

Microsoft Press. Confidential. master page = Blank
xgraph, Title, PP1, edd version: #, FrameMaker+SGML; ef

�����������	
����
��

�

���������

���������

���	���	

���	�����

A01T616531.fm Page 1 Tuesday, May 13, 2003 4:58 PM

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2003 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or
by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data pending.

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWE 8 7 6 5 4 3

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further informa-
tion about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send
comments to mspinput@microsoft.com.

Direct3D, DirectX, Microsoft, Microsoft Press, Visual C++, Visual Studio, Windows, and Windows NT
are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Other product and company names mentioned herein may be the trademarks of their respective
owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company, organiza-
tion, product, domain name, e-mail address, logo, person, place, or event is intended or should be
inferred.

Acquisitions Editor: Robin Van Steenburgh
Project Editor: Lynn Finnel

Body Part No. X08-82191

Desktop Publisher: Kerri DeVault

Microsoft Press. Confidential. master page = Blank
xgraph, Dedication, PP1, edd version: #, FrameMaker+SGML; ef

To John and Rachel, whose dreams are just beginning

To Michele, whose support and encouragement made this possible

To Nickolai and Cathy, because you asked

To the people on the DirectX team, who made this year very enjoyable

A03D616531.fm Page iii Tuesday, May 13, 2003 1:07 PM

Microsoft Press. Confidential. master page = Blank
xgraph, Dedication, PP1, edd version: #, FrameMaker+SGML; ef

A03D616531.fm Page iv Tuesday, May 13, 2003 1:07 PM

v

Microsoft Press. Confidential. master page = Section Opener
DevStand, xgraph, LRCcx, TOC, FrameMaker+SGML; ef

Table of Contents
Foreword xiii

Acknowledgments xvii

Introduction xix

Part I Programming Assembly-Language Shaders
1 Vertex Shader Introduction 3

Vertex Processing 4
Vertex Shader Tutorial 1: Transforming Vertices 6
Vertex Shader Tutorial 1a: Adding a Diffuse Color 19
Summary 23

2 Vertex Shader Virtual Machine 25
Virtual Machine Block Diagram 25
Shader Layout 27
Registers 28
Instructions 32

Setup Instructions 33
Arithmetic Instructions 34
Macro-Op Instructions 35
Texture Instructions 36
Flow-Control Instructions 36

Modifiers Extend the Virtual Machine 37
Vertex Shader Version Differences 39
Summary 41

3 Vertex Shader Examples 43
Example 1: Vertex Shader Fog 43
Example 2: Vertex Shader SDK Sample 47
Example 3: Vertex Blend SDK Sample 56
Summary 65

A04T616531.fm Page v Tuesday, May 13, 2003 2:48 PM

vi Table of Contents

Microsoft Press. Confidential. master page = TOC Verso
DevStand, xgraph, LRCcx, TOC, FrameMaker+SGML; ef

4 Pixel Shader Virtual Machine 67
Pixel Processing 67
Pixel Shader Virtual Machine Block Diagram 72
Shader Layout 74
Registers 75

Input Registers for Versions 1_1 to 1_4 76
Output Register for Versions 1_1 to 1_4 77
Input Registers for Version ps_2_0 and Later 77

Instructions 80
Setup Instructions 82
Arithmetic Instructions 83
Macro-Op Instructions 84
Texture Instructions 85
Flow-Control Instructions 87
Instruction Set Summary 89

Modifiers Extend the Virtual Machine 89
Modifiers for Versions 1_1 to 1_4 90
Modifiers for ps_2_0 and Later 92

Pixel Shader Version Differences 92
Summary 93

5 Pixel Shader Examples 95
Example 1: 2-D Image Processing 95
Example 2: Multilayered Textures 101

Part II Programming HLSL Shaders
6 HLSL Introduction 109

Tutorial 1: Start with a Vertex Shader: Hello World 110
Add a Diffuse Color 113

Tutorial 2: Add a Pixel Shader 115
Complementing 118
Darkening 118
Masking the Red Out 119
Displaying Red Only 119

A04T616531.fm Page vi Tuesday, May 13, 2003 2:48 PM

Chapter 1 Vertex Shader Introduction vii

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, TOC, FrameMaker+SGML; ef

Tutorial 3: Add a Procedural Texture 120
Building the Tutorials 122

Creating Resources 123
Rendering 129

Summary 130

7 The Language 131
Data Types 131

Scalar Types 131
Variable Declaration 132
Type Modifiers 132
Storage Class Modifiers 134
Semantics 135
Annotations 135
Vector Types 135
Matrix Types 138
Constructors 142
Casting 143
Integer Math 144
Complex Data Types 144

Expressions and Statements 149
Statements 155

Functions 160
Function Declaration 160
Function Body 167
Intrinsic Functions 168

Summary 169

8 HLSL Examples 171
Glow Example 171

Apply a Texture 173
Add the Glow 183

Sparkle Example 192
Vertex Shader 195
Texture Shader 198
Pixel Shader 199

A04T616531.fm Page vii Tuesday, May 13, 2003 2:48 PM

viii Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, TOC, FrameMaker+SGML; ef

Diffuse Only 201
Diffuse and Gloss 201
Diffuse, Gloss, and Sparkle 201
Vertex and Pixel Shader Creation 202
Procedural Texture Creation 204
Environment Map Creation 205
Mesh Creation 206
Render 210

HLSL Experimentation in EffectEdit 211
Summary 212

Part III Programming Effects
9 Effect Introduction 215

Effects and the 3-D Pipeline 215
An Effect with an Assembly-Language Vertex Shader 217

Effect Global Variables 218
Effect State 219

HLSL Vertex Shader 222
Characteristics of Effects 225

Save and Restore State 225
Use Multiple Techniques and Passes 227
Share Parameters 229
Use Semantics to Find Parameters 230
Use Handles to Get and Set Parameters 230
Add Parameter Information with Annotations 231

Building an Effect 232
Create an Effect 232
Validate an Effect 234
Render an Effect 234

Summary 236

10 Assembly-Language Effect Examples 237
Example 1: Asm Vertex Shader with Lighting 237
Example 2: Asm Vertex Shader and Pixel Shader with Texturing 243
Example 3: Asm Vertex Shader Environment Map 249

A04T616531.fm Page viii Tuesday, May 13, 2003 2:48 PM

Table of Contents ix

Microsoft Press. Confidential. master page = TOC Recto
DevStand, xgraph, LRCcx, TOC, FrameMaker+SGML; ef

11 HLSL Effect Examples 259
Example 1: Vertex and Pixel Shader with Per-Pixel Lighting 259
Example 2: Multiple-Pass Rendering with Alpha Blending 265
EffectEdit: Interactive Effect Development 274

The Code Pane 274
The Render Pane 275
The Rendering Options Pane 275
The Compile Results Pane 275
Getting an Effect to Run in EffectEdit 276

Example 3: Hemispheric Lighting 278

Part IV Appendixes
A Vertex Processing 287

Transformations 287
Affine Transform 289
Left-to-Right Order 290
World Transform 291
View Transform 292
Projection Transform 294

Vertex Fog 297
Lights and Materials 299
Ambient Light 300
Diffuse Light 300
Specular Light 301
Emissive Light 302
Light Attenuation 302
Spotlight Cone 303

B Asm Shader Instructions 305
Instructions 305

C HLSL Reference 347
1: Data Types 347

1.1 Intrinsic Types 347
1.2 User-Defined Types 348
1.3 Type Casts 349

A04T616531.fm Page ix Tuesday, May 13, 2003 2:48 PM

x Table of Contents

Microsoft Press. Confidential. master page = TOC Verso
DevStand, xgraph, LRCcx, TOC, FrameMaker+SGML; ef

2: Operators 351
3: User-Defined Functions 353

3.1 Vertex Shader Semantics 355
3.2 Pixel Shader Semantics 356
3.3 Procedural Texture Shader Semantics 357

4: Intrinsic Functions 357
5: Pixel Shader 1_x Considerations 386

5.1 ps_1_1, ps_1_2, and ps_1_3 387
5.2 ps_1_4 387
5.3 Modifiers 388
5.4 Texture Instructions 391

6: Keywords 397
7: Directives 398
8: Lexical Conventions 398

8.1 White Space 398
8.2 Floating-Point Numbers 399
8.3 Integer Numbers 399
8.4 Characters 400
8.5 Identifiers 400
8.6 Strings 400

9: Grammar 400
9.1 Program 401
9.2 Declarations 401
9.3 Usages 401
9.4 Types 401
9.5 Structures 402
9.6 Annotations 403
9.7 Variables 403
9.8 Initializers 403
9.9 Functions 403
9.10 Techniques 404
9.11 Statements 405
9.12 Expressions 405
9.13 Tokens 407

A04T616531.fm Page x Tuesday, May 13, 2003 2:48 PM

Table of Contents xi

Microsoft Press. Confidential. master page = TOC Recto
DevStand, xgraph, LRCcx, TOC, FrameMaker+SGML; ef

D Effect Reference 409
1: Effect Format 409

1.1 Variables 409
1.2 Techniques 411
1.3 Passes 411
1.4 Expressions 411
1.5 Annotations 413
1.6 Cloning and Sharing 414
1.7 Handles 415
1.8 IDs and Semantics 416
1.9 Usages 417
1.10 Literals 417
1.11 Validation 418

2: Effect States 418
2.1 Light States 419
2.2 Material States 420
2.3 Render States: Vertex Pipeline vs. Pixel Pipeline 421
2.4 Sampler States 426
2.5 Sampler Stage States 426
2.6 Shader States 428
2.7 Shader Constant States 429
2.8 Texture States 431
2.9 Texture Stage States 431
2.10 Transform States 433
Summary 433

A04T616531.fm Page xi Tuesday, May 13, 2003 2:48 PM

Microsoft Press. Confidential. master page = Blank
DevStand, xgraph, LRCcx, TOC, FrameMaker+SGML; ef

A04T616531.fm Page xii Tuesday, May 13, 2003 2:48 PM

xiii

Microsoft Press. Confidential. master page = Section Opener
xgraph, Foreword, LRC, edd version: DevStand_5_22_sections, FrameMaker+SGML; ef

Foreword
Interactive 3-D graphics is one of the most rapidly advancing technologies ever
applied to entertainment. The clear trend of increasing entertainment richness
and sophistication that started with the era of Pong shows no sign of slowing.
Over the next few years, the visual quality and realism of interactive 3-D graph-
ics will grow to levels comparable to those in non-interactive visual media such
as movies and TV. Combining high-quality graphics with interaction produces a
rich expressive medium with the potential to actually surpass the expressive
power and entertainment value of the linear media of today.

Hardware technology has always been a key component of the interactive
medium. It has evolved from the arcade console and engineering workstation
technologies of the early 80s into modern PC display accelerator technology
that achieves better performance with far greater visual realism at orders of
magnitude lower cost.

In addition to the intense innovation in hardware, software has played an
increasingly important role. Although hardware is an integral part of the medium,
software, as code, art content, and tools, forms the content of the medium itself.
Traditionally, only software has had the flexibility to deliver the rich entertain-
ment experience that customers crave.

If interactive 3-D entertainment is to be a dominant medium, it is the soft-
ware developers who will make it happen. Communities such as the PC graph-
ics accelerator vendors, the academic researchers, and the demoscene have all
made and continue to make important contributions to the medium. However,
the interactive software and tool developers hold the key to interactive 3-D
entertainment’s future; they add the entertainment value.

Software developers are the reason for the existence of Microsoft DirectX.
As the industry drives forward in performance and features, DirectX helps drive
the hardware and software components of the medium to be what developers
want them to be. The development of the high-level shader language (HLSL) is
an example of this continual effort. It is only the latest stage in the long process
of empowering software developers that began in the early days of DirectX.

In the design of DirectX 5, the problem was expressing color-blending
operations of multitexture. Although a language-like syntax was desired, it was
not truly required given the relative simplicity of hardware at the time. In the
end, the model chosen was an embryonic virtual machine with one register and
two to eight instructions controlled by mode flags. Yet even this simple

A05F616531.fm Page xiii Tuesday, May 13, 2003 1:07 PM

xiv Foreword

Microsoft Press. Confidential. master page = Left
xgraph, Foreword, LRC, edd version: DevStand_5_22_sections, FrameMaker+SGML; ef

machine was a step forward in making hardware appear more like software,
which is what a software developer would want.

When support for hardware vertex processing was being considered for
DirectX 6, key software partners expressed concerns about the limited flexibil-
ity of the vertex-processing hardware and APIs available. Accustomed to the
flexibility of software, developers wanted to implement their own versions of
traditional vertex algorithms. Additionally, they wanted new algorithms that
existing implementations could not accelerate, such as soft-skinning of charac-
ters and dynamic procedural terrain.

As a result, it was decided that a virtual machine model could be used for
vertex processing too. It would provide the flexibility to express most of the
algorithms developers wanted and enable unique visual styles. So, the multitex-
ture syntax was extended to a more assembly language–like model for both
pixel and vertex shading in DirectX 8.

In DirectX 9, a high-level language compiler was added, completing the
process of enabling hardware to work like software—software that is easy to
write and understand, and that is finally free of dependencies on specific
hardware.

Throughout this process, graphics technology has evolved from simply
lighting pixels to placing them in 3-D perspective and coloring them in myriad
ways to represent every detail of the world we see. Correspondingly, the soft-
ware technology has evolved from setting flags in registers (multitexture), to a
simple assembly language, to a full state-of-the-art high-level language in HLSL.

This evolution from basic functionality to a general programmability
model changes the way hardware and software will be developed in the future,
enabling both to evolve at a greater pace than ever before. Software will no
longer be limited by the wait for a particular feature to be added to hardware,
and hardware no longer has to wait for enough developer interest to commit
precious silicon die area to a feature.

Making all the processors in a PC easily programmable is obvious to a PC
software developer. It is making things work the way they always should have.
Recapitulating the evolution from mode bits to assembly language to high-level
syntax was a natural result of this.

As the culmination of this process of technical innovation, HLSL provides
many benefits to developers: It enables complex algorithms to be simply
expressed. It lets developers and artists translate the key equations of rendering
directly into legible code, and it makes it easier for them to explore all the new
visual styles that its flexibility can support. Creative freedom is now enabled
because developers are limited not by syntax, but only by their imaginations.

A05F616531.fm Page xiv Tuesday, May 13, 2003 1:07 PM

Foreword xv

Microsoft Press. Confidential. master page = Right
xgraph, Foreword, LRC, edd version: DevStand_5_22_sections, FrameMaker+SGML; ef

Another advantage of high-level languages is that code written by one
developer or artist has a very good chance of being understandable and usable
by the next. The resulting interchange of ideas should snowball to new heights
of innovation.

HLSL is the standard for today’s consumer graphics hardware, supported
by all vendors. Although its advantages are many, the fundamental point is to
enable developers to apply all the skills that they have known for years in just
writing software, which will enable the interactive 3-D medium to take the next
leap forward.

This book is the first centralized collection of all the materials needed to
understand and use HLSL. It provides the complete context for understanding
and using the language. Following the history of programmability, the book
first covers the virtual machines that are the ancestors of the language. Next, the
book introduces and defines the language itself and includes examples of inter-
esting shaders to introduce a few of the possibilities for developers to explore
in this powerful new medium.

The book also describes the Direct3-D support technologies, known as
D3DX. D3DX supports the HLSL language such as the D3DX Effects framework,
which helps manage and integrate shaders into production applications. These
technologies will be the medium of tomorrow. HLSL, extended by the power of
effects, will allow developers to easily take advantage of multiple generations
of hardware that exist today, as well as future hardware that is just now being
dreamed of.

Credits
Thanks to everyone on Team DirectX and our partners for helping to make
HLSL successful, but most especially, thanks to all our customers, who provide
the motivation and inspiration for everything we do.

Chas. Boyd
DirectX Graphics Architect
Microsoft Corporation
May 1, 2003

A05F616531.fm Page xv Tuesday, May 13, 2003 1:07 PM

Microsoft Press. Confidential. master page = Blank
xgraph, Foreword, LRC, edd version: DevStand_5_22_sections, FrameMaker+SGML; ef

A05F616531.fm Page xvi Tuesday, May 13, 2003 1:07 PM

xvii

Microsoft Press. Confidential. master page = Section Opener
DevStand, Ack, LRC, edd version: #, FrameMaker+SGML; ke

Acknowledgments

There are many people to thank. I would like to call special attention to people
who played a significant role in the creation of this book.

I would never have gotten this book started without the support and
encouragement of Phil Taylor and Steve Martin.

Also, special thanks to the folks at Microsoft Press, who were extremely
thorough dealing with all my corrections and additions.

Kathy Furtado also deserves special appreciation for the time spent help-
ing me learn how to write in complete sentences. She touched every chapter
and helped to make the book flow better.

There are many people who have been very involved with technical
reviews, including helping me learn Microsoft DirectX by reading and re-read-
ing material and doing lots of code review and debugging. These talented peo-
ple belong to the team of Microsoft employees who help make DirectX happen.
Some of these people contributed material, some read chapters many times,
and some read every page in this book: Loren McQuade, Dan Baker, Craig
Peeper, Jeff Noyle, Amar Patel, Pai-Hung Chen, Iouri Tarassov, Vladimir Kouz-
netsov, Michael Anderson, Jason Sandlin, David Martin, Dave Aronson, and
Christian Lavallee.

 Finally, thanks to the guys on my walleyball team, who gave me the
break I needed every week to keep going to get this book written.

A07A616531.fm Page xvii Tuesday, May 13, 2003 2:48 PM

Microsoft Press. Confidential. master page = Blank
DevStand, Ack, LRC, edd version: #, FrameMaker+SGML; ke

A07A616531.fm Page xviii Tuesday, May 13, 2003 2:48 PM

xix

Microsoft Press. Confidential. master page = Section Opener
xgraph, Intro, LRC, edd version: DevStand_5_22_sections, FrameMaker+SGML; ef

Introduction

This book focuses on the DirectX 9 programmable graphics pipeline, which
implements vertex shaders, pixel shaders, and effects. I did not attempt to cover
the fixed-function pipeline functionality that has been implemented since the
early versions of Microsoft DirectX. Some of the samples in the book use tex-
ture samplers and frame buffer alpha blending. These topics apply to both pro-
grammable and fixed-function shaders.

The Organization of This Book
Part I details assembly-language shaders, both vertex and pixel shaders. These
shaders were the first programmable shaders in DirectX. They use assembly-lan-
guage instructions. The virtual machines that implement the shader functionality
are built from shader registers, an arithmetic logic unit (ALU), and instructions.

Part II details the new high-level shader language (HLSL). HLSL does
everything that can be done with assembly-language shaders, but it uses a C-
like language to do it. Using a C-like language creates more readable programs
that are far easier to write and debug. Code sharing with an HLSL shader is also
faster because the code is easier to read.

Part III details the effect framework. An effect renders a scene in a partic-
ular style that’s determined by the shaders and the pipeline states that are set.
Effects can contain vertex shaders, pixel shaders, and texture shaders built from
assembly language and HLSL.

Samples in this book are designed to add incremental functionality from
Part I to Part III. The earliest samples start with a single vertex shader that dem-
onstrates how to assemble (or compile) the shader code and call the APIs to
render an image. From there, the samples add progressively more—a vertex
and a pixel shader to do some simple 2-D image processing, and blending a
semi-transparent glow with the multitexture blender and the frame buffer. In
Part II, similar samples are converted to HLSL to illustrate the changes required
when using HLSL. HLSL makes it easy to take vertex shader outputs and use
them in a pixel shader. HLSL also supports texture shaders, which are called to
generate procedural textures. In Part III, all the pipeline state changes are
encapsulated in an effect. Effects make it easier to manage pipeline state
(including shader state, which is just another type of state to an effect). Render-

A06I616531.fm Page xix Tuesday, May 13, 2003 2:48 PM

xx Introduction

Microsoft Press. Confidential. master page = Left
xgraph, Intro, LRC, edd version: DevStand_5_22_sections, FrameMaker+SGML; ef

ing schemes can be packaged into effects. Effects also manage the resetting of
pipeline state once rendering is complete.

User Requirements
To use this book, you need to be able to compile and run C++ programs. You
can compile and run the sample code with Microsoft Visual Studio 6.0, a mod-
ern integrated development environment. Alternatively, you can purchase the
more extensive and expensive Microsoft Visual Studio .NET, which supports
programming in other languages as well.

I’ve written this book with the assumption that you already know how to
program in C++. It’s handy if you already know the graphics pipeline, but it’s OK
if you’re only familiar with it. A number of block diagrams have been included
to divide the pipeline processing into understandable blocks. For those less
familiar with the graphics pipeline, Appendix A provides a brief look into the
calculations done by the traditional fixed-function pipeline. These are the calcu-
lations that will be implemented by the vertex shaders included in this book.

System Requirements
To take advantage of the samples in this book, you need to have the DirectX 9
SDK installed and a C++ compiler. It is important that you install the SDK
because it contains the runtime DLLs as well as the reference device DLL
(d3dref9.dll). Many of the samples use vertex and pixel shaders, which might
require the reference device depending on your video card. (If you’re using a
video card that doesn’t support pixel shaders, you’ll need to install the DirectX
reference device to run the pixel shader samples.) But don’t be discouraged if
you don’t have one of these video cards: the samples are built on a framework
that detects your video card capability and will run the reference device auto-
matically. (The samples run slower on the reference device, but the only sam-
ple that will be noticeably slower is the metallic flake sample in Chapter 8.)

The operating system requirements are

■ Microsoft DirectX 9 SDK (included on the companion CD-ROM)

■ Microsoft Windows NT 4, Windows 2000, or Windows XP

All the samples run on the DirectX sample framework. The framework is a
set of classes that perform many of the Windows housekeeping functions, such
as handling mouse movements and key strokes, full screen or windowed appli-
cations, and so on. The SDK installs the header files into <root>\DXSDK\Sam-

A06I616531.fm Page xx Tuesday, May 13, 2003 2:48 PM

Introduction xxi

Microsoft Press. Confidential. master page = Right
xgraph, Intro, LRC, edd version: DevStand_5_22_sections, FrameMaker+SGML; ef

ples\C++\Common\Include and the .cpp files into the <root>\DXSDK\
Samples\C++\Common\Src.

You can check your video card to see whether you need the reference
device mentioned earlier. Simply right-click a blank area of your desktop, and
choose Properties to open the Display Properties dialog. Next click the Settings
tab, click Advanced, and then click the Adapter tab to see what type of video
card you have. To see whether you have the reference device, check for the
d3dref9.dll file in your <root>\Windows\system32 directory. If this file is in
your <root>\Windows\system32 directory, you’re ready to run the samples.

You can install the samples anywhere on your machine. The projects have
been created with relative paths so that they can be built anywhere you like. I
usually install all my projects to the same directory in which the SDK installs its
sample programs, which is <root>\DXSDK\Samples\C++\Direct3D\. Simply
copy the sample folders from the companion CD-ROM to <root>DXSDK\Sam-
ples\C++\Direct3D\, and then open the projects in Visual Studio. These sam-
ples have been tested from a variety of directories, so you shouldn’t have any
trouble building and running them.

The samples can be built and run in either Visual Studio 6 and Visual Stu-
dio .NET or by using any C++ compiler that you like.

The CD-ROM
The companion CD-ROM contains code samples for each chapter. To install the
code samples to your hard disk, run setup.exe in the setup folder of the CD-
ROM. By default, the files will be installed to C:\MyDocuments\Microsoft-
Press\DirectX 9, but you will be given an opportunity to change that target des-
tination during the installation process. Each sample has a solution file (.sln)
that can be loaded in Visual Studio .NET and a project file (.dsw) that can be
loaded in Visual Studio 6.You can either double-click on one of these files to
launch Visual Studio, or you can open the projects from the File/Open menu
options in Visual Studio. The DirectX9 folder also contains the BookCommon
folder. The BookCommon folder has files that are used by the sample frame-
work. You are welcome to look at the files to better understand how Windows
works. There are no buildable projects in the BookCommon folder.

The samples are titled with the chapter name and the tutorial or example
number. They can be run in debug or release form. They can be run hardware
accelerated (if your card can handle it) or with the reference device.

A06I616531.fm Page xxi Tuesday, May 13, 2003 2:48 PM

xxii Introduction

Microsoft Press. Confidential. master page = Left
xgraph, Intro, LRC, edd version: DevStand_5_22_sections, FrameMaker+SGML; ef

I encourage you to run the samples and step through the code line by line
in the debugger. This process is how you will truly start to learn what the code
is doing (and it will give you a great excuse to start using the shader debugger,
which you can read about in the DirectX 9 SDK documentation).

Some samples are built from shaders included in strings, some with shad-
ers included in files, and some with shaders included in resources. Each of
these styles works differently. The samples that have shaders included in a
string are harder to run, but the shader is in the same .cpp file you will be edit-
ing. The samples that have shaders in a separate file are probably the easiest to
build and run. Simply edit the files, and the project will reassemble (or recom-
pile) the shaders at run time. The samples that have shaders in resources are
convenient because the shader is embedded in the .exe, so no external
resource files are required. On the other hand, you must rebuild these samples
each time you change a resource because the shader must be rebuilt into a
resource. You might later want to convert these samples to load a shader file if
you want to do a lot of experimenting.

Support
Every effort has been made to ensure the accuracy of the material in this book
and the contents of the CD-ROM. Microsoft Press provides corrections for
books through the World Wide Web at the following address:

http://www.microsoft.com/mspress/support/search.asp
If you have comments, questions, or ideas regarding this book or the com-

panion CD-ROM, please send them to Microsoft Press using either of the fol-
lowing methods:

Postal Mail
Microsoft Press
Attn: Microsoft DirectX 9 Programmable Graphics Pipeline editor
One Microsoft Way
Redmond, WA 98052-6399

E-mail: mspinput@Microsoft.com
Please note that product support is not offered through the above

addresses.

A06I616531.fm Page xxii Tuesday, May 13, 2003 2:48 PM

Microsoft Press. Confidential. master page = Part Opener (option 2)
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

Part I

Programming
Assembly-Language
Shaders

C01616531.fm Page 1 Tuesday, May 13, 2003 1:02 PM

Microsoft Press. Confidential. master page = Blank
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

C01616531.fm Page 2 Tuesday, May 13, 2003 1:02 PM

3

Microsoft Press. Confidential. master page = Section Opener
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

Vertex Shader Introduction
Programmable shaders have arrived in the 3-D graphics pipeline. If there's a
more exciting topic in graphics, I don't know what it is. Pixar's RenderMan has
been the default commercial standard for rendering programmable effects in
motion pictures. With the advances in video card hardware in the past three
years, programmable vertex and pixel shaders are now available to create the
coolest and most realistic effects ever in games. The latest version of Microsoft
DirectX is highly integrated with the latest video cards to bring hardware accel-
eration to shaders.

This book is the result of hundreds of hours of conversations with the
DirectX developers, testers, and program managers, as well as conversations
with the folks who design and build video card hardware. With unique access
to these talented people, I have had the pleasure of learning from each of them.
This book captures that knowledge in a manner that, I hope, will increase your
understanding of shaders, regardless of how much shader experience you
already have.

Assembly-language shaders were implemented first. These are described
in Part I. The assembly-language shader models introduce the concepts funda-
mental to understanding shader design. Even if you never intend to program in
assembly, it’s worthwhile to read Part I if you’re new to shader design. Part II of
this book focuses on using a high-level shader language (HLSL) that looks like
programming in C. The HLSL compiles shader into assembly, so you are actu-
ally still using assembly-language shaders (although you won’t have to see
assembly again). Once you understand how to program in HLSL, you'll find
shader generation much easier than working in assembly. Part III extends the
shader framework by adding another layer called effects. Effects are an exten-

C01616531.fm Page 3 Tuesday, May 13, 2003 1:02 PM

4 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

sion that encapsulates the pipeline state necessary to run shaders. Effects are a
handy way to build shaders that work on various hardware platforms.

Vertex Processing
The goal of this chapter is to get you writing vertex shaders using assembly-lan-
guage instructions. In this chapter, all the shaders are compiled with
D3DXAssembleShaderxxx application programming interfaces (APIs).

Writing shaders requires some knowledge of the graphics pipeline, assem-
bly-language instructions, and the Direct3D API. This chapter introduces you to
two working code samples that demonstrate basic vertex shaders. The exam-
ples are generally concise but functional, and they’ll serve to get you ready to
generate shaders almost immediately.

When you have seen the tutorials in Chapter 1, you'll have a good intro-
duction to shader writing with assembly language. Chapter 2 provides detail
about what's inside of the vertex shader virtual machine. Chapter 3 extends the
tutorials from Chapter 1 by going into more detail with software development
kit (SDK) samples. If you want a refresher on the 3-D transformations and light-
ing equations used in vertex processing, see Appendix A.

Before discussing the first shader, let’s take a quick look at the vertex pro-
cessing that is done in the fixed function pipeline, shown here:

Vertex shaders are executable programs that process vertex data. In the
fixed function pipeline, Vertex processing takes primitive vertex data from
model space and converts it into vertex data in projection space. Before we go
any further, let's define some of the terms we just used.

A primitive is a basic 3-D object such as a cube, a sphere, or a cone. A prim-
itive is constructed from points, which are locations in space defined by an (x,y,z)
value. Each of these points is called a vertex. The points are connected to make
surfaces, which make up 3-D models. Notice that the teapot model is made up of
polygons formed by connecting the points that make up the vertices.

Rendered
pixels

Primitive
processing

Vertex data
in model
space

High order
primitive

data

Vertex
processing

Pixel
processing

Tessellation

Pre-Processing

C01616531.fm Page 4 Tuesday, May 13, 2003 1:02 PM

Chapter 1 Vertex Shader Introduction 5

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

Model space and projection space are different coordinate spaces. A coor-
dinate space is used to locate a point. A coordinate space has an origin, which
is the (0,0,0) point that all other points are measured from. Model space is the
name of the space used by model coordinates. Projection space is the name of
the coordinate space where vertex data has been located relative to the cam-
era's location. These spaces are identified in more detail in Appendix A.

Vertex processing converts data from model space to projection space, as
shown in the following diagram. The processing steps are repeated on each
vertex.

Here are the steps involved with the conversion:

■ World Transform. Converts vertex data from model space to
world space. Objects are positioned and rotated relative to each
other in world space.

■ Vertex Blending. Blending combines one or more sets of vertex
data to animate vertex data. Vertex blending uses one set of vertex
data and one or more transforms (each with a corresponding
weight). The vertex data is transformed by each of the transforms
and the results are combined using the weight.

Primitive
vertex data in
model space

Vertex Processing (detailed)

Primitive
vertex data in

projection
space

World
transform

Vertex
blending

View
transform

Vertex
fog

Lighting
and

materials

Projection
transform

C01616531.fm Page 5 Tuesday, May 13, 2003 1:02 PM

6 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

Vertex tweening is another form of vertex blending. Tweening
requires two sets of position or normal data, which are combined
using a tween factor. Vertex blending is implemented by the fixed
function pipeline, and is included here for completeness. It will not
be further discussed in this book.

■ View Transform. Converts vertex data from world space to view
space. The camera is at the origin of view space. Once vertex data is
converted to view space, the models are oriented relative to the cam-
era.

■ Vertex Fog. Calculates a per-vertex fog color. The vertex fog color
is usually blended with the other per-vertex colors (such as user-sup-
plied color, lighting, and material colors) to generate the final per-
vertex color, just before primitive processing.

■ Lighting and Materials. Calculates a per-vertex color based on
the contributions from lights and materials. Lighting is calculated
from the active lights in the scene. Material colors are specified as
constants. The combination of materials and lights approximates the
real-world interaction between lights and material surfaces. Applying
convincing lighting that does not ruin performance is a challenge.

■ Projection Transform. Converts vertex data from view space to
projection space. This is the final coordinate space conversion, and it
gets the vertex data ready for primitive processing.

The order of the blocks can be changed as long as the processing of the
vertex data is implemented for the coordinate space used. Some tasks are
optional, depending on the results desired. The remainder of this chapter
describes each of these tasks in more detail. The simplest vertex processing
pipeline can be constructed from implementing world, view, and projection
transforms, so we will begin with a simple transformation.

Vertex Shader Tutorial 1: Transforming Vertices
In computer programs, the simplest program is often one line of code that dis-
plays the string "Hello World." This tutorial is analogous in that it implements a
vertex shader that does one thing: it transforms the vertices of one triangle (very
simple geometry) from model space to projection space. Once transformed, the
triangle can be rendered in the 3-D scene (See Color Plate 1).

C01616531.fm Page 6 Tuesday, May 13, 2003 1:02 PM

Chapter 1 Vertex Shader Introduction 7

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

Here's what the vertex shader looks like:

const char* strAsmVertexShader =
vs_1_1 // version instruction
dcl_position v0 // define position data in register v0
m4x4 oPos, v0, c0 // transform vertices by view/projection matrix

The vertex shader contains assembly-language instructions for implement-
ing vertex processing. In this case, the shader is one long string contained in the
.cpp file. The reason for using a text string will be obvious when we get to the
code for building the shader. For now, let's focus on the shader, which contains
three instructions:

1. A version declaration

vs_1_1 // version instruction

2. A register declaration

dcl_position v0 // define position data in register v0

3. A 4x4 matrix transformation

m4x4 oPos, v0, c0 // transform vertices by view/projection matrix

The first instruction is a version declaration. The version declaration is
always the first instruction in an assembly shader.

There are several valid vertex shader versions:

■ vs_1_1

■ vs_2_0

■ vs_2_x

■ vs_2_sw

■ vs_3_0

■ vs_3_sw

In general, the shader version increases to reflect an increase in function-
ality; that is, vs_2_0 has more functionality than vs_1_1. Also, newer versions
are generally backward compatible, which means that a newer version supports
the new functionality as well as the functionality in the previous versions. So,
vs_3_0 supports vs_2_0 and vs_1_1 functionality, plus new features introduced
in vs_3_0.

There are two types of shader versions: those that are hardware-acceler-
ated, and those intended to run in software. Hardware-accelerated means that
the device can perform the shader processing in hardware on the graphics pro-

C01616531.fm Page 7 Tuesday, May 13, 2003 1:02 PM

8 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

cessor unit (GPU). The GPU is the CPU located on the video card. Shifting pro-
cessing from the CPU to the GPU almost always improves performance, so the
fastest shaders are running hardware accelerated.

The software vertex shader versions, vs_2_sw and vs_3_sw, are provided
to allow for shader development, even if the hardware does not yet implement
the hardware-accelerated versions. Software shader versions provide full func-
tionality. But because the shaders are running on a CPU, there is a significant
performance reduction.

The second instruction is a register declaration.

dcl_position v0 // define position data in register v0

This register declaration tells us that the vertex buffer will contain position
data. Therefore, the application must have a corresponding vertex buffer dec-
laration in it, which would look something like this:

// Create the vertex declaration
D3DVERTEXELEMENT9 decl[] =
{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },

D3DDECL_END()
};

A vertex buffer declaration defines each of the components in the vertex
buffer by supplying information such as data type, number of components, and
the location of the data in the vertex buffer. This vertex declaration will be
explained in more detail shortly.

Registers exchange the per-vertex data between the shader arithmetic
logic unit (ALU) and the pipeline.

C01616531.fm Page 8 Tuesday, May 13, 2003 1:02 PM

Chapter 1 Vertex Shader Introduction 9

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

Per-vertex data is loaded into input registers, which then pass the data to
the ALU. Output registers store the ALU results and pass the data into primitive
processing (or back into the vertex buffer if software processing is used). Con-
stant registers provide shader constants. Constant registers are set before draw
calls and provide shader constants while the vertex shader is running. Tempo-
rary registers provide temporary read/write storage for intermediate results. An
address register allows one level of in-direction into the other registers.

The dcl instruction binds a shader input register to the vertex data that fills
it. This example binds the position data to input register v0. We know it binds
position data because the dcl instruction has the _position suffix.

The third instruction is a matrix multiply:

m4x4 oPos, v0, c0 // transform vertices by view/projection matrix

This instruction performs a four-component floating-point matrix multiply
using the v0 input register and the c0 input register. The output is written to the
oPos register, which feeds the data back into the pipeline for primitive process-
ing when the shader completes. Let’s take a closer look at v0 and c0 before
moving on.

Input
Registers

Output
Registers

Vertex data in
model space

Vertex data in
projection space

Arithmetic
Logic Unit

Constant
Registers

Temporary
Registers

Address
Registers

C01616531.fm Page 9 Tuesday, May 13, 2003 1:02 PM

10 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

v0 is the shader input register. It is a 1x4 register that contains four float-
ing-point numbers (x,y,z,w). This data is the vertex position data. The vertex
data originates in the vertex buffer and is streamed into v0 when the shader is
running.

The m4x4 instruction is looking for the first argument, v0, to be a 1x4 vec-
tor and the second argument, c0, to be a 4x4 matrix. v0 is a 1x4 vector, but how
does c0 become a 4x4 matrix?

c0 is a shader constant register. Each shader constant register contains up
to four components. In this case, since c0 is more than a register, it is like a
pointer to the first four shader constants. Because c0 is used by an instruction
that is looking for a 4x4 constant, c0 represents c0, c1, c2, and c3.

This is a very simple shader. The vertex shader requires two setup instruc-
tions (one for the version and one for a register declaration), four constant reg-
isters (starting with c0), and one line of code for a matrix transform. Matrix
transforms are a common operation in the 3-D pipeline. If you want more back-
ground on transforms and what they do, see Appendix A.

There are a few steps that we need to take in the application to compile
the shader and initialize the shader constant registers. So, let's move on into the
application code.

Like the SDK samples, all the code samples in this book are built using the
sample framework, a set of classes that implement basic Microsoft Windows
functionality. By using an application that derives from the sample framework,
code must be added to some of the methods in CMyD3DApplication to get a
DirectX application up and running.

One of the most common methods used is CMyD3DApplication::Restore-
DeviceObjects. This method is called each time the DirectX device is lost and
needs to be restored, which makes it a good place for creating and initializing
resources. Here's the code in RestoreDeviceObjects for this sample:

const char* strAsmVertexShader =
“vs_1_1 // version instruction\n”
“dcl_position v0 // define position data in register v0\n”
“m4x4 oPos, v0, c0 // transform vertices by view/projection matrix\n”
“;\n”
““;

LPDIRECT3DVERTEXSHADER9 m_pAsm_VS;
LPDIRECT3DVERTEXDECLARATION9 m_pVertexDeclaration;

// A structure for our custom vertex type
struct CUSTOMVERTEX
{

FLOAT x, y, z; // The transformed position for the vertex
};

C01616531.fm Page 10 Tuesday, May 13, 2003 1:02 PM

Chapter 1 Vertex Shader Introduction 11

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

// Compile and create the vertex shader
LPD3DXBUFFER pShader = NULL;
hr = D3DXAssembleShader(

strAsmVertexShader,
(UINT)strlen(strAsmVertexShader),
NULL, // A NULL terminated array of D3DXMACROs
NULL, // #include handler
D3DXSHADER_DEBUG,
&pShader,
NULL // error messages
);

if(FAILED(hr))
{

SAFE_RELEASE(pShader);
return hr;

}
// Create the vertex shader
hr = m_pd3dDevice->CreateVertexShader(

(DWORD*)pShader->GetBufferPointer(), &m_pAsm_VS);
if(FAILED(hr))
{

SAFE_RELEASE(pShader);
SAFE_RELEASE(m_pAsm_VS);
return hr;

}
SAFE_RELEASE(pShader);
///

// Initialize three vertices for rendering a triangle
CUSTOMVERTEX vertices[] =
{

{-1, -1, 0}, // lower left
{ 0, 1, 0}, // top
{ 1, -1, 0}, // lower right

};
// Create the vertex buffer. Here we are allocating enough memory
// (from the default pool) to hold three custom vertices
if(FAILED(hr = m_pd3dDevice->CreateVertexBuffer(

3*sizeof(CUSTOMVERTEX), 0, 0, D3DPOOL_DEFAULT,
&m_pVB, NULL)))

{
SAFE_RELEASE(m_pVB);
return hr;

}
// Now we fill the vertex buffer. To do this, we need to Lock() the
// vertex buffer to gain access to the vertices
VOID* pVertices;
if(FAILED(hr = m_pVB->Lock(0, sizeof(vertices),

(continued)

C01616531.fm Page 11 Tuesday, May 13, 2003 1:02 PM

12 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

(VOID**)&pVertices, 0)))
{

return hr;
}
memcpy(pVertices, vertices, sizeof(vertices));
hr = m_pVB->Unlock();
// Create the vertex declaration
D3DVERTEXELEMENT9 decl[] =
{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },

D3DDECL_END()
};
if(FAILED(hr = m_pd3dDevice->CreateVertexDeclaration(decl,

&m_pVertexDeclaration)))
{

SAFE_RELEASE(m_pVertexDeclaration);
return hr;

}
// Set up render states
m_pd3dDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
// Set up the world matrix
D3DXMatrixIdentity(&m_matWorld);
// Set up the projection matrix
D3DXMatrixPerspectiveFovLH(&m_matProj, D3DX_PI/4,

1.0f, 0.1f, 100.0f);

Here's a breakdown of what is being done in RestoreDeviceObjects:

■ Declare the shader (in a string)

■ Assemble the shader

■ Create the shader object

■ Declare object vertices

■ Create and fill the vertex buffer

■ Create the vertex declaration object

■ Set up render states

■ Initialize other variables, such as matrices

The shader string declaration looks like this:

const char* strAsmVertexShader =
"vs_1_1 // version instruction\n"
"dcl_position v0 // define position data in register v0\n"
"m4x4 oPos, v0, c0 // transform vertices by view/projection matrix\n"
“;\n”
"";

C01616531.fm Page 12 Tuesday, May 13, 2003 1:02 PM

Chapter 1 Vertex Shader Introduction 13

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

Each line starts and ends with a double quote, and the end of each line
also contains a newline character (\n) to start a new line.

Use D3DXAssembleShader to assemble the shader instructions.

// Compile and create the vertex shader
LPD3DXBUFFER pShader = NULL;
hr = D3DXAssembleShader(

strAsmVertexShader,
(UINT)strlen(strAsmVertexShader),
NULL,
NULL,
D3DXSHADER_DEBUG,
&pShader,
NULL // error messages
);

if(FAILED(hr))
{

SAFE_RELEASE(pShader);
return hr;

}

Assembling shader instructions converts each instruction to its binary
code. D3DXAssembleShader takes the following inputs:

■ The string that contains the shader

■ The size of the shader string

■ A NULL terminated array of D3DXMACROs

■ A pointer to an include handler

■ One or more D3DXSHADER flags.

It then returns one or more of the following outputs:

■ A pointer to the assembled shader

■ A pointer to the error buffer

Once the shader has been successfully assembled, the shader object is
created.

// Create the vertex shader
hr = m_pd3dDevice->CreateVertexShader(

(DWORD*)pShader->GetBufferPointer(), &m_pAsm_VS);
if(FAILED(hr))
{

SAFE_RELEASE(m_pAsm_VS);
SAFE_RELEASE(pShader);
return hr;

}

C01616531.fm Page 13 Tuesday, May 13, 2003 1:02 PM

14 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

CreateVertexShader returns a pointer to the shader object in m_pAssy_VS.
Once the shader object is created, there is no need to hold on to the buffer that
contains the assembled shader code, so be sure to release it to free up the
resource.

Here’s the code for declaring the vertex data:

// A structure for our custom vertex type
struct CUSTOMVERTEX
{

FLOAT x, y, z; // The transformed position for the vertex
DWORD color; // The vertex color

};
// Initialize three vertices for rendering a triangle
CUSTOMVERTEX vertices[] =
{

{-1, -1, 0}, // lower left
{ 0, 1, 0}, // top
{ 1, -1, 0}, // lower right

};

This sample contains only one triangle, so the vertex data is three (x,y,z)
points.

This next step creates and initializes the vertex buffer.

// Create the vertex buffer. Here we are allocating enough memory
// (from the default pool) to hold three custom vertices
if(FAILED(hr = m_pd3dDevice->CreateVertexBuffer(

3*sizeof(CUSTOMVERTEX), 0, 0, D3DPOOL_DEFAULT,
&m_pVB, NULL)))

{
return E_FAIL;

}
// Fill the vertex buffer. To do this, we need to Lock() the
// vertex buffer to gain access to the vertices
VOID* pVertices;
if(FAILED(hr = m_pVB->Lock(0, sizeof(vertices),

(VOID**)&pVertices, 0)))
{

return E_FAIL;
}
memcpy(pVertices, vertices, sizeof(vertices));
hr = m_pVB->Unlock();

CreateVertexBuffer creates the vertex buffer in the default pool, which
tells the runtime to choose which type of memory the buffer should be created
in. After the vertex buffer object is created, it is locked so that the vertex data
can be copied into it. Then it is unlocked so that it can be read by the runtime.
This sequence is repeated in many of the SDK samples.

C01616531.fm Page 14 Tuesday, May 13, 2003 1:02 PM

Chapter 1 Vertex Shader Introduction 15

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

A vertex declaration describes the vertex buffer data. Starting with DirectX
9, the vertex declaration is now created with the D3DVERTEXELEMENT9 struc-
ture. The declaration describes the contents of the vertex buffer, such as how
many components there are, how big they are, and what they are intended for.
For this example, the vertex declaration only needs to describe position data.

// Create the vertex declaration
D3DVERTEXELEMENT9 decl[] =
{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },

D3DDECL_END()
};

Only one line is required in the array declaration (without counting the
line that D3DDECL_END is in). The declaration looks long, but it's relatively
easy to understand. Each line contains six values. The values in this sample
identify the following data characteristics:

■ 0. Stream 0. This is a single stream example.

■ 0. The offset from the start of each vertex to the particular compo-
nent data. In this case, the offset is 0.

■ D3DDECLTYPE_FLOAT3. The data type. This identifies three
floating-point numbers (x,y,z).

■ D3DDECLMETHOD_DEFAULT. Tessellation instructions. Default
means pass the data straight into the pipeline with no tessellation.

■ D3DDECLUSAGE_POSITION. The usage. Usage indicates the
expected use for the data. This example contains position data.

■ 0. Usage index. A usage index can distinguish components in the
vertex buf fer that use s imilar data components, such as
D3DDECLUSAGE_TEXCOORD0, D3DDECLUSAGE_TEXCOORD1,
and so on. Each usage/usage index combination is referred to as a
semantic. Semantics link vertex buffer components with vertex
shader registers.

The last line is D3DDECL_END(), which is a macro. This line is required as
the last line in the declaration to signal that the declaration is complete. With
the declaration complete, the vertex declaration object is created.

if(FAILED(hr = m_pd3dDevice->CreateVertexDeclaration(decl,
&m_pVertexDeclaration)))

{

C01616531.fm Page 15 Tuesday, May 13, 2003 1:02 PM

16 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

SAFE_RELEASE(m_pVertexDeclaration);
return hr;

}

For more information about D3DVERTEXELEMENT9, see the Reference
pages in the SDK documentation.

We are done with resource creation now and only have a few remaining
things to set. Each of the rest of these lines of code initializes pipeline state:

m_pFont->RestoreDeviceObjects();
m_pFontSmall->RestoreDeviceObjects();
// Set up render states
m_pd3dDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);

First the example calls RestoreDeviceObjects on the font objects. The font
objects are used in almost every sample to create a font so that the render sta-
tistics can be displayed in the window when the application runs. During the
application's RestoreDeviceObjects, the resource re-creation is simply passed to
each of the font objects so that they can re-create themselves.

Second some render states are set to initialize pipeline state. This example
sets one render state that turns culling off, which means that triangles will be
drawn regardless of which way they face.

The last two items initialized are matrices:

// Set up the world matrix
D3DXMatrixIdentity(&m_matWorld);
// Set up the projection matrix
D3DXMatrixPerspectiveFovLH(&m_matProj, D3DX_PI/4,

1.0f, 0.1f, 100.0f);

The world matrix, m_matWorld, and the projection matrix, m_matProj,
are initialized in RestoreDeviceObjects because they will not need to be changed
once they are initialized. The view matrix is typically in the FrameMove method
so that when the user moves the camera with the mouse, the view matrix gets
updated.

Now we have created all the resources, assembled and created a shader,
initialized render states, and set matrices. If the device is lost, RestoreDeviceOb-
jects will automatically be called by the sample framework and each of these
initialization steps will be rerun. Now it's time to move on to the render code to
see what the shader produces.

The render code for this example is shown here:

// Clear the back buffer
m_pd3dDevice->Clear(0L, NULL, D3DCLEAR_TARGET|D3DCLEAR_ZBUFFER,

0x000000ff, 1.0f, 0L);
// Begin the scene
if(SUCCEEDED(m_pd3dDevice->BeginScene()))
{

// Draw a triangle with the vertex shader

C01616531.fm Page 16 Tuesday, May 13, 2003 1:02 PM

Chapter 1 Vertex Shader Introduction 17

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

if(m_pAsm_VS)
{

D3DXMATRIX compMat;
D3DXMatrixMultiply(&compMat, &m_matWorld, &m_matView);
D3DXMatrixMultiply(&compMat, &compMat, &m_matProj);
D3DXMatrixTranspose(&compMat, &compMat);

m_pd3dDevice->SetVertexShaderConstantF(0, (float*)&compMat, 4);
m_pd3dDevice->SetVertexDeclaration(m_pVertexDeclaration);
m_pd3dDevice->SetVertexShader(m_pAsm_VS);
m_pd3dDevice->SetStreamSource(0, m_pVB, 0, sizeof(CUSTOMVERTEX));
m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 1);
m_pd3dDevice->SetVertexShader(NULL);

}
// End the scene
m_pd3dDevice->EndScene();

}

This sequence is similar to all the SDK samples. The back buffer is cleared
to a single ARGB color (0x000000ff, which is solid blue), and the render code
is tucked inside of a BeginScene/EndScene pair. BeginScene tells the runtime
that the application is submitting render commands to the render queue. End-
Scene tells the runtime that the last of the render commands has been called.

This example renders an assembly-language shader using the following
four steps:

1. The render code sets the vertex shader constant:

D3DXMATRIX compMat;
D3DXMatrixMultiply(&compMat, &m_matView, &m_matProj);
D3DXMatrixTranspose(&compMat, &compMat);
m_pd3dDevice->SetVertexShaderConstantF(0, (float*)&compMat, 4);

Earlier, we saw that the vertex shader requires a view projec-
tion matrix in vertex shader constant register c0. Normally, this is a
world-view-projection matrix, but in this example, the world matrix
is an identity matrix that does not affect the result, so it was omitted.
This code creates a composite view projection matrix that initializes
the constant register. D3DXMatrixMultiply is used to composite the
matrices together into a single result.

D3DXMatrixTranspose transposes the matrix. It rearranges the
matrix data into column-major order. The shader multiply finds the
product of a 1-by-4 vector and a 4-by-4 matrix. Because the vector is
in row-major order, the matrix must be in column-major order so that
the multiply can be implemented as four dot products. The easiest
way to do this is to transpose the matrix before assigning it to the
shader registers.

C01616531.fm Page 17 Tuesday, May 13, 2003 1:02 PM

18 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

SetVertexShaderConstantF initializes a vertex shader constant
register. It takes the following three arguments:

❑ 0. The register number

❑ (float*) &compMat. Points to the 4x4 matrix

❑ 4. Number of constant registers that will be set

In this case, SetVertexShaderConstantFloat initializes four regis-
ters. A register index of 0 identifies register c0. The number of regis-
ters that will be set is four, so the registers that are affected are c0, c1,
c2, and c3. The middle argument uses a float cast to identify the
composite matrix. The float cast tells the compiler to interpret the
matrix pointer as a float pointer.

2. The render code sets the current shader.

m_pd3dDevice->SetVertexDeclaration(m_pVertexDeclaration);
m_pd3dDevice->SetVertexShader(m_pAsm_VS);
m_pd3dDevice->SetStreamSource(0, m_pVB, 0, sizeof(CUSTOMVERTEX));

The current shader is set with SetVertexShader. SetVertexShader
causes the shader to be validated against the device to make sure
that the instructions can be mapped to the hardware (or software)
device. Validation rules are itemized in the SDK on the instruction
reference pages.

The vertex shader requires position data to be set, so SetVertex-
Shader requires two companion calls: SetVertexDeclaration and Set-
StreamSource. SetVertexDeclaration tells the runtime how to identify
the components of the vertex buffer. SetStreamSource identifies the
stream number for the data and the stride of the data.

3. The render code draws the geometry.

m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 1);

DrawPrimitive is called to draw the geometry. The arguments
specify that the data is organized in a triangle list, starts with vertex
0 (the first vertex), and contains one primitive (or triangle in this
case).

4. Finally the current vertex shader is reset.

m_pd3dDevice->SetVertexShader(NULL);

Calling SetVertexShader with a NULL argument resets the current shader to
none. This setting tells the pipeline to render using the fixed function pipeline
because no shader is set. This reset is not necessary in this sample because it

C01616531.fm Page 18 Tuesday, May 13, 2003 1:02 PM

Chapter 1 Vertex Shader Introduction 19

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

uses only one programmable vertex shader (and does not require a reset to
switch between shaders). However, if the render loop switches between fixed
function rendering and using a programmable shader, calling SetVertex-
Shader(NULL) becomes important.

We have finished looking at the application code for creating the
resources and drawing the object. The rendered output is not particularly com-
plex. (See Color Plate 1.)

However, that is of little concern here. Regardless of the simple geometry,
this tutorial should give you a very good idea of how to code an assembly-lan-
guage shader, assemble it, initialize a shader constant, and render the shader
output. In the next tutorial, we'll expand on this shader by adding some com-
plexity to the shader and watching how the changes must be accommodated in
the affected resources.

Vertex Shader Tutorial 1a: Adding a Diffuse Color
This tutorial builds on the previous tutorial by adding a diffuse color to the ver-
tex data that produces a triangle with a color in each vertex. (See Color Plate 2.)

This tutorial uses a shader contained in a shader string. As a result, it will
be assembled using D3DXAssembleShader. If you’re getting tired of seeing the
shader code with the string quotes and newline characters, don't forget that there
are two other versions of the assembly function that use shaders in a different
form: D3DXAssembleShaderFromFile and D3DXAssembleShaderFromResource.
Chapter 6 demonstrates D3DXCompileShaderFromResource, which can easily be
converted to D3DXAssembleShaderFromResource.

The rest of the code in RestoreDeviceObjects creates the resources but is
unchanged from the previous tutorial, including creating and filling the vertex
buffer, assembling and creating the vertex shader object, and setting up render
states and matrices.

// Create the vertex buffer. Here we are allocating enough memory
// (from the default pool) to hold three custom vertices
if(FAILED(hr = m_pd3dDevice->CreateVertexBuffer(

3*sizeof(CUSTOMVERTEX), 0, 0, D3DPOOL_DEFAULT,
&m_pVB, NULL)))

{
/SAFE_RELEASE(m_pVB)

return hr;
}
// Fill the vertex buffer. To do this, we need to Lock() the
// vertex buffer to gain access to the vertices
VOID* pVertices;
if(FAILED(hr = m_pVB->Lock(0, sizeof(vertices),

(VOID**)&pVertices, 0)))
(continued)

C01616531.fm Page 19 Tuesday, May 13, 2003 1:02 PM

20 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

{
return hr;

}
memcpy(pVertices, vertices, sizeof(vertices));
hr = m_pVB->Unlock();
//
// Assemble the vertex shader
LPD3DXBUFFER pShader = NULL;
LPDIRECT3DVERTEXSHADER9 m_pAsm_VS;
LPDIRECT3DVERTEXDECLARATION9 m_pVertexDeclaration;

hr = D3DXAssembleShader(
strAsmVertexShader,
(UINT)strlen(strAsmVertexShader),
NULL, // A NULL terminated array of D3DXMACROs
NULL, // #include handler
D3DXSHADER_DEBUG,
&pShader,
NULL // error messages
);

if(FAILED(hr))
{

SAFE_RELEASE(pShader);
return hr;

}
// Create the vertex shader object
hr = m_pd3dDevice->CreateVertexShader(

(DWORD*)pShader->GetBufferPointer(), &m_pAsm_VS);
if(FAILED(hr))
{

SAFE_RELEASE(m_pAsm_VS);
SAFE_RELEASE(pShader);
return hr;

}
SAFE_RELEASE(pShader);
D3DVERTEXELEMENT9 decl[] =
{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 }

{ 0, 12, D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_COLOR, 0 }

D3DDECL_END()
}
if(FAILED(hr = m_pd3dDevice->CreateVertexDeclaration(decl,

&m_pVertexDeclaration)))
{

SAFE_RELEASE(m_pVertexDeclaration);
return hr;

}
// Set up render states

C01616531.fm Page 20 Tuesday, May 13, 2003 1:02 PM

Chapter 1 Vertex Shader Introduction 21

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

m_pd3dDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
// Set up the world matrix
D3DXMatrixIdentity(&m_matWorld);
// Set up the projection matrix
D3DXMatrixPerspectiveFovLH(&m_matProj, D3DX_PI/4,

1.0f, 0.1f, 100.0f);

Like the position data, this line contains the following information:

■ 0. Stream 0. Both the position and color data are contained in a
single stream.

■ 12. The offset from the start of each vertex to the color data. In this
case, the offset is 12, which means that the color data occurs in the
stream 12 bytes after the position data.

■ D3DDECLTYPE_D3DCOLOR. The data type. Identifies a
D3DCOLOR, which is a DWORD that contains an RGBA value.

■ D3DDECLMETHOD_DEFAULT. Tessellation method. The
default means to pass the data straight into the pipeline with no tes-
sellation. This is the same value as was used in the position data.

■ D3DDECLUSAGE_COLOR. The usage. Usage indicates the
expected use for the data. This data will be used as a diffuse color.

■ 0. Usage index. Because the index is 0, the semantic (usage +
usage index) for this component is D3DDECLUSAGE_COLOR0.

The previous tutorial demonstrated the API calls to assemble and render a
vertex shader. This tutorial highlights the relationship between the vertex data
and the vertex declaration (which describes the vertex data). It also shows the
changes in the shader code to take advantage of the vertex data.

This tutorial will help reinforce what you learned in the previous tutorial
and should give you a clearer picture of the changes in the application that are
caused by vertex data modifications. All the changes in this tutorial are located
in RestoreDeviceObjects. To make the changes more obvious, let’s divide
RestoreDeviceObjects into the following three sections:

1. Vertex data changes

2. Vertex declaration changes

3. Shader code changes

First, here are the vertex data changes to include diffuse color data:

// Initialize three vertices for rendering a triangle
CUSTOMVERTEX vertices[] =

C01616531.fm Page 21 Tuesday, May 13, 2003 1:02 PM

22 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

{
{-1, -1, 0, D3DCOLOR_RGBA(255,255,255,0)}, // white lower left
{ 0, 1, 0, D3DCOLOR_RGBA(255,0,0,0)}, // red top
{ 1, -1, 0, D3DCOLOR_RGBA(0,0,255,0)}, // blue lower right

};

Second, here are the vertex declaration changes to include a description
of the diffuse data:

// Create the vertex declaration
D3DVERTEXELEMENT9 decl[] =
{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },

{ 0, 12, D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_COLOR, 0 },

D3DDECL_END()
};

Third, here are the vertex shader code changes to accommodate the dif-
fuse color, which include a register declaration and an additional shader
instruction to output the diffuse color:

const char* strAsmVertexShader =
"vs_1_1 // version instruction\n"
"dcl_position v0 // define position data in register v0\n"
"dcl_color v1 // define color data in register v1\n"
"m4x4 oPos, v0, c0 // transform vertices by view/projection matrix\n"
"mov oD0, v1 // output diffuse color\n"
"";

There are two new instructions to handle the diffuse color.

dcl_color v1 // define color data in register v1
mov oD0, v1 // output diffuse color

The dcl_color instruction binds the vertex buffer color data to the v1 input
register. Register declarations are used to bind vertex buffer data to shader input
regis ters . When DrawPrimitive is cal led, data with the semantic
D3DDECLUSAGE_COLOR0 is streamed from the vertex buffer into the v1 vertex
shader input register.

The mov instruction copies the vertex color data from v1 into the oD0 ver-
tex shader output register. v1 is a four-component register, which contains
RGBA data representing the red, green, blue, and alpha diffuse color compo-
nents. oD0 is the vertex shader output register that outputs diffuse color. This
register streams the data back into the pipeline for primitive processing so that
the diffuse color can be interpolated over raster lines before it moves on to
pixel processing.

C01616531.fm Page 22 Tuesday, May 13, 2003 1:02 PM

Chapter 1 Vertex Shader Introduction 23

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

All this code is unchanged from Tutorial 1. This is a good example of reus-
ing code to expand a shader application. It’s done by adjusting the raw vertex
data, the vertex shader declaration, and the vertex shader code to use the addi-
tional data.

Similarly, the render code is completely unchanged.

D3DXMATRIX compMat;
D3DXMatrixMultiply(&compMat, &m_matWorld, &m_matView);
D3DXMatrixMultiply(&compMat, &compMat, &m_matProj);
D3DXMatrixTranspose(&compMat, &compMat);
m_pd3dDevice->SetVertexShaderConstantF(0, (float*)&compMat, 4);
m_pd3dDevice->SetVertexDeclaration(m_pVertexDeclaration);
m_pd3dDevice->SetVertexShader(m_pAsm_VS);
m_pd3dDevice->SetStreamSource(0, m_pVB, 0, sizeof(CUSTOMVERTEX));
m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 1);

The render code is unchanged because the vertex declaration and the ver-
tex shader are encapsulated in objects (and no additional pipeline state was
required to take advantage of diffuse color). To see an even better example of
code reuse, see Part III of this book, which demonstrates effects. Effects man-
age the pipeline state changes that accompany more complex rendering.

Summary
Now that you've seen two tutorials, you might be ready to write your own
assembly-language shaders. The next chapter will broaden your knowledge of
vertex shaders by introducing the vertex shader virtual machine. Chapter 2 will
cover in more detail shader registers, the instruction set, and the different vertex
shader versions. If you already have a good understanding of the vertex shader
virtual machine, feel free to skip ahead to Chapter 3.

C01616531.fm Page 23 Tuesday, May 13, 2003 1:02 PM

Microsoft Press. Confidential. master page = Blank
DevStand, xgraph, LRCCx, Ch01, FrameMaker+SGML; kd

C01616531.fm Page 24 Tuesday, May 13, 2003 1:02 PM

25

Microsoft Press. Confidential. master page = Section Opener
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

Vertex Shader Virtual
Machine

If you want to understand how to design vertex shaders, you need to take a
closer look at the vertex shader virtual machine. The virtual machine is a con-
ceptual model that makes it easier to visualize how vertex shaders work. Like
any machine, vertex shaders require inputs, perform certain operations, and
produce outputs. To begin with, let’s take a look at a conceptual block diagram.

Virtual Machine Block Diagram
A vertex shader uses mathematical operations to convert vertex data from
model space to projection space. A conceptual block diagram of the vertex
shader virtual machine is shown in the following figure.

C02616531.fm Page 25 Tuesday, May 13, 2003 1:04 PM

26 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

Vertex data flows from left to right in the figure. Registers manage the
shader inputs and outputs. The shader operations are implemented with a set of
assembly-language instructions that are executed by an arithmetic logic unit
(ALU). To load data into a shader, simply load it into a shader input register.
Similarly, vertex shaders write outputs into vertex shader output registers. Input
data comes from the vertex buffer. It is the per-vertex data that is supplied by
the model, such as position, normal, texture coordinate, or diffuse color. Out-
put data is fed back into the pipeline where it goes on to primitive processing
or might be fed back into a vertex buffer.

Each register contains four floating-point values. There are several types
of registers, and each has a different function.

■ Input registers read from the vertex buffer

■ Constant registers provide constants to the ALU

■ Temporary registers are like temporary shader variables

■ Output registers contain the shader results

With registers to handle the input and output data, and an ALU to perform
vertex processing, the “brains” behind the shader are in the instruction set. The
instruction set contains many instructions for performing a variety of vertex pro-
cessing operations, such as finding a dot product, multiplying by a matrix, find-
ing min and max values, and so on. We’ll see a complete list of the instructions
later. For a vertex shader to take advantage of the instruction set, a shader must
make a few declarations early in the shader code. Let’s look at the layout of a
shader next.

Primitive
vertex data
in projection

space

Input
Registers

v#

Instructions

Temporary Registers - r#
Address Register - a0

Constant Registers - c#
Boolean Register - b0

Integer Flow Control Register - i#
Loop Counter Register - aL

Primitive
vertex data
in model
space

Output
Registers
oPos, oD#
oFog, oPts,

oT#, o#

ALU

C02616531.fm Page 26 Tuesday, May 13, 2003 1:04 PM

Chapter 2 Vertex Shader Virtual Machine 27

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

Shader Layout
An assembly-language shader contains several different types of instructions.
Like any programming language, some instructions must occur before others.
The shader instructions can be divided into the following parts:

■ A version instruction

■ Comments

■ Constants

■ Input register declarations

■ Instructions

The following figure shows an example shader. Details of each part follow
the example.

A version instruction must be the first instruction in any shader. It identi-
fies the shader version that the shader code will be assembled against. This
example will run on vs_1_1 hardware.

Comments can appear anywhere in a shader. As in the C language, you
can add comments by following a double slash (//) on the same line; by
embedding comments between a slash-asterisk pair (/* ... */), which can be
used for multiple-line comments; or after a semicolon. Like any programming

vs_1_1

// constants set by the application
// c0-c3 - View+Projection matrix
// c4.x - 1
// c4.y - 0
// c4.z - 0.5

// constants assembled into the shader
def c8, 0, 1, 2, 3
def c9, 0.0f, 0.25f, 0.5f, 0.75f
…
def c24, 1,1,1,1

// output the texture coordinates
mov oT0, v1

dcl_position v0
dcl_texcoord0 v1

; Transform position
dp4 oPos.x, v0, c0
dp4 oPos.y, v0, c1
dp4 oPos.z, v0, c2
dp4 oPos.w, v0, c3

Version Instruction

Instructions

Comments

Constants

Input Register Declarations

C02616531.fm Page 27 Tuesday, May 13, 2003 1:04 PM

28 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

language, the better you comment your code, the easier it will be to maintain.
The comments in this example suggest that constant registers c0 to c3 will be
set aside to hold a view-projection-matrix, and c4.xyz will contain (1, 0, 0.5).
Because these are comment lines, the constants will need to be set by calling
API methods after the shader is created.

Constants can be assembled into shader code with the def instruction.
These constants are read-only by the shader. Each register can hold up to four
values. This example uses the def instruction to define three constant registers:
register c8 initialized with (0,1,2,3), c9 initialized with (0.0, 0.25, 0.5, 0.75), and
c24 initialized with (1, 1, 1, 1). As an alternative to using the def instruction, con-
stants can also be set using one of the SetVertexShaderConstantx methods.

Vertex shader input registers, such as v0 and v1, are different from con-
stant registers in that they need to be declared before they’re used. The decla-
ration is required because it binds a shader input register with its corresponding
vertex buffer component. When the vertex shader runs, the vertex buffer data
is streamed into the vertex shader input register named in the input register
declaration. This example binds two registers: v0 with the data containing the
position semantic, and v1 with the data containing the texcoord0 semantic.

Once the constants and the input registers are declared, the rest of the
shader is made up of instructions. There are several kinds of instructions: flow-
control, arithmetic, texture, and macro-ops. Each kind of instruction imple-
ments a different type of operation on the vertex data. This example uses the
mov instruction to output the texture coordinates, and four dot product instruc-
tions, dp4, to transform the position data from model space to projection space.
The entire instruction set will be covered later in this chapter.

The last few instructions are usually where the shader outputs the results.
This example outputs texture coordinates in oT0 and the transformed position
in oPos. Every vertex shader must write to the position register, or it will fail val-
idation when it’s assembled. The only exception is when an application calls
ProcessVertices to apply a vertex shader to a set of vertices, and return the
results in a vertex buffer. In this case, no rendering is done.

The virtual machine block diagram (shown earlier) shows that the virtual
machine depends on an instruction set and several types of registers to drive
the ALU. The next section will expand on the register types in more detail.
Once we know what the registers do, we can see what the instruction set does
to control the ALU operations.

Registers
The shader virtual machine implements several types of registers, each with a
different purpose. Input registers provide data to the ALU. The runtime streams

C02616531.fm Page 28 Tuesday, May 13, 2003 1:04 PM

Chapter 2 Vertex Shader Virtual Machine 29

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

data from the vertex buffer into the input registers. Input registers then feed the
data to the ALU. The vertex shader results are written to the output registers.
From there, the results are handed back to the pipeline for primitive processing.
Other input registers contain shader constants or provide temporary storage loca-
tions for intermediate results. The following table lists the input register types.

Note The abbreviation “n/a” used in tables throughout this book
means: not available for this shader version.

The table contains the registers that are supported in each of the vertex
shader versions. Each register is listed by name, with a brief description and the
number of registers in each version. Notice that the lower versions support the
fewest register types and that the latest versions support all the register types.
The following list describes each of the register types.

Table 2-1 Input Register Types

Input
Register
Name Description Data Type vs_1_1 vs_2_0 vs_2_x vs_2_sw vs_3_0 vs_3_sw

a0 Address register integer 1 1 1 1 1 1

aL Loop counter
register

integer n/a 1 1 1 1 1

b# Constant
Boolean
register

Boolean n/a 16 16 2048 16 2048

c# Constant
float register

floating-
point

96
(at least)

256
(at least)

256
(at least)

256
(at least)

256
(at least)

256
(at least)

i# Constant
integer
register

integer n/a 16 16 2048 16 2048

p0 Predicate
register

Boolean n/a n/a 1 1 1 1

r# Temporary
register

floating-
point

n/a 12 12
(at least)

32 32 32

s# Sampler
register

floating-
point

n/a n/a n/a n/a 4 4

v# Input
register

floating-
point

16 16 16 16 16 16

C02616531.fm Page 29 Tuesday, May 13, 2003 1:04 PM

30 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

■ a0. Single indirection register. With it, a shader can index into a
constant register. In vs_1_1, only the a0.x component of the address
register can be referenced. In later versions, all the components of
a0 can be accessed.

■ aL. An integer counter is used to control the maximum number of
loops in a loop instruction.

■ b#. Contains the compare condition for the callnz instruction.

■ c#. Floating-point constant registers. Used as an all-purpose regis-
ter for constants.

■ i#. Integer constant registers. Controls the loop instruction.

■ p0. Predication register. Predication provides per-component flow
control—that is, each component executes the given instruction only
if the Boolean value for that component is True in the predication
register.

■ r#. Temporary registers. Used for reading and writing shader tem-
porary results. The difference between a temporary register and a
constant register is that a temporary register is a read/write register
and a constant register is read-only.

■ s#. Sampler registers. When textures are sampled, the texel colors
are written into sampler registers.

■ v#. Input registers. The vertex buffer is streamed into input regis-
ters that are declared in the vertex shaders.

Read ports limit the number of registers (of a certain type) that can be read
simultaneously by a single instruction. The specific limitations are listed in the
SDK reference pages. In general, the validator also returns an error message if
the read-port limits are exceeded.

All devices specify their feature set with capability numbers (caps). Each
of the caps is contained in the D3DCAPS9 structure, which is part of every
Microsoft Direct3D device. One easy way to test the caps is to use the
CMyD3DApplication::ConfirmDevices method in the SDK sample framework to
check the settings in D3DCAPS9. For example:

C02616531.fm Page 30 Tuesday, May 13, 2003 1:04 PM

Chapter 2 Vertex Shader Virtual Machine 31

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

■ In all vertex shader versions, the maximum number of constant regis-
ters (c#) is contained in the D3DCAPS9.MaxVertexShaderConst cap.

■ For vertex shader version 2_x and later, the maximum number of
t empora ry r eg i s t e r s (r#) i s con ta ined in the
D3DCAPS9.VS20Caps.NumTemps cap.

The following table lists the output register types.

For all versions prior to vs_3_0, oD0 contains the diffuse color and oD1
contains the specular color. At a minimum, all four components of oPos must be
written.

For version vs_3_0 and later, output registers have been collapsed into 12
o# registers. Each o# register can be used for any parameter that needs to be
interpolated for the pixel shader, such as texture coordinates, colors, fog, and
so on. In addition, output register declarations are now required. These decla-
rations assign semantics to each register, which makes it easy to match vertex
shader output register semantics to pixel shader input register semantics. For
example, oPos or oPts in vs_1_1 is replaced with dcl_position or dcl_pointsize.
Semantics have some additional restrictions, including:

■ All four components of one of the 12 output registers must be
declared as a position register (for example, dcl_position0 v#).

Table 2-2 Output Register Types

Output
Register
Name Description Data Type vs_1_1 vs_2_0 vs_2_x vs_2_sw vs_3_0 vs_3_sw

oD* Diffuse/
specular

floating-
point

2 2 2 2 n/a n/a

oFog Fog floating-
point

1 1 1 1 n/a n/a

oPos Position floating-
point

1 1 1 1 n/a n/a

oPts Point size floating-
point

1 1 1 1 n/a n/a

oT# Texture
coordinate

floating-
point

8 8 8 8 n/a n/a

o# Output
register

floating-
point

n/a n/a n/a n/a 12 16

* = integer number between 0 and the number of resources

C02616531.fm Page 31 Tuesday, May 13, 2003 1:04 PM

32 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

■ Ten other registers are also four-component registers (xyzw). The
remaining register can contain scalar point size data (for example,
dcl_pointsize o#).

■ Each of these semantics is an example of the dcl_usage instruction.
The usage is replaced by the actual semantic attached to the register.
Each output register must be declared with dcl_usage before it can
be used.

In the earlier shader models, only the constant registers c# could be
indexed. In vs_3_0, the input register v# and the output register o# can be
indexed using the address register a0.

Instructions
As we have seen, registers provide data to the ALU and output the results of the
ALU to the pipeline. The ALU operations are controlled by the instruction set.
The instruction set determines two things: when data is transferred from regis-
ters to the ALU (or vice versa), and what mathematical operations are per-
formed on the data by the ALU. There are several types of instructions:

■ Setup instructions

■ Arithmetic instructions

■ Macro-op instructions

■ Texture instructions

■ Flow-control instructions

Setup instructions occur first in the shader and declare the shader version
and the constants. Arithmetic instructions provide the mathematical operations
unless the computations become too complex. Then macro-ops provide higher-
level functions such as a cross-product or linear interpolation. Texture instruc-
tions sample textures, and flow-control instructions determine the order in
which the instructions are executed.

Each shader version supports a maximum number of instruction slots. If
you try to exceed this number, the validation will fail. The number of instruc-
tion slots continues to increase with the version number. The following table
gives the maximum instruction slots with each version number.

C02616531.fm Page 32 Tuesday, May 13, 2003 1:04 PM

Chapter 2 Vertex Shader Virtual Machine 33

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

The maximum number of instruction slots allowed has increased from 128
to 512. (Software versions support unlimited instructions.) The maximum num-
ber is the number of instructions that will pass validation, which is misleading
for the shader versions that have static and dynamic looping instructions. The
actual number of instructions for these later versions is higher because of loop-
ing and branching (up to the limit of flow-control nesting depths). See the SDK
documentation for details on the nesting depths.

The software shader versions, vs_2_sw and vs_3_sw, have an unlimited
number of instructions because the software versions do not get validated. In
general, the software versions have a relaxed set of requirements compared
with the hardware versions.

Each shader version supports a maximum number of instruction slots. You
can think of instruction slots as the amount of memory available to hold shader
instructions. If the shader instructions exceed the number of instruction slots,
shader validation will fail.

Setup Instructions
Setup instructions perform initialization such as declaring the shader version,
defining constants, or declaring registers.

Table 2-3 Instruction Slots

Version Max Number of Instruction Slots

vs_1_1 128

vs_2_0 256

vs_2_x 256

vs_2_sw Unlimited

vs_3_0 512

vs_3_sw Unlimited

Table 2-4 Setup Instructions

Instruction Description
Slots
Used 1_1 2_0 2_x 2_sw 3_0 3_sw

vs Version. 0 x x x x x x

dcl_usage Declare input vertex
registers.

0 x x x x x x

dcl_textureType Declare the texture
dimension for a
sampler.

0 n/a n/a n/a n/a x x

(continued)

C02616531.fm Page 33 Tuesday, May 13, 2003 1:04 PM

34 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

Arithmetic Instructions
Arithmetic instructions provide the mathematical operations in a shader. These
instructions take one or more source registers and perform basic mathematical
functions such as add, subtract, and multiply, as well as operations useful to
graphics such as min, max, dot product, and a reciprocal square root.

def Define a float constant. 0 x x x x x x

defb Define a Boolean
constant.

0 n/a x x x x x

defi Define an integer
constant.

0 n/a x x x x x

Table 2-4 Setup Instructions (continued)

Instruction Description
Slots
Used 1_1 2_0 2_x 2_sw 3_0 3_sw

Table 2-5 Arithmetic Instructions

Instruction Description
Slots
Used 1_1 2_0 2_x 2_sw 3_0 3_sw

abs Absolute value. 1 n/a x x x x x

add Add two vectors. 1 x x x x x x

dp3 Three-component dot
product.

1 x x x x x x

dp4 Four-component dot
product.

1 x x x x x x

dst Distance. 1 x x x x x x

exp Full precision 2x. 1 x x x x x x

expp Partial precision 2x. 1 x x x x x x

frc Fractional component. 1 x x x x x x

lit Calculate lighting. 3 x x x x x x

mad Multiply and add. 1 x x x x x x

max Maximum. 1 x x x x x x

min Minimum. 1 x x x x x

mov Move. 1 x x x x x

mova Move data from a floating-
point register to the address
register.

1 n/a x x x x x

mul Multiply. 1 x x x x x x

nop No operation. 1 x x x x x x

rcp Reciprocal. 1 x x x x x x

C02616531.fm Page 34 Tuesday, May 13, 2003 1:04 PM

Chapter 2 Vertex Shader Virtual Machine 35

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

Macro-Op Instructions
Macro-op instructions combine arithmetic instructions to provide higher-level
functionality. The use of macro-op instructions is optional. In general, each of
these instructions has been optimized for speed, so it’s usually a good idea to
use them. The matrix multiply instructions (m3x2, m3x3, m3x4, m4x3, and
m4x4) are very likely to perform well as hardware acceleration optimizations
exist.

Macro-ops in general are more complex than arithmetic instructions,
which is reflected in the Slots Used column.

rsq Reciprocal square root. 1 x x x x x x

sge Set if the first input is greater
than or equal to the second
input.

1 x x x x x x

slt Set if the first input is less
than the second input.

1 x x x x x x

Table 2-5 Arithmetic Instructions

Instruction Description
Slots
Used 1_1 2_0 2_x 2_sw 3_0 3_sw

Table 2-6 Macro-Op Instructions

Instruction Description
Slots
Used 1_1 2_0 2_x 2_sw 3_0 3_sw

crs Cross product 2 n/a x x x x x

log Full precision log2(x) 1 x x x x x x

logp Partial precision log2(x) 1 x x x x x x

lrp Linear interpolation 2 n/a x x x x x

m3x2 3x2 multiply 2 x x x x x x

m3x3 3x3 multiply 3 x x x x x x

m3x4 3x4 multiply 4 x x x x x x

m4x3 4x3 multiply 3 x x x x x x

m4x4 4x4 multiply 4 x x x x x x

nrm Normalize 3 n/a x x x x x

pow xy 3 n/a x x x x x

sgn Sign 3 n/a x x x x x

sincos Sine and cosine 8 n/a x x x x x

C02616531.fm Page 35 Tuesday, May 13, 2003 1:04 PM

36 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

Texture Instructions
Texture instructions sample textures. Texture sampling uses a 1-D, 2-D, or 3-D
texture coordinate to return a texture color.

Flow-Control Instructions
Flow-control instructions control the order in which instructions are executed. In
other words, they determine which instructions get executed next. For example,
instructions such as loop-endloop determine how many times to execute a series
of instructions. Other flow-control instructions, such as if-else-endif, are used to
execute a series of instructions, based on a comparison to some condition.

Table 2-7 Texture Instructions

Instruction Description
Slots
Used 1_1 2_0 2_x 2_sw 3_0 3_sw

texldl Texture load
with user-
adjustable lod

2+(3 * # cube
maps)

n/a n/a n/a n/a x x

Table 2-8 Flow-Control Instructions

Instruction Description
Slots
Used 1_1 2_0 2_x 2_sw 3_0 3_sw

break Break out of a loop-end-
loop or rep-endrep block.

1 n/a n/a x* x x x

break_comp Break out of a loop-end-
loop or rep-endrep block,
with a comparison.

3 n/a n/a x* x x x

break_pred Break out of a loop-end-
loop or rep-endrep block,
based on a predicate.

3 n/a n/a x* x x x

call Call a subroutine. 2 n/a x x x x x

callnz Call a subroutine if not
zero.

3 n/a x x x x x

callnz_pred Call a subroutine if a pred-
icate register is not zero.

3 n/a n/a x* x x x

else Begin an else block. 1 n/a x x x x x

endif End an if-else block. 1 n/a x x x x x

endloop End of a loop block. 2 n/a x x x x x

endrep End of a repeat block. 2 n/a x x x x x

if Begin an if block (using a
Boolean condition).

3 n/a x x x x x

C02616531.fm Page 36 Tuesday, May 13, 2003 1:04 PM

Chapter 2 Vertex Shader Virtual Machine 37

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

Using the full set of registers and the instruction set, vertex shaders can be
designed to replace the variety of tasks in vertex processing in the fixed func-
tion pipeline. In general, most vertex shader instructions take one instruction
slot. The exceptions are the macro-op instructions, which often take up multi-
ple instruction slots. For the best performance, design shaders using the fewest
instructions. One way to do so is to perform operations in parallel, using the
four-component capability of the registers. Another way to extend the instruc-
tion set without adding registers or instructions is to use modifiers.

Modifiers Extend the Virtual Machine
Modifiers extend the operations available from the instruction set by modifying
the result of an instruction, the destination result, or the source data. As you
might expect, there are three types of modifiers:

■ Instruction modifiers

■ Destination register modifiers

■ Source register modifiers

The following figure shows a conceptual diagram of how the modifiers
are applied.

if_comp Begin an if block, with a
comparison.

3 n/a x x x x x

if_pred Begin an if block with a
predicate condition.

3 n/a n/a x* x x x

label Start of a subroutine. 0 n/a x x x x x

loop Loop. 3 n/a x x x x x

rep Repeat. 3 n/a x x x x x

ret End of a subroutine. 1 n/a x x x x x

set-p Set the predicate register. 1 n/a n/a x* x x x

* A cap must be set.

Table 2-8 Flow-Control Instructions

Instruction Description
Slots
Used 1_1 2_0 2_x 2_sw 3_0 3_sw

Instruction
Instruction
Modifiers:
_sat_pp

Destination
Register

Destination
Register

Modifiers:
write mask

Source
Register

Source
Register
Modifier:
swizzle

Source
Register

Modifiers:
abs,

negate,
absneg

C02616531.fm Page 37 Tuesday, May 13, 2003 1:04 PM

38 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

None of the modifiers use up instruction slots, which means that modifiers
extend the instruction set at essentially no cost.

Instruction modifiers modify the way an instruction operates on the data.
The saturate modifier, _sat, clamps data within the range of 0 to 1 before it’s
written to a destination register. Using the saturate modifier is a nice way to
control data range without requiring extra instructions to clamp results (assum-
ing that the data should be clamped between 0 and 1). The partial modifier
“_pp” allows lower precision instructions to be used.

The saturate instruction modifier does not require additional instruction
slots. There are a few instructions that do not support saturate, such as frc and
sincos. Texture instructions do not support saturate either. Saturate cannot be
used on instructions that are writing to the output register, o#.

Destination modifiers affect how results are written to the destination reg-
ister. Specifically, a write mask controls which destination register components
are written to. In addition, write masks generally must be in component order
(.rgba or .xyzw) regardless of how many components are written. For instance,
.rba and .xw are valid write masks. Any destination register that does not use a
write mask will have all four components written.

Source register modifiers modify the data copied from a source register
before it’s used by the ALU. (The data in the source register is not modified.)
Source register modifiers that appear before the source register in an instruction
are negate, abs, and absneg. The only source register modifier that appears after
the source register is swizzle.

■ negate is just what it sounds like: the data changes sign. If it was pos-
itive, it becomes negative, and vice versa. The negate modifier is
applied by adding a negative sign (-) in front of the source register.

■ abs takes the absolute value of the result. The result is guaranteed to
be greater than or equal to 0.

■ absneg takes the absolute value and then negates the result. The
result is guaranteed to be less than or equal to 0.

■ Swizzling controls which source register components are read before
an instruction executes. Swizzling does not change the contents of
the source register because a swizzled register is copied to a tempo-
rary location before an instruction executes. As a result, swizzling
can replicate one component to other components, or it can rear-
range the order of some or all of the components. Swizzling can be
a powerful tool for rearranging register components so that instruc-
tion count can be reduced.

C02616531.fm Page 38 Tuesday, May 13, 2003 1:04 PM

Chapter 2 Vertex Shader Virtual Machine 39

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

The following swizzles are supported:

■ .r, .rrrr, .xxxx, or .x

■ .g, .gggg, .yyyy, or .y

■ .b, .bbbb, .zzzz, or .z

■ .a, .aaaa, .wwww, or .w

■ .xyzw or .rgba (no swizzle) or nothing

■ .yzxw or .gbra (can be used to perform a cross-product operation in
two clocks)

■ .zxyw or .brga (can be used to perform a cross-product operation in
two clocks)

■ .wzyx or .abgr (can be used to reverse the order of any number of
components)

Omitting the swizzle results in all four components being selected by
default.

The following scalar registers do not allow a swizzle: constant Boolean
register b#, any sampler s#, and the loop counter register aL. The label instruc-
tion does not allow source register swizzling.

None of the modifiers use up instruction slots, which means that modifiers
extend the instruction set at essentially no cost.

By now, you should be starting to understand the main components of
vertex shaders: registers, instructions, and modifiers. The last section is a sum-
mary of the differences between shader versions. It’s intended to help you
select which shader version will meet your needs.

Vertex Shader Version Differences
Which vertex shader version should you use? Do you need static flow-control
instructions? How about texture sampling support? Maybe you’re tired of cod-
ing up lower-level functions and want to take advantage of the performance-
tuned macro-op instructions to manage the more complex work. The next step
is to look at the shader versions available and pick the one that provides the
functionality you need.

In general, pick the highest version you can because as the shader ver-
sions evolve, they get more powerful and the interfaces generally become sim-
pler. By picking the latest versions, you’ll most likely make conversion of your
current shaders to next year’s shader model easier as well. To get the best per-

C02616531.fm Page 39 Tuesday, May 13, 2003 1:04 PM

40 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

formance, pick a version that’s available in hardware that your application will
be running on. This last section highlights the main differences between the
versions to help you unravel which version you should use.

As mentioned, DirectX 9 has the following six vertex shader versions:

■ vs_1_1

■ vs_2_0, vs_2_x, and vs_2_sw

■ vs_3_0 and vs_3_sw

vs_1_1 is the earliest version. It contains all the basic register types: input,
output, constants, temporary, and one address register. The instruction set con-
tains all the basic arithmetic instructions and about half the macro-ops. It does
not support any type of flow control.

vs_2_0 added a few more arithmetic instructions such as absolute value
abs and cross-product crs, and a few more macro instructions such as linear
interpolate lrp, normalize nrm, power pow, sign sgn, and sine and cosine sin-
cos. But the big news is the introduction of static flow-control instructions such
as if-else-endif, call, loop, and repeat (rep). For the first time, shader instruction
flow can be determined from conditional comparisons performed on constants.
To support this functionality, new constant registers for Boolean and integer
constants, as well as a loop counter, were added.

vs_2_x introduced the first dynamic flow-control instructions, such as
break_comp, break_pred, if_comp, and if_pred. These instructions support loop
termination and conditional comparisons that can be performed at run time.
Predication was also added to execute an instruction on a per-component basis,
depending on the Boolean value in the corresponding predicate register com-
ponent. Predication required a new predicate register to hold the predication
Boolean values. The number of temporary registers has been increased.
Because it is now device dependent, a new cap, VS20Caps.NumTemps, was
added to query the device capability.

vs_2_sw is a software-only version of the shader. The software versions
relax instruction counts to virtually unlimited instructions and relax validation
rules. Of course, software versions will not run as fast as hardware-accelerated
shader versions, but they’re useful for prototyping a shader when no hardware
is available.

C02616531.fm Page 40 Tuesday, May 13, 2003 1:04 PM

Chapter 2 Vertex Shader Virtual Machine 41

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

Starting in vs_3_0, the output register set has been simplified to a single
type of register, o#. The output registers now require declarations and seman-
tics to make connecting them to pixel shader input registers easier. vs_3_0 con-
tains the same dynamic flow control and predication support found in vs_2_x
but no longer requires that special caps be set. vs_3_0 also adds support for tex-
ture sampling for the first time in vertex shaders. It also adds support for con-
trolling the vertex stream frequency, which gives the user control over when
streams get reset (as opposed to the runtime resetting streams only between
draw calls).

vs_3_sw is the software-only version of vs_3_0. With it, you can start
developing vs_3_0 functionality on a software device.

Summary
This is just the beginning. This chapter has introduced the registers, instruc-
tions, and modifiers that make up the vertex shader virtual machine. The set of
capabilities is constantly expanding, so look for versions to be updated and fea-
tures to be added. For more detail about the differences, see the SDK reference
pages.

C02616531.fm Page 41 Tuesday, May 13, 2003 1:04 PM

Microsoft Press. Confidential. master page = Blank
DevStand, xgraph, LRCcx3, edd version: #, FrameMaker+SGML; gc

C02616531.fm Page 42 Tuesday, May 13, 2003 1:04 PM

43

Microsoft Press. Confidential. master page = Section Opener
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

Vertex Shader Examples
This chapter builds on the knowledge introduced in the tutorials in Chapter 1.
Three examples will be presented that expand on the functionality of vertex
shaders. All the examples are written in assembly language. The first example,
Vertex Shader Fog, demonstrates vertex fog. The second example, Vertex
Shader SDK Sample, demonstrates vertex displacement using a sine/cosine
shader function. The final example, Vertex Blend SDK Sample, demonstrates
vertex blending with and without using a shader.

Example 1: Vertex Shader Fog
The first example adds per-vertex fog with the vertex shader. In version 1_1 and
2_x shaders, the vertex shader virtual machine has two output registers: one for
fog and one for point size. A scalar register returns a single per-vertex value that’s
used by the pipeline when it renders the effect. In this example, the shader will
calculate a fog factor based on the distance between each vertex and the camera.
The rendered output looks like the earth in a pinkish fog. (See Color Plate 3.)

The vertex shader calculates a linear fog using the equation right out of
the fixed-function pipeline. The fog is a range-based linear fog. The fog starts at
a user-defined distance named fogStart and reaches a maximum value at
another user-defined distance named fogEnd. Here’s the vertex shader that cal-
culates the per-vertex fog factor:

vs_1_1 // version instruction
#define fogStart c9.x
#define fogEnd c9.z
def c9, 2, 2.33, 2.66, 3 // fog start values
def c10, 3, 4.5, 6, 10 // fog end values
def c11, 0, 0, 1, 1 // clamping values
def c13, 0.66, 1.51, 0, 0

C03616531.fm Page 43 Tuesday, May 13, 2003 1:06 PM

44 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

dcl_position v0
dcl_texcoord v7
m4x4 r0, v0, c0 // transform vertices by world-view-projection matrix
mov oPos, r0
mov oT0, v7

m4x4 r1, v0, c4 // transform vertices by world-view matrix

// fog constants calculated in the application (6 instructions)
mov r2.x, c13.y // 1 / (fog end - fog start)
sub r2.y, fogEnd, r1.z // (fog end - distance)
mul r2.z, r2.y, r2.x // (fog end - distance)/(fog end - fog start)

max r2.w, c11.x, r2.z // clamp above 0
min r2.w, c11.z, r2.z // clamp below 1
mov oFog, r2.w // output per-vertex fog factor in r2.x

As always, the shader starts with a version instruction. The shader uses a
few #define directives to define two strings that the shader will use, and it uses
two def instructions to define two constants, c9 and c10. The #defines are pre-
processor directives that substitute the first value for the text string, which
makes the code easier to read.

#define fogStart c9.x

The preprocessor inserts c9.x each time fogStart appears in the code
before the code gets assembled.

The shader declares two input registers: one for position data v0 and one
for texture coordinates v7. The position data is transformed from model space
to projection space and output in oPos, as we’ve seen in previous examples.
The texture coordinates are copied to the output register oT0, as seen in previ-
ous examples also.

The per-vertex fog factor is calculated from the following equation:

fogFactor = (fogEnd - distance) / (fogEnd - fogStart)

The shader implements this equation with the following instructions:

// fog constants calculated in the application (6 instructions)
mov r2.x, c13.y // 1 / (fog end - fog start)
sub r2.y, fogEnd, r1.z // (fog end - distance)
mul r2.z, r2.y, r2.x // (fog end - distance)/(fog end - fog start)

The last three instructions clamp the maximum values to 1 or less, clamp
the minimum values to 0 and above, and output the final fog factor in the oFog
register.

max r2.w, c11.x, r2.z // clamp above 0
min r2.w, c11.z, r2.z // clamp below 1
mov oFog, r2.w // output per-vertex fog factor in r2.x

C03616531.fm Page 44 Tuesday, May 13, 2003 1:06 PM

Chapter 3 Vertex Shader Examples 45

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

The code in RestoreDeviceObjects is much the same as it was in the tuto-
rials in Chapter 1.

hr = D3DXAssembleShader(
strAsmVertexShader,
(UINT)strlen(strAsmVertexShader),
NULL,
NULL,
D3DXSHADER_DEBUG,
&pShader,
NULL // error messages
);

// ...

// Create the vertex shader
hr = m_pd3dDevice->CreateVertexShader(

(DWORD*)pShader->GetBufferPointer(), &m_pAsm_VS);
// Create the vertex declaration
D3DVERTEXELEMENT9 decl[] =
{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },

{ 0, 12, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_TEXCOORD, 0 },

D3DDECL_END()
};
if(FAILED(hr = m_pd3dDevice->CreateVertexDeclaration(decl,

&m_pVertexDeclaration)))
{

SAFE_RELEASE(m_pVertexDeclaration);
return hr;

}

The code has been reduced to only the API calls, which are summarized
in the following list. For more detail, see Tutorial 1a in Chapter 1.

■ D3DXAssembleShader assembles the shader code.

■ The D3DVERTEXELEMENT9 structure declares the vertex buffer data
elements.

■ CreateVertexDeclaration creates the vertex declaration object.

The render code is changed to apply the vertex fog using the fog factor
calculated by the vertex shader.

m_pd3dDevice->SetVertexShader(m_pAsm_VS);
m_pd3dDevice->SetVertexDeclaration(m_pVertexDeclaration);
m_pd3dDevice->SetStreamSource(0, m_pVBSphere, 0,

(continued)

C03616531.fm Page 45 Tuesday, May 13, 2003 1:06 PM

46 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

sizeof(CUSTOM_VERTEX));

D3DXMATRIX compMat, compMatTranspose;
D3DXMatrixMultiply(&compMat, &m_matWorld, &m_matView);
D3DXMatrixTranspose(&compMatTranspose, &compMat);
// Set World-view matix
m_pd3dDevice->SetVertexShaderConstantF(4,

(float*)&compMatTranspose, 4);
D3DXMatrixMultiply(&compMat, &compMat, &m_matProj);
D3DXMatrixTranspose(&compMatTranspose, &compMat);
// Set World-view-projection matrix
m_pd3dDevice->SetVertexShaderConstantF(0,

(float*)&compMatTranspose, 4);

// Set up sampler 0
m_pd3dDevice->SetTexture(0, m_pTexture);

// Set up post texturing fog render states
m_pd3dDevice->SetRenderState(D3DRS_FOGENABLE, TRUE);
m_pd3dDevice->SetRenderState(D3DRS_FOGCOLOR,

D3DCOLOR_RGBA(255,0,255,0));

// Draw sphere
DWORD dwNumSphereVerts =

2*m_dwNumSphereRings*(m_dwNumSphereSegments+1);
m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0,

dwNumSphereVerts -2);

Use SetVertexShaderConstantF to set both shader matrices. Because this is
an assembly-language shader, the matrices need to be transposed before they
are set.

The pipeline blends in the per-vertex fog after the multitexture blender
has applied the texture. Adding fog to an existing vertex color requires two
things: a blending factor, which acts like an alpha factor to blend the fog with
the existing vertex color, and the fog color. The vertex shader provides the per-
vertex blending factor in the oFog register. The fog color is provided with a ren-
der state. In fact, a couple of render states are needed, as shown here:

// Set up post texturing fog render states
m_pd3dDevice->SetRenderState(D3DRS_FOGENABLE, TRUE);
m_pd3dDevice->SetRenderState(D3DRS_FOGCOLOR,

D3DCOLOR_RGBA(255,0,255,0));

Each render state is set by calling SetRenderState, which takes a render
state and its value. The first render state, D3DRS_FOGENABLE, is needed to turn
on fog blending. True turns fog blending on, and False turns fog blending off.
The second render state, D3DRS_FOGCOLOR, contains the RGBA fog color.

C03616531.fm Page 46 Tuesday, May 13, 2003 1:06 PM

Chapter 3 Vertex Shader Examples 47

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

This render state is easy to set using the D3DCOLOR_RGBA macro, which
accepts colors ranging from 0 to 255.

Using the navigation keys, you can vary the sphere position and watch the
fog increase or decrease. The navigation keys include the arrow keys for mov-
ing left and right, the w key to back up, and the s key to move forward. You can
also change the values of fogStart and fogEnd in the shader. To produce a more
dense fog, change fogStart to 2.0 and fogEnd to 2.33. (See Color Plate 4.)

Because we’re using a vertex shader to render the sphere, vertex fog can
no longer be added by the fixed function pipeline, so we have to include it in
the vertex shader.

The vertex shader could implement different fog-falloff equations, such as
a squared or an exponential falloff. The shader calculates a per-vertex fog factor
that’s used by the pipeline to blend the fog color with the exiting vertex color.
Fog blending is done after texturing is done. Don’t forget to use render states to
set fog color and to enable fog blending. Vertex fog does not require any tex-
ture stages to be set up because fog blending occurs after the multitexture
blender.

Example 2: Vertex Shader SDK Sample
The Vertex Shader SDK sample uses a vertex shader to displace vertex position.
This sample is interesting because the surface geometry is not displaced by
modeling the surface, but by applying a function to displace the vertex position
in the y direction (up or down). The displacement can then be varied with time,
using a periodic function (such as sine or cosine). The resulting time-varying
animation of the vertices looks like a wave moving across the surface of the
plane. (See Color Plate 5.)

Amazingly enough, the geometry is a single plane. The vertex shader uses
a periodic function that calculates the displacement amount for each vector
(delta y) based on the distance between the vertex (in the x and z directions)
and the center point of the plane. The result is a series of concentric rings (or
waves) that move across the surface of the plane.

The rings are brightest on the peaks and darkest in the valleys, where the
light does not reach the surface. To modify the plane into this rippling surface,
the surface needs to be reasonably tessellated so that a large number of vertices
are in the surface.

The sine and cosine functions are often used to vary data in a periodic
fashion so that the data will repeat within a certain period of time. For example,
the sine function returns 0 (for an input of 0 degrees), goes to 1 (at an input of
90 degrees), and returns to 0 again (for an input of 180). Then it repeats in the

C03616531.fm Page 47 Tuesday, May 13, 2003 1:06 PM

48 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

negative direction, returning –1 (when the input is 270 degrees) and returning
0 again (at 360 degrees). The function keeps repeating every 360 degrees,
which makes it ideal for performing a time-varying cyclic animation.

Calculating the sine result is not particularly fast, so an approximation for
a Taylor series implementation of the sine function is used instead. An approx-
imation for the Taylor series for sine and cosine looks like this:

sine(x) = x - x**3/3! + x**5/5! + x**7/7!
cosine(x) = 1 - x**2/2! + x**4/4! -x**6/6!

Notice that the series continues on for an infinite number of places to be
absolutely accurate. You’ll have to decide how much accuracy is enough for
your application, but in this sample, we’ll use the first four terms in the Taylor
series to approximate sine and cosine.

Now that you know what’s going to be in the shader, let’s look at the
assembly-language code:

vs_1_1
; Constants:
;
; c0-c3 - View+Projection matrix
;
; c4.x - time
; c4.y - 0
; c4.z - 0.5
; c4.w - 1.0
;
; c7.x - pi
; c7.y - 1/2pi
; c7.z - 2pi
; c7.w - 0.05
;
; c10 - first four Taylor coefficients for sin(x)
; c11 - first four Taylor coefficients for cos(x)
dcl_position v0
; Decompress position
mov r0.x, v0.x
mov r0.y, c4.w ; 1
mov r0.z, v0.y
mov r0.w, c4.w ; 1
; Compute theta from distance and time
mov r4.xz, r0 ; xz
mov r4.y, c4.y ; y = 0
dp3 r4.x, r4, r4 ; d2
rsq r4.x, r4.x
rcp r4.x, r4.x ; d

C03616531.fm Page 48 Tuesday, May 13, 2003 1:06 PM

Chapter 3 Vertex Shader Examples 49

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

mul r4.xyz, r4, c4.x ; scale by time
; Clamp theta to -pi..pi
add r4.x, r4.x, c7.x
mul r4.x, r4.x, c7.y
frc r4.xy, r4.x
mul r4.x, r4.x, c7.z
add r4.x, r4.x,-c7.x
; Compute first four values in sin and cos series
mov r5.x, c4.w ; d^0
mov r4.x, r4.x ; d^1
mul r5.y, r4.x, r4.x ; d^2
mul r4.y, r4.x, r5.y ; d^3
mul r5.z, r5.y, r5.y ; d^4
mul r4.z, r4.x, r5.z ; d^5
mul r5.w, r5.y, r5.z ; d^6
mul r4.w, r4.x, r5.w ; d^7
mul r4, r4, c10 ; sin
dp4 r4.x, r4, c4.w
mul r5, r5, c11 ; cos
dp4 r5.x, r5, c4.w
; Set color
add r5.x, -r5.x, c4.w ; + 1.0
mul oD0, r5.x, c4.z ; * 0.5
; Scale height
mul r0.y, r4.x, c7.w
; Transform position
dp4 oPos.x, r0, c0
dp4 oPos.y, r0, c1
dp4 oPos.z, r0, c2
dp4 oPos.w, r0, c3

The vertex shader starts with the following constants:

■ A matrix is in constant registers c0 to c3.

■ Several literal constants are in constant registers c4 to c7.

■ Sine/cosine terms are stored in constant registers c10 and c11.

The view-projection-matrix will be used to transform the vertices to pro-
jection space. The first four terms in the Taylor series expansion for sine and
cosine fit nicely into the four-component shader constant registers and are rea-
sonably accurate.

Register declarations (dcls) are used to bind shader registers with vertex
shader data. This sample requires per-vertex position data from the vertex
buffer, so there is one corresponding dcl in the shader code.

dcl_position v0

C03616531.fm Page 49 Tuesday, May 13, 2003 1:06 PM

50 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

This dcl instruction binds the position data with the v0 position register.
When the shader runs, position data will be streamed into the v0 register so that
the arithmetic logic unit (ALU) can use that data when a shader instruction calls
for v0. Each register declaration starts with a dcl followed by an _xxx suffix that
identifies the vertex buffer data. In this case, the dcl suffix is _position, which
identifies the position data in the vertex buffer. The last part of the dcl is the
register name that the data will be streamed into. This example specifies v0,
which is identified in the vertex shader input register tables as an input register.

Most of the instructions contribute to the calculation of the sine and cosine
terms:

■ Decompress (or swizzle) the position vector into the x and z compo-
nents of register r0. The other components of r0 (y, w) are set to 1
but are otherwise unused.

■ Compute the angle supplied to sine and cosine from the distance
between the vertex position and the center of the plane, and time.
The distance is computed with the Pythagorean theorem,

r4 = sqrt(r4.x**2 + r4.z**2)

and then scaled by the time.

r4.xyz = r4 * c4.x

■ Clamp the values for theta from –pi to pi.

add r4.x, r4.x, c7.x
mul r4.x, r4.x, c7.y
frc r4.xy, r4.x
mul r4.x, r4.x, c7.z
add r4.x, r4.x,-c7.x

■ Compute the first four values in the sine and cosine series. The fol-
lowing table summarizes the calculations in each of the register com-
ponents.

Table 3-1 Register Components and Values

Register Component Value

r5.x d0

r4.x d1

r5.y d2

r4.y d3

r5.z d4

C03616531.fm Page 50 Tuesday, May 13, 2003 1:06 PM

Chapter 3 Vertex Shader Examples 51

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

Dividing the data up by register and arranging it in component order
makes it easier to see that this looks very similar to the Taylor series approxi-
mation for sine and cosine.

Now sine can be computed by summing up the contributions of the com-
ponents in r4, using a four-component dot product. The same thing can be
done with the components in r5 to get the cosine.

■ Bias the output color to the range of 0 to 1 in r5.x by calculating

r5 = (r5.x + 1) *0.5

Scale the height at each vertex position using

r0.y = r4.x * c7.w

■ Transform the position to projection space with four dot products.
This transform could be performed with a 4x4 matrix multiply. How-
ever, this method would require an additional matrix initialized with
the view-projection transform.
Now that we’ve seen the assembly-language shader code, let’s look at the

corresponding application code. The resource creation code is broken into two
sections: some is located in CMyD3DApplication::InitDeviceObjects. InitDevice-
Objects is a good place for initializing or creating resources that need to be ini-
tialized only once. This method is called after the Direct3D device is created.

Here are the API calls in InitDeviceObjects:

r4.z d5

r5.w d6

r4.w d7

Table 3-2 Register Components and Values

r4 Components Value r5 Components Value

r4.x d1 r5.x 0

r4.y d3 r5.y 2

r4.z d5 r5.z 4

r4.w d7 r5.w 8

Table 3-1 Register Components and Values

Register Component Value

C03616531.fm Page 51 Tuesday, May 13, 2003 1:06 PM

52 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

// Create the vertex shader
{

TCHAR strVertexShaderPath[512];
LPD3DXBUFFER pCode;
D3DVERTEXELEMENT9 decl[] =
{

{ 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },

D3DDECL_END()
};
if(FAILED(hr = m_pd3dDevice->CreateVertexDeclaration(decl,

&m_pVertexDeclaration)))
{

SAFE_RELEASE(m_pVertexDeclaration);
return hr;

}
// Find the vertex shader file
if(FAILED(hr = DXUtil_FindMediaFileCb(strVertexShaderPath,

sizeof(strVertexShaderPath), _T("Ripple.vsh"))))
{

return hr;
}
DWORD dwFlags = 0;

#if defined(_DEBUG) || defined(DEBUG)
dwFlags |= D3DXSHADER_DEBUG;

#endif
// Assemble the vertex shader from the file
if(FAILED(hr = D3DXAssembleShaderFromFile(strVertexShaderPath,

NULL, NULL, dwFlags, &pCode, NULL)))
{

SAFE_RELEASE(pCode);
return hr;

}
// Create the vertex shader

hr = m_pd3dDevice->CreateVertexShader((DWORD*)pCode->GetBufferPointer(),
&m_pAms_VS);

if(FAILED(hr))
{

SAFE_RELEASE(pCode);
SAFE_RELEASE(m_pAsm_VS);
return hr;

}

First the vertex declaration is created by calling CreateVertexDeclaration
with the array of D3DVERTEXELEMENT9 structures. Notice that the declaration
decl contains one line, which specifies the vertex position data, as shown here:

{ 0, 0, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 }

D3DDECL_END()

C03616531.fm Page 52 Tuesday, May 13, 2003 1:06 PM

Chapter 3 Vertex Shader Examples 53

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

The first two zeroes in the declaration identify stream 0 and an offset of 0.
This particular example uses a single stream, with 0 offset in the data. If more
than one data type were in the declaration, you could specify one or more
streams with the zero-based stream index. Also, the stream offset, which is 0 in
this case, indicates the number of bytes from the start of each vertex to that data
type. Each vertex contains a D3DDECLTYPE_FLOAT2, which identifies the data
type as a float2. This type contains two floating-point numbers that represent
the x,y position.

With the vertex declaration taken care of, we can concentrate on the ver-
tex shader creation. Two API calls load and assemble the shader,
DXUtil_FindMediaFileCb and D3DXAssembleShaderFromFile, and another call
generates the shader object, CreateVertexshader.

DXUtil_FindMediaFileCb is a string safe helper function (contained in a
utility library used by the SDK samples) that finds the path to the shader file.
This example uses a shader file named Ripple.vsh.

// Find the vertex shader file
if(FAILED(hr = DXUtil_FindMediaFileCb(strVertexShaderPath,

sizeof(strVertexShaderPath), _T("Ripple.vsh"))))
{

return hr;
}

The function is called a string-safe function because the user must provide
the s t r ing name and the s t r ing s i ze a s inpu t a rgument s .
DXUtil_FindMediaFileCb can then use the string size to make sure that the
string pointer does not advance past the end of the input string. The shader file
name, _T("Ripple.vsh"), uses the _T("") macro (called the _T macro). The shader
file name is always specified in ASCII text, but the _T macro looks at the com-
piler settings to see if the string is created as an ASCII string or a Unicode string.
Notice that the string path is returned in an allocated array.

TCHAR strVertexShaderPath[512];

The TCHAR data type also does the right thing. The array is either
declared as an ASCII string or a Unicode string, depending on the compiler set-
tings. If DXUtil_FindMediaFileCb succeeds, the full path to the shader file is
returned in strVertexShaderPath. Using the full path name, the next step is to
assemble the shader by calling D3DXAssembleShaderFromFile.

DWORD dwFlags = 0;
#if defined(_DEBUG) || defined(DEBUG)

dwFlags |= D3DXSHADER_DEBUG;
#endif

// Assemble the vertex shader from the file.

C03616531.fm Page 53 Tuesday, May 13, 2003 1:06 PM

54 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

if(FAILED(hr = D3DXAssembleShaderFromFile(strVertexShaderPath,
NULL, NULL, dwFlags, &pCode, NULL)))

{
SAFE_RELEASE(pCode);
return hr;

}

D3DXAssembleShaderFromFile takes the full path to the shader file and
returns the assembled shader code in pCode.

RestoreDeviceObjects creates the index and vertex buffers, and initializes
the projection matrix.

// Set up render states
m_pd3dDevice->SetRenderState(D3DRS_LIGHTING, FALSE);
m_pd3dDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
// Create the index buffer.
{

WORD* pIndices;
if(FAILED(hr = m_pd3dDevice->CreateIndexBuffer(

m_dwNumIndices*sizeof(WORD), 0, D3DFMT_INDEX16,
D3DPOOL_DEFAULT, &m_pIB, NULL)))

return hr;
if(FAILED(hr = m_pIB->Lock(0, 0, (void**)&pIndices, 0)))

return hr;
for(DWORD y=1; y<m_dwSize; y++)
{

for(DWORD x=1; x<m_dwSize; x++)
{

*pIndices++ = (WORD)((y-1)*m_dwSize + (x-1));
*pIndices++ = (WORD)((y-0)*m_dwSize + (x-1));
*pIndices++ = (WORD)((y-1)*m_dwSize + (x-0));
*pIndices++ = (WORD)((y-1)*m_dwSize + (x-0));
*pIndices++ = (WORD)((y-0)*m_dwSize + (x-1));
*pIndices++ = (WORD)((y-0)*m_dwSize + (x-0));

}
}
if(FAILED(hr = m_pIB->Unlock()))

return hr;
}
// Create the vertex buffer
{

D3DXVECTOR2 *pVertices;
if(FAILED(hr = m_pd3dDevice->CreateVertexBuffer(

m_dwNumVertices*sizeof(D3DXVECTOR2), 0, 0, D3DPOOL_DEFAULT,
&m_pVB, NULL)))
return hr;

if(FAILED(hr = m_pVB->Lock(0, 0, (void**)&pVertices, 0)))
return hr;

C03616531.fm Page 54 Tuesday, May 13, 2003 1:06 PM

Chapter 3 Vertex Shader Examples 55

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

for(DWORD y=0; y<m_dwSize; y++)
{

for(DWORD x=0; x<m_dwSize; x++)
{

*pVertices++ = D3DXVECTOR2(
((float)x / (float)(m_dwSize-1) - 0.5f) * D3DX_PI,
((float)y / (float)(m_dwSize-1) - 0.5f) * D3DX_PI);

}
}
if(FAILED(hr = m_pVB->Unlock()))

return hr;
}
// Set up the projection matrix
FLOAT fAspectRatio =

(FLOAT)m_d3dsdBackBuffer.Width / (FLOAT)m_d3dsdBackBuffer.Height;
D3DXMatrixPerspectiveFovLH(&m_matProj, D3DXToRadian(60.0f),

fAspectRatio, 0.1f, 100.0f);

The projection matrix will be set into shader constants in the FrameMove
method. Here’s the code for FrameMove:

FLOAT fSecsPerFrame = m_fElapsedTime;

// Update position and view matricies
D3DXMATRIXA16 matT, matR;
D3DXQUATERNION qR;

vT = m_vVelocity * fSecsPerFrame * m_fSpeed;
vR = m_vAngularVelocity * fSecsPerFrame * m_fAngularSpeed;

D3DXMatrixTranslation(&matT, vT.x, vT.y, vT.z);
D3DXMatrixMultiply(&m_matPosition, &matT, &m_matPosition);

D3DXQuaternionRotationYawPitchRoll(&qR, vR.y, vR.x, vR.z);
D3DXMatrixRotationQuaternion(&matR, &qR);

D3DXMatrixMultiply(&m_matPosition, &matR, &m_matPosition);
D3DXMatrixInverse(&m_matView, NULL, &m_matPosition);

// Set up the vertex shader constants
{

D3DXMATRIXA16 mat;
D3DXMatrixMultiply(&mat, &m_matView, &m_matProj);
D3DXMatrixTranspose(&mat, &mat;);

D3DXVECTOR4 vA(sinf(m_fTime)*15.0f, 0.0f, 0.5f, 1.0f);
D3DXVECTOR4 vD(D3DX_PI, 1.0f/(2.0f*D3DX_PI),

(continued)

C03616531.fm Page 55 Tuesday, May 13, 2003 1:06 PM

56 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

2.0f*D3DX_PI, 0.05f);

// Taylor series coefficients for sin and cos
D3DXVECTOR4 vSin(1.0f, -1.0f/6.0f, 1.0f/120.0f, -1.0f/5040.0f);
D3DXVECTOR4 vCos(1.0f, -1.0f/2.0f, 1.0f/ 24.0f, -1.0f/ 720.0f);

m_pd3dDevice->SetVertexShaderConstantF(0, (float*)&mat, 4);
m_pd3dDevice->SetVertexShaderConstantF(4, (float*)&vA, 1);
m_pd3dDevice->SetVertexShaderConstantF(7, (float*)&vD, 1);
m_pd3dDevice->SetVertexShaderConstantF(10, (float*)&vSin, 1);
m_pd3dDevice->SetVertexShaderConstantF(11, (float*)&vCos, 1);

}

Vertex shaders use transposed matrices so that matrix multiplies can be
implemented as a series of dot products. So, each time a matrix sets a series of
vertex shader constants, the matrix needs to be transposed (using
D3DXMatrixTranspose, for example) before calling SetVetexShaderConstantF.

With all the resources created, here’s the code for rendering:

m_pd3dDevice->SetVertexDeclaration(m_pVertexDeclaration);
m_pd3dDevice->SetVertexShader(m_pAsm_VS);
m_pd3dDevice->SetStreamSource(0, m_pVB, 0, sizeof(D3DXVECTOR2));
m_pd3dDevice->SetIndices(m_pIB);
m_pd3dDevice->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, 0,

m_dwNumVertices, 0, m_dwNumIndices/3);

The programmable vertex shader uses SetVertexShader to set the current
shader, along with SetStreamSource and SetIndices to provide access to the vertex
and index buffers. Don’t forget to use SetVertexDeclaration to tell the runtime
how to read the vertex buffer components. Finally call DrawIndexedPrimitive to
begin the rendering. Because indexed vertices are being drawn, DrawInd-
exedPrimitive requires the number of vertices as well as the number of indices to
draw the triangle list.

Example 3: Vertex Blend SDK Sample
The Vertex Blend sample demonstrates a technique called vertex blending (also
known as surface skinning). Blending is a method for animating vertices. The
vertices are transformed with two world matrices and then combined with a
weight factor. Surface skinning is used for animating smooth joints and bulging
muscles in character animations.

The model for this sample is an .x file with the text string Microsoft. When
animated, the object vertices are deformed in the x,y,z directions using sine
functions, which creates a periodic variation of the vertices. (See Color Plate 6.)

Color Plate 7 shows what it looks like without animating the vertices.
Let’s take a look at the vertex shader, which performs the vertex blending.

C03616531.fm Page 56 Tuesday, May 13, 2003 1:06 PM

Chapter 3 Vertex Shader Examples 57

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

vs_2_0
;--
; Constants specified by the application
; c0 = (0,0,0,0)
; c1 = (1,1,1,1)
; c2 = (0,1,2,3)
; c3 = (4,5,6,7)
; c4-c7 = matWorld0
; c8-c11 = matWorld1
; c12-c15 = matViewProj
; c20 = light direction
; c21 = material diffuse color * light diffuse color
; c22 = material ambient color
;
; Vertex components (as specified in the vertex DECL)
; v0 = Position
; v1.x = Blend weight
; v3 = Normal
; v7 = Texcoords
;--
dcl_position v0
dcl_blendweight v1
dcl_normal v3
dcl_texcoord v7
;--
; Vertex blending
;--
; Transform position by world0 matrix
// dp4 r0.x, v0, c4
// dp4 r0.y, v0, c5
// dp4 r0.z, v0, c6
// dp4 r0.w, v0, c7
m4x4 r0, v0, c4
; Transform position by world1 matrix
// dp4 r1.x, v0, c8
// dp4 r1.y, v0, c9
// dp4 r1.z, v0, c10
// dp4 r1.w, v0, c11
m4x4 r1, v0, c8
; Linear interpolate the two positions r0 and r1 into r2
mul r0, r0, v1.x ; v0 * weight
add r2, c1.x, -v1.x ; r2 = 1 - weight
mad r2, r1, r2, r0 ; pos = (1-weight)*v1 + v0*weight
; Transform to projection space
dp4 oPos.x, r2, c12
dp4 oPos.y, r2, c13
dp4 oPos.z, r2, c14
dp4 oPos.w, r2, c15

C03616531.fm Page 57 Tuesday, May 13, 2003 1:06 PM

58 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

;--
; Lighting calculation
;--
; Transform normal by world0 matrix
// dp4 r0.x, v3, c4
// dp4 r0.y, v3, c5
// dp4 r0.z, v3, c6
m3x3 r0, v3, c4
; Transform normal by world1 matrix
// dp4 r1.x, v3, c8
// dp4 r1.y, v3, c9
// dp4 r1.z, v3, c10
m3x3 r1, v3, c8
; Linear interpolate the two normals r0 and r1 into r2
// vs_1_1 code
// mul r0, r0, v1.x ; v0 * weight
// add r2, c1.x, -v1.x ; r2 = 1 - weight
// mad r2, r2, r1, r0 ; normal = (1-weight)*v1 + v0*weight
lrp r2.xyz, v1.x, r0.xyz, r1
; Do the lighting calculation
dp3 r1.x, r2.xyz, c20 ; r1 = normal dot light
max r1.x, r1.x, c0 ; if dot < 0 then dot = 0
mul r0, r1.x, c21 ; Multiply with diffuse
add r0, r0, c22 ; Add in ambient
min oD0, r0, c1.x ; clamp if > 1
;--
; Texture coordinates
;--
; Just copy the texture coordinates
mov oT0, v7

The vertex shader runs on version vs_2_0. It has four register declarations:
one for position, one for the blend weight, one for normal, and one for texture
coordinates. A mesh is used to create the object. The position, normal, and tex-
ture coordinates are part of the mesh. They’re loaded in the vertex buffer when
the .x file is loaded. The blend weight data is a single per-vertex float. It will be
used to combine the two transforms together similar to the way alpha combines
two values.

output = input 1 * weight + input 2 * (1 - weight)

The blend weight data is not part of the mesh. After the model is loaded,
the mesh will get resized to include room for the blend data. Then the per-ver-
tex weights will be generated and saved in the vertex buffer. This is done in
InitDeviceObjects, which is a good place to put code that needs to run once to
initialize the application. The logo is contained in a .x file called mslogo.x and
is loaded with the CD3DMesh class.

C03616531.fm Page 58 Tuesday, May 13, 2003 1:06 PM

Chapter 3 Vertex Shader Examples 59

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

CD3DMesh* m_pObject;
m_pObject = new CD3DMesh();
// Load an object to render
if(FAILED(m_pObject->Create(m_pd3dDevice, _T("mslogo.x"))))

return D3DAPPERR_MEDIANOTFOUND;

Use new to create a mesh object, and then call m_pObject->Create to load
the .x file. The _T macro creates the right type of string based on the project set-
tings. If the project uses Unicode strings, the _T macro creates a Unicode string.
Otherwise, the _T macro creates an ACSII string. If the mesh file fails to load,
the application returns D3DAPPERR_MEDIANOTFOUND and exits.

The next set of code determines what type of device to create. To deter-
mine which type of device to create, we need to test the hardware to find out
what it supports, for example:

■ Does the hardware support the vertex shader version we need?

■ Does the hardware support blending matrices?

// Check that the device supports at least one of the two techniques
// used in this sample: either a vertex shader or at least two blend
// matrices and a directional light
if((dwBehavior & D3DCREATE_HARDWARE_VERTEXPROCESSING) ||

(dwBehavior & D3DCREATE_MIXED_VERTEXPROCESSING))
{

if(pCaps->VertexShaderVersion >= D3DVS_VERSION(2,0))
return S_OK;

}
else
{

// Software vertex processing always supports vertex shaders.
return S_OK;

}

The code first checks if vertex shaders are supported. If vertex shaders are
not supported, the code defaults to blending matrices. If vertex shaders are sup-
ported, the code checks the hardware to see if it supports two or more blending
matrices. If it does, the application defaults to vertex blending.

Here’s the code for adding the blending weights to the mesh:

struct BLENDVERTEX
{

D3DXVECTOR3 v; // Referenced as v0 in the vertex shader
FLOAT blend; // Referenced as v1.x in the vertex shader
D3DXVECTOR3 n; // Referenced as v3 in the vertex shader

C03616531.fm Page 59 Tuesday, May 13, 2003 1:06 PM

60 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

FLOAT tu, tv; // Referenced as v7 in the vertex shader
static const DWORD FVF;

};
const DWORD BLENDVERTEX::FVF =

D3DFVF_XYZB1 | D3DFVF_NORMAL | D3DFVF_TEX1;
// Set a custom FVF for the mesh
m_pObject->SetFVF(m_pd3dDevice, BLENDVERTEX::FVF);
// Add blending weights to the mesh
{

// Gain access to the mesh's vertices
LPDIRECT3DVERTEXBUFFER9 pVB;
BLENDVERTEX* pVertices;
DWORD dwNumVertices = m_pObject->GetSysMemMesh()->GetNumVerti-

ces();
m_pObject->GetSysMemMesh()->GetVertexBuffer(&pVB);
pVB->Lock(0, 0, (void**)&pVertices, 0);
// Calculate the minimum and maximum z-values for all the vertices
FLOAT fMinX = 1e10f;
FLOAT fMaxX = -1e10f;
for(DWORD I=0; i<dwNumVertices; I++)
{

if(pVertices[i].v.x < fMinX)
fMinX = pVertices[i].v.x;

if(pVertices[i].v.x > fMaxX)
fMaxX = pVertices[i].v.x;

}
for(I=0; i<dwNumVertices; I++)
{

// Set the blend factors for the vertices
FLOAT a = (pVertices[i].v.x - fMinX) / (fMaxX - fMinX);
pVertices[i].blend = 1.0f-sinf(a*D3DX_PI*1.0f);

}
// Done with the mesh's vertex buffer data
pVB->Unlock();
pVB->Release();

}

The BLENDVERTEX structure defines the layout of the vertex data. Here’s
the weight that was added to each vertex:

blend value = x - min/(max - min)
1 - sine(blend value * pi)

If the device supports the vertex shader version, here’s the code that cre-
ates the vertex shader:

if((m_dwCreateFlags & D3DCREATE_SOFTWARE_VERTEXPROCESSING) ||
m_d3dCaps.VertexShaderVersion >= D3DVS_VERSION(2,0))

{

C03616531.fm Page 60 Tuesday, May 13, 2003 1:06 PM

Chapter 3 Vertex Shader Examples 61

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

TCHAR strVertexShaderPath[512];
LPD3DXBUFFER pCode;

// Find the vertex shader file.
if(FAILED(hr = DXUtil_FindMediaFileCb(strVertexShaderPath,

sizeof(strVertexShaderPath), _T("Blend_2_0.vsh"))))
{

return hr;
}

// Assemble the vertex shader from the file
if(FAILED(hr = D3DXAssembleShaderFromFile(strVertexShaderPath,

NULL, NULL, 0, &pCode, NULL)))
{

SAFE_RELEASE(pCode);
return hr;

}

// Create the vertex shader
hr = m_pd3dDevice->CreateVertexShader((DWORD*)pCode->GetBufferPointer(),

&m_pVertexShader);
if(FAILED(hr))
{

SAFE_RELEASE(m_pVertexShader);
SAFE_RELEASE(pCode);
return hr;

}
SAFE_RELEASE(pCode);

}

DXUtil_FindMediaFileCb is a helper function used to find the Blend.vsh
file that contains the shader code. By convention, assembly-language vertex
shader code is usually put into a .vsh file. (The .vsh extension stands for vertex
shader.) Once the file is located, D3DXAssembleShaderFromFile is called to
assemble the shader and CreateVertexShader is called to create the shader
object. RestoreDeviceObjects is used to initialize the other application resources.

// Restore the mesh's local memory objects
m_pObject->RestoreDeviceObjects(m_pd3dDevice);

// Get access to the mesh vertex and index buffers
m_pObject->GetLocalMesh()->GetVertexBuffer(&m_pVB);
m_pObject->GetLocalMesh()->GetIndexBuffer(&m_pIB);
m_dwNumVertices = m_pObject->GetLocalMesh()->GetNumVertices();
m_dwNumFaces = m_pObject->GetLocalMesh()->GetNumFaces();

// Set miscellaneous render states
m_pd3dDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
m_pd3dDevice->SetRenderState(D3DRS_AMBIENT, 0x00404040);

C03616531.fm Page 61 Tuesday, May 13, 2003 1:06 PM

62 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

// Set the projection matrix
D3DXMATRIXA16 matProj;
FLOAT fAspect = m_d3dsdBackBuffer.Width / (FLOAT)m_d3dsdBackBuffer.Height;
D3DXMatrixPerspectiveFovLH(&matProj, D3DX_PI/4, fAspect, 1.0f, 10000.0f);

// Set the app view matrix for normal viewing
D3DXVECTOR3 vEyePt = D3DXVECTOR3(0.0f,-5.0f,-10.0f);
D3DXVECTOR3 vLookatPt = D3DXVECTOR3(0.0f, 0.0f, 0.0f);
D3DXVECTOR3 vUpVec = D3DXVECTOR3(0.0f, 1.0f, 0.0f);
D3DXMATRIXA16 matView;
D3DXMatrixLookAtLH(&matView, &vEyePt, &vLookatPt, &vUpVec);

// Create a directional light (Use yellow light to distinguish from
// vertex shader case)
D3DLIGHT9 light;
D3DUtil_InitLight(light, D3DLIGHT_DIRECTIONAL, -0.5f, -1.0f, 1.0f);
light.Diffuse.r = 1.0f;
light.Diffuse.g = 1.0f;
light.Diffuse.b = 0.0f;
m_pd3dDevice->SetLight(0, &light);
m_pd3dDevice->LightEnable(0, TRUE);
m_pd3dDevice->SetRenderState(D3DRS_LIGHTING, TRUE);

Whenever a DirectX application loses its device, the resources need to be
re-created. The RestoreDeviceObjects method is used for that re-creation.

The example animates the vertex position, using a periodic function.
Using the sample framework, all the animation code is placed in the Frame-
Move method. Here’s the code that animates the vertex position:

// Set the vertex blending matrices for this frame
D3DXVECTOR3 vAxis(

2+sinf(m_fTime*3.1f),
2+sinf(m_fTime*3.3f),
sinf(m_fTime*3.5f));

D3DXMatrixRotationAxis(&m_matLowerArm, &vAxis, sinf(3*m_fTime));
D3DXMatrixIdentity(&m_matUpperArm);

The logo is animated by deforming vertices with two world matrices:
m_matLowerArm and m_matUpperArm. m_fTime is a member variable that’s
part of the CD3DApplication base class. The content of m_fTime is the current
time. It is used by the sinf function to generate values between 0 and 1, which
then initialize the vAxis vector.

The lower-arm matrix is initialized with the periodic function while the
upper-arm matrix is simply initialized as an identity matrix. The per-vertex

C03616531.fm Page 62 Tuesday, May 13, 2003 1:06 PM

Chapter 3 Vertex Shader Examples 63

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

weights will be used to combine the lower-arm matrix and the upper-arm
matrix to produce a composite transform.

The last part of FrameMove initializes the vertex shader constants. Assum-
ing that the application is running the vertex shader (instead of using the blend-
ing matrices), the vertex shader constants need to be initialized by the
application.

if(m_bUseVertexShader)
{

// Some basic constants
D3DXVECTOR4 vZero(0,0,0,0);
D3DXVECTOR4 vOne(1,1,1,1);

// Lighting vector (normalized) and material colors (Use red light
// to show difference from non-vertex shader case)
D3DXVECTOR4 vLight(0.5f, 1.0f, -1.0f, 0.0f);
D3DXVec4Normalize(&vLight, &vLight);
FLOAT fDiffuse[] = { 1.00f, 1.00f, 0.00f, 0.00f };
FLOAT fAmbient[] = { 0.25f, 0.25f, 0.25f, 0.25f };

// Vertex shader operations use transposed matrices
D3DXMATRIXA16 matWorld0Transpose, matWorld1Transpose;
D3DXMATRIXA16 matView, matProj, matViewProj, matViewProjTranspose;
m_pd3dDevice->GetTransform(D3DTS_VIEW, &matView);
m_pd3dDevice->GetTransform(D3DTS_PROJECTION, &matProj);
D3DXMatrixMultiply(&matViewProj, &matView, &matProj);
D3DXMatrixTranspose(&matWorld0Transpose, &m_matUpperArm);
D3DXMatrixTranspose(&matWorld1Transpose, &m_matLowerArm);
D3DXMatrixTranspose(&matViewProjTranspose, &matViewProj);

// Set the vertex shader constants
m_pd3dDevice->SetVertexShaderConstantF(0,

(float*)&vZero, 1);
m_pd3dDevice->SetVertexShaderConstantF(1,

(float*)&vOne, 1);
m_pd3dDevice->SetVertexShaderConstantF(4,

(float*)&matWorld0Transpose, 4);
m_pd3dDevice->SetVertexShaderConstantF(8,

(float*)&matWorld1Transpose, 4);
m_pd3dDevice->SetVertexShaderConstantF(12,

(float*)&matViewProjTranspose, 4);
m_pd3dDevice->SetVertexShaderConstantF(20,

(float*)&vLight, 1);
m_pd3dDevice->SetVertexShaderConstantF(21,

(float*)&fDiffuse, 1);
m_pd3dDevice->SetVertexShaderConstantF(22,

(float*)&fAmbient, 1);
}

C03616531.fm Page 63 Tuesday, May 13, 2003 1:06 PM

64 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

The vertex shader constants are all located in the FrameMove method, so
the user can see all the constants in one place. For the best performance, an
application should initialize shader constants that need to be initialized only
once (that do not change) outside of FrameMove, which is called every time
render is called.

You might also notice that the matrices use D3DXMatrixTranspose to
transpose the row-major matrices into column-major matrices. This transpose is
done only when the constants are loaded into the shader registers. Changing
matrices to column-major order allows a matrix multiply to be implemented as
a series of dot products. When using assembly-language shader matrices, be
sure to transform them before calling SetVertexShaderConstantF and SetPix-
elShadeConstantF.

The render code supports rendering either with the vertex blending or
with the vertex shader.

if(m_bUseVertexShader)
{

m_pd3dDevice->SetFVF(BLENDVERTEX::FVF);
m_pd3dDevice->SetVertexShader(m_pVertexShader);
m_pd3dDevice->SetStreamSource(0, m_pVB, 0, sizeof(BLENDVERTEX));
m_pd3dDevice->SetIndices(m_pIB);
m_pd3dDevice->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0, 0,

m_dwNumVertices, 0, m_dwNumFaces);
}
else
{

// Enable vertex blending
m_pd3dDevice->SetVertexShader(NULL);
m_pd3dDevice->SetTransform(D3DTS_WORLD, &m_matUpperArm);
m_pd3dDevice->SetTransform(D3DTS_WORLD1, &m_matLowerArm);
m_pd3dDevice->SetRenderState(D3DRS_VERTEXBLEND,

D3DVBF_1WEIGHTS);

// Display the object
m_pObject->Render(m_pd3dDevice);

}

To render with the vertex shader, the following must take place:

■ SetFVF sets the FVF code that describes the vertex data.

■ SetVertexShader sets the current vertex shader.

■ SetStreamSource identifies the vertex buffer stream. The vertex
buffer is pointed to with m_pVB, and the stride of each vertex is
sizeof(BLENDVERTEX).

C03616531.fm Page 64 Tuesday, May 13, 2003 1:06 PM

Chapter 3 Vertex Shader Examples 65

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

■ SetIndices identifies the index buffer stream in m_pIB.

■ Call DrawIndexedPrimitive to draw a triangle list. The parameters
include the number of vertices to draw and the number of faces in
the face list.

Rendering with a mesh is different from rendering a triangle list with a ver-
tex shader because the mesh takes care of most of the rendering API calls.
Here’s what this sample uses to render the vertex blended mesh:

■ SetVertexShader(NULL) tells the pipeline not to use the vertex
shader.

■ SetTransform(D3DTS_WORLD, &m_matUpperArm) initializes the
upper-arm matrix with the world transform.

■ SetTransform(D3DTS_WORLD1, &m_matLowerArm) initializes the
lower-arm matrix with the second world transform.

■ SetRenderState(D3DRS_VERTEXBLEND, D3DVBF_1WEIGHTS) ini-
tializes the vertex blend render state with a 1 float weight.

■ m_pObject->Render(m_pd3dDevice) tells the object to render itself.

So, in the case of the vertex-blended mesh, the matrices need to be initial-
ized, and then the mesh object renders itself.

Summary
The purpose of this chapter was to build on the vertex shader tutorials from
Chapter 1. The first tutorial illustrated vertex fog, which requires an additional
vertex shader register and a couple of render states. The first SDK example
demonstrated a vertex shader used to displace geometry. The second SDK sam-
ple demonstrated vertex blending, a process that’s more commonly known as
skinning. This chapter brings the vertex shader code to a close. It’s time to
move on to assembly-language pixel shaders.

C03616531.fm Page 65 Tuesday, May 13, 2003 1:06 PM

Microsoft Press. Confidential. master page = Blank
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

C03616531.fm Page 66 Tuesday, May 13, 2003 1:06 PM

67

Microsoft Press. Confidential. master page = Section Opener
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

Pixel Shader Virtual
Machine

Pixel shaders are small programs that calculate one or more per-pixel colors.
They’re designed to be executed on video hardware, so they can be very fast.
A pixel shader executes once for each pixel that’s affected by rendered vertex
data. Therefore, pixel processing is usually much more time consuming than
vertex processing.

To understand how to design pixel shaders, we need to take a closer look
at the pixel shader virtual machine. The virtual machine is a conceptual model
that makes it easier to visualize how pixel shaders work. Like any machine,
pixel shaders require inputs, they perform certain operations, and produce out-
puts. Before we look at the pixel shader virtual machine, you need an under-
standing of the pixel processing done by the graphics pipeline.

Pixel Processing
To see the types of pixel processing required to convert a model to a rendered
image, let’s start from the functional diagram of the 3-D pipeline.

Rendered
pixels

Primitive
processing

Primitive
Vertex data
in model
space

High order
primitive

data

Vertex
processing

Pixel
processing

Tessellation

Pre-processing

C04616531.fm Page 67 Tuesday, May 13, 2003 1:08 PM

68 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

As we saw in Chapter 1, the pipeline processes per-vertex data to convert
geometry from model space to projection space. After vertex processing, prim-
itive processing and pixel processing convert per-vertex data into the final pix-
els that will be rendered.

Primitive processing includes the following steps:

■ Clipping. Clipping or removing geometry that’s outside of the
viewing frustum to maximize rendering efficiency.

■ Homogeneous divide. Converting the x,y,z vertex data to non-
homogeneous space before sending the data to the rasterizer.

■ Viewport scaling. Scaling 2-D projection space to 2-D screen
space.

■ Triangle set up. Preparing triangle-attribute interpolators and
converting per-vertex attributes into per-pixel attributes.

When primitive processing is done, the primitive data is ready for pixel
processing. The vertex data is in triangle lists. The output of primitive process-
ing is rasterized data, that is, vertex data interpolated per pixel. Pixel processing
blends several per-pixel data types and texture samples (if any) into output
pixel colors. Because the purpose of this chapter is to explain programmable
shaders, pixel processing has been divided into two parts.

Part 1 converts interpolated vertex data (such as diffuse color, specular
color, and texture coordinates) to one or more colors per pixel. Part 1 includes
the following steps:

Vertex Data in
Projection

Space

Primitive Processing

Clipping Homogeneous
Divide

Viewport
Scaling

Triangle
Setup

Interpolated
Vertex Data

C04616531.fm Page 68 Tuesday, May 13, 2003 1:08 PM

Chapter 4 Pixel Shader Virtual Machine 69

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

■ Sample texture. Sample one or more textures.

■ Blend. Blend per-pixel attributes, typically diffuse and specular
color and/or texture samples.

Part 2 converts the per-pixel color(s) into the final rendered per-pixel
color. Part 2 includes the following steps:

■ Alpha test. Apply an alpha test to see if the pixel color will affect
the final pixel color.

■ Depth test. Update the depth buffer with the pixel depth if the
pixel is visible.

■ Stencil test. Apply a stencil test to see if the pixel will affect the
final pixel color.

■ Per-pixel fog. Apply a fog color to the pixel color.

■ Alpha blend. Apply pixel alpha to create a transparent or semi-
transparent blend between a source pixel and a frame buffer pixel.

■ Dither. Use a dithering algorithm to blend adjacent pixels for a
more consistent color range.

■ Gamma. Apply a gamma correction to the final frame buffer pixel
color.

The diagram divides pixel processing into two steps to facilitate our dis-
cussion of programmable pixel shaders. The steps highlighted in part 1 will
need to be programmed into a programmable pixel shader. Part 2 deals with
the pixel processing steps that will take place in the fixed function pipeline
after the programmable pixel shader completes.

Lit and textured
Pixel data

Final pixel
color

Pixel Processing (Part 2)

Blend colors

Pixel Processing (Part 1)

Interpolated
vertex data

(pixel attributes)
Sample
texture

Alpha
test

Depth
test

Stencil
test

Per Pixel
Fog

Alpha
Blend Dither Gamma

C04616531.fm Page 69 Tuesday, May 13, 2003 1:08 PM

70 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

The legacy fixed function pipeline uses texture stage states and a multitex-
ture blender to perform the steps in part 1. The following figure shows a con-
ceptual diagram of the implementation of the fixed function pipeline for part 1.

The texture sampler is made up of texture data and samplers.

■ Texture data. Texture resources such as a texture file or a render
target.

■ Sampler. Used to sample textures, which means to use the texture
coordinates to look up a texture color. Texture filtering influences
the quality of the information (typically color) that is sampled from a
texture. Texture filtering causes multiple texels (texture pixels) to be
sampled and blended to produce a single color (unless point filtering
is specified, in which case only one pixel is sampled). The fixed
function pipeline contains eight samplers.

The multitexture blender is made up of eight blending stages. The blend-
ing stages are arranged in a texture blending cascade so that the output of stage
0 feeds the input of stage 1, the output of stage 1 feeds the input of stage 2, and
so on. This process allows the blended result of each stage to accumulate (or
cascade) up to an eight-layer blend. Each stage in the multitexture blender is
called a texture stage, and the states that initialize it are called texture stage
states.

A conceptual diagram for the implementation of a programmable pixel
shader to accomplish the same pixel processing in part 1 would look more like
the following figure.

Pixel Processing Part 1 (detailed)

Interpolated
vertex data

Sampler 8

Stage 0
Stage 1

Stage 2

Stage 7

Texture
Data

Pixel
color

Texture Sampler

Multitexture Blender

......

Fixed Function

Blend diffuse and
specular color

Texture
coordinates

Texture
Color

Texture
Data

Texture
Data

Texture
Data

Sampler 0

Sampler 1

Sampler 2

C04616531.fm Page 70 Tuesday, May 13, 2003 1:08 PM

Chapter 4 Pixel Shader Virtual Machine 71

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

A programmable pixel shader still uses samplers to sample textures, but
the multitexture blending is now done by the pixel shader virtual machine
(which we’ll see in the next section). This way, the blending operations are pro-
grammable. Once the blending operations are implemented in the pixel shader,
you do not need to configure texture stage states any longer to control the mul-
titexture blender.

This is the essence of the amazing power of pixel shaders: pixel shaders
allow programmatic control over the conversions done in pixel processing part
1. There’s no longer a need to configure the multitexture blender or use the set
of blending operations defined in the fixed function pipeline. You can use the
operations built into pixel shaders by the programming language, or you can
write your own code to generate any operations you want. Pixel shaders even
make it possible to take advantage of any kind of vertex shader data outputs to
drive the pixel shader.

The pipeline can be configured to perform pixel processing with either a
programmable pixel shader or the fixed function pipeline. However, pixel pro-
cessing can’t be performed with both at the same time. If a programmable pixel
shader is used, it should implement all the functional steps needed by an appli-
cation (from the fixed function pixel processing block part 1). The programma-

Pixel
color(s)

Pixel Processing Part 1 (detailed)
Programmable Pixel Shader

Texture
coordinates

Sampler 0

Sampler 1

Sampler 2

Sampler 15
Texture
data

Texture
data

Texture
data

Texture
data

Texture Sampler

...

Texture
color

Interpolated
vertex data

Pixel Shader Virtual Machine

C04616531.fm Page 71 Tuesday, May 13, 2003 1:08 PM

72 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

ble shader examples in the next chapter illustrate the use of each of these
functional blocks, including diffuse lighting, texturing, and alpha blending.

Frame-buffer blending is always done by the fixed function pipeline,
regardless of whether pixel processing part 1 is done with the fixed function
pipeline or a programmable pixel shader. This is because the frame-buffer
blending, as well as alpha, stencil, depth testing, and so on, occur in the block
called pixel processing part 2. These functional blocks are still controlled by
states set up in the fixed function pipeline.

This chapter provides all the information necessary for creating and using
pixel shaders. The next section covers shader architecture and introduces the
concepts of registers and instructions. The second section covers the Microsoft
DirectX API for creating and using shaders. The third section covers several
examples, each one focused on a different type of shader output data.

Pixel Shader Virtual Machine Block Diagram
A pixel shader uses mathematical operations to process the data associated with
each pixel and generate output pixel colors. A conceptual block diagram of the
pixel shader virtual machine is shown in the following figure.

Input Registers:
 v#
 ps_3_0:
vFace, vPosition

Output Registers:
ps_1_x: r0 Pixel

colorInterpolated
vertex data ps_2_0: oC#, oDepth

ALU

Instructions
Temporary Registers - r#

Constant Registers - c#

Flow Control
Registers ps_2_x

Boolean
Register - b0

Integer Flow Control
Register - i#

Loop Counter
Register - aL

Pixel Shader Virtual Machine

Texture Sampler

...

C04616531.fm Page 72 Tuesday, May 13, 2003 1:08 PM

Chapter 4 Pixel Shader Virtual Machine 73

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

Data flows from left to right in the figure. The pixel shader virtual machine
uses registers to manage the shader inputs and outputs. The shader operations
are implemented with a set of assembly-language instructions that are executed
by an arithmetic logic unit (ALU).

A pixel shader converts a set of per-pixel attributes to pixel colors. These
attributes include familiar data types such as position, normal, texture coordi-
nate, and diffuse color. Pixel shader input registers get loaded with the interpo-
lated vertex data. The texture sampler uses texture coordinates from pixel
shader registers to sample textures, and it returns sampled texture data to pixel
shader samplers.

Similarly, pixel shaders write output results into pixel shader output regis-
ters. These results are usually per-pixel colors. Output registers provide data
back to the graphics pipeline for pixel processing part 2.

Each register contains four floating-point values. There are several types
of registers, and each has a different function, as described in the following list:

■ Input registers provide the interpolated per-vertex data outputs from
primitive processing. Some specialty registers have been added
(such as vFace and vPos in ps_3_0).

■ Constant registers provide constants to the ALU.

■ Temporary registers are like temporary shader variables.

■ Output registers contain the shader results.

■ Flow control registers control the order that shader instructions are
executed.

■ The texture sampler (as we saw in the last section) uses texture coor-
dinates from the shader to sample textures. Then texture samples are
returned to the shader.

With registers to handle the input and output data, and an ALU to calcu-
late the pixel color, the “brains” behind the shader are in the instruction set. The
instruction set contains many instructions for performing a variety of pixel pro-
cessing operations, such as finding a dot product, multiplying by a matrix, or
finding min and max values. We’ll see a complete list of the instructions later in
this chapter. For a pixel shader to take advantage of the instruction set, a few
declarations might have to be made early in the shader code. Let’s look at the
layout of a shader next.

C04616531.fm Page 73 Tuesday, May 13, 2003 1:08 PM

74 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

Shader Layout
A pixel shader is made up of one or more lines of comments and instructions.
The instructions must be organized as shown in the following figure.

The shader instructions occur in this order in a shader:

■ A version instruction.

■ Setup instructions for defining constants. Later versions also require
inputs and outputs to be declared.

■ The rest of the instruction types: arithmetic, texture, macro-ops, flow
control, and modifiers.

A version instruction must be the first instruction in any shader. It identi-
fies the shader version that the shader code will be assembled against.

Comments can appear anywhere in a shader. As in the C language, you
can add comments: following a double slash (//) on the same line, or embed-
ded between a slash-asterisk pair (/* ... */), which can be used for multiple-line
comments, or after a semicolon. Like any programming language, the better
you comment your code, the easier it will be to maintain.

Version Instruction

Setup Instructions
(input declarations)

Phase 1 Instructions

Arithmetic, Texture,
Modifiers

Phase Instruction

Phase 2 Instructions

Arithmetic, Texture,
Modifiers

Version:
ps_1_4

Version Instruction

Setup Instructions
(input declarations)

Arithmetic, Texture,
Modifiers

Versions:
ps_1_1, ps_1_2, ps_1_3,

Version Instruction

Arithmetic, Texture,
Flow Control,

Modifiers

Versions:
ps_2_0, ps_2_x, ps_2_sw

ps_3_0 - ps_3_sw

Setup Instructions
(input and output

declarations)

C04616531.fm Page 74 Tuesday, May 13, 2003 1:08 PM

Chapter 4 Pixel Shader Virtual Machine 75

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

Setup instructions define constants or declare inputs in the higher shader
versions. Constants can be assembled into shader code with the def instruction.
These constants are read-only by the shader. Each register can hold up to four
values. As an alternative to using the def instruction, constants can also be set
using the one of the SetPixelShaderConstantx methods.

Beginning with DirectX 9, when a constant is defined in a shader, the life-
time of that constant is limited to that shader only. Defined constants locally
override any constants set from the API using SetPixelShaderConstantx. A
shader that reads a constant not defined in the shader will see the values initial-
ized from the API.

In ps_2_0 and later versions, pixel shader input registers, such as v0 and
v1, are different from constant registers in that they need to be declared before
they are used. The declaration is done with the dcl instruction. Starting with
ps_2_0, the register declaration has been expanded to include a semantic. A
semantic is a suffix preceded with an underscore that is attached to the dcl
instruction. Semantics bind a particular input register to the vertex data that has
the same semantic attached to it. For instance, the dcl instruction in ps_2_0
would be modified to be dcl_texcoord3 to initialize a register with the third tex-
ture coordinate (from the interpolated vertex data).

After constants are defined (and inputs and outputs are declared in ps_2_0
and later), the rest of the shader is made up of instructions. There are several
kinds of instructions; each implements a different kind of operation. The last
few instructions are usually where the shader outputs the results. The entire
instruction set will be covered later in this chapter.

The virtual machine block diagram shows that the virtual machine
depends on an instruction set and several types of registers to drive the ALU.
The next section will dig into the register types in more detail. Once we know
what the registers do, we can see what the instruction set does to control the
ALU operations.

Version 1_4 is the only version to include a phase instruction that splits the
shader into two halves, called phase 1 and phase 2. A phase 2 shader supports
more instructions than a phase 1 shader. If the phase instruction is not used, the
shader is treated as though all the instructions are in phase 2.

Registers
The shader virtual machine implements several types of registers, each with a
different purpose. During pixel processing, the hardware initializes pixel shader
input registers with the per-pixel data. Pixel shader input registers then feed the
data to the ALU. The pixel shader results are written to the output registers.
From there, the results are handed back to the pipeline for pixel processing part 2.

C04616531.fm Page 75 Tuesday, May 13, 2003 1:08 PM

76 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

There are other types of shader registers also. Versions 1_1 to 1_4 (some-
times referred to as 1_X) are very different from version 2_0 and later, so the
input registers are divided into separate tables.

Registers for Versions 1_1 to 1_4
Table 4-1 lists the register types for pixel shader versions 1_1 to 1_4.

The table contains the registers that are supported in each of the pixel
shader versions. Each register is listed by name, with a description and the
number of registers in each version. A brief description of each register type
follows:

■ c#. Constant registers supply constants. A shader can only read a
constant register. Constants are set using a definition instruction, def,
or from the API using SetPixelShaderConstantx. Constant registers
are not usable by texture address instructions (except for
texm3x3spec, which uses a constant register to supply an eye-ray
vector).

■ r#. Temporary registers, which store intermediate results. The
shader can read or write a temporary register. The pixel shader out-
put register is r0.

■ t#. Texture registers contain texture data for ps_1_1, ps_1_2, and
ps_1_3, and texture coordinates for ps_1_4.

For ps_1_1, ps_1_2, and ps_1_3, texture data is loaded into a
texture register when a texture is sampled. Texture sampling uses
texture coordinates to look up, or sample, a color value at the spec-
ified (u,v,w,q) coordinates while taking into account the texture sam-
pler attributes. The texture coordinate data is interpolated from the
vertex texture coordinate data and is associated with a specific tex-

Table 4-1 Registers for 1_1 to 1_4

Register Description ps_1_1 ps_1_2 ps_1_3 ps_1_4

c#*

* # is equal to an integer between 0 and (the number of resources minus 1)

Constant float 8 8 8 8

r#* Temporary 2 2 2 6

t#* Texture coordi-
nate

4 4 4 6

v#* Color 2 2 2 2

C04616531.fm Page 76 Tuesday, May 13, 2003 1:08 PM

Chapter 4 Pixel Shader Virtual Machine 77

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

ture stage. Texture registers behave just like temporary registers
when used by arithmetic instructions.

For ps_1_4, texture registers contain read-only texture coordi-
nate data, which means that the texture coordinate set and the tex-
ture sampler number are independent from each other. The texture
sampler number (from which to sample a texture) is determined by
the destination register number (r0 to r5). For the texld instruction,
the texture coordinate set is determined by the source register (t0 to
t5), so the texture coordinate set can be mapped to any texture stage.
In addition, the source register (specifying texture coordinates) for
texld can also be a temporary register (r#), in which case the con-
tents of the temporary register are used as texture coordinates. Tex-
ture registers contain texture coordinate data available to texture
addressing instructions as source parameters.

■ v#. Color registers contain per-pixel color values that are iterated
from the per-vertex diffuse and specular colors. For ps_1_4, these are
available only in phase 2.

For pixel shader versions 1_1 to 1_4, the contents of r0 at the end of the
program is the output of the pixel shader (the pixel color) as shown in Table 4-2.

Registers for Version ps_2_0 and Later
Table 4-3 lists the register types for pixel shader versions ps_2_0 and later.

Table 4-2 Output Register for Versions 1_1 to 1_4

Output Register Description ps_1_1 ps_1_2 ps_1_3 ps_1_4

r0 Temporary/Pixel
color

1 1 1 1

Table 4-3 Version 2_0 and Later Register Types

Input Register Description ps_2_0 ps_2_x ps_3_0

aL Loop counter n/a n/a 1

b0 Constant Boolean n/a 16 16

c#* Constant float 32 32 224

i0 Constant integer n/a 16 16

p0 Predicate n/a 1 1

r#* Temporary 12 32 32

(continued)

C04616531.fm Page 77 Tuesday, May 13, 2003 1:08 PM

78 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

The table contains the registers that are supported in each of the pixel
shader versions. Each register is listed by name, with a brief description and the
number of registers in each version. Notice that the earlier versions support the
fewest register types and the latest versions support all the register types. Here’s
what each of the register types does:

■ aL. Current value of the loop counter, which is usable only for
indexing into an input register (v#).

■ b0. Contains the compare condition for the callnz and if_comp
instructions.

■ c#. Floating-point constant registers.

■ i0. Integer constant registers. Controls the loop instruction.

■ p0. Predication register. Predication provides per-component flow
control—that is, each component writes the result of the given
instruction only if the Boolean value for that component is True in
the predication register.

■ r#. Temporary registers. Used for reading and writing shader tem-
porary results. The difference between a temporary register and a
constant register is that a temporary register is a read/write register
and a constant register is read-only.

■ s#. Sampler. Samplers manage the sampler state (such as filter
modes) that are set from the API. When textures are sampled, the
texel colors are written into a sampler.

■ t#. Texture coordinate registers. These registers provide the tex-
ture coordinates to the samplers for sampling textures.

s#* Texture sampler 16 16 16

t#* Interpolated texture
coordinate

8 8 n/a

v#* Interpolated vertex
color

2 2 10

* # is equal to an integer between 0 and (the number of resources minus 1)

Table 4-3 Version 2_0 and Later Register Types (continued)

Input Register Description ps_2_0 ps_2_x ps_3_0

C04616531.fm Page 78 Tuesday, May 13, 2003 1:08 PM

Chapter 4 Pixel Shader Virtual Machine 79

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

■ v#. Input registers for ps_2_0, ps_2_x, and ps_2_sw. Interpolated
vertex data (per-pixel data) is streamed into the input registers when
primitive processing finishes. Texture coordinates are not included.

For ps_3_0 and ps_3_sw, these are input registers containing
per-vertex interpolated data, which includes texture coordinates.
Input and output registers require declarations using semantics,
which identify the data use.

The software versions are left out of the table because their performance
in a reference device is very limited. ps_2_sw contains the same registers as
ps_2_x, and ps_3_sw contains the same registers as ps_3_0.

Pixel shader version 2_0 added two new output register types, which are
described in Table 4-4.

The software versions are left out of the table because their performance
in a reference device is very limited. ps_2_sw contains the same registers as
ps_2_x, and ps_3_sw contains the same registers as ps_3_0.

Registers for Versions ps_3_0 and Later
The following registers are new (or changed substantially) in ps_3_0:

■ The input registers v# are now fully floating-point, and the texture
registers have been consolidated with them into a single register
type. The register declaration uses a semantic to describe what is
contained in a particular input register. Multiple components in a
given input register can be declared with different semantic names to
allow packing of more data into a given register.

■ The vFace register is a new floating-point scalar register, but only the
sign (+/–) of the register data is used. If the value is less than zero,
the primitive is a back face (which means that the area is negative).
The face register can be used inside a pixel shader to make decisions

Table 4-4 Output Registers for ps_2_0 and Later

Output Register Description ps_2_0 ps_2_x ps_3_0

oC#*

* # = integer between 0 and (the number of resources minus 1)

Pixel color 4 4 4

oDepth Pixel depth 1 1 1

C04616531.fm Page 79 Tuesday, May 13, 2003 1:08 PM

80 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

about which lighting technique to use (two-sided lighting, for exam-
ple). This register requires a declaration (for example, dcl vFace), so
undeclared usage will be flagged as an error. This register is unde-
fined for lines and point primitives. The face register can be used
only with the setp and if_comp instructions.

■ The position register contains the current pixel position (x, y) in the
corresponding channels. The (z, w) channels are undefined. This
register needs to be declared (for example, dcl vPos.xy).

When multisampling, the position will contain the pixel coordi-
nates and not the sample coordinates. (A pixel shader runs once per
pixel when multisampling.) When the driver performs super sam-
pling and the pixel shader is run multiple times per pixel, the posi-
tion will contain the resolved coordinates; that is, they will be
normalized by the render-target bloat factor so that they contain frac-
tional values.

Instructions
The only remaining building block in the virtual machine is the instruction set.
Shader instructions tell the registers and the ALU what to do, as well as when
and where to transfer data. Instructions transfer input data to the ALU and out-
put data from the ALU. Instructions also determine when texture sampling data
is read from memory.

The instruction set determines two things: which data is transferred from
registers to the ALU (and vice versa), and what mathematical operations are
performed on the data by the ALU. There are several types of instructions, as
listed here:

■ Setup instructions

■ Arithmetic instructions

■ Macro-op instructions

■ Texture instructions

■ Flow-control instructions

Setup instructions occur first in the shader and declare the shader version,
constants, and shader inputs and outputs. Arithmetic instructions provide the

C04616531.fm Page 80 Tuesday, May 13, 2003 1:08 PM

Chapter 4 Pixel Shader Virtual Machine 81

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

mathematical operations. Macro-op instructions provide convenient higher-
level functions such as a cross product or normalization. Texture instructions
sample textures, and flow-control instructions determine the order in which the
instructions run.

Each shader version supports a certain number of instruction slots. You
can think of instruction slots as the amount of memory available to hold shader
instructions. If the shader instructions exceed the number of instruction slots,
shader validation will fail. The number of instruction slots supported increases
with the version number, as shown in Table 4-5.

The software versions, ps_2_sw and ps_3_sw, are listed last because their
performance in a reference device is very limited.

The maximum number of instructions allowed has increased from 8 to
32768 maximum. (Software versions running on a reference device support
unlimited instructions.) The max number of instructions is misleading for the
shader versions that have static and dynamic looping instructions. The actual
number of instructions that can be executed for these later versions is higher
because of looping and subroutines (up to the limit of flow control nesting
depths). For details on the nesting depths, see the SDK documentation.

Table 4-5 Number of Instruction Slots

Version Maximum Number of Instruction Slots

ps_1_1 8

ps_1_2 12

ps_1_3 12

ps_1_4 14

ps_2_0 32 texture and 64 other instructions

ps_2_x 512 (96 minimum guaranteed). The exact number is
specified by the D3DCAPS9.PS20Caps.MaxPixelShader-
InstructionSlots cap.

ps_3_0 32768 (512 minimum guaranteed). The exact number is
specified by the D3DCAPS9.MaxPixelShader30-
InstructionSlots cap.

ps_2_sw and ps_3_sw Virtually unlimited instruction slots and relaxed valida-
tion during shader assembly. (Software pixel shaders run
only on a reference device, which means that their per-
formance is nearly unusable.)

C04616531.fm Page 81 Tuesday, May 13, 2003 1:08 PM

82 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

The software shader versions, ps_2_sw and ps_3_sw, have an unlimited
number of instructions because the software versions do not get validated. Soft-
ware versions have a relaxed set of requirements compared with the hardware
versions. Software pixel shaders run only on a reference device. The reference
device is designed to be 100 percent functional but has not been performance
optimized. Therefore, software pixel shaders function correctly but are almost
unusable from a performance standpoint.

The number of instructions in a shader can’t exceed the maximum number
of instruction slots in a particular shader version. Some instructions take more
cycles to implement than others (particularly the macro-ops). An instruction
that uses three slots consumes the same number of slots as three instructions
that each use one slot. Using the following tables, add up the number of
instruction slots that correspond to the instructions in your shader, and make
sure that number does not exceed the maximum instruction slots allowed for
your shader version.

Capability bits, or caps, are flags set by the hardware so that an application
can query the hardware to see what it supports. Hardware caps are contained
in the D3DCAPS9 structure, which can be queried when the application starts,
once you have a valid device. In the SDK sample applications, this query occurs
in the ConfirmDevices method. New versions of shaders (such as ps_2_x)
sometimes use caps to introduce new features, and later versions (such as
ps_3_0) support the same features without requiring the caps.

Setup Instructions
Setup instructions are non-arithmetic instructions. They perform setup steps
such as declaring the shader version, declaring constants, or declaring registers.
Table 4-6 describes the setup intstructions available in each shader version.

Table 4-6 Setup Instructions

Instruction Description
Slots
Used

ps_1_1 to
ps_1_4

ps_2_0 to
ps_2_x ps_3_0

dcl_samplerType Declare the texture
dimension for a sampler.

0 n/a x x

dcl_usage Declare the association
between vertex shader
output registers and pixel
shader input registers.

0 n/a x x

def Define a floating-point
constant.

0 x x x

C04616531.fm Page 82 Tuesday, May 13, 2003 1:08 PM

Chapter 4 Pixel Shader Virtual Machine 83

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

For ps_1_4, if the shader does not use the phase instruction, the shader
defaults to phase 2.

ps_2_sw contains the same instructions as ps_2_x; ps_3_sw contains the
same instructions as ps_3_0. They are mentioned for completeness but are left
out of the tables because their performance is so slow that they are almost
unusable.

Arithmetic Instructions
Arithmetic instructions provide the mathematical operations in a shader. These
instructions take one or more source registers and perform basic math functions
(such as add, subtract, and multiply), as well as operations useful to graphics
(such as min, max, dot product, and logarithms). Table 4-7 describes the arith-
metic instructions available in each shader version.

defb Define a Boolean con-
stant.

0 n/a 2_x* Supported

defi Define an integer con-
stant.

0 n/a 2_x* Supported

phase Transition between phase
1 and phase 2.

0 Only
ps_1_4

n/a n/a

ps Version. 0 x x x

* Available with caps = this feature is available if the hardware sets certain caps (capability bits). See D3DCAPS9 for
more information about caps.

Table 4-6 Setup Instructions (continued)

Instruction Description
Slots
Used

ps_1_1 to
ps_1_4

ps_2_0 to
ps_2_x ps_3_0

Table 4-7 Arithmetic Instructions

Instruction Description Slots Used
ps_1_1 to
ps_1_4

ps_2_0 to
ps_2_x ps_3_0

add Add two vectors. 1 x x x

cmp Compare source to 0. 1 ps_1_1 to
ps_1_3

x x

cnd Compare source to 0.5. 1 x n/a n/a

dp2add 2-D dot product and add. 2 n/a x x

dp3 3-D dot product. 1 x x x

dp4 4-D dot product. 1 x x x

(continued)

C04616531.fm Page 83 Tuesday, May 13, 2003 1:08 PM

84 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

ps_2_sw contains the same instructions as ps_2_x; ps_3_sw contains the
same instructions as ps_3_0. They are mentioned for completeness but are left out
of the tables because their performance is so slow that they are almost unusable.

Macro-Op Instructions
Macro-op instructions combine arithmetic instructions to provide higher-level
functionality. The use of macro-op instructions is optional. Many of these
instructions have been optimized for speed, so it’s usually a good idea to use
them. The matrix multiply instructions (m3x2, m3x3, m3x4, m4x3, and m4x4)
are likely to perform well because hardware acceleration optimizations exist.
Table 4-8 describes the macro-op instructions.

dsx Rate of change in the x
direction.

2 ps_2_x* Available
with caps†

x

dsy Rate of change in the y
direction.

2 ps_2_x* Available
with caps†

x

exp Full precision 2x. 1 n/a x x

frc Fractional component. 1 n/a x x

log Full precision log2(x). 1 n/a x x

mad Multiply and add. 1 x x x

mov Move. 1 x x x

mul Multiply. 1 x x x

nop No operation. 1 x x x

rcp Reciprocal. 1 n/a x x

rsq Reciprocal square root. 1 n/a x x

sub Subtract. 1 x x n/a

* Available only if cap is set.

† Available with caps = this feature is available if the hardware sets certain caps or capability bits. See D3DCAPS9 for
more information about caps.

Table 4-7 Arithmetic Instructions (continued)

Instruction Description Slots Used
ps_1_1 to
ps_1_4

ps_2_0 to
ps_2_x ps_3_0

Table 4-8 Macro-op Instructions

Instruction Description Slots Used
ps_1_1 to
ps_1_4

ps_2_0 to
ps_2_x ps_3_0

abs Absolute value 1 n/a x x

crs Cross product 2 n/a x x

C04616531.fm Page 84 Tuesday, May 13, 2003 1:08 PM

Chapter 4 Pixel Shader Virtual Machine 85

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

ps_2_sw contains the same instructions as ps_2_x; ps_3_sw contains the
same instructions as ps_3_0. They are mentioned for completeness but are left
out of the tables because their performance is so slow that they are almost
unusable.

Texture Instructions
Texture sampling uses 1-D, 2-D, or 3-D texture coordinates to sample (and
optionally filter) texture data. The result returned is a texel at the given location.
Table 4-9 describes the available texture instructions.

lrp Linear interpolate 2 x x x

m3x2 3x2 multiply 2 n/a x x

m3x3 3x3 multiply 3 n/a x x

m3x4 3x4 multiply 4 n/a x x

m4x3 4x3 multiply 3 n/a x x

m4x4 4x4 multiply 4 n/a x x

max Maximum 1 n/a x x

min Minimum 1 n/a x x

nrm Normalize 3 n/a x x

pow 2x 3 n/a x x

sincos Sine and cosine 8 n/a x x

Table 4-8 Macro-op Instructions (continued)

Instruction Description Slots Used
ps_1_1 to
ps_1_4

ps_2_0 to
ps_2_x ps_3_0

Table 4-9 Texture Instructions

Instruction Description
Slots
Used

ps_1_1 to
ps_1_4

ps_2_0 to
ps_2_x ps_3_0

tex Sample a texture. 1 1_1, 1_2, 1_3 n/a n/a

texbem Apply a fake bump envi-
ronment-map transform.

1 1_1, 1_2, 1_3 n/a n/a

texbeml Apply a fake bump envi-
ronment-map transform
with luminance
correction.

1+1 1_1, 1_2, 1_3 n/a n/a

texcoord Interpret texture coordi-
nate data as color data.

1 1_1, 1_2, 1_3 n/a n/a

(continued)

C04616531.fm Page 85 Tuesday, May 13, 2003 1:08 PM

86 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

texcrd Interpret texture coordi-
nate data as color data.

1 1_4 n/a n/a

texdepth Calculate depth values. 1 1_4 n/a n/a

texdp3 Three-component dot
product between texture
data and the texture coor-
dinates.

1 1_2, 1_3 n/a n/a

texdp3tex Three-component dot
product and 1-D texture
lookup.

1 1_2, 1_3 n/a n/a

texkill Cancels rendering of pix-
els based on a
comparison.

1 x x x

texld Sample a texture. 1 ps_1_4 n/a n/a

texld Sample a texture. 1 + 3CUBE n/a x x

texldb Texture sampling with
LOD bias from
w-component.

6 n/a x x

texldd Texture sampling with
user-provided gradients.

3 n/a ps_2_x* x

texldl Texture load with user-
adjustable LOD from the
w-component.

2 + 3CUBE n/a n/a x

texldp Texture sampling with
projective divide by
w-component.

3 + 1CUBE n/a x x

texm3x2depth Calculate per-pixel depth
values.

1 1_3 n/a n/a

texm3x2pad First-row matrix multiply
of a two-row matrix
multiply.

1 1_1, 1_2, 1_3 n/a n/a

texm3x2tex Final-row matrix multiply
of a two-row matrix multi-
ply.

1 1_1, 1_2, 1_3 n/a n/a

texm3x3 3x3 matrix multiply. 1 1_1, 1_2, 1_3 n/a n/a

texm3x3pad First- or second-row multi-
ply of a three-row matrix
multiply.

1 1_1, 1_2, 1_3 n/a n/a

Table 4-9 Texture Instructions (continued)

Instruction Description
Slots
Used

ps_1_1 to
ps_1_4

ps_2_0 to
ps_2_x ps_3_0

C04616531.fm Page 86 Tuesday, May 13, 2003 1:08 PM

Chapter 4 Pixel Shader Virtual Machine 87

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

■ 1 + 3CUBE means 1 + 3 if the texture is a cube map.

■ 2 + 3CUBE means 2 + 3 if the texture is a cube map.

■ 3 + 1CUBE means 3 + 1 if the texture is a cube map.

ps_2_sw contains the same instructions as ps_2_x; ps_3_sw contains the
same instructions as ps_3_0. They are mentioned for completeness but are left
out of the tables because their performance is so slow that they are almost
unusable.

Flow-Control Instructions
Flow-control instructions determine which instruction block gets executed next.
Instructions such as loop-endloop determine how many times to execute a
series of instructions. Other flow-control instructions such as if-else-endif are
used to execute a series of instructions, based on a comparison to some condi-
tion. Table 4-10 describes the flow-control instructions.

texm3x3spec Final-row multiply of a
three-row matrix multiply.

1 1_1, 1_2, 1_3 n/a n/a

texm3x3tex Texture lookup using a
3x3 matrix multiply.

1 1_1, 1_2, 1_3 n/a n/a

texm3x3vspec Texture lookup using a
3x3 matrix multiply, with
nonconstant eye-ray vec-
tor.

1 1_1, 1_2, 1_3 n/a n/a

texreg2ar Sample a texture using
the alpha and red
components.

1 1_1, 1_2, 1_3 n/a n/a

texreg2gb Sample a texture using the
green and blue compo-
nents.

1 1_1, 1_2, 1_3 n/a n/a

texreg2rgb Sample a texture using the
red, green, and blue com-
ponents.

1 1_2, 1_3 n/a n/a

* Available only if cap is set.

Table 4-9 Texture Instructions (continued)

Instruction Description
Slots
Used

ps_1_1 to
ps_1_4

ps_2_0 to
ps_2_x ps_3_0

C04616531.fm Page 87 Tuesday, May 13, 2003 1:08 PM

88 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

ps_2_sw contains the same instructions as ps_2_x; ps_3_sw contains the
same instructions as ps_3_0. They are mentioned for completeness but are left
out of the tables because their performance is so slow that they are almost
unusable.

Table 4-10 Flow-Control Instructions

Instruction Description Slots Used
ps_1_1 to
ps_1_4

ps_2_0 to
ps_2_x ps_3_0

break Break out of a loop-endloop
or rep-endrep block.

1 n/a ps_2_x* x

break_comp Conditionally break out of a
loop-endloop or rep-endrep
block, with a comparison.

3 n/a ps_2_x* x

break_pred Break out of a loop-endloop
or rep-endrep block, based
on a predicate.

3 n/a ps_2_x* x

call Call a subroutine. 2 n/a ps_2_x* x

callnz Call a subroutine if not
zero.

3 n/a x x

callnz_pred Call a subroutine if a predi-
cate register is not zero.

3 n/a ps_2_x* x

else Begin an else block. 1 n/a ps_2_x* x

endif End an if-else block. 1 n/a ps_2_x* x

endloop End a loop block. 2 n/a n/a x

endrep End a repeat block. 2 n/a ps_2_x* x

if Begin an if block with a
Boolean condition.

3 n/a ps_2_x* x

if_comp Begin an if block with a
comparison.

3 n/a ps_2_x* x

if_pred Begin an if block, based on
a predicate.

3 n/a ps_2_x* x

label Label. 0 n/a ps_2_x* x

loop Loop. 3 n/a n/a x

rep Repeat. 3 n/a ps_2_x* x

ret End of a subroutine. 1 n/a ps_2_x* x

setp Set the predicate register. 1 n/a ps_2_x* x

* Available only if cap is set.

C04616531.fm Page 88 Tuesday, May 13, 2003 1:08 PM

Chapter 4 Pixel Shader Virtual Machine 89

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

Instruction Set Summary
The pixel shader instruction set provides functionality for replacing the calcula-
tions performed during pixel processing part 1. Many pixel shader instructions
take one instruction slot, with the exception of macro-ops and flow-control
instructions, which generally take more than one. The fastest shaders have the
fewest instructions and perform the most operations in parallel, using the four-
component capability of the registers.

Modifiers Extend the Virtual Machine
Modifiers can significantly extend the operations available from the instruction
set. Modifiers can modify the data read from a register (without changing the
contents of the original register) before the ALU performs an instruction. Mod-
ifiers can also modify the result of an operation before it is written out. The next
two figures demonstrate the types of modifiers that are available in versions 1_1
to 1_4, and the modifiers available in later versions.

The figure shows the order that the modifiers appear in an instruction.
Three types of modifiers operate on:

instruction
Modifiers:

_pp
_centroid

_sat

Destination
Register Write Masks:

Pixel Shader Modifiers - ps_2_0 and above

Pixel Shader Modifiers - ps_1_X

Source
Register

Modifiers:
Arbitrary Swizzle

Modifiers:
abs
-

Modifers:

_x2, _x4, _x8
_d2,_d4,_d8

_sat

instruction Destination
Register

Write Masks:
ps_1_1 - ps_1_4:
rgba, rgb, a, none,

ps_1_4 only:
r,g,b, arbitrary

Source
Register

Modifiers:
-

Swizzles:
ps_1_1 - ps_1_4:

b,a,
rgb

ps_1_4 only:
r,g

Modifiers:
_bias
_bx2
_x2

Texture
Modifiers:

dz, db
dw, da

C04616531.fm Page 89 Tuesday, May 13, 2003 1:08 PM

90 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

■ Instructions

■ Destination Registers

■ Source Registers

Instruction modifiers modify the way an instruction operates on the data.
For example, the _sat modifier clamps data within the range of 0 to 1 before it’s
written to a destination register, which is a good way to clamp the result of an
operation without requiring an extra instruction.

Destination modifiers affect how results are written to the destination reg-
ister. Specifically, a write mask controls which destination register components
are written to. Output write masks generally must be in component order (.rgba
or .xyzw). For instance, .rba and .xw are valid write masks.

Source register modifiers modify the data read from a source register
before it’s used by the ALU. (The data in the source register is not modified.)
Source register modifiers include negate and swizzle. Negate is just what it
sounds like: the data changes sign. If it was positive, it becomes negative, and
vice versa. Swizzling controls which source register components are read. Swiz-
zling can be used to copy register components unchanged. A more interesting
use of swizzling is to copy one or more source register components to one or
more different destination register components. Swizzling is a powerful tool for
rearranging register components so that the number of instructions can be
reduced.

Modifiers for Version 1_1 to 1_4
Table 4-11 provides a more complete list of the modifiers in pixel shader ver-
sions 1_1 to 1_4.

Table 4-11 Version 1_1 to 1_4 Modifiers

Instruction
Modifiers Description ps_1_1 ps_1_2 ps_1_3 ps_1_4

_x2, _x4 multiply by 2,
multiply by 4

x x x x

_x8 multiply by 8 n/a n/a n/a x

_d2 divide by 2 x x x x

_d4, _d8 divide by 4,
divide by 8

n/a n/a n/a x

_sat saturate (or clamp) x x x x

C04616531.fm Page 90 Tuesday, May 13, 2003 1:08 PM

Chapter 4 Pixel Shader Virtual Machine 91

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

Pixel shader versions 1_1 to 1_4 implement the pixel shader virtual
machine with two parallel pipelines: one for vector processing (rgb) and one
for scalar processing (alpha). Using two pipelines extends the efficiency of the
instruction set because pixel shaders can perform arithmetic operations concur-
rently in the rgb and alpha pipes.

Pairing instructions in the rgb or alpha pipe is called co-issuing instructions
because it results in issuing instructions for both pipelines at the same time. Co-
issuing instructions is indicated in shader code by adding a plus sign (+) between
the two instructions. Use destination register write masks to control how the
instructions are allocated to the two parallel pipelines, as described here:

■ The .a mask means that the operation will be done in the scalar pipe-
line.

■ The .rgb mask means that the operation will be done in the vector
pipeline.

Destination
register write
masks Description ps_1_1 ps_1_2 ps_1_3 ps_1_4

rgba, none,
rgb, a

Four component,
nothing, three color
components, alpha
only

x
n/a

x
n/a

x
n/a

x

red Single component n/a n/a n/a x

green Single component n/a n/a n/a x

blue Single component n/a n/a n/a x

arbitrary Arbitrary number
and order of
components

n/a n/a n/a x

Source
register
swizzle Description ps_1_1 ps_1_2 ps_1_3 ps_1_4

b or a blue or alpha x x x x

r or g red or green n/a n/a n/a x

Register
modifiers Description ps_1_1 ps_1_2 ps_1_3 ps_1_4

_bias bias - scale and
offset

x x x x

- negate x x x x

_bx2 signed scale x x x x

_x2 scale by 2 n/a n/a n/a x

Table 4-11 Version 1_1 to 1_4 Modifiers (continued)

C04616531.fm Page 91 Tuesday, May 13, 2003 1:08 PM

92 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

■ The .rgba mask means that the operation will be done in both the
scalar and vector pipelines.

ps_1_4 has its own set of write masks, selectors, and modifiers for texture
instructions. For the details, see the SDK Reference page.

Modifiers for ps_2_0 and Later
Table 4-12 lists the modifiers in pixel shader 2_0 and later.

Pixel Shader Version Differences
Similar to vertex shaders, pixel shader versions continue to expand functional-
ity. In fact, the latest versions are converging with the latest vertex shader mod-
els, with register types, register declarations, and instruction sets that look much
more alike than they did in the earliest versions. This section summarizes the
differences between the pixel shader versions.

DirectX 9 supports the following pixel shader versions:

■ ps_1_1, ps_1_2, ps_1_3, and ps_1_4

■ ps_2_0, ps_2_x, and ps_2_sw

■ ps_3_0 and ps_3_sw

ps_1_1, ps_1_2, and ps_1_3 are the earliest versions. They contain one
address register and four basic register types: input, output, constants, and tem-
porary. The instruction set contains all the basic arithmetic instructions. It does
not support any type of flow-control.

ps_1_4 contains a number of improvements over ps_1_1, ps_1_2, and
ps_1_3. Texture registers were changed to contain texture coordinates instead of
sampled texture data. In fact, in this version, temporary registers (r#) can be used

Table 4-12 Version 2_0 and Later Modifiers

Modifier Operates On Description ps_2_0 ps_2_x ps_3_0

abs Source register Absolute value x x x

- Source register Negate x x x

.rgba Source register Arbitrary swizzle x x x

_centroid Instruction Centroid n/a x x

_pp Instruction Partial precision x x x

_sat Instruction Saturate x x x

.rgba Destination register Arbitrary write
mask

x x x

C04616531.fm Page 92 Tuesday, May 13, 2003 1:08 PM

Chapter 4 Pixel Shader Virtual Machine 93

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

as texture coordinate registers. The texture instructions have been simplified and
replaced with texld. texdepth was also added to calculate depth values for the
depth comparison. The phase instruction was added to allow two phases for
shader instructions, which increases the number of instruction slots available.

ps_2_0 added a lot of macro instructions, such as linear interpolate (lrp),
normalize (nrm), power (pow), sign (sgn), and sine and cosine (sincos). The
phase instruction (from ps_1_4) disappeared, as did the instruction co-issue
capability from the pixel shader versions 1_1 to 1_4. To compensate, the
instruction counts are much higher.

ps_2_x introduced static flow-control instructions such as if-else-endif,
call, and repeat (rep). For the first time, shader instruction flow can be deter-
mined from conditional comparisons performed on constants. To support rep,
new constant registers for Boolean and integer constants were added. In addi-
tion, dynamic flow-control instructions such as breakxxx and ifxxx were added.
These instructions support loop termination and conditional comparisons that
can be performed at run time. Both static and dynamic flow-control statements
depend on capability bits set by the hardware.

ps_2_x also added predication, which is the ability to execute an instruction
on a per-component basis, depending on the Boolean value in the corresponding
predication register component. Predication required a new predication register
to hold the predication Boolean values. The number of temporary registers has
been increased, and can be queried from PS20Caps.NumTemps.

ps_3_0 contains the same dynamic flow control and predication support
found in ps_2_x, but this version no longer requires that special caps be set.
The loop instruction is new, which allows the aL register to index into the input
registers (v#).

ps_2_sw and ps_3_sw are software-only versions of the ps_2_x and
ps_3_0 shader versions, respectively. A software pixel shader runs only on a
reference device, which makes performance almost unusable. The software
versions relax instruction counts to nearly unlimited instructions and relax val-
idation rules.

Summary
This is just the beginning of pixel shaders. This chapter has introduced the reg-
isters, instructions, and modifiers that make up the pixel shader virtual machine.
A programmable pixel shader uses the texture sampler and interpolated vertex
data to generate one or more colors per pixel. Several versions are available.
The most powerful versions now include flow control with both static and
dynamic instructions. The next chapter will demonstrate some pixel shader
examples.

C04616531.fm Page 93 Tuesday, May 13, 2003 1:08 PM

Microsoft Press. Confidential. master page = Blank
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; peg

C04616531.fm Page 94 Tuesday, May 13, 2003 1:08 PM

95

Microsoft Press. Confidential. master page = Section Opener
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

Pixel Shader Examples
The goal of this chapter is to get you writing pixel shaders using assembly-lan-
guage instructions. In this chapter, all the shaders are compiled with
D3DXAssembleShaderxxx APIs.

This chapter demonstrates how to use the pixel shader virtual machine
from Chapter 4. The first pixel shader example demonstrates some simple 2-D
per-pixel image processing. With pixel shaders, you no longer use the multitex-
ture blender and the corresponding texture stage states, so the second example
demonstrates two-layer texturing without the multitexture blender.

Example 1: 2-D Image Processing
The first example texture maps a rectangle. The object contains two triangles,
made up of four vertices, and is commonly called a quad. The quad is rendered
with a vertex shader and a pixel shader. The vertex shader transforms the ver-
tices into projection space, and the pixel shader applies the texture map. (See
Color Plate 8.)

Here’s the pixel shader code:

ps_1_1 // version instruction

def c0, 0,0,0,0
def c1, 1,1,1,1
def c2, 1.0,0.5,0,0
def c3, 0,-0.5,-0.25,0

tex t0 // sample texture at stage 0,
// with texture coordinate set 0

mov r0, t0 // output texture color
// mov r0, 1 - t0 // output inverted texture color

C05616531.fm Page 95 Tuesday, May 13, 2003 1:09 PM

96 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

// add r0, t0, c2 // add more reds and greens

// add r0, t0, c3 // subtract greens and blues

// mov r0, c2 // output solid pixel color

The pixel shader uses the following types of instructions:

■ A version instruction

■ Three def setup instructions to define pixel shader constants

■ A texture instruction to sample the texture

■ An arithmetic instruction, mov, to output the pixel color

The application will need to assemble the shader code and create the
pixel shader object. Because the constants are defined in the shader code, this
does not need to be done from the application. The only other API calls
required to set up the pixel shader are related to the texture register, t0.

The tex t0 instruction samples a texture and returns a color to the r0 reg-
ister. To do so, the assembly-language shader depends on the application to

■ Load a texture

■ Set up the texture filtering state that defines the sampling operation

■ Set up texture coordinates

For ps_1_1, all of these things are done in the application, usually in a
method such as RestoreDeviceObjects that runs once when an application starts.
Here’s the code that loads the texture:

// Load a texture
TCHAR szEarth[MAX_PATH];
hr = DXUtil_FindMediaFileCb(szEarth, sizeof(szEarth),

_T("earth.bmp"));
if(FAILED(hr))

return D3DERR_NOTFOUND;

hr = D3DXCreateTextureFromFile(m_pd3dDevice, szEarth, &m_pTexture);
if(FAILED(hr))
{

SAFE_RELEASE(m_pTexture);
return hr;

}

The DXUtil_FindMediaFileCb function is called to find the path to the tex-
ture file, earth.bmp. If that call is successful, D3DXCreateTextureFromFile is
called to load the texture. Once the IDirect3DTexture9 object is created, it will
be set to the first texture sampler using SetTexture in the render code.

C05616531.fm Page 96 Tuesday, May 13, 2003 1:09 PM

Chapter 5 Pixel Shader Examples 97

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

Texture sampling state determines how the texture is sampled from the
texture coordinates. The texture coordinates pinpoint the location of the sam-
ple, but the sampling states determine what kind of filtering is applied, that is,
how many surrounding texels are also sampled and averaged into the resulting
color.

hr = m_pd3dDevice->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
hr = m_pd3dDevice->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
hr = m_pd3dDevice->SetSamplerState(0, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);

The last preparation step is to assign the texture to the first texture sampler
by using

m_pd3dDevice->SetTexture(0, m_pTexture);

A texture is sampled with a texture sampler. The texture that was loaded in
m_pTexture has been set to texture sampler 0. Now our pixel shader is ready for
the texture sampling. To get the pixel shader ready, all you have to do now is
assemble it and create a pixel shader object, which you do using RestoreDevice-
Objects. Here’s the code from RestoreDeviceObjects that deals with creating the
pixel shader:

hr = D3DXAssembleShader(
strAsmPixelShader,
(UINT)strlen(strAsmPixelShader),
NULL, // A NULL terminated array of D3DXMACROS
NULL, // A #include handler
D3DXSHADER_DEBUG,
&pShader,
NULL // error messages
);

if(FAILED(hr))
{

SAFE_RELEASE(pShader);
return hr;

}

// Create the pixel shader
hr = m_pd3dDevice->CreatePixelShader(

(DWORD*)pShader->GetBufferPointer(), &m_pAsm_PS);

if(FAILED(hr))
{

SAFE_RELEASE(m_pAsm_PS);
SAFE_RELEASE(pShader);
return hr;

}

C05616531.fm Page 97 Tuesday, May 13, 2003 1:09 PM

98 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

As we saw in Chapters 1 through 3 for creating vertex shaders, a pixel
shader is also assembled into binary code by calling D3DXAssembleShader.
When the shader code has been assembled, CreatePixelShader creates the pixel
shader object returned in the m_pAsm_PS pointer.

The rest of the code in RestoreDeviceObjects creates the other resources
that are needed for the application, including the vertex shader, the vertex data,
the vertex buffer, and the vertex declaration.

const char* strAsmVertexShader =
"vs_1_1 // version instruction\n"
"dcl_position v0 // bind position data in register v0\n"
"dcl_texcoord v1 // bind texture coordinate data in register v1\n"
"m4x4 oPos, v0, c0 // transform with view/projection matrix\n"
"mov oT0.xzw, v1.xzw // output xzw texture coordinates\n"
"mov oT0.y, -v1.y // output and invert y texture coordinate\n"
"";

hr = D3DXAssembleShader(
strAsmVertexShader,
(UINT)strlen(strAsmVertexShader),
NULL, // A NULL terminated array of D3DXMACROS
NULL, // A #include handler
D3DXSHADER_DEBUG,
&pShader,
NULL // error messages
);

if(FAILED(hr))
{

SAFE_RELEASE(pShader);
return hr;

}

// Create the vertex shader.
hr = m_pd3dDevice->CreateVertexShader(

(DWORD*)pShader->GetBufferPointer(), &m_pAsm_VS);

if(FAILED(hr))
{

SAFE_RELEASE(m_pAsm_VS);
SAFE_RELEASE(pShader);
return hr;

}

SAFE_RELEASE(pShader);

// Declare the vertex data.

C05616531.fm Page 98 Tuesday, May 13, 2003 1:09 PM

Chapter 5 Pixel Shader Examples 99

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

CUSTOMVERTEX vertices[] =
{
// x y z u,v
{ -1.0f, -1.0f, 0.0f, 0,0 }, // lower left
{ +1.0f, -1.0f, 0.0f, 1,0 }, // lower right
{ +1.0f, +1.0f, 0.0f, 1,1 }, // upper right
{ -1.0f, +1.0f, 0.0f, 0,1 }, // upper left
};

// Create the vertex buffer. Here we are allocating enough memory
// (from the default pool) to hold all our custom vertices
if(FAILED(hr = m_pd3dDevice->CreateVertexBuffer(

sizeof(vertices), 0, 0, D3DPOOL_DEFAULT,
&m_pVB, NULL)))

{
SAFE_RELEASE(m_pVB);
return hr;

}

// Now we fill the vertex buffer. To do this, we need to Lock()
// the VB to gain access to the vertices
VOID* pVertices;
if(FAILED(hr = m_pVB->Lock(0, sizeof(vertices),

(VOID**)&pVertices, 0)))
{

return hr;
}
memcpy(pVertices, vertices, sizeof(vertices));
hr = m_pVB->Unlock();

// Create the vertex declaration.
D3DVERTEXELEMENT9 decl[] =
{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },

{ 0, 12, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_TEXCOORD, 0 },

D3DDECL_END()
};

if(FAILED(hr = m_pd3dDevice->CreateVertexDeclaration(decl,
&m_pVertexDeclaration)))

{
SAFE_RELEASE(m_pVertexDeclaraion);
return hr;

}

C05616531.fm Page 99 Tuesday, May 13, 2003 1:09 PM

100 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

The vertex shader in this example transforms position from model space
to projection space and copies the texture coordinates. As we saw in Chapter 3,
the vertex shader is assembled with D3DXAssembleShader, and the vertex
shader object is created with CreateVertexShader. The vertex declaration object
is created with CreateVertexDeclaration, using the D3DVERTEXELEMENT9 dec-
laration.

With all the resources created, the only thing left is to call the render code.

D3DXMATRIX compMat;
D3DXMatrixMultiply(&compMat, &m_matWorld, &m_matView);
D3DXMatrixMultiply(&compMat, &compMat, &m_matProj);
D3DXMatrixTranspose(&compMat, &compMat);
m_pd3dDevice->SetVertexShaderConstantF(0,

(float*)&compMat, 4);

m_pd3dDevice->SetVertexDeclaration(m_pVertexDeclaration);
m_pd3dDevice->SetVertexShader(m_pAsm_VS);
m_pd3dDevice->SetStreamSource(0, m_pVB, 0,

sizeof(CUSTOMVERTEX));

m_pd3dDevice->SetTexture(0, m_pTexture);
m_pd3dDevice->SetPixelShader(m_pAsm_PS);
m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLEFAN, 0, 2);

m_pd3dDevice->SetVertexShader(NULL);
m_pd3dDevice->SetPixelShader(NULL);

The vertex shader uses the world-view-projection matrix in constant reg-
isters c0 to c3. Because these matrices are initialized by the application, the
constants must also be initialized by the application. This code could change
each time the user navigates in the render window, so a logical place to put the
code is in either the FrameMove method or the Render method. SetVertex-
ShaderConstantF is used to set one or more constant registers; the last argu-
ment in the method is the number of constant registers to set.

Before calling SetVertexShaderConstantF to set matrix constants in a
shader, transform the matrix into column-major order with D3DXMatrix-
Transform. (Row-major order is the default.) Using column-major order allows
the shader to execute a matrix multiply as a series of dot products.

Once the shader constants are set, setting the current pixel shader is similar
to setting the current vertex shader, except that you call SetPixelShader instead
of SetVertexShader. Be sure to set the textures (if any), the stream source, and
the vertex declaration, and call DrawPrimitive to submit the render job.

Now that you know how to generate a pixel shader, it can easily be mod-
ified to generate some 2-D image effects. There are several lines of code com-
mented out in the pixel shader. Each of these produces a different result by

C05616531.fm Page 100 Tuesday, May 13, 2003 1:09 PM

Chapter 5 Pixel Shader Examples 101

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

manipulating the values in the color components. For instance, the following
line inverts the output color. (See Color Plate 9.)

mov r0, 1 - t0 // output inverted texture color

On the other hand, the following add instruction uses the c3 constant to
subtract most of the green and some of the blue components. (See Color Plate
10.)

def c3, 0,-0.5,-0.25,0

add r0, t0, c3 // subtract greens and blue

To get each of these results, modify the shader until only one statement
sets the r0 output register. For ps_1_1 - ps_1_3, r0 is the register that contains
the pixel shader output color when the shader ends. Then rerun the application
to see the e f fec t . Because the shader i s a s sembled by ca l l ing
D3DXAssembleShaderFromFile, you don’t need to rebuild the application. The
shader will get reassembled at run time.

Example 2: Multilayered Textures
The second example illustrates multitexture blending with a pixel shader. Recall
from Chapter 4 that the fixed function pipeline uses a texture sampler and the
multitexture blender to accomplish the tasks in pixel processing part 1, includ-
ing blending the diffuse color, specular color, and up to eight texture colors.

When you replace the fixed function pipeline with a programmable pixel
shader, you implement all the texture blending in the shader. A programmable
pixel shader still relies on the texture samplers to sample textures. This example
blends two textures in the pixel shader. A ps_2_0 shader (or higher) supports
16 samplers, so you can support up to a 16-layer blend.

The first texture layer provides the foundation (See Color Plate 8.) The
second texture layer adds a layer on top. (See Color Plate 11.)

The blending equation is a mathematical combination of the pixel color
components. Here’s the pixel shader that blends the two texture layers:

ps_2_x // version instruction

def c0, 0,0,0,0
def c1, 1,1,1,1
def c2, 1.0,0.5,0.25,0
def c3, 0.2,0.2,0.2,0.2

dcl_2d s0
dcl t0

C05616531.fm Page 101 Tuesday, May 13, 2003 1:09 PM

102 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

dcl_2d s1
dcl t1

texld r0, t0, s0
texld r1, t0, s1

lrp r2, c2, r0, r1
mov oC0, r2

Like all pixel shaders, this one starts with a version instruction and some
constant definitions. This pixel shader uses version ps_2_x, which has a few
changes from ps_1_1. In ps_2_x, texture registers and sampler registers have to
be declared before they’re used.

A sampler declaration looks like this:

dcl_2d s0

This register declaration uses the dcl_samplerType instruction, where the
samplerType is a 2-D texture (2d). Therefore, when a texture gets sampled,
the sampler s0 requires a 2-D texture coordinate. ps_2_x supports 1-D, 2-D,
and 3-D texture coordinates.

The sampler declaration has the following texture coordinate register dec-
laration that goes with it:

dcl t0

This register declaration uses the dcl instruction to identify the data type
that will be streamed into the t0 register. The data streamed into a pixel shader
input register is interpolated vertex data from primitive processing, which in
this case is texture coordinate data. This shader has two texture registers and
two samplers declared because the shader will be using two textures.

Don’t forget that the textures still need to be set to the texture samplers
and that the sampler state still needs to be set. Here’s the code to finish setting
up the samplers and the sampler state:

// texture sampler 0
m_pd3dDevice->SetTexture(0, m_pTexture0);
m_pd3dDevice->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
m_pd3dDevice->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
m_pd3dDevice->SetSamplerState(0, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);

m_pd3dDevice->SetTexture(1, m_pTexture1);
m_pd3dDevice->SetSamplerState(1, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
m_pd3dDevice->SetSamplerState(1, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
m_pd3dDevice->SetSamplerState(1, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);

m_pd3dDevice->SetTexture(2, NULL);

C05616531.fm Page 102 Tuesday, May 13, 2003 1:09 PM

Chapter 5 Pixel Shader Examples 103

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

Now that the texture coordinate register and the sampler are declared, the
textures are set to the texture stages, and the sampler state is initialized, the
shader is ready for the texture sampling instructions.

texld r0, t0, s0
texld r1, t0, s1

ps_2_x uses the texld instruction to perform the texture sampling. It takes
the texture coordinate register and the sample registers we just defined and
returns the texture color in the r0 or r1 destination register.

The last two shader instructions blend the two textures together using the
linear interpolate instruction, lrp. This instruction combines the two texture col-
ors together using the per-component scale factor in the c2 constant register.
Because c2 contains (1,0.5, 0.25,0), the results are as follows:

■ All the red from image 1 and none of the red from image 2

■ Half of the green from image 1 and half of the green from image 2

■ Twenty-five percent of the blue from image 1 and 75 percent of the
blue from image 2

■ None of the alpha from image 1 and all the alpha from image 2

The blended result combines the two images. (See Color Plate 12.)
Not only does the result clearly show both layers, but the earth is missing

most of its blue component, which is why it appears more red and green than
the original layer was.

As usual, the rest of the resource creation code is in RestoreDeviceObjects.
This code can be seen in the application on the enclosed CD. Instead of going
through that again, let’s take a look at what this example would have looked
like if we had not used a programmable shader.

Here’s the programmable shader code that blends the two texture samples
together:

def c2, 1.0,0.5,0.25,0 // per-component blend factors
lrp r2, c2, r0, r1 // per-component linear interpolate function
mov oC0, r2 // output result

In contrast, here’s the API calls that you would make in the fixed function
pipeline to initialize the multitexture blender to blend the same two textures
together:

// Fixed function multitexture blender set up that
// is no longer needed
m_pd3dDevice->SetTexture(0, m_pTexture0);
m_pd3dDevice->SetTexture(1, m_pTexture1);

C05616531.fm Page 103 Tuesday, May 13, 2003 1:09 PM

104 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

m_pd3dDevice->SetVertexDeclaration(m_pVertexDeclaration);
m_pd3dDevice->SetStreamSource(0, m_pVB, 0,

sizeof(CUSTOMVERTEX));

m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLOROP,
D3DTOP_SELECTARG1);

m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLORARG1,
D3DTA_TEXTURE);

m_pd3dDevice->SetTextureStageState(1, D3DTSS_TEXCOORDINDEX,0);
m_pd3dDevice->SetTextureStageState(1, D3DTSS_COLOROP,

D3DTOP_ADD);
m_pd3dDevice->SetTextureStageState(1, D3DTSS_COLORARG1,

D3DTA_TEXTURE);
m_pd3dDevice->SetTextureStageState(1, D3DTSS_COLORARG2,

D3DTA_CURRENT);

Not only is the programmable shader code easier to read, but it’s also
more powerful. The blend factors in register c2 control component blending.

Here are the APIs that are called in the rest of the resource-creation code
in RestoreDeviceObjects. Details are explained in Example 1, earlier in this chap-
ter. Within the code, ... represents lines of code that were removed (in this case,
mostly error checking code) because they do not aid in our understanding of
pixel shaders.

LPD3DXBUFFER pShader = NULL;

TCHAR szTexturePath[MAX_PATH];
hr = DXUtil_FindMediaFileCb(szTexturePath, sizeof(szTexturePath),

_T("earth.bmp"));
if(FAILED(hr))

return D3DERR_NOTFOUND;

hr = D3DXCreateTextureFromFile(m_pd3dDevice, szTexturePath, &m_pTexture0);
if(FAILED(hr))
{

SAFE_RELEASE(m_pTexture0);
return hr;

}

hr = DXUtil_FindMediaFileCb(szTexturePath, sizeof(szTexturePath),
_T(“DX5_Logo.bmp"));

if(FAILED(hr))
return D3DERR_NOTFOUND;

hr = D3DXCreateTextureFromFile(m_pd3dDevice, szTexturePath, &m_pTexture1);
if(FAILED(hr))
{

SAFE_RELEASE(m_pTexture1);
return hr;

C05616531.fm Page 104 Tuesday, May 13, 2003 1:09 PM

Chapter 5 Pixel Shader Examples 105

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

}

hr = D3DXAssembleShader(
strAsmPixelShader,
(UINT)strlen(strAsmPixelShader),
NULL, // A NULL terminated array of D3DXMACROS
NULL, // A #include handler
D3DXSHADER_DEBUG,
&pShader,
NULL // error messages
);

if(FAILED(hr))
{

SAFE_RELEASE(pShader);
return hr;

}

// Create the pixel shader
hr = m_pd3dDevice->CreatePixelShader(

(DWORD*)pShader->GetBufferPointer(), &m_pAsm_PS);

if(FAILED(hr))
{

SAFE_RELEASE(m_pAsm_PS);
SAFE_RELEASE(pShader);
return hr;

}

SAFE_RELEASE(pShader);

// A structure for our custom vertex type
struct CUSTOMVERTEX
{

float x, y, z;
float u,v;

};

CUSTOMVERTEX vertices[] =
{
// x y z u,v
{ -1.0f, -1.0f, 0.0f, 0,1 }, // lower left
{ +1.0f, -1.0f, 0.0f, 1,1 }, // lower right
{ +1.0f, +1.0f, 0.0f, 1,0 }, // upper right
{ -1.0f, +1.0f, 0.0f, 0,0 }, // upper left

C05616531.fm Page 105 Tuesday, May 13, 2003 1:09 PM

106 Part I Programming Assembly-Language Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

};

// Create the vertex declaration.
D3DVERTEXELEMENT9 decl[] =
{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },

{ 0, 3*sizeof(float), D3DDECLTYPE_FLOAT2,
D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0 },

D3DDECL_END()
};

if(FAILED(hr = m_pd3dDevice->CreateVertexDeclaration(decl,
&m_pVertexDeclaration)))

{
SAFE_RELEASE(m_pVertexDeclaration);
return hr;

}

The render code is also included for completeness. It, too, was covered
thoroughly in Example 1 and is unchanged.

D3DXMATRIX compMat;
D3DXMatrixMultiply(&compMat, &m_matWorld, &m_matView);
D3DXMatrixMultiply(&compMat, &compMat, &m_matProj);
D3DXMatrixTranspose(&compMat, &compMat);
m_pd3dDevice->SetVertexShaderConstantF(0,

(float*)&compMat, 4);

m_pd3dDevice->SetVertexDeclaration(m_pVertexDeclaration);
m_pd3dDevice->SetVertexShader(m_pAsm_VS);
m_pd3dDevice->SetStreamSource(0, m_pVB, 0,

sizeof(CUSTOMVERTEX));
m_pd3dDevice->SetPixelShader(m_pAsm_PS);
m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLEFAN, 0, 2);
m_pd3dDevice->SetVertexShader(NULL);

This example uses a pixel shader to blend two textures. The pixel shader
implements a ps_2_x shader, which now requires texture coordinate registers
and samplers to be declared before they’re used in shader code. Because a pro-
grammable shader does not use the multitexture blender, there is no need to
use the SetTextureStageState API to configure the blender.

C05616531.fm Page 106 Tuesday, May 13, 2003 1:09 PM

Microsoft Press. Confidential. master page = Part Opener (option 2)
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

Part II

Programming HLSL
Shaders

C06616531.fm Page 107 Tuesday, May 13, 2003 1:11 PM

Microsoft Press. Confidential. master page = Blank
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

C06616531.fm Page 108 Tuesday, May 13, 2003 1:11 PM

109

Microsoft Press. Confidential. master page = Section Opener
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

HLSL Introduction
Tired of writing shaders in assembly language? Try the high-level shader lan-
guage (HLSL). Microsoft DirectX 9 contains the first release of a C-like shading
language for developing vertex, pixel, and procedural texture shaders. This C-
like shader language is in addition to the assembly-language shader capability
that can be used to generate vertex shaders, pixel shaders, and effects, begin-
ning with DirectX 8.

HLSL supports the development of shaders from C-like functions. The lan-
guage supports many standard language features such as functions, expres-
sions, statements, standard data types, user-designed data types, and
preprocessor directives.

The goal of this chapter is to get you writing HLSL programs right away,
without getting bogged down by rules, exceptions, and special cases. This chap-
ter introduces you to three working code samples that demonstrate basic vertex,
pixel, and texture shaders. The examples are generally concise but functional,
and they’ll serve to get you ready to generate shaders almost immediately.

HLSL supports shader instructions that are written similar to mathematical
expressions. Like other graphics languages, the mathematical expressions take
full advantage of vector and matrix math. The language follows many C rules
and introduces a few other rules specific to HLSL that make shader program-
ming more intuitive and compact. Compared to similar assembly-language
instructions, HLSL instructions are easier to read and can almost be debugged
just by looking at the source code.

In this chapter, all the high-level shaders are compiled using
D3DXCompileShaderxxx APIs. Assembly-language shaders are assembled from
the D3DXAssembleShaderxxx APIs. Effects can include assembly-language and
high-level language shaders.

C06616531.fm Page 109 Tuesday, May 13, 2003 1:11 PM

110 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

After we cover HLSL, we’ll see how effects provide a powerful framework
for managing pipeline state. Effects use the ID3DXEffectCompiler interface to
compile shaders, which are shown in Part 3.

After you’ve seen the tutorials in this chapter, you’ll have a good introduc-
tion to shader writing with HLSL. The next two chapters extend these tutorials
by going into detail about major functional areas of the language such as data
types, expressions, shader semantics, functions, and custom data types.
Included are examples that demonstrate a glow shader and a metallic paint
shader using vertex shaders, pixel shaders, and procedural textures.

So without further delay, let’s jump into the first shader.

Tutorial 1: Start with a Vertex Shader: Hello World
In computer programs, the simplest program is often one line of code that dis-
plays the string “Hello World.” This tutorial is analogous in that it implements a
vertex shader that contains one line of code. The vertex shader transforms the
vertices of one triangle (very simple geometry) from model space to projection
space. Once transformed, the triangle is rendered in the 3-D scene. Here’s the
vertex shader:

float4x4 WorldViewProj;
float4 VertexShader_Tutorial_1(float4 inPos : POSITION) : POSITION
{

return mul(inPos, WorldViewProj);
}

This shader contains a global variable declaration and a function. The vari-
able WorldViewProj is a 4x4 matrix. Each member of the matrix is a floating-
point value.

float4x4 WorldViewProj;

WorldViewProj will be initialized by the application to contain the product
of the world, view, and projection transformation matrices. The matrix will be
used to transform the vertices, just like the vertex transformation done in the
fixed function pipeline.

Asm
shader

HLSL
shader

Effects

C06616531.fm Page 110 Tuesday, May 13, 2003 1:11 PM

Chapter 6 HLSL Introduction 111

Microsoft Press. Confidential. master page = Right
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

The VertexShader_Tutorial_1 function is made up of a function declara-
tion:

float4 VertexShader_Tutorial_1(float4 inPos : POSITION) : POSITION

and the body of the function:

{
return mul(inPos, WorldViewProj);

}

The function declaration identifies the return type float4, the function
name VertexShader_Tutorial_1, and the input argument list (float4 inPos :
POSITION). The return value has a semantic named POSITION. This argument
list contains one argument. It’s a float4 type named inPos, and it contains a
semantic also named POSITION.

All of this looks very similar to C, except for the data type and the seman-
tics. (There is no float4 native type in C.) The float4 type is a four-component
vector that contains four floating-point components. HLSL has several vector
and matrix types to help with the vector and 3-D math operations. For more
information about data types and vector math, see Chapter 7.

Semantics are an additional feature of HLSL. They were added to make
binding data between shaders and the pipeline easier. Semantics can bind ver-
tex data to vertex shader registers, vertex shader outputs to pixel shader inputs,
or pixel shader outputs back to the pipeline. This shader uses two semantics,
each one is identified by the colon that precedes it. The first semantic identifies
the input data to the function as position data from the vertex buffer. The sec-
ond semantic identifies the function’s return data as position data that will be
output from the vertex shader. Semantics are covered in more detail in Chapter 7.

The body of this shader is contained in one line:

return mul(inPos, WorldViewProj);

This vertex shader contains a single instruction, mul, which is an intrinsic
function that performs a matric multiply. Intrinsic functions are native functions
built into the language. There are many intrinsic functions listed in the HLSL
Reference in Appendix C. In this example, mul takes two arguments: an input
vector (inPos) and an input matrix (WorldViewProj). inPos is an argument of
type float4 that contains four floating-point values. It is referred to as a four-
component vector. If you remember the declaration of WorldViewProj, it con-
tains 16 floating-point values, arranged like a 4-by-4 array. It’s no coincidence
that this matches the layout of a 4-by-4 matrix. The mul function multiplies the
1-by-4 vector and the 4-by-4 matrix, and yields a 1-by-4 vector.

C06616531.fm Page 111 Tuesday, May 13, 2003 1:11 PM

112 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

Another way to say the same thing is that mul transforms the position data
by the world-view-projection matrix. The vertex shader operates once for each
vertex in the object. The shader literally returns the transformed vertices. When
the vertex shader completes, the object is ready to draw. (See Color Plate 13.)

As you can see, the output is not very complex because the vertex data
represents one triangle. It’s a solid color, white, because we did not supply a
vertex color, so the pipeline assumed the default value. The purpose of this
tutorial is to demonstrate an HLSL vertex shader that performs a world-view-
projection transform in one line of code.

This tutorial calls D3DXCompileShader to compile the vertex shader.
D3DXCompileShader is located in the RestoreDeviceObjects method, which is
shown in the following code:

const char* strHLLVertexShader =
"float4x4 WorldViewProj : WORLDVIEWPROJ;\n"
"\n"
"float4 VertexShader_Tutorial_1(float4 inPos : POSITION) : POSITION\n"
"{\n"
"\n"
" return mul(inPos, WorldViewProj);\n"
"}\n"
"";

// Compile the vertex shader
LPD3DXBUFFER pShader = NULL;
hr = D3DXCompileShader(

strHLLVertexShader,
(UINT)strlen(strHLLVertexShader),
NULL,
NULL,
"VertexShader_Tutorial_1",
"vs_1_1",
D3DXSHADER_DEBUG,
&pShader,
NULL, // error messages
&m_pConstantTable);

if(FAILED(hr))
{

SAFE_RELEASE(pShader);
SAFE_RELEASE(m_pConstantTable);
return hr;

}
// Create the vertex shader
hr = m_pd3dDevice->CreateVertexShader(

(DWORD*)pShader->GetBufferPointer(), &m_pHLL_VS);
SAFE_RELEASE(pShader);
if(FAILED(hr))

C06616531.fm Page 112 Tuesday, May 13, 2003 1:11 PM

Chapter 6 HLSL Introduction 113

Microsoft Press. Confidential. master page = Right
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

{
SAFE_RELEASE(m_pHLL_VS);
SAFE_RELEASE(m_pConstantTable);
return hr;

}

D3DXCompileShader takes a shader in the form of a string. After the
shader is compiled, call IDirect3DDevice9::CreateVertexShader to create the
vertex shader object. The Glow example in Chapter 8 goes into more detail
regarding the arguments used by these two API calls. Also, the section called
“Building the Tutorials” later in this chapter goes into more detail about all of
these API calls.

Add a Diffuse Color
To expand the vertex shader to accommodate additional vertex data, we could
add a diffuse color to each vertex of the triangle. The vertex shader would need
to perform the position transformation (as earlier) and apply the per-vertex dif-
fuse color. The shader could be modified to look like this:

float4x4 WorldViewProj;
struct VS_OUTPUT
{

float4 Pos : POSITION;
float4 Diff : COLOR0;

};
VS_OUTPUT VertexShader_Tutorial_1a(float4 inPos : POSITION,
float4 inDiff : COLOR0)
{

VS_OUTPUT Out = (VS_OUTPUT)0;
Out.Pos = mul(inPos, WorldViewProj);
Out.Diff = inDiff;
return Out;

}

Now we have a polygon face with a little color in it. The top vertex was
set to red, the lower-left vertex was set to white, and the lower-right vertex was
set to blue. (See Color Plate 14.)

Let’s look behind the scenes to see what changes were needed. The first
thing that’s different with the shader is that it now returns a structure named
VS_OUTPUT instead of a float4. As you can see, the structure contains two types
of data: position and diffuse color.

struct VS_OUTPUT
{

float4 Pos : POSITION;
float4 Diff : COLOR0;

};

C06616531.fm Page 113 Tuesday, May 13, 2003 1:11 PM

114 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

Both position and color data use a float4 type because each of them con-
tains four components of data. The position contains (x,y,z,w) data, and the dif-
fuse color contains (r,g,b,a) data. Both parameters have a semantic that
identifies the original vertex data from the vertex buffer. Because the shader
depends on the vertex data containing diffuse color (in addition to the position
data), the vertex data needs to be modified to contain color data, as shown in
the following code:

// Initialize three vertices for rendering a triangle
CUSTOMVERTEX vertices[] =
{

{-1, -1, 0, D3DCOLOR_RGBA(255,255,255,255)}, // white lower left
{ 0, 1, 0, D3DCOLOR_RGBA(255,0,0,0)}, // red top
{ 1, -1, 0, D3DCOLOR_RGBA(0,0,255,0)} // blue lower right

};

This initialization consists of three rows of data, one for each vertex in the
triangle. Each row (vertex) contains a position (x,y,z) and a diffuse color (rgba)
created with the D3DCOLOR_RGBA macro.

As a result of the vertex data changes, the vertex declaration also needs to
be updated by adding another line, as shown here:

// Create the vertex declaration
D3DVERTEXELEMENT9 decl[] =
{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },

{ 0, 3*sizeof(float), D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_COLOR, 0 },

D3DDECL_END()
};

This declaration contains two lines, one for each type of data in the vertex
buffer. The first row identifies the position data; the second corresponds to the
diffuse color.

That completes Tutorial 1, which gives you a starting place for generating
HLSL shaders. These examples demonstrate a vertex shader that uses a single
function with semantics. As you can see, HLSL uses functions to build shader
functionality. The next tutorial will add a pixel shader to the mix so that you can
see how a vertex shader talks to a pixel shader.

So how do you get this shader to work on your machine? As you might
know from looking at the DirectX SDK samples, all the samples run on the sam-
ple framework. This approach is continued here, for all the examples because
the sample framework provides so much base Microsoft Windows functionality
and allows you to focus on graphics issues. To learn more about the API calls

C06616531.fm Page 114 Tuesday, May 13, 2003 1:11 PM

Chapter 6 HLSL Introduction 115

Microsoft Press. Confidential. master page = Right
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

used by the runtime to get Tutorial 1 up and running, see “Building the Tutori-
als” later in this chapter. For details about vertex declarations, see the DirectX 9
SDK documentation.

Tutorial 2: Add a Pixel Shader
Now that we’ve seen some of the basics of an HLSL vertex shader, let’s add a
pixel shader. In this example, we’ll continue to transform the vertices with a
vertex shader, but now we’ll apply a texture with a pixel shader. Here are the
new shaders:

float4x4 WorldViewProj;
sampler DiffuseSampler;
void VertexShader_Tutorial_2(

in float4 vPos : POSITION,
in float2 vTex : TEXCOORD0,
out float4 oPos : POSITION,
out float2 oTex : TEXCOORD0)

{
oPos = mul(vPos, WorldViewProj);
oTex = vTex;

}
void PixelShader_Tutorial_2(

in float2 vTex : TEXCOORD0,
out float4 oCol : COLOR0)

{
oCol = tex2D(DiffuseSampler, vTex);

}

Now there are two shaders to compile: the vertex shader for transforming
position and the pixel shader for sampling a texture.

The vertex shader also demonstrates the in and out keywords available in
HLSL. These keywords identify shader function arguments as inputs only (in),
outputs only (out), or both (inout). In this example, the vertex shader returns
two values. Instead of returning them as member of a structure (as in Tutorial
1), the out keyword is applied to them in the function’s argument list.

Notice also that the texture coordinate semantic TEXCOORD0 is the same
for the vertex shader input, vertex shader output, and pixel shader input. That’s
because this data is first read from the vertex buffer (the semantic on the in
parameter), then written out by the vertex shader (the semantic on the out
parameter), and then read by the pixel shader. This is an example of using a
semantic to associate data from vertex shader outputs to pixel shader inputs.

The vertex shader transforms the position to projection space and passes
the texture coordinates out. The pixel shader uses the texture coordinates to

C06616531.fm Page 115 Tuesday, May 13, 2003 1:11 PM

116 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

sample a texture and outputs a per-pixel color. Here’s the code to create both
shaders:

// Compile and create vertex shader
LPD3DXBUFFER pShader = NULL;
hr = D3DXCompileShaderFromResource(

NULL,
MAKEINTRESOURCE(ID_EXAMPLE1_FX),
NULL,
NULL,
"VertexShader_Tutorial_2",
"vs_1_1",
D3DXSHADER_DEBUG,
&pShader,
NULL,
&m_pConstantTable);

if(FAILED(hr))
{

SAFE_RELEASE(pShader);
SAFE_RELEASE(m_pConstantTable);
return hr;

}

// Create the vertex shader
hr = m_pd3dDevice->CreateVertexShader(

(DWORD*)pShader->GetBufferPointer(), &m_pHLL_VS);
SAFE_RELEASE(pShader);
if(FAILED(hr))
{

SAFE_RELEASE(pShader);
SAFE_RELEASE(m_pConstantTable);
SAFE_RELEASE(m_pHLL_VS);
return hr;

}
// Compile and create the pixel shader
hr = D3DXCompileShaderFromResource(

NULL,
MAKEINTRESOURCE(ID_EXAMPLE1_FX),
NULL,
NULL,
"PixelShader_Tutorial_2",
"ps_1_1",
D3DXSHADER_DEBUG,
&pShader,
NULL,
NULL);

if(FAILED(hr))
{

SAFE_RELEASE(pShader);
return hr;

C06616531.fm Page 116 Tuesday, May 13, 2003 1:11 PM

Chapter 6 HLSL Introduction 117

Microsoft Press. Confidential. master page = Right
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

}
// Create the pixel shader
hr = m_pd3dDevice->CreatePixelShader(

(DWORD*)pShader->GetBufferPointer(), &m_pHLL_PS);

SAFE_RELEASE(pShader);
if(FAILED(hr))
{

SAFE_RELEASE(pShader);
SAFE_RELEASE(m_pHLL_PS);
return hr;

}

Tutorial 1 uses D3DXCompileShader, which takes a shader in the form of
a s t r ing contained in the project source code. This tutor ia l uses
D3DXCompileShaderFromResource, which loads and compiles the shader file
as a resource. A resource specifies the name of the shader file, which is com-
piled into the executable. The result is that the compiled shader ends up in the
executable file (.exe).

In this example, the resource string, ID_EXAMPLE1_FX, is loaded with the
shader file name using the Microsoft Visual Studio resource editor. Each time
the shader is modified, the project must be rebuilt so that the resource is
updated in the executable file.

Because the pixel shader will use a texture, a texture object needs to be
loaded. Here’s the code to create the texture object:

TCHAR szEarth[MAX_PATH];
hr = DXUtil_FindMediaFileCb(szEarth, sizeof(szEarth),

_T("earth.bmp"));
if(FAILED(hr))

return D3DAPPERR_MEDIANOTFOUND;
hr = D3DXCreateTextureFromFile(m_pd3dDevice, szEarth, &m_pTexture);
if(FAILED(hr))
{

SAFE_RELEASE(m_pTexture);
return hr;

}

Here’s the vertex declaration:

// Create the vertex declaration
D3DVERTEXELEMENT9 decl[] =
{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },

{ 0, 12, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_TEXCOORD, 0 },

D3DDECL_END()
};

C06616531.fm Page 117 Tuesday, May 13, 2003 1:11 PM

118 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

The resulting object is a sphere with a texture map of the earth applied.
(See Color Plate 15.)

Now that we have the pixel shader working, let’s experiment with a few
image options.

Complementing
First let’s complement the texture color data, which should invert all the colors.

void PS_HLL_EX1(
in float2 vTex : TEXCOORD0,
out float4 oCol : COLOR0)

{
oCol = 1.0f - tex2D(DiffuseSampler, vTex);

}

Each of the color components (rgba) is at full intensity when it is equal to
1. Therefore, to complement the color, take each color channel and subtract it
from 1. Reds now appear as cyan, greens now appear magenta, and blues
appear yellow, which explains why the blue oceans look mostly yellow. (See
Color Plate 16.)

Notice how HLSL is performing vector math. oCol is a four-component
vector declared as a float4 type. The tex2D intrinsic function samples the tex-
ture using the coordinates in vTex and returns a four-component color. Think of
this four-component vector as an rgba color. The expression 1.0f - tex2D(...)
performs a component-wise subtraction, which conceptually looks like this:

oCol.r = 1.0 - red value;
oCol.g = 1.0 - green value;
oCol.b = 1.0 - blue value;
oCol.a = 1.0 - alpha value;

Darkening
We can just as easily darken the image. Because 1.0 is a full-intensity value,
reducing all components by the same amount results in darker color compo-
nents. In this case, the image is darkened by reducing the color values by a fac-
tor of 2.

void PS_HLL_EX1(
in float2 vTex : TEXCOORD0,
out float4 oCol : COLOR0)

{
oCol = 0.5f * tex2D(DiffuseSampler, vTex);

}

C06616531.fm Page 118 Tuesday, May 13, 2003 1:11 PM

Chapter 6 HLSL Introduction 119

Microsoft Press. Confidential. master page = Right
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

Notice how the oceans are still blue and the continents are still predomi-
nantly green and yellow. The image is simply using darker colors. (See Color
Plate 17.)

Just like the complement example, this example uses vector math equiva-
lent to the following:

oCol.r = 0.5f * red value;
oCol.g = 0.5f * green value;
oCol.b = 0.5f * blue value;
oCol.a = 0.5f * alpha value;

Masking the Red Out
The complement and darken examples use vector math to change all the color
components by the same arithmetic equation. This example isolates the red
component and filters it out.

void PS_HLL_EX1(
in float2 vTex : TEXCOORD0,
out float4 oCol : COLOR0)

{
oCol = tex2D(DiffuseSampler, vTex);
oCol.r = 0.0f;

}

This pixel shader samples the texture just as the first example did. The red
component is effectively filtered out by setting it to 0, as shown here:

oCol.r = 0.0f;

The lack of red is not particularly obvious in the oceans, but notice how
the mountain ranges in South America are almost green because the red com-
ponent in them has been removed. (See Color Plate 18.)

Displaying Red Only
Is it hard to see how much red was in the mountains? Let’s simply modify the
pixel shader to display the red component. In other words, let’s mask out the
green, blue, and alpha components.

void PS_HLL_EX1(
in float2 vTex : TEXCOORD0,
out float4 oCol : COLOR0)

{
oCol = tex2D(DiffuseSampler, vTex);
oCol.bga = 0;

}

C06616531.fm Page 119 Tuesday, May 13, 2003 1:11 PM

120 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

This image is only non-black where the red component is non-zero. There
are no blue, green, and alpha components in this image, which is why the
oceans are almost black. (See Color Plate 19.)

As you can see, there are a number of interesting effects that can be cre-
ated with very small modifications in the pixel shader instructions.

Tutorial 3: Add a Procedural Texture
This tutorial demonstrates how to generate a procedural texture, which is used
to texture an object. A procedural texture is a texture that’s generated with
mathematical equations. Procedural textures are one way to use noise functions
to add realism to a textured object.

This tutorial procedurally generates a grid texture containing horizontal
and vertical lines. (See Color Plate 20.)

A procedural texture is generated at run time. It’s usually called in a one-
time startup function such as InitDeviceObjects to fill an existing texture object.
Once the texture is loaded, the texture object can be accessed by the multitex-
ture blender or it could be used in a pixel shader.

A procedural texture is treated like a third type of shader, in the sense that
the same sequence of APIs are used to create it. Call D3DXCompileShader with
a special target, tx_1_0, to indicate that a procedural texture is being created.

First create a texture object. The texture object from Tutorial 2 is created
from a texture file. Because we’ll be creating our own texture, we could do this
instead:

// Create the procedural texture
hr = D3DXCreateTexture(

m_pd3dDevice,
64, 64, // width, height
1, // mip levels
0, // usage
D3DFMT_UNKNOWN, // format
D3DPOOL_MANAGED, // memory pool
&m_pTexture);

if(FAILED(hr))
{

SAFE_RELEASE(m_pTexture);
return hr;

}

This code generates a texture object that’s 64-by-64 with one level and
default settings for the format and the memory pool. The texture object will be
loaded when the procedural shader runs. So let’s see how to generate the pro-

C06616531.fm Page 120 Tuesday, May 13, 2003 1:11 PM

Chapter 6 HLSL Introduction 121

Microsoft Press. Confidential. master page = Right
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

cedural shader before we use it. Here’s the function that will generate the pro-
cedural shader:

void TX_HLL_EX1(
in float2 vTex : POSITION,
out float4 oCol : COLOR0)

{
oCol = float4(vTex.x, 0, 0, 0);

// horizontal lines
if((0.25 < vTex.y) && (vTex.y < 0.30))

oCol.x = 0;
else if((0.50 < vTex.y) && (vTex.y < 0.55))

oCol.x = 0;
else if((0.75 < vTex.y) && (vTex.y < 0.80))

oCol.x = 0;

// vertical lines
if((0.40 < vTex.x) && (vTex.x < 0.42))

oCol.x = 0;
else if((0.50 < vTex.x) && (vTex.x < 0.52))

oCol.x = 0;
else if((0.60 < vTex.x) && (vTex.x < 0.62))

oCol.x = 0;
else if((0.70 < vTex.x) && (vTex.x < 0.72))

oCol.x = 0;
else if((0.80 < vTex.x) && (vTex.x < 0.82))

oCol.x = 0;
else if((0.90 < vTex.x) && (vTex.x < 0.92))

oCol.x = 0;
}

The function is called TX_HLL_EX1. It essentially draws horizontal and
vertical lines at certain texture coordinates using a series of if statements. This
is a simple texture that will illustrate the API calls necessary to use a procedural
texture.

The procedural texture (the shader) i s compi led by ca l l ing
D3DXCompileShaderFromResource.

// Create the procedural texture
hr = D3DXCompileShaderFromResource(

NULL,
MAKEINTRESOURCE(ID_EXAMPLE1_FX),
NULL, // A NULL terminated array of D3DXMACROs
NULL, // A #include handler
"TX_HLL_EX1",
"tx_1_0",
D3DXSHADER_DEBUG,

(continued)

C06616531.fm Page 121 Tuesday, May 13, 2003 1:11 PM

122 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

&pShader,
NULL, // error messages
NULL); // constant table pointer

if(FAILED(hr))
{

SAFE_RELEASE(pShader);
return hr;

}

The entry point, TX_HLL_EX1, identifies the shader function that will be
called to procedurally create the texture. The texture shader version tx_1_0
identifies the shader as a version 1_0 texture shader. The shader function will
be called by D3DXFillTextureTX, as shown below:

// Procedurally fill texture
hr = D3DXFillTextureTX(m_pTexture

(CONST DWORD*)pShader->GetBufferPointer(), NULL, 0);
if(FAILED(hr))
{

SAFE_RELEASE(m_pTexture);
SAFE_RELEASE(pShader);
return hr;

}

So there you are. Now we have a vertex shader, a pixel shader, and a tex-
ture shader. The texture shader is compiled just like a vertex or pixel shader. It
requires a texture object to be created so that it can procedurally fill it. Instead
of running at draw time like a vertex or pixel shader, the texture shader runs
when D3DXFillTextureTX is called.

Building the Tutorials
A few setup steps are necessary to build these shaders. All the examples in this
book are built using the sample framework, just like all the rest of the samples
in the DirectX 9 SDK. The sample framework is a set of classes that perform
much of the basic Windows housekeeping for managing the objects in a
DirectX application. Table 6-1 shows the methods that the sample framework
provides for adding our code.

Table 6-1 Sample Framework Methods

CMyD3DApplication Method Purpose

OneTimeSceneInit One-time events such as initializing matrices.

InitDeviceObjects One-time events such as initializing matrices.

C06616531.fm Page 122 Tuesday, May 13, 2003 1:11 PM

Chapter 6 HLSL Introduction 123

Microsoft Press. Confidential. master page = Right
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

Of these methods, the most interesting work involves creating the
resources the program will use and rendering the output. Therefore, we’ll focus
most of this section on the RestoreDeviceObjects and Render methods.

Creating Resources
For these tutorials, we need to create an object for each scene. We might need
to create a vertex shader to transform and light the object per-vertex. We might
need a pixel shader to texture and light the object per-pixel. We might need a
texture shader to generate a procedural texture. We might need to create a tex-
ture or two, set up one or more samplers, and set up the multitexture blender
to blend the results. Each of these objects is referred to as a resource. All these
resources are typically created in RestoreDeviceObjects because this method is
called whenever the device is lost and the application needs to re-create
resources.

Here is the CMyD3DApplication::RestoreDeviceObjects method from
Tutorial 1:

HRESULT CMyD3DApplication::RestoreDeviceObjects()
{

HRESULT hr;

const char* strHLLVertexShader =
"float4x4 WorldViewProj : WORLDVIEWPROJ;\n"
"\n"
“struct VS_OUTPUT\n”
“{\n”
“ float4 Pos : POSITION;\n”
“};\n”
“\n”
“VS_OUTPUT VertexShader_Tutorial_1(\n”
“ float3 Pos : POSITION\n”
“)\n”
“{\n”

FrameMove Handling mouse or keyboard navigation.

Render The drawing code.

RestoreDeviceObjects Create resources.

DeleteDeviceObjects Release and clean up objects.

ConfirmDevices Check for hardware shader support.

Table 6-1 Sample Framework Methods (continued)

CMyD3DApplication Method Purpose

(continued)

C06616531.fm Page 123 Tuesday, May 13, 2003 1:11 PM

124 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

“ VS_OUTPUT Out = (VS_OUTPUT)0;\n”
“\n”
“ Out.Pos = mul(float4(Pos, 1), WorldViewProj);\n”
“\n”
“ return Out;\n”
“}\n”
"";

// Compile the vertex shader
LPD3DXBUFFER pShader = NULL;

hr = D3DXCompileShader(
strHLLVertexShader,
(UINT)strlen(strHLLVertexShader),
NULL,
NULL,
"VertexShader_Tutorial_1",
"vs_1_1",
D3DXSHADER_DEBUG,
&pShader,
NULL, // error messages
&m_pConstantTable);

if(FAILED(hr))
{

SAFE_RELEASE(pShader);
SAFE_RELEASE(m_pConstantTable);
return hr;

}

// Create the vertex shader
hr = m_pd3dDevice->CreateVertexShader(

(DWORD*)pShader->GetBufferPointer(), &m_pHLL_VS);

if(FAILED(hr))
{

SAFE_RELEASE(pShader);
SAFE_RELEASE(m_pConstantTable);
SAFE_RELEASE(m_pHLL_VS);
return hr;

}

SAFE_RELEASE(pShader);

///
// Initialize three vertices for rendering a triangle
CUSTOMVERTEX vertices[] =
{

C06616531.fm Page 124 Tuesday, May 13, 2003 1:11 PM

Chapter 6 HLSL Introduction 125

Microsoft Press. Confidential. master page = Right
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

{-1, -1, 0}, // lower left
{ 0, 1, 0}, // top
{ 1, -1, 0}, // lower right

};

// Create the vertex buffer. Here we are allocating enough memory
// (from the default pool) to hold all of our 3 custom vertices.
if(FAILED(hr = m_pd3dDevice->CreateVertexBuffer(

3*sizeof(CUSTOMVERTEX), 0, 0, D3DPOOL_DEFAULT,
&m_pVB, NULL)))

{
SAFE_RELEASE(m_pVB);
return E_FAIL;

}

// Now we fill the vertex buffer. To do this, Lock()
// the VB to gain access to the vertices.
VOID* pVertices;
if(FAILED(hr = m_pVB->Lock(0, sizeof(vertices),

(VOID**)&pVertices, 0)))
{

return E_FAIL;
}
memcpy(pVertices, vertices, sizeof(vertices));
hr = m_pVB->Unlock();

// Create the vertex declaration
D3DVERTEXELEMENT9 decl[] =
{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },

D3DDECL_END()
};

if(FAILED(hr = m_pd3dDevice->CreateVertexDeclaration(decl,
&m_pVertexDeclaration)))

{
SAFE_RELEASE(m_pVertexDeclaration);
return hr;

}

m_pFont->RestoreDeviceObjects();
m_pFontSmall->RestoreDeviceObjects();

// Set up render states
m_pd3dDevice->SetRenderState(D3DRS_LIGHTING, FALSE);
m_pd3dDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);

(continued)

C06616531.fm Page 125 Tuesday, May 13, 2003 1:11 PM

126 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

// Set up the world matrix
D3DXMatrixIdentity(&m_matWorld);

// Set up the projection matrix
D3DXMatrixPerspectiveFovLH(&m_matProj, D3DX_PI/4,

1.0f, 0.1f, 100.0f);

return S_OK;
}

In this example, RestoreDeviceObjects creates the shaders, initializes the
vertex buffer with the vertex data, creates a vertex declaration to describe the
vertex buffer, calls RestoreDeviceObjects to generate font resources, sets a few
default render states, and initializes two of the three matrices.

If you want more detail, keep reading. If you feel comfortable with
resource creation, you can skip ahead a few pages to the drawing code or even
to the next chapter.

Creating a Shader
A shader is a series of HLSL statements that need to be validated and compiled
before they can be used by the runtime. Here’s one way to accomplish this:

const char* strHLLVertexShader =
"float4x4 WorldViewProj : WORLDVIEWPROJ;\n"
"\n"
“struct VS_OUTPUT\n”
“{\n”
“ float4 Pos : POSITION;\n”
“};\n”
“\n”
“VS_OUTPUT VertexShader_Tutorial_1(\n”
“ float3 Pos : POSITION\n”
“)\n”
“{\n”
“ VS_OUTPUT Out = (VS_OUTPUT)0;\n”
“\n”
“ Out.Pos = mul(float4(Pos, 1), WorldViewProj);\n”
“\n”
“ return Out;\n”
"}\n"
"";

// Compile the vertex shader
LPD3DXBUFFER pShader = NULL;

hr = D3DXCompileShader(
strHLLVertexShader,
(UINT)strlen(strHLLVertexShader),
NULL,

C06616531.fm Page 126 Tuesday, May 13, 2003 1:11 PM

Chapter 6 HLSL Introduction 127

Microsoft Press. Confidential. master page = Right
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

NULL,
"VertexShader_Tutorial_1",
"vs_1_1",
D3DXSHADER_DEBUG,
&pShader,
NULL, // error messages
&m_pConstantTable);

if(FAILED(hr))
{

SAFE_RELEASE(pShader)
SAFE_RELEASE(m_pConstantTable);
return hr;

}

// Create the vertex shader
hr = m_pd3dDevice->CreateVertexShader(

(DWORD*)pShader->GetBufferPointer(), &m_pHLL_VS);

if(FAILED(hr))
{

SAFE_RELEASE(pShader);
SAFE_RELEASE(m_pConstantTable);
SAFE_RELEASE(m_pHLL_VS);
return hr;

}
SAFE_RELEASE(pShader);

In this example, the shader is a text string supplied as an argument to
D3DXCompileShader. D3DXCompileShader has two other variations—
D3DXCompileShaderFromFile and D3DXCompileShaderFromResource—so you
have a variety of formats for supplying shader code.

D3DXCompileShader takes several arguments and can return several
pointers. This example specifies the shader in a string with the shader entry
point function VertexShader_Tutorial_1, and with shader version vs_1_1. If the
function is successful, it returns a pointer to the compiled shader code in
pShader and a pointer to the constant table, m_pConstantTable. The constant
table pointer will be used to initialize the shader global variables.

Use the pointer to the compiled shader to create the shader object by call-
ing IDirect3DDevice9::CreateVertexShader. That’s it. We now have a compiled
vertex shader. Tutorial 2 showed how to create a pixel shader, and Tutorial 3
showed how to create a texture shader.

C06616531.fm Page 127 Tuesday, May 13, 2003 1:11 PM

128 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

Creating the Vertex Data
This example declares the vertex data in the vertices array so that it’s easy to
see. Each line in the array is a single (x,y,z) vertex position.

// Initialize three vertices for rendering a triangle
CUSTOMVERTEX vertices[] =
{

{-1, -1, 0}, // lower left
{ 0, 1, 0}, // top
{ 1, -1, 0}, // lower right

};

With the vertex data defined, we need to load the data into the vertex
buffer. Here’s the sequence for creating and loading the vertex buffer:

// Create the vertex buffer. Here we are allocating enough memory
// (from the default pool) to hold all our 3 custom vertices.
if(FAILED(hr = m_pd3dDevice->CreateVertexBuffer(

3*sizeof(CUSTOMVERTEX), 0, 0, D3DPOOL_DEFAULT,
&m_pVB, NULL)))

{
SAFE_RELEASE(m_pVB);
return E_FAIL;

}

// Now we fill the vertex buffer. To do this, we need to Lock()
// the VB to gain access to the vertices.
VOID* pVertices;
if(FAILED(hr = m_pVB->Lock(0, sizeof(vertices),

(VOID**)&pVertices, 0)))
{

return E_FAIL;
}
memcpy(pVertices, vertices, sizeof(vertices));
hr = m_pVB->Unlock();

We’ve created a vertex buffer with room for three values per vertex (sized
by CUSTOMVERTEX), a default usage, a 0 FVF (because the vertex declaration
will describe the vertex buffer data), and a default memory pool so that the
runtime can decide what type of memory is most efficient for storing the data.
Once the buffer is created, the Lock/Unlock sequence is used to fill the buffer.

The vertex declaration describes the data in the vertex buffer. This exam-
ple contains one line because the vertex buffer contains only one data type:
position data.

// Create the vertex declaration
D3DVERTEXELEMENT9 decl[] =
{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },

C06616531.fm Page 128 Tuesday, May 13, 2003 1:11 PM

Chapter 6 HLSL Introduction 129

Microsoft Press. Confidential. master page = Right
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

D3DDECL_END()
};
if(FAILED(hr = m_pd3dDevice->CreateVertexDeclaration(decl,

&m_pVertexDeclaration)))
{

SAFE_RELEASE(m_pVertexDeclaration);
return hr;

}

This example specifies data in stream 0, no offset from the stream pointer
to the data, three floating-point values (position data), a default method (requir-
ing no special tessellator processing), and a default usage index (0). In other
words, the vertex buffer contains only (x,y,z) position data that will not need to
be tessellated.

Initializing the Render States
Render states set up the pipeline to process vertex and pixel data. Try to set
render states as infrequently as possible to improve efficiency. In this section,
we’re explicitly turning off the lighting engine and setting the cull mode to tell
the pipeline to draw all polygon faces.

// Set up render states
m_pd3dDevice->SetRenderState(D3DRS_LIGHTING, FALSE);
m_pd3dDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);

// Set up the world matrix
D3DXMatrixIdentity(&m_matWorld);

// Set up the projection matrix
D3DXMatrixPerspectiveFovLH(&m_matProj, D3DX_PI/4,

1.0f, 0.1f, 100.0f);

This is also a good place to do one-time initializations, such as setting
matrices. In this case, the world and projection matrices are set because this
application does not expect them to change. (The view matrix is set up in One-
TimeSceneInit.)

Rendering
The render code takes advantage of all the resources we created, sets shader
variables, and calls the draw method.

HRESULT CMyD3DApplication::Render()
{

// Clear the back buffer
m_pd3dDevice->Clear(0L, NULL, D3DCLEAR_TARGET|D3DCLEAR_ZBUFFER,

0x000000ff, 1.0f, 0L);

(continued)

C06616531.fm Page 129 Tuesday, May 13, 2003 1:11 PM

130 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, Ch06, LRCcx2, edd version: #, FrameMaker+SGML; ef

// Begin the scene
if(SUCCEEDED(m_pd3dDevice->BeginScene()))
{

// Draw a triangle with the vertex shader
if(m_pConstantTable)
{

D3DXMATRIX compMat;
D3DXMatrixMultiply(&compMat, &m_matWorld, &m_matView);
D3DXMatrixMultiply(&compMat, &compMat, &m_matProj);

m_pConstantTable->SetMatrix(m_pd3dDevice, "WorldViewProj",
&compMat);

m_pd3dDevice->SetVertexDeclaration(m_pVertexDeclaration);
m_pd3dDevice->SetVertexShader(m_pHLL_VS);
m_pd3dDevice->SetStreamSource(0, m_pVB, 0,

sizeof(CUSTOMVERTEX));
m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLELIST, 0, 1);

m_pd3dDevice->SetVertexShader(NULL);
}

// End the scene
m_pd3dDevice->EndScene();

}

return S_OK;
}

The render code initializes the shader matrix (WorldViewProj), sets the
vertex declaration (which describes the vertex buffer), sets the vertex shader,
sets the stream source, and calls DrawPrimitive to draw the triangle. The vertex
shader is set back to NULL after the draw call. This is similar to resetting render
states or texture stage states after rendering.

Summary
This chapter illustrated three shader tutorials. Tutorial 1 rendered a single trian-
gle with a vertex shader. Tutorial 2 showed how to use the vertex shader out-
puts as the pixel shader inputs. By changing only the pixel shader, we created
a variety of simple image-processing results. Tutorial 3 showed how to create
and fill a procedural texture using a texture shader. With HLSL, it’s easy to cre-
ate shaders in a C-like language. If you’re ready for more, the next chapter
shows you how to create expressions, statements, and functions to build your
own shaders.

C06616531.fm Page 130 Tuesday, May 13, 2003 1:11 PM

131

Microsoft Press. Confidential. master page = Section Opener
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

The Language
This chapter describes the high-level shader language (HLSL) in three sections:
“Data Types,” “Expressions and Statements,” and “Functions.” The “Data Types”
section shows the native HLSL types and how to use them to declare variables,
and it describes the more complex data types such as vectors, matrices, and
structures. “Expressions and Statements” shows how to use the data types to
create expressions, which are the building blocks for statements. “Functions”
describes how to create functions that will be built into shaders and includes
some of the intrinsic functions that are built into the HLSL. After reading this
chapter, you’ll be ready to look at some in-depth shader examples.

Data Types
HLSL has intrinsic support for many different data types, starting from simple
types for Booleans, integers, and floating-point numbers, and expanding into
more complex types such as vectors, matrices, and structures.

Scalar Types
The simplest types are the scalar types, which are listed in Table 7-1.

Table 7-1 Scalar Types

Type Value

bool true or false

int 32-bit signed integer

(continued)

C07616531.fm Page 131 Tuesday, May 13, 2003 1:12 PM

132 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

Some target platforms do not have native support for integer values. In
that case, integer values might need to be emulated using floating-point hard-
ware, which can cause unexpected results if an integer goes outside the range
that a floating-point number can represent.

Also, not all target platforms have native support for half or double values.
If the target platform does not, they will be emulated using float. The compiler
will determine if intermediate results of floating-point expressions are evaluated
at a precision higher than the operands, or the result.

Variable Declaration
The simplest variable declaration includes a type and a variable name, such as
this floating-point declaration:

float fVar;

You can initialize a variable in the same statement.

float fVar = 3.1f;

An array of variables can be declared, as shown here:

int iVar[3];

Or an array can be declared and initialized in the same statement.

int iVar[3] = {1,2,3};

Type Modifiers
Type modifiers are optional keywords placed immediately before the variable
type that give the compiler additional information about the data type. Type
modifiers include

■ const

■ row_major or col_major

const
The const modifier indicates a variable whose value can’t be changed by a
shader.

half 16-bit floating-point value

float 32-bit floating-point value

double 64-bit floating-point value

Table 7-1 Scalar Types (continued)

Type Value

C07616531.fm Page 132 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 133

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

const float fConstant = 0.2f;

Declaring a variable with const allows the compiler to put the value in a
portion of memory that does not need write access. Because the variable can-
not be changed, it must be initialized in the declaration.

Shader constants that can be changed by the application are global vari-
ables that do not use the static modifier. For more information about the static
modifier, see the “Storage Class Modifiers” section later in this chapter.

row_major or col_major
Matrix elements are organized in either row-major order or column-major order.
In column-major order, a matrix column will be stored in a single constant reg-
ister. In row-major order, each row of the matrix will be stored in a single con-
stant register.

row_major float4x4 worldMatrix;

A row-major matrix is laid out like this:

Use col_major to specify that a matrix is to be initialized in column-major
order, which means that each column of the matrix will be stored in a single
constant register.

col_major float4x4 transposedWorldMatrix;

A column-major matrix is laid out like this:

Row-major and column-major matrix ordering effect only the order that
matrix components are read from the constant table or from shader inputs. The
order has no effect on how the matrix components are used or accessed from
within HLSL code.

For more information, see the “Matrix Ordering” section later in this
chapter.

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

11 21 31 41

12 22 32 42

13 23 33 43

14 24 34 44

C07616531.fm Page 133 Tuesday, May 13, 2003 1:12 PM

134 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

Storage Class Modifiers
Shader global variables are declared at the top level of the shader (outside of
any functions).

float globalShaderVariable;
void function()
{

float localShaderVariable;
... // other shader statements

}

Storage class modifiers give the compiler hints about variable scope and
lifetime. Storage class modifiers are optional and can be specified in any order,
as long as they occur before the variable type. HLSL uses the following storage
class modifiers:

■ static or extern

■ uniform

■ shared

static
At global scope, the static keyword prevents a shader variable from being
exposed to an application. None of the API methods (such as GetVertexShader-
Cons tan tx and Se tVer t exShaderCons tan tx) and none o f the
ID3DXConstantTable interface methods can be used to get or set a static vari-
able.

static float fConstant_Hidden_From_the_App = 0.2f;

On the other hand, the static keyword is interpreted differently at local
scope (inside of a function, for example). At local scope, a static variable has a
value that persists from one invocation of the function to the next.

extern
The extern variable is the opposite of static. An extern variable is one that is set
outside of the shader. Global variables can’t be declared both extern and static
because doing so would not make sense.

extern float4 fogColor;

To set an extern variable, use SetVertexShaderConstantx or any of the
ID3DXConstantTable interface methods. If a global variable is not declared
either static or extern, it’s assumed to be extern.

C07616531.fm Page 134 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 135

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

uniform
A uniform variable can be changed only between draw calls using API methods.

uniform float fConstant_Between_Draw_Calls = 0.2f;

Therefore, once the value is set, all the vertices (if you’re using a vertex
shader) or pixels (if you’re using a pixel shader) see the same initial value in
this variable. Global variables are treated as if they’re declared uniform.

shared
Use shared to identify global shader variables that are shared between effects.
Effects will be covered by the chapters in Part III.

shared float sharedAlphaValue;

Semantics
Variables can be given a semantic. Semantics have no meaning in the language
but are simply associated with the variable. Semantics are not case sensitive.
Which semantics are valid, and what they mean, depends on what kind of func-
tion you’re defining. For vertex shaders, the semantics are used to add data to
registers. For more information about semantics, see the “Functions” section
later in this chapter.

Annotations
Global variables can also have annotations, which can be queried by an effect.
Annotations are metadata that can be attached to any parameter. Annotations
are specified inside of angle brackets. One or more annotations can be attached
to any parameter. Annotations are ignored by HLSL. For more information
about annotations, see Appendix D.

Vector Types
A vector is a special data structure that contains between one and four compo-
nents.

bool bVector; // scalar containing 1 Boolean
bool1 bVector; // vector containing 1 Boolean
int1 iVector; // vector containing 1 int
half2 hVector; // vector containing 2 halfs
float3 fVector; // vector containing 3 floats
double4 dVector; // vector containing 4 doubles

C07616531.fm Page 135 Tuesday, May 13, 2003 1:12 PM

136 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

The integer immediately following the data type is the number of components
on the vector. Initializers can also be included in the declarations.

bool bVector = false;
int1 iVector = {1};
half2 hVector = { 0.2, 0.3 };
float3 fVector = { 0.2f, 0.3f, 0.4f };
double4 dVector = { 0.2, 0.3, 0.4, 0.5 };

Alternatively, the vector type can be used to make the same declarations.

vector <bool, 1> bVector = false;
vector <int, 1> iVector = 1;
vector <half, 2> hVector = { 0.2, 0.3 };
vector <float, 3> fVector = { 0.2f, 0.3f, 0.4f };
vector <double, 4> dVector = { 0.2, 0.3, 0.4, 0.5 };

The vector type uses angle brackets to specify the type and number of compo-
nents.

Vector Component Access
Vectors contain up to four components, each of which can be accessed using
one of the following two naming sets:

■ The position set: x,y,z,w

■ The color set: r,g,b,a

These statements both return the value in the third component:

// Given
float4 pos = float4(0,0,2,1);
pos.z // value is 2
pos.b // value is 2

Naming sets can use one or more components, but they cannot be mixed.

// Given
float4 pos = float4(0,0,2,1);
float2 temp;
temp = pos.xy // valid
temp = pos.rg // valid
temp = pos.xg // NOT VALID because the position and color sets were used.

Vector Component Swizzling
Specifying one or more vector components when reading or writing compo-
nents is called swizzling. For example:

float4 pos = float4(0,0,2,1);
float2 f_2D;
f_2D = pos.xy; // read two components

C07616531.fm Page 136 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 137

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

f_2D = pos.xz; // read components in any order
f_2D = pos.zx;
f_2D = pos.xx; // components can be read more than once
f_2D = pos.yy;

Swizzling also controls how components are written to the destination variable.

float4 pos = float4(0,0,2,1);
float4 f_4D;
f_4D = pos; // write four components
f_4D.xz = pos.xz; // write two components
f_4D.zx = pos.xz; // change the write order
f_4D.xzyw = pos.w; // write one component to more than one component
f_4D.wzyx = pos; // write many to many

Assignments can’t be written to the same component more than once.
Therefore, the left side of this statement is invalid:

f_4D.xx = pos.xy; // cannot write to the same destination components

Also, the component name spaces can’t be mixed. This is an invalid com-
ponent write:

f_4D.xg = pos.rgrg; // invalid write: cannot mix component name spaces

Vector Math
HLSL differs slightly from standard math notation in that operators are defined
to work per component, for example:

float4 v = a*b;

The preceding line of code is equivalent to this:

float4 v;
v.x = a.x*b.x;
v.y = a.y*b.y;
v.z = a.z*b.z;
v.w = a.w*a.w;

This is a four-component multiply, not a dot product. The dot product is
denoted as dot(a,b). The difference can be seen by looking at the first compo-
nent of the result, as shown here:

// 1st component of a four-component matrix multiply
a.x * b.x
// 1st component of a four-component dot product
a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;

Now let’s take a look at the matrix data type, which has many similarities
to the vector type.

C07616531.fm Page 137 Tuesday, May 13, 2003 1:12 PM

138 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

Matrix Types
A matrix is a data structure that contains rows and columns of data. The data
can be any of the scalar data types, however, every element of a matrix is the
same data type. The number of rows and columns is specified with the “row by
column” string that is appended to the data type.

int1x1 iMatrix; // integer matrix with 1 row, 1 column
int2x1 iMatrix; // integer matrix with 2 rows, 1 column
...
int4x1 iMatrix; // integer matrix with 4 rows, 1 column
...
int1x4 iMatrix; // integer matrix with 1 row, 4 columns
double1x1 dMatrix; // double matrix with 1 row, 1 column
double2x2 dMatrix; // double matrix with 2 rows, 2 columns
double3x3 dMatrix; // double matrix with 3 rows, 3 columns
double4x4 dMatrix; // double matrix with 4 rows, 4 columns

The maximum number of rows and/or columns is 4; the minimum num-
ber is 1.

A matrix can be initialized when it is declared.

float2x2 fMatrix = { 0.0f, 0.1f, // row 1
2.1f, 2.2f // row 2

};

Or the matrix type can be used to make the same declarations.

matrix < float, 2, 2 > fMatrix = { 0.0f, 0.1f, // row 1
2.1f, 2.2f // row 2

};

The matrix type uses the angle brackets to specify the type, the number of
rows, and the number of columns. This example creates a floating-point matrix,
with two rows and two columns. Any of the scalar data types can be used.

This example declares a matrix of half values (16-bit floating-point num-
bers) with two rows and three columns:

matrix < half, 2, 3 > fHalfMatrix;

Matrix Component Access
A matrix contains values organized in rows and columns, which can be
accessed using the structure operator (.) followed by one of two naming sets.

■ Zero based row-column position:

❑ _m00, _m01, _m02, _m03

❑ _m10, _m11, _m12, _m13

❑ _m20, _m21, _m22, _m23

❑ _m30, _m31, _m32, _m33

C07616531.fm Page 138 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 139

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

■ One based row-column position:

❑ _11, _12, _13, _14

❑ _21, _22, _23, _24

❑ _31, _32, _33, _34

❑ _41, _42, _43, _44

Each naming set is an underscore (_) followed by the row number and the
column number. The zero-based convention also includes the letter m before
the row/column number. Here’s an example that uses the two naming sets to
access a matrix:

// Given
float2x2 fMatrix = { 1.0f, 1.1f, // row 1

2.0f, 2.1f // row 2
};

float f;
f = matrix._m00; // read the value in row 1, column 1: 1.0
f = matrix._m11; // read the value in row 2, column 2: 2.1
f = matrix._11; // read the value in row 1, column 1: 1.0
f = matrix._22; // read the value in row 2, column 2: 2.1

Just like vectors, naming sets can use one or more components.

// Given
float2x2 fMatrix = { 1.0f, 1.1f, // row 1

2.0f, 2.1f // row 2
};

float2 temp;
temp = fMatrix._m00_m11 // valid
temp = fMatrix._m11_m00 // valid
temp = fMatrix._11_22 // valid
temp = fMatrix._22_11 // valid

Matrix Component Swizzling
As with vectors, reading more than one matrix component is called swizzling.

// Given these variables
float4x4 worldMatrix = float4x4({0,0,0,0}, {1,1,1,1}, {2,2,2,2}, {3,3,3,3});
float4x4 tempMatrix;
float2 tempFloat;

More than one component can be assigned, assuming that only one name
space is used. These are all valid assignments:

tempMatrix._m00_m11 = worldMatrix._m00_m11; // multiple components
tempMatrix._m00_m11 = worldMatrix.m13_m23;

(continued)

C07616531.fm Page 139 Tuesday, May 13, 2003 1:12 PM

140 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

tempMatrix._11_22_33 = worldMatrix._11_22_33; // any order on swizzles
tempMatrix._11_22_33 = worldMatrix._24_23_22;

Swizzling on the left side of an assignment controls how many compo-
nents are written to the destination variable.

// Given
float4x4 worldMatrix = float4x4({0,0,0,0}, {1,1,1,1}, {2,2,2,2}, {3,3,3,3});
float4x4 tempMatrix;
tempMatrix._m00_m11 = worldMatrix._m00_m11; // write two components
tempMatrix._m23_m00 = worldMatrix.m00_m11;

Assignments can’t be written to the same component more than once. So,
the left side of this statement is invalid:

// Cannot write to the same component more than once
tempMatrix._m00_m00 = worldMatrix.m00_m11;

Also, the component name spaces can’t be mixed. The following code
shows an invalid component swizzle for tempMatrix:

// Invalid name space mixing on left side
tempMatrix._11_m23 = worldMatrix._11_22;

Matrix Array Accessing
A matrix can also be accessed using array access notation, which is a zero-
based set of indices. Each index is inside square brackets. A 4x4 matrix is
accessed with the following indices:

■ [0][0], [0][1], [0][2], [0][3]

■ [1][0], [1][1], [1][2], [1][3]

■ [2][0], [2][1], [2][2], [2][3]

■ [3][0], [3][1], [3][2], [3][3]

Here’s an example of accessing a matrix:

float2x2 fMatrix = { 1.0f, 1.1f, // row 1
2.0f, 2.1f // row 2

};
float temp;
temp = fMatrix[0][0] // single component read
temp = fMatrix[0][1] // single component read

Notice that the structure operator (.) is not used to access an array. Array
access notation can’t use swizzling to read more than one component.

float2 temp;
temp = fMatrix[0][0]_[0][1] // invalid, cannot read two components

C07616531.fm Page 140 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 141

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

However, array accessing can read a multicomponent vector.

float2 temp;
float2x2 fMatrix;
temp = fMatrix[0] // read the first row

Matrix Ordering
Matrix packing order for uniform parameters is set to column-major order by
default, which means that each column of the matrix is stored in a constant reg-
ister. On the other hand, a row-major matrix packs each row of the matrix in a
constant register. Matrix packing can be changed with the #pragma
pack_matrix directive or with the row_major or the col_major keyword.

The following figure shows how a multiply is performed with a row-major
or a column-major matrix.

In general, column-major matrices are more efficient than row-major
matrices. Here’s an example that compares the number of instructions used for
both column-major and row-major matrices:

// column-major matrix packing
float4x3 World;
float4 main(float4 pos : POSITION) : POSITION
{

float4 val;
val.xyz = mul(pos,World);
val.w = 0;
return val;

}

If you look at the assembly code generated after compiling the HLSL code,
you’ll see these instructions:

vs_2_0
def c3, 0, 0, 0, 0
dcl_position v0
m4x3 oPos.xyz, v0, c0
mov oPos.w, c3.x
// Approximately four instruction slots used

Column-Major Matrix Multiply

Row vector

col 1

col 2

col 3

col 4

xrow 1

row 2

row 3

row 4
C

olum
n vector

x

Row-Major Matrix Multiply

C07616531.fm Page 141 Tuesday, May 13, 2003 1:12 PM

142 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

Using a column-major matrix in this example generated four assembly-language
instructions. The same example can be done with a row-major matrix, as shown
here:

// Row-major matrix packing
#pragma pack_matrix(row_major)
float4x3 World;
float4 main(float4 pos : POSITION) : POSITION
{

float4 val;
val.xyz = mul(pos,World);
val.w = 0;
return val;

}

The assembly code generated from compiling this HLSL code is shown
here:

vs_2_0
def c4, 0, 0, 0, 0
dcl_position v0
mul r0.xyz, v0.x, c0
mad r2.xyz, v0.y, c1, r0
mad r4.xyz, v0.z, c2, r2
mad oPos.xyz, v0.w, c3, r4
mov oPos.w, c4.x
// approximately five instruction slots used

This code generated five instruction slots. In this example, writing the
same code with a column-major packing order saved one instruction out of
five. In addition to saving instruction slots, column-major packing usually saves
constant register space.

Row-major and column-major packing order have no influence on the
packing order of constructors (which always follows row-major ordering).

Constructors
Constructors are used to create and initialize objects. Constructor rules are sim-
ilar to C++, with some extensions to support the complex data types.

float3 upVector = float3(0,1,0);

This constructor creates an object of type float3 named upVector that’s ini-
tialized with {0,1,0}. The following statements are also valid constructors:

float4 4DVector = float4(upVector, 0);

float4 4DVector = float4(upVector.xyz, 0);

C07616531.fm Page 142 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 143

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

Both statements create an object initialized with (0,1,0,0).
Constructors can initialize the members of a data structure. When the

number of components on the right side of an assignment does not equal the
number of components on the left side, casting occurs.

Casting
When the type of an expression does not match the expected type (such as in
an assignment, a function parameter, or a binary expression), the compiler will
attempt to cast (or convert) the type of the expression. The most common types
of casts in HLSL are scalar promotion (to a vector or a matrix) and vector/matrix
demotion (to a less complex type). Both types of casting are handled by the
compiler automatically.

Promotion Casting
Promotion occurs when a scalar data type is converted to a vector or a matrix,
which is done by replicating the scalar to every component of the vector or
matrix. Here’s an example:

float4 v;
v = 1;

A promotion cast copies a scalar value to all the components in a variable.
In this example, a 1 is replicated into all four components of v. The following
code is also a promotion cast:

float4 v;
float a;
v = a;

A single floating-point number (a) is converted into four floating-point
numbers (a,a,a,a).

In both cases, the right-hand scalar value (1 or a) is promoted (or copied)
to all the components of the variable on the left side. v = 1 is equivalent to v =
float4(1,1,1,1), and v = a is equivalent to v = float4(a,a,a,a).

Demotion Casting
Demotion occurs when a higher-dimension data type (a vector or matrix) is
assigned to a lower-dimension data type (one with fewer components).

float4 c;
float3 a,b;
a = b*c;

In this example, C is converted into a float3 by not using the w-compo-
nent when b and c are multiplied together. This is equivalent to:

a = b*float3(c.x, c.y, c.z);

C07616531.fm Page 143 Tuesday, May 13, 2003 1:12 PM

144 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

Integer Math
Floating-point types are the most efficient data types in HLSL. HLSL supports
the int data type, which is different from most compilers in which an int is not
a native data type.

Because the targeted hardware operates primarily on floating-point data,
HLSL emulates C behavior for integer expressions, which usually requires extra
instructions to remove fractional parts. Because integer math must be emulated
through floating-point math, there can be subtle (and sometimes frustrating)
differences between integer math calculations done in C versus those done in
HLSL. Great care should be taken when using int data types.

Consider the following case:

int x = 3;
x = x/3;

In C, this code would generate x = 1. In HLSL, the same code would likely gen-
erate x = 0 because HLSL does not support a native divide function. Instead,
HLSL inverts and multiplies. Therefore, x/3 = turns into 3 * 0.33333 = 0.99999.
When this is truncated to fit the integer type, x/3 = 0. To avoid this, write x =
x*0.33334.

To avoid these kinds of problems, try to use float data types as much as
possible and cast them to int only when needed. Because all intermediate math
is done in floating point, you rarely need to use an int data type.

Complex Data Types
In addition to the basic types, HLSL supports complex data types for dealing
with objects such as samplers, structures, and shaders.

Samplers
A sampler contains sampler state. Sampler state specifies the texture to be sam-
pled and controls the filtering that’s performed during sampling. The following
three things are required to sample a texture:

■ A texture

■ A sampler (with sampler state)

■ A sampling instruction

Here’s an example of the code to sample a 2-D texture:

texture tex0 < string name = "2D_Texture.bmp"; >;
sampler2D s_2D = sampler_state
{

C07616531.fm Page 144 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 145

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

texture = (tex0);
mipfilter = LINEAR;

};
float2 sample_2D(float2 tex : TEXCOORD0) : COLOR
{

return tex2D(s_2D, tex);
}

The texture is declared with a texture variable, tex0, and the texture type.
This example also contains an annotation that specifies the texture file name
2D_Texture.bmp in an annotation. An annotation is user-supplied information
that’s used by effects. Annotations will be covered in Part III.

In this example, a sampler variable named s_2D is declared using the
sampler2D type and the sampler_state keyword. The sampler contains sampler
state inside curly braces, including the texture that will be sampled and option-
ally the filter state (that is, wrap modes, filter modes, and so on). If sampler state
is omitted, default sampler state is applied that specifies linear filtering and a
wrap mode for the texture coordinates.

The tex3D sampler instruction is specified inside a sampling function
named sample_2D. (Intrinsic functions are built into the language. See Appen-
dix C for more information.) The function takes a float2 texture coordinate and
returns a two-component color. This component is represented with the float2
return type and represents data in the red and green components.

Four sampler types are supported: sampler1D, sampler2D, sampler3D,
and samplerCUBE. Texture lookups for each of these samplers are performed
by their corresponding intrinsic functions: tex1D, tex2D, tex3D, and texCUBE.
Here’s an example of 3-D sampling:

texture tex0 < string name = "3D_Texture.bmp"; >;
sampler3D s_3D = sampler_state
{

texture = (tex0);
mipfilter = LINEAR;
addressu = wrap;

};
float3 sample_3D(float3 tex : TEXCOORD0) : COLOR
{

return tex3D(s_3D, tex);
}

This looks very similar to the 2-D example. The mipfilter on the left side
of the sampler state assignment is a value from the D3DSAMPLERSTATETYPE
enumeration without the D3DSAMP_ prefix. The linear value on the right side
is a value from the D3DTEXTUREFILTERTYPE enumeration without the
D3DTEXF_ prefix. The wrap value on the right side is a value from the

C07616531.fm Page 145 Tuesday, May 13, 2003 1:12 PM

146 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

D3DTEXTUREADDRESS enumeration without the D3DTADDRESS_ prefix.
Notice that each of these values is used in lowercase. Pipeline states written in
HLSL are not case sensitive. This is true of effect state also, which we’ll see in
Part III.

Here’s the corresponding cube sampling example:

texture tex0 < string name = "Cube_Texture.bmp"; >;
samplerCUBE s_CUBE = sampler_state
{

texture = (tex0);
mipfilter = LINEAR;

};
float3 sample_CUBE(float3 tex : TEXCOORD0) : COLOR
{

return texCUBE(s_CUBE, tex);
}

Finally, here’s the 1-D sampling example:

texture tex0 < string name = "1D_Texture.bmp"; >;
sampler1D s_1D = sampler_state
{

texture = (tex0);
mipfilter = LINEAR;

};
float sample_1D(float tex : TEXCOORD0) : COLOR
{

return tex1D(s_1D, tex);
}

Because the runtime does not support 1-D textures, the compiler will
implement 1-D sampling with a 2-D texture with the knowledge that the y-coor-
dinate is unimportant. Because tex1D is implemented as a 2-D texture lookup,
the compiler is free to choose the y-component in an efficient manner. In some
rare scenarios, the compiler can’t choose an efficient y-component, in which
case it will issue a warning.

texture tex0 < string name = "1D_Texture.bmp"; >;
sampler 1_D_Sampler;
{

texture = (tex0);
};
float4 main(texcoord : TEXCOORD) : COLOR
{

return tex1D(1_D_Sampler, texcoord);
}

C07616531.fm Page 146 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 147

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

This particular example is inefficient because the compiler must move the
input coordinate into another register (because a 1-D lookup is implemented as
a 2-D lookup and the texture coordinate is declared as a float). If the code is
rewritten using a float2 input instead of a float, the compiler can use the input
texture coordinate because the y-coordinate gets initialized to some value when
the texture coordinate is initialized.

texture tex0 < string name = "1D_Texture.bmp"; >;
sampler 1D_sampler;
{

texture = (tex0);
};
float4 main(float2 texCoords : TEXCOORD) : COLOR
{

return tex1D(1D_sampled, texCoords);
}

All texture lookups can be appended with bias or proj (that is, tex2Dbias
or texCUBEproj). With the proj suffix, the texture coordinate is divided by the
w-component. With bias, the mipmap level is shifted by the w-component.
Thus, all texture lookups with a suffix always take float4 input. (tex1D and
tex2D ignore the yz and z-components respectively.)

Samplers can also be used in arrays, although no compiler currently sup-
ports dynamic array access of samplers. Therefore, tex2D(s[0],tex) is valid
because it can be resolved at compile time, but tex2D(s[a],tex) is not valid,
because a cannot be resolved at compile time. Sampler arrays are primarily use-
ful for writing programs with literal loops, as shown here:

sampler sm[4];
float4 main(float4 tex[4] : TEXCOORD) : COLOR
{

float4 retColor = 1;
for(int i = 0; i < 4;i++)
{

retColor *= tex2D(sm[i],tex[i]);
}
return retColor;

}

Structures
The struct keyword defines a structure type.

struct vertexData
{

float3 pos;
float3 normal;

};

C07616531.fm Page 147 Tuesday, May 13, 2003 1:12 PM

148 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

This structure contains two members: a position and a normal. Any of the HLSL
basic data types can be used in a structure. The structure operator (.) is used to
access members.

struct vertexData data = { { 0.0, 0.0, 0.0 },
{ 1.1, 1.1, 1.1 }

};
data.pos = float3(1,2,3);
data.pos = {1,2,3};
float3 temp = data.normal;

Once a structure has been defined, it can be referenced by name with or
without the struct keyword.

Structure members can’t have initializers or annotations. Members can’t
individually be declared with the scope keywords static, extern, volatile, or
const.

Strings
String parameters and annotations can be queried by effects, however, there are
no HLSL operations that accept strings. Strings will be covered by effects in Part III.

Vertex Shader Objects
A vertexshader data type represents a vertex shader object. The vertexshader
data type can be assigned when an assembly-language vertex shader is assem-
bled.

vertexshader vs =
asm
{

vs_2_0
dcl_position v0
mov oPos, v0

};

The vertexshader type can also be assigned when an HLSL vertex shader is
compiled.

vertexshader vs = compile vs_2_0 vsmain();

This effect topic will be covered more fully in Part III.

Pixel Shader Objects
A pixelshader data type represents a pixel shader object. The pixelshader data
type can be assigned when an assembly-language pixel shader is assembled.

pixelshader ps =
asm

C07616531.fm Page 148 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 149

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

{
ps_2_0
mov oC0, c0

};

The pixelshader type can also be assigned when an HLSL vertex shader is
compiled:

pixelshader ps = compile ps_2_0 psmain();

This effect topic will be covered more fully in Part III.

Textures
The texture data type represents a texture object. The data type is used in an
effect to set a texture in a device.

texture tex0 < string name = "tiger.bmp"; >;

This declaration can be broken into the following three parts:

■ The texture type

■ The variable name, tex0

■ The annotation with the texture string name, < string name =
“tiger.bmp”; >

Once the texture variable is declared, it can be referenced by a sampler.

texture tex0 < string name = "1D_Texture.bmp"; >; sampler 1D_sampler; { texture
= (tex0); };

The texture name is in an annotation (inside of angle brackets). Annota-
tions are user-supplied information that are used by effects, which will be cov-
ered in Part III. Annotations are ignored by HLSL.

Expressions and Statements
Expressions are sequences of variables and literals punctuated by operators.
Statements determine the order in which expressions are evaluated.

Expressions are composed of literals, variables, and operators.

1. Literals. A literal is an explicit data value, such as 1 for an integer
or 2.1 for a floating-point number. Literals are often used to assign a
value to a variable.

2. Variables. See the “Data Types” section earlier in this chapter for
information on variables.

C07616531.fm Page 149 Tuesday, May 13, 2003 1:12 PM

150 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

3. Operators. Operators determine how variables and literals are
combined, compared, selected, and so on. The operators include

❑ Assignment: =, +=, -=, *=, and /=

❑ Unary: !, -, and +

❑ Additive and multiplicative: +, -, *, /, and %

❑ Boolean math: &&, ||, and ?:

❑ Comparison: <, >, ==, <=, >=, and !=

❑ Prefix or postfix: ++ and --

❑ Cast: (type)

❑ Comma: ,

❑ Structure member selection: .

❑ Array member selection: [i]

Many of the operators are per component, which means that the opera-
tion is performed independently for each component of each variable. For
example, a single-component variable has one operation performed. On the
other hand, a four-component variable has four operations performed, one
for each component.

Assignment Operators
The assignment operators are =, +=, -=, *=, and /=. Variables can be assigned lit-
eral values, as shown here:

int i = 1;
half h = 3.0;
float f2 = 3.1f;
bool b = false;
string str = "string";

Variables can also be assigned the result of a mathematical operation, as shown
here:

int i1 = 1;
i1 += 2; // i1 = 1 + 2 = 3

A variable can be used on either side of the equals sign, as shown here:

float f3 = 0.5f;
f3 *= f3; // f3 = 0.5 * 0.5 = 0.25

Division for floating-point variables is as expected because decimal
remainders are not a problem.

float f1 = 1.0;
f1 /= 3.0f; // f1 = 1.0/3.0 = 0.333

C07616531.fm Page 150 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 151

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

Be careful if you’re using integers that might get divided, especially when
truncation affects the result. The following example is identical to the previous
example except for the data type. The truncation causes a very different result.

int i1 = 1;
i1 /= 3; // i1 = 1/3 = 0.333, which gets truncated to 0

Unary Operators
The unary operators are !, -, and +. Unary operators operate on a single oper-
and.

bool b = false;
bool b2 = !b; // b2 = true
int i = 2;
int i2 = -i; // i2 = -2
int j = +i2; // j = +2

Additive and Multiplicative Operators
The additive and multiplicative operators are +, -, *, /, and %.

int i1 = 1;
int i2 = 2;
int i3 = i1 + i2; // i3 = 3
i3 = i1 * i2; // i3 = 1 * 2 = 2

i3 = i1/i2; // i3 = 0.5 which truncates to 0
i3 = i2/i1; // i3 = 2/1 = 2

float f1 = 1.0;
float f2 = 2.0f;
float f3 = f1 - f2; // f3 = 1.0 - 2.0 = -1.0
f3 = f1 * f2; // f3 = 1.0 * 2.0 = 2.0

f3 = f1/f2; // f3 = 1.0/2.0 = 0.5
f3 = f2/f1; // f3 = 2.0/1.0 = 2.0

The modulus operator returns the remainder of a division. This operator
produces different results when using integers and floating-point numbers.
Integer remainders that are fractional will be truncated.

int i1 = 1;
int i2 = 2;
i3 = i1 % i2; // i3 = remainder of 1/2, which is 1
i3 = i2 % i1; // i3 = remainder of 2/1, which is 0
i3 = 5 % 2; // i3 = remainder of 5/2, which is 1
i3 = 9 % 2; // i3 = remainder of 9/2, which is 1

C07616531.fm Page 151 Tuesday, May 13, 2003 1:12 PM

152 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

float f1 = 1.0f;
float f2 = 2.0f;
f3 = f1 % f2; // f3 = remainder or 1.0/2.0, which is 0.5
f3 = f2 % f1; // f3 = remainder of 2.0/1.0, which is 0.0

The % operator is defined only in cases where either both sides are posi-
tive or both sides are negative. Unlike C, % operates on floating-point data
types, as well as integers.

Boolean Math Operators
The Boolean math operators are &&, ||, ?:.

bool b1 = true;
bool b2 = false;
bool b3 = b1 && b2 // b3 = true AND false = false
b3 = b1 || b2 // b3 = true OR false = true

Unlike short-circuit evaluation of &&, ||, and ?: in C, HLSL expressions
never short-circuit an evaluation because they are vector operations. All sides of
the expression are always evaluated.

Boolean operators function on a per-component basis, which means that
if you compare two vectors, the result is a vector containing the Boolean result
of the comparison for each pair of components.

For expressions that use Boolean operators, the size and component type
of each variable are promoted to be the same before the operation occurs. The
promoted type determines the resolution at which the operation takes place, as
well as the result type of the expression. For example, an int3 + float expres-
sion would be promoted to float3 + float3 for evaluation, and its result would
be of type float3.

Comparison Operators
The comparison operators are <, >, ==, <=, >=, and !=.

Compare values that are greater than (or less than) any scalar value.

if(dot(lightDirection, normalVector) > 0)
// Do something; the face is lit

if(dot(lightDirection, normalVector) < 0)
// Do nothing; the face is backwards

Or compare values equal to (or not equal to) any scalar value.

if(color.a == 0)
// Skip processing because the face is invisible

if(color.a != 0)
// Blend two colors together using the alpha value

C07616531.fm Page 152 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 153

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

Or combine both and compare values that are greater than or equal to (or less
than or equal to) any scalar value.

if(position.z >= oldPosition.z)
// Skip the new face because it is behind the existing face

if(currentValue <= someInitialCondition)
// Reset the current value to its initial condition

Each of these comparisons can be done with any scalar data type. Com-
parison operators do not support the complex data types such as vector and
matrix, or the object types.

Prefix or Postfix Operators
The prefix and postfix operators are ++ and --. Prefix operators change the con-
tents of the variable before the expression is evaluated. Postfix operators
change the contents of the variable after the expression is evaluated.

float4 arrayOfFloats[4] = { 1.0f, 2.0f, 3.0f, 4.4f };
for (int i = 0; i < 4;)
{

arrayOfFloats[i++] *= 2;
}

Because the postfix increment operator (++) is used, arrayOfFloats[i] is multi-
plied by 2 before i is incremented. This code could be slightly rearranged to use
the prefix increment operator. The following code is harder to read, but the
examples are equivalent:

float4 arrayOfFloats[4] = { 1.0f, 2.0f, 3.0f, 4.4f };
for (int i = 0; i < 4;)
{

arrayOfFloats[++i - 1] *= 2;
}

Because the prefix operator (++) is used, arrayOfFloats[i+1 - 1] is multi-
plied by 2 after i is incremented.

The prefix decrement and postfix decrement operator (--) are applied in
the same sequence as the increment operator. The difference is that decrement
subtracts 1 instead of adding 1.

Cast Operators
An expression preceded by a type name in parentheses is an explicit type cast.
A type cast converts the original expression to the data type of the cast. In gen-
eral, the simple data types can be cast to the more complex data types (with a
promotion cast), but only some complex data types can be cast into simple data
types (with a demotion cast). All the valid type casts in HLSL are listed in
Appendix C.

C07616531.fm Page 153 Tuesday, May 13, 2003 1:12 PM

154 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

Comma Operators
The comma operator (,) separates one or more expressions that are to be eval-
uated in order. The value of the last expression in the sequence is used as the
value of the sequence.

Here’s one case worth calling attention to. If the constructor type is acci-
dentally left off the right side of the equals sign, the right side contains four
expressions, separated by three commas, as shown here:

// Instead of using a constructor
float4 x = float4(0,0,0,1);
// The type on the right side is accidentally left off
float4 x = (0,0,0,1);

The comma operator evaluates an expression from left to right, which reduces
the right side as shown here:

float4 x = 1;

HLSL uses scalar promotion in this case, so the result is as if this code were
written like this:

float4 x = float4(1,1,1,1);

In this instance, leaving off the float4 type from the right side is probably a mis-
take that the compiler is unable to detect because this is a valid statement.

Structure Operators
The structure member selection operator is a period (.).

struct position
{
float4 x;
float4 y;
float4 z;
};

That structure can be read like this:

struct position pos = { 1,2,3 };
float 1D_Float = pos.x;
1D_Float = pos.y;

Each member can be read or written with the structure operator, as shown here:

struct position pos = { 1,2,3 };
pos.x = 2.0f;
pos.z = 1.0f; // z = 1.0f
pos.z = pos.x; // z = 2.0f

C07616531.fm Page 154 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 155

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

Array Operators
The array member selection operator [i] selects one or more components in an
array. It’s a set of square brackets that contain a zero-based index.

int arrayOfInts[4] = { 0,1,2,3 };
arrayOfInts[0] = 2;
arrayOfInts[1] = arrayOfInts[0];

The array operator can also be used to access a vector.

float4 4D_Vector = { 0.0f, 1.0f, 2.0f, 3.0f };
float 1DFloat = 4D_Vector[1]; // 1.0f

By adding an additional index, the array operator can also access a matrix.

float4x4 mat4x4 = {{0,0,0,0}, {1,1,1,1}, {2,2,2,2}, {3,3,3,3} };
float 1DFloat = mat4x4[0][1]; // 0.0f
mat4x4[0][1] = 1.1f;

The first index is the zero-based row index. The second index is the zero-
based column index.

Operator Precedence
When an expression contains more than one operator, operator precedence
determines the order of evaluation. All the operators are listed in Appendix C.

Expressions are built from operators, variables, and literals. The next sec-
tion uses expressions to build statements.

Statements
Statements range in complexity from simple expressions to blocks of statements
that accomplish a sequence of actions. Flow-control statements determine the
order in which statements are executed. Statements are built from one or more
of the following building blocks:

■ An expression

■ A statement block

■ A return statement

■ Flow-control statements

❑ if

❑ do

❑ for

❑ while

C07616531.fm Page 155 Tuesday, May 13, 2003 1:12 PM

156 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

Expressions are built from operators, variables, and literals. Any expres-
sion followed by a semicolon is a statement. The set of valid combinations of
operators, variables, and literals are listed in Appendix C.

Statement Blocks
A statement block is a group of one or more statements.

{
statement 1;
statement 2;
statement n;
...

}

Curly braces {} begin and end a statement block. When a statement block
uses a single statement, the curly braces are optional.

if(some expression)
color.rgb = tex3D(Sampler, texturecoordinates);

This example is equivalent to using the curly braces, as shown here:

if(some expression)
{

color.rgb = tex3D(Sampler, texturecoordinates);
}

Some people find the second example easier to read.
A statement block also indicates sub-scope. Variables declared within a

statement block are recognized only within the block.

The return Statement
A return statement signals the end of a function. This is the simplest return
statement. It returns control from the function to the calling program, and
doesn’t return a value.

void main()
{

return;
}

A return statement can also return one or more values. The following
example returns a literal value:

float main(float input : COLOR0) : COLOR0
{

return 0;
}

C07616531.fm Page 156 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 157

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

This example returns the scalar result of an expression:

return light.enabled == true;

This example returns a float4 constructed from a local variable and a lit-
eral:

return float4(color.rgb, 1);

This example returns a float4 that’s constructed from the result returned
from an intrinsic function and a few literal values:

float4 func(float2 a: POSITION): COLOR
{

return float4(sin(length(a) * 100.0) * 0.5 + 0.5, sin(a.y * 50.0), 0, 1);
}

This example returns a structure that contains one or more members:

float4x4 WorldViewProj;
struct VS_OUTPUT
{

float4 Pos : POSITION;
};
VS_OUTPUT VertexShader_Tutorial_1(float4 inPos : POSITION)
{

VS_OUTPUT out = (VS_OUTPUT)0;
out.Pos = mul(inPos, WorldViewProj);
return out;

};

Flow-Control Statements
Flow-control statements determine which statement block to execute next.
There are several flow-control statements, including if, do, for, and while.

The if Statement
The if statement chooses which statement block to execute next based on the
result of a comparison.

if ((Normal dot LightDirection) > 0)

The comparison is followed by the statement block:

{
// Face is lit, so add a diffuse color component for example
...

}

C07616531.fm Page 157 Tuesday, May 13, 2003 1:12 PM

158 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

Remember that a statement block is one or more statements enclosed in
curly braces. The statement block can be expanded up to n statements, as long
as you don’t exceed the shader instruction slot count.

The if statement can also use an optional else block. If the if expression is
true, the code in the statement block associated with the if statement is pro-
cessed. Otherwise, the statement block associated with the else block is pro-
cessed.

The do Statement
The do statement executes a statement block and then evaluates a conditional
expression to determine whether to execute the statement block again. This
process is repeated until the conditional expression fails.

do
{

// One or more statements
color /= 2;

}
while (color.a > 0.33f)

The preceding code divides the color components by 2 and then checks
the resulting alpha component to see if the first statement will be repeated.
Each subsequent time that the alpha component is greater than 0.33f, the color
components are divided in half. When the alpha component is less than or
equal to 0.33f, the while comparison will fail and the program will continue at
the next instruction.

The previous example uses a statement block that has a single statement
in it. The statement block can be expanded to n statements.

do {
color.r /= 2;
color.g /= 4;
color.b /= 8;
.... // Other statements
color.a /= 8;

}
while (color.a > 0.33f)

Don’t forget to modify the alpha value, either in the statement block or in
the comparison statement. Otherwise, you’ll cause an infinite loop, which will
definitely reduce the shader throughput.

The for Statement
The for statement implements a loop that provides static control over the num-
ber of times a statement block will be executed. It contains an initialization
expression, a comparison expression, and an increment (or decrement) expres-
sion, followed by a statement block.

C07616531.fm Page 158 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 159

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

for (int i = 0; i < 2; i++)
{

// One or more statements
...
statement n;

};

Here’s an example that uses a loop to sample a texture over four different
sets of texture coordinates:

sampler RenderTarget;
float4 textureCoordinates[4];
float4 outColor[4];
for(int i = 0; i < 3; i++)
{

outColor[i] = tex2D(RenderTarget, textureCoordinates[i]);
}

The statement block is executed each time the comparison expression
succeeds.

The while Statement
The while statement implements a loop, which evaluates an expression to
determine whether to execute a statement block.

while (color.a > 0.33f)
{

color /= 2;
}

This code checks to see if the alpha component is greater than 0.33f. For
each time it is, the color components are each divided in half. As soon as alpha
is less than or equal to 0.33f, the comparison expression will fail and the pro-
gram will continue at the next instruction after the statement block.

The previous example uses a statement block that has a single statement
in it. When a single statement is used, the enclosing curly braces are optional.
The statement block can be expanded to n statements.

while (color.a > 0.33f)
{

color.r /= 2;
color.g /= 4;
color.b /= 8;
.... // Other statements
color.a /= 8;

}

Don’t forget to modify the alpha value, either in the comparison expres-
sion or in the statement block.

C07616531.fm Page 159 Tuesday, May 13, 2003 1:12 PM

160 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

Functions
Functions break large tasks into smaller ones. Small tasks are easier to debug
and can be reused, once proven. Functions can be used to hide details of other
functions, which makes a program composed of functions easier to follow.

HLSL functions are similar to C functions in several ways: they both con-
tain a definition and a function body, and they both declare return types and
argument lists. Like C functions, HLSL validation does type checking on the
arguments, argument types, and the return value during shader compilation.

Unlike C functions, HLSL entry-point functions (functions called by the
API) use semantics to bind function arguments to shader inputs and outputs.
(HLSL functions called internally ignore semantics.) This functionality makes it
easier to bind buffer data to a shader and to bind shader outputs to shader
inputs.

Function Declaration
A function contains a declaration and a body, and the declaration must precede
the body. In Tutorial 1 in Chapter 6, we saw the following HLSL function:

float4 VertexShader_Tutorial_1(float4 inPos : POSITION) : POSITION
{

return mul(inPos, WorldViewProj);
};

The function declaration includes everything in front of the curly braces.

float4 VertexShader_Tutorial_1(float4 inPos : POSITION) : POSITION

A function declaration contains

■ A return type

■ A function name

■ An argument list (optional)

■ An output semantic (optional)

■ An annotation (optional)

Function Return Types
The return type can be any of the HLSL basic data types, such as a float4.

float4 VertexShader_Tutorial_1(float4 inPos : POSITION) : POSITION
{

...
}

The return type can also be a structure that has already been defined.

C07616531.fm Page 160 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 161

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

struct VS_OUTPUT
{

float4 vPosition : POSITION;
float4 vDiffuse : COLOR;

};
VS_OUTPUT VertexShader_Tutorial_1(float4 inPos : POSITION)
{

...
}

If the function does not return a value, void can be used as the return
type.

void VertexShader_Tutorial_1(float4 inPos : POSITION)
{

...
}

The return type always appears first in a function declaration.

Function Names
A function name is an identifier that appears just after the return type. Identifi-
ers are covered in Appendix C.

float4 VertexShader_Tutorial_1(float4 inPos : POSITION) : POSITION

A user-friendly name such as VertexShader_Tutorial_1 can help identify
what the function is doing.

Argument Lists
An argument list declares the input arguments to a function. It can also declare
values that will be returned. Some arguments are both input and output argu-
ments. Here’s an example of a shader that takes four input arguments:

float4 Light(float3 LightDir : TEXCOORD1,
uniform float4 LightColor,
float2 texcrd : TEXCOORD0,
uniform sampler samp) : COLOR

{
float3 Normal = tex2D(samp,texcrd);
return dot((Normal*2 - 1), LightDir)*LightColor;

}

This function returns a final color that is a blend of a texture sample and
the light color. The function takes four inputs. Two inputs have semantics:
LightDir has the TEXCOORD1 semantic, and texcrd has the TEXCOORD0
semantic. The semantics mean that the data for these variables will come from
the vertex buffer. Even though the LightDir variable has a TEXCOORD1 seman-
tic, the parameter is probably not a texture coordinate. The TEXCOORDn

C07616531.fm Page 161 Tuesday, May 13, 2003 1:12 PM

162 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

semantic type is often used to supply a semantic for a type that is not pre-
defined (there’s no vertex shader input semantic for a light direction).

The other two inputs, LightColor and samp, are declared with the uniform
keyword. The values of these constants will be loaded into shader constant reg-
isters. These are uniform constants that will not change between draw calls.

Arguments can be labeled as inputs with the in keyword and as outputs
with the out keyword. Arguments can’t be passed by reference. However, an
argument can be both an input and an output if it’s declared with the inout key-
word. Arguments passed to a function that are marked with the inout keyword
are considered copies of the original until the function returns and they’re cop-
ied back. Here’s an example using inout:

void Increment_ByVal(inout float A, inout float B)
{

A++; B++;
}

This function increments the values in A and B and returns them.

Vertex Shader Semantics
Semantics identify where data comes from. Semantics are optional identifiers
that identify shader inputs and outputs. Semantics appear in one of the follow-
ing places:

■ After a structure member

■ After an argument in a function’s input argument list

■ After the function’s input argument list

The following example uses a structure to provide one or more vertex
shader inputs, and another structure to provide one or more vertex shader out-
puts. Each of the structure members uses a semantic.

vector vClr;
struct VS_INPUT
{

float4 vPosition : POSITION;
float3 vNormal : NORMAL;
float4 vBlendWeights : BLENDWEIGHT;

};
struct VS_OUTPUT
{

float4 vPosition : POSITION;
float4 vDiffuse : COLOR;

};
float4x4 mWld1;
float4x4 mWld2;

C07616531.fm Page 162 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 163

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

float4x4 mWld3;
float4x4 mWld4;
float Len;
float4 vLight;
float4x4 mTot;
VS_OUTPUT VS_Skinning_Example(const VS_INPUT v, uniform float len=100)
{

VS_OUTPUT out = (VS_OUTPUT)0;

// Skin position (to world space)
float3 vPosition =

mul(v.vPosition, (float4x3) mWld1) * v.vBlendWeights.x +
mul(v.vPosition, (float4x3) mWld2) * v.vBlendWeights.y +
mul(v.vPosition, (float4x3) mWld3) * v.vBlendWeights.z +
mul(v.vPosition, (float4x3) mWld4) * v.vBlendWeights.w;

// Skin normal (to world space)
float3 vNormal =

mul(v.vNormal, (float3x3) mWld1) * v.vBlendWeights.x +
mul(v.vNormal, (float3x3) mWld2) * v.vBlendWeights.y +
mul(v.vNormal, (float3x3) mWld3) * v.vBlendWeights.z +
mul(v.vNormal, (float3x3) mWld4) * v.vBlendWeights.w;

// Output stuff
out.vPosition = mul(float4(vPosition + vNormal * Len, 1), mTot);
out.vDiffuse = dot(vLight,vNormal);
return out;

}

The input structure identifies the data from the vertex buffer that will pro-
vide the shader inputs. This shader maps the data from the POSITION, NOR-
MAL, and BLENDWEIGHT elements of the vertex buffer into vertex shader
registers. The input data type for HLSL does not have to exactly match the ver-
tex declaration data type. If it doesn’t exactly match, the vertex data will auto-
matically be converted into the HLSL’s data type when it’s written into the
shader registers. For instance, if the NORMAL data were defined to be a UINT by
the application, it would be converted into a float3 when read by the shader.

If the data in the vertex stream contains fewer components than the cor-
responding shader data type, the missing components will be initialized to 0
(except for w, which is initialized to 1).

Input semantics are similar to the values in the D3DDECLUSAGE enumer-
ation in the fixed-function pipeline. See Appendix C for a complete list of ver-
tex shader input semantics.

The output structure identifies the vertex shader output parameters, posi-
tion and color. These outputs will be used by the pipeline for triangle rasteriza-
tion (in primitive processing). The output marked POSITION denotes the

C07616531.fm Page 163 Tuesday, May 13, 2003 1:12 PM

164 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

position of a vertex in projection space. As a minimum, a vertex shader must
output POSITION data.

Output semantics are also similar to the values in the D3DDECLUSAGE
enumeration in the fixed function pipeline. In general, an output structure for a
vertex shader can also be used as the input structure for a pixel shader, pro-
vided that the pixel shader does not read from any variable marked with the
semantics POSITION, PSIZE, or FOG. These semantics are associated with per-
vertex scalar values that are not used by a pixel shader. If these values are
needed for the pixel shader, they can be copied into another output variable
that uses a valid pixel shader semantic.

Pixel Shader Semantics
Just like vertex shaders, pixel shader semantics identify where data comes from.
Semantics are optional identifiers that identify shader inputs and outputs.
Semantics appear in one of the following three places:

■ After a structure member

■ After an argument in a function’s input argument list

■ After the function’s input argument list

The following example uses the same structure for vertex shader outputs
and pixel shader inputs. The pixel shader returns a color which uses a semantic
after the function’s argument list to identify it.

struct VS_OUTPUT
{

float4 Position : POSITION;
float3 Diffuse : COLOR0;
float3 Specular : COLOR1;
float3 HalfVector : TEXCOORD3;
float3 Fresnel : TEXCOORD2;
float3 Reflection : TEXCOORD0;
float3 NoiseCoord : TEXCOORD1;

};
float4 PixelShader_Sparkle(VS_OUTPUT In) : COLOR
{

float4 Color = (float4)0;
float4 Noise = tex3D(SparkleNoise, In.NoiseCoord);
float3 Diffuse, Specular, Gloss, Sparkle;
Diffuse = In.Diffuse * Noise.a;
Specular = In.Specular;
Specular *= Specular;
Gloss = texCUBE(Environment, In.Reflection) * saturate(In.Fresnel);
Sparkle = saturate(dot((saturate(In.HalfVector) - 0.5) * 2,

C07616531.fm Page 164 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 165

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

(Noise.rgb - 0.5) * 2));
Sparkle *= Sparkle;
Sparkle *= Sparkle;
Sparkle *= Sparkle * k_s;
Color.rgb = Diffuse + Specular + Gloss + Sparkle;
Color.w = 1;
return Color;

}

The members of VS_OUTPUT all contain semantics; they all contain values
returned from the vertex shader and read as pixel shader inputs. Three other
inputs are global (uniform) variables that are set by the application: Environ-
ment, SparkleNoise, and k_s. Environment and SparkleNoise are both textures
that must be created and set by the application (or an effect), and k_s is a con-
stant register that must be set by the application.

Global variables are assigned to registers automatically by the compiler.
Global variables are also called uniform parameters because the contents of the
variable are the same for all pixels processed each time the shader is called.

Input semantics for pixel shaders map values into specific hardware reg-
isters for transport between vertex shaders and pixel shaders. Each register type
has specific properties. Because there are only two valid input semantics (TEX-
COORD and COLOR), it’s common for most data to be marked as TEXCOORD,
even when it isn’t a texture coordinate.

Notice that the vertex shader output structure defined a member with a
POSITION semantic, which is not used by the pixel shader. HLSL allows valid
output data of a vertex shader that’s not valid input data for a pixel shader, pro-
vided that it’s not referenced in the pixel shader.

Input arguments can also be arrays. Semantics are automatically incre-
mented by the compiler for each element of the array. This example shows
explicit semantics:

struct VS_OUTPUT
{

float4 Position : POSITION;
float3 Diffuse : COLOR0;
float3 Specular : COLOR1;
float3 HalfVector : TEXCOORD3;
float3 Fresnel : TEXCOORD2;
float3 Reflection : TEXCOORD0;
float3 NoiseCoord : TEXCOORD1;

};
float4 Sparkle(VS_OUTPUT In) : COLOR

The preceding explicit declaration is equivalent to the following declara-
tion, which will have semantics automatically incremented by the compiler:

C07616531.fm Page 165 Tuesday, May 13, 2003 1:12 PM

166 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

float4 Sparkle(float4 Position : POSITION,
float3 Col[2] : COLOR0,
float3 Tex[4] : TEXCOORD0) : COLOR0

{
// Shader statements
...

Just like input semantics, output semantics identify data usage for pixel
shader output data. Many pixel shaders write to only one output, COLOR0.

Pixel shaders can also write to DEPTH0 and into multiple render targets at
the same time (up to four). Like vertex shaders, pixel shaders use a structure to
return more than one output. This shader outputs four colors as well as depth:

struct PS_OUTPUT
{

float4 Color[4] : COLOR0;
float Depth : DEPTH;

};
PS_OUTPUT main(void)
{

PS_OUTPUT out = (PS_OUTPUT)0;
// Shader statements
...

// Write up to four pixel shader output colors
out.Color[0] = ...
out.Color[1] = ...
out.Color[2] = ...
out.Color[3] = ...
// Write pixel depth
out.Depth = ...

return out;
}

Pixel shader output colors must be of type float4. When writing multiple
colors, all output colors must be used contiguously. In other words, COLOR1
can’t be an output unless COLOR0 has already been written. Pixel shader depth
output must be of type float1. See Appendix C for a complete list of pixel
shader input and output semantics.

Explicit Register Binding
We already know that the compiler will automatically assign registers to global
variables. It’s also possible to bind variables to a specific register.

sampler Environment;
sampler SparkleNoise;
float4 k_s;

C07616531.fm Page 166 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 167

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

For these three global variables, the compiler will assign Environment and
SparkleNoise to sampler registers, and it will assign k_s to a constant register.

To force the compiler to assign to a particular register, use the register(...)
syntax, as shown here:

sampler Environment : register(s1);
sampler SparkleNoise : register(s0);
float4 k_s : register(c12);

Now the Environment sampler will be bound to sampler register s1, Spar-
kleNoise will be bound to sampler register s0, and k_s will be bound to constant
register c12.

Annotations
Annotations are metadata that can be attached to a function within angle brack-
ets. Annotations are ignored by HLSL; they’ll be covered in Part III.

Function Body
The function body is all the code after the function declaration. The following
function (from Tutorial 1 in Chapter 6) contains a declaration and a function
body:

float4x4 WorldViewProj;
float4 VertexShader_Tutorial_1(float4 inPos : POSITION) : POSITION
{

return mul(inPos, WorldViewProj);
};

The body consists of statements that are surrounded by curly braces. The
function body implements all the functionality using variables, literals, expres-
sions, and statements.

The shader body does two things: it performs a matrix multiply, and it
returns a float4 result. The matrix multiply is accomplished with the mul func-
tion, which performs a 4-by-4 matrix multiply. mul is called an intrinsic function
because it’s already built into the HLSL library of functions. Intrinsic functions
will be covered in more detail in the next section called “Intrinsic Functions.”

The matrix multiply combines an input vector (Pos) and a composite
matrix WorldViewProj. The result is that position data is transformed into pro-
jection space. This is the minimum vertex shader processing we can do. If we
were using the fixed function pipeline instead of a vertex shader, the vertex
data could be drawn after performing this transform.

C07616531.fm Page 167 Tuesday, May 13, 2003 1:12 PM

168 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

The last statement in a function body is a return statement. Just like C, this
statement returns control from the function to the statement that called the
function.

Return Types
Function return types can be any of the simple data types defined in the HLSL,
including bool, int, half, float, and double. Return types can also be one of the
complex data types such as vectors and matrices. HLSL types that refer to
objects can’t be used as return types, including pixelshader, vertexshader, tex-
ture, and sampler.

Here’s an example of a function that uses a structure for a return type:

float4x4 WorldViewProj : WORLDVIEWPROJ;
struct VS_OUTPUT
{

float4 Pos : POSITION;
};
VS_OUTPUT VS_HLL_Example(float4 inPos : POSITION)
{

VS_OUTPUT Out = (VS_OUTPUT)0;
Out.Pos = mul(inPos, WorldViewProj);
return Out;

};

This shader is identical in functionality to one used in Tutorial 1 in Chapter
6. The float4 return type has been replaced with the structure VS_OUTPUT,
which now contains a single float4 member.

Intrinsic Functions
HLSL has implemented many common graphics functions, which are called
intrinsic functions, because they’re built into the language. They have already
been optimized, so they are likely to provide the best performance possible for
the given function. Intrinsic functions cover many operations, including:

■ Low-level math functions such as abs, clamp, clip, max, min, and
sign

■ Higher-level math functions such as cross, det (or determinant), lerp,
log, noise, pow, and sqrt

■ Trigonometry functions such as sin, cos, tan, atan, and sinh

■ Texture sampling functions for 2-D, 3-D, cube, and volume textures

C07616531.fm Page 168 Tuesday, May 13, 2003 1:12 PM

Chapter 7 The Language 169

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

There are approximately 50 functions covering a wide variety of opera-
tions. The complete list of intrinsic functions is shown in Appendix C. The doc-
umentation includes the function prototype and a description of the input
arguments and the function’s return value. A sampling of these functions is
listed in Table 7-2.

Intrinsic functions will help speed up shader development time because
they offer debugged functionality at optimized performance.

Summary
That’s it. You should be ready to test your skills by analyzing a few working
shaders. The next chapter demonstrates two shaders using vertex shaders, pixel
shaders, and texture shaders. The shader design will be illustrated, along with
all the application code that’s required.

Table 7-2 Some of the Intrinsic Functions

Name Syntax Description

abs value abs(value a) Absolute value (per component).

acos acos(x) Returns the arccosine of each com-
ponent of x. Each component
should be in the range [-1, 1].

all all(x) Test if all components of x are non-
zero.

any any(x) Test if any component of x is non-
zero.

asin asin(x) Returns the arcsine of each compo-
nent of x. Each component should
be in the range [-pi/2, pi/2].

atan atan(x) Returns the arctangent of x. The
return values are in the range [-pi/2,
pi/2].

atan2 atan2(y, x) Returns the arctangent of y/x. The
signs y and x are used to determine
the quadrant of the return values in
the range [-pi, pi]. atan2 is well
defined for every point other than
the origin, even if x equals 0 and y
does not equal 0.

C07616531.fm Page 169 Tuesday, May 13, 2003 1:12 PM

Microsoft Press. Confidential. master page = Blank
DevStand, sample pages, LRCcx2, edd version: #, FrameMaker+SGML; jimkr

C07616531.fm Page 170 Tuesday, May 13, 2003 1:12 PM

171

Microsoft Press. Confidential. master page = Section Opener
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

HLSL Examples
This chapter contains two high-level shader language (HLSL) examples. The
first example uses a vertex shader to add a colored glow to the edge of an
object (in this case, a tiger). The second example uses a vertex and pixel shader
to surface an airship with metallic sparkle paint. These examples explain how
to create shaders, how data is passed from the application to a shader, and how
to use vertex shader outputs as pixel shader inputs. The second example also
uses a procedural texture. After reading this chapter, you should be able to cre-
ate vertex, pixel, and procedural texture shaders with HLSL.

Glow Example
This example loads a tiger model and applies a texture and a glow to it. The
shader is composed of two functions: VSTexture, which draws a solid, textured
tiger, and VSGlow, which draws a semi-transparent shell around the solid tiger
by displacing the position along its normal. The result is an object that appears
to have a glow around it. (See Color Plate 21.)

Here’s the shader:

float4x3 WorldView : WORLDVIEW;
float4x4 Projection : PROJECTION;

static float3 LightDir < string UIDirectional = "Light Direction"; > =
normalize(float3(0.6f, -0.6f, 0.6f));

struct VS_OUTPUT
{

float4 Position : POSITION;
float4 Diffuse : COLOR;

(continued)

C08616531.fm Page 171 Tuesday, May 13, 2003 1:13 PM

172 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

float2 TexCoord : TEXCOORD0;
};

VS_OUTPUT VSTexture(
float4 Position : POSITION,
float3 Normal : NORMAL,
float2 TexCoord : TEXCOORD0

)
{

VS_OUTPUT Out = (VS_OUTPUT)0;

// Light direction (view space)
float3 L = LightDir;
// Position (view space)
float3 P = mul(Position, WorldView);
// Normal (view space)
float3 N = normalize(mul(Normal, (float3x3)WorldView));

// Projected position
Out.Position = mul(float4(P, 1), Projection);
Out.Diffuse = max(0, dot(N, L)); // diffuse
// Texture coordinates
Out.TexCoord = TexCoord;

return Out;
}
///////// GLOW ///////////////
static float4 GlowColor = float4(0.5f, 0.2f, 0.2f, 1.0f);
static float4 GlowAmbient = float4(0.2f, 0.2f, 0.0f, 0.0f);
static float GlowThickness = 0.015f;

struct VSGLOW_OUTPUT
{

float4 Position : POSITION;
float4 Diffuse : COLOR;

};
// Draws a transparent hull of the unskinned object
VSGLOW_OUTPUT VSGlow

(
float4 Position : POSITION,
float3 Normal : NORMAL
)

{
VSGLOW_OUTPUT Out = 0;

// Normal (view space)
float3 N = normalize(mul(Normal, (float3x3)WorldView));
// Displaced position (view space)

C08616531.fm Page 172 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 173

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

float3 P = mul(Position, WorldView) + GlowThickness * N;
// glow axis
float3 A = float3(0, 0, 1);

float Power;

Power = dot(N, A);
Power *= Power;
Power -= 1;
Power *= Power;
// Power = (1 - (N dot A)^2)^2 = ((N dot A)^2 - 1)^2

// Projected position
Out.Position = mul(float4(P, 1), Projection);
// Diffuse color is a combination of glow color and glow ambient
Out.Diffuse = GlowColor * Power + GlowAmbient;

return Out;
}

The shader processing in this example is done with two vertex shaders:
one that transforms the position and calculates texture coordinates for the tex-
ture sampling, and a second that applies a glow. So let’s see how to apply the
texture first and then how to apply the glow.

Apply a Texture
The first function, VSTexture, applies a texture to the object. As you can see, the
texture function requires two matrix variables, a light vector and a structure to
output the results.

float4x3 WorldView : WORLDVIEW;
float4x4 Projection : PROJECTION;

static float3 LightDir < string UIDirectional = "Light Direction"; > =
normalize(float3(0.6f, -0.6f, 0.6f));

struct VS_OUTPUT
{

float4 Position : POSITION;
float4 Diffuse : COLOR;
float2 TexCoord : TEXCOORD0;

};

VS_OUTPUT VSTexture(
float4 Position : POSITION,
float3 Normal : NORMAL,
float2 TexCoord : TEXCOORD0

)

(continued)

C08616531.fm Page 173 Tuesday, May 13, 2003 1:13 PM

174 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

{
VS_OUTPUT Out = (VS_OUTPUT)0;

// Light direction (view space)
float3 L = LightDir;
// Position (view space)
float3 P = mul(Position, WorldView);
// Normal (view space)
float3 N = normalize(mul(Normal, (float3x3)WorldView));

// Projected position
Out.Position = mul(float4(P, 1), Projection);
Out.Diffuse = max(0, dot(N, L)); // diffuse
// Texture coordinates
Out.TexCoord = TexCoord;

return Out;
}

This function does three things to per-vertex data: converts position data
from model space to projection space, calculates a diffuse color from the light
direction and the per-vertex normal data, and outputs the texture coordinates.
Running the VSTexture vertex shader produces a lit, texture-mapped solid
object. (See Color Plate 22.)

Now let’s go through the code line by line to see how this shader works.
It starts with three variables declared outside the function. Think of these as
shader global variables.

float4x3 WorldView : WORLDVIEW;
float4x4 Projection : PROJECTION;
static float3 LightDir < string UIDirectional = "Light Direction"; > =

normalize(float3(0.6f, -0.6f, 0.6f));

The first two variables, WorldView and Projection, are 4-by-3 and 4-by-4
floating-point matrices that will transform the vertices from model coordinate
space to projection space. The WorldView matrix will transform coordinates
from world space to view space, and the Projection matrix will transform from
view space to projection space.

The WorldView matrix is defined to be 4-by-3, meaning that it contains
four rows and three columns. The Projection matrix is defined as 4-by-4, mean-
ing that it has four rows and four columns. They are sized differently because
of the way they’re used in the shader. The world-view transform is used to gen-
erate a three-component vector. Therefore, it can be defined as a 4-by-3 input
matrix. A 4-by-4 matrix is defined for the projection transform because the
product it will generate will be a four-component vector.

C08616531.fm Page 174 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 175

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

These matrix variables both contain semantics, which follow the colon in
the declarations. The WORLDVIEW and PROJECTION semantics aren’t used by
HLSL because they’re associated with shader global variables. Semantics on glo-
bal variables will be covered in Part 3. When we get to the function, we’ll cover
the function’s input argument semantics and the return-value semantics. HLSL
uses semantics that are attached to function arguments and return types.

Global variables must be initialized by the application if the shader does
not initialize them. After we discuss the shader code, we’ll look at the applica-
tion code that initializes these two matrices.

The third variable, LightDir, is a three-component vector that contains the
light direction and is used in the diffuse color calculation. The light direction is
declared and initialized with the help of the normalize intrinsic function. The
normalize intrinsic function is called to make sure that the initialized vector is
made unit length before it’s used. Unlike the matrices, this variable is initialized
by the shader, so the application does not need to get it or set it to make the
shader work.

The light direction also contains an annotation.

< string UIDirectional = "Light Direction"; >

Annotations provide a way to attach user information to parameters or
variables. In this case, the annotation is a text string to describe the parameter
as Light Direction. Annotations are delimited by angle brackets (<>). Annota-
tions are used in effects but are ignored by HLSL. We’ll discuss annotations in
detail in Part 3.

Now that we’ve covered the shader variables, let’s move on to the output
data structure for the texture shader. The function uses the output structure,
VS_OUTPUT, to return three parameters.

struct VS_OUTPUT
{

float4 Position : POSITION;
float4 Diffuse : COLOR;
float2 TexCoord : TEXCOORD0;

};

All three parameters in the structure have different data types and seman-
tics. The semantics are vertex shader output semantics because they apply to
the parameters returned by the function, and the function will be compiled to
be a vertex shader. The semantics bind these parameters to vertex shader reg-
isters, in this case, vertex shader output registers. This example uses three of the
vertex shader output semantics. See Appendix C for a list of shader semantics.

C08616531.fm Page 175 Tuesday, May 13, 2003 1:13 PM

176 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

The integer number following the semantic name is a unique integer that
the compiler uses to map the parameter to a unique shader register. A semantic
that does not contain an integer defaults to a 0. So, the POSITION semantic is
automatically converted to POSITION0, which means the oPos vertex shader
register. There’s only one output position register, so for the POSITION output
semantic, the only allowable integer is 0. A semantic such as TEXCOORD can
have an integer between 0 and 7, or 0 and 15, depending on the number of tex-
ture registers available in the shader version. For the number of registers of
each type that are available for each shader version, see Appendix C.

When a function is called, the input arguments are read from the vertex
buffer. The order and type of the input arguments do not have to exactly match
the order and type of the data in the vertex buffer, as long as the input argu-
ments are contained in the vertex buffer data. When the function has com-
pleted, the return parameters are fed back into the rasterizer, which passes
interpolated values on to the pixel shader. This function writes per-vertex posi-
tion, normal, and texture coordinate data.

Now that we’ve covered the shader variables and the shader output data
structure, we’re ready to look at the function. VSTexture is compiled into a ver-
tex shader that requires three input parameters: per-vertex position, per-vertex
normal, and per-vertex texture coordinates. These are given by the function sig-
nature.

VS_OUTPUT VSTexture(
float4 Position : POSITION,
float3 Normal : NORMAL,
float2 TexCoord : TEXCOORD0

)

The body of the function performs the vertex processing. It starts by
declaring a local variable, Out, of type VS_OUTPUT to store the temporary
results.

VS_OUTPUT Out = (VS_OUTPUT)0;

Position data needs to be converted from model space to projection space.
This conversion is done in two steps because the matrices are divided into two
matrices.

// position (view space)
float3 P = mul(Position, WorldView);
// projected position
Out.Position = mul(float4(P, 1), Projection);

The position data could be converted in one step, but that would require
an extra matrix, as shown here:

C08616531.fm Page 176 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 177

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

// shader parameter
float4x4 WorldViewProjection : WORLDVIEWPROJECTION;

// function code
Out.Position = mul(P, WorldViewProjection); // projected position

Which approach you choose is up to you. Keep in mind that an additional
matrix requires additional constant registers. (This additional matrix contains 16
components, so it requires four additional constant registers.) The shader in this
example uses the two-step approach.

Vertices are transformed to view space using the WorldView matrix, which
is a composite of a world transform and a view transform. Then the data is con-
verted to projection space using the Projection matrix. Both statements use the
mul intrinsic function to perform the matrix multiply.

The first matrix multiply takes two arguments: P, which is a four-compo-
nent vector, and WorldView, which is a float4x3 matrix. To perform a matrix
multiply, the inner numbers must match, for example:

// Matrix multiply
1x4 * 4x3 // inner numbers match

Because the inner numbers in this example match, the matrix multiply
produces a three-component vector.

The second matrix multiply takes P, which is a three-component vector,
and Projection, which is a float4x4 matrix. To perform a matrix multiply, the
inner numbers must match, for example:

// Matrix multiply
1x3 * 4x4 // inner numbers do not match
float4(P,1) // create a float4 vector
1x4 * 4x4 = 1x4 // inner numbers match

In this example, the position data, P, initializes the first three components
of a float4 vector whose size is now compatible with the matrix. The matrix
multiply produces a four-component vector. The position data has been trans-
formed to projection space, ready to return back to the pipeline or a pixel
shader for rendering.

Now that the position data has been transformed, let’s move on to the dif-
fuse color calculation. The diffuse color depends on the light direction and the
per-vertex normals. Here are the statements that calculate the diffuse color:

// Light direction (view space)
float3 L = LightDir;
// Normal (view space)
float3 N = normalize(mul(Normal, (float3x3)WorldView));
Out.Diffuse = max(0, dot(N, L)); // diffuse

C08616531.fm Page 177 Tuesday, May 13, 2003 1:13 PM

178 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

The light direction points from the light to the view-space origin. The sec-
ond statement converts the normal data from model space to view space using
the mul intrinsic function again. This time, mul takes two arguments: Normal,
which is a three-component vector, and WorldView, which is a float4x3 matrix.
Because the inner numbers must match, the matrix is cast to a 3-by-3 matrix.

// Matrix multiply
1x3 * 4x3 // inner numbers do not match
(float3x3)WorldView // cast a 4x3 matrix to a 3x3 matrix
1x3 * 3x3 = 1x3 // inner numbers match

After the multiply is finished, the normalize intrinsic function converts the
resulting three-component vector into a unit-length vector to prepare for the
upcoming dot product.

The last statement calculates the scalar dot product between the per-ver-
tex normal and the light direction. After the dot product is calculated, the max
intrinsic function clips the negative diffuse color values to zero. By supplying
(0, value) as the arguments for max, the data is clipped between 0 and value.

The bulk of the shader is complete, with the position data transformed
and the diffuse color calculated. No special processing needs to be done with
the texture coordinates to apply a texture to the object. The texture coordinates
are provided by the tiger model, so the vertex shader needs only to copy the
coordinates to the output.

// Texture coordinates
Out.TexCoord = TexCoord;

By outputting the texture coordinates from the vertex shader, they can be
fed directly into a pixel shader (which will be shown in the next example). In
fact, all three parameters return as function outputs.

Now that the shader code has been shown in detail, let’s look at the code
required in the application. We need to compile the shader, create it, and then
render the mesh with it. Let’s start by compiling the shader.

LPDIRECT3DVERTEXSHADER9 m_pVSTexture = NULL;
LPD3DXCONSTANTTABLE m_pTexture_ConstantTable = NULL;
LPD3DXBUFFER l_pShader = NULL;
hr = D3DXCompileShaderFromResource(

NULL,
MAKEINTRESOURCE(ID_HLSL_GLOW),
NULL, // NULL terminated string of D3DXMACROs
NULL, // A #include handler
"VSTexture",
"vs_1_1",
D3DXSHADER_DEBUG,

C08616531.fm Page 178 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 179

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

&l_pShader,
NULL, // error messages
&m_pTexture_ConstantTable);

if(FAILED(hr))
{

SAFE_RELEASE(l_pShader);
SAFE_RELEASE(m_pTexture_ConstantTable);

}

// Create the vertex shader.
hr = m_pd3dDevice->CreateVertexShader(

(DWORD*)l_pShader->GetBufferPointer(), &m_pVS_HLSL_Texture);
if(FAILED(hr))
{

SAFE_RELEASE(l_pShader);
SAFE_RELEASE(m_pTexture_ConstantTable);
SAFE_RELEASE(m_pVS_HLSL_Texture);

}

A shader can be compiled by itself or within an effect. This example
focuses on creating a shader without using an effect. (The corresponding effect
example is in Part 3.)

A shader is compiled with any of the D3DXCompileShaderxxx methods,
which take the shader code in the form of a file, a string, or a resource. In this
example, the shader is specified in the HLSL_Glow.txt file, which will be com-
piled as a resource. To compile a shader, you must specify the following:

■ The shader code, along with the size of the shader code.

■ An optional pointer to a NULL-terminated list of #defines to be used
while parsing the shader.

■ An optional pointer to a user-written handler. The handler contains
file-reading code.

■ The name of the shader function. Some shaders have multiple func-
tions in them. At compile time, one of the functions must be picked
as the entry point. The entry point is the function that will get called
in the render loop. This example compiles the shader with an entry
point of VSTexture, which is the name of the function in the shader
code.

■ The shader version. Each shader is compiled to run on a specific
shader version. This example compiles a shader to run on vs_1_1.
Use ConfirmDevices in the sample framework class to determine
which shader versions are supported on the device.

C08616531.fm Page 179 Tuesday, May 13, 2003 1:13 PM

180 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

■ A shader compile flag that gives the compiler hints about how the
shader will be used. The options include

❑ Skipping validation, if known good shaders are being compiled

❑ Skipping optimization (sometimes used when optimizations
make debugging harder)

❑ Requesting debug information to be included in the shader so
that it can be debugged

■ A pointer to a buffer for validation errors. In this example, the
parameter was set to NULL and not used.

■ A pointer to the constant table interface is returned when the func-
tion succeeds. HLSL global shader variables that are defined with the
uniform keyword are stored in constant registers. The constant reg-
isters can be accessed from the shader constant table interface. Glo-
bal uniform shader variables include those declared in the shader
code (outside of shader functions), as well as variables that are set
(or created) using the SetVertexShaderConstantx and SetPixelShader-
Constantx APIs.

The second argument to D3DXCompileShaderFromResource is shown
here:

MAKEINTRESOURCE(ID_HLSL_GLOW),

MAKEINTRESOURCE is a macro that takes a resource ID that we’ll add to
the Microsoft Visual Studio project. When that is done, the program uses the
resource ID to find the shader file. You may choose to use a resource file
because the shader file will be compiled into the .exe file by the project. The
result is a single file with the executable and the shader in it.

To add a file to a project as a resource, you need to do two things to the
Microsoft Visual C++ project. First modify the resource.h file to add the resource
string. Use any text editor to add a #define with the integer ID for the shader
resource. Here’s an example:

#define ID_HLSL_GLOW 146

You can make the ID anything you want, as long as it’s a continuous
string. Pick the integer value by looking at the bottom of the file to see what the
next resource value should be. This file said 146 before modification. Increment
the next resource value by 1 to prevent resources from conflicting (with the
same integer ID).

#define _APS_NEXT_RESOURCE_VALUE 147

C08616531.fm Page 180 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 181

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

Second, modify the winmain.rc file to point to the shader file by adding an
entry such as this to the icon section:

ID_HLSL_GLOW RCDATA DISCARDABLE "HLSL_Glow.txt"

The ID_HLSL_GLOW string is the ID we’ll use in the second argument to
D3DXCompileShaderFromResource. Specify RCDATA DISCARDABLE for a
shader file, and enter the text string "HLSL_Glow.txt" (with the quotes), which
is the name of the shader file. (The .txt extension is used to make it clear that
this is not an effect file.) You can use any three-letter file name extension you
want. When using this shader in the EffectEdit SDK sample, the file is named
Glow.fx because .fx is the standard file name extension to use for an effect.
There is a good reason to use the .fx extension for a shader, even when it’s not
an effect: The Visual Studio shader debugger recognizes the .fx extension and
therefore displays keywords, data types, and so on in color coding that makes
the file easier to read.

Once the shader has passed validation and is successfully compiled, a
shader object is created by calling CreateVertexShader or CreatePixelShader. In
this example, CreateVertexShader was called to create a vertex shader. It takes
a pointer to the shader code and returns an IDirect3DVertexShader9 interface,
which is used in the render code to set the shader. CreateVertexShader takes a
pointer to the shader code as the first argument, as shown here:

(DWORD*)l_pShader->GetBufferPointer()

CreateVertexShader returns a pointer, l_pShader, which is a pointer to an
ID3DXBuffer interface. The interface provides the GetBufferPointer method to
access the shader code, which is a series of DWORDs. Therefore, the
(DWORD*) cast is used.

You may have noticed the FAILED macro and the SAFE_RELEASE macro in
the examples. The FAILED macro is a convenient way to test the HRESULT
returned by a method call to see if the method succeeded or failed. The
SAFE_RELEASE macro is used to release interfaces when you are done with
them. So in general, the following sequence follows almost every API call that
involves memory allocation, to both check if the method succeeded and to
clean up one or more pointers if a failure occurred:

if(FAILED(hr))
{

SAFE_RELEASE(l_pShader);
SAFE_RELEASE(m_pGlow_ConstantTable);
return hr;

}

Don’t forget that when a method returns a pointer to an interface, such as
m_pVertexShader or m_pConstantTable, the reference count on these interfaces

C08616531.fm Page 181 Tuesday, May 13, 2003 1:13 PM

182 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

has been increased. When you’re done with the member variables, be sure to
release the interfaces or you’ll get error messages (when running in debug
mode) that tell you that resources were not released properly.

One more thing, and then we can move on to the render code. Before the
tiger is rendered, a background image of a lake is drawn. This background image
is a textured quad, which requires a texture to be loaded. The texture is loaded
with a utility library helper function named D3DUtil_CreateTexture, which
returns an IDIRECT3DTEXTURE9 interface if the texture is loaded successfully.

// Load the texture for the background image
if(FAILED(D3DUtil_CreateTexture(m_pd3dDevice, _T("Lake.bmp"),

&m_pBackgroundTexture)))
return D3DAPPERR_MEDIANOTFOUND;

In this example, the Lake.bmp file is loaded as a background texture. It
will be rendered before the tiger to make a backdrop for the image.

The textured, solid tiger is rendered next. The rendering code looks very
similar to the rendering code for any of the mesh samples in the SDK. All the
render code is inserted between the BeginScene/EndScene pair of calls. The
render code shown here assumes that the background is drawn and we’re
ready to draw the textured tiger:

if(m_pTexture_ConstantTable)
{

// Initialize the global shader variables
m_pTexture_ConstantTable->SetMatrix(m_pd3dDevice, "WorldView",

&m_matView);
m_pTexture_ConstantTable->SetMatrix(m_pd3dDevice, "Projection",

&m_matProj);

// Blend the texture and the light
m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLOROP,

D3DTOP_MODULATE);
m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLORARG1,

D3DTA_DIFFUSE);
m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLORARG2,

D3DTA_TEXTURE);

// Set the shader
m_pd3dDevice->SetVertexShader(m_pVS_HLSL_Texture);

// Meshes are divided into subsets, one for each material
// Render them in a loop
for(DWORD I=0; I < m_dwNumMaterials; I++)
{

// Set the material and texture for this subset
m_pd3dDevice->SetMaterial(&m_pMeshMaterials[i]);

C08616531.fm Page 182 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 183

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

m_pd3dDevice->SetTexture(0, m_pMeshTextures[i]);

// Draw the mesh subset
m_pMesh->DrawSubset(I);

}
// Turn off the texture stage
m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLOROP,

D3DTOP_DISABLE);
}

In this example, the render code uses the shader constant table interface to
initialize the global shader variables, sets up the texture blending stages to blend
the texture and the lighting values, sets the vertex shader, and draws the mesh.
The shader has two global variables that are visible to the application: the world-
view matrix and the projection matrix. These matrices are initialized by calling
SetMatrix. The other shader variables are compiled in as literal values. Their dec-
laration contains the static keyword, which means that they aren’t visible to the
application, which is why they must be initialized by the shader code.

The mesh drawing code loops through the number of materials in the
mesh and repeats the following steps for each one:

■ Set a material

■ Set a texture

■ Call DrawSubset with the material index

Add the Glow
With the background image drawn first, and the solid-textured tiger drawn sec-
ond, we’re ready to apply the glow. Applying the glow requires a second vertex
shader, which is shown here:

///////// GLOW ///////////////
static float4 GlowColor = float4(0.5f, 0.2f, 0.2f, 1.0f);
static float4 GlowAmbient = float4(0.2f, 0.2f, 0.0f, 0.0f);
static float GlowThickness = 0.015f;

struct VSGLOW_OUTPUT
{

float4 Position : POSITION;
float4 Diffuse : COLOR;

};
// Draw the glow
VSGLOW_OUTPUT VSGlow

(
float4 Position : POSITION,

(continued)

C08616531.fm Page 183 Tuesday, May 13, 2003 1:13 PM

184 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

float3 Normal : NORMAL
)

{
VSGLOW_OUTPUT Out = (VSGLOW_OUTPUT)0;

// Normal (view space)
float3 N = normalize(mul(Normal, (float3x3)WorldView));
// Displaced position (view space)
float3 P = mul(Position, WorldView) + GlowThickness * N;
// Glow axis
float3 A = float3(0, 0, 1);

float Power;

Power = dot(N, A);
Power *= Power;
Power -= 1;
Power *= Power;
// Power = (1 - (N dot A)^2)^2 = ((N dot A)^2 - 1)^2

// Projected position
Out.Position = mul(float4(P, 1), Projection);
// Diffuse color is a combination of glow color and glow ambient
Out.Diffuse = GlowColor * Power + GlowAmbient;

return Out;
}

This function calculates a diffuse glow color that colors pixels in the tiger’s
body as well as those slightly outside the contour of the tiger. The width of the
glow is controlled by the GlowThickness global variable. If the vertex shader
implements this glow function (without the texture mapping function we
already covered), you see only the glow. (See Color Plate 23.)

The glow is yellowish-orange, as calculated from the GlowColor shader
global variable. The glow is almost invisible over the middle of the tiger and is
the most obvious at the edges, which is because the shader takes into account
the light direction and the object position when the glow is calculated. The
ambient glow color dominates over the body of the object. To make the glow
more visible at the edge of the tiger, increase the glow thickness or decrease the
intensity of the ambient glow color.

Now, let’s go into more detail to see how the glow function works. It starts
with three variables declared outside the function. These are shader global vari-
ables. Because they’re declared with the static keyword, they aren’t visible to
the application and must be initialized in the shader code.

C08616531.fm Page 184 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 185

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

// Glow parameters
static float4 GlowColor = float4(0.5f, 0.2f, 0.2f, 1.0f);
static float4 GlowAmbient = float4(0.2f, 0.2f, 0.0f, 0.0f);
static float GlowThickness = 0.015f;

The final glow color is a combination of the ambient and diffuse glow
color. The width of the glow can be adjusted with GlowThickness. Let’s see how
the glow function works.

VSGlow returns a position and a color from a position and a normal.

struct VSGLOW_OUTPUT
{

float4 Position : POSITION;
float4 Diffuse : COLOR;

};
// Draw the glow
VSGLOW_OUTPUT VSGlow

(
float4 Position : POSITION,
float3 Normal : NORMAL
)

{
...

}

The function transforms the position data, displacing it by the glow thick-
ness, to determine where to draw the glow. The function can be split into two
sections, one for the position transform and one for the glow color. Here’s the
code for the position transform:

// Draw the glow
VSGLOW_OUTPUT VSGlow

(
float4 Position : POSITION,
float3 Normal : NORMAL
)

{
VSGLOW_OUTPUT Out = (VSGLOW_OUTPUT)0;
// normal (view space)
float3 N = normalize(mul(Normal, (float3x3)WorldView));
// displaced position (view space)
float3 P = mul(Position, WorldView) + GlowThickness * N;
// projected position
Out.Position = mul(float4(P, 1), Projection);
...

}

C08616531.fm Page 185 Tuesday, May 13, 2003 1:13 PM

186 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

The local variable Out is declared to hold the temporary result. The second
statement converts the normal data from model space to view space using the
mul intrinsic function. This process is similar to the conversion done in the
VSTexture function. mul takes two arguments: a three-component vector, Nor-
mal, and a float4x3 matrix, WorldView. Remember that to perform a matrix mul-
tiply, the inner dimensions must match, which is why the cast (float3x3) is
applied to the matrix. After the multiply is finished, the normalize intrinsic func-
tion converts the resulting three-component normal vector into a unit vector.

The third statement uses the transformed normal to calculate the glow
position in view space. The mul intrinsic function transforms the Position data
from model space to view space using the WorldView matrix. Position is a four-
component vector, and WorldView is a 4-by-3 matrix, so the product is a four-
component vector. When the position is transformed, it’s modified by the glow
thickness.

float3 P = mul(Position, WorldView) + GlowThickness * N;

Because the times operator (*) takes precedence over the plus operator
(+) , the multiply is done first. Multiplying the GlowThickness scalar value by
the three-component normal vector (N) yields a three-component vector. This
vector represents the amount to change the position in the direction of the ver-
tex normal, moving the glow vertex slightly outside the contour of the object.

The fourth statement transforms the glow position from view space to pro-
jection space. Once again, the mul intrinsic function performs a matrix multiply
using the position data (P) and the projection matrix (Projection). Because the
Projection matrix is a 4-by-4 matrix, the input position vector (P) must be an n-
by-4 vector. Because P is a three-component vector, a float4 constructor is used
to create a four-component vector.

float4(P, 1)

P initializes the first three components; the additional 1 initializes the
fourth component. Now the matrix multiply can be done. The product is glow
position data in projection space.

The function also calculates the glow diffuse color. Here’s the relevant
code:

static float4 GlowColor = float4(0.5f, 0.2f, 0.2f, 1.0f);
static float4 GlowAmbient = float4(0.2f, 0.2f, 0.0f, 0.0f);
struct VSGLOW_OUTPUT
{

float4 Position : POSITION;
float4 Diffuse : COLOR;

};
// Draw the glow

C08616531.fm Page 186 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 187

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

VSGLOW_OUTPUT VSGlow
(
float4 Position : POSITION,
float3 Normal : NORMAL
)

{
VSGLOW_OUTPUT Out = (VSGLOW_OUTPUT)0;
...
// Normal (view space)
float3 N = normalize(mul(Normal, (float3x3)WorldView));
// Glow axis
float3 A = float3(0, 0, 1);

float Power;

Power = dot(N, A);
Power *= Power;
Power -= 1;
Power *= Power;
// Power = (1 - (N dot A)^2)^2 = ((N dot A)^2 - 1)^2

// Diffuse color is a combination of glow color and glow ambient
Out.Diffuse = GlowColor * Power + GlowAmbient;

}

The glow shader calculates the diffuse color of a vertex from the diffuse
color, an ambient color, and the object normals. The ambient color is similar to
ambient lighting; it affects the amount of glow on every vertex in the object.
Like ambient light, use the ambient glow color sparingly because it can wash
out the lighting effects. The diffuse color is the interesting part of the shader, so
let’s move on to the diffuse color calculation.

Transform the normal vector from model space to view space so that the
glow is always visible from the camera location. We want the glow to occur
mainly on the contour of the object, so we need a function that’s large at the
edge of the object and gets smaller as you move away from the edge. VSGlow
accomplishes this by calculating a variable named Power.

Power = ((ObjectNormal dot GlowAxis)^2 - 1) ^2

This function makes small dot products become large (nearly 1), and large
dot products become small (nearly 0). So, this function will return the maxi-
mum power (the maximum glow) when the dot product is small. The glow axis
is defined as (0,0,1), so the smallest dot products will occur when the z-compo-
nents of the normal approach zero. The edge normals fit this case because
they’re nearly in the xy plane, with very small z-values. In other words, the

C08616531.fm Page 187 Tuesday, May 13, 2003 1:13 PM

188 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

power variable reaches maximum values when combined with vertices that
have edge normals.

This shader is well suited for calculating glow around the edges of an
object. We have finished looking at the shader function and its global variables.
It’s time to look at the application code that compiles and renders this shader.
Here is the application code that compiles the glow vertex shader:

// Create the glow shader
hr = D3DXCompileShaderFromResource(

NULL,
MAKEINTRESOURCE(ID_HLSL_GLOW);
NULL, // NULL terminated string of D3DXMACROS
NULL, // A #include handler
"VSGlow",
"vs_1_1",
D3DXSHADER_DEBUG,
&l_pShader,
NULL, // error messages
&m_pGlow_ConstantTable);

if(FAILED(hr))
{

SAFE_RELEASE(l_pShader);
SAFE_RELEASE(m_pGlow_ConstantTable);

}

// Create the vertex shader
hr = m_pd3dDevice->CreateVertexShader(

(DWORD*)l_pShader->GetBufferPointer(), &m_pVS_HLSL_Glow);
if(FAILED(hr))
{

SAFE_RELEASE(l_pShader);
SAFE_RELEASE(m_pGlow_ConstantTable);
SAFE_RELEASE(m_pVS_HLSL_Glow);

}

Let’s quickly look over the rest of the shader creation code because it’s
similar to what we’ve already seen. Notice that the entry-point function is now
VSGlow because we’re building the glow shader. Everything else is identical to
the VSTex tur e c rea t ion , excep t tha t the l a s t a rgument to
D3DXCompileShaderFromResource is NULL. This is the shader constant table
interface.

Normally, we would want to return the shader constant table interface
because this shader has three global variables. In this case, the variables are
declared with the static keyword so they’re not visible to the application. There-
fore, they must be initialized in the shader code so that they will be compiled into

C08616531.fm Page 188 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 189

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

literal values. However, the constant table interface will need to be used to ini-
tialize the matrix variables, since they are not declared as “static” shader variables.

After successfully compiling the shader, call CreateVertexShader to create
the shader object. The shader interface will be returned if the call is successful.
With the second shader created, let’s look at the glow render code.

// Draw the background image first
// Draw the solid textured tiger next
// Draw the glow
if(m_pTexture_ConstantTable)
{

// Initialize the shader global variables
m_pTexture_ConstantTable->SetMatrix(m_pd3dDevice, "WorldView",

&m_matView);
m_pTexture_ConstantTable->SetMatrix(m_pd3dDevice, "Projection",

&m_matProj);

// Enable alpha blend between the frame buffer and the glow color
m_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
m_pd3dDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
m_pd3dDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLOROP,

D3DTOP_SELECTARG2);
m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLORARG2,

D3DTA_DIFFUSE);
m_pd3dDevice->SetTextureStageState(0, D3DTSS_ALPHAOP,

D3DTOP_SELECTARG2);
m_pd3dDevice->SetTextureStageState(0, D3DTSS_ALPHAARG2,

D3DTA_DIFFUSE);

// Draw the glow
m_pd3dDevice->SetVertexShader(m_pVS_HLSL_Glow);

// Meshes are divided into subsets, one for each material
// Render them in a loop
for(DWORD I=0; I < m_dwNumMaterials; I++)
{

// Set the material and texture for this subset.
m_pd3dDevice->SetMaterial(&m_pMeshMaterials[i]);
m_pd3dDevice->SetTexture(0, m_pMeshTextures[i]);

// Draw the mesh subset.
m_pMesh->DrawSubset(I);

}

// Disable alpha blend between the frame buffer and the glow color
m_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);

(continued)

C08616531.fm Page 189 Tuesday, May 13, 2003 1:13 PM

190 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLOROP,
D3DTOP_DISABLE);

m_pd3dDevice->SetTextureStageState(0, D3DTSS_ALPHAOP,
D3DTOP_DISABLE);

}

To draw the glow, we need to draw the tiger mesh using the glow vertex
shader. We need to set the vertex shader and use the mesh drawing loop. This
process is identical to the way the textured tiger was drawn.

// Draw the glow
m_pd3dDevice->SetVertexShader(m_pVS_HLSL_Glow);
// Meshes are divided into subsets, one for each material
// Render them in a loop
for(DWORD I=0; I < m_dwNumMaterials; I++)
{

// Set the material and texture for this subset
m_pd3dDevice->SetMaterial(&m_pMeshMaterials[i]);
m_pd3dDevice->SetTexture(0, m_pMeshTextures[i]);

// Draw the mesh subset
m_pMesh->DrawSubset(I);

}

Unfortunately, this will not produce the right results because this draw
code writes the glow color into the back buffer, overwriting the solid textured
tiger. (See Color Plate 24.)

The image shows the glow on the edges of the tiger, but the textured tiger
skin is gone because the glow values overwrote the back buffer. The problem is
not a shader problem; the shader is calculating the glow correctly. The problem is
what happens to the glow color after the vertex shader hands it back to the pipe-
line. By setting up the multitexture blender, you can tell the pipeline to blend the
vertex shader output (the glow color) with the back buffer (the texture-mapped
tiger). Here are the necessary render state and texture stage state settings:

// Enable alpha blend between the frame buffer and the glow color
m_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
m_pd3dDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
m_pd3dDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLOROP,

D3DTOP_SELECTARG2);
m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLORARG2,

D3DTA_DIFFUSE);
m_pd3dDevice->SetTextureStageState(0, D3DTSS_ALPHAOP,

D3DTOP_SELECTARG2);
m_pd3dDevice->SetTextureStageState(0, D3DTSS_ALPHAARG2,

D3DTA_DIFFUSE);

C08616531.fm Page 190 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 191

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

// Draw the glow
// Disable alpha blend between the frame buffer and the glow color
m_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
// Disable the texture stages
m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLOROP,

D3DTOP_DISABLE);
m_pd3dDevice->SetTextureStageState(0, D3DTSS_ALPHAOP,

D3DTOP_DISABLE);

The multitexture blender and framebuffer state are set using a combina-
tion of render states and texture stage states. The alpha blending render state is
enabled so that the glow color is blended with the back buffer color.

// Enable alpha blend between the frame buffer and the glow color
m_pd3dDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);

Render states also set the blending equation:

m_pd3dDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ONE);
m_pd3dDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);

This equation will be final color = source color * 1 + destination color * 1.
In other words, the final color will be an equal blend of both colors.

The texture stage states tell the pipeline to use the diffuse color (the glow
color) as the input to the texture blending stage. (The other input is the back
buffer color.) In this example, the color operation and the alpha operation are
the same.

m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLOROP,
D3DTOP_SELECTARG2);

m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLORARG2,
D3DTA_DIFFUSE);

m_pd3dDevice->SetTextureStageState(0, D3DTSS_ALPHAOP,
D3DTOP_SELECTARG2);

m_pd3dDevice->SetTextureStageState(0, D3DTSS_ALPHAARG2,
D3DTA_DIFFUSE);

Now the glow can be added to the rendered tiger with the mesh drawing
code loop. The result is a texture-mapped tiger with a glow applied to it. (See
Color Plate 21.)

Now that you see how the glow shader works, you can start experiment-
ing with the glow color, thickness, and even the glow equations to make the
glow any color, size, or intensity.

This example renders a background image (shown in the sample) and two
vertex shaders. The first vertex shader applies a texture, and the second applies
a glow. The sample shows how to compile and create more than one vertex
shader, use the constant table to initialize global shader variables, and combine

C08616531.fm Page 191 Tuesday, May 13, 2003 1:13 PM

192 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

the shader results in the render loop. The next example demonstrates how to
use a vertex shader and a pixel shader to create a metallic sparkle surface.

Sparkle Example
This example uses a vertex shader and a pixel shader to generate a speckled
reflective surface similar to car metal. This example generates a shader that
includes many realistic touches. The surface color

■ Takes into account the material and light properties such as color
and reflectivity

■ Adds a Fresnel term to add glossiness to the surface where curvature
is the greatest

■ Uses a procedural texture function that creates a noise texture. (The
noise texture can be thought of as perturbed normals, which is what
causes the metallic sparkles)

■ Uses a cubic environment map to reflect the environment in the
metal surface

The bigship mesh object looks like some kind of a spaceship. (See Color
Plate 25.)

Here’s the shader that contains the vertex shader, the pixel shader, and the
procedural texture function:

// The metallic surface consists of two layers
// 1. A polished layer of wax on top (contributes a smooth specular
// reflection and an environment mapped reflection with a Fresnel term)
// 2. A blue metallic layer with a sprinkling of gold metallic
// flakes underneath

// sparkle parameters
#define SPRINKLE 0.3
#define SCATTER 0.3
#define VOLUME_NOISE_SCALE 10

// Transformations
float4x3 WorldView : WORLDVIEW;
float4x4 Projection : PROJECTION;

// Light direction (view space)
float3 L < string UIDirectional = "Light Direction"; > =

normalize(float3(-0.397f, -0.397f, 0.827f));

// Light intensity
float4 I_a = { 0.3f, 0.3f, 0.3f, 1.0f }; // ambient

C08616531.fm Page 192 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 193

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

float4 I_d = { 1.0f, 1.0f, 1.0f, 1.0f }; // diffuse
float4 I_s = { 0.7f, 0.7f, 0.7f, 1.0f }; // specular

// Material reflectivity (metal)
float4 k_a : MATERIALAMBIENT = { 0.2f, 0.2f, 0.2f, 1.0f }; // ambient
float4 k_d : MATERIALDIFFUSE = { 0.1f, 0.1f, 0.9f, 1.0f }; // diffuse
float4 k_s = { 0.4f, 0.3f, 0.1f, 1.0f }; // specular (metal)
float4 k_r = { 0.7f, 0.7f, 0.7f, 1.0f }; // specular (wax)
struct VS_OUTPUT
{

float4 Position : POSITION;
float3 Diffuse : COLOR0;
float3 Specular : COLOR1;
float3 NoiseCoord : TEXCOORD0;
float3 Reflection : TEXCOORD1;
float3 Glossiness : TEXCOORD2;
float3 HalfVector : TEXCOORD3;

};

/////////// Vertex Shader /////////////////////
VS_OUTPUT VS(

float3 Position : POSITION,
float3 Normal : NORMAL,
float3 Tangent : TANGENT)

{
VS_OUTPUT Out = 0;
L = -L;

// position (view space)
float3 P = mul(float4(Position, 1), (float4x3)WorldView);
// normal (view space)
float3 N = normalize(mul(Normal, (float3x3)WorldView));
// tangent (view space)
float3 T = normalize(mul(Tangent, (float3x3)WorldView));
// binormal (view space)
float3 B = cross(N, T);
// reflection vector (view space)
float3 R = normalize(2 * dot(N, L) * N - L);
// view direction (view space)
float3 V = -normalize(P);
// glance vector (view space)
float3 G = normalize(2 * dot(N, V) * N - V);
// half vector (view space)
float3 H = normalize(L + V);
// Fresnel term
float f = 0.5 - dot(V, N); f = 1 - 4 * f * f;

// position (projected)
Out.Position = mul(float4(P, 1), Projection);

(continued)

C08616531.fm Page 193 Tuesday, May 13, 2003 1:13 PM

194 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

// diffuse + ambient (metal)
Out.Diffuse = I_a * k_a + I_d * k_d * max(0, dot(N, L));

// specular (wax)
Out.Specular = saturate(dot(H, N));
Out.Specular *= Out.Specular;
Out.Specular *= Out.Specular;
Out.Specular *= Out.Specular;
Out.Specular *= Out.Specular;
Out.Specular *= Out.Specular;
Out.Specular *= k_r;

// Glossiness (wax)
Out.Glossiness = f * k_r;
// Transform half vector into vertex space
Out.HalfVector = float3(dot(H, N), dot(H, B), dot(H, T));
Out.HalfVector = (1 + Out.HalfVector) / 2; // bias
// Environment cube map coordinates
Out.Reflection = float3(-G.x, G.y, -G.z);
// Volume noise coordinates
Out.NoiseCoord = Position * VOLUME_NOISE_SCALE;
return Out;

}

/////////// Procedural Texture /////////////////////
// Function used to fill the volume noise texture
float4 GenerateSparkle(float3 Pos : POSITION) : COLOR
{

float4 Noise = (float4)0;
// Scatter the normal (in vertex space) based on SCATTER
Noise.rgb = float3(1 - SCATTER * abs(noise(Pos * 500)),

SCATTER * noise((Pos + 1) * 500),
SCATTER * noise((Pos + 2) * 500));

Noise.rgb = normalize(Noise.rgb);

// Set the normal to zero with a probability based on SPRINKLE
if (SPRINKLE < abs(noise(Pos * 600)))

Noise.rgb = 0;

// Bias the normal
Noise.rgb = (Noise.rgb + 1)/2;

// Diffuse noise
Noise.w = abs(noise(Pos * 500)) * 0.0 + 1.0;
return Noise;

}

/////////// Pixel Shader ////////////
sampler SparkleNoise : register(s0);

C08616531.fm Page 194 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 195

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

sampler Environment : register(s1);
// Pixel shader
float4 PS(VS_OUTPUT In) : COLOR
{

float4 Color = (float4)0;
float3 Diffuse, Specular, Gloss, Sparkle;
// Volume noise
float4 Noise = tex3D(SparkleNoise, In.NoiseCoord);

// Noisy diffuse of metal
Diffuse = In.Diffuse * Noise.a;
// Glossy specular of wax
Specular = In.Specular;
Specular *= Specular;
Specular *= Specular;

// Glossy reflection of wax
Gloss = texCUBE(Environment, In.Reflection) * saturate(In.Glossiness);

// Specular sparkle of flakes
Sparkle = saturate(dot((saturate(In.HalfVector) - 0.5) * 2,

(Noise.rgb - 0.5) * 2));
Sparkle *= Sparkle;
Sparkle *= Sparkle;
Sparkle *= Sparkle;

Sparkle *= k_s;
// Combine the contributions
Color.rgb = Diffuse + Specular + Gloss + Sparkle;
Color.w = 1;
return Color;

}

Let’s divide the shader code into three sections: the vertex shader, the pro-
cedural texture (texture shader), and the pixel shader. The vertex shader will
get rendered first, so let’s look at it first.

Vertex Shader
The vertex shader contains several global variables, an output structure for
returning several per-vertex lighting parameters, and the VS function that will
generate the vertex shader. There are global variables for the matrix transforms,
light (direction and intensity), and material reflectivity constants. One additional
#define VOLUME_NOISE_SCALE scales position data to generate noise coordi-
nates. We’ll see this when we cover the shader function. All of the global shader
variables will need to be initialized by the application using the constant table
interface, which will be shown in the render code.

C08616531.fm Page 195 Tuesday, May 13, 2003 1:13 PM

196 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

The VS vertex shader function takes three inputs: position, normal, and
tangent data. All three arguments have semantics attached, which identify the
data in the vertex buffer that will supply the values. The function returns seven
parameters in the VS_OUTPUT structure, including position data, diffuse and
specular light colors, and four sets of vectors that will be used by the pixel
shader.

One interesting thing is that the last four structure members in
VS_OUTPUT specify TEXCOORDn semantics, even though they’re not all tex-
ture coordinates. The Reflection and NoiseCoordinates parameters are texture
coordinates and will be used by a texture sampler. The Glossiness parameter is
the gloss color, and the HalfVector is a half vector. Because there are no seman-
tics defined for gloss color or a half vector, these structure members are given
a TEXCOORD semantic so that they’ll be mapped to vertex shader texture reg-
isters. When they’re passed to the pixel shader, they can be used any way that
the function wants to use them.

Now let’s look at the function. The first dozen lines or so compute local
variables. The rest of the shader uses these computed three-component vectors
in the calculations of the seven output parameters. The function does the fol-
lowing:

■ Converts the position to view space

■ Converts the normal to view space

■ Converts the tangent to view space

■ Calculates the binormal from

B = N cross T

■ Calculates the reflection vector from

R = 2 * (N dot L) * N - L
R = norm(R)

■ Calculates the view vector by inverting the position vector

■ Calculates the glance vector from

G = 2 * (N dot V) * N - V

■ Calculates the half vector from

H = 2 * (L dot V) * L - V

■ Calculates the Fresnel term from

fres = 0.5 - (V dot N);
fres = 1 - 4*fres^2

■ Converts position to projection space

C08616531.fm Page 196 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 197

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

Many of these computations involve transforming inputs from one coordi-
nate space to another. Because transformations are covered in the previous
example, let’s focus on the new topics, which are calculating the binormal, half
vector, and reflection vectors and calculating the Fresnel term.

Each of these vectors is calculated in the vertex shader to make computa-
tions in the pixel shader faster. A binormal is a vector that’s perpendicular to the
vertex normal and the vertex tangent. The half vector is halfway between the
vertex normal and a vector from the vertex to the light (the inverted light vec-
tor). The binormal vector will be used to transform the half vector into vertex
space so that it can be used as a normal in the noise function. The reflection
vector is a vector from the object vertex to the light position. The reflection vec-
tor is used to calculate the part of the environment reflected by the object to the
eye. The Fresnel term is used to apply additional specular lighting to an object
where the direction of the normal vector changes rapidly. When these four vec-
tors are calculated, the remainder of the vertex shader calculates the following
per-vertex output parameters:

■ Position

■ Diffuse color from

diffuse = ambient light color * ambient material color +
diffuse light color * diffuse material color * clipped (N dot L)

■ Specular color from

specular = (saturate(H dot N))^32 * metal reflectivity

■ Gloss color from

gloss color = fresnel term * metal reflectivity

Following the calculation of the per-vertex output parameters, the vertex
shader also

■ Transforms the half vector to vertex space

■ Generates a reflection vector for cube map texture coordinates

■ Generates noise lookup coordinates by scaling the position coordi-
nates

When the vertex shader completes, seven parameters are returned. The
semantics identify the vertex shader registers that will contain the parameters.
The pixel shader will use the per-pixel interpolated values (that are derived
from the vertex shader outputs) to sample a noise texture and a cubic-environ-
ment texture. The noise texture will be generated from a texture shader, and the

C08616531.fm Page 197 Tuesday, May 13, 2003 1:13 PM

198 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

cubic-environment texture is loaded from a .dds file. Let’s look at the texture
shader first before we get to the pixel shader.

Texture Shader
A texture shader generates a procedural texture, which is a texture filled with
data (such as color or normal data). Unlike vertex and pixel shaders, which are
called by the draw calls in the application, a procedural shader is called by the
application before any draw calls. The following procedural shader fills a vol-
ume texture with procedurally generated noise:

// Sparkle parameters
#define SPRINKLE 0.3
#define SCATTER 0.3
/////////// Procedural Texture /////////////////////
// Function used to fill the volume noise texture
float4 GenerateSparkle(float3 Pos : POSITION) : COLOR
{

float4 Noise = (float4)0;
// Scatter the normal (in vertex space) based on SCATTER
Noise.rgb = float3(1 - SCATTER * abs(noise(Pos * 500)),

SCATTER * noise((Pos + 1) * 500),
SCATTER * noise((Pos + 2) * 500));

Noise.rgb = normalize(Noise.rgb);
// Set the normal to zero with a probability based on SPRINKLE
if (SPRINKLE < abs(noise(Pos * 600)))

Noise.rgb = 0;
// Bias the normal
Noise.rgb = (Noise.rgb + 1)/2;
// Diffuse noise
Noise.w = abs(noise(Pos * 500)) * 0.0 + 1.0;
return Noise;

}

This function generates a four-component normal map by perturbing the
vertex position data with the help of the noise intrinsic function. The noise func-
tion essentially returns a random number, which is scaled by the SCATTER con-
stant. The second statement is equivalent to the following code:

Noise.x = 1 - SCATTER * abs(noise(Pos * 500));
Noise.y = SCATTER * abs(noise((Pos + 1) * 500));
Noise.z = SCATTER * abs(noise((Pos + 2) * 500));
Noise.xyz = normalize(Noise.xyz);

After the position data has been perturbed by the noise function, the pro-
cedural function

C08616531.fm Page 198 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 199

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

■ Normalizes the result

■ Biases the results between 0 and 1

The noise map produced now contains slightly perturbed normals (in vec-
tor space) in the x,y,z components. With the noise map generated, the pixel
shader will take advantage of the results of both the vertex shader and the pro-
cedural noise map.

Pixel Shader
The pixel shader generates a realistic per-pixel metallic flake appearance. The
shader creates a per-pixel color that’s a combination of a diffuse, gloss, and
sparkle colors.

/////////// Pixel Shader ////////////
float4 k_s = { 0.4f, 0.3f, 0.1f, 1.0f }; // specular (metal)
sampler SparkleNoise : register(s0);
sampler Environment : register(s1);

// Pixel shader
float4 PS(VS_OUTPUT In) : COLOR
{

float4 Color = (float4)0;
float3 Diffuse, Specular, Gloss, Sparkle;
// Volume noise
float4 Noise = tex3D(SparkleNoise, In.NoiseCoord);

// Noisy diffuse of metal
Diffuse = In.Diffuse * Noise.a;
// Glossy specular of wax
Specular = In.Specular;
Specular *= Specular;
Specular *= Specular;

// Glossy reflection of wax
Gloss = texCUBE(Environment, In.Reflection) * saturate(In.Glossiness);

// Specular sparkle of flakes
Sparkle = saturate(dot((saturate(In.HalfVector) - 0.5) * 2,

(Noise.rgb - 0.5) * 2));
Sparkle *= Sparkle;
Sparkle *= Sparkle;
Sparkle *= Sparkle;

Sparkle *= k_s;
// Combine the contributions

(continued)

C08616531.fm Page 199 Tuesday, May 13, 2003 1:13 PM

200 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

Color.rgb = Diffuse + Specular + Gloss + Sparkle;
Color.w = 1;

return Color;
}

The pixel shader requires a global variable for the material specular reflec-
tion constant, two texture samplers, and the pixel shader function. The material
specular reflection k_s is a global shader variable and must be initialized by the
constant table.

This shader samples two textures, a noise texture and a cubic environ-
ment texture. Each texture that’s sampled requires a texture object that contains
texture data and a sampler object. The texture objects are created by the appli-
cation, which we’ll see in a minute. The sampler objects are created with the
following code:

sampler SparkleNoise : register(s0);
sampler Environment : register(s1);

This code identifies two sampler objects: SparkleNoise for the noise data
and Environment for the cubic environment data. The register keyword binds
the sampler object to a particular sampler register. If the register keyword is not
used, the sampler objects are bound to sampler registers in the order that
they’re declared. In this case, the following declaration is identical to the previ-
ous one:

sampler SparkleNoise; // default assignment to sampler register s0
sampler Environment; // default assignment to sampler register s1

Sampler objects use sampler state to control how sampling is done. Sam-
pler state is specified with SetSamplerState. For now, let’s look at the pixel
shader.

The pixel shader inputs are the per-pixel interpolated values derived from
the vertex shader outputs. Notice that the vertex shader output structure is also
the pixel shader input structure. The pixel shader returns the final pixel color,
which is calculated after performing the following operations:

■ Sample the procedural texture with the tex3D intrinsic function and
the noise texture coordinates

float4 Noise = tex3D(SparkleNoise, In.NoiseCoord);

■ Calculate the diffuse color

diffuse color = diffuse color * noise alpha value

■ Calculate the specular color

specular = specular ^4

C08616531.fm Page 200 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 201

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

■ Calculate the gloss color (because of the car wax)

Gloss = texCUBE(Environment, In.Reflection) * saturate(In.Glossiness);

■ Calculate the metallic flake sparkle

Sparkle = dot(unbiased half vector, unbiased noise);
Sparkle = Sparkle^8 * metal specular color

■ Calculate the pixel color with the sum of all the contributions

Color.rgb = Diffuse + Specular + Gloss + Sparkle;
Color.w = 1;

Now that we’ve seen all three shaders (vertex, pixel, and texture), let’s
take a look at the different color components of the result, which is easily done
by modifying the last step of the pixel shader, which sets the pixel color.

Color.rgb = Diffuse + Specular + Gloss + Sparkle;

The figures shown in the following sections show the results of each of
the color contributions: diffuse, gloss, and sparkle.

Diffuse Only
The render can be done with only the diffuse color contributions. (See Color
Plate 26.)

The pixel shader statement for setting the pixel color was modified to

Color.rgb = Diffuse;

Diffuse and Gloss
The render can be done with the diffuse and gloss contributions. (See Color
Plate 27.)

The pixel shader statement for setting the pixel color was modified to

Color.rgb = Diffuse + Gloss;

Diffuse, Gloss, and Sparkle
The render can be done with the diffuse, gloss, and sparkle contributions. (See
Color Plate 28.)

The pixel shader statement for setting the pixel color was modified to

Color.rgb = Diffuse + Gloss + Sparkle;

C08616531.fm Page 201 Tuesday, May 13, 2003 1:13 PM

202 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

The metallic flake sparkle adds a nice realistic effect to the metal skin of
the object. Try rotating the big-ship mesh (with the arrow keys), and watch the
metallic flakes sparkle in the viewer. Now that we’ve seen the results, let’s look
at the application code that creates and manages these shaders.

Vertex and Pixel Shader Creation
All the HLSL shader code for this example is contained in a file called Metallic-
Flakes.fx. Here’s the application code that creates the vertex and pixel shaders:

LPDIRECT3DVERTEXSHADER9 m_pVS;
LPD3DXCONSTANTTABLE m_pVSConstantTable;
LPDIRECT3DPIXELSHADER9 m_pPS;
LPD3DXCONSTANTTABLE m_pPSConstantTable;
....
HRESULT hr;
LPD3DXBUFFER l_pShader = NULL;

// compile the vertex shader
hr = D3DXCompileShaderFromResource(

NULL,
MAKEINTRESOURCE(ID_HLSL_METALLICFLAKES),
NULL, // NULL terminated string of D3DXMACROs
NULL, // A #include handler
"VS",
"vs_1_1",
D3DXSHADER_DEBUG,
&pShader,
NULL, // error messages
&m_pVSConstantTable);

if(FAILED(hr))
{

SAFE_RELEASE(m_pVS);
SAFE_RELEASE(pShader);
SAFE_RELEASE(m_pVSConstantTable);
return hr;

}

// Create the vertex shader
hr = m_pd3dDevice->CreateVertexShader(

(DWORD*)pShader->GetBufferPointer(), &m_pVS);
if(FAILED(hr))
{

SAFE_RELEASE(pShader);
SAFE_RELEASE(m_pVSConstantTable);
SAFE_RELEASE(m_pVS);
return hr;

}

C08616531.fm Page 202 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 203

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

// Compile the pixel shader
hr = D3DXCompileShaderFromResource(

NULL,
MAKEINTRESOURCE(ID_HLSL_METALLICFLAKES),
NULL, // NULL terminated string of D3DXMACROs
NULL, // A #include handler
"PS",
"ps_1_1",
D3DXSHADER_DEBUG,
&pShader,
NULL, // error messages
&m_pPSConstantTable);

if(FAILED(hr))
{

SAFE_RELEASE(pShader);
SAFE_RELEASE(m_pPSConstantTable);
SAFE_RELEASE(m_pVSConstantTable);
SAFE_RELEASE(m_pVS);
return hr;

}

// Create the pixel shader
hr = m_pd3dDevice->CreatePixelShader(

(DWORD*)pShader->GetBufferPointer(), &m_pPS);
if(FAILED(hr))
{

SAFE_RELEASE(pShader);
SAFE_RELEASE(m_pVSConstantTable);
SAFE_RELEASE(m_pVS);
SAFE_RELEASE(m_pPSConstantTable);
SAFE_RELEASE(m_pPS);
return hr;

}

The code that creates the vertex shader is similar to the code that creates
the pixel shader. Member variables for the shader and constant table interfaces
a re dec la red . Shader s a re va l ida ted and compi led by ca l l ing
D3DXCompileShaderFromResource with an entry-point function and a shader
version. The D3DXCompileShaderFromResource method returns a pointer to
the compiled shader code and a pointer to the constant table.

After compiling, CreateVertexShader and CreatePixelShader use the com-
piled shader code to create shader objects. These objects will be used to set the
current shaders in the render code. We still need to create the texture objects
that the pixel shader will require, so let’s do that next.

C08616531.fm Page 203 Tuesday, May 13, 2003 1:13 PM

204 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

Procedural Texture Creation
A procedural texture will be used to displace the normals in the pixel shader.
Here is the application code for generating a texture, and then filling it with
some custom function:

LPDIRECT3DVOLUMETEXTURE9 m_pNoiseMap;

// Create the noise map (procedural texture)
hr = D3DXCreateVolumeTexture(

m_pd3dDevice,
32, 32, 32, // width, height, depth
1, // mip levels
0, // usage
D3DFMT_UNKNOWN, // format
D3DPOOL_MANAGED, // memory pool
&m_pNoiseMap);

First, a volume texture is created with D3DXCreateVolumeTexture. The
following arguments are used:

■ The texture size in width, height, and depth

■ One mip level to minimize the amount of texture memory needed

■ Default usage

■ D3DFMT_UNKNOWN, which means the runtime will choose a tex-
ture format

■ D3DPOOL_MANAGED, which means that the runtime will re-create
resources on a lost device

Then, the procedural shader is compiled with D3DXCompileShader-
FromResource.

hr = D3DXCompileShaderFromResource(
NULL,
MAKEINTRESOURCE(ID_HLSL_METALLICFLAKES),
NULL, // A NULL terminated string of D3DXMACROs
NULL, // A #include handler
"GenerateSparkle",
"tx_1_0",
D3DXSHADER_DEBUG,
&pShader,
NULL, // error messages
NULL); // constant table pointer

C08616531.fm Page 204 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 205

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

if(FAILED(hr))
{

SAFE_RELEASE(pShader);
return hr;

}

The arguments are the same as the arguments used in the HLSL pixel
shader examples, except that the target for a procedural texture is “tx_1_0”.
Other than this, everything else is the same as it is for the vertex and pixel shader
compile calls. Because the constants for the procedural shader are #defines, we
don’t need to initialize the constants with the constant table interface.

With the texture created, and the procedural shader compiled, the only
remaining task is to fill the texture. This is done by calling D3DXFillVolume-
TextureTX from the application. When the texture fill function is called, the pro-
cedural texture texture is filled in with our procedural volume noise and is
ready to be sampled by the pixel shader.

// Procedurally fill texture
hr = D3DXFillVolumeTextureTX(m_pNoiseMap,

(CONST DWORD*)pShader->GetBufferPointer(), NULL, 0);
if(FAILED(hr))
{

SAFE_RELEASE(pShader);
SAFE_RELEASE(m_pNoiseMap);
return hr;

}

// Set the sampler state for the noise map
m_pd3dDevice->SetSamplerState(0, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
m_pd3dDevice->SetSamplerState(0, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
m_pd3dDevice->SetSamplerState(0, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);

But before we’re ready to see the draw calls, we still need to create the
cubic-environment texture and load the mesh object.

Environment Map Creation
Creating the cubic-environment map is as easy as loading a .dds file. Here’s the
code:

// Create the cubic-environment map
TCHAR strMediaPath[512];
if(FAILED(DXUtil_FindMediaFileCb(strMediaPath, sizeof(strMediaPath),

TEXT("lobbycube.dds"))))
{

return D3DAPPERR_MEDIANOTFOUND;
}

(continued)

C08616531.fm Page 205 Tuesday, May 13, 2003 1:13 PM

206 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

hr = D3DXCreateCubeTextureFromFile(m_pd3dDevice, strMediaPath,
&m_pEnvironmentMap);

if(FAILED(hr))
{

SAFE_RELEASE(m_pEnvironmentMap);
return hr;

}
// Set up the sampler state for the environment map
m_pd3dDevice->SetSamplerState(1, D3DSAMP_MAGFILTER, D3DTEXF_LINEAR);
m_pd3dDevice->SetSamplerState(1, D3DSAMP_MINFILTER, D3DTEXF_LINEAR);
m_pd3dDevice->SetSamplerState(1, D3DSAMP_MIPFILTER, D3DTEXF_LINEAR);

D3DXCreateCubeTextureFromFile creates the cube map texture object.
Once the texture is created, it also makes sense to initialize the sampler state. In
this case, the environment map will use bilinear interpolation to sample texel
values when the texture is magnified or minimized, or when two mip levels are
interpolated.

With the textures and shaders created, the last step before rendering is to
create the mesh object.

Mesh Creation
The mesh creation code does a few things to load the mesh from an .x file.
Here’s the code in InitDeviceObjects, which is similar to the mesh-loading code
in many of the SDK samples:

TCHAR strMediaPath[512];
LPD3DXBUFFER l_pD3DXMtrlBuffer;
LPD3DXMESH l_pTempMesh;

// Find the path to the mesh
if(FAILED(DXUtil_FindMediaFileCb(strMediaPath,

sizeof(strMediaPath), TEXT("bigship1.x"))))
{

return D3DAPPERR_MEDIANOTFOUND;
}

// Load the mesh from the specified file
if(FAILED(D3DXLoadMeshFromX(strMediaPath, D3DXMESH_SYSTEMMEM,

m_pd3dDevice, NULL,
&l_pD3DXMtrlBuffer, NULL,
&m_dwNumMaterials, &m_pMesh)))

{
SAFE_RELEASE(l_pD3DXMtrlBuffer);
SAFE_RELEASE(m_pMesh);

}

C08616531.fm Page 206 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 207

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

DWORD dw32BitFlag;
dw32BitFlag = (m_pMesh->GetOptions() & D3DXMESH_32BIT);
// Extract the mesh material properties and texture names
D3DXMATERIAL* d3dxMaterials =

(D3DXMATERIAL*)l_pD3DXMtrlBuffer->GetBufferPointer();
m_pMeshMaterials = new D3DMATERIAL9[m_dwNumMaterials];
m_pMeshTextures = new LPDIRECT3DTEXTURE9[m_dwNumMaterials];
for(DWORD I=0; I < m_dwNumMaterials; I++)
{

// Copy the material
m_pMeshMaterials[i] = d3dxMaterials[i].MatD3D;
// Set the ambient color for the material
m_pMeshMaterials[i].Ambient = m_pMeshMaterials[i].Diffuse;
m_pMeshTextures[i] = NULL;
if(d3dxMaterials[i].pTextureFilename != NULL &&

lstrlen(d3dxMaterials[i].pTextureFilename) > 0)
{

// Find the path to the texture and create that texture
DXUtil_FindMediaFileCb(strMediaPath, sizeof(strMediaPath),

d3dxMaterials[i].pTextureFilename);

// Create the texture
if(FAILED(D3DXCreateTextureFromFile(m_pd3dDevice,

strMediaPath, &m_pMeshTextures[i])))
{

m_pMeshTextures[i] = NULL;
}

}
}
HRESULT hr;

// Useful for reading the mesh declaration
// D3DVERTEXELEMENT9 declaration[MAX_FVF_DECL_SIZE];
// m_pMesh->GetDeclaration(declaration);
if (!(m_pMesh->GetFVF() & D3DFVF_NORMAL))
{

hr = m_pMesh->CloneMeshFVF(dw32BitFlag | D3DXMESH_MANAGED,
m_pMesh->GetFVF() | D3DFVF_NORMAL,
m_pd3dDevice, &l_pTempMesh);

if (FAILED(hr))
{

SAFE_RELEASE(l_pTempMesh);
}
D3DXComputeNormals(l_pTempMesh, NULL);
m_pMesh->Release();
m_pMesh = l_pTempMesh;

}

(continued)

C08616531.fm Page 207 Tuesday, May 13, 2003 1:13 PM

208 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

// Expand the mesh to hold tangent data
D3DVERTEXELEMENT9 decl[] =
{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },

{ 0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_NORMAL, 0 },

{ 0, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_TEXCOORD, 0 },

{ 0, 32, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_TANGENT, 0 },

D3DDECL_END()
};
hr = m_pMesh->CloneMesh(dw32BitFlag | D3DXMESH_MANAGED,

decl, m_pd3dDevice, &l_pTempMesh);
if (FAILED(hr))

return hr;

hr = D3DXComputeTangent(l_pTempMesh, // input mesh
0, // TexStageIndex
0, // TangentIndex
0, // BinormIndex
0, // Wrap
NULL // Adjacency
);

m_pMesh->Release();
m_pMesh = l_pTempMesh;
// Done with the material buffer
l_pD3DXMtrlBuffer->Release();
l_pD3DXMtrlBuffer = NULL;

The mesh load call loads a mesh from an .x file into system memory.

// Load the mesh from the specified file
if(FAILED(D3DXLoadMeshFromX(strMediaPath, D3DXMESH_SYSTEMMEM,

m_pd3dDevice, NULL,
&l_pD3DXMtrlBuffer, NULL,
&m_dwNumMaterials, &m_pMesh)))

This code also creates a material buffer that gives access to the mesh materials
and textures.

The existing vertex buffer does not have tangent data in it, which you can
see by looking through the vertex declaration. Here’s an example of how to
extract the mesh declaration so that you can see what types are in the existing
vertex data:

// Useful for reading the mesh declaration
D3DVERTEXELEMENT9 declaration[MAX_FVF_DECL_SIZE];
m_pMesh->GetDeclaration(declaration);

C08616531.fm Page 208 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 209

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

To increase the size of the vertex buffer to make room for per-vertex tan-
gent data, use the CloneMesh method and increase the mesh size. The new size
is specified with a vertex declaration that contains the three data types and an
additional data type for the tangent data.

// Expand the mesh to hold tangent data
D3DVERTEXELEMENT9 decl[] =
{

{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, 0 },

{ 0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_NORMAL, 0 },

{ 0, 24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_TEXCOORD, 0 },

{ 0, 32, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_TANGENT, 0 },

D3DDECL_END()
};

Each line represents a single component in the vertex buffer. For example,
the declaration in the first line specifies the following:

■ Stream number 0

■ Zero offset (in bytes) from the start of the stream to the data

■ D3DDECLTYPE_FLOAT3, three floating-point numbers

■ D3DDECLMETHOD_DEFAULT, no tessellation needed

■ D3DDECLUSAGE_POSITION, position data

■ Default usage index

■ D3DDECL_END, a macro that signals the end of the declaration

CloneMesh uses the vertex declaration to create the new mesh.

hr = m_pMesh->CloneMesh(dw32BitFlag | D3DXMESH_MANAGED,
decl, m_pd3dDevice, &l_pTempMesh);

if (FAILED(hr))
{

SAFE_RELEASE(l_pTempMesh);
return hr;

}

The existing mesh is cloned into a temporary mesh. The next thing to do
is fill in the new vertex buffer with tangent data by calling D3DXCompute-
Tangent, as shown in the following code:

C08616531.fm Page 209 Tuesday, May 13, 2003 1:13 PM

210 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

hr = D3DXComputeTangent(
l_pTempMesh, // input mesh
0, // TexStageIndex
0, // TangentIndex
0, // BinormIndex
0, // Wrap
NULL // Adjacency
);

Now we have a mesh that contains per-vertex position, normal, texture
coordinate, and tangent data. In summary, here’s what we had to do:

■ Load the mesh from an .x file

■ Check to make sure that the mesh contained normal data

■ Clone it to make room for tangent data

■ Add tangent data

All that’s left to do is render the big ship mesh. To do that, we’ll need to
take advantage of the mesh, the vertex shader, the pixel shader, the procedural
texture, and the vertex declaration.

Render
The render code looks like most of the render code in the SDK samples. We’re
using the sample framework, so everything happens in the Render method.

// Begin the scene.
if(SUCCEEDED(m_pd3dDevice->BeginScene()))
{

// Initialize the vertex shader uniform constants
m_pVSConstantTable->SetDefaults(m_pd3dDevice);

// Initialize the pixel shader uniform constants
m_pPSConstantTable->SetDefaults(m_pd3dDevice);
// Initialize the shader matrices using application matrices
m_pVSConstantTable->SetMatrix(m_pd3dDevice, "WorldView",

&m_matView);
m_pVSConstantTable->SetMatrix(m_pd3dDevice, "Projection",

&m_matProj);
m_pd3dDevice->SetTexture(0, m_pNoiseMap);
m_pd3dDevice->SetTexture(1, m_pEnvironmentMap);

// Set the shaders
m_pd3dDevice->SetVertexShader(m_pVS);
m_pd3dDevice->SetPixelShader(m_pPS);

C08616531.fm Page 210 Tuesday, May 13, 2003 1:13 PM

Chapter 8 HLSL Examples 211

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

// Draw the mesh
for(DWORD I=0; I < m_dwNumMaterials; I++)
{

// Use mesh material colors to set the
// shader ambient and diffuse material colors
m_pVSConstantTable->SetVector(m_pd3dDevice, "k_a",

(D3DXVECTOR4 *)(FLOAT *)D3DXCOLOR(m_pMeshMaterials[i].Ambient));
m_pVSConstantTable->SetVector(m_pd3dDevice, "k_d",

(D3DXVECTOR4 *)(FLOAT *)D3DXCOLOR(m_pMeshMaterials[i].Diffuse));
// Draw the mesh subset
m_pMesh->DrawSubset(I);

}
m_pd3dDevice->SetTexture(0, NULL);
m_pd3dDevice->SetTexture(1, NULL);

// End the scene
m_pd3dDevice->EndScene();

}

The render code does the following:

■ Initializes the shader variables using the constant table interface

■ Sets the procedural texture and the environment texture to a texture
stage

■ Sets the vertex and pixel shaders

■ Calls a mesh drawing loop

So that’s all there is to it. Because we’re working with a mesh, there are no
SetStreamSource or DrawPrimitive calls. These calls are done for you when
using the DrawSubset mesh method. The multitexture blender is used to apply
the textures, so textures need to be set with SetTexture.

HLSL Experimentation in EffectEdit
Another way to run these examples uses the new EffectEdit SDK sample. Effect-
Edit is an application that automatically compiles and renders effects. Even
though effects are not covered until Part III, this sample is a convenient way to
play with HLSL shader code. The edit window displays the shader functions
and allows a user to interactively change shader code. Let’s look briefly at run-
ning these examples in EffectEdit.

The glow shader can be loaded into EffectEdit. (See Color Plate 29.) The
glow and metallic flakes examples are contained in the Glow.fx and Metallic-
flakes.fx files, respectively, which are on the DirectX 9 SDK install in the SDK/

C08616531.fm Page 211 Tuesday, May 13, 2003 1:13 PM

212 Part II Programming HLSL Shaders

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx2, edd version: #, FrameMaker+SGML; ef

Samples/Media/EffectEdit/ subdirectory. If you want to experiment with HLSL
shaders in the EffectEdit sample, open the SDK sample and either use the file
load option to load an .fx file, or cut and paste the contents of the .fx file into the
code pane, replacing the code that’s already there. EffectEdit works with any .fx
file in the SDK that says at the top, "This effect file works with EffectEdit."

Summary
After seeing these examples, you should have some understanding of how to
write shaders in HLSL. This chapter demonstrated vertex shaders, pixel shaders,
and texture shaders. You can extend this functionality by programming effects
using the effect framework. Part III goes into effects, and Chapter 11 will
include a more detailed description for using EffectEdit.

C08616531.fm Page 212 Tuesday, May 13, 2003 1:13 PM

Microsoft Press. Confidential. master page = Part Opener (option 2)
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

Part III

Programming Effects

C09616531.fm Page 213 Tuesday, May 13, 2003 1:15 PM

Microsoft Press. Confidential. master page = Blank
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

C09616531.fm Page 214 Tuesday, May 13, 2003 1:15 PM

Microsoft Press. Confidential. master page = Chapter Opener
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

215

Effect Introduction
A DirectX effect integrates vertex and pixel shaders with pipeline state to render
objects. Effects are the next logical step in combining shaders to produce
unique render conditions.

Effects also provide a convenient way to write shaders for different hard-
ware versions. Because different video cards support different functionality, an
application can write several techniques that will run on a variety of devices.
This way, if the application is running on the latest and greatest hardware, the
application can run the most sophisticated effect technique. On the other hand,
less sophisticated techniques can automatically be chosen to run on less expen-
sive or less capable hardware.

Before we jump into how to create effects, let’s see the parts of the pipe-
line that are managed by an effect. We’ll start by reviewing the system block
diagram for the 3-D graphics pipeline.

Effects and the 3-D Pipeline
The following figure shows a block diagram of the 3-D pipeline.

Vertex
Data in

Model Space

High Order
Primitive

Data
Tesselation

Vertex
processing

Primitive
processing

Pixel
processing

Rendered
pixels

Input Data

Effects Output Data

C09616531.fm Page 215 Tuesday, May 13, 2003 1:15 PM

216 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

The pipeline transforms input data into output pixels that fill the frame
buffer. The input data comes from objects that are made up of vertices in model
space or higher-order surfaces created from N-patches, rectangle patches, and
triangle patches. Once the input data has been tessellated, the pipeline per-
forms vertex processing, primitive processing, and pixel processing before out-
putting the final pixel colors.

Vertex and pixel processing can be performed by the fixed function pipe-
line or implemented with programmable shaders. The input data tessellation,
primitive processing, and data outputs are controlled by pipeline state. Effects
set the state that controls how the pipeline functions. Effects can call fixed func-
tion processing, programmable shader processing, or both.

Here are some features of effects:

■ Effects contain global variables. These variables can be set by
either the effect itself or the application.

■ Effects manage pipeline state. Includes states for setting trans-
formations, lighting, materials, and rendering options.

■ Effects manage texture state and sampler state. Includes spec-
ifying texture files, initializing texture stages, creating sampler
objects, and setting sampler state.

■ Effects manage shader state. Includes creating and deleting
shaders, setting shader constants, setting shader state, and rendering
with shaders.

■ Effects contain multiple rendering options called
techniques. Each technique encapsulates global variables, pipe-
line state, texture and sampler state, and shader state. A single style
is implemented in a rendering pass. One or more passes can be
encapsulated in a technique. All the passes and techniques can be
validated to see if the effect code will run on the hardware device.

■ Effects can save and restore state, leaving the device in the
same state as before the effect was run.

This chapter will:

■ Demonstrate effects using assembly-language (Asm) and high-level
shader language (HLSL) shaders.

■ Highlight the characteristics of effects that determine their behavior.

■ Introduce the API calls for building and rendering effects.

C09616531.fm Page 216 Tuesday, May 13, 2003 1:15 PM

Chapter 9 Effect Introduction 217

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

An Effect with an Assembly-Language Vertex Shader
This example creates an effect with an assembly-language vertex shader. The
shader draws a solid textured object from a mesh file. This is the same model
used in the HLSL examples in Chapter 8. Here’s the effect:

// texture
texture Tex0 < string name = "tiger.bmp"; >;
sampler Sampler = sampler_state
{

Texture = (Tex0);
MipFilter = LINEAR;
MinFilter = LINEAR;
MagFilter = LINEAR;

};
float4x4 matWorldViewProj : WORLDVIEWPROJ;
technique TVertexShaderOnly_Asm
{

pass P0
{

// lighting
Lighting = FALSE;
SpecularEnable = TRUE;
// samplers
Sampler[0] = (Sampler);
// texture stages
ColorOp[0] = MODULATE;
ColorArg1[0] = TEXTURE;
ColorArg2[0] = DIFFUSE;
AlphaOp[0] = MODULATE;
AlphaArg1[0] = TEXTURE;
AlphaArg2[0] = DIFFUSE;
ColorOp[1] = DISABLE;
AlphaOp[1] = DISABLE;
VertexShaderConstant4[0] = (matWorldViewProj);
// shaders
VertexShader =
asm
{

vs_1_1

dcl_position v0
dcl_texcoord v7
// c0 world-view proj matrix
m4x4 oPos, v0, c0 // Transform position to projection space
mov oT0, v7 // output texture coordinates

(continued)

C09616531.fm Page 217 Tuesday, May 13, 2003 1:15 PM

218 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

};
}

}

All this code is in the Simple_VS_Asm.fx file. Some of it is the vertex
shader, and some of it is required by the effect. So let’s break it into separate
kinds of effect state.

Effect Global Variables
The effect has three global variables: Tex0, Sampler, and matWorldViewProj.

texture Tex0 < string name = "tiger.bmp"; >;
sampler Sampler = sampler_state
{

Texture = (Tex0);
MipFilter = LINEAR;
MinFilter = LINEAR;
MagFilter = LINEAR;

};
float4x4 matWorldViewProj : WORLDVIEWPROJ;

The Tex0 variable is annotated with the name of the texture tiger.bmp
that will be applied to the object. The application can read this annotation to
retrieve the texture name and then create the texture resource. The texture
will still need to be bound to a texture stage so that the multitexture blender
can be used, but this will happen in the pass, which will be discussed in the
next section.

This is an annotation:

< string name = "tiger.bmp"; >

Annotations are user-added information. The “Characteristics of Effects”
section later in this chapter explains annotations in more detail.

The Sampler variable declares a sampler object. The sampler object needs
to be initialized with sampler state and needs to be bound to a sampler register.
The sampler object is identified by the sampler keyword and is stored in the
variable named Sampler. The rest of the code in the curly braces is the sampler
state.

{
Texture = (Tex0);
MipFilter = LINEAR;
MinFilter = LINEAR;
MagFilter = LINEAR;

};

C09616531.fm Page 218 Tuesday, May 13, 2003 1:15 PM

Chapter 9 Effect Introduction 219

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

The first statement binds the sampler object to the texture global variable.
The rest of the statements set sampler filtering state, which determines how
sampling will be done if the texture is mipmapped, minimized, or maximized.

The last global variable is a 4-by-4 floating-point matrix.

float4x4 matWorldViewProj : WORLDVIEWPROJ;

This matrix will need to be initialized to the world-view-projection com-
posite transform. The matrix will be used by the vertex shader to transform the
position data from model space to projection space. It has a semantic attached
to it named WORLDVIEWPROJ. One use for a semantic is to enable the effect
interface to search for a particular effect parameter. Some semantics have pre-
defined meanings. These effect states are listed in Appendix D.

Having covered the global variables, the rest of the code in
Simple_VS_Asm.fx sets effect state.

Effect State
Effect state initializes the pipeline for processing pipeline data. Effect variables
hold effect state values. This example uses the following effect state:

technique TVertexShaderOnly_Asm
{

pass P0
{

// lighting
Lighting = FALSE;
SpecularEnable = TRUE;
// samplers
Sampler[0] = (Sampler);
// texture stages
ColorOp[0] = MODULATE;
ColorArg1[0] = TEXTURE;
ColorArg2[0] = DIFFUSE;
AlphaOp[0] = MODULATE;
AlphaArg1[0] = TEXTURE;
AlphaArg2[0] = DIFFUSE;
ColorOp[1] = DISABLE;
AlphaOp[1] = DISABLE;
VertexShaderConstant4[0] = (matWorldViewProj);
// shaders
VertexShader =
asm
{

vs_1_1

(continued)

C09616531.fm Page 219 Tuesday, May 13, 2003 1:15 PM

220 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

dcl_position v0
dcl_texcoord v7
// c0 world-view proj matrix
m4x4 oPos, v0, c0 // Transform position to projection space
mov oT0, v7 // output texture coordinates

};
}

}

Effect state is contained within a pass. Each pass is contained within a
technique. This shader contains state that is

■ Set from the effect global variables

■ Set from the effect states listed in Appendix D

■ Set from an inline shader assignment

The effect state set from the global variables includes the following code:

// samplers
Sampler[0] = (Sampler);
VertexShaderConstant4[0] = (matWorldViewProj);

Effect global variables are referred to in a technique or a pass by enclosing
them in parentheses, which is why you see (Sampler) and (matWorldViewProj)
in the sample code.

The first statement binds the sampler object with sampler register s0,
which is represented by Sampler[0]. Sampler register s1 would be Sampler[1], s2
would be Sampler[2], and so on, up to the limit of the number of sampler reg-
isters available in a given shader version.

The second statement binds the matWorldViewProj 4-by-4 matrix to ver-
tex shader constant registers. VertexShaderConstant4[0] specifies four constant
registers, starting with register 0. The 4-by-4 matrix contains 16 floating-point
numbers. The first four are loaded in register c0, the second four in register c1,
the next four in c2, and the last four in c3.

The following states are set using the effect states in Appendix D:

// lighting
Lighting = FALSE;
SpecularEnable = TRUE;
// texture stages
ColorOp[0] = MODULATE;
ColorArg1[0] = TEXTURE;
ColorArg2[0] = DIFFUSE;
AlphaOp[0] = MODULATE;
AlphaArg1[0] = TEXTURE;
AlphaArg2[0] = DIFFUSE;

C09616531.fm Page 220 Tuesday, May 13, 2003 1:15 PM

Chapter 9 Effect Introduction 221

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

ColorOp[1] = DISABLE;
AlphaOp[1] = DISABLE;

These states set up several things, including the following:

■ Disabling fixed function lighting

■ Enabling specular highlights

■ Drawing clockwise triangle faces

■ Setting up the multitexture blender to blend the texture color with a
diffuse color

See Appendix D for a list of all the effect states available.
The remaining state in this example is set by assigning an inline shader, as

shown here:

// shaders
VertexShader =
asm
{

vs_1_1

dcl_position v0
dcl_texcoord v7
// c0 world-view proj matrix
m4x4 oPos, v0, c0 // Transform position to projection space
mov oT0, v7 // output texture coordinates

};

This example creates an inline vertex designed for vs_1_1 instructions. An
inline shader assignment can be divided into the following three parts:

■ The effect state that’s being set

VertexShader =

■ The assembly block that contains assembly instructions

asm
{

// assembly language instructions
...

};

■ The assembly-language instructions

vs_1_1

dcl_position v0

(continued)

C09616531.fm Page 221 Tuesday, May 13, 2003 1:15 PM

222 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

dcl_texcoord v7
// c0 world-view proj matrix
m4x4 oPos, v0, c0 // Transform position to projection space
mov oT0, v7 // output texture coordinates

When a shader assignment sets effect state inside of a pass, it’s called an
inline shader assignment. When the compiler sees the assembly block, the ver-
tex shader is compiled and a vertex shader object is created. The resulting ver-
tex shader object is assigned to the VertexShader effect state.

This particular shader contains five instructions (and one comment line).
The first instruction is the version number, the second and third instructions are
register declarations, and the last two instructions accomplish all the work. The
m4x4 instruction is a 4x4 matrix multiply instruction that transforms and out-
puts the position coordinates. The mov instruction outputs the texture coordi-
nates. See Part I of this book for an explanation of assembly-language shader
instructions.

So far, we have seen that an effect can contain any of the following:

■ Global variables

■ Techniques and passes, which contain effect state and inline shader
assignment

Global variables, techniques, and state within passes do not need to
appear in any particular order. They are shown here in an order that makes
sense for the example.

Now that we’ve seen an effect that contains an assembly-language vertex
shader, let’s see how the effect changes when an HLSL vertex shader is used.

HLSL Vertex Shader
Effects can also contain shaders written in HLSL. Here’s the effect from the pre-
vious example with an HLSL vertex shader:

// texture
texture Tex0 < string name = "tiger.bmp"; >;
sampler Sampler = sampler_state
{

Texture = (Tex0);
MipFilter = LINEAR;
MinFilter = LINEAR;
MagFilter = LINEAR;

};
float4x4 matWorldViewProj : WORLDVIEWPROJ;
struct VS_OUTPUT

C09616531.fm Page 222 Tuesday, May 13, 2003 1:15 PM

Chapter 9 Effect Introduction 223

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

{
float4 Pos : POSITION;
float2 Tex : TEXCOORD0;

};
VS_OUTPUT VS(

float3 Pos : POSITION,
float2 Tex : TEXCOORD0)

{
VS_OUTPUT Out = (VS_OUTPUT)0;
Out.Pos = mul(Pos, matWorldViewProj);
Out.Tex = Tex;
return Out;

}
technique TVertexShaderOnly_HLSL
{

pass P0
{

// lighting
Lighting = FALSE;
SpecularEnable = TRUE;
// samplers
Sampler[0] = (Sampler);
// texture stages
ColorOp[0] = MODULATE;
ColorArg1[0] = TEXTURE;
ColorArg2[0] = DIFFUSE;
AlphaOp[0] = MODULATE;
AlphaArg1[0] = TEXTURE;
AlphaArg2[0] = DIFFUSE;
ColorOp[1] = DISABLE;
AlphaOp[1] = DISABLE;
// shaders
VertexShader = compile vs_1_1 VS();
PixelShader = NULL;

}
}

Here’s what is unchanged in the effect from the previous example:

■ The effect global variables

■ The effect sampler object

■ Single technique and single pass

■ The effect state in the pass

C09616531.fm Page 223 Tuesday, May 13, 2003 1:15 PM

224 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

So what’s different? The shader code is written in HLSL, and the inline
shader assignment is now an inline shader compile call. The shader code looks
like this:

struct VS_OUTPUT
{

float4 Pos : POSITION;
float2 Tex : TEXCOORD0;

};
VS_OUTPUT VS(

float3 Pos : POSITION,
float2 Tex : TEXCOORD0)

{
VS_OUTPUT Out = (VS_OUTPUT)0;
Out.Pos = mul(Pos, matWorldViewProj);
Out.Tex = Tex;
return Out;

}

This function has a structure that contains members for vertex shader
inputs and outputs, and a function, VS, that will be compiled into a vertex
shader. HLSL shaders are declared like function definitions in C.

Because the shader function is declared outside of a pass, here’s the way
to make the shader assignment:

technique TVertexShaderOnly_HLSL
{

pass P0
{

// shader state
...
VertexShader = compile vs_1_1 VS();

}
}

This HLSL vertex shader assignment creates an inline vertex shader object
and assigns it to the VertexShader state. The compile statement is located in the
pass. The compile statement contains the shader version, vs_1_1, which calls for
a version 1_1 vertex shader. It contains the name of the shader function (VS)
that will be compiled. During effect creation, the compiler compiles the HLSL
shader when it reads the statement with the compile keyword, and then it
assigns the vertex shader object to the VertexShader effect state.

The vertex shader function VS contains the shader function, which does
exactly the same thing as the assembly-language vertex shader did in the pre-
vious example.

Out.Pos = mul(Pos, matWorldViewProj);
Out.Tex = Tex;

C09616531.fm Page 224 Tuesday, May 13, 2003 1:15 PM

Chapter 9 Effect Introduction 225

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

Unlike assembly-language shaders, which contain instructions, HLSL
shaders contain statements. The first statement uses the mul intrinsic function
to transform the position data, and the second statement outputs the texture
coordinates.

Now you’ve seen two examples. The first example demonstrates an effect
with an assembly shader; the second example demonstrates the same example
using an HLSL shader. By comparing the two, you can see that the effect code
is very similar. In fact, the global variables and the effect state that are set are
identical. Both effects contain one shader. The only differences between the
shader assignments are the following:

■ The assembly-language shader uses inline shader assignment. The
assembly block contains assembly-language instructions.

■ The HLSL shader uses a compile statement. The shader code is a
function that contains HLSL statements.

Shaders can also be assigned with global variables.
Now that we know the basic structure of an effect, let’s look at a few more

characteristics that make up the effects framework.

Characteristics of Effects
If you are concerned about managing state more efficiently, read on. Effects
simplify managing pipeline state. By understanding how effects behave, you
can reduce the amount of work applications need to do to manage the state
changes required for different rendering techniques. This section highlights the
effect characteristics that make managing pipeline state easier.

Save and Restore State
As you already know from the beginning of this chapter, effects manage state.
The word state is used very broadly here. It includes all kinds of information
that the pipeline needs to specify the render conditions. This includes nearly all
the functional areas of the pipeline.

The effect interface manages all rendering inside the ID3DXEffect::Begin
and ID3DXEffect::End methods. Simply embed all the state-setting information
in each pass, and once ID3DXEffect::Pass is called, the runtime will apply all
the state settings. The end of the rendering is signaled by calling End. Be care-
ful to include all the draw calls before calling End; otherwise, the state can be
reset before the drawing is complete. Calling End doesn’t mean that rendering

C09616531.fm Page 225 Tuesday, May 13, 2003 1:15 PM

226 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

is done but that the application is done submitting rendering information to the
runtime.

One nice feature with effects is what happens when End is called. Effects
keep track of all the state changes and return the pipeline to the state before the
effect was called. (This behavior can be modified with the flags supplied to
Begin.)

So, effects save (the existing state) when Begin is called, and they restore
(the saved state) when End is called. When programming multiple pass-render-
ing sequences, each of which requires its own state setup, effects can reduce
the housekeeping required for tracking state changes.

Notice that effects render a given technique, which contains one or more
passes. State is restored each time rendering completes, which means each time
a technique finishes. Effects do not restore state between passes.

There are many states that control the pipeline. To help identify the sub-
sets that might be of interest, effect states can be divided into the following
functional areas:

■ Light states

■ Material states

■ Render states

❑ Vertex pipe render states

❑ Pixel pipe render states

■ Sampler states

■ Sampler stage states

■ Shader states

■ Shader constant states

❑ Vertex shader constant states

❑ Pixel shader constant states

■ Texture states

■ Texture stage states

■ Transform states

Each of these states is presented in Appendix D.
Saving and restoring state can reduce the burden on the application to

track state changes between techniques. The next section will highlight the lay-
out of techniques and passes.

C09616531.fm Page 226 Tuesday, May 13, 2003 1:15 PM

Chapter 9 Effect Introduction 227

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

Use Multiple Techniques and Passes
Rendering options are controlled by techniques and passes. A pass can con-
tain state information and shader state. Each pass can contain the following
information:

pass P0
{

// effect state
...
// high-level shading language object(s)
...
// high-level shading language constant declaration(s)
...
// shader state setting(s)
...
// assembly-language shader assignment(s)
...

}

For example, here’s the organization of an assembly-language vertex
shader that performs no culling during rendering:

pass P0
{

// shader state settings
CullMode = None;
// assembly shader declaration
VertexShader = asm
{

vs_1_1
...

};
}

The previous effect contains an inline assembly-language shader declara-
tion. The inline assembly shader assignment starts with either VertexShader or
PixelShader and contains all the assembly code inside the curly braces. Notice
that the ending semicolon (;) is required, or the effect will not compile.

The following effect uses an HLSL shader that is functionally the same, but
its layout is slightly different:

void VertexShaderFunction()
{

...
}
pass P0
{

(continued)

C09616531.fm Page 227 Tuesday, May 13, 2003 1:15 PM

228 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

// shader state settings
VertexShader = compile vs_1_1 VertexShaderFunction();
CullMode = None;

}

In this case, the shader contains an inline compile call. The HLSL shader
function, VertexShaderFunction, is declared (outside of the pass) and then the
compile statement compiles the shader and assigns the shader state (inside the
pass). The shader is compiled each time the effect is created.

A pass is performed once each time the render code is called. A pass
resides inside a technique:

technique T0
{

pass P0
{

...
}

}

Effects can be created with additional passes to facilitate more complex
rendering effects. A technique supports n passes.

technique T0
{

pass P0
{

...
}
pass P1
{

...
}
...
pass Pn
{

...
}

}

Effects can also be created with one or more techniques. An effect sup-
ports n techniques.

technique T0
{

pass P0
{

...
}

C09616531.fm Page 228 Tuesday, May 13, 2003 1:15 PM

Chapter 9 Effect Introduction 229

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

}
technique T1
{

pass P0
{

...
}
pass P1
{

...
}

}
...
technique Tn
{

pass P0
{

...
}

}
technique TVertexShaderOnly_Asm
{

pass P0
{

// shader state goes here
...
VertexShader =
asm
{
// assembly-language shader code goes here
...

};
}

}

The techniques and passes can be given arbitrary names. An effect can
contain one or more techniques, each containing one or more passes. We’ll see
examples of this in the next chapter.

Share Parameters
Effect parameters are all the non-static variables declared in an effect, which
can include global variables and annotations. Effect parameters can be shared
between different effects by declaring parameters with the shared keyword and
then creating the effect with an effect pool.

C09616531.fm Page 229 Tuesday, May 13, 2003 1:15 PM

230 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

An effect pool is an object that links the shared effect parameters. The
pool is created by calling D3DXCreateEffectPool, which returns an
ID3DXEffectPool interface. The interface is supplied as an input to any of the
D3DXCreateEffectxxx functions when an effect is created. For a parameter to
be shared across multiple effects, the parameter must have the same name,
type, and semantic in each of the shared effects. (Semantics will be covered in
the next section.)

Effects that share parameters must use the same device, to prevent the
sharing of device-dependent parameters (such as shaders or textures) across
different devices. Parameters are deleted from the pool whenever the effects
that contain the shared parameters are released. If sharing parameters is not
necessary, supply NULL for the effect pool when an effect is created.

Cloned effects use the same effect pool as the effect they are cloned from.
Cloning an effect makes an exact copy of an effect, including global variables,
techniques, passes, and annotations.

Use Semantics to Find Parameters
A semantic is an identifier that is attached to an effect parameter to allow an
application to search for the parameter. A parameter can have at most one
semantic. The semantic is located following a colon (:) after the parameter
name. The examples in this chapter use the WORLDVIEWPROJ semantic.

float4x4 matWorldViewProj : WORLDVIEWPROJ;

If you declared the effect global variable without using a semantic, it
would look like this instead:

float4x4 matWorldViewProj;

The effect interface can use a semantic to get a handle to a particular effect
parameter, as shown in this example:

D3DXHANDLE handle =
m_pEffect->GetParameterBySemantic(NULL, "WORLDVIEWPROJ");

This code returns the handle of the matWorldViewProj matrix. In addition
to searching by semantic name, the effect interface has many other API meth-
ods to search for parameters.

Use Handles to Get and Set Parameters
Handles provide an efficient means of referencing effect parameters, tech-
niques, passes, and annotations with ID3DXEffectCompiler or ID3DXEffect.
They are generated dynamically when you call functions of the form

C09616531.fm Page 230 Tuesday, May 13, 2003 1:15 PM

Chapter 9 Effect Introduction 231

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

Get[Parameter|Annotation|Function|Technique|Pass][ByName|BySeman-
tic|Element].

Handles (which are of type D3DXHANDLE) are string pointers. The han-
dles that are passed into functions such as GetParameter[ByName|Ele-
ment|BySemantic] or GetAnnotation[ByName] can be in one of the following
three forms:

■ A handle returned by a function such as GetParameter[ByName|Ele-
ment|BySemantic]

■ A string containing the name of the parameter, technique, pass, or
annotation

■ A handle set to NULL. (For more information about setting handles to
NULL, see Appendix D.)

This example returns a handle to the parameter that has the WORLDVIEW-
PROJ semantic attached to it:

D3DXHANDLE handle =
m_pEffect->GetParameterBySemantic(NULL, "WORLDVIEWPROJ");

There are other sample code examples for getting and setting parameters
with handles in Appendix D.

Add Parameter Information with Annotations
Annotations provide a mechanism for adding user information to effect param-
eters. Annotation declarations are delimited by angle brackets (<>). An annota-
tion contains

■ A data type

■ A variable name

■ An equals sign

■ The data value

■ An ending semicolon

For example, both of the previous examples in this chapter contain this
annotation:

texture Tex0 < string name = "tiger.bmp"; >;

The annotation is attached to the texture object Tex0 and specifies the tex-
ture file that needs to initialize the texture object. The annotation does not ini-

C09616531.fm Page 231 Tuesday, May 13, 2003 1:15 PM

232 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

tialize the texture object; it’s simply a piece of user information that’s attached
to the variable. An application can read the annotation with either
ID3DXEffect::GetAnnotation or ID3DXEffect::GetAnnotationByName to return
the string tiger.bmp. Annotations can also be added by the application.

Building an Effect
Now that you have a better understanding of what goes into an effect, let’s see
what to do with the API to build an effect, validate it, and render with it.

Create an Effect
The effect creation code is from CMyD3DApplication::RestoreDeviceObjects.

LPD3DXBUFFER pShader = NULL;
hr = D3DXCreateEffectFromFile(

m_pd3dDevice,
"Simple_VS_Asm.fx",
NULL, // A NULL terminated array of D3DXMACROs
NULL, // a #include handler
D3DXSHADER_DEBUG,
NULL,
&m_pEffect,
NULL);

if(FAILED(hr))
{

SAFE_RELEASE(m_pEffect);
return hr;

}

Because the effect is contained in the effect file Simpler_VS_Asm.fx, the
effect will be created using D3DXCreateEffectFromFile. Creating an effect takes
almost the same set of arguments as those you saw for creating shaders in HLSL
in Chapter 8.

■ The device

■ The effect file name

■ A NULL terminated array of D3DXMACROs.

■ An optional pointer to a user-written include handler. The handler is
called by the processor whenever it needs to resolve an #include.

■ A shader compile flag that gives the compiler hints about how the
shader will be used. The options can be one or more of the follow-
ing flags, combined with a logical or:

C09616531.fm Page 232 Tuesday, May 13, 2003 1:15 PM

Chapter 9 Effect Introduction 233

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

❑ Skipping validation, if known good shaders are being compiled

❑ Skipping optimization (sometimes used when optimizations
make debugging harder)

❑ Requesting debug information to be included in the shader so
that it can be debugged

■ The effect pool. The effect pool is a pointer to a memory pool inter-
face created with D3DXCreateEffectPool. If more than one effect
uses the same memory pool pointer, the global variables in the
effects are shared with each other. If there is no need to share effect
variables, the memory pool can be set to NULL.

■ A pointer to the new effect is returned.

■ A pointer to a buffer that validation errors can be sent to. In this
example, the parameter was set to NULL and not used.

The effect creation process simplifies the shader compile and shader
object creation code (which we used in Chapter 8 to compile an HLSL shader).

LPDIRECT3DVERTEXSHADER9 m_pVSTexture = NULL;
LPD3DXCONSTANTTABLE m_pTexture_ConstantTable = NULL;
LPD3DXBUFFER l_pShader = NULL;
hr = D3DXCompileShaderFromResource(

NULL,
MAKEINTRESOURCE(ID_HLSL_GLOW),
NULL, // A NULL terminated array of D3DXMACROs
NULL, // a #include handler
"VSTexture",
"vs_1_1",
D3DXSHADER_DEBUG,
&l_pShader,
NULL, // error messages
&m_pTexture_ConstantTable);

if(FAILED(hr))
{

SAFE_RELEASE(l_pShader);
SAFE_RELEASE(m_pTexture_ConstantTable);
return hr;

}

// Create the vertex shader
hr = m_pd3dDevice->CreateVertexShader(

(DWORD*)l_pShader->GetBufferPointer(), &m_pVS_HLSL_Texture);
if(FAILED(hr))
{

SAFE_RELEASE(l_pShader);
SAFE_RELEASE(m_pTexture_ConstantTable);

(continued)

C09616531.fm Page 233 Tuesday, May 13, 2003 1:15 PM

234 Part IIII Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

SAFE_RELEASE(m_pVS_HLSL_Texture);
return hr;

}

SAFE_RELEASE(l_pShader);

When creating resources, effects do not generate a constant table pointer
to set shader constants. Effect variables are set instead with the ID3DXEffect
interface. Vertex and pixel shader objects are handled transparently by effects
and do not need to be managed by an application.

Validate an Effect
The following code retrieves a handle to the technique and uses it to validate
the technique:

D3DXHANDLE hTech = m_pEffect->GetTechniqueByName("TVertexShaderOnly_Assy");
m_pEffect->ValidateTechnique(hTech);

Validating a technique checks that all the state assignments in the passes
are valid. Once a technique has been validated, it’s available for rendering.

During validation, the effect code is validated, or tested, against a set of
validation rules. Validation is designed to catch errors such as missing handles,
states that are set incorrectly, and effect objects that are not initialized correctly.

Validation also includes some error checking for cube and volume maps.
To validate a technique, call ValidateTechnique. For a list of validation

failures, see Appendix D.

Render an Effect
Effect render code is also simpler than the corresponding render code without
an effect. Here’s the render code with an effect:

// Begin the scene
if(SUCCEEDED(m_pd3dDevice->BeginScene()))
{

// Draw the mesh
if(m_pEffect)
{

D3DXMATRIXA16 matWorld;
D3DXMatrixIdentity(&matWorld);
D3DXMATRIX compMat;
D3DXMatrixMultiply(&compMat, &matWorld, &m_matView);
D3DXMatrixMultiply(&compMat, &compMat, &m_matProj);
m_pEffect->SetMatrix("matWorldViewProj", compMat);
m_pEffect->SetTechnique("TVertexShaderOnly_Assy");

C09616531.fm Page 234 Tuesday, May 13, 2003 1:15 PM

Chapter 9 Effect Introduction 235

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

HRESULT hr;
UINT numPasses, iPass;
hr = m_pEffect->Begin(&numPasses, 0);
for(iPass = 0; iPass < numPasses; iPass ++) // all passes
{

hr = m_pEffect->Pass(iPass);
// Render the tiger with a mesh drawing loop
for(DWORD I=0; I < m_dwNumMaterials; I++)
{

// Set the material and texture for this subset
m_pd3dDevice->SetMaterial(&m_pMeshMaterials[i]);
m_pd3dDevice->SetTexture(0, m_pMeshTextures[i]);

// Draw the mesh subset
m_pMesh->DrawSubset(I);

}

}
hr = m_pEffect->End();

}
// End the scene
m_pd3dDevice->EndScene();

}

This code is very similar to the rendering code that was used in the exam-
ples in Chapter 8. In fact, we can reduce this code to only the new code
required for an effect, as shown here:

if(m_pEffect)
{

m_pEffect->SetMatrix("matWorldViewProj", compMat);
m_pEffect->SetTechnique("TVertexShaderOnly_Assy");
HRESULT hr;
UINT numPasses, iPass;
hr = m_pEffect->Begin(&numPasses, 0);
for(iPass = 0; iPass < numPasses; iPass ++) // all passes
{

hr = m_pEffect->Pass(iPass);
// Render the tiger with a mesh drawing loop.
...

}
hr = m_pEffect->End();

First the effect interface calls SetMatrix to initialize the effect matrix. Sec-
ond the rendering technique is set by calling SetTechnique with the technique
name. Finally the technique is rendered using a loop.

HRESULT hr;
UINT numPasses, iPass;

(continued)

C09616531.fm Page 235 Tuesday, May 13, 2003 1:15 PM

236 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ef

hr = m_pEffect->Begin(&numPasses, 0);
for(iPass = 0; iPass < numPasses; iPass ++) // all passes
{

hr = m_pEffect->Pass(iPass);
// Render the tiger with a mesh drawing loop
...

}
hr = m_pEffect->End();

All the rendering for an effect is inside a Begin/End pair of calls. The
actual shader operations are performed in response to the Effect::Pass call. So,
this render loop consists of querying the effect to see how many passes it con-
tains and then calling all the passes for a technique. The render loop could be
expanded to call multiple techniques, each with multiple passes.

Summary
Now you’ve seen how effect state is declared and initialized in an effects file,
how to compile the effect, and how to render from it. If you’re ready to add a
pixel shader, move on to Chapter 10, which contains several examples using
effects.

C09616531.fm Page 236 Tuesday, May 13, 2003 1:15 PM

Microsoft Press. Confidential. master page = Chapter Opener
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

237

Assembly-Language Effect
Examples

Effects are a combination of shaders (vertex, pixel, and texture) and the pipe-
line states that control how the pipeline uses the vertex and pixel data. This
chapter contains three effect examples that use assembly-language vertex and
pixel shaders. The variety of examples demonstrates how effects make working
with pipeline state easier.

The first example uses a vertex shader and the fixed function pipeline’s
multitexture blender to produce a textured and lit object. The second example
uses a vertex shader and adds a pixel shader to display a few per-pixel 2-D
image effects. The final example uses an environment map to give the impres-
sion that the object is inside a 3-D scene.

Example 1: Asm Vertex Shader with Lighting
This example uses an effect that contains a single vertex shader, which calcu-
lates a per-vertex diffuse light value. The effect also contains effect state for ini-
tializing the multitexture blender to combine the lighting color and the texture
color. (See Color Plate 22.) There’s no pixel shader in this example.

Effect files are typically given the two-letter filename extension .fx. The
effect file for this example, which is contained in a separate file named
Simple_VS_Asm.fx, appears here:

// Texture
texture Tex0 < string name = "tiger.bmp"; >;

(continued)

C10616531.fm Page 237 Tuesday, May 13, 2003 1:16 PM

238 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

sampler Sampler = sampler_state
{

Texture = (Tex0);
MipFilter = LINEAR;
MinFilter = LINEAR;
MagFilter = LINEAR;

};

// Light direction (view space)
float3 lightDir < string UIDirectional = "Light Direction"; > =

{0.707, 0, -0.707};

float4x4 matWorldViewProj;
float4x4 matWorldView;

technique TVertexShaderOnly_Asm
{

pass P0
{

// Samplers
Sampler[0] = (Sampler);

// Multitexture blender
ColorOp[0] = MODULATE;
ColorArg1[0] = TEXTURE;
ColorArg2[0] = DIFFUSE;

AlphaOp[0] = DISABLE;
ColorOp[1] = DISABLE;

VertexShaderConstant4[0] = (matWorldViewProj);
VertexShaderConstant4[4] = (matWorldView);
VertexShaderConstant1[8] = (lightDir);

// shaders
VertexShader =
asm
{

vs_1_1
#define N_dot_L r1.x

def c9, 0,1,0,0

dcl_position v0
dcl_normal v1
dcl_texcoord v7

// c0 world-view-proj matrix
m4x4 oPos, v0, c0 // Transform position to projection space

C10616531.fm Page 238 Tuesday, May 13, 2003 1:16 PM

Chapter 10 Assembly-Language Effect Examples 239

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

// Lighting calculations
m3x3 r0.xyz, v1, c4 // Transform normal to view space
dp3 N_dot_L, r0, c8 // N dot L

max N_dot_L, c9.x, N_dot_L // max(0, dot(N,L));
min N_dot_L, c9.y, N_dot_L // min(1, dot(N,L));
mov oD0, N_dot_L

// texture coordinates
mov oT0, v7 // output texture coordinates

};
}

}

The effect file starts with global variable declarations for a texture object,
Tex0, a sampler object, Sampler, the light direction, lightDir (which will not
change), and two matrices, matWorldViewProj and matWorldView. The appli-
cation will need to initialize the texture object and the two matrices with API
calls because they’re not initialized in the effect.

The vertex shader contains one technique, TVertexShaderOnly_Asm,
which is made up of one pass, P0. The pass contains the following two sets of
effect state:

■ Pipeline state

■ Shader state

The pipeline state initializes the pipeline so that it can take advantage of
the vertex shader outputs. When the vertex shader is done, the pipeline will use
the samplers to sample a texture and will use the multitexture blender to com-
bine the lighting and the texture color.

Sampler[0] = (Sampler);

This code initializes the Sampler0 effect state with the state in the Sampler
global variable. Don’t forget to put the assignment in parentheses: (Sampler).
The index identifies the sampler effect state, Sampler0; effect state Sampler1
would be identified with Sampler[1].

This effect state initializes the multitexture blender:

SpecularEnable = TRUE;
ColorOp[0] = MODULATE;
ColorArg1[0] = TEXTURE;
ColorArg2[0] = DIFFUSE;
AlphaOp[0] = MODULATE;
AlphaArg1[0] = TEXTURE;
AlphaArg2[0] = DIFFUSE;

(continued)

C10616531.fm Page 239 Tuesday, May 13, 2003 1:16 PM

240 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

AlphaOp[1] = DISABLE;
ColorOp[1] = DISABLE;

The ColorOp determines the blending operation, which is MODULATE
(another word for multiply). The two ColorArgs identify the two inputs. The
first is the texture color, TEXTURE, and the second is the light color, DIFFUSE.
The index on each of these, shown as [0], identifies texture stage 0. The second
stage of the blender is disabled, which tells the blender that it’s only going to do
a one-layer blend.

The rest of the state included in the pass initializes the shader state, which
determines how the vertex shader operates. The shader state initializes the
effect vertex shader object VertexShader, and the shader constants. The con-
stants are generally declared first and the shader code second, but the order
doesn’t really matter. The shader constants are saved in the constant registers,
from the values in the global variables.

VertexShaderConstant4[0] = (matWorldViewProj);
VertexShaderConstant4[4] = (matWorldView);
VertexShaderConstant1[8] = (lightDir);

Notice the use of the parentheses during assignment. The VertexShader-
Constant4 effect state represents four constant registers. Each constant register
has four components, so VertexShaderConstant4 represents 16 floating-point
values. The matWorldViewProj matrix is a 4x4 matrix, so 16 values are loaded
into the four constant registers. The register index is given inside the brackets.
A 0 index means that we have loaded constant register c0, followed by c1, c2,
and c3. Similarly, matWorldView is loaded in registers c4, c5, c6, and c7. The
lightDir is loaded into only one register, c8, which is why the VertexShader-
Constant1 effect state is used.

The pass also sets shader state by declaring the assembly-language vertex
shader. The shader state is declared inside an asm block like this:

VertexShader =
asm
{

vs_1_1
... shader instructions

};

This shader declares three inputs with the dcl instruction. The position
data will be loaded in v0, the normals in v1, and the texture coordinates in v7.
The dcl instruction binds the vertex buffer data to vertex shader registers.

The shader uses the m4x4 instruction to transform the position data to
projection space. The mov instruction outputs the texture coordinates to oD0,

C10616531.fm Page 240 Tuesday, May 13, 2003 1:16 PM

Chapter 10 Assembly-Language Effect Examples 241

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

which is the diffuse color vertex shader output. The first mov instruction out-
puts the texture coordinates oT0, which will be used for texture sampling.

The rest of the shader is the new lighting code:

m4x4 r0, v1, c4 // transform normal to view space
dp4 r1, r0, c8 // N dot L
max r2, c9, r1 // max(0, dot(N, L));
mov oD0, r2

Normals are transformed into view space using m4x4. Then the classic N
dot L lighting dot product is done with dp4. The max instruction is used to
clamp the results between 0 and 1, and the final light color is copied with mov
instruction to the oD0 register, which outputs the light color as a diffuse color.
The multitexture blender will blend the light color and the texture color after
the vertex shader completes.

The effect (and the shader) are created in RestoreDeviceObjects.

hr = D3DXCreateEffectFromFile(
m_pd3dDevice,
"Simple_VS_Asm.fx",
NULL, // NULL terminated string of D3DXMACROs
NULL, // #include handler
D3DXSHADER_DEBUG,
NULL, // memory pool
&m_pEffect,
NULL);

if(FAILED(hr))
{

SAFE_RELEASE(m_pEffect);
return hr;

}

D3DXCreateEffectFromFile creates the effect and the assembly-language
shader inside the effect. As you’ll see in the render code, you don’t need to man-
age the shader objects when you use an effect; the effect code does it for you.

To render with an effect, you need to

■ Initialize the global constants

■ Choose the technique to render

■ Render one or more passes

This example initializes two matrices, sets one technique (the only one it
has), and renders one pass:

// Begin the scene
if(SUCCEEDED(m_pd3dDevice->BeginScene()))
{

(continued)

C10616531.fm Page 241 Tuesday, May 13, 2003 1:16 PM

242 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

// Draw the mesh
if(m_pEffect)
{

D3DXMATRIXA16 matWorld;
D3DXMatrixIdentity(&matWorld);
D3DXMATRIX compMat;
D3DXMatrixMultiply(&compMat, &matWorld, &m_matView);
m_pEffect->SetValue("matWorldView",

(void*)(FLOAT*)compMat, sizeof(D3DXMATRIX));
D3DXMatrixMultiply(&compMat, &compMat, &m_matProj);
m_pEffect->SetValue("matWorldViewProj",

(void*)(FLOAT*)compMat, sizeof(D3DXMATRIX));

m_pEffect->SetTechnique("TVertexShaderOnly_Asm");

HRESULT hr;
UINT numPasses, iPass;
hr = m_pEffect->Begin(&numPasses, 0);
for(iPass = 0; iPass < numPasses; iPass ++)
{

hr = m_pEffect->Pass(iPass);

// Render the tiger with a mesh drawing loop
for(DWORD i=0; i < m_dwNumMaterials; i++)
{

// Set the material and texture for this subset
m_pd3dDevice->SetMaterial(&m_pMeshMaterials[i]);
m_pd3dDevice->SetTexture(0, m_pMeshTextures[i]);

// Draw the mesh subset
m_pMesh->DrawSubset(i);

}

}
hr = m_pEffect->End();

}

// End the scene
m_pd3dDevice->EndScene();

}

The number of passes rendered is controlled by a for loop in this exam-
ple, which is overkill because there’s only one pass in the technique. The for
loop is a handy way to render all the passes in a technique.

You might be looking for the DrawPrimitive call because we’re rendering.
That call is replaced in this example by DrawSubset because we’re drawing a

C10616531.fm Page 242 Tuesday, May 13, 2003 1:16 PM

Chapter 10 Assembly-Language Effect Examples 243

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

mesh instead of a triangle list. When you render a mesh, you can simply call the
mesh DrawSubset method and let the mesh take care of the other methods that
you normally have to call (such as SetStreamOffset, SetVertexShader,
DrawPrimitive, and so on).

Our first assembly-language effect is complete. It implements a vertex
shader and blends texturing and lighting. It demonstrates how to use an effect
that is loaded from an .fx file. The next example adds a pixel shader and shows
you how to use vertex shader outputs as pixel shader inputs.

Example 2: Asm Vertex Shader and Pixel Shader with Texturing
This effect example uses assembly language to specify a vertex and pixel
shader. The vertex shader transforms the vertices and outputs the texture coor-
dinates. The pixel shader takes the interpolated vertex shader outputs and uses
constant registers and the built-in multiply instruction to generate a series of
per-pixel 2-D image effects. These effects were generated by taking the shaders
shown in Chapter 6 (Tutorial 2) and converting them to run in the effects frame-
work. The rendered output (using one of the pixel shader choices) shows a
globe. (See Color Plate 15.)

Here’s the shader code that includes the new pixel shader:

texture Tex0;

sampler Sampler = sampler_state
{

Texture = (Tex0);
MipFilter = LINEAR;
MinFilter = LINEAR;
MagFilter = LINEAR;

};

float4x4 matWorldViewProj;

technique T0
{

pass P0
{

// Lighting
Lighting = FALSE;

// Samplers
Sampler[0] = (Sampler);

(continued)

C10616531.fm Page 243 Tuesday, May 13, 2003 1:16 PM

244 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

// Multi-texture blender
ColorOp[0] = MODULATE;
ColorArg1[0] = TEXTURE;
ColorArg2[0] = DIFFUSE;
AlphaOp[0] = MODULATE;
AlphaArg1[0] = TEXTURE;
AlphaArg2[0] = DIFFUSE;

ColorOp[1] = DISABLE;
AlphaOp[1] = DISABLE;

VertexShaderConstant4[0] = (matWorldViewProj);

VertexShader =
asm
{

vs_1_1

dcl_position v0
dcl_texcoord v7

// c0 world-view-proj matrix
m4x4 oPos, v0, c0 // Transform position to projection space
mov oT0, v7 // output texture coordinates

};

PixelShader =
asm
{

ps_1_1

def c0, 0.5f, 0.5f, 0.5f, 0.5f
def c1, 1, 0, 0, 0 // red only - mask green, blue, and alpha
def c2, 0, 1, 1, 1 // green, blue, alpha only - red mask

tex t0
mov r0, t0 // apply texture

// mov r0, 1 - t0 // invert the texture color

// mul r0, t0, c0 // darken the texture color

// mul r0, t0, c1 // output red only (texture)

// mul r0, t0, c2 // mask red only (texture)
};

}
}

C10616531.fm Page 244 Tuesday, May 13, 2003 1:16 PM

Chapter 10 Assembly-Language Effect Examples 245

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

As usual, the shader begins with three global variables. The Tex0 effect
state represents the texture object. Sampler creates the sampler object, and mat-
WorldViewProj contains a 4-by-4 transformation matrix. These variables were
explained in Chapter 9.

This effect contains one technique and one pass, and the same shader
state that was set in Chapter 9. Let’s focus on the pixel shader code, which is the
big difference in this effect. Here’s the pixel shader:

PixelShader =
asm
{

ps_1_1

def c0, 0.5f, 0.5f, 0.5f, 0.5f
def c1, 1, 0, 0, 0 // red only - mask green, blue, and alpha
def c2, 0, 1, 1, 1 // green, blue, alpha only - red mask

tex t0
mov r0, t0 // Apply texture

// mov r0, 1 - t0 // invert the texture color

// mul r0, t0, c0 // darken the texture color

// mul r0, t0, c1 // output red only (texture)

// mul r0, t0, c2 // mask red only (texture)
};

Because this is an assembly-language shader, it requires an asm block to
declare the shader.

PixelShader =
asm
{
... // Asm instructions

};

This time the assembly block is preceded by PixelShader. Don’t forget to
end the block with a semicolon (;), or it won’t compile. The pixel shader has
several lines of code in it, so we can simplify it for the moment to the following
three lines of code to get us started:

ps_1_1
tex t0
mov r0, t0 // Apply texture

C10616531.fm Page 245 Tuesday, May 13, 2003 1:16 PM

246 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

This code declares the pixel shader version, samples the texture using
the texture register t0, and then outputs the result in r0. Because the pixel
shader is sampling a texture, it relies on the vertex shader to output the tex-
ture coordinates.

Now let’s take a look at the rest of the pixel shader code. The pixel shader
has three def instructions, which define three pixel shader constants: c0, c1, and
c2. The def instruction is one way to declare assembly-language pixel shader
constants directly in the effect (or the shader code).

Several lines are commented out. Each of these lines of code, if compiled
separately, replicates the functionality of the high-level shader language (HLSL)
pixel shader examples in Chapter 6 (Tutorial 2)—that is, they produce the fol-
lowing simple image-processing results.

Output a solid color.

mov r0, c0

This line copies the solid color from c0 to the output. Because all four
components equal 0.5, the result is a gray color. (This is the only example that
is not from Chapter 6, Tutorial 2.)

Invert the texture color. (See Color Plate 16.)

mov r0, 1 - t0

This line inverts the texture samples. Each color component becomes the
complement of its original value.

Darken the texture color. (See Color Plate 17.)

mul r0, t0, c0

This line uses mul to darken the image by reducing each color component
to half its value. Notice that the c0 constant was used to provide the 0.5 values.

Output red only (texture). (See Color Plate 19.)

mul r0, t0, c1

This line uses mul again to mask out green, blue, and alpha. The mask is
created by making the values of these components 0 in the constant, c1.

Mask red only (texture). (See Color Plate 18.)

mul r0, t0, c2

This line uses mul one more time to mask out red using the c2 constant.
The sample application provides these lines in the file Simple_VS_and_

PS_Asm.fx. To see any of these image effects, remove the comment line slashes
from the instruction you want to add and recompile the project. Don’t forget
that the output must be written to r0, or the shader will not validate. (The
debugger will tell you this if you try it.)

C10616531.fm Page 246 Tuesday, May 13, 2003 1:16 PM

Chapter 10 Assembly-Language Effect Examples 247

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

So, a pixel shader can be added to an effect with ease. Its syntax looks just
like the vertex shader syntax. Each pass supports up to one vertex shader and
one pixel shader, and each technique supports n passes.

Now let’s take a look at the calls in the application that created the effect
and see what needs to be added to compile and render the effect with the ver-
tex and the pixel shader. As demonstrated in Chapter 9, the effect creation is
done in CMyD3DApplication::RestoreDeviceObject.

HRESULT hr;

hr = D3DXCreateEffectFromFile(
m_pd3dDevice,
"Simple_VS_and_PS_Asm.fx",
NULL, // NULL terminated string of D3DXMACROs
NULL, // #include handler
D3DXSHADER_DEBUG,
NULL, // memory pool
&m_pEffect,
NULL);

if(FAILED(hr))
{

SAFE_RELEASE(m_pEffect);
return hr;

}

This code looks exactly like the previous effect creation code, when a ver-
tex shader was compiled, except that the effect file name changed to
Simple_VS_and_PS_Asm.fx. In other words, the way the effect is compiled
doesn’t change when the pixel shader is added. In fact, remember the examples
in Chapter 8 that compiled shaders using HLSL without effects? Here’s the code
that was used to compile the shaders and create the shader objects:

// Vertex shader creation
hr = D3DXCompileShaderFromFile(...)
...
hr = m_pd3dDevice->CreateVertexShader(...)
...
// Pixel shader creation
hr = D3DXCompileShaderFromFile(...)
...
hr = m_pd3dDevice->CreatePixelShader(...)
...

In contrast, an effect requires one API call to compile all the shaders in the
effect.

hr = D3DXCreateEffectFromFile(...);
...

C10616531.fm Page 247 Tuesday, May 13, 2003 1:16 PM

248 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

An effect takes care of the shader compilation and shader object genera-
tion. An application doesn’t have to manage the lifetime of the shader objects
because an effect takes care of that. So it’s easy to see that using effects simpli-
fies the work necessary to compile and generate shaders. Now let’s see what
happens with the rendering code. Here’s the render code for calling the effect:

if(m_pEffect)
{

D3DXMATRIXA16 matWorld;
D3DXMatrixIdentity(&matWorld);
// Add a little rotation
D3DXMatrixRotationY (&matWorld, 3.14159f/2);
D3DXMATRIX compMat;
D3DXMatrixMultiply(&compMat, &matWorld, &m_matView);
D3DXMatrixMultiply(&compMat, &compMat, &m_matProj);
m_pEffect->SetValue("matWorldViewProj",

(void*)(FLOAT*)compMat, sizeof(D3DXMATRIX));

m_pEffect->SetTechnique("T0");

HRESULT hr;
UINT numPasses, iPass;
hr = m_pEffect->Begin(&numPasses, 0);
for(iPass = 0; iPass < numPasses; iPass ++)
{

hr = m_pEffect->Pass(iPass);

m_pd3dDevice->SetVertexDeclaration(m_pVertexDeclaration);
m_pd3dDevice->SetStreamSource(0, m_pVBSphere, 0,

sizeof(CUSTOM_VERTEX));
m_pd3dDevice->SetTexture(0, m_pTexture);

// Draw sphere
DWORD dwNumSphereVerts =

2*m_dwNumSphereRings*(m_dwNumSphereSegments+1);
m_pd3dDevice->DrawPrimitive(D3DPT_TRIANGLESTRIP, 0,

dwNumSphereVerts - 2);

// Release the vertex shader before using
// the fixed-function pipeline
m_pd3dDevice->SetTexture(0, NULL);

}
// End the scene
hr = m_pd3dDevice->EndScene();

}

C10616531.fm Page 248 Tuesday, May 13, 2003 1:16 PM

Chapter 10 Assembly-Language Effect Examples 249

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

Effect rendering still occurs between a pair of Begin and End calls. The
render code still calls SetValue to initialize the effect matrix, it calls SetTech-
nique with the technique name, and it calls Pass to render the current pass. The
Pass method is shown here:

hr = m_pEffect->Pass(iPass);

This method is now used in place of the following code:

m_pd3dDevice->SetVertexShader(...);
m_pd3dDevice->SetPixelShader(...);

Because vertex and pixel shaders are considered effect state, an effect
takes care of calling them.

This example has shown that adding an assembly-level pixel shader to an
existing effect can be achieved by adding a shader declaration to a pass within
a technique. In this example, no other changes were required in the application
because the pixel shader didn’t require additional effect state to be set.

Example 3: Asm Vertex Shader Environment Map
This environment-mapping effect uses an assembly-language vertex shader to
sphere-map the object. The sphere map gives the teapot the appearance of a
reflective surface by texture mapping the environment onto it. (See Color
Plate 30.)

If you look closely at the surface of the teapot, you can see the environ-
ment “reflected” in its mirror-like surface. Environment mapping is a technique
that captures the appearance of the surrounding space in a texture map. One of
the advantages of environment mapping is that lighting effects can be incorpo-
rated into the environment texture.

The effect is one large character string incorporated into the source code
of the application. Instead of compiling the effect at run time (as the two pre-
vious examples do), this effect is compiled at compile time. This example uses
an effect string to illustrate D3DXCreateEffect. Each line is contained in a sepa-
rate set of quotes and is delimited by a newline character (\n), as shown here:

const char g_szEffect[] =
"texture texSphereMap;\n"
"matrix matWorld;\n"
... the rest of the effect state
"}\n";

C10616531.fm Page 249 Tuesday, May 13, 2003 1:16 PM

250 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

Here’s the same effect with the quotes and the newline characters
removed. This code shows what the effect would look like if it were in a sepa-
rate .fx file:

texture texSphereMap;
matrix matWorld;
matrix matViewProject;
vector vecPosition;

technique Sphere
{

pass P0
{

// Vertex state
VertexShader =

decl
{

// Decls no longer associated with vertex shaders
}
asm
{

vs_1_1
def c64, 0.25f, 0.5f, 1.0f, -1.0f

dcl_position v0
dcl_normal v1

// r0: camera-space position
// r1: camera-space normal
// r2: camera-space vertex-eye vector
// r3: camera-space reflection vector
// r4: texture coordinates

// Transform position and normal into camera-space
m4x4 r0, v0, c0
m3x3 r1.xyz, v1, c0
mov r1.w, c64.z

// Compute normalized view vector
add r2, c8, -r0
dp3 r3, r2, r2
rsq r3, r3.w
mul r2, r2, r3

// Compute camera-space reflection vector
dp3 r3, r1, r2
mul r1, r1, r3

C10616531.fm Page 250 Tuesday, May 13, 2003 1:16 PM

Chapter 10 Assembly-Language Effect Examples 251

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

add r1, r1, r1
add r3, r1, -r2

// Compute sphere-map texture coords
mad r4.w, -r3.z, c64.y, c64.y
rsq r4, r4.w
mul r4, r3, r4
mad r4, r4, c64.x, c64.y

// Project position
m4x4 oPos, r0, c4
mul oT0.xy, r4.xy, c64.zw
mov oT0.zw, c64.z

};

VertexShaderConstant4[0] = (matWorld);
VertexShaderConstant4[4] = (matViewProject);
VertexShaderConstant1[8] = (vecPosition);

// Multi-texture blender
Texture[0] = (texSphereMap);
ColorOp[0] = SelectArg1;
ColorArg1[0] = Texture;

// Sampler state
AddressU[0] = Wrap;
AddressV[0] = Wrap;
MinFilter[0] = Linear;
MagFilter[0] = Linear;

}
};

This code is easier to read, so let’s see what the effect contains.
The effect contains four global variables and shader state assignments

within the pass. Here are the global variables:

texture texSphereMap;
matrix matWorld;
matrix matViewProject;
vector vecPosition;

These global variables are initialized in the render code with the sphere-
map texture, the world transform, the view-projection transform, and a position
vector. These are variable declarations.

All the shader state assignments are made inside the pass, which is inside
the technique. The effect contains one technique named Sphere, and the tech-
nique contains one pass named P0. The pass contains

C10616531.fm Page 251 Tuesday, May 13, 2003 1:16 PM

252 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

■ Effect state assignments for the vertex shader

■ Effect state assignments for initializing constants and the multitexture
blender

The order in which the effect state assignments appear in a pass doesn’t
matter. Let’s look first at the vertex shader state assignment. The shader looks
like this:

// Vertex state
VertexShader =

decl
{

// Decls no longer associated with vertex shaders
}
asm
{

// Shader version
vs_1_1
// Shader constant set with a shader instruction
def c64, 0.25f, 0.5f, 1.0f, -1.0f

// Register binding
dcl_position v0
dcl_normal v1

// Vertex shader instructions
...
// Project position
m4x4 oPos, r0, c4
mul oT0.xy, r4.xy, c64.zw
mov oT0.zw, c64.z

};

The shader assignment is divided into two sections: the shader declaration
and the shader assembly block. The declaration block calls attention to a
change that occurred in DirectX 9. A shader declaration block was used in
DirectX 8. However, with the separation of vertex shader objects and vertex
declaration objects, shader declaration blocks are no longer used.

decl
{

// Decls no longer associated with vertex shaders
}

Instead, DirectX 9 uses shader assembly blocks. When the effect is com-
piled, a vertex shader object is generated. It will be assigned to the Vertex-
Shader effect state when the Pass method is called by the render loop. The

C10616531.fm Page 252 Tuesday, May 13, 2003 1:16 PM

Chapter 10 Assembly-Language Effect Examples 253

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

assembly-language instructions are inside the brackets. This shader has the fol-
lowing instructions:

vs_1_1
def c64, 0.25f, 0.5f, 1.0f, -1.0f

dcl_position v0
dcl_normal v1

// r0: camera-space position
// r1: camera-space normal
// r2: camera-space vertex-eye vector
// r3: camera-space reflection vector
// r4: texture coordinates
// Transform position and normal into camera-space
m4x4 r0, v0, c0
m3x3 r1.xyz, v1, c0
mov r1.w, c64.z
// Compute normalized view vector
add r2, c8, -r0
dp3 r3, r2, r2
rsq r3, r3.w
mul r2, r2, r3
// Compute camera-space reflection vector
dp3 r3, r1, r2
mul r1, r1, r3
add r1, r1, r1
add r3, r1, -r2
// Compute sphere-map texture coords
mad r4.w, -r3.z, c64.y, c64.y
rsq r4, r4.w
mul r4, r3, r4
mad r4, r4, c64.x, c64.y
// Project position
m4x4 oPos, r0, c4
mul oT0.xy, r4.xy, c64.zw
mov oT0.zw, c64.z

The shader assembly-language instructions accomplish the following:

■ Declare the shader version

■ Define constants (if any)

■ Declare input registers. The dcl instructions bind vertex buffer data
types with vertex shader input registers

■ Transform the position data and normal data to view space

C10616531.fm Page 253 Tuesday, May 13, 2003 1:16 PM

254 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

■ Compute the reflection vector in view space

■ Compute the sphere map texture coordinates

The effect state assignments for initializing constants and the multitexture
blender look like this:

VertexShaderConstant4[0] = (matWorld);
VertexShaderConstant4[4] = (matViewProject);
VertexShaderConstant1[8] = (vecPosition);

// Multi-texture blender
Texture[0] = (texSphereMap);
ColorOp[0] = SelectArg1;
ColorArg1[0] = Texture;

// Sampler state
AddressU[0] = Wrap;
AddressV[0] = Wrap;
MinFilter[0] = Linear;
MagFilter[0] = Linear;

These vertex shader constant effect states are assigned using the global
variables:

VertexShaderConstant4[0] = (matWorld);
VertexShaderConstant4[4] = (matViewProject);
VertexShaderConstant1[8] = (vecPosition);

Notice that the SDK sample uses angle brackets around global variables
during assignment, for example:

VertexShaderConstant4[0] = <matWorld>;

The compiler has been updated to also use parentheses, as shown here:

VertexShaderConstant4[0] = (matWorld);

Effect global parameters are assigned to effect state by placing them in
parentheses. The matWorld global variable will need to be initialized by the
application and then assigned to the vertex shader constant effect state,
VertexShaderConstant4[0]. The index 0 indicates the constant register number
c0. VertexShaderConstant4 is an effect state that assigns four constant registers,
in the default column-major format. In other words, VertexShaderConstant4 is
actually assigning a 4-by-4 matrix to four vertex shader constant registers: c0,
c1, c2, and c3.

It’s safer to use parentheses than angle brackets, especially if you cut and
paste code from one window to another and HTML is involved (such as cutting
code from a document page into an effect file, or vice versa). Parentheses are
also more consistent with complex expressions.

C10616531.fm Page 254 Tuesday, May 13, 2003 1:16 PM

Chapter 10 Assembly-Language Effect Examples 255

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

The remaining effect state initializes the texture object, the sampler, and
the multitexture blender. Three sets of statements are used.

First, assign the sphere-map texture to the Texture0 effect state.

Texture[0] = (texSphereMap);

Second, set the sampler filter states:

AddressU[0] = Wrap;
AddressV[0] = Wrap;
MinFilter[0] = Linear;
MagFilter[0] = Linear;

Third, identify the multitexture blender states for stage 1:

ColorOp[0] = SelectArg1;
ColorArg1[0] = Texture;

So there you have it. The effect implements a vertex shader that trans-
forms the position and calculates sphere-map texture coordinates. It also sets
up the multitexture blender state to apply the texture samples.

Let’s move on to the application code for building the effect. Here’s the
code for loading the object from an .x file, loading the texture, and creating the
effect:

// Load the file objects
if(FAILED(m_pShinyTeapot->Create(m_pd3dDevice, _T("teapot.x"))))

return D3DAPPERR_MEDIANOTFOUND;
if(FAILED(m_pSkyBox->Create(m_pd3dDevice, _T("lobby_skybox.x"))))

return D3DAPPERR_MEDIANOTFOUND;
if(FAILED(D3DUtil_CreateTexture(m_pd3dDevice, _T("spheremap.bmp"),

&m_pSphereMap)))
return D3DAPPERR_MEDIANOTFOUND;

// Set mesh properties
m_pShinyTeapot->SetFVF(m_pd3dDevice, ENVMAPPEDVERTEX::FVF);

// Restore the device-dependent objects
m_pFont->InitDeviceObjects(m_pd3dDevice);

// Create effect object
if(FAILED(D3DXCreateEffect(m_pd3dDevice, g_szEffect, g_cchEffect,

NULL, NULL, 0, NULL, &m_pEffect, NULL)))
{

SAFE_RELEASE(m_pEffect);
return E_FAIL;

}

C10616531.fm Page 255 Tuesday, May 13, 2003 1:16 PM

256 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

CMyD3DApplication::InitDeviceObjects creates four objects: the teapot, a
skybox, a sphere-map texture, and an effect. The teapot and the skybox are
created using the CD3DMesh class, which means that we’re loading a mesh.

The skybox is rendered using the environment texture. When the teapot is
rendered with the environment projected onto its surface, it will appear that the
teapot is inside the environment (in other words, in the lobby).

Because the effect is declared as a string, the appropriate function for cre-
ating the shader is D3DXCreateEffect. This function takes the current device, the
effect string, and the size of the effect string, and it returns a pointer to the effect.
The effect creation compiles the shader code, which might include validation
(depending on whether the D3DXSHADER_SKIPVALIDATION flag is used).

Having created the mesh, texture, and effect objects, let’s look at the ren-
der code from CMyD3DApplication::Render.

// Begin the scene.
if(SUCCEEDED(m_pd3dDevice->BeginScene()))
{

// Render the skybox.
{

...
}
// Render the environment-mapped ShinyTeapot.
{

...
}
// End the scene.
m_pd3dDevice->EndScene();

}

This sample renders the skybox first to create the background, and then it
renders the shiny teapot. The skybox render code looks like this:

m_pd3dDevice->SetTransform(D3DTS_WORLD, &matWorld);
m_pd3dDevice->SetTransform(D3DTS_VIEW, &matView);
m_pd3dDevice->SetTransform(D3DTS_PROJECTION, &m_matProject);

m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLORARG1,
D3DTA_TEXTURE);

m_pd3dDevice->SetTextureStageState(0, D3DTSS_COLOROP,
D3DTOP_SELECTARG1);

m_pd3dDevice->SetSamplerState(0, D3DSAMP_MINFILTER,
D3DTEXF_LINEAR);

m_pd3dDevice->SetSamplerState(0, D3DSAMP_MAGFILTER,
D3DTEXF_LINEAR);

if((m_d3dCaps.TextureAddressCaps & D3DPTADDRESSCAPS_MIRROR) ==
D3DPTADDRESSCAPS_MIRROR)

C10616531.fm Page 256 Tuesday, May 13, 2003 1:16 PM

Chapter 10 Assembly-Language Effect Examples 257

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

{
m_pd3dDevice->SetSamplerState(0, D3DSAMP_ADDRESSU,

D3DTADDRESS_MIRROR);
m_pd3dDevice->SetSamplerState(0, D3DSAMP_ADDRESSV,

D3DTADDRESS_MIRROR);
}

// Always pass z-test, so we can avoid clearing color and
// depth buffers.
m_pd3dDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
m_pSkyBox->Render(m_pd3dDevice);
m_pd3dDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_LESSEQUAL);

Once the skybox renders the background image, the shiny teapot is ren-
dered. The teapot render code looks like this:

// Set transform state.
D3DXMATRIXA16 matViewProject;
D3DXMatrixMultiply(&matViewProject, &m_matView, &m_matProject);

D3DXMATRIXA16 matViewInv;
D3DXMatrixInverse(&matViewInv, NULL, &m_matView);
D3DXVECTOR4 vecPosition(matViewInv._41, matViewInv._42,

matViewInv._43, 1.0f);

m_pEffect->SetMatrix("matWorld", &m_matWorld);
m_pEffect->SetMatrix("matViewProject", &matViewProject);
m_pEffect->SetVector("vecPosition", &vecPosition);

// Draw teapot
LPDIRECT3DVERTEXBUFFER9 pVB;
LPDIRECT3DINDEXBUFFER9 pIB;

m_pShinyTeapot->m_pLocalMesh->GetVertexBuffer(&pVB);
m_pShinyTeapot->m_pLocalMesh->GetIndexBuffer(&pIB);

// m_pd3dDevice->SetFVF(
// m_pShinyTeapot->m_pLocalMesh->GetFVF());

D3DVERTEXELEMENT9 decl[MAX_FVF_DECL_SIZE];
m_pShinyTeapot->m_pLocalMesh->GetDeclaration(decl);
LPDIRECT3DVERTEXDECLARATION9 pDecl;
m_pd3dDevice->CreateVertexDeclaration(decl, &pDecl);
m_pd3dDevice->SetVertexDeclaration(pDecl);
SAFE_RELEASE(pDecl);

(continued)

C10616531.fm Page 257 Tuesday, May 13, 2003 1:16 PM

258 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; ke

m_pd3dDevice->SetStreamSource(0, pVB, 0,
sizeof(ENVMAPPEDVERTEX));

m_pd3dDevice->SetIndices(pIB);

UINT uPasses;
m_pEffect->Begin(&uPasses, 0);

for(UINT iPass = 0; iPass < uPasses; iPass++)
{

m_pEffect->Pass(iPass);

m_pd3dDevice->DrawIndexedPrimitive(D3DPT_TRIANGLELIST, 0,
0, m_pShinyTeapot->m_pLocalMesh->GetNumVertices(),
0, m_pShinyTeapot->m_pLocalMesh->GetNumFaces());

}

m_pEffect->End();
SAFE_RELEASE(pVB);
SAFE_RELEASE(pIB);

Instead of using the mesh drawing loop to draw the teapot, it’s drawn as
a series of rectangles.

SetVertexDeclaration tells the runtime the size of each vertex. SetStream-
Source provides the vertex buffer and its size. SetIndices provides the index
buffer. DrawPrimitive tells the runtime to draw a triangle list. The number of
vertices in the list is returned by GetNumVertices, and the number of faces (or
triangles) is returned by GetNumFaces. The skybox is rendered using a mesh
drawing loop. The multitexture blender applies the texture color.

To wrap up, this example demonstrates environment mapping with a
vertex shader. The render loop renders two different things. First the multitex-
ture blender pastes the environment map onto the skybox object that encloses
the scene. Second the environment map is projected onto the surface of the
teapot by the vertex shader. This projection gives the teapot a metallic look
(because metallic surfaces are highly reflective), which reflects the environ-
ment to the viewer.

C10616531.fm Page 258 Tuesday, May 13, 2003 1:16 PM

259

Microsoft Press. Confidential. master page = Section Opener
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

HLSL Effect Examples
Effects are a combination of shaders (vertex, pixel, and texture) and the pipe-
line states that control how the pipeline uses the vertex and pixel data. The
examples in this chapter use effects that are made up of HLSL shaders. Each
example builds on the previous one by adding functionality. The first example
uses a vertex and a pixel shader for per-pixel lighting. The second example
implements one or more passes with one or more techniques to show you the
flexible rendering options in an effect. The last example adds hemispheric light-
ing to give more realistic light reflections in a scene.

Example 1: Vertex and Pixel Shader with Per-Pixel Lighting
This example uses an effect that contains an HLSL vertex and pixel shader. It is
an extension of the first example shown in Chapter 8. The sample has been
extended to use the effects framework and to use a pixel shader for per-pixel
lighting. If you’re experienced with writing shaders in HLSL, it should be easy
to see what changes when you use HLSL shaders within the effects framework.

The vertex shader transforms the vertices, and outputs position, color (dif-
fuse and specular), and texture coordinates. The outputs are fed back into prim-
itive processing, where they are interpolated to provide per-pixel data. The
pixel shader uses the interpolated texture coordinates to sample a texture. The
pixel shader then combines the interpolated diffuse and specular colors with
the texture samples to produce a pixel color. (See Color Plate 22.)

Let’s start with the entire effect, which includes the effect global variables,
the shader functions, and the techniques and passes.

C11616531.fm Page 259 Tuesday, May 13, 2003 1:17 PM

260 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

// Light direction (view space)
float3 lightDir < string UIDirectional = "Light Direction"; > =

{0.577, -0.577, -0.577};

// Light intensity
float4 I_a = { 0.1f, 0.1f, 0.1f, 1.0f }; // ambient
float4 I_d = { 1.0f, 1.0f, 1.0f, 1.0f }; // diffuse
float4 I_s = { 1.0f, 1.0f, 1.0f, 1.0f }; // specular

// Material reflectivity
float4 k_a : MATERIALAMBIENT = { 1.0f, 1.0f, 1.0f, 1.0f }; // ambient
float4 k_d : MATERIALDIFFUSE = { 1.0f, 1.0f, 1.0f, 1.0f }; // diffuse
float4 k_s : MATERIALSPECULAR= { 1.0f, 1.0f, 1.0f, 1.0f }; // specular
int n : MATERIALPOWER = 32; // power

// Texture
texture Tex0 < string name = "tiger.bmp"; >;

// Transformations
float4x4 World : WORLD;
float4x4 View : VIEW;
float4x4 Projection : PROJECTION;

struct VS_OUTPUT
{

float4 Pos : POSITION;
float4 Diff : COLOR0;
float4 Spec : COLOR1;
float2 Tex : TEXCOORD0;

};
VS_OUTPUT VS(

float3 Pos : POSITION,
float3 Norm : NORMAL,
float2 Tex : TEXCOORD0)

{
VS_OUTPUT Out = (VS_OUTPUT)0;
float3 L = -lightDir;
float4x4 WorldView = mul(World, View);

// Position (view space)
float3 P = mul(float4(Pos, 1), (float4x3)WorldView);
// Normal (view space)
float3 N = normalize(mul(Norm, (float3x3)WorldView));
// Reflection vector (view space)
float3 R = normalize(2 * dot(N, L) * N - L);
// View direction (view space)
float3 V = -normalize(P);
// Position (projected)
Out.Pos = mul(float4(P, 1), Projection);
// Diffuse + ambient
Out.Diff = I_a * k_a + I_d * k_d * max(0, dot(N, L));

C11616531.fm Page 260 Tuesday, May 13, 2003 1:17 PM

Chapter 11 HLSL Effect Examples 261

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

// Specular
Out.Spec = I_s * k_s * pow(max(0, dot®, V)), n/4);
Out.Tex = Tex;
return Out;

}

sampler Sampler = sampler_state
{

Texture = (Tex0);
MipFilter = LINEAR;
MinFilter = LINEAR;
MagFilter = LINEAR;

};
float4 PS(

float4 Diff : COLOR0,
float4 Spec : COLOR1,
float2 Tex : TEXCOORD0) : COLOR

{
return tex2D(Sampler, Tex) * Diff + Spec;

}

technique TVertexAndPixelShader
{

pass P0
{

// Shaders
VertexShader = compile vs_1_1 VS();
PixelShader = compile ps_1_1 PS();

}
}

The effect global variables include variables for light direction, light inten-
sity, material reflectivity, a texture, and three matrices. The data types for each of
these variables is an effect or an HLSL data type. Effect global variables are avail-
able to the shader functions by using their variable name, and they’re available to
effect state within techniques by adding parentheses around the variable name.

As usual, the vertex shader transforms the position data to projection
space and outputs the texture coordinates from the vertex buffer. In addition,
this vertex shader calculates position, normal, view, and reflection vectors so
that these vectors can be combined with the material reflectivity and the light
intensity to generate per-vertex diffuse color and specular color, which pro-
duces a much more accurate surface color.

The vertex shader outputs are also linked to the pixel shader inputs using
semantics. The COLOR0, COLOR1, and TEXCOORD0 semantics on the vertex
shader inputs tell us that the vertex buffer supplies this per-vertex data. These
same semantics on the vertex shader outputs bind the vertex shader results to
vertex shader output registers.

C11616531.fm Page 261 Tuesday, May 13, 2003 1:17 PM

262 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

struct VS_OUTPUT
{

float4 Pos : POSITION;
float4 Diff : COLOR0;
float4 Spec : COLOR1;
float2 Tex : TEXCOORD0;

};

The semantics appear a third time on the pixel shader inputs:

float4 Diff : COLOR0,
float4 Spec : COLOR1,
float2 Tex : TEXCOORD0

The semantics tie the vertex shader outputs to the pixel shader inputs. In
other words, semantics make it easy to tie vertex shader inputs to the vertex
buffer, as well as to tie vertex shaders and pixel shaders together.

The diffuse and specular colors are calculated using standard lighting
equations:

Out.Diff = I_a * k_a + I_d * k_d * max(0, dot(N, L)); // diffuse + ambient
Out.Spec = I_s * k_s * pow(max(0, dot®, V)), n/4); // specular

These calculations are done in the vertex shader so that the pixel shader
can generate per-pixel lighting results. By doing the calculations in the vertex
shader and taking advantage of the interpolation performed in primitive pro-
cessing, we get per-pixel results without having to settle for doing all the pro-
cessing on a per-pixel basis.

To sample a texture, the pixel shader takes advantage of the vertex shader
diffuse and specular colors, and the texture coordinates. Texture sampling
requires

■ A texture

■ A sampler

■ Sampler state to specify the texture filtering

So, the effect contains the pixel shader functions and some global vari-
ables to set up the pixel shader texture and sampler.

// texture
texture Tex0 < string name = "tiger.bmp"; >;
sampler Sampler = sampler_state
{

Texture = (Tex0);
MipFilter = LINEAR;
MinFilter = LINEAR;
MagFilter = LINEAR;

C11616531.fm Page 262 Tuesday, May 13, 2003 1:17 PM

Chapter 11 HLSL Effect Examples 263

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

};
float4 PS(

float4 Diff : COLOR0,
float4 Spec : COLOR1,
float2 Tex : TEXCOORD0) : COLOR

{
return tex2D(Sampler, Tex) * Diff + Spec;

}

The Tex0 global variable refers to the texture object. The annotation
(which is inside the angle brackets) specifies the name of the texture file from
which to create the texture object.

The Sampler global variable refers to the texture sampler. A sampler not
only references the texture object that it will sample from, but it also can con-
tain the sampler state (the filtering options) that are applied when texture sam-
pling is performed. This information is all referred to as sampler state and is
contained inside the curly braces. In this case, our sampler object will sample
from Tex0 and will use linear filtering modes.

{
Texture = (Tex0);
MipFilter = LINEAR;
MinFilter = LINEAR;
MagFilter = LINEAR;

};

Now that we’ve seen the code for initializing the texture and sampler
objects, we can look at the pixel shader, which contains one line:

return tex2D(Sampler, Tex) * Diff + Spec;

This code uses the tex2D intrinsic function to perform a 2-D texture sam-
ple. Once a color is returned, it’s combined with the interpolated diffuse and
specular colors that were input to the pixel shader. The result is a pixel color
that’s a blend of the texture, the lighting, and the material colors.

Much like the examples in Chapter 9, adding an HLSL pixel shader to an
existing effect is pretty easy. It does not change the effect-creation API calls.
Simply add a pixel shader function to the effect file, and a pixel shader compile
statement to the pass like this:

PixelShader = compile ps_1_1 PS();

Let’s move on to the application code that builds the effect. The effect is
created with D3DXCreateEffectFromFile.

HRESULT hr;
hr = D3DXCreateEffectFromFile(

m_pd3dDevice,
"Simple_VS_and_PS.fx",

(continued)

C11616531.fm Page 263 Tuesday, May 13, 2003 1:17 PM

264 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

NULL, // A NULL terminated array of D3DXMACROs
NULL, // A #include handler
D3DXSHADER_DEBUG,
NULL, // memory pool,
&m_pEffect,
NULL);

if(FAILED(hr))
{

SAFE_RELEASE(m_pEffect);
return hr;

}
D3DXHANDLE hTech = m_pEffect->GetTechniqueByName("TVertexAndPixelShader");
hr = m_pEffect->ValidateTechnique(hTech);
if(FAILED(hr))
{

return hr;
}

This is unchanged, regardless of whether the shaders are designed in Asm
or HLSL, and it does not change if the effect has only a vertex shader, has both
a vertex and a pixel shader, or has only a pixel shader. An effect takes care of
calling the correct shader compile functions and creating the shader objects so
that you don’t have to.

The render code, shown here, is also unchanged, even though we added
a pixel shader to the effect:

// Begin the scene
if(SUCCEEDED(m_pd3dDevice->BeginScene()))
{

// Draw the mesh
if(m_pEffect)
{

D3DXMATRIXA16 matWorld;
D3DXMatrixIdentity(&matWorld);
m_pEffect->SetMatrix("World", &matWorld);
m_pEffect->SetMatrix("View", &m_matView);
m_pEffect->SetMatrix("Projection", &m_matProj);
m_pEffect->SetTechnique("TVertexAndPixelShader");

HRESULT hr;
UINT numPasses, iPass;
hr = m_pEffect->Begin(&numPasses, 0);
for(iPass = 0; iPass < numPasses; iPass ++) // all passes
{

hr = m_pEffect->Pass(iPass);

C11616531.fm Page 264 Tuesday, May 13, 2003 1:17 PM

Chapter 11 HLSL Effect Examples 265

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

// Render the tiger with a mesh drawing loop
for(DWORD i=0; i < m_dwNumMaterials; i++)
{

// Set the material and texture for this subset
m_pd3dDevice->SetMaterial(&m_pMeshMaterials[i]);
m_pd3dDevice->SetTexture(0, m_pMeshTextures[i]);

// Draw the mesh subset
m_pMesh->DrawSubset(i);

}

}
hr = m_pEffect->End();

}
// End the scene
m_pd3dDevice->EndScene();

}

This example extends the first HLSL example in Chapter 8 by adding a
pixel shader to perform per-pixel lighting. Creating an effect requires calling
one of the D3DXCreateEffectxxx functions. You can have m shaders in n
passes, and the application code that compiles the effect does not change. The
render code for this example has not changed as a result of adding the pixel
shader because the shader was added to an existing pass. Effects conveniently
take care of rendering a technique and all its passes for you.

Example 2: Multi-Pass Rendering with Alpha Blending
This next example creates a glow effect by drawing a solid textured object and
then adding a glow around its edges. The glow is added with a two-pass render
that requires the second pass to be alpha blended. The glow is one of the effect
files that ships with the Microsoft DirectX 9 SDK called glow.fx. (See Color Plate
21.)

The effect contains two vertex shaders. The first shader transforms the
position data, generates a diffuse color for the light contribution, and outputs
texture coordinates. The second shader generates a glow color. The glow color
is alpha blended with the solid-textured object by the frame buffer, which is
accomplished by setting a combination of texture stage states and render states.

This example was chosen because it illustrates an effect with multiple
techniques and multiple passes. The effect code is organized as follows:

■ Effect global variables

■ Two vertex shaders

■ Multiple techniques

C11616531.fm Page 265 Tuesday, May 13, 2003 1:17 PM

266 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

string XFile = "tiger.x"; // model
string BIMG = "lake.bmp"; // background image
int BCLR = 0xff202080; // background

// texture
texture Tex0 < string name = "tiger.bmp"; >;

// transforms
float4x3 WorldView : WORLDVIEW;
float4x4 Projection : PROJECTION;

// light direction (view space)
float3 LightDir < string UIDirectional =

"Light Direction"; > = normalize(float3(0.0f, 0.0f, 1.0f));

// glow parameters
float4 GlowColor = float4(0.5f, 0.2f, 0.2f, 1.0f);
float4 GlowAmbient = float4(0.2f, 0.2f, 0.0f, 0.0f);
float GlowThickness = 0.015f;

struct VSTEXTURE_OUTPUT
{

float4 Position : POSITION;
float4 Diffuse : COLOR;
float2 TexCoord : TEXCOORD0;

};

// Draws unskinned object with one texture and one directional light
VSTEXTURE_OUTPUT VSTexture

(
float4 Position : POSITION,
float3 Normal : NORMAL,
float2 TexCoord : TEXCOORD0
)

{
VSTEXTURE_OUTPUT Out = (VSTEXTURE_OUTPUT)0;

float3 L = -LightDir; // light direction (view space)
float3 P = mul(Position, WorldView); // position (view space)
float3 N = normalize(mul(Normal,

(float3x3)WorldView)); // normal (view space)

Out.Position = mul(float4(P, 1), Projection); // projected position
Out.Diffuse = max(0, dot(N, L)); // diffuse
Out.TexCoord = TexCoord; // texture coordinates

return Out;
}
struct VSGLOW_OUTPUT

C11616531.fm Page 266 Tuesday, May 13, 2003 1:17 PM

Chapter 11 HLSL Effect Examples 267

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

{
float4 Position : POSITION;
float4 Diffuse : COLOR;

};
// Draws a transparent hull of the unskinned object
VSGLOW_OUTPUT VSGlow

(
float4 Position : POSITION,
float3 Normal : NORMAL
)

{
VSGLOW_OUTPUT Out = (VSGLOW_OUTPUT)0;
// normal (view space)
float3 N = normalize(mul(Normal, (float3x3)WorldView));
// displaced position (view space)
float3 P = mul(Position, WorldView) + GlowThickness * N;
// glow axis
float3 A = float3(0, 0, 1);
float Power;
Power = dot(N, A);
Power *= Power;
Power -= 1;
Power *= Power; // Power = (1 - (N.A)^2)^2 [= ((N.A)^2 - 1)^2]

// projected position
Out.Position = mul(float4(P, 1), Projection);
// modulated glow color + glow ambient
Out.Diffuse = GlowColor * Power + GlowAmbient;

return Out;
}

technique TGlowAndTexture
{

pass PTexture
{

// single texture/one directional light shader
VertexShader = compile vs_1_1 VSTexture();
PixelShader = NULL;

// texture
Texture[0] = (Tex0);
// sampler states
MinFilter[0] = LINEAR;
MagFilter[0] = LINEAR;
MipFilter[0] = LINEAR;
// set up multitexture blender to blend a texture
// and the diffuse color
ColorOp[0] = MODULATE;
ColorArg1[0] = TEXTURE;

(continued)

C11616531.fm Page 267 Tuesday, May 13, 2003 1:17 PM

268 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

ColorArg2[0] = DIFFUSE;
AlphaOp[0] = DISABLE;
ColorOp[1] = DISABLE;
AlphaOp[1] = DISABLE;

}
pass PGlow
{

// glow shader
VertexShader = compile vs_1_1 VSGlow();
PixelShader = NULL;

// no texture
Texture[0] = NULL;

// enable alpha blending
AlphaBlendEnable = TRUE;
SrcBlend = ONE;
DestBlend = ONE;

// set up texture stage states to use the diffuse color
ColorOp[0] = SELECTARG2;
ColorArg2[0] = DIFFUSE;
AlphaOp[0] = SELECTARG2;
AlphaArg2[0] = DIFFUSE;
ColorOp[1] = DISABLE;
AlphaOp[1] = DISABLE;

}
}

technique TGlowOnly
{

pass PGlow
{

// glow shader
VertexShader = compile vs_1_1 VSGlow();
PixelShader = NULL;

// no texture
Texture[0] = NULL;

// enable alpha blending
AlphaBlendEnable = TRUE;
SrcBlend = ONE;
DestBlend = ONE;

// set up texture stage states to use the diffuse color
ColorOp[0] = SELECTARG2;
ColorArg2[0] = DIFFUSE;

C11616531.fm Page 268 Tuesday, May 13, 2003 1:17 PM

Chapter 11 HLSL Effect Examples 269

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

AlphaOp[0] = SELECTARG2;
AlphaArg2[0] = DIFFUSE;
ColorOp[1] = DISABLE;
AlphaOp[1] = DISABLE;

}
}

The glow shader and the texture shader have already been discussed in
detail. To see the explanation of the HLSL shader code, view the Glow example
in Chapter 8. The interesting part of this example in this chapter is the effect
code, so we can skip over the global variables, the VSTexture shader, and the
VSGlow shader—all the way down to the techniques to see how to design a
technique that uses more than one vertex shader.

The first technique, TGlowAndTexture, contains two passes: PGlow and
PTexture. It’s arranged like this:

technique TGlowAndTexture
{

pass PTexture
{

// shader objects ...
...
// texture objects
...
// effect state
...

}
pass PGlow
{

// shader objects
...
// texture objects
...
// effect state
...

}
}

We can almost guess what’s going to happen just by reading the names of
the techniques and passes. The pass named PTexture will draw a solid textured
object, and the pass named PGlow will draw a glow object. By setting the
TGlowandTexture technique during render, one of the following three things
can happen:

■ Render both passes. A solid textured object and a glow will be
rendered.

■ Render PTexture only. Only the solid textured object will be
rendered.

C11616531.fm Page 269 Tuesday, May 13, 2003 1:17 PM

270 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

■ Render PGlow only. Only a glow will be rendered.

Let’s look at the PTexture pass in more detail.

pass PTexture
{

VertexShader = compile vs_1_1 VSTexture();
PixelShader = NULL;

// texture
Texture[0] = (Tex0);
// sampler states
MinFilter[0] = LINEAR;
MagFilter[0] = LINEAR;
MipFilter[0] = LINEAR;

// set up texture stage states for single texture modulated by diffuse
ColorOp[0] = MODULATE;
ColorArg1[0] = TEXTURE;
ColorArg2[0] = DIFFUSE;
AlphaOp[0] = DISABLE;
ColorOp[1] = DISABLE;
AlphaOp[1] = DISABLE;

}

The PTexture pass does three things:

■ Creates a vertex shader object by compiling the VSTexture function.
This shader passes texture coordinates to the pipeline to enable the
pixel shader to perform texture sampling.

■ Binds the texture in Tex0 to the sampler s0. Texture sampler s0 is
specified as Texture[0]. If we wanted to specify sampler s1, we
would have specified Texture[1] instead. The index number corre-
sponds to the sampler number.

■ Initializes the multitexture blender. Because this example contains
no pixel shader, the texture blending is done with the multitexture
blender. The first stage is set up to blend the diffuse color with the
texture sample. The second stage is disabled.

The other pass, PGlow, applies the glow. Here’s the effect state that must
be set to apply the glow:

pass PGlow
{

// glow shader
VertexShader = compile vs_1_1 VSGlow();
PixelShader = NULL;

C11616531.fm Page 270 Tuesday, May 13, 2003 1:17 PM

Chapter 11 HLSL Effect Examples 271

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

// no texture
Texture[0] = NULL;
// enable alpha blending
AlphaBlendEnable = TRUE;
SrcBlend = ONE;
DestBlend = ONE;
// set up texture stage states to use the diffuse color
ColorOp[0] = SELECTARG2;
ColorArg2[0] = DIFFUSE;
AlphaOp[0] = SELECTARG2;
AlphaArg2[0] = DIFFUSE;
ColorOp[1] = DISABLE;
AlphaOp[1] = DISABLE;

}

The Glow pass does four things:

■ Creates a vertex shader object by compiling the VSGlow function.
This shader perturbs the position data in the direction of a vertex
normal to generate the glow position. It also implements a glow
color function that’s relative to the camera and is greatest where the
vertex normals are nearly at a right angle to the view direction (a
vector from the camera to the object). If this is not clear, revisit the
Glow sample in Chapter 8 for more detail.

■ Disables the multitexture blender. By setting the first texture stage to
NULL (with Texture[0] = NULL;), the multitexture blender is disabled.

■ Enables alpha blending in the frame buffer. The solid textured object
is in the frame buffer. Alpha blending is used to blend the semitrans-
parent glow color with the texture color. The blending equation is
configured by setting the blending render states, SrcBlend and Dest-
Blend.

■ Initializes the multitexture blender. The multitexture blender simply
passes the glow color on to the first stage. The second stage is dis-
abled.

The second technique in the effect named TGlowOnly draws the glow.
There’s no solid textured object; there’s only the semitransparent glow. Here’s
the technique:

technique TGlowOnly
{

pass PGlow

(continued)

C11616531.fm Page 271 Tuesday, May 13, 2003 1:17 PM

272 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

{
// glow shader
VertexShader = compile vs_1_1 VSGlow();
PixelShader = NULL;

// no texture
Texture[0] = NULL;
// enable alpha blending
AlphaBlendEnable = TRUE;
SrcBlend = ONE;
DestBlend = ONE;

// set up texture stage states to use the diffuse color
ColorOp[0] = SELECTARG2;
ColorArg2[0] = DIFFUSE;
AlphaOp[0] = SELECTARG2;
AlphaArg2[0] = DIFFUSE;
ColorOp[1] = DISABLE;
AlphaOp[1] = DISABLE;

}
}

Because the TGlowOnly technique draws only the glow, this technique
implements the PGlow pass that we’ve already seen.

To experiment with either of these techniques or either of the passes in
the first technique, simply modify the render loop to call whichever technique
you prefer and recompile the application. The render loop is the standard mesh
rendering loop that has been used on a number of the examples in this book.
Here it is once again:

// Begin the scene.
if(SUCCEEDED(m_pd3dDevice->BeginScene()))
{

// Draw the solid tiger and the glow.
if(m_pEffect)
{

m_pEffect->SetMatrix("WorldView", &m_matView);
m_pEffect->SetMatrix("Projection", &m_matProj);
m_pEffect->SetTechnique(m_pEffect->GetTechnique(0));
HRESULT hr;
UINT numPasses, iPass;
hr = m_pEffect->Begin(&numPasses, 0);
for(iPass = 0; iPass < numPasses; iPass ++) // all passes
{

hr = m_pEffect->Pass(iPass);
// Render the tiger with a mesh drawing loop.
for(DWORD I=0; I < m_dwNumMaterials; I++)
{

// Set the material and texture for this subset.
m_pd3dDevice->SetMaterial(&m_pMeshMaterials[i]);

C11616531.fm Page 272 Tuesday, May 13, 2003 1:17 PM

Chapter 11 HLSL Effect Examples 273

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

m_pd3dDevice->SetTexture(0, m_pMeshTextures[i]);

// Draw the mesh subset.
m_pMesh->DrawSubset(I);

}

}
hr = m_pEffect->End();

}
// End the scene.
m_pd3dDevice->EndScene();

}

As we’ve seen before, the render code sets the effect global variables
(WorldView and Projection), sets the current technique with SetTechnique, and
calls a loop to draw all the passes. To modify the loop to render either tech-
nique, use the following code:

hr = m_pEffect->SetTechnique("TGlowAndTexture");
// or
hr = m_pEffect->SetTechnique("TGlowOnly");

Effects render a single technique. Here’s the code that controls the passes
that get rendered:

HRESULT hr;
UINT numPasses, iPass;
hr = m_pEffect->Begin(&numPasses, 0);
for(iPass = 0; iPass < numPasses; iPass ++) // all passes
{

hr = m_pEffect->Pass(iPass);
// Render the mesh.
...

}
hr = m_pEffect->End();

To render all passes, run the code as it is. To render only one of the passes
in a technique that has multiple passes, you can modify the start and end con-
ditions of the for loop or you can replace the for loop with an explicit call to the
Pass that you want rendered.

This example implements two HLSL vertex shaders. The first one applies
a texture; the second one applies a glow. The shaders are implemented in two
techniques. The first technique renders both of the shaders and the second
technique renders the glow only. The glow requires render states and texture
stage states to be set to enable alpha blending with the frame buffer.

C11616531.fm Page 273 Tuesday, May 13, 2003 1:17 PM

274 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

EffectEdit: Interactive Effect Development
The EffectEdit SDK sample provides a convenient application for shader devel-
opment using effects. The application allows you to load an effect into an inter-
active editing environment for developing shader code. Sample code can be
copied and pasted into a text editing window, which can be compiled on the
fly. The render results can be automatically updated.

EffectEdit takes advantage of semantics and annotations to decide what to
do with certain types of parameters. Let’s see what EffectEdit looks like running
a generic effect that’s built into the application. (See Color Plate 29.)

This default effect uses the fixed-function pipeline to blend the diffuse
lighting with a solid textured object. The model is in the tiger.x file. To adjust
the view in the render window, use the mouse to move or rotate the object or
to move the light direction.

EffectEdit renders four panes, which are listed here in clockwise order:

■ Code pane (upper left)

■ Render pane (upper right)

■ Rendering options pane (lower right)

■ Compile results pane (lower left)

The Code Pane
The code pane displays the effect code, which includes the effect global vari-
ables, the shader functions, techniques, and passes. You can use the scroll bars
to navigate up and down in the code, or use the arrow keys to navigate. The
nice thing about this pane is that you can enter new HLSL code here and after
a few seconds it will automatically be recompiled and re-rendered for you,
which makes it a handy test bed for code development.

C11616531.fm Page 274 Tuesday, May 13, 2003 1:17 PM

Chapter 11 HLSL Effect Examples 275

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

The Render Pane
The render pane displays the rendered output. Like all the SDK samples, Effect-
Edit can display the frame rate. Use the arrow keys to rotate the object and view
it from different camera angles. Click on the arrow that represents the direction
of the light to move the light and watch the rendered result change.

The Rendering Options Pane
The rendering options pane gives you control over what gets rendered. The
options include choosing which techniques and passes will be rendered, setting
the rendering mode (wireframe, solid, or textured), and enabling or disabling
automatic compiling and rendering.

The Compile Results Pane
The compile results pane displays the results of compiling whatever is in the
code pane. When stepping through the debugger, any error messages are dis-
played in this pane. The error messages also provide the line number of the
compile failures and describe the shader validation rule that was violated.

C11616531.fm Page 275 Tuesday, May 13, 2003 1:17 PM

276 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

Often, the validation restrictions are displayed in this pane. If you double-click
on a line that fails to compile, the debugger will open to that line in the shader
code.

Getting an Effect to Run in EffectEdit
The EffectEdit sample implements a tool that allows easy experimentation with
effects. Effects provide a convenient way to package multiple techniques for
rendering an object, where each technique includes render states, vertex shad-
ers, pixel shaders, and multiple passes. Using EffectEdit, you can load effect
files, edit them, and see an object rendered with the effect. Changes to the
effect are reflected immediately on the rendered object. Effects are set up to
take advantage of the following parameter combinations:

■ A parameter with a semantic attached to it

■ A parameter with an annotation

■ A string parameter with a particular name

■ An integer parameter with a particular name

Table 11-1 describes many of the semantics that are recognized by Effect-
Edit.

Table 11-1 Semantics Recognized by EffectEdit

If the Parameter Has This
Semantic Attached to It

EffectEdit Will Expect the Parameter to Contain

WORLD World matrix

VIEW View matrix

PROJECTION Projection matrix

WORLDVIEW World-view matrix

VIEWPROJECTION View-projection matrix

WORLDVIEWPROJECTION World-view-projection matrix

C11616531.fm Page 276 Tuesday, May 13, 2003 1:17 PM

Chapter 11 HLSL Effect Examples 277

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

For example, the glow.fx effect uses the WORLDVIEW semantic to identify
the composite world-view matrix:

float4x3 WorldView : WORLDVIEW;

Table 11-2 describes the annotations that are recognized by EffectEdit.

Table 11-3 describes the string names that are recognized by EffectEdit.

The default effect uses the XFile parameter to specify the tiger.x file:

string XFile = "tiger.x"; // model

Only one integer type is recognized by EffectEdit. If the effect contains a
string named BCLR, EffectEdit will use the integer value as the background
color of the scene. The default effect uses BCLR to specify the background
color:

int BCLR = 0xff202080; // background

A hex color is read in ARGB order, so this example represents a color with
full intensity alpha, whose blue component is four times the value of the red
and green components. To see the color in EffectEdit, comment out the state-
ment that defines the background image, BIMG, and the background will be
cleared to this shade of blue. All of the semantics, annotations, and strings can
be seen in renderview.cpp in the EffectEdit SDK sample.

Table 11-2 Annotations Recognized by EffectEdit

If the Parameter Contains
This Annotation EffectEdit Will Use the Parameter for

NAME A texture file to load

FUNCTION A procedural texture file to load

TARGET A procedural texture version (default is tx_1_0)

WIDTH The texture width

HEIGHT The texture height

Table 11-3 String Names Recognized by EffectEdit

If the Effect Contains a
String with This Name EffectEdit Will Use the String as

BIMG A background image for the scene

XFile The .x file containing the object

C11616531.fm Page 277 Tuesday, May 13, 2003 1:17 PM

278 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

Example 3: Hemispheric Lighting
Now that we’ve been introduced to the EffectEdit SDK sample, let’s put it to use
with another shader. This effect is called hemisphere.fx. It implements a hemi-
spheric lighting algorithm, which approximates an area light. Area lights pro-
vide for the light reflections that occur when light rays that directly hit an object
and reflect off other objects contribute to the surface lighting.

Color Plate shows an example of hemisphere lighting. (See Color Plate
31.)

The following figure shows what the hemisphere effect looks like running
in the EffectEdit sample.

And here’s a listing of the code that is in the edit pane of EffectEdit:

//
// Hemisphere Lighting Model
// Copyright ©) Microsoft Corporation. All rights reserved.
//
// Note: This effect file works with EffectEdit.
//
string XFile = "SkullOcc.x"; // model
int BCLR = 0xff202080; // background
// light directions (view space)
float3 DirFromLight < string UIDirectional = "Light Direction"; > =

{0.577, -0.577, 0.577};
// direction of light from sky (view space)
float3 DirFromSky < string UIDirectional = "Direction from Sky"; > =

{ 0.0f, -1.0f, 0.0f };
// light intensity

C11616531.fm Page 278 Tuesday, May 13, 2003 1:17 PM

Chapter 11 HLSL Effect Examples 279

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

float4 I_a = { 0.5f, 0.5f, 0.5f, 1.0f }; // ambient
float4 I_b = { 0.1f, 0.0f, 0.0f, 1.0f }; // ground
float4 I_c = { 0.9f, 0.9f, 1.0f, 1.0f }; // sky
float4 I_d = { 1.0f, 0.9f, 0.8f, 1.0f }; // diffuse
float4 I_s = { 1.0f, 1.0f, 1.0f, 1.0f }; // specular

// material reflectivity
float4 k_a = { 0.8f, 0.8f, 0.8f, 1.0f }; // ambient
float4 k_d = { 0.4f, 0.4f, 0.4f, 1.0f }; // diffuse
float4 k_s = { 0.1f, 0.1f, 0.1f, 1.0f }; // specular
int n = 32; // power

// transformations
float4x3 WorldView : WORLDVIEW;
float4x4 Projection : PROJECTION;

struct VS_OUTPUT
{

float4 Pos : POSITION;
float4 Diff : COLOR0;
float4 Spec : COLOR1;

};
VS_OUTPUT VS(

float3 Pos : POSITION,
float3 Norm : NORMAL,
float Occ : TEXCOORD0,
uniform bool bHemi,
uniform bool bDiff,
uniform bool bSpec)

{
VS_OUTPUT Out = (VS_OUTPUT)0;
// diffuse direction
float3 L = -DirFromLight;
// hemisphere up axis
float3 Y = -DirFromSky;
// position (view space)
float3 P = mul(float4(Pos, 1), (float4x3)WorldView);
// normal (view space)
float3 N = normalize(mul(Norm, (float3x3)WorldView));
// reflection vector (view space)
float3 R = normalize(2 * dot(N, L) * N - L);
// view direction (view space)
float3 V = -normalize(P);
float4 Amb = k_a * I_a;
float4 Hemi = k_a * lerp(I_b, I_c, (dot(N, Y) + 1) / 2) * (1 - Occ);
float temp = 1 - max(0, dot(N, L));
float4 Diff = k_d * I_d * (1 - temp * temp);
float4 Spec = k_s * I_s * pow(max(0, dot®, V)), n/4);
float4 Zero = 0;

(continued)

C11616531.fm Page 279 Tuesday, May 13, 2003 1:17 PM

280 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

// position (projected)
Out.Pos = mul(float4(P, 1), Projection);
// diffuse + ambient/hemisphere
Out.Diff = (bDiff ? Diff : 0)

+ (bHemi ? Hemi : Amb);
// specular
Out.Spec = (bSpec ? Spec : 0);
}
return Out;

}
technique THemisphere
{

pass P0
{

VertexShader = compile vs_1_1 VS(true, false, false);
}

}
technique THemisphereDiffuse
{

pass P0
{

VertexShader = compile vs_1_1 VS(true, true, false);
}

}
technique THemisphereDiffuseSpecular
{

pass P0
{

VertexShader = compile vs_1_1 VS(true, true, true);
SpecularEnable = TRUE;

}
}
technique TAmbient
{

pass P0
{

VertexShader = compile vs_1_1 VS(false, false, false);
}

}
technique TAmbientDiffuse
{

pass P0
{

VertexShader = compile vs_1_1 VS(false, true, false);
}

}
technique TAmbientDiffuseSpecular
{

C11616531.fm Page 280 Tuesday, May 13, 2003 1:17 PM

Chapter 11 HLSL Effect Examples 281

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

pass P0
{

VertexShader = compile vs_1_1 VS(false, true, true);
SpecularEnable = TRUE;

}
}

The effect contains

■ Several global variables

■ A vertex shader function named VS

■ Several single pass techniques

We learned earlier that an effect can declare certain variables with specific
names, semantics, or annotations to work well with EffectEdit. Here are the
specific variables that the hemisphere effect uses so that EffectEdit will recog-
nize them:

string XFile = "SkullOcc.x"; // model
int BCLR = 0xff202080; // background
// transformations
float4x3 WorldView : WORLDVIEW;
float4x4 Projection : PROJECTION;

These variables provide the model name in XFile, the background color in
BCLR, the world-view transform in WorldView, and the projection transform in
Projection. The rest of the global variables and the shader function can be
named anything.

Now let’s see how the shader actually works. Here’s the shader:

struct VS_OUTPUT
{

float4 Pos : POSITION;
float4 Diff : COLOR0;
float4 Spec : COLOR1;

};
VS_OUTPUT VS(

float3 Pos : POSITION,
float3 Norm : NORMAL,
float Occ : TEXCOORD0,
uniform bool bHemi,
uniform bool bDiff,
uniform bool bSpec)

{

(continued)

C11616531.fm Page 281 Tuesday, May 13, 2003 1:17 PM

282 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

VS_OUTPUT Out = (VS_OUTPUT)0;
// diffuse direction
float3 L = -DirFromLight;
// hemisphere up axis
float3 Y = -DirFromSky;
// position (view space)
float3 P = mul(float4(Pos, 1), (float4x3)WorldView);
// normal (view space)
float3 N = normalize(mul(Norm, (float3x3)WorldView));
// reflection vector (view space)
float3 R = normalize(2 * dot(N, L) * N - L);
// view direction (view space)
float3 V = -normalize(P);
float4 Amb = k_a * I_a;
float4 Hemi = k_a * lerp(I_b, I_c, (dot(N, Y) + 1) / 2) * (1 - Occ);
float temp = 1 - max(0, dot(N, L));
float4 Diff = k_d * I_d * (1 - temp * temp);
float4 Spec = k_s * I_s * pow(max(0, dot®, V)), n/4);
float4 Zero = 0;
// position (projected)
Out.Pos = mul(float4(P, 1), Projection);
// diffuse + ambient/hemisphere
Out.Diff = (bDiff ? Diff : 0)

+ (bHemi ? Hemi : Amb);
// specular
Out.Spec = (bSpec ? Spec : 0);
return Out;

}

The shader takes several input arguments and returns the outputs using
the VS_OUTPUT structure.

Three of the input arguments come from the vertex buffer, including the
position, the normal, and an occlusion factor. It’s obvious that these parameters
come from the vertex buffer because they have semantics.

float3 Pos : POSITION,
float3 Norm : NORMAL,
float Occ : TEXCOORD0,

The other three input arguments are Boolean values supplied as uniform
shader constants.

uniform bool bHemi,
uniform bool bDiff,
uniform bool bSpec

Uniform shader constants are fixed between draw calls. They’re called
uniform because they’re constant from the standpoint of the shader. Once the
shader starts execution of vertex shader instructions on a set of vertices, these
constants can’t be changed until the shader finishes processing.

C11616531.fm Page 282 Tuesday, May 13, 2003 1:17 PM

Chapter 11 HLSL Effect Examples 283

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

These three Boolean values (the uniform shader constants) are supplied
when the vertex shader object is created in each pass, for example:

technique THemisphere
{

pass P0
{

VertexShader = compile vs_1_1 VS(true, false, false);
}

}

The THemisphere technique passes the values true, false, and false to the
vertex shader input arguments bHemi, bDif, and bSpec, respectively. Based on
this information, the shader code will implement lighting with a bHemi hemi-
sphere component and will ignore the diffuse component and the specular
components. Each of the six techniques implements a different combination of
these three lighting components.

In the EffectEdit render options pane, each technique can be selected indi-
vidually to see the result of each of the lighting components, as shown in the
following figure.

Because this example uses only hemispheric lighting, choose THemi-
sphere from the menu.

In the vertex shader, the hemispheric lighting contribution is calculated
like this:

float4 Hemi = k_a * lerp(I_b, I_c, (dot(N, Y) + 1) / 2) * (1 - Occ);

Breaking this calculation down into the individual calculations, we’ll start from
the inside out.

dot(N, Y)
// calculates the cosine of the angle between the normal and
// the sky vector and biases the result between 0 and 1
(dot product + 1) / 2
// shifts the range from (-1,1) to (0,1)
result * (1 - Occ)
// multiplies the result by the complement of the occlusion value

The result so far is shown here:

(dot(N, Y) + 1) / 2 * (1 - Occ);

This code approximates the amount of the sphere that the vertex can see
(the portion of the sphere not occluded from the vertex). This term is used to

C11616531.fm Page 283 Tuesday, May 13, 2003 1:17 PM

284 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

linearly interpolate between the ground light intensity and the sky light inten-
sity.

lerp(I_b, I_c, (dot(N, Y) + 1) / 2) * (1 - Occ);

The ground and sky contributions are combined (multiplied) by the ambi-
ent lighting to give the final value for Hemi.

float4 Hemi = k_a * lerp(I_b, I_c, (dot(N, Y) + 1) / 2) * (1 - Occ);

The result is an approximation for the light that hits this vertex from all
directions, which is often referred to as area lighting.

To run this effect, launch the EffectEdit sample and click the File Open
icon (second from the left).

Choose the Hemisphere Effect file.

If you see something like the following figure in the rendered view, it
means that the device is not capable of running the sample. (In this case,
GeForce2 was trying to render this on the hardware.)

C11616531.fm Page 284 Tuesday, May 13, 2003 1:17 PM

Chapter 11 HLSL Effect Examples 285

Microsoft Press. Confidential. master page = Right
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

You have the following three options when you get this message:

■ Find a machine with a video card that has more features

■ Change the device to use software vertex processing

■ Run on a reference device (and get very slow performance)

Because I didn’t have a newer card to swap with, I changed the settings to
run the sample with software vertex processing by pressing F2 and choosing
Software Vertex Processing from the menu.

The following figure shows the result.

C11616531.fm Page 285 Tuesday, May 13, 2003 1:17 PM

286 Part III Programming Effects

Microsoft Press. Confidential. master page = Left
DevStand, xgraph, LRCcx, edd version: #, FrameMaker+SGML; kd

The effects that ship in the DirectX 9 SDK that are designed to run in
EffectEdit each contain this string at the top of the file: “Note: This effect file
works with EffectEdit.” As you can see, it’s easy to get an effect to run in Effect-
Edit.

C11616531.fm Page 286 Tuesday, May 13, 2003 1:17 PM

287

Microsoft Press. Confidential. master page = Section Opener
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

Appendix A

Vertex Processing

The 3-D graphics pipeline can be visualized with the functional blocks shown
in the following figure.

Vertex processing converts per-vertex data from model space to projection
space. This appendix goes into more detail about the major vertex processing
blocks, including transformations, vertex fog, and per-vertex lighting and mate-
rial colors.

This appendix is a brief summary of the calculations that are implemented
by the vertex processing block in the DirectX fixed-function pipeline. It is
included here so that if you are new to vertex shaders, you can get an idea of
the kind of functions you will need to implement in a vertex shader.

Transformations
Vertex data gets converted from one coordinate space to another on its way
through the conversion from model space to pixels on a screen. As shown in
the following figure, several conversions are performed.

Rendered
pixels

Primitive
processing

Vertex data
in model
space

High order
primitive

data

Vertex
processing

Pixel
processing

Tessellation

Pre-Processing

Z01A616531.fm Page 287 Tuesday, May 13, 2003 1:11 PM

288 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

The ovals identify the different coordinate spaces, and the rectangles iden-
tify the transforms that are performed with matrix multiplies. Each transform
converts coordinates to a different coordinate space. Here’s brief definition of
the transforms and coordinate spaces:

■ Model space The local coordinate system used by a model. The
vertex data for an object is relative to the object’s local axis with its
own origin. This space is commonly called model space.

■ World transform/world space This conversion transforms all the
objects within a scene. The transform can scale, rotate, translate, or
skew objects relative to the origin in world space. The result is that
each object is oriented, scaled, and rotated relative to the other
objects just as they are in a 3-D scene.

■ View transform/view space This conversion orients the camera
with respect to the objects. After conversion, objects are said to be in
view space, which is commonly called camera-space because the
objects are located relative to the camera. In other words, the camera
is placed where a viewer looks at the scene.

■ Projection transform/projection space Designs the shape of
the view frustum. The frustum shape scales the objects according to
the type of perspective used.

■ Viewport scale/screen space Positions and scales the 2-D plane
that represents the screen. After conversion, the data is in screen
space and ready for rendering. The viewport scaling is done by the
fixed function pipeline during primitive processing.

Vertices are converted from one coordinate space to another, starting in
model space and ending up in screen space. But what happens during the con-
version between coordinate spaces?

Conversion from one coordinate space to another is done by applying
four mathematical operations called rotation, scaling, translation, and skew.
Rotation, scale, and skew are linear transforms. Matrices are a useful tool for
solving three sets of equations with rotation, scale, and skew. Translation, how-
ever, is a nonlinear operation. To incorporate translations into a matrix solution,

World
transform

Vertex
data

Model
space

World
space

View
space

Projection
space

Screen
space

View
transform

Projection
transform

Viewport
scale

Pixel
data

Z01A616531.fm Page 288 Tuesday, May 13, 2003 1:11 PM

Appendix A Vertex Processing 289

Microsoft Press. Confidential. master page = Right
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

a special kind of transform called an affine transform was created to combine
linear and nonlinear transforms. For 3-D coordinates, an affine transform is rep-
resented by a 4-by-4 matrix. As a result, all the conversions (rotation, scale,
skew, and translation) are done using matrices with affine transformations.

Let’s take a look at how a matrix performs a transform. A vertex is a coor-
dinate in space that can be written as [x,y,z]. This is equivalent to a 1-by-3 vec-
tor, so we’ll need to use a 3-by-3 matrix for the transform. A 3-by-3 matrix has
nine values laid out in three rows and three columns.

m11m12m13
m21m22m23
m31m32m33
// where m11 means the value in row 1, column 1
// where m12 means the value in row 1, column 2 etc.

This setup is called row-major order because a 1-by-3 vector occupies
each row in the matrix. By multiplying the vector by the 3-by-3 matrix, the vec-
tor is transformed.

[x',y',z'] = [x,y,z]* matrix[3][3]

This code yields a new vertex at (x’,y’,z’). If the matrix contains a linear
transform, the matrix must be initialized with the linear transform values (the
rotation, scale, and skew values).

Each of the three transform types can be represented in the form of a
matrix.

The first matrix rotates a vector around the y-axis. The second matrix
scales a vector in x and y. The third matrix skews the vector by x in the x direc-
tion, and by y in the y direction.

Affine Transform
Adding an additional row and column expands a 3-by-3 matrix to a 4-by-4
matrix. A 4-by-4 matrix is well suited for affine transformations. An affine trans-
formation supports linear and a nonlinear transformations, which makes it ide-
ally suited for representing nonlinear translations as well as linear scales,
rotations, and skews.

3-by-3 Rotate

cos

-sin

0

sin

cos

0

0

0

1

3-by-3 Scale

x

0

0

0

y

0

0

0

1

3-by-3 Skew

1

y

0

x

1

0

0

0

1

Z01A616531.fm Page 289 Tuesday, May 13, 2003 1:11 PM

290 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

We know from the examples we just saw that the 3-by-3 portion of the
matrix holds the scale, rotation, and skew values. The fourth row that’s added
will contain the translation values. Using a 4-by-4 affine transformation changes
the matrix multiply to a 4-by-4 multiply, which means that we’ll want to supply
a 1-by-4 vector to a 4-by-4 matrix.

[x',y',z', 1] = [x,y,z,1]* matrix[4][4]

The fourth coordinate is set to a 1, as in [x,y,z,1]. The following figure
shows the layout of the 4-by-4 matrices and the values that must be initialized
to generate a rotation, scale, or translation.

This rotate matrix only rotates an arbitrary angle around the z-axis. The
scale matrix allows independent scale in the x,y,z direction. The translate matrix
also allows independent translation in the x,y,z direction.

Left-to-Right Order
DirectX uses row vectors. Vertices are written in a single row, such as [x,y,z].
2-D matrices are written in row-column order, as in matrix[row][column]. One
reason DirectX uses row vectors and row-column order matrices is so that when
matrices are concatenated in left-to-right order, the order they appear in the
product is the order they are applied to the points. See the following figure.

OpenGL uses column vectors instead of row vectors. Vertices are written
in a single column, such as the following:

(x,
y,
z)

For reference, a 3-by-3 matrix in column-row order looks like this:

m11m21m31
m12m22m32

4-by-4 Rotate 4-by-4 Scale 4-by-4 Skew

cos sin 00

-sin cos 00

0 0 01

Sx 0 00

0 Sy 00

0 0 0Sz

1 0 00

0 1 00

0 0 01

0 0 10 0 0 10 Tx Ty 1Tz

x,y,z,1 World
transform

View
transform

Project
transform

x ,y ,z ,w

Z01A616531.fm Page 290 Tuesday, May 13, 2003 1:11 PM

Appendix A Vertex Processing 291

Microsoft Press. Confidential. master page = Right
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

m13m23m33
// where m11 means the value in column 1, row 1
// where m21 means the value in column 2, row 1 etc.

OpenGL matrices are written in column-row order, as in matrix[col-
umn][row]. As a result, matrices are concatenated in right-to-left order with the
first operation occurring on the right, the second operation to the left, the next
operation to the left, and so on.

To reiterate before moving on, DirectX uses row vectors and row-major
matrix order. The rest of this chapter will use row vectors and row-major matrix
order. In the section on vertex shaders, we’ll see why a row-major matrix gets
transposed before use in a vertex shader. But first, let’s put our knowledge of
affine transformations to use to generate the world transform. This is the first of
three transforms performed in vertex processing.

World Transform
A world transform converts vertices from model space to world space. The
practical result is that the objects get positioned, scaled, and rotated relative to
each other. All the objects are in relation to a world space origin. The following
figure illustrates a single world space coordinate axis and three objects with
their own local coordinate axes.

Project
transform

View
transform

World
transform

x,y,z,1x ,y ,z ,w

Local Object B

World Coordinate Axis

Local Object C

Local Object A

Z01A616531.fm Page 291 Tuesday, May 13, 2003 1:11 PM

292 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

A world transform can consist of a translation, a rotation about any of the
axes, and a scale along any of the axes, which would be represented by this
equation:

World Transform = Sx*Sy*Sz*Rz*Ry*Rx*T

Following the left-to-right order, the objects will be scaled first, rotated
second, and translated last. In this layout, the world transform represents as
many as seven transformations, which means seven matrix multiplies. For the
sake of system performance, these matrix multiplies are usually done once and
then the results are saved to minimize the amount of matrix math necessary.

View Transform
The view transformation locates the camera in world space, transforming verti-
ces into view space. In view space, the camera (or viewer) is at the origin, look-
ing in the positive z-direction, which is why view space is also referred to as
camera space. Recall that DirectX uses a left-handed coordinate system, so z is
positive into a scene. (Take your left hand, palm up, and point your fingers in
the x direction, curl your fingers up to y, and your thumb points in z). The view
matrix relocates the objects in the world around the camera’s position and ori-
entation.

There’s more than one way to create a view matrix. In all cases, the cam-
era has some position and orientation that’s used as a reference point. The view
matrix translates and rotates the camera relative to the models. One way to cre-
ate a view matrix is to combine a translation matrix with rotation matrices for
each axis. In this approach, the following general transformation formula
applies:

Transform = Translate * RotateZ * RotateY * RotateX

View space assumes that the camera is at the origin of view space looking
in the +z direction. With left-handed coordinates, +z is into the screen.

To generate a view matrix, we must pick values for an eye point, an up
vector, and a look-at point. The eye point is the position of the camera (or
viewer). The up vector is a vector that points up. Usually, (0,1,0) is selected, just
as you would expect. (The up vector is a convenient way to flip the scene
upside down with a sign change.) The look-at point is the point in the scene
that the viewer is looking at.

For example, given the following information, we’d need to rotate the
vector (2,3,3) about the y- and x-axes to line it up with the z-axis. Given

■ An eye position of (2,3,3)

■ An up vector of (0,1,0)

■ A look-at point of (0,0,0)

Z01A616531.fm Page 292 Tuesday, May 13, 2003 1:11 PM

Appendix A Vertex Processing 293

Microsoft Press. Confidential. master page = Right
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

The first rotation about the y-axis rotates the eye vector into the yz plane.
The angle of rotation can be calculated by projecting the eye vector into the xz
plane, which would look like this:

The second rotation about the x-axis rotates the eye vector into the yz
plane, which will leave the eye vector pointing in the direction of +z. The angle
of rotation can be calculated by projecting the eye vector into the yz plane, like
this:

Combining the translation from (2,3,3) and the rotation about the y-axis
yields the product TxyRy.

y

x

z

2

3

y

x

z

3

Sqr
t(1

3)

Z01A616531.fm Page 293 Tuesday, May 13, 2003 1:11 PM

294 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

Then multiply the product with the x-axis rotation matrix.

The result is the composite view matrix. If you prefer, the D3DX utility
library provides many handy API methods for creating a view matrix, such as
D3DXMatrixLookAtLH.

Projection Transform
The projection transform converts vertex data from view space to projection
space. The transform performs a linear scale and a nonlinear perspective pro-
jection. The effect is to expand objects near the camera and shrink objects away
from the camera, which generates the same kind of perspective you see in real
life, where objects closer to the camera appear larger than objects farther away.

The projection transform can be visualized as a viewing frustum, which is
an enclosing 3-D volume defined by the camera’s view. The camera is in the
position of the viewer’s eye; imagine that this is where your eye is placed as
you look at the scene. The purpose of the frustum is to identify which objects
will be rendered in the view. Objects between the near and far clip planes and
inside the diagonal edges of the viewing frustum will be seen by the camera. A
3-D view of the frustum is shown in the following figure.

Translate x,y,z Rotate around y TxyzRy

1 0 00

0 1 00

0 0 01

3/ 13 0 02/ 13

0 1 00

-2/ 13 0 03/ 13

-2 -3 1-3 0 0 10

3/ 13 0 02/ 13

0 1 00

-2/ 13 0 03/ 13

0 -3 1-13/13

3/ 13 0 02/ 13

0 1 00

-2/ 13 0 03/ 13

0 -3 1-13/13

TxyzRy Rotate around x View matrix

1 0 00

13/22 0 03/ 22

0 -3/ 22 013/22

0 0 10

0.83 -0.35 00.42

0 0.77 00.64

-0.55 -0.53 00.64

0 0 1-4.69

Z01A616531.fm Page 294 Tuesday, May 13, 2003 1:11 PM

Appendix A Vertex Processing 295

Microsoft Press. Confidential. master page = Right
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

You can either build a matrix or use the D3DXMatrixPerspectivexxx
helper functions.

Here’s one way to make a perspective projection matrix. Combine a cam-
era translation (–z) with a nonlinear scale. The composite matrix looks like the
following figure.

This first matrix translates everything by –D in the z direction, and the sec-
ond matrix divides the w component by D. The resulting composite matrix,
however, doesn’t consider the field of view (fov), so the z-values that it pro-
duces for objects in the distance can be nearly identical, which can make depth
comparisons difficult.

A modified approach is to take into account the aspect ratio of the cam-
era’s view. The aspect ratio is the ratio of the height to the width, and it can be
done in terms of the view width and the view height, or the field-of-view angle
in the vertical and the horizontal direction. Combining the aspect ratio and a
scale factor that uses the near and far clip-plane distances from the camera can
be visualized in the following figure:

Back clipping
plane

Viewing frustum

Front clipping
plane

Translation Perspective scale Perspective projection matrix

1 0 00

0 1 00

0 0 01

1 0 00

0 1 00

0 0 1/D1

1 0 00

0 1 00

0 0 1/D1

0 0 1-D 0 0 10 0 0 0-D

Z01A616531.fm Page 295 Tuesday, May 13, 2003 1:11 PM

296 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

This figure shows the front clip plane, ZNEAR, and the back clip plane,
ZFAR. This figure is a side view of the viewing frustum, where fov/2 represents
the vertical field of view angle. D represents the distance between the camera
and the near clip plane.

The perspective projection matrix accomplishes the following three
things:

■ It takes into account the field of view of the camera, which is similar
to controlling the zoom on a camera, which produces the perspec-
tive scaling of the objects.

■ It generates z values that vary more near the z extremes, such as near
the far clip-plane or the near clip-plane.

■ The (3,4) component is 1, because it has been normalized by divid-
ing the values in the matrix by w. This makes the w component suit-
able for depth buffer values or for calculating distance from the
camera for fog effects.

Here’s an example of a perspective projection transform:

fov/2

Camera
position

D

D * tan(fov/2)

Znear Zfar

Z

Where:
w = cot (fovWidth/2)
h = cot (fovHeight/2)
Q = Zfar / (Znear - Zfar)

w 0 00

0 h 00

0 0 1Q

0 0 0-QZn

Z01A616531.fm Page 296 Tuesday, May 13, 2003 1:11 PM

Appendix A Vertex Processing 297

Microsoft Press. Confidential. master page = Right
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

Given: Znear = 0.1, Zfar = 100, Aspect Ratio = 1.33, fovY = 60 degrees
//The values for a typical perspective projection matrix are:
h = cot(fovY/2) = 1/tan(fovY/2) = 1/0.577 = 1.73
tan(fovY/2) = sin(fovY/2) / cos(fovY/2) = 0.5 / 0.866 = 0.577

w = w / Aspect Ratio = 1.72 / 1.33 = 1.30
Q = Zfar / Znear - Zfar = 100 / (0.1 - 100) = -1.001 ~ -1.0
-Q*Znear = -1.0 * 0.1 = -0.1

The resulting matrix is shown in the following figure.

Once the w component of a vertex has been transformed by the world,
view, and projection matrices, it’s used for performing depth-based calcula-
tions, which are used commonly in depth buffers or when calculating fog
effects.

Computations such as these require that your projection matrix normalize
w to be equivalent to world-space z. In short, if your projection matrix includes
a coefficient in the (3,4) position that is not 1, you must scale all the coeffi-
cients by the inverse of the (3,4) coefficient to make a proper matrix.

Vertex Fog
After the world, view, and projection transforms have been applied to the ver-
tex data, the w component of the vertex data is ready for depth buffer compar-
isons or for fog effect calculations. Be sure to check to see if w is normalized.
If it isn’t, divide the vertex data by w or multiply it by the inverse matrix so that
w will be equal to 1.

Vertext fog can be added to the final vertex color, which produces a rea-
sonable fog effect. Pixel fog (fog that is calculated per pixel) is much more
believable, but it’s much more computationally expensive. Applying fog
involves picking a fog color and specifying the range over which it has an
effect.

An equation for the fog factor using linear falloff looks like this:

Table A-1 describes the parameters used for a linear falloff.

w 0 00

0 h 00

0 0 1Q

0 0 0-QZn

1.29 0 00

0 1.73 00

0 0 -1-1

0 0 0-0.1

f
end – d

end – start

Z01A616531.fm Page 297 Tuesday, May 13, 2003 1:11 PM

298 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

For a more realistic, although more computationally expensive effect, you
can calculate an exponential falloff using a variety of equations. The following
figure shows an example of an exponential falloff using the natural logarithm.

The next figure shows an example of an exponential falloff using the nat-
ural logarithm, this time adding a squared term to give a more rapid falloff.

Table A-2 describes the parameters use for the exponential falloff.

Table A-1 Parameters of the Linear Falloff

Parameter Description

f Fog factor. This is a number between 0 and 1 that will be used for
blending.

start The distance from the camera where fog effects begin

end The distance from the camera where fog effects reach a maximum

d The depth or distance from the view point. For range-based fog, this is
the distance between the camera position and a vertex. For fog that’s
not range-based, the absolute value of the z-coordinate in camera space
can be used for the distance.

Table A-2 Parameters of the Exponential Falloff

Parameter Description

f The fog factor. This is a number between 0 and 1 that will be used for
blending.

e The natural logarithm, e. Its value is approximately 2.718.

d The depth or distance from the view point. For range-based fog, this
is the distance between the camera position and a vertex. For fog
that’s not range-based, the absolute value of the z-coordinate in cam-
era space can be used for the distance.

density An arbitrary number used for density. This number usually ranges
from 0 to 1.

f ed x density

1

f e(d x density)
2

1

Z01A616531.fm Page 298 Tuesday, May 13, 2003 1:11 PM

Appendix A Vertex Processing 299

Microsoft Press. Confidential. master page = Right
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

Once the fog color is calculated, it needs to be blended with the vertex
color to produce a final vertex color. A simple blend formula is used, as shown
in the following figure.

Table A-3 describes the parameters used in the blend formula.

Lights and Materials
The surface color of an object is a blend of colors from several sources. Vertex
processing combines these colors to make a final vertex color. During vertex
processing, per-vertex color and material color are blended with a sum of all
the light color contributions. Texturing and fog are applied by the pipeline dur-
ing pixel processing. Since the vertex fog color is discussed in the previous sec-
tion, this section will focus on the blending of the per-vertex color supplied in
the vertex buffer, material color, and the color contribution of lights.

Here’s a general illumination equation for lighting and materials:

Illumination = Ambient Light + Diffuse Light + Specular Light + Emissive Light

This is a simplified equation for global illumination because it does not
account for reflected light. Reflected lighting is addressed in Chapter 11 in the
hemispheric lighting example.

The equation highlights four different types of lights. Each light type rep-
resents a different light behavior and influences the final vertex color.

Here is an example of a single object illuminated with ambient, diffuse,
and specular lighting. (See Color Plate 32.)

Now let’s look into the light components in a little more detail.

Table A-3 Parameters of the Blend Formula

Parameter Description

f The fog factor. This is a number between 0 and 1 that will be used for
blending. This number was calculated from the linear or exponential
fog factor equations.

Ci The initial vertex color. This is a vertex color with the global lighting
applied but without texturing.

Cf The fog color. This is a single color supplied by the user. The alpha
value of this color is not used.

C The final vertex color. This color is a blend of the fog color and the lit
vertex color.

C f . Ci + (1 – f) . Cf

Z01A616531.fm Page 299 Tuesday, May 13, 2003 1:11 PM

300 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

Ambient Light
Here’s a general equation for ambient light:

Ambient Lighting = Mc * [Ga + sum(Lai)]

Table A-4 describes the parameters used in the ambient light equation.

Ambient light is a blend of a material’s ambient color with the sum of all
the ambient lighting in a scene. Ambient lighting lights all vertices with the
same color. The result is an object that has a base color but looks as if it were
flat. (See Color Plate 33.)

Diffuse Light
Here’s a general equation for diffuse light:

Diffuse Lighting = sum[Vd * Ld * (N dot Ldir) * Atten * Spot]

Table A-5 describes the parameters used in the diffuse light equation.

Table A-4 Parameters for Ambient Light

Parameter Description

Mc Material ambient color. An object usually has only one material, so
this is a single value.

Ga Global ambient color. This is a single global value independent of the
object.

sum Summation of the ambient light from each of the lights.

Lai Light ambient color, of the ith light. This value represents the ambient
component of each light in a scene.

Table A-5 Parameters for Diffuse Light

Parameter Description

sum Sum of each light’s diffuse component

Vd Vertex diffuse color

Ld Light diffuse color

N Vertex normal

Ldir Light direction vector from object vertex to the light

Z01A616531.fm Page 300 Tuesday, May 13, 2003 1:11 PM

Appendix A Vertex Processing 301

Microsoft Press. Confidential. master page = Right
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

Diffuse light is calculated per vertex. It is much more computationally
complex than ambient lighting. The value for each light is dependent on the
light type (attenuation and spot) as well as the light color. The value for each
light is also blended with the per-vertex diffuse color.

Diffuse lighting takes into account a vertex normal, which means that the
light is adjusted based on the curvature of the surface. (See Color Plate 34.) The
result is that the surface of an object looks more natural because the light shade
changes as the surface turns away from the light. (See Color Plate 35.)

Specular Light
Here’s a general equation for specular light:

Specular Lighting = Vs * sum[Ls * (N dot H)**P * Atten * Spot]

Table A-6 describes the parameters used in the specular light calculation.

Atten The equation for a light’s attenuation. This is the range of a light’s
rays. Objects outside this range are not affected by this light.

Spot Characteristics of the spotlight cone. Specifies the umbra and penum-
bra values for a spotlight.

Table A-5 Parameters for Diffuse Light (continued)

Parameter Description

Table A-6 Parameters for Specular Light

Parameter Description

Vs Vertex specular color

sum Sum of each light’s specular component

N Vertex normal

H Half-way vector, a vector halfway between a vector from the vertex to
the light, and a vector from the vertex to the camera.

P Specular reflection power. Raises the N dot H component to a power.
The result makes the light attenuate much faster over the surface of
the object, which creates a brighter highlight with a sharper edge.

Ls Light specular color

(continued)

Z01A616531.fm Page 301 Tuesday, May 13, 2003 1:11 PM

302 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

Specular light is calculated per vertex. It is much more computationally
complex than either ambient lighting or diffuse lighting. It is a sum of specular
light contributions from each light in a scene. The value for each light is depen-
dent on the light type (attenuation and spot) as well as the light color. The value
for each light is also blended with the per-vertex specular color.

Specular lighting takes into account a vertex normal but adds an exponen-
tial power to its contribution, which means that the light attenuation (based on
the surface curvature) can change more rapidly. The result is a smaller and
tighter light on the surface that’s commonly called a specular highlight. (See
Color Plate 36.)

The effect of all three lighting components produces more realistic results.
(See Color Plate 32.)

Emissive Light
Emissive light is light that is produced (or emitted) by an object. Emissive light
is often used to create the impression that the object is glowing or hot. So,
objects such as a light bulb might use emissive light to look bright or to produce
a glow effect. In the graphics pipeline, emissive lights do not actually emit any
light, and the light doesn’t spill onto other objects in the scene, which is very
different from the real world.

Light Attenuation
Lights can use a range value. The purpose of the range is to allow lights to
affect objects within their range and not affect objects outside their range. To
add a range to a light, a light can be given an attenuation in the form of an
equation. The three most common falloff equations are constant, linear, and
squared. The equation for attenuation looks like this:

Atten The equation for a light’s attenuation. This is the range of a light’s
rays. Objects outside this range are not affected by this light.

Spot Characteristics of the spotlight cone. Specifies the umbra and penum-
bra values for a spotlight.

Table A-6 Parameters for Specular Light (continued)

Parameter Description

Z01A616531.fm Page 302 Tuesday, May 13, 2003 1:11 PM

Appendix A Vertex Processing 303

Microsoft Press. Confidential. master page = Right
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

Atten = 1/(att0i + att1i*di + att2i*di
**2)

Table A-7 describes the parameters used in the light attenuation calculation.

To attenuate a light, use one of the three attenuation types. Directional
lights do not use attenuation because directional lights use parallel light rays.
Point lights and spotlights are affected by attenuation.

Spotlight Cone
A spotlight’s light rays emanate from a point similar to a light bulb, resulting in
rays that are not parallel. If you study a spotlight closely, you’ll see two cones
of light, an inner cone that is brighter and an outer cone that has a very soft
edge. The inner and outer cones can be visualized as shown in the following
figure.

Table A-8 describes the parameters used for a spotlight cone.

Table A-7 Parameters for Light Attenuation

Parameter Description

att0i Constant attenuation factor

att1i Linear attenuation factor

att2i Squared attenuation factor

di Distance from vertex position to light position

phi theta

Inner cone

Outer cone

Z01A616531.fm Page 303 Tuesday, May 13, 2003 1:11 PM

304 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
xgraph, AppA, PP1, edd version: #, FrameMaker+SGML; ef

The contribution of a spotlight to an object’s final color is given as shown
in the following figure.

Table A-9 describes the parameters used.

Table A-8 Parameters for a Spotlight Cone

Parameter Description

phi Penumbra angle, or the outer cone angle

theta Umbra angle, or the inner cone angle

Table A-9 Parameters for Calculating a Spotlight’s Color

Parameter Description

falloff Falloff factor. This is the range of the light’s rays.

rho An angle formed by the dot product of two direction vectors. rho =
norm(Ldcs) dot norm(Ldir). The norm function normalizes each vector.
Ldcs is the light direction. Ldir is a direction vector from the light to the
object vertex. The calculation is commonly done in view space.

spoti

1

0

rhoi – cos()
2

cos() – cos()
phii

phii

2

thetai

2

falloff

otherwise

for non-spotlights or if rhoi > cos()
thetai

2

if rhoi < cos()
phii

2

Z01A616531.fm Page 304 Tuesday, May 13, 2003 1:11 PM

305

Microsoft Press. Confidential. master page = Section Opener
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Appendix B

Asm Shader Instructions

This appendix provides a complete list of the vertex shader and pixel shader
assembly-language instructions. Each instruction includes the instruction name,
a brief description, and the syntax for calling the instruction. Most instructions
describe their operations in pseudocode, except those that have already been
adequately described in the description.
Each instruction also lists the vertex shader versions and pixel shader versions
that support it. For in-depth details about some of the instructions, consult the
Reference pages in the Microsoft DirectX SDK.

Instructions

abs
Description: Absolute value.
Syntax: abs dest, src
Operation:

dest.x = abs(src.x)
dest.y = abs(src.y)
dest.z = abs(src.z)
dest.w = abs(src.w)

Available in vertex shader versions:

Available in pixel shader versions:

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

Z02B616531.fm Page 305 Tuesday, May 13, 2003 1:11 PM

306 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

adds
Description: Add two vectors.
Syntax: add dest, src0, src1
Operation:

dest.x = src0.x + src1.x;
dest.y = src0.y + src1.y;
dest.z = src0.z + src1.z;
dest.w = src0.w + src1.w;

Available in vertex shader versions:

Available in pixel shader versions:

bem
Description: Bump environment-map transform.
Syntax: bem dest, src0, src1
Operation:

(Given n == dest register #)
dest.r = src0.r + D3DTSS_BUMPENVMAT00(stage n) * src1.r

+ D3DTSS_BUMPENVMAT10(stage n) * src1.g
dest.g = src0.g + D3DTSS_BUMPENVMAT01(stage n) * src1.r

+ D3DTSS_BUMPENVMAT11(stage n) * src1.g

Available in vertex shader versions: none
Available in pixel shader versions:

break
Description: Break out of the current loop at the nearest endloop or endrep.
Syntax: break
Available in vertex shader versions:

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x* x

Z02B616531.fm Page 306 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 307

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in pixel shader versions:

break comp
Description: Break out of the current loop if a comparison is true. Break to the
nearest endloop or endrep.
Syntax: break_comp src0, src1
Use one of the following comparisons (_comp):

Operation:

if (src0 comparison src1)
jump to the corresponding endloop or endrep instruction;

Available in vertex shader versions:

Available in pixel shader versions:

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

Syntax Comparison

_gt Greater than

_lt Less than

_ge Greater than or equal to

_le Less than or equal to

_eq Equal to

_ne Not equal to

vs_1_1 vs_2_0 vs_2_x vs_3_0

x* x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

Z02B616531.fm Page 307 Tuesday, May 13, 2003 1:11 PM

308 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

break pred
Description: Break out of the current loop based on a per-component predicate
register value. Break to the nearest endloop or endrep.
Syntax: break [!]p0.replicateSwizzle
Operation:

if(per-component predicate value is True)
break

else
continue

Available in vertex shader versions:

Available in pixel shader versions:

call
Description: Jump to the instruction marked with the label.
Syntax: call label
Operation:

Push address of the next instruction to the return address stack.
Continue execution from the instruction marked by the label.

Available in vertex shader versions:

Available in pixel shader versions:

vs_1_1 vs_2_0 vs_2_x vs_3_0

x* x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

Z02B616531.fm Page 308 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 309

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

callnz
Description: Jump to the instruction following the label if the contents of the
Boolean register are True.
Syntax: callnz label, booleanRegister
Operation:

if (specified boolean register is not zero)
{

Push address of the next instruction to the return address stack.
Continue execution from the instruction marked by the label.

}

Available in vertex shader versions:

Available in pixel shader versions:

callnz pred
Description: Jump to a subroutine based on a per-component predicate value.
Syntax: callnz label, [!] p0.replicateSwizzle
Operation:

if (specified register component is not zero)
{

Push address of the next instruction to the return address stack.
Continue execution from the instruction marked by the label.

}

Available in vertex shader versions:

Available in pixel shader versions:

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

Z02B616531.fm Page 309 Tuesday, May 13, 2003 1:11 PM

310 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

cmp
Description: Compare source to 0.
Syntax: cmp dest, src0, src1, src2
Operation:

dest.x = src0.x >= 0 ? src1.x : src2.x
dest.y = src0.y >= 0 ? src1.y : src2.y
dest.z = src0.z >= 0 ? src1.z : src2.z
dest.w = src0.w >= 0 ? src1.w : src2.w

Available in vertex shader versions: none
Available in pixel shader versions:

cnd
Description: Compare source to 0.5.
Syntax: cnddest, src0, src1, src2
Operation:

// Version 1_1 to 1_3
if (r0.a > 0.5)

dest = src1
else

dest = src2

// Version 1_4
for each component in src0
{

if (src0.component > 0.5)
dest.component = src1.component

else
dest.component = src2.component

}

Available in vertex shader versions: none
Available in pixel shader versions:

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x x

Z02B616531.fm Page 310 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 311

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

crs
Description: Cross product using the right-hand rule.
Syntax: crs dest, src0, src1
Operation:

dest.x = src0.y * src1.z - src0.z * src1.y;
dest.y = src0.z * src1.x - src0.x * src1.z;
dest.z = src0.x * src1.y - src0.y * src1.x;

Available in vertex shader versions:

Available in pixel shader versions:

dcl_samplerType
Description: Declare a sampler.
Syntax: dcl_samplerType s#
Use one of the following texture dimensions (_samplerType):

Available in vertex shader versions:

Available in pixel shader versions:

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

Type Description

_2d Texture coordinates contain (x,y)

_cube Texture coordinates contain (x,y,z)

_volume Texture coordinates contain (x,y,z)

vs_1_1 vs_2_0 vs_2_x vs_3_0

x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

Z02B616531.fm Page 311 Tuesday, May 13, 2003 1:11 PM

312 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

dcl_usage
Description: Declare an input or output register.
Syntax: dcl_usage[usage_index] dest[.mask]
Operation:

binds the vertex buffer component with a vertex shader input register

Available in vertex shader versions:

Available in pixel shader versions:

def
Description: Define a floating-point constant register.
Syntax: def dest, value1, value2, value3, value4
Operation:

dest.x = value1;
dest.y = value2;
dest.z = value3;
dest.w = value4;

Available in vertex shader versions:

Available in pixel shader versions:

defb
Description: Define a Boolean constant register.
Syntax: defb dest, boolean
Operation:

set a boolean value

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_
4

ps_2_
0

ps_2_
x

ps_3_0

x x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x x x x x

Z02B616531.fm Page 312 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 313

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in vertex shader versions:

Available in pixel shader versions:

defi
Description: Set an integer constant register.
Syntax: defi dest, four integer values
Operation:

set an integer value

Available in vertex shader versions:

Available in pixel shader versions:

dp2add
Description: 2-D dot product and add.
Syntax: dp2add dest, src0, src1, src2
Operation:

dest.x = src0.x*src1.x + src0.y*src1.y + src2.singleComponent

Available in vertex shader versions: none
Available in pixel shader versions:

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

Z02B616531.fm Page 313 Tuesday, May 13, 2003 1:11 PM

314 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

dp3
Description: 3-component dot product.
Syntax: dp3 dest, src0, src1
Operation:

dest.w = (src0.x * src1.x) + (src0.y * src1.y) + (src0.z * src1.z);
dest.x = dest.y = dest.z = dest.w;

Available in vertex shader versions:

Available in pixel shader versions:

dp4
Description: 4-component dot product.
Syntax: dp4 dest, src0, src1
Operation:

dest.w = (src0.x * src1.x) + (src0.y * src1.y) + (src0.z * src1.z) + (src0.w *
src1.w);
dest.x = dest.y = dest.z = dest.w;

Available in vertex shader versions:

Available in pixel shader versions:

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x x x x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x x x x

Z02B616531.fm Page 314 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 315

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

dest
Description: Calculate a distance vector.
Syntax: dest dest, src0, src1
Operation:

dest.x = 1;
dest.y = src0.y * src1.y;
dest.z = src0.z;
dest.w = src1.w;

Available in vertex shader versions:

Available in pixel shader versions: none

dsx
Description: The rate of change in the render target's x-direction.
Syntax: dest dest, src0
Operation: The dsx, dsy instructions compute their result by looking at the cur-
rent contents of the source register (per component) for the various pixels in
the local area executing in the lock-step.
Available in vertex shader versions: none
Available in pixel shader versions:

dsy
Description: The rate of change in the render target's y-direction.
Syntax: dest dest, src0
Operation: The dsx, dsy instructions compute their result by looking at the cur-
rent contents of the source register (per component) for the various pixels in
the local area executing in the lock-step.
Available in vertex shader versions: none
Available in pixel shader versions:

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

Z02B616531.fm Page 315 Tuesday, May 13, 2003 1:11 PM

316 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

else
Description: Being an else block. If the condition in the corresponding if state-
ment is true, the code enclosed by the if statement and the matching else is run.
Syntax: else
Available in vertex shader versions:

Available in pixel shader versions:

endif
Description: End of an if-endif block.
Syntax: endif
Available in vertex shader versions:

Available in pixel shader versions:

endloop
Description: End of a loop-endloop block.
Syntax: endloop
Operation:

LoopCounter += LoopStep;
LoopIterationCount = LoopIterationCount - 1;
if (LoopIterationCount > 0)

Continue execution at the StartLoopOffset

Available in vertex shader versions:

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

Z02B616531.fm Page 316 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 317

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in pixel shader versions:

endrep
Description: End of an end-endrep block.
Syntax: endrep
Operation:

LoopIterationCount = LoopIterationCount - 1;
if (LoopIterationCount > 0)

Continue execution at the StartLoopOffset

Available in vertex shader versions:

Available in pixel shader versions:

exp
Description: Full-precision exponential 2**x.
Syntax: exp dest, src
Operation:

dest.x = dest.y = dest.z = dest.w = (float)pow(2, src0.w);

Available in vertex shader versions:

Available in pixel shader versions:

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

Z02B616531.fm Page 317 Tuesday, May 13, 2003 1:11 PM

318 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

expp
Description: Partial-precision exponential 2**x.
Syntax: expp dest, src
Operation:

float w = src.w;
float v = (float)floor(src.w);
dest.x = (float)pow(2, v);
dest.y = w - v;
// Reduced precision exponent
float tmp = (float)pow(2, w);
DWORD tmpd = *(DWORD*)&tmp & 0xffffff00;
dest.z = *(float*)&tmpd;
dest.w = 1;

Available in vertex shader versions:

Available in pixel shader versions: none

frc
Description: Returns the fractional portion of each input component.
Syntax: frc, dest, src
Operation:

dest.x = src.x - (float)floor(src.x);
dest.y = src.y - (float)floor(src.y);
dest.z = src.z - (float)floor(src.z);
dest.w = src.w - (float)floor(src.w);

Available in vertex shader versions:

Available in pixel shader versions:

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

Z02B616531.fm Page 318 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 319

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

if
Description: Begin an if block.
Syntax: if booleanRegister
Operation:

def b2, True
if b2

... // Instructions to run if b2 is nonzero
// optional else block
else
endif

Available in vertex shader versions:

Available in pixel shader versions:

if comp
Description: Start an if block based on a comparison between src0 and src1.
Syntax: if_comp src0, src1
Use one of the following comparisons (_comp):

Operation:

if (src0 comparison src1)
jump to the corresponding else or endif instruction;

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

Syntax Comparison

_gt Greater than

_lt Less than

_ge Greater than or equal to

_le Less than or equal to

_eq Equal to

_ne Not equal to

Z02B616531.fm Page 319 Tuesday, May 13, 2003 1:11 PM

320 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in vertex shader versions:

Available in pixel shader versions:

if pred
Description: Start an if block based on a per-component predicate value.
Syntax: if [!]p0.replicateSwizzle
Operation:
Available in vertex shader versions:

Available in pixel shader versions:

label
Description: Mark the next instruction with a label index.
Syntax: label l# where # identifies the label number.
Operation:

... // one or more instructions
label l2

... // the next instruction

Available in vertex shader versions:

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

Z02B616531.fm Page 320 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 321

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in pixel shader versions:

lit
Description: Calculates lighting coefficients from two dot products and an
exponent.
Syntax: lit dest, src

src.x = N*L ; The dot product between normal and direction to light
src.y = N*H ; The dot product between normal and half vector
src.z = ignored ; This value is ignored
src.w = exponent ; The value must be between -128.0 and 128.0

Operation:

dest.x = 1;
dest.y = 0;
dest.z = 0;
dest.w = 1;
float power = src.w;
const float MAXPOWER = 127.9961f;
if (power < -MAXPOWER)

power = -MAXPOWER; // Fits into 8.8 fixed point format
else if (power > MAXPOWER)

power = -MAXPOWER; // Fits into 8.8 fixed point format
if (src.x > 0)
{

dest.y = src.x;
if (src.y > 0)
{

// Allowed approximation is EXP(power * LOG(src.y))
dest.z = (float)(pow(src.y, power));

}
}

Available in vertex shader versions:

Available in pixel shader versions: none

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

Z02B616531.fm Page 321 Tuesday, May 13, 2003 1:11 PM

322 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

log
Description: Full-precision base 2 log(x).
Syntax: log dest, src
Operation:

float v = abs(src);
if (v != 0)
{

dest.x = dest.y = dest.z = dest.w =
(float)(log(v)/log(2));

}
else
{

dest.x = dest.y = dest.z = dest.w = -FLT_MAX;
}

Available in vertex shader versions:

Available in pixel shader versions:

logp
Description: Partial-precision base 2 logp(x).
Syntax: logp dest, src0
Operation:

float f = abs(src);
if (f != 0)

dest.x = dest.y = dest.z = dest.w = (float)(log(f)/log(2));
else

dest.x = dest.y = dest.z = dest.w = -FLT_MAX;

Available in vertex shader versions:

Available in pixel shader versions: none

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

Z02B616531.fm Page 322 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 323

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

loop
Description: Begin a loop block.
Syntax: loop aL, integerRegister
Operation:

StartLoopOffset = next instruction offset
LoopCounter = IntegerReg.x
IterationCount = IntegerReg.y
LoopStep = IntegerReg.z
if (IterationCounter <= 0)

Continue execution after the next EndLoop instruction

Available in vertex shader versions:

Available in pixel shader versions:

lrp
Description: Linear interpolation between src1 and src2 with the factor in src0.
Syntax: lrp dest, src0, src1, src2
Operation:

dest.x = src0.x * (src1.x - src2.x) + src2.x;
dest.y = src0.y * (src1.y - src2.y) + src2.y;
dest.z = src0.z * (src1.z - src2.z) + src2.z;
dest.w = src0.w * (src1.w - src2.w) + src2.w;

Available in vertex shader versions:

Available in pixel shader versions:

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x x x x x

Z02B616531.fm Page 323 Tuesday, May 13, 2003 1:11 PM

324 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

m3x2
Description: Product of a 3-component vector and a 2x3 matrix.
Syntax: m3x2 dest, src0, src1 (2 constant registers)
Operation:

dest.x = (src0.x * src1.x) + (src0.x * src1.y) + (src0.x * src1.z);
dest.y = (src0.x * src2.x) + (src0.y * src2.y) + (src0.z * src2.z);

Available in vertex shader versions:

Available in pixel shader versions:

m3x3
Description: Product of a 3-component vector and a 3x3 matrix.
Syntax: m3x3 dest, src0, src1 (3 constant registers)
Operation:

dest.x = (src0.x * src1.x) + (src0.y * src1.y) + (src0.z * src1.z);
dest.y = (src0.x * src2.x) + (src0.y * src2.y) + (src0.z * src2.z);
dest.z = (src0.x * src3.x) + (src0.y * src3.y) + (src0.z * src3.z);

Available in vertex shader versions:

Available in pixel shader versions:

m3x4
Description: Product of a 3-component vector and a 4x3 matrix.
Syntax: m3x4 dest, src0, src1 (4 constant registers)
Operation:

dest.x = (src0.x * src1.x) + (src0.y * src1.y) + (src0.z * src1.z);
dest.y = (src0.x * src2.x) + (src0.y * src2.y) + (src0.z * src2.z);
dest.z = (src0.x * src3.x) + (src0.y * src3.y) + (src0.z * src3.z);
dest.w = (src0.x * src4.x) + (src0.y * src4.y) + (src0.z * src4.z);

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

Z02B616531.fm Page 324 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 325

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in vertex shader versions:

Available in pixel shader versions:

m4x3
Description: Product of a 4-component vector and a 3x4 matrix.
Syntax: m4x3 dest, src0, src1 (3 constant registers)
Operation:

dest.x = (src0.x * src1.x) + (src0.y * src1.y) + (src0.z * src1.z) +
(src0.w * src1.w);
dest.y = (src0.x * src2.x) + (src0.y * src2.y) + (src0.z * src2.z) +
(src0.w * src2.w);
dest.z = (src0.x * src3.x) + (src0.y * src3.y) + (src0.z * src3.z) +
(src0.w * src3.w);

Available in vertex shader versions:

Available in pixel shader versions:

m4x4
Description: Product of a 4-component vector and a 4x4 matrix.
Syntax: m4x4 dest, src0, src1 (4 constant registers)
Operation:

dest.x = (src0.x * src1.x) + (src0.y * src1.y) + (src0.z * src1.z) +
(src0.w * src1.w);
dest.y = (src0.x * src2.x) + (src0.y * src2.y) + (src0.z * src2.z) +
(src0.w * src2.w);
dest.z = (src0.x * src3.x) + (src0.y * src3.y) + (src0.z * src3.z) +
(src0.w * src3.w);
dest.w = (src0.x * src4.x) + (src0.y * src4.y) + (src0.z * src4.z) +
(src0.w * src4.w);

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

Z02B616531.fm Page 325 Tuesday, May 13, 2003 1:11 PM

326 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in vertex shader versions:

Available in pixel shader versions:

mad
Description: Multiply and add.
Syntax: mad dest, src0, src1, src2
Operation:

dest.x = src0.x * src1.x + src2.x;
dest.y = src0.y * src1.y + src2.y;
dest.z = src0.z * src1.z + src2.z;
dest.w = src0.w * src1.w + src2.w;

Available in vertex shader versions:

Available in pixel shader versions:

max
Description: Maximum.
Syntax: max dest, src0, src1
Operation:

dest.x=(src0.x >= src1.x) ? src0.x : src1.x;
dest.y=(src0.y >= src1.y) ? src0.y : src1.y;
dest.z=(src0.z >= src1.z) ? src0.z : src1.z;
dest.w=(src0.w >= src1.w) ? src0.w : src1.w;

Available in vertex shader versions:

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x x x x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

Z02B616531.fm Page 326 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 327

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in pixel shader versions:

min
Description: Minimum.
Syntax: min dest, src0, src1
Operation:

dest.x=(src0.x < src1.x) ? src0.x : src1.x;
dest.y=(src0.y < src1.y) ? src0.y : src1.y;
dest.z=(src0.z < src1.z) ? src0.z : src1.z;
dest.w=(src0.w < src1.w) ? src0.w : src1.w;

Available in vertex shader versions:

Available in pixel shader versions:

mov
Description: Move.
Syntax: mov dest, src
Operation:

if(dest is an integer register)
{

int intSrc = RoundToNearest(src.w);
dest = intSrc;

}
else
{

dest = src;
}

Available in vertex shader versions:

Available in pixel shader versions:

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

Z02B616531.fm Page 327 Tuesday, May 13, 2003 1:11 PM

328 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

mova
Description: Move data to the address register.
Syntax: mova dest, src0
Operation:

if(dest is an integer register)
{

int intSrc = RoundToNearest(src.w);
dest = intSrc;

}
else
{

dest = src;
}

Available in vertex shader versions:

Available in pixel shader versions: none

mul
Description: Multiply.
Syntax: mul dest, src0, src1
Operation:

dest.x = src0.x * src1.x;
dest.y = src0.y * src1.y;
dest.z = src0.z * src1.z;
dest.w = src0.w * src1.w;

Available in vertex shader versions:

Available in pixel shader versions:

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x x x x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x x x x x

Z02B616531.fm Page 328 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 329

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

nop
Description: No operation.
Syntax: nop
Operation: none
Available in vertex shader versions:

Available in pixel shader versions:

nrm
Description: Normalize.
Syntax: nrm dest, src
Operation:

squareRootOfTheSum = (src0.x*src0.x + src0.y*src0.y + src0.z*src0.z)**½;
dest.x = src0.x * (1 / squareRootOfTheSum);
dest.y = src0.y * (1 / squareRootOfTheSum);
dest.z = src0.z * (1 / squareRootOfTheSum);
dest.w = src0.w * (1 / squareRootOfTheSum);

Available in vertex shader versions:

Available in pixel shader versions:

phase
Description: Transition from phase 1 to phase 2.
Syntax: phase
Operation: none
Available in vertex shader versions: none
Available in pixel shader versions:

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x x x x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

Z02B616531.fm Page 329 Tuesday, May 13, 2003 1:11 PM

330 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

pow
Description: Full-precision src0**src1.
Syntax: pow dest, src0, src1
Operation:

dest = pow(abs(src0), src1);

Available in vertex shader versions:

Available in pixel shader versions:

ps
Description: Pixel shader version.
Syntax: ps_mainVersion_subVersion

Operation: none
Available in vertex shader versions: none
Available in pixel shader versions:

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

Main Versions Subversions

1 1, 2, 3, 4

2 0, x (extended), sw (software)

3 0, sw (software)

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x x x x x

Z02B616531.fm Page 330 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 331

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

rcp
Description: Reciprocal.
Syntax: rcp dest, src
Operation:

float f = src0;
if(f == 0.0f)
{

f = FLT_MAX;
}
else
{

if(f != 1.0)
{

f = 1/f;
}

}
dest = f;

Available in vertex shader versions:

Available in pixel shader versions:

rep
Description: Start a repeat block.
Syntax: rep integerRegister
Operation:

StartLoopOffset = next instruction offset
LoopIterationCount = IntegerRegister.x
if (LoopIterationCount <= 0)

Continue execution after the next EndRep instruction

Available in vertex shader versions:

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

Z02B616531.fm Page 331 Tuesday, May 13, 2003 1:11 PM

332 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in pixel shader versions:

ret
Description: Return from a subroutine.
Syntax: ret
Operation: none
Available in vertex shader versions:

Available in pixel shader versions:

rsq
Description: Reciprocal square root.
Syntax: rsq dest, src
Operation:

float f = abs(src0);
if (f == 0)

f = FLT_MAX
else
{

if (f != 1.0)
f = 1.0/(float)sqrt(f);

}
dest.z = dest.y = dest.z = dest.w = f;

Available in vertex shader versions:

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

Z02B616531.fm Page 332 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 333

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in pixel shader versions:

setp
Description: Set the predicate register.
Syntax: setp_comp dest, src0, src1
Use one of the following comparisons (_comp):

Operation:

per channel in destination write mask
{

dest.channel = src0.channel cmp src1.channel
}

Available in vertex shader versions:

Available in pixel shader versions:

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

Syntax Comparison

_gt Greater than

_lt Less than

_ge Greater than or equal to

_le Less than or equal to

_eq Equal to

_ne Not equal to

vs_1_1 vs_2_0 vs_2_x vs_3_0

x* x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x*

* = requires a cap to be set

x

Z02B616531.fm Page 333 Tuesday, May 13, 2003 1:11 PM

334 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

sge
Description: Set if greater than or equal to.
Syntax: sge dest, src0, src1
Operation:

dest.x = (src0.x >= src1.x) ? 1.0f : 0.0f;
dest.y = (src0.y >= src1.y) ? 1.0f : 0.0f;
dest.z = (src0.z >= src1.z) ? 1.0f : 0.0f;
dest.w = (src0.w >= src1.w) ? 1.0f : 0.0f;

Available in vertex shader versions:

Available in pixel shader versions: none

sgn
Description: Computes the sign of the data.
Syntax: sgn dest, src0, src1, src2
Operation:

for each component in src0
{

if (src0.component < 0)
dest.component = -1;

else
if (src0.component == 0)

dest.component = 0;
else

dest.component = 1;
}

Available in vertex shader versions:

Available in pixel shader versions: none

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

Z02B616531.fm Page 334 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 335

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

sincos
Description: Return cos(x) in dest.x, return sin(x) in dest.y.
Syntax: sincos dest, src0, src1, src2
Operation:
Available in vertex shader versions:

Available in pixel shader versions:

slt
Description: Set if less than.
Syntax: slt dest, src0, src1
Operation:

dest.x = (src0.x < src1.x) ? 1.0f : 0.0f;
dest.y = (src0.y < src1.y) ? 1.0f : 0.0f;
dest.z = (src0.z < src1.z) ? 1.0f : 0.0f;
dest.w = (src0.w < src1.w) ? 1.0f : 0.0f;

Available in vertex shader versions:

Available in pixel shader versions: none

sub
Description: Subtract.
Syntax: sub dest, src0, src1
Operation:

dest.x = src0.x - src1.x
dest.y = src0.y - src1.y
dest.z = src0.z - src1.z
dest.w = src0.w - src1.w

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

Z02B616531.fm Page 335 Tuesday, May 13, 2003 1:11 PM

336 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in vertex shader versions:

Available in pixel shader versions:

tex
Description: Sample a texture.
Syntax: tex dest
Operation:

Save a texture sample in a texture register

Available in vertex shader versions: none
Available in pixel shader versions:

texbem
Description: Sample a texture.
Syntax: texbem dest, src
Operation: Apply a fake bump environment-map transform. This is accom-
plished by modifying the texture address data of the destination register using
address perturbation data (du,dv) and a 2-D bump environment matrix. See
SDK Reference page for details.
Available in vertex shader versions: none
Available in pixel shader versions:

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

Z02B616531.fm Page 336 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 337

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

texbeml
Description: Sample a texture.
Syntax: texbeml dest, src
Operation: Apply a fake bump environment-map transform with luminance
correction. This is accomplished by modifying the texture address data of the
destination register using address perturbation data (du,dv) a 2-D bump envi-
ronment matrix and luminance. See SDK Reference page for details.
Available in vertex shader versions: none
Available in pixel shader versions:

texcoord
Description: Copy texture coordinates as color data.
Syntax: texcoord dest
Operation:

t.x = x texture coordinate
t.y = y texture coordinate
t.z = z texture coordinate
t.w = w texture coordinate

Available in vertex shader versions: none
Available in pixel shader versions:

texcrd
Description: Copy texture coordinates as color data.
Syntax: texcrd dest, src0
Operation:

t.x = x texture coordinate
t.y = y texture coordinate
t.z = z texture coordinate
t.w = w texture coordinate

Available in vertex shader versions: none
Available in pixel shader versions:

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x

Z02B616531.fm Page 337 Tuesday, May 13, 2003 1:11 PM

338 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

texdepth
Description: Calculate pixel depth.
Syntax: texdepth dest
Available in vertex shader versions: none
Available in pixel shader versions:

texdp3
Description: Dot product of the texture coordinate and the texture sample.
Syntax: texdp3 dest, src
Available in vertex shader versions: none
Available in pixel shader versions:

texdp3tex
Description: 1-D texture sample using the dot product of the texture coordinate
and the texture sample.
Syntax: texdp3tex dest, src
Available in vertex shader versions: none
Available in pixel shader versions:

texkill
Description: Cancel pixel render if any of the (uvw) texture coordinate compo-
nents is negative.
Syntax: texkill src0
Operation: texkill does not sample any texture. It operates on the first three
components of the texture coordinates given by the source register number. For
ps_1_4, texkill operates on the data in the first three components of the source
register. See the SDK Reference page for more detail.

if (any uvw texture-coordinate component is negative)
cancel pixel render

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x

Z02B616531.fm Page 338 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 339

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in vertex shader versions: none
Available in pixel shader versions:

texld
Description: Sample a texture.
Syntax: texld dest, src
Operation: Loads the destination register with color data (RGBA) sampled using
the contents of the source register as texture coordinates. The sampled texture
is the texture associated with the destination register number. See the SDK Ref-
erence page for more detail.
Available in vertex shader versions: none
Available in pixel shader versions:

texld
Description: Sample a texture.
Syntax: texld dest, src0, src1
Operation: Loads the destination register with color data (RGBA) sampled using
the contents of the source register as texture coordinates. The sampled texture
is the texture associated with the destination register number. See the SDK Ref-
erence page for more detail.
Available in vertex shader versions: none
Available in pixel shader versions:

texldb
Description: Sample a texture using the w component to lod bias the sampler.
Syntax: texldb dest, src0, src1
Operation: Projected texture load instruction. This instruction uses the fourth
element (.a or .w) to bias the texture-sampling level of detail (LOD) just before
sampling. See the SDK Reference page for more detail.

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x x x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

Z02B616531.fm Page 339 Tuesday, May 13, 2003 1:11 PM

340 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in vertex shader versions: none
Available in pixel shader versions:

texldd
Description: Sample a texture with user-defined gradients.
Syntax: texldd dest, src0, src1, src2, src3
Operation: This instruction samples a texture using the texture coordinates at
src0, the sampler specified by src1, and the gradients DSX and DSY coming
from src2 and src3. The x and y gradient values are used to select the appro-
priate mipmap level of the texture for sampling. See the SDK Reference page
for more detail.
Available in vertex shader versions: none
Available in pixel shader versions:

texldl
Description: Sample a texture using the w component for lod.
Syntax: texldl dest, src0, src1
Operation: Sample a texture with a particular sampler. The particular mipmap
LOD being sampled has to be specified as the fourth component of the texture
coordinate. See the SDK Reference page for more detail.

LOD = src0.w + LODBIAS;
if (LOD <= 0)
{

LOD = 0;
Filter = MagFilter;
tex = Lookup(MAX(MAXMIPLEVEL, LOD), Filter);

}
else
{

Filter = MinFilter;
LOD = MAX(MAXMIPLEVEL, LOD);
tex = Lookup(Floor(LOD), Filter);
if(MipFilter == LINEAR)
{

tex1 = Lookup(Ceil(LOD), Filter);
tex = (1 - frac(src0.w))*tex + frac(src0.w)*tex1;

}
}

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x

Z02B616531.fm Page 340 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 341

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in vertex shader versions:

Available in pixel shader versions:

texldp
Description: This instruction divides the input texture coordinate by the fourth
element (.a or .w) just before sampling.
Syntax: texldp dest, src0, src1
Operation: Sample a texture using the w component to divide the texture coor-
dinate (applying perspective). See the SDK Reference page for more detail.
Available in vertex shader versions: none
Available in pixel shader versions:

texm3x2depth
Description: Calculate pixel depth.
Syntax: texm3x2depth dest, src
Operation: See the SDK Reference page for more detail.
Available in vertex shader versions: none
Available in pixel shader versions:

texm3x2pad
Description: Performs the first row multiplication of a two-row matrix multiply.
Used with texm3x2tex or texm3x2depth.
Syntax: texm3x2pad dest, src
Operation: See the SDK Reference page for more detail.
Available in vertex shader versions: none

vs_1_1 vs_2_0 vs_2_x vs_3_0

x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x

Z02B616531.fm Page 341 Tuesday, May 13, 2003 1:11 PM

342 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in pixel shader versions:

texm3x2tex
Description: Texture sample with transformed texture coordinates.
Syntax: texm3x2tex dest, src
Operation: See the SDK Reference page for more detail.
Available in vertex shader versions: none
Available in pixel shader versions:

texm3x3
Description: Texture sample with a matrix multiply.
Syntax: texm3x3 dest, src
Operation: See the SDK Reference page for more detail.
Available in vertex shader versions: none
Available in pixel shader versions:

texm3x3pad
Description: First row matrix multiply. Used with texm3x3, texm3x3spec,
texm3x3tex, or texm3x3vspec.
Syntax: texm3x3pad dest, src
Operation: See the SDK Reference page for more detail.
Available in vertex shader versions: none
Available in pixel shader versions:

texm3x3spec
Description: Texture sample with a transformed texture coordinate.
Syntax: texm3x3spec dest, src0, src1
Operation: See the SDK Reference page for more detail.

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

Z02B616531.fm Page 342 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 343

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in vertex shader versions: none
Available in pixel shader versions:

texm3x3tex
Description: Texture sample with a transformed texture coordinate.
Syntax: texm3x3tex dest, src0
Operation: See the SDK Reference page for more detail.
Available in vertex shader versions: none
Available in pixel shader versions:

texm3x3vspec
Description: Texture sample with a transformed texture coordinate.
Syntax: texm3x3vspec dest, src0
Operation: See the SDK Reference page for more detail.
Available in vertex shader versions: none
Available in pixel shader versions:

texreg2ar
Description: Texture sample using (a,r) components for (u,v) texture coordi-
nates.
Syntax: texreg2ar dest, src
Operation: Interprets the alpha and red color components of the source register
as texture address data (u,v) to sample the texture at the stage corresponding to
the destination register number. See the SDK Reference page for more detail.
Available in vertex shader versions: none
Available in pixel shader versions:

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

Z02B616531.fm Page 343 Tuesday, May 13, 2003 1:11 PM

344 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

texreg2gb
Description: Texture sample using (g,b) components for (u,v) texture coordi-
nates.
Syntax: texreg2gb dest, src
Operation: Interprets the green and blue color components of the source regis-
ter as texture address data (u,v) to sample the texture at the stage correspond-
ing to the destination register number. See the SDK Reference page for more
detail.
Available in vertex shader versions: none
Available in pixel shader versions:

texreg2rgb
Description: Texture sample using (r,g,b) components for (u,v,w) texture coor-
dinates.
Syntax: texreg2rgb dest, src
Operation: Interprets the red, green, and blue color components of the source
register as texture address data (u,v,w) to sample the texture at the stage corre-
sponding to the destination register number. See the SDK Reference page for
more detail.
Available in vertex shader versions: none
Available in pixel shader versions:

vs
Description: Vertex shader version.
Syntax: vs_mainVersion_subVersion

Operation: none

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x x

ps_1_1 ps_1_2 ps_1_3 ps_1_4 ps_2_0 ps_2_x ps_3_0

x x

Main Versions Subversions

1 1

2 0, x (extended), sw (software)

3 0, sw (software)

Z02B616531.fm Page 344 Tuesday, May 13, 2003 1:11 PM

Appendix B Asm Shader Instructions 345

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Available in vertex shader versions:

Available in pixel shader versions: none

vs_1_1 vs_2_0 vs_2_x vs_3_0

x x x x

Z02B616531.fm Page 345 Tuesday, May 13, 2003 1:11 PM

Microsoft Press. Confidential. master page = Blank
DevStand, sample pages, LRC, edd version: #, FrameMaker+SGML; jimkr

Z02B616531.fm Page 346 Tuesday, May 13, 2003 1:11 PM

347

Microsoft Press. Confidential. master page = Section Opener
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Appendix C

HLSL Reference

The high-level shader language (HLSL) uses data types, operators, and user-
defined functions to make shader design more like writing C functions. The
many intrinsic functions included in the language reduce development time.
Each is described in this appendix, which also contains information about con-
structing shaders that are targeted to run on ps_1_x hardware. The last section,
"Grammar," lists the statements that can be constructed by the language.

1: Data Types
Data types are used to declare variables. HLSL supports the following data
types:

■ Intrinsic types that are built into the language

■ User-defined types using a typdef

HLSL also supports type casting, which automatically converts one data
type to another.

1.1 Intrinsic Types
Intrinsic types are defined by the language. HLSL defines scalar, vector, and
matrix intrinsic types.

The scalar types are:

The vector types are shown here:

bool True or false

int 32-bit signed integer

half 16-bit floating point value

float 32-bit floating point value

double 64-bit floating point value

Z03C616531.fm Page 347 Tuesday, May 13, 2003 1:10 PM

348 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

bool bVector; // scalar containing 1 Boolean
bool1 bVector; // vector containing 1 Boolean
int1 iVector; // vector containing 1 int
half2 hVector; // vector containing 2 halfs
float3 fVector; // vector containing 3 floats
double4 dVector; // vector containing 4 doubles

Vectors can be equivalently declared with this syntax:

vector <bool, 1> bVector = false;
vector <int, 1> iVector = 1;
vector <half, 2> hVector = { 0.2, 0.3 };
vector <float3, 3> fVector = { 0.2f, 0.3f, 0.4f };
vector <double, 4> dVector = { 0.2, 0.3, 0.4, 0.5 };

The integer value inside the angle brackets is the number of columns,
which has a maximum value of 4.

The matrix types are shown here:

int1x1 iMatrix; // integer matrix with 1 row, 1 column
int2x1 iMatrix; // integer matrix with 2 rows, 1 column
...
int4x1 iMatrix; // integer matrix with 4 rows, 1 column
...
int1x4 iMatrix; // integer matrix with 1 row, 4 columns

double1x1 dMatrix; // double matrix with 1 row, 1 column
double2x2 dMatrix; // double matrix with 2 rows, 2 columns
double3x3 dMatrix; // double matrix with 3 rows, 3 columns
double4x4 dMatrix; // double matrix with 4 rows, 4 columns

A matrix can also be declared with this syntax:

matrix < float, 2, 2 > fMatrix = { 0.0f, 0.1f, // row 1
2.1f, 2.2f // row 2

};

The integer values inside the angle brackets are the number of rows and
the number of columns, each of which has a maximum value of 4.

1.2 User-Defined Types
The typedef keyword declares a name for a user-defined type. The syntax for
declaring a new type is

typedef [const] type name [array_suffix] [, id ...] ;

Where:

Z03C616531.fm Page 348 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 349

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

■ typedef is the keyword.

■ [const] is an optional modifier. Use const to mark a variable as a con-
stant whose value does not change between draw calls.

■ type is any HLSL basic data type.

■ id is the name that will be used to identify the type. It is a continuous
text string consisting of letters or integers.

■ [array_suffix] is an optional integer array index that represents the
array dimension.

■ [, id ...] are optional additional IDs.

When a new type has been declared, it can be referenced by its identifier.
For compatibility with Microsoft DirectX 8 effects, the following case-

insensitive types are defined by the language:

typedef int DWORD;
typedef float FLOAT;
typedef vector<float, 4> VECTOR;
typedef matrix<float, 4, 4> MATRIX;
typedef string STRING;
typedef texture TEXTURE;
typedef pixelshader PIXELSHADER;
typedef vertexshader VERTEXSHADER;

For convenience, the following types are defined by the language:

typedef vector <bool, #> bool#;
typedef vector <int, #> int#;
typedef vector <half, #> half#;
typedef vector <float, #> float#;
typedef vector <double, #> double#;
typedef matrix <bool, #, #> bool#x#;
typedef matrix <int, #, #> int#x#;
typedef matrix <half, #, #> half#x#;
typedef matrix <float, #, #> float#x#;
typedef matrix <double, #, #> double#x#;

Here, # is an integer digit between 1 and 4.

1.3 Type Casts
When a variable is assigned to an expression and they are not of exactly the
same type, the compiler will attempt to cast (or convert) the assignment to the
expression. Promotion occurs when a scalar data type is converted to a vector
or a matrix. This conversion is done by replicating the scalar to every compo-

Z03C616531.fm Page 349 Tuesday, May 13, 2003 1:10 PM

350 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

nent of the vector or matrix. Demotion occurs when a higher-dimension data
type (a vector or a matrix) is assigned (or used) with a lower-dimension data
type (one with fewer components).

Not all types can be converted. The following table shows the conversions
that are supported and their restrictions.

Conversion Type Conversion Restrictions

Scalar-to-scalar Always valid. When casting from bool type to an integer or a
floating-point type, false is considered to be 0, and true is con-
sidered to be 1. When casting from an integer or a floating-
point type to bool, a zero value is considered to be false, and a
nonzero value is considered to be true. When casting from a
floating-point type to an integer type, the value is rounded
toward zero.

Scalar-to-vector Always valid. This cast operates by replicating the scalar to fill
the vector.

Scalar-to-matrix Always valid. This cast operates by replicating the scalar to fill
the matrix.

Scalar-to-object Never valid.

Scalar-to-structure Valid if all elements of the structure are numeric. This cast
operates by replicating the scalar to fill the structure.

Vector-to-scalar Always valid. This cast selects the first component of the vector.

Vector-to-vector The destination vector must not be larger than the source vec-
tor. The cast operates by keeping the left-most values and trun-
cating the rest. For the purposes of this cast, column matrices,
row matrices, and numeric structures are treated as vectors.

Vector-to-matrix The size of the vector must be equal to the size of the matrix.

Vector-to-object Never valid.

Vector-to-structure Valid if the structure is not larger than the vector and all com-
ponents of the structure are numeric.

Matrix-to-scalar Always valid. This cast selects the upper-left component of the
matrix.

Matrix-to-vector The size of the matrix must be equal to the size of the vector.

Matrix-to-matrix The destination matrix must not be larger than the source
matrix, in both dimensions. The cast operates by keeping the
upper-left values and truncating the rest.

Matrix-to-object Never valid.

Matrix-to-structure The size of the structure must be equal to the size of the
matrix, and all components of the structure are numeric.

Object-to-scalar Never valid.

Z03C616531.fm Page 350 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 351

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

2: Operators
Statements contain expressions that are built from operators, variables, and lit-
eral values. Operators determine what action is taken on the variables and the
literal values. The usage illustrates how an operator is used. In an expression
with multiple operators, each operator is evaluated in the order shown in the
following table.

Object-to-vector Never valid.

Object-to-matrix Never valid.

Object-to-object Valid only if the object types are identical.

Object-to-structure The structure must not contain more than one member. The
type of that member must be identical to the type of the object.

Structure-to-scalar The structure must contain at least one member. This member
must be numeric.

Structure-to-vector The structure must be at least the size of the vector. The first
components must be numeric, up to the size of the vector.

Structure-to-matrix The structure must be at least the size of the matrix. The first
components must be numeric, up to the size of the matrix.

Structure-to-object The structure must contain at least one member. The type of
this member must be identical to the type of the object.

Structure-to-structure The destination structure must not be larger than the source
structure. A valid cast must exist between all respective source
and destination components.

Conversion Type Conversion Restrictions

Operator Usage Description
Order
of Evaluation

() (value) Sub expression Left to right

() id(arguments) Function call Left to right

() type(arguments) Type constructor Left to right

[] array[int] Array subscript Left to right

. structure.id Member selection Left to right

. value.swizzle Component swizzle Left to right

++ variable++ Postfix increment
(per component)

Left to right

– variable– Postfix decrement
(per component)

Left to right

(continued)

Z03C616531.fm Page 351 Tuesday, May 13, 2003 1:10 PM

352 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

++ ++variable Prefix increment
(per component)

Right to left

– --variable Prefix decrement
(per component)

Right to left

! !value Logical not
(per component)

Right to left

– -value Unary minus
(per component)

Right to left

+ +value Unary plus
(per component)

Right to left

() (type) value Type cast Right to left

* value*value Multiplication
(per component)

Left to right

/ value/value Division
(per component)

Left to right

% value%value Modulus
(per component)

Left to right

+ value+value Addition
(per component)

Left to right

– value-value Subtraction
(per component)

Left to right

< value < value Less than
(per component)

Left to right

> value > value Greater than
(per component)

Left to right

<= value <= value Less than or equal to
(per component)

Left to right

>= value >= value Greater than or equal to
(per component)

Left to right

== value == value Equality
(per component)

Left to right

!= value != value Inequality
(per component)

Left to right

&& value && value Logical AND
(per component)

Left to right

|| value||value Logical OR
(per component)

Left to right

?: value?value:value Conditional Right to left

Operator Usage Description
Order
of Evaluation

Z03C616531.fm Page 352 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 353

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Here are the preprocessor operators:

See the Microsoft Visual C++ documentation for details.

3: User-Defined Functions
A function declaration is defined by either of these two forms:

[static inline target] [const] returnType name ([argument list])
[: output semantics];

[static inline target] [const] returnType name ([argument list])
{ [statements and expressions] } ;

Where:

■ [static inline target] is an optional scope specifier.

■ [const] identifies a variable as a constant; that is, its value does not
change between draw calls.

= variable=value Assignment
(per component)

Right to left

= variable=value Multiplication assignment
(per component)

Right to left

/= variable/=value Division assignment
(per component)

Right to left

%= variable%=value Modulus assignment
(per component)

Right to left

+= variable+=value Addition assignment
(per component)

Right to left

–= variable-=value Subtraction assignment
(per component)

Right to left

, value,value Comma Left to right

Preprocessor
Operators Description

Token-pasting operator

#@ Charizing operator

Operator Usage Description
Order
of Evaluation

Z03C616531.fm Page 353 Tuesday, May 13, 2003 1:10 PM

354 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

■ returnType identifies the return type of the function.

■ name identifies the function name.

■ ([argument list]) is an optional list of one or more input arguments.

■ [: output semantics] is an optional list of output semantics. Output
semantics bind function outputs to vertex shader output registers
and pixel shader input registers.

■ { [statements and expressions] } is an optional shader body made up
of statements and expressions.

If a function is defined without a body, it’s considered to be a prototype.
The function must be redefined, with a body, later on in the code. If no body
is defined and the function gets referenced, an error occurs.

Functions can be overloaded. A function is uniquely identified by its
name, the types of its parameters, and the target platform, if provided.

Currently, all functions are compiled as if they were declared as inline
functions. Recursion is not supported.

A function argument list contains zero or more arguments. Each argument
is defined by the following :

[uniform] [in out inout] type name [: semantic] [= default]

Where:

■ [uniform] identifies how often the argument is expected to change.
Use uniform to identify a constant whose value only changes out-
side of draw calls. This keyword is optional.

■ [in out inout] identifies the parameter usage. This keyword is
optional.

■ type identifies the data type, which can be a simple or a complex
data type.

■ name identifies the argument name.

■ [: semantic] identifies an optional semantic value and is used to bind
the vertex data from a vertex buffer to an input vertex shader register.

■ [= default] identifies one or more optional default values.

Arguments are always passed by value. The in parameter indicates that
the value of the parameter should be copied in from the caller before the func-
tion begins. The out parameter indicates that the last value of the parameter
should be copied out and returned to the caller when the function returns. The
inout parameter is simply a shorthand for specifying both in and out.

Z03C616531.fm Page 354 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 355

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

The uniform parameter usage is a special of kind of in, indicating to a top-
level function that the value for parameter comes from constant data. For non-
top-level functions, uniform is synonymous with in. If no parameter usage is
specified, the parameter usage is assumed to be in.

3.1 Vertex Shader Semantics
Vertex shader semantics bind vertex buffer data and vertex shader data to ver-
tex shader registers. Vertex shader semantics can be attached to function argu-
ments in a function’s argument list, as shown here:

void functionName(float3 pos : POSITION)

Semantics can be added after the argument list, for arguments returned by
the function:

void functionName() : POSITION

Semantics can also be added to structures:

struct VS_OUTPUT
{

float3 pos : POSITION;
}

The structures can then be used as return types:

VS_OUTPUT functionName()

The language defines the following vertex shader input semantics:

POSITION[n] *

* n is an optional integer between 0 and the number of resources supported, for example, PSIZE0,
COLOR1, and so on.

Position

BLENDWEIGHT[n] Blend weights

BLENDINDICES[n] Blend indices

NORMAL[n] Normal vector

PSIZE[n] Point size

COLOR[n] Diffuse and specular color

TEXCOORD[n] Texture coordinates

TANGENT[n] Tangent

BINORMAL[n] Binormal

TESSFACTOR[n] Tessellation factor

Z03C616531.fm Page 355 Tuesday, May 13, 2003 1:10 PM

356 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Vertex shader output semantics are listed in the following table.

3.2 Pixel Shader Semantics
Pixel shader semantics bind pipeline data and vertex shader output data to
pixel shader registers. Pixel shader semantics can be attached to function argu-
ments in a function’s argument list:

void functionName(float4 color : COLOR0)

Semantics can be added after the argument list, for arguments returned by
the function.

void functionName() : COLOR0

Semantics can be added to structures.

struct PS_OUTPUT
{

float4 color : COLOR0;
}

And then the structure can be used to return parameters from a function.

PS_OUTPUT functionName()

The language defines the following pixel shader input semantics:

Pixel shader output semantics are listed in the following table.

POSITION Position

PSIZE Point size

FOG Vertex fog

COLOR[n] *

* n is an optional integer between 0 and the number of registers supported, for example, texcoord0,
texcoord1, and so on.

Color (for example, COLOR0)

TEXCOORD[n] Texture coordinates (for example, TEXCOORD0)

COLOR[n] *

* n is an optional integer between 0 and the number of resources supported, for example, texcoord0,
texcoord1, and so on.

Diffuse of specular color (for example, COLOR0 or COLOR1)

TEXCOORD[n] Texture coordinates (for example, TEXCOORD0)

Z03C616531.fm Page 356 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 357

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

3.3 Procedural Texture Shader Semantics
Procedural texture shader semantics bind vertex shader outputs to procedural
texture inputs, as well as bind procedural texture outputs to pixel shader inputs.
This example does both:

float4 GenerateSparkle(float3 Pos : POSITION) : COLOR

The input argument has the POSITION semantic attached, which indicates
that its value will come from the vertex shader output position. GenerateSparkle
returns a float4 type. The return type has the COLOR semantic attached, which
indicates that the output of this function will be bound to a pixel shader input.
This procedural texture is illustrated in the second example in Chapter 8.

Procedural texture shader input semantics are listed in the following table:

There is only one procedural texture shader output semantic:

4: Intrinsic Functions
Intrinsic functions are built into the language. They can be invoked by calling
the function name and supplying the correct number and type of arguments,
just like user-defined functions. Intrinsic functions have been performance opti-
mized, so if they perform the function that you need, it’s usually a good idea to
use them whenever necessary.

COLOR[n] *

* n is an optional integer between 0 and the number of registers supported, for example, COLOR0,
TEXCOORD1, DEPTH0, and so on.

Color (for example, COLOR0)

TEXCOORD[n] Texture coordinates (for example, TEXCOORD0)

DEPTH[n] Depth (for example, DEPTH0)

POSITION[n] *

* n is an optional integer between 0 and the number of resources supported, for example, POSITION0.

The texture coordinate. For 2-D textures, the texture coordinate is of
type float2 with a range of 0 to 1. For 3-D or cube textures, the tex-
ture coordinate is of type float3 with a range of 0 to 1 (except that a
cube texture’s range is -1 to +1).

PSIZE[n] The texel size.

COLOR[n] *

* n is an optional integer between 0 and the number of output registers supported, for example,
COLOR0.

Output color (for example, COLOR0)

Z03C616531.fm Page 357 Tuesday, May 13, 2003 1:10 PM

358 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Intrinsic functions take input arguments and return a value. The data types
of the input arguments and the return value are described by a template and a
data type. The template defines the number of components, and the compo-
nent type defines the data type of the components.

The template is one of the following:

■ Scalar

■ Vector

■ Matrix

■ Any (scalar, vector, or matrix)

■ Object (vertex or pixel shader objects)

The component type is one of the following:

■ Numeric types (HALF, FLOAT, DOUBLE, or INT)

■ Boolean type

With the template and component types defined, we’re ready to see the
functions. Each intrinsic function is described by:

■ The function name

■ The usage (the syntax for calling it)

■ A description

■ A table containing the inputs and return value templates

Function: abs
Usage: abs(x)
Description: Absolute value (per component).

Function
Input Arg/Return
Type

Type Size

abs Return type Same as input x Same as input x

x Any template, any
numeric component
type

Any number of rows
and columns

Z03C616531.fm Page 358 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 359

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: acos
Usage: acos(x)
Description: Returns the arc cosine of each component of x. Each component
should be in the range [-1, 1].

Function: all
Usage: all(x)
Description: Tests if all components of x are nonzero.

Function: any
Usage: any(x)
Description: Tests if any component of x is nonzero.

Function
Input Arg/Return
Type

Type Size

acos Return type Same template,
same numeric type as
input x

Same dimensions as
input x

x Any template, any
numeric component
type

Any number of rows
and columns

Function
Input Arg/Return
Type

Type Size

all Return type Scalar template, bool
component type

1 row, 1 column

x Any template, any
component type

Any number of rows
and columns

Function
Input Arg/
Return Type

Type Size

any Return type Scalar template, bool
component type

1 row, 1 column

x Any template, any
component type

Any number of rows
and columns

Z03C616531.fm Page 359 Tuesday, May 13, 2003 1:10 PM

360 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: asin
Usage: asin(x)
Description: Returns the arc sine of each component of x. Each component
should be in the range [-pi/2, pi/2].

Function: atan
Usage: atan(x)
Description: Returns the arc tangent of x. The return values are in the range [-
pi/2, pi/2].

Function: atan2
Usage: atan2(y, x)
Description: Returns the arctangent of y/x. The signs of y and x are used to
determine the quadrant of the return values in the range [-pi, pi]. atan2 is well-
defined for every point other than the origin, even if x equals 0 and y does not
equal 0.

Function
Input Arg/
Return Type

Type Size

asin Return type Same as input x Same as input x

x Any template, float
component type

Any number of rows
and columns

Function
Input Arg/
Return Type

Type Size

atan Return type Same as input x Same as input x

x Any template, float
component type

Any number of rows
and columns

Function
Input Arg/
Return Type

Type Size

atan2 Return type Same as input x Same as input x

x Any template, float
component type

Any number of rows and
columns

y Same as input x Same as input x

Z03C616531.fm Page 360 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 361

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: ceil
Usage: ceil(x)
Description: Returns the smallest integer that is greater than or equal to x.

Function: clamp
Usage: clamp(x, min, max)
Description: Clamps x to the range [min, max].

Function: clip
Usage: clip(x)
Description: Discards the current pixel, if any component of x is less than zero.
It can be used to simulate clip planes if each component of x represents the dis-
tance from a plane.

Function
Input Arg/
Return type

Type Size

ceil Return Type Same as input x Same as input x

x Any template, any
numeric component type

Any number of rows and
columns

Function
Input Arg/
Return Type

Type Size

clamp Return type Same as input x Same as input x

x Any template, any
numeric component
type

Any number of rows and
columns

min Same as input x Same as input x

max Same as input x Same as input x

Function
Input Arg/
Return Type

Type Size

clip Return type None N/A

x Any template, any
numeric component type

Any number of rows
and columns

Z03C616531.fm Page 361 Tuesday, May 13, 2003 1:10 PM

362 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: cos
Usage: cos(x)
Description: Returns the cosine of x.

Function: cosh
Usage: cosh(x)
Description: Returns the hyperbolic cosine of x.

Function: cross
Usage: cross(a, b)
Description: Returns the cross product of two 3-D vectors, a and b.

Function: D3DCOLORtoUBYTE4
Usage: D3DCOLORtoUBYTE4(x)
Description: Swizzles and scales components of the 4-D vector x to compensate
for the lack of UBYTE4 support in some hardware.

Function
Input Arg/
Return Type

Type Size

cos Return type Same as input x Same as input x

x Any template, any
numeric component type

Any number of rows
and columns

Function
Input Arg/
Return Type

Type Size

cosh Return type Same as input x Same as input x

x Any template, any
numeric component type

Any number of rows
and columns

Function
Input Arg/
Return Type

Type Size

cross Return type Same as input a 1 row, 3 columns

a Vector template, float
component type

1 row, 3 columns

b Same as input a 1 row, 3 columns

Z03C616531.fm Page 362 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 363

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: ddx
Usage: ddx(x)
Description: Returns the partial derivative of x with respect to the screen-space
x-coordinate.

Function: ddy
Usage: ddy(x)
Description: Returns the partial derivative of x with respect to the screen-space
y-coordinate.

Function: degrees
Usage: degrees(x)
Description: Converts x from radians to degrees.

Function
Input Arg/
Return type

Type Size

D3DCOLORto
UBYTE4

Return Type Vector template, integer
component type

1 row, 4 columns

x Vector template, any
component type

1 row, 4 columns

Function
Input Arg/
Return Type

Type Size

ddx Return type Same as input x Same as input x

x Any template, float compo-
nent type

Any number of rows
and columns

Function
Input Arg/
Return Type

Type Size

ddy Return type Same as input x Same as input x

x Any template, float compo-
nent type

Any number of rows
and columns

Function
Input Arg/
Return Type

Type Size

degrees Return type Same as input x Same as input x

x Any template, float compo-
nent type

Any number of rows
and columns

Z03C616531.fm Page 363 Tuesday, May 13, 2003 1:10 PM

364 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: determinant
Usage: determinant(m)
Description: Returns the determinant of the square matrix m.

Function: distance
Usage: distance(a, b)
Description: Returns the distance between two points, a and b.

Function: dot
Usage: dot(a, b)
Description: Returns the dot product of two vectors, a and b.

Function
Input Arg/
Return Type

Type Size

determinant Return type Scalar template, float
component type

1 row, 1 column

m Matrix template, float
component type

Any number of rows
and columns

Function
Input Arg/
Return Type

Type Size

distance Return type Scalar template, float
component type

1 row, 1 column

a Vector template, float
component type

1 row, any number of
columns

b Vector template, float
component type

1 row, number of col-
umns = number of
columns in input a

Function
Input Arg/
Return Type

Type Size

dot Return type Scalar template, numeric
component type

1 row, 1 column

a Vector template, numeric
component type

1 row, any number of
columns

b Vector template, numeric
component type

Same number of rows
and columns as input a

Z03C616531.fm Page 364 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 365

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: exp
Usage: exp(x)
Description: Returns the base-e exponent exp.

Function: exp2
Usage: value exp2(value x)
Description: Base 2 exp (per component).

Function: faceforward
Usage: faceforward(n, I, ng)
Description: Returns –n * sign(dot(I, ng)). Flip the vector (n) if a vector from the
camera to the vertex (I) is facing toward the object normal (ng).

Function
Input Arg/
Return Type

Type Size

exp Return type Same as input x Same as input x

x Any template, float
component type

Any number of rows and
columns

Function
Input Arg/
Return Type

Type Size

exp2 Return type Same as input x Same as input x

x Any template, float
component type

Any number of rows and
columns

Function
Input Arg/
Return Type

Type Size

faceforward Return type Same as input n Same as input n

n Vector template, float
component type

1 row, any number of
columns

I Same as input n Same as input n

ng Same as input n Same as input n

Z03C616531.fm Page 365 Tuesday, May 13, 2003 1:10 PM

366 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: floor
Usage: floor(x)
Description: Returns the greatest integer that is less than or equal to x.

Function: fmod
Usage: fmod(a, b)
Description: Returns the floating-point remainder f of a / b such that a = I * b +
f, where I is an integer, f has the same sign as x, and the absolute value of f is
less than the absolute value of b.

Function: frac
Usage: frac(x)
Description: Returns the fractional part f of x such that f is a value greater than
or equal to 0, and less than 1.

Function
Input Arg/
Return Type

Type Size

floor Return type Same as input x Same as input x

x Any template, float
component type

Any number of rows
and columns

Function
Input Arg/
Return Type

Type Size

fmod Return type Same as input a Same as input a

a Any template, float
component type

Any number of rows
and columns

b Same as input a Same as input a

Function
Input Arg/
Return Type

Type Size

frac Return type Same as input x Same as input x

x Any template, float compo-
nent type

Any number of rows
and columns

Z03C616531.fm Page 366 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 367

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: frexp
Usage: frexp(x, out exp)
Description: Returns the mantissa and exponent of x. frexp returns the man-
tissa, and the exponent is stored in the output parameter exp. If x is 0, the func-
tion returns 0 for both the mantissa and the exponent.

Function: fwidth
Usage: fwidth(x)
Description: Returns abs(ddx(x))+abs(ddy(x)).

Function: isfinite
Usage: isfinite(x)
Description: Returns true if x is finite, false otherwise.

Function
Input Arg/
Return Type

Type Size

frexp Return type Same as input x Same as input x

x Any template, float compo-
nent type

Any number of rows
and columns

exp Same as input x Same as input x

Function
Input Arg/
Return Type

Type Size

fwidth Return type Same as input x Same as input x

x Any template, float com-
ponent type

Any number of rows and
columns

Function
Input Arg/
Return Type

Type Size

isfinite Return type Any template, bool com-
ponent

Same as input x

x Any template, float com-
ponent type

Any number of rows and
columns

Z03C616531.fm Page 367 Tuesday, May 13, 2003 1:10 PM

368 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: isinf
Usage: isinf(x)
Description: Returns true if x is +INF or –INF, false otherwise.

Function: isnan
Usage: isnan(x)
Description: Returns true if x is NAN (not a number) or , false otherwise.

Function: ldexp
Usage: ldexp(x, exp)
Description: Returns x * 2**exp.

Function: length
Usage: length(x)
Description: Returns the length of the vector x.

Function
Input Arg/
Return Type

Type Size

isinf Return type Any template, bool
component

Same as input x

x Any template, float compo-
nent type

Any number of rows
and columns

Function
Input Arg/
Return Type

Type Size

isnan Return type Any template, bool
component

Same as input x

x Any template, float compo-
nent type

Any number of rows
and columns

Function
Input Arg/
Return Type

Type Size

ldexp Return type Scalar template, float com-
ponent type

1 row, 1 column

x Vector template, float com-
ponent type

1 row, any number of
columns

exp Vector template, float com-
ponent type

1 row, any number of
columns

Z03C616531.fm Page 368 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 369

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: lerp
Usage: lerp(a, b, s)
Description: Returns a + s(b – a); linearly interpolates between a and b, such
that the return value is a when s is 0, and b when s is 1.

Function: lit
Usage: lit(n_dot_l, n_dot_h, m)
Description: Returns a lighting vector (ambient, diffuse, specular, 1) where

ambient = 1;
diffuse = ((n_dot_l) < 0) ? 0 : n_dot_l;
specular = ((n_dot_l) < 0) || ((n_dot_h) < 0) ? 0 : ((n_dot_h) * m);
n is the normal vector, l is the light direction, h is the half vector, and m

is a multiplier

Function
Input Arg/
Return Type

Type Size

length Return type Scalar template, float
component type

1 row, 1 column

x Vector template, float
component type

1 row, any number of col-
umns

Function
Input Arg/
Return Type

Type Size

lerp Return type Same as input a Same as input a

a Any template, float
component type

Any number of rows and col-
umns

b Same as input a Same as input a

s Same as input a Same as input a

Function
Input Arg/
Return Type

Type Size

lit Return type Vector template, float type
matches input l

1 row, 4 columns

n_dot_1 Scalar template, float com-
ponent type

1 row, 1 column

n_dot_h Scalar template, float type
matches input l

1 row, 1 column

m Scalar template, float type
matches input l

1 row, 1 column

Z03C616531.fm Page 369 Tuesday, May 13, 2003 1:10 PM

370 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: log
Usage: log(x)
Description: Returns the base-e logarithm of x. If x is negative, the function
returns indefinite. If x is 0, the function returns +INF.

Function: log10
Usage: log10(x)
Description: Returns the base-10 logarithm of x. If x is negative, the function
returns indefinite. If x is 0, the function returns +INF.

Function: log2
Usage: log2(x)
Description: Returns the base-2 logarithm of x. If x is negative, the function
returns indefinite. If x is 0, the function returns +INF.

Function
Input Arg/
Return Type

Type Size

log Return type Same as input x Same as input x

x Any template, float compo-
nent type

Any number of rows
and columns

Function
Input Arg/
Return Type

Type Size

log10 Return type Same as input x Same as input x

x Any template, float
component type

Any number of rows
and columns

Function
Input Arg/
Return Type

Type Size

log2 Return type Same as input x Same as input x

x Any template, float
component type

Any number of rows and col-
umns

Z03C616531.fm Page 370 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 371

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: max
Usage: max(a, b)
Description: Selects the greater of a and b.

Function: min
Usage: min(a, b)
Description: Selects the lesser of a and b.

Function: modf
Usage: modf(x, out ip)
Description: Splits the value x into fractional and integer parts, each of which
has the same sign and x. The signed fractional portion of x is returned. The
integer portion is stored in the output parameter ip.

Function
Input Arg/
Return Type

Type Size

max Return type Same as input a Same as input a

a Any template,
numeric component
type

Any number of rows and col-
umns

b Same as input a Same as input a

Function
Input Arg/
Return Type

Type Size

min Return type Same as input a Same as input a

a Any template, numeric
component type

Any number of rows
and columns

b Same as input a Same as input a

Function
Input Arg/
Return Type

Type Size

modf Return type Same as input x Same as input x

x Any template, numeric
component type

Any number of rows
and columns

ip Same as input x Same as input x

Z03C616531.fm Page 371 Tuesday, May 13, 2003 1:10 PM

372 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: mul
Usage: mul(a, b)
Description: Performs matrix multiplication between a and b. If a is a vector, it’s
treated as a row vector. If b is a vector, it’s treated as a column vector. The inner
dimension “a” columns and “b” rows must be equal. The result has the dimen-
sion “a” rows × “b” columns.

Function
Input Arg/
Return Type

Type Size

mul Return type Same as input a Same as input a

a Scalar template, numeric
component type

1 row, 1 column

b Same as input a Same as input a

mul Return type Same as input a 1 row, same number of
columns as input b

a Vector template, numeric
component type

1 row, 1 column

b Scalar template, numeric
component type

1 row, any number of
columns

mul Return type Same as input b Same as input b

a Scalar template, numeric
component type

1 row, 1 column

b Matrix template, numeric
component type

Any number of rows or
columns

mul Return type Same as input b Same as input a

a Scalar template, numeric
component type

1 row, any number of
columns

b Matrix template, numeric
component type

1 row, 1 column

mul Return type Same as input a 1 row, 1 column

a Vector template, numeric
component type

1 row, any number of
columns

b Same as input a Same as input a

mul Return type Same as input a 1 row, 1 column

a Vector template, numeric
component type

1 row, any number of
columns

b Matrix template, numeric
component type

Number of rows = num-
ber of columns in input
a, any number of col-
umns

Z03C616531.fm Page 372 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 373

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: noise
Usage: noise(x)
Description: Generates Perlin noise, a function for generating noise values that
change smoothly as you move from one point to another over a space.

mul Return type Same as input a Same as input a

a Matrix template, numeric
component type

1 row, any number of
columns

b Scalar template, numeric
component type

1 row, 1 column

mul Return type Same as input b 1 row, number of col-
umns = number of rows
in input a

a Matrix template, numeric
component type

Any number of rows or
columns

b Vector template, numeric
component type

1 row, same number of
columns as input a

mul Return type Same as input a Number of rows = num-
ber of rows in input a,
number of columns =
number of columns in
input b

a Matrix template, numeric
component type

Any number of rows or
columns

b Same as input a Number of rows = num-
ber of columns in input
a, any number of col-
umns

Function
Input Arg/
Return Type

Type Size

noise Return type Scalar template, float
component type

1 row, 1 column

x Vector template, float
component type

1 row, any number of
columns

Function
Input Arg/
Return Type

Type Size

Z03C616531.fm Page 373 Tuesday, May 13, 2003 1:10 PM

374 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: normalize
Usage: normalize(x)
Description: Returns the normalized vector x / length(x). If the length of v is 0,
the result is indefinite.

Function: pow
Usage: pow(x, y)
Description: Returns x**y.

Function: radians
Usage: radians(x)
Description: Converts x from degrees to radians.

Function
Input Arg/
Return Type

Type Size

normalize Return type Same as input x Same as input x

x Vector template, float
component type

1 row, any number of col-
umns

Function
Input Arg/
Return Type

Type Size

pow Return type Same as input x Same as input x

x Any template, float
component type

Any number of rows and
columns

y Same as input x Same as input x

Function
Input Arg/
Return Type

Type Size

radians Return type Same as input x Same as input x

x Any template, float
component type

Any number of rows and
columns

Z03C616531.fm Page 374 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 375

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: reflect
Usage: reflect(i, n)
Description: Returns the reflection vector v, given the entering ray direction i
and the surface normal n, as in v = i - 2 * dot(i, n) * n.

Function: refract
Usage: refract(i, n, ri)
Description: Returns the refraction vector v, given the entering ray direction i,
the surface normal n, and the refraction index ri. If the angle between i and n
is too great, refract returns (0,0,0).

Function: round
Usage: round(x)
Description: Rounds x to the nearest integer.

Function
Input Arg/
Return Type

Type Size

reflect Return type Same as input i Same as input i

i Vector template, float
component type

1 row, any number of
columns

n Same as input i Same as input i

Function
Input Arg/
Return Type

Type Size

refract Return type Same as input i Same as input i

i Vector template, float com-
ponent type

1 row, any number of
columns

n Same as input i Same as input i

ri Same as input i Same as input i

Function
Input Arg/
Return Type

Type Size

round Return type Same as input x Same as input x

x Any template, float
component type

Any number of rows and col-
umns

Z03C616531.fm Page 375 Tuesday, May 13, 2003 1:10 PM

376 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: rsqrt
Usage: rsqrt(x)
Description: Returns 1 / sqrt(x).

Function: saturate
Usage: saturate(x)
Description: Clamps x to the range [0, 1].

Function: sign
Usage: sign(x)
Description: Computes the sign of x. Returns –1 if x is less than 0, 0 if x equals
0, and 1 if x is greater than zero.

Function
Input Arg/
Return Type

Type Size

rsqrt Return type Same as input x Same as input x

x Any template, float
component type

Any number of rows and
columns

Function
Input Arg/
Return Type

Type Size

saturate Return type Same as input x Same as input x

x Any template, float
component type

Any number of rows and
columns

Function
Input Arg/
Return Type

Type Size

sign Return type Any template, integer
component type

Same as input x

x Any template, numeric
component type

Any number of rows
and columns

Z03C616531.fm Page 376 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 377

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: sin
Usage: sin(x)
Description: Returns the sine of x.

Function: sincos
Usage: sincos(x, out s, out c)
Description: Returns the sine and cosine of x. sin(x) is stored in the output
parameter s. cos(x) is stored in the output parameter c.

Function: sinh
Usage: sinh(x)
Description: Returns the hyperbolic sine of x.

Function
Input Arg/
Return Type

Type Size

sin Return type Same as input x Same as input x

x Any template, float compo-
nent type

Any number of rows
and columns

Function
Input Arg/
Return Type

Type Size

sincos Return type NULL N/A

x Any template, float compo-
nent type

Any number of rows
and columns

s Same as input x Same as input x

c Same as input x Same as input x

Function
Input Arg/
Return Type

Type Size

sinh Return type Same as input x Same as input x

x Any template, float
component type

Any number of rows and col-
umns

Z03C616531.fm Page 377 Tuesday, May 13, 2003 1:10 PM

378 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: smoothstep
Usage: smoothstep(min, max, x)
Description: Returns 0 if x < min. Returns 1 if x > max. Returns a smooth Her-
mite interpolation between 0 and 1 if x is in the range [min, max].

Function: sqrt
Usage: value sqrt(x)
Description: Square root (per component).

Function: step
Usage: step(a, x)
Description: Returns (x >= a) ? 1 : 0.

Function: tan
Usage: tan(x)
Description: Returns the tangent of x.

Function
Input Arg/
Return Type

Type Size

smoothstep Return type Same as input x Same as input x

min Any template, float
component type

Any number of rows and col-
umns

max Same as input x Same as input x

x Same as input x Same as input x

Function
Input Arg/
Return Type

Type Size

sqrt Return type Same as input x Same as input x

x Any template, float
component type

Any number of rows and
columns

Function
Input Arg/
Return Type

Type Size

step Return type Same as input a Same as input a

a Any template, float
component type

Any number of rows
and columns

x Same as input a Same as input a

Z03C616531.fm Page 378 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 379

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: tanh
Usage: tanh(x)
Description: Returns the hyperbolic tangent of x.

Function: tex1D
Usage: tex1D(s, t)
Description: 1-D texture lookup. s is a sampler or a sampler1D object. t is a 1-
D texture coordinate.

Function: tex1D
Usage: tex1D(s, t, ddx, ddy)
Description: 1-D texture lookup, with derivatives which are used to choose the
lod. s is a sampler or sampler1D object. t is a 1-D texture coordinate, ddx, and
ddy are scalars.

Function
Input Arg/
Return Type

Type Size

tan Return type Any template, any compo-
nent type

The same number of
rows and columns as
input x

x Any template, any compo-
nent type

Any number of rows
and columns

Function
Input Arg/
Return Type

Type Size

tanh Return type Same as input x Same as input x

x Any template, float
component type

Any number of rows and col-
umns

Function
Input Arg/
Return Type

Type Size

tex1D Return type Vector template, float
component type

1 row, 4 columns

s Object template, sam-
pler component type

1 row, 1 column

t Scalar template, float
component type

Same as input s

Z03C616531.fm Page 379 Tuesday, May 13, 2003 1:10 PM

380 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: tex1Dbias
Usage: tex1Dbias(s, t)
Description: 1-D biased texture lookup. s is a sampler or sampler1D object. t is
a 1-D texture coordinate in a 4-D vector. The mip level is biased by t.w before
the lookup takes place.

Function: tex1Dproj
Usage: tex1Dproj(s, t)
Description: 1-D projective texture lookup. s is a sampler or sampler1D object.
t is a 1-D texture coordinate in a 4-D vector. t is divided by its w component
before the lookup takes place.

Function
Input Arg/
Return Type

Type Size

tex1D Return type Vector template, float
component type

1 row, 4 columns

s Object template,
sampler component
type

1 row, 1 column

t Scalar template, float
component type

Same as input s

ddx Scalar template, float
component type

Same as input s

ddx Scalar template, float
component type

Same as input s

Function
Input Arg/
Return Type

Type Size

tex1Dbias Return type Vector template,
float component type

1 row, 4 columns

s Object template,
sampler component type

1 row, 1 column

t Vector template,
float component type

1 row, 4 columns

Z03C616531.fm Page 380 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 381

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: tex2D
Usage: tex2D(s, t)
Description: 2-D texture lookup. s is a sampler or a sampler2D object. t is a 2-
D texture coordinate.

Function: tex2D
Usage: tex2D(s, t, ddx, ddy)
Description: 2-D texture lookup with derivatives. s is a sampler or sampler2D
object. t is a texture coordinate, ddx and ddy are derivates in the x and y direc-
tions that are used by the lod calculation. t, ddx, and ddy are 2-D vectors.

Function
Input Arg/
Return Type

Type Size

tex1Dproj Return type Vector template, float
component type

1 row, 4 columns

s Object template, sampler
component type

1 row, 1 column

t Vector template, float
component type

1 row, 4 columns

Function
Input Arg/
Return Type

Type Size

tex2D Return type Vector template, float
component type

1 row, 4 columns

s Object template,
sampler component
type

1 row, 2 columns

t Scalar template,
float component type

Same as input s

Function
Input Arg/
Return Type

Type Size

tex2D Return type Vector template, float
component type

1 row, 4 columns

s Object template,
sampler component
type

1 row, 2 columns

(continued)

Z03C616531.fm Page 381 Tuesday, May 13, 2003 1:10 PM

382 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: tex2Dbias
Usage: tex2Dbias(s, t)
Description: 2-D biased texture lookup. s is a sampler or sampler1D object. t is
a 2-D texture coordinate in a 4-D vector. The mip level is biased by t.w before
the lookup takes place.

Function: tex2Dproj
Usage: tex2Dproj(s, t)
Description: 2-D projective texture lookup. s is a sampler or sampler2D object.
t is a 2-D texture coordinate in a 4-D vector. t is divided by t.w before the
lookup takes place.

t Scalar template, float
component type

Same as input s

ddx Scalar template, float
component type

Same as input s

Function
Input Arg/
Return Type

Type Size

tex2Dbias Return type Vector template, float
component type

1 row, 4 columns

s Object template,
sampler component type

1 row, 2 columns

t Vector template,
float component type

1 row, 4 columns

Function
Input Arg/
Return Type

Type Size

tex2Dproj Return type Vector template, float com-
ponent type

1 row, 4 columns

Function
Input Arg/
Return Type

Type Size

Z03C616531.fm Page 382 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 383

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: tex3D
Usage: tex3D(s, t)
Description: 3-D volume texture lookup. s is a sampler or a sampler3D object.
t is 3-D texture coordinate.

Function: tex3D
Usage: tex3D(s, t, ddx, ddy)
Description: 3-D volume texture lookup with derivatives. s is a sampler or
sampler3D object. t is a 3-D texture coordinate, ddx and ddy are derivates in the
x and y direction that are used by the lod calculation. t, ddx, and ddy are 3-D
vectors.

s Object template, sampler
component type

1 row, 2 columns

t Vector template, float com-
ponent type

1 row, 4 columns

Function
Input Arg/
Return Type

Type Size

tex3D Return type Vector template, float
component type

1 row, 4 columns

s Object template, sampler
component type

1 row, 3 columns

t Scalar template,
float component type

Same as input s

Function
Input Arg/
Return Type

Type Size

tex3D Return type Vector template, float
component type

1 row, 4 columns

s Object template, sampler
component type

1 row, 3 columns

t Scalar template, float
component type

Same as input s

Function
Input Arg/
Return Type

Type Size

Z03C616531.fm Page 383 Tuesday, May 13, 2003 1:10 PM

384 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: tex3Dbias
Usage: tex3Dbias(s, t)
Description: 3-D biased texture lookup. s is a sampler or sampler3D object. t is
a 3-D texture coordinate in a 4-D vector. The mip level is biased by t.w before
the lookup takes place.

Function: tex3Dproj
Usage: tex3Dproj(s, t)
Description: 3-D projective volume texture lookup. s is a sampler or sampler3D
object. t is a 3-D texture coordinate in a 4-D vector. t is divided t.w before the
lookup takes place.

ddx Scalar template, float
component type

Same as input s

ddx Scalar template, float
component type

Same as input s

Function
Input Arg/
Return Type

Type Size

tex3Dbias Return type Vector template, float com-
ponent type

1 row, 4 columns

s Object template, sampler
component type

1 row, 3 columns

t Vector template, float com-
ponent type

1 row, 4 columns

Function
Input Arg/
Return Type

Type Size

tex3Dproj Return type Vector template, float
component type

1 row, 4 columns

s Object template, sam-
pler component type

1 row, 3 columns

t Vector template, float
component type

1 row, 4 columns

Function
Input Arg/
Return Type

Type Size

Z03C616531.fm Page 384 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 385

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: texCUBE
Usage: texCUBE(s, t)
Description: 3-D cube texture lookup. s is a sampler or a samplerCUBE object.
t is a 3-D texture coordinate.

Function: texCUBE
Usage: texCUBE(s, t, ddx, ddy)
Description: 3-D cube texture lookup with derivatives. s is a sampler or sam-
plerCUBE object. t is a 3-D texture coordinate, ddx and ddy are derivates in the
x and y direction. The derivatives are used by the lod calculation. t, ddx, and
ddy are 3-D vectors.

Function: texCUBEbias
Usage: texCUBEbias(s, t)
Description: 3-D biased cube texture lookup. s is a sampler or samplerCUBE
object. t is a 4-D texture coordinate. The mip level is biased by t.w before the
lookup takes place.

Function
Input Arg/
Return Type

Type Size

texCUBE Return type Vector template, float
component type

1 row, 4 columns

s Object template, sam-
pler component type

1 row, 3 columns

t Scalar template, float
component type

Same as input s

Function
Input Arg/
Return Type

Type Size

texCUBE Return type Vector template, float
component type

1 row, 4 columns

s Object template, sam-
pler component type

1 row, 3 columns

t Scalar template, float
component type

Same as input s

ddx Scalar template, float
component type

Same as input s

ddx Scalar template, float
component type

Same as input s

Z03C616531.fm Page 385 Tuesday, May 13, 2003 1:10 PM

386 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Function: texCUBEproj
Usage: texCUBEproj(s, t)
Description: 3-D projective cube texture lookup. s is a sampler or samplerCUBE
object. t is a 4-D texture coordinate. t is divided by t.w before the lookup takes
place.

Function: transpose
Usage: transpose(x)
Description: Returns the transpose of the matrix m. If the source is dimension
mrows x mcolumns, the resulting dimension is mcolumns x mrows.

Function
Input Arg/
Return Type

Type Size

texCUBEbias Return type Vector template, float
component type

1 row, 4 columns

s Object template,
sampler component
type

1 row, 3 columns

t Vector template, float
component type

1 row, 4 columns

Function
Input Arg/
Return Type

Type Size

texCUBEproj Return type Vector template, float
component type

1 row, 4 columns

s Object template,
sampler component
type

1 row, 3 columns

t Vector template, float
component type

1 row, 4 columns

Function
Input Arg/
Return Type

Type Size

transpose Return type Same as input x Same as input x

x Any template, any
component type

Any number of rows and col-
umns

Z03C616531.fm Page 386 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 387

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

5: Pixel Shader 1_x Considerations
HLSL is designed to build shaders from functions, which can be compiled for
many hardware targets (ps_1_1 through ps_3_0). The early versions of pixel
shaders, particularly ps_1_1, ps_1_2, ps_1_3, and ps_1_4 (referred to collec-
tively as ps_1_x), are limited in functionality compared with ps_2_0 and later.

To expand the functionality of ps_1_x, instruction and register modifiers
were added to ps_1_x assembly language. When designing HLSL shaders that
are targeted to run on ps_1_x hardware, some knowledge of these modifiers
will make the compilation of HLSL functions an easier task. All these examples
will compile in ps_1_x, even though for a few cases, the HLSL compiler emu-
lates functionality not present in ps_1_1 shaders.

The purpose of this section is to take the instruction and register modifi-
ers, and demonstrate HLSL functions that implement the functionality of the
modifiers. This will encourage you to use HLSL in a way that compiles shaders
into code that’s more compatible with ps_1_x hardware. If you intend to run
shaders on ps_2_0 hardware (or greater), you can skip over this section
entirely.

ps_1_x shaders can be grouped into two categories: ps_1_1 to ps_1_3, and
ps_1_4. In general, functionality increases with each minor shader number. How-
ever, ps_1_4 has a substantial increase in capabilities. In the modifiers section, the
only topic that pertains to ps_1_4 is “Destination Modifiers in ps_1_4.”

5.1 ps_1_1, ps_1_2, and ps_1_3
ps_1_1, ps_1_2, and ps_1_3 have several limitations:

■ All float values are reinterpreted as (a minimum of) 8-bit signed
fixed-point values. Thus, intermediate values outside of the range –1
to 1 are not guaranteed.

■ Texture lookups are bound to their sampler and texture coordinates;
that is, sampler register s0 can only be done from the input register
marked TEXCOORD0, and so on. To support multiple texture look-
ups from the same texture coordinates, a sampler must be bound to
each sampler register.

■ Dependent texture reads are restricted to a small set of specific oper-
ations.

■ In general, write masks and swizzles are computationally expensive.

■ In general, the w-component of the texture coordinates can’t be

Z03C616531.fm Page 387 Tuesday, May 13, 2003 1:10 PM

388 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

read.

■ Inputs marked as texture coordinates (with the TEXCOORD seman-
tic) are clamped from 0 to 1.

5.2 ps_1_4
ps_1_4 shaders have the following limitations:

■ All float values are reinterpreted as (a minimum of) 16-bit signed
fixed-point from the range –8 to 8. Constant registers, however, are
still restricted in the range –1 to 1.

■ Replication swizzles (.x, .y, .z, .w) are free, but others swizzles are
expensive.

■ One layer of dependent texture reads is allowed.

■ In general, the w-component of the texture coordinates can’t be
read.

5.3 Modifiers
Although the instruction count for ps_1_x is low, there are many types of oper-
ations that can be considered free or almost free. In assembly, these are referred
to as source and destination modifiers. The compiler will recognize opportuni-
ties to use these modifiers and use them as appropriate. Below is a list of oper-
ations that, in general, are free.

Bias
The bias source register modifier subtracts 0.5f from each register component,
so (y = x - 0.5f). Here’s an example of applying a bias in assembly language:

ps_1_1
texcoord t0
dp3 r0, v0, t0_bias

This HLSL function will generate a bias modifier.

float4 HLSL_Bias(float3 Col : COLOR0, float3 Tex : TEXCOORD0) : COLOR0
{

return dot(Col, (Tex - .5f));
}

For ps_1_1, ps_1_2, and ps_1_3, bias can be applied only to source regis-
ters that are known to contain data in the range of 0 to 1.

Z03C616531.fm Page 388 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 389

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Complement
The complement source register modifier (named invert in the ps_1_x docs)
takes the per-component complement of the register contents, so (y = 1-x).
Here’s an example of using a complement in assembly language:

ps_1_1
mul r0, 1-v0, v1

This HLSL function will generate a complement modifier.

float4 HLSL_Complement(float4 Col[2] : COLOR0) : COLOR0
{

return (1-Col[0]) * (Col[1]);
}

For ps_1_x, complements are allowed only if the source is known to be
from 0 to 1.

Negate
The negate register modifier simply inverts the sign on all register components,
so (y = -x). Here’s an example of inverting the contents of v0 in assembly lan-
guage:

ps_1_1
mov r0, -v0

This HLSL function will generate a negate modifier.

float4 HLSL_Negate(float4 Col[2] : COLOR0) : COLOR0
{

return -Col[0];
}

Be careful with constant registers. For ps_1_x, this function can’t be used
because constant registers can’t be negated.

Scale by 2
The scale by 2 source register modifier (_x2) performs a per-component multi-
ply by 2 of all register components, in other words: (y = 2x). Here’s an example
using assembly language:

ps_1_4
texcrd r0.xyz, t0
dp3 r0, v0, r0_x2

This HLSL function will generate a scale x 2 modifier.

float4 HLSL_Scale_x_2(float3 Col : COLOR0, float3 Tex : TEXCOORD0) : COLOR0
{

return dot(Col, Tex*2);
}

Z03C616531.fm Page 389 Tuesday, May 13, 2003 1:10 PM

390 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Saturate
The saturate instruction modifier clamps the result of an instruction into the
range 0.0 to 1.0 for each component. Here’s an example using assembly lan-
guage, using saturate to clamp the dot product of a texture color with a light
direction:

// Given t0 is a texture, often a bump texture
// v0 is the light direction
dp3_sat r0, t0_bx2, v0_bx2

Here are two ways that HLSL can generate a saturate modifier.
This HLSL function clamps the result between 0 and 1:

float4 HLSL_Clamp_0_1(float4 Col[2] : COLOR0) : COLOR0
{

return saturate(Col[0]);
}

This HLSL intrinsic function can clamp the result to an arbitrary min, max
range. For ps_1_x shader, the valid range is 0 to 1:

float4 HLSL_Clamp_ToSaturateRange(float4 Col[2] : COLOR0) : COLOR0
{

return clamp(Col[0],0,1);
}

Signed Scale (bx2)
The signed-scale source register modifier subtracts 0.5 from each component
and scales the result by 2.0 on all register components, so (y = 2(x - 0.5f)).
Here’s an example using assembly language:

ps_1_1
texcoord t0
dp3 r0, v0, t0_bx2

Here are a couple of ways to implement this modifier in an HLSL function.

float4 HLSL_SignedScale_1(float3 Col : COLOR0,
float3 Tex : TEXCOORD0) : COLOR0

{
return dot(Col, (Tex -.5f)*2);

}

HLSL_SignedScale_1 only requires one statement.

float4 HLSL_SignedScale_2(float3 Col : COLOR0,
float3 Tex : TEXCOORD0) : COLOR0

{

Z03C616531.fm Page 390 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 391

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

return dot(Col, Tex*2 - 1);
}

HLSL_SignedScale_2 is equivalent in functionality but is slightly more effi-
cient as a result of rearranging the order of operations to remove the extra mul-
tiply.

Destination Modifiers in ps_1_4
ps_1_4 also has destination register modifiers, x8 (times 8), d4 (divide by 4),
and d8 (divide by 8). Here’s an example using assembly language:

ps_1_4
texcrd r0.xyz, t0
dp3_x8 r0, v0, r0

A general HLSL function to multiply by n (where n could be 2, 4, 8, .5, .25,
.125, and so on) can implement these.

static const float N = 2;
float4 main(float4 Col[2] : COLOR0) : COLOR0
{

return (Col[0] + Col[1])*N;
}

5.4 Texture Instructions
Texture reads in ps_1_1, ps_1_2, and ps_1_3 are restricted so that each nonde-
pendent texture read must be performed from a sampler with the same number
as the texture coordinate. Multiple texture reads can’t be done from the same
texture coordinate. Therefore, the following example is not valid for these three
shader versions:

sampler s0;
sampler s1;
float4 main(float4 Tex : TEXCOORD) : COLOR0
{

float4 val1 = tex2D(s0, Tex); // First texture read
float4 val2 = tex2D(s1,Tex); // Second invalid texture read
return val1+val2;

}

The HLSL code must be modified to contain two sets of texture coordi-
nates, to do two texture reads in ps_1_1, ps_1_2, or ps_1_3.

sampler s0;
sampler s1;
float4 main(float4 Tex[2] : TEXCOORD) : COLOR0

Z03C616531.fm Page 391 Tuesday, May 13, 2003 1:10 PM

392 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

{
float4 val1 = tex2D(s0, Tex[0]);
float4 val2 = tex2D(s1, Tex[1]);
return val1+val2;

}

Using a compile target of ps_1_1, this code compiles to the following
assembly code:

ps_1_1
tex t0
tex t1
add r0, t0, t1

ps_1_1, ps_1_2, and ps_1_3 support a specific number of semi-fixed
dependent texture reads. See the following examples for more information
about specific texture sampling instructions.

ps_1_4 is more flexible. It supports dependent texture reads, that is, math
operations on texture coordinates followed by a texture read.

texdp3tex
The texdp3tex instruction generates texture coordinates from a dot product and
then samples a texture. Here’s an example of a dependent texture read using
assembly language:

ps_1_2
tex t0
texdp3tex t1, t0_bx2
mov r0, t1

An HLSL function that could compile into a valid ps_1_2 or ps_1_3 shader
would look like this:

sampler normalMap;
sampler depTexture;
float4 HLSL_texdp3tex (float3 Tex : TEXCOORD0,

float3 Mat : TEXCOORD1) : COLOR0
{

float3 Normal = tex2D(normalMap, Tex);
float TexCrd;
TexCrd = dot(Normal*2 - 1, Mat);
return tex1D(depTexture,TexCrd);

}

Z03C616531.fm Page 392 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 393

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

texm3x2
The texm3x2 instruction generates texture coordinates from a 3x2 matrix mul-
tiply and then samples a texture. Here’s an example of a dependent texture
read using assembly language:

ps_1_1
tex t0
texm3x2pad t1, t0_bx2
texm3x2tex t2, t0_bx2
mov r0, t2

An HLSL function that could compile into a valid ps_1_2 or ps_1_3 shader
would look like this:

sampler normalMap;
sampler depTexture;
float4 HLSL_texm3x2(float3 Tex : TEXCOORD0,

float3 Mat[2] : TEXCOORD1) : COLOR0
{

float3 Normal = tex2D(normalMap, Tex);
float2 TexCrd;
TexCrd.x = dot(Normal*2 - 1, Mat[0]);
TexCrd.y = dot(Normal*2 - 1, Mat[1]);
return tex2D(depTexture,TexCrd);

}

texm3x3
The texm3x3 instruction generates texture coordinates from a 3x3 matrix mul-
tiply and then samples a texture. Here’s an example of a dependent texture
read using assembly language:

ps_1_1
tex t0
texm3x3pad t1, t0_bx2
texm3x3pad t2, t0_bx2
texm3x3tex t3, t0_bx2
mov r0, t3

An HLSL function that compiles into a valid ps_1_2 or ps_1_3 shader
would look like this:

sampler normalMap;
sampler depTexture;
float4 HLSL_texm3x3 (float3 Tex : TEXCOORD0,

float3 Mat[3] : TEXCOORD1) : COLOR0

Z03C616531.fm Page 393 Tuesday, May 13, 2003 1:10 PM

394 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

{
float3 Normal = tex2D(normalMap, Tex);
float3 TexCrd;
TexCrd.x = dot(Normal*2 - 1, Mat[0]);
TexCrd.y = dot(Normal*2 - 1, Mat[1]);
TexCrd.z = dot(Normal*2 - 1, Mat[2]);
return texCUBE(depTexture,TexCrd);

}

tex3x3spec
The tex3x3spec instruction computes a reflection, generates texture coordinates
from a 3x3 matrix multiply, and then samples a texture. Here’s an example of a
dependent texture read using assembly language:

ps_1_1
tex t0
texm3x3pad t1, t0_bx2
texm3x3pad t2, t0_bx2
texm3x3spec t3, t0_bx2, c0
mov r0, t3

An HLSL function that compiles into a valid ps_1_2 or ps_1_3 shader
would look like this:

sampler normalmap;
sampler envmap;
float3 viewdir;
float4 HLSL_texspec(float4 Diffuse : COLOR0, float4 Texcoord0 : TEXCOORD0,

float4 Texcoord1 : TEXCOORD1, float4 Texcoord2 : TEXCOORD2,
float4 Texcoord3 : TEXCOORD3) : COLOR

{
float3 normal = tex2D(normalmap, Texcoord0.xy);
float3 TexCrd;
float3x3 Mat = float3x3((float3)Texcoord1, (float3)Texcoord2,
(float3)Texcoord3);

// transpose = inverse for orthogonal matrices
TexCrd = mul(normal*2 - 1,transpose(Mat));
float3 Eye;
Eye = viewdir;
TexCrd = 2*dot(TexCrd, Eye)*TexCrd - Eye*dot(TexCrd,TexCrd);

float4 output = texCUBE(envmap, TexCrd);
return output;

}

Z03C616531.fm Page 394 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 395

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

tex3x3vspec
The tex3x3vspec instruction computes a reflection (using the view direction
from the w-component), generates texture coordinates from a 3 by 3 matrix
multiply, and then samples a texture. Here’s an example of a dependent texture
read using assembly language:

ps_1_1
tex t0
texm3x3pad t1, t0_bx2
texm3x3pad t2, t0_bx2
texm3x3vspec t3, t0_bx2
mov r0, t3

An HLSL function that compiles into a valid ps_1_2 or ps_1_3 shader
would look like this:

sampler normalmap;
sampler envmap;
float4 HLSL_texvspec(float4 Diffuse : COLOR0, float4 Texcoord0 : TEXCOORD0,

float4 Texcoord1 : TEXCOORD1, float4 Texcoord2 : TEXCOORD2,
float4 Texcoord3 : TEXCOORD3) : COLOR

{
float3 normal = tex2D(normalmap, Texcoord0.xy);
float3 TexCrd;
float3x3 Mat = float3x3((float3)Texcoord1, (float3)Texcoord2,
(float3)Texcoord3);

// transpose = inverse for orthogonal matrices
TexCrd = mul(normal*2 - 1,transpose(Mat));
float3 Eye;
Eye.x = Texcoord1.w;
Eye.y = Texcoord2.w;
Eye.z = Texcoord3.w;
TexCrd = 2*dot(TexCrd, Eye)*TexCrd - Eye*dot(TexCrd,TexCrd);

float4 output = texCUBE(envmap, TexCrd);
return output;

}

It’s valid to access the w-component of a texture coordinate in ps_1_1,
ps_1_2, or ps_1_3. This HLSL shader will not compile in ps_1_4 because access
of the w-components of the texture coordinates is not allowed.

texreg2rgb
The texreg2rgb instruction samples a texture using the red, green, and blue com-
ponents for texture coordinates. Here’s an example using assembly language:

Z03C616531.fm Page 395 Tuesday, May 13, 2003 1:10 PM

396 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

ps_1_1
tex t0
texreg2rgb t1, t0
mov r0, t1

An HLSL function that could compile into a valid ps_1_2 or ps_1_3 shader
would look like this:

sampler samp0,samp1;
float4 HLSL_SampleRGB(float2 TexCoord1 : TEXCOORD0) : COLOR0
{

float4 temp = tex2D(samp0,TexCoord1);
return tex2D(samp1,temp.rgb);

}

texreg2ar
The texreg2ar instruction samples a texture using the alpha and red compo-
nents for texture coordinates. Here’s an example using assembly language:

ps_1_1
tex t0
texreg2ar t1, t0
mov r0, t1

An HLSL function that could compile into a valid ps_1_1, or ps_1_2 or
ps_1_3 shader would look like this:

sampler samp0,samp1;
float4 HLSL_SampleAR(float2 TexCoord1 : TEXCOORD0) : COLOR0
{

float4 temp = tex2D(samp0,TexCoord1);
return tex2D(samp1,temp.ar);

}

texreg2gb
The texreg2gb instruction samples a texture using the green and blue compo-
nents for texture coordinates. Here’s an example using assembly language:

ps_1_1
tex t0
texreg2gb t1, t0
mov r0, t1

An HLSL function that could compile into a valid ps_1_1, or ps_1_2 or
ps_1_3 shader would look like this:

sampler samp0,samp1;
float4 HLSL_SampleGB(float2 TexCoord1 : TEXCOORD0) : COLOR0
{

Z03C616531.fm Page 396 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 397

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

float4 temp = tex2D(samp0,TexCoord1);
return tex2D(samp1,temp.gb);

}

6: Keywords
Keywords are identifiers that have special meanings. They can’t be used as
identifiers in your program. The following keywords are reserved. Keywords
marked with * are case insensitive.

The following keywords are unused but are reserved.

asm* bool compile const

decl* do double else

extern false float for

half if in inline

inout int matrix out

pass* pixelshader register return

sampler shared static string

struct technique* texture true

typedef uniform vector vertexshader

void volatile while

auto break case catch

char class const_cast continue

default delete dynamic_cast enum

explicit friend goto long

mutable namespace new operator

private protected public reinterpret_cast

short signed sizeof static_cast

switch template this throw

try typename union unsigned

using virtual

Z03C616531.fm Page 397 Tuesday, May 13, 2003 1:10 PM

398 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

7: Directives
The preprocessor recognizes the following directives. These directives are
implemented to be compatible with the Visual C++ preprocessor, except as
noted below. Refer to the Visual C++ documentation for a description of these
directives.

The #include directive is valid when compiling from a file or when an
include handler is provided. The file name specified can be either an absolute
or a relative path. When using a relative path, it’s assumed to be relative to the
directory of the file issuing the #include.

Unrecognized pragmas are silently ignored.
Row-major and column-major packing can be specified by compiler prag-

mas.

#pragma pack_matrix (row_major)
#pragma pack_matrix (column_major)

The following tokens are automatically defined:

#define D3DX
#define D3DX_VERSION 0x0900
#define DIRECT3D
#define DIRECT3D_VERSION 0x0900
#define __FILE__ <current file name>
#define __LINE__ <current line number>

8: Lexical Conventions
HLSL language conventions define the basic building blocks of the language
constructs, including spaces, floating-point and integer numbers, characters,
and identifiers.

8.1 White Space
HLSL recognizes the following as white space:

■ A space character

■ A tab character

■ An end-of-line character

#define #elif #else #endif

#error #if #ifdef #ifndef

#include #line #pragma #undef

Z03C616531.fm Page 398 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 399

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

■ C-style comments (/* */)

■ C++-style comments (//)

■ Assembly-style comments in asm{ }; blocks

8.2 Floating-Point Numbers
Floating-point numbers are represented by either of the following:

fractional_constant exponent floating_suffix
or

digit_sequence exponent floating_suffix

The fractional constant is the fractional part of the number, which can be
either of the following:

■ digit_sequence(opt) . digit_sequence

■ digit_sequence .

The exponent is the exponential part of the number, which can be either
of the following:

■ e sign(opt) digit_sequence

■ E sign(opt) digit_sequence

The sign is either positive (+) or negative (–)
The digit_sequence is a sequence of digits, which can be either of the fol-

lowing:

■ digit

■ digit-sequence digit

The floating_suffix is one of the following:

■ h or H for half floating-point, or 16 bits

■ f or F for floating-point, or 32 bits

8.3 Integer Numbers
Integer numbers are represented by

integer_constant integer_suffix

The integer_constant is an integer number that contains one of the fol-
lowing:

■ #(decimal number) (continued)

Z03C616531.fm Page 399 Tuesday, May 13, 2003 1:10 PM

400 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

■ 0#(octal number)

■ 0x#(hex number)

The integer_suffix is an optional suffix specifying one of the following:

■ Unsigned, either u or U

■ Signed, either l or L

8.4 Characters
These are the recognized character types in HLSL:

Escapes are not supported in preprocessor expressions.

8.5 Identifiers
Identifiers are combinations of letters (a to z), both uppercase and lowercase,
and digits (0 to 9).

Underscores are valid in an identifier.
Identifiers are used in parameter names, argument names, and function

names.

8.6 Strings
A string is any set of characters within double quotes (“s”).

9: Grammar
The grammar specifies the allowable language constructs.

Syntax Name Description

'c' Character Any character in single
quotes

'\a' '\b' '\f' '\b' '\r' '\t' '\v' Escape character Escape characters

'\nnn' Octal escape Each n represents an octal
digit (0 to 7)

'\xn' Hex escape n is any number of hex dig-
its (0 to 15)

'\c' Other characters c is any character, including
backslashes and quotation
marks

Z03C616531.fm Page 400 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 401

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

9.1 Program
Program :

Declarations

9.2 Declarations
Declarations :

Declaration
Declaration Declarations

Declaration :
TypeDeclaration;
VariableDeclaration;
VariableStructureDeclaration;
FunctionDeclaration;
TechniqueDeclaration;

9.3 Usages
Usages :

Usage
Usage Usages

Usage :
static
uniform
extern
volatile
inline
shared
target

UsageType :
Type
Usages Type

UsageStructureDefinition :
StructureDefinition
Usages StructureDefinition

9.4 Types
TypeDecl :

typedef Type TypeDefinitions ;
StructureDefinition ;

TypeDefinitions :
VariableDimension
VariableDimension , TypeDefinitions

(continued)

Z03C616531.fm Page 401 Tuesday, May 13, 2003 1:10 PM

402 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

TypeDimension :
Type
TypeDimension [ConstantExpression]

Type :
SimpleType
const <i>SimpleType

SimpleType :
BaseType
struct
TypeId

BaseType :
void
ScalarType
VectorType
MatrixType
ObjectType

ScalarType :
bool
int
half
float
double

VectorType :
vector
vector < ScalarType , AddExpression >

MatrixType :
vector
vector < ScalarType , ConstantExpression , AddExpression >

ObjectType :
string
texture
sampler
pixelshader
vertexshader

9.5 Structures
Structure :

struct { StructDeclarations };
struct { };

StructureDefinition :
SimpleStructureDefinition
const SimpleStructureDefinition

SimpleStructureDefinition :
struct Id { };
struct Id { StructureDeclarations };

StructureDeclarations :
VariableDeclaration

Z03C616531.fm Page 402 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 403

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

VariableDeclaration StructureDeclarations

9.6 Annotations
Annotation :

< AnnotationDeclarations >
< >

AnnotationDeclarations :
VariableDeclaration
VariableDeclaration AnnotationDeclarations

9.7 Variables
VariableDeclaration :

UsageType Variables ;
VariableStructureDeclaration :

UsageStructureDefinition Variables ;
Variables :

Variable
Variable , Variables

Variable :
VariableAnnotation
VariableAnnotation = InitExpression

VariableAnnotation :
VariableSemantic
VariableSemantic Annotation

VariableSemantic :
VariableDimension
VariableDimension : Id

VariableDimension :
Id
VariableDimension [ConstantExpr]

9.8 Initializers
Initializers :

Initializer
Initializer , Initializers

Initializer :
AssignmentExpression
{ Initializers }

9.9 Functions
FunctionDeclaration :

FunctionDefinition FunctionBody
FunctionDefinition :

UsageType Id ParameterList
(continued)

Z03C616531.fm Page 403 Tuesday, May 13, 2003 1:10 PM

404 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

UsageType Id ParameterList ':' Id
FunctionBody :

';'
StatementBlock

ParameterList :
ParameterListStart ParameterListEnd
ParameterListStart T_KW_VOID ParameterListEnd
ParameterListStart ParameterDeclarations ParameterListEnd

ParameterListStart:
'('

ParameterListEnd :
')'

ParameterDeclarations :
ParameterDeclaration
ParameterDeclaration ',' ParameterDeclarations

ParameterDeclaration :
ParameterUsageType Variable

ParameterUsageType :
Type
ParameterUsages Type

ParameterUsages :
ParameterUsage
ParameterUsage ParameterUsages

ParameterUsages :
in
out
inout
uniform

9.10 Techniques
TechniqueDecl :

technique { }
technique Id { Passes }

Passes :
Pass
Pass Passes

Pass :
pass { }
pass Id{ States }
VariableDeclaration

States :
State
State States

State :
Id = StateExpression ;
Id [UINT] { StateExpression };

Z03C616531.fm Page 404 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 405

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

9.11 Statements
SimpleStatement :

;
Expression ;
return ;
return Expression ;
do Statement while (Expression) ;
StatementBlock

NonIfStatement :
SimpleStatement
while (Expression) NonIfStatement
for (ForInitialCondition ForCondition ForStep) NonIfStatement

Statement :
SimpleStatement
while (Expression) Statement
for (ForInitialCondition ForCondition ForStep) Statement
if (Expression) Statement
if (Expression) NonIfStatement else Statement

ForInitialCondition :
;
Expression ;
VariableDeclaration

ForCondition :
;
Expression ;

ForStep :
Expression

DeclarationStatement :
TypeDeclaration
VariableDeclaration
VariableStructureDeclaration
Statement

DeclarationStatements :
DeclarationStatement
DeclarationStatement DeclarationStatements

StatementBlock :
{ }
{ DeclarationStatements }

9.12 Expressions
Primary :

SimpleExpression
ComplexExpression

SimpleExpression :
true

(continued)

Z03C616531.fm Page 405 Tuesday, May 13, 2003 1:10 PM

406 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

false
UINT
Float
String
NonTypeId

ComplexExpression :
(Expression)
TypeId (ArgumentExpressions)
BaseType (ArgumentExpressions)
NonTypeId (ArgumentExpressions)

Asm
AsmDecl
AsmDecl Asm
compile Target NonTypeId (ArgumentExpression)

DwordExpr :
Dword
Dword | DwordExpression

StateExpression :
DwordExpression
ComplexExpression
{ InitExpressions }
< RelationalExpression >

PostfixExpression :
PrimaryExpression
PostfixExpression [Expression]
PostfixExpression . Id
PostfixExpression ++
PostfixExpression --

;
UnaryExpression :

PostfixExpression
++ UnaryExpression
-- UnaryExpression
! CastExpression
- CastExpression
+ CastExpression

CastExpression :
UnaryExpression
(TypeDimension) CastExpression

MulExpression :
CastExpression
MultiplyExpression * CastExpression
MultiplyExpression / CastExpression
MultiplyExpression % CastExpression

AddExpression :
MultiplyExpression
AddExpression + MultiplyExpression
AddExpression - MultiplyExpression

RelationalExpression : AddExpression

Z03C616531.fm Page 406 Tuesday, May 13, 2003 1:10 PM

Appendix C HLSL Reference 407

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

RelationalExpression < AddExpression
RelationalExpression > AddExpression
RelationalExpression T_OP_LE AddExpression
RelationalExpression T_OP_GE AddExpression

EqualityExpression :
RelationalExpression
EqualityExpression = RelationalExpression
EqualityExpression != RelationalExpression

AndExpression :
EqualityExpression
AndExpression && EqualityExpression

OrExpression :
AndExpression
OrExpression || AndExpression

AssignmentExprExpression :
OrExpression
CastExpression '=' AssignmentExpression
CastExpression T_OP_ME AssignmentExpression
CastExpression T_OP_DE AssignmentExpression
CastExpression T_OP_RE AssignmentExpression
CastExpression T_OP_AE AssignmentExpression
CastExpression T_OP_SE AssignmentExpression

ConditionalExpr :
AssignmentExpression
AssignmentExpression ? AssignmentExpression : ConditionalExpression

ArgumentExprs :
ConditionalExpression
ConditionalExpression , ArgumentExpressions

ArgumentExpression :
ArgumentExpression

ArgumentExpressions :
ArgumentExpression

InitExpression :
ConditionalExpression
{ InitExpressions }

InitExpressions :
InitExpression
InitExpression , InitExpressions

ConstantExpression :
ConditionalExpression

Expression :
ConditionalExpression
ConditionalExpression , Expression

9.13 Tokens
Dword :

Uint
(continued)

Z03C616531.fm Page 407 Tuesday, May 13, 2003 1:10 PM

408 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

- Uint
Float
- Float
DwordID
Uint DwordID

DwordId :
Id
true
false
texture

Id :
TypeId
NonTypeId

Target :
NonTypeId

Uint :
UINT
Int32
UInt32

Float :
float
float16
float32
float64

String :
string

TypeId :
T_TYPE_ID

NonTypeId :
T_NON_TYPE_ID

Asm :
asm {

AsmDecl :
T_KW_DECL {

Z03C616531.fm Page 408 Tuesday, May 13, 2003 1:10 PM

409

Microsoft Press. Confidential. master page = Section Opener
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Appendix D

Effect Reference

This appendix contains reference material for effects, including a description of
the variable data types and valid effect expressions, and a list of the effect states
that control vertex and pixel processing.

1: Effect Format
Programming effects requires an understanding of the effect format. This format
has been designed to streamline effect variables and effect state assignment.

1.1 Variables
Global variables are declared in an effect outside of techniques and passes.
Variables are declared like this:

usage type id [: semantic] [< annotation(s) >] [= expression];

Where:

■ Usage is the scope of the parameter. See section 1.9, “Usages,” and
section 1.10, “Literals.”

■ Type is any valid data type from the following table. These are the
same as the high-level shader language (HLSL) data types.

■ ID is a unique identifier. See section 1.8, “IDs and Semantics.”

■ Semantic is a tag following identifier rules that typically indicates
the usage of the parameter. Semantics must be a particular type. See
section 1.8, “IDs and Semantics.”

■ Annotation is user information and can be any type. See section
1.5, “Annotations.”

■ Expression initializes parameter values. See section 1.4, “Expres-
sions.”

Z04D616531.fm Page 409 Tuesday, May 13, 2003 1:10 PM

410 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Parameters can be initialized to any expression that reduces to a literal
value. Parameter values are not changed by the execution of state assignment
or function calls. The following table lists the valid parameter types for effect
global variables.

The DWORD and float4 types can be used interchangeably. An effect will
convert a DWORD to a float4, and vice versa, if the code requires the cast con-
version.

Effects will automatically cast convert the float3x3, float3x4, and float4x3
types to float4x4 when it’s necessary to do so (such as when the matrix is used
in a 4-by-4 multiply).

Any of these types can be declared as 1-D or 2-D arrays. The syntax is

typeRxC variableName

Where:

■ type is any type in the preceding table.

■ R is the number of rows.

■ C is the number of columns.

■ variableName is the name of the variable.

The maximum number of rows or columns is four.

Data Type Example

DWORD DWORD someConstant;

FLOAT FLOAT rotationAngle;

VECTOR VECTOR lightDirection;

MATRIX matrix matWorld;

VERTEXSHADER VertexShader vs1;

PIXELSHADER PixelShader ps1;

TEXTURE texture tex0 < string name = “tiger.bmp”; >;

SAMPLER sampler TextureSampler = sampler_state
{

texture = (tex0);
mipfilter = linear;

};

Z04D616531.fm Page 410 Tuesday, May 13, 2003 1:10 PM

Appendix D Effect Reference 411

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

1.2 Techniques
A technique encapsulates the effect state that determines a rendering style. A
technique is made up of one or more passes. Techniques are declared like this:

technique [id] [< annotation(s) >]
{ pass(es) };

Where:

■ ID is an optional unique identifier. See section 1.8, “IDs and Seman-
tics.”

■ Annotation(s) are optional user information. See section 1.5, “Anno-
tations.”

■ Pass(es) are zero or more passes. Each pass contains state assign-
ments. See section 1.3, “Passes.”

1.3 Passes
A pass contains the state assignments required to render. A pass is declared like
this:

pass [id] [< annotation(s) >]
{ state assignment(s) }

Where:

■ ID is an optional unique identifier. See section 1.8, “IDs and Seman-
tics.”

■ Annotation(s) are optional user information. See section 1.5, “Anno-
tations.”

■ State assignment(s) assign state values or evaluate one or more
expressions. See section 2, “Effect States.”

For best performance, assign unique states only once in a pass. If an indi-
vidual state is assigned more than once in an effect, only the last state assign-
ment will be honored.

1.4 Expressions
Expressions are mathematical or logical statements that are used on the right
side of an equals sign. Expressions are used to set an effect variable to a valid
effect state. Effects support many types of expressions, as shown in the follow-
ing table.

Z04D616531.fm Page 411 Tuesday, May 13, 2003 1:10 PM

412 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Expression Type Syntaxes Description

Global variable reference (variable) or < variable > Use for global variables.

Numeric scalar scalar Any integer, Boolean, or
float scalar.

Numeric expression (numeric expression) All standard numeric HLSL
expressions are supported.
See Appendix C.

Constructor type (constructor
arguments)

Complex data type
constructor.

List of initializers { scalar value , scalar
value, ... scalar value}

Each scalar must be a literal
scalar value. The number of
initializers must be compati-
ble with the variable (or
effect state) on the left side
of the equals sign.

OR expression expression | expression ...\
... expression

Each expression must be
compatible with the variable
(or effect state) on the left
side of the equals sign. The
expressions are not case sen-
sitive.

NULL NULL NULL can only be assigned
to a shader, a sampler, or a
texture object.

Assembly block instructions

VertexShader = asm

};
PixelShader = asm
{

instructions

};

Pixel shader assembly blocks
must be assigned to the PIX-
ELSHADER state. Vertex
shader assembly blocks must
be assigned to the VERTEX-
SHADER state.

Z04D616531.fm Page 412 Tuesday, May 13, 2003 1:10 PM

Appendix D Effect Reference 413

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

1.5 Annotations
Annotations are user-specific data that can be attached to any technique, pass,
or parameter. An annotation is a flexible way to add information to individual
parameters. The information can be read back and used any way the applica-
tion chooses. An annotation can be any data type. The syntax for an annotation
is shown here:

< type id = expression ; >

Where:

■ Type is any valid HLSL numeric type or a string. Valid types are
listed in Appendix C.

■ ID is a unique identifier. See section 1.8, “IDs and Semantics.”

■ Expression is any effect expression. See section 1.4, “Expressions.”

The properties of annotations include the following:

■ They must be either numeric or strings.

■ They must always be initialized with a default value.

Sampler state block sampler Sampler =
sampler_state
{

Mipfilter = Linear;
Texture = (Tex0);

}

Sampler state blocks are
sequences of unindexed
sampler stage state or texture
assignments. Sampler state
blocks must be assigned to
the SAMPLER effect state.

High-level language
compile

compileTarget entrypoint
([arguments])

Example: compile vs_1_1
vs();

Example: VertexShader =
compile vs_1_1 vs();

The vertex shader vs_m_n
target indicates the
D3DVS_VERSION(m, n) ver-
tex shader version. The pixel
shader ps_m_n target indi-
cates D3DPS_VERSION(m,
n) pixel shader version.

Vertex shader HLSL compile
expressions can be assigned
only to the VERTEXSHADER
effect state. Pixel shader
HLSL compile expressions
can be assigned only to the
PIXELSHADER effect state.

Expression Type Syntaxes Description

Z04D616531.fm Page 413 Tuesday, May 13, 2003 1:10 PM

414 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

■ They can be associated with techniques and passes and top-level
effect parameters.

■ They can be written to and read from with either the ID3DXEffect or
the ID3DXEffectCompiler interface.

■ They can be added with the ID3DXEffect interface.

■ They can’t be referenced inside the effect.

■ They can’t have sub-semantics or sub-annotations.

1.6 Cloning and Sharing
Cloning (or copying) duplicates an effect’s parameters. Clones behave as fol-
lows:

■ Clones inherit the original effect’s pool.

■ Clones inherit the original effect’s techniques, passes, parameters,
and annotations (including all annotations added with ID3DXEffect).

■ Clones inherit the original effect’s dynamically added annotations.

■ Cloning onto a new device will fail if the original effect’s pool was
not NULL and the original effect contained a shared device-depen-
dent parameter (such as a texture or shader).

A pool is a buffer that shares effect parameters between different effects.
To add parameters to a pool, specify a shared usage (using the shared key-
word) when the effect is created.

A pool has the following restrictions:

■ A parameter is added to the pool the first time an effect containing
that (shared) parameter is added to the pool.

■ A pool initializes a parameter the first time the parameter is set;
parameters shared subsequently get their values from the pool.

■ A parameter is deleted from the pool when all effect references to
the shared parameter are released.

■ All effects in the pool that contain the same (shared) device-depen-
dent parameter must have the same device.

Z04D616531.fm Page 414 Tuesday, May 13, 2003 1:10 PM

Appendix D Effect Reference 415

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

NULL can be used to specify no pool, in which case no parameters are
shared, which is almost equivalent to specifying a unique pool just for this
effect. The single difference is that when the effect is cloned, the clone will not
share its shared parameters with the original.

1.7 Handles
Handles provide an efficient means of referencing the techniques, passes,
annotations, and parameters with ID3DXEffectCompiler or ID3DXEffect. Han-
dles are generated dynamically when you call functions of the form Get[Param-
eter|Annotation|Function|Technique|Pass][ByName|BySemantic|Element].

A handle, which is of type D3DXHANDLE, is defined as a string pointer.
The handles that you pass into functions such as GetParameter[ByName|Ele-
ment|BySemantic] and GetAnnotation[ByName] can be in one of the following
forms:

■ Handles that were returned by functions such as GetParame-
ter[ByName|Element|BySemantic] or GetAnnotation[ByName]

■ Strings such as MyVariableName, MyTechniqueName, or MyArray[0]

■ Handle = NULL, which has the following four possibilities:

❑ If it’s a method return value, the method failed to find the han-
dle.

❑ If a NULL handle is passed in as the first parameter of GetPa-
rameter[ByName|Element|BySemantic], the function returns a
top-level parameter. Conversely, if the handle is non-NULL, the
function returns a structure member or element identified by
the handle.

❑ If a NULL handle is passed in as the first argument of Vali-
dateTechnique or as the second argument of IsParameterUsed,
the current technique is validated.

❑ If a NULL handle is passed in as the first argument of FindNext-
ValidTechnique, the search for a valid technique starts at the
first technique in the effect.

To maximize performance, use an initialization pass to generate handles
from the strings at the start of an application. From that point on, use only han-
dles. Passing in strings instead of generated handles is slower.

Z04D616531.fm Page 415 Tuesday, May 13, 2003 1:10 PM

416 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

While running a program, generating a handle for the same object more
than once will return the same handle back every time. But don’t rely on the
handle staying constant when you run your program multiple times. Also, be
aware that handles generated by different instances of ID3DXEffect and
ID3DXEffectCompiler will be different.

Here are some examples using the Get[Parameter|Annotation|Func-
tion|Technique|Pass][ByName|BySemantic|Element] functions to generate
handles:

// Gets handle of second top-level parameter handle in the effect file
h1 = GetParameter(NULL, 1);
// Gets handle of the third struct member of MyStruct
h2 = GetParameter("MyStruct", 2);
// Gets handle of the third array element handle of MyArray
h3 = GetParameterElement("MyArray", 2);
// Gets handle of first member of h1 (that is, the second top-level param)
h4 = GetParameter(h1, 0);
// Gets handle of MyStruct.Data
h5 = GetParameterByName("MyStruct", "Data");
// or
h6 = GetParameterByName(NULL, "MyStruct.Data");
// Gets handle of MyStruct.Data.SubData
h7 = GetParameterByName("MyStruct.Data", "SubData");
// or
h8 = GetParameter(NULL, "MyStruct[2]");
// Gets handle of fifth annotation of h1 (that is, second top-level param)
h9 = GetAnnotation(h1, 4);
// Gets handle of MyStruct’s annotation, called Author
h10 = GetAnnotationByName("MyStruct", "Author");
// or
h11 = GetParameterByName(NULL, "MyStruct@Author");

1.8 IDs and Semantics
An ID is a unique identifier. IDs have the following properties:

■ Must contain only uppercase and lowercase letters, digits, and
underscores

■ Must not start with a digit

■ Must be distinct from all keywords and other IDs in the same scope

■ Are case sensitive

Z04D616531.fm Page 416 Tuesday, May 13, 2003 1:10 PM

Appendix D Effect Reference 417

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Semantics provide a mechanism for adding user-specific information to a
parameter. Semantic strings have the following properties:

■ Must contain only uppercase and lowercase letters, digits, and
underscores

■ Must not start with a digit

■ Must be distinct from all keywords

■ Are case sensitive

1.9 Usages
A usage is a keyword supplied before a parameter name that identifies how a
parameter will typically be used (by an application or the compiler). Usage is
similar to parameter scope because it defines the scope in which the parameter
is valid.

1.10 Literals
Marking a parameter as a literal indicates that its value will not change, which
enables the effect compiler to perform extra optimization. Only non-shared
top-level parameters can be marked as literals. Parameters can be marked as lit-
eral only with ID3DXEffectCompiler; literal values can’t be set with ID3DX-
Effect.

Usage Description

const The parameter will be constant within the scope of all functions.
const parameters can still be written to with either ID3DXEffect or
ID3DXEffectCompiler because this occurs outside the scope of all
functions.

shared The parameter will be shared in the effect pool.

static The parameter will be invisible to the application; that is, the
parameter can’t be accessed from ID3DXEffect or
ID3DXEffectCompiler.

row_major The matrix order is row major; that is, each matrix row will be
stored in a single constant register.

column_major The matrix order is column major; that is, each matrix column will
be stored in a single constant register.

Z04D616531.fm Page 417 Tuesday, May 13, 2003 1:10 PM

418 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

1.11 Validation
Validation is performed during the effect compile. Validation will fail for any of
the following reasons:

■ If the specified technique handle does not exist

■ If the application of any state, in any pass of the technique, fails

■ If device validation fails after the application of all the states in any
pass of the technique

■ If the PIXELSHADER or VERTEXSHADER effect states are assigned
invalid shaders in any pass of the technique

■ If the device caps do not support cube mapping and a TEXTURE
effect state is assigned a value of type textureCUBE in any pass of the
technique

■ If the device caps do not support volume mapping and a TEXTURE
effect state is assigned a value of type texture3D in any pass of the
technique

2: Effect States
Effect states set up the pipeline to produce a particular rendered result. Effect
states can be divided into the following functional areas:

■ Light states

■ Material states

■ Render states: vertex pipeline vs. pixel pipeline

■ Sampler states

■ Sampler stage states

■ Shader states

■ Shader constant states

■ Texture states

■ Texture stage states

■ Transform states

Z04D616531.fm Page 418 Tuesday, May 13, 2003 1:10 PM

Appendix D Effect Reference 419

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Effect states can be set individually, or they can be combined using the
bitwise OR operator. Use ID3DXEffect::Begin and ID3DXEffect::End to save and
restore state modified by an effect file. Begin takes a flags argument to deter-
mine whether state is saved. Between passes, effect state is never saved or
restored.

Valid states for each of these functional areas are listed in the following
tables. In general, there is a 1-to-1 correspondence between effect states, and
the fixed-function pipeline states that can be set without using effects. The
tables contain

■ The state name

■ The state type

■ The state value (this column also contains a cross-reference to the
fixed-function state)

2.1 Light States
Light states enable and disable lighting and modify lighting characteristics.

Effect State Type
Values/Corresponding Fixed-
Function State

LightAmbient[n] D3DCOLORVALUE See the Ambient member of
D3DLIGHT9.

LightAttenuation0[n] FLOAT See D3DLIGHT9.Attenuation0.

LightAttenuation1[n] FLOAT See D3DLIGHT9.Attenuation1.

LightAttenuation2[n] FLOAT See D3DLIGHT9.Attenuation2.

LightDiffuse[n] D3DCOLORVALUE See D3DLIGHT9.Diffuse.

LightDirection[n] D3DCOLORVALUE See D3DLIGHT9.Direction.

LightEnable[n] BOOL True or False. See the bEnable argu-
ment in IDirect3DDevice9::Light-
Enable.

LightFalloff[n] FLOAT See D3DLIGHT9.Falloff.

LightPhi[n] FLOAT See D3DLIGHT9.Phi.

LightPosition[n] D3DCOLORVALUE See D3DLIGHT9.Position.

LightRange[n] FLOAT See D3DLIGHT9.Range.

Z04D616531.fm Page 419 Tuesday, May 13, 2003 1:10 PM

420 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

To enable the best performance with an effect that involves lighting, all
components of a light or a material should be specified in the effect file. Light-
ing states that are undeclared are set by the runtime to some default value
because there’s no way for the runtime to set light states individually.

2.2 Material States
Material states set color contributions that come from materials such as ambient,
diffuse, and specular colors.

Just like lighting states, default material states should be specified in the
effect file (when material states are used, that is). Material states that are unde-
clared are set by the runtime to some default value because there’s no way for
the runtime to set them individually.

LightSpecular[n] D3DCOLORVALUE See D3DLIGHT9.Specular.

LightTheta[n] FLOAT See D3DLIGHT9.Theta.

LightType[n] DWORD Same value as the array of up to n
D3DLIGHTTYPE values without the
D3DLIGHT_ prefix.

Effect State Type
Values/Corresponding Fixed-
Function State

Effect State Type
Values/Corresponding
Fixed-Function State

MaterialAmbient D3DCOLORVALUE Same value as
D3DMATERIAL9.Ambient

MaterialDiffuse D3DCOLORVALUE Same value as
D3DMATERIAL9.Diffuse

MaterialEmissive D3DCOLORVALUE Same value as
D3DMATERIAL9.Emissive

MaterialPower FLOAT Same value as
D3DMATERIAL9.Power

MaterialSpecular D3DCOLORVALUE Same value as
D3DMATERIAL9.Specular

Z04D616531.fm Page 420 Tuesday, May 13, 2003 1:10 PM

Appendix D Effect Reference 421

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

2.3 Render States: Vertex Pipeline vs. Pixel Pipeline
Render states control pipeline functionality. The states are broken into two sets:
those that influence how vertex processing is done, and those that determine
how pixel processing is done.

Effect file render states have names similar to the fixed-function pipeline
states, often with the prefix removed. In the render state tables, the first column
contains the effect state name, the second column indicates the data type, and
the third column contains the corresponding pipeline state that would be set
when not using an effect.

The following table lists the vertex processing states.

Effect State Type
Values/Corresponding Fixed-Function
state

Ambient D3DCOLOR Same values as D3DRENDERSTATE-
TYPE.D3DRS_AMBIENT.

AmbientMaterialSource DWORD Same values as D3DMATERIALCOLOR-
SOURCE without the D3DMCS_ prefix. See
D3DRENDERSTATETYPE.D3DRS_AMBIENT-
MATERIALSOURCE.

Clipping BOOL True or False. Same values as
D3DRENDERSTATETYPE.D3DRS_CLIPPING.

ClipPlaneEnable DWORD Bitwise combination of D3DCLIPPLANE0-
D3DCLIPPLANE5 macros. See
D3DCLIPPLANEn and D3DRENDER-
STATETYPE.D3DRS_CLIPPLANEENABLE.

ColorVertex BOOL True or False. Same values as
D3DRENDERSTATETYPE.D3DRS_COLOR-
VERTEX.

CullMode DWORD Same values as D3DCULLMODE without the
D3DCULL_ prefix.

DiffuseMaterialSource DWORD Same values as D3DMATERIALCOLOR-
SOURCE without the D3DMCS_ prefix. See
D3DRENDERSTATETYPE.D3DRS_DIFFUSE-
MATERIALSOURCE.

EmissiveMaterialSource DWORD Same values as D3DMATERIALCOLOR-
SOURCE without the D3DMCS_ prefix. See
D3DRENDERSTATETYPE.D3DRS_EMISSIVE-
MATERIALSOURCE.

FogColor D3DCOLOR See D3DRENDERSTATETYPE.D3DRS_
FOGCOLOR.

Z04D616531.fm Page 421 Tuesday, May 13, 2003 1:10 PM

422 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

FogDensity FLOAT Same values as D3DRENDERSTATE-
TYPE.D3DRS_FOGDENSITY.

FogEnable BOOL True or False. Same values as
D3DRENDERSTATETYPE.D3DRS_FOG-
ENABLE.

FogEnd FLOAT Same values as D3DRENDERSTATE-
TYPE.D3DRS_FOGEND.

FogStart FLOAT Same values as D3DRENDERSTATE-
TYPE.D3DRS_FOGSTART.

FogTableMode DWORD Same values as D3DFOGMODE. See
D3DRS_FOGTABLEMODE in D3DRENDER-
STATETYPE.

FogVertexMode DWORD Same values as D3DFOGMODE without the
D3DFOG_ prefix.

IndexedVertexBlend-
Enable

BOOL True or False. Same values as
D3DRENDERSTATETYPE.D3DRS_INDEXED-
VERTEXBLENDENABLE.

Lighting BOOL True or False. Same values as
D3DRENDERSTATETYPE.D3DRS_LIGHTING.

LocalViewer BOOL True or False. Same values as
D3DRENDERSTATETYPE.D3DRS_LOCAL-
VIEWER.

MultiSampleAntialias BOOL Same values as D3DRENDERSTATE-
TYPE.D3DRS_MULTISAMPLEANTIALIAS.

MultiSampleMask DWORD Same values as D3DRENDERSTATE-
TYPE.D3DRS_MULTISAMPLEMASK.

NormalizeNormals BOOL True or False. Same values as
D3DRENDERSTATETYPE.D3DRS_NORMALIZ
ENORMALS.

PointScale_A FLOAT Same values as D3DRENDERSTATE-
TYPE.D3DRS_POINTSCALE_A.

PointScale_B FLOAT Same values as D3DRENDERSTATE-
TYPE.D3DRS_POINTSCALE_B.

PointScale_C FLOAT Same values as D3DRENDERSTATE-
TYPE.D3DRS_POINTSCALE_C.

PointScaleEnable BOOL Same values as D3DRENDERSTATE-
TYPE.D3DRS_POINTSCALEENABLE.

Effect State Type
Values/Corresponding Fixed-Function
state

Z04D616531.fm Page 422 Tuesday, May 13, 2003 1:10 PM

Appendix D Effect Reference 423

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

The following table lists the pixel processing states.

PointSize FLOAT Same values as D3DRENDERSTATE-
TYPE.D3DRS_POINTSIZE.

PointSize_Min FLOAT Same values as D3DRENDERSTATE-
TYPE.D3DRS_POINTSIZE_MIN.

PointSize_Max FLOAT Same values as D3DRENDERSTATE-
TYPE.D3DRS_POINTSIZE_MAX without the
D3DRS_ prefix

PointSpriteEnable BOOL True or False. Same values as
D3DRENDERSTATETYPE.D3DRS_POINTS-
PRITEENABLE.

RangeFogEnable BOOL True or False. Same values as
D3DRENDERSTATETYPE.D3DRS_RANGE-
FOGENABLE.

SpecularEnable BOOL True or False. Same values as D3DRENDER-
STATETYPE.D3DRS_SPECULARENABLE.

SpecularMaterialSource DWORD Same values as D3DMATERIALCOLOR-
SOURCE without the D3DMCS_ prefix. See
D3DRENDERSTATETYPE.D3DRS_SPECULAR-
MATERIALSOURCE.

TweenFactor FLOAT Same values as D3DRENDERSTATE-
TYPE.D3DRS_TWEENFACTOR.

VertexBlend DWORD Same values as D3DVERTEXBLENDFLAGS
without the D3DVBF_ prefix. See
D3DRENDERSTATETYPE.D3DRS_VERTEX-
BLEND.

Effect State Type
Values/Corresponding Fixed-Function
State

AlphaBlendEnable BOOL True or False. Same values as
D3DRS_ALPHABLENDENABLE in D3DRENDER-
STATETYPE.

AlphaFunc DWORD Same values as D3DCMPFUNC without the
D3DCMP_ prefix. See D3DRENDERSTATE-
TYPE.D3DRS_ALPHAFUNC.

Effect State Type
Values/Corresponding Fixed-Function
state

Z04D616531.fm Page 423 Tuesday, May 13, 2003 1:10 PM

424 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

AlphaRef DWORD Same values as D3DRENDERSTATE-
TYPE.D3DRS_ALPHAREF.

AlphaTestEnable DWORD True or False. See D3DRENDERSTATETYPE.
D3DRS_ALPHATESTENABLE.

BlendOp DWORD Same values as D3DBLENDOP without the
D3DBLENDOP_ prefix.

ColorWriteEnable DWORD Bitwise combination of RED|GREEN|BLUE
|ALPHA. See D3DRENDERSTATE-
TYPE.D3DRS_COLORWRITEENABLE.

DepthBias INT Same values as D3DRENDERSTATE-
TYPE.D3DRS_ZBIAS.

DestBlend DWORD Same values as D3DBLEND without the
D3DBLEND_ prefix.

DitherEnable BOOL True or False. Same values as D3DRENDER-
STATETYPE.D3DRS_DITHERENABLE.

FillMode DWORD Same values as D3DFILLMODE without the
D3DFILL_ prefix.

LastPixel DWORD True or False. See D3DRENDERSTATE-
TYPE.D3DRS_LASTPIXEL.

ShadeMode DWORD Same values as D3DSHADEMODE without the
D3DSHADE_ prefix.

SrcBlend DWORD Same values as D3DBLEND without the
D3DBLEND_ prefix.

StencilEnable BOOL True or False. Same values as D3DRENDER-
STATETYPE.D3DRS_STENCILENABLE.

StencilFail DWORD Same values as D3DSTENCILCAPS without the
D3DSTENCILCAP_ prefix. See D3DRENDER-
STATETYPE.D3DRS_STENCILFAIL.

StencilFunc DWORD Same values as D3DCMPFUNC without the
D3DCMP_ prefix. See D3DRENDER-
STATETYPE.D3DRS_STENCILFUNC.

StencilMask DWORD Same values as D3DRENDERSTATE-
TYPE.D3DRS_STENCILMASK.

StencilPass DWORD Same values as D3DSTENCILCAPS without the
D3DSTENCILCAP_ prefix. See D3DRENDER-
STATETYPE.D3DRS_STENCILPASS.

Effect State Type
Values/Corresponding Fixed-Function
State

Z04D616531.fm Page 424 Tuesday, May 13, 2003 1:10 PM

Appendix D Effect Reference 425

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

StencilRef DWORD Same values as D3DRENDERSTATE-
TYPE.D3DRS_STENCILREF.

StencilWriteMask DWORD Same values as D3DRENDERSTATE-
TYPE.D3DRS_STENCILWRITEMASK.

StencilZFail DWORD Same values as D3DSTENCILCAPS without the
D3DSTENCILCAP_ prefix. See D3DRENDER-
STATETYPE.D3DRS_STENCILZFAIL.

TextureFactor D3DCOLOR Same values as D3DRENDERSTATE-
TYPE.D3DRS_TEXTUREFACTOR.

Wrap0 DWORD Same values as D3DRS_WRAP0 without the
D3DDRS_ prefix in D3DRENDERSTATETYPE.

Wrap1 DWORD Same values as D3DRENDERSTATE-
TYPE.D3DRS_WRAP1 without the D3DDRS_
prefix.

Wrap2 DWORD Same values as D3DRENDERSTATE-
TYPE.D3DRS_WRAP2 without the D3DDRS_
prefix.

Wrap3 DWORD Same values as D3DRENDERSTATE-
TYPE.D3DRS_WRAP3 without the D3DDRS_
prefix.

Wrap4 DWORD Same values as D3DRENDERSTATE-
TYPE.D3DRS_WRAP4 without the D3DDRS_
prefix.

Wrap5 DWORD Same values as D3DRENDERSTATE-
TYPE.D3DRS_WRAP5 without the D3DDRS_
prefix.

Wrap6 DWORD Same values as D3DRENDERSTATE-
TYPE.D3DRS_WRAP6 without the D3DDRS_
prefix.

Wrap7 DWORD Same values as D3DRENDERSTATE-
TYPE.D3DRS_WRAP7 without the D3DDRS_
prefix.

ZEnable DWORD Same values as D3DZBUFFERTYPE without the
D3DZB_ prefix.

Effect State Type
Values/Corresponding Fixed-Function
State

Z04D616531.fm Page 425 Tuesday, May 13, 2003 1:10 PM

426 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

2.4 Sampler States
Sampler states bind sampler registers to sampler objects.

Here’s an example sampler declaration:

sampler Sampler = sampler_state
{

Texture = (Tex0);
MipFilter = LINEAR;
MinFilter = LINEAR;
MagFilter = LINEAR;

};

The sampler stage states listed between the curly braces are listed in the
next section.

2.5 Sampler Stage States
Sampler stage states define the options for texture sampling.

ZFunc DWORD Same values as D3DCMPFUNC without the
D3DCMP_ prefix. See D3DRENDERSTATE-
TYPE.D3DRS_ZFUNC.

ZVisible DWORD This value is not supported. Same values as
D3DRENDERSTATETYPE.D3DRS_ZVISIBLE.

ZWriteEnable BOOL True or False. See D3DRENDERSTATE-
TYPE.D3DRS_ZWRITEENABLE.

Effect State Type
Values/Corresponding Fixed-Function
State

Effect State Type Values

Sampler SAMPLER See example below.

Z04D616531.fm Page 426 Tuesday, May 13, 2003 1:10 PM

Appendix D Effect Reference 427

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Effect State Type
Values/Corresponding Fixed-
Function state

AddressU[16] DWORD Same values as D3DTEXTURE-
FILTERTYPE without the D3DTEXF_
prefix. See D3DSAMPLERSTATE-
TYPE.D3DSAMP_ADDRESSU.

AddressV[16] DWORD Same values as D3DTEXTURE-
FILTERTYPE without the D3DTEXF_
prefix. See D3DSAMPLERSTATE-
TYPE.D3DSAMP_ADDRESSV.

AddressW[16] DWORD Same values as D3DTEXTURE-
FILTERTYPE without the D3DTEXF_
prefix. See D3DSAMPLER-
STATETYPE.D3DSAMP_ADDRESSW.

BorderColor[16] D3DCOLORVALUE Same values as D3DTEXTURE-
FILTERTYPE without the D3DTEXF_
prefix. See D3DSAMPLERSTATE-
TYPE.D3DSAMP_BORDERCOLOR.

MagFilter[16] DWORD Same values as D3DTEXTURE-
FILTERTYPE without the D3DTEXF_
prefix. See D3DSAMPLERSTATE-
TYPE.D3DSAMP_MAGFILTER.

MaxAnisotropy[16] DWORD Same values as D3DTEXTURE-
FILTERTYPE without the D3DTEXF_
prefix. See D3DSAMPLERSTATE-
TYPE.D3DSAMP_MAXANISOTROPY.

MaxMipLevel[16] DWORD Same values as D3DTEXTURE-
FILTERTYPE without the D3DTEXF_
prefix. See D3DSAMPLERSTATE-
TYPE.D3DSAMP_MAXMIPLEVEL.

MinFilter[16] DWORD Same values as D3DTEXTURE-
FILTERTYPE without the D3DTEXF_
prefix. See D3DSAMPLERSTATE-
TYPE.D3DSAMP_MINFILTER.

MipFilter[16] DWORD Same values as D3DTEXTURE-
FILTERTYPE without the D3DTEXF_
prefix. See D3DSAMPLERSTATE-
TYPE.D3DSAMP_MIPFILTER.

Z04D616531.fm Page 427 Tuesday, May 13, 2003 1:10 PM

428 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Sampler stage states are specified in the sampler state declaration, as
shown in the preceding section.

2.6 Shader States
There are two types of shader states: one for a vertex shader and one for a pixel
shader. These states are conceptually similar to having a pointer to a pixel
shader object (except that there are no functions that can access this state).

The vertex shader object is represented by the state in the following table.

The pixel shader object is represented by the state in the following table.

These states are used as return values from a shader compile, which looks
like this:

VertexShader = compile vs_1_1 VS();
PixelShader = compile ps_1_1 PS();

They can also be used to define assembly state blocks like this:

VertexShader = asm
{

vs_1_1

MipMapLodBias[16] FLOAT Same values as D3DTEXTURE-
FILTERTYPE without the D3DTEXF_
prefix. See D3DSAMPLERSTATE-
TYPE.D3DSAMP_MIPMAPLODBIAS.

SRGBTexture FLOAT Same values as D3DSAMPLERSTATE-
TYPE.D3DSAMP_SRGBTEXTURE

Effect State Type
Values/Corresponding Fixed-
Function state

Effect State Type Values

VertexShader VERTEXSHADER NULL or a compile target

See examples below.

Effect State Type Values

PixelShader PIXELSHADER NULL or a compile target

See examples below.

Z04D616531.fm Page 428 Tuesday, May 13, 2003 1:10 PM

Appendix D Effect Reference 429

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

... Asm instructions
};
PixelShader = asm
{

ps_1_1
... Asm instructions

};

2.7 Shader Constant States
Shader constant states bind shader constants to shader constant registers. There
are two types of constant states for pixel shader constants and for vertex shader
constants.

The vertex shader constant states are listed in the following table:

The pixel shader constant states are listed in the following table:

Effect State Type Values

VertexShaderConstant1 FLOAT4 One 4-D vector

VertexShaderConstant2 FLOAT2x4 Two 4-D vectors

VertexShaderConstant3 FLOAT3x4 Three 4-D vectors

VertexShaderConstant4 FLOAT4x4 Four 4-D vectors

VertexShaderConstantB[m][n] BOOL Array of mxn Boolean values

VertexShaderConstantI[m][n] INT Array of mxn integer values

VertexShaderConstant[m][n] or
VertexShaderConstantF[m][n]

FLOAT Array of mxn 4-D vectors

Effect State Type Value

PixelShaderConstant1 FLOAT4 One 4-D vector

PixelShaderConstant2 FLOAT2x4 Two 4-D vectors

PixelShaderConstant3 FLOAT3x4 Three 4-D vectors

PixelShaderConstant4 FLOAT4x4 Four 4-D vectors

PixelShaderConstantB[m][n] BOOL Array of mxn Boolean values

PixelShaderConstantI[m][n] INT Array of mxn integer values

PixelShaderConstant[m][n] or
PixelShaderConstantF[m][n]

FLOAT Array of mxn 4-D vectors

Z04D616531.fm Page 429 Tuesday, May 13, 2003 1:10 PM

430 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

This example sets the first constant register in a vertex shader to four float-
ing-point values representing material specular values:

float4 k_s : MATERIALSPECULAR = { 1.0f, 1.0f, 1.0f, 1.0f }; // specular
technique Tech
{

pass P0
{

...
PixelShaderConstant[0] = (k_s);
...

}
}

This example sets four vertex shader constants (four 4-D values), starting
with constant register c8, to the values in a world view projection composite
matrix:

float4x4 matWorldViewProj;
technique TVertexAndPixelShader_Asm
{

pass P0
{

...
VertexShaderConstant4[8] = (matWorldViewProj);
...

}
}

Assignments made to the following shader constant states are implicitly
converted:

■ VertexShaderConstant, VertexShaderConstantB, VertexShaderCon-
stantI, and VertexShaderConstantF

■ PixelShaderConstant, PixelShaderConstantB, PixelShaderConstantI,
and PixelShaderConstantF

In other words, if the assigned data (on the right side of the equals sign)
does not match the constant data type, the assigned data will be converted to
match the constant data type when the register is loaded.

Z04D616531.fm Page 430 Tuesday, May 13, 2003 1:10 PM

Appendix D Effect Reference 431

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

2.8 Texture States
A texture state binds a texture object to a sampler.

This example binds the texture object Tex0 to sampler s0:

texture Tex0< string name = "tiger.bmp">;
Texture[0] = (Tex0);

The application will need to set the texture to the appropriate texture stage. The
application may read the annotation and use the filename to load the texture
object.

2.9 Texture Stage States
Texture stage states configure the multitexture pipeline. The following table
lists the states.

Effect State Type Values

Texture[8] TEXTURE A semicolon if the state is
initialized by the application.
An annotation if the state is
declared in the effect.
See examples below.

Effect State Type
Values/Corresponding Fixed-Function
State

AlphaArg0[8] DWORD D3DTA without the D3DTA_ prefix. See
D3DTEXTURESTAGESTATETYPE.D3DTSS_
ALPHAARG0.

AlphaArg1[8] DWORD D3DTA without the D3DTA_ prefix. See
D3DTEXTURESTAGESTATETYPE.D3DTSS_
ALPHAARG1.

AlphaArg2[8] DWORD D3DTA without the D3DTA_ prefix. See
D3DTEXTURESTAGESTATETYPE.D3DTSS_
ALPHAARG2.

AlphaOp[8] DWORD Same as D3DTEXTUREOP without the
D3DTOP_ prefix. See D3DTEXTURE-
STAGESTATETYPE.D3DTSS_ALPHAOP.

Z04D616531.fm Page 431 Tuesday, May 13, 2003 1:10 PM

432 Part IV Appendixes

Microsoft Press. Confidential. master page = Left
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

ColorArg0[8] DWORD D3DTA without the D3DTA_ prefix. See
D3DTEXTURESTAGESTATETYPE.D3DTSS_
COLORARG0.

ColorArg1[8] DWORD D3DTA without the D3DTA_ prefix. See
D3DTEXTURESTAGESTATETYPE.D3DTSS_
COLORARG1.

ColorArg2[8] DWORD D3DTA without the D3DTA_ prefix. See
D3DTEXTURESTAGESTATETYPE.D3DTSS_
COLORARG2.

ColorOp[8] DWORD Same as D3DTEXTUREOP without the
D3DTOP_ prefix. See D3DTEXTURE-
STAGESTATETYPE.D3DTSS_COLOROP.

BumpEnvLScale[8] FLOAT Same values as D3DTEXTURESTAGE-
STATETYPE.D3DTSS_BUMPENVLSCALE
without the D3DTSS_TCI prefix.

BumpEnvLOffset[8] FLOAT Same values as D3DTEXTURESTAGE-
STATETYPE.D3DTSS_BUMPENVLOFFSET
without the D3DTSS_TCI prefix.

BumpEnvMat00[8] FLOAT Same values as D3DTEXTURESTAGE-
STATETYPE.D3DTSS_BUMPENVMAT00.

BumpEnvMat01[8] FLOAT Same values as D3DTEXTURESTAGE-
STATETYPE.D3DTSS_BUMPENVMAT01.

BumpEnvMat10[8] FLOAT Same values as D3DTEXTURESTAGE-
STATETYPE.D3DTSS_BUMPENVMAT10.

BumpEnvMat11[8] FLOAT Same values as D3DTEXTURESTAGE-
STATETYPE.D3DTSS_BUMPENVMAT11.

ResultArg[8] DWORD D3DTA without the D3DTA_ prefix. See
D3DTEXTURESTAGESTATETYPE.D3DTSS_
RESULTARG.

TexCoordIndex[8] DWORD Same values as D3DTEXTURESTAGE-
STATETYPE.D3DTSS_TEXCOORDINDEX
without the D3DTSS_TCI prefix.

TextureTransformFlags[8] DWORD Same values as D3DTEXTURE-
TRANSFLAGS values without the
D3DTTFF_ prefix. See D3DTEXTURE-
STAGESTATETYPE.D3DTSS_TEXTURE-
TRANSFORMFLAGS.

Effect State Type
Values/Corresponding Fixed-Function
State

Z04D616531.fm Page 432 Tuesday, May 13, 2003 1:10 PM

Appendix D Effect Reference 433

Microsoft Press. Confidential. master page = Right
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

2.10 Transform States
Transform states bind vertex processing transform states with effect matrices.
Effects use transposed matrices for efficiency. An application (or a shader) can
provide transposed matrices to an effect, or an effect will automatically trans-
pose the matrices before using them.

Summary
States can be controlled through the application or through an effect. In almost
all cases, the effect states are named identical to the runtime states with their
prefix (up to the underscore) removed. Effect states are not case sensitive.
Fixed-function states are case sensitive.

Effect State Type
Values/Corresponding
Fixed-Function State

ProjectionTransform D3DMATRIX Same values as
D3DTRANSFORMSTATETYPE
.D3DTS_PROJECTION with-
out the D3DTS_ prefix

TextureTransform[8] D3DMATRIX Same values as
D3DTRANSFORMSTATETYPE
without the D3DTS_ prefix

ViewTransform D3DMATRIX Same values as
D3DTRANSFORMSTATETYPE
.D3DTS_VIEW without the
D3DTS_ prefix

WorldTransform D3DMATRIX Same values as
D3DTRANSFORMSTATETYPE
.D3DTS_WORLD without the
D3DTS_ prefix

Z04D616531.fm Page 433 Tuesday, May 13, 2003 1:10 PM

Microsoft Press. Confidential. master page = Blank
DevStand, sample pages, PP1, edd version: #, FrameMaker+SGML; jimkr

Z04D616531.fm Page 434 Tuesday, May 13, 2003 1:10 PM

Microsoft Press. Confidential. master page = Blank
DevStand, Auth Bio, LRC, edd version: #, FrameMaker+SGML; ef

About the Author
Kris M. Gray is a programmer and writer working on Microsoft DirectX. He has
a passion for graphics that includes working with video-editing software and
programming 3-D virtual worlds, 2-D images, fonts, and text with GDI+. Kris is
currently working with the DirectX 3-D pipeline. This is his first book. The
HLSL chapters were introduced in the HLSL Shader manual at the 2003 Game
Developer Conference. When Kris isn’t programming, he likes to experiment
with 3-D animation and modeling. When he isn’t answering his phone, you can
catch him playing racquetball and walleyball.

Z06A616531.fm Page 1 Tuesday, May 13, 2003 1:10 PM

	Cover
	Copyright Page
	Dedication

	Table of Contents
	Foreword
	Acknowledgments
	Introduction
	The Organization of This Book
	User Requirements
	System Requirements
	The CD-ROM
	Support

	Part I: Programming Assembly-Language Shaders
	Chapter 1: Vertex Shader Introduction
	Vertex Processing
	Vertex Shader Tutorial 1: Transforming Vertices
	Vertex Shader Tutorial 1a: Adding a Diffuse Color
	Summary

	Chapter 2: Vertex Shader Virtual Machine
	Virtual Machine Block Diagram
	Shader Layout
	Registers
	Instructions
	Modifiers Extend the Virtual Machine
	Vertex Shader Version Differences
	Summary

	Chapter 3: Vertex Shader Examples
	Example 1: Vertex Shader Fog
	Example 2: Vertex Shader SDK Sample
	Example 3: Vertex Blend SDK Sample
	Summary

	Chapter 4: Pixel Shader Virtual Machine
	Pixel Processing
	Pixel Shader Virtual Machine Block Diagram
	Shader Layout
	Registers
	Instructions
	Modifiers Extend the Virtual Machine
	Pixel Shader Version Differences
	Summary

	Chapter 5: Pixel Shader Examples
	Example 1: 2-D Image Processing
	Example 2: Multilayered Textures

	Part II: Programming HLSL Shaders
	Chapter 6: HLSL Introduction
	Tutorial 1: Start with a Vertex Shader: Hello World
	Tutorial 2: Add a Pixel Shader
	Tutorial 3: Add a Procedural Texture
	Building the Tutorials
	Summary

	Chapter 7: The Language
	Data Types
	Expressions and Statements
	Functions
	Summary

	Chapter 8: HLSL Examples
	Glow Example
	Sparkle Example
	HLSL Experimentation in EffectEdit
	Summary

	Part III: Programming Effects
	Chapter 9: Effect Introduction
	Effects and the 3-D Pipeline
	An Effect with an Assembly-Language Vertex Shader
	HLSL Vertex Shader
	Characteristics of Effects
	Building an Effect
	Summary

	Chapter 10: Assembly-Language Effect Examples
	Example 1: Asm Vertex Shader with Lighting
	Example 2: Asm Vertex Shader and Pixel Shader with Texturing
	Example 3: Asm Vertex Shader Environment Map

	Chapter 11: HLSL Effect Examples
	Example 1: Vertex and Pixel Shader with Per-Pixel Lighting
	Example 2: Multi-Pass Rendering with Alpha Blending
	EffectEdit: Interactive Effect Development
	Example 3: Hemispheric Lighting

	Appendix A: Vertex Processing
	Transformations
	Vertex Fog
	Lights and Materials
	Ambient Light
	Diffuse Light
	Specular Light
	Emissive Light
	Light Attenuation
	Spotlight Cone

	Appendix B: Asm Shader Instructions
	Instructions

	Appendix C: HLSL Reference
	1: Data Types
	2: Operators
	3: User-Defined Functions
	4: Intrinsic Functions
	5: Pixel Shader 1_x Considerations
	6: Keywords
	7: Directives
	8: Lexical Conventions
	9: Grammar

	Appendix D: Effect Reference
	1: Effect Format
	2: Effect States
	Summary

	About the Author

