

vertex level.

3. Describe directional lights in computer graphics.

../ch12lev1sec5#ch12qa1q5
javascript:moveTo('app01qa12q6a6');
../ch12lev1sec5#ch12qa1q6
javascript:moveTo('app01qa12q7a7');
../ch12lev1sec5#ch12qa1q7
javascript:moveTo('app01qa12q8a8');
../ch12lev1sec5#ch12qa1q8
javascript:moveTo('app01qa12q9a9');
../ch12lev1sec5#ch12qa1q9
javascript:moveTo('app01qa12q10a10');
../ch12lev1sec5#ch12qa1q10
javascript:moveTo('app01qa13q1a1');
../ch13lev1sec7#ch13qa1q1
javascript:moveTo('app01qa13q2a2');
../ch13lev1sec7#ch13qa1q2
javascript:moveTo('app01qa13q3a3');

Answer: A directional light is light that shines from a specific direction but has no origin.

4. Describe point lights in computer graphics.

Answer: A point light is a light that emits from a source out into the world in what

appears to be an even manner in all directions.

5. Describe spot lights in computer graphics.

Answer: A spot light is a light that emits from a source out into the world but is restricted

to shine is certain directions.

6. Describe area lights in computer graphics.

Answer: Area lights are arrays of lights that cover a specific area. The contribution of all

of the lights can be used to create soft shadows.

7. What is global illumination?

Answer: It is a term used to refer to algorithms that solve the entire lighting equation.

This includes direct light as well as indirect light and visibility (shadows).

8. What is diffuse light? How does it differ from ambient light?

Answer: Diffuse light is used to represent light that scatters evenly across a surface as it

hits a surface. Ambient light is used more to simulate light coming indirectly

from surrounding surfaces than direct light from the light source.

9. What is specular light? How does it differ from diffuse and ambient light?

Answer: Specular light is used to create highlights on shiny surfaces. Ambient light is

used more as fill color, while diffuse light is used to represent light that scatters

evenly across a surface. Specular light is light that scatters more along a specific

range rather than evenly in all directions.

10. Describe the Blinn-Phong lighting algorithm.

Answer: The Blinn-Phong lighting algorithm is a view-dependent algorithm used for

specular highlights. It works by raising N dot H to a specular power, where H is

the half vector created from the view vector plus the light vector and N is the

surface normal.

11. What does the term material mean in modern computer graphics?

../ch13lev1sec7#ch13qa1q3
javascript:moveTo('app01qa13q4a4');
../ch13lev1sec7#ch13qa1q4
javascript:moveTo('app01qa13q5a5');
../ch13lev1sec7#ch13qa1q5
javascript:moveTo('app01qa13q6a6');
../ch13lev1sec7#ch13qa1q6
javascript:moveTo('app01qa13q7a7');
../ch13lev1sec7#ch13qa1q7
javascript:moveTo('app01qa13q8a8');
../ch13lev1sec7#ch13qa1q8
javascript:moveTo('app01qa13q9a9');
../ch13lev1sec7#ch13qa1q9
javascript:moveTo('app01qa13q10a10');
../ch13lev1sec7#ch13qa1q10
javascript:moveTo('app01qa13q11a11');

Answer: A material is a set of related properties that combine to create a surface’s

texture. This can include color texture images, normal maps, specular maps,

and shaders.

12. List two ways shadows can be faked in games.

Answer: By using imposters or by being hand drawn to give the impression that the

shadows are calculated.

13. Generally describe the shadow volumes technique.

Answer: Shadow volumes are extruded pieces of geometry that are rendered to the

stencil buffer to mask away areas of the screen that are in shadow. When the

scene is rendered a solid color is usually rendered in the shadowed regions while

normal rendering is used for the un-shadowed regions.

14. Generally describe the shadow mapping algorithm.

Answer: Shadow mapping works by rendering the scene’s depths into a texture from the

light’s point of view and then using those results with projection mapping to test

if the depths in the shadow map are closer to the light than the depths of the

surfaces being rendered. If so, then the surface pixel being rendered is in

shadow.

15. Describe two ways to produce soft shadows.

Answer: They can be faked (such as blurring a shadow map using a general blurring

algorithm) or they can be calculated in real time (such as blurring based on the

penumbra or umbra).

CHAPTER 14 ANSWERS

1. List the four examples of what can be added to improve game-play. Explain each

one.

Answer: Improved audio effects, which will enhance the player’s experience and improve

the audio quality of the game; networking support, which will add to the game’s

re-playability and add to the game’s lifespan; dynamic environments, which will

give the scene more realism and improve the game-play experience; and

improved visuals, which will give the player something visually stimulating that

will improve the visual look of the game.

../ch13lev1sec7#ch13qa1q11
javascript:moveTo('app01qa13q12a12');
../ch13lev1sec7#ch13qa1q12
javascript:moveTo('app01qa13q13a13');
../ch13lev1sec7#ch13qa1q13
javascript:moveTo('app01qa13q14a14');
../ch13lev1sec7#ch13qa1q14
javascript:moveTo('app01qa13q15a15');
../ch13lev1sec7#ch13qa1q15
javascript:moveTo('app01qa14q1a1');
../ch14lev1sec5#ch14qa1q1

2. List the three examples of what can be added to improve game design. Explain

each one.

Answer: Think carefully before adding anything to or changing the design. If it is to be

done, take care in how it is brought about or consider creating a sequel or a

different game with those new ideas. Be mindful of your limits and try not to do

anything that is above your abilities, or you may be setting yourself up for

failure. When making the game, go in with some type of game plan and goals so

that you are not simply making it up as you go along.

3. Why would it not be the best idea to make major changes to a game design

once the game has been created?

Answer: Because those changes can prove difficult to implement, and unforeseen issues

can arise from them.

4. What is the benefit to adding multiplayer support to a game project?

Answer: It can enhance the experience of the gamers.

5. Define the general term scene management.

Answer: Scene management is a general term that often describes steps taken

algorithmically to manage a game’s data and information in a way that optimizes

their use.

6. Define level-of-detail and explain why it is so useful in video games.

Answer: Level-of-detail is the act of displaying different levels of detail of an object based

on specific conditions. For example, as an object moves further from the viewer,

lower levels of detail of the object can be used since the detail difference is

unnoticeable.

7. What is geometry culling?

Answer: The process of eliminating geometry from further processing because it will not

ultimately be rendered or would not have an impact on the final scene.

8. What are some examples given in this chapter that can be used to cull geometry

from rendering?

Answer: Occlusion culling, back-face culling, and view-frustum culling (which can be used

with various data structures used by scene partitioning algorithms).

javascript:moveTo('app01qa14q2a2');
../ch14lev1sec5#ch14qa1q2
javascript:moveTo('app01qa14q3a3');
../ch14lev1sec5#ch14qa1q3
javascript:moveTo('app01qa14q4a4');
../ch14lev1sec5#ch14qa1q4
javascript:moveTo('app01qa14q5a5');
../ch14lev1sec5#ch14qa1q5
javascript:moveTo('app01qa14q6a6');
../ch14lev1sec5#ch14qa1q6
javascript:moveTo('app01qa14q7a7');
../ch14lev1sec5#ch14qa1q7
javascript:moveTo('app01qa14q8a8');
../ch14lev1sec5#ch14qa1q8

9. List and describe four topics one would have to take into consideration when

taking a game online.

Answer: Latency, which deals with the performance of the networking communications;

handling dropped packets, which can cause client machines not to receive

important data needed for the game; data security, which is a must for ensuring

the integrity of the game’s data stays intact; preventing cheating so that players

cannot ruin the experience for everyone else; consistency among all connected

machines so that some players are not given an unfair advantage because one

or more player is not working with the same data; and performance and

hardware limits, since these two issues will determine how data is ultimately

sent across the network as well as how often.

10. What is a game engine?

Answer: A game engine is a framework of high-level code used to make a video game.

11. List five possible features of a game engine that were mentioned in this chapter.

Answer: A scripting system, a material system, a physics system, a networking system,

and code for streaming data from a disk.

12. Why would a developer license a game engine?

Answer: Because licensing proven technology can prove more beneficial to the developer

than building it in-house.

13. What is XNA?

Answer: A game development technology that can be used to create PC and Xbox 360

games.

14. For what platforms is XNA available?

Answer: Windows XP, Vista, and the Xbox 360.

15. For what main reason stated in this chapter would an individual or a small

development team look into using XNA?

Answer: XNA can be used to develop games for the PC and for the Xbox 360 without any

cost to the developer outside of a creator’s club subscription if deployment is

done on the 360.

javascript:moveTo('app01qa14q9a9');
../ch14lev1sec5#ch14qa1q9
javascript:moveTo('app01qa14q10a10');
../ch14lev1sec5#ch14qa1q10
javascript:moveTo('app01qa14q11a11');
../ch14lev1sec5#ch14qa1q11
javascript:moveTo('app01qa14q12a12');
../ch14lev1sec5#ch14qa1q12
javascript:moveTo('app01qa14q13a13');
../ch14lev1sec5#ch14qa1q13
javascript:moveTo('app01qa14q14a14');
../ch14lev1sec5#ch14qa1q14
javascript:moveTo('app01qa14q15a15');
../ch14lev1sec5#ch14qa1q15

APPENDIX B. RECOMMENDED RESOURCES

Recommended Tools

Recommended Books

Recommended Web Sites and Articles

RECOMMENDED TOOLS

Throughout this book we used several free tools for the development of the book’s sample

source code. These tools are highly recommended and include the following:

 Visual Studio 2005/2008: A Windows XP/Vista–integrated development environment

(http://www.microsoft.com/express/)

 DirectX SDK (http://msdn2.microsoft.com/directx/sdk)

 NVIDIA’s Melody (and other useful tools) (http://www.developer.nvidia.com/)

RECOMMENDED BOOKS

The books in this section can be of some use to anyone looking to expand their knowledge
of the different areas of game development. Reading these books is optional but is

recommended for those looking for more detailed knowledge about many of the topics
discussed in this book and beyond.

 Mathematics for 3D Game Programming and Computer Graphics, Second Edition,

Charles River Media (2003)

 Data Structures for Game Developers, Charles River Media (2007)

 Ultimate Game Engine Design and Architecture, Charles River Media (2006)

 Game Graphics Programming, Charles River Media (2008)

RECOMMENDED WEB SITES AND ARTICLES

The Web sites in this section can be of some use to anyone looking to expand their
knowledge of the different areas of game development. For additional Web sites and Web

articles visit UltimateGameProgramming.com.

 Ultimate Game Programming (http://www.UltimateGameProgramming.com/)

 Microsoft Developer Network (MSDN) (http://msdn.Microsoft.com/)

../app02lev1sec1#app02lev1sec1
../app02lev1sec2#app02lev1sec2
../app02lev1sec3#app02lev1sec3
../default4.htm
../sdk
../default5.htm
../default6.htm
../default2.htm
../default7.htm

