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Preface

The visual experience is the principal way that humans sense and communicate with
their world. We are visual beings and images are being made increasing available to
us in electronic digital format via digital cameras, the internet, and hand-held devices
with large-format screens. With much of the technology being introduced to the con-
sumer marketplace being rather new, digital image processing remains a “hot” topic and
promises to be one for a very long time. Of course, digital image processing has been
around for quite awhile, and indeed, methods pervade nearly every branch of science
and engineering. One only has to view the latest space telescope images or read about the
newest medical image modality to be aware of this.

With this introduction,welcome to The Essential Guide to Image Processing ! The reader
will find that this Guide covers introductory, intermediate and advanced topics of digital
image processing, and is intended to be highly accessible for those entering the field or
wishing to learn about the topic for the first time. As such, the Guide can be effectively used
as a classroom textbook. Since many intermediate and advanced topics are also covered,
the Guide is a useful reference for the practicing image processing engineer, scientist, or
researcher. As a learning tool, the Guide offers easy-to-read material at different levels
of presentation, including introductory and tutorial chapters on the most basic image
processing techniques. Further, there is included a chapter that explains digital image
processing software that is included on a CD with the book. This software is part of
the award-winning SIVA educational courseware that has been under development at
The University of Texas for more than a decade, and which has been adopted for use by
more than 400 educational, industry, and research institutions around the world. Image
processing educators are invited these user-friendly and intuitive live image processing
demonstrations into their teaching curriculum.

The Guide contains 27 chapters, beginning with an introduction and a description of
the educational software that is included with the book. This is followed by tutorial chap-
ters on the basic methods of gray-level and binary image processing, and on the essential
tools of image Fourier analysis and linear convolution systems. The next series of chapters
describes tools and concepts necessary to more advanced image processing algorithms,
including wavelets, color, and statistical and noise models of images. Methods for improv-
ing the appearance of images follow, including enhancement, denoising and restoration
(deblurring). The important topic of image compression follows, including chapters on
lossless compression, the JPEG and JPEG-2000 standards, and wavelet image compres-
sion. Image analysis chapters follow, including two chapters on edge detection and one
on the important topic of image quality assessment. Finally, the Guide concludes with
six exciting chapters dealing explaining image processing applications on such diverse
topics as image watermarking, fingerprint recognition, digital microscopy, face recogni-
tion, and digital tomography. These have been selected for their timely interest, as well as
their illustrative power of how image processing and analysis can be effectively applied
to problems of significant practical interest.

xix
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The Guide then concludes with a chapter pointing towards the topic of digital video
processing, which deals with visual signals that vary over time. These very broad and
more advanced field is covered in a companion volume suitably entitled The Essential
Guide to Video Processing. The topics covered in the two companion Guides are, of course
closely related, and it may interest the reader that earlier editions of most of this material
appeared in a highly popular but gigantic volume known as The Handbook of Image and
Video Processing. While this previous book was very well-received, its sheer size made it
highly un-portable (but a fantastic doorstop). For this newer rendition, in addition to
updating the content, I made the decision to divide the material into two distinct books,
separating the material into coverage of still images and moving images (video). I am
sure that you will find the resulting volumes to be information-rich as well as highly
accessible.

As Editor and Co-Author of The Essential Guide to Image Processing, I would thank
the many co-authors who have contributed such wonderful work to this Guide. They are
all models of professionalism, responsiveness, and patience with respect to my cheerlead-
ing and cajoling. The group effort that created this book is much larger, deeper, and of
higher quality than I think that any individual could have created. Each and every chapter
in this Guide has been written by a carefully selected distinguished specialist, ensuring
that the greatest depth of understanding be communicated to the reader. I have also
taken the time to read each and every word of every chapter, and have provided exten-
sive feedback to the chapter authors in seeking to perfect the book. Owing primarily to
their efforts, I feel certain that this Guide will prove to be an essential and indispensable
resource for years to come.

I would also like to thank the staff at Elsevier—the Senior Commissioning Editor,
Tim Pitts, for his continuous stream of ideas and encouragement, and for keeping after
me to do this project; Melanie Benson for her tireless efforts and incredible organization
and accuracy in making the book happen; Eric DeCicco, the graphic artist for his efforts
on the wonderful cover design, and Greg Dezarn-O’Hare for his flawless typesetting.

National Instruments, Inc., has been a tremendous support over the years in helping
me develop courseware for image processing classes at The University of Texas at Austin,
and has been especially generous with their engineer’s time. I particularly thank NI
engineers George Panayi, Frank Baumgartner, Nate Holmes, Carleton Heard, Matthew
Slaughter, and Nathan McKimpson for helping to develop and perfect the many Labview
demos that have been used for many years and are now available on the CD-ROM attached
to this book.

Al Bovik
Austin, Texas

April, 2009
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CHAPTER

1Introduction to Digital Image
Processing
Alan C. Bovik

The University of Texas at Austin

We are in the middle of an exciting period of time in the field of image processing.
Indeed, scarcely a week passes where we do not hear an announcement of some new
technological breakthrough in the areas of digital computation and telecommunication.
Particularly exciting has been the participation of the general public in these develop-
ments, as affordable computers and the incredible explosion of the World Wide Web
have brought a flood of instant information into a large and increasing percentage of
homes and businesses. Indeed, the advent of broadband wireless devices is bringing
these technologies into the pocket and purse. Most of this information is designed for
visual consumption in the form of text, graphics, and pictures, or integrated multimedia
presentations. Digital images are pictures that have been converted into a computer-
readable binary format consisting of logical 0s and 1s. Usually, by an image we mean
a still picture that does not change with time, whereas a video evolves with time
and generally contains moving and/or changing objects. This Guide deals primarily
with still images, while a second (companion) volume deals with moving images, or
videos. Digital images are usually obtained by converting continuous signals into dig-
ital format, although “direct digital” systems are becoming more prevalent. Likewise,
digital images are viewed using diverse display media, included digital printers, com-
puter monitors, and digital projection devices. The frequency with which information
is transmitted, stored, processed, and displayed in a digital visual format is increasing
rapidly, and as such, the design of engineering methods for efficiently transmitting,
maintaining, and even improving the visual integrity of this information is of heightened
interest.

One aspect of image processing that makes it such an interesting topic of study
is the amazing diversity of applications that make use of image processing or analysis
techniques. Virtually every branch of science has subdisciplines that use recording devices
or sensors to collect image data from the universe around us, as depicted in Fig. 1.1. This
data is often multidimensional and can be arranged in a format that is suitable for
human viewing. Viewable datasets like this can be regarded as images and processed
using established techniques for image processing, even if the information has not been
derived from visible light sources. 1
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Part of the universe of image processing applications.

1.1 TYPES OF IMAGES
Another rich aspect of digital imaging is the diversity of image types that arise, and which
can derive from nearly every type of radiation. Indeed, some of the most exciting devel-
opments in medical imaging have arisen from new sensors that record image data from
previously little used sources of radiation, such as PET (positron emission tomography)
and MRI (magnetic resonance imaging), or that sense radiation in new ways, as in CAT
(computer-aided tomography), where X-ray data is collected from multiple angles to
form a rich aggregate image.

There is an amazing availability of radiation to be sensed, recorded as images, and
viewed, analyzed, transmitted, or stored. In our daily experience, we think of “what we
see” as being “what is there,” but in truth, our eyes record very little of the information
that is available at any given moment. As with any sensor, the human eye has a limited
bandwidth. The band of electromagnetic (EM) radiation that we are able to see, or“visible
light,” is quite small, as can be seen from the plot of the EM band in Fig. 1.2. Note that
the horizontal axis is logarithmic! At any given moment, we see very little of the available
radiation that is going on around us, although certainly enough to get around. From an
evolutionary perspective, the band of EM wavelengths that the human eye perceives is
perhaps optimal, since the volume of data is reduced and the data that is used is highly
reliable and abundantly available (the sun emits strongly in the visible bands, and the
earth’s atmosphere is also largely transparent in the visible wavelengths). Nevertheless,
radiation from other bands can be quite useful as we attempt to glean the fullest possible
amount of information from the world around us. Indeed, certain branches of science
sense and record images from nearly all of the EM spectrum, and use the information
to give a better picture of physical reality. For example, astronomers are often identified
according to the type of data that they specialize in, e.g., radio astronomers and X-ray
astronomers. Non-EM radiation is also useful for imaging. Some good examples are the
high-frequency sound waves (ultrasound) that are used to create images of the human
body, and the low-frequency sound waves that are used by prospecting companies to
create images of the earth’s subsurface.
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The electromagnetic spectrum.
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Recording the various types of interaction of radiation with matter.

One commonality that can be made regarding nearly all images is that radiation
is emitted from some source, then interacts with some material, then is sensed and
ultimately transduced into an electrical signal which may then be digitized. The resulting
images can then be used to extract information about the radiation source and/or about
the objects with which the radiation interacts.

We may loosely classify images according to the way in which the interaction occurs,
understanding that the division is sometimes unclear, and that images may be of multiple
types. Figure 1.3 depicts these various image types.

Reflection images sense radiation that has been reflected from the surfaces of objects.
The radiation itself may be ambient or artificial, and it may be from a localized source
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or from multiple or extended sources. Most of our daily experience of optical imaging
through the eye is of reflection images. Common nonvisible light examples include
radar images, sonar images, laser images, and some types of electron microscope images.
The type of information that can be extracted from reflection images is primarily about
object surfaces, viz., their shapes, texture, color, reflectivity, and so on.

Emission images are even simpler, since in this case the objects being imaged are
self-luminous. Examples include thermal or infrared images, which are commonly
encountered in medical, astronomical, and military applications; self-luminous visible
light objects, such as light bulbs and stars; and MRI images, which sense particle emis-
sions. In images of this type, the information to be had is often primarily internal to the
object; the image may reveal how the object creates radiation and thence something of
the internal structure of the object being imaged. However, it may also be external; for
example, a thermal camera can be used in low-light situations to produce useful images
of a scene containing warm objects, such as people.

Finally, absorption images yield information about the internal structure of objects.
In this case, the radiation passes through objects and is partially absorbed or attenuated
by the material composing them. The degree of absorption dictates the level of the
sensed radiation in the recorded image. Examples include X-ray images, transmission
microscopic images, and certain types of sonic images.

Of course, the above classification is informal, and a given image may contain objects,
which interacted with radiation in different ways. More important is to realize that images
come from many different radiation sources and objects, and that the purpose of imaging
is usually to extract information about either the source and/or the objects, by sensing
the reflected/transmitted radiation and examining the way in which it has interacted with
the objects, which can reveal physical information about both source and objects.

Figure 1.4 depicts some representative examples of each of the above categories of
images. Figures 1.4(a) and 1.4(b) depict reflection images arising in the visible light
band and in the microwave band, respectively. The former is quite recognizable; the
latter is a synthetic aperture radar image of DFW airport. Figures 1.4(c) and 1.4(d) are
emission images and depict, respectively, a forward-looking infrared (FLIR) image and a
visible light image of the globular star cluster Omega Centauri. Perhaps the reader can
guess the type of object that is of interest in Fig. 1.4(c). The object in Fig. 1.4(d), which
consists of over a million stars, is visible with the unaided eye at lower northern latitudes.
Lastly, Figs. 1.4(e) and 1.4(f), which are absorption images, are of a digital (radiographic)
mammogram and a conventional light micrograph, respectively.

1.2 SCALE OF IMAGES
Examining Fig. 1.4 reveals another image diversity: scale. In our daily experience, we
ordinarily encounter and visualize objects that are within 3 or 4 orders of magnitude of
1 m. However, devices for image magnification and amplification have made it possible
to extend the realm of “vision” into the cosmos, where it has become possible to image
structures extending over as much as 1030 m, and into the microcosmos, where it has
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Examples of reflection (a), (b), emission (c), (d), and absorption (e), (f) image types.
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become possible to acquire images of objects as small as 10�10 m. Hence we are able
to image from the grandest scale to the minutest scales, over a range of 40 orders of
magnitude, and as we will find, the techniques of image and video processing are generally
applicable to images taken at any of these scales.

Scale has another important interpretation, in the sense that any given image can
contain objects that exist at scales different from other objects in the same image, or
that even exist at multiple scales simultaneously. In fact, this is the rule rather than
the exception. For example, in Fig. 1.4(a), at a small scale of observation, the image
contains the bas-relief patterns cast onto the coins. At a slightly larger scale, strong circular
structures arose. However, at a yet larger scale, the coins can be seen to be organized into
a highly coherent spiral pattern. Similarly, examination of Fig. 1.4(d) at a small scale
reveals small bright objects corresponding to stars; at a larger scale, it is found that the
stars are non uniformly distributed over the image, with a tight cluster having a density
that sharply increases toward the center of the image. This concept of multiscale is a
powerful one, and is the basis for many of the algorithms that will be described in the
chapters of this Guide.

1.3 DIMENSION OF IMAGES
An important feature of digital images and video is that they are multidimensional signals,
meaning that they are functions of more than a single variable. In the classic study of
digital signal processing, the signals are usually 1D functions of time. Images, however, are
functions of two and perhaps three space dimensions, whereas digital video as a function
includes a third (or fourth) time dimension as well. The dimension of a signal is the
number of coordinates that are required to index a given point in the image, as depicted
in Fig. 1.5. A consequence of this is that digital image processing, and especially digital
video processing, is quite data-intensive, meaning that significant computational and
storage resources are often required.

1.4 DIGITIZATION OF IMAGES
The environment around us exists, at any reasonable scale of observation, in a space/-
time continuum. Likewise, the signals and images that are abundantly available in the
environment (before being sensed) are naturally analog. By analog we mean two things:
that the signal exists on a continuous (space/time) domain, and that it also takes values
from a continuum of possibilities. However, this Guide is about processing digital image
and video signals, which means that once the image/video signal is sensed, it must be
converted into a computer-readable, digital format. By digital we also mean two things:
that the signal is defined on a discrete (space/time) domain, and that it takes values
from a discrete set of possibilities. Before digital processing can commence, a process
of analog-to-digital conversion (A/D conversion) must occur. A/D conversion consists of
two distinct subprocesses: sampling and quantization.
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The dimensionality of images and video.

1.5 SAMPLED IMAGES
Sampling is the process of converting a continuous-space (or continuous-space/time)
signal into a discrete-space (or discrete-space/time) signal. The sampling of continuous
signals is a rich topic that is effectively approached using the tools of linear systems
theory. The mathematics of sampling, along with practical implementations is addressed
elsewhere in this Guide. In this introductory chapter, however, it is worth giving the reader
a feel for the process of sampling and the need to sample a signal sufficiently densely.
For a continuous signal of given space/time dimensions, there are mathematical reasons
why there is a lower bound on the space/time sampling frequency (which determines
the minimum possible number of samples) required to retain the information in the
signal. However, image processing is a visual discipline, and it is more fundamental to
realize that what is usually important is that the process of sampling does not lose visual
information. Simply stated, the sampled image/video signal must “look good,” meaning
that it does not suffer too much from a loss of visual resolution or from artifacts that can
arise from the process of sampling.
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Sampling a continuous-domain one-dimensional signal.

Figure 1.6 illustrates the result of sampling a 1D continuous-domain signal. It is easy
to see that the samples collectively describe the gross shape of the original signal very
nicely, but that smaller variations and structures are harder to discern or may be lost.
Mathematically, information may have been lost, meaning that it might not be possible
to reconstruct the original continuous signal from the samples (as determined by the
Sampling Theorem, see Chapter 5). Supposing that the signal is part of an image, e.g., is
a single scan-line of an image displayed on a monitor, then the visual quality may or may
not be reduced in the sampled version. Of course, the concept of visual quality varies
from person-to-person, and it also depends on the conditions under which the image is
viewed, such as the viewing distance.

Note that in Fig. 1.6 the samples are indexed by integer numbers. In fact, the sampled
signal can be viewed as a vector of numbers. If the signal is finite in extent, then the
signal vector can be stored and digitally processed as an array, hence the integer indexing
becomes quite natural and useful. Likewise, image signals that are space/time sampled
are generally indexed by integers along each sampled dimension, allowing them to be
easily processed as multidimensional arrays of numbers. As shown in Fig. 1.7, a sampled
image is an array of sampled image values that are usually arranged in a row-column
format. Each of the indexed array elements is often called a picture element, or pixel for
short. The term pel has also been used, but has faded in usage probably since it is less
descriptive and not as catchy. The number of rows and columns in a sampled image is also
often selected to be a power of 2, since it simplifies computer addressing of the samples,
and also since certain algorithms, such as discrete Fourier transforms, are particularly
efficient when operating on signals that have dimensions that are powers of 2. Images
are nearly always rectangular (hence indexed on a Cartesian grid) and are often square,
although the horizontal dimensional is often longer, especially in video signals, where an
aspect ratio of 4:3 is common.
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Depiction of a very small (10 � 10) piece of an image array.

As mentioned earlier, the effects of insufficient sampling (“undersampling”) can be
visually obvious. Figure 1.8 shows two very illustrative examples of image sampling. The
two images, which we will call “mandrill” and “fingerprint,” both contain a significant
amount of interesting visual detail that substantially defines the content of the images.
Each image is shown at three different sampling densities: 256�256 (or 28 �28 � 65,536
samples), 128�128 (or 27 �27 � 16,384 samples), and 64 � 64 (or 26 �26 � 4,096
samples). Of course, in both cases, all three scales of images are digital, and so there
is potential loss of information relative to the original analog image. However, the per-
ceptual quality of the images can easily be seen to degrade rather rapidly; note the whiskers
on the mandrill’s face, which lose all coherency in the 64�64 image. The 64�64 fin-
gerprint is very interesting since the pattern has completely changed! It almost appears
as a different fingerprint. This results from an undersampling effect known as aliasing,
where image frequencies appear that have no physical meaning (in this case, creating a
false pattern). Aliasing, and its mathematical interpretation, will be discussed further in
Chapter 2 in the context of the Sampling Theorem.

1.6 QUANTIZED IMAGES
The other part of image digitization is quantization. The values that a (single-valued)
image takes are usually intensities since they are a record of the intensity of the signal
incident on the sensor, e.g., the photon count or the amplitude of a measured wave
function. Intensity is a positive quantity. If the image is represented visually using shades
of gray (like a black-and-white photograph), then the pixel values are referred to as
gray levels. Of course, broadly speaking, an image may be multivalued at each pixel
(such as a color image), or an image may have negative pixel values, in which case, it
is not an intensity function. In any case, the image values must be quantized for digital
processing.

Quantization is the process of converting a continuous-valued image that has a con-
tinuous range (set of values that it can take) into a discrete-valued image that has a
discrete range. This is ordinarily done by a process of rounding, truncation, or some
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Examples of the visual effect of different image sampling densities.

other irreversible, nonlinear process of information destruction. Quantization is a neces-
sary precursor to digital processing, since the image intensities must be represented with
a finite precision (limited by wordlength) in any digital processor.

When the gray level of an image pixel is quantized, it is assigned to be one of a finite
set of numbers which is the gray level range. Once the discrete set of values defining the
gray-level range is known or decided, then a simple and efficient method of quantization
is simply to round the image pixel values to the respective nearest members of the intensity
range. These rounded values can be any numbers, but for conceptual convenience and
ease of digital formatting, they are then usually mapped by a linear transformation into
a finite set of non-negative integers {0, . . . ,K � 1}, where K is a power of two: K � 2B .
Hence the number of allowable gray levels is K , and the number of bits allocated to each
pixel’s gray level is B. Usually 1 · B · 8 with B � 1 (for binary images) and B � 8 (where
each gray level conveniently occupies a byte) are the most common bit depths (see Fig. 1.9).
Multivalued images, such as color images, require quantization of the components either
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Illustration of 8-bit representation of a quantized pixel.

individually or collectively (“vector quantization”); for example, a three-component color
image is frequently represented with 24 bits per pixel of color precision.

Unlike sampling, quantization is a difficult topic to analyze since it is nonlinear.
Moreover, most theoretical treatments of signal processing assume that the signals under
study are not quantized, since it tends to greatly complicate the analysis. On the other
hand, quantization is an essential ingredient of any (lossy) signal compression algorithm,
where the goal can be thought of as finding an optimal quantization strategy that simul-
taneously minimizes the volume of data contained in the signal, while disturbing the
fidelity of the signal as little as possible. With simple quantization, such as gray level
rounding, the main concern is that the pixel intensities or gray levels must be quantized
with sufficient precision that excessive information is not lost. Unlike sampling, there is
no simple mathematical measurement of information loss from quantization. However,
while the effects of quantization are difficult to express mathematically, the effects are
visually obvious.

Each of the images depicted in Figs. 1.4 and 1.8 is represented with 8 bits of gray
level resolution—meaning that bits less significant than the 8th bit have been rounded or
truncated. This number of bits is quite common for two reasons: first, using more bits
will generally not improve the visual appearance of the image—the adapted human eye
usually is unable to see improvements beyond 6 bits (although the total range that can
be seen under different conditions can exceed 10 bits)—hence using more bits would
be of no use. Secondly, each pixel is then conveniently represented by a byte. There are
exceptions: in certain scientific or medical applications, 12, 16, or even more bits may be
retained for more exhaustive examination by human or by machine.

Figures 1.10 and 1.11 depict two images at various levels of gray level resolution.
Reduced resolution (from 8 bits) was obtained by simply truncating the appropriate
number of less significant bits from each pixel’s gray level. Figure 1.10 depicts the
256 � 256 digital image “fingerprint” represented at 4, 2, and 1 bits of gray level resolu-
tion. At 4 bits, the fingerprint is nearly indistinguishable from the 8-bit representation
of Fig 1.8. At 2 bits, the image has lost a significant amount of information, making the
print difficult to read. At 1 bit, the binary image that results is likewise hard to read.
In practice, binarization of fingerprints is often used to make the print more distinc-
tive. Using simple truncation-quantization, most of the print is lost since it was inked
insufficiently on the left, and excessively on the right. Generally, bit truncation is a poor
method for creating a binary image from a gray level image. See Chapter 2 for better
methods of image binarization.
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FIGURE 1.10

Quantization of the 256 � 256 image “fingerprint.” Clockwise from upper left: 4, 2, and 1 bit(s)
per pixel.

Figure 1.11 shows another example of gray level quantization. The image “eggs”
is quantized at 8, 4, 2, and 1 bit(s) of gray level resolution. At 8 bits, the image is very
agreeable. At 4 bits, the eggs take on the appearance of being striped or painted like Easter
eggs. This effect is known as “false contouring,” and results when inadequate grayscale
resolution is used to represent smoothly varying regions of an image. In such places, the
effects of a (quantized) gray level can be visually exaggerated, leading to an appearance of
false structures. At 2 bits and 1 bit, significant information has been lost from the image,
making it difficult to recognize.

A quantized image can be thought of as a stacked set of single-bit images (known
as “bit planes”) corresponding to the gray level resolution depths. The most significant
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FIGURE 1.11

Quantization of the 256 � 256 image “eggs.” Clockwise from upper left: 8, 4, 2, and 1 bit(s) per
pixel.

bits of every pixel comprise the top bit plane and so on. Figure 1.12 depicts a 10 � 10
digital image as a stack of B bit planes. Special-purpose image processing algorithms are
occasionally applied to the individual bit planes.

1.7 COLOR IMAGES
Of course, the visual experience of the normal human eye is not limited to grayscales—
color is an extremely important aspect of images. It is also an important aspect of digital
images. In a very general sense, color conveys a variety of rich information that describes
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Bit plane 1
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Bit plane B

FIGURE 1.12

Depiction of a small (10 � 10) digital image as a stack of bit planes ranging from most significant
(top) to least significant (bottom).

the quality of objects, and as such, it has much to do with visual impression. For example,
it is known that different colors have the potential to evoke different emotional responses.
The perception of color is allowed by the color-sensitive neurons known as cones that are
located in the retina of the eye. The cones are responsive to normal light levels and are
distributed with greatest density near the center of the retina, known as the fovea (along
the direct line of sight). The rods are neurons that are sensitive at low-light levels and
are not capable of distinguishing color wavelengths. They are distributed with greatest
density around the periphery of the fovea, with very low density near the line-of-sight.
Indeed, this may be observed by observing a dim point target (such as a star) under dark
conditions. If the gaze is shifted slightly off-center, then the dim object suddenly becomes
easier to see.

In the normal human eye, colors are sensed as near-linear combinations of long,
medium, and short wavelengths, which roughly correspond to the three primary colors
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that are used in standard video camera systems: Red (R), Green (G), and Blue (B). The
way in which visible light wavelengths map to RGB camera color coordinates is a compli-
cated topic, although standard tables have been devised based on extensive experiments.
A number of other color coordinate systems are also used in image processing, printing,
and display systems, such as the YIQ (luminance, in-phase chromatic, quadratic chro-
matic) color coordinate system. Loosely speaking, the YIQ coordinate system attempts
to separate the perceived image brightness (luminance) from the chromatic components
of the image via an invertible linear transformation:

⎡
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Y

I

Q

⎤
⎥⎦�

⎡
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0.299 0.587 0.114

0.596 �0.275 �0.321

0.212 �0.523 0.311

⎤
⎥⎦

⎡
⎢⎣

R

G

B

⎤
⎥⎦ . (1.1)

The RGB system is used by color cameras and video display systems, while the YIQ is the
standard color representation used in broadcast television. Both representations are used
in practical image and video processing systems along with several other representations.

Most of the theory and algorithms for digital image and video processing has
been developed for single-valued, monochromatic (gray level), or intensity-only images,
whereas color images are vector-valued signals. Indeed, many of the approaches described
in this Guide are developed for single-valued images. However, these techniques are often
applied (sub-optimally) to color image data by regarding each color component as a sep-
arate image to be processed and recombining the results afterwards. As seen in Fig. 1.13,
the R, G, and B components contain a considerable amount of overlapping information.
Each of them is a valid image in the same sense as the image seen through colored spec-
tacles and can be processed as such. Conversely, however, if the color components are
collectively available, then vector image processing algorithms can often be designed that
achieve optimal results by taking this information into account. For example, a vector-
based image enhancement algorithm applied to the “cherries” image in Fig. 1.13 might
adapt by giving less importance to enhancing the Blue component, since the image signal
is weaker in that band.

Chrominance is usually associated with slower amplitude variations than is lumi-
nance, since it usually is associated with fewer image details or rapid changes in value.
The human eye has a greater spatial bandwidth allocated for luminance perception
than for chromatic perception. This is exploited by compression algorithms that use
alternative color representations, such as YIQ, and store, transmit, or process the chro-
matic components using a lower bandwidth (fewer bits) than the luminance component.
Image and video compression algorithms achieve increased efficiencies through this
strategy.

1.8 SIZE OF IMAGE DATA
The amount of data in visual signals is usually quite large and increases geometrically
with the dimensionality of the data. This impacts nearly every aspect of image and
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FIGURE 1.13

Color image “cherries” (top left) and (clockwise) its Red, Green, and Blue components.

video processing; data volume is a major issue in the processing, storage, transmis-
sion, and display of image and video information. The storage required for a single
monochromatic digital still image that has (row � column) dimensions N � M and
B bits of gray level resolution is NMB bits. For the purpose of discussion, we will
assume that the image is square (N �M ), although images of any aspect ratio are
common. Most commonly, B � 8 (1 byte/pixel) unless the image is binary or is special-
purpose. If the image is vector-valued, e.g., color, then the data volume is multiplied
by the vector dimension. Digital images that are delivered by commercially available
image digitizers are typically of approximate size 512 � 512 pixels, which is large enough
to fill much of a monitor screen. Images both larger (ranging up to 4096 � 4096 or
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TABLE 1.1 Data volume requirements for digital still images of various
sizes, bit depths, and vector dimension.

Spatial Pixel resolution Image type Data volume
dimensions (bits) (bytes)

128 � 128 1 Monochromatic 2,048
256 � 256 1 Monochromatic 8,192
512 � 512 1 Monochromatic 32,768

1,024 � 1,024 1 Monochromatic 131,072

128 � 128 8 Monochromatic 16,384
256 � 256 8 Monochromatic 65,536
512 � 512 8 Monochromatic 262,144

1,024 � 1,024 8 Monochromatic 1,048,576

128 � 128 3 Trichromatic 6,144
256 � 256 3 Trichromatic 24,576
512 � 512 3 Trichromatic 98,304

1,024 � 1,024 3 Trichromatic 393,216

128 � 128 24 Trichromatic 49,152
256 � 256 24 Trichromatic 196,608
512 � 512 24 Trichromatic 786,432

1,024 � 1,024 24 Trichromatic 3,145,728

more) and smaller (as small as 16 � 16) are commonly encountered. Table 1.1 depicts
the required storage for a variety of image resolution parameters, assuming that there
has been no compression of the data. Of course, the spatial extent (area) of the image
exerts the greatest effect on the data volume. A single 512 � 512 � 8 color image requires
nearly a megabyte of digital storage space, which only a few years ago, was a lot. More
recently, even large images are suitable for viewing and manipulation on home personal
computers, although somewhat inconvenient for transmission over existing telephone
networks.

1.9 OBJECTIVES OF THIS GUIDE
The goals of this Guide are ambitious, since it is intended to reach a broad audience
that is interested in a wide variety of image and video processing applications. More-
over, it is intended to be accessible to readers who have a diverse background and who
represent a wide spectrum of levels of preparation and engineering/computer educa-
tion. However, a Guide format is ideally suited for this multiuser purpose, since it allows
for a presentation that adapts to the reader’s needs. In the early part of the Guide, we
present very basic material that is easily accessible even for novices to the image process-
ing field. These chapters are also useful for review, for basic reference, and as support
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for latter chapters. In every major section of the Guide, basic introductory material
is presented as well as more advanced chapters that take the reader deeper into the
subject.

Unlike textbooks on image processing, this Guide is, therefore, not geared toward
a specified level of presentation, nor does it uniformly assume a specific educational
background. There is material that is available for the beginning image processing user,
as well as for the expert. The Guide is also unlike a textbook in that it is not limited
to a specific point of view given by a single author. Instead, leaders from image and
video processing education, industry, and research have been called upon to explain the
topical material from their own daily experience. By calling upon most of the leading
experts in the field, we have been able to provide a complete coverage of the image and
video processing area without sacrificing any level of understanding of any particular
area.

Because of its broad spectrum of coverage, we expect that the Essential Guide to
Image Processing and its companion, the Essential Guide to Video Processing, will serve as
excellent textbooks as well as references. It has been our objective to keep the students,
needs in mind, and we feel that the material contained herein is appropriate to be used
for classroom presentations ranging from the introductory undergraduate level, to the
upper-division undergraduate, and to the graduate level. Although the Guide does not
include “problems in the back,” this is not a drawback since the many examples provided
in every chapter are sufficient to give the student a deep understanding of the functions
of the various image processing algorithms. This field is very much a visual science, and
the principles underlying it are best taught via visual examples. Of course, we also foresee
the Guide as providing easy reference, background, and guidance for image processing
professionals working in industry and research.

Our specific objectives are to:

■ provide the practicing engineer and the student with a highly accessible resource
for learning and using image processing algorithms and theory;

■ provide the essential understanding of the various image processing standards that
exist or are emerging, and that are driving today’s explosive industry;

■ provide an understanding of what images are, how they are modeled, and give an
introduction to how they are perceived;

■ provide the necessary practical background to allow the engineer student to acquire
and process his/her own digital image data;

■ provide a diverse set of example applications, as separate complete chapters, that
are explained in sufficient depth to serve as extensible models to the reader’s own
potential applications.

The Guide succeeds in achieving these goals, primarily because of the many years of
broad educational and practical experience that the many contributing authors bring to
bear in explaining the topics contained herein.
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1.10 ORGANIZATION OF THE GUIDE
It is our intention that this Guide be adopted by both researchers and educators in
the image processing field. In an effort to make the material more easily accessible and
immediately usable, we have provided a CD-ROM with the Guide, which contains image
processing demonstration programs written in the LabVIEW language. The overall suite
of algorithms is part of the SIVA (Signal, Image and Video Audiovisual) Demonstration
Gallery provided by the Laboratory for Image and Video Engineering at The University
of Texas at Austin, which can be found at http://live.ece.utexas.edu/class/siva/ and which
is broadly described in [1]. The SIVA systems are currently being used by more than 400
institutions from more than 50 countries around the world. Chapter 2 is devoted to a
more detailed description of the image processing programs available on the disk, how
to use them, and how to learn from them.

Since this Guide is emphatically about processing images and video, the next chapter
is immediately devoted to basic algorithms for image processing, instead of surveying
methods and devices for image acquisition at the outset, as many textbooks do. Chapter 3
lays out basic methods for gray level image processing, which includes point operations,
the image histogram, and simple image algebra. The methods described there stand
alone as algorithms that can be applied to most images but they also set the stage and the
notation for the more involved methods discussed in later chapters. Chapter 4 describes
basic methods for image binarization and binary image processing with emphasis on
morphological binary image processing. The algorithms described there are among the
most widely used in applications, especially in the biomedical area. Chapter 5 explains
the basics of Fourier transform and frequency-domain analysis, including discretization
of the Fourier transform and discrete convolution. Special emphasis is laid on explaining
frequency-domain concepts through visual examples. Fourier image analysis provides a
unique opportunity for visualizing the meaning of frequencies as components of signals.
This approach reveals insights which are difficult to capture in 1D, graphical discussions.

More advanced, yet basic topics and image processing tools are covered in the next few
chapters, which may be thought of as a core reference section of the Guide that supports
the entire presentation. Chapter 6 introduces the reader to multiscale decompositions of
images and wavelets, which are now standard tools for the analysis of images over multiple
scales or over space and frequency simultaneously. Chapter 7 describes basic statistical
image noise models that are encountered in a wide diversity of applications. Dealing
with noise is an essential part of most image processing tasks. Chapter 8 describes color
image models and color processing. Since color is a very important attribute of images
from a perceptual perspective, it is important to understand the details and intricacies
of color processing. Chapter 9 explains statistical models of natural images. Images are
quite diverse and complex yet can be shown to broadly obey statistical laws that prove
useful in the design of algorithms.

The following chapters deal with methods for correcting distortions or uncertainties
in images. Quite frequently, the visual data that is acquired has been in some way cor-
rupted. Acknowledging this and developing algorithms for dealing with it is especially
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critical since the human capacity for detecting errors, degradations, and delays in
digitally-delivered visual data is quite high. Image signals are derived from imperfect
sensors, and the processes of digitally converting and transmitting these signals are sub-
ject to errors. There are many types of errors that can occur in image data, including,
for example, blur from motion or defocus; noise that is added as part of a sensing or
transmission process; bit, pixel, or frame loss as the data is copied or read; or artifacts that
are introduced by an image compression algorithm. Chapter 10 describes methods for
reducing image noise artifacts using linear systems techniques. The tools of linear sys-
tems theory are quite powerful and deep and admit optimal techniques. However, they
are also quite limited by the constraint of linearity, which can make it quite difficult to
separate signal from noise. Thus, the next three chapters broadly describe the three most
popular and complementary nonlinear approaches to image noise reduction. The aim is
to remove noise while retaining the perceptual fidelity of the visual information; these
are often conflicting goals. Chapter 11 describes powerful wavelet-domain algorithms for
image denoising, while Chapter 12 describes highly nonlinear methods based on robust
statistical methods. Chapter 13 is devoted to methods that shape the image signal to
smooth it using the principles of mathematical morphology. Finally, Chapter 14 deals
with the more difficult problem of image restoration, where the image is presumed to
have been possibly distorted by a linear transformation (typically a blur function, such
as defocus, motion blur, or atmospheric distortion) and more than likely, by noise as
well. The goal is to remove the distortion and attenuate the noise, while again preserving
the perceptual fidelity of the information contained within. Again, it is found that a bal-
anced attack on conflicting requirements is required in solving these difficult, ill-posed
problems.

As described earlier in this introductory chapter, image information is highly data-
intensive. The next few chapters describe methods for compressing images. Chapter 16
describes the basics of lossless image compression, where the data is compressed to
occupy a smaller storage or bandwidth capacity, yet nothing is lost when the image is
decompressed. Chapters 17 and 18 describe lossy compression algorithms, where data
is thrown away, but in such a way that the visual loss of the decompressed images is
minimized. Chapter 17 describes the existing JPEG standards (JPEG and JPEG2000)
which include both lossy and lossless modes. Although these standards are quite complex,
they are described in detail to allow for the practical design of systems that accept and
transmit JPEG datasets. The more recent JPEG2000 standard is based on a subband
(wavelet) decomposition of the image. Chapter 18 goes deeper into the topic of wavelet-
based image compression, since these methods have been shown to provide the best
performance to date in terms of compression efficiency versus visual quality.

The Guide next turns to basic methods for the fascinating topic of image analysis. Not
all images are intended for direct human visual consumption. Instead, in many situations
it is of interest to automate the process of repetitively interpreting the content of multiple
images through the use of an image analysis algorithm. For example, it may be desired to
classify parts of images as being of some type, or it may be desired to detect or recognize
objects contained in the images. Chapter 19 describes the basic methods for detecting
edges in images. The goal is to find the boundaries of regions, viz., sudden changes in



Reference 21

image intensities, rather than finding (segmenting out) and classifying regions directly.
The approach taken depends on the application. Chapter 20 describes more advanced
approaches to edge detection based on the principles of anisotropic diffusion. These
methods provide stronger performance in terms of edge detection ability and noise
suppression, but at an increased computational expense. Chapter 21 deals with methods
for assessing the quality of images. This topic is quite important, since quality must be
assessed relative to human subjective impressions of quality. Verifying the efficacy of
image quality assessment algorithms requires that they be correlated against the result
of large, statistically significant human studies, where volunteers are asked to give their
impression of the quality of a large number of images that have been distorted by various
processes.

Chapter 22 describes methods for securing image information through the process
of watermarking. This process is important since in the age of the internet and other
broadcast digital transmission media, digital images are shared and used by the general
population. It is important to be able to protect copyrighted images.

Next, the Guide includes five chapters (Chapters 23–27) on a diverse set of image
processing and analysis applications that are quite representative of the universe of appli-
cations that exist. Several of the chapters have analysis, classification, or recognition as a
main goal, but reaching these goals inevitably requires the use of a broad spectrum of
image processing subalgorithms for enhancement, restoration, detection, motion, and so
on. The work that is reported in these chapters is likely to have significant impact on
science, industry, and even on daily life. It is hoped that the reader is able to translate the
lessons learned in these chapters, and in the preceding chapters, into their own research
or product development work in image processing. For the student, it is hoped that s/he
now possesses the required reference material that will allow her/him to acquire the basic
knowledge to be able to begin a research or development career in this fast-moving and
rapidly growing field.

For those looking to extend their knowledge beyond still image processing to video
processing, Chapter 28 points the way with some introductory and transitional com-
ments. However, for an in-depth discussion of digital video processing, the reader is
encouraged to consult the companion volume, the Essential Guide to Video Processing.
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2.1 INTRODUCTION
Given the availability of inexpensive digital cameras and the ease of sharing digital photos
on Web sites dedicated to amateur photography and social networking, it will come as
no surprise that a majority of computer users have performed some form of image pro-
cessing. Irrespective of their familiarity with the theory of image processing, most people
have used image editing software such as Adobe Photoshop, GIMP, Picasa, ImageMagick,
or iPhoto to perform simple image processing tasks, such as resizing a large image for
emailing, or adjusting the brightness and contrast of a photograph. The fact that “to
Photoshop” is being used as a verb in everyday parlance speaks of the popularity of image
processing among the masses.

As one peruses the wide spectrum of topics and applications discussed in The Essential
Guide to Image Processing, it becomes obvious that the field of digital image processing
(DIP) is highly interdisciplinary and draws upon a great variety of areas such as mathe-
matics, computer graphics, computer vision, visual psychophysics, optics, and computer
science. DIP is a subject that lends itself to a rigorous, analytical treatment and which,
depending on how it is presented, is often perceived as being rather theoretical. Although
many of these mathematical topics may be unfamiliar (and often superfluous) to a
majority of the general image processing audience, we believe it is possible to present the
theoretical aspects of image processing as an intuitive and exciting “visual” experience.
Surely, the cliché “A picture is worth a thousand words” applies very effectively to the
teaching of image processing.

In this chapter, we explain and make available a popular courseware for image pro-
cessing education known as SIVA—The Signal, Image, and Video Audiovisualization—
gallery [1]. This SIVA gallery was developed in the Laboratory for Image and Video Engi-
neering (LIVE) at the University of Texas (UT) at Austin with the purpose of making DIP
“accessible” to an audience with a wide range of academic backgrounds, while offering a
highly visual and interactive experience. The image and video processing section of the
SIVA gallery consists of a suite of special-purpose LabVIEW-based programs (known as 23
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Virtual Instruments or VIs). Equipped with informative visualization and a user-friendly
interface, these VIs were carefully designed to facilitate a gentle introduction to the fas-
cinating concepts in image and video processing. At UT-Austin, SIVA has been used (for
more than 10 years) in an undergraduate image and video processing course as an in-class
demonstration tool to illustrate the concepts and algorithms of image processing. The
demos have also been seamlessly integrated into the class notes to provide contextual
illustrations of the principles being discussed. Thus, they play a dual role: as in-class live
demos of image processing algorithms in action, and as online resources for the students
to test the image processing concepts on their own. Toward this end, the SIVA demos are
much more than simple image processing subroutines. They are user-friendly programs
with attractive graphical user interfaces, with button- and slider-enabled selection of the
various parameters that control the algorithms, and with before-and-after image win-
dows that show the visual results of the image processing algorithms (and intermediate
results as well).

Stand-alone implementations of the SIVA image processing demos, which do not
require the user to own a copy of LabVIEW, are provided on the CD that accompanies
this Guide. SIVA is also available for free download from the Web site mentioned in [2].
The reader is encouraged to experiment with these demos as they read the chapters in this
Guide. Since the Guide contains a very large number of topics, only a subset has associ-
ated demonstration programs. Moreover, by necessity, the demos are aligned more with
the simpler concepts in the Guide, rather than the more complex methods described
later, which involve suites of combined image processing algorithms to accomplish
tasks.

To make things even easier, the demos are accompanied by a comprehensive set of
help files that describe the various controls, and that highlight some illustrative examples
and instructive parameter settings. A demo can be activated by clicking the rightward
pointing arrow in the top menu bar. Help for the demo can be activated by clicking the
“?” button and moving the cursor over the icon that is located immediately to the right
of the “?” button. In addition, when the cursor is placed over any other button/control,
the help window automatically updates to describe the function of that button/control.
We are confident that the user will find this visual, hands-on, interactive introduction
to image processing to be a fun, enjoyable, and illuminating experience. In the rest of
the chapter, we will describe the software framework used by the SIVA demonstration
gallery (Section 2.2), illustrate some of the image processing demos in SIVA (Section 2.3),
and direct the reader to other popular tools for image and video processing education
(Section 2.4).

2.2 LabVIEW FOR IMAGE PROCESSING
National Instrument’s LabVIEW [3] (Laboratory Virtual Instrument Engineering Work-
bench) is a graphical development environment used for creating flexible and scalable
design, control, and test applications. LabVIEW is used worldwide in both industry and
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academia for applications in a variety of fields: automotive, communications, aerospace,
semiconductor, electronic design and production, process control, biomedical, and many
more. Applications cover all phases of product development from research to test,
manufacturing, and service.

LabVIEW uses a dataflow programming model that frees you from the sequential
architecture of text-based programming, where instructions determine the order of pro-
gram execution. You program LabVIEW using a graphical programming language, G,
that uses icons instead of lines of text to create applications. The graphical code is highly
intuitive for engineers and scientists familiar with block diagrams and flowcharts. The
flow of data through the nodes (icons) in the program determines the execution order
of the functions, allowing you to easily create programs that execute multiple operations
in parallel. The parallel nature of LabVIEW also makes multitasking and multithreading
simple to implement.

LabVIEW includes hundreds of powerful graphical and textual measurement anal-
ysis, mathematics, signal and image processing functions that seamlessly integrate with
LabVIEW data acquisition, instrument control, and presentation capabilities. With Lab-
VIEW, you can build simulations with interactive user interfaces; interface with real-world
signals; analyze data for meaningful information; and share results through intuitive
displays, reports, and the Web.

Additionally, LabVIEW can be used to program a real-time operating system, field-
programmable gate arrays, handheld devices, such as PDAs, touch screen computers,
DSPs, and 32-bit embedded microprocessors.

2.2.1 The LabVIEW Development Environment
In LabVIEW, you build a user interface by using a set of tools and objects. The user
interface is known as the front panel. You then add code using graphical representations
of functions to control the front panel objects. This graphical source code is also known
as G code or block diagram code. The block diagram contains this code. In some ways,
the block diagram resembles a flowchart.

LabVIEW programs are called virtual instruments, or VIs, because their appearance
and operation imitate physical instruments, such as oscilloscopes and multimeters. Every
VI uses functions that manipulate input from the user interface or other sources and
display that information or move it to other files or other computers.
A VI contains the following three components:

■ Front panel—serves as the user interface. The front panel contains the user inter-
face control inputs, such as knobs, sliders, and push buttons, and output indicators
to produce items such as charts, graphs, and image displays. Inputs can be fed into
the system using the mouse or the keyboard. A typical front panel is shown in
Fig. 2.1(a).

■ Block diagram—contains the graphical source code that defines the functionality
of the VI. The blocks are interconnected, using wires to indicate the dataflow.
Front panel indicators pass data from the user to their corresponding terminals on
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(a)

(b)

FIGURE 2.1

Typical development environment in LabVIEW. (a) Front panel; (b) Block diagram.
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the block diagram. The results of the operation are then passed back to the front
panel indicators. A typical block diagram is shown in Fig. 2.1(b). Within the block
diagram, you have access to a full-featured graphical programming language that
includes all the standard features of a general-purpose programming environment,
such as data structures, looping structures, event handling, and object-oriented
programming.

■ Icon and connector pane—identifies the interface to the VI so that you can use
the VI in another VI. A VI within another VI is called a sub-VI. Sub-VIs are
analogous to subroutines in conventional programming languages. A sub-VI is a
virtual instrument and can be run as a program, with the front panel serving as a
user interface, or, when dropped as a node onto the block diagram, the front panel
defines the inputs and outputs for the given node through the connector pane.
This allows you to easily test each sub-VI before being embedded as a subroutine
into a larger program.

LabVIEW also includes debugging tools that allow you to watch data move through
a program and see precisely which data passes from one function to another along the
wires, a process known as execution highlighting. This differs from text-based languages,
which require you to step from function to function to trace your program execution.
An excellent introduction to LabVIEW is provided in [4, 5].

2.2.2 Image Processing and Machine Vision in LabVIEW
LabVIEW is widely used for programming scientific imaging and machine vision appli-
cations because engineers and scientists find that they can accomplish more in a shorter
period of time by working with flowcharts and block diagrams instead of text-based
function calls. The NI Vision Development Module [6] is a software package for engineers
and scientists who are developing machine vision and scientific imaging applications.
The development module includes NI Vision for LabVIEW—a library of over 400 func-
tions for image processing and machine vision and NI Vision Assistant—an interactive
environment for quick prototyping of vision applications without programming. The
development module also includes NI Vision Acquisition—software with support for
thousands of cameras including IEEE 1394 and GigE Vision cameras.

2.2.2.1 NI Vision
NI Vision is the image processing toolkit, or library, that adds high-level machine vision
and image processing to the LabVIEW environment. NI Vision includes an extensive set
of MMX-optimized functions for the following machine vision tasks:

■ Grayscale, color, and binary image display

■ Image processing—including statistics, filtering, and geometric transforms

■ Pattern matching and geometric matching



28 CHAPTER 2 The SIVA Image Processing Demos

■ Particle analysis

■ Gauging

■ Measurement

■ Object classification

■ Optical character recognition

■ 1D and 2D barcode reading.

NI Vision VIs are divided into three categories: Vision Utilities, Image Processing, and
Machine Vision.

Vision Utilities VIs Allow you to create and manipulate images to suit the needs of your
application. This category includes VIs for image management and manipulation, file
management, calibration, and region of interest (ROI) selection.
You can use these VIs to:

– create and dispose of images, set and read attributes of an image, and copy one
image to another;

– read, write, and retrieve image file information. The file formats NI Vision supports
are BMP, TIFF, JPEG, PNG, AIPD (internal file format), and AVI (for multiple
images);

– display an image, get and set ROIs, manipulate the floating ROI tools window,
configure an ROI constructor window, and set up and use an image browser;

– modify specific areas of an image. Use these VIs to read and set pixel values in an
image, read and set values along a row or column in an image, and fill the pixels in
an image with a particular value;

– overlay figures, text, and bitmaps onto an image without destroying the image data.
Use these VIs to overlay the results of your inspection application onto the images
you inspected;

– spatially calibrate an image. Spatial calibration converts pixel coordinates to real-
world coordinates while compensating for potential perspective errors or nonlinear
distortions in your imaging system;

– manipulate the colors and color planes of an image. Use theseVIs to extract different
color planes from an image, replace the planes of a color image with new data,
convert a color image into a 2D array and back, read and set pixel values in a color
image, and convert pixel values from one color space to another.

Image Processing VIs Allow you to analyze, filter, and process images according to
the needs of your application. This category includes VIs for analysis, grayscale and
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binary image processing, color processing, frequency processing, filtering, morphology,
and operations.
You can use these VIs to:

– transform images using predefined or custom lookup tables, change the contrast
information in an image, invert the values in an image, and segment the image;

– filter images to enhance the information in the image. Use these VIs to smooth
your image, remove noise, and find edges in the image. You can use a predefined
filter kernel or create custom filter kernels;

– perform basic morphological operations, such as dilation and erosion, on grayscale
and binary images. Other VIs improve the quality of binary images by filling holes
in particles, removing particles that touch the border of an image, removing noisy
particles, and removing unwanted particles based on different characteristics of
the particle;

– compute the histogram information and grayscale statistics of an image, retrieve
pixel information and statistics along any 1D profile in an image, and detect and
measure particles in binary images;

– perform basic processing on color images; compute the histogram of a color image;
apply lookup tables to color images; change the brightness, contrast, and gamma
information associated with a color image; and threshold a color image;

– perform arithmetic and bit-wise operations in NI Vision; add, subtract, multiply,
and divide an image with other images or constants or apply logical opera-
tions and make pixel comparisons between an image and other images or a
constant;

– perform frequency processing and other tasks on images; convert an image from the
spatial domain to the frequency domain using a 2D Fast Fourier Transform (FFT)
and convert an image from the frequency domain to the spatial domain using the
inverse FFT. These VIs also extract the magnitude, phase, real, and imaginary planes
of the complex image.

Machine Vision VIs Can be used to perform common machine vision inspection tasks,
including checking for the presence or absence of parts in an image and measuring the
dimensions of parts to see if they meet specifications.
You can use these VIs to:

– measure the intensity of a pixel on a point or the intensity statistics of pixels along
a line or in a rectangular region of an image;

– measure distances in an image, such as the minimum and maximum horizontal
separation between two vertically oriented edges or the minimum or maximum
vertical separation between two horizontally oriented edges;
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– locate patterns and subimages in an image. These VIs allow you to perform color
and grayscale pattern matching as well as shape matching;

– derive results from the coordinates of points returned by image analysis and
machine vision algorithms; fit lines, circles, and ellipses to a set of points in
the image; compute the area of a polygon represented by a set of points; mea-
sure distances between points; and find angles between lines represented by
points;

– compare images to a golden template reference image;

– classify unknown objects by comparing significant features to a set of features that
conceptually represent classes of known objects;

– read text and/or characters in an image;

– develop applications that require reading from seven-segment displays, meters or
gauges, or 1D barcodes.

2.2.2.2 NI Vision Assistant
NIVision Assistant is a tool for prototyping and testing image processing applications.You
can create custom algorithms with the Vision Assistant scripting feature, which records
every step of your processing algorithm. After completing the algorithm, you can test it
on other images to check its reliability. Vision Assistant uses the NI Vision library but can
be used independently of LabVIEW. In addition to being a tool for prototyping vision
systems, you can use Vision Assistant to learn how different image processing functions
perform.

The Vision Assistant interface makes prototyping your application easy and efficient
because of features such as a reference window that displays your original image, a script
window that stores your image processing steps, and a processing window that reflects
changes to your images as you apply new parameters (Fig. 2.2). The result of prototyping
an application in Vision Assistant is usually a script of exactly which steps are necessary
to properly analyze the image. For example, as shown in Fig. 2.2, the prototype of bracket
inspection application to determine if it meets specifications has basically five steps: find
the hole at one end of the bracket using pattern matching, find the hole at the other
end of the bracket using pattern matching, find the center of the bracket using edge
detection, and measure the distance and angle between the holes from the center of the
bracket.

Once you have developed a script that correctly analyzes your images, you can use
Vision Assistant to tell you the time it takes to run the script. This information is extremely
valuable if your inspection has to finish in a certain amount of time. As shown in Fig. 2.3,
the bracket inspection takes 10.58 ms to complete.

After prototyping and testing, Vision Assistant automatically generates a block
diagram in LabVIEW.
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1  Reference window
2  Processing window
3  Navigation buttons

4  Processing functions palette
5  Script window

FIGURE 2.2

NI Vision Assistant, part of the NI Vision Development Module, prototypes vision applications,
benchmarks inspections and generates ready-to-run LabVIEW Code.

2.3 EXAMPLES FROM THE SIVA IMAGE PROCESSING DEMOS
The SIVA gallery includes demos for 1D signals, image, and video processing. In this
chapter, we focus only on the image processing demos. The image processing gallery of
SIVA contains over 40 VIs (Table 2.1) that can be used to visualize many of the image
processing concepts described in this book. In this section, we illustrate a few of these
demos to familiarize the reader with SIVA’s simple, intuitive interface and show the
results of processing images using the VIs.

■ Image Quantization and Sampling: Quantization and sampling are fundamental
operations performed by any digital image acquisition device. Many people are
familiar with the process of resizing a digital image to a smaller size (for the pur-
pose of emailing photos or uploading them to social networking or photography
Web sites). While a thorough mathematical analysis of these operations is rather



32 CHAPTER 2 The SIVA Image Processing Demos

FIGURE 2.3

The Performance Meter inside NI Vision Assistant allows you to benchmark your application and
help identify bottlenecks and optimize your vision code.

(b) (c)(a)

FIGURE 2.4

Grayscale quantization. (a) Front panel; (b) Original “Eggs” (8 bits per pixel); (c) Quantized
“Eggs” (4 bits per pixel).

involved and difficult to interpret, it is nevertheless very easy to visually appreciate
the effects and artifacts introduced by these processes using the VIs provided in
the SIVA gallery. Figure 2.4, for example, illustrates the “false contouring” effect
of grayscale quantization. While discussing the process of sampling any signal,
students are introduced to the importance of “Nyquist sampling” and warned of
“aliasing” or “false frequency” artifacts introduced by this process. The VI shown in
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TABLE 2.1 A list of image and video processing demos available in the SIVA gallery.

Basics of Image Processing: Nonlinear Filtering:
Image quantization Median filtering
Image sampling Gray level morphological filters
Image histogram Trimmed mean filters

Peak and valley detection
Binary Image Processing: Homomorphic filters

Image thresholding
Image complementation Digital Image Coding & Compression:
Binary morphological filters Block truncation image coding
Image skeletonization Entropy reduction via DPCM

JPEG coding
Linear Point Operations:

Full-scale contrast stretch Edge Detection:
Histogram shaping Gradient-based edge detection
Image differencing Laplacian-of-Gaussian
Image interpolation Canny edge detection

Double thresholding
Discrete Fourier Analysis: Contour thresholding

Digital 2D sinusoids Anisotropic diffusion
Discrete Fourier transform (DFT)
DFTs of important 2D functions Digital Video Processing:
Masked DFTs Motion compensation
Directional DFTs Optical flow calculation

Block motion estimation
Linear Filtering:

Low, high, and bandpass filters Other Applications:
Ideal lowpass filtering Hough transform
Gaussian filtering Template matching
Noise models Image quality using structural similarity
Image deblurring
Inverse filter
Wiener filter

Fig. 2.5 demonstrates these artifacts caused by sampling. The patterns in the scarf,
the books in the bookshelf, and the chair in the background of the “Barbara” image
clearly change their orientation in the sampled images.

■ Binary Image Processing: Binary images have only two possible “gray levels”
and are therefore represented using only 1 bit per pixel. Besides the simple VIs
used for thresholding grayscale images to binary images, SIVA has a demo that
demonstrates the effects of various morphological operations on binary images,
such as Median, Dilation, Erosion, Open, Close, Open-Clos, Clos-Open, and other
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(a)

(b)

(c)

(d)

FIGURE 2.5

Effects of sampling. (a) Front panel; (b) Original “Barbara” image (256 � 256); (c) “Barbara”
subsampled to 128 � 128; (d) Image c resized to 256 � 256 to show details.

binary operations including skeletonization. The user has the option to vary the
shape and the size of the structuring element. The interface for the Morphology
VI along with a binary image processed using the Erode, CLOS, and Majority
operations is shown in Fig. 2.6.

■ Linear Point Operations and their Effects on Histograms: Irrespective of their
familiarity with the theory of DIP, most computer and digital camera users are
familiar, if not proficient, with some form of an image editing software, such as
Adobe Photoshop, Gimp, Picasa, or iPhoto. One of the frequently performed oper-
ations (on-camera or using software packages) is that of changing the brightness
and/or contrast of an underexposed or overexposed photograph. To illustrate how
these operations affect the histogram of the image, a VI in SIVA provides the
user with controls to perform linear point operations, such as adding an offset,
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(a) (b)

(c) (d) (e)

FIGURE 2.6

Binary morphological operations. (a) Front panel; (b) Original image; (c) Erosion using X-shaped
window; (d) CLOS operation using square window; (e) Median (majority) operation using square
window.

scaling the pixel values by scalar multiplication, and performing full-scale contrast
stretch. Figure 2.7 shows a simple example where the histogram of the input image
is either shifted to the right (increasing brightness), compressed while retaining
shape, flipped to create an image negative, or stretched to fill the range (corres-
ponding to full-scale contrast stretch). Advanced VIs allow the user to change the
shape of the input histogram—an operation that is useful in cases where full-scale
contrast stretch fails.

■ Discrete Fourier Transform: Most of introductory DIP is based on the theory
of linear systems. Therefore, a lucid understanding of frequency analysis tech-
niques such as the Discrete Fourier Transform (DFT) is important to appreciate
more advanced topics such as image filtering and spectral theory. SIVA has many
VIs that provide an intuitive understanding of the DFT by first introducing
the concept of spatial frequency using images of 2D digital sinusoidal gratings.
The DFT VI can be used to compute and display the magnitude and the phase of
the DFT for gray level images. Masking sections of the DFT using zero-one masks



36 CHAPTER 2 The SIVA Image Processing Demos

(a) (b)

(c) (d) (e) (f)

FIGURE 2.7

Linear point operations. (a) Front panel; (b) Original “Books” image; (c) Brightness enhanced
by adding a constant; (d) Contrast reduced by multiplying by 0.9; (e) Full-scale contrast stretch;
(f) Image negative.

of different shapes and then performing inverse DFT is a very intuitive way of
understanding the granularity and directionality of the DFT (see Chapter 5 of this
book). To demonstrate the directionality of the DFT, the VI shown in Fig. 2.8 was
implemented. As shown on the front panel, the input parameters, Theta 1 and
Theta 2, are used to control the angle of the wedge-like zero-one mask in Fig. 2.8(d).
It is instructive to note that zeroing out some of the oriented components in the
DFT results in the disappearance of one of the tripod legs in the “Cameraman”
image in Fig. 2.8(e).

■ Linear and Nonlinear Image Filtering: SIVA includes several demos to illustrate
the use of linear and nonlinear filters for image enhancement and restoration. Low-
pass filters for noise smoothing and inverse, pseudo inverse, and Wiener filters for
deconvolving images that have been blurred are examples of some demos for linear
image enhancement. SIVA also includes demos to illustrate the power of nonlin-
ear filters over their linear counterparts. Figure 2.9, for example, demonstrates the
result of filtering a noisy image corrupted with “salt and pepper noise” with a linear
filter (average) and with a nonlinear (median) filter.

■ Image Compression: Given the ease of capturing and publishing digital images
on the Internet, it is no surprise most people are familiar with the terminology of
compressed image formats such as JPEG. SIVA incorporates demos that highlight
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(c) (d) (e)

(a) (b)

FIGURE 2.8

Directionality of the Fourier Transform. (a) Front panel; (b) Original “Cameraman;” (c) DFT
magnitude; (d) Masked DFT magnitude; (e) Reconstructed image.

fundamental ideas of image compression, such as the ability to reduce the entropy
of an image using pulse code modulation. The gallery also contains a VI to illustrate
block truncation coding (BTC)—a very simple yet powerful image compression
scheme. As shown in the front panel in Fig. 2.10, the user can select the number of
bits, B1, used to represent the mean of each block in BTC and the number of bits,
B2, for the block variance. The compression ratio is computed and displayed on
the front panel in the CR indicator in Fig. 2.10.

■ Hough Transform: The Hough transform is useful for detecting straight lines in
images. The transform operates on the edge map of an image. It uses an “accu-
mulator” matrix to keep a count of the number of pixels that lie on a straight line
of a certain parametric form, say, y � mx � c , where (x ,y) are the coordinates of
an edge location, m is the slope of the line, and c is the y-intercept. (In practice,
a polar form of the straight line is used). In the above example, the accumulator
matrix is 2D, with the two dimensions being the slope and the intercept. Each entry
in the matrix corresponds to the number of pixels in the edge map that satisfy that
particular equation of the line. The slope and intercept corresponding to the largest
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(c) (d) (e)

(a) (b)

FIGURE 2.9

Linear and nonlines image denoising. (a) Front panel; (b) Original “Mercy”; (c) Image corrupted
by salt and pepper noise; (d) Denoised by blurring with a Gaussian filter; (e) Denoised using
median filter.

entry in the matrix, therefore, correspond to the strongest straight line in the image.
Figure 2.11 shows the result of applying the Hough transform in the SIVA gallery
on the edges detected in the “Tower” image. As seen from Fig. 2.11(d), the simple
algorithm presented above will be unable to distinguish partial line segments from
a single straight line.

We have illustrated only a few VIs to whet the reader’s appetite. As listed in Table 2.1,
SIVA has many other advanced VIs that include many linear and nonlinear fileters for
image enhancement, other lossy and lossless image compression schemes, and a large
number of edge detectors for image feature analysis. The reader is encouraged to try out
these demos at their leisure.

2.4 CONCLUSIONS
The SIVA gallery for image processing demos presented in this chapter was originally
developed at UT-Austin to make the subject more accessible to students who came
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(a)

(b) (c) (d)

FIGURE 2.10

Block truncation coding. (a) Front panel; (b) original “Dhivya” image; (c) 5 bits for mean and 0 bits
for variance (compression ratio � 6.1:1); (d) 5 bits for mean and 6 bits for variance (compression
ratio � 4.74:1).

from varied academic disciplines, such as astronomy, math, genetics, remote sensing,
video communications, and biomedicine, to name a few. In addition to the SIVA gallery
presented here, there are several other excellent tools for image processing education [7],
a few of which are listed below:

■ IPLab [8]—A java-based plug-in to the popular ImageJ software from the Swiss
Federal Institute of Technology, Lausanne, Switzerland.

■ ALMOT 2D DSP and 2D J-DSP [9]—Java-based education tools from Arizona
State University, USA.

■ VcDemo [10]—A Microsoft Windows-based interactive video and image com-
pression tool from Delft University of Technology, The Netherlands.

Since its release in November 2002, the SIVA demonstration gallery has been gaining
in popularity and is currently being widely used by instructors in many educational
institutions over the world for teaching their signal, image and video processing courses,
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(a)

(b) (c) (d)

FIGURE 2.11

Hough transform. (a) Front panel; (b) original “Tower” image; (c) edge map; (d) lines detected
by Hough Transform.

and by many individuals in industry for testing their image processing algorithms. To date,
there are over 450 institutional users from 54 countries using SIVA. As mentioned earlier,
the entire image processing gallery of SIVA is included in the CD that accompanies this
book as a stand-alone version that does not need the user to own a copy of LabVIEW. All
VIs may also be downloaded directly for free from the Web site mentioned in [2]. We hope
that the intuition provided by the demos will make the reader’s experience with image
processing more enjoyable. Perhaps, the reader’s newly found image processing lingo will
compel them to mention how they “Designed a pseudo-inverse filter for deblurring” in
lieu of “I photoshopped this image to make it sharp.”
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CHAPTER

3Basic Gray Level Image
Processing
Alan C. Bovik

The University of Texas at Austin

3.1 INTRODUCTION
This chapter, and the two that follow, describe the most commonly used and most
basic tools for digital image processing. For many simple image analysis tasks, such as
contrast enhancement, noise removal, object location, and frequency analysis, much of
the necessary collection of instruments can be found in Chapters 3–5. Moreover, these
chapters supply the basic groundwork that is needed for the more extensive developments
that are given in the subsequent chapters of the Guide.

In the current chapter, we study basic gray level digital image processing operations.
The types of operations studied fall into three classes.

The first are point operations, or image processing operations, that are applied to
individual pixels only. Thus, interactions and dependencies between neighboring pixels
are not considered, nor are operations that consider multiple pixels simultaneously to
determine an output. Since spatial information, such as a pixel’s location and the values
of its neighbors, are not considered, point operations are defined as functions of pixel
intensity only. The basic tool for understanding, analyzing, and designing image point
operations is the image histogram, which will be introduced below.

The second class includes arithmetic operations between images of the same spatial
dimensions. These are also point operations in the sense that spatial information is
not considered, although information is shared between images on a pointwise basis.
Generally, these have special purposes, e.g., for noise reduction and change or motion
detection.

The third class of operations are geometric image operations. These are complementary
to point operations in the sense that they are not defined as functions of image intensity.
Instead, they are functions of spatial position only. Operations of this type change the
appearance of images by changing the coordinates of the intensities. This can be as simple
as image translation or rotation, or may include more complex operations that distort or
bend an image, or “morph” a video sequence. Since our goal, however, is to concentrate
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on digital image processing of real-world images, rather than the production of special
effects, only the most basic geometric transformations will be considered. More complex
and time-varying geometric effects are more properly considered within the science of
computer graphics.

3.2 NOTATION
Point operations, algebraic operations, and geometric operations are easily defined on
images of any dimensionality, including digital video data. For simplicity of presenta-
tion, we will restrict our discussion to 2D images only. The extensions to three or higher
dimensions are not difficult, especially in this case of point operations, which are inde-
pendent of dimensionality. In fact, spatial/temporal information is not considered in
their definition or application.

We will also only consider monochromatic images, since extensions to color or other
multispectral images is either trivial, in that the same operations are applied identically
to each band (e.g., R, G, B), or they are defined as more complex color space operations,
which goes beyond what we want to cover in this basic chapter.

Suppose then that the single-valued image f (n) to be considered is defined on a two-
dimensional discrete-space coordinate system n � (n1,n2) or n � (m,n). The image is
assumed to be of finite support, with image domain [0,M � 1]� [0,N � 1]. Hence the
nonzero image data can be contained in a matrix or array of dimensions M � N (rows,
columns). This discrete-space image will have originated by sampling a continuous image
f (x ,y). Furthermore, the image f (n) is assumed to be quantized to k levels {0, . . . ,K � 1},
hence each pixel value takes one of these integer values. For simplicity, we will refer to
these values as gray levels, reflecting the way in which monochromatic images are usually
displayed. Since f (n) is both discrete-spaced and quantized, it is digital.

3.3 IMAGE HISTOGRAM
The basic tool that is used in designing point operations on digital images (and many
other operations as well) is the image histogram. The histogram Hf of the digital image
f is a plot or graph of the frequency of occurrence of each gray level in f . Hence, Hf is
a one-dimensional function with domain {0, . . . ,K � 1} and possible range extending
from 0 to the number of pixels in the image, MN .

The histogram is given explicitly by

Hf (k) � J (3.1)

if f contains exactly J occurrences of gray level k, for each k � 0, . . . ,K � 1. Thus, an
algorithm to compute the image histogram involves a simple counting of gray levels,
which can be accomplished even as the image is scanned. Every image processing
development environment and software library contains basic histogram computation,
manipulation, and display routines.
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Since the histogram represents a reduction of dimensionality relative to the original
image f , information is lost—the image f cannot be deduced from the histogram Hf

except in trivial cases (when the image is constant-valued). In fact, the number of images
that share the same arbitrary histogram Hf is astronomical. Given an image f with a
particular histogram Hf , every image that is a spatial shuffling of the gray levels of f has
the same histogram Hf .

The histogram Hf contains no spatial information about f —it describes the frequency
of the gray levels in f and nothing more. However, this information is still very rich, and
many useful image processing operations can be derived from the image histogram.
Indeed, a simple visual display of Hf reveals much about the image. By examining the
appearance of a histogram, it is possible to ascertain whether the gray levels are distributed
primarily at lower (darker) gray levels, or vice versa. Although this can be ascertained to
some degree by visual examination of the image itself, the human eye has a tremendous
ability to adapt to overall changes in luminance, which may obscure shifts in the gray
level distribution. The histogram supplies an absolute method of determining an image’s
gray level distribution.

For example, the average optical density, or AOD, is the basic measure of an image’s
overall average brightness or gray level. It can be computed directly from the image:

AOD(f ) �
1

NM

N�1∑
n1�0

M�1∑
n2�0

f (n1,n2) (3.2)

or it can be computed from the image histogram:

AOD(f ) �
1

NM

K �1∑

k�0

kHf (k). (3.3)

The AOD is a useful and simple meter for estimating the center of an image’s gray level
distribution. A target value for the AOD might be specified when designing a point
operation to change the overall gray level distribution of an image.

Figure 3.1 depicts two hypothetical image histograms. The one on the left has a heavier
distribution of gray levels close to zero (and a low AOD), while the one on the right is
skewed toward the right (a high AOD). Since image gray levels are usually displayed
with lower numbers indicating darker pixels, the image on the left corresponds to a
predominantly dark image. This may occur if the image f was originally underexposed

0 K�1Gray level k

Hf (k) Hf (k)

0 K�1Gray level k

FIGURE 3.1

Histograms of images with gray level distribution skewed towards darker (left) and brighter (right)
gray levels. It is possible that these images are underexposed and overexposed, respectively.
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prior to digitization, or if it was taken under poor lighting levels, or perhaps the process
of digitization was performed improperly. A skewed histogram often indicates a problem
in gray level allocation. The image on the right may have been overexposed or taken in
very bright light.

Figure 3.2 depicts the 256 � 256 (M � N � 256) gray level digital image “students”
with grayscale range {0, . . . , 255} and its computed histogram. Although the image con-
tains a broad distribution of gray levels, the histogram is heavily skewed toward the dark
end, and the image appears to be poorly exposed. It is of interest to consider techniques
that attempt to “equalize” this distribution of gray levels. One of the important applica-
tions of image point operations is to correct for poor exposures like the one in Fig. 3.2. Of
course, there may be limitations on the effectiveness of any attempt to recover an image
from poor exposure since information may be lost. For example, in Fig. 3.2, the gray
levels saturate at the low end of the scale, making it difficult or impossible to distinguish
features at low brightness levels.

More generally, an image may have a histogram that reveals a poor usage of the
available grayscale range. An image with a compact histogram, as depicted in Fig. 3.3,

3000
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0
50 100 150 200 250

FIGURE 3.2

The digital image “students” (left) and its histogram (right). The gray levels of this image are
skewed towards the left, and the image appears slightly underexposed.

0 K�1Gray level k

Hf (k) Hf (k)

0 K�1Gray level k

FIGURE 3.3

Histograms of images that make poor (left) and good (right) use of the available grayscale range.
A compressed histogram often indicates an image with a poor visual contrast. A well-distributed
histogram often has a higher contrast and better visibility of detail.
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FIGURE 3.4

Digital image “books” (left) and its histogram (right). The image makes poor use of the available
grayscale range.

will often have a poor visual contrast or a “washed-out” appearance. If the grayscale range
is filled out, also depicted in Fig. 3.3, then the image tends to have a higher contrast and
a more distinctive appearance. As will be shown, there are specific point operations that
effectively expand the grayscale distribution of an image.

Figure 3.4 depicts the 256 � 256 gray level image “books” and its histogram. The
histogram clearly reveals that nearly all of the gray levels that occur in the image fall
within a small range of grayscales, and the image is of correspondingly poor contrast.

It is possible that an image may be taken under correct lighting and exposure condi-
tions, but that there is still a skewing of the gray level distribution toward one end of the
grayscale or that the histogram is unusually compressed. An example would be an image
of the night sky, which is dark nearly everywhere. In such a case, the appearance of the
image may be normal but the histogram will be very skewed. In some situations, it may
still be of interest to attempt to enhance or reveal otherwise difficult-to-see details in the
image by application of an appropriate point operation.

3.4 LINEAR POINT OPERATIONS ON IMAGES
A point operation on a digital image f (n) is a function h of a single variable applied
identically to every pixel in the image, thus creating a new, modified image g (n). Hence
at each coordinate n,

g (n) � h[f (n)]. (3.4)

The form of the function h is determined by the task at hand. However, since each
output g (n) is a function of a single pixel value only, the effects that can be obtained by
a point operation are somewhat limited. Specifically, no spatial information is utilized
in (3.4), and there is no change made in the spatial relationships between pixels in the
transformed image. Thus, point operations do not affect the spatial positions of objects
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in an image, nor their shapes. Instead, each pixel value or gray level is increased or
decreased (or unchanged) according to the relation in (3.4). Therefore, a point operation
h does change the gray level distribution or histogram of an image, and hence the overall
appearance of the image.

Of course, there is an unlimited variety of possible effects that can be produced by
selection of the function h that defines the point operation (3.4). Of these, the simplest
are the linear point operations, where h is taken to be a simple linear function of gray level:

g (n) � Pf (n) � L. (3.5)

Linear point operations can be viewed as providing a gray level additive offset L and a
gray level multiplicative scaling P of the image f . Offset and scaling provide different
effects, and so we will consider them separately before examining the overall linear point
operation (3.5).

The saturation conditions |g (n)|< 0 and |g (n)|> K � 1 are to be avoided if possible,
since the gray levels are then not properly defined, which can lead to severe errors in
processing or display of the result. The designer needs to be aware of this so steps can
be taken to ensure that the image is not distorted by values falling outside the range. If
a specific wordlength has been allocated to represent the gray level, then saturation may
result in an overflow or underflow condition, leading to very large errors. A simple way to
handle this is to simply clip those values falling outside of the allowable grayscale range
to the endpoint values. Hence, if |g (n0)|< 0 at some coordinate n0, then set |g (n0)|� 0
instead. Likewise, if |g (n0)|> K � 1, then fix |g (n0)|� K � 1. Of course, the result is no
longer strictly a linear point operation. Care must be taken since information is lost in
the clipping operation, and the image may appear artificially flat in some areas if whole
regions become clipped.

3.4.1 Additive Image Offset
Suppose P � 1 and L is an integer satisfying |L|� K � 1. An additive image offset has the
form

g (n) � f (n) � L. (3.6)

Here we have prescribed a range of values that L can take. We have taken L to be an integer,
since we are assuming that images are quantized into integers in the range {0, . . . ,K � 1}.
We have also assumed that |L| falls in this range, since otherwise, all of the values of g (n)

will fall outside the allowable grayscale range.
In (3.6), if L > 0, then g (n) will be a brightened version of the image f (n). Since spatial

relationships between pixels are unaffected, the appearance of the image will otherwise
be essentially the same. Likewise, if L < 0, then g (n) will be a dimmed version of the
f (n). The histograms of the two images have a simple relationship:

Hg (k) � Hf (k � L). (3.7)

Thus, an offset L corresponds to a shift of the histogram by amount L to the left or to the
right, as depicted in Fig. 3.5.
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FIGURE 3.5

Effect of additive offset on the image histogram. Top: original image histogram; bottom: positive
(left) and negative (right) offsets shift the histogram to the right and to the left, respectively.
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FIGURE 3.6

Left: Additive offset of the image “students” in Fig. 3.2 by amount 60. Observe the clipping spike
in the histogram to the right at gray level 255.

Figures 3.6 and 3.7 show the result of applying an additive offset to the images
“students”and“books” in Figs. 3.2 and 3.4, respectively. In both cases, the overall visibility
of the images has been somewhat increased, but there has not been an improvement in the
contrast. Hence, while each image as a whole is easier to see, the details in the image are
no more visible than they were in the original. Figure 3.6 is a good example of saturation;
a large number of gray levels were clipped at the high end (gray level 255). In this case,
clipping did not result in much loss of information.

Additive image offsets can be used to calibrate images to a given average brightness
level. For example, suppose we desire to compare multiple images f1, f2, . . . , fn of the same
scene, taken at different times. These might be surveillance images taken of a secure area
that experiences changes in overall ambient illumination. These variations could occur
because the area is exposed to daylight.
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FIGURE 3.7

Left: Additive offset of the image “books” in Fig. 3.4 by amount 80.

A simple approach to counteract these effects is to equalize the AODs of the images.
A reasonable AOD is the grayscale center K/2, although other values may be used depend-
ing on the application. Letting Lm � AOD(fm), for m � 1, . . . ,n, the “AOD-equalized”
images g1,g2, . . . ,gn are given by

gm(n) � fm(n) � Lm � K/2. (3.8)

The resulting images then have identical AOD K/2.

3.4.2 Multiplicative Image Scaling
Next we consider the scaling aspect of linear point operations. Suppose that L � 0 and
P > 0. Then, a multiplicative image scaling by factor P is given by

g (n) � Pf (n). (3.9)

Here P is assumed positive since g (n) must be positive. Note that we have not constrained
P to be an integer, since this would usually leave few useful values of P ; for example, even
taking P � 2 will severely saturate most images. If an integer result is required, then a
practical definition for the output is to round the result in (3.9):

g (n) � INT[Pf (n) � 0.5], (3.10)

where INT[R] denotes the nearest integer that is less than or equal to R.
The effect that multiplicative scaling has on an image depends largely on whether P

is larger or smaller than one. If P > 1, then the gray levels of g will cover a broader range
than those of f . Conversely, if P < 1, then g will have a narrower gray level distribution
than f . In terms of the image histogram,

Hg {INT[Pk � 0.5]}� Hf (k). (3.11)

Hence multiplicative scaling by a factor P either stretches or compresses the image
histogram. Note that for quantized images, it is not proper to assume that (3.11) implies
Hg (k) � Hf (k/P) since the argument of Hf (k/P) may not be an integer.
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FIGURE 3.8

Effects of multiplicative image scaling on the histogram. If P > 1, the histogram is expanded,
leading to more complete use of the grayscale range. If P < 1, the histogram is contracted,
leading to possible information loss and (usually) a less striking image.

Figure 3.8 depicts the effect of multiplicative scaling on a hypothetical histogram.
For P > 1, the histogram is expanded (and hence, saturation is quite possible), while for
P < 1, the histogram is contracted. If the histogram is contracted, then multiple gray
levels in f may map to single gray levels in g since the number of gray levels is finite.
This implies a possible loss of information. If the histogram is expanded, then spaces
may appear between the histogram bins where gray levels are not being mapped. This,
however, does not represent a loss of information and usually will not lead to visual
information loss.

As a rule of thumb, histogram expansion often leads to a more distinctive image that
makes better use of the grayscale range, provided that saturation effects are not visually
noticeable. Histogram contraction usually leads to the opposite: an image with reduced
visibility of detail that is less striking. However, these are only rules of thumb, and there
are exceptions. An image may have a grayscale spread that is too extensive, and may
benefit from scaling with P < 1.

Figure 3.9 shows the image “students” following a multiplicative scaling with P �
0.75, resulting in compression of the histogram. The resulting image is darker and less
contrasted. Figure 3.10 shows the image “books” following scaling with P � 2. In this
case, the resulting image is much brighter and has a better visual resolution of gray levels.
Note that most of the high end of the grayscale range is now used, although the low
end is not.

3.4.3 Image Negative
The first example of a linear point operation that uses both scaling and offset is the image
negative, which is given by P � �1 and L � K � 1. Hence

g (n) � �f (n) � (K � 1) (3.12)
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FIGURE 3.9

Histogram compression by multiplicative image scaling with P � 0.75. The resulting image is less
distinctive. Note also the regularly-spaced tall spikes in the histogram; these are gray levels that
are being “stacked,” resulting in a loss of information, since they can no longer be distinguished.
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FIGURE 3.10

Histogram expansion by multiplicative image scaling with P � 2.0. The resulting image is much
more visually appealing. Note the regularly-spaced gaps in the histogram that appear when the
discrete histogram values are spread out. This does not imply a loss of information or visual
fidelity.

and

Hg (k) � Hf (K � 1 � k). (3.13)

Scaling by P � �1 reverses (flips) the histogram; the additive offset L � K � 1 is required
so that all values of the result are positive and fall in the allowable grayscale range.
This operation creates a digital negative image, unless the image is already a negative,
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FIGURE 3.11

Example of image negative with resulting reversed histogram.

in which case a positive is created. It should be mentioned that unless the digital
negative (3.12) is being computed, P > 0 in nearly every application of linear point
operations.

An important application of (3.12) occurs when a negative is scanned (digitized), and
it is desired to view the positive image. Figure 3.11 depicts the negative image associated
with “students.” Sometimes, the negative image is viewed intentionally, when the positive
image itself is very dark. A common example of this is for the examination of telescopic
images of star fields and faint galaxies. In the negative image, faint bright objects appear
as dark objects against a bright background, which can be easier to see.

3.4.4 Full-Scale Histogram Stretch
We have already mentioned that an image that has a broadly distributed histogram tends
to be more visually distinctive. The full-scale histogram stretch, which is also often called
a contrast stretch, is a simple linear point operation that expands the image histogram to
fill the entire available grayscale range. This is such a desirable operation that the full-
scale histogram stretch is easily the most common linear point operation. Every image
processing programming environment and library contains it as a basic tool. Many image
display routines incorporate it as a basic feature. Indeed, commercially-available digital
video cameras for home and professional use generally apply a full-scale histogram stretch
to the acquired image before being stored in camera memory. It is called automatic gain
control on these devices.

The definition of the multiplicative scaling and additive offset factors in the full-scale
histogram stretch depend on the image f . Suppose that f has a compressed histogram
with maximum gray level value B and minimum value A, as shown in Fig. 3.8 (top):

A � min
n
{f (n)} and B � max

n
{f (n)}. (3.14)
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The goal is to find a linear point operation of the form (3.5) that maps gray levels A and
B in the original image to gray levels 0 and K � 1 in the transformed image. This can be
expressed in two linear equations:

PA � L � 0 (3.15)

and

PB � L � K � 1 (3.16)

in the two unknowns (P ,L), with solutions

P �

(
K � 1

B � A

)
(3.17)

and

L � �A

(
K � 1

B � A

)
. (3.18)

Hence, the overall full-scale histogram stretch is given by

g (n) � FSHS(f ) �

(
K � 1

B � A

)
[f (n) � A]. (3.19)

We make the shorthand notation FSHS, since (3.19) will prove to be commonly useful
as an addendum to other algorithms. The operation in (3.19) can produce dramatic
improvements in the visual quality of an image suffering from a poor (narrow) grayscale
distribution. Figure 3.12 shows the result of applying the full-scale histogram stretch
to the image “books.” The contrast and visibility of the image was, as expected, greatly
improved. The accompanying histogram, which now fills the available range, also shows
the characteristic gaps of an expanded discrete histogram.
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FIGURE 3.12

Full-scale histogram stretch of image “books.”
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If the image f already has a broad gray level range, then the histogram stretch may
produce little or no effect. For example, the image “students” (Fig. 3.2) has grayscales
covering the entire available range, as seen in the histogram accompanying the image.
Therefore, (3.19) has no effect on “students.” This is unfortunate, since we have already
commented that “students” might benefit from a histogram manipulation that would
redistribute the gray level densities. Such a transformation would need to nonlinearly
reallocate the image’s gray level values. Such nonlinear point operations are described
next.

3.5 NONLINEAR POINT OPERATIONS ON IMAGES
We now consider nonlinear point operations of the form

g (n) � h[f (n)], (3.20)

where the function h is nonlinear. Obviously, this encompasses a wide range of possi-
bilities. However, there are only a few functions h that are used with any great degree of
regularity. Some of these are functional tools that are used as part of larger, multistep
algorithms, such as absolute value, square, and square-root functions. One such simple
nonlinear function that is very commonly used is the logarithmic point operation, which
we describe in detail.

3.5.1 Logarithmic Point Operations
Assuming that the image f (n) is positive-valued, the logarithmic point operation is defined
by a composition of two operations: a point logarithmic operation, followed by a full-scale
histogram stretch:

g (n) � FSHS{log[1 � f (n)]}. (3.21)

Adding unity to the image avoids the possibility of taking the logarithm of zero. The
logarithm itself acts to nonlinearly compress the gray level range. All of the gray levels are
compressed to the range [0, log(K )]. However, larger (brighter) gray levels are compressed
much more severely than are smaller gray levels. The subsequent FSHS operation then
acts to linearly expand the log-compressed gray levels to fill the grayscale range. In the
transformed image, dim objects in the original are now allocated a much larger percentage
of the grayscale range, hence improving their visibility.

The logarithmic point operation is an excellent choice for improving the appearance
of the image “students,” as shown in Fig. 3.13. The original image (Fig. 3.2) was not
a candidate for FSHS because of its broad histogram. The appearance of the original
suffers because many of the important features of the image are obscured by darkness.
The histogram is significantly spread at these low brightness levels, as can be seen by
comparing to Fig. 3.2, and also by the gaps that appear in the low end of the histogram.
This does not occur at brighter gray levels.
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FIGURE 3.13

Logarithmic grayscale range compression followed by FSHS applied to image “students.”

Certain applications quite commonly use logarithmic point operations. For example,
in astronomical imaging, a relatively few bright pixels (stars and bright galaxies, etc.)
tend to dominate the visual perception of the image, while much of the interesting
information lies at low bright levels (e.g., large, faint nebulae). By compressing the bright
intensities much more heavily, then applying FSHS, the faint, interesting details visually
emerge.

Later, in Chapter 5, the Fourier transforms of images will be studied. The Fourier
transform magnitudes, which are of the same dimensionalities as images, will be dis-
played as intensity arrays for visual consumption. However, the Fourier transforms of
most images are dominated visually by the Fourier coefficients of a relatively few low
frequencies, so the coefficients of important high frequencies are usually difficult or
impossible to see. However, a point logarithmic operation usually suffices to ameliorate
this problem, and so image Fourier transforms are usually displayed following application
of (3.21), both in this Guide and elsewhere.

3.5.2 Histogram Equalization
One of the most important nonlinear point operations is histogram equalization, also
called histogram flattening. The idea behind it extends that of FSHS: not only should an
image fill the available grayscale range but also it should be uniformly distributed over
that range. Hence an idealized goal is a flat histogram. Although care must be taken
in applying a powerful nonlinear transformation that actually changes the shape of the
image histogram, rather than just stretching it, there are good mathematical reasons for
regarding a flat histogram as a desirable goal. In a certain sense,1 an image with a perfectly
flat histogram contains the largest possible amount of information or complexity.

1In the sense of maximum entropy.
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In order to explain histogram equalization, it will be necessary to make some refined
definitions of the image histogram. For an image containing MN pixels, the normalized
image histogram is given by

pf (k) �
1

MN
Hf (k) (3.22)

for k � 0, . . . ,K � 1. This function has the property that

K�1∑

k�0

pf (k) � 1. (3.23)

The normalized histogram pf (k) has a valid interpretation as the empirical probability
density (mass function) of the gray level values of image f. In other words, if a pixel
coordinate n is chosen at random, then pf (k) is the probability that f (n) � k : pf (k) �
Pr{f (n) � k}.

We also define the cumulative normalized image histogram to be

Pf (r) �

r∑

k�0

pf (k); r � 0, . . . ,K � 1. (3.24)

The function Pf (r) is an empirical probability distribution function, hence it is a non-
decreasing function, and also Pf (K � 1) � 1. It has the probabilistic interpretation that
for a randomly selected image coordinate n,Pf (r) � Pr{f (n) � r}. From (3.24), it is also
true that

pf (k) � Pf (k) � Pf (k � 1);k � 0, . . . ,K � 1 (3.25)

so Pf (k) and pf (k) can be obtained from each other. Both are complete descriptions of
the gray level distribution of the image f .

In order to understand the process of digital histogram equalization, we first explain
the process supposing that the normalized and cumulative histograms are functions of
continuous variables. We will then formulate the digital case of an approximation of the
continuous process. Hence suppose that pf (x) and Pf (x) are functions of a continu-
ous variable x . They may be regarded as image probability density function (pdf) and
cumulative distribution function (cdf), with relationship pf (x) � dPf (x)/dx . We will
also assume that P�1

f exists. Since Pf is nondecreasing, this is either true or P�1
f can be

defined by a convention. In this hypothetical continuous case, we claim that the image

FSHS( g ), (3.26)

where

g � Pf ( f ) (3.27)

has a uniform (flat) histogram. In (3.27), Pf ( f ) denotes that Pf is applied on a pixelwise
basis to f :

g (n) � Pf [ f (n)] (3.28)
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for all n. Since Pf is a continuous function, (3.26)–(3.28) represents a smooth mapping
of the histogram of image f to an image with a smooth histogram. At first, (3.27) may
seem confusing since the function Pf that is computed from f is then applied to f . To see
that a flat histogram is obtained, we use the probabilistic interpretation of the histogram.
The cumulative histogram of the resulting image g is:

Pg (x) � Pr{g � x}� Pr{Pf ( f ) � x}
� Pr{f � P�1

f (x)}� Pf {P�1
f (x)}� x (3.29)

for 0 � x � 1. Finally, the normalized histogram of g is

pg (x) � dPg (x)/dx � 1 (3.30)

for 0 � x � 1. Since pg (x) is defined only for 0 � x � 1, FSHS in (3.26) is required to
stretch the flattened histogram to fill the grayscale range.

To flatten the histogram of a digital image f , first compute the discrete cumulative
normalized histogram Pf (k), apply (3.28) at each n, then (3.26) to the result. However,
while an image with a perfectly flat histogram is the result in the ideal continuous case
outlined above, in the digital case, the output histogram is only approximately flat,or more
accurately flatter than the input histogram. This follows since (3.26)–(3.28) collectively is
a point operation on the image f , so every occurrence of gray level k maps to Pf (k) in g .
Hence, histogram bins are never reduced in amplitude by (3.26)–(3.28), although they
may increase if multiple gray levels map to the same value (thus destroying information).
Hence, the histogram cannot be truly equalized by this procedure.

Figures 3.14 and 3.15 show histogram equalization applied to our ongoing example
images “students” and “books,” respectively. Both images are much more striking and
viewable than the original. As can be seen, the resulting histograms are not really flat; it
is “flatter” in the sense that the histograms are spread as much as possible. However, the
heights of peaks are not reduced. As is often the case with expansive point operations,
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FIGURE 3.14

Histogram equalization applied to the image “students.”
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FIGURE 3.15

Histogram equalization applied to the image “books.”

gaps or spaces appear in the output histogram. These are not a problem unless the gaps
become large and some of the histogram bins become isolated. This amounts to an
excess of quantization in that range of gray levels, which may result in false contouring
(Chapter 1).

3.5.3 Histogram Shaping
In some applications, it is desired to transform the image into one that has a histogram
of a specific shape. The process of histogram shaping generalizes histogram equalization,
which is the special case where the target shape is flat. Histogram shaping can be applied
when multiple images of the same scene, taken under mildly different lighting conditions,
are to be compared. This extends the idea of AOD-equalization described earlier in this
chapter. By shaping the histograms to match, the comparison may exclude minor lighting
effects. Alternately, it may be that the histogram of one image is shaped to match that of
another, again usually for the purpose of comparison. Or it might simply be that a certain
histogram shape, such as a Gaussian, produces visually agreeable results for a certain class
of images.

Histogram shaping is also accomplished by a nonlinear point operation defined in
terms of the empirical image probabilities or histogram functions. Again, exact results are
obtained in the hypothetical continuous-scale case. Suppose that the target (continuous)
cumulative histogram function is Q(x), and that Q�1 exists. Then let

g � Q�1[Pf ( f )], (3.31)

where both functions in the composition are applied on a pixelwise basis. The cumulative
histogram of g is then:

Pg (x) � Pr{g � x}� Pr{Q�1[Pf ( f )]� x}
� Pr{Pf ( f ) � Q(x)}� Pr{f � P�1

f [Q(x)]}
� Pf {P�1

f [Q(x)]}� Q(x), (3.32)
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FIGURE 3.16

Histogram of the image “books” shaped to match a “V.”

as desired. Note that FSHS is not required in this instance. Of course, (3.32) can only be
approximated when the image f is digital. In such cases, the specified target cumulative
histogram function Q(k) is discrete, and some convention for defining Q�1 should be
adopted, particularly if Q is computed from a target image and is unknown in advance.
One common convention is to define

Q�1(k) � min
s
{s : Q(s) � k}. (3.33)

As an example, Fig. 3.16 depicts the result of shaping the histogram of “books” to
match the shape of an inverted “V” centered at the middle gray level and extending
across the entire grayscale. Again, a perfect “V” is not produced, although an image of
very high contrast is still produced. Instead, the histogram shape that results is a crude
approximation to the target.

3.6 ARITHMETIC OPERATIONS BETWEEN IMAGES
We now consider arithmetic operations defined on multiple images. The basic operations
are pointwise image addition/subtraction and pointwise image multiplication/division.
Since digital images are defined as arrays of numbers, these operations need to be defined
carefully.

Suppose we have n N � M images f1, f2, . . . , fn . It is important they are of the same
dimensions since we will be defining operations between corresponding array elements
(having the same indices).

The sum of n images is given by

f1 � f2 � · · ·� fn �

n∑
m�1

fm (3.34)



3.6 Arithmetic Operations Between Images 61

while for any two images fr and fs the image difference is

fr � fs . (3.35)

The pointwise product of the n N � M images f1, . . . , fn is denoted by

f1⊗ f2⊗ . . .⊗ fn �

n∏
m�1

fm , (3.36)

where in (3.36) we do not infer that the matrix product is being taken. Instead, the
product is defined on a pointwise basis. Hence g � f1⊗ f2⊗ . . .⊗ fn if and only if

g (n) � f1(n)f2(n) . . . fn(n) (3.37)

for every n. In order to clarify the distinction between matrix product and pointwise
array product, we introduce the special notation “⊗” to denote the pointwise product.
Given two images fr and fs the pointwise image quotient is denoted

g � fr � fs (3.38)

if for every n it is true that fs(n) �� 0 and

g (n) � fr (n)/fs(n). (3.39)

The pointwise matrix product and quotient are mainly useful when manipulating Fourier
transforms of images, as will be seen in Chapter 5. However, the pointwise image sum
and difference, despite their simplicity, have important applications that we will examine
next.

3.6.1 Image Averaging for Noise Reduction
Images that occur in practical applications invariably suffer from random degradations
that are collectively referred to as noise. These degradations arise from numerous sources,
including radiation scatter from the surface before the image is sensed; electrical noise in
the sensor or camera; channel noise as the image is transmitted over a communication
channel; bit errors after the image is digitized, and so on. A good review of various image
noise models is given in Chapter 7 of this Guide.

The most common generic noise model is additive noise, where a noisy observed
image is taken to be the sum of an original, uncorrupted image g and a noise image q:

f � g � q, (3.40)

where q is a 2D N � M random matrix, with elements q(n) that are random variables.
Chapter 7 develops the requisite mathematics for understanding random quantities and
provides the basis for noise filtering. In this basic chapter, we will not require this more
advanced development. Instead, we make the simple assumption that the noise is zero
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mean. If the noise is zero mean, then the average (or sample mean) of n independently
occurring noise matrices q1,q2, . . . ,qn tends toward zero as n grows large:2

(
1

n

) n∑
m�1

qm ≈ 0, (3.41)

where 0 denotes the N � M matrix of zeros.
Now suppose that we are able to obtain n images f1, f2, . . . , fn of the same scene.

The images are assumed to be noisy versions of an original image g , where the noise is
zero-mean and additive:

fm � g � qm (3.42)

for m � 1, . . . ,n. Hence, the images are assumed either to be taken in rapid succession,
so that there is no motion between frames, or under conditions where there is no motion
in the scene. In this way only the noise contribution varies from image to image.

By averaging the multiple noisy images (3.42):

(
1

n

) n∑
m�1

fm �

(
1

n

) n∑
m�1

(
g � qm

)
�

(
1

n

) n∑
m�1

g �

(
1

n

) n∑
m�1

qm

� g �

(
1

n

) n∑
m�1

qm

≈ g (3.43)

using (3.41). If a large enough number of frames are averaged together, then the resulting
image should be nearly noise-free, and hence should approximate the original image.
The amount of noise reduction can be quite significant; one can expect a reduction in
the noise variance by a factor n. Of course, this is subject to inaccuracies in the model,
e.g., if there is any change in the scene itself, or if there are any dependencies between
the noise images (e.g., in an extreme case, the noise images might be identical), then the
reduction in the noise will be limited.

Figure 3.17 depicts the process of noise reduction by frame averaging in an actual
example of confocal microscope imaging. The image(s) are of Macroalga Valonia micro-
physa, imaged with a laser scanning confocal microscope (LSCM). The dark ring is
chlorophyll fluorescing under Ar laser excitation. As can be seen, in this case the pro-
cess of image averaging is quite effective in reducing the apparent noise content and in
improving the visual resolution of the object being imaged.

2More accurately, the noise must be assumed mean-ergodic, which means that the sample mean approaches
the statistical mean over large sample sizes. This assumption is usually quite reasonable.
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FIGURE 3.17

Example of image averaging for noise reduction. (a) single noisy image; (b) average of 4 frames;
(c) average of 16 frames (courtesy of Chris Neils).

3.6.2 Image Differencing for Change Detection
Often it is of interest to detect changes that occur in images taken of the same scene but
at different times. If the time instants are closely placed, e.g., adjacent frames in a video
sequence, then the goal of change detection amounts to image motion detection. There are
many applications of motion detection and analysis. For example, in video compression
algorithms, compression performance is improved by exploiting redundancies that are
tracked along the motion trajectories of image objects that are in motion. Detected
motion is also useful for tracking targets, for recognizing objects by their motion, and for
computing three-dimensional scene information from 2D motion.

If the time separation between frames is not small, then change detection can involve
the discovery of gross scene changes. This can be useful for security or surveillance
cameras, or in automated visual inspection systems, for example. In either case, the basic
technique for change detection is the image difference. Suppose that f1 and f2 are images
to be compared. Then the absolute difference image

g � |f1 � f2| (3.44)
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will embody those changes or differences that have occurred between the images. At
coordinates n where there has been little change, g (n) will be small. Where change has
occurred, g (n) can be quite large. Figure 3.18 depicts image differencing. In the difference
image, large changes are displayed as brighter intensity values. Since significant change has
occurred, there are many bright intensity values. This difference image could be processed
by an automatic change detection algorithm. A simple series of steps that might be taken
would be to binarize the difference image, thus separating change from nonchange, using
a threshold (Chapter 4), counting the number of high-change pixels, and finally, deciding
whether the change is significant enough to take some action. Sophisticated variations
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FIGURE 3.18

Image differencing example. (a) Original placid scene; (b) a theft is occurring! (c) the difference
image with brighter points signifying larger changes; (d) the histogram of (c).
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of this theme are currently in practical use. The histogram in Fig. 3.18(d) is instructive,
since it is characteristic of differenced images; many zero or small gray level changes
occur, with the incidence of larger changes falling off rapidly.

3.7 GEOMETRIC IMAGE OPERATIONS
We conclude this chapter with a brief discussion of geometric image operations. Geomet-
ric image operations are, in a sense, the opposite of point operations: they modify the
spatial positions and spatial relationships of pixels, but they do not modify gray level
values. Generally, these operations can be quite complex and computationally intensive,
especially when applied to video sequences. However, the more complex geometric oper-
ations are not much used in engineering image processing, although they are heavily
used in the computer graphics field. The reason for this is that image processing is pri-
marily concerned with correcting or improving images of the real world, hence complex
geometric operations, which distort images, are less frequently used. Computer graphics,
however, is primarily concerned with creating images of an unreal world, or at least a
visually modified reality, and subsequently geometric distortions are commonly used in
that discipline.

A geometric image operation generally requires two steps: First, a spatial mapping of
the coordinates of an original image f to define a new image g :

g (n) � f (n	) � f [a(n)]. (3.45)

Thus, geometric image operations are defined as functions of position rather than
intensity. The 2D, two-valued mapping function a(n) � [a1(n1,n2),a2(n1,n2)] is usu-
ally defined to be continuous and smoothly changing, but the coordinates a(n) that
are delivered are not generally integers. For example, if a(n) � (n1/3,n2/4), then
g (n) � f (n1/3,n2/4), which is not defined for most values of (n1,n2). The question
then is, which value(s) of f are used to define g (n), when the mapping does not fall on
the standard discrete lattice?

This implies the need for the second operation: interpolation of noninteger coordi-
nates a1(n1,n2) and a2(n1,n2) to integer values, so that g can be expressed in a standard
row-column format. There are many possible approaches for accomplishing interpo-
lation; we will look at two of the simplest: nearest neighbor interpolation and bilinear
interpolation. The first of these is too simplistic for many tasks, while the second is
effective for most.

3.7.1 Nearest Neighbor Interpolation
Here, the geometrically transformed coordinates are mapped to the nearest integer
coordinates of f :

g (n) � f {INT[a1(n1,n2) � 0.5], INT[a2(n1,n2) � 0.5]}, (3.46)
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where INT[R] denotes the nearest integer that is less than or equal to R. Hence, the
coordinates are rounded prior to assigning them to g . This certainly solves the problem
of finding integer coordinates of the input image, but it is quite simplistic, and, in practice,
it may deliver less than impressive results. For example, several coordinates to be mapped
may round to the same values, creating a block of pixels in the output image of the same
value. This may give an impression of “blocking,” or of structure that is not physically
meaningful. The effect is particularly noticeable along sudden changes in intensity, or
“edges,” which may appear jagged following nearest neighbor interpolation.

3.7.2 Bilinear Interpolation
Bilinear interpolation produces a smoother interpolation than does the nearest neighbor
approach. Given four neighboring image coordinates f (n10,n20), f (n11,n21), f (n12,n22),
and f (n13,n23) (these can be the four nearest neighbors of f [a(n)]), then the geometrically
transformed image g (n1,n2) is computed as

g (n1,n2) � A0 � A1n1 � A2n2 � A3n1n2, (3.47)

which is a bilinear function in the coordinates (n1,n2). The bilinear weights A0,A1,A2,
and A3 are found by solving
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Thus, g (n1,n2) is defined to be a linear combination of the gray levels of its four nearest
neighbors. The linear combination defined by (3.48) is in fact the value assigned to
g (n1,n2) when the best (least squares) planar fit is made to these four neighbors. This
process of optimal averaging produces a visually smoother result.

Regardless of the interpolation approach that is used, it is possible that the mapping
coordinates a1(n1,n2),a2(n1,n2) do not fall within the pixel ranges

0 � a1(n1,n2) � M � 1

and/or (3.49)

0 � a2(n1,n2) � N � 1,

in which case it is not possible to define the geometrically transformed image at these
coordinates. Usually a nominal value is assigned, such as g (n) � 0, at these locations.

3.7.3 Image Translation
The most basic geometric transformation is the image translation, where (b1,b2) are
integer constants. In this case g (n1,n2) � f (n1 � b1,n2 � b2), which is a simple shift or
translation of g by an amount b1 in the vertical (row) direction and an amount b2 in the
horizontal direction. This operation is used in image display systems, when it is desired
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to move an image about, and it is also used in algorithms, such as image convolution
(Chapter 5), where images are shifted relative to a reference. Since integer shifts can be
defined in either direction, there is no need for the interpolation step.

3.7.4 Image Rotation
Rotation of the image g by an angle � relative to the horizontal (n1) axis is accomplished
by the following transformations:

a1(n1,n2) � n1 cos� � n2 sin�

and (3.50)

a2(n1,n2) � n1 sin� � n2 cos�.

The simplest cases are � � 90◦, where [a1(n1,n2),a2(n1,n2)]� (�n2,n1);� � 180◦,
where [a1(n1,n2),a2(n1,n2)]� (�n1,�n2); and � � �90◦, where [a1(n1,n2),a2(n1,
n2)]� (n2,�n1). Since the rotation point is not defined here as the center of the image,
the arguments (3.50) may fall outside of the image domain. This may be ameliorated
by applying an image translation either before or after the rotation to obtain coordinate
values in the nominal range.

3.7.5 Image Zoom
The image zoom either magnifies or minifies the input image according to the mapping
functions

a1(n1,n2) � n1/c and a2(n1,n2) � n2/d , (3.51)

where c � 1 and d � 1 to achieve magnification, and c < 1 and d < 1 to achieve minifi-
cation. If applied to the entire image, then the image size is also changed by a factor c(d)

along the vertical (horizontal) direction. If only a small part of an image is to be zoomed,
then a translation may be made to the corner of that region, the zoom applied, and then
the image cropped.

The image zoom is a good example of a geometric operation for which the type of
interpolation is important, particularly at high magnifications. With nearest neighbor
interpolation, many values in the zoomed image may be assigned the same grayscale,
resulting in a severe “blotching” or “blocking” effect. The bilinear interpolation usually
supplies a much more viable alternative.

Figure 3.19 depicts a 4x zoom operation applied to the image in Fig. 3.13 (logarithmi-
cally transformed “students”). The image was first zoomed, creating a much larger image
(16 times as many pixels). The image was then translated to a point of interest (selected,
e.g., by a mouse), then was cropped to size 256 � 256 pixels around this point. Both
nearest neighbor and bilinear interpolation were applied for the purpose of comparison.
Both provide a nice “close-up” of the original, making the faces much more identifiable.
However, the bilinear result is much smoother and does not contain the blocking artifacts
that can make recognition of the image difficult.
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(a) (b)

FIGURE 3.19

Example of (4x) image zoom followed by interpolation. (a) Nearest-neighbor interpolation;
(b) bilinear interpolation.

It is important to understand that image zoom followed by interpolation does
not inject any new information into the image, although the magnified image may
appear easier to see and interpret. The image zoom is only an interpolation of known
information.
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4.1 INTRODUCTION
In this second chapter on basic methods, we explain and demonstrate fundamental
tools for the processing of binary digital images. Binary image processing is of special
interest, since an image in binary format can be processed using very fast logical (Boolean)
operators. Often a binary image has been obtained by abstracting essential information
from a gray level image, such as object location, object boundaries, or the presence or
absence of some image property.

As seen in the previous two chapters, a digital image is an array of numbers or
sampled image intensities. Each gray level is quantized or assigned one of a finite set
of numbers represented by B bits. In a binary image, only one bit is assigned to each
pixel: B �1 implying two possible gray level values, 0 and 1. These two values are usu-
ally interpreted as Boolean, hence each pixel can take on the logical values ‘0’ or ‘1,’ or
equivalently, “true” or “false.” For example, these values might indicate the absence or
presence of some image property in an associated gray level image of the same size,
where ‘1’ at a given coordinate indicates the presence of the property at that coordi-
nate in the gray level image and ‘0’ otherwise. This image property is quite commonly a
sufficiently high or low intensity (brightness), although more abstract properties, such
as the presence or absence of certain objects, or smoothness/nonsmoothness, might be
indicated.

Since most image display systems and software assume images of eight or more bits per
pixel, the question arises as to how binary images are displayed. Usually they are displayed
using the two extreme gray tones, black and white, which are ordinarily represented by
0 and 255, respectively, in a grayscale display environment, as depicted in Fig. 4.1. There
is no established convention for the Boolean values that are assigned to “black” and to
“white.” In this chapter, we will uniformly use ‘1’ to represent “black” (displayed as gray
level 0) and ‘0’ to represent “white” (displayed as gray level 255). However, the assign-
ments are quite commonly reversed, and it is important to note that the Boolean values
‘0’ and ‘1’ have no physical significance other than what the user assigns to them. 69
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FIGURE 4.1

A 10�10 binary image.

FIGURE 4.2

Simple binary image device.

Binary images arise in a number of ways. Usually they are created from gray level
images for simplified processing or for printing. However, certain types of sensors directly
deliver a binary image output. Such devices are usually associated with printed, hand-
written, or line drawing images, with the input signal being entered by hand on a pressure
sensitive tablet, a resistive pad, or a light pen.

In such a device, the (binary) image is first initialized prior to image acquisition:

g (n) � ‘0’ (4.1)

at all coordinates n. When pressure, a change of resistance, or light is sensed at some
image coordinate n0, then the image is assigned the value ‘1’:

g (n0) � ‘1’. (4.2)

This continues until the user completes the drawing, as depicted in Fig. 4.2. These
simple devices are quite useful for entering engineering drawings, handprinted char-
acters, or other binary graphics in a binary image format.
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4.2 IMAGE THRESHOLDING
Usually a binary image is obtained from a gray level image by some process of
information abstraction. The advantage of the B-fold reduction in the required image
storage space is offset by what can be a significant loss of information in the resulting
binary image. However, if the process is accomplished with care, then a simple abstrac-
tion of information can be obtained that can enhance subsequent processing, analysis, or
interpretation of the image.

The simplest such abstraction is the process of image thresholding, which can be
thought of as an extreme form of gray level quantization. Suppose that a gray level image
f can take K possible gray levels 0,1,2, . . . ,K �1. Define an integer threshold, T , that lies
in the grayscale range: T ∈{0,1,2, . . . ,K �1}. The process of thresholding is a process of
simple comparison: each pixel value in f is compared to T . Based on this comparison,
a binary decision is made that defines the value of the corresponding pixel in an output
binary image g :

g (n) �

{
‘0’ if f (n) � T

‘1’ if f (n) < T .
(4.3)

Of course, the threshold T that is used is of critical importance, since it controls the
particular abstraction of information that is obtained. Indeed, different thresholds can
produce different valuable abstractions of the image. Other thresholds may produce little
valuable information at all. It is instructive to observe the result of thresholding an image
at many different levels in sequence. Figure 4.3 depicts the image “mandrill” (Fig. 1.8 of
Chapter 1) thresholded at four different levels. Each produces different information, or in
the case of Figs. 4.3(a) and 4.3(d), very little useful information. Among these, Fig. 4.3(c)
probably contains the most visual information, although it is far from ideal. The four
threshold values (50,100,150,200) were chosen without using any visual criterion.

As will be seen, image thresholding can often produce a binary image result that
is quite useful for simplified processing, interpretation, or display. However, some
gray level images do not lead to any interesting binary result regardless of the chosen
threshold T .

Several questions arise: given a gray level image, how does one decide whether bina-
rization of the image by gray level thresholding will produce a useful result? Can this be
decided automatically by a computer algorithm? Assuming that thresholding is likely to
be successful, how does one decide on a threshold level T ? These are apparently simple
questions pertaining to a very simple operation. However, the answers to these questions
turn out to be quite difficult to answer in the general case. In other cases, the answer
is simpler. In all cases, however, the basic tool for understanding the process of image
thresholding is the image histogram, which was defined and studied in Chapter 3.

Thresholding is most commonly and effectively applied to images that can be
characterized as having bimodal histograms. Figure 4.4 depicts two hypothetical image
histograms. The one on the left has two clear modes; the one at the right either has a
single mode or two heavily-overlapping, poorly separated modes.
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(a) (b)

(c) (d)

FIGURE 4.3

Image “mandrill” thresholded at gray levels (a) 50; (b) 100; (c) 150; and (d) 200.

Bimodal histograms are often (but not always!) associated with images that contain
objects and background having significantly different average brightness. This may imply
bright objects on a dark background, or dark objects on a bright background. The goal,
in many applications, is to separate the objects from the background, and to label them as
object or as background. If the image histogram contains well-separated modes associated
with object and with background, then thresholding can be the means for achieving
this separation. Practical examples of gray level images with well-separated bimodal
histograms are not hard to find. For example, an image of machine-printed type (like that
being currently read), or of handprinted characters, will have a very distinctive separation
between object and background. Examples abound in biomedical applications, where it
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FIGURE 4.4

Hypothetical histograms. (a) Well-separated modes; (b) poorly separated or indistinct modes.

is often possible to control the lighting of objects and background. Standard bright-field
microscope images of single or multiple cells (micrographs) typically contain bright
objects against a darker background. In many industry applications, it is also possible
to control the relative brightness of objects of interest and the backgrounds they are set
against. For example, machine parts that are being imaged (perhaps in an automated
inspection application) may be placed on a mechanical conveyor that has substantially
different reflectance properties than the objects.

Given an image with a bimodal histogram, a general strategy for thresholding is
to place the threshold T between the image modes, as depicted in Fig. 4.4(a). Many
“optimal” strategies have been suggested for deciding the exact placement of the thresh-
old between the peaks. Most of these are based on an assumed statistical model for the
histogram, and by posing the decision of labeling a given pixel as “object” versus “back-
ground” as a statistical inference problem. In the simplest version, two hypotheses are
posed:

H0: The pixel belongs to gray level Population 0

H1: The pixel belongs to gray level Population 1

where pixels from Populations 0 and 1 have conditional probability density functions
(pdfs) pf (a|H0) and pf (a|H1), respectively, under the two hypotheses. If it is also known
(or estimated) that H0 is true with probability p0 and that H1 is true with probability
p1(p0 �p1 �1), then the decision may be cast as a likelihood ratio test. If an observed
pixel has gray level f (n)�k, then the decision may be rendered according to

pf (k|H1)

pf (k|H0)

H1

>

<

H0

p0

p1
. (4.4)

The decision whether to assign logical ‘0’ or ‘1’ to a pixel can thus be regarded as applying
a simple statistical test to each pixel. In (4.4), the conditional pdfs may be taken as the
modes of a bimodal histogram. Algorithmically, this means that they must be fit to the
histogram using some criterion, such as least-squares. This is usually quite difficult, since
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it must be decided that there are indeed two separate modes, the locations (centers) and
widths of the modes must be estimated, and a model for the shape of the modes must
be assumed. Depending on the assumed shape of the modes (in a given application, the
shape might be predictable), specific probability models might be applied, e.g., the modes
might be taken to have the shape of Gaussian pdfs (Chapter 7). The prior probabilities
p0 and p1 are often easier to model, since in many applications the relative areas of
object and background can be estimated or given reasonable values based on empirical
observations.

A likelihood ratio test such as (4.4) will place the image threshold T somewhere
between the two modes of the image histogram. Unfortunately, any simple statistical
model of the image does not account for such important factors as object/background
continuity, visual appearance to a human observer, nonuniform illumination or surface
reflectance effects, and so on. Hence, with rare exceptions, a statistical approach such
as (4.4) will not produce as good a result as would a human decision-maker making a
manual threshold selection.

Placing the threshold T between two obvious modes of a histogram may yield accept-
able results, as depicted in Fig. 4.4(a). The problem is significantly complicated, however,
if the image contains multiple distinct modes or if the image is nonmodal or level. Mul-
timodal histograms can occur when the image contains multiple objects of different
average brightness on a uniform background. In such cases, simple thresholding will
exclude some objects (Fig. 4.5). Nonmodal or flat histograms usually imply more com-
plex images, containing significant gray level variation, detail, nonuniform lighting or
reflection, etc. (Fig. 4.5). Such images are often not amenable to a simple thresholding
process, especially if the goal is to achieve figure-ground separation. However, all of these
comments are, at best, rules of thumb. An image with a bimodal histogram might not
yield good results when thresholded at any level, while an image with a perfectly flat
histogram might yield an ideal result. It is a good mental exercise to consider when these
latter cases might occur.

Figures 4.6–4.8 show several images, their histograms, and the thresholded image
results. In Fig. 4.6, a good threshold level for the micrograph of the cellular specimens
was taken to be T �180. This falls between the two large modes of the histogram (there
are many smaller modes) and was deemed to be visually optimal by one user. In the

0 K � 1

Hf (k)

0 K � 1

Hf (k)
T ?

Gray level k Gray level k

T ?

(a) (b)

FIGURE 4.5

Hypothetical histograms. (a) Multimodal histogram, showing difficulty of threshold selection;
(b) Non-modal histogram, for which threshold selection is quite difficult or impossible.
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FIGURE 4.6

Binarization of “micrograph.” (a) Original; (b) histogram showing two threshold locations (180
and 200); (c) and (d) resulting binarized images.

binarized image, the individual cells are not perfectly separated from the background.
The reason for this is that the illuminated cells have nonuniform brightness profiles,
being much brighter toward the centers. Taking the threshold higher (T �200), however,
does not lead to improved results, since the bright background then begins to fall below
threshold.

Figure 4.7 depicts a negative (for better visualization) of a digitized mammogram.
Mammography is the key diagnostic tool for the detection of breast cancer, and in the
future, digital tools for mammographic imaging and analysis. The image again shows
two strong modes, with several smaller modes. The first threshold chosen (T �190)
was selected at the minimum point between the large modes. The resulting binary
image has the nice result of separating the region of the breast from the background.
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FIGURE 4.7

Binarization of “mammogram.” (a) Original negative mammogram; (b) histogram showing two
threshold locations (190 and 125); (c) and (d) resulting binarized images.

However, radiologists are often interested in the detailed structure of the breast and in
the brightest (darkest in the negative) areas which might indicate tumors or microcal-
cifications. Figure 4.7(d) shows the result of thresholding at the lower level of 125 (higher
level in the positive image), successfully isolating much of the interesting structure.

Generally the best binarization results via thresholding are obtained by direct human
operator intervention. Indeed, most general-purpose image processing environments
have thresholding routines that allow user interaction. However, even with a human
picking a visually “optimal” value of T , thresholding rarely gives “perfect” results. There
is nearly always some misclassification of object as background, and vice versa. For
example in the image “micrograph,” no value of T is able to successfully extract the
objects from the background; instead, most of the objects have “holes” in them, and there
is a sprinkling of black pixels in the background as well.

Because of these limitations of the thresholding process, it is usually necessary to
apply some kind of region correction algorithms to the binarized image. The goal of such
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algorithms is to correct the misclassification errors that occur. This requires identifying
misclassified background points as object points, and vice versa. These operations are
usually applied directly to the binary images, although it is possible to augment the
process by also incorporating information from the original grayscale image. Much of
the remainder of this chapter will be devoted to algorithms for region correction of
thresholded binary images.

4.3 REGION LABELING
A simple but powerful tool for identifying and labeling the various objects in a binary
image is a process called region labeling, blob coloring, or connected component identifica-
tion. It is useful since once they are individually labeled, the objects can be separately
manipulated, displayed, or modified. For example, the term “blob coloring” refers
to the possibility of displaying each object with a different identifying color, once
labeled.

Region labeling seeks to identify connected groups of pixels in a binary image f that all
have the same binary value. The simplest such algorithm accomplishes this by scanning
the entire image (left-to-right, top-to-bottom), searching for occurrences of pixels of
the same binary value and connected along the horizontal or vertical directions. The
algorithm can be made slightly more complex by also searching for diagonal connections,
but this is usually unnecessary. A record of connected pixel groups is maintained in a
separate label array r having the same dimensions as f , as the image is scanned. The
following algorithm steps explain the process, where the region labels used are positive
integers.

4.3.1 Region Labeling Algorithm
1. Given an N � M binary image f , initialize an associated N � M region label array:

r(n) � ‘0’ for all n. Also initialize a region number counter: k � 1.
Then, scanning the image from left-to-right and top-to-bottom, for every n do

the following:

2. If f (n) � ‘0’ then do nothing.

3. If f (n) � ‘1’and also f (n � (1,0)) � f (n � (0,1)) � ‘0’ (as depicted in Fig. 4.8(a)),
then set r(n) � ‘0’ and k � k �1. In this case, the left and upper neighbors of
f (n) do not belong to objects.

4. If f (n) � ‘1,’ f (n � (1,0)) � ‘1,’ and f (n � (0,1)) � ‘0’ (Fig. 4.8(b)), then set
r(n) � r(n � (1,0)). In this case, the upper neighbor f (n � (1,0)) belongs to the
same object as f (n).

5. If f (n) � ‘1,’ f (n � (1,0)) � ‘0,’ and f (n � (0,1)) � ‘1’ (Fig. 4.8(c)), then set
r(n) � r(n � (0,1)). In this case, the left neighbor f (n � (0,1)) belongs to the
same object as f (n).
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(a) (b) (c) (d)

FIGURE 4.8

Pixel neighbor relationships used in a region labeling algorithm. In each of (a)–(d), f (n) is the
lower right pixel.

6. If f (n) � ‘1’ and f (n � (1,0)) � f (n � (0,1)) � ‘1’ (Fig. 4.8(d)), then set
r(n) � r(n � (0,1)). If r(n � (0,1)) �� r(n � (1,0)), then record the labels
r(n � (0,1)) and r(n � (1,0)) as equivalent. In this case, both the left and upper
neighbors belong to the same object as f (n), although they may have been labeled
differently.

A simple application of region labeling is the measurement of object area. This can
be accomplished by defining a vector c with elements c(k) that are the pixel area (pixel
count) of region k.

4.3.2 Region Counting Algorithm
Initialize c�0. For every n do the following:

1. If f (n) � ‘0,’ then do nothing.

2. If f (n) � ‘1,’ then c[r(n)]� c[r(n)]�1.

Another simple but powerful application of region labeling is the removal of minor
regions or objects from a binary image. The way in which this is done depends on the
application. It may be desired that only a single object should remain (generally the
largest object), or it may be desired that any object with a pixel area less than some
minimum value should be deleted. A variation is that the minimum value is computed
as a percentage of the largest object in the image. The following algorithm depicts the
second possibility.

4.3.3 Minor Region Removal Algorithm
Assume a minimum allowable object size of S pixels. For every n do the following:

1. If f (n) � ‘0,’ then do nothing.

2. If f (n) � ‘1’ and c[r(n)]< S, then set g (n) � ‘0.’

Of course, all of the above algorithms can be operated in reverse polarity, by
interchanging ‘0’ for ‘1’ and ‘1’ for ‘0’ everywhere.

An important application of region labeling/region counting/minor region removal
is in the correction of thresholded binary images. Application of a binarizing threshold
to a gray level image inevitably produces an imperfect binary image, with such errors as
extraneous objects or holes or holes in objects. These can arise from noise, unexpected
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(a) (b)

FIGURE 4.9

Result of applying the region labeling/counting/removal algorithms to (a) the binarized image in
Fig. 4.6(c); (b) and then to the image in (b), but in polarity-reversed mode.

objects (such as dust on a lens), and general nonuniformities in the surface reflectances
and illuminations of the objects and background.

Figure 4.9 depicts the result of sequentially applying the region labeling/region coun-
ting/minor region removal algorithms to the binarized“micrograph” image in Fig. 4.6(c).
The series of algorithms was first applied to the image in Fig. 4.6(c) as above to remove
extraneous small black objects, using a size threshold of 500 pixels as shown in Fig. 4.9(a).
It was then applied again to this modified image, but in polarity reversed mode, to
remove the many object holes, this time using a threshold of 1000 pixels. The result
shown in Fig. 4.9(b) is a dramatic improvement over the original binarized result, given
that the goal was to achieve a clean separation of the objects in the image from the
background.

4.4 BINARY IMAGE MORPHOLOGY
We next turn to a much broader and more powerful class of binary image proce-
ssing operations that collectively fall under the name binary image morphology. These are
closely related to (in fact, are the same in a mathematical sense) the gray level morpho-
logical operations described in Chapter 13. As the name indicates, these operators modify
the shapes of the objects in an image.

4.4.1 Logical Operations
The morphological operators are defined in terms of simple logical operations on local
groups of pixels. The logical operators that are used are the simple NOT, AND, OR, and
MAJ (majority) operators. Given a binary variable x , NOT(x) is its logical complement.
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Given a set of binary variables x1, . . . ,xn , the operation AND(x1, . . . ,xn) returns value ‘1’
if and only if x1 � . . . � xn � ‘1’ and ‘0’ otherwise. The operation OR(x1, . . . ,xn) returns
value ‘0’ if and only if x1 � . . . � xn � ‘0’ and ‘1’ otherwise. Finally, if n is odd, the
operation MAJ(x1, . . . ,xn) returns value ‘1’ if and only if a majority of (x1, . . . ,xn) equal
‘1’ and ‘0’ otherwise.

We observe in passing the DeMorgan’s laws for binary arithmetic, specifically:

NOT[AND(x1, . . . ,xn)] � OR[NOT(x1), . . . ,NOT(xn)] (4.5)

NOT[OR(x1, . . . ,xn)] � AND[NOT(x1), . . . ,NOT(xn)], (4.6)

which characterizes the duality of the basic logical operators AND and OR under
complementation. However, note that

NOT[MAJ(x1, . . . ,xn)] � MAJ[NOT(x1), . . . ,NOT(xn)] (4.7)

hence MAJ is its own dual under complementation.

4.4.2 Windows
As mentioned, morphological operators change the shapes of objects using local logical
operations. Since they are local operators, a formal methodology must be defined for
making the operations occur on a local basis. The mechanism for doing this is the
window.

A window defines a geometric rule according to which gray levels are collected from
the vicinity of a given pixel coordinate. It is called a window since it is often visualized
as a moving collection of empty pixels that is passed over the image. A morphological
operation is (conceptually) defined by moving a window over the binary image to be
modified, in such a way that it is eventually centered over every image pixel, where
a local logical operation is performed. Usually this is done row-by-row, column-by-
column, although it can be accomplished at every pixel simultaneously if a massively
parallel-processing computer is used.

Usually a window is defined to have an approximate circular shape (a digital circle
cannot be exactly realized) since it is desired that the window, and hence, the mor-
phological operator, be rotation-invariant. This means that if an object in the image is
rotated through some angle, then the response of the morphological operator will be
unchanged other than also being rotated. While rotational symmetry cannot be exactly
obtained, symmetry across two axes can be obtained, guaranteeing that the response
be at least reflection-invariant. Window size also significantly effects the results, as will
be seen.

A formal definition of windowing is needed in order to define the various morpho-
logical operators. A window B is a set of 2P � 1 coordinate shifts bi �(ni ,mi) centered
around (0,0):

B� {b1, . . . ,b2P�1}� {(n1,m1), . . . ,(n2P�1,m2P�1)}.
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Some examples of common 1D (row and column) windows are

B � ROW[2P � 1]� {(0,m); m � �P , . . . ,P} (4.8)

B � COL[2P � 1]� {(n, 0); n � �P , . . . ,P} (4.9)

and some common 2D windows are

B � SQUARE[(2P �1)2]� {(n,m);n,m � �P , . . . ,P} (4.10)

B � CROSS[4P �1]� ROW(2P �1)∪COL(2P �1) (4.11)

with obvious shape-descriptive names. In each of (4.8)–(4.11), the quantity in brackets
is the number of coordinate shifts in the window, hence also the number of local gray
levels that will be collected by the window at each image coordinate. Note that the
windows (4.8)–(4.11) are each defined with an odd number 2P �1 coordinate shifts.
This is because the operators are symmetrical: pixels are collected in pairs from opposite
sides of the center pixel or (0, 0) coordinate shift, plus the (0, 0) coordinate shift is always
included. Examples of each of the windows (4.8)–(4.11) are shown in Fig. 4.10.

The example window shapes in (4.8)–(4.11) and in Fig. 4.10 are by no means the
only possibilities, but they are (by far) the most common implementations because of
the simple row-column indexing of the coordinate shifts.

The action of gray level collection by a moving window creates the windowed set.
Given a binary image f and a window B, the windowed set at image coordinate n is
given by

Bf (n) � {f (n � m); m ∈ B}, (4.12)

ROW(3)

COL(3)

ROW(5)

COL(5)

SQUARE(9) CROSS(5)

SQUARE(25) CROSS(9)

(a)

(b)

FIGURE 4.10

Examples of windows. The window is centered over the shaded pixel. (a) One-dimensional
windows ROW(2P �1) and COL(2P �1) for P �1,2; (b) Two-dimensional windows SQUARE
[(2P �1)2] and CROSS[4P �1] for P �1,2.
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which, conceptually, is the set of image pixels covered by B when it is centered at
coordinate n. Examples of windowed sets associated with some of the windows in
(4.8)–(4.11) and Fig. 4.10 are:

B�ROW(3) : Bf (n1,n2) � { f (n1,n2 � 1), f (n1,n2), f (n1,n2 �1)} (4.13)

B�COL(3) : Bf (n1,n2) � { f (n1 � 1,n2), f (n1,n2), f (n1 �1,n2)} (4.14)

B�SQUARE(9) : Bf (n1,n2) � { f (n1 � 1,n2 � 1), f (n1 � 1,n2),

f (n1 � 1,n2 �1), f (n1,n2 � 1), f (n1,n2),
(4.15)

f (n1,n2 �1), f (n1 �1,n2 � 1),

f (n1 � 1,n2), f (n1 �1,n2 �1)}
B�CROSS(5) : Bf (n1,n2) � { f (n1 � 1,n2), f (n1,n2 � 1),

f (n1,n2), f (n1,n2 �1), (4.16)

f (n1 �1,n2)}

where the elements of (4.13)–(4.16) have been arranged to show the geometry of the
windowed sets when centered over coordinate n � (n1,n2). Conceptually, the window
may be thought of as capturing a series of miniature images as it is passed over the
image, row-by-row, column-by-column.

One last note regarding windows involves the definition of the windowed set when
the window is centered near the boundary edge of the image. In this case, some of the
elements of the windowed set will be undefined, since the window will overlap “empty
space” beyond the image boundary. The simplest and most common approach is to use
pixel replication: set each undefined windowed set value equal to the gray level of the
nearest known pixel. This has the advantage of simplicity, and also the intuitive value
that the world just beyond the borders of the image probably does not change very much.
Figure 4.11 depicts the process of pixel replication.

4.4.3 Morphological Filters
Morphological filters are Boolean filters. Given an image f , a many-to-one binary or
Boolean function h, and a window B, the Boolean-filtered image g �h( f ) is given by

g (n) � h[Bf (n)] (4.17)

at every n over the image domain. Thus, at each n, the filter collects local pixels according
to a geometrical rule into a windowed set, performs a Boolean operation on them, and
returns the single Boolean result g (n).

The most common Boolean operations that are used are AND, OR, and MAJ. They
are used to create the following simple, yet powerful morphological filters. These filters act
on the objects in the image by shaping them: expanding or shrinking them, smoothing
them, and eliminating too-small features.
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FIGURE 4.11

Depiction of pixel replication for a window centered near the (top) image boundary.

The binary dilation filter is defined by

g (n) � OR[Bf (n)] (4.18)

and is denoted g � dilate( f , B). The binary erosion filter is defined by

g (n) � AND[Bf (n)] (4.19)

and is denoted g � erode( f , B). Finally, the binary majority filter is defined by

g (n) � MAJ[Bf (n)] (4.20)

and is denoted g �majority( f , B). Next we explain the response behavior of these
filters.

The dilate filter expands the size of the foreground, object, or ‘1’-valued regions
in the binary image f . Here the ‘1’-valued pixels are assumed to be black because of
the convention we have assumed, but this is not necessary. The process of dilation also
smoothes the boundaries of objects, removing gaps or bays of too-narrow width, and also
removing object holes of too-small size. Generally a hole or gap will be filled if the dilation
window cannot fit into it. These actions are depicted in Fig. 4.12, while Fig. 4.13 shows
the result of dilating an actual binary image. Note that dilation using B � SQUARE(9)
removed most of the small holes and gaps, while using B � SQUARE(25) removed nearly
all of them. It is also interesting to observe that dilation with the larger window nearly
completed a bridge between two of the large masses. Dilation with CROSS(9) highlights
an interesting effect: individual, isolated ‘1’-valued or BLACK pixels were dilated into
larger objects having the same shape as the window. This can also be seen with the results
using the SQUARE windows. This effect underlines the importance of using symmetric



84 CHAPTER 4 Basic Binary Image Processing

dilate

FIGURE 4.12

Illustration of dilation of a binary ‘1’-valued object. The smallest hole and gap were filled.

(a) (b)

(c) (d)

FIGURE 4.13

Dilation of a binary image. (a) Binarized image “cells.” Dilate with: (b) B � SQUARE(9);
(c) B � SQUARE(25); (d) B � CROSS(9).



4.4 Binary Image Morphology 85

windows, preferably with near rotational symmetry, since then smoother results are
obtained.

The erode filter shrinks the size of the foreground, object, or ‘1’-valued regions in
the binary image f . Alternately, it expands the size of the background or ‘0’-valued
regions. The process of erosion smoothes the boundaries of objects, but in a different way
than dilation: it removes peninsulas or fingers of too-narrow width, and also it removes
‘1’-valued objects of too-small size. Generally an isolated object will be eliminated if the
dilation window cannot fit into it. The effects of erode are depicted in Fig. 4.14.

Figure 4.15 shows the result of applying the erode filter to the binary image “cell.”
Erosion using B � SQUARE(9) removed many of the small objects and fingers, while
using B � SQUARE(25) removed most of them. As an example of intense smoothing,
B � SQUARE(81) (a 9 � 9 square window) was also applied. Erosion with CROSS(9)
again produced a good result, except at a few isolated points where isolated ‘0’-valued or
WHITE pixels were expanded into larger ‘+’-shaped objects.

An important property of the erode and dilate filters is the relationship that exists
between them. In fact, in reality they are the same operation, in the dual (complementary)
sense. Indeed, given a binary image f and an arbitrary window B, it is true that

dilate( f , B) � NOT{erode[NOT( f ), B]} (4.21)

erode( f , B) � NOT{dilate[NOT( f ), B]}. (4.22)

Equations (4.21) and (4.22) are a simple consequence of the DeMorgan’s laws (4.5) and
(4.6). A correct interpretation of this is that erosion of the ‘1’-valued or BLACK regions
of an image is the same as dilation of the ‘0’-valued or WHITE regions—and vice versa.

An important and common misconception must be mentioned. Erode and dilate
shrink and expand the sizes of ‘1’-valued objects in a binary image. However, they are not
inverse operations of one another. Dilating an eroded image (or eroding a dilated image)
very rarely yields the original image. In particular, dilation cannot recreate peninsulas,
fingers, or small objects that have been eliminated by erosion. Likewise, erosion cannot
unfill holes filled by dilation or recreate gaps or bays filled by dilation. Even without
these effects, erosion generally will not exactly recreate the same shapes that have been
modified by dilation, and vice versa.

Before discussing the third common Boolean filter, the majority, we will consider
further the idea of sequentially applying erode and dilate filters to an image. One reason

erode

FIGURE 4.14

Illustration of erosion of a binary ‘1’-valued object. The smallest objects and peninsula were
eliminated.
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(a) (b)

(c) (d)

FIGURE 4.15

Erosion of the binary image “cells.” Erode with: (a) B � SQUARE(9); (b) B � SQUARE(25);
(c) B � SQUARE(81); (d) B � CROSS(9).

for doing this is that the erode and dilate filters have the effect of changing the sizes
of objects, as well as smoothing them. For some objects this is desirable, e.g., when an
extraneous object is shrunk to the point of disappearing; however, often it is undesirable,
since it may be desired to further process or analyze the image. For example, it may be of
interest to label the objects and compute their sizes, as in Section 4.3 of this chapter.

Although erode and dilate are not inverse operations of one another, they are appro-
ximate inverses in the sense that if they are performed in sequence on the same image
with the same window B, then object and holes that are not eliminated will be returned
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to their approximate sizes. We thus define the size-preserving smoothing morphological
operators termed open filter and close filter as follows:

open( f , B) � dilate[erode( f , B), B] (4.23)

close( f , B) � erode[dilate( f , B), B]. (4.24)

Hence the opening (closing) of image f is the erosion (dilation) with window B followed
by dilation (erosion) with window B. The morphological filters open and close have the
same smoothing properties as erode and dilate, respectively, but they do not generally
effect the sizes of sufficiently large objects much (other than pixel loss from pruned holes,
gaps or bays, or pixel gain from eliminated peninsulas).

Figure 4.16 depicts the results of applying the open and close operations to the
binary image “cell,” using the windows B � SQUARE(25) and B � SQUARE(81). Large
windows were used to illustrate the powerful smoothing effect of these morphological
smoothers. As can be seen, the open filters did an excellent job of eliminating what might
be referred to as “black noise”—the extraneous ‘1’-valued objects and other features,
leaving smooth, connected, and appropriately-sized large objects. By comparison, the
close filters smoothed the image intensely as well, but without removing the undesirable
“black noise.” In this particular example, the result of open is probably preferable to that
of close, since the extraneous BLACK structures present more of a problem in the image.

It is important to understand that the open and close filters are unidirectional or biased
filters in the sense that they remove one type of “noise” (either extraneous WHITE or
BLACK features), but not both. Hence open and close are somewhat special-purpose
binary image smoothers that are used when too-small BLACK and WHITE objects
(respectively) are to be removed.

It is worth noting that the close and open filters are again in fact, the same filters, in
the dual sense. Given a binary image f and an arbitrary window B:

close( f , B) � NOT{open[NOT( f ), B]} (4.25)

open( f , B) � NOT{close[NOT( f ), B]}. (4.26)

In most binary smoothing applications, it is desired to create an unbiased smoothing of
the image. This can be accomplished by a further concatenation of filtering operations,
applying open and close operations in sequence on the same image with the same window
B. The resulting images will then be smoothed bidirectionally. We thus define the unbiased
smoothing morphological operators close-open filter and open-close filter, as follows:

close-open( f , B) � close[open( f , B), B] (4.27)

open-close( f , B) � open[close( f , B), B]. (4.28)

Hence the close-open (open-close) of image f is the open (close) of f with window B
followed by the close (open) of the result with window B. The morphological filters
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(a) (b)

(c) (d)

FIGURE 4.16

Open and close filtering of the binary image “cells.” Open with: (a) B � SQUARE(25);
(b) B � SQUARE(81); Close with: (c) B � SQUARE(25); (d) B � SQUARE(81).

close-open and open-close in (4.27) and (4.28) are general-purpose, bi-directional,
size-preserving smoothers. Of course, they may each be interpreted as a sequence of
four basic morphological operations (erosions and dilations).

The close-open and open-close filters are quite similar but are not mathematically
identical. Both remove too-small structures without affecting the size much. Both are
powerful shape smoothers. However, differences between the processing results can be
easily seen. These mainly manifest as a function of the first operation performed in the
processing sequence. One notable difference between close-open and open-close is that
close-open often links together neighboring holes (since erode is the first step), while
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(a) (b)

(c) (d)

FIGURE 4.17

Close-open and open-close filtering of the binary image “cells.” Close-open with: (a)
B � SQUARE(25); (b) B � SQUARE(81); Open-close with: (c) B � SQUARE(25); (d) B �

SQUARE(81).

open-close often links neighboring objects together (since dilate is the first step). The
differences are usually somewhat subtle, yet often visible upon close inspection.

Figure 4.17 shows the result of applying the close-open and the open-close filters to
the ongoing binary image example. As can be seen, the results (for B fixed) are very
similar, although the close-open filtered results are somewhat cleaner, as expected. There
are also only small differences between the results obtained using the medium and larger
windows because of the intense smoothing that is occurring. To fully appreciate the
power of these smoothers, it is worth comparing to the original binarized image “cells”
in Fig. 4.13(a).
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The reader may wonder whether further sequencing of the filtered responses will
produce different results. If the filters are properly alternated as in the construction
of the close-open and open-close filters, then the dual filters become increasingly similar.
However, the smoothing power can most easily be increased by simply taking the window
size to be larger.

Once again, the close-open and open-close filters are dual filters under compleme-
ntation.

We now return to the final binary smoothing filter, the majority filter. The majority
filter is also known as the binary median filter, since it may be regarded as a special case
(the binary case) of the gray level median filter (Chapter 12).

The majority filter has similar attributes as the close-open and open-close filters:
it removes too-small objects, holes, gaps, bays, and peninsulas (both ‘1’-valued and
‘0’-valued small features), and it also does not generally change the size of objects or
of background, as depicted in Fig. 4.18. It is less biased than any of the other morpho-
logical filters, since it does not have an initial erode or dilate operation to set the bias. In
fact, majority is its own dual under complementation, since

majority( f , B) � NOT{majority[NOT( f ), B]}. (4.29)

The majority filter is a powerful, unbiased shape smoother. However, for a given filter
size, it does not have the same degree of smoothing power as close-open or open-close.

Figure 4.19 shows the result of applying the majority or binary median filter to the
image “cell.” As can be seen, the results obtained are very smooth. Comparison with
the results of open-close and close-open are favorable, since the boundaries of the major
smoothed objects are much smoother in the case of the median filter, for both window
shapes used and for each size. The majority filter is quite commonly used for smoothing
noisy binary images of this type because of these nice properties. The more general gray
level median filter (Chapter 12) is also among the most used image processing filters.

4.4.4 Morphological Boundary Detection
The morphological filters are quite effective for smoothing binary images but they have
other important applications as well. One such application is boundary detection, which
is the binary case of the more general edge detectors studied in Chapters 19 and 20.

majority

FIGURE 4.18

Effect of majority filtering. The smallest holes, gaps, fingers, and extraneous objects are
eliminated.
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(a) (b)

(c) (d)

FIGURE 4.19

Majority or median filtering of the binary image “cells.” Majority with: (a) B � SQUARE(9); (b) B �

SQUARE(25); Majority with (c) B � SQUARE(81); (d) B � CROSS(9).

At first glance, boundary detection may seem trivial, since the boundary points can
be simply defined as the transitions from ‘1’ to ‘0’ (and vice versa). However, when there
is noise present, boundary detection becomes quite sensitive to small noise artifacts,
leading to many useless detected edges. Another approach which allows for smoothing
of the object boundaries involves the use of morphological operators.

The “difference” between a binary image and a dilated (or eroded) version of it is
one effective way of detecting the object boundaries. Usually it is best that the window B
that is used be small, so that the difference between image and dilation is not too large
(leading to thick, ambiguous detected edges). A simple and effective “difference” measure
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(a) (b)

FIGURE 4.20

Object boundary detection. Application of boundary(f , B) to (a) the image “cells”; (b) the majority -
filtered image in Fig. 4.19(c).

is the two-input exclusive-OR operator XOR. The XOR takes logical value ‘1’ only if its
two inputs are different. The boundary detector then becomes simply:

boundary( f , B) � XOR[ f ,dilate( f , B)]. (4.30)

The result of this operation as applied to the binary image “cells” is shown in Fig. 4.20(a)
using B�SQUARE(9). As can be seen, essentially all of the BLACK/WHITE transi-
tions are marked as boundary points. Often this is the desired result. However, in
other instances, it is desired to detect only the major object boundary points. This
can be accomplished by first smoothing the image with a close-open, open-close, or
majority filter. The result of this smoothed boundary detection process is shown in
Fig. 4.20(b). In this case, the result is much cleaner, as only the major boundary points are
discovered.

4.5 BINARY IMAGE REPRESENTATION AND COMPRESSION
In several later chapters, methods for compressing gray level images are studied in
detail. Compressed images are representations that require less storage than the nomi-
nal storage. This is generally accomplished by coding of the data based on measured
statistics, rearrangement of the data to exploit patterns and redundancies in the data,
and (in the case of lossy compression) quantization of information. The goal is that
the image, when decompressed, either looks very much like the original despite a loss
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of some information (lossy compression), or is not different from the original (lossless
compression).

Methods for lossless compression of images are discussed in Chapter 16. Those
methods can generally be adapted to both gray level and binary images. Here, we will look
at two methods for lossless binary image representation that exploit an assumed struc-
ture for the images. In both methods the image data is represented in a new format that
exploits the structure. The first method is run-length coding, which is so-called because
it seeks to exploit the redundancy of long run-lengths or runs of constant value ‘1’ or ‘0’
in the binary data. It is thus appropriate for the coding/compression of binary images
containing large areas of constant value ‘1’ and ‘0.’ The second method, chain coding, is
appropriate for binary images containing binary contours, such as the boundary images
shown in Fig. 4.20. Chain coding achieves compression by exploiting this assumption.
The chain code is also an information-rich, highly manipulable representation that can
be used for shape analysis.

4.5.1 Run-Length Coding
The number of bits required to naively store a N �M binary image is NM . This can be
significantly reduced if it is known that the binary image is smooth in the sense that it is
composed primarily of large areas of constant ‘1’ and/or ‘0’ value.

The basic method of run-length coding is quite simple. Assume that the binary image
f is to be stored or transmitted on a row-by-row basis. Then for each image row numbered
m, the following algorithm steps are used:

1. Store the first pixel value (‘0’ or ‘1’) in row m in a 1-bit buffer as a reference;

2. Set the run counter c �1;

3. For each pixel in the row:

– Examine the next pixel to the right;

– If it is the same as the current pixel, set c � c � 1;

– If different from the current pixel, store c in a buffer of length b and
set c �1;

– Continue until end of row is reached.

Thus, each run-length is stored using b bits. This requires that an overall buffer with
segments of lengths b be reserved to store the run-lengths. Run-length coding yields
excellent lossless compressions, provided that the image contains lots of constant runs.
Caution is necessary, since if the image contains only very short runs, then run-length
coding can actually increase the required storage.

Figure 4.21 depicts two hypothetical image rows. In each case, the first symbol stored
in a 1-bit buffer will be logical ‘1.’ The run-length code for Fig. 4.21(a) would be ‘1,’ 7, 5,
8, 3, 1. . .. with symbols after the ‘1’ stored using b bits. The first five runs in this sequence



94 CHAPTER 4 Basic Binary Image Processing

(a)

(b)

FIGURE 4.21

Example rows of a binary image, depicting (a) reasonable and (b) unreasonable scenarios for
run-length coding.

have average length 24/5�4.8, hence if b �4, then compression will occur. Of course,
the compression can be much higher, since there may be runs of lengths in the dozens or
hundreds, leading to very high compressions.

In Fig. 4.21(b), however, in this worst-case example, the storage actually increases
b-fold! Hence, care is needed when applying this method. The apparent rule, if it can
be applied a priori, is that the average run-length L of the image should satisfy L > b if
compression is to occur. In fact, the compression ratio will be approximately L/b.

Run-length coding is also used in other scenarios than binary image coding. It can
also be adapted to situations where there are run-lengths of any value. For example, in the
JPEG lossy image compression standard for gray level images (see Chapter 17), a form
of run-length coding is used to code runs of zero-valued frequency-domain coefficients.
This run-length coding is an important factor in the good compression performance of
JPEG. A more abstract form of run-length coding is also responsible for some of the
excellent compression performance of recently developed wavelet image compression
algorithms (Chapters 17 and 18).

4.5.2 Chain Coding
Chain coding is an efficient representation of binary images composed of contours. We
will refer to these as “contour images.” We assume that contour images are composed
only of single-pixel width, connected contours (straight or curved). These arise from
processes of edge detection or boundary detection, such as the morphological boundary
detection method just described above, or the results of some of the edge detectors
described in Chapters 19 and 20 when applied to grayscale images.

The basic idea of chain coding is to code contour directions instead of naïve bit-by-bit
binary image coding or even coordinate representations of the contours. Chain coding is
based on identifying and storing the directions from each pixel to its neighbor pixel on
each contour. Before defining this process, it is necessary to clarify the various types of
neighbors that are associated with a given pixel in a binary image. Figure 4.22 depicts two
neighborhood systems around a pixel (shaded). To the left are depicted the 4-neighbors
of the pixel, which are connected along the horizontal and vertical directions. The set
of 4-neighbors of a pixel located at coordinate n will be denoted N 4(n). To the right
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FIGURE 4.22

Depiction of the 4-neighbors and the 8-neighbors of a pixel (shaded).

Contour
Initial point

and directions

(a) (b)
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FIGURE 4.23

Representation of a binary contour by direction codes. (a) A connected contour can be repre-
sented exactly by an initial point and the subsequent directions; (b) only 8 direction codes are
required.

are the 8-neighbors of the shaded pixel in the center of the grouping. These include the
pixels connected along the diagonal directions. The set of 8-neighbors of a pixel located
at coordinate n will be denoted N 8(n).

If the initial coordinate n0 of an 8-connected contour is known, then the rest of the
contour can be represented without loss of information by the directions along which the
contour propagates, as depicted in Fig. 4.23(a). The initial coordinate can be an endpoint,
if the contour is open, or an arbitrary point, if the contour is closed. The contour can be
reconstructed from the directions, if the initial coordinate is known. Since there are only
eight directions that are possible, then a simple 8-neighbor direction code may be used.
The integers {0, . . . , 7} suffice for this, as shown in Fig. 4.23(b).

Of course, the direction codes 0,1,2,3,4,5,6,7 can be represented by their 3-bit binary
equivalents: 000,001,010,011,100,101,110,111. Hence, each point on the contour after
the initial point can be coded by three bits. The initial point of each contour requires
�log2(MN )� bits, where �·� denotes the ceiling function: �x�� the smallest integer that
is greater than or equal to x . For long contours, storage of the initial coordinates is
incidental.

Figure 4.24 shows an example of chain coding of a short contour. After the initial
coordinate n0 � (n0,m0) is stored, the chain code for the remainder of the con-
tour is: 1,0,1,1,1,1,3,3,3,4,4,5,4 in integer format, or 001,000,001,001,001,001,011,
011,011,100,100,101,100 in binary format.
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m0

5 Initial point
n0

FIGURE 4.24

Depiction of chain coding.

Chain coding is an efficient representation. For example, if the image dimensions are
N �M �512, then representing the contour by storing the coordinates of each contour
point requires six times as much storage as the chain code.
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5.1 INTRODUCTION
In this third chapter on basic methods, the basic mathematical and algorithmic tools for
the frequency domain analysis of digital images are explained. Also, 2D discrete-space
convolution is introduced. Convolution is the basis for linear filtering, which plays
a central role in many places in this Guide. An understanding of frequency domain
and linear filtering concepts is essential to be able to comprehend such significant
topics as image and video enhancement, restoration, compression, segmentation, and
wavelet-based methods. Exploring these ideas in a 2D setting has the advantage that
frequency domain concepts and transforms can be visualized as images, often enhancing
the accessibility of ideas.

5.2 DISCRETE-SPACE SINUSOIDS
Before defining any frequency-based transforms, first we shall explore the concept of
image frequency, or more generally, of 2D frequency. Many readers may have a basic
background in the frequency domain analysis of 1D signals and systems. The basic
theories in two dimensions are founded on the same principles. However, there are
some extensions. For example, a 2D frequency component, or sinusoidal function, is
characterized not only by its location (phase shift) and its frequency of oscillation but
also by its direction of oscillation.

Sinusoidal functions will play an essential role in all of the developments in this
chapter. A 2D discrete-space sinusoid is a function of the form

sin[2�(Um � Vn)]. (5.1)

Unlike a 1D sinusoid, the function (5.1) has two frequencies, U and V (with units of
cycles/pixel) which represent the frequency of oscillation along the vertical (m) and 97
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horizontal (n) spatial image dimensions. Generally, a 2D sinusoid oscillates (is non con-
stant) along every direction except for the direction orthogonal to the direction of fastest
oscillation. The frequency of this fastest oscillation is the radial frequency :

� �
√

U 2 � V 2, (5.2)

which has the same units as U and V , and the direction of this fastest oscillation is the
angle:

� � tan�1
(

V

U

)
(5.3)

with units of radians. Associated with (5.1) is the complex exponential function

exp [ j2�(Um � Vn)]� cos[2�(Um � Vn)]� jsin[2�(Um � Vn)], (5.4)

where j �
√

�1 is the pure imaginary number.
In general, sinusoidal functions can be defined on discrete integer grids, hence (5.1)

and (5.4) hold for all integers — < m, n <. However, sinusoidal functions of infinite
duration are not encountered in practice, although they are useful for image modeling
and in certain image decompositions that we will explore.

In practice, discrete-space images are confined to finite M � N sampling grids, and
we will also find it convenient to utilize finite-extent (M � N ) 2D discrete-space sinusoids
which are defined only for integers

0 � m � M � 1, 0 � n � N � 1, (5.5)

and undefined elsewhere. A sinusoidal function that is confined to the domain (5.5) can
be contained within an image matrix of dimension M � N , and is thus easily manipulated
digitally.

In the case of finite sinusoids defined on finite grids (5.5) it will often be convenient
to use the scaled frequencies

(u,v) � (MU ,NV ), (5.6)

which have the visually intuitive units of cycles/image. With this, the 2D sinusoid (5.1)
defined on finite grid (5.5) can be re-expressed as:

sin
[

2�
( u

M
m �

v

N
n
)]

(5.7)

with similar redefinition of the complex exponential (5.4).
Figure 5.1 depicts several discrete-space sinusoids of dimensions 256 � 256 displayed

as intensity images after linear mapping the grayscale of each to the range 0�255. Because
of the nonlinear response of the eye, the functions in Fig. 5.1 look somewhat more
like square waves than smoothly-varying sinusoids, particularly at higher frequencies.
However, if any of the images in Fig. 5.1 is sampled along a straight line of arbitrary
orientation, the result is an ideal (sampled) sinusoid.

A peculiarity of discrete-space (or discrete-time) sinusoids is that they have a maxi-
mum possible physical frequency at which they can oscillate. Although the frequency
variables (u,v) or (U ,V ) may be taken arbitrarily large, these large values do not
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(c) (d)

(b)(a)

FIGURE 5.1

Examples of finite 2D discrete-space sinusoidal functions. The scaled frequencies (5.6)
measured in cycles/image are (a) u � 1, v � 4; (b) u � 10, v � 5; (c) u � 15, v � 35; and (d)
u � 65, v � 35.

correspond to arbitrarily large physical oscillation frequencies. The ramifications of
this are quite deep and significant and relate to the restrictions placed on sampling
of continuous-space images (the Sampling Theorem) and the Nyquist frequency.

As an example of this principle we will study a 1D example of a discrete sinusoid.
Consider the finite cosine function cos

[
2�
( u

M m � v
N n
)]

� cos
(
2� u

16 m
)

which results
by taking M � N � 16, and v � 0. This is a cosine wave propagating in the m-direction
only (all columns are the same) at frequency u (cycles/image).

Figure 5.2 depicts the 1D cosine for various values of u. As can be seen, the physical
oscillation frequency increases until u � 8; for incrementally larger values of u, however,
the physical frequency diminishes. In fact, the function is period-16 in the frequency
index u:

cos
(

2�
u

16
m
)

� cos

[
2�

(u � 16k)

16
m

]
(5.8)
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u 5 2 u 5 14or
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FIGURE 5.2

Illustration of physical versus numerical frequencies of discrete-space sinusoids.

for all integers k. Indeed, the highest physical frequency of cos
(
2� u

M m
)

occurs at u �
M/2 � kM (for M even) for all integers k. At these periodically-placed frequencies,
(5.8) is equal to (�1)m ; the fastest discrete-index oscillation is the alternating signal.
This observation will be important next as we define the various frequency domain
image transforms.

5.3 DISCRETE-SPACE FOURIER TRANSFORM
The discrete-space Fourier transform (DSFT) of a given discrete-space image f is given by

F(U ,V ) �

�∑
m���

�∑
n���

f (m,n)e�j2�(Um�Vn) (5.9)

with inverse discrete-space Fourier transform (IDSFT):

f (m,n) �

0.5∫

�0.5

0.5∫

�0.5

F(U ,V )ej2�(Um�Vn)dU dV . (5.10)

When (5.9) and (5.10) hold, we will often make the notation f
�↔F and say that f ,F form

a DSFT pair. The units of the frequencies (U, V ) in (5.9) and (5.10) are cycles/pixel. It
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should be noted that, unlike continuous Fourier transforms, the DSFT is asymmetrical
in that the forward transform F is continuous in the frequency variables (U ,V ), while
the image or inverse transform is discrete. Thus, the DSFT is defined as a summation,
while the IDSFT is defined as an integral.

There are several ways of interpreting the DSFT (5.9) and (5.10). The most usual
mathematical interpretation of (5.10) is as a decomposition of f (m,n) into orthonormal
complex exponential basis functions ej2�(Um�Vn) that satisfy

0.5∫

�0.5

0.5∫

�0.5

ej2�(Um�Vn)e�j2�(Up�Vq)dU dV �

{
1 ; m � p and n � q

0 ; else
. (5.11)

Another (somewhat less precise) interpretation is the engineering concept of the trans-
formation, without loss, of space domain image information into frequency domain
image information. Representing the image information in the frequency domain has
significant conceptual and algorithmic advantages, as will be seen. A third interpre-
tation is a physical one, where the image is viewed as the result of a sophisticated
constructive-destructive interference wave pattern. By assigning each of the infinite num-
ber of complex exponential wave functions ej2�(Um�Vn) with the appropriate complex
weights F(U ,V ), the intricate structure of any discrete-space image can be recreated
exactly as an interference-sum.

The DSFT possesses a number of important properties that will be useful in defining

applications. In the following, assume that f
�↔F , g

�↔G, and h
�↔H .

5.3.1 Linearity of DSFT
Given images f ,g and arbitrary complex constants a,b, the following holds:

af � bg
�↔aF � bG. (5.12)

This property of linearity follows directly from (5.9), and can be extended to a weighted
sum of any countable number of images. It is fundamental to many of the properties of,
and operations involving, the DSFT.

5.3.2 Inversion of DSFT
The 2D function F(U ,V ) uniquely satisfies the relationships (5.9) and (5.10). That the
inversion holds can be easily shown by substituting (5.9) into (5.10), reversing the order
of sum and integral, and then applying (5.11).

5.3.3 Magnitude and Phase of DSFT
The DSFT F of an image f is generally complex-valued. As such it can be written in the
form

F(U ,V ) � R(U ,V ) � jI (U ,V ), (5.13)
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where

R(U ,V ) �

�∑
m���

�∑
n���

f (m,n)cos[2�(Um � Vn)] (5.14)

and

I (U ,V ) � �

�∑
m���

�∑
n���

f (m,n) sin[2�(Um � Vn)] (5.15)

are the real and imaginary parts of F(U ,V ), respectively.
The DSFT can also be written in the often-convenient phasor form

F(U ,V ) � |F(U ,V )|ej∠F(U ,V ), (5.16)

where the magnitude spectrum of image f is

|F(U ,V )|�
√

R2 (U , V ) � I 2 (U , V ) (5.17)

�
√

F (U , V )F ∗ (U , V ), (5.18)

where ‘∗’ denotes the complex conjugation. The phase spectrum of image f is

∠F(U ,V ) � tan�1
[

I (U , V )

R (U , V )

]
. (5.19)

5.3.4 Symmetry of DSFT
If the image f is real, which is usually the case, then the DSFT is conjugate symmetric :

F(U ,V ) � F ∗(�U ,�V ), (5.20)

which means that the DSFT is completely specified by its values over any half-plane.
Hence, if f is real, the DSFT is redundant. From (5.20), it follows that the magnitude
spectrum is even symmetric :

|F(U ,V )|� |F(�U ,�V )|, (5.21)

while the phase spectrum is odd symmetric :

∠F(U ,V ) � �∠F(�U ,�V ). (5.22)

5.3.5 Translation of DSFT
Multiplying (or modulating) the discrete-space image f (m,n) by a 2D complex expo-
nential wave function exp[j2�(U0m � V0n)] results in a translation of the DSFT:

f (m,n)exp[j2�(U0m � V0n)] �↔F(U–U0,V–V0). (5.23)

Likewise, translating the image f by amounts m0 and n0 produces a modulated DSFT:

f (m � m0,n � n0)
�↔F(U ,V )exp[�j2�(Um0 � Vn0)]. (5.24)
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5.3.6 Convolution and the DSFT
Given two images or 2D functions f and h, their 2D discrete-space linear convolution is
given by

g (m,n) � f (m,n) ∗ h(m,n) � h(m,n) ∗ f (m,n) �

�∑
p���

�∑
q���

f (p,q)h(m � p,n � q). (5.25)

The linear convolution expresses the result of passing an image signal f through a 2D
linear convolution system h (or vice versa). The commutativity of the convolution is
easily seen by making a substitution of variables in the double sum in (5.25).

If g , f , and h satisfy the spatial convolution relationship (5.25), then their DSFT’s
satisfy

G(U ,V ) � F(U ,V )H (U ,V ), (5.26)

hence convolution in the space domain corresponds directly to multiplication in the
spatial frequency domain. This important property is significant both conceptually, as
a simple and direct means for effecting the frequency content of an image, and com-
putationally, since the linear convolution has such a simple expression in the frequency
domain.

The 2D DSFT is the basic mathematical tool for analyzing the frequency domain
content of 2D discrete-space images. However, it has a major drawback for digital
image processing applications: the DSFT F(U ,V ) of a discrete-space image f (m,n)

is continuous in the frequency coordinates (U ,V ); there are an uncountably infinite
number of values to compute. As such, discrete (digital) processing or display in the
frequency domain is not possible using the DSFT unless it is modified in some way.
Fortunately, this is possible when the image f is of finite dimensions. In fact, by sampling
the DSFT in the frequency domain we are able to create a computable Fourier-domain
transform.

5.4 2D DISCRETE FOURIER TRANSFORM (DFT)
Now we restrict our attention to the practical case of discrete-space images that are
of finite extent. Hence assume that image f (m,n) can be expressed as a matrix f �
[f (m,n), 0 � m � M � 1,0 � n � N � 1]. As we will show, a finite-extent image matrix
f can be represented exactly as a finite weighted sum of 2D frequency components,
instead of an infinite number. This leads to computable and numerically manipulable
frequency domain representations. Before showing how this is done, we shall introduce
a special notation for the complex exponential that will simplify much of the ensuing
development.

We will use

WK � exp

[
�j

2�

K

]
(5.27)
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as a shorthand for the basic complex exponential, where K is the dimension along one
of the image axes (K �N or K �M ). The notation (5.27) makes it possible to index the
various elementary frequency components at arbitrary spatial and frequency coordinates
by simple exponentiation:

W um
M W vn

N � cos
[

2�
( u

M
m �

v

N
n
)]

� j sin
[

2�
( u

M
m �

v

N
n
)]

. (5.28)

This process of space and frequency indexing by exponentiation greatly simplifies the
manipulation of frequency components and the definition of the discrete Fourier trans-
form (DFT). Indeed, it is possible to develop frequency domain concepts and frequency
transforms without the use of complex numbers (and in fact some of these, such as the
discrete cosine transform, or DCT, are widely used, especially in image compression—
See Chapters 16 and 17 of this Guide).

For the purpose of analysis and basic theory, it is much simpler to use W um
M and W vn

N
to represent finite-extent (of dimensions M and N ) frequency components oscillating at
u (cycles/image) and v (cycles/image) in the m- and n-directions, respectively. Clearly,

∣∣W um
M W vn

N

∣∣� 1 (5.29)

and

∠W um
M W vn

N � �2�
( u

M
m �

v

N
n
)

. (5.30)

Observe that the minimum physical frequency of W um
M periodically occurs at the indices

u � kM for all integers k:

W kMm
M � 1 (5.31)

for any integer m; the minimum oscillation is no oscillation. If M is even, the maximum
physical frequency periodically occurs at the indices u � kM � M/2:

W
(kM�M/2)m
M � 1 · e�j�m � (�1)m , (5.32)

which is the discrete period-2 (alternating) function, the highest possible discrete
oscillation frequency.

The 2D DFT of the finite-extent (M � N ) image f is given by

F̃ (u,v) �

M�1∑
m�0

N �1∑
n�0

f (m,n)W um
M W vn

N (5.33)

for integer frequencies 0�u�M �1,0�v �N �1. Hence the DFT is also of finite-extent
M � N , and can be expressed as a (generally complex-valued) matrix F̃ � [F̃ (u,v) ; 0 �
u � M � 1,0 � v � N � 1]. It has a unique inverse discrete Fourier transform, or IDFT :

f (m,n) �
1

MN

M�1∑
u�0

N �1∑
v�0

F̃ (u,v)W �um
M W �vn

N (5.34)
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for 0 � m � M � 1,0 � n � N � 1. When (5.33) and (5.34) hold, it is often denoted

f
DFT↔ F̃ and we say that f, F̃ form a DFT pair.

A number of observations regarding the DFT and its relationship to the DSFT are
necessary. First, the DFT and IDFT are symmetrical, since both forward and inverse
transforms are defined as sums. In fact they have the same form, except for the polarity
of the exponents and a scaling factor. Secondly, both forward and inverse transforms are
finite sums; both F̃ and f can be represented uniquely as finite weighted sums of finite-
extent complex exponentials with integer-indexed frequencies. Thus, for example, any
256 � 256 digital image can be expressed as the weighted sum of 2562 � 65,536 complex
exponential (sinusoid) functions including those with real parts shown in Fig. 5.1. Note
that the frequencies (u,v) are scaled so that their units are in cycles/image, as in (5.6) and
Fig. 5.1.

Most importantly, the DFT has a direct relationship to the DSFT. In fact, the DFT of
an M � N image f is a uniformly sampled version of the DSFT of f:

F̃ (u,v) � F(U ,V )

∣∣∣∣U � u
M ,V � v

N
(5.35)

for integer frequency indices 0 � u � M � 1,0 � v � N � 1. Since f is of finite extent,
and contains MN elements, the DFT F̃ is conservative in that it also requires only MN
elements to contain complete information about f (to be exactly invertible). Also, since
F̃ is simply evenly-spaced samples of F , many of the properties of the DSFT translate
directly with little or no modification to the DFT.

5.4.1 Linearity and Invertibility of DFT
The DFT is linear in the sense of (5.12). It is uniquely invertible, as can be established by
substituting (5.33) into (5.34), reversing the order of summation, and using the fact that
the discrete complex exponentials are also orthogonal

M�1∑
u�0

N �1∑
v�0

(
W um

M W
�up
M

)(
W vn

N W
�vq
N

)
�

{
MN ; m � p and n � q

0 ; else
. (5.36)

The DFT matrix F̃ is generally complex, hence it has an associated magnitude
spectrum matrix, denoted

|F̃|� [|F̃ (u,v) | ; 0 � u � M � 1, 0 � v � N � 1] (5.37)

and phase spectrum matrix denoted

∠F̃ � [∠F̃ (u,v) ; 0 � u � M � 1, 0 � v � N � 1]. (5.38)

The elements of |F̃| and ∠F̃ are computed in the same way as the DSFT magnitude and
phase (5.16)–(5.19).
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5.4.2 Symmetry of DFT
Like the DSFT, if f is real-valued, then the DFT matrix is conjugate symmetric, but in the
matrix sense:

F̃ (u,v) � F̃ ∗ (M � u,N � v) (5.39)

for 0 � u � M � 1,0 � v � N � 1. This follows easily by substitution of the reversed and
translated frequency indices (M � u,N � v) into the forward DFT equation (5.33). An
apparent repercussion of (5.39) is that the DFT F̃ matrix is redundant, and hence can
represent the M � N image with only about MN/2 DFT coefficients. This mystery is
resolved by realizing that F̃ is complex-valued, hence it requires twice the storage for real
and imaginary components. If f is not real-valued, then (5.39) does not hold.

Of course, (5.39) implies symmetries of the magnitude and phase spectra:

|F̃ (u,v) |� |F̃ (M � u,N � v) | (5.40)

and

∠F̃ (u,v) � �∠F̃ (M � u,N � v) (5.41)

for 0 � u � M � 1,0 � v � N � 1.

5.4.3 Periodicity of DFT
Another property of the DSFT that carries over to the DFT is frequency periodicity. Recall
that the DSFT F(U ,V ) has unit period in U and V . The DFT matrix F̃ was defined to be
of finite-extent M � N . However, the forward DFT equation (5.33) admits the possibility
of evaluating F̃ (u,v) outside of the range 0 � u � M � 1,0 � v � N � 1. It turns out that
F̃ (u,v) is period-M and period-N along the u and v dimensions, respectively. For any
integers k, l :

F̃ (u � kM ,v � lN ) � F̃ (u,v) (5.42)

for every 0 � u � M � 1,0 � v � N � 1. This follows easily by substitution of the peri-
odically extended frequency indices (u � kM ,v � lN ) into the forward DFT equation
(5.33). The interpretation (5.42) of the DFT is called the periodic extension of the DFT.
It is defined for all integer frequencies u,v .

Although many properties of the DFT are the same, or similar to those of the DSFT,
certain important properties are different. These effects arise from sampling the DSFT to
create the DFT.

5.4.4 Image Periodicity Implied by DFT
A seemingly innocuous, yet extremely important consequence of sampling the DSFT is
that the resulting DFT equations imply that the image f is itself periodic. In fact, the IDFT
equation (5.34) implies that for any integers k, l :

f (m � kM ,n � lN ) � f (m,n) (5.43)
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for every 0 � m � M � 1,0 � n � N � 1. This follows easily by substitution of the peri-
odically extended space indices (m � kM ,n � lN ) into the inverse DFT equation (5.34).

Clearly, finite-extent digital images arise from imaging the real world through finite
field of view (FOV) devices, such as cameras, and outside that FOV, the world does not
repeat itself periodically, ad infinitum. The implied periodicity of f is purely a synthetic
effect that derives from sampling the DSFT. Nevertheless, it is of paramount importance,
since any algorithm that is developed, and that uses the DFT, will operate as though
the DFT-transformed image were spatially periodic in the sense (5.43). One important
property and application of the DFT that is effected by this spatial periodicity is the
frequency-domain convolution property.

5.4.5 Cyclic Convolution Property of the DFT
One of the most significant properties of the DSFT is the linear convolution property
(5.25) and (5.26), which says that space domain convolution corresponds to frequency
domain multiplication:

f ∗h �↔FH . (5.44)

This useful property makes it possible to analyze and design linear convolution-based sys-
tems in the frequency domain. Unfortunately, property (5.44) does not hold for the DFT;
a product of DFT’s does not correspond (inverse transform) to the linear convolution
of the original DFT-transformed functions or images. However, it does correspond to
another type of convolution, variously known as cyclic convolution, circular convolution,
or wraparound convolution.

We will demonstrate the form of the cyclic convolution by deriving it. Consider the

two M � N image functions f
DFT↔ F̃ and h

DFT↔ H̃. Define the pointwise matrix product1

G̃ � F̃⊗ H̃ (5.45)

according to

G̃(u,v) � F̃(u,v)H̃ (u,v) (5.46)

for 0 � u � M � 1,0 � v � N � 1. Thus we are interested in the form of g. For each
0 � m � M � 1,0 � n � N � 1, we have

g (m,n) �
1

MN

M�1∑
u�0

N �1∑
v�0

G̃(u,v)W �um
M W �vn

N

�
1

MN

M�1∑
u�0

N �1∑
v�0

F̃(u,v)H̃ (u,v)W �um
M W �vn

N

1As opposed to the standard matrix product.
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�
1

MN

M�1∑
u�0

N �1∑
v�0

⎧⎨
⎩

M�1∑
p�0

N �1∑
q�0

f
(
p, q

)
W

up
M W

vq
N

⎫⎬
⎭

�

⎧⎨
⎩

M�1∑
r�0

N �1∑
s�0

h (r , s)W ur
M W vs

N

⎫⎬
⎭W�um

M W �vn
N (5.47)

by substitution of the definitions of F̃(u,v) and H̃ (u,v). Rearranging the order of the
summations to collect all of the complex exponentials inside the innermost summation
reveals that

g (m,n) �
1

MN

M�1∑
p�0

N �1∑
q�0

f
(
p, q

)M�1∑
r�0

N �1∑
s�0

h (r , s)
M�1∑
u�0

N �1∑
v�0

W
u(p�r�m)
M W

v(q�s�n)
N . (5.48)

Now, from (5.36), the innermost summation

M�1∑
u�0

N �1∑
v�0

W
u(p�r�m)
M W

v(q�s�n)
N �

{
MN ; r � m � p and s � n � q

0; else
(5.49)

hence

g (m,n) �

M�1∑
p�0

N �1∑
q�0

f
(
p, q

)
h
[(

m � p
)

M ,
(
n � q

)
N

]
(5.50)

� f (m,n) � h(m,n) � h(m,n) � f (m,n), (5.51)

where (x)N � x mod N and the symbol ‘�’ denotes the 2D cyclic convolution.2

The final step of obtaining (5.50) from (5.49) follows since the argument of the
shifted and twice-reversed (along each axis) function h(m � p,n � q) finds no mean-
ing whenever (m � p) /∈ {0, . . . ,M � 1} or (n � q) /∈ {0, . . . ,N � 1}, since h is undefined
outside of those coordinates. However, because the DFT was used to compute g (m,n),
then the periodic extension of h(m � p,n � q) is implied, which can be expressed as
h
[(

m � p
)

M ,
(
n � q

)
N

]
. Hence (5.50) follows. That ‘�’ is commutative and easily estab-

lished by a substitution of variables in (5.50). It can also be seen that cyclic convolution
is a form of linear convolution, but with one (either, but not both) of the two functions
being periodically extended. Hence

f (m,n) � h(m,n) � f (m,n) ∗ h[(m)M ,(n)N ]� f [(m)M ,(n)N ] ∗ h(m,n). (5.52)

This cyclic convolution property of the DFT is unfortunate, since in the majority of
applications it is not desired to compute the cyclic convolution of two image functions.
Instead, what is frequently desired is the linear convolution of two functions, as in the
case of linear filtering. In both linear and cyclic convolution, the two functions are super-
imposed, with one function reversed along both axes and shifted to the point at which

2 Modular arithmetic is remaindering. Hence (x)N is the integer remainder of (x/N ).
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the convolution is being computed. The product of the functions is computed at every
point of overlap, with the sum of products being the convolution. In the case of the cyclic
convolution, one (not both) of the functions is periodically extended, hence the overlap
is much larger and wraps around the image boundaries. This produces a significant error
with respect to the correct linear convolution result. This error is called spatial aliasing,
since the wraparound error contributes false information to the convolution sum.

Figure 5.3 depicts the linear and cyclic convolutions of two hypothetical M � N
images f and h at a point (m0,n0). From the figure, it can be seen that the wraparound

Image f Image h

(m0, n0)

(m0, n0)

(m0, n0)

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(a) 

(b) 

(c)

FIGURE 5.3

Convolution of two images. (a) Images f and h; (b) linear convolution result at (m0,n0) is computed
as the sum of products where f and h overlap; (c) cyclic convolution result at (m0,n0) is computed
as the sum of products where f and the periodically extended h overlap.
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error can overwhelm the linear convolution contribution. Note in Fig. 5.3(b) that
although the linear convolution sum (5.25) extends over the indices 0 � m � M � 1
and 0 � n � N � 1, the overlap is restricted to the indices.

5.4.6 Linear Convolution Using the DFT
Fortunately, it turns out that it is possible to compute the linear convolution of two
arbitrary finite-extent 2D discrete-space functions or images using the DFT. The process
requires modifying the functions to be convolved prior to taking the product of their
DFT’s. The modification acts to cancel the effects of spatial aliasing.

Suppose more generally that f and h are two arbitrary finite-extent images of
dimensions M � N and P � Q, respectively. We are interested in computing the lin-
ear convolution g � f ∗h using the DFT. We assume the general case where the images
f ,h do not have the same dimensions, since in most applications an image is convolved
with a filter function of different (usually much smaller) extent.

Clearly,

g (m,n) � f (m,n)∗h(m,n) �

M�1∑
p�0

N �1∑
q�0

f (p,q)h(m � p,n � q). (5.53)

Inverting the pointwise products of the DFT’s F̃⊗ H̃ will not lead to (5.53), since
wraparound error will occur. To cancel the wraparound error, the functions f and h
are modified by increasing their size by zero-padding them. Zero-padding means that

the arrays f and h are expanded into larger arrays, denoted f̂ and ĥ, by filling the empty

spaces with zeroes. To compute the linear convolution, the pointwise product ˜̂G = ˜̂F⊗ ˜̂H
of the DFTs of the zero-padded functions f̂ and ĥ is computed. The inverse DFT ĝ of ˜̂G
then contains the correct linear convolution result.

The question remains as to how many zeroes are used to pad the functions f and
h. The answer to this lies in understanding how zero-padding works and how large the
linear convolution result should be. Zero-padding acts to cancel the spatial aliasing error
(wraparound) of the DFT by supplying zeroes where the wraparound products occur.
Hence the wraparound products are all zero and contribute nothing to the convolution
sum. This leaves only the linear convolution contribution to the result. To understand

how many zeroes are needed, it must be realized that the resulting product DFT ˜̂G
corresponds to a periodic function ĝ. If the horizontal/vertical periods are too small
(not enough zero-padding), the periodic replicas will overlap (spatial aliasing). If the
periods are just large enough, then the periodic replicas will be contiguous instead of
overlapping, hence spatial aliasing will be canceled. Padding with more zeroes than this
results in excess computation. Figure 5.4 depicts the successful result of zero-padding to
eliminate wraparound error.

The correct period lengths are equal to the lengths of the correct linear convolution
result. The linear convolution result of two arbitrary M � N and P � Q image functions

will generally be (M � P � 1) � (N � Q � 1), hence we would like the DFT ˜̂G to have
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0 0

(a) 

(b) 

Zero-padded
image f̂ ˆ

Zero-padded
image h

(m0, n0)

FIGURE 5.4

Linear convolution of the same two images as Fig. 5.2 by zero-padding and cyclic convolution
(via the DFT). (a) Zero-padded images f̂ and ĥ; (b) cyclic convolution at (m0, n0) computed as
the sum of products where f̂ and the periodically extended ĥ overlap. These products are zero
except over the range 0 � p � m0 and 0 � q � n0.

these dimensions. Therefore, the M � N function f and the P � Q function h must
both be zero-padded to size (M � P � 1) � (N � Q � 1). This yields the correct linear
convolution result:

ĝ � f̂ � ĥ � f ∗h. (5.54)

In most cases, linear convolution is performed between an image and a filter function
much smaller than the image: M >> P and N >> Q. In such cases the result is not much
larger than the image, and often only the M � N portion indexed 0 � m � M � 1,0 �
n � N � 1 is retained. The reason behind this is, firstly, it may be desirable to retain
images of size MN only, and secondly, the linear convolution result beyond the borders
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of the original image may be of little interest, since the original image was zero there
anyway.

5.4.7 Computation of the DFT
Inspection of the DFT relation (5.33) reveals that computation of each of the MN DFT
coefficients requires on the order of MN complex multiplies/additions. Hence, on the
order of M 2N 2 complex, multiplies and additions are needed to compute the overall DFT
of an M � N image f. For example, if M �N �512, then on the order of 236 � 6.9 � 1010

complex multiplies/additions are needed, which is a very large number. Of course, these
numbers assume a naïve implementation without any optimization. Fortunately, fast
algorithms for DFT computation, collectively referred to as fast fourier transform (FFT)
algorithms, have been intensively studied for many years. We will not delve into the
design of these, since it goes beyond what we want to accomplish in this Guide and also
since they are available in any image processing programming library or development
environment and most math library programs.

The FFT offers a computational complexity of order not exceeding MN log2(MN ),
which represents a considerable speedup. For example, if M � N � 512, then the com-
plexity is on the order of 9 � 219 � 4.7 � 106. This represents a very common speedup
of more than 14,500:1 !

Analysis of the complexity of cyclic convolution is similar. If two images of the same
size M � N are convolved, then again, the naïve complexity is on the order of M 2N 2

complex multiplies and additions. If the DFT of each image is computed, the resulting
DFTs pointwise multiplied, and the inverse DFT of this product calculated, then the
overall complexity is on the order of MN log2(2M 3N 3). For the common case M �
N � 512, the speedup still exceeds 4700:1.

If linear convolution is computed via the DFT, the computation is increased somewhat
since the images are increased in size by zero-padding. Hence the speedup of DFT-based
linear convolution is somewhat reduced (although in a fixed hardware realization, the
known existence of these zeroes can be used to effect a speedup). However, if the functions
being linearly convolved are both not small, then the DFT approach will always be faster.
If one of the functions is very small, say covering fewer than 32 samples (such as a small
linear filter template), then it is possible that direct space domain computation of the
linear convolution may be faster than DFT-based computation. However, there is no strict
rule of thumb to determine this lower cutoff size, since it depends on the filter shape, the
algorithms used to compute DFTs and convolutions, any special-purpose hardware, and
so on.

5.4.8 Displaying the DFT
It is often of interest to visualize the DFT of an image. This is possible since the DFT is a
sampled function of finite (periodic) extent. Displaying one period of the DFT of image
f reveals a picture of the frequency content of the image. Since the DFT is complex, one
can display either the magnitude spectrum |F̃| or the phase spectrum ∠ F̃ as a single 2D
intensity image.
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However, the phase spectrum ∠F̃ is usually not visually revealing when displayed.
Generally it appears quite random, and so usually the magnitude spectrum |F̃| only is
absorbed visually. This is not intended to imply that image phase information is not
important; in fact, it is exquisitely important, since it determines the relative shifts of
the component complex exponential functions that make up the DFT decomposition.
Modifying or ignoring image phase will destroy the delicate constructive-destructive
interference pattern of the sinusoids that make up the image.

As briefly noted in Chapter 3, displays of the Fourier transform magnitude will tend to
be visually dominated by the low-frequency and zero-frequency coefficients, often to such
an extent that the DFT magnitude appears as a single spot. This is highly undesirable,
since most of the interesting information usually occurs at frequencies away from the
lowest frequencies. An effective way to bring out the higher frequency coefficients for
visual display is via a point logarithmic operation: instead of displaying |F̃|, display

log2[1 � |F̃(u,v)|] (5.55)

for 0 � u � M � 1,0 � v � N � 1. This has the effect of compressing all of the DFT
magnitudes, but larger magnitudes much more so. Of course, since all of the logarithmic
magnitudes will be quite small, a full-scale histogram stretch should then be applied to
fill the grayscale range.

Another consideration when displaying the DFT of a discrete-space image is illus-
trated in Fig. 5.5. In the DFT formulation, a single M � N period of the DFT is sufficient
to represent the image information, and also for display. However, the DFT matrix
is even symmetric across both diagonals. More importantly, the center of symmetry
occurs in the image center, where the high-frequency coefficients are clustered near
(u,v) � (M/2,N/2). This is contrary to conventional intuition, since in most engineer-
ing applications Fourier transform magnitudes are displayed with zero and low-frequency
coefficients at the center. This is particularly true of 1D continuous Fourier transform
magnitudes, which are plotted as graphs with the zero frequency at the origin. This is also
visually convenient, since the dominant lower frequency coefficients then are clustered
together at the center, instead of being scattered about the display.

v

u

(0,  0)

high

(0, N21)

(M21,  0) (M21, N21)

low low

lowlow

FIGURE 5.5

Distribution of high- and low-frequency DFT coefficients.
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A natural way of remedying this is to instead display the shifted DFT magnitude

|F̃(u � M/2,v � N/2)| (5.56)

for 0 � u � M � 1,0 � v � N � 1. This can be accomplished in a simple way by taking
the DFT of

(�1)m�nf (m,n)
DFT↔ F̃(u � M/2,v � N/2). (5.57)

Relation (5.57) follows since (�1)m�n � ej�(m�n), hence from (5.23) the DSFT is shifted
by amount ½ cycles/pixel along both dimensions; since the DFT uses the scaled frequen-
cies (5.6), the DFT is shifted by M/2 and N/2 cycles/image in the u- and v- directions,
respectively.

Figure 5.6 illustrates the display of the DFT of the “fingerprint” image, which is
Fig. 1.8 of Chapter 1. As can be seen, the DFT phase is visually unrevealing, while

(a)

(c) (d)

(b)

FIGURE 5.6

Display of DFT of image “fingerprint” from Chapter 1 (a) DFT magnitude (logarithmically com-
pressed and histogram stretched); (b) DFT phase; (c) centered DFT (logarithmically compressed
and histogram stretched); (d) centered DFT (without logarithmic compression).
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the DFT magnitude is most visually revealing when it is centered and logarithmically
compressed.

5.5 UNDERSTANDING IMAGE FREQUENCIES AND THE DFT
It is sometimes easy to lose track of the meaning of the DFT and of the frequency content
of an image in all of the (necessary!) mathematics. When using the DFT, it is important
to remember that the DFT is a detailed map of the frequency content of the image, which
can be visually digested as well as digitally processed. It is a useful exercise to examine
the DFT of images, particularly the DFT magnitudes, since it reveals much about the
distribution and meaning of image frequencies. It is also useful to consider what happens
when the image frequencies are modified in certain simple ways, since this both reveals
further insights into spatial frequencies, and it also moves toward understanding how
image frequencies can be systematically modified to produce useful results.

In the following we will present and discuss a number of interesting digital images
along with their DFT magnitudes represented as intensity images. When examining these,
recall that bright regions in the DFT magnitude “image” correspond to frequencies that
have large magnitudes in the real image. Also, in all cases, the DFT magnitudes have been
logarithmically compressed and centered via (5.55) and (5.57), respectively, for improved
visual interpretation.

Most engineers and scientists are introduced to Fourier-domain concepts in a 1D
setting. One-dimensional signal frequencies have a single attribute, that of being either
“high” or “low” frequency. Two-dimensional (and higher dimensional) signal frequen-
cies have richer descriptions characterized by both magnitude and direction,3 which
lend themselves well to visualization. We will seek intuition into these attributes as
we separately consider the granularity of image frequencies, corresponding to radial
frequency (5.2), and the orientation of image frequencies, corresponding to frequency
angle (5.3).

5.5.1 Frequency Granularity
The granularity of an image frequency refers to its radial frequency. “Granularity”
describes the appearance of an image that is strongly characterized by the radial fre-
quency portrait of the DFT. An abundance of large coefficients near the DFT origin
corresponds to the existence of large, smooth, image components, often of smooth image
surfaces or background. Note that nearly every image will have a significant peak at the
DFT origin (unless it is very dark), since from (5.33) it is the summed intensity of the
image (integrated optical density):

F̃ (0, 0) �

M�1∑
m�0

N �1∑
n�0

f (m,n). (5.58)

3Strictly speaking, 1D frequencies can be positive- or negative-going. This polarity may be regarded as a
directional attribute, although without much meaning for real-valued 1D signals.
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The image “fingerprint” (Fig. 1.8 of Chapter 1) with DFT magnitude shown in Fig. 5.6
(c) is an excellent example of image granularity. The image contains relatively little
low frequency or very high frequency energy, but does contain an abundance of mid-
frequency energy as can be seen in the symmetrically placed half arcs above and below the
frequency origin. The “fingerprint” image is a good example of an image that is primarily
bandpass.

Figure 5.7 depicts image “peppers” and its DFT magnitude. The image contains pri-
marily smooth intensity surfaces separated by abrupt intensity changes. The smooth
surfaces contribute to the heavy distribution of low-frequency DFT coefficients, while
the intensity transitions (“edges”) contribute a noticeable amount of mid-to-higher
frequencies over a broad range of orientations.

Finally, in Fig. 5.8, “cane” depicts an image of a repetitive weave pattern that exhibits
a number of repetitive peaks in the DFT magnitude image. These are harmonics that
naturally appear in signals (such as music signals) or images that contain periodic or
nearly-periodic structures.

As an experiment toward understanding frequency content, suppose that we define
several zero-one image frequency masks, as depicted in Fig. 5.9.

Masking (multiplying) the DFT F̃ of an image f with each of these will produce,
following an inverse DFT, a resulting image containing only low, mid, or high frequencies.
In the following,we show examples of this operation. The astute reader may have observed
that the zero-one frequency masks,which are defined in the DFT domain,may be regarded
as DFTs with IDFTs defined in the space domain. Since we are taking the products of
functions in the DFT domain, it has the interpretation of cyclic convolution (5.46)–
(5.51) in the space domain. Therefore, the following examples should not be thought of
as lowpass, bandpass, or highpass linear filtering operations in the proper sense. Instead,
these are instructive examples where image frequencies are being directly removed. The
approach is not a substitute for a proper linear filtering of the image using a space
domain filter that has been DFT-transformed with proper zero-padding. In particular, the

FIGURE 5.7

Image “peppers” (left) and DFT magnitude (right).
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FIGURE 5.8

Image “cane” (left) and DFT magnitude (right).

Low-frequency
mask

Mid-frequency
mask

High-frequency
mask

FIGURE 5.9

Image radial frequency masks. Black pixels take value ‘1,’ white pixels take value ‘0.’

naïve demonstration here does dictate how the frequencies between the DFT frequencies
(frequency samples) are effected, as a properly designed linear filter does.

In all of the examples, the image DFT was computed, multiplied by a zero-one fre-
quency mask, and inverse DFT-ed. Finally, a full-scale histogram stretch was applied to
map the result to the gray level range (0, 255), since otherwise, the resulting image is not
guaranteed to be positive.

In the first example, shown in Fig. 5.10, the image “fingerprint” is shown following
treatment with the low-frequency mask and the mid-frequency mask. The low-frequency
result looks much more blurred, and there is an apparent loss of information. However,
the mid-frequency result seems to enhance and isolate much of the interesting ridge
information about the fingerprint.

In the second example (Fig. 5.10), the image “peppers” was treated with the mid-
frequency DFT mask and the high-frequency DFT mask. The mid-frequency image
is visually quite interesting since it is apparent that the sharp intensity changes were
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FIGURE 5.10

Image “fingerprint” processed with the (left) low-frequency DFT mask and the (right) mid-
frequency DFT mask.

FIGURE 5.11

Image “peppers” processed with the (left) mid-frequency DFT mask and the (right) high-
frequency DFT mask.

significantly enhanced. A similar effect was produced with the higher frequency mask,
but with greater emphasis on sharp details.

5.5.2 Frequency Orientation
The orientation of an image frequency refers to its angle. The term “orientation” applied
to an image or image component describes those aspects of the image that contribute to
an appearance that is strongly characterized by the frequency orientation portrait of the
DFT. If the DFT is brighter along a specific orientation, then the image contains highly
oriented components along that direction.

The image“fingerprint”(with DFT magnitude in Fig. 5.6(c)) is also an excellent exam-
ple of image orientation. The DFT contains significant mid-frequency energy between
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the approximate orientations 45◦� 135◦ from the horizontal axis. This corresponds
perfectly to the orientations of the ridge patterns in the fingerprint image.

Figure 5.12 shows the image“planks,”which contains a strong directional component.
This manifests as a very strong extended peak extending from lower left to upper right
in the DFT magnitude. Figure 5.13 (“escher”) exhibits several such extended peaks,
corresponding to strongly oriented structures in the horizontal and slightly off-diagonal
directions.

Again, an instructive experiment can be developed by defining zero-one image fre-
quency masks, this time tuned to different orientation frequency bands instead of radial
frequency bands. Several such oriented frequency masks are depicted in Fig. 5.14.

As a first example, the DFT of the image “planks” was modified by two orientation
masks. In Fig. 5.15 (left), an orientation mask that allows the frequencies in the range 40◦
to 50◦ only (as well as the symmetrically placed frequencies 220◦ to 230◦) was applied.
This was designed to capture the bright ridge of DFT coefficients easily seen in Fig. 5.12.
As can be seen, the strong oriented information describing the cracks in the planks and
some of the oriented grain is all that remains. Possibly, this information could be used by
some automated process. Then, in Fig. 5.15 (right), the frequencies in the much larger
ranges 50◦ to 220◦ (and �130◦ to 40◦) were admitted. These are the complementary
frequencies to the first range chosen, and they contain all the other information other
than the strongly oriented component. As can be seen, this residual image contains little
oriented structure.

As another example, the DFT of the image “escher” was also modified by two ori-
entation masks. In Fig. 5.16 (left), an orientation mask that allows the frequencies in
the range �25◦ to 25◦ (and 155◦ to 205◦) only was applied. This captured the strong
horizontal frequency ridge in the image, corresponding primarily to the strong vertical
(building) structures. Then, in Fig. 5.16 (right), frequencies in the vertically-oriented
ranges 45◦ to 135◦ (and 225◦ to 315◦) were admitted. This time completely different

FIGURE 5.12

Image “planks” (left) and DFT magnitude (right).
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FIGURE 5.13

Image “escher” (left) and DFT magnitude (right).

FIGURE 5.14

Examples of image frequency orientation masks.

FIGURE 5.15

Image “planks” processed with oriented DFT masks that allow frequencies in the range (mea-
sured from the horizontal axis): (left) 40◦ to 50◦ (and 220◦ to 230◦), and (right) 50◦ to 220◦ (and
�130◦ to 40◦).
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FIGURE 5.16

Image “escher” processed with oriented DFT masks that allow frequencies in the range (mea-
sured from the horizontal axis): (left) �25◦ to 25◦ (and 155◦ to 205◦) and (right) 45◦ to 135◦ (and
225◦ to 315◦).

structures were highlighted, including the diagonal waterways, the background steps,
and the paddlewheel.

5.6 RELATED TOPICS IN THIS GUIDE
The Fourier transform is one of the most basic tools for image processing, or for that
matter, the processing of any kind of signal. It appears throughout this Guide in various
contexts, since linear filtering and enhancement (Chapters 10 and 11), restoration (Chap-
ter 14), and reconstruction (Chapter 25) all depend on these concepts, as do concepts
and applications of wavelet-based image processing (Chapters 6 and 11) which extend
the ideas of Fourier techniques in very powerful ways. Extended frequency domain con-
cepts are also heavily utilized in Chapters 16 and 17 (image compression) of the Guide,
although the transforms used differ somewhat from the DFT.
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6.1 OVERVIEW
The concept of scale, or resolution of an image, is very intuitive. A person observing a
scene perceives the objects in that scene at a certain level of resolution that depends on
the distance to these objects. For instance, walking toward a distant building, she would
first perceive a rough outline of the building. The main entrance becomes visible only
in relative proximity to the building. Finally, the door bell is visible only in the entrance
area. As this example illustrates, the notions of resolution and scale loosely correspond
to the size of the details that can be perceived by the observer. It is of course possible
to formalize these intuitive concepts, and indeed signal processing theory gives them a
more precise meaning.

These concepts are particularly useful in image and video processing and in com-
puter vision. A variety of digital image processing algorithms decompose the image
being analyzed into several components, each of which captures information present at
a given scale. While our main purpose is to introduce the reader to the basic concepts
of multiresolution image decompositions and wavelets, applications will also be briefly
discussed throughout this chapter. The reader is referred to other chapters of this Guide
for more details.

Throughout, we assume that the images to be analyzed are rectangular with N � M
pixels. While there exists several types of multiscale image decompositions, we consider
three main methods [1–6]:

1. In a Gaussian pyramid representation of an image (Fig. 6.1(a)), the original
image appears at the bottom of a pyramidal stack of images. This image is then
lowpass filtered and subsampled by a factor of two in each coordinate. The resul-
ting N/2 � M/2 image appears at the second level of the pyramid. This procedure
can be iterated several times. Here resolution can be measured by the size of the 123
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Interpolate

Interpolate

1

2

1
2

(b)  Laplacian pyramid(a)  Gaussian pyramid 

(c)  Wavelet representation

FIGURE 6.1

Three multiscale image representations applied to Lena: (a) Gaussian pyramid; (b) Laplacian
pyramid; (c) Wavelet representation.
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image at any given level of the pyramid. The pyramid in Fig. 6.1(a) has three
resolution levels, or scales. In the original application of this method to computer
vision, the lowpass filter used was often a Gaussian filter,1 hence the terminology
Gaussian pyramid. We shall use this terminology even when a lowpass filter is
not a Gaussian filter. Another possible terminology in that case is simply low-
pass pyramid. Note that the total number of pixels in a pyramid representation is
NM � NM/4 � NM/16 � · · · ≈ 4

3 NM . This is said to be an overcomplete repre-
sentation of the original image, due to the increase in the number of pixels.

2. The Laplacian pyramid representation of the image is closely related to the Gaus-
sian pyramid, but here the difference between approximations at two successive
scales is computed and displayed for different scales, see Fig. 6.1(b). The precise
meaning of the interpolate operation in the figure will be given in Section 6.2.1.
The displayed images represent details of the image that are significant at each
scale. An equivalent way to obtain the image at a given scale is to apply the dif-
ference between two Gaussian filters to the original image. This is analogous to
filtering the image using a Laplacian filter, a technique commonly employed for
edge detection (see Chapter 4). Laplacian filters are bandpass, hence the name
Laplacian pyramid, also termed bandpass pyramid.

3. In a wavelet decomposition, the image is decomposed into a set of subimages
(or subbands) which also represent details at different scales (Fig. 6.1(c)). Unlike
pyramid representations, the subimages also represent details with different spatial
orientations (such as edges with horizontal, vertical, and diagonal orientations).
The number of pixels in a wavelet decomposition is only NM . As we shall soon see,
the signal processing operations involved here are more sophisticated than those
for pyramid image representations.

The pyramid and wavelet decompositions are presented in more detail in Sections 6.2
and 6.3, respectively. The basic concepts underlying these techniques are applicable to
other multiscale decomposition methods, some of which are listed in Section 6.4.

Hierarchical image representations such as those in Fig. 6.1 are useful in many appli-
cations. In particular, they lend themselves to effective designs of reduced–complexity
algorithms for texture analysis and segmentation, edge detection, image analysis, motion
analysis, and image understanding in computer vision. Moreover, the Laplacian pyra-
mid and wavelet image representations are sparse in the sense that most detail images
contain few significant pixels (little significant detail). This sparsity property is very
useful in image compression, as bits are allocated only to the few significant pixels; in
image recognition, because the search for significant image features is facilitated; and in
the restoration of images corrupted by noise, as images and noise possess rather distinct
properties in the wavelet domain. The recent JPEG 2000 international standard for image
compression is based on wavelets [7], unlike its predecessor JPEG which was based on
the discrete cosine transform [8].

1This design was motivated by analogies to the Human Visual System, see Section 6.3.6.
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6.2 PYRAMID REPRESENTATIONS
In this section, we shall explain how the Gaussian and Laplacian pyramid representations
in Fig. 6.1 can be obtained from a few basic signal processing operations. To this end, we
first describe these operations in Section 6.2.1 for the case of 1D signals. The extension to
2D signals is presented in Sections 6.2.2 and 6.2.3 for Gaussian and Laplacian pyramids,
respectively.

6.2.1 Decimation and Interpolation
Consider the problem of decimating a 1D signal by a factor of two, namely, reducing the
sample rate by a factor of two. This operation generally entails some loss of information,
so it is desired that the decimated signal retain as much fidelity as possible to the orig-
inal. The basic operations involved in decimation are lowpass filtering (using a digital
antialiasing filter) and subsampling, as shown in Fig. 6.2. The impulse response of the
lowpass filter is denoted by h(n), and its discrete-time Fourier transform [9] by H (ej�).
The relationship between input x(n) and output y(n) of the filter is the convolution
equation

y(n) � x(n) ∗ h(n) �
∑

k

h(k)x(n � k).

The downsampler discards every other sample of its input y(n). Its output is given
by

z(n) � y(2n).

Combining these two operations, we obtain

z(n) �
∑

k

h(k)x(2n � k). (6.1)

Downsampling usually implies a loss of information, as the original signal x(n) cannot
be exactly reconstructed from its decimated version z(n). The traditional solution for
reducing this information loss consists in using an “ideal” digital antialiasing filter h(n)

with cutoff frequency �c � �/2 [9].2 However, such “ideal” filters have infinite length.

x(n)
h(n)

y(n) z(n)
2

FIGURE 6.2

Decimation of a signal by a factor of two, obtained by cascade of a lowpass filter h(n) and a
subsampler ↓ 2.

2The paper [10] derives the filter that actually minimizes this information loss in the mean-square sense,
under some assumptions on the input signal.
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In image processing, short finite impulse response (FIR) filters are preferred for obvi-
ous computational reasons. Furthermore, approximations to the “ideal” filters above
have an oscillating impulse response, which unfortunately results in visually annoying
ringing artifacts in the vicinity of edges. The FIR filters typically used in image process-
ing are symmetric, with length between 3 and 20 taps. Two common examples are the
3-tap FIR filter h(n) �

( 1
4 , 1

2 , 1
4

)
, and the length �(2L � 1) truncated Gaussian, h(n) �

Ce�n2/(2�2), |n|� L, where C � 1/
∑
|n|�L e�n2/(2�2). The coefficients of both filters add

up to one:
∑

n h(n) � 1, which implies that the DC response of these filters is unity.
Another common image processing operation is interpolation, which increases the

sample rate of a signal. Signal processing theory tells us that interpolation may be per-
formed by cascading two basic signal processing operations: upsampling and lowpass
filtering, see Fig. 6.3. The upsampler inserts a zero between every other sample of the
signal x(n):

y(n) �

{
x(n/2) : n even

0 : n odd

The upsampled signal is then filtered using a lowpass filter h(n). The interpolated signal
is given by z(n) � h(n) ∗ y(n) or, in terms of the original signal x(n),

z(n) �
∑

k

h(k)x(n � 2k). (6.2)

The so-called ideal interpolation filters have infinite length. Again, in practice, short FIR
filters are used.

6.2.2 Gaussian Pyramid
The construction of a Gaussian pyramid involves 2D lowpass filtering and subsampling
operations. The 2D filters used in image processing practice are separable, which means
that they can be implemented as the cascade of 1D filters operating along image rows and
columns. This is a convenient choice in many respects, and the 2D decimation scheme
is then separable as well. Specifically, 2D decimation is implemented by applying 1D
decimation to each row of the image (using Eq. 6.1) followed by 1D decimation to each
column of the resulting image (using Eq. 6.1 again). The same result would be obtained
by first processing columns and then rows. Likewise, 2D interpolation is obtained by
first applying Eq. 6.2 to each row of the image, and then again to each column of the
resulting image, or vice versa.

x(n) z(n)y(n)
2 h(n)

FIGURE 6.3

Interpolation of a signal by a factor of two, obtained by cascade of an upsampler ↑ 2 and a
lowpass filter h(n).
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This technique was used at each stage of the Gaussian pyramid decomposition in
Fig. 6.1(a). The lowpass filter used for both horizontal and vertical filtering was the 3-tap
filter h(n) �

( 1
4 , 1

2 , 1
4

)
.

Gaussian pyramids have found applications to certain types of image storage prob-
lems. Suppose for instance that remote users access a common image database (say an
Internet site) but have different requirements with respect to image resolution. The rep-
resentation of image data in the form of an image pyramid would allow each user to
directly retrieve the image data at the desired resolution. While this storage technique
entails a certain amount of redundancy, the desired image data are available directly and
are in a form that does not require further processing. Another application of Gaussian
pyramids is in motion estimation for video [1, 2]: in a first step, coarse motion estimates
are computed based on low-resolution image data, and in subsequent steps, these initial
estimates are refined based on higher resolution image data. The advantages of this mul-
tiresolution, coarse-to-fine, approach to motion estimation are a significant reduction in
algorithmic complexity (as the crucial steps are performed on reduced-size images) and
the generally good quality of motion estimates, as the initial estimates are presumed to
be relatively close to the ideal solution. Another closely related application that benefits
from a multiscale approach is pattern matching [1].

6.2.3 Laplacian Pyramid
We define a detail image as the difference between an image and its approximation at the
next coarser scale. The Gaussian pyramid generates images at multiple scales, but these
images have different sizes. In order to compute the difference between a N � M image
and its approximation at resolution N/2 � M/2, one should interpolate the smaller
image to the N � M resolution level before performing the subtraction. This operation
was used to generate the Laplacian pyramid in Fig. 6.1(b). The interpolation filter used
was the 3-tap filter h(n) �

( 1
2 ,1, 1

2

)
.

As illustrated in Fig. 6.1(b), the Laplacian representation is sparse in the sense that
most pixel values are zero or near zero. The significant pixels in the detail images cor-
respond to edges and textured areas such as Lena’s hair. Just like the Gaussian pyramid
representation, the Laplacian representation is also overcomplete, as the number of pixels
is greater (by a factor≈ 33%) than in the original image representation.

Laplacian pyramid representations have found numerous applications in image pro-
cessing, and in particular texture analysis and segmentation [1]. Indeed, different textures
often present very different spectral characteristics which can be analyzed at appro-
priate levels of the Laplacian pyramid. For instance, a nearly uniform region such as
the surface of a lake contributes mostly to the coarse-level image, while a textured
region like grass often contributes significantly to other resolution levels. Some of the
earlier applications of Laplacian representations include image compression [11, 12],
but the emergence of wavelet compression techniques has made this approach some-
what less attractive. However, a Laplacian-type compression technique was adopted
in the hierarchical mode of the lossy JPEG image compression standard [8], also see
Chapter 5.
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6.3 WAVELET REPRESENTATIONS
While the sparsity of the Laplacian representation is useful in many applications, over-
completeness is a serious disadvantage in applications such as compression. The wavelet
transform offers both the advantages of a sparse image representation and a complete
representation. The development of this transform and its theory has had a profound
impact on a variety of applications. In this section, we first describe the basic tools needed
to construct the wavelet representation of an image. We begin with filter banks, which
are elementary building blocks in the construction of wavelets. We then show how filter
banks can be cascaded to compute a wavelet decomposition. We then introduce wavelet
bases, a concept that provides additional insight into the choice of filter banks. We con-
clude with a discussion of the relation of wavelet representations to the human visual
system and a brief overview of some applications.

6.3.1 Filter Banks
Figure 6.4(a) depicts an analysis filter bank, with one input x(n) and two outputs x0(n)

and x1(n). The input signal x(n) is processed through two paths. In the upper path,
x(n) is passed through a lowpass filter H0(ej�) and decimated by a factor of two. In the
lower path, x(n) is passed through a highpass filter H1(ej�) and also decimated by a
factor of two. For convenience, we make the following assumptions. First, the number
N of available samples of x(n) is even. Second, the filters perform a circular convolution
(see Chapter 5), which is equivalent to assuming that x(n) is a periodic signal. Under
these assumptions, the output of each path is periodic with period equal to N/2 samples.
Hence the analysis filter bank can be thought of as a transform that maps the original set
{x(n)} of N samples into a new set {x0(n),x1(n)} of N samples.

Figure 6.4(b) shows a synthesis filter bank. Here there are two inputs y0(n) and y1(n),
and one single output y(n). The input signal y0(n) (respectively y1(n)) is upsampled
by a factor of two and filtered using a lowpass filter G0(ej�) (respectively highpass filter
G1(ej�)). The output y(n) is obtained by summing the two filtered signals. We assume
that the input signals y0(n) and y1(n) are periodic with period N/2. This implies that

(a) (b)

y0(n)

y1(n)
22

2
1

1

y (n)

G1(e j�)

G0(e j�)

x1(n)

x 0(n)

2

2

x (n)

H1(e j�)

H0(e j�)

FIGURE 6.4

(a) Analysis filter bank, with lowpass filter H0(ej�) and highpass filter H1(ej�); (b) Synthesis filter
bank, with lowpass filter G0(ej�) and highpass filter G1(ej�).
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the output y(n) is periodic with period equal to N . So the synthesis filter bank can also
be thought of as a transform that maps the original set of N samples {y0(n),y1(n)} into
a new set of N samples {y(n)}.

What happens when the output x0(n),x1(n) of an analysis filter bank is applied to
the input of a synthesis filter bank? As it turns out, under some specific conditions on
the four filters H0(ej�),H1(ej�), G0(ej�), and G1(ej�), the output y(n) of the resulting
analysis/synthesis system is identical (possibly up to a constant delay) to its input x(n).
This condition is known as perfect reconstruction. It holds, for instance, for the following
trivial set of 1-tap filters: h0(n) and g1(n) are unit impulses, and h1(n) and g0(n) are unit
delays. In this case, the reader can verify that y(n) � x(n � 1). In this simple example, all
four filters are allpass. It is, however, not obvious to design more useful sets of FIR filters
that also satisfy the perfect reconstruction condition. A general methodology for doing
so was discovered in the mid-1980s. We refer the reader to [4, 5] for more details.

Under some additional conditions on the filters, the transforms associated with both
the analysis and the synthesis filter banks are orthonormal. Orthonormality implies that
the energy of the samples is preserved under the transformation. If these conditions
are met, the filters possess the following remarkable properties: the synthesis filters are
a time-reversed version of the analysis filters, and the highpass filters are modulated
versions of the lowpass filters, namely g0(n) � (�1)nh1(n), g1(n) � (�1)n�1h0(n), and
h1(n) � (�1)�nh0(K � n), where K is an integer delay. Such filters are often known
as quadrature mirror filters (QMF), or conjugate quadrature filters (CQF), or power-
complementary filters [5], because both lowpass (respectively highpass) filters have the
same frequency response, and the frequency responses of the lowpass and highpass filters
are related by the power-complementary property |H0(ej�)|2 � |H1(ej�)|2 � 2, valid at
all frequencies. The filter h0(n) is viewed as a prototype filter, because it automatically
determines the other three filters.

Finally, if the prototype lowpass filter H0(ej�) has a zero at frequency � � �, the
filters are said to be regular filters, or wavelet filters. The meaning of this terminology will
become apparent in Section 6.3.4. Figure 6.5 shows the frequency responses of the four
filters generated from a famous 4-tap filter designed by Daubechies [4, p. 195]:

h0(n) �
1

4
√

2
(1 �
√

3, 3 �
√

3, 3 �
√

3, 1 �
√

3).

This filter is the first member of a family of FIR wavelet filters that have been constructed
by Daubechies and possess nice properties (such as shortest support size for a given
number of vanishing moments, see Section 6.3.4).

There also exist biorthogonal wavelet filters, a design that sets aside degrees of freedom
for choosing the synthesis lowpass filter h1(n) given the analysis lowpass filter h0(n). Such
filters are subject to regularity conditions [4]. The transforms are no longer orthonormal,
but the filters can have linear phase (unlike nontrivial QMF filters).

6.3.2 Wavelet Decomposition
An analysis filter bank decomposes 1D signals into lowpass and highpass components.
One can perform a similar decomposition on images by first applying 1D filtering along
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FIGURE 6.5

Magnitude frequency response of the four subband filters for a QMF filter bank generated from
the prototype Daubechies’ 4-tap lowpass filter.

rows of the image and then along columns, or vice versa [13]. This operation is illustrated
in Fig. 6.6(a). The same filters H0(ej�) and H1(ej�) are used for horizontal and vertical
filtering. The output of the analysis system is a set of four N/2 � M/2 subimages: the
so-called LL (low low), LH (low high), HL (high high), and HH (high high) subbands,
which correspond to different spatial frequency bands in the image. The decomposition
of Lena into four such subbands is shown in Fig. 6.6(b). Observe that the LL subband
is a coarse (low resolution) version of the original image, and that the HL, LH, and HH
subbands, respectively, contain details with vertical, horizontal, and diagonal orienta-
tions. The total number of pixels in the four subbands is equal to the original number
of pixels, NM .

In order to perform the wavelet decomposition of an image, one recursively applies
the scheme of Fig. 6.6(a) to the LL subband. Each stage of this recursion produces a
coarser version of the image as well as three new detail images at that particular scale.
Figure 6.7 shows the cascaded filter banks that implement this wavelet decomposition,
and Fig. 6.1(c) shows a 3-stage wavelet decomposition of Lena. There are seven subbands,
each corresponding to a different set of scales and orientations (different spatial frequency
bands).

Both the Laplacian decomposition in Fig. 6.1(b) and the wavelet decomposition in
Fig. 6.1(c) provide a coarse version of the image as well as details at different scales, but
the wavelet representation is complete and provides information about image compo-
nents at different spatial orientations.
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FIGURE 6.6

Decomposition of N � M image into four N/2 � M/2 subbands: (a) basic scheme; (b) applica-
tion to Lena, using Daubechies’ 4-tap wavelet filters.
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FIGURE 6.7

Implementation of wavelet image decomposition using cascaded filter banks: (a) wavelet decom-
position of input image x(n1,n2); (b) reconstruction of x(n1,n2) from its wavelet coefficients;
(c) nomenclature of subbands for a 3-level decomposition.

6.3.3 Discrete Wavelet Bases
So far we have described the mechanics of the wavelet decomposition in Fig. 6.7, but
we have yet to explain what wavelets are and how they relate to the decomposition in
Fig. 6.7. In order to do so, we first introduce discrete wavelet bases. Consider the following
representation of a signal x(t ) defined over some (discrete or continuous) domain T :

x(t ) �
∑

k

ak �k (t ), t ∈ T . (6.3)

Here �k(t ) are termed basis functions and ak are the coefficients of the signal x(t ) in the
basis B � {�k(t )}. A familiar example of such signal representations is the Fourier series
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expansion for periodic real-valued signals with period T , in which case the domain T is
the interval [0,T ), �k(t ) are sines and cosines, and k represents frequency. It is known
from Fourier series theory that a very broad class of signals x(t ) can be represented in
this fashion.

For discrete N � M images, we let the variable t in (6.3) be the pair of integers
(n1,n2), and the domain of x be T � {0,1, . . . ,N � 1}� {0,1, . . . ,M � 1}. The basis B is
then said to be discrete. Note that the wavelet decomposition of an image, as described
in Section 6.3.2, can be viewed as a linear transformation of the original NM pixel values
x(t ) into a set of NM wavelet coefficients ak . Likewise, the synthesis of the image x(t )
from its wavelet coefficients is also a linear transformation, and hence x(t ) is the sum of
contributions of individual coefficients. The contribution of a particular coefficient ak

is obtained by setting all inputs to the synthesis filter bank to zero, except for one single
sample with amplitude ak , at a location determined by k. The output is ak times the
response of the synthesis filter bank to a unit impulse at location k. We now see that the
signal x(t ) takes the form (6.3), where �k(t ) are the spatial impulse responses above.

The index k corresponds to a given location of the wavelet coefficient within a given
subband. The discrete basis functions �k(t ) are translates of each other for all k within
a given subband. However, the shape of �k(t ) depends on the scale and orientation
of the subband. Figures 6.8(a)–(d) shows discrete basis functions in the four coarsest
subbands. The basis function in the LL subband (Fig. 6.8(a)) is characterized by a strong

(a) (b)

(c) (d)

FIGURE 6.8

Discrete basis functions for image representation: (a) discrete scaling function from LLLL sub-
band; (b)–(d) discrete wavelets from LHLL, LLLH, and LHLH subbands. These basis functions
are generated from Daubechies’ 4-tap filter.
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central bump, while the basis functions in the other three subbands (detail images)
have zero mean. Notice that the basis functions in the HL and LH subbands are related
through a simple 90-degree rotation. The orientation of these basis functions make them
suitable to represent patterns with the same orientation. For reasons that will become
apparent in the next section, the basis functions in the low subband are called discrete
scaling functions, while those in the other subbands are called discrete wavelets. The size
of the support set of the basis functions is determined by the length of the wavelet filter,
and essentially quadruples from one scale to the next.

6.3.4 Continuous Wavelet Bases
Basis functions corresponding to different subbands with the same orientation have a
similar shape. This is illustrated in Fig. 6.9 which shows basis functions corresponding to
two subbands with vertical orientation (Figs. 6.9(a)–(c)). The shape of the basis functions
converges to a limit (Fig. 6.9(d)) as the scale becomes coarser. This phenomenon is due
to the regularity of the wavelet filters used (Section 6.3.1). One of the remarkable results
of Daubechies’ wavelet theory [4] is that, under regularity conditions, the shape of the
impulse responses corresponding to subbands with the same orientation does converge to
a limit shape at coarse scales. Essentially the basis functions come in four shapes, which are
displayed in Figs. 6.10(a)–(d). The limit shapes corresponding to the vertical, horizontal,
and diagonal orientations are called wavelets. The limit shape corresponding to the coarse
scale is called a scaling function. The three wavelets and the scaling function depend on

(a) (b)

(c) (d)

FIGURE 6.9

Discrete wavelets with vertical orientation at three consecutive scales: (a) in HL band; (b) in LHLL
band; (c) in LLHLLL band; (d) Continuous wavelet is obtained as a limit of (normalized) discrete
wavelets as scale becomes coarser.
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(a) (b)

(c) (d)

FIGURE 6.10

Basis functions for image representation: (a) scaling function; (b)–(d) wavelets with horizontal,
vertical, and diagonal orientations. These four functions are tensor products of the 1D scaling
function and wavelet in Fig. 6.11. The horizontal wavelet has been rotated by 180 degrees so
that its negative part is visible on the display.

the wavelet filter h0(n) used (in Fig. 6.8, Daubechies’ 4-tap filter). The four functions
in Figs. 6.10(a)–(d) are separable and are respectively of the form �(x)�(y), �(x)�(y),
�(x)�(y), and �(x)�(y). Here (x ,y) are horizontal and vertical coordinates, and �(x)

and �(x) are, respectively, the 1D scaling function and the 1D wavelet generated by the
filter h0(n). These two functions are shown in Fig. 6.11, respectively. While the aspect of
these functions is somewhat rough, Daubechies’ theory shows that the smoothness of the
wavelet increases with the number K of zeroes of H0(ej�) at � � �. In this case, the first
K moments of the wavelet �(x) are zero:

∫
xk �(x)dx � 0, 0 � k < K .

The wavelet is then said to possess K vanishing moments.

6.3.5 More on Wavelet Image Representations
The connection between wavelet decompositions and bases for image representation
shows that images are sparse linear combinations of elementary images (discrete wavelets
and scaling functions) and provides valuable insights for selecting the wavelet filter. Some
wavelets are better able to compactly represent certain types of images than others. For
instance, images with sharp edges would benefit from the use of short wavelet filters, due
to the spatial localization of such edges. Conversely, images with mostly smooth areas
would benefit from the use of longer wavelet filters with several vanishing moments, as
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FIGURE 6.11

(a) 1D scaling function and (b) 1D wavelet generated from Daubechies’ D4 filter.

such filters generate smooth wavelets. See [14] for a performance comparison of wavelet
filters in image compression.

6.3.6 Relation to Human Visual System
Experimental studies of the human visual system (HVS) have shown that the eye’s sen-
sitivity to a visual stimulus strongly depends upon the spatial frequency contents of this
stimulus. Similar observations have been made about other mammals. Simplified linear
models have been developed in the psychophysics community to explain these experi-
mental findings. For instance, the modulation transfer function describes the sensitivity of
the HVS to spatial frequency. Additionally, several experimental studies have shown that
images sensed by the eye are decomposed into bandpass channels as they move toward
and through the visual cortex of the brain [15]. The bandpass components correspond
to different scales and spatial orientations. Figure 6.5 in [16] shows the spatial impulse
response and spatial frequency response corresponding to a channel at a particular scale
and orientation. While the Laplacian representation provides a decomposition based on
scale (rather than orientation), the wavelet transform has a limited ability to distinguish
between patterns at different orientations, as each scale is comprised of three channels
which are respectively associated with the horizontal, vertical, and diagonal orientations.
This may not be not sufficient to capture the complexity of early stages of visual infor-
mation processing, but the approximation is useful. Note there exist linear multiscale
representations that more closely approximate the response of the HVS. One of them is
the Gabor transform, for which the basis functions are Gaussian functions modulated by
sine waves [17]. Another one is the cortical transform developed by Watson [18]. How-
ever, as discussed by Mallat [19], the goal of multiscale image processing and computer
vision is not to design a transform that mimics the HVS. Rather, the analogy to the HVS
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motivates the use of multiscale image decompositions as a front end to complex image
processing algorithms, as Nature already contains successful examples of such a design.

6.3.7 Applications
We have already mentioned several applications in which a wavelet decomposition is
useful. This is particularly true of applications where the completeness of the wavelet
representation is desirable. One such application is image and video compression, see
Chapters 3 and 5. Another one is image denoising, as several powerful methods rely
on the formulation of statistical models in an orthonormal transform domain [20].
There exist other applications in which wavelets present a plausible (but not necessarily
superior) alternative to other multiscale decomposition techniques. Examples include
texture analysis and segmentation [3, 21, 22], recognition of handwritten characters [23],
inverse image halftoning [24], and biomedical image reconstruction [25].

6.4 OTHER MULTISCALE DECOMPOSITIONS
For completeness, we also mention two useful extensions of the methods covered in this
chapter.

6.4.1 Undecimated Wavelet Transform
The wavelet transform is not invariant to shifts of the input image, in the sense that
an image and its translate will in general produce different wavelet coefficients. This
is a disadvantage in applications such as edge detection, pattern matching, and image
recognition in general. The lack of translation invariance can be avoided if the outputs
of the filter banks are not decimated. The undecimated wavelet transform then produces
a set of bandpass images which have the same size as the original dataset (N � M ).

6.4.2 Wavelet Packets
Although the wavelet transform often provides a sparse representation of images, the
spatial frequency characteristics of some images may not be best suited for a wavelet
representation. Such is the case of fingerprint images, as ridge patterns constitute rela-
tively narrowband bandpass components of the image. An even sparser representation of
such images can be obtained by recursively splitting the appropriate subbands (instead
of systematically splitting the low-frequency band as in a wavelet decomposition). This
scheme is simply termed subband decomposition. This approach was already developed
in signal processing during the 1970s [5]. In the early 1990s, Coifman and Wickerhauser
developed an ingenious algorithm for finding the subband decomposition that gives the
sparsest representation of the input signal (or image) in a certain sense [26]. The idea
has been extended to find the best subband decomposition for compression of a given
image [27].
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6.4.3 Geometric Wavelets
One of the main strengths of 1D wavelets is their ability to represent abrupt transitions in
a signal. This property does not extend straightforwardly to higher dimensions. In par-
ticular, the extension of wavelets to two dimensions, using tensor-product constructions,
has two shortcomings: (1) limited ability to represent patterns at arbitrary orientations
and (2) limited ability to represent image edges. For instance, the tensor-product con-
struction is suitable for capturing the discontinuity across an edge, but is ineffective for
exploiting the smoothness along the edge direction. To represent a simple, straight edge,
one needs many wavelets.

To remedy this problem, several researchers have recently developed improved 2D
multiresolution representations. The idea was pioneered by Candès and Donoho [28].
They introduced the ridgelet transform, which decomposes images as a superposition of
ridgelets such as the one shown in Fig. 6.12. A ridgelet is parameterized by three param-
eters: resolution, angle, and location. Ridgelets are also known as geometric wavelets,
a growing family which includes exotically named functions such as curvelets, ban-
delets, and contourlets. Signal processing algorithms for discrete images and applications
to denoising and compression have been developed by Starck et al. [29], Do and
Vetterli [30, 31], and Le Pennec and Mallat [32]. Remarkable results have been obtained
by exploiting the sparse representation of object contours offered by geometric wavelets.
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Ridgelet. (courtesy of M. Do).
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6.5 CONCLUSION
We have introduced basic concepts of multiscale image decompositions and wavelets.
We have focused on three main techniques: Gaussian pyramids, Laplacian pyramids, and
wavelets. The Gaussian pyramid provides a representation of the same image at multiple
scales, using simple lowpass filtering and decimation techniques. The Laplacian pyramid
provides a coarse representation of the image as well as a set of detail images (bandpass
components) at different scales. Both the Gaussian and the Laplacian representations are
overcomplete, in the sense that the total number of pixels is approximately 33% higher
than in the original image.

Wavelet decompositions are a more recent addition to the arsenal of multiscale sig-
nal processing techniques. Unlike the Gaussian and Laplacian pyramids, they provide
a complete image representation and perform a decomposition according to both scale
and orientation. They are implemented using cascaded filter banks in which the lowpass
and highpass filters satisfy certain specific constraints. While classical signal processing
concepts provide an operational understanding of such systems, there exist remark-
able connections with work in applied mathematics (by Daubechies, Mallat, Meyer and
others) and in psychophysics, which provide a deeper understanding of wavelet decompo-
sitions and their role in vision. From a mathematical standpoint, wavelet decompositions
are equivalent to signal expansions in a wavelet basis. The regularity and vanishing-
moment properties of the lowpass filter impact the shape of the basis functions and hence
their ability to efficiently represent typical images. From a psychophysical perspective,
early stages of human visual information processing apparently involve a decomposition
of retinal images into a set of bandpass components corresponding to different scales and
orientations. This suggests that multiscale/multiorientation decompositions are indeed
natural and efficient for visual information processing.
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CHAPTER

7Image Noise Models
Charles Boncelet

University of Delaware

7.1 SUMMARY
This chapter reviews some of the more commonly used image noise models. Some of
these are naturally occurring, e.g., Gaussian noise, some sensor induced, e.g., photon
counting noise and speckle, and some result from various processing, e.g., quantization
and transmission.

7.2 PRELIMINARIES
7.2.1 What is Noise?
Just what is noise, anyway? Somewhat imprecisely we will define noise as an unwanted
component of the image. Noise occurs in images for many reasons. Gaussian noise is
a part of almost any signal. For example, the familiar white noise on a weak television
station is well modeled as Gaussian. Since image sensors must count photons—especially
in low-light situations—and the number of photons counted is a random quantity, images
often have photon counting noise. The grain noise in photographic films is sometimes
modeled as Gaussian and sometimes as Poisson. Many images are corrupted by salt and
pepper noise, as if someone had sprinkled black and white dots on the image. Other
noises include quantization noise and speckle in coherent light situations.

Let f(·) denote an image. We will decompose the image into a desired component,
g (·), and a noise component, q(·). The most common decomposition is additive:

f(·) � g (·) � q(·). (7.1)

For instance, Gaussian noise is usually considered to be an additive component.
The second most common decomposition is multiplicative:

f(·) � g (·)q(·). (7.2)

An example of a noise often modeled as multiplicative is speckle.
143
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Note, the multiplicative model can be transformed into the additive model by taking
logarithms and the additive model into the multiplicative one by exponentiation. For
instance, (7.1) becomes

ef � eg �q � eg eq . (7.3)

Similarly, (7.2) becomes

log f � log(g q) � log g � log q. (7.4)

If the two models can be transformed into one another, what is the point? Why do
we bother? The answer is that we are looking for simple models that properly describe
the behavior of the system. The additive model, (7.1), is most appropriate when the
noise in that model is independent of f . There are many applications of the additive
model. Thermal noise, photographic noise, and quantization noise, for instance, obey
the additive model well.

The multiplicative model is most appropriate when the noise in that model is inde-
pendent of f . One common situation where the multiplicative model is used is for speckle
in coherent imagery.

Finally, there are important situations when neither the additive nor the multiplicative
model fits the noise well. Poisson counting noise and salt and pepper noise fit neither
model well.

The questions about noise models one might ask include: What are the properties
of q(·)? Is q related to g or are they independent? Can q(·) be eliminated or at least,
mitigated? As we will see in this chapter and in others, it is only occasionally true that
q(·) will be independent of g (·). Furthermore, it is usually impossible to remove all the
effects of the noise.

Figure 7.1 is a picture of the San Francisco, CA, skyline. It will be used throughout
this chapter to illustrate the effects of various noises. The image is 432 � 512, 8 bits per
pixel, grayscale. The largest value (the whitest pixel) is 220 and the minimum value is 32.
This image is relatively noise free with sharp edges and clear details.

7.2.2 Notions of Probability
The various noises considered in this chapter are random in nature. Their exact values
are random variables whose values are best described using probabilistic notions. In this
section, we will review some of the basic ideas of probability. A fuller treatment can be
found in many texts on probability and randomness, including Feller [1], Billingsley [2],
and Woodroofe [3].

Let a ∈ Rn be a n-dimensional random vector and a ∈ Rn be a point. Then the
distribution function of a (also known as the cumulative distribution function) will
be denoted as Pa(a) � Pr[a � a] and the corresponding density function, pa(a) �
dPa(a)/da. Probabilities of events will be denoted as Pr[A].

The expected value of a function, �(a) is

E[�(a)] �

∫ �

��
�(a)pa(a)da. (7.5)
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FIGURE 7.1

Original picture of San Francisco skyline.

Note that for discrete distributions the integral is replaced by the corresponding sum:

E[�(a)] �
∑

k

�(ak )Pr[a � ak ] . (7.6)

The mean is �a � E[a] (i.e., �(a) � a), the variance of a single random vari-
able is �2

a � E
[
(a � �a)

2
]
, and the covariance matrix of a random vector is �a �

E
[
(a � �a)(a � �a)

T
]
.

Related to the covariance matrix is the correlation matrix,

Ra � E
[

aaT
]

. (7.7)

The various moments are related by the well-known relation, � � R � ��T .
The characteristic function, 	a(u) � E

[
exp(jua)

]
, has two main uses in analyzing

probabilistic systems: calculating moments and calculating the properties of sums of
independent random variables. For calculating moments, consider the power series of
exp(jua):

ejua � 1 � jua �
(jua)2

2! �
(jua)3

3! � · · · (7.8)

After taking expected values,

E
[

ejua
]

� 1 � juE[a] �
(ju)2E

[
a2]

2! �
(ju)3E

[
a3]

3! � · · · , (7.9)
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One can isolate the kth moment by taking k derivatives with respect to u and then setting
u � 0:

E
[

ak
]

�
1

jk

dk E
[

ejua
]

dk u

∣∣∣∣∣∣
u�0

. (7.10)

Consider two independent random variables, a and b, and their sum c. Then,

	c(u) � E
[

eju(c)
]

(7.11)

� E
[

eju(a�b)
]

(7.12)

� E
[

ejuaejub
]

(7.13)

� E
[

ejua
]

E
[

ejub
]

(7.14)

� 	a(u)	b(u), (7.15)

where (7.14) used the independence of a and b. Since the characteristic function is the
(complex conjugate of the) Fourier transform of the density, the density of c is easily
calculated by taking an inverse Fourier transform of 	c(u).

7.3 ELEMENTS OF ESTIMATION THEORY
As we said in the introduction, noise is generally an unwanted component in an image. In
this section, we review some of the techniques to eliminate—or at least minimize—the
noise.

The basic estimation problem is to find a good estimate of the noise-free image, g ,
given the noisy image, f . Some authors refer to this as an estimation problem, while others
say it is a filtering problem. Let the estimate be denoted ĝ � ĝ(f). The most common
performance criterion is the mean squared error (MSE):

MSE(g , ĝ) � E
[
(g � ĝ)2

]
. (7.16)

The estimator that minimizes the MSE is called the minimum mean squared error estimator
(MMSE). Many authors prefer to measure the performance in a positive way using the
peak signal-to-noise ratio (PSNR) measured in dB:

PSNR � 10 log10

(
MAX2

MSE

)
, (7.17)

where MAX is the maximum pixel value, e.g., 255 for 8 bit images.
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While the MSE is the most common error criterion, it is by no means the only
one. Many researchers argue that MSE results are not well correlated with the human
visual system. For instance, the mean absolute error (MAE) is often used in motion
compensation in video compression. Nevertheless, MSE has the advantages of easy
tractability and intuitive appeal since MSE can be interpreted as “noise power.” Esti-
mators can be classified in many different ways. The primary division we will consider
here is linear versus nonlinear estimators.

The linear estimators form estimates by taking linear combinations of the sample
values. For example, consider a small region of an image modeled as a constant value
plus additive noise:

f(x ,y) � � � q(x ,y). (7.18)

A linear estimate of � is

�̂ �
∑
x ,y

�(x ,y)f(x ,y) (7.19)

� �
∑
x ,y

�(x ,y) �
∑
x ,y

�(x ,y)q(x ,y). (7.20)

An estimator is called unbiased if E
[
� � �̂

]
� 0. In this case, assuming E[q] � 0,

unbiasedness requires
∑

x ,y �(x ,y) � 1. If the q(x ,y) are independent and identically
distributed (i.i.d.), meaning that the random variables are independent and each has the
same distribution function, then the MMSE for this example is the sample mean:

�̂ �
1

M

∑
(x ,y)

f(x ,y), (7.21)

where M is the number of samples averaged over.
Linear estimators in image filtering get more complicated primarily for two reasons:

Firstly, the noise may not be i.i.d., and secondly and more commonly, the noise-free
image is not well modeled as a constant. If the noise-free image is Gaussian and the noise
is Gaussian, then the optimal estimator is the well-known Weiner filter [4].

In many image filtering applications, linear filters do not perform well. Images are
not well modeled as Gaussian, and linear filters are not optimal. In particular, images
have small details and sharp edges. These are blurred by linear filters. It is often true that
the filtered image is more objectionable than the original. The blurriness is worse than
the noise.

Largely because of the blurring problems of linear filters, nonlinear filters have been
widely studied in image filtering. While there are many classes of nonlinear filters, we will
concentrate on the class based on order statistics. Many of these filters were invented to
solve image processing problems.

Order statistics are the result of sorting the observations from smallest to largest.
Consider an image window (a small piece of an image) centered on the pixel to be
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estimated. Some windows are square, some are “x” shaped, some are “+” shaped, and
some more oddly shaped. The choice of a window size and shape is usually up to the
practitioner. Let the samples in the window be denoted simply as fi for i � 1, . . . ,N . The
order statistics are denoted f(i) for i � 1, . . . ,N and obey the ordering f(1) � f(2) � · · ·
� f(N ).

The simplest order statistic-based estimator is the sample median, f((N �1)/2). For
example, if N � 9, the median is f(5). The median has some interesting properties. Its
value is one of the samples. The median tends to blur images much less than the mean.
The median can pass an edge without any blurring at all.

Some other order statistic estimators are the following:

Linear Combinations of Order Statistics �̂ �
∑N

i�1 �i f(i). The �i determine the beha-
vior of the filter. In some cases, the coefficients can be determined optimally, see
Lloyd [5] and Bovik et al. [6].

Weighted Medians and the LUM Filter Another way to weight the samples is to repeat
certain samples more than once before the data is sorted. The most common situation
is to repeat the center sample more than once. The center weighted median does “less
filtering” than the ordinary median and is suitable when the noise is not too severe.
(See Salt and Pepper Noise below.)

The LUM filter [7] is a rearrangement of the center weighted median. It has
the advantages of being easy to understand and extensible to image sharpening
applications.

Iterated and Recursive Forms The various filtering operations can be combined or iter-
ated upon. One might first filter horizontally, then vertically. One might compute the
outputs of three or more filters and then use “majority rule” techniques to choose
between them.

To analyze or optimally design order statistics filters, we need descriptions of the
probability distributions of the order statistics. Initially, we will assume the fi are i.i.d.
Then the Pr

[
f(i) � x

]
equals the probability that at least i of the fi are less than or equal

to x . Thus,

Pr
[
f(i) � x

]
�

N∑

k�i

(
N

k

)
(Pf (x))k (1 � Pf (x))N �k . (7.22)

We see immediately that the order statistic probabilities are related to the binomial
distribution.

Unfortunately (7.22) does not hold when the observations are not i.i.d. In the special
case when the observations are independent (or Markov), but not identically distributed,
there are simple recursive formulas to calculate the probabilities [8, 9]. For example,
even if the additive noise in (7.1) is i.i.d, the image may not be constant throughout the
window. One may be interested in how much blurring of an edge is done by a particular
order statistics filter.
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7.4 TYPES OF NOISE AND WHERE THEY MIGHT OCCUR
In this section, we present some of the more common image noise models and show
sample images illustrating the various degradations.

7.4.1 Gaussian Noise
Probably the most frequently occurring noise is additive Gaussian noise. It is widely
used to model thermal noise and, under some often reasonable conditions, is the limiting
behavior of other noises, e.g., photon counting noise and film grain noise. Gaussian noise
is used in many places in this Guide.

The density function of univariate Gaussian noise, q, with mean � and variance
�2 is

pq(x) � (2��2)�1/2e�(x��)2/2�2
(7.23)

for �� < x < �. Notice that the support, which is the range of values of x where the
probability density is nonzero, is infinite in both the positive and negative directions.
But, if we regard an image as an intensity map, then the values must be nonnegative.
In other words, the noise cannot be strictly Gaussian. If it were, there would be some
nonzero probability of having negative values. In practice, however, the range of values
of the Gaussian noise is limited to about 
3�, and the Gaussian density is a useful and
accurate model for many processes. If necessary, the noise values can be truncated to
keep f > 0.

In situations where a is a random vector, the multivariate Gaussian density becomes

pa(a) � (2�)�n/2|�|�1/2e�(a��)T ��1(a��)/2, (7.24)

where � � E[a] is the mean vector and � � E
[
(a � �)(a � �)T

]
is the covariance

matrix. We will use the notation a ∼ N (�,�) to denote that a is Gaussian (also known
as Normal) with mean � and covariance �.

The Gaussian characteristic function is also Gaussian in shape:

	a(u) � euT ��uT �u/2. (7.25)

1

� 2�

2�

�

1
e2(x2�)2 / 2� 2

x

� 2�

FIGURE 7.2

The Gaussian density.
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The Gaussian distribution has many convenient mathematical properties—and some
not so convenient ones. Certainly the least convenient property of the Gaussian distri-
bution is that the cumulative distribution function cannot be expressed in closed form
using elementary functions. However, it is tabulated numerically. See almost any text on
probability, e.g., [10].

Linear operations on Gaussian random variables yield Gaussian random variables.
Let a be N (�,�) and b � Ga � h. Then a straightforward calculation of 	b(u) yields

	b(u) � ejuT (G��h)�uT G�GT u/2, (7.26)

which is the characteristic function of a Gaussian random variable with mean, G� � h,
and covariance, G�GT .

Perhaps the most significant property of the Gaussian distribution is called the
Central Limit Theorem, which states that the distribution of a sum of a large number
of independent, small random variables has a Gaussian distribution. Note the individual
random variables do not need to have a Gaussian distribution themselves, nor do they
even need to have the same distribution. For a detailed development, see, e.g., Feller [1]
or Billingsley [2]. A few comments are in order:

■ There must be a large number of random variables that contribute to the sum. For
instance, thermal noise is the result of the thermal vibrations of an astronomically
large number of tiny electrons.

■ The individual random variables in the sum must be independent, or nearly so.

■ Each term in the sum must be small compared to the sum.

As one example, thermal noise results from the vibrations of a very large num-
ber of electrons, the vibration of any one electron is independent of that of another,
and no one electron contributes significantly more than the others. Thus, all three
conditions are satisfied and the noise is well modeled as Gaussian. Similarly, binomial
probabilities approach the Gaussian. A binomial random variable is the sum of N inde-
pendent Bernoulli (0 or 1) random variables. As N gets large, the distribution of the sum
approaches a Gaussian distribution.

In Fig. 7.3 we see the effect of a small amount of Gaussian noise (� � 10). Notice the
“fuzziness” overall. It is often counterproductive to try to use signal processing techniques
to remove this level of noise—the filtered image is usually visually less pleasing than the
original noisy one (although sometimes the image is filtered to reduce the noise, then
sharpened to eliminate the blurriness introduced by the noise reducing filter).

In Fig. 7.4, the noise has been increased by a factor of 3 (� � 30). The degradation is
much more objectionable. Various filtering techniques can improve the quality, though
usually at the expense of some loss of sharpness.

7.4.2 Heavy Tailed Noise
In many situations, the conditions of the Central Limit Theorem are almost, but not
quite, true. There may not be a large enough number of terms in the sum, or the terms
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FIGURE 7.3

San Francisco corrupted by additive Gaussian noise with standard deviation equal to 10.

FIGURE 7.4

San Francisco corrupted by additive Gaussian noise with standard deviation equal to 30.
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may not be sufficiently independent, or a small number of the terms may contribute a
disproportionate amount to the sum. In these cases, the noise may only be approximately
Gaussian. One should be careful. Even when the center of the density is approximately
Gaussian, the tails may not be.

The tails of a distribution are the areas of the density corresponding to large x , i.e.,
as |x| → �. A particularly interesting case is when the noise has heavy tails. “Heavy
tails” means that for large values of x , the density, pa(x), approaches 0 more slowly
than the Gaussian. For example, for large values of x , the Gaussian density goes to 0 as
exp(�x2/2�2); the Laplacian density (also known as the double exponential density)
goes to 0 as exp(��|x|). The Laplacian density is said to have heavy tails.

In Table 7.1, we present the tail probabilities, Pr[|x|> x0], for the“standard”Gaussian
and Laplacian (� � 0, � � 1, and � � 1). Note the probability of exceeding 1 is approx-
imately the same for both distributions, while the probability of exceeding 3 is about 20
times greater for the double exponential than for the Gaussian.

An interesting example of heavy tailed noise that should be familiar is static on
a weak, broadcast AM radio station during a lightning storm. Most of the time, the

TABLE 7.1 Comparison of tail probabilities for
the Gaussian and Laplacian distributions.
Specifically, the values of Pr[|x|> x0] are listed
for both distributions (with � � 1 and � � 1)

x0 Gaussian Laplacian

1 0.32 0.37
2 0.046 0.14
3 0.0027 0.05

Gaussian, � 5 1

Laplacian, � 5 1

1.7410

FIGURE 7.5

Comparison of the Laplacian (� � 1) and Gaussian (� � 1) densities, both with � � 0. Note, for
deviations larger than 1.741, the Laplacian density is larger than the Gaussian.
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conditions of the central limit theorem are well satisfied and the noise is Gaussian.
Occasionally, however, there may be a lightning bolt. The lightning bolt overwhelms the
tiny electrons and dominates the sum. During the time period of the lightning bolt, the
noise is non-Gaussian and has much heavier tails than the Gaussian.

Some of the heavy tailed models that arise in image processing include the following:

7.4.2.1 Laplacian or Double Exponential

pa(x) �
�

2
e��|x��| (7.27)

The mean is � and the variance is 2/�2. The Laplacian is interesting in that the best
estimate of � is the median, not the mean, of the observations. Not truly “noise,” the
prediction error in many image compression algorithms is modeled as Laplacian. More
simply, the difference between successive pixels is modeled as Laplacian.

7.4.2.2 Negative Exponential

pa(x) � �e��x (7.28)

for x > 0. The mean is 1/� > 0 and variance, 1/�2. The negative exponential is used to
model speckle, for example, in SAR systems.

7.4.2.3 Alpha-Stable
In this class, appropriately normalized sums of independent and identically distributed
random variables have the same distribution as the individual random variables. We have
already seen that sums of Gaussian random variables are Gaussian, so the Gaussian is in
the class of alpha-stable distributions. In general, these distributions have characteristic
functions that look like exp(�|u|�) for 0 < � � 2. Unfortunately, except for the Gaussian
(� � 2) and the Cauchy (� � 1), it is not possible to write the density functions of these
distributions in closed form.

As �→ 0, these distributions have very heavy tails.

7.4.2.4 Gaussian Mixture Models

pa(x) � (1 � �)p0(x) � �p1(x), (7.29)

where p0(x) and p1(x) are Gaussian densities with differing means, �0 and �1, or vari-
ances, �2

0 and �2
1 . In modeling heavy tailed distributions, it is often true that � is small,

say � � 0.05, �0 � �1, and �2
1 >> �2

0 .
In the “static in the AM radio” example above, at any given time, � would be the

probability of a lightning strike, �2
0 the average variance of the thermal noise, and �2

1 the
variance of the lightning induced signal.

Sometimes this model is generalized further and p1(x) is allowed to be non-Gaussian
(and sometimes completely arbitrary). See Huber [11].
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7.4.2.5 Generalized Gaussian

pa(x) � Ae��|x��|� , (7.30)

where � is the mean and A, �, and � are constants. � determines the shape of the density:
� � 2 corresponds to the Gaussian and � � 1 to the double exponential. Intermediate
values of � correspond to densities that have tails in between the Gaussian and double
exponential. Values of � < 1 give even heavier tailed distributions.

The constants, A and �, can be related to � and the standard deviation, �, as follows:

� �
1

�

(
�(3/�)

�(1/�)

)0.5

(7.31)

A �
��

2�(1/�)
. (7.32)

The generalized Gaussian has the advantage of being able to fit a large variety of
(symmetric) noises by appropriate choice of the three parameters, �, �, and � [12].

One should be careful to use estimators that behave well in heavy tailed noise. The
sample mean, optimal for a constant signal in additive Gaussian noise, can perform quite
poorly in heavy tailed noise. Better choices are those estimators designed to be robust
against the occasional outlier [11]. For instance, the median is only slightly worse than
the mean in Gaussian noise, but can be much better in heavy tailed noise.

7.4.3 Salt and Pepper Noise
Salt and pepper noise refers to a wide variety of processes that result in the same basic
image degradation: only a few pixels are noisy, but they are very noisy. The effect is similar
to sprinkling white and black dots—salt and pepper—on the image.

One example where salt and pepper noise arises is in transmitting images over noisy
digital links. Let each pixel be quantized to B bits in the usual fashion. The value of the
pixel can be written as X �

∑B�1
i�0 bi2i . Assume the channel is a binary symmetric one

with a crossover probability of 	. Then each bit is flipped with probability 	. Call the
received value, Y . Then, assuming the bit flips are independent,

Pr
[
|X � Y |� 2i

]
� 	(1 � 	)B�1 (7.33)

for i � 0,1, . . . ,B � 1. The MSE due to the most significant bit is 	4B�1 compared to
	(4B�1 � 1)/3 for all the other bits combined. In other words, the contribution to the
MSE from the most significant bit is approximately three times that of all the other
bits. The pixels whose most significant bits are changed will likely appear as black or
white dots.

Salt and pepper noise is an example of (very) heavy tailed noise. A simple model is
the following: Let f (x ,y) be the original image and q(x ,y) be the image after it has been
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FIGURE 7.6

San Francisco corrupted by salt and pepper noise with a probability of occurrence of 0.05.

altered by salt and pepper noise.

Pr
[
q � f

]
� 1 � � (7.34)

Pr[q � MAX] � �/2 (7.35)

Pr[q � MIN] � �/2, (7.36)

where MAX and MIN are the maximum and minimum image values, respectively. For 8
bit images, MIN � 0 and MAX � 255. The idea is that with probability 1 � � the pixels
are unaltered; with probability � the pixels are changed to the largest or smallest values.
The altered pixels look like black and white dots sprinkled over the image.

Figure 7.6 shows the effect of salt and pepper noise. Approximately 5% of the pixels
have been set to black or white (95% are unchanged). Notice the sprinkling of the black
and white dots. Salt and pepper noise is easily removed with various order statistic filters,
especially the center weighted median and the LUM filter [13].

7.4.4 Quantization and Uniform Noise
Quantization noise results when a continuous random variable is converted to a discrete
one or when a discrete random variable is converted to one with fewer levels. In images,
quantization noise often occurs in the acquisition process. The image may be continuous
initially, but to be processed it must be converted to a digital representation.
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As we shall see, quantization noise is usually modeled as uniform. Various researchers
use uniform noise to model other impairments, e.g., dither signals. Uniform noise is the
opposite of the heavy tailed noise discussed above. Its tails are very light (zero!).

Let b � Q(a) � a � q, where ��/2 � q � �/2 is the quantization noise and b is a
discrete random variable usually represented with � bits. In the case where the number
of quantization levels is large (so � is small), q is usually modeled as being uniform
between ��/2 and �/2 and independent of a. The mean and variance of q are

E[q] �
1

�

∫ �/2

��/2
s ds � 0 (7.37)

and

E
[
(q � E[q])2

]
�

1

�

∫ �/2

��/2
s2 ds � �2/12. (7.38)

Since �∼ 2��, �2

 ∼ 22�, the signal-to-noise ratio increases by 6 dB for each additional

bit in the quantizer.
When the number of quantization levels is small, the quantization noise becomes

signal dependent. In an image of the noise, signal features can be discerned. Also, the
noise is correlated on a pixel by pixel basis and not uniformly distributed.

The general appearance of an image with too few quantization levels may be described
as “scalloped.” Fine graduations in intensities are lost. There are large areas of constant
color separated by clear boundaries. The effect is similar to transforming a smooth ramp
into a set of discrete steps.

In Fig. 7.7, the San Francisco image has been quantized to only 4 bits. Note the clear
“stair-stepping” in the sky. The previously smooth gradations have been replaced by large
constant regions separated by noticeable discontinuities.

7.4.5 Photon Counting Noise
Fundamentally, most image acquisition devices are photon counters. Let a denote the
number of photons counted at some location (a pixel) in an image. Then, the distribution
of a is usually modeled as Poisson with parameter �. This noise is also called Poisson noise
or Poisson counting noise.

P(a � k) �
e���k

k! (7.39)

for k � 0,1,2, . . .
The Poisson distribution is one for which calculating moments by using the

characteristic function is much easier than by the usual sum.
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FIGURE 7.7

San Francisco quantized to 4 bits.

	(u) �

�∑

k�0

ejuk e���k

k! (7.40)

� e��
�∑

k�0

(�eju)k

k! (7.41)

� e��e�eju
(7.42)

� e�(eju�1). (7.43)

While this characteristic function does not look simple, it does yield the moments:

E[a] �
1

j

d

du
e�(eju�1)

∣∣∣∣
u�0

(7.44)

�
1

j
�jejue�(eju�1)

∣∣∣∣
u�0

(7.45)

� �. (7.46)

Similarly, E
[
a2
]

� � � �2 and �2 � (� � �2) � �2 � �. We see one of the most interest-
ing properties of the Poisson distribution, that the variance is equal to the expected value.
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When � is large, the central limit theorem can be invoked and the Poisson distribution
is well approximated by the Gaussian with mean and variance both equal to �.

Consider two different regions of an image, one brighter than the other. The brighter
one has a higher � and therefore a higher noise variance.

As another example of Poisson counting noise, consider the following:

Example: Effect of Shutter Speed on Image Quality Consider two pictures of the same
scene, one taken with a shutter speed of 1 unit time and the other with � > 1 unit of
time. Assume that an area of an image emits photons at the rate � per unit time. The first
camera measures a random number of photons, whose expected value is � and whose
variance is also �. The second, however, has an expected value and variance equal to ��.
When time averaged (divided by �), the second now has an expected value of � and a
variance of �/� < �. Thus, we are led to the intuitive conclusion: all other things being
equal, slower shutter speeds yield better pictures.

For example, astro-photographers traditionally used long exposures to average over a
long enough time to get good photographs of faint celestial objects. Today’s astronomers
use CCD arrays and average many short exposure photographs, but the principal is the
same.

Figure 7.8 shows the image with Poisson noise. It was constructed by taking each
pixel value in the original image and generating a Poisson random variable with � equal
to that value. Careful examination reveals that the white areas are noisier than the dark
areas. Also, compare this image with Fig. 7.3 which shows Gaussian noise of almost the
same power.

FIGURE 7.8

San Francisco corrupted by Poisson noise.
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7.4.6 Photographic Grain Noise
Photographic grain noise is a characteristic of photographic films. It limits the effective
magnification one can obtain from a photograph. A simple model of the photography
process is as follows:

A photographic film is made up from millions of tiny grains. When light strikes the
film, some of the grains absorb the photons and some do not. The ones that do change
their appearance by becoming metallic silver. In the developing process, the unchanged
grains are washed away.

We will make two simplifying assumptions: (1) the grains are uniform in size and
character and (2) the probability that a grain changes is proportional to the number of
photons incident upon it. Both assumptions can be relaxed, but the basic answer is the
same. In addition, we will assume the grains are independent of each other.

Slow film has a large number of small fine grains, while fast film has a smaller number
of larger grains. The small grains give slow film a better, less grainy picture; the large
grains in fast film cause a grainier picture.

In a given area, A, assume there are L grains, with the probability of each grain
changing, p, proportionate to the number of incident photons. Then the number of
grains that change, N, is binomial

Pr[N � k] �

(
L

k

)
pk (1 � p)L�k . (7.47)

Since L is large, when p small but � � Lp � E[N] moderate, this probability is well
approximated by a Poisson distribution

Pr[N � k] �
e���k

k! (7.48)

and by a Gaussian when p is larger:

Pr[k � N < k � �k ]

� Pr

[
k � Lp√
Lp(1 � p)

�
N � Lp√
Lp(1 � p)

�
k � �k � Lp√

Lp(1 � p)

]
(7.49)

≈ e
�0.5

(
k�Lp

Lp(1�p)

)2

�k (7.50)

The probability interval on the right-hand side of (7.49) is exactly the same as that
on the left except that it has been normalized by subtracting the mean and dividing by
the standard deviation. (7.50) results from (7.49) by applying the central limit theorem.
In other words, the distribution of grains that change is approximately Gaussian with
mean Lp and variance Lp(1 � p). This variance is maximized when p � 0.5. Sometimes,
however, it is sufficiently accurate to ignore this variation and model grain noise as
additive Gaussian with a constant noise power.
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k

FIGURE 7.9

Illustration of the Gaussian approximation to the binomial. In both figures, p � 0.7 and the Gaus-
sians have the same means and variances as the binomials. Even for L as small as 5, the Gaussian
reasonably approximates the binomial PMF. For L � 20, the approximation is very good.

7.5 CCD IMAGING
In the past 20 years or so, CCD (charge-coupled devices) imaging has replaced pho-
tographic film as the dominant imaging form. First CCDs appeared in scientific
applications, such as astronomical imaging and microscopy. Recently, CCD digital cam-
eras and videos have become widely used consumer items. In this section, we analyze the
various noise sources affecting CCD imagery.

CCD arrays work on the photoelectric principle (first discovered by Hertz and
explained by Einstein, for which he was awarded the Nobel prize). Incident photons
are absorbed, causing electrons to be elevated into a high energy state. These elec-
trons are captured in a well. After some time, the electrons are counted by a “read out”
device.

The number of electrons counted, N , can be written as

N � NI � Nth � Nro , (7.51)

where NI is the number of electrons due to the image, Nth the number due to thermal
noise, and Nro the number due to read out effects.

NI is Poisson, with the expected value E[NI ] � � proportional to the incident image
intensity. The variance of NI is also �, thus the standard deviation is

√
�. The signal-

to-noise ratio (neglecting the other noises) is �/
√

� �
√

�. The only way to increase
the signal-to-noise ratio is to increase the number of electrons recorded. Sometimes the
image intensity can be increased (e.g., a photographer’s flash), the aperature increased
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(e.g., a large telescope), or the exposure time increased. However, CCD arrays saturate:
only a finite number of electrons can be captured. The effect of long exposures is achieved
by averaging many short exposure images.

Even without incident photons, some electrons obtain enough energy to get captured.
This is due to thermal effects and is called thermal noise or dark current. The amount
of thermal noise is proportional to the temperature, T , and the exposure time. Nth is
modeled as Gaussian.

The read out process introduces its own uncertainties and can inject electrons into
the count. Read out noise is a function of the read out process and is independent of the
image and the exposure time. Like image noise, Nro is modeled as Poisson noise.

There are two different regimes in which CCD imaging is used: low light and high
light levels. In low light, the number of image electrons is small. In this regime, thermal
noise and read out noise are both significant and can dominate the process. For instance,
much scientific and astronomical imaging is in low light. Two important steps are taken
to reduce the effects of thermal and read out noise. The first is obvious: since thermal
noise increases with temperature, the CCD is cooled as much as practicable. Often liquid
nitrogen is used to lower the temperature.

The second is to estimate the means of the two noises and subtract them from
measured image. Since the two noises arise from different effects, the means are measured
separately. The mean of the thermal noise is measured by averaging several images taken
with the shutter closed, but with the same shutter speed and temperature. The mean of
the read out noise is estimated by taking the median of several (e.g., 9) images taken with
the shutter closed and a zero exposure time (so that any signal measured is due to read
out effects).

In high light levels, the image noise dominates and thermal and read out noises can
be ignored. This is the regime in which consumer imaging devices are normally used.
For large values of NI , the Poisson distribution is well modeled as Gaussian. Thus the
overall noise looks Gaussian, but the signal-to-noise ratio is higher in bright regions than
in dark regions.

7.6 SPECKLE
In this section, we discuss two kinds of speckle, a curious distortion in images created by
coherent light or by atmospheric effects. Technically not noise in the same sense as other
noise sources considered so far, speckle is noise-like in many of its characteristics.

7.6.1 Speckle in Coherent Light Imaging
Speckle is one of the more complex image noise models. It is signal dependent, non-
Gaussian, and spatially dependent. Much of this discussion is taken from [14, 15]. We will
first discuss the origins of speckle, then derive the first-order density of speckle, and
conclude this section with a discussion of the second-order properties of speckle.
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In coherent light imaging, an object is illuminated by a coherent source, usually a
laser or a radar transmitter. For the remainder of this discussion, we will consider the
illuminant to be a light source, e.g., a laser, but the principles apply to radar imaging
as well.

When coherent light strikes a surface, it is reflected back. Due to the microscopic
variations in the surface roughness within one pixel, the received signal is subjected
to random variations in phase and amplitude. Some of these variations in phase add
constructively, resulting in strong intensities, and others add deconstructively, resulting
in low intensities. This variation is called speckle.

Of crucial importance in the understanding of speckle is the point spread function
of the optical system. There are three regimes:

■ The point spread function is so narrow that the individual variations in surface
roughness can be resolved. The reflections off the surface are random (if, indeed,
we can model the surface roughness as random in this regime), but we cannot
appeal to the central limit theorem to argue that the reflected signal amplitudes are
Gaussian. Since this case is uncommon in most applications, we will ignore it.

■ The point spread function is broad compared to the feature size of the surface
roughness, but small compared to the features of interest in the image. This is
a common case and leads to the conclusion, presented below, that the noise is
exponentially distributed and uncorrelated on the scale of the features in the image.
Also, in this situation, the noise is often modeled as multiplicative.

■ The point spread function is broad compared to both the feature size of the
object and the feature size of the surface roughness. Here, the speckle is corre-
lated and its size distribution is interesting and is determined by the point spread
function.

The development will proceed in two parts. Firstly, we will derive the first-order
probability density of speckle and, secondly, we will discuss the correlation properties of
speckle.

In any given macroscopic area, there are many microscopic variations in the surface
roughness. Rather than trying to characterize the surface, we will content ourselves with
finding a statistical description of the speckle.

We will make the (standard) assumptions that the surface is very rough on the scale
of the optical wavelengths. This roughness means that each microscopic reflector in the
surface is at a random height (distance from the observer) and a random orientation with
respect to the incoming polarization field. These random reflectors introduce random
changes in the reflected signal’s amplitude, phase, and polarization. Further, we assume
these variations at any given point are independent from each other and independent
from the changes at any other point.

These assumptions amount to assuming that the system cannot resolve the variations
in roughness. This is generally true in optical systems, but may not be so in some radar
applications.
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The above assumptions on the physics of the situation can be translated to statistical
equivalents: the amplitude of the reflected signal at any point, (x ,y), is multiplied by a
random amplitude,denoted a(x ,y), and the polarization,�(x ,y), is uniformly distributed
between 0 and 2�.

Let u(x ,y) be the complex phasor of the incident wave at a point (x ,y), v(x ,y) be the
reflected signal, and w(x ,y) be the received phasor. From the above assumptions,

v(x ,y) � u(x ,y)a(x ,y)ej�(x ,y) (7.52)

and, letting h(·, ·) denote the 2D point spread function of the optical system,

w(x ,y) � h(x ,y) ∗ v(x ,y). (7.53)

One can convert the phasors to rectangular coordinates:

v(x ,y) � vR(x ,y) � jvI (x ,y) (7.54)

and

w(x ,y) � wR(x ,y) � jwI (x ,y). (7.55)

Since the change in polarization is uniform between 0 and 2�, vR(x ,y) and vI (x ,y) are
statistically independent. Similarly, wR(x ,y) and wI (x ,y) are statistically independent.
Thus,

wR(x ,y) �

∫ �

��

∫ �

��
h(�,�)vR(x � �,y � �)d�d� (7.56)

and similarly for wI (x ,y).
The integral in (7.56) is basically a sum over many tiny increments in x and y . By

assumption, the increments are independent of one another. Thus, we can appeal to the
central limit theorem and conclude that the distributions of wR(x ,y) and wI (x ,y) are
each Gaussian with mean 0 and variance �2. Note, this conclusion does not depend on
the details of the roughness, as long as the surface is rough on the scale of the wavelength
of the incident light and the optical system cannot resolve the individual components of
the surface.

The measured intensity, f(x ,y), is the squared magnitude of the received phasors:

f(x ,y) � wR(x ,y)2 � wI (x ,y)2. (7.57)

The distribution of f can be found by integrating the joint density of wR and wI over
a circle of radius f 0.5:

Pr
[
f(x ,y) � f

]
�

∫ 2�

0

∫ f 0.5

0

1

2��2 e��/2�2
� d� d� (7.58)

� 1 � e�f /2�2
. (7.59)
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The corresponding density is pf ( f ):

pf ( f ) �

{
1
g e�f /g f  0

0 f < 0,
(7.60)

where we have taken the liberty to introduce the mean intensity, g � g (x ,y) � 2�2(x ,y).
A little rearrangement can put this into a multiplicative noise model:

f(x ,y) � g (x ,y)q, (7.61)

where q has a exponential density

pq(x) �

{
e�x x  0

0 x < 0.
(7.62)

The mean of q is 1 and the variance is 1.
The exponential density is much heavier tailed than the Gaussian density, meaning

that much greater excursions from the mean occur. In particular, the standard deviation
of f equals E[f ], i.e., the typical deviation in the reflected intensity is equal to the typical
intensity. It is this large variation that causes speckle to be so objectionable to human
observers.

It is sometimes possible to obtain multiple images of the same scene with independent
realizations of the speckle pattern, i.e., the speckle in any one image is independent of the
speckle in the others. For instance, there may be multiple lasers illuminating the same
object from different angles or with different optical frequencies. One means of speckle
reduction is to average these images:

f̂(x ,y) �
1

M

M∑
i�1

fi(x ,y) (7.63)

� g (x ,y)

∑M
i�1 qi(x ,y)

M
. (7.64)

Now, the average of the negative exponentials has mean 1 (the same as each individual
negative exponential) and variance 1/M . Thus, the average of the speckle images has a
mean equal to g (x ,y) and variance g 2(x ,y)/M .

Figure 7.10 shows an uncorrelated speckle image of San Francisco. Notice how severely
degraded this image is. Careful examination will show that the light areas are noisier than
the dark areas. This image was created by generating an “image” of exponential variates
and multiplying each by the corresponding pixel value. Intensity values beyond 255 were
truncated to 255.

The correlation structure of speckle is largely determined by the width of the point
spread function. As above the real and imaginary components (or, equivalently, the X
and Y components) of the reflected wave are independent Gaussian. These components
(wR and wI above) are individually filtered by the point spread function of the imaging
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FIGURE 7.10

San Francisco with uncorrelated speckle.

system. The intensity image is formed by taking the complex magnitude of the resulting
filtered components.

Figure 7.11 shows a correlated speckle image of San Francisco. The image was created
by filtering wR and wI with a 2D square filter of size 5 � 5. This size filter is too big for the
fine details in the original image, but is convenient to illustrate the correlated speckle. As
above, intensity values beyond 255 were truncated to 255. Notice the correlated structure
to the “speckles.” The image has a pebbly appearance.

We will conclude this discussion with a quote from Goodman [16]:

The general conclusions to be drawn from these arguments are that, in any speckle pattern,
large-scale-size fluctuations are the most populous, and no scale sizes are present beyond
a certain small-size cutoff. The distribution of scale sizes in between these limits depends
on the autocorrelation function of the object geometry, or on the autocorrelation function
of the pupil function of the imaging system in the imaging geometry.

7.6.2 Atmospheric Speckle
The twinkling of stars is similar in cause to speckle in coherent light, but has important
differences. Averaging multiple frames of independent coherent imaging speckle results
in an image estimate whose mean equals the underlying image and whose variance is
reduced by the number of frames averaged over. However, averaging multiple images of
twinkling stars results in a blurry image of the star.
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FIGURE 7.11

San Francisco with correlated speckle.

From the earth, stars (except the Sun!) are point sources. Their light is spatially
coherent and planar when it reaches the atmosphere. Due to thermal and other variations,
the diffusive properties of the atmosphere changes in an irregular way. This causes the
index of refraction to change randomly. The star appears to twinkle. If one averages
multiple images of the star, one obtains a blurry image.

Until recently, the preferred way to eliminate atmospheric-induced speckle (the“twin-
kling”) was to move the observer to a location outside the atmosphere, i.e., in space. In
recent years, new techniques to estimate and track the fluctuations in atmospheric con-
ditions have allowed astronomers to take excellent pictures from the earth. One class is
called “speckle interferometry” [17]. It uses multiple short duration (typically less than
1 second each) images and a nearby star to estimate the random speckle pattern. Once
estimated, the speckle pattern can be removed, leaving the unblurred image.

7.7 CONCLUSIONS
In this chapter, we have tried to summarize the various image noise models and give some
recommendations for minimizing the noise effects. Any such summary is, by necessity,
limited. We do, of course, apologize to any authors whose work we may have omitted.

For further information, the interested reader is urged to consult the references for
this and other chapters.



References 167

REFERENCES
[1] W. Feller. An Introduction to Probability Theory and its Applications. J. Wiley & Sons, New York,

1968.

[2] P. Billingsley. Probability and Measure. J. Wiley & Sons, New York, 1979.

[3] M. Woodroofe. Probability with Applications. McGraw-Hill, New York, 1975.

[4] C. Helstrom. Probability and Stochastic Processes for Engineers. Macmillan, New York, 1991.

[5] E. H. Lloyd. Least-squares estimations of location and scale parameters using order statistics.
Biometrika, 39:88–95, 1952.

[6] A. C. Bovik, T. S. Huang, and D. C. Munson, Jr. A generalization of median filtering using linear
combinations of order statistics. IEEE Trans. Acoust., ASSP-31(6):1342–1350, 1983.

[7] R. C. Hardie and C. G. Boncelet, Jr. LUM filters: a class of order statistic based filters for smoothing
and sharpening. IEEE Trans. Signal Process., 41(3):1061–1076, 1993.

[8] C. G. Boncelet, Jr. Algorithms to compute order statistic distributions. SIAM J. Sci. Stat. Comput.,
8(5):868–876, 1987.

[9] C. G. Boncelet, Jr. Order statistic distributions with multiple windows. IEEE Trans. Inf. Theory,
IT-37(2):436–442, 1991.

[10] P. Peebles. Probability, Random Variables, and Random Signal Principles. McGraw Hill, New York,
1993.

[11] P. J. Huber. Robust Statistics. J. Wiley & Sons, New York, 1981.

[12] J. H. Miller and J. B. Thomas. Detectors for discrete-time signals in non-Gaussian noise. IEEE
Trans. Inf. Theory, IT-18(2):241–250, 1972.

[13] J. Astola and P. Kuosmanen. Fundamentals of Nonlinear Digital Filtering. CRC Press, Boca Raton,
FL, 1997.

[14] D. Kuan, A. Sawchuk, T. Strand, and P. Chavel. Adaptive restoration of images with speckle. IEEE
Trans. Acoust., ASSP-35(3):373–383, 1987.

[15] J. Goodman. Statistical Optics. Wiley-Interscience, New York, 1985.

[16] J. Goodman. Some fundamental properties of speckle. J. Opt. Soc. Am., 66:1145–1150, 1976.

[17] A. Labeyrie. Attainment of diffraction limited resolution in large telescopes by fourier analysis
speckle patterns in star images. Astron. Astrophys., VI:85–87, 1970.



CHAPTER

8Color and Multispectral
Image Representation and
Display
H. J. Trussell

North Carolina State University

8.1 INTRODUCTION
One of the most fundamental aspects of image processing is the representation of the
image. The basic concept that a digital image is a matrix of numbers is reinforced by
virtually all forms of image display. It is another matter to interpret how that value is
related to the physical scene or object that is represented by the recorded image and how
closely displayed results represent the data obtained from digital processing. It is these
relationships to which this chapter is addressed.

Images are the result of a spatial distribution of radiant energy. The most common
images are 2D color images seen on television. Other everyday images include pho-
tographs, magazine and newspaper pictures, computer monitors and motion pictures.
Most of these images represent realistic or abstract versions of the real world. Medical and
satellite images form classes of images where there is no equivalent scene in the physical
world. Because of the limited space in this chapter, we will concentrate on the pictorial
images.

The representation of an image goes beyond the mere designation of independent
and dependent variables. In that limited case, an image is described by a function

f (x ,y ,�, t ), (8.1)

where x ,y are spatial coordinates (angular coordinates can also be used), � indicates the
wavelength of the radiation, and t represents time. It is noted that images are inher-
ently 2D spatial distributions. Higher dimensional functions can be represented by a
straightforward extension. Such applications include medical CT and MRI, as well as
seismic surveys. For this chapter, we will concentrate on the spatial and wavelength
variables associated with still images. The temporal coordinate will be left for another
chapter. 169
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In addition to the stored numerical values in a discrete coordinate system, the repre-
sentation of multidimensional information includes the relationship between the samples
and the real world. This relationship is important in the determination of appropriate
sampling and subsequent display of the image.

Before presenting the fundamentals of image presentation, it is necessary to define
our notation and to review the prerequisite knowledge that is required to understand
the following material. A review of rules for the display of images and functions is pre-
sented in Section 8.2, followed by a review of mathematical preliminaries in Section 8.3.
Section 8.4 will cover the physical basis for multidimensional imaging. The foundations
of colorimetry are reviewed in Section 8.5. This material is required to lay a foundation
for a discussion of color sampling. Section 8.6 describes multidimensional sampling with
concentration on sampling color spectral signals. We will discuss the fundamental differ-
ences between sampling the wavelength and spatial dimensions of the multidimensional
signal. Finally, Section 8.7 contains a mathematical description of the display of multi-
dimensional data. This area is often neglected by many texts. The section will emphasize
the requirements for displaying data in a fashion that is both accurate and effective. The
final section briefly considers future needs in this basic area.

8.2 PRELIMINARY NOTES ON DISPLAY OF IMAGES
One difference between 1D and 2D functions is the way they are displayed. One-
dimensional functions are easily displayed in a graph where the scaling is obvious.
The observer will need to examine the numbers which label the axes to determine the
scale of the graph and get a mental picture of the function. With 2D scalar-valued func-
tions the display becomes more complicated. The accurate display of vector-valued 2D
functions, e.g., color images, will be discussed after covering the necessary material on
sampling and colorimetery.

2D functions can be displayed in several different ways. The most common are sup-
ported by MATLAB [1]. The three most common are the isometric plot, the grayscale
plot, and the contour plot. The user should choose the right display for the information
to be conveyed. Let us consider each of the three display modalities. As simple example,
consider the 2D Gaussian functional form

f (m,n) � sinc

(
m2

a2 �
n2

b2

)
,

where, for the following plots, a � 1 and b � 2.
The isometric or surface plots give the appearance of a 3D drawing. The surface can

be represented as a wire mesh or as a shaded solid, as in Fig. 8.1. In both cases, portions of
the function will be obscured by other portions, for example, one cannot see through the
main lobe. This representation is reasonable for observing the behavior of mathematical
functions, such as, point spread functions, or filters in the space or frequency domains.
An advantage of the surface plot is that it gives a good indication of the values of the



8.2 Preliminary Notes on Display of Images 171

210
25

0
5

10

210

25

0

5

10
20.4

20.2

0

0.2

0.4

0.6

0.8

1

Sinc function, shaded surface plot

FIGURE 8.1

Shaded surface plot.

function since a scale is readily displayed on the axes. It is rarely effective for the display
of images.

Contour plots are analogous to the contour or topographic maps used to describe
geographical locations. The sinc function is shown using this method in Fig. 8.2. All
points which have a specific value are connected to form a continuous line. For a con-
tinuous function the lines must form closed loops. This type of plot is useful in locating
the position of maxima or minima in images or 2D functions. It is used primarily in
spectrum analysis and pattern recognition applications. It is difficult to read values from
the contour plot and takes some effort to determine whether the functional trend is up
or down. The filled contour plot, available in MATLAB, helps in this last task.

Most monochrome images are displayed using the grayscale plot where the value of a
pixel is represented by it relative lightness. Since in most cases high values are displayed
as light and low values are displayed as dark, it is easy to determine functional trends.
It is almost impossible to determine exact values. For images, which are nonnegative
functions, the display is natural; but for functions, which have negative values, it can be
quite artificial.

In order to use this type of display with functions, the representation must be scaled
to fit in the range of displayable gray levels. This is most often done using a min/max
scaling, where the function is linearly mapped such that the minimum value appears
as black and the maximum value appears as white. This method was used for the sinc
function shown in Fig. 8.3. For the display of functions, the min/max scaling can be
effective to indicate trends in the behavior. Scaling for images is another matter.
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Let us consider a monochrome image which has been digitized by some device, e.g.,
a scanner or camera. Without knowing the physical process of digitization, it is impossible
to determine the best way to display the image. The proper display of images requires
calibration of both the input and output devices. For now, it is reasonable to give some
general rules about the display of monochrome images.

1. For the comparison of a sequence of images, it is imperative that all images be
displayed using the same scaling. It is hard to emphasize this rule sufficiently
and hard to count all the misleading results that have occurred when it has been
ignored. The most common violation of this rule occurs when comparing an
original and processed image. The user scales both images independently using
min/max scaling. In many cases, the scaling can produce significant enhancement
of low-contrast images which can be mistaken for improvements produced by an
algorithm under investigation. For example, consider an algorithm designed to
reduce noise, with the noisy image modeled by

g � f � n.

Since the noise is both positive and negative, the noisy image, g, has a larger range
than the clean image, f . Almost any noise reduction method will reduce the range
of the processed image, thus, the output image undergoes additional contrast
enhancement if min/max scaling is used. The result is greater apparent dynamic
range and a better looking image.

There are several ways to implement this rule. The most appropriate way will
depend on the application. The scaling may be done using the min/max of the
collection of all images to be compared. In some cases, it is appropriate to truncate
values at the limits of the display, rather than force the entire range into the range
of the display. This is particularly true of images containing a few outliers. It may
be advantageous to reduce the region of the image to a particular region of interest
which will usually reduce the range to be reproduced.

2. Display a step-wedge, a strip of sequential gray levels from minimum to maximum
values, with the image to show how the image gray levels are mapped to brightness
or density. This allows some idea of the quantitative values associated with the
pixels. This is routinely done on images which are used for analysis, such as the
digital photographs from space probes.

3. Use a graytone mapping which allows a wide range of gray levels to be visually
distinguished. In software such as MATLAB, the user can control the mapping
between the continuous values of the image and the values sent to the display
device. For example, consider the CRT monitor as the output device. The visual
tonal qualities of the output depend on many factors including the brightness and
contrast setting of the monitor, the specific phosphors used in the monitor, the
linearity of the electron guns, and the ambient lighting. It is recommended that
adjustments be made so that a user is able to distinguish all levels of a step-wedge
of about 32 levels.
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Most displays have problems with gray levels at the ends of the range being
indistinguishable. This can be overcome by proper adjustment of the contrast and
gain controls and an appropriate mapping from image values to display values.
For hardcopy devices, the medium should be taken into account. For example,
changes in paper type or manufacturer can result in significant tonal variations.

8.3 NOTATION AND PREREQUISITE KNOWLEDGE
In most cases, the multidimensional process can be represented as a straightforward
extension of 1D processes. Thus, it is reasonable to mention the 1D operations which are
prerequisite to the chapter and will form the basis of the multidimensional processes.

8.3.1 Practical Sampling
Mathematically, ideal sampling is usually represented with the use of a generalized func-
tion, the Dirac delta function, �(t ) [2]. The entire sampled sequence can be represented
using the comb function

comb(t ) �

�∑
n���

�(t � n), (8.2)

where the sampling interval is unity. The sampled signal is obtained by multiplication

sd (t ) � s(t )comb(t ) � s(t )
�∑

n���

�(t � n) �

�∑
n���

s(t )�(t � n). (8.3)

It is common to use the notation of {s(n)} or s(n) to represent the collection of samples in
discrete space. The arguments n and t will serve to distinguish the discrete or continuous
space.

Practical imaging devices, such as video cameras, CCD arrays, and scanners, must use
a finite aperture for sampling. The comb function cannot be realized by actual devices.
The finite aperture is required to obtain a finite amount of energy from the scene. The
engineering tradeoff is that large apertures receive more light and thus will have higher
SNR’s than smaller apertures; while smaller apertures have higher spatial resolution than
larger ones. This is true for apertures larger than the order of the wavelength of light. At
that point diffraction limits the resolution.

The aperture may cause the light intensity to vary over the finite region of integration.
For a single sample of a 1D signal at time, nT, the sample value can be obtained by

s(n) �

∫ nT

(n�1)T
s(t )a(nT � t )dt , (8.4)

where a(t ) represents the impulse response (or light variation) of the aperture. This is
simple convolution. The sampling of the signal can be represented by

s(n) � [s(t ) ∗ a(t )]comb(t/T ), (8.5)
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where ∗ represents convolution. This model is reasonably accurate for spatial sampling
of most cameras and scanning systems.

The sampling model can be generalized to include the case where each sample is
obtained with a different aperture. For this case, the samples which need not be equally
spaced, are given by

s(n) �

∫ u

l
s(t )an(t )dt , (8.6)

where the limits of integration correspond to the region of support for the aperture.
While there may be cases where this form is used in spatial sampling, its main use is in
sampling the wavelength dimension of the image signals. That topic will be covered later.
The generalized signal reconstruction equation has the form

s(t ) �

�∑
n���

s(n)gn(t ), (8.7)

where the collection of functions, {gn(t )}, provide the interpolation from discrete to
continuous space. The exact form of {gn(t )} depends on the form of {an(t )}.

8.3.2 One-Dimensional Discrete System Representation
Linear operations on signals and images can be represented as simple matrix multi-
plications. The internal form of the matrix may be complicated, but the conceptual
manipulation of images is very easy. Let us consider the representation of a one-
dimensional convolution before going on to multidimensions. Consider the linear,
time-invariant system

g (t ) �

∫ �

��
h(u)s(t � u)du.

The discrete approximation to continuous convolution is given by

g (n) �

L�1∑

k�0

h(k)s(n � k), (8.8)

where the indices n and k represent sampling of the analog signals, e.g., s(n) � s(n�T ).
Since it is assumed that the signals under investigation have finite support, the sum-
mation is over a finite number of terms. If s(n) has M nonzero samples and h(n)

has L nonzero samples, then g (n) can have at most N � M � L � 1 nonzero samples.
It is assumed that the reader is familiar with what conditions are necessary so that
we can represent the analog system by discrete approximation. Using the definition of
the signal as a vector, s � [s(0), s(1), . . . s(M � 1)], the summation of Eq. (8.8) can be
written

g � Hs, (8.9)
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where the vectors s and g are of length M and N , respectively, and the N � M matrix H
is defined by

H �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 0 . . . 0 0 0

h1 h0 0 . . . 0 0 0

h2 h1 h0 . . . 0 0 0
...

...
...

...
...

...
...

hL�1 hL�2 hL�3 . . . 0 0 0

0 hL�1 hL�2 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 . . . h0 0 0

0 0 0 . . . h1 h0 0

0 0 0 . . . h2 h1 h0

0 0 0 . . . h3 h2 h1
...

...
...

...
...

...
...

0 0 0 . . . 0 hL�1 hL�2

0 0 0 . . . 0 0 hL�1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is often desirable to work with square matrices. In this case, the input vector can be
padded with zeros to the same size as g and the matrix H modified to produce an N � N
Toeplitz form

Ht �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 0 . . . 0 0 0 . . . 0 0 0

h1 h0 0 . . . 0 0 0 . . . 0 0 0

h2 h1 h0 . . . 0 0 0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

...
...

hL�1 hL�2 hL�3 . . . h0 0 0 . . . 0 0 0

0 hL�1 hL�2 . . . h1 h0 0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 . . . hk hk�1 hk�2 . . . 0 0 0

0 0 0 . . . hk�1 hk hk�1 . . . 0 0 0

0 0 0 . . . hk�2 hk�1 hk . . . 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 . . . 0 hL�1 hL�2 . . . h1 h0 0

0 0 0 . . . 0 0 hL�1 . . . h2 h1 h0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The output can now be written as

g � Ht s0,

where s0 � [s(0), s(1), . . . s(M � 1), 0, . . .0]T .
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It is often useful, because of the efficiency of the FFT, to approximate the Toeplitz
form by a circulant form

Hc �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 0 . . . 0 hL�1 hL�2 . . . h3 h2 h1

h1 h0 0 . . . 0 0 0 . . . h4 h3 h2

h2 h1 h0 . . . 0 0 0 . . . h5 h4 h3
...

...
...

...
...

...
...

...
...

...
...

hL�1 hL�2 hL�3 . . . 0 0 0 . . . 0 0 0

0 hL�1 hL�2 . . . 0 0 0 . . . 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 . . . hk hk�1 hk�2 . . . 0 0 0

0 0 0 . . . hk�1 hk hk�1 . . . 0 0 0

0 0 0 . . . hk�2 hk�1 hk . . . 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 . . . 0 hL�1 hL�2 . . . h1 h0 0

0 0 0 . . . 0 0 hL�1 . . . h2 h1 h0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The approximation of a Toeplitz matrix by a circulant gets better as the dimension of the
matrix increases. Consider the matrix norm

||H||2 �
1

N 2

N∑

k�1

N∑

l�1

h2
kl ,

then ||Ht � Hc || → 0 as N → �. This approximation works well with impulse responses
of short duration and autocorrelation matrices with small correlation distances.

8.3.3 Multidimensional System Representation
The images of interest are described by two spatial coordinates and a wavelength co-
ordinate, f (x ,y ,�). This continuous image will be sampled in each dimension. The result
is a function defined on a discrete coordinate system, f (m, n, l). This would usually
require a 3D matrix. However, to allow the use of standard matrix algebra, it is common
to use stacked notation [3]. Each band, defined by wavelength �l or simply l , of the image
is a P �P image. Without loss of generality, we will assume a square image for notational
simplicity. This image can be represented as a P2 �1 vector. The Q bands of the image
can be stacked in a like manner forming a QP2 �1 vector.

Optical blurring is modeled as convolution of the spatial image. Each wavelength
of the image may be blurred by a slightly different point spread function (PSF). This is
represented by

g(QP2�1) � H(QP2�QP2)f(QP2�1), (8.10)
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where the matrix H has a block form

H �

⎡
⎢⎢⎢⎢⎣

H1,1 H1,2 . . . H1,Q

H2,1 H2,2 . . . H2,Q
...

... . . .
...

HQ,1 HQ, 2 . . . HQ,Q

⎤
⎥⎥⎥⎥⎦

. (8.11)

The submatrix Hi, j is of dimension P2 �P2 and represents the contribution of the jth
band of the input to the ith band of the output. Since an optical system does not modify
the frequency of an optical signal, H will be block diagonal. There are cases, e.g., imaging
using color filter arrays, where the diagonal assumption does not hold.

In many cases, multidimensional processing is a straightforward extension of 1D
processing. The use of matrix notation permits the use of simple linear algebra to derive
many results that are valid in any dimension. Problems arise primarily during the imple-
mentation of the algorithms when simplifying assumptions are usually made. Some of
the similarities and differences are listed below.

8.3.3.1 Similarities
1. Derivatives and Taylor expansions are extensions of 1D

2. Fourier transforms are straightforward extension of 1D

3. Linear systems theory is the same

4. Sampling theory is straightforward extension of 1D

5. Separable 2D signals are treated as 1D signals

8.3.3.2 Differences
1. Continuity and derivatives have directional definitions

2. 2D signals are usually not causal; causality is not intuitive

3. 2D polynomials cannot always be factored; this limits use of rational polynomial
models

4. More variation in 2D sampling, hexagonal lattices are common in nature, random
sampling makes interpolation much more difficult

5. Periodic functions may have a wide variety of 2D periods

6. 2D regions of support are more variable, the boundaries of objects are often
irregular instead of rectangular or elliptical

7. 2D systems can be mixed IIR and FIR, causal and noncausal

8. Algebraic representation using stacked notation for 2D signals is more difficult to
manipulate and understand
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Algebraic representation using stacked notation for 2D signals is more difficult to
manipulate and understand than in 1D. An example of this is illustrated by considering
the autocorrelation of multiband images which are used in multispectral restoration
methods. This is easily written in terms of the matrix notation reviewed earlier:

Rff � E{ff T },
where f is a QP2 �1 vector. In order to compute estimates we must be able to manipu-
late this matrix. While the QP2 �QP2 matrix is easily manipulated symbolically, direct
computation with the matrix is not practical for realistic values of P and Q, e.g., Q �3
and P �256. For practical computation, the matrix form is simplified by using var-
ious assumptions, such as separability, circularity, and independence of bands. These
assumptions result in block properties of the matrix which reduces the dimension of the
computation. A good example is shown in the multidimensional restoration problem [4].

8.4 ANALOG IMAGES AS PHYSICAL FUNCTIONS
The image which exists in the analog world is a spatio-temporal distribution of radiant
energy. As was mentioned earlier, this chapter will not discuss the temporal dimension
but concentrate on the spatial and wavelength aspects of the image. The function is
represented by f (x ,y ,�). While it is often overlooked by students eager to process their
first image, it is fundamental to define what the value of the function represents. Since we
are dealing with radiant energy, the value of the function represents energy flux, exactly
like electromagnetic theory. The units will be energy per unit area (or angle) per unit
time per unit wavelength. From the imaging point of view, the function is described by
the spatial energy distribution at the sensor. It does not matter whether the object in the
image emits light or reflects light.

To obtain a sample of the analog image we must integrate over space, time and
wavelength to obtain a finite amount of energy. Since we have eliminated time from the
description, we can have watts per unit area per unit wavelength. To obtain overall light-
ness, the wavelength dimension is integrated out using the luminous efficiency function
discussed in the following section on colorimetry. The common units of light inten-
sity are lux (lumens/m2) or footcandles. See [5] for an exact definition of radiometric
quantities. A table of typical light levels is given in Table 8.1. The most common instru-
ment for measuring light intensity is the light meter used in professional and amateur
photography.

In order to sample an image correctly, we must be able to characterize its energy
distribution in each of the dimensions. There is little that can be said about the spatial
distribution of energy. From experience, we know that images vary greatly in spatial
content. Objects in an image usually may appear at any spatial location and at any
orientation. This implies that there is no reason to apply varying sample spacing over
the spatial range of an image. In the cases of some very restricted ensembles of images,
variable spatial sampling has been used to advantage. Since these examples are quite rare,
they will not be discussed here.
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TABLE 8.1 Qualitative description of luminance levels.

Description Lux (Cd/m2) Footcandles

Moonless night ∼ 10�6 ∼ 10�7

Full moon night ∼ 10�3 ∼ 10�4

Restaurant ∼ 100 ∼ 9
Office ∼ 350 ∼ 33
Overcast day ∼ 5,000 ∼ 465
Sunny day ∼ 200,000 ∼ 18,600

Spatial sampling is done using a regular grid. The grid is most often rectilinear
but hexagonal sampling has been thoroughly investigated [6]. Hexagonal sampling is
used for efficiency when the images have a natural circular region of support or circular
symmetry. All the mathematical operations, such as Fourier transforms and convoutions,
exist for hexagonal grids. It is noted that the reasons for uniform sampling of the temporal
dimension follow the same arguments.

The distribution of energy in the wavelength dimension is not as straightforward to
characterize. In addition, we are often not interested in reconstructing the radiant spectral
distribution as we are for the spatial distribution. We are interested in constructing an
image which appears to the human observer to be the same colors as the original image.
In this sense, we are actually using color aliasing to our advantage. Because of this aspect
of color imaging, we need to characterize the color vision system of the eye in order to
determine proper sampling of the wavelength dimension.

8.5 COLORIMETRY
To understand the fundamental difference in the wavelength domain, it is necessary
to describe some of the fundamentals of color vision and color measurement. What is
presented here is only a brief description that will allow us to proceed with the description
of the sampling and mathematical representation of color images. A more complete
description of the human color visual system can be found in [7, 8].

The retina contains two types of light sensors, rods and cones. The rods are used
for monochrome vision at low light levels; the cones are used for color vision at higher
light levels. There are three types of cones. Each type is maximally sensitive to a dif-
ferent part of the spectrum. They are often referred to as long, medium, and short
wavelength regions. A common description refers to them as red, green, and blue cones,
although their maximal sensitivity is in the yellow, green, and blue regions of the spec-
trum. Recall that the visible spectrum extends from about 400 nm (blue) to about 700 nm
(red). Cones sensitivites are related to the absorption sensitivity of the pigments in the
cones. The absorption sensitivity of the different cones has been measured by several
methods. An example of the curves is shown in Fig. 8.4. Long before the technology was
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Cone sensitivities.

available to measure the curves directly, they were estimated from a clever color-matching
experiment. A description of this experiment which is still used today can be found in
[5, 7].

Grassmann formulated a set of laws for additive color mixture in 1853 [5, 9, 10].
Additive in this sense refers to the addition of two or more radiant sources of light. In
addition, Grassmann conjectured that any additive color mixture could be matched by
the proper amounts of three primary stimuli. Considering what was known about the
physiology of the eye at that time, these laws represent considerable insight. It should
be noted that these “laws” are not physically exact but represent a good approximation
under a wide range of visibility conditions. There is current research in the vision and
color science community on the refinements and reformulations of the laws.

Grassmann’s laws are essentially unchanged as printed in recent texts on color science
[5]. With our current understanding of the physiology of the eye and a basic back-
ground in linear algebra, Grassmann’s laws can be stated more concisely. Furthermore,
extensions of the laws and additional properties are easily derived using the mathemat-
ics of matrix theory. There have been several papers which have taken a linear systems
approach to describing color spaces as defined by a standard human observer [11–14].
This section will briefly summarize these results and relate them to simple signal pro-
cessing concepts. For the purposes of this work, it is sufficient to note that the spectral
responses of the three types of sensors are sufficiently different so as to define a 3D
vector space.
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8.5.1 Color Sampling
The mathematical model for the color sensor of a camera or the human eye can be
represented by

vk �

∫ �

��
ra(�)mk (�)d�, k � 1,2,3 (8.12)

where ra(�) is the radiant distribution of light as a function of wavelength and mk(�) is
the sensitivity of the kth color sensor. The sensitivity functions of the eye were shown in
Fig. 8.4.

Note that sampling of the radiant power signal associated with a color image can be
viewed in at least two ways. If the goal of the sampling is to reproduce the spectral dis-
tribution, then the same criteria for sampling the usual electronic signals can be directly
applied. However, the goal of color sampling is not often to reproduce the spectral dis-
tribution but to allow reproduction of the color sensation. This aspect of color sampling
will be discussed in detail below. To keep this discussion as simple as possible, we will treat
the color sampling problem as a subsampling of a high-resolution discrete space, that
is, the N samples are sufficient to reconstruct the original spectrum using the uniform
sampling of Section 8.3.

It has been assumed in most research and standard work that thevisual frequency
spectrum can be sampled finely enough to allow the accurate use of numerical approxi-
mation of integration. A common sample spacing is 10 nm over the range 400–700 nm,
although ranges as wide as 360–780 nm have been used. This is used for many color
tables and lower priced instrumentation. Precision color instrumentation produces data
at 2 nm intervals. Finer sampling is required for some illuminants with line emit-
ters. Reflective surfaces are usually smoothly varying and can be accurately sampled
more coarsely. Sampling of color signals is discussed in Section 8.6 and in detail
in [15].

Proper sampling follows the same bandwidth restrictions that govern all digital signal
processing. Following the assumption that the spectrum can be adequately sampled, the
space of all possible visible spectra lies in an N -dimensional vector space, where N � 31
is the range if 400–700 nm is used. The spectral response of each of the eye’s sensors can
be sampled as well, giving three linearly independent N -vectors which define the visual
subspace.

Under the assumption of proper sampling, the integral of Eq. (8.12) can be well
approximated by a summation

vk �

U∑
n�L

ra(n��)sk (n��), (8.13)

where �� represents the sampling interval and the summation limits are determined
by the region of support of the sensitivity of the eye. The above equations can be
generalized to represent any color sensor by replacing sk(·) with mk(·). This discrete
form is easily represented in matrix/vector notation. This will be done in the following
sections.
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8.5.2 Discrete Representation of Color-Matching
The response of the eye can be represented by a matrix, S� [s1, s2, s3], where the
N -vectors, si , represent the response of the ith type sensor (cone). Any visible spec-
trum can be represented by an N -vector, f . The response of the sensors to the input
spectrum is a 3-vector, t, obtained by

t � ST f . (8.14)

Two visible spectra are said to have the same color if they appear the same to the human
observer. In our linear model, this means that if f and g are two N -vectors representing
different spectral distributions, they are equivalent colors if

ST f � ST g. (8.15)

It is clear that there may be many different spectra that appear to be the same color to the
observer. Two spectra that appear the same are called metamers. Metamerism (meh-taḿ-
er-ism) is one of the greatest and most fascinating problems in color science. It is basically
color “aliasing” and can be described by the generalized sampling described earlier.

It is difficult to find the matrix, S, that defines the response of the eye. However,
there is a conceptually simple experiment which is used to define the human visual space
defined by S. A detailed discussion of this experiment is given in [5, 7]. Consider the
set of monochromatic spectra ei , for i � 1,2, . . .N . The N -vectors, ei , have a one in
the ith position and zeros elsewhere. The goal of the experiment is to match each of the
monochromatic spectra with a linear combination of primary spectra. Construct three
lighting sources that are linearly independent in N -space. Let the matrix P� [p1, p2, p3]
represent the spectral content of these primaries. The phosphors of a color television are
a common example, Fig. 8.5.

An experiment is conducted where a subject is shown one of the monochromactic
spectra, ei , on one half of a visual field. On the other half of the visual field appears a linear
combination of the primary sources. The subject attempts to visually match an input
monochromatic spectrum by adjusting the relative intensities of the primary sources.
Physically, it may be impossible to match the input spectrum by adjusting the intensities
of the primaries. When this happens, the subject is allowed to change the field of one
of the primaries so that it falls on the same field as the monochromatic spectrum. This
is mathematically equivalent to subtracting that amount of primary from the primary
field. Denoting the relative intensities of the primaries by the 3 vector ai � [ai1,ai2,ai3]T ,
the match is written mathematically as

ST ei � ST Pai . (8.16)

Combining the results of all N monochromatic spectra, Eq. (8.5) can be written

ST I � ST � ST PAT, (8.17)

where I� [e1, e2, . . . , eN ] is the N �N identity matrix.
Note that because the primaries, P, are not metameric, the product matrix is nonsin-

gular, i.e., (ST P)�1 exists. The Human Visual Subspace (HVSS) in the N -dimensional
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CRT monitor phosphors.

vector space is defined by the column vectors of S; however, this space can be equally well
defined by any nonsingular transformation of those basis vectors. The matrix,

A�S(PT S)�1 (8.18)

is one such transformation. The columns of the matrix A are called the color-matching
functions associated with the primaries P.

To avoid the problem of negative values which cannot be realized with transmission
or reflective filters, the CIE developed a standard transformation of the color-matching
functions which have no negative values. This set of color-matching functions is known
as the standard observer or the CIE XYZ color-matching functions. These functions are
shown in Fig. 8.6. For the remainder of this chapter, the matrix, A, can be thought of as
this standard set of functions.

8.5.3 Properties of Color-Matching Functions
Having defined the HVSS, it is worthwhile examining some of the common properties
of this space. Because of the relatively simple mathematical definition of color-matching
given in the last section, the standard properties enumerated by Grassmann are easily
derived by simple matrix manipulations [14]. These properties play an important part
in color sampling and display.
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CIE XYZ color-matching functions.

8.5.3.1 Property 1 (Dependence of Color on A)
Two visual spectra, f and g, appear the same if and only if AT f � AT g. Writing this
mathematically, ST f � ST g if AT f � AT g. Metamerism is color aliasing. Two signals f
and g are sampled by the cones or equivalently by the color-matching functions and
produce the same tristimulus values.

The importance of this property is that any linear transformation of the sensitivities
of the eye or the CIE color-matching functions can be used to determine a color match.
This gives more latitude in choosing color filters for cameras and scanners as well as
for color measurement equipment. It is this property that is the basis for the design of
optimal color scanning filters [16, 17].

A note on terminology is appropriate here. When the color-matching matrix is the
CIE standard [5], the elements of the 3-vector defined by t � AT f are called tristimulus
values and usually denoted by X , Y , Z ; i.e., tT � [X ,Y ,Z ]. The chromaticity of a spectrum
is obtained by normalizing the tristimulus values,

x � X/(X � Y � Z )

y � Y /(X � Y � Z )

z � Z/(X � Y � Z ).
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Since the chromaticity coordinates have been normalized, any two of them are sufficient
to characterize the chromaticity of a spectrum. The x and y terms are the standard for
describing chromaticity. It is noted that the convention of using different variables for
the elements of the tristimulus vector may make mental conversion between the vector
space notation and notation in common color science texts more difficult.

The CIE has chosen the a2 sensitivity vector to correspond to the luminance efficiency
function of the eye. This function, shown as the middle curve in Fig. 8.6, gives the
relative sensitivity of the eye to the energy at each wavelength. The Y tristimulus value
is called luminance and indicates the perceived brightness of a radiant spectrum. It is
this value that is used to calculate the effective light output of light bulbs in lumens. The
chromaticities x and y indicate the hue and saturation of the color. Often the color is
described in terms of [x ,y ,Y ]because of the ease of interpretation. Other color coordinate
systems will be discussed later.

8.5.3.2 Property 2 (Transformation of Primaries)
If a different set of primary sources, Q, are used in the color-matching experiment, a
different set of color-matching functions, B, are obtained. The relation between the two
color-matching matrices is given by

BT � (AT Q)�1AT. (8.19)

The more common interpretation of the matrix AT Q is obtained by a direct examination.
The jth column of Q, denoted qj , is the spectral distribution of the jth primary of the new
set. The element [AT Q]i,j is the amount of the primary pi required to match primary qj .
It is noted that the above form of the change of primaries is restricted to those that can be
adequately represented under the assumed sampling discussed previously. In the case that
one of the new primaries is a Dirac delta function located between sample frequencies,
the transformation AT Q must be found by interpolation. The CIE RGB color-matching
functions are defined by the monochromatic lines at 700 nm, 546.1 nm, and 435.8 nm,
shown in Fig. 8.7. The negative portions of these functions are particularly important
since it implies that all color-matching functions associated with realizable primaries
have negative portions.

One of the uses of this property is in determining the filters for color television
cameras. The color-matching functions associated with the primaries used in a television
monitor are the ideal filters. The tristimulus values obtained by such filters would directly
give the values to drive the color guns. The NTSC standard [R,G,B] are related to these
color-matching functions. For coding purposes and efficient use of bandwidth, the RGB
values are transformed to YIQ values, where Y is the CIE Y (luminance) and, I and Q carry
the hue and saturation information. The transformation is a 3�3 matrix multiplication
[3] (see Property 3).

Unfortunately, since the TV primaries are realizable, the color-matching functions
which correspond to them are not. This means that the filters which are used in TV
cameras are only an approximation to the ideal filters. These filters are usually obtained
by simply clipping the part of the ideal filter which falls below zero. This introduces an
error which cannot be corrected by any postprocessing.
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CIE XYZ color-matching functions.

8.5.3.3 Property 3 (Transformation of Color Vectors)
If c and d are the color vectors in 3-space associated with the visible spectrum, f , under
the primaries P and Q, respectively, then

d � (AT Q)�1c, (8.20)

where A is the color-matching function matrix associated with primaries P. This states
that a 3�3 transformation is all that is required to go from one color space to
another.

8.5.3.4 Property 4 (Metamers and the Human Visual Subspace)
The N -dimensional spectral space can be decomposed into a 3D subspace known as the
HVSS and an N -3D subspace known as the black space. All metamers of a particular
visible spectrum, f , are given by

x � Pv f � Pbg, (8.21)

where Pv �A(AT A)�1AT is the orthogonal projection operator to the visual space,
Pb �

[
I � A(AT A)�1AT

]
is the orthogonal projection operator to the black space, and g

is any vector in N -space.
It should be noted that humans cannot see (or detect) all possible spectra in the visual

space. Since it is a vector space, there exist elements with negative values. These elements
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are not realizable and thus cannot be seen. All vectors in the black space have negative
elements. While the vectors in the black space are not realizable and cannot be seen, they
can be combined with vectors in the visible space to produce a realizable spectrum.

8.5.3.5 Property 5 (Effect of Illumination)
The effect of an illumination spectrum, represented by the N -vector l, is to transform
the color-matching matrix A by

Al � LA, (8.22)

where L is a diagonal matrix defined by setting the diagonal elements of L to the elements
of the vector l. The emitted spectrum for an object with reflectance vector, r, under
illumination, l, is given by multiplying the reflectance by the illuminant at each
wavelength, g � Lr. The tristimulus values associated with this emitted spectrum are
obtained by

t � AT g � AT Lr � AT
l r. (8.23)

The matrix Al will be called the color-matching functions under illuminant l.
Metamerism under different illuminants is one of the greatest problems in color

science. A common imaging example occurs in making a digital copy of an original color
image, e.g., a color copier. The user will compare the copy to the original under the light
in the vicinity of the copier. The copier might be tuned to produce good matches under
the fluorescent lights of a typical office but may produce copies that no longer match the
original when viewed under the incandescent lights of another office or viewed near a
window which allows a strong daylight component.

A typical mismatch can be expressed mathematically by relations

AT Lf r1 �AT Lf r2, (8.24)

AT Ld r1 ��AT Ld r2, (8.25)

where Lf and Ld are diagonal matrices representing standard fluorescent and daylight
spectra, respectively, and r1 and r2 represent the reflectance spectra of the original and
the copy, respectively. The ideal images would have r2 matching r1 under all illuminations
which would imply they are equal. This is virtually impossible since the two images are
made with different colorants.

If the appearance of the image under a particular illuminant is to be recorded,
then the scanner must have sensitivities that are within a linear transformation of the
color-matching functions under that illuminant. In this case, the scanner consists of an
illumination source, a set of filters, and a detector. The product of the three must duplicate
the desired color-matching functions

Al �LA�Ls DM, (8.26)
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where Ls is a diagonal matrix defined by the scanner illuminant, D is the diagonal matrix
defined by the spectral sensitivity of the detector, and M is the N �3 matrix defined by
the transmission characteristics of the scanning filters. In some modern scanners, three
colored lamps are used instead of a single lamp and three filters. In this case, the Ls and
M matrices can be combined.

In most applications, the scanner illumination is a high-intensity source so as to
minimize scanning time. The detector is usually a standard CCD array or photomultiplier
tube. The design problem is to create a filter set M which brings the product in Eq. (8.26)
to within a linear transformation of Al . Since creating a perfect match with real materials
is a problem, it is of interest to measure the goodness of approximations to a set of
scanning filters which can be used to design optimal realizable filter sets [16, 17].

8.5.4 Notes on Sampling for Color Aliasing
Sampling of the radiant power signal associated with a color image can be viewed in
at least two ways. If the goal of the sampling is to reproduce the spectral distribution,
then the same criteria for sampling the usual electronic signals can be directly applied.
However, the goal of color sampling is not often to reproduce the spectral distribu-
tion but to allow reproduction of the color sensation. To illustrate this problem, let us
consider the case of a television system. The goal is to sample the continuous color spec-
trum in such a way that the color sensation of the spectrum can be reproduced by the
monitor.

A scene is captured with a television camera. We will consider only the color aspects
of the signal, i.e., a single pixel. The camera uses three sensors with sensitivities M to
sample the radiant spectrum. The measurements are given by

v � MT r, (8.27)

where r is a high-resolution sampled representation of the radiant spectrum and
M � [m1, m2, m3] represent the high-resolution sensitivities of the camera. The matrix
M includes the effects of the filters, detectors, and optics.

These values are used to reproduce colors at the television receiver. Let us consider the
reproduction of color at the receiver by a linear combination of the radiant spectra of the
three phosphors on the screen, denoted P � [p1, p2, p3], where pk represent the spectra
of the red, green, and blue phosphors. We will also assume that the driving signals, or
control values, for the phosphors are linear combinations of the values measured by the
camera, c �Bv. The reproduced spectrum is r̂ �Pc.

The appearance of the radiant spectra is determined by the response of the human eye

t � ST r, (8.28)

where S is defined by Eq. (8.14). The tristimulus values of the spectrum reproduced by
the TV are obtained by

t̂ � ST r̂ � ST PBMT r. (8.29)
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If the sampling is done correctly, the tristimulus values can be computed, that is, B can be
chosen so that t � t̂. Since the three primaries are not metameric and the eye’s sensitivities
are linearly independent, (ST P)�1 exists and from the equality we have

(ST P)�1ST �BMT , (8.30)

since equality of tristimulus values holds for all r. This means that the color spectrum is
sampled properly if the sensitivities of the camera are within a linear transformation of
the sensitivities of the eye, or equivalently the color-matching functions.

Considering the case where the number of sensors Q in the camera or any color
measuring device is larger than three, the condition is that the sensitivities of the eye
must be a linear combination of the sampling device sensitivities. In this case,

(ST P)�1ST �B3�Q MT
Q�N . (8.31)

There are still only three types of cones which are described by S. However, the increase
in the number of basis functions used in the measuring device allows more freedom to the
designer of the instrument. From the vector space viewpoint, the sampling is correct if the
3D vector space defined by the cone sensitivity functions lies within the N -dimensional
vector space defined by the device sensitivity functions.

Let us now consider the sampling of reflective spectra. Since color is measured for
radiant spectra, a reflective object must be illuminated to be seen. The resulting radiant
spectra is the product of the illuminant and the reflection of the object

r � Lr0, (8.32)

where L is a diagonal matrix containing the high-resolution sampled radiant spectrum
of the illuminant and the elements of the reflectance of the object are constrained,
0 � r0(k) � 1.

To consider the restrictions required for sampling a reflective object, we must account
for two illuminants: the illumination under which the object is to be viewed and the
illumination under which the measurements are made. The equations for computing the
tristimulus values of reflective objects under the viewing illuminant Lv are given by

t � AT Lv r0, (8.33)

where we have used the CIE color-matching functions instead of the sensitivities of the
eye (Property 1). The equation for estimating the tristimulus values from the sampled
data is given by

t̂ � BMT Ld r0, (8.34)

where Ld is a matrix containing the illuminant spectrum of the device. The sampling is
proper if there exists a B such that

BMT Ld � AT Lv . (8.35)

It is noted that in practical applications the device illuminant usually placed severe
limitations on the problem of approximating the color-matching functions under the
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viewing illuminant. In most applications the scanner illumination is a high-intensity
source so as to minimize scanning time. The detector is usually a standard CCD array
or photomultiplier tube. The design problem is to create a filter set M which brings the
product of the filters, detectors, and optics to within a linear transformation of Al . Since
creating a perfect match with real materials is a problem, it is of interest to measure
the goodness of approximations to a set of scanning filters which can be used to design
optimal realizable filter sets [16, 17].

8.5.5 A Note on the Nonlinearity of the Eye
It is noted here that most physical models of the eye include some type of nonlinearity
in the sensing process. This nonlinearity is often modeled as a logarithm; in any case,
it is always assumed to be monotonic within the intensity range of interest. The non-
linear function, v � V (c), transforms the 3-vector in an element-independent manner;
that is,

[v1,v2,v3]T � [V (c1),V (c2),V (c3)]T . (8.36)

Since equality is required for a color match by Eq. (8.2), the function V (·) does not affect
our definition of equivalent colors. Mathematically,

V (ST f) � V (ST g) (8.37)

is true if, and only if, ST f �ST g. This nonlinearity does have a definite effect on the relative
sensitivity in the color-matching process and is one of the causes of much searching for
the “uniform color space” discussed next.

8.5.6 Uniform Color Spaces
It has been mentioned that the psychovisual system is known to be nonlinear. The prob-
lem of color matching can be treated by linear systems theory since the receptors behave
in a linear mode and exact equality is the goal. In practice, it is seldom that an engineer
can produce an exact match to any specification. The nonlinearities of the visual system
play a critical role in the determination of a color-sensitivity function. Color vision is too
complex to be modeled by a simple function. A measure of sensitivity that is consistent
with the observations of arbitrary scenes are well beyond present capability. However,
much work has been done to determine human color sensitivity in matching two color
fields which subtend only a small portion of the visual field.

Some of the first controlled experiments in color sensitivity were done by MacAdam
[18]. The observer viewed a disk made of two hemispheres of different colors on a neu-
tral background. One color was fixed; the other could be adjusted by the user. Since
MacAdam’s pioneering work there have been many additional studies of color sensi-
tivity. Most of these have measured the variability in three dimensions which yields
sensitivity ellipsoids in tristimulus space. The work by Wyszecki and Felder [19] is of
particular interest as it shows the variation between observers and between a single
observer at different times. The large variation of the sizes and orientation of the ellipsoids
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indicates that mean square error in tristimulus space is a very poor measure of color error.
A common method of treating the nonuniform error problem is to transform the space
into one where the euclidean distance is more closely correlated with perceptual error. The
CIE recommended two transformations in 1976 in an attempt to standardize measures
in the industry.

Neither of the CIE standards exactly achieves the goal of a uniform color space.
Given the variability of the data, it is unreasonable to expect that such a space could be
found. The transformations do reduce the variations in the sensitivity ellipses by a large
degree. They have another major feature in common: the measures are made relative
to a reference white point. By using the reference point the transformations attempt to
account for the adpative characteristics of the visual system. The CIELab (see-lab) space
is defined by

L∗ � 116

(
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) 1
3

� 16 (8.38)
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for X
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Yn

, Z
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> 0.01. The values Xn ,Yn ,Zn are the tristimulus values of the reference

white under the reference illumination, and X ,Y ,Z are the tristimulus values which are
to be mapped to the Lab color space. The restriction that the normalized values be greater
than 0.01 is an attempt to account for the fact that at low illumination the cones become
less sensitive and the rods (monochrome receptors) become active. A linear model is used
at low light levels. The exact form of the linear portion of CIELab and the definition of
the CIELuv (see-luv) transformation can be found in [3, 5].

A more recent modification of the CIELab space was created in 1994, appropriately
called CIELab94, [20]. This modification addresses some of the shortcomings of the
1931 and 1976 versions. However, it is significantly more complex and costly to compute.
A major difference is the inclusion of weighting factors in the summation of square errors,
instead of using a strict Euclidean distance in the space.

The color error between two colors c1 and c2 is measured in terms of

�Eab � [(L∗1 � L∗2 )2 � (a∗1 � a∗2 )2 � (b∗1 � b∗2 )2]1/2, (8.41)

where ci � [L∗i ,a∗i ,b∗i ]. A useful rule of thumb is that two colors cannot be distinguished
in a scene if their �Eab value is less than 3. The �Eab threshold is much lower in the
experimental setting than in pictorial scenes. It is noted that the sensitivities discussed
above are for flat fields. The sensitivity to modulated color is a much more difficult
problem.
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8.6 SAMPLING OF COLOR SIGNALS AND SENSORS
It has been assumed in most of this chapter that the color signals of interest can be
sampled sufficiently well to permit accurate computation using discrete arithmetic. It is
appropriate to consider this assumption quantitatively. From the previous sections, it is
seen that there are three basic types of color signals to consider: reflectances, illuminants,
and sensors. Reflectances usually characterize everyday objects but occasionally man-
made items with special properties such as filters and gratings are of interest. Illuminants
vary a great deal from natural daylight or moonlight to special lamps used in imaging
equipment. The sensors most often used in color evaluation are those of the human eye.
However, because of their use in scanners and cameras, CCD’s and photomultiplier tubes
are of great interest.

The most important sensor characteristics are the cone sensitivities of the eye or
equivalently, the color-matching functions, e.g., Fig. 8.6. It is easily seen that the functions
in Figs. 8.4, 8.6, and 8.7 are very smooth functions and have limited bandwidths. A note on
bandwidth is appropriate here. The functions represent continuous functions with finite
support. Because of the finite support constraint, they cannot be bandlimited. However,
they are clearly smooth and have very low power outside of a very small frequency band.
Using 2 nm representations of the functions, the power spectra of these signals are shown
in Fig. 8.8. The spectra represent the Welch estimate where the data is first windowed,
then the magnitude of the DFT is computed [2]. It is seen that 10 nm sampling produces
very small aliasing error.

280

270

260

250

240

230

220

210

0

0 0.05 0.1 0.15 0.2 0.25

Cycles (nm)

dB

x
y
z

FIGURE 8.8

Power spectrum of CIE XYZ color-matching functions.
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In the context of cameras and scanners, the actual photo-electric sensor should be
considered. Fortunately, most sensors have very smooth sensitivity curves which have
bandwidths comparable to those of the color-matching functions. See any handbook of
CCD sensors or photomultiplier tubes. Reducing the variety of sensors to be studied can
also be justified by the fact that filters can be designed to compensate for the characteristics
of the sensor and bring the combination within a linear combination of the color-
matching functions.

The function r(�), which is sampled to give the vector r used in the Colorimetry
section, can represent either reflectance or transmission. Desktop scanners usually work
with reflective media. There are, however, several film scanners on the market which are
used in this type of environment. The larger dynamic range of the photographic media
implies a larger bandwidth. Fortunately, there is not a large difference over the range
of everyday objects and images. Several ensembles were used for a study in an attempt
to include the range of spectra encountered by image scanners and color measurement
instrumentation [21]. The results showed again that 10 nm sampling was sufficient [15].

There are three major types of viewing illuminants of interest for imaging: daylight,
incandescent, and fluorescent. There are many more types of illuminants used for scan-
ners and measurement instruments. The properties of the three viewing illuminants can
be used as a guideline for sampling and signal processing which involves other types.
It has been shown that the illuminant is the determining factor for the choice of sampling
interval in the wavelength domain [15].

Incandescent lamps and natural daylight can be modeled as filtered blackbody radia-
tors. The wavelength spectra are relatively smooth and have relatively small bandwidths.
As with previous color signals they are adequately sampled at 10 nm. Office lighting is
dominated by fluorescent lamps. Typical wavelength spectra and their frequency power
spectra are shown in Figs. 8.9 and 8.10.

It is with the fluorescent lamps that the 2 nm sampling becomes suspect. The
peaks that are seen in the wavelength spectra are characteristic of mercury and are delta
function signals at 404.7 nm, 435.8 nm, 546.1 nm, and 578.4 nm. The flourescent lamp
can be modeled as the sum of a smoothly varying signal and a delta function series:

l(�) � ld (�) �

q∑

k�1

�k �(� � �k ), (8.42)

where �k represents the strength of the spectral line at wavelength �k . The wavelength
spectra of the phosphors is relatively smooth as seen from Fig. 8.9.

It is clear that the fluorescent signals are not bandlimited in the sense used previously.
The amount of power outside of the band is a function of the positions and strengths of
the line spectra. Since the lines occur at known wavelengths, it remains only to estimate
their power. This can be done by signal restoration methods which can use the informa-
tion about this specific signal. Using such methods, the frequency spectrum of the lamp
may be estimated by combining the frequency spectra of its components

L(�) � Ld (�) �

q∑

k�1

�k ej�(�0��k ), (8.43)
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where �0 is an arbritrary origin in the wavelength domain. The bandlimited spectra
Ld(�) can be obtained from the sampled restoration and is easily represented by 2 nm
sampling.

8.7 COLOR I/O DEVICE CALIBRATION
In Section 8.2, we briefly discussed control of grayscale output. Here, a more formal
approach to output calibration will be given. This can be applied to monochrome images
by considering only a single band, corresponding to the CIE Y channel. In order to
mathematically describe color output calibration, we need to consider the relationships
between the color spaces defined by the output device control values and the colorimetric
space defined by the CIE.

8.7.1 Calibration Definitions and Terminology
A device-independent color space is defined as any space that has a one-to-one mapping
onto the CIE XYZ color space. Examples of CIE device-independent color spaces include
XYZ, Lab, Luv, and Yxy. Current image format standards, such as JPEG, support the
description of color in Lab. By definition, a device-dependent color space cannot have a
one-to-one mapping onto the CIE XYZ color space. In the case of a recording device (e.g.,
scanners), the device-dependent values describe the response of that particular device to
color. For a reproduction device (e.g., printers), the device-dependent values describe
only those colors the device can produce.

The use of device-dependent descriptions of color presents a problem in the world of
networked computers and printers. A single RGB or CMYK vector can result in different
colors on different display devices. Transferring images colorimetrically between multiple
monitors and printers with device-dependent descriptions is difficult since the user must
know the characteristics of the device for which the original image is defined, in addition
to those of the display device.

It is more efficient to define images in terms of a CIE color space and then transform
this data to device-dependent descriptors for the display device. The advantage of this
approach is that the same image data is easily ported to a variety of devices. To do this,
it is necessary to determine a mapping, Fdevice(·), from device-dependent control values
to a CIE color space.

A compromise to using the complicated transformation to a device-independent
space is to use a pseudo-device-dependent space. Such spaces provide some degree of
matching across input and output devices since “standard” device characteristics have
been defined by the color science community. These spaces, which include sRGB and
Kodak’s PhotoYCC space, are well defined in terms of a device-independent space. As
such, a device manufacturer can design an input or output device such that when given
sRGB values the proper device-independent color value is displayed. However, there do
exist limitations with this approach such as nonuniformity and limited gamut.
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Modern printers and display devices are limited in the colors they can produce. This
limited set of colors is defined as the gamut of the device. If 	cie is the range of values
in the selected CIE color space and 	print is the range of the device control values then
the set

G � { t ∈	cie | there exists c ∈	print where Fdevice(c) � t }
defines the gamut of the color output device. For colors in the gamut, there will exist
a mapping between the device-dependent control values and the CIE XYZ color space.
Colors which are in the complement, Gc , cannot be reproduced and must be gamut-
mapped to a color which is within G. The gamut mapping algorithm D is a mapping
from 	cie to G, that is D(t) ∈ G ∀t ∈	cie. A more detailed discussion of gamut mapping
is found in [22].

The mappings Fdevice, F�1
device, and D make up what is defined as a device profile. These

mappings describe how to transform between a CIE color space and the device control
values. The International Color Commission (ICC) has suggested a standard format for
describing a profile. This standard profile can be based on a physical model (common
for monitors) or a look-up-table (LUT) (common for printers and scanners) [23]. In the
next sections, we will mathematically discuss the problem of creating a profile.

8.7.2 CRT Calibration
A monitor is often used to provide a preview for the printing process, as well as com-
parison of image processing methods. Monitor calibration is almost always based on a
physical model of the device [24–26]. A typical model is

r
 � (r � r0)/(rmax � r0)
�r ,

g 
 � (g � g0)/(gmax � g0)
�g ,

b
 � (b � b0)/(bmax � b0)
�b ,

t � H[r
,g 
,b
]T ,

where t is the CIE value produced by driving the monitor with control value c � [r ,g ,b]T .
The value of the tristimulus vector is obtained using a colorimeter or spectro-
phometer.

Creating a profile for a monitor involves the determination of these parameters where
rmax, gmax, and bmax are the maximum values of the control values (e.g., 255). To deter-
mine the parameters, a series of color patches is displayed on the CRT and measured
with a colorimeter which will provide pairs of CIE values {tk} and control values {ck},
k � 1, . . . ,M .

Values for �r , �g , �b , r0, g0, and b0 are determined such that the elements of [r
,g 
,b
]
are linear with respect to the elements of XYZ and scaled between the range [0,1].
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The matrix H is then determined from the tristimulus values of the CRT phosphors at
maximum luminance. Specifically the mapping is given by

⎡
⎢⎣

X

Y

Z

⎤
⎥⎦�

⎡
⎢⎣

XRmax XRmax XRmax

YGmax YGmax YGmax

ZBmax ZBmax ZBmax

⎤
⎥⎦

⎡
⎢⎣

r


b


g 


⎤
⎥⎦ ,

where [XRmaxYRmaxZRmax]T is the CIE XYZ tristimulus value of the red phosphor for
control value c � [rmax,0,0]T .

This standard model is often used to provide an approximation to the mapping
Fmonitor(c) � t. Problems such as spatial variation of the screen or electron gun depen-
dence are typically ignored. A LUT can also be used for the monitor profile in a manner
similar to that described below for scanner calibration.

8.7.3 Scanners and Cameras
Mathematically, the recording process of a scanner or camera can be expressed as

zi � H(MT ri),

where the matrix M contains the spectral sensitivity (including the scanner illuminant)
of the three (or more) bands of the device, ri is the spectral reflectance at spatial point i,
H models any nonlinearities in the scanner (invertible in the range of interest), and zi is
the vector of recorded values.

We define colorimetric recording as the process of recording an image such that the
CIE values of the image can be recovered from the recorded data. This reflects the
requirements of ideal sampling in Section 8.5.4. Given such a scanner, the calibration
problem is to determine the continuous mapping Fscan which will transform the recorded
values to a CIE color space:

t � AT Lr � Fscan(z) for all r ∈	r .

Unfortunately, most scanners and especially desktop scanners are not colorimetric. This
is caused by physical limitations on the scanner illuminants and filters which prevent
them from being within a linear transformation of the CIE color-matching functions.
Work related to designing optimal approximations is found in [27, 28].

For the noncolorimetric scanner, there will exist spectral reflectances which look
different to the standard human observer but when scanned produce the same recorded
values. These colors are defined as being metameric to the scanner. This cannot be
corrected by any transformation Fscan.

Fortunately, there will always (except for degenerate cases) exist a set of reflectance
spectra over which a transformation from scan values to CIE XYZ values will exist. Such
a set can be expressed mathematically as

Bscan � { r ∈	r | Fscan(H(Mr)) � AT Lr },
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where Fscan is the transformation from scanned values to colorimetric descriptors for
the set of reflectance spectra in B scan. This is a restriction to a set of reflectance spectra
over which the continuous mapping Fscan exists.

Look-up tables, neural nets, nonlinear and linear models for Fscan have been used
to calibrate color scanners [29–33]. In all of these approaches, the first step is to select
a collection of color patches which span the colors of interest. These colors should not
be metameric to the scanner or to the standard observer under the viewing illuminant.
This constraint assures a one-to-one mapping between the scan values and the device-
independent values across these samples. In practice, this constraint is easily obtained.
The reflectance spectra of these Mq color patches will be denoted by {q}k for 1 � k � Mq .

These patches are measured using a spectrophotometer or a colorimeter which will
provide the device-independent values

{tk � AT qk } for 1 � k � Mq .

Without loss of generality, {tk} could represent any colorimetric or device-independent
values, e.g., CIELAB, CIELUV, in which case {tk � L(AT qk)} where L(·) is the transfor-
mation from CIEXYZ to the appropriate color space. The patches are also measured with
the scanner to be calibrated providing {zk � H(MT qk)} for 1 � k � Mq . Mathematically,
the calibration problem is: find a transformation Fscan where

Fscan � arg
(

min
F

Mq∑
i�1

||F(zi) � ti ||2
)

and ||.||2 is the error metric in the CIE color space. In practice, it may be necessary and
desirable to incorporate constraints on Fscan [22].

8.7.4 Printers
Printer calibration is difficult due to the nonlinearity of the printing process and the wide
variety of methods used for color printing (e.g., lithography, inkjet, dye sublimation, etc.).
Thus, printing devices are often calibrated with an LUT with the continuum of values
found by interpolating between points in the LUT [29, 34].

To produce a profile of a printer, a subset of values spanning the space of allowable
control values, ck for 1 � k � Mp , for the printer is first selected. These values produce a
set of reflectance spectra which are denoted by pk for 1 � k � Mp .

The patches pk are measured using a colorimetric device which provides the values

{tk � AT pk } for 1 � k � Mp .

The problem is then to determine a mapping Fprint which is the solution to the
optimization problem

Fprint � arg
(

min
F

Mp∑
i�1

||F(ci) � ti ||2
)
,
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where as in the scanner calibration problem, there may be constraints which Fprint must
satisfy.

8.7.5 Calibration Example
Before presenting an example of the need for calibrated scanners and displays, it is
necessary to state some problems with the display to be used, i.e., the color printed page.
Currently, printers and publishers do not use the CIE values for printing but judge the
quality of their prints by subjective methods. Thus, it is impossible to numerically specify
the image values to the publisher of this book. We have to rely on the experience of
the company to produce images which faithfully reproduce those given to them. Every
effort has been made to reproduce the images as accurately as possible. The tiff image
format allows the specification of CIE values and the images defined by those values can
be found on the ftp site, ftp.ncsu.edu in directory pub/hjt/calibration. Even in the tiff
format, problems arise because of quantization to 8 bits.

The original color Lena image is available in many places as an RGB image. The
problem is that there is no standard to which the RGB channels refer. The image is usually
printed to an RGB device (one that takes RGB values as input) with no transformation.
An example of this is shown in Fig. 8.11. This image compares well with current printed
versions of this image, e.g., those shown in papers in the special issue on color image
processing of the IEEE Transactions on Image Processing [35]. However, the displayed
image does not compare favorably with the original. An original copy of the image was
obtained and scanned using a calibrated scanner and then printed using a calibrated
printer. The result, shown in Fig. 8.12, does compare well with the original. Even with the
display problem mentioned above, it is clear that the images are sufficiently different to

FIGURE 8.11

Original Lena.
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FIGURE 8.12

Calibrated Lena.

FIGURE 8.13

New scan of Lena.

make the point that calibration is necessary for accurate comparisons of any processing
method that uses color images. To complete the comparison, the RGB image that was
used to create the corrected image shown in Fig. 8.12 was also printed directly on the
RGB printer. The result shown in Fig. 8.13 further demonstrates the need for calibration.
A complete discussion of this calibration experiment is found in [22].
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8.8 SUMMARY AND FUTURE OUTLOOK
The major portion of the chapter emphasized the problems and differences in treating
the color dimension of image data. Understanding of the basics of uniform sampling is
required to proceed to the problems of sampling the color component. The phenomenon
of aliasing is generalized to color sampling by noting that the goal of most color sampling
is to reproduce the sensation of color and not the actual color spectrum. The calibration
of recording and display devices is required for accurate representation of images. The
proper recording and display outlined in Section 8.7 cannot be overemphasized.

While the fundamentals of image recording and display are well understood by experts
in that area, they are not well appreciated by the general image processing community.
It is hoped that future work will help widen the understanding of this aspect of image
processing. At present, it is fairly difficult to calibrate color image I/O devices. The
interface between the devices and the interpretation of the data is still problematic.
Future work can make it easier for the average user to obtain, process and display accurate
color images.
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CHAPTER

9Capturing Visual Image
Properties with Probabilistic
Models
Eero P. Simoncelli

New York University

The set of all possible visual images is enormous, but not all of these are equally likely to
be encountered by your eye or a camera. This nonuniform distribution over the image
space is believed to be exploited by biological visual systems, and can be used as an
advantage in most applications in image processing and machine vision. For example,
loosely speaking, when one observes a visual image that has been corrupted by some
sort of noise, the process of estimating the original source image may be viewed as one
of looking for the highest probability image that is “close to” the noisy observation.
Image compression amounts to using a larger proportion of the available bits to encode
those regions of the image space that are more likely. And problems such as resolution
enhancement or image synthesis involve selecting (sampling) a high-probability image,
subject to some set of constraints. Specific examples of these applications can be found
in many chapters throughout this Guide.

In order to develop a probability model for visual images, we first must decide which
images to model. In a practical sense, this means we must (a) decide on imaging con-
ditions, such as the field of view, resolution, sensor or postprocessing nonlinearities and
(b) decide what kind of scenes, under what kind of lighting, are to be captured in the
images. It may seem odd, if one has not encountered such models, to imagine that all
images are drawn from a single universal probability run. In particular, the features and
properties in any given image are often specialized. For example, outdoor nature scenes
contain structures that are quite different from city streets, which in turn are nothing like
human faces. There are two means by which this dilemma is resolved. First, the statistical
properties that we will examine are basic enough that they are relevant for essentially all
visual scenes. Second, we will use parametric models, in which a set of hyperparame-
ters (possibly random variables themselves) govern the detailed behavior of the model,
and thus allow a certain degree of adaptability of the model to different types of source
material.

205
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In this chapter, we will describe an empirical methodology for building and testing
probability models for discretized (pixelated) images. Currently available digital cameras
record such images, typically containing millions of pixels. Naively, one could imagine
examining a large set of such images to try to determine how they are distributed. But a
moment’s thought leads one to realize the hopelessness of the endeavor. The amount of
data needed to estimate a probability distribution from samples grows exponentially in
D, the dimensionality of the space (in this case, the number of pixels). This is known as
the “curse of dimensionality.” For example, if we wanted to build a histogram for images
with one million pixels, and each pixel value was partitioned into just two possibilites (low
or high), we would need 21,000,000 bins, which greatly exceeds estimates of the number of
atoms in the universe!

Thus, in order to make progress on image modeling, it is essential that we reduce
the dimensionality of the space. Two types of simplifying assumptions can help in this
regard. The first, known as a Markov assumption, is that the probability density of a
pixel, when conditioned on a set of pixels in a small spatial neighborhood, is independent
of the pixels outside of the neighborhood. A second type of simplification comes from
imposing symmetries or invariances on the probability structure. The most common
of these is that of translation-invariance (i.e., sometimes called homogeneity, or strict-
sense stationarity): the probability density of pixels in a neighborhood does not depend
on the absolute location of that neighborhood within the image. This seems intuitively
sensible, given that a lateral or vertical translation of the camera leads (approximately) to
translation of the image intensities across the pixel array. Note that translation-invariance
is not well defined at the boundaries, and as is often the case in image processing, these
locations must be handled specially.

Another common assumption is scale-invariance: resizing the image does not alter
the probability structure. This may also be loosely justified by noting that adjusting the
focal length (zoom) of a camera lens approximates (apart from perspective distortions)
image resizing. As with translation-invariance, scale-invariance will clearly fail to hold
at certain “boundaries.” Specifically, scale-invariance must fail for discretized images at
fine scales approaching the size of the pixels. And similarly, it will also fail for finite-size
images at coarse scales approaching the size of the entire image.

With these sort of simplifying structural assumptions in place, we can return to the
problem of developing a probability model. In recent years, researchers from image pro-
cessing, computer vision, physics, psychology, applied math, and statistics have proposed
a wide variety of different types of models. In this chapter, I will review the most basic
statistical properties of photographic images and describe several models that have been
developed to incorporate these properties. I will give some indication of how these models
have been validated by examining how well they fit the data. In order to keep the dis-
cussion focused, I will limit the discussion to discretized grayscale photographic images.
Many of the principles are easily extended to color photographs [1, 2], or temporal image
sequences (movies) [3], as well as more specialized image classes such as portraits, land-
scapes, or textures. In addition, the general concepts are often applicable to nonvisual
imaging devices, such as medical images, infrared images, radar and other types of range
images, or astronomical images.
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9.1 THE GAUSSIAN MODEL
The classical model of image statistics was developed by television engineers in the
1950s (see [4] for a review), who were interested in optimal signal representation and
transmission. The most basic motivation for these models comes from the observation
that pixels at nearby locations tend to have similar intensity values. This is easily confirmed
by measurements like those shown in Fig. 9.1(a). Each scatterplot shows values of a pair of
pixels1 with a different relative horizontal displacement. Implicit in these measurements
is the assumption of homogeneity mentioned in the introduction: the distributions are
assumed to be independent of the absolute location within the image.

Shift 5 1 Shift 5 3

Shift 5 8

0 100 200 300
0.85

0.9

0.95

1

Dx (pixels)

N
or

m
al

iz
ed

 c
or

re
la

tio
n

FIGURE 9.1

(a) Scatterplots comparing values of pairs of pixels at three different spatial displacements,
averaged over five example images; (b) Autocorrelation function. Photographs are of New York
City street scenes, taken with a Canon 10D digital camera in RAW mode (these are the sensor
measurements which are approximately proportional to light intensity). The scatterplots and
correlations were computed on the logs of these sensor intensity values [4].

1Pixel values recorded by digital cameras are generally nonlinearly related to the light intensity that fell on
the sensor. Here, we used linear measurements in a single image of a New York City street scene, as recorded
by the CMOS sensor, and took the log of these.
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The most striking behavior observed in the plots is that the pixel values are highly
correlated: when one is large, the other tends to also be large. This correlation weakens
with the distance between pixels. This behavior is summarized in Fig. 9.1(b), which shows
the image autocorrelation (pixel correlation as a function of separation).

The correlation statistics of Fig. 9.1 place a strong constraint on the structure of
images, but they do not provide a full probability model. Specifically, there are many
probability densities that would share the same correlation (or equivalently, covariance)
structure. How should we choose a model from amongst this set? One natural criterion
is to select a density that has maximal entropy, subject to the covariance constraint [5].
Solving for this density turns out to be relatively straighforward, and the result is a
multidimensional Gaussian:

P(�x)� exp(��xT Cx
�1�x/2), (9.1)

where �x is a vector containing all of the image pixels (assumed, for notational simplicity,
to be zero-mean) and Cx ≡ IE(�x�xT ) is the covariance matrix (IE(·) indicates expected
value).

Gaussian densities are more succinctly described by transforming to a coordinate
system in which the covariance matrix is diagonal. This is easily achieved using standard
linear algebra techniques [6]:

�y � ET �x ,

where E is an orthogonal matrix containing the eigenvectors of Cx , such that

Cx � EDET , ⇒ ET CxE � D. (9.2)

D is a diagonal matrix containing the associated eigenvalues. When the probability dis-
tribution on �x is stationary (assuming periodic handling of boundaries), the covariance
matrix, Cx ,will be circulant. In this special case, the Fourier transform is known in advance
to be a diagonalizing transformation,2 and is guaranteed to satisfy the relationship of
Eq. (9.2).

In order to complete the Gaussian image model, we need only specify the entries
of the diagonal matrix D, which correspond to the variances of frequency components
in the Fourier transform. There are two means of arriving at an answer. First, setting aside
the caveats mentioned in the introduction, we can assume that image statistics are scale-
invariant. Specifically, suppose that the second-order (covariance) statistical properties
of the image are invariant to resizing of the image. We can express scale-invariance in the
frequency domain as:

IE
(
|F(s ��)|2

)
� h(s)IE

(
|F(��)|2

)
, ∀��, s

2More generally, the Fourier transform diagonalizes any matrix that represents a translation-invariant (i.e.,
convolution) operation.
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where F(��) indicates the (2D) Fourier transform of the image. That is, rescaling
the frequency axis does not change the shape of the function; it merely multiplies
the spectrum by a constant. The only functions that satisfy this identity are power
laws:

IE
(
|F(��)|2

)
�

A

|��|� ,

where the exponent � controls the rate at which the spectrum falls. Thus, the dual
assumptions of translation- and scale-invariance constrains the covariance structure of
images to a model with two parameters!

Alternatively, the form of the power spectrum may be estimated empirically [e.g.,
7–11]. For many “typical” images, it turns out to be quite well approximated by
a power law, consistent with the scale-invariance assumption. In these empirical
measurements, the value of the exponent is typically near two. Examples of power
spectral estimates for several example images are shown in Fig. 9.2. It has also been
demonstrated that scale-invariance holds for statistics other than the power spectrum
[e.g., 10, 12].

The spectral model is the classic model of image processing. In addition to account-
ing for spectra of typical image data, the simplicity of the Gaussian form leads to direct
solutions for image compression and denoising that may be found in nearly every text-
book on signal or image processing. As an example, consider the problem of removing
additive Gaussian white noise from an image, �x . The degradation process is described
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FIGURE 9.2

Power spectral estimates for five example images (see Fig. 9.1 for image description), as a
function of spatial frequency, averaged over orientation. These are well described by power law
functions with an exponent, �, slightly larger than 2.0.
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by the conditional density of the observed (noisy) image, �y , given the original (clean)
image �x :

P(�y|�x) � exp(�||�y � �x||2/2�2
n),

where �2
n is the variance of the noise. Using Bayes’ rule, we can reverse the conditioning

by multiplying by the prior probability density on �x :

P(�x|�y) � exp(�||�y � �x||2/2�2
n) ·P(�x).

An estimate x̂ for �x may now be obtained from this posterior density. One can, for
example, choose the �x that maximizes the probability (the maximum a posteriori or MAP
estimate), or the mean of the density (the minimum mean squared error (MMSE) or Bayes
Least Squares (BLS estimate). If we assume that the prior density is Gaussian, then the
posterior density will also be Gaussian, and the maximum and the mean will then be
identical:

x̂(�y) � Cx(Cx � I�2
n)�1�y ,

where I is an identity matrix. Note that this solution is linear in the observed (noisy)
image �y .

This linear estimator is particularly simple when both the noise and signal covariance
matrices are diagonalized. As mentioned previously, under the spectral model , the signal
covariance matrix may be diagonlized by transforming to the Fourier domain, where the
estimator may be written as:

F̂(��) �
A/|��|�

A|��|� � �2
n
·G(��),

where F̂(��) and G(��) are the Fourier transforms of x̂(�y) and �y , respectively. Thus, the
estimate may be computed by linearly rescaling each Fourier coefficient individually.
In order to apply this denoising method, one must be given (or must estimate) the
parameters A, �, and �n (see Chapter 11 for further examples and development of the
denoising problem).

Despite the simplicity and tractability of the Gaussian model, it is easy to see that
the model provides a rather weak description of images. In particular, while the model
strongly constrains the amplitudes of the Fourier coefficients, it places no constraint on
their phases. When one randomizes the phases of an image, the appearance is completely
destroyed [13].

As a direct test, one can draw sample images from the distribution by simply gener-
ating white noise in the Fourier domain, weighting each sample appropriately by 1/|��|� ,
and then inverting the transform to generate an image. The fact that this experiment
invariably produces images of clouds (an example is shown in Fig. 9.3) implies that
a Gaussian model is insufficient to capture the structure of features that are found in
photographic images.
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FIGURE 9.3

Example image randomly drawn from the Gaussian spectral model, with � � 2.0.

9.2 THE WAVELET MARGINAL MODEL
For decades, the inadequacy of the Gaussian model was apparent. But direct improve-
ment, through introduction of constraints on the Fourier phases, turned out to be
quite difficult. Relationships between phase components are not easily measured, in
part because of the difficulty of working with joint statistics of circular variables, and in
part because the dependencies between phases of different frequencies do not seem to
be well captured by a model that is localized in frequency. A breakthrough occurred in
the 1980s, when a number of authors began to describe more direct indications of non-
Gaussian behaviors in images. Specifically, a multidimensional Gaussian statistical model
has the property that all conditional or marginal densities must also be Gaussian. But
these authors noted that histograms of bandpass-filtered natural images were highly non-
Gaussian [8, 14–17]. Specifically, their marginals tend to be much more sharply peaked
at zero, with more extensive tails, when compared with a Gaussian of the same variance.
As an example, Fig. 9.4 shows histograms of three images, filtered with a Gabor function
(a Gaussian-windowed sinuosoidal grating). The intuitive reason for this behavior is that
images typically contain smooth regions, punctuated by localized “features” such as lines,
edges, or corners. The smooth regions lead to small filter responses that generate the
sharp peak at zero, and the localized features produce large-amplitude responses that
generate the extensive tails.

This basic behavior holds for essentially any zero-mean local filter, whether it is
nondirectional (center-surround), or oriented, but some filters lead to responses that are
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FIGURE 9.4

Log histograms of bandpass (Gabor) filter responses for four example images (see Fig. 9.1 for
image description). For each histogram, tails are truncated so as to show 99.8% of the distribution.
Also shown (dashed lines) are fitted generalized Gaussian densities, as specified by Eq. (9.3).
Text indicates the maximum-likelihood value of p of the fitted model density, and the relative
entropy (Kullback-Leibler divergence) of the model and histogram, as a fraction of the total
entropy of the histogram.

more non-Gaussian than others. By the mid-1990s, a number of authors had developed
methods of optimizing a basis of filters in order to maximize the non-Gaussianity of
the responses [e.g., 18, 19]. Often these methods operate by optimizing a higher-order
statistic such as kurtosis (the fourth moment divided by the squared variance). The
resulting basis sets contain oriented filters of different sizes with frequency bandwidths
of roughly one octave. Figure 9.5 shows an example basis set, obtained by optimiz-
ing kurtosis of the marginal responses to an ensemble of 12 � 12 pixel blocks drawn
from a large ensemble of natural images. In parallel with these statistical developments,
authors from a variety of communities were developing multiscale orthonormal bases
for signal and image analysis, now generically known as “wavelets” (see Chapter 6 in this
Guide). These provide a good approximation to optimized bases such as that shown in
Fig. 9.5.

Once we have transformed the image to a multiscale representation, what statistical
model can we use to characterize the coefficients? The statistical motivation for the
choice of basis came from the shape of the marginals, and thus it would seem natural to
assume that the coefficients within a subband are independent and identically distributed.
With this assumption, the model is completely determined by the marginal statistics of
the coefficients, which can be examined empirically as in the examples of Fig. 9.4. For
natural images, these histograms are surprisingly well described by a two-parameter
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FIGURE 9.5

Example basis functions derived by optimizing a marginal kurtosis criterion [see 22].

generalized Gaussian (also known as a stretched, or generalized exponential) distribution
[e.g., 16, 20, 21]:

Pc (c ; s,p) �
exp(�|c/s|p)

Z (s,p)
, (9.3)

where the normalization constant is Z (s,p) � 2 s
p �
( 1

p

)
. An exponent of p � 2 corre-

sponds to a Gaussian density, and p � 1 corresponds to the Laplacian density. In general,
smaller values of p lead to a density that is both more concentrated at zero and has
more expansive tails. Each of the histograms in Fig. 9.4 is plotted with a dashed curve
corresponding to the best fitting instance of this density function, with the parame-
ters {s,p} estimated by maximizing the probability of the data under the model. The
density model fits the histograms remarkably well, as indicated numerically by the rel-
ative entropy measures given below each plot. We have observed that values of the
exponent p typically lie in the range [0.4,0.8]. The factor s varies monotonically with
the scale of the basis functions, with correspondingly higher variance for coarser-scale
components.

This wavelet marginal model is significantly more powerful than the classical Gaussian
(spectral) model. For example, when applied to the problem of compression, the entropy
of the distributions described above is significantly less than that of a Gaussian with the
same variance, and this leads directly to gains in coding efficiency. In denoising, the use
of this model as a prior density for images yields to significant improvements over the
Gaussian model [e.g., 20, 21, 23–25]. Consider again the problem of removing additive
Gaussian white noise from an image. If the wavelet transform is orthogonal, then the
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noise remains white in the wavelet domain. The degradation process may be described
in the wavelet domain as:

P(d|c) � exp(�(d � c)2/2�2
n),

where d is a wavelet coefficient of the observed (noisy) image, c is the corresponding
wavelet coefficient of the original (clean) image, and �2

n is the variance of the noise.
Again, using Bayes’ rule, we can reverse the conditioning:

P(c |d) � exp(�(d � c)2/2�2
n) ·P(c),

where the prior on c is given by Eq. (9.3). Here, the MAP and BLS solutions cannot, in
general, be written in closed form, and they are unlikely to be the same. But numerical
solutions are fairly easy to compute, resulting in nonlinear estimators, in which small-
amplitude coefficients are suppressed and large-amplitude coefficients preserved. These
estimates show substantial improvement over the linear estimates associated with the
Gaussian model of the previous section.

Despite these successes, it is again easy to see that important attributes of images are
not captured by wavelet marginal models. When the wavelet transform is orthonormal,we
can easily draw statistical samples from the model. Figure 9.6 shows the result of drawing
the coefficients of a wavelet representation independently from generalized Gaussian
densities. The density parameters for each subband were chosen as those that best fit an
example photographic image. Although it has more structure than an image of white
noise, and perhaps more than the image drawn from the spectral model (Fig. 9.3), the
result still does not look very much like a photographic image!

FIGURE 9.6

A sample image drawn from the wavelet marginal model, with subband density parameters
chosen to fit the image of Fig. 9.7.
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The wavelet marginal model may be improved by extending it to an overcomplete
wavelet basis. In particular, Zhu et al. have shown that large numbers of marginals
are sufficient to uniquely constrain a high-dimensional probability density [26] (this
is a variant of the Fourier projection-slice theorem used for tomographic reconstruc-
tion). Marginal models have been shown to produce better denoising results when the
multiscale representation is overcomplete [20, 27–30]. Similar benefits have been
obtained for texture representation and synthesis [26, 31]. The drawback of these models
is that the joint statistical properties are defined implicitly through the marginal statistics.
They are thus difficult to study directly,or to utilize in deriving optimal solutions for image
processing applications. In the next section, we consider the more direct development of
joint statistical descriptions.

9.3 WAVELET LOCAL CONTEXTUAL MODELS
The primary reason for the poor appearance of the image in Fig. 9.6 is that the coefficients
of the wavelet transform are not independent. Empirically, the coefficients of orthonor-
mal wavelet decompositions of visual images are found to be moderately well decorrelated
(i.e., their covariance is near zero). But this is only a statement about their second-order
dependence, and one can easily see that there are important higher order dependencies.
Figure 9.7 shows the amplitudes (absolute values) of coefficients in a four-level separa-
ble orthonormal wavelet decomposition. First, we can see that individual subbands are
not homogeneous: Some regions have large-amplitude coefficients, while other regions
are relatively low in amplitude. The variability of the local amplitude is characteristic
of most photographic images: the large-magnitude coefficients tend to occur near each
other within subbands, and also occur at the same relative spatial locations in subbands
at adjacent scales and orientations.

The intuitive reason for the clustering of large-amplitude coefficients is that typical
localized and isolated image features are represented in the wavelet domain via the super-
position of a group of basis functions at different positions, orientations, and scales. The
signs and relative magnitudes of the coefficients associated with these basis functions
will depend on the precise location, orientation, and scale of the underlying feature. The
magnitudes will also scale with the contrast of the structure. Thus, measurement of a
large coefficient at one scale means that large coefficients at adjacent scales are more
likely.

This clustering property was exploited in a heuristic but highly effective manner in
the Embedded Zerotree Wavelet (EZW) image coder [32], and has been used in some
fashion in nearly all image compression systems since. A more explicit description had
been first developed for denoising, when Lee [33] suggested a two-step procedure, in
which the local signal variance is first estimated from a neighborhood of observed pixels,
after which the pixels in the neighborhood are denoised using a standard linear least
squares method. Although it was done in the pixel domain, this chapter introduced the
idea that variance is a local property that should be estimated adaptively, as compared
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FIGURE 9.7

Amplitudes of multiscale wavelet coefficients for an image of Albert Einstein. Each subimage
shows coefficient amplitudes of a subband obtained by convolution with a filter of a different
scale and orientation, and subsampled by an appropriate factor. Coefficients that are spatially
near each other within a band tend to have similar amplitudes. In addition, coefficients at different
orientations or scales but in nearby (relative) spatial positions tend to have similar amplitudes.

with the classical Gaussian model in which one assumes a fixed global variance. It was
not until the 1990s that a number of authors began to apply this concept to denoising in
the wavelet domain, estimating the variance of clusters of wavelet coefficients at nearby
positions, scales, and/or orientations, and then using these estimated variances in order
to denoise the cluster [20, 34–39].

The locally-adaptive variance principle is powerful, but does not constitute a full
probability model. As in the previous sections, we can develop a more explicit model by
directly examining the statistics of the coefficients. The top row of Fig. 9.8 shows joint
histograms of several different pairs of wavelet coefficients. As with the marginals, we
assume homogeneity in order to consider the joint histogram of this pair of coefficients,
gathered over the spatial extent of the image, as representative of the underlying density.
Coefficients that come from adjacent basis functions are seen to produce contours that
are nearly circular, whereas the others are clearly extended along the axes.

The joint histograms shown in the first row of Fig. 9.8 do not make explicit the issue
of whether the coefficients are independent. In order to make this more explicit, the
bottom row shows conditional histograms of the same data. Let x2 correspond to the
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FIGURE 9.8

Empirical joint distributions of wavelet coefficients associated with different pairs of basis func-
tions, for a single image of a New York City street scene (see Fig. 9.1 for image description).
The top row shows joint distributions as contour plots, with lines drawn at equal intervals of
log probability. The three leftmost examples correspond to pairs of basis functions at the same
scale and orientation, but separated by different spatial offsets. The next corresponds to a pair
at adjacent scales (but the same orientation, and nearly the same position), and the rightmost
corresponds to a pair at orthogonal orientations (but the same scale and nearly the same posi-
tion). The bottom row shows corresponding conditional distributions: brightness corresponds to
frequency of occurance, except that each column has been independently rescaled to fill the
full range of intensities.

density coefficient (vertical axis), and x1 the conditioning coefficient (horizontal axis).
The histograms illustrate several important aspects of the relationship between the two
coefficients. First, the expected value of x2 is approximately zero for all values of x1,
indicating that they are nearly decorrelated (to second order). Second, the variance of
the conditional histogram of x2 clearly depends on the value of x1, and the strength of
this dependency depends on the particular pair of coefficients being considered. Thus,
although x2 and x1 are uncorrelated, they still exhibit statistical dependence!

The form of the histograms shown in Fig. 9.8 is surprisingly robust across a wide
range of images. Furthermore, the qualitative form of these statistical relationships also
holds for pairs of coefficients at adjacent spatial locations and adjacent orientations. As
one considers coefficients that are more distant (either in spatial position or in scale), the
dependency becomes weaker, suggesting that a Markov assumption might be appropriate.

Essentially all of the statistical properties we have described thus far—the circular (or
elliptical) contours, the dependency between local coefficient amplitudes, as well as the
heavy-tailed marginals—can be modeled using a random field with a spatially fluctuat-
ing variance. These kinds of models have been found useful in the speech-processing
community [40]. A related set of models, known as autoregressive conditional het-
eroskedastic (ARCH) models [e.g., 41], have proven useful for many real signals that
suffer from abrupt fluctuations, followed by relative “calm” periods (stock market prices,
for example). Finally, physicists studying properties of turbulence have noted similar
behaviors [e.g., 42].
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An example of a local density with fluctuating variance, one that has found particular
use in modeling local clusters (neighborhoods) of multiscale image coefficients, is the
product of a Gaussian vector and a hidden scalar multiplier. More formally, this model,
known as a Gaussian scale mixture [43] (GSM), expresses a random vector �x as the
product of a zero-mean Gaussian vector �u and an independent positive scalar random
variable

√
z :

�x ∼ √z �u, (9.4)

where∼ indicates equality in distribution. The variable z is known as the multiplier. The
vector �x is thus an infinite mixture of Gaussian vectors, whose density is determined by
the covariance matrix Cu of vector �u and the mixing density, pz (z):

p�x(�x) �

∫
p(�x|z)pz (z)dz

�

∫
exp

(
��xT (zCu)�1�x/2

)
(2�)N/2|zCu|1/2

pz (z)dz , (9.5)

where N is the dimensionality of �x and �u (in our case, the size of the neighborhood).
Notice that since the level surfaces (contours of constant probability) for P�u(�u) are ellipses
determined by the covariance matrix Cu, and the density of �x is constructed as a mixture
of scaled versions of the density of �u, then P�x(�x) will also exhibit the same elliptical level
surfaces. In particular, if �u is spherically symmetric (Cu is a multiple of the identity),
then �x will also be spherically symmetric. Figure 9.9 demonstrates that this model can
capture the strongly kurtotic behavior of the marginal densities of natural image wavelet
coefficients, as well as the correlation in their local amplitudes.

A number of recent image models describe the wavelet coefficients within each local
neighborhood using a Gaussian mixture model [e.g., 37, 38, 44–48]. Sampling from
these models is difficult, since the local description is typically used for overlapping
neighborhoods, and thus one cannot simply draw independent samples from the model
(see [48] for an example). The underlying Gaussian structure of the model allows it to
be adapted for problems such as denoising. The resulting estimator is more complex
than that described for the Gaussian or wavelet marginal models, but performance is
significantly better.

As with the models of the previous two sections, there are indications that the GSM
model is insufficient to fully capture the structure of typical visual images. To demonstrate
this, we note that normalizing each coefficient by (the square root of) its estimated
variance should produce a field of Gaussian white noise [4, 49]. Figure 9.10 illustrates
this process, showing an example wavelet subband, the estimated variance field, and the
normalized coefficients. But note that there are two important types of structure that
remain. First, although the normalized coefficients are certainly closer to a homogeneous
field, the signs of the coefficients still exhibit important structure. Second, the variance
field itself is far from homogeneous, with most of the significant values concentrated on
one-dimensional contours. Some of these attributes can be captured by measuring joint
statistics of phase and amplitude, as has been demonstrated in texture modeling [50].
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FIGURE 9.9

Comparison of statistics of coefficients from an example image subband (left panels) with those
generated by simulation of a local GSM model (right panels). Model parameters (covariance
matrix and the multiplier prior density) are estimated by maximizing the likelihood of the subband
coefficients (see [47]). (a,b) Log of marginal histograms. (c,d) Conditional histograms of two
spatially adjacent coefficients. Pixel intensity corresponds to frequency of occurance, except
that each column has been independently rescaled to fill the full range of intensities.
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FIGURE 9.10

Example wavelet subband, square root of the variance field, and normalized subband.
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9.4 DISCUSSION
After nearly 50 years of Fourier/Gaussian modeling, the late 1980s and 1990s saw sud-
den and remarkable shift in viewpoint, arising from the confluence of (a) multiscale
image decompositions, (b) non-Gaussian statistical observations and descriptions, and
(c) locally-adaptive statistical models based on fluctuating variance. The improvements
in image processing applications arising from these ideas have been steady and substan-
tial. But the complete synthesis of these ideas and development of further refinements
are still underway.

Variants of the contextual models described in the previous section seem to represent
the current state-of-the-art, both in terms of characterizing the density of coefficients, and
in terms of the quality of results in image processing applications. There are several issues
that seem to be of primary importance in trying to extend such models. First, a number of
authors are developing models that can capture the regularities in the local variance, such
as spatial random fields [48, 51–53], and multiscale tree-structured models [38, 45]. Much
of the structure in the variance field may be attributed to discontinuous features such
as edges, lines, or corners. There is substantial literature in computer vision describing
such structures, but it has proven difficult to establish models that are both explicit about
these features and yet flexible. Finally, there have been several recent studies investigat-
ing geometric regularities that arise from the continuity of contours and boundaries
[54–58]. These and other image regularities will surely be incorporated into future
statistical models, leading to further improvements in image processing applications.
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CHAPTER

10Basic Linear Filtering with
Application to Image
Enhancement
Alan C. Bovik1 and Scott T. Acton2

1The University of Texas at Austin; 2University of Virginia

10.1 INTRODUCTION
Linear system theory and linear filtering play a central role in digital image processing.
Many potent techniques for modifying, improving, or representing digital visual data
are expressed in terms of linear systems concepts. Linear filters are used for generic
tasks such as image/video contrast improvement, denoising, and sharpening, as well
as for more object- or feature-specific tasks such as target matching and feature
enhancement.

Much of this Guide deals with the application of linear filters to image and video
enhancement, restoration, reconstruction, detection, segmentation, compression, and
transmission. The goal of this chapter is to introduce some of the basic supporting
ideas of linear systems theory as they apply to digital image filtering, and to out-
line some of the applications. Special emphasis is given to the topic of linear image
enhancement.

We will require some basic concepts and definitions in order to proceed. The basic
2D discrete-space signal is the 2D impulse function, defined by

�(m � p, n � q) �

{
1; m � p and n � q

0; else
. (10.1)

Thus, (10.1) takes unit value at coordinate (p, q) and is everywhere else zero. The function
in (10.1) is often termed the Kronecker delta function or the unit sample sequence [1]. It
plays the same role and has the same significance as the so-called Dirac delta function of
continuous system theory. Specifically, the response of linear systems to (10.1) will be
used to characterize the general responses of such systems.
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Any discrete-space image f may be expressed in terms of the impulse function (10.1):

f (m,n) �

�∑
p���

�∑
q���

f (m � p,n � q) �(p,q) �

�∑
p���

�∑
q���

f (p,q) �(m � p,n � q). (10.2)

The expression (10.2), called the sifting property, has two meaningful interpretations here.
First, any discrete-space image can be written as a sum of weighted, shifted unit impulses.
Each weighted impulse comprises one of the pixels of the image. Second, the sum in
(10.2) is in fact a discrete-space linear convolution. As is apparent, the linear convolution
of any image f with the impulse function � returns the function unchanged.

The impulse function effectively describes certain systems known as linear space-
invariant (LSI ) systems. We explain these terms next.

A 2D system L is a process of image transformation, as shown in Fig. 10.1:
We can write

g (m,n) � L[ f (m,n)]. (10.3)

The system L is linear if and only if for any two constants a, b and for any f1(m,n),
f2(m,n) such that

g1(m,n) � L[ f1(m,n)] and g2(m,n) � L[ f2(m,n)], (10.4)

then

a · g1(m,n) � b · g2(m,n) � L[a · f1(m,n) � b · f2(m,n)] (10.5)

for every (m, n). This is often called the superposition property of linear systems.
The system L is shift-invariant if for every f(m, n) such that (10.3) holds, then also

g (m � p,n � q) � L[ f (m � p,n � q)] (10.6)

for any (p,q). Thus, a spatial shift in the input to L produces no change in the output,
except for an identical shift.

The rest of this chapter will be devoted to studying systems that are linear and shift-
invariant (LSI). In this and other chapters, it will be found that LSI systems can be
used for many powerful image and video processing tasks. In yet other chapters, nonlin-
earity and/or space-variance will be shown to afford certain advantages, particularly in
surmounting the inherent limitations of LSI systems.

f (m, n) g (m, n)L

FIGURE 10.1

Two-dimensional input-output system.



10.2 Impulse Response, Linear Convolution, and Frequency Response 227

10.2 IMPULSE RESPONSE, LINEAR CONVOLUTION,
AND FREQUENCY RESPONSE

The unit impulse response of a 2D input-output system L is

L[�(m � p,n � q)]� h(m,n; p,q). (10.7)

This is the response of system L, at spatial position (m,n), to an impulse located at
spatial position (p,q). Generally, the impulse response is a function of these four spatial
variables. However, if the system L is space-invariant, then if

L[�(m,n)]� h(m,n) (10.8)

is the response to an impulse applied at the spatial origin, then also

L[�(m � p,n � q)]� h(m � p,n � q), (10.9)

which means that the response to an impulse applied at any spatial position can be found
from the impulse response (10.8).

As already mentioned, the discrete-space impulse response h(m,n) completely char-
acterizes the input-output response of LSI input-output systems. This means that if the
impulse response is known, then an expression can be found for the response to any
input. The form of the expression is 2D discrete-space linear convolution.

Consider the generic system L shown in Fig. 10.1, with input f (m,n) and output
g (m,n). Assume that the response is due to the input f only (the system would be at rest
without the input). Then from (10.2):

g (m,n) � L[ f (m,n)]� L

⎡
⎣

�∑
p���

�∑
q���

f (p,q)�(m � p,n � q)

⎤
⎦. (10.10)

If the system is known to be linear, then

g (m,n) �

�∑
p���

�∑
q���

f (p,q)L[�(m � p,n � q)] (10.11)

�

�∑
p���

�∑
q���

f (p,q)h(m,n;p,q), (10.12)

which is all that generally can be said without further knowledge of the system and the
input. If it is known that the system is space-invariant (hence LSI), then (10.12) becomes

g (m,n) �

�∑
p���

�∑
q���

f (p,q)h(m � p,n � q) (10.13)

� f (m,n)∗h(m,n), (10.14)

which is the 2D discrete-space linear convolution of input f with impulse response h.
The linear convolution expresses the output of a wide variety of electrical and mechan-

ical systems. In continuous systems, the convolution is expressed as an integral. For
example, with lumped electrical circuits, the convolution integral is computed in terms
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of the passive circuit elements (resistors, inductors, capacitors). In optical systems, the
integral utilizes the point spread functions of the optics. The operations occur effectively
instantaneously, with the computational speed limited only by the speed of the electrons
or photons through the system elements.

However, in discrete signal and image processing systems, the discrete convolutions
are calculated sums of products. This convolution can be directly evaluated at each
coordinate (m,n) by a digital processor, or, as discussed in Chapter 5, it can be compu-
ted using the DFT using an FFT algorithm. Of course, if the exact linear convolution is
desired, this means that the involved functions must be appropriately zero-padded prior
to using the DFT, as discussed in Chapter 5. The DFT/FFT approach is usually, but not
always faster. If an image is being convolved with a very small spatial filter, then direct
computation of (10.14) can be faster.

Suppose that the input to a discrete LSI system with impulse response h(m,n) is a
complex exponential function:

f (m,n) � e2�j(Um�Vn) � cos[2�(Um � Vn)]� j sin[2�(Um � Vn)]. (10.15)

Then the system response is the linear convolution:

g (m,n) �

�∑
p���

�∑
q���

h(p,q)f (m � p,n � q) �

�∑
p���

�∑
q���

h(p,q)e2�j[U (m�p)�V (n�q)]

(10.16)

� e2�j(Um�Vn)
�∑

p���

�∑
q���

h(p,q)e�2�j(Up�Vq), (10.17)

which is exactly the input f (m,n) � e2�j(Um�Vn) multiplied by a function of (U ,V )

only:

H (U ,V ) �

�∑
p���

�∑
q���

h(p,q)e�2�j(Up�Vq) � |H (U ,V )| · ej∠H (U ,V ). (10.18)

The function H (U ,V ), which is immediately identified as the discrete-space Fourier
transform (or DSFT, discussed extensively in Chapter 5) of the system impulse response,
is called the frequency response of the system.

From (10.17) it may be seen that the response to any complex exponential sinusoid
function, with frequencies (U, V ), is the same sinusoid, but with its amplitude scaled by
the system magnitude response

∣∣H (U, V )
∣∣ evaluated at (U, V ) and with a shift equal to

the system phase response ∠H (U, V ) at (U ,V ). The complex sinusoids are the unique
functions that have this invariance property in LSI systems.

As mentioned, the impulse response h(m,n) of a LSI system is sufficient to express
the response of the system to any input.1 The frequency response H (U,V ) is uniquely

1Strictly speaking, for any bounded input, and provided that the system is stable. In practical image
processing systems, the inputs are invariably bounded. Also, almost all image processing filters do not
involve feedback, and hence are naturally stable.
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obtainable from the impulse response (and vice versa), and so contains sufficient
information to compute the response to any input that has a DSFT. In fact, the out-
put can be expressed in terms of the frequency response via G(U ,V )�F(U,V )H (U ,V )

and via the DFT/FFT with appropriate zero-padding. In fact, throughout this chapter
and elsewhere, it may be assumed that whenever a DFT is being used to compute linear
convolution, the appropriate zero-padding has been applied to avoid the wraparound
effect of the cyclic convolution.

Usually, linear image processing filters are characterized in terms of their frequency
responses, specifically by their spectrum shaping properties. Coarse descriptions that
apply to many 2D image processing filters include lowpass, bandpass, or highpass. In such
cases, the frequency response is primarily a function of radial frequency, and may even
be circularly symmetric, viz., a function of U 2 � V 2 only. In other cases, the filter may
be strongly directional or oriented, with response strongly depending on the frequency
angle of the input. Of course, the terms lowpass, bandpass, highpass, and oriented are
only rough qualitative descriptions of a system frequency response. Each broad class of
filters has some generalized applications. For example, lowpass filters strongly attenuate
all but the “lower” radial image frequencies (as determined by some bandwidth or cutoff
frequency), and so are primarily smoothing filters. They are commonly used to reduce
high-frequency noise, or to eliminate all but coarse image features, or to reduce the
bandwidth of an image prior to transmission through a low-bandwidth communication
channel or before subsampling the image.

A (radial frequency) bandpass filter attenuates all but an intermediate range of “mid-
dle” radial frequencies. This is commonly used for the enhancement of certain image
features, such as edges (sudden transitions in intensity) or the ridges in a fingerprint.
A highpass filter attenuates all but the “higher” radial frequencies, or commonly, signifi-
cantly amplifies high frequencies without attenuating lower frequencies. This approach
is often used for correcting images that are blurred—see Chapter 14.

Oriented filters tend to be more specialized. Such filters attenuate frequencies falling
outside of a narrow range of orientations or amplify a narrow range of angular frequen-
cies. For example, it may be desirable to enhance vertical image features as a prelude to
detecting vertical structures, such as buildings.

Of course, filters may be a combination of types, such as bandpass and oriented. In
fact, such filters are the most common types of basis functions used in the powerful
wavelet image decompositions (Chapters 6, 11, 17, 18).

In the remainder of this chapter, we introduce the simple but important application
of linear filtering for linear image enhancement, which specifically means attempting to
smooth image noise while not disturbing the original image structure.2

2The term “image enhancement” has been widely used in the past to describe any operation that
improves image quality by some criteria. However, in recent years, the meaning of the term has evolved
to denote image-preserving noise smoothing. This primarily serves to distinguish it from similar-
sounding terms, such as “image restoration” and “image reconstruction,” which also have taken specific
meanings.
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10.3 LINEAR IMAGE ENHANCEMENT
The term “enhancement” implies a process whereby the visual quality of the image is
improved. However, the term “image enhancement” has come to specifically mean a
process of smoothing irregularities or noise that has somehow corrupted the image,
while modifying the original image information as little as possible. The noise is usually
modeled as an additive noise or as a multiplicative noise. We will consider additive noise
now. As noted in Chapter 7, multiplicative noise, which is the other common type, can
be converted into additive noise in a homomorphic filtering approach.

Before considering methods for image enhancement, we will make a simple model
for additive noise. Chapter 7 of this Guide greatly elaborates image noise models, which
prove particularly useful for studying image enhancement filters that are nonlinear.

We will make the practical assumption that an observed noisy image is of finite
extent M � N : f � [ f (m,n); 0 � m � M � 1, 0 � n � N � 1]. We model f as a sum
of an original image o and a noise image q:

f � o � q, (10.19)

where n � (m,n). The additive noise image q models an undesirable, unpredictable
corruption of o. The process q is called a 2D random process or a random field. Random
additive noise can occur as thermal circuit noise, communication channel noise, sensor
noise, and so on. Quite commonly, the noise is present in the image signal before it is
sampled, so the noise is also sampled coincident with the image.

In (10.19), both the original image and noise image are unknown. The goal of
enhancement is to recover an image g that resembles o as closely as possible by reducing q.
If there is an adequate model for the noise, then the problem of finding g can be posed as
an image estimation problem, where g is found as the solution to a statistical optimiza-
tion problem. Basic methods for image estimation are also discussed in Chapter 7, and
in some of the following chapters on image enhancement using nonlinear filters.

With the tools of Fourier analysis and linear convolution in hand, we will now outline
the basic approach of image enhancement by linear filtering. More often than not, the
detailed statistics of the noise process q are unknown. In such cases, a simple linear filter
approach can yield acceptable results, if the noise satisfies certain simple assumptions.

We will assume a zero-mean additive white noise model. The zero-mean model is used
in Chapter 3, in the context of frame averaging. The process q is zero-mean if the average
or sample mean of R arbitrary noise samples

(
1

R

) R∑
r�1

q(mr ,nr )→ 0 (10.20)

as R grows large (provided that the noise process is mean-ergodic, which means that the
sample mean approaches the statistical mean for large samples).

The term white noise is an idealized model for noise that has, on the average, a broad
spectrum. It is a simplified model for wideband noise. More precisely, if Q(U,V ) is the
DSFT of the noise process q, then Q is also a random process. It is called the energy
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spectrum of the random process q. If the noise process is white, then the average squared
magnitude of Q(U ,V ) takes constant over all frequencies in the range [��,�]. In the
ensemble sense, this means that the sample average of the magnitude spectra of R noise
images generated from the same source becomes constant for large R:

(
1

R

) R∑
r�1

|Qr (U ,V )| → � (10.21)

for all (U ,V ) as R grows large. The square �2 of the constant level is called the noise power.
Since q has finite-extent M � N , it has a DFT Q̃ � [Q̃(u,v) : 0 � u � M � 1,0 � v �
N � 1]. On average, the magnitude of the noise DFT Q̃ will also be flat. Of course, it is
highly unlikely that a given noise DSFT or DFT will actually have a flat magnitude spec-
trum. However, it is an effective simplified model for unknown, unpredictable broadband
noise.

Images are also generally thought of as relatively broadband signals. Significant visual
information may reside at mid-to-high spatial frequencies, since visually significant image
details such as edges, lines, and textures typically contain higher frequencies. However,
the magnitude spectrum of the image at higher image frequencies is usually relatively
low; most of the image power resides in the low frequencies contributed by the dominant
luminance effects. Nevertheless, the higher image frequencies are visually significant.

The basic approach to linear image enhancement is lowpass filtering. There are differ-
ent types of lowpass filters that can be used; several will be studied in the following. For
a given filter type, different degrees of smoothing can be obtained by adjusting the filter
bandwidth. A narrower bandwidth lowpass filter will reject more of the high-frequency
content of white or broadband noise, but it may also degrade the image content by
attenuating important high-frequency image details. This is a tradeoff that is difficult to
balance.

Next we describe and compare several smoothing lowpass filters that are commonly
used for linear image enhancement.

10.3.1 Moving Average Filter
The moving average filter can be described in several equivalent ways. First, using the
notion of windowing introduced in Chapter 4, the moving average can be defined as an
algebraic operation performed on local image neighborhoods according to a geometric
rule defined by the window. Given an image f to be filtered and a window B that collects
gray level pixels according to a geometric rule (defined by the window shape), then the
moving average-filtered image g is given by

g (n) � AVE[Bf (n)], (10.22)

where the operation AVE computes the sample average of its. Thus, the local average is
computed over each local neighborhood of the image, producing a powerful smoothing
effect. The windows are usually selected to be symmetric, as with those used for binary
morphological image filtering (Chapter 4).
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Since the average is a linear operation, it is also true that

g (n) � AVE[Bo(n)]� AVE[Bq(n)]. (10.23)

Because the noise process q is assumed to be zero-mean in the sense of (10.20), then
the last term in (10.23) will tend to zero as the filter window is increased. Thus, the
moving average filter has the desirable effect of reducing zero-mean image noise toward
zero. However, the filter also effects the original image information. It is desirable that
AVE[Bo(n)] ≈ o(n) at each n, but this will not be the case everywhere in the image if the
filter window is too large. The moving average filter, which is lowpass, will blur the image,
especially as the window span is increased. Balancing this tradeoff is often a difficult task.

The moving average filter operation (10.22) is actually a linear convolution. In fact,
the impulse response of the filter is defined as having value 1/R over the span covered by
the window when centered at the spatial origin (0, 0), and zero elsewhere, where R is the
number of elements in the window.

For example, if the window is SQUARE [(2P � 1)2], which is the most common
configuration (it is defined in Chapter 4), then the average filter impulse response is
given by

h(m,n) �

{
1/(2P � 1)2 ; �P � m,n � P

0 ; else
. (10.24)

The frequency response of the moving average filter (10.24) is:

H (U ,V ) �
sin[(2P � 1)�U ]

(2P � 1) sin(�U )
· sin[(2P � 1)�V ]

(2P � 1) sin(�V )
. (10.25)

The half-peak bandwidth is often used for image processing filters. The half-peak (or
3 dB) cutoff frequencies occur on the locus of points (U, V ) where |H (U ,V )| falls to
1/2. For the filter (10.25), this locus intersects the U -axis and V -axis at the cutoffs
Uhalf -peak,Vhalf -peak ≈ 0.6/(2P � 1) cycles/pixel.

As depicted in Fig. 10.2, the magnitude response |H (U ,V )| of the filter (10.25)
exhibits considerable sidelobes. In fact, the number of sidelobes in the range [0,�] is P . As
P is increased, the filter bandwidth naturally decreases (more high-frequency attenuation
or smoothing), but the overall sidelobe energy does not. The sidelobes are in fact a
significant drawback, since there is considerable noise leakage at high noise frequencies.
These residual noise frequencies remain to degrade the image. Nevertheless, the moving
average filter has been commonly used because of its general effectiveness in the sense of
(10.21) and because of its simplicity (ease of programming).

The moving average filter can be implemented either as a direct 2D convolution in
the space domain, or using DFTs to compute the linear convolution (see Chapter 5).

Since application of the moving average filter balances a tradeoff between noise
smoothing and image smoothing, the filter span is usually taken to be an intermedi-
ate value. For images of the most common sizes, e.g., 256 � 256 or 512 � 512, typical
(SQUARE) average filter sizes range from 3 � 3 to 15 � 15. The upper end provides sig-
nificant (and probably excessive) smoothing, since 225 image samples are being averaged
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FIGURE 10.2

Plots of |H (U ,V )| given in (10.25) along V � 0, for P � 1,2,3,4. As the filter span is increased,
the bandwidth decreases. The number of sidelobes in the range [0, �] is P .

to produce each new image value. Of course, if an image suffers from severe noise, then
a larger window might be used. A large window might also be acceptable if it is known
that the original image is very smooth everywhere.

Figure 10.3 depicts the application of the moving average filter to an image that has
had zero-mean white Gaussian noise added to it. In the current context, the distribution
(Gaussian) of the noise is not relevant, although the meaning can be found in Chapter 7.
The original image is included for comparison. The image was filtered with SQUARE-
shaped moving average filters of window sizes 5 � 5 and 9 � 9, producing images with
significantly different appearances from each other as well as the noisy image. With
the 5 � 5 filter, the noise is inadequately smoothed, yet the image has been blurred
noticeably. The result of the 9 � 9 moving average filter is much smoother, although the
noise influence is still visible, with some higher noise frequency components managing
to leak through the filter, resulting in a mottled appearance.

10.3.2 Ideal Lowpass Filter
As an alternative to the average filter, a filter may be designed explicitly with no side-
lobes by forcing the frequency response to be zero outside of a given radial cutoff
frequency �c :

H (U ,V ) �

{
1;
√

U 2 � V 2 � �c

0; else
(10.26)
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(a)

(c)

(b)

(d)

FIGURE 10.3

Example of application of moving average filter. (a) Original image “eggs”; (b) image with additive
Gaussian white noise; moving average-filtered image using; (c) SQUARE(25) window (5 � 5); and
(d) SQUARE(81) window (9 � 9).

or outside of a rectangle defined by cutoff frequencies along the U - and V -axes:

H (U ,V ) �

{
1 ; |U | � Uc and |V | � Vc

0 ; else
. (10.27)

Such a filter is called an ideal lowpass filter (ideal LPF) because of its idealized character-
istic. We will study (10.27) rather than (10.26) since it is easier to describe the impulse
response of the filter. If the region of frequencies passed by (10.26) is square, then there
is little practical difference in the two filters if Uc � Vc � �c .

The impulse response of the ideal lowpass filter (10.26) is given explicitly by

h(m,n) � Uc Vc sinc (2�Uc m) · sinc (2�Vc n) , (10.28)
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where sinc(x) � sin x
x . Despite the seemingly “ideal” nature of this filter, it has some

major drawbacks. First, it cannot be implemented exactly as a linear convolution, since
the impulse response (10.28) is infinite in extent (it never decays to zero). Therefore,
it must be approximated. One way is to simply truncate the impulse response, which
in image processing applications is often satisfactory. However, this has the effect of
introducing ripple near the frequency discontinuity, producing unwanted noise leakage.
The introduced ripple is a manifestation of the well-known Gibbs phenomena studied
in standard signal processing texts [1]. The ripple can be reduced by using a tapered
truncation of the impulse response, e.g., by multiplying (10.28) with a Hamming window
[1]. If the response is truncated to image size M � N , then the ripple will be restricted
to the vicinity of the locus of cutoff frequencies, which may make little difference in
the filter performance. Alternately, the ideal LPF can be approximated by a Butterworth
filter or other ideal LPF approximating function. The Butterworth filter has frequency
response [2]

H (U ,V ) �
1

1 �
(√

U 2�V 2

�c

)2K
(10.29)

and, in principle, can be made to agree with the ideal LPF with arbitrary precision by tak-
ing the filter order K large enough. However, (10.29) also has an infinite-extent impulse
response with no known closed-form solution. Hence, to be implemented it must also
be spatially truncated (approximated), which reduces the approximation effectiveness of
the filter [2].

It should be noted that if a filter impulse response is truncated, then it should also be
slightly modified by adding a constant level to each coefficient. The constant should be
selected such that the filter coefficients sum to unity. This is commonly done since it is
generally desirable that the response of the filter to the (0, 0) spatial frequency be unity,
and since for any filter

H (0,0) �

�∑
p���

�∑
q���

h(p,q). (10.30)

The second major drawback of the ideal LPF is the phenomena known as ringing.
This term arises from the characteristic response of the ideal LPF to highly concentrated
bright spots in an image. Such spots are impulse-like, and so the local response has the
appearance of the impulse response of the filter. For the circularly-symmetric ideal LPF in
(10.26), the response consists of a blurred version of the impulse surrounded by sinc-like
spatial sidelobes, which have the appearances of rings surrounding the main lobe.

In practical application, the ringing phenomena create more of a problem because
of the edge response of the ideal LPF. In the simplistic case, the image consists of a single
one-dimensional step edge: s(m,n) � s(n) � 1 for n 	 0 and s(n) � 0, otherwise.
Figure 10.4 depicts the response of the ideal LPF with impulse response (10.28) to the
step edge. The step response of the ideal LPF oscillates (rings) because the sinc function
oscillates about the zero level. In the convolution sum, the impulse response alternately
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FIGURE 10.4

Depiction of edge ringing. The step edge is shown as a continuous curve, while the linear convo-
lution response of the ideal LPF (10.28) is shown as a dotted curve.

makes positive and negative contribution, creating overshoots and undershoots in the
vicinity of the edge profile. Most digital images contain numerous step-like light-to-
dark or dark-to-light image transitions; hence, application of the ideal LPF will tend
to contribute considerable ringing artifacts to images. Since edges contain much of the
significant information about the image, and since the eye tends to be sensitive to ringing
artifacts, often the ideal LPF and its derivatives are not a good choice for image smooth-
ing. However, if it is desired to strictly bandlimit the image as closely as possible, then the
ideal LPF is a necessary choice.

Once an impulse response for an approximation to the ideal LPF has been decided,
then the usual approach to implementation again entails zero-padding both the image
and the impulse response, using the periodic extension, taking the product of their DFTs
(using an FFT algorithm), and defining the result as the inverse DFT. This was done in
the example of Fig. 10.5, which depicts application of the ideal LPF using two cutoff
frequencies. This was implemented using a truncated ideal LPF without any special
windowing. The dominant characteristic of the filtered images is the ringing, manifested
as a strong mottling in both images. A very strong oriented ringing can be easily seen
near the upper and lower borders of the image.

10.3.3 Gaussian Filter
As we have seen, filter sidelobes in either the space or spatial frequency domains contribute
a negative effect to the responses of noise-smoothing linear image enhancement filters.
Frequency-domain sidelobes lead to noise leakage, and space-domain sidelobes lead to
ringing artifacts. A filter with sidelobes in neither domain is the Gaussian filter (see
Fig. 10.6), with impulse response

h(m,n) �
1

2��2 e�(m2�n2)/2�2
. (10.31)
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(a) (b)

FIGURE 10.5

Example of application of ideal lowpass filter to noisy image in Fig. 10.3(b). Image is filtered
using radial frequency cutoff of (a) 30.72 cycles/image and (b) 17.07 cycles/image. These cutoff
frequencies are the same as the half-peak cutoff frequencies used in Fig. 10.3.

(a) (b)

FIGURE 10.6

Example of application of Gaussian filter to noisy image in Fig. 10.3(b). Image is filtered using
radial frequency cutoff of (a) 30.72 cycles/image (� ≈ 1.56 pixels) and (b) 17.07 cycles/image
(� ≈ 2.80 pixels). These cutoff frequencies are the same as the half-peak cutoff frequencies
used in Figs. 10.3 and 10.5.

The impulse response (10.31) is also infinite in extent, but falls off rapidly away from the
origin. In this case, the frequency response is closely approximated by

H (U ,V )≈ e�2�2�2(U 2�V 2) for |U |, |V |< 1/2. (10.32)
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Observe that (10.32) is also a Gaussian function. Neither (10.31) nor (10.32) shows any
sidelobes; instead, both impulse and frequency response decay smoothly. The Gaussian
filter is noted for the absence of ringing and noise leakage artifacts. The half-peak radial
frequency bandwidth of (10.32) is easily found to be

�c �
1

��

√
ln
√

2 ≈ 0.187

�
. (10.33)

If it is possible to decide an appropriate cutoff frequency �c , then the cutoff frequency
may be fixed by setting � � 0.187/�c pixels. The filter may then be implemented by
truncating (10.31) using this value of �, adjusting the coefficients to sum to one, zero-
padding both impulse response and image (taking care to use the periodic extension of
the impulse response implied by the DFT), multiplying DFTs, and taking the inverse DFT
to be the result. The results obtained are much better than those computed using the ideal
LPF, and slightly better than those obtained with the moving average filter, because of the
reduced noise leakage.

Figure 10.7 shows the result of filtering an image with a Gaussian filter of successively
larger � values. As the value of � is increased, small-scale structures such as noise and
details are reduced to a greater degree. The sequence of images shown in Fig. 10.7(b) is
a Gaussian scale-space, where each scaled image is calculated by convolving the original
image with a Gaussian filter of increasing � value [3].

The Gaussian scale-space may be thought of as evolving over time t . At time t , the
scale-space image gt is given by

gt � h�
∗f , (10.34)

(a) (b)

FIGURE 10.7

Depiction of scale-space property of Gaussian filter lowpass filter. In (b), the image in (a) is
Gaussian-filtered with progressively larger values of � (narrower bandwidths) producing succes-
sively smoother and more diffuse versions of the original. These are “stacked” to produce a data
cube with the original image on top to produce the representation shown in (b).
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where h� is a Gaussian filter with scale factor �, and f is the initial image. The time-scale
relationship is defined by � �

√
t . As � is increased, less significant image features and

noise begin to disappear, leaving only large-scale image features.
The Gaussian scale-space may also be viewed as the evolving solution of a partial

differential equation [3, 4]:

�gt

�t
� 
2gt , (10.35)

where 
2gt is the Laplacian of gt .

10.4 DISCUSSION
Linear filters are omnipresent in image and video processing. Firmly established in the
theory of linear systems, linear filters are the basis of processing signals of arbitrary
dimensions. Since the advent of the fast Fourier transform in the 1960s, the linear filter
has also been an attractive device in terms of computational expense. However, it must
be noted that linear filters are performance-limited for image enhancement applications.
From the experiments performed in this chapter, it can be anecdotally observed that the
removal of broadband noise from most images via linear filtering is impossible without
some degradation (blurring) of the image information content. This limitation is due
to the fact that complete frequency separation between signal and broadband noise is
rarely viable. Alternative solutions that remedy the deficiencies of linear filtering
have been devised, resulting in a variety of powerful nonlinear image enhancement
alternatives. These are discussed in Chapters 11–13 of this Guide.
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11Multiscale Denoising of
Photographic Images
Umesh Rajashekar and Eero P. Simoncelli

New York University

11.1 INTRODUCTION
Signal acquisition is a noisy business. In photographic images, there is noise within the
light intensity signal (e.g., photon noise), and additional noise can arise within the sensor
(e.g., thermal noise in a CMOS chip), as well as in subsequent processing (e.g., quantiza-
tion). Image noise can be quite noticeable, as in images captured by inexpensive cameras
built into cellular telephones, or imperceptible, as in images captured by professional
digital cameras. Stated simply, the goal of image denoising is to recover the “true” signal
(or its best approximation) from these noisy acquired observations. All such methods
rely on understanding and exploiting the differences between the properties of signal and
noise.

Formally, solutions to the denoising problem rely on three fundamental components:
a signal model, a noise model, and finally a measure of signal fidelity (commonly known
as the objective function) that is to be minimized. In this chapter, we will describe the
basics of image denoising, with an emphasis on signal properties. For noise modeling,
we will restrict ourselves to the case in which images are corrupted by additive, white,
Gaussian noise—that is, we will assume each pixel is contaminated by adding a sample
drawn independently from a Gaussian probability distribution of fixed variance. A variety
of other noise models and corruption processes are considered in Chapter 7. Throughout,
we will use the well-known mean-squared error (MSE) measure as an objective function.

We develop a sequence of three image denoising methods, motivating each one by
observing a particular property of photographic images that emerges when they are
decomposed into subbands at different spatial scales. We will examine each of these prop-
erties quantitatively by examining statistics across a training set of photographic images
and noise samples. And for each property, we will use this quantitative characterization
to develop two example denoising functions: a binary threshold function that retains
or discards each multiscale coefficient depending on whether it is more likely to be
dominated by noise or signal, and a continuous-valued function that multiplies each
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coefficient by an optimized scalar value. Although these methods are quite simple, they
capture many of the concepts that are used in state-of-the-art denoising systems. Toward
the end of the chapter, we briefly describe several alternative approaches.

11.2 DISTINGUISHING IMAGES FROM NOISE IN MULTISCALE
REPRESENTATIONS

Consider the images in the top row of Fig. 11.3. Your visual system is able to recognize
effortlessly that the image in the left column is a photograph while the image in the
middle column is filled with noise. How does it do this? We might hypothesize that it
simply recognizes the difference in the distributions of pixel values in the two images.
But the distribution of pixel values of photographic images is highly inconsistent from
image to image, and more importantly, one can easily generate a noise image whose pixel
distribution is matched to any given image (by simply spatially scrambling the pixels).
So it seems that visual discrimination of photographs and noise cannot be accomplished
based on the statistics of individual pixels.

Nevertheless, the joint statistics of pixels reveal striking differences, and these may
be exploited to distinguish photographs from noise, and also to restore an image that
has been corrupted by noise, a process commonly referred to as denoising. Perhaps the
most obvious (and historically, the oldest) observation is that spatially proximal pixels
of photographs are correlated, whereas the noise pixels are not. Thus, a simple strategy
for denoising an image is to separate it into smooth and nonsmooth parts, or equiva-
lently, low-frequency and high-frequency components. This decomposition can then be
applied recursively to the lowpass component to generate a multiscale representation,
as illustrated in Fig. 11.1. The lower frequency subbands are smoother, and thus can
be subsampled to allow a more efficient representation, generally known as a multiscale
pyramid [1, 2]. The resulting collection of frequency subbands contains the exact same
information as the input image, but, as we shall see, it has been separated in such a way
that it is more easily distinguished from noise. A detailed development of multiscale
representations can be found in Chapter 6 of this Guide.

Transformation of an input image to a multiscale image representation has almost
become a de facto pre-processing step for a wide variety of image processing and computer
vision applications. In this chapter, we will assume a three-step denoising methodology:

1. Compute the multiscale representation of the noisy image.

2. Denoise the noisy coefficients, y , of all bands except the lowpass band using
denoising functions x̂(y) to get an estimate, x̂ , of the true signal coefficient, x .

3. Invert the multiscale representation (i.e., recombine the subbands) to obtain a
denoised image.

This sequence is illustrated in Fig. 11.2. Given this general framework, our problem is to
determine the form of the denoising functions, x̂(y).
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FIGURE 11.1

A graphical depiction of the multiscale image representation used for all examples in this chapter.
Left column: An image and its centered Fourier transform. The white circles represent filters used
to select bands of spatial frequencies. Middle column: Inverse Fourier transforms of the various
spatial frequencies bands selected by the idealized filters in the left column. Each filtered image
represents only a subset of the entire frequency space (indicated by the arrows originating
from the left column). Depending on their maximum spatial frequency, some of these filtered
images can be downsampled in the pixel domain without any loss of information. Right column:
Downsampled versions of the filtered images in the middle column. The resulting images form
the subbands of a multiscale “pyramid” representation [1, 2]. The original image can be exactly
recovered from these subbands by reversing the procedure used to construct the representation.
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Noisy image Denoised image

y x (y) x̂ˆ

FIGURE 11.2

Block diagram of multiscale denoising. The noisy photographic image is first decomposed into
a multiscale representation. The noisy pyramid coefficients, y, are then denoised using the
functions, x̂(y), resulting in denoised coefficients, x̂. Finally, the pyramid of denoised coefficients
is used to reconstruct the denoised image.

11.3 SUBBAND DENOISING—A GLOBAL APPROACH
We begin by making some observations about the differences between photographic
images and random noise. Figure 11.3 shows the multiscale decomposition of an essen-
tially noise-free photograph, random noise, and a noisy image obtained by adding the
two. The pixels of the signal (the noise-free photograph) lie in the interval [0,255]. The
noise pixels are uncorrelated samples of a Gaussian distribution with zero mean and
standard deviation of 60. When we look at the subbands of the noisy image, we notice
that band 1 of the noisy image is almost indistinguishable from the corresponding band
for the noise image; band 2 of the noisy image is contaminated by noise, but some of
the features from the original image remain visible; and band 3 looks nearly identical
to the corresponding band of the original image. These observations suggest that, on
average, noise coefficients tend to have larger amplitude than signal coefficients in the
high-frequency bands (e.g., band 1), whereas signal coefficients tend to be more dominant
in the low-frequency bands (e.g., band 3).

11.3.1 Band Thresholding
This observation about the relative strength of signal and noise in different frequency
bands leads us to our first denoising technique: we can set each coefficient that lies in a
band that is significantly corrupted by noise (e.g., band 1) to zero, and retain the other
bands without modification. In other words, we make a binary decision to retain or
discard each subband. But how do we decide which bands to keep and which to discard?
To address this issue, let us denote the entire band of noise-free image coefficients as a
vector, �x , the coefficients of the noise image as �n, and the band of noisy coefficients as
�y � �x � �n. Then the total squared error incurred if we should decide to retain the noisy
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FIGURE 11.3

Multiscale representations of Left: a noise-free photographic image. Middle: a Gaussian white
noise image. Right: The noisy image obtained by adding the noise-free image and the white noise.

band is |�x � �y|2 � |�n|2, and the error incurred if we discard the band is |�x � �0|2 � |�x|2.
Since our objective is to minimize the MSE between the original and denoised coefficients,
the optimal decision is to retain the band whenever the signal energy (i.e., the squared
norm of the signal vector, �x) is greater than that of the noise (i.e., |�x|2 > |�n|2) and discard
it otherwise1.

1Minimizing the total energy is equivalent to minimizing the MSE, since the latter is obtained from the
former by dividing by the number of elements.
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To implement this algorithm, we need to know the energy (or variance) of the noise-
free signal, |�x|2, and noise, |�n|2. There are several possible ways for us to obtain these.

■ Method I : we can assume values for either or both, based on some prior know-
ledge or principles about images or our measurement device.

■ Method II : we can estimate them in advance from a set of “training” or calibra-
tion measurements. For the noise, we might imagine measuring the variability in
the pixel values for photographs of a set of known test images. For the photographic
images, we could measure the variance of subbands of noise-free images. In both
cases, we must assume that our training images have the same variance properties
as the images that we will subsequently denoise.

■ Method III : we can attempt to determine the variance of signal and/or noise
from the observed noisy coefficients of the image we are trying to denoise. For
example, if we the noise energy is known to have a value of E2

n , we could estimate
the signal energy as |�x|2 � |�y � �n|2 ≈ |�y|2 � E2

n , where the approximation assumes
that the noise is independent of the signal, and that the actual noise energy is close
to the assumed value: |�n|2 ≈ E2

n .

These three methods of obtaining parameters may be combined obtaining some
parameters with one method and others with another.

For our purposes, we assume that the noise variance is known in advance (Method I),
and we use Method II to obtain estimates of the signal variance by looking at values
across a training set of images. Figure 11.4(a) shows a plot of the variance as a function
of the band number, for 30 photographic images2 (solid line) compared with that of 30
equal-sized Gaussian white noise images (dashed line) of a fixed standard deviation of
60. For ease of comparison, we have plotted the logarithm of the band variance and
normalized the curves so that the variance of the noise bands is 1.0 (and hence the log
variance is zero). The plot confirms our observation that, on average, noise dominates the
higher frequency bands (0 through 2) and signal dominates the lower frequency bands (3
and above). Furthermore, we see that the signal variance is nearly a straight line. Figure
11.4(b) shows the optimal binary denoising function (solid black line) that results from
assuming these signal variances. This is a step function, with the step located at the point
where the signal variance crosses the noise variance.

We can examine the behavior of this method visually, by retaining or discard-
ing the subbands of the pyramid of noisy coefficients according to the optimal rule
in Fig. 11.4(b), and then generating a denoised image by inverting the pyramid
transformation. Figure 11.8(c) shows the result of applying this denoising technique to
the noisy image shown in Fig. 11.8(b). We can see that a substantial amount of the noise
has been eliminated, although the denoised image appears somewhat blurred, since the
high-frequency bands have been discarded. The performance of this denoising scheme

2All images in our training set are of New York City street scenes, each of size 1536 � 1024 pixels. The images
were acquired using a Canon 30D digital SLR camera.
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FIGURE 11.4

Band denoising functions. (a) Plot of average log variance of subbands of a multiscale pyramid as
a function of the band number averaged over the photographic images in our training set (solid
line denoting log(|�x|2)) and Gaussian white noise image of standard deviation of 60 (dashed line
denoting log(|�n|2)). For visualization purposes, the curves have been normalized so that the log
of the noise variance was equal to 0.0; (b) Optimal thresholding function (black) and weighting
function (gray) as a function of band number.

can be quantified using the mean squared error (MSE),or with the related measure of peak
signal-to-noise ratio (PSNR), which is essentially a log-domain version of the MSE. If we

define the MSE between two vectors �x and �y , each of size N , as MSE(�x , �y) � 1
N

∣∣�x � �y∣∣2,

then the PSNR (assuming 8-bit images) is defined as PSNR(�x , �y) � 10 log10
2552

MSE(�x ,�y)
and

measured in units of decibels (dB). For the current example, the PSNR of the noisy
and denoised image were 13.40 dB and 24.45 dB, respectively. Figure 11.9 shows the
improvement in PSNR over the noisy image across 5 different images.

11.3.2 Band Weighting
In the previous section, we developed a binary denoising function based on knowledge
of the relative strength of signal and noise in each band. In general, we can write the
solution for each individual coefficient:

x̂(�y) � f (|�y|) · y , (11.1)
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where the binary-valued function, f (·), is written as a function of the energy of the noisy
coefficients, |�y|, to allow estimation of signal or noise variance from the observation (as
described in Method III above). An examination of the pyramid decomposition of the
noisy image in Fig. 11.3 suggests that the binary assumption is overly restrictive. Band 1,
for example, contains some residual signal that is visible despite the large amount of
noise. And band 3 shows some noise in the presence of strong signal coefficients. This
observation suggests that instead of the binary retain-or-discard technique, we might
obtain better results by allowing f (·) to take on real values that depend on the relative
strength of the signal and noise.

But how do we determine the optimal real-valued denoising function f (·)? For
each band of noisy coefficients �y , we seek a scalar value, a, that minimizes the error
|a�y � �x|2. To find the optimal value, we can expand the error as a2�yT �y � 2a�yT �x � �xT �x ,
differentiate it with respect to a, set the result to zero, and solve for a. The optimal value is
found to be

â �
�yT �x
�yT �y . (11.2)

Using the fact that the noise is uncorrelated with the signal (i.e., �xT �n ≈ 0), and the
definition of the noisy image �y � �x � �n, we may express the optimal value as

â �
|�x|2

|�x|2 � |�n|2 . (11.3)

That is, the optimal scalar multiplier is a value in the range [0,1], which depends on
the relative strength of signal and noise. As described under Method II in the previous
section, we may estimate this quantity from training examples.

To compute this function f (·), we performed a five-band decomposition of the images
and noise in our training set and computed the average values of |�x|2 and |�n|2, indicated
by the solid and dashed lines in Fig. 11.4(a). The resulting function, is plotted in gray
as a function of the band number in Fig. 11.4(b). As expected, bands 0-1, which are
dominated by noise, have a weight close to zero; bands 4 and above, which have more
signal energy, have a weight close to 1.0; and bands 2-3 are weighted by intermediate
values. Since this denoising function includes the binary functions as a special case, the
denoising performance cannot be any worse than band thresholding, and will in general
be better. To denoise a noisy image, we compute its five-band decomposition, weight
each band in accordance to its weight indicated in Fig. 11.4(b) and invert the pyramid to
obtain the denoised image. An example of this denoising is shown in Fig. 11.8(d). The
PSNR of the noisy and denoised images were 13.40 dB and 25.04 dB—an improvement
of more than 11.5 dB! This denoising performance is consistent across images, as shown
in Fig. 11.9.

Previously, the value of the optimal scalar was derived using Method II. But we can
use the fact that �x � �y � �n, and the knowledge that noise is uncorrelated with the signal
(i.e., �xT �n ≈ 0), to rewrite Eq. (11.2) as a function of each band as:

â � f (|�y|) �
|�y|2 � |�n|2
|�y|2 . (11.4)
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If we assume that the noise energy is known, then this formulation is an example of
Method III, and more generally, we now can rewrite x̂(�y) � f (|�y|) · y .

The denoising function in Eq. (11.4) is often applied to coefficients in a Fourier
transform representation, where it is known as the “Wiener filter”. In this case, each
Fourier transform coefficient is multiplied by a value that depends on the variances of
the signal and noise at each spatial frequency—that is, the power spectra of the signal and
noise. The power spectrum of natural images is commonly modeled using a power law,
F(�) � A/�p , where � is spatial frequency, p is the exponent controlling the falloff of the
signal power spectrum (typically near 2), A is a scale factor controlling the overall signal
power, is the unique form that is consistent with a process that is both translation- and
scale-invariant (see Chapter 9). Note that this model is consistent with the measurements
of Fig. 11.4, since the frequency of the subbands grows exponentially with the band
number. If, in addition, the noise spectrum is assumed to be flat (as it would be, for
example, with Gaussian white noise), then the Wiener filter is simply

|H (�)|2 �
|A/�p |

|A/�p |� �2
N

, (11.5)

where �2
N is the noise variance.

11.4 SUBBAND COEFFICIENT DENOISING—A POINTWISE
APPROACH

The general form of denoising in Section 11.3 involved weighting the entire band by
a single number—0 or 1 for band thresholding, or a scalar between 0 and 1 for band
weighting. However, we can observe that in a noisy band such as band 2 in Fig. 11.3,
the amplitudes of signal coefficients tend to be either very small, or quite substantial.
The simple interpretation is that images have isolated features such as edges that tend to
produce large coefficients in a multiscale representation. The noise, on the other hand, is
relatively homogeneous.

To verify this observation, we used the 30 images in our training set and 30 Gaus-
sian white noise images (standard deviation of 60) of the same size and computed the
distribution of signal and noise coefficients in a band. Figure 11.5 shows the log of the
distribution of the magnitude of signal (solid line) and noise coefficients (dashed line)
in one band of the multiscale decomposition. We can see that the distribution tails are
heavier and the frequency of small values is higher for the signal coefficients, in agreement
with our observations above.

From this basic observation, we can see that signal and noise coefficients might be
further distinguished based on their magnitudes. This idea has been used for decades in
video cassette recorders for removing magnetic tape noise, where it is known as “coring”.
We capture it using a denoising function of the form:

x̂(y) � f (|y|) · y , (11.6)
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FIGURE 11.5

Log histograms of coefficients of a band in the multiscale pyramid for a photographic image
(solid) and Gaussian white noise of standard deviation of 60 (dashed). As expected, the log of
the distribution of the Gaussian noise is parabolic.

where x̂(y) is the estimate of a single noisy coefficient y . Note that unlike the denoising
scheme in Equation (11.1) the value of the denoising function, f (·), will now be different
for each coefficient.

11.4.1 Coefficient Thresholding
Consider first the case where the function f (·) is constrained to be binary, analogous to
our previous development of band thresholding. Given a band of noisy coefficients, our
goal now is to determine a threshold such that coefficients whose magnitudes are less
than this threshold are set to zero, and all coefficients whose magnitudes are greater than
or equal to the threshold are retained.

The threshold is again selected so as to minimize the mean squared error.
We determined this threshold empirically using our image training set. We computed

the five-band pyramid for the noise-free and noisy images (corrupted by Gaussian noise
of standard deviation of 60) to get pairs of noisy coefficients, y , and their corresponding
noise-free coefficients, x , for a particular band. Let us now consider an arbitrary threshold
value, say T . As in the case of band thresholding, there are two types of error introduced
at any threshold level. First, when the magnitude of the observed coefficient, y , is below
the threshold and set to zero, we have discarded the signal, x , and hence incur an error
of x2. Second, when the observed coefficient is greater than the threshold, we leave the
coefficient (signal and noise) unchanged. The error introduced by passing the noise
component is n2 � (y � x)2. Therefore, given pairs of coefficients, (xi ,yi), for a subband,
the total error at a particular threshold, T , is

∑
i:|yi |�T

x2
i �

∑
i:|yi |>T

(yi � xi)
2.
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Unlike the band denoising case, the optimal choice of threshold cannot be obtained in
closed form. Using the pairs of coefficients obtained from the training set, we searched
over the set of threshold values, T , to find the one that gave the smallest total least squared
error.

Figure 11.6 shows the optimized threshold functions, f (·), in Eq. (11.6) as solid black
lines for three of the five bands that we used in our analysis. For readers who might be
more familiar with the input-output form, we also show the denoising functions x̂(y)

in Fig. 11.6(b). The resulting plots are intuitive and can be explained as follows. For
band 1, we know that all the coefficients are likely to be corrupted heavily by noise.
Therefore, the threshold value is so high that essentially all of the coefficients are set
to zero. For band 2, the signal-to-noise ratio increases and therefore the threshold val-
ues get smaller allowing more of the larger magnitude coefficients to pass unchanged.
Finally, once we reach band 3 and above, the signal is so strong compared to noise
that the threshold is close to zero, thus allowing all coefficients to be passed without
alteration.
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Coefficient denoising functions for three of the five pyramid bands. (a) Coefficient thresholding
(black) and coefficient weighting (gray) functions f (|y|) as a function of |y| (see Eq. (11.6));
(b) Coefficient estimation functions x̂(y) � f (|y|) · y. The dashed line depicts the unit slope line.
For the sake of uniformity across the various denoising schemes, we show only one half of the
denoising curve corresponding to the positive values of the observed noisy coefficient. Jagged-
ness in the curves occurs at values for which there was insufficient data to obtain a reliable
estimate of the function.
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To denoise a noisy image, we first decompose it using the multiscale pyramid, and
apply an appropriate threshold operation to the coefficients of each band (as plot-
ted in Fig. 11.6). Coefficients whose magnitudes are smaller than the threshold are
set to zero, and the rest are left unaltered. The signs of the observed coefficients are
retained. Figure 11.8(e) shows the result of this denoising scheme, and additional exam-
ples of PSNR improvement are given in Fig. 11.9. We can see that the coefficient-based
thresholding has an improvement of roughly 1 dB over band thresholding.

Although this denoising method is more powerful than the whole-band methods
described in the previous section, note that it requires more knowledge of the signal
and the noise. Specifically, the coefficient threshold values were derived based on knowl-
edge of the distributions of both signal and noise coefficients. The former was obtained
from training images, and thus relies on the additional assumption that the image to
be denoised has a distribution that is the same as that seen in the training images. The
latter was obtained by assuming the noise was white and Gaussian, of known variance. As
with the band denoising methods, it is also possible to approximate the optimal denoising
function directly from the noisy image data, although this procedure is significantly more
complex than the one outlined above. Specifically, Donoho and Johnstone [3] proposed
a methodology known as SUREshrink for selecting the threshold based on the observed
noisy data, and showed it to be optimal for a variety of some classes of regular func-
tions [4]. They also explored another denoising function, known as soft-thresholding,
in which a fixed value is subtracted from the coefficients whose magnitudes are greater
than the threshold. This function is continuous (as opposed to the hard thresholding
function) and has been shown to produce more visually pleasing images.

11.4.2 Coefficient Weighting
As in the band denoising case, a natural extension of the coefficient thresholding method
is to allow the function f (·) to take on scalar values between 0.0 and 1.0. Given a noisy
coefficient value, y , we are interested in finding the scalar value f (|y|) � a that minimizies

∑
i:yi �y

(xi � f (|yi |) · yi)
2 �

∑
i:yi �y

(xi � a · y)2.

We differentiate this equation with respect to a, set the result equal to zero, and solve for
a resulting in the optimal estimate â � f (|y|) � (1/y) · (∑i xi/

∑
i 1). The best estimate,

x̂(y) � f (|y|) · y , is therefore simply the conditional mean of all noisy coefficients, xi ,
whose noisy coefficients are such that yi � y . In practise, it is likely that no noisy coef-
ficient has a value that is exactly equal to y . Therefore, we bin the coefficients such that
y � � � |yi |� y � �, where � is a small positive value.

The plot of this function f (|y|) as a function of y is shown as a light gray line in
Fig. 11.6(a) for three of the five bands that we used in our analysis; the functions for the
other bands (4 and above) look identical to band 3. We also show the denoising functions,
x̂(y), in Fig. 11.6(b). The reader will notice that, similar to the band weighting functions,
these functions are smooth approximations of the hard thresholding functions, whose
thresholds always occur when the weighting estimator reaches a value of 0.5.
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To denoise a noisy image, we first decompose the image using a five-band multi-
scale pyramid. For a given band, we use the smooth function f (·) that was learned in
the previous step (for that particular band), and multiply the magnitude of each noisy
coefficient, y , by the corresponding value, f (|y|). The sign of the observed coefficients
are retained. The modified pyramid is then inverted to result in the denoised image as
shown in Fig. 11.8(f). The method outperforms the coefficient thresholding method
(since thresholding is again a special case of the scalar-valued denoising function).
Improvements in PSNR across five different images are shown in Fig. 11.9.

As in the coefficient thresholding case, this method relies on a fair amount of knowl-
edge about the signal and noise. Although the denoising function can be learned from
training images (as was done here), this needs to be done for each band, and for each noise
level, and it assumes that the image to be denoised has coefficient distributions similar
to those of the training set. An alternative formulation, known as Bayesian coring was
developed by Simoncelli and Adelson [5], who assumed a generalized Gaussian model
(see Chapter 9) for the coefficient distributions. They then fit the parameters of this
model adaptively to the noisy image, and then computed the optimal denoising function
from the fitted model.

11.5 SUBBAND NEIGHBORHOOD DENOISING—STRIKING
A BALANCE

The technique presented in Section 11.3 was global, in that all coefficients in a band
were multiplied by the same value. The technique in Section 11.4, on the other hand,
was completely local: each coefficient was multiplied by a value that depended only on
the magnitude of that particular coefficient. Looking again at the bands of the noise-free
signal in Fig. 11.3, we can see that a method that treats each coefficient in isolation is
not exploiting all of the available information about the signal. Specifically, the large
magnitude coefficients tend to be spatially adjacent to other large magnitude coefficients
(e.g., because they lie along contours or other spatially localized features). Hence, we
should be able to improve the denoising of individual coefficients by incorporating
knowledge of neighboring coefficients. In particular, we can use the energy of a small
neighborhood around a given coefficient to provide some predictive information about
the coefficient being denoised. In the form of our generic equation for denoising, we may
write

x̂(ỹ) � f (|ỹ|) · y , (11.7)

where ỹ now corresponds to a neighborhood of multiscale coefficients around the
coefficient to be denoised, y , and | · | indicates the vector magnitude.

11.5.1 Neighborhood Thresholding
Analogous to previous sections, we first consider a simple form of neighborhood
thresholding in which the function, f (·) in Eq. (11.7) is binary. Our methodology for
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determining the optimal function is identical to the technique previously discussed in
Section 11.4.1, with the exception that we are now trying to find a threshold based on the
local energy |ỹ| instead of the coefficient magnitude, |y|. For this simulation, we used a
neighborhood of 5 � 5 coefficients surrounding the central coefficient.

To find the denoising functions, we begin by computing the five-band pyramid for
the noise-free and noisy images in the training set. For a given subband we create
triplets of noise-free coefficients, xi , noisy coefficients, yi , and the energy, |ỹi |, of the
5 � 5 neighborhood around yi . For a particular threshold value, T , the total error is
given by

∑

i:|ỹi |�T

x2
i �

∑

i:|ỹi |>T

(yi � xi)
2.

The threshold that provides the smallest error is then selected. A plot of the resulting
functions, f (·), is shown by the solid black line in Fig. 11.7. The coefficient estimation
functions, x̂(ỹ), depend on both |ỹ| and y and not very easy to visualize. The reader should
note that the abscissa is now the energy of the neighborhood, and not the amplitude of
a coefficient (as in Fig. 11.6(a)).

To denoise a noisy image, we first compute the five-band pyramid decomposition,
and for a given band, we first compute the local variance of the noisy coefficient using
a 5 � 5 window, and use this estimate along with the corresponding band thresholding
function in Fig. 11.7 to denoise the magnitude of the coefficient. The sign of the noisy
coefficient is retained. The pyramid is inverted to obtain the denoised image. The result
of denoising a noisy image using this framework is shown in Fig. 11.8(g).

The use of neighborhood (or “contextual”) information has permeated many areas of
image processing. In denoising, one of the first published methods was a locally adapted
version of the Weiner filter by Lee [6], in which the local variance in the pixel domain
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Neighborhood thresholding (black) and neighborhood weighting (gray) functions f (|ỹ|) as a
function of |ỹ| (see Eq. (11.7)) for various bands; Jaggedness in the curves occurs at values for
which there was insufficient data to obtain a reliable estimate of the function.
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FIGURE 11.8

Example image denoising results. (a) Original image; (b) Noisy image (13.40 dB); (c) Band
thresholding (24.45 dB); (d) band weighting (25.04 dB); (e) coefficient thresholding (24.97 dB);
(f) coefficient weighting (25.72 dB); (g) neighborhood thresholding (26.24 dB); (h) neighborhood
weighting (26.60 dB). All images have been cropped from the original to highlight the details
more clearly.
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is used to estimate the signal strength, and thus the denoising function. This method is
available in MATLAB (through the function wiener2). More recently, Chang et al. [7]
used this idea in a spatially-adaptive thresholding scheme and derived a closed form
expression for the threshold. A variation of this implementation known as NeighShrink
[8] is similar to our implementation, but determines the threshold in closed form based
on the observed noisy image, thus obviating the need for training.

11.5.2 Neighborhood Weighting
As in the previous examples, a natural extension of the idea of thresholding a coefficient
based on its neighbors is to weight the coefficient by a scalar value that is computed from
the neighborhood energy. Once again, our implementation to find these functions is
similar to the one presented earlier for the coefficient-weighting in Section 11.4.2. Given
the triplets, (xi ,yi , |ỹi |), we now solve for the scalar, f (|ỹi |), that minimizes:

∑

i:|ỹi |�|ỹ|
(xi � f (|ỹi |) · yi)

2.

Using the same technique from earlier, the resulting scalar can be shown to be
f (|ỹi |) �

∑
i(xiyi)/

∑
i(yi

2). The form of the function, f (·), is shown in Fig. 11.7. The
coefficient estimation functions, x̂(ỹ), depend on both |ỹ| and y and not very easy to
visualize.

To denoise an image, we first compute its five-band multiscale decomposition. For a
given band, we use a 5 � 5 kernel to estimate the local energy |�y| around each coefficient
y , and use the denoising functions in Fig. 11.7 to multiply the central coefficient y by
f (|�y|). The pyramid is then inverted to create the denoised image as shown in Fig. 11.8(h).
We see in Fig. 11.9 that this method provides consistent PSNR improvement over other
schemes.

The use of contextual neighborhoods is found in all of the highest performing recent
methods. Miçhak et al. [9] exploited the observation that when the central coefficient
is divided by the magnitude of its spatial neighbors, the distribution of the multiscale
coefficients is approximately Gaussian (see also [10]), and used this to develop a Wiener-
like estimate. Of course, the “neighbors” in this formulation need not be restricted to
spatially adjacent pixels. Sendur and Selesnick [11] derive a bivariate shrinkage function,
where the neighborhood �y contains the coefficient being denoised, and the coefficient
in the same location at the next coarsest scale (the “parent”). The resulting denoising
functions are a 2D extension of those shown in Fig. 11.6. Portilla et al. [12] present
a denoising scheme based on modeling a neighborhood of coefficients as arising from
an infinite mixture of Gaussian distributions, known as a “Gaussian scale mixture.”
The resulting least-squares denoising function uses a more general combination over
the neighbors than a simple sum of squares, and this flexibility leads to substantial
improvements in denoising performance. The problem of contextual denoising remains
an active area of research, with new methods appearing every month.
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PSNR improvement (in dB, relative to that of the noisy image). Each group of bars shows the
performance of the six denoising schemes for one of the images shown in the bottom row. All
denoising schemes used the exact same Gaussian white noise sample of standard deviation 60.

11.6 STATISTICAL MODELING FOR OPTIMAL DENOISING
In order to keep the presentation focused and simple, we have resorted to using a train-
ing set of noise-free and noisy coefficients to learn parameters for the denoising function
(such as the threshold or weighting values). In particular, given training pairs of noise-free
and noisy coefficients, (xn ,yn), we have solved a regression problem to obtain the param-
eters of the denoising function: �̂ � argmin�

∑
n(xn � f (yn ;�) · yn)2. This methodology

is appealing because it does not depend on models of image or noise, and this directness
makes it easy to understand. It can also be useful for image enhancement in practical
situations where it might be difficult to model the signal and noise. Recently, such an
approach [13] was used to produce denoising results that are comparable to the state-of-
the-art. As shown in that work, the data-driven approach can also be used to compensate
for other distortions such as blurring.

But there are two clear drawbacks in the regression approach. First, the underly-
ing assumption of such a training scheme is that the ensemble of training images is
representative of all images. But some of the photographic image properties we have



258 CHAPTER 11 Multiscale Denoising of Photographic Images

described, while general, do vary significantly from image to image, and it is thus
preferable to adapt the denoising solution to the properties of the specific image being
denoised. Second, the simplistic form of training we have described requires that the
denoising functions must be separately learned for each noise level. Both of these
drawbacks can be somewhat alleviated by considering a more abstract probabilistic
formulation.

11.6.1 The Bayesian View
If we consider the noise-free and noisy coefficients, x and y , to be instances of two random
variables X and Y , respectively, we may rewrite the MSE criterion

∑
n

(xn � g (yn))2 ≈ EX ,Y (X � g (Y ))2

�

∫
dX

∫
dY P(X ,Y )(X � g (Y ))2

�

∫
dX P(X)︸ ︷︷ ︸

Prior

∫
dY P(Y |X)︸ ︷︷ ︸

Noise model

(X � g (Y ))2
︸ ︷︷ ︸
Loss function

, (11.8)

where EX ,Y (·) indicates the expected value, taken over random variables X and Y .
As described earlier in Section 11.4.2, the denoising function, g (Y ), that minimizes

this expression is the conditional expectation E(X |Y ). In the framework described above,
we have replaced all our samples (xn ,yn) by their probability density functions. In general,
the prior, P(X), is the model for multiscale coefficients in the ensemble of noise-free
images. The conditional density, P(Y |X), is a model for the noise corruption process.
Thus, this formulation cleanly separates the description of the noise from the description
of the image properties, allowing us to learn the image model, P(X), once and then reuse
it for any level or type of noise (since P(Y |X) need not be restricted to additive white
Gaussian). The problem of image modeling is an active area of research, and is described
in more detail in Chapter 9.

11.6.2 Empirical Bayesian Methods
The Bayesian approach assumes that we know (or have learned from a training set) the
densities P(X) and P(Y |X). While the idea of a single prior, P(X), for all images in
an ensemble is exciting and motivates much of the work in image modeling, denoising
solutions based on this model are unable to adapt to the peculiarities of a particular
image. The most successful recent image denoising techniques are based on empirical
Bayes methods. The basic idea is to define a parametric prior P(X ;�) and adjust the
parameters, �, for each image that is to be denoised. This adaptation can be difficult to
achieve, since one generally has access only to the noisy data samples, Y , and not the
noise-free samples, X . A conceptually simple method is to select the parameters that
maximize the probabillity of the noisy, but this utilizes a separate criterion (likelihood)
for the parameter estimation and denoising, and can thus lead to suboptimal results.
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A more abstract but more consistent method relies on optimizing Stein’s unbiased risk
estimator (SURE) [14–17].

11.7 CONCLUSIONS
The main objective of this chapter was to lead the reader through a sequence of simple
denoising techniques, illustrating how observed properties of noise and image structure
can be formalized statistically and used to design and optimize denoising methods. We
presented a unified framework for multiscale denoising of the form x̂(∗) � f (�∗) · y , and
developed three different versions, each one using a different definition for ∗. The first
was a global model in which entire bands of multiscale coefficients were modified using
a common denoising function, while the second was a local technique in which each
individual coefficient was modified using a function that depended on its own value.
The third approach adopted a compromise between these two extremes, using a function
that depended on local neighborhood information to denoise each coefficient. For each
of these denoising schemes, we presented two variations: a thresholding operator and a
weighting operator.

An important aspect of our examples that we discussed only briefly is the choice of
image representation. Our examples were based on an overcomplete multiscale decom-
position into octave-width frequency channels. While the development of orthogonal
wavelets has had a profound impact on the application of compression, the artifacts that
arise from the critical sampling of these decompositions are higly visible and detrimen-
tal when they are used for denoising. Since denoising generally less concerned about the
economy of representation (and in particular, about the number of coefficients), it makes
sense to relax the critical sampling requirement, sampling subbands at rates equal to or
higher than their associated Nyquist limits.

In fact, it has been demonstrated repeatedly (e.g., [18]) and recently proven [17]
that redundancy in the image representation redundancy in the image representation
can lead directly to improved denoising performance. There has also been significant
effort in developing multiscale geometric transforms such as ridgelets, curvelets, and
wedgelets which aim to provide better signal compaction by representing relevant image
features such as edges and contours. And although this chapter has focused on multiscale
image denoising, there have also been significant improvements in denoising in the pixel
domain [19].

The three primary components of the general statistical formalism of Eq. (11.8) signal
model, noise model, and error function—are all active areas of research. As mentioned
previously, statistical modeling of images is discussed in Chapter 9. Regarding the noise,
we have assumed an additive Gaussian model, but the noise that contaminates real images
is often correlated, non-Gaussian, and even signal-dependent. Modeling of image noise
is described in Chapter 7. And finally, there is room for improvement in the choice of
objective function. Throughout this chapter, we minimized the error in the pyramid
domain, but always reported the PSNR results in the image domain. If the multiscale
pyramid is orthonormal, minimizing error in the multiscale domain is equivalent to
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minimizing error in the pixel domain. But in over-complete representations, this is no
longer true, and noise that starts out white in the pixel domain is correlated in the pyramid
domain. Recent approaches in image denoising attempt to minimize the mean-squared
error in the image domain while still operating in an over-complete transform domain
[13, 17]. But even if the denoising scheme is designed to minimize PSNR in the pixel
domain, it is well known that PSNR does not provide a good description of perceptual
image quality (see Chapter 21). An important topic of future research is thus to optimize
denoising functions using a perceptual metric for image quality [20].
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12.1 INTRODUCTION
Digital image enhancement and analysis have played, and will continue to play, an
important role in scientific, industrial, and military applications. In addition to these
applications, image enhancement and analysis are increasingly being used in consumer
electronics. Internet Web users, for instance, rely on built-in image processing proto-
cols such as JPEG and interpolation and in the process have become image processing
users equipped with powerful yet inexpensive software such as Photoshop. Users not
only retrieve digital images from the Web but are now able to acquire their own by
use of digital cameras or through digitization services of standard 35 mm analog film.
The end result is that consumers are beginning to use home computers to enhance and
manipulate their own digital pictures. Image enhancement refers to processes seeking to
improve the visual appearance of an image. As an example, image enhancement might
be used to emphasize the edges within the image. This edge-enhanced image would be
more visually pleasing to the naked eye, or perhaps could serve as an input to a machine
that would detect the edges and perhaps make measurements of shape and size of the
detected edges. Image enhancement is important because of its usefulness in virtually all
image processing applications.

Image enhancement tools are often classified into (a) point operations and (b) spa-
tial operations. Point operations include contrast stretching, noise clipping, histogram
modification, and pseudo-coloring. Point operations are, in general, simple nonlinear
operations that are well known in the image processing literature and are covered else-
where in this Guide. Spatial operations used in image processing today are, on the other
hand, typically linear operations. The reason for this is that spatial linear operations
are simple and easily implemented. Although linear image enhancement tools are often
adequate in many applications, significant advantages in image enhancement can be
attained if nonlinear techniques are applied [1]. Nonlinear methods effectively preserve 263
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edges and details of images while methods using linear operators tend to blur and
distort them. Additionally, nonlinear image enhancement tools are less susceptible to
noise. Noise is always present due to the physical randomness of image acquisition
systems. For example, underexposure and low-light conditions in analog photography
conditions lead to images with film-grain noise which, together with the image signal
itself, are captured during the digitization process.

This chapter focuses on nonlinear and spatial image enhancement and analysis. The
nonlinear tools described in this chapter are easily implemented on currently available
computers. Rather than using linear combinations of pixel values within a local window,
these tools use the local weighted median (WM). In Section 12.2, the principles of
WM are presented. Weighted medians have striking analogies with traditional linear
FIR filters, yet their behavior is often markedly different. In Section 12.3, we show how
WM filters can be easily used for noise removal. In particular, the center WM filter is
described as a tunable filter highly effective in impulsive noise. Section 12.4 focuses on
image enlargement, or zooming, using WM filter structures which, unlike standard linear
interpolation methods, provide little edge degradation. Section 12.5 describes image
sharpening algorithms based on WM filters. These methods offer significant advantages
over traditional linear sharpening tools whenever noise is present in the underlying
images.

12.2 WEIGHTED MEDIAN SMOOTHERS AND FILTERS
12.2.1 Running Median Smoothers
The running median was first suggested as a nonlinear smoother for time series data by
Tukey in 1974 [2]. To define the running median smoother, let {x(·)} be a discrete-time
sequence. The running median passes a window over the sequence {x(·)} that selects, at
each instant n, a set of samples to comprise the observation vector x(n). The observation
window is centered at n, resulting in

x(n) � [x(n � NL), . . . ,x(n), . . . ,x(n � NR)]T , (12.1)

where NL and NR may range in value over the nonnegative integers and N � NL �
NR � 1 is the window size. The median smoother operating on the input sequence {x(·)}
produces the output sequence {y}, where at time index n

y(n) � MEDIAN[x(n � NL), . . . ,x(n), . . . ,x(n � NR)] (12.2)

� MEDIAN[x1(n), . . . ,xN (n)], (12.3)

where xi(n) � x(n � NL � 1 � i) for i � 1,2, . . . ,N . That is, the samples in the obser-
vation window are sorted and the middle, or median, value is taken as the output.
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If x(1),x(2), . . . ,x(N ) are the sorted samples in the observation window, the median
smoother outputs

y(n) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(N �1
2

) if N is odd

x(N
2

)�x(N
2 �1

)

2 otherwise.

(12.4)

In most cases, the window is symmetric about x(n) and NL � NR .
The input sequence {x(·)}may be either finite or infinite in extent. For the finite case,

the samples of {x(·)} can be indexed as x(1),x(2), . . . ,x(L), where L is the length of the
sequence. Due to the symmetric nature of the observation window, the window extends
beyond a finite extent input sequence at both the beginning and end. These end effects
are generally accounted for by appending NL samples at the beginning and NR samples
at the end of {x(·)}. Although the appended samples can be arbitrarily chosen, typically
these are selected so that the points appended at the beginning of the sequence have the
same value as the first signal point, and the points appended at the end of the sequence
all have the value of the last signal point.

To illustrate the appending of an input sequence and the median smoother opera-
tion, consider the input signal {x(·)} of Fig. 12.1. In this example, {x(·)} consists of 20
observations from a 6-level process, {x : x(n) ∈ {0,1, . . . , 5},n � 1,2, . . . , 20}. The figure
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FIGURE 12.1

The operation of the window width 5 median smoother. ◦: appended points.
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shows the input sequence and the resulting output sequence for a window size 5 median
smoother. Note that to account for edge effects, two samples have been appended to both
the beginning and end of the sequence. The median smoother output at the window
location shown in the figure is

y(9) � MEDIAN[x(7),x(8),x(9),x(10),x(11)]
� MEDIAN[ 1,1,4,3,3 ]� 3.

Running medians can be extended to a recursive mode by replacing the “causal” input
samples in the median smoother by previously derived output samples [3]. The output
of the recursive median smoother is given by

y(n) � MEDIAN[y(n � NL), . . . ,y(n � 1),x(n), . . . ,x(n � NR)]. (12.5)

In recursive median smoothing, the center sample in the observation window is mod-
ified before the window is moved to the next position. In this manner, the output at
each window location replaces the old input value at the center of the window. With the
same amount of operations, recursive median smoothers have better noise attenuation
capabilities than their nonrecursive counterparts [4, 5]. Alternatively, recursive median
smoothers require smaller window lengths than their nonrecursive counterparts in order
to attain a desired level of noise attenuation. Consequently, for the same level of noise
attenuation, recursive median smoothers often yield less signal distortion. In image pro-
cessing applications, the running median window spans a local 2D area. Typically, an
N � N area is included in the observation window. The processing, however, is identical
to the 1D case in the sense that the samples in the observation window are sorted and the
middle value is taken as the output.

The running 1D or 2D median, at each instant in time, computes the sample median.
The sample median, in many respects, resembles the sample mean. Given N samples
x1, . . . ,xN the sample mean, X̄ , and sample median, X̃ , minimize the expression

G(�) �

N∑
i�1

|xi � �|p (12.6)

for p � 2 and p �1, respectively. Thus, the median of an odd number of samples emerges
as the sample whose sum of absolute distances to all other samples in the set is the smallest.
Likewise, the sample mean is given by the value � whose square distance to all samples
in the set is the smallest possible. The analogy between the sample mean and median
extends into the statistical domain of parameter estimation where it can be shown that
the sample median is the maximum likelihood (ML) estimator of location of a constant
parameter in Laplacian noise. Likewise, the sample mean is the ML estimator of location
of a constant parameter in Gaussian noise [6]. This result has profound implications in
signal processing, as most tasks where non-Gaussian noise is present will benefit from
signal processing structures using medians, particularly when the noise statistics can be
characterized by probability densities having lighter than Gaussian tails (which leads to
noise with impulsive characteristics)[7–9].
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12.2.2 Weighted Median Smoothers
Although the median is a robust estimator that possesses many optimality properties,
the performance of running medians is limited by the fact that it is temporally blind.
That is, all observation samples are treated equally regardless of their location within the
observation window. Much like weights can be incorporated into the sample mean to
form a weighted mean, a WM can be defined as the sample which minimizes the weighted
cost function

Gp(�) �

N∑
i�1

Wi |xi � �|p , (12.7)

for p � 1. For p � 2, the cost function (12.7) is quadratic and the value � minimizing it
is the normalized weighted mean

�̂ � arg min
�

N∑
i�1

Wi(xi � �)2 �

∑N
i�1 Wi · xi∑N

i�1 Wi
(12.8)

with Wi > 0. For p � 1, G1(�) is piecewise linear and convex for Wi � 0. The value
� minimizing (12.7) is thus guaranteed to be one of the samples x1,x2, . . . ,xN and is
referred to as the WM, originally introduced over a hundred years ago by Edgemore [10].
After some algebraic manipulations, it can be shown that the running WM output is
computed as

y(n) � MEDIAN[W1 � x1(n),W2 � x2(n), . . . ,WN � xN (n)], (12.9)

where Wi > 0 and� is the replication operator defined as Wi � xi �

Wi times︷ ︸︸ ︷
xi ,xi , . . . ,xi . Weighted

median smoothers were introduced in the signal processing literature by Brownigg in 1984
and have since received considerable attention [11–13]. The WM smoothing operation
can be schematically described as in Fig. 12.2.

Weighted Median Smoothing Computation Consider the window size 5 WM smoother
defined by the symmetric weight vector W � [1,2,3,2,1]. For the observation x(n) �
[12,6,4,1,9], the WM smoother output is found as

y(n) � MEDIAN[ 1� 12,2� 6,3� 4,2� 1,1� 9 ]
� MEDIAN[ 12,6,6,4,4,4,1,1,9 ]
� MEDIAN[ 1,1,4,4,4,6,6,9,12 ]� 4,

(12.10)

where the median value is underlined in Eq. (12.10). The large weighting on the center
input sample results in this sample being taken as the output. As a comparison, the
standard median output for the given input is y(n) � 6.
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FIGURE 12.2

The weighted median smoothing operation.

Although the smoother weights in the above example are integer-valued, the stan-
dard WM smoother definition clearly allows for positive real-valued weights. The WM
smoother output for this case is as follows:

1. Calculate the threshold W0 � 1
2

∑N
i�1 Wi .

2. Sort the samples in the observation vector x(n).

3. Sum the weights corresponding to the sorted samples beginning with the
maximum sample and continuing down in order.

4. The output is the sample whose weight causes the sum to become �W0.

To illustrate the WM smoother operation for positive real-valued weights, consider
the WM smoother defined by W � [0.1,0.1,0.2,0.2,0.1]. The output for this smoother
operating on x(n) � [12,6,4,1,9] is found as follows. Summing the weights gives the
threshold W0 � 1

2

∑5
i�1 Wi � 0.35. The observation samples, sorted observation sam-

ples, their corresponding weight, and the partial sum of weights (from each ordered
sample to the maximum) are:

observation samples 12, 6, 4, 1, 9

corresponding weights 0.1, 0.1, 0.2, 0.2, 0.1

sorted observation samples 1, 4, 6, 9, 12

corresponding weights 0.2, 0.2, 0.1, 0.1, 0.1

partial weight sums 0.7, 0.5, 0.3, 0.2, 0.1

(12.11)

Thus, the output is 4 since when starting from the right (maximum sample) and summing
the weights, the threshold W0 � 0.35 is not reached until the weight associated with 4 is
added.
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An interesting characteristic of WM smoothers is that the nature of a WM smoother
is not modified if its weights are multiplied by a positive constant. Thus, the same filter
characteristics can be synthesized by different sets of weights. Although the WM smoother
admits real-valued positive weights, it turns out that any WM smoother based on real-
valued positive weights has an equivalent integer-valued weight representation [14].
Consequently, there are only a finite number of WM smoothers for a given window size.
The number of WM smoothers, however, grows rapidly with window size [13].

Weighted median smoothers can also operate on a recursive mode. The output of a
recursive WM smoother is given by

y(n) � MEDIAN [W�N1 � y(n � N1), . . . ,W�1 � y(n � 1),W0 � x(n), . . . ,

(12.12)WN1 � x(n � N1)],

where the weights Wi are as before constrained to be positive-valued. Recursive WM
smoothers offer advantages over WM smoothers in the same way that recursive medians
have advantages over their nonrecursive counterparts. In fact, recursive WM smoothers
can synthesize nonrecursive WM smoothers of much longer window sizes [14].

12.2.2.1 The Center Weighted Median Smoother
The weighting mechanism of WM smoothers allows for great flexibility in emphasizing
or deemphasizing specific input samples. In most applications, not all samples are equally
important. Due to the symmetric nature of the observation window, the sample most
correlated with the desired estimate is, in general, the center observation sample. This
observation leads to the center weighted median (CWM) smoother, which is a relatively
simple subset of the WM smoother that has proven useful in many applications [12].

The CWM smoother is realized by allowing only the center observation sample to be
weighted. Thus, the output of the CWM smoother is given by

y(n) � MEDIAN[x1, . . . ,xc�1,Wc � xc ,xc�1, . . . ,xN ], (12.13)

where Wc is an odd positive integer and c � (N � 1)/2 � N1 � 1 is the index of the
center sample. When Wc � 1, the operator is a median smoother, and for Wc � N , the
CWM reduces to an identity operation.

The effect of varying the center sample weight is perhaps best seen by way of an
example. Consider a segment of recorded speech. The voiced waveform“a”noise is shown
at the top of Fig. 12.3. This speech signal is taken as the input of a CWM smoother of
size 9. The outputs of the CWM, as the weight parameter Wc � 2w � 1 for w � 0, . . . , 3,
are shown in the figure. Clearly, as Wc is increased less smoothing occurs. This response
of the CWM smoother is explained by relating the weight Wc and the CWM smoother
output to select order statistics.

The CWM smoother has an intuitive interpretation. It turns out that the output of a
CWM smoother is equivalent to computing

y(n) � MEDIAN
[
x(k),xc ,x(N �k�1)

]
, (12.14)
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FIGURE 12.3

Effects of increasing the center weight of a CWM smoother of size N � 9 operating on the voiced
speech “a.” The CWM smoother output is shown for Wc � 2w � 1, with w � 0,1,2,3. Note that for
Wc � 1 the CWM reduces to median smoothing, and for Wc � 9 it becomes the identity operator.

x(1) x(N)x(k) x(N+12k)

FIGURE 12.4

The center weighted median smoothing operation. The center observation sample is mapped to
the order statistic x(k) (x(N �1�k)) if the center sample is less (greater) than x(k) (x(N �1�k)), and
left unaltered otherwise.

where k � (N � 2 � Wc )/2 for 1 � Wc � N , and k � 1 for Wc > N . Since x(n) is the
center sample in the observation window, i.e., xc � x(n), the output of the smoother is
identical to the input as long as the x(n) lies in the interval

[
x(k),x(N �1�k)

]
. If the center

input sample is greater than x(N �1�k) the smoothing outputs x(N �1�k), guarding against
a high rank order (large) aberrant data point being taken as the output. Similarly, the
smoother’s output is x(k) if the sample x(n) is smaller than this order statistic. This CWM
smoother performance characteristic is illustrated in Figs. 12.4 and 12.5. Figure 12.4
shows how the input sample is left unaltered if it is between the trimming statistics x(k)

and x(N �1�k) and mapped to one of these statistics if it is outside this range. Figure 12.5
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FIGURE 12.5

An example of the CWM smoother operating on a Laplacian distributed sequence with unit
variance. Shown are the input (� ·� ·�) and output (——) sequences as well as the trimming
statistics x(k) and x(N �1�k). The window size is 25 and k � 7.

shows an example of the CWM smoother operating on a constant-valued sequence in
additive Laplacian noise. Along with the input and output, the trimming statistics are
shown as an upper and lower bound on the filtered signal. It is easily seen how increasing
k will tighten the range in which the input is passed directly to the output.

12.2.2.2 Permutation Weighted Median Smoothers
The principle behind the CWM smoother lies in the ability to emphasize, or
de-emphasize, the center sample of the window by tuning the center weight, while
keeping the weight values of all other samples at unity. In essence, the value given to
the center weight indicates the “reliability” of the center sample. If the center sample
does not contain an impulse (high reliability), it would be desirable to make the center
weight large such that no smoothing takes place (identity filter). On the other hand, if an
impulse was present in the center of the window (low reliability), no emphasis should be
given to the center sample (impulse), and the center weight should be given the smallest
possible weight, i.e., Wc � 1, reducing the CWM smoother structure to a simple median.
Notably, this adaptation of the center weight can be easily achieved by considering the
center sample’s rank among all pixels in the window [15, 16]. More precisely, denoting
the rank of the center sample of the window at a given location as Rc (n), then the
simplest permutation WM smoother is defined by the following modification of the
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CWM smoothing operation

Wc (n) �

⎧⎪⎨
⎪⎩

N if TL � Rc (n) � TU

1 otherwise,

(12.15)

where N is the window size and 1 � TL � TU � N are two adjustable threshold para-
meters that determine the degree of smoothing. Note that the weight in (12.15) is data
adaptive and may change between two values with n. The smaller (larger) the threshold
parameter TL (TU ) is set to, the better the detail preservation. Generally, TL and TU are set
symmetrically around the median. If the underlying noise distribution was not symmetric
about the origin, a nonsymmetric assignment of the thresholds would be appropriate.

The data-adaptive structure of the smoother in (12.15) can be extended so that the
center weight is not only switched between two possible values but also can take on N
different values:

Wc (n) �

⎧⎪⎨
⎪⎩

Wc(j)(n) if Rc (n) � j, j ∈ {1,2, . . . ,N }

0 otherwise.

(12.16)

Thus, the weight assigned to xc is drawn from the center weight set {Wc(1),Wc(2), . . . ,
Wc(N )}. With an increased number of weights, the smoother in (12.16) can perform
better although the design of the weights is no longer trivial and optimization algorithms
are needed [15, 16]. A further generalization of (12.16) is feasible where weights are
given to all samples in the window, but where the value of each weight is data-dependent
and determined by the rank of the corresponding sample. In this case, the output of the
permutation WM smoother is found as

y(n) � MEDIAN[x1(n)�W1(R1),x2(n)�W1(R2), . . . ,x1(n)�W1(R1)], (12.17)

where Wi(Ri ) is the weight assigned to xi(n) and selected according to the sample’s rank Ri .
The weight assigned to xi is drawn from the weight set {Wi(1),Wi(2), . . . ,Wi(N )}. Having
N weights per sample, a total of N 2 samples need to be stored in the computation
of (12.17). In general, optimization algorithms are needed to design the set of weights
although in some cases the design is simple, as with the smoother in (12.15). Permutation
WM smoothers can provide significant improvement in performance at the higher cost
of memory cells [15].

12.2.2.3 Threshold Decomposition and Stack Smoothers
An important tool for the analysis and design of WM smoothers is the threshold
decomposition property [17]. Given an integer-valued set of samples x1,x2, . . . ,xN form-
ing the vector x � [x1,x2, . . . ,xN ]T , where xi ∈ {�M , . . . ,�1,0, . . . ,M }, the threshold
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decomposition of x amounts to decomposing this vector into 2M binary vectors
x�M�1, . . . , x0, . . . , xM , where the ith element of xm is defined by

xm
i � T m(xi) �

⎧⎪⎨
⎪⎩

1 if xi � m,

�1 if xi < m,

(12.18)

where T m(·) is referred to as the thresholding operator. Using the sign function, the above
can be written as xm

i � sgn(xi � m�), where m� represents a real number approaching
the integer m from the left. Although defined for integer-valued signals, the thresholding
operation in (12.18) can be extended to noninteger signals with a finite number of quanti-
zation levels. The threshold decomposition of the vector x � [0, 0, 2,�2,1,1,0,�1,�1]T
with M � 2, for instance, leads to the 4 binary vectors

x2 � [�1,�1, 1,�1,�1,�1,�1,�1,�1]T

x1 � [�1,�1, 1,�1, 1, 1,�1,�1,�1]T

x0 � [ 1, 1, 1,�1, 1, 1, 1,�1,�1]T (12.19)

x�1 � [ 1, 1, 1,�1, 1, 1, 1, 1, 1]T .

Threshold decomposition has several important properties. First, threshold decompo-
sition is reversible. Given a set of thresholded signals, each of the samples in x can be
exactly reconstructed as

xi �
1

2

M∑
m��M�1

xm
i . (12.20)

Thus, an integer-valued discrete-time signal has a unique threshold signal representation,
and vice versa

xi
T .D.←→ {xm

i },

where
T .D.←→ denotes the one-to-one mapping provided by the threshold decomposition

operation.
The set of threshold decomposed variables obey the following set of partial ordering

rules. For all thresholding levels m > �, it can be shown that xm
i � x�

i . In particular, if
xm

i � 1, then x�
i � 1 for all � < m. Similarly, if x�

i � �1, then xm
i � �1, for all m > �. The

partial order relationships among samples across the various thresholded levels emerge
naturally in thresholding and are referred to as the stacking constraints [18].

Threshold decomposition is of particular importance in WM smoothing since they
are commutable operations. That is, applying a WM smoother to a 2M � 1 valued signal
is equivalent to decomposing the signal to 2M binary thresholded signals, processing
each binary signal separately with the corresponding WM smoother, and then adding the
binary outputs together to obtain the integer-valued output. Thus, the WM smoothing
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of a set of samples x1,x2, . . . ,xN is related to the set of the thresholded WM smoothed
signals as [14, 17]

Weighted MEDIAN(x1, . . . ,xN ) �
1

2

M∑
m��M�1

Weighted MEDIAN(xm
1 , . . . ,xm

N ). (12.21)

Since xi
T .D.←→ {xm

i } and Weighted MEDIAN(xi |Ni�1)
T .D.←→ {WeigthedMEDIAN(xm

i |Ni�1)},
the relationship in (12.21) establishes a weak superposition property satisfied by the
nonlinear median operator, which is important from the fact that the effects of median
smoothing on binary signals are much easier to analyze than that on multilevel signals.
In fact, the WM operation on binary samples reduces to a simple Boolean operation. The
median of three binary samples x1,x2,x3, for example, is equivalent to: x1x2 � x2x3 �
x1x3, where the � (OR) and xixj (AND) “Boolean” operators in the {�1,1} domain are
defined as

xi � xj � max(xi ,xj )

xixj � min(xi ,xj ). (12.22)

Note that the operations in (12.22) are also valid for the standard Boolean operations in
the {0,1} domain.

The framework of threshold decomposition and Boolean operations has led to the
general class of nonlinear smoothers referred to here as stack smoothers [18], whose
output is defined by

S(x1, . . . ,xN ) �
1

2

M∑
m��M�1

f (xm
1 , . . . ,xm

N ), (12.23)

where f (·) is a “Boolean” operation satisfying (12.22) and the stacking property. More
precisely, if two binary vectors u ∈ {�1,1}N and v ∈ {�1,1}N stack, i.e., ui � vi for all
i ∈ {1, . . . ,N }, then their respective outputs stack, f (u) � f (v). A necessary and sufficient
condition for a function to possess the stacking property is that it can be expressed as a
Boolean function which contains no complements of input variables [19]. Such functions
are known as positive Boolean functions (PBFs).

Given a PBF f (xm
1 , . . . ,xm

N ) which characterizes a stack smoother, it is possible to find
the equivalent smoother in the integer domain by replacing the binary AND and OR
Boolean functions acting on the xi ’s with max and min operations acting on the multi-
level xi samples. A more intuitive class of smoothers is obtained, however, if the PBFs
are further restricted [14]. When self-duality and separability is imposed, for instance,
the equivalent integer domain stack smoothers reduce to the well-known class of WM
smoothers with positive weights. For example, if the Boolean function in the stack
smoother representation is selected as f (x1,x2,x3,x4) � x1x3x4 � x2x4 � x2x3 � x1x2, the
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equivalent WM smoother takes on the positive weights (W1,W2,W3,W4) � (1,2,1,1).
The procedure of how to obtain the weights Wi from the PBF is described in [14].

12.2.3 Weighted Median Filters
Admitting only positive weights, WM smoothers are severely constrained as they are,
in essence, smoothers having “lowpass” type filtering characteristics. A large number of
engineering applications require “bandpass” or “highpass” frequency filtering character-
istics. Linear FIR equalizers admitting only positive filter weights, for instance, would
lead to completely unacceptable results. Thus, it is not surprising that WM smoothers
admitting only positive weights lead to unacceptable results in a number of applications.

Much like how the sample mean can be generalized to the rich class of linear FIR
filters, there is a logical way to generalize the median to an equivalently rich class of WM
filters that admit both positive and negative weights [20]. It turns out that the extension
is not only natural, leading to a significantly richer filter class, but it is simple as well.
Perhaps the simplest approach to derive the class of WM filters with real-valued weights
is by analogy. The sample mean �̄ � MEAN (X1,X2, . . . ,XN ) can be generalized to the
class of linear FIR filters as

� � MEAN (W1 ·X1,W2 ·X2, . . . ,WN ·XN ) , (12.24)

where Xi ∈ R. In order to apply the analogy to the median filter structure (12.24) must
be written as

�̄ � MEAN
(|W1| · sgn(W1)X1, |W2| · sgn(W2)X2, . . . , |WN | · sgn(Wn)XN

)
, (12.25)

where the sign of the weight affects the corresponding input sample and the weighting is
constrained to be nonnegative. By analogy, the class of WM filters admitting real-valued
weights emerges as [20]

�̃ � MEDIAN
(|W1| � sgn(W1)X1, |W2| � sgn(W2)X2, . . . , |WN | � sgn(Wn)XN

)
, (12.26)

with Wi ∈ R for i � 1,2, . . . ,N . Again, the weight signs are uncoupled from the weight
magnitude values and are merged with the observation samples. The weight magnitudes
play the equivalent role of positive weights in the framework of WM smoothers. It is
simple to show that the weighted mean (normalized) and the WM operations shown in
(12.25) and (12.26), respectively, minimize to

G2(�) �

N∑
i�1

|Wi |
(
sgn(Wi)Xi � �

)2 and G1(�) �

N∑
i�1

|Wi ||sgn(Wi)Xi � �|. (12.27)

While G2(�) is a convex continuous function, G1(�) is a convex but piecewise linear
function whose minimum point is guaranteed to be one of the “signed” input samples
(i.e., sgn(Wi) Xi).
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Weighted Median Filter Computation The WM filter output for noninteger weights can
be determined as follows [20]:

1. Calculate the threshold T0 � 1
2

∑N
i�1 |Wi |.

2. Sort the “signed” observation samples sgn(Wi)Xi .

3. Sum the magnitude of the weights corresponding to the sorted “signed” samples
beginning with the maximum and continuing down in order.

4. The output is the signed sample whose magnitude weight causes the sum to
become �T0.

The following example illustrates this procedure. Consider the window size 5 WM filter
defined by the real-valued weights [W1,W2,W3,W4,W5]T � [0.1,0.2,0.3,�0.2,0.1]T .
The output for this filter operating on the observation set [X1,X2,X3,X4,X5]T �
[�2,2,�1,3,6]T is found as follows. Summing the absolute weights gives the threshold
T0 � 1

2

∑5
i�1 |Wi |� 0.45. The “signed” observation samples, sorted observation sam-

ples, their corresponding weight, and the partial sum of weights (from each ordered
sample to the maximum) are:

observation samples �2, 2, �1, 3, 6

corresponding weights 0.1, 0.2, 0.3, �0.2, 0.1

sorted signed observation samples �3, �2, �1, 2, 6

corresponding absolute weights 0.2, 0.1, 0.3, 0.2, 0.1

partial weight sums 0.9, 0.7, 0.6, 0.3, 0.1.

Thus, the output is �1 since when starting from the right (maximum sample) and
summing the weights, the threshold T0 � 0.45 is not reached until the weight associated
with �1 is added. The underlined sum value above indicates that this is the first sum
which meets or exceeds the threshold.

The effect that negative weights have on the WM operation is similar to the effect
that negative weights have on linear FIR filter outputs. Figure 12.6 illustrates this concept
where G2(�) and G1(�), the cost functions associated with linear FIR and WM filters,
respectively, are plotted as a function of �. Recall that the output of each filter is the value
minimizing the cost function. The input samples are again selected as [X1,X2,X3,X4,X5]
� [�2,2,�1,3,6] and two sets of weights are used. The first set is [W1,W2,W3,W4,W5]
� [0.1,0.2,0.3,0.2,0.1], where all the coefficients are positive, and the second set is
[0.1,0.2,0.3,�0.2,0.1], where W4 has been changed, with respect to the first set of weights,
from 0.2 to �0.2. Figure 12.6(a) shows the cost functions G2(�) of the linear FIR filter
for the two sets of filter weights. Notice that by changing the sign of W4, we are effectively
moving X4 to its new location sgn(W4)X4 � �3. This, in turn, pulls the minimum of the
cost function toward the relocated sample sgn(W4)X4. Negatively weighting X4 on G1(�)

has a similar effect as shown in Fig. 12.6(b). In this case, the minimum is pulled toward
the new location of sgn(W4)X4. The minimum, however, occurs at one of the samples
sgn(Wi)Xi . More details on WM filtering can be found in [20, 21].
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FIGURE 12.6

Effects of negative weighting on the cost functions G2(�) and G1(�). The input sam-
ples are [X1,X2,X3,X4,X5]T � [�2,2,�1,3,6]T which are filtered by the two set of weights
[0.1,0.2,0.3,0.2,0.1]T and [0.1,0.2,0.3,�0.2,0.1]T , respectively.

12.3 IMAGE NOISE CLEANING
Median smoothers are widely used in image processing to clean images corrupted by
noise. Median filters are particularly effective at removing outliers. Often referred to
as “salt and pepper” noise, outliers are often present due to bit errors in transmission,
or introduced during the signal acquisition stage. Impulsive noise in images can also
occur as a result to damage to analog film. Although a WM smoother can be designed
to “best” remove the noise, CWM smoothers often provide similar results at a much
lower complexity [12]. By simply tuning the center weight, a user can obtain the desired
level of smoothing. Of course, as the center weight is decreased to attain the desired
level of impulse suppresion, the output image will suffer increased distortion particularly
around the image’s fine details. Nonetheless, CWM smoothers can be highly effective in
removing “salt and pepper” noise while preserving the fine image details. Figures 12.7(a)
and (b) depict a noise free grayscale image and the corresponding image with “salt and
pepper” noise. Each pixel in the image has a 10 percent probability of being contaminated
with an impulse. The impulses occur randomly and were generated by MATLAB’s imnoise
funtion. Figures 12.7(c) and (d) depict the noisy image processed with a 5 � 5 window
CWM smoother with center weights 15 and 5, respectively. The impulse-rejection and
detail-preservation tradeoff in CWM smoothing is clearly illustrated in Figs. 12.7(c) and
12.7(d). A color version of the “portrait” image was also corrupted by “salt and pepper”
noise and filtered using CWM independently in each color plane.

At the extreme, for Wc � 1, the CWM smoother reduces to the median smoother
which is effective at removing impulsive noise. It is, however, unable to preserve the
image’s fine details [22]. Figure 12.9 shows enlarged sections of the noise-free image
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(a) (b)

(c) (d)

FIGURE 12.7

Impulse noise cleaning with a 5 � 5 CWM smoother: (a) original grayscale “portrait” image;
(b) image with salt and pepper noise; (c) CWM smoother with Wc � 15; (d) CWM smoother with
Wc � 5.
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(a) (b)

(c) (d)

FIGURE 12.8

Impulse noise cleaning with a 5 � 5 CWM smoother: (a) original “portrait” image; (b) image with
salt and pepper noise; (c) CWM smoother with Wc � 16; (d) CWM smoother with Wc � 5.
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FIGURE 12.9

(Enlarged) Noise-free image (left); 5 � 5 median smoother output (center); and 5 � 5 mean
smoother (right).

(left), and of the noisy image after the median smoother has been applied (center). Severe
blurring is introduced by the median smoother and it is readily apparent in Fig. 12.9.
As a reference, the output of a running mean of the same size is also shown in Fig. 12.9
(right). The image is severely degraded as each impulse is smeared to neighboring pixels
by the averaging operation.

Figures 12.7 and 12.8 show that CWM smoothers can be effective at removing impul-
sive noise. If increased detail-preservation is sought and the center weight is increased,
CWM smoothers begin to breakdown and impulses appear on the output. One simple
way to ameliorate this limitation is to employ a recursive mode of operation. In essence,
past inputs are replaced by previous outputs as described in (12.12) with the only dif-
ference that only the center sample is weighted. All the other samples in the window are
weighted by one. Figure 12.10 shows enlarged sections of the nonrecursive CWM filter
(left) and of the corresponding recursive CWM smoother, both with the same center
weight (Wc � 15). This figure illustrates the increased noise attenuation provided by
recursion without the loss of image resolution.

Both recursive and nonrecursive CWM smoothers can produce outputs with dis-
turbing artifacts particularly when the center weights are increased in order to improve
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FIGURE 12.10

(Enlarged) CWM smoother output (left); recursive CWM smoother output (center); and permu-
tation CWM smoother output (right). Window size is 5 � 5.

the detail-preservation characteristics of the smoothers. The artifacts are most apparent
around the image’s edges and details. Edges at the output appear jagged and impulsive
noise can break through next to the image detail features. The distinct response of the
CWM smoother in different regions of the image is due to the fact that images are non-
stationary in nature. Abrupt changes in the image’s local mean and texture carry most
of the visual information content. CWM smoothers process the entire image with fixed
weights and are inherently limited in this sense by their static nature. Although some
improvement is attained by introducing recursion or by using more weights in a properly
designed WM smoother structure, these approaches are also static and do not properly
address the nonstationary nature of images.

Significant improvement in noise attenuation and detail preservation can be attained
if permutation WM filter structures are used. Figure 12.10 (right) shows the output of the
permutation CWM filter in (12.15) when the“salt and pepper”degraded“portrait” image
is inputted. The parameters were given the values TL � 6 and TU � 20. The improvement
achieved by switching Wc between just two different values is significant. The impulses
are deleted without exception, the details are preserved, and the jagged artifacts typical
of CWM smoothers are not present in the output.
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12.4 IMAGE ZOOMING
Zooming an image is an important task used in many applications, including the World
Wide Web, digital video, DVDs, and scientific imaging. When zooming, pixels are inserted
into the image in order to expand the size of the image, and the major task is the inter-
polation of the new pixels from the surrounding original pixels. Weighted medians have
been applied to similar problems requiring interpolation, such as interlace to progressive
video conversion for television systems [13]. The advantage of using the WM in interpo-
lation over traditional linear methods is better edge preservation and a less “blocky” look
to edges.

To introduce the idea of interpolation, suppose that a small matrix must be zoomed
by a factor of 2, and the median of the closest two (or four) original pixels is used to
interpolate each new pixel:

[
7 8 5

6 10 9

] Zero
Interlace

� � � � �→

⎡
⎢⎢⎢⎣

7 0 8 0 5 0

0 0 0 0 0 0

6 0 10 0 9 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎦

Median
Interpolation

� � � � � � �→

⎡
⎢⎢⎢⎣

7 7.5 8 6.5 5 5

6.5 7.5 9 8.5 7 7

6 8 10 9.5 9 9

6 8 10 9.5 9 9

⎤
⎥⎥⎥⎦.

Zooming commonly requires a change in the image dimensions by a noninteger
factor, such as a 50% zoom where the dimensions must be 1.5 times the original. Also, a
change in the length-to-width ratio might be needed if the horizontal and vertical zoom
factors are different. The simplest way to accomplish zooming of arbitrary scale is to
double the size of the original as many times as needed to obtain an image larger than
the target size in all dimensions, interpolating new pixels on each expansion. Then the
desired image can be attained by subsampling the larger image, or taking pixels at regular
intervals from the larger image in order to obtain an image with the correct length and
width. The subsampling of images and the possible filtering needed are topics well known
in traditional image processing, thus, we will focus on the problem of doubling the size
of an image.

A digital image is represented by an array of values, each value defining the color of a
pixel of the image. Whether the color is constrained to be a shade of gray, in which case
only one value is needed to define the brightness of each pixel, or whether three values
are needed to define the red, green, and blue components of each pixel does not affect the
definition of the technique of WM interpolation. The only difference between grayscale
and color images is that an ordinary WM is used in grayscale images while color requires
a vector WM.
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To double the size of an image, first an empty array is constructed with twice the
number of rows and columns as the original (Fig. 12.11(a)), and the original pixels are
placed into alternating rows and columns (the “00” pixels in Fig. 12.11(a)). To interpolate
the remaining pixels, the method known as polyphase interpolation is used. In this
method, each new pixel with four original pixels at its four corners (the “11” pixels in
Fig. 12.11(b)) is interpolated first by using the WM of the four nearest original pixels
as the value for that pixel. Since all original pixels are equally trustworthy and the same
distance from the pixel being interpolated, a weight of 1 is used for the four nearest
original pixels. The resulting array is shown in Fig. 12.11(c). The remaining pixels are
determined by taking a WM of the four closest pixels. Thus each of the “01” pixels
in Fig. 12.11(c) is interpolated using two original pixels to the left and right and two
previously interpolated pixels above and below. Similarly, the “10” pixels are interpolated
with original pixels above and below and interpolated pixels (“11” pixels) to the right
and left.

Since the “11” pixels were interpolated, they are less reliable than the original pixels
and should be given lower weights in determining the “01” and “10” pixels. Therefore, the
“11” pixels are given weights of 0.5 in the median to determine the “01” and “10” pixels,
while the “00” original pixels have weights of 1 associated with them. The weight of 0.5
is used because it implies that when both “11” pixels have values that are not between
the two “00” pixel values then one of the “00” pixels or their average will be used. Thus
“11” pixels differing from the “00” pixels do not greatly affect the result of the WM. Only
when the “11” pixels lie between the two “00” pixels will they have a direct effect on the
interpolation. The choice of 0.5 for the weight is arbitrary, since any weight greater than 0
and less than 1 will produce the same result. When implementing the polyphase method,
the “01” and “10” pixels must be treated differently due to the fact that the orientation
of the two closest original pixels is different for the two types of pixels. Figure 12.11(d)
shows the final result of doubling the size of the original array.

To illustrate the process, consider an expansion of the grayscale image represented by
an array of pixels, the pixel in the ith row and jth column having brightness ai,j . The array

ai,j will be interpolated into the array x
pq

i,j
, with p and q taking values 0 or 1 indicating in

the same way as above the type of interpolation required:

⎡
⎣

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

⎤
⎦”

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
00

1,1
x

01

1,1
x

00

1,2
x

01

1,2
x

00

1,3
x

01

1,3

x
10

1,1
x

11

1,1
x

10

1,2
x

11

1,2
x

10

1,3
x

11

1,3

x
00

2,1
x

01

2,1
x

00

2,2
x

01

2,2
x

00

2,3
x

01

2,3

x
10

2,1
x

11

2,1
x

10

2,2
x

11

2,2
x

10

2,3
x

11

2,3

x
00

3,1
x

01

3,1
x

00

3,2
x

01

3,2
x

00

3,3
x

01

3,3

x
10

3,1
x

11

3,1
x

10

3,2
x

11

3,2
x

10

3,3
x

11

3,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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FIGURE 12.11

The steps of polyphase interpolation.

The pixels are interpolated as follows:

x
00

i,j
� ai,j

x
11

i,j
� MEDIAN[ai,j , ai�1,j , ai,j�1, ai�1,j�1]

x
01

i,j
� MEDIAN[ai,j , ai,j�1, 0.5� x

11

i�1,j
, 0.5� x

11

i�1,j
]

x
10

i,j
� MEDIAN[ai,j , ai�1,j , 0.5� x

11

i,j�1
, 0.5� x

11

i,j�1
].

An example of median interpolation compared with bilinear interpolation is given
in Fig. 12.12. Bilinear interpolation uses the average of the nearest two original pixels to
interpolate the “01” and “10” pixels in Fig. 12.11(b) and the average of the nearest four
original pixels for the“11”pixels. The edge-preserving advantage of the WM interpolation
is readily seen in the figure.

12.5 IMAGE SHARPENING
Human perception is highly sensitive to edges and fine details of an image and since they
are composed primarily high-frequency components, the visual quality of an image can
be enormously degraded if the high frequencies are attenuated or completely removed.
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FIGURE 12.12

Example of zooming. Original is at the top with the area of interest outlined in white. On the
lower left is the bilinear interpolation of the area, and on the lower right the weighted median
interpolation.

On the other hand, enhancing the high-frequency components of an image leads to an
improvement in the visual quality. Image sharpening refers to any enhancement technique
that highlights edges and fine details in an image. Image sharpening is widely used in
printing and photographic industries for increasing the local contrast and sharpening the
images. In principle, image sharpening consists of adding to the original image a signal
that is proportional to a highpass filtered version of the original image. Figure 12.13
illustrates this procedure often referred to as unsharp masking [23, 24] on a 1D signal. As
shown in Fig. 12.13, the original image is first filtered by a highpass filter which extracts
the high-frequency components, and then a scaled version of the highpass filter output
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FIGURE 12.13

Image sharpening by high-frequency emphasis.

is added to the original image thus producing a sharpened image of the original. Note
that the homogeneous regions of the signal, i.e., where the signal is constant, remain
unchanged. The sharpening operation can be represented by

si,j � xi,j � � ∗F(xi,j ), (12.28)

where xi,j is the original pixel value at the coordinate (i, j), F(·) is the highpass filter,
� is a tuning parameter greater than or equal to zero, and si,j is the sharpened pixel at
the coordinate (i, j). The value taken by � depends on the grade of sharpness desired.
Increasing � yields a more sharpened image.

If color images are used, xi,j , si,j , and � are three-component vectors, whereas if
grayscale images are used, xi,j , si,j , and � are single-component vectors. Thus the process
described here can be applied to either grayscale or color images with the only difference
that vector-filters have to be used in sharpening color images whereas single-component
filters are used with grayscale images.

The key point in the effective sharpening process lies in the choice of the highpass
filtering operation. Traditionally, linear filters have been used to implement the highpass
filter, however, linear techniques can lead to unacceptable results if the original image is
corrupted with noise. A trade-off between noise attenuation and edge highlighting can
be obtained if a WM filter with appropriated weights is used. To illustrate this, consider
a WM filter applied to a grayscale image where the following filter mask is used

W �
1

3

⎡
⎢⎣

�1 �1 �1

�1 8 �1

�1 �1 �1

⎤
⎥⎦ . (12.29)

Due to the weight coefficients in (12.29), for each position of the moving window, the
output is proportional to the difference between the center pixel and the smallest pixel
around the center pixel. Thus, the filter output takes relatively large values for prominent
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edges in an image, and small values in regions that are fairly smooth, being zero only in
regions that have constant gray level.

Although this filter can effectively extract the edges contained in a image, the effect
that this filtering operation has over negative-slope edges is different from that obtained
for positive-slope edges.1 Since the filter output is proportional to the difference between
the center pixel and the smallest pixel around the center, for negative-slope edges, the
center pixel takes small values producing small values at the filter output. Moreover, the
filter output is zero if the smallest pixel around the center pixel and the center pixel
have the same values. This implies that negative-slope edges are not extracted in the
same way as positive-slope edges. To overcome this limitation, the basic image sharpen-
ing structure shown in Fig. 12.13 must be modified such that positive-slope edges and
negative-slope edges are highlighted in the same proportion. A simple way to accomplish
that is: (a) extract the positive-slope edges by filtering the original image with the filter
mask described above; (b) extract the negative-slope edges by first preprocessing the
original image such that the negative-slope edges become positive-slope edges, and then
filter the preprocessed image with the filter described above; and (c) combine appropri-
ately the original image, the filtered version of the original image and the filtered version
of the preprocessed image to form the sharpened image.

Thus both positive-slope edges and negative-slope edges are equally highlighted. This
procedure is illustrated in Fig. 12.14, where the top branch extracts the positive-slope
edges and the middle branch extracts the negative-slope edges. In order to understand
the effects of edge sharpening, a row of a test image is plotted in Fig. 12.15 together
with a row of the sharpened image when only the positive-slope edges are highlighted
(Fig. 12.15(a)), only the negative-slope edges are highlighted (Fig. 12.15(b)), and both
positive-slope and negative-slope edges are jointly highlighted (Fig. 12.15(c)).

In Fig. 12.14, �1 and �2 are tuning parameters that control the amount of sharpness
desired in the positive-slope direction and in the negative-slope direction, respectively.
The values of �1 and �2 are generally selected to be equal. The output of the pre-filtering
operation is defined as

x�i,j � M � xi,j (12.30)

with M equal to the maximum pixel value of the original image. This pre-filtering
operation can be thought of as a flipping and a shifting operation of the values of the
original image such that the negative-slope edges are converted to positive-slope edges.
Since the original image and the pre-filtered image are filtered by the same WM filter, the
positive-slope edges and negative-slope edges are sharpened in the same way.

In Fig. 12.16, the performance of the WM filter image sharpening is compared with
that of traditional image sharpening based on linear FIR filters. For the linear sharpener,
the scheme shown in Fig. 12.13 was used. The parameter � was set to 1 for the clean

1A change from a gray level to a lower gray level is referred to as a negative-slope edge, whereas a change
from a gray level to a higher gray level is referred to as a positive-slope edge.
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FIGURE 12.14

Image sharpening based on the weighted median filter.

(a) (b) (c)

FIGURE 12.15

Original row of a test image (solid line) and row sharpened (dotted line) with (a) only positive-slope
edges; (b) only negative-slope edges; and (c) both positive-slope and negative-slope edges.

image and to 0.75 for the noise image. For the WM sharpener, the scheme of Fig. 12.14
was used with �1 � �2 � 2 for the clean image, and �1 � �2 � 1.5 for the noisy image.
The filter mask given by (12.29) was used in both linear and median image sharpening.
As before each component of the color image was processed separately.
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(a) (b) (c)

(d) (e) (f)

FIGURE 12.16

(a) Original image sharpened with; (b) the FIR-sharpener; and (c) the WM-sharpener;
(d) Image with added Gaussian noise sharpened with; (e) the FIR-sharpener; and (f) the
WM-sharpener.

12.6 CONCLUSION
The principles behind WM smoothers and WM filters have been presented in this
chapter, as well as some of the applications of these nonlinear signal processing struc-
tures in image enhancement. It should be apparent to the reader that many similarities
exist between linear and median filters. As illustrated in this chapter, there are several
applications in image enhancement where WM filters provide significant advantages
over traditional image enhancement methods using linear filters. The methods pre-
sented here, and other image enhancement methods that can be easily developed
using WM filters, are computationally simple and provide significant advantages, and
consequently can be used in emerging consumer electronic products, PC and internet
imaging tools, medical and biomedical imaging systems, and of course in military
applications.
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CHAPTER

13Morphological Filtering
Petros Maragos

National Technical University of Athens

13.1 INTRODUCTION
The goals of image enhancement include the improvement of the visibility and per-
ceptibility of the various regions into which an image can be partitioned and of the
detectability of the image features inside these regions. These goals include tasks such
as cleaning the image from various types of noise, enhancing the contrast among adja-
cent regions or features, simplifying the image via selective smoothing or elimination of
features at certain scales, and retaining only features at certain desirable scales. Image
enhancement is usually followed by (or is done simultaneously with) detection of features
such as edges, peaks, and other geometric features, which is of paramount importance in
low-level vision. Further, many related vision problems involve the detection of a known
template; such problems are usually solved via template matching.

While traditional approaches for solving the above tasks have used mainly tools of
linear systems, nowadays a new understanding has matured that linear approaches are not
well suited or even fail to solve problems involving geometrical aspects of the image. Thus,
there is a need for nonlinear geometric approaches. A powerful nonlinear methodology
that can successfully solve the above problems is mathematical morphology.

Mathematical morphology is a set- and lattice-theoretic methodology for image ana-
lysis, which aims at quantitatively describing the geometrical structure of image objects.
It was initiated [1, 2] in the late 1960s to analyze binary images from geological and
biomedical data as well as to formalize and extend earlier or parallel work [3, 4] on
binary pattern recognition based on cellular automata and Boolean/threshold logic. In
the late 1970s, it was extended to gray-level images [2]. In the mid-1980s, it was brought
to the mainstream of image/signal processing and related to other nonlinear filtering
approaches [5, 6]. Finally, in the late 1980s and 1990s, it was generalized to arbitrary
lattices [7, 8]. The above evolution of ideas has formed what we call nowadays the field
of morphological image processing, which is a broad and coherent collection of theore-
tical concepts, nonlinear filters, design methodologies, and applications systems. Its rich
theoretical framework, algorithmic efficiency, easy implementability on special hardware,
and suitability for many shape-oriented problems have propelled its widespread usage
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and further advancement by many academic and industry groups working on various
problems in image processing, computer vision, and pattern recognition.

This chapter provides a brief introduction to the application of morphological image
processing to image enhancement and feature detection. Thus, it discusses four important
general problems of low-level (early) vision, progressing from the easiest (or more easily
defined) to the more difficult (or harder to define): (i) geometric filtering of binary
and gray-level images of the shrink/expand type or of the peak/valley blob removal type;
(ii) cleaning noise from the image or improving its contrast; (iii) detecting in the image the
presence of known templates; and (iv) detecting the existence and location of geometric
features such as edges and peaks whose types are known but not their exact form.

13.2 MORPHOLOGICAL IMAGE OPERATORS
13.2.1 Morphological Filters for Binary Images
Given a sampled1 binary image signal f [x] with values 1 for the image object and 0 for
the background, typical image transformations involving a moving window set W �
{y1,y2, . . . ,yn} of n sample indexes would be

�b( f )[x]� b( f [x � y1], . . . , f [x � yn]), (13.1)

where b(v1, . . . ,vn) is a Boolean function of n variables. The mapping f �→ �b( f ) is
called a Boolean filter. By varying the Boolean function b, a large variety of Boolean
filters can be obtained. For example, choosing a Boolean AND for b would shrink the
input image object, whereas a Boolean OR would expand it. Numerous other Boolean
filters are possible since there are 22n

possible Boolean functions of n variables. The main
applications of such Boolean image operations have been in biomedical image processing,
character recognition, object detection, and general 2D shape analysis [3, 4].

Among the important concepts offered by mathematical morphology was to use sets
to represent binary images and set operations to represent binary image transformations.
Specifically, given a binary image, let the object be represented by the set X and its
background by the set complement X c . The Boolean OR transformation of X by a
(window) set B is equivalent to the Minkowski set addition⊕, also called dilation, of X
by B:

X ⊕B � {z : (Bs)�z ∩X �� �}�
⋃
y∈B

X�y , (13.2)

where X�y � {x � y : x ∈ X} is the translation of X along the vector y , and Bs � {x :
�x ∈ B} is the symmetric of B with respect to the origin. Likewise, the Boolean AND

1Signals of a continuous variable x ∈ R
m are usually denoted by f (x), whereas for signals with discrete

variable x ∈ Z
m we write f [x]. R and Z denote, respectively, the set of reals and integers.
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transformation of X by Bs is equivalent to the Minkowski set subtraction �, also called
erosion, of X by B:

X �B � {z : B�z ⊆ X}�
⋂
y∈B

X�y . (13.3)

Cascading erosion and dilation creates two other operations, the Minkowski opening
X◦B � (X �B)⊕B and the closing X•B � (X ⊕B)�B of X by B. In applications,
B is usually called a structuring element and has a simple geometrical shape and a size
smaller than the image X . If B has a regular shape, e.g., a small disk, then both opening
and closing act as nonlinear filters that smooth the contours of the input image. Namely,
if X is viewed as a flat island, the opening suppresses the sharp capes and cuts the narrow
isthmuses of X , whereas the closing fills in the thin gulfs and small holes.

There is a duality between dilation and erosion since X ⊕B � (X c �Bs)c ; i.e.,
dilation of an image object by B is equivalent to eroding its background by Bs and
complementing the result. A similar duality exists between closing and opening.

13.2.2 Morphological Filters for Gray-level Images
Extending morphological operators from binary to gray-level images can be done by
using set representations of signals and transforming these input sets via morphological
set operations. Thus, consider an image signal f (x) defined on the continuous or discrete
plane E � R

2 or Z
2 and assuming values in R � R∪ {��,�}. Thresholding f at all

amplitude levels v produces an ensemble of binary images represented by the upper level
sets (also called threshold sets):

Xv ( f ) � {x ∈ E : f (x) � v} , �� < v < ��. (13.4)

The image can be exactly reconstructed from all its level sets since

f (x) � sup{v ∈ R : x ∈ Xv ( f )}, (13.5)

where “sup” denotes supremum.2 Transforming each level set of the input signal f by a
set operator � and viewing the transformed sets as level sets of a new image creates [2, 5]
a flat image operator �, whose output signal is

�( f )(x) � sup{v ∈ R : x ∈�[Xv ( f )]}. (13.6)

2Given a set X of real numbers, the supremum of X is its lowest upper bound. If X is finite (or infinite but
closed from above), its supremum coincides with its maximum.
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For example, if � is the set dilation and erosion by B, the above procedure creates the
two most elementary morphological image operators: the dilation and erosion of f (x)

by a set B:

( f ⊕B)(x) �
∨
y∈B

f (x � y), (13.7)

( f �B)(x) �
∧
y∈B

f (x � y), (13.8)

where
∨

denotes supremum (or maximum for finite B) and
∧

denotes infimum (or
minimum for finite B). Flat erosion (dilation) of a function f by a small convex set B
reduces (increases) the peaks (valleys) and enlarges the minima (maxima) of the function.
The flat opening f ◦B � ( f �B)⊕B of f by B smooths the graph of f from below by
cutting down its peaks, whereas the closing f •B � ( f ⊕B)�B smooths it from above
by filling up its valleys.

The most general translation-invariant morphological dilation and erosion of a gray-
level image signal f (x) by another signal g are:

( f ⊕ g )(x) �
∨

y∈E
f (x � y) � g (y), (13.9)

( f � g )(x) �
∧

y∈E
f (x � y) � g (y). (13.10)

Note that signal dilation is a nonlinear convolution where the sum-of-products in the
standard linear convolution is replaced by a max-of-sums.

13.2.3 Universality of Morphological Operators3

Dilations or erosions can be combined in many ways to create more complex morpholo-
gical operators that can solve a broad variety of problems in image analysis and nonlinear
filtering. Their versatility is further strengthened by a theory outlined in [5, 6] that
represents a broad class of nonlinear and linear operators as a minimal combination of
erosions or dilations. Here we summarize the main results of this theory restricting our
discussion only to discrete 2D image signals.

Any translation-invariant set operator � is uniquely characterized by its kernel
Ker(�) � {X ∈ Z

2 : 0 ∈�(X)}. If � is also increasing (i.e., X ⊆ Y ”�(X)⊆ �(Y )),
then it can be represented as a union of erosions by all its kernel sets [1]. However, this
kernel representation requires an infinite number of erosions. A more efficient (requir-
ing less erosions) representation uses only a substructure of the kernel, its basis Bas(�),
defined as the collection of kernel elements that are minimal with respect to the par-
tial ordering ⊆ . If � is also upper semicontinuous (i.e., �(

⋂
n Xn) �

⋂
n �(Xn) for any

3This is a section for mathematically-inclined readers and can be skipped without significant loss of
continuity.
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decreasing set sequence (Xn)), then � has a nonempty basis and can be represented
exactly as a union of erosions by its basis sets:

�(X) �
⋃

A∈Bas(�)

X �A. (13.11)

The morphological basis representation has also been extended to gray-level signal
operators. As a special case, if � is a flat signal operator as in (13.6) that is translation-
invariant and commutes with thresholding, then � can be represented as a supremum of
erosions by the basis sets of its corresponding set operator 	:

�( f ) �
∨

A∈Bas(	)

f �A. (13.12)

By duality, there is also an alternative representation where a set operator � satisfying
the above three assumptions can be realized exactly as the intersection of dilations by the
reflected basis sets of its dual operator �d(X) � [�(X c )]c . There is also a similar dual
representation of signal operators as an infimum of dilations.

Given the wide applicability of erosions/dilations, their parallellism, and their simple
implementations, the morphological representation theory supports a general purpose
image processing (software or hardware) module that can perform erosions/dilations,
based on which numerous other complex image operations can be built.

13.2.4 Median, Rank, and Stack Filters
Flat erosion and dilation of a discrete image signal f [x] by a finite window W �
{y1, . . . ,yn} ⊆ Z

2 is a moving local minimum or maximum. Replacing min/max with
a more general rank leads to rank filters. At each location x ∈ Z

2, sorting the signal values
within the reflected and shifted n-point window (W s)�x in decreasing order and picking
the p-th largest value, p � 1,2, . . . ,n, yields the output signal from the pth rank filter:

( f �pW )[x] � pth rank of (f [x � y1], . . . , f [x � yn]). (13.13)

For odd n and p � (n � 1)/2 we obtain the median filter. Rank filters and especially
medians have been applied mainly to suppress impulse noise or noise whose probability
density has heavier tails than the Gaussian for enhancement of image and other signals,
since they can remove this type of noise without blurring edges, as would be the case for
linear filtering.

If the input image is binary, the rank filter output is also binary since sorting preserves
a signal’s range. Rank filtering of binary images involves only counting of points and no
sorting. Namely, if the set S ⊆ Z

2 represents an input binary image, the output set
produced by the pth rank set filter is

S�pW � {x : card[(W s)�x ∩ S]� p}, (13.14)

where card(X) denotes the cardinality (i.e., number of points) of a set X .
All rank operators commute with thresholding ; i.e.,

Xv [f �pW ]� [Xv ( f )]�pW , ∀v , ∀p (13.15)
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where Xv( f ) is the level set (binary image) resulting from thresholding f at level v .
This property is also shared by all morphological operators that are finite compositions
or maxima/minima of flat dilations and erosions by finite structuring elements. All
such signal operators � that have a corresponding set operator � and commute with
thresholding can be alternatively implemented via threshold superposition as in (13.6).

Further, since the binary version of all the above discrete translation-invariant finite-
window operators can be described by their generating Boolean function as in (13.1), all
that is needed in synthesizing their corresponding gray-level image filters is knowledge
of this Boolean function. Specifically, let fv [x] be the binary images represented by the
threshold sets Xv( f ) of an input gray-level image f [x]. Transforming all fv with an
increasing (i.e., containing no complemented variables) Boolean function b(u1, . . . ,un)

in place of the set operator � in (13.6) and using threshold superposition creates a class
of nonlinear digital filters called stack filters [5, 9]:

�b( f )[x] � sup{v ∈ R : b( fv [x � y1], . . . , fv [x � yn]) � 1}. (13.16)

The use of Boolean functions facilitates the design of such discrete flat operators
with determinable structural properties. Since each increasing Boolean function can be
uniquely represented by an irreducible sum (product) of product (sum) terms, and each
product (sum) term corresponds to an erosion (dilation), each stack filter can be repre-
sented as a finite maximum (minimum) of flat erosions (dilations) [5]. For example, the
window W � {�1,0,1} and the Boolean function b1(u1,u2,u3) � u1u2 � u2u3 � u1u3

create a stack filter that is identical to the 3-point median by W , which can also be
represented as a maximum of three 2-point erosions:

�b( f )[x]� median(f [x � 1], f [x], f [x � 1])
(13.17)

� max
[
min( f [x � 1], f [x]),min( f [x � 1], f [x � 1]),min( f [x], f [x � 1])] .

In general, because of their representation via erosions/dilations (which have a geometric
interpretation) and Boolean functions (which are related to mathematical logic), stack
filters can be analyzed or designed not only in terms of their statistical properties for
image denoising but also in terms of their geometric and logic properties for preserving
selected image structures.

13.2.5 Algebraic Generalizations of Morphological Operators
A more general formalization [7, 8] of morphological operators views them as operators
on complete lattices. A complete lattice is a set L equipped with a partial ordering 
 such
that (L,
) has the algebraic structure of a partially ordered set where the supremum
and infimum of any of its subsets exist in L. For any subset K ⊆ L, its supremum∨

K and infimum
∧

K are defined as the lowest (with respect to 
) upper bound and
greatest lower bound of K, respectively. The two main examples of complete lattices used
in morphological image processing are (i) the space of all binary images represented
by subsets of the plane E where the

∨
/
∧

lattice operations are the set union/intersection,
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and (ii) the space of all gray-level image signals f : E→ R where the
∨

/
∧

lattice
operations are the supremum/infimum of sets of real numbers. An operator � on L is
called increasing if it preserves the partial ordering, i.e., f 
 g implies �( f ) 
 �(g ).
Increasing operators are of great importance, and among them four fundamental
examples are:

� is dilation⇐⇒ �
(∨

i∈I

fi
)

�
∨
i∈I

�( fi) (13.18)

� is erosion⇐⇒ �
(∧

i∈I

fi
)

�
∧
i∈I

�( fi) (13.19)

� is opening⇐⇒ � is increasing, idempotent, and anti-extensive (13.20)

� is closing⇐⇒ � is increasing, idempotent, and extensive, (13.21)

where I is an arbitrary index set, idempotence of an operator � means that �(�( f )) �
�( f ), and antiextensivity and extensivity of operators � and � means that �( f ) 
 f 

�( f ) for all f .

The above definitions allow broad classes of signal operators to be grouped as lat-
tice dilations, erosions, openings, or closings and their common properties to be studied
under the unifying lattice framework. Thus, the translation-invariant Minkowski dila-
tions ⊕, erosions �, openings ◦, and closings • are simple special cases of their lattice
counterparts.

In lattice-theoretic morphology, the term morphological filter means any increasing
and idempotent operator on a lattice of images. However, in this chapter, we shall use the
term“morphological operator,”which broadly means a morphological signal transforma-
tion, interchangeably with the term “morphological filter,” in analogy to the terminology
“rank or linear filter.”

13.3 MORPHOLOGICAL FILTERS FOR IMAGE ENHANCEMENT
Enhancement may be accomplished in various ways including (i) noise suppression,
(ii) simplification by retaining only those image components that satisfy certain size or
contrast criteria, and (iii) contrast sharpening. The first two cases may also be viewed as
examples of “image smoothing.”

The simplest morphological image smoother is a Minkowski opening by a disk B.
This smooths and simplifies a (binary image) set X by retaining only those parts inside
which a translate of B can fit. Namely,

X◦B �
⋃

B�z⊆X

B�z . (13.22)

In the case of gray-level image f , its opening by B performs the above smoothing
at all level sets simultaneously. However, this horizontal geometric local and isotropic
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smoothing performed by the Minkowski disk opening may not be sufficient for several
other smoothing tasks that may need directional smoothing, or may need contour preser-
vation based on size or contrast criteria. To deal with these issues, we discuss below several
types of morphological filters that are generalized operators in the lattice-theoretic sense
and have proven to be very useful for image enhancement.

13.3.1 Noise Suppresion and Image Smoothing
13.3.1.1 Median versus Open-Closing
In their behavior as nonlinear smoothers, as shown in Fig. 13.1, the medians act similarly
to an open-closing ( f ◦B)•B by a convex set B of diameter about half the diameter of
the median window [5]. The open-closing has the advantages over the median that it
requires less computation and decomposes the noise suppression task into two indepen-
dent steps, i.e., suppressing positive spikes via the opening and negative spikes via the
closing.

The popularity and efficiency of the simple morphological openings and closings
to suppress impulse noise is supported by the following theoretical development [10].
Assume a class of sufficiently smooth random input images which is the collection of
all subsets of a finite mask W that are open (or closed) with respect to a set B and
assign a uniform probability distribution on this collection. Then, a discrete binary input
image X is a random realization from this collection; i.e., use ideas from random sets
[1, 2] to model X . Further, X is corrupted by a union (or intersection) noise N which
is a 2D sequence of i.i.d. binary Bernoulli random variables with probability p ∈ (0,1)

of occurrence at each pixel. The observed image is the noisy version Y � X ∪N (or
Y � X ∩N ). Then, the maximum-a-posteriori estimate [10] of the original X given the
noisy image Y is the opening (or closing) of the observed Y by B.

(a) (b) (c)

FIGURE 13.1

(a) Noisy image obtained by corrupting an original with two-level salt-and-pepper noise occuring
with probability 0.1 (PSNR � 18.9dB); (b) Open-closing of noisy image by a 2 � 2-pel square
(PSNR � 25.4dB); (c) Median of noisy image by a 3 � 3-pel square (PSNR � 25.4dB).



13.3 Morphological Filters for Image Enhancement 301

13.3.1.2 Alternating Sequential Filters
Another useful generalization of openings and closings involves cascading open-closings
�t �t at multiple scales t � 1, . . . , r , where �t ( f ) � f ◦tB and �t ( f ) � f •tB. This
generates a class of efficient nonlinear smoothing filters,

�asf ( f ) � �r �r . . . �2�2�1�1( f ), (13.23)

called alternating sequential filters (ASF), which smooth progressively from the smallest
scale possible up to a maximum scale r and have a broad range of applications [7]. Their
optimal design is addressed in [11]. Further, the Minkowski open-closings in an ASF can
be replaced by other types of lattice open-closings. A simple such generalization is the
radial open-closing, discussed next.

13.3.1.3 Radial Openings
Consider a 2D image f that contains 1D objects, e.g., lines; then the simple Minkowski
opening or closing of f by a disk B will eliminate these 1D objects. Another problem
arises when f contains large-scale objects with sharp corners that need to be preserved; in
such cases, opening or closing f by a disk B will round these corners. These two problems
could be avoided in some cases if we replace the conventional opening with a radial
opening,

�( f ) �
∨
�

f◦L�, (13.24)

where the sets L� are rotated versions of a line segment L at various angles � ∈ (0,2	).
This has the effect of preserving an object in f if this object is left unchanged after the
opening by L� in at least one of the possible orientations � (see Fig. 13.2). Dually, in case
of dark 1D objects, we can use a radial closing �( f ) �

∧
� f •L�.

13.3.2 Connected Filters for Smoothing and Simplification
The flat zones of an image signal f : E→ R are defined as the connected components of
the image domain on which f assumes a constant value. A useful class of morphological
filters was introduced in [12, 13], which operate by merging flat zones and hence exactly
preserving the contours of the image parts remaining in the filter’s output. These are
called connected operators. They cannot create new image structures or new boundaries
if they did not exist in the input. Specifically, if D is a partition of the image domain,
let D(x) denote the (partition member) region that contains the pixel x . Now, given
two partitions D1,D2, we say that D1 is “finer” than D2 if D1(x)⊆ D2(x) for all x . An
operator � is called connected if the flat zone partition of its input f is finer than the flat
zone partition of its output �( f ). Next we discuss two types of connected operators, the
area filters and the reconstruction filters.

13.3.2.1 Area Openings
There are numerous image enhancement problems where what is needed is suppression
of arbitrarily-shaped connected components in the input image whose areas (number
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Original image � F Radial opening (F ) Reconstr. opening (rad.open|F )

(a) (b) (c)

FIGURE 13.2

(a) Original image f of an eye angiogram with microaneurisms; (b) Radial opening �( f )

of f as max of four openings by lines oriented at 0◦, 45◦, 90◦, 135◦ of size 20 pixels each;
(c) Reconstruction opening 
�( �( f )|f ) of f using the radial opening as marker.

of pixels) are smaller than a certain threshold n. This can be accomplished by the area
opening �n of size n which, for binary images, keeps only the connected components
whose area is �n and eliminates the rest. Consider an input set X �

⊔
i Xi as a union of

disjoint connected components Xi . Then the output from the area opening is

�n(X) �
⊔

Area(Xj )�n

Xj , X �
⊔

i

Xi , (13.25)

where
⊔

denotes disjoint union. The area opening can be extended to gray-level images
f by applying the same binary area opening to all level sets of f and constructing the
filtered gray-level image via threshold superposition:

�n( f )(x) � sup{v : x ∈ �n[Xv ( f )]}. (13.26)

Figure 13.3 shows examples of binary and gray area openings. If we apply the above
operations to the complements of the level sets of an image, we obtain an area closing.

13.3.2.2 Reconstruction Filters and Levelings
Consider a reference (image) set X �

⊔
i Xi as a union of I disjoint connected components

Xi , i ∈ I , and let M ⊆ Xj be a marker in some component(s) Xj , indexed by j ∈ J ⊆ I ;
i.e., M could consist of a single point or some feature sets in X that lie only in the
component(s) Xj . Let us define the reconstruction opening as the operator:


�(M |X) � connected components of X intersecting M . (13.27)

Its output contains exactly the input component(s) Xj that intersect the marker. It can
extract large-scale components of the image from knowledge only of a smaller marker
inside them. Note that the reconstruction opening has two inputs. If the marker M
is fixed, then the mapping X �→ 
�(M |X) is a lattice opening since it is increasing,
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Original image

(a)

(d)

Component area . 50

(b)

(e)

Component area . 500

(c)

(f )

FIGURE 13.3

Top row: (a) Original binary image (192 � 228 pixels); (b) Area opening by keeping connected
components with area �50; (c) Area opening by keeping components with area �500. Bot-
tom row: (d) Gray original image (420 � 300 pixels); (e) Gray area opening by keeping bright
components with area �500; ( f) Gray area closing by keeping dark components with area �500.

antiextensive, and idempotent. Its output is called the morphological reconstruction of
(the component(s) of) X from the marker M . However, if the reference X is fixed, then
the mapping M �→ 
�(M |X) is an idempotent lattice dilation; in this case, the output
is called the reconstruction of M under X .

An algorithm to implement the discrete reconstruction opening is based on the
conditional dilation of M by B within X :

�B(M |X) � (M ⊕B)∩X , (13.28)

where B is the unit-radius discrete disk associated with the selected connectivity of the
rectangular grid; i.e., a 5-pixel rhombus or a 9-pixel square depending on whether we have
4- or 8-neighbor connectivity, respectively. By iterating this conditional dilation, we can
obtain in the limit the whole marked component(s) Xj , i.e., the conditional reconstruction
opening,


�
B (M |X) � lim

k→�
Yk , Yk � �B(Yk�1|X), Y0 � M . (13.29)

An example is shown in Fig. 13.4.
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Image & marker

(a) (b) (c) (d)

10 iters 40 iters Reconstruction opening

FIGURE 13.4

(a) Original binary image (192 � 228 pixels) and a square marker within the largest component.
The next three images show iterations of the conditional dilation of the marker with a 3 � 3-
pixel square structuring element; (b) 10 iterations; (c) 40 iterations; (d) reconstruction opening,
reached after 128 iterations.

Replacing the binary with gray-level images, the set dilation with function dilation,
and ∩ with ∧ yields the gray-level reconstruction opening of a gray-level image f from a
marker image m:


�
B (m|f ) � lim

k→�
gk , gk � �B(gk�1)∧ f , g0 � m 
 f . (13.30)

This reconstructs the bright components of the reference image f that contains the
marker m. For example, as shown in Fig. 13.2, the results of any prior image smoothing,
like the radial opening of Fig. 13.2(b), can be treated as a marker which is subsequently
reconstructed under the original image as reference to recover exactly those bright image
components whose parts have remained after the first operation.

There is a large variety of reconstruction openings depending on the choice of the
marker. Two useful cases are (i) size-based markers chosen as the Minkowski erosion
m � f � rB of the reference image f by a disk of radius r and (ii) contrast -based markers
chosen as the difference m(x) � f (x) � h of a constant h > 0 from the image. In the
first case, the reconstruction opening retains only objects whose horizontal size (i.e.,
diameter of inscribable disk) is not smaller than r . In the second case, only objects whose
contrast (i.e., height difference from neighbors) exceeds h will leave a remnant after the
reconstruction. In both cases, the marker is a function of the reference signal.

Reconstruction of the dark image components hit by some marker is accomplished
by the dual filter, the reconstruction closing,


�
B (m|f ) � lim

k→�
gk , gk � �B(gk�1)∨ f , g0 � m � f . (13.31)

Examples of gray-level reconstruction filters are shown in Fig. 13.5.
Despite their many applications, reconstruction openings and closings � have as a

disadvantage the property that they are not self-dual operators; hence, they treat the
image and its background asymmetrically. A newer operator type that unifies both
of them and possesses self-duality is the leveling [14]. Levelings are nonlinear object-
oriented filters that simplify a reference image f through a simultaneous use of locally



13.3 Morphological Filters for Image Enhancement 305

(a) (b) (c)
0 0.2 0.4 0.6 0.8 0.9

�1

0

0.5

1

R
ef

er
en

ce
, M

ar
ke

r 
&

 R
ec

.o
pe

ni
ng

�0.5

0

0.5

1

1 0 0.2 0.4 0.6 0.8 0.9 1

�1

�0.5

0

0.5

1

R
ef

er
en

ce
, M

ar
ke

r 
&

 R
ec

.c
lo

si
ng

0 0.2 0.4 0.6 0.8 0.9 1

�1

�0.5

0

0.5

1

R
ef

er
en

ce
, M

ar
ke

r 
&

 L
ev

el
in

g

FIGURE 13.5

Reconstruction filters for 1D images. Each figure shows reference signals f (dash), markers (thin
solid), and reconstructions (thick solid). (a) Reconstruction opening from marker � ( f �B) � const;
(b) Reconstruction closing from marker � ( f ⊕B) � const; (c) Leveling (self-dual reconstruction) from
an arbitrary marker.

expanding and shrinking an initial seed image, called the marker m, and global con-
straining of the marker evolution by the reference image. Specifically, iterations of the
image operator �(m|f ) � ( �B(m)∧ f )∨ �B(m), where �B(·) (respectively �B(·)) is a
dilation (respectively erosion) by the unit-radius discrete disk B of the grid, yield in the
limit the leveling of f w.r.t. m:

�B(m|f ) � lim
k→�

gk , gk �
(

�B(gk�1)∧ f
)∨ �B(gk�1), g0 � m. (13.32)

In contrast to the reconstruction opening (closing) where the marker m is smaller
(greater) than f , the marker for a general leveling may have an arbitrary ordering w.r.t.
the reference signal (see Fig. 13.5(c)). The leveling reduces to being a reconstruction
opening (closing) over regions where the marker is smaller ( greater) than the reference
image.

If the marker is self-dual, then the leveling is a self-dual filter and hence treats sym-
metrically the bright and dark objects in the image. Thus, the leveling may be called a
self-dual reconstruction filter. It simplifies both the original image and its background by
completely eliminating smaller objects inside which the marker cannot fit. The reference
image plays the role of a global constraint.

In general, levelings have many interesting multiscale properties [14]. For example,
they preserve the coupling and sense of variation in neighbor image values and do not
create any new regional maxima or minima. Also, they are increasing and idempotent
filters. They have proven to be very useful for image simplification toward segmentation
because they can suppress small-scale noise or small features and keep only large-scale
objects with exact preservation of their boundaries.

13.3.3 Contrast Enhancement
Imagine a gray-level image f that has resulted from blurring an original image g by
linearly convolving it with a Gaussian function of variance 2t . This Gaussian blurring



306 CHAPTER 13 Morphological Filtering

can be modeled by running the classic heat diffusion differential equation for the time
interval [0, t ] starting from the initial condition g at t � 0. If we can reverse in time this
diffusion process, then we can deblur and sharpen the blurred image. By approximating
the spatio-temporal derivatives of the heat equation with differences, we can derive a
linear discrete filter that can enhance the contrast of the blurred image f by subtracting
from f a discretized version of its Laplacian 2f � �2f /�x2 � �2f /�y2. This is a simple
linear deblurring scheme, called unsharp constrast enhancement. A conceptually similar
procedure is the following nonlinear filtering scheme.

Consider a gray-level image f [x] and a small-size symmetric disk-like structuring
element B containing the origin. The following discrete nonlinear filter [15] can enhance
the local contrast of f by sharpening its edges:

�( f )[x]�
⎧⎨
⎩

( f ⊕B)[x] if f [x]� (( f ⊕B)[x]� ( f �B)[x])/2

( f �B)[x] if f [x]< (( f ⊕B)[x]� ( f �B)[x])/2.
(13.33)

At each pixel x , the output value of this filter toggles between the value of the dilation of
f by B (i.e., the maximum of f inside the moving window B centered) at x and the value
of its erosion by B (i.e., the minimum of f within the same window) according to which
is closer to the input value f [x]. The toggle filter is usually applied not only once but
is iterated. The more iterations, the more contrast enhancement. Further, the iterations
converge to a limit (fixed point) [15] reached after a finite number of iterations. Examples
are shown in Figs. 13.6 and 13.7.

(a) Original and Gauss–blurred signal
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FIGURE 13.6

(a) Original signal (dashed line) f [x]� sign(cos(4	x)), x ∈ [0,1], and its blurring (solid line) via
convolution with a truncated sampled Gaussian function of  � 40; (b) Filtered versions (dashed
lines) of the blurred signal in (a) produced by iterating the 1D toggle filter (with B � {�1,0,1})
until convergence to the limit signal (thick solid line) reached at 66 iterations; the displayed
filtered signals correspond to iteration indexes that are multiples of 20.
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(a) (b) (c) (d)

FIGURE 13.7

(a) Original image f ; (b) Blurred image g obtained by an out-of-focus camera digitizing f ; (c) Out-
put of the 2D toggle filter acting on g (B was a small symmetric disk-like set); (d) Limit of iterations
of the toggle filter on g (reached at 150 iterations).

13.4 MORPHOLOGICAL OPERATORS FOR TEMPLATE MATCHING
13.4.1 Morphological Correlation
Consider two real-valued discrete image signals f [x] and g [x]. Assume that g is a signal
pattern to be found in f . To find which shifted version of g “best” matches f , a standard
approach has been to search for the shift lag y that minimizes the mean-squared error,
E2[y]�∑

x∈W ( f [x � y]� g [x])2, over some subset W of Z
2. Under certain assump-

tions, this matching criterion is equivalent to maximizing the linear cross-correlation
Lfg [y] � ∑

x∈W f [x � y]g [x] between f and g .
Although less mathematically tractable than the mean squared error criterion, a statis-

tically more robust criterion is to minimize the mean absolute error,

E1[y]�
∑

x∈W

|f [x � y]� g [x]|.

This mean absolute error criterion corresponds to a nonlinear signal correlation used
for signal matching; see [6] for a review. Specifically, since |a � b|� a � b � 2min(a,b),
under certain assumptions (e.g., if the error norm and the correlation is normalized by
dividing it with the average area under the signals f and g ), minimizing E1[y] is equivalent
to maximizing the morphological cross-correlation:

Mfg [y] �
∑

x∈W

min( f [x � y],g [x]). (13.34)

It can be shown experimentally and theoretically that the detection of g in f is indicated
by a sharper matching peak in Mfg [y] than in Lfg [y]. In addition, the morphological (sum
of minima) correlation is faster than the linear (sum of products) correlation. These two
advantages of the morphological correlation coupled with the relative robustness of the
mean absolute error criterion make it promising for general signal matching.
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13.4.2 Binary Object Detection and Rank Filtering
Let us approach the problem of binary image object detection in the presence of noise
from the viewpoint of statistical hypothesis testing and rank filtering. Assume that the
observed discrete binary image f [x] within a mask W has been generated under one of
the following two probabilistic hypotheses:

H0 : f [x]� e[x], x ∈W ,
H1 : f [x]� |g [x � y]� e[x]|, x ∈W .

Hypothesis H1 (H0) stands for “object present” (“object not present”) at pixel location y .
The object g [x] is a deterministic binary template. The noise e[x] is a stationary binary
random field which is a 2D sequence of i.i.d. random variables taking value 1 with
probability p and 0 with probability 1 � p, where 0 < p < 0.5. The mask W � G�y is a
finite set of pixels equal to the region G of support of g shifted to location y at which the
decision is taken. (For notational simplicity, G is assumed to be symmetric, i.e., G � Gs .)
The absolute-difference superposition between g and e under H1 forces f to always have
values 0 or 1. Intuitively, such a signal/noise superposition means that the noise e toggles
the value of g from 1 to 0 and from 0 to 1 with probability p at each pixel. This noise
model can be viewed either as the common binary symmetric channel noise in signal
transmission or as a binary version of the salt-and-pepper noise. To decide whether the
object g occurs at y , we use a Bayes decision rule that minimizes the total probability of
error and hence leads to the likelihood ratio test :

Pr( f /H1)

Pr( f /H0)

H1

>

<

H0

Pr(H0)

Pr(H1)
, (13.35)

where Pr( f /Hi) are the likelihoods of Hi with respect to the observed image f , and
Pr(Hi) are the a priori probabilities. This is equivalent to

Mfg [y]�
∑

x∈W

min( f [x],g [x � y])
H1

>

<

H0

� �
1

2

(
log[Pr(H0)/Pr(H1)]

log[(1 � p)/p] � card(G)

)
. (13.36)

Thus, the selected statistical criterion and noise model lead to computing the morpho-
logical (or equivalently linear) binary correlation between a noisy image and a known
image object and comparing it to a threshold for deciding whether the object is present.

Thus, optimum detection in a binary image f of the presence of a binary object g
requires comparing the binary correlation between f and g to a threshold �. This is
equivalent4 to performing a r-th rank filtering on f by a set G equal to the support of

4An alternative implementation and view of binary rank filtering is via thresholded convolutions, where a
binary image is linearly convolved with the indicator function of a set G with n � card(G) pixels, and then
the result is thresholded at an integer level r between 1 and n; this yields the output of the r-th rank filter
by G acting on the input image.
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g , where 1 
 r 
 card(G) and r is related to �. Thus, the rank r reflects the area portion
of (or a probabilistic confidence score for) the shifted template existing around pixel y .
For example, if Pr(H0) � Pr(H1), then r � � � card(G)/2, and hence the binary median
filter by G becomes the optimum detector.

13.4.3 Hit-Miss Filter
The set erosion (13.3) can also be viewed as Boolean template matching since it gives
the center points at which the shifted structuring element fits inside the image object.
If we now consider a set A probing the image object X and another set B probing the
background X c , the set of points at which the shifted pair (A,B) fits inside the image X
is the hit-miss transformation of X by (A,B):

X ⊗ (A,B) � {x : A�x ⊆ X , B�x ⊆ X c }. (13.37)

In the discrete case, this can be represented by a Boolean product function whose uncom-
plemented (complemented) variables correspond to points of A (B). It has been used
extensively for binary feature detection [2]. It can actually model all binary template
matching schemes in binary pattern recognition that use a pair of a positive and a
negative template [3].

In the presence of noise, the hit-miss filter can be made more robust by replacing the
erosions in its definitions with rank filters that do not require an exact fitting of the whole
template pair (A,B) inside the image but only a part of it.

13.5 MORPHOLOGICAL OPERATORS FOR FEATURE DETECTION
13.5.1 Edge Detection
By image edges we define abrupt intensity changes of an image. Intensity changes usually
correspond to physical changes in some property of the imaged 3D objects’ surfaces (e.g.,
changes in reflectance, texture, depth or orientation discontinuities, object boundaries)
or changes in their illumination. Thus, edge detection is very important for subsequent
higher level vision tasks and can lead to some inference about physical properties of the
3D world. Edge types may be classified into three types by approximating their shape
with three idealized patterns: lines, steps, and roofs, which correspond, respectively, to
the existence of a Dirac impulse in the derivative of order 0, 1, and 2. Next we focus
mainly on step edges. The problem of edge detection can be separated into three main
subproblems:

1. Smoothing : image intensities are smoothed via filtering or approximated by
smooth analytic functions. The main motivations are to suppress noise and
decompose edges at multiple scales.

2. Differentiation: amplifies the edges and creates more easily detectable simple
geometric patterns.
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3. Decision: edges are detected as peaks in the magnitude of the first-order derivatives
or zero-crossings in the second-order derivatives, both compared with some
threshold.

Smoothing and differentiation can be either linear or nonlinear. Further, the dif-
ferentiation can be either directional or isotropic. Next, after a brief synopsis of the
main linear approaches for edge detection, we describe some fully nonlinear ones using
morphological gradient-type residuals.

13.5.1.1 Linear Edge Operators
In linear edge detection, both smoothing and differentiation are done via linear convolu-
tions. These two stages of smoothing and differentiation can be done in a single stage of
convolution with the derivative of the smoothing kernel. Three well-known approaches
for edge detection using linear operators in the main stages are the following:

■ Convolution with edge templates: Historically, the first approach for edge detec-
tion, which lasted for about three decades (1950s–1970s), was to use discrete
approximations to the image linear partial derivatives, fx � �f /�x and fy � �f /�y ,
by convolving the digital image f with very small edge-enhancing kernels. Exam-
ples include the Prewitt, Sobel and Kirsch edge convolution masks reviewed in
[3, 16]. Then these approximations to fx , fy were combined nonlinearly to give a
gradient magnitude ||f || using the �1, �2, or �� norm. Finally, peaks in this edge
gradient magnitude were detected, via thresholding, for a binary edge decision.
Alternatively, edges were identified as zero-crossings in second-order derivatives
which were approximated by small convolution masks acting as digital Laplacians.
All these above approaches do not perform well because the resulting convolution
masks act as poor digital highpass filters that amplify high-frequency noise and do
not provide a scale localization/selection.

■ Zero-crossings of Laplacian-of-Gaussian convolution: Marr and Hildreth [17]
developed a theory of edge detection based on evidence from biological vision sys-
tems and ideas from signal theory. For image smoothing, they chose linear convolu-
tions with isotropic Gaussian functions G(x ,y) � exp[�(x2 � y2)/22]/(2	2)

to optimally localize edges both in the space and frequency domains. For differ-
entiation, they chose the Laplacian operator 2 since it is the only isotropic linear
second-order differential operator. The combination of Gaussian smoothing and
Laplacian can be done using a single convolution with a Laplacian-of-Gaussian
(LoG) kernel, which is an approximate bandpass filter that isolates from the origi-
nal image a scale band on which edges are detected. The scale is determined by .
Thus, the image edges are defined as the zero-crossings of the image convolution
with a LoG kernel. In practice, one does not accept all zero-crossings in the LoG
output as edge points but tests whether the slope of the LoG output exceeds a
certain threshold.

■ Zero-crossings of directional derivatives of smoothed image: For detecting edges
in 1D signals corrupted by noise, Canny [18] developed an optimal approach where
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edges were detected as maxima in the output of a linear convolution of the signal
with a finite-extent impulse response h. By maximizing the following figures of
merit, (i) good detection in terms of robustness to noise, (ii) good edge localization,
and (iii) uniqueness of the result in the vicinity of the edge, he found an optimum
filter with an impulse response h(x) which can be closely approximated by the
derivative of a Gaussian. For 2D images, the Canny edge detector consists of three
steps: (1) smooth the image f (x ,y) with an isotropic 2D Gaussian G , (2) find
the zero-crossings of the second-order directional derivative �2f /��2 of the image
in the direction of the gradient �� � f /||f ||, (3) keep only those zero-crossings
and declare them as edge pixels if they belong to connected arcs whose points
possess edge strengths that pass a double-threshold hysteresis criterion. Closely
related to Canny’s edge detector was Haralick’s previous work (reviewed in [16])
to regularize the 2D discrete image function by fitting to it bicubic interpolating
polynomials, compute the image derivatives from the interpolating polynomial,
and find the edges as the zero-crossings of the second directional derivative in the
gradient direction. The Haralick-Canny edge detector yields different and usually
better edges than the Marr-Hildreth detector.

13.5.1.2 Morphological Edge Detection
The boundary of a set X ⊆ R

m , m � 1,2, . . . , is given by

�X � X\ ◦X� X ∩ (
◦
X)c , (13.38)

where X and
◦

X denote the closure and interior of X . Now, if ||x|| is the Euclidean norm
of x ∈ R

m , B is the unit ball, and rB � {x ∈ R
m : ||x||
 r} is the ball of radius r , then it

can be shown that

�X �
⋂
r>0

(X ⊕ rB) \ (X � rB). (13.39)

Hence, the set difference between erosion and dilation can provide the “edge,” i.e., the
boundary of a set X .

These ideas can also be extended to signals. Specifically, let us define morphological
sup-derivative M( f ) of a function f : R

m→ R at a point x as

M( f )(x) � lim
r↓0

( f ⊕ rB)(x) � f (x)

r
� lim

r↓0

∨
||y||
r f (x � y) � f (x)

r
. (13.40)

By applying M to �f and using the duality between dilation and erosion, we obtain
the inf-derivative of f . Suppose now that f is differentiable at x � (x1, . . . ,xm) and let its

gradient be f �
(

�f
�x1

, . . . , �f
�xm

)
. Then it can be shown that

M( f )(x) � ||f (x)||. (13.41)

Next, if we take the difference between sup-derivative and inf-derivative when the scale
goes to zero, we arrive at an isotropic second-order morphological derivative:

M2( f )(x) � lim
r↓0

[( f ⊕ rB)(x) � f (x)]� [f (x) � ( f � rB)(x)]
r2 . (13.42)
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The peak in the first-order morphological derivative or the zero-crossing in the
second-order morphological derivative can detect the location of an edge, in a similar
way as the traditional linear derivatives can detect an edge.

By approximating the morphological derivatives with differences, various simple and
effective schemes can be developed for extracting edges in digital images. For example, for
a binary discrete image represented as a set X in Z

2, the set difference (X ⊕B) \ (X �B)

gives the boundary of X . Here B equals the 5-pixel rhombus or 9-pixel square depending
on whether we desire 8- or 4-connected image boundaries. An asymmetric treatment
between the image foreground and background results if the dilation difference (X ⊕
B) \X or the erosion difference X \ (X �B) is applied, because they yield a boundary
belonging only to X c or to X , respectively.

Similar ideas apply to gray-level images. Both the dilation residual and the erosion
residual,

edge⊕( f ) � ( f ⊕B) � f , edge�( f ) � f � ( f �B), (13.43)

enhance the edges of a gray-level image f . Adding these two operators yields the discrete
morphological gradient,

edge( f ) � ( f ⊕B) � ( f �B) � edge⊕( f ) � edge�( f ), (13.44)

that treats more symmetrically the image and its background (see Fig. 13.8).
Threshold analysis can be used to understand the action of the above edge operators.

Let the nonnegative discrete-valued image signal f (x) have L � 1 possible integer inten-
sity values: i � 0,1, . . . ,L. By thresholding f at all levels, we obtain the threshold binary
images fi from which we can resynthesize f via threshold-sum signal superposition:

f (x) �

L∑
i�1

fi(x), fi(x) �

{
1, if f (x) � i

0, if f (x) < i· (13.45)

Since the flat dilation and erosion by a finite B commute with thresholding and f is
nonnegative, they obey threshold-sum superposition. Therefore, the dilation-erosion
difference operator also obeys threshold-sum superposition:

edge( f ) �

L∑
i�1

edge( fi) �

m∑
i�1

fi ⊕B � fi �B. (13.46)

This implies that the output of the edge operator acting on the gray-level image f is
equal to the sum of the binary signals that are the boundaries of the binary images f (see
Fig. 13.8). At each pixel x , the larger the gradient of f , the larger the number of threshold
levels i such that edge( fi)(x) � 1, and hence the larger the value of the gray-level signal
edge( f )(x). Finally, a binarized edge image can be obtained by thresholding edge( f ) or
detecting its peaks.

The morphological digital edge operators have been extensively applied to image
processing by many researchers. By combining the erosion and dilation differences, var-
ious other effective edge operators have also been developed. Examples include 1) the
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(a) (b)

(c) (d)

FIGURE 13.8

(a) Original image f with range in [0,255]; (b) f ⊕B � f �B, where B is a 3 � 3-pixel square;
(c) Level set X � Xi( f ) of f at level i � 100; (d) X ⊕B \X �B; (In (c) and (d), black areas
represent the sets, while white areas are the complements.)

asymmetric morphological edge-strength operators by Lee et al. [19],

min[edge�( f ), edge⊕( f )], max[edge�( f ), edge⊕( f )], (13.47)

and 2) the edge operator edge⊕( f ) � edge�( f ) by Vliet et al. [20], which behaves as a
discrete “nonlinear Laplacian,”

NL( f ) � ( f ⊕B) � ( f �B) � 2f , (13.48)
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and at its zero-crossings can yield edge locations. Actually, for a 1D twice differentiable
function f (x), it can be shown that if df (x)/dx �� 0 then M2( f )(x) � d2f (x)/dx2.

For robustness in the presence of noise, these morphological edge operators should
be applied after the input image has been smoothed first via either linear or nonlinear
filtering. For example, in [19], a small local averaging is used on f before applying the
morphological edge-strength operator, resulting in the so-called min-blur edge detection
operator,

min[ fav � fav �B, fav ⊕B � fav ], (13.49)

with fav being the local average of f , whereas in [21] an opening and closing is used
instead of linear preaveraging:

min[ f◦B � f �B, f ⊕B � f•B]. (13.50)

Combinations of such smoothings and morphological first or second derivatives have
performed better in detecting edges of noisy images. See Fig. 13.9 for an experimental
comparison of the LoG and the morphological second derivative in detecting edges.

13.5.2 Peak / Valley Blob Detection
Residuals between openings or closings and the original image offer an intuitively simple
and mathematically formal way for peak or valley detection. The general principle for
peak detection is to subtract from a signal an opening of it. If the latter is a standard
Minkowski opening by a flat compact convex set B, then this yields the peaks of the
signal whose base cannot contain B. The morphological peak/valley detectors are simple,
efficient, and have some advantages over curvature-based approaches. Their applicability
in situations where the peaks or valleys are not clearly separated from their surroundings
is further strengthened by generalizing them in the following way. The conventional
Minkowski opening in peak detection is replaced by a general lattice opening, usually
of the reconstruction type. This generalization allows a more effective estimation of the
image background surroundings around the peak and hence a better detection of the
peak. Next we discuss peak detectors based on both the standard Minkowski openings
as well as on generalized lattice openings like contrast-based reconstructions which can
control the peak height.

13.5.2.1 Top-Hat Transformation
Subtracting from a signal f its Minkowski opening by a compact convex set B yields an
output consisting of the signal peaks whose supports cannot contain B. This is Meyer’s
top-hat transformation [22], implemented by the opening residual,

peak( f ) � f � ( f◦B), (13.51)
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Original image N2 = Gauss noise 20 dB N1 = Gauss noise 6 dB

Ideal edges LoG edges (N2) LoG edges (N1)

Ideal edges MLG edges (N2) MLG edges (N1)

FIGURE 13.9

Top: Test image and two noisy versions with additive Gaussian noise at SNR 20 dB and 6 dB.
Middle: Ideal edges and edges from zero-crossings of Laplacian-of-Gaussian of the two noisy
images. Bottom: Ideal edges and edges from zero-crossings of 2D morphological second derivative
(nonlinear Laplacian) of the two noisy images after some Gaussian presmoothing. In both methods,
the edge pixels were the subset of the zero-crossings where the edge strength exceeded some
threshold. By using as figure-of-merit the average of the probability of detecting an edge given
that it is true and the probability of a true edge given than it is detected, the morphological method
scored better by yielding detection probabilities of 0.84 and 0.63 at the noise levels of 20 and 6
dB, respectively, whereas the corresponding probabilities of the LoG method were 0.81 and 0.52.

and henceforth called the peak operator. The output peak( f ) is always a nonnegative
signal, which guarantees that it contains only peaks. Obviously the set B is a very impor-
tant parameter of the peak operator, because the shape and size of the peak’s support
obtained by (13.51) are controlled by the shape and size of B. Similarly, to extract the
valleys of a signal f , we can apply the closing residual,

valley( f ) � ( f•B) � f , (13.52)

henceforth called the valley operator.
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If f is an intensity image, then the opening (or closing) residual is a very useful
operator for detecting blobs, defined as regions with significantly brighter (or darker)
intensities relative to the surroundings. Examples are shown in Fig. 13.10.

If the signal f (x) assumes only the values 0,1, . . . ,L and we consider its threshold
binary signals fi(x) defined in (13.45), then since the opening by f ◦B obeys the threshold-
sum superposition,

peak( f ) �

L∑
i�1

peak( fi). (13.53)

Thus the peak operator obeys threshold-sum superposition. Hence, its output when
operating on a gray-level signal f is the sum of its binary outputs when it operates on all
the threshold binary versions of f . Note that, for each binary signal fi , the binary output
peak ( fi) contains only those nonzero parts of fi inside which no translation of B fits.

The morphological peak and valley operators, in addition to being simple and
efficient, avoid several shortcomings of the curvature-based approaches to peak/valley
extraction that can be found in earlier computer vision literature. A differential geometry
interpretation of the morphological feature detectors was given by Noble [23], who also
developed and analyzed simple operators based on residuals from openings and closings
to detect corners and junctions.

13.5.2.2 Dome/Basin Extraction with Reconstruction Opening
Extracting the peaks of a signal via the simple top-hat operator (13.51) does not constrain
the height of the resulting peaks. Specifically, the threshold-sum superposition of the
opening difference in (13.53) implies that the peak height at each point is the sum of all
binary peak signals at this point. In several applications, however, it is desirable to extract
from a signal f peaks that have a maximum height h > 0. Such peaks are called domes
and are defined as follows. Subtracting a contrast height constant h from f (x) yields the
smaller signal g (x) � f (x) � h < f (x). Enlarging the maximum peak value of g below

(a) (b) (c) (d)

FIGURE 13.10

Facial image feature extraction. (a) Original image f ; (b) Morphological gradient f ⊕B � f �B;
(c) Peaks: f � ( f◦3B); (d) Valleys: ( f•3B) � f (B is 21-pixel octagon).
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a peak of f by locally dilating g with a symmetric compact and convex set of an ever-
increasing diameter and always restricting these dilations to never produce a signal larger
than f under this specific peak produces in the limit a signal which consists of valleys
interleaved with flat plateaus. This signal is the reconstruction opening of g under f ,
denoted as 
�(g |f ); namely, f is the reference signal and g is the marker. Subtracting the
reconstruction opening from f yields the domes of f , defined in [24] as the generalized
top-hat:

dome( f ) � f � 
�( f � h|f ). (13.54)

For discrete-domain signals f , the above reconstruction opening can be implemented
by iterating the conditional dilation as in (13.30). This is a simple but computationally
expensive algorithm. More efficient algorithms can be found in [24, 25]. The dome
operator extracts peaks whose height cannot exceed h but their supports can be arbitrarily
wide. In contrast, the peak operator (using the opening residual) extracts peaks whose
supports cannot exceed a set B but their heights are unconstrained.

Similarly, an operator can be defined that extracts signal valleys whose depth cannot
exceed a desired maximum h. Such valleys are called basins and are defined as the domes
of the negated signal. By using the duality between morphological operations, it can be
shown that basins of height h can be extracted by subtracting the original image f (x)

from its reconstruction closing obtained using as marker the signal f (x) � h:

basin( f ) � dome(�f ) � 
�( f � h|f ) � f . (13.55)

Domes and basins have found numerous applications as region-based image features and
as markers in image segmentation tasks. Several successful paradigms are discussed in
[24–26].

The following example, adapted from [24], illustrates that domes perform better
than the classic top-hat in extracting small isolated peaks that indicate pathology points
in biomedical images, e.g., detect microaneurisms in eye angiograms without confusing
them with the large vessels in the eye image (see Fig. 13.11).

13.6 DESIGN APPROACHES FOR MORPHOLOGICAL FILTERS
Morphological and rank/stack filters are useful for image enhancement and are closely
related since they can all be represented as maxima of morphological erosions [5]. Despite
the wide application of these nonlinear filters, very few ideas exist for their optimal design.
The current four main approaches are as follows: (a) designing morphological filters as
a finite union of erosions [27] based on the morphological basis representation the-
ory (outlined in Section 13.2.3); (b) designing stack filters via threshold decomposition
and linear programming [9]; (c) designing morphological networks using either voting
logic and rank tracing learning or simulated annealing [28]; (d) designing morphologi-
cal/rank filters via a gradient-based adaptive optimization [29]. Approach (a) is limited
to binary increasing filters. Approach (b) is limited to increasing filters processing non-
negative quantized signals. Approach (c) needs a long time to train and convergence is
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Original image = F

Reconstruction opening (F – h |F )

Reconstr. opening (rad.open|F)

Top hat: Peaks

New top hat: Domes

Final top hat

Threshold peaks

Threshold domes

Threshold final top hat

FIGURE 13.11

Top row: Original image F of eye angiogram with microaneurisms, its top hat F � F◦B, where
B is a disk of radius 5, and level set of top hat at height h/2. Middle row: Reconstruction
opening 
�(F � h|F), domes F � 
�(F � h|F), level set of domes at height h/2. Bottom row:
New reconstruction opening of F using the radial opening of Fig. 13.2(b) as marker, new domes,
and level set detecting microaneurisms.

complex. In contrast, approach (d) is more general since it applies to both increasing and
non-increasing filters and to both binary and real-valued signals. The major difficulty
involved is that rank functions are not differentiable, which imposes a deadlock on how
to adapt the coefficients of morphological/rank filters using a gradient-based algorithm.
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The methodology described in this section is an extension and improvement to the
design methodology (d), leading to a new approach that is simpler, more intuitive, and
numerically more robust.

For various signal processing applications, it is sometimes useful to mix in the same
system both nonlinear and linear filtering strategies. Thus, hybrid systems, composed
of linear and nonlinear (rank-type) sub-systems, have frequently been proposed in the
research literature. A typical example is the class of L-filters that are linear combinations
of rank filters. Several adaptive algorithms have also been developed for their design,
which illustrated the potential of adaptive hybrid filters for image processing applications,
especially in the presence of non-Gaussian noise.

Another example of hybrid systems are the morphological/rank/linear (MRL) filters
[30], which contain as special cases morphological, rank, and linear filters. These MRL
filters consist of a linear combination between a morphological/rank filter and a linear
finite impulse response filter. Their nonlinear component is based on a rank function,
from which the basic morphological operators of erosion and dilation can be obtained
as special cases. An efficient method for their adaptive optimal design can be found
in [30].

13.7 CONCLUSIONS
In this chapter, we have briefly presented the application of both the standard and some
advanced morphological filters to several problems of image enhancement and feature
detection. There are several motivations for using morphological filters for such prob-
lems. First, it is of paramount importance to preserve, uncover, or detect the geometric
structure of image objects. Thus, morphological filters which are more suitable than linear
filters for shape analysis, play a major role for geometry-based enhancement and detec-
tion. Further, they offer efficient solutions to other nonlinear tasks such as non-Gaussian
noise suppression. Although this denoising task can also be accomplished (with similar
improvements over linear filters) by the closely related class of median-type and stack
filters, the morphological operators provide the additional feature of geometric intuition.
Finally, the elementary morphological operators are the building blocks for large classes
of nonlinear image processing systems, which include rank and stack filters.

Three important broad research directions in morphological filtering are (1) their
optimal design for various advanced image analysis and vision tasks, (2) their scale-space
formulation using geometric partial differential equations (PDEs), and (3) their isotropic
implementation using numerical algorithms that solve these PDEs. A survey of the last
two topics can be found in [31].
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CHAPTER

14Basic Methods for Image
Restoration and
Identification
Reginald L. Lagendijk and Jan Biemond

Delft University of Technology, The Netherlands

14.1 INTRODUCTION
Images are produced to record or display useful information. Due to imperfections in
the imaging and capturing process, however, the recorded image invariably represents
a degraded version of the original scene. The undoing of these imperfections is cru-
cial to many of the subsequent image processing tasks. There exists a wide range of
different degradations that need to be taken into account, covering for instance noise,
geometrical degradations (pin cushion distortion), illumination and color imperfections
(under/overexposure, saturation), and blur. This chapter concentrates on basic methods
for removing blur from recorded sampled (spatially discrete) images. There are many
excellent overview articles, journal papers, and textbooks on the subject of image restora-
tion and identification. Readers interested in more details than given in this chapter are
referred to [1–5].

Blurring is a form of bandwidth reduction of an ideal image owing to the imperfect
image formation process. It can be caused by relative motion between the camera and the
original scene, or by an optical system that is out of focus. When aerial photographs are
produced for remote sensing purposes, blurs are introduced by atmospheric turbulence,
aberrations in the optical system, and relative motion between the camera and the ground.
Such blurring is not confined to optical images; for example, electron micrographs are
corrupted by spherical aberrations of the electron lenses, and CT scans suffer from X-ray
scatter.

In addition to these blurring effects, noise always corrupts any recorded image. Noise
may be introduced by the medium through which the image is created (random absorp-
tion or scatter effects), by the recording medium (sensor noise), by measurement errors
due to the limited accuracy of the recording system, and by quantization of the data for
digital storage.

323



324 CHAPTER 14 Basic Methods for Image Restoration and Identification

The field of image restoration (sometimes referred to as image deblurring or image
deconvolution) is concerned with the reconstruction or estimation of the uncorrupted
image from a blurred and noisy one. Essentially, it tries to perform an operation on
the image that is the inverse of the imperfections in the image formation system. In
the use of image restoration methods, the characteristics of the degrading system and the
noise are assumed to be known a priori. In practical situations, however, one may not be
able to obtain this information directly from the image formation process. The goal of
blur identification is to estimate the attributes of the imperfect imaging system from the
observed degraded image itself prior to the restoration process. The combination of image
restoration and blur identification is often referred to as blind image deconvolution [4].

Image restoration algorithms distinguish themselves from image enhancement meth-
ods in that they are based on models for the degrading process and for the ideal image.
For those cases where a fairly accurate blur model is available, powerful restoration
algorithms can be arrived at. Unfortunately, in numerous practical cases of interest, the
modeling of the blur is unfeasible, rendering restoration impossible. The limited validity
of blur models is often a factor of disappointment, but one should realize that if none
of the blur models described in this chapter are applicable, the corrupted image may
well be beyond restoration. Therefore, no matter how powerful blur identification and
restoration algorithms are, the objective when capturing an image undeniably is to avoid
the need for restoring the image.

The image restoration methods that are described in this chapter fall under the class
of linear spatially invariant restoration filters. We assume that the blurring function acts
as a convolution kernel or point-spread function d(n1,n2) that does not vary spatially.
It is also assumed that the statistical properties (mean and correlation function) of the
image and noise do not change spatially. Under these conditions the restoration process
can be carried out by means of a linear filter of which the point-spread function (PSF) is
spatially invariant, i.e., is constant throughout the image. These modeling assumptions
can be mathematically formulated as follows. If we denote by f (n1,n2) the desired ideal
spatially discrete image that does not contain any blur or noise, then the recorded image
g (n1,n2) is modeled as (see also Fig. 14.1(a)) [6]:

g (n1,n2) � d(n1,n2) ∗ f (n1,n2) � w(n1,n2)

�

N �1∑

k1�0

M�1∑

k2�0

d(k1,k2)f (n1 � k1,n2 � k2) � w(n1,n2). (14.1)

Here w(n1,n2) is the noise that corrupts the blurred image. Clearly the objective of
image restoration is to make an estimate f (n1,n2) of the ideal image, given only the
degraded image g (n1,n2), the blurring function d(n1,n2), and some information about
the statistical properties of the ideal image and the noise.

An alternative way of describing (14.1) is through its spectral equivalence. By applying
discrete Fourier transforms to (14.1), we obtain the following representation (see also
Fig. 14.1(b)):

G(u,v) � D(u,v)F(u,v) � W (u,v), (14.2)
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G (u, v)

W (u, v)

F (u, v)

f (n1, n2) g (n1, n2)

1

w (n1, n2)

1
Convolve with 

d (n1, n2)

Multiply with 

D (u, v)

(b)

(a)

FIGURE 14.1

(a) Image formation model in the spatial domain; (b) Image formation model in the Fourier
domain.

where (u,v) are the spatial frequency coordinates and capitals represent Fourier
transforms. Either (14.1) or (14.2) can be used for developing restoration algorithms.
In practice the spectral representation is more often used since it leads to efficient
implementations of restoration filters in the (discrete) Fourier domain.

In (14.1) and (14.2), the noise w(n1,n2) is modeled as an additive term. Typically
the noise is considered to have a zero-mean and to be white, i.e., spatially uncorrelated.
In statistical terms this can be expressed as follows [7]:

E [w(n1,n2)] ≈ 1

NM

N �1∑

k1�0

M�1∑

k2�0

w(k1,k2) � 0 (14.3a)

Rw (k1,k2) � E [w(n1,n2)w(n1 � k1,n2 � k2)]

≈ 1

NM

N �1∑
n1�0

M�1∑
n2�0

w(n1,n2)w(n1 � k1,n2 � k2) �

{
�2

w if k1 � k2 � 0

0 elsewhere
. (14.3b)

Here �2
w is the variance or power of the noise and E[] refers to the expected value

operator. The approximate equality indicates that on the average Eq. (14.3) should hold,
but that for a given image Eq. (14.3) holds only approximately as a result of replacing the
expectation by a pixelwise summation over the image. Sometimes the noise is assumed
to have a Gaussian probability density function, but this is not a necessary condition for
the restoration algorithms described in this chapter.

In general the noise w(n1,n2) may not be independent of the ideal image f (n1,n2).
This may happen for instance if the image formation process contains nonlinear compo-
nents, or if the noise is multiplicative instead of additive. Unfortunately, this dependency
is often difficult to model or to estimate. Therefore, noise and ideal image are usually
assumed to be orthogonal, which is—in this case—equivalent to being uncorrelated
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because the noise has zero-mean. Expressed in statistical terms, the following condition
holds:

Rfw (k1,k2) � E[f (n1,n2)w(n1 � k1,n2 � k2)]

≈ 1

NM

N �1∑
n1�0

M�1∑
n2�0

f (n1,n2)w(n1 � k1,n2 � k2) � 0. (14.4)

The above models (14.1)–(14.4) form the foundations for the class of linear spatially
invariant image restoration and accompanying blur identification algorithms. In partic-
ular these models apply to monochromatic images. For color images, two approaches
can be taken. One approach is to extend Eqs. (14.1)–(14.4) to incorporate multiple color
components. In many practical cases of interest this is indeed the proper way of modeling
the problem of color image restoration since the degradations of the different color com-
ponents (such as the tri-stimulus signals red-green-blue, luminance-hue-saturation, or
luminance-chrominance) are not independent. This leads to a class of algorithms known
as “multiframe filters” [3, 8]. A second, more pragmatic, way of dealing with color images
is to assume that the noises and blurs in each of the color components are independent.
The restoration of the color components can then be carried out independently as well,
meaning that each color component is simply regarded as a monochromatic image by
itself, forgetting the other color components. Though obviously this model might be in
error, acceptable results have been achieved in this way.

The outline of this chapter is as follows. In Section 14.2, we first describe several
important models for linear blurs, namely motion blur, out-of-focus blur, and blur
due to atmospheric turbulence. In Section 14.3, three classes of restoration algorithms
are introduced and described in detail, namely the inverse filter, the Wiener and con-
strained least-squares filter, and the iterative restoration filters. In Section 14.4, two basic
approaches to blur identification will be described briefly.

14.2 BLUR MODELS
The blurring of images is modeled in (14.1) as the convolution of an ideal image with a
2D PSF d(n1,n2). The interpretation of (14.1) is that if the ideal image f (n1,n2) would
consist of a single intensity point or point source, this point would be recorded as a
spread-out intensity pattern1 d(n1,n2), hence the name point-spread function.

It is worth noticing that PSFs in this chapter are not a function of the spatial location
under consideration, i.e., they are spatially invariant. Essentially this means that the
image is blurred in exactly the same way at every spatial location. Point-spread functions
that do not follow this assumption are, for instance, due to rotational blurs (turning
wheels) or local blurs (a person out of focus while the background is in focus). The

1Ignoring the noise for a moment.
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modeling, restoration, and identification of images degraded by spatially varying blurs is
outside the scope of this chapter, and is actually still a largely unsolved problem.

In most cases the blurring of images is a spatially continuous process. Since identifica-
tion and restoration algorithms are always based on spatially discrete images, we present
the blur models in their continuous forms, followed by their discrete (sampled) counter-
parts. We assume that the sampling rate of the images has been chosen high enough to
minimize the (aliasing) errors involved in going from the continuous to discrete models.

The spatially continuous PSF d(x ,y) of any blur satisfies three constraints, namely:

■ d(x ,y) takes on nonnegative values only, because of the physics of the underlying
image formation process;

■ when dealing with real-valued images the PSF d(x ,y) is also real-valued;

■ the imperfections in the image formation process are modeled as passive operations
on the data, i.e., no “energy” is absorbed or generated. Consequently, for spatially
continuous blurs the PSF is constrained to satisfy

�∫

��

�∫

��

d(x ,y)dx dy � 1, (14.5a)

and for spatially discrete blurs:

N �1∑
n1�0

M�1∑
n2�0

d(n1,n2) � 1. (14.5b)

In the following we will present four common PSFs, which are encountered
regularly in practical situations of interest.

14.2.1 No Blur
In case the recorded image is imaged perfectly, no blur will be apparent in the discrete
image. The spatially continuous PSF can then be modeled as a Dirac delta function:

d(x ,y) � �(x ,y) (14.6a)

and the spatially discrete PSF as a unit pulse:

d(n1,n2) � �(n1,n2) �

{
1 if n1 � n2 � 0

0 elsewhere
. (14.6b)

Theoretically (14.6a) can never be satisfied. However, as long as the amount of “spread-
ing” in the continuous image is smaller than the sampling grid applied to obtain the
discrete image, Eq. (14.6b) will be arrived at.

14.2.2 Linear Motion Blur
Many types of motion blur can be distinguished all of which are due to relative motion
between the recording device and the scene. This can be in the form of a translation,
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a rotation, a sudden change of scale, or some combination of these. Here only the
important case of a global translation will be considered.

When the scene to be recorded translates relative to the camera at a constant velocity
vrelative under an angle of � radians with the horizontal axis during the exposure inter-
val [0, texposure], the distortion is one-dimensional. Defining the “length of motion” by
L � vrelativetexposure, the PSF is given by

d
(
x ,y ;L,�

)
�

⎧⎨
⎩

1

L
if

√
x2 � y2 �

L

2
and

x

y
� � tan�

0 elsewhere
. (14.7a)

The discrete version of (14.7a) is not easily captured in a closed form expression in
general. For the special case that � � 0, an appropriate approximation is

d (n1,n2;L) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

L
if n1 � 0, |n2|�

⌊
L � 1

2

⌋

1

2L

{
(L � 1) � 2

⌊
L � 1

2

⌋}
if n1 � 0, |n2|�

⌈
L � 1

2

⌉

0 elsewhere

. (14.7b)

Figure 14.2(a) shows the modulus of the Fourier transform of the PSF of motion blur
with L � 7.5 and � � 0. This figure illustrates that the blur is effectively a horizontal
lowpass filtering operation and that the blur has spectral zeros along characteristic lines.
The interline spacing of these characteristic zero-patterns is (for the case that N � M )
approximately equal to N/L. Figure 14.2(b) shows the modulus of the Fourier transform
for the case of L � 7.5 and � � �/4.

|D(u,v)|

u
�/2 �/2

v

(a) (b)
u

|D(u,v)|

�/2

�/2 v

FIGURE 14.2

PSF of motion blur in the Fourier domain, showing |D(u,v)|, for (a) L � 7.5 and � � 0;
(b) L � 7.5 and � � �/4.
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14.2.3 Uniform Out-of-Focus Blur
When a camera images a 3D scene onto a 2D imaging plane, some parts of the scene are
in focus while other parts are not. If the aperture of the camera is circular, the image of
any point source is a small disk, known as the circle of confusion (COC). The degree of
defocus (diameter of the COC) depends on the focal length and the aperture number
of the lens and the distance between camera and object. An accurate model not only
describes the diameter of the COC but also the intensity distribution within the COC.
However, if the degree of defocusing is large relative to the wavelengths considered, a
geometrical approach can be followed resulting in a uniform intensity distribution within
the COC. The spatially continuous PSF of this uniform out-of-focus blur with radius R
is given by

d(x ,y ;R) �

⎧⎨
⎩

1

�R2 if
√

x2 � y2 � R2

0 elsewhere
. (14.8a)

Also for this PSF, the discrete version d(n1,n2) is not easily arrived at. A coarse approxi-
mation is the following spatially discrete PSF:

d(n1,n2;R) �

⎧⎨
⎩

1

C
if

√
n2

1 � n2
2 � R2

0 elsewhere
, (14.8b)

where C is a constant that must be chosen so that (14.5b) is satisfied. The approximation
(14.8b) is incorrect for the fringe elements of the PSF. A more accurate model for the fringe
elements would involve the integration of the area covered by the spatially continuous
PSF, as illustrated in Fig. 14.3. Figure 14.3(a) shows the fringe elements that need to be

Fringe element

(a)

| D(u,v) |

(b)

R

u v
�/2�/2

FIGURE 14.3

(a) Fringe elements of discrete out-of-focus blur that are calculated by integration; (b) PSF in
the Fourier domain, showing |D(u,v)|, for R � 2.5.
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calculated by integration. Figure 14.3(b) shows the modulus of the Fourier transform
of the PSF for R � 2.5. Again a lowpass behavior can be observed (in this case both
horizontally and vertically), as well as a characteristic pattern of spectral zeros.

14.2.4 Atmospheric Turbulence Blur
Atmospheric turbulence is a severe limitation in remote sensing. Although the blur intro-
duced by atmospheric turbulence depends on a variety of factors (such as temperature,
wind speed, exposure time), for long-term exposures, the PSF can be described reasonably
well by a Gaussian function:

d(x ,y ;�G) � C exp

(
�

x2 � y2

2�2
G

)
. (14.9a)

Here �G determines the amount of spread of the blur, and the constant C is to be
chosen so that (14.5a) is satisfied. Since (14.9a) constitutes a PSF that is separable in a
horizontal and a vertical component, the discrete version of (14.9a) is usually obtained
by first computing a 1D discrete Gaussian PSF d̃(n). This 1D PSF is found by a numerical
discretization of the continuous PSF. For each PSF element d̃(n), the 1D continuous PSF
is integrated over the area covered by the 1D sampling grid, namely

[
n � 1

2 ,n � 1
2

]
:

d̃(n;�G) � C

n� 1
2∫

n� 1
2

exp

(
�

x2

2�2
G

)
dx . (14.9b)

Since the spatially continuous PSF does not have a finite support, it has to be truncated
properly. The spatially discrete approximation of (14.9a) is then given by

d(n1,n2;�G) � d̃(n1;�G)d̃(n2;�G). (14.9c)

Figure 14.4 shows this PSF in the spectral domain (�G � 1.2). Observe that Gaussian
blurs do not have exact spectral zeros.

14.3 IMAGE RESTORATION ALGORITHMS
In this section, we will assume that the PSF of the blur is satisfactorily known. A number
of methods will be introduced for removing the blur from the recorded image g (n1,n2)

using a linear filter. If the PSF of the linear restoration filter, denoted by h(n1,n2), has
been designed, the restored image is given by

f̂ (n1,n2) � h(n1,n2) ∗ g (n1,n2)

�

N �1∑

k1�0

M�1∑

k2�0

h(k1,k2)g (n1 � k1,n2 � k2) (14.10a)
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|D(u,v)|

u
�/2

�/2
v

FIGURE 14.4

Gaussian PSF in the Fourier domain (�G � 1.2).

or in the spectral domain by

F(u,v) � H (u,v)G(u,v). (14.10b)

The objective of this section is to design appropriate restoration filters h(n1,n2) or
H (u,v) for use in (14.10).

In image restoration the improvement in quality of the restored image over the
recorded blurred one is measured by the signal-to-noise ratio (SNR) improvement. The
SNR of the recorded (blurred and noisy) image is defined as follows in decibels:

SNRg � 10 log10

(
Variance of the ideal image f (n1,n2)

Variance of the difference image g (n1,n2) � f (n1,n2)

)
(dB). (14.11a)

The SNR of the restored image is similarly defined as

SNR
f̂

� 10 log10

(
Variance of the ideal image f (n1,n2)

Variance of the difference image f̂ (n1,n2) � f (n1,n2)

)
(dB). (14.11b)

Then, the improvement in SNR is given by

�SNR � SNR
f̂

� SNRg

� 10 log10

(
Variance of the difference image g (n1,n2) � f (n1,n2)

Variance of the difference image f̂ (n1,n2) � f (n1,n2)

)
(dB). (14.11c)

The improvement in SNR is basically a measure that expresses the reduction of disagree-
ment with the ideal image when comparing the distorted and restored image. Note that
all of the above signal-to-noise measures can only be computed in case the ideal image
f (n1,n2) is available, i.e., in an experimental setup or in a design phase of the restoration
algorithm. When applying restoration filters to real images of which the ideal image is
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not available, often only the visual judgment of the restored image can be relied upon.
For this reason it is desirable for a restoration filter to be somewhat “tunable” to the liking
of the user.

14.3.1 Inverse Filter
An inverse filter is a linear filter whose PSF hinv(n1,n2) is the inverse of the blurring
function d(n1,n2), in the sense that

hinv (n1,n2) ∗ d (n1,n2) �

N �1∑

k1�0

M�1∑

k2�0

hinv (k1,k2)d (n1 � k1,n2 � k2) � �(n1,n2). (14.12)

When formulated as in (14.12), inverse filters seem difficult to design. However, the spec-
tral counterpart of (14.12) immediately shows the solution to this design problem [6]:

Hinv (u,v)D (u,v) � 1⇒Hinv (u,v) �
1

D (u,v)
. (14.13)

The advantage of the inverse filter is that it requires only the blur PSF as a priori knowledge,
and that it allows for perfect restoration in the case that noise is absent, as can easily be
seen by substituting (14.13) into (14.10b):

F̂inv(u,v) � Hinv(u,v)G(u,v) �
1

D(u,v)
(D(u,v)F(u,v) � W (u,v))

� F(u,v) �
W (u,v)

D(u,v)
. (14.14)

If the noise is absent, the second term in (14.14) disappears so that the restored image is
identical to the ideal image. Unfortunately, several problems exist with (14.14). In the first
place the inverse filter may not exist because D(u,v) is zero at selected frequencies (u,v).
This happens for both the linear motion blur and the out-of-focus blur described in the
previous section. Secondly, even if the blurring function’s spectral representation D(u,v)

does not actually go to zero but becomes small, the second term in (14.14)—known as
the inverse filtered noise—will become very large. Inverse filtered images are, therefore,
often dominated by excessively amplified noise.2

Figure 14.5(a) shows an image degraded by out-of-focus blur (R �2.5) and noise.
The inverse filtered version is shown in Fig. 14.5(b), clearly illustrating its uselessness. The
Fourier transforms of the restored image and of Hinv(u,v) are shown in Fig. 14.5(c) and
(d), respectively, demonstrating that indeed the spectral zeros of the PSF cause problems.

14.3.2 Least-Squares Filters
To overcome the noise sensitivity of the inverse filter, a number of restoration filters have
been developed that are collectively called least-squares filters. We describe the two most

2In literature, this effect is commonly referred to as the ill-conditionedness or ill-posedness of the restoration
problem.
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(c) (d)

(a) (b)

FIGURE 14.5

(a) Image out-of-focus with SNRg � 10.3dB (noise variance � 0.35); (b) inverse filtered image;
(c) magnitude of the Fourier transform of the restored image. The DC component lies in the
center of the image. The oriented white lines are spectral components of the image with large
energy; (d) magnitude of the Fourier transform of the inverse filter response.

commonly used filters from this collection, namely the Wiener filter and the constrained
least-squares filter.

The Wiener filter is a linear spatially invariant filter of the form (14.10a), in which the
PSF h(n1,n2) is chosen such that it minimizes the mean-squared error (MSE) between
the ideal and the restored image. This criterion attempts to make the difference between
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the ideal image and the restored one—i.e., the remaining restoration error—as small as
possible on the average :

MSE � E[( f (n1,n2) � f̂ (n1,n2))
2] ≈ 1

NM

N �1∑
n1�0

M�1∑
n2�0

( f (n1,n2) � f̂ (n1,n2))
2, (14.15)

where f̂ (n1,n2) is given by (14.10a). The solution of this minimization problem is known
as the Wiener filter, and is easiest defined in the spectral domain:

Hwiener(u,v) �
D∗(u,v)

D∗(u,v)D(u,v) �
Sw (u,v)

Sf (u,v)

. (14.16)

Here D∗(u,v) is the complex conjugate of D(u,v), and Sf (u,v) and Sw(u,v) are the
power spectrum of the ideal image and the noise, respectively. The power spectrum is a
measure for the average signal power per spatial frequency (u,v) carried by the image. In
the noiseless case we have Sw(u,v) � 0, so that the Wiener filter approximates the inverse
filter:

Hwiener(u,v)|Sw (u,v)→0 �

⎧⎨
⎩

1

D(u,v)
for D (u,v) �� 0

0 for D(u,v) � 0
. (14.17)

For the more typical situation where the recorded image is noisy, the Wiener filter
trades off the restoration by inverse filtering and suppression of noise for those fre-
quencies where D(u,v)→ 0. The important factors in this tradeoff are the power spectra
of the ideal image and the noise. For spatial frequencies where Sw(u,v) << Sf (u,v), the
Wiener filter approaches the inverse filter, while for spatial frequencies where Sw(u,v)>>

Sf (u,v) the Wiener filter acts as a frequency rejection filter, i.e., Hwiener(u,v)→ 0.
If we assume that the noise is uncorrelated (white noise), its power spectrum is

determined by the noise variance only:

Sw (u,v) � �2
w for all (u,v). (14.18)

Thus, it is sufficient to estimate the noise variance from the recorded image to get an
estimate of Sw(u,v). The estimation of the noise variance can also be left to the user of
the Wiener filter as if it were a tunable parameter. Small values of �2

w will yield a result
close to the inverse filter, while large values will over-smooth the restored image.

The estimation of Sf (u,v) is somewhat more problematic since the ideal image is
obviously not available. There are three possible approaches to take. In the first place,
one can replace Sf (u,v) by an estimate of the power spectrum of the blurred image and
compensate for the variance of the noise �2

w :

Sf (u,v)≈ Sg (u,v) � �2
w ≈

1

NM
G∗(u,v)G(u,v) � �2

w . (14.19)

The above estimator for the power spectrum Sg (u,v) of g (n1,n2) is known as the peri-
odogram. This estimator requires little a priori knowledge, but it is known to have several
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TABLE 14.1 Prediction coefficients and variance of v(n1,n2) for four images,
computed in the MSE optimal sense by the Yule-Walker equations.

a0,1 A1,1 a1,0 �2
v

Cameraman 0.709 �0.467 0.739 231.8
Lena 0.511 �0.343 0.812 132.7
Trevor White 0.759 �0.525 0.764 33.0
White noise �0.008 �0.003 �0.002 5470.1

shortcomings. More elaborate estimators for the power spectrum exist, but these require
much more a priori knowledge.

A second approach is to estimate the power spectrum Sf (u,v) from a set of represen-
tative images. These representative images are to be taken from a collection of images that
have a content “similar” to the image that needs to be restored. Of course, one still needs
an appropriate estimator to obtain the power spectrum from the set of representative
images.

The third and final approach is to use a statistical model for the ideal image. Often
these models incorporate parameters that can be tuned to the actual image being used.
A widely used image model—not only popular in image restoration but also in image
compression—is the following 2D causal autoregressive model [9]:

f (n1,n2) � a0,1f (n1,n2 � 1) � a1,1f (n1 � 1,n2 � 1)

� a1,0f (n1 � 1,n2) � v(n1,n2). (14.20a)

In this model the intensities at the spatial location (n1,n2) are described as the sum
of weighted intensities at neighboring spatial locations and a small unpredictable com-
ponent v(n1,n2). The unpredictable component is often modeled as white noise with
variance �2

v . Table 14.1 gives numerical examples for MSE estimates of the prediction
coefficients ai,j for some images. For the MSE estimation of these parameters the 2D auto-
correlation function has first been estimated, and then used in the Yule-Walker equations
[9]. Once the model parameters for (14.20a) have been chosen, the power spectrum can
be calculated to be equal to

Sf (u,v) �
�2

v∣∣1 � a0,1e�ju � a1,1e�ju�jv � a1,0e�jv
∣∣2 . (14.20b)

The tradeoff between noise smoothing and deblurring that is made by the Wiener filter
is illustrated in Fig. 14.6. Going from 14.6(a) to 14.6(c) the variance of the noise in
the degraded image, i.e., �2

w , has been estimated too large, optimally, and too small,
respectively. The visual differences, as well as the differences in improvement in SNR
(�SNR) are substantial. The power spectrum of the original image has been calculated
from the model (14.20a). From the results it is clear that the excessive noise amplification
of the earlier example is no longer present because of the masking of the spectral zeros
(see Fig. 14.6(d)). Typical artifacts of the Wiener restoration—and actually of most
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(a) (b)

(c) (d)

FIGURE 14.6

(a) Wiener restoration of image in Fig. 14.5(a) with assumed noise variance equal to 35.0(�SNR
� 3.7dB); (b) restoration using the correct noise variance of 0.35(�SNR � 8.8dB); (c) restoration
assuming the noise variance is 0.0035(�SNR � 1.1dB); (d) Magnitude of the Fourier transform
of the restored image in Fig. 14.6(b).

restoration filters—are the residual blur in the image and the “ringing” or “halo” artifacts
present near edges in the restored image.

The constrained least-squares filter [10] is another approach for overcoming some of
the difficulties of the inverse filter (excessive noise amplification) and of the Wiener filter
(estimation of the power spectrum of the ideal image), while still retaining the simplicity
of a spatially invariant linear filter. If the restoration is a good one, the blurred version
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of the restored image should be approximately equal to the recorded distorted image.
That is

d(n1,n2) ∗ f̂ (n1,n2)≈ g (n1,n2). (14.21)

With the inverse filter the approximation is made exact, which leads to problems because
a match is made to noisy data. A more reasonable expectation for the restored image is
that it satisfies
∥∥∥g (n1,n2) � d (n1,n2) ∗ f̂ (n1,n2)

∥∥∥2
�

1

NM

N �1∑

k1�0

M�1∑

k2�0

(g (k1,k2) � d(k1,k2) ∗ f̂ (k1,k2))
2 ≈ �2

w .

(14.22)

There are potentially many solutions that satisfy the above relation. A second criterion
must be used to choose among them. A common criterion, acknowledging the fact that
the inverse filter tends to amplify the noise w(n1,n2), is to select the solution that is as
“smooth” as possible. If we let c(n1,n2) represent the PSF of a 2D highpass filter, then
among the solutions satisfying (14.22) the solution is chosen that minimizes

�
(

f̂ (n1,n2)
)

�
∥∥∥c (n1,n2) ∗ f̂ (n1,n2)

∥∥∥2
�

1

NM

N �1∑

k1�0

M�1∑

k2�0

(
c(k1,k2) ∗ f̂ (k1,k2)

)2
. (14.23)

The interpretation of �( f̂ (n1,n2)) is that it gives a measure for the high-frequency
content of the restored image. Minimizing this measure subject to the constraint (14.22)
will give a solution that is both within the collection of potential solutions of (14.22)
and has as little high-frequency content as possible at the same time. A typical choice for
c(n1,n2) is the discrete approximation of the second derivative shown in Fig. 14.7, also
known as the 2D Laplacian operator.

4 2121

21

21

(a)

|C(u,v)|

�/2

�/2 v

u

(b)

FIGURE 14.7

Two-dimensional discrete approximation of the second derivative operation. (a) PSF c(n1,n2);
(b) spectral representation.
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(a) (b) (c)

FIGURE 14.8

(a) Constrained least-squares restoration of image in Fig. 14.5(a) with � � 2 	 10�2(�SNR �

1.7dB); (b) � � 2 	 10�4(�SNR � 6.9dB); (c) � � 2 	 10�6(�SNR � 0.8dB).

The solution to the above minimization problem is the constrained least-squares filter
Hcls(u,v) that is easiest formulated in the discrete Fourier domain:

Hcls(u,v) �
D∗(u,v)

D∗(u,v)D(u,v) � �C∗(u,v)C(u,v)
. (14.24)

Here � is a tuning or regularization parameter that should be chosen such that (14.22)
is satisfied. Though analytical approaches exist to estimate � [3], the regularization
parameter is usually considered user tunable.

It should be noted that although their motivations are quite different, the formulation
of the Wiener filter (14.16) and constrained least-squares filter (14.24) are quite similar.
Indeed these filters perform equally well, and they behave similarly in the case that
the variance of the noise, �2

w , approaches zero. Figure 14.8 shows restoration results
obtained by the constrained least-squares filter using 3 different values of �. A final remark

about �( f̂ (n1,n2)) is that the inclusion of this criterion is strongly related to using an
image model. A vast amount of literature exists on the usage of more complicated image
models, especially the ones inspired by 2D auto-regressive processes [11] and the Markov
random field theory [12].

14.3.3 Iterative Filters
The filters formulated in the previous two sections are usually implemented in the
Fourier domain using Eq. (14.10b). Compared to the spatial domain implementation
in Eq. (14.10a), the direct convolution with the 2D PSF h(n1,n2) can be avoided. This
is a great advantage because h(n1,n2) has a very large support, and typically contains
NM nonzero filter coefficients even if the PSF of the blur has a small support that
contains only a few nonzero coefficients. There are, however, two situations in which
spatial domain convolutions are preferred over the Fourier domain implementation,
namely:
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■ in situations where the dimensions of the image to be restored are very large;

■ in cases where additional knowledge is available about the restored image, especially
if this knowledge cannot be cast in the form of Eq. (14.23). An example is the
a priori knowledge that image intensities are always positive. Both in the Wiener
and the constrained least-squares filter the restored image may come out with
negative intensities, simply because negative restored signal values are not explicitly
prohibited in the design of the restoration filter.

Iterative restoration filters provide a means to handle the above situations elegantly
[2, 5, 13]. The basic form of iterative restoration filters is the one that iteratively
approaches the solution of the inverse filter, and is given by the following spatial domain
iteration:

f̂i�1(n1,n2) � f̂i(n1,n2) � �(g (n1,n2) � d(n1,n2) ∗ f̂i(n1,n2)). (14.25)

Here f̂i(n1,n2) is the restoration result after i iterations. Usually in the first iteration

f̂0(n1,n2) is chosen to be identical to zero or identical to g (n1,n2). The iteration (14.25)
has been independently discovered many times, and is referred to as the van Cittert,
Bially, or Landweber iteration. As can be seen from (14.25), during the iterations the

blurred version of the current restoration result f̂i(n1,n2) is compared to the recorded
image g (n1,n2). The difference between the two is scaled and added to the current
restoration result to give the next restoration result.

With iterative algorithms, there are two important concerns—does it converge and,
if so, to what limiting solution? Analyzing (14.25) shows that convergence occurs if the
convergence parameter � satisfies

|1 � �D(u,v)|< 1 for all (u,v). (14.26a)

Using the fact that |D(u,v)|� 1, this condition simplifies to

0 < � < 2 and D(u,v) > 0. (14.26b)

If the number of iterations becomes very large, then f̂i(n1,n2) approaches the solution of
the inverse filter

lim
i→�

f̂i(n1,n2) � hinv(n1,n2) ∗ g (n1,n2). (14.27)

Figure 14.9 shows four restored images obtained by the iteration (14.25). Clearly as the
iteration progresses, the restored image is dominated more and more by inverse filtered
noise.

The iterative scheme (14.25) has several advantages and disadvantages that we will
discuss next. The first advantage is that (14.25) does not require the convolution of
images with 2D PSFs containing many coefficients. The only convolution is that of the
restored image with the PSF of the blur, which has relatively few coefficients.

The second advantage is that no Fourier transforms are required, making (14.25)
applicable to images of arbitrary size. The third advantage is that although the iteration
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(a) (b)

(c) (d)

FIGURE 14.9

(a) Iterative restoration (� � 1.9) of the image in Fig. 14.5(a) after 10 iterations (�SNR � 1.6dB);
(b) after 100 iterations (�SNR � 5.0dB); (c) after 500 iterations (�SNR � 6.6dB); (d) after 5000
iterations (�SNR � �2.6dB).

produces the inverse filtered image as a result if the iteration is continued indefinitely, the
iteration can be terminated whenever an acceptable restoration result has been achieved.
Starting off with a blurred image, the iteration progressively deblurs the image. At the
same time the noise will be amplified more and more as the iteration continues. It is
now usually left to the user to tradeoff the degree of restoration against the noise ampli-
fication, and to stop the iteration when an acceptable partially deblurred result has been
achieved.
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The fourth advantage is that the basic form (14.25) can be extended to include all
types of a priori knowledge. First all knowledge is formulated in the form of projective
operations on the image [14]. After applying a projective operation, the (restored) image
satisfies the a priori knowledge reflected by that operator. For instance, the fact that image
intensities are always positive can be formulated as the following projective operation P :

P[ f̂ (n1,n2)]�
{

f̂ (n1,n2) if f (n1,n2) 
 0

0 if f (n1,n2) < 0
. (14.28)

By including this projection P in the iteration, the final image after convergence of the
iteration and all of the intermediate images will not contain negative intensities. The
resulting iterative restoration algorithm now becomes

f̂i�1(n1,n2) � P
[

f̂i(n1,n2) � �(g (n1,n2) � d(n1,n2) ∗ f̂i(n1,n2))
]

. (14.29)

The requirements on � for convergence as well as the properties of the final image after
convergence are difficult to analyze and fall outside the scope of this chapter. Practical
values for � are typically around 1. Further, not all projections P can be used in the
iteration (14.29), but only convex projections. A loose definition of a convex projection is
the following. If both images f (1)(n1,n2) and f (2)(n1,n2) satisfy the a priori information
described by the projection P , then also the combined image

f (c)(n1,n2) � �f (1)(n1,n2) � (1 � �)f (2)(n1,n2) (14.30)

must satisfy this a priori information for all values of � between 0 and 1.
A final advantage of iterative schemes is that they are easily extended for spatially

variant restoration, i.e., restoration where either the PSF of the blur or the model of the
ideal image (for instance the prediction coefficients in Eq. (14.20) vary locally [3, 5].

On the negative side, the iterative scheme (14.25) has two disadvantages. First, the
second requirement in Eq. (14.26b), namely that D(u,v) > 0, is not satisfied by many
blurs, like motion blur and out-of-focus blur. This causes (14.25) to diverge for these
types of blur. Second, unlike the Wiener and constrained least-squares filter—the basic
scheme does not include any knowledge about the spectral behavior of the noise and the
ideal image. Both disadvantages can be corrected by modifying the basic iterative scheme
as follows:

f̂i�1(n1,n2) � (�(n1,n2) � ��c(�n1,�n2) ∗ c(n1,n2)) ∗ f̂i(n1,n2) �

� �d(�n1,�n2) ∗ (g (n1,n2) � d(n1,n2) ∗ f̂i(n1,n2)). (14.31)

Here � and c(n1,n2) have the same meaning as in the constrained least-squares filter.
Though the convergence requirements are more difficult to analyze, it is no longer nec-
essary for D(u,v) to be positive for all spatial frequencies. If the iteration is continued
indefinitely, Eq. (14.31) will produce the constrained least-squares filtered image as a
result. In practice the iteration is terminated long before convergence. The precise ter-
mination point of the iterative scheme gives the user an additional degree of freedom
over the direct implementation of the constrained least-squares filter. It is noteworthy that
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although (14.31) seems to involve many more convolutions than (14.25), a reorganization
of terms is possible revealing that many of those convolutions can be carried out once
and offline, and that only one convolution is needed per iteration:

f̂i�1(n1,n2) � g d (n1,n2) � k(n1,n2) ∗ f̂i(n1,n2), (14.32a)

where the image g d(n1,n2) and the fixed convolution kernel k(n1,n2) are given by

g d (n1,n2) � �d(�n1,�n2) ∗ g (n1,n2)

k(n1,n2) � �(n1,n2) � ��c(�n1,�n2) ∗ c(n1,n2) � �d(�n1,�n2) ∗ d(n1,n2). (14.32b)

A second—and very significant—disadvantage of the iterations (14.25) and (14.29)–

(14.32) is the slow convergence. Per iteration the restored image f̂i(n1,n2) changes only
a little. Many iteration steps are, therefore, required before an acceptable point for ter-
mination of the iteration is reached. The reason is that the above iteration is essentially
a steepest descent optimization algorithm, which is known to be slow in convergence. It
is possible to reformulate the iterations in the form of, for instance, a conjugate gradient
algorithm, which exhibits a much higher convergence rate [5].

14.3.4 Boundary Value Problem
Images are always recorded by sensors of finite spatial extent. Since the convolution of
the ideal image with the PSF of the blur extends beyond the borders of the observed
degraded image, part of the information that is necessary to restore the border pixels is
not available to the restoration process. This problem is known as the boundary value
problem, and poses a severe problem to restoration filters. Although at first glance the
boundary value problem seems to have a negligible effect because it affects only border
pixels, this is not true at all. The PSF of the restoration filter has a very large support,
typically as large as the image itself. Consequently, the effect of missing information at
the borders of the image propagates throughout the image, in this way deteriorating the
entire image. Figure 14.10(a) shows an example of a case where the missing information
immediately outside the borders of the image is assumed to be equal to the mean value
of the image, yielding dominant horizontal oscillation patterns due to the restoration of
the horizontal motion blur.

Two solutions to the boundary value problem are used in practice. The choice depends
on whether a spatial domain or a Fourier domain restoration filter is used. In a spatial
domain filter, missing image information outside the observed image can be estimated
by extrapolating the available image data. In the extrapolation, a model for the observed
image can be used, such as the one in Eq. (14.20), or more simple procedures can be used
such as mirroring the image data with respect to the image border. For instance, image
data missing on the left-hand side of the image could be estimated as follows:

g (n1,n2 � k) � g (n1,n2 � k) for k � 1,2,3, . . . (14.33)

When Fourier domain restoration filters are used, such as the ones in (14.16) or (14.24),
one should realize that discrete Fourier transforms assume periodicity of the data to be
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(a) (b)

FIGURE 14.10

(a) Restored image illustrating the effect of the boundary value problem. The image was blurred
by the motion blur shown in Fig. 14.2(a), and restored using the constrained least-squares filter;
(b) preprocessed blurred image at its borders such that the boundary value problem is solved.

transformed. Effectively in 2D Fourier transforms this means that the left- and right-
hand sides of the image are implicitly assumed to be connected, as well as the top and
bottom parts of the image. A consequence of this property—implicit to discrete Fourier
transforms—is that missing image information at the left-hand side of the image will be
taken from the right-hand side, and vice versa. Clearly in practice this image data may not
correspond to the actual (but missing data) at all. A common way to fix this problem is
to interpolate the image data at the borders such that the intensities at the left- and right-
hand side as well as the top and bottom of the image transit smoothly. Figure 14.10(b)
shows what the blurred image looks like if a border of 5 columns or rows is used for
linearly interpolating between the image boundaries. Other forms of interpolation could
be used, but in practice mostly linear interpolation suffices. All restored images shown in
this chapter have been preprocessed in this way to solve the boundary value problem.

14.4 BLUR IDENTIFICATION ALGORITHMS
In the previous section it was assumed that the PSF d(n1,n2) of the blur was known. In
many practical cases the actual restoration process has to be preceded by the identification
of this PSF. If the camera misadjustment, object distances, object motion, and camera
motion are known, we could—in theory—determine the PSF analytically. Such situations
are, however, rare. A more common situation is that the blur is estimated from the
observed image itself.
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The blur identification procedure starts out by choosing a parametric model for the
PSF. One category of parametric blur models has been given in Section 14.2. As an
example, if the blur were known to be due to motion, the blur identification procedure
would estimate the length and direction of the motion.

A second category of parametric blur models describes the PSF d(n1,n2) as a (small)
set of coefficients within a given finite support. Within this support the value of the
PSF coefficients needs to be estimated. For instance, if an initial analysis shows that
the blur in the image resembles out-of-focus blur which, however, cannot be described
parametrically by Eq. (14.8b), the blur PSF can be modeled as a square matrix of—say—
size 3 by 3, or 5 by 5. The blur identification then requires the estimation of 9 or 25 PSF
coefficients, respectively. This section describes the basics of the above two categories of
blur estimation.

14.4.1 Spectral Blur Estimation
In Figs. 14.2 and 14.3 we have seen that two important classes of blurs, namely motion and
out-of-focus blur, have spectral zeros. The structure of the zero-patterns characterizes the
type and degree of blur within these two classes. Since the degraded image is described
by (14.2), the spectral zeros of the PSF should also be visible in the Fourier transform
G(u,v), albeit that the zero-pattern might be slightly masked by the presence of the noise.

Figure 14.11 shows the modulus of the Fourier transform of two images, one subjected
to motion blur and one to out-of-focus blur. From these images, the structure and location
of the zero-patterns can be estimated. When the pattern contains dominant parallel lines
of zeros, an estimate of the length and angle of motion can be made. When dominant

(a) (b)

FIGURE 14.11

|G(u,v)| of two blurred images.
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,g (n1, n2)

n2

n1

(a) (b)

Spikes

FIGURE 14.12

Cepstrum for motion blur from Fig. 14.2(c). (a) Cepstrum is shown as a 2D image. The spikes
appear as bright spots around the center of the image; (b) cepstrum shown as a surface plot.

circular patterns occur, out-of-focus blur can be inferred and the degree of out-of-focus
(the parameter R in Eq. (14.8)) can be estimated.

An alternative to the above method for identifying motion blur involves the compu-
tation of the 2D cepstrum of g (n1,n2). The cepstrum is the inverse Fourier transform of
the logarithm of |G(u,v)|. Thus

g̃ (n1,n2) � �F�1 {log |G (u,v) |} , (14.34)

where F�1 is the inverse Fourier transform operator. If the noise can be neglected,
g̃ (n1,n2) has a large spike at a distance L from the origin. Its position indicates the
direction and extent of the motion blur. Figure 14.12 illustrates this effect for an image
with the motion blur from Fig. 14.2(b).

14.4.2 Maximum Likelihood Blur Estimation
When the PSF does not have characteristic spectral zeros or when a parametric blur model
such as motion or out-of-focus blur cannot be assumed, the individual coefficients of
the PSF have to be estimated. To this end maximum likelihood estimation procedures
for the unknown coefficients have been developed [3, 15, 16, 18]. Maximum likelihood
estimation is a well-known technique for parameter estimation in situations where no
stochastic knowledge is available about the parameters to be estimated [7].

Most maximum likelihood identification techniques begin by assuming that the ideal
image can be described with the 2D auto-regressive model (14.20a). The parameters of
this image model—that is, the prediction coefficients ai,j and the variance �2

v of the white
noise v(n1,n2)—are not necessarily assumed to be known.

If we can assume that both the observation noise w(n1,n2) and the image model
noise v(n1,n2) are Gaussian distributed, the log-likelihood function of the observed
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image, given the image model and blur parameters, can be formulated. Although the
log-likelihood function can be formulated in the spatial domain, its spectral version is
slightly easier to compute [16]:

L(	) � �
∑

u

∑
v

(
logP(u,v) �

|G (u,v) |2
P (u,v)

)
, (14.35a)

where 	 symbolizes the set of parameters to be estimated, i.e., 	 � {ai,j ,�2
v ,d(n1,n2),

�2
w}, and P(u,v) is defined as

P(u,v) � �2
v
|D(u,v)|2
|1 � A(u,v)|2 � �2

w . (14.35b)

Here A(u,v) is the discrete 2D Fourier transform of ai,j .
The objective of maximum likelihood blur estimation is now to find those values for

the parameters ai,j , �2
v , d(n1,n2), and �2

w that maximize the log-likelihood function L(	).
From the perspective of parameter estimation, the optimal parameter values best explain
the observed degraded image. A careful analysis of (14.35) shows that the maximum
likelihood blur estimation problem is closely related to the identification of 2D auto-
regressive moving-average (ARMA) stochastic processes [16, 17].

The maximum likelihood estimation approach has several problems that require
nontrivial solutions. The differentiation between state-of-the-art blur identification pro-
cedures is mostly in the way they handle these problems [4]. In the first place, some
constraints must be enforced in order to obtain a unique estimate for the PSF. Typical
constraints are:

■ the energy conservation principle, as described by Eq. (14.5b);

■ symmetry of the PSF of the blur, i.e., d(�n1,�n2) � d(n1,n2).

Secondly, the log-likelihood function (14.35) is highly nonlinear and has many local
maxima. This makes the optimization of (14.35) difficult, no matter what optimization
procedure is used. In general, maximum-likelihood blur identification procedures require
good initializations of the parameters to be estimated in order to ensure converge to the
global optimum. Alternatively, multiscale techniques could be used, but no “ready-to-go”
or “best” approach has been agreed upon so far.

Given reasonable initial estimates for 	, various approaches exist for the optimization
of L(	). They share the property of being iterative. Besides standard gradient-based
searches, an attractive alternative exists in the form of the expectation-minimization (EM)
algorithm. The EM-algorithm is a general procedure for finding maximum likelihood
parameter estimates. When applied to the blur identification procedure, an iterative
scheme results that consists of two steps [15, 18] (see Fig. 14.13).

14.4.2.1 Expectation step

Given an estimate of the parameters 	, a restored image f̂E(n1,n2) is computed by the
Wiener restoration filter (14.16). The power spectrum is computed by (14.20b) using the
given image model parameter ai,j and �2

v .
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g (n1, n2)Wiener restoration
filter

Identification of 
2 image model
2 PSF of blur

Initial estimate for
image model and

PSF of blur

d (n1, n2) ai, j
^ ^

f (n1, n2)^

FIGURE 14.13

Maximum-likelihood blur estimation by the EM procedure.

14.4.2.2 Maximization step
Given the image restored during the expectation step, a new estimate of 	 can be com-

puted. Firstly, from the restored image f̂E(n1,n2) the image model parameters ai,j and �2
v

can be estimated directly. Secondly, from the approximate relation

g (n1,n2)≈ d(n1,n2) ∗ f̂E (n1,n2) (14.36)

and the constraints imposed on d(n1,n2), the coefficients of the PSF can be estimated by
standard system identification procedures [5].

By alternating the E-step and the M-step, convergence to a (local) optimum of the log-
likelihood function is achieved. A particularly attractive property of this iteration is that
although the overall optimization is nonlinear in the parameters 	, the individual steps
in the EM-algorithm are entirely linear. Furthermore, as the iteration progresses, inter-
mediate restoration results are obtained that allow for monitoring of the identification
process.

In conclusion, we observe that the field of blur identification has been studied and
developed significantly less thoroughly than the classical problem of image restoration.
Research in image restoration continues with a focus on blur identification using, for
example, cumulants and generalized cross-validation [4].
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15.1 INTRODUCTION
In this chapter we consider a class of iterative image restoration algorithms. Let g be the
observed noisy and blurred image, D the operator describing the degradation system, f
the input to the system, and v the noise added to the output image. The input-output
relation of the degradation system is then described by [1]

g � Df � v. (15.1)

The image restoration problem, therefore, to be solved is the inverse problem of recovering
f from knowledge of g, D, and v. If D is also unknown, then we deal with the blind
image restoration problem (semiblind if D is partially known).

There are numerous imaging applications which are described by (15.1) [1–4]. D, for
example, might represent a model of the turbulent atmosphere in astronomical obser-
vations with ground-based telescopes, or a model of the degradation introduced by an
out-of-focus imaging device. D might also represent the quantization performed on a
signal or a transformation of it, for reducing the number of bits required to represent the
signal.

The success in solving any recovery problem depends on the amount of the available
prior information. This information refers to properties of the original image, the degra-
dation system (which is in general only partially known), and the noise process. Such
prior information can, for example, be represented by the fact that the original image is a
sample of a stochastic field, or that the image is“smooth,”or that it takes only nonnegative
values. Besides defining the amount of prior information, equally critical is the ease of
incorporating it into the recovery algorithm.

After the degradation model is established, the next step is the formulation of a solu-
tion approach. This might involve the stochastic modeling of the input image (and the
noise), the determination of the model parameters, and the formulation of a criterion to
be optimized. Alternatively it might involve the formulation of a functional to be opti-
mized subject to constraints imposed by the prior information. In the simplest possible
case, the degradation equation defines directly the solution approach. For example, if D
is a square invertible matrix, and the noise is ignored in (15.1), f � D�1g is the desired 349
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unique solution. In most cases, however, the solution of (15.1) represents an ill-posed
problem [5]. Application of regularization theory transforms it to a well-posed problem
which provides meaningful solutions to the original problem.

There are a large number of approaches providing solutions to the image restoration
problem. For reviews of such approaches refer, for example, to [2, 4] and references
therein. Recent reviews of blind image restoration approaches can be found in [6, 7].
This chapter concentrates on a specific type of iterative algorithm, the successive appro-
ximations algorithm, and its application to the image restoration problem. The material
presented here can be extended in a rather straightforward manner to use other iterative
algorithms, such as steepest descent and conjugate gradient methods.

15.2 ITERATIVE RECOVERY ALGORITHMS
Iterative algorithms form an important part of optimization theory and numerical anal-
ysis. They date back to Gauss time, but they also represent a topic of active research.
A large part of any textbook on optimization theory or numerical analysis deals with
iterative optimization techniques or algorithms [8].

Out of all possible iterative recovery algorithms we concentrate on the successive
approximations algorithms, which have been successfully applied to the solution of a
number of inverse problems ([9] represents a very comprehensive paper on the topic).
The basic idea behind such an algorithm is that the solution to the problem of recovering
a signal which satisfies certain constraints from its degraded observation can be found by
the alternate implementation of the degradation and the constraint operator. Problems
reported in [9] which can be solved with such an iterative algorithm are the phase-only
recovery problem, the magnitude-only recovery problem, the bandlimited extrapolation
problem, the image restoration problem, and the filter design problem [10]. Reviews
of iterative restoration algorithms are also presented in [11, 12]. There are a number of
advantages associated with iterative restoration algorithms, among which [9, 12]: (i) there
is no need to determine or implement the inverse of an operator; (ii) knowledge about
the solution can be incorporated into the restoration process in a relatively straightfor-
ward manner; (iii) the solution process can be monitored as it progresses; and (iv) the
partially restored signal can be utilized in determining unknown parameters pertaining
to the solution.

In the following we first present the development and analysis of two simple iterative
restoration algorithms. Such algorithms are based on a linear and spatially invariant
degradation, when the noise is ignored. Their description is intended to provide a good
understanding of the various issues involved in dealing with iterative algorithms. We
adopt a “how-to” approach; it is expected that no difficulties will be encountered by
anybody wishing to implement the algorithms. We then proceed with the matrix-vector
representation of the degradation model and the iterative algorithms. The degradation
systems described now are linear but not necessarily spatially invariant. The relation
between the matrix-vector and scalar representation of the degradation equation and the
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iterative solution is also presented. Experimental results demonstrate the capabilities of
the algorithms.

15.3 SPATIALLY INVARIANT DEGRADATION
15.3.1 Degradation Model
Let us consider the following degradation model

g (n1,n2) � d(n1,n2) ∗ f (n1,n2), (15.2)

where g (n1,n2) and f (n1,n2) represent, respectively, the observed degraded and the orig-
inal image, d(n1,n2) is the impulse response of the degradation system, and ∗ denotes
2D convolution. It is mentioned here that the arrays d(n1,n2) and f (n1,n2) are appro-
priately padded with zeros, so that the result of 2D circular convolution equals the result
of 2D linear convolution in (15.2) (see Chapter 5). Henceforth, in the following all
convolutions involved are circular convolutions and all shifts are circular shifts.

We rewrite (15.2) as follows

�( f (n1,n2)) � g (n1,n2) � d(n1,n2) ∗ f (n1,n2) � 0. (15.3)

The restoration problem, therefore, of finding an estimate of f (n1,n2) given g (n1,n2)

and d(n1,n2), becomes the problem of finding a root of �( f (n1,n2)) � 0.

15.3.2 Basic Iterative Restoration Algorithm
The solution of (15.3) also satisfies the following equation for any value of the
parameter �

f (n1,n2) � f (n1,n2) � ��( f (n1,n2)). (15.4)

Equation (15.4) forms the basis of the successive approximations iteration, by interpre-
ting f (n1,n2) on the left-hand side as the solution at the current iteration step, and
f (n1,n2) on the right-hand side as the solution at the previous iteration step. That is,
with f0(n1,n2) � 0,

fk�1(n1,n2) � fk(n1,n2) � ��( fk(n1,n2))

� �g (n1,n2) � (�(n1,n2) � �d(n1,n2)) ∗ fk(n1,n2), (15.5)

where fk(n1,n2) denotes the restored image at the k-th iteration step, �(n1,n2) the discrete
delta function, and � the relaxation parameter which controls the convergence, as well
as the rate of convergence of the iteration. Iteration (15.5) is the basis of a large number
of iterative recovery algorithms, and is therefore analyzed in detail. Perhaps the earliest
reference to iteration (15.5) with � � 1 was by Van Cittert [13] in the 1930s.
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15.3.3 Convergence
Clearly if a root of �( f (n1,n2)) exists, this root is a fixed point of iteration (15.5), that is,
a point for which fk�1(n1,n2) � fk(n1,n2). It is not guaranteed, however, that iteration
(15.5) will converge, even if (15.3) has one or more solutions. Let us, therefore, examine
under what condition (sufficient condition) iteration (15.5) converges. Let us first rewrite
it in the discrete frequency domain, by taking the 2D discrete Fourier transform (DFT)
of both sides. It then becomes

Fk�1(u,v) � �G(u,v) � (1 � �D(u,v))Fk (u,v), (15.6)

where Fk(u,v), G(u,v), and D(u,v) represent, respectively, the 2D DFT of fk(n1,n2),
g (n1,n2), and d(n1,n2). We express next Fk(u,v) in terms of F0(u,v). Clearly

F1(u,v) � �G(u,v),

F2(u,v) � �G(u,v) � (1 � �D(u,v))�G(u,v)

�

1∑
��0

(1 � �D(u,v))��G(u,v),

...

Fk(u,v) �

k�1∑
��0

(1 � �D(u,v))��G(u,v)

� Hk(u,v)G(u,v). (15.7)

We, therefore, see that the restoration filter at the k-th iteration step is given by

Hk (u,v) � �

k�1∑
��0

(1 � �D(u,v))�. (15.8)

The obvious next question is then under what conditions the series in (15.8) converges
and what is this convergence filter equal to. Clearly if

|1 � �D(u,v)|< 1, (15.9)

then

lim
k→�

Hk (u,v) � lim
k→�

�
1 � (1 � �D(u,v))k

1 � (1 � �D(u,v))
�

1

D(u,v)
. (15.10)

Notice that (15.9) is not satisfied at the frequencies for which D(u,v) � 0. At these
frequencies

Hk (u,v) � k · �, (15.11)

and therefore, in the limit Hk(u,v) is not defined. However, since the number of iterations
run is always finite, Hk(u,v) is a large but finite number.
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Taking a closer look at the sufficient condition for convergence, we see that (15.9) can
be rewritten as

|1 � �Re{D(u,v)}� � Im{D(u,v)}|2 < 1

⇒ (1 � �Re{D(u,v)})2 � (� Im{D(u,v)})2 < 1. (15.12)

Inequality (15.12) defines the region inside a circle of radius 1/� centered at c � (1/�, 0)

in the (Re{D(u,v)}, Im{D(u,v)}) domain, as shown in Fig. 15.1. From this figure, it is
clear that the left half-plane is not included in the region of convergence. That is, even
though by decreasing � the size of the region of convergence increases, if the real part of
D(u,v) is negative, the sufficient condition for convergence cannot be satisfied. Therefore,
for the class of degradations that this is the case, such as the degradation due to motion,
iteration (15.5) is not guaranteed to converge.

The following form of (15.12) results when Im{D(u,v)}� 0, which means that
d(n1,n2) is symmetric:

0 < � <
2

Dmax(u,v)
, (15.13)

where Dmax(u,v) denotes the maximum value of D(u,v) over all frequencies (u,v).
If we now also take into account that d(n1,n2) is typically normalized, i.e.,∑

n1,n2
d(n1,n2) � 1, and represents a lowpass degradation, then D(0,0) � Dmax(u,v)

� 1. In this case, (15.12) becomes

0 < � < 2. (15.14)

From the above analysis, when the sufficient condition for convergence is satisfied, the
iteration converges to the original signal. This is also the inverse solution obtained directly

Re{D (u, v)}

Im{D (u, v)}

0 c

FIGURE 15.1

Geometric interpretation of the sufficient condition for convergence of the basic iteration, where
c � (1/�, 0).



354 CHAPTER 15 Iterative Image Restoration

from the degradation equation. That is, by rewriting (15.2) in the discrete frequency
domain

G(u,v) � D(u,v) · F(u,v), (15.15)

we obtain,

F(u,v) �

⎧⎪⎪⎨
⎪⎪⎩

G(u,v)

D(u,v)
, for D(u,v) �� 0

0, otherwise,

(15.16)

which represents the pseudo-inverse or generalized inverse solution.
An important point to be made here is that, unlike the iterative solution, the inverse

solution (15.16) can be obtained without imposing any requirements on D(u,v). That is,
even if (15.2) or (15.15) has a unique solution, that is, D(u,v) �� 0 for all (u,v), iteration
(15.5) may not converge, if the sufficient condition for convergence is not satisfied. It is,
therefore, not the appropriate iteration to solve the problem. Iteration (15.5) actually may
not offer any advantages over the direct implementation of the inverse filter of (15.16),
if no other features of the iterative algorithms are used, as will be explained later. One
possible advantage of (15.5) over (15.16) is that the noise amplification in the restored
image can be controlled by terminating the iteration before convergence, which represents
another form of regularization, as will also be demonstrated experimentally. An iteration
which will converge to the inverse solution of (15.2) for any d(n1,n2) is described in the
next section.

15.3.4 Reblurring
The degradation equation (15.2) can be modified so that the successive approximations
iteration converges for a larger class of degradations. That is, the observed data g (n1,n2)

are first filtered (reblurred) by a system with impulse response d∗(�n1,�n2), where ∗
denotes complex conjugation. Since circular convolutions have been adopted, the impulse
response of the degradation system is equal to d∗((N1 � n1)N1 ,(N2 � n2)N2), where (·)N1

denotes modulo N1 operation, assuming the images are of size N1 � N2 pixels. The
degradation equation (15.2), therefore, becomes

g̃ (n1,n2) � g (n1,n2) ∗ d∗(�n1,�n2) � d∗(�n1,�n2) ∗ d(n1,n2) ∗ f (n1,n2)

� d̃(n1,n2) ∗ f (n1,n2). (15.17)

If we follow the same steps as in the previous section substituting g (n1,n2) by g̃ (n1,n2)

and d(n1,n2) by d̃(n1,n2) the iteration providing a solution to (15.17) becomes

fk�1(n1,n2) � �d∗(�n1,�n2) ∗ g (n1,n2) � (�(n1,n2) � �d̃(n1,n2)) ∗ fk (n1,n2), (15.18)
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with f0(n1,n2) � 0. Following similar steps to the ones shown in the previous section, we
find that the restoration filter at the k-th iteration step is now given by

Hk(u,v) � �

k�1∑
��0

(1 � �|D(u,v)|2)�D∗(u,v)

� �
1 � (1 � �|D(u,v)|2)k

1 � (1 � �|D(u,v)|2) D∗(u,v). (15.19)

Therefore, the sufficient condition for convergence, corresponding to condition
(15.9), becomes

|1 � �|D(u,v)|2|< 1, or 0 < � <
2

maxu,v |D(u,v)|2 . (15.20)

In this case

lim
k→�

Hk (u,v) �

⎧⎪⎨
⎪⎩

1

D(u,v)
, D(u,v) �� 0

0, otherwise.

(15.21)

15.3.5 Experimental Results
In this section the performance of the iterative image restoration algorithms presented
so far is demonstrated experimentally. We use a relatively simple degradation model
in order to clearly analyze the behavior of the restoration filters. The degradation is
due to 1D horizontal motion between the camera and the scene, due, for example, to
camera panning or fast object motion. The impulse response of the degradation system
is given by

d(n1,n2) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

L
, �

L � 1

2
� n1 �

L � 1

2
, L odd, n2 � 0

1

L
, �

L

2
� 1 � n1 �

L

2
, L even, n2 � 0

0, otherwise.

(15.22)

The blurred signal-to-noise ratio (BSNR) is typically used in the restoration community
to measure the degree of the degradation (blur plus additive noise). This figure is given by

BSNR � 10 log10
�2

Df

�2
v

, (15.23)

where �2
Df and �2

v are, respectively, the variance of the blurred image and the additive
noise.
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For the purpose of objectively testing the performance of image restoration
algorithms, the improvement in SNR (ISNR) is often used. This metric using the restored
image at the k-th iteration step is given by

ISNR � 10 log10
||f � g||2
||f � fk ||2

. (15.24)

Obviously, this metric can only be used for simulation cases when the original image is
available. While mean-squared error (MSE) metrics such as ISNR do not always reflect the
visual quality of the restored image, they serve to provide an objective standard by which
to compare different techniques. However, in all cases presented here, it is important to
consider the behavior of the various algorithms from the viewpoint of ringing and noise
amplification, which can be a key indicator of improvement in quality for subjective
comparisons of restoration algorithms.

In Fig. 15.2(a) the image blurred by the 1D motion blur of extent 8 pixels (L � 8 in
Eq. (15.22)) is shown, along with |D(u, 0)|, a slice of the magnitude of the 256 � 256
point DFT of d(n1,n2) (notice that all slices of the DFT are the same, independently of

(a)

(b)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

FIGURE 15.2

Continued



15.3 Spatially Invariant Degradation 357

0 50 100 150 200 250
0

2

4

6

8

10

12

14

0 50 100 150 200 250
0

20

40

60

80

100

(d)

(e)

(c)

0 50 100 150 200 250
0

1

2

3

4

5

FIGURE 15.2

(a) Blurred image by an 1D motion blur over 8 pixels and the corresponding magnitude of the
frequency response of the degradation system; (b)–(d): images restored by iteration (15.18),
after 20 iterations (ISNR � 4.03dB), 50 iterations (ISNR � 6.22dB) and at convergence after
465 iterations (ISNR � 11.58dB), and the corresponding magnitude of Hk(u, 0) in (15.19);
(e) image restored by the direct implementation of the generalized inverse filter in (15.16)
(ISNR � 15.50dB), and the corresponding magnitude of the frequency response of the restoration
filter.
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the value of v). No noise has been added. The extent of the blur and the size of the
DFT were chosen in such a way that exact zeros exist in D(u,v). The next three images
represent the restored images using (15.18) with � � 1.0, along with |Hk(u, 0)| in (15.19),
after 20, 50, and 465 iterations (at convergence). The criterion

∑
n1,n2

(fk�1(n1,n2) � fk (n1,n2))
2

∑
n1,n2

(fk (n1,n2))
2 � 10�8 (15.25)

is used for terminating the iteration. Notice that (15.5) is not guaranteed to converge
for this particular degradation since D(u,v) takes negative values. The restored image of
Fig. 15.2(e) is the result of the direct implementation of the pseudo-inverse filter, which
can be thought of as the result of the iterative restoration algorithm after infinitely many
iterations assuming infinite precision arithmetic. The corresponding ISNRs are 4.03 dB
(Fig. 15.2(b)), 6.22 dB (Fig. 15.2(c)), 11.58 dB (Fig. 15.2(d)), and 15.50 dB (Fig. 15.2(e)).
Finally, the normalized residual error shown in (15.25) versus the number of iterations
is shown in Fig. 15.3. The iteration steps at which the restored images are shown in the
previous figure are indicated by circles.

We repeat the same experiment when noise is added to the blurred image, resulting
in a BSNR of 20 dB, as shown in Fig. 15.4(a). The restored images after 20 iterations
(ISNR � 1.83 dB), 50 iterations (ISNR � �0.40 dB), and at convergence after 1376 iter-
ations (ISNR � �9.06 dB) are shown, respectively, in Figs. 15.4(b)–(d). Finally, the
restoration based on the direct implementation of the pseudo-inverse filter is shown
in Fig. 15.4(e). The iterative algorithm converges slower in this case.
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FIGURE 15.3

Normalized residual error as a function of the number of iterations.
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(a) (b) (c)

(d) (e)

FIGURE 15.4

(a) Noisy-blurred image; 1D motion blur over 8 pixels, BSNR � 20dB; (b)–(d): images restored
by iteration (15.18), after 20 iterations (ISNR � 1.83dB), 50 iterations (ISNR � �0.30dB), and
at convergence after 1376 iterations (ISNR � �9.06dB); (e) image restored by the direct
implementation of the generalized inverse filter in (15.16) (ISNR � �12.09dB).

What becomes evident from these experiments is that:

■ As expected, for the noise-free case, the visual quality as well as the objective quality
in terms of ISNR of the restored images increases as the number of iterations
increases.

■ For the noise-free case the inverse filter outperforms the iterative restoration filter.
Based on this experiment there is no reason to implement this particular filter
iteratively, except possibly for computational reasons.

■ For the noisy-blurred image the noise is amplified and the ISNR decreases as the
number of iterations increases. Noise completely dominates the image restored by
the pseudo-inverse filter. In this case, the iterative implementation of the restoration
filter offers the advantage that the number of iterations can be used to control
the amplification of the noise, which represents a form of regularization. The
restored image, for example, after 50 iterations (Fig. 15.4(c)) represents a reasonable
restoration.
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■ The iteratively restored image exhibits noticeable ringing artifacts, which will be
further analyzed below. Such artifacts can be masked by noise, as demonstrated,
for example, with the image in Fig. 15.4(d).

15.3.5.1 Ringing Artifacts
Let us compare the magnitudes of the frequency response of the restoration filter after
465 iterations (Fig. 15.2(d)) and the inverse filter (Fig. 15.2(e)). First of all, it is clear
that the existence of spectral zeros in D(u,v) does not cause any difficulty in the deter-
mination of the restoration filter in both cases, since the restoration filter is also zero at
these frequencies. The main difference is that the values of |H (u,v)|, the magnitude of
the frequency response of the inverse filter, at frequencies close to the zeroes of D(u,v)

are considerably larger than the corresponding values of |Hk(u,v)|. This is because the
values of Hk(u,v) are approximated by a series according to (15.19). The important term
in this series is (1 � �|D(u,v)|2), since it determines whether the iteration converges or
not (sufficient condition). Clearly this term for values of D(u,v) close to zero is close to
one, and therefore, it approaches zero much slower when raised to the power of k, the
number of iterations, than the terms for which D(u,v) assumes larger values and the
term (1 � �|D(u,v)|2) is close to zero. This means that each frequency component is
restored independently and with different convergence rates. Clearly the larger the values
of � the faster the convergence.

Let us denote by h(n1,n2) the impulse response of the restoration filter and define

hall(n1,n2) � d(n1,n2) ∗ h(n1,n2). (15.26)

Ideally, hall(n1,n2) should be equal to an impulse, or its DFT Hall(u,v) should be a
constant, that is, the restoration filter is precisely undoing what the degradation system
did. Due to the spectral zeros, however, in D(u,v), Hall(u,v) deviates from a constant.
For the particular example under consideration, |Hall(u, 0)| is shown in Figs. 15.5(a)
and 15.5(c), for the inverse filter and the iteratively implemented inverse filter by (15.18),
respectively. In Figs. 15.5(b) and 15.5(d) the corresponding impulse responses are shown.
Due to the periodic zeros of D(u,v) in this particular case, hall(n1,n2) consists of the sum
of an impulse and an impulse train (of period 8 samples). The deviation from a constant
or an impulse is greater with the iterative restoration filter than with the direct inverse
filter.

Now, in the absence of noise the restored image, f̂ (n1,n2) is given by

f̂ (n1,n2) � hall(n1,n2) ∗ f (n1,n2). (15.27)

Clearly due to the shape of hall(n1,n2) shown in Figs. 15.5(b) and 15.5(d) (only hall(n1,0)

is shown, since it is zero for the rest of the values of n2), the existence of the periodic train
of impulses gives rise to ringing. In the case of the inverse filter (Fig. 15.5(b)) the impulses
of the train are small in magnitude and therefore ringing is not visible. In the case of the
iterative filter, however, the few impulses close to zero have larger amplitude and therefore
ringing is noticeable in this case.
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FIGURE 15.5

(a) |Hall(u, 0)| for direct implementation of the inverse filter; (c) |Hall(u, 0)| for the iterative
implementation of the inverse filter; (b),(d): hall(n, 0) corresponding to Figs. 15.5(a) and 15.5(c).

15.4 MATRIX-VECTOR FORMULATION
The presentation so far has followed a rather simple and intuitive path. It hopefully
demonstrated some of the issues involved in developing and implementing an iterative
algorithm. In this section we present the matrix-vector formulation of the degradation
process and the restoration iteration. More general results are therefore obtained, since
now the degradation can be spatially varying, while the restoration filter may be spa-
tially varying as well, but even nonlinear. The degradation actually can be nonlinear
as well (of course it is not represented by a matrix in this case), but we do not
focus on this case, although most of the iterative algorithms discussed below would be
applicable.

What became clear from the previous sections is that in applying the successive
approximations iteration, the restoration problem to be solved is brought first into the
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form of finding the root of a function (see (15.3)). In other words, a solution to the
restoration problem is sought which satisfies

�(f) � 0, (15.28)

where f ∈RN is the vector representation of the signal resulting from the stacking or
ordering of the original signal, and �(f) represents a nonlinear in general function. The
row-by-row from left-to-right stacking of an image is typically referred to as lexicographic
ordering. For a 256 � 256 image, for example, vector f is of dimension 64 K � 1.

Then the successive approximations iteration which might provide us with a solution
to (15.28) is given by

fk�1 � fk � ��(fk ) � 	(fk ), (15.29)

with f0 � 0. Clearly if f∗ is a solution to �(f) � 0, i.e., �(f∗) � 0, then f∗ is also a fixed
point of the above iteration, that is, fk�1 � fk � f∗. However, as was discussed in the
previous section, even if f∗ is the unique solution to (15.28), this does not imply that
iteration (15.29) will converge. This again underlines the importance of convergence
when dealing with iterative algorithms. The form iteration (15.29) taken for various
forms of the function �(f) is examined next.

15.4.1 Basic Iteration
From (15.1) when the noise is ignored, the simplest possible form �(f) can take is

�(f) � g � Df . (15.30)

Then (15.29) becomes

fk�1 � �g � (I � �D)fk ��g � G1fk , (15.31)

where I is the identity operator.

15.4.2 Least-Squares Iteration
According to the least-squares approach, a solution to (15.1) is sought by minimizing

M (x) � ‖g � Df‖2. (15.32)

A necessary condition for M (f) to have a minimum is that its gradient with respect to f
is equal to zero. That is, in this case

�(f) � 
f M (f) � DT (g � Df) � 0, (15.33)

where T denotes the transpose of a matrix or vector. Application of iteration (15.29) then
results in

fk�1 � �DT g � (I � �DT D)fk ��DT g � G2fk � T2fk . (15.34)

The matrix-vector representation of an iteration does not necessarily determine the
way the iteration is implemented. In other words, the pointwise version of the iteration
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may be more efficient from the implementation point of view than the matrix-vector form
of the iteration. Now when (15.2) is used to form the matrix-vector equation g �Df ,
matrix D is a block-circulant matrix [1]. A square matrix is circulant when a circular shift
of one row produces the next row, and the circular shift of the last row produces the first
row. A square matrix is block-circulant when it consists of circular submatrices, which
when circularly shifted produce the next row of circulant matrices. This implies that the
singular values of D are the DFT values of d(n1,n2), and the eigenvectors are the complex
exponential basis functions of the DFT. Iterations (15.31) and (15.34) can, therefore, be
written in the discrete frequency domain, and they become identical to iteration (15.6)
and the frequency domain version of iteration (15.18), respectively [12].

15.4.3 Constrained Least-Squares Iteration
The image restoration problem is an ill-posed problem, which means that matrix D
is ill-conditioned. A regularization method replaces an ill-posed problem by a well-
posed problem, whose solution is an acceptable approximation to the solution of the
ill-posed problem [5]. Most regularization approaches transform the original inverse
problem into a constrained optimization problem. That is, a functional needs to be
optimized with respect to the original image, and possibly other parameters. By using
the necessary condition for optimality, the gradient of the functional with respect to the
original image is set equal to zero, therefore determining the mathematical form of �(f).
The successive approximations iteration becomes in this case a gradient method with a
fixed step (determined by �).

As an example, a restored image is sought as the result of the minimization of [14]

‖Cf‖2 (15.35)

subject to the constraint that

‖g � Df‖2 � �2. (15.36)

Operator C is a highpass operator. The meaning then of the minimization of ‖Cf‖2 is to
constrain the high-frequency energy of the restored image, therefore requiring that the
restored image is smooth. On the other hand, by enforcing inequality (15.36) the fidelity
to the data is preserved.

Following the Lagrangian approach which transforms the constrained optimization
problem into an unconstrained one, the following functional is minimized:

M (�, f) � ‖Df � g‖2 � �‖Cf‖2. (15.37)

The necessary condition for a minimum is that the gradient of M (�, f) is equal to zero.
That is, in this case

�(f) � 
f M (�, f) � (DT D � �CT C)f � DT g (15.38)

is used in iteration (15.29). The determination of the value of the regularization parameter
� is a critical issue in regularized restoration, since it controls the tradeoff between
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fidelity to the data and smoothness of the solution, and therefore the quality of the
restored image. A number of approaches for determining its value are presented and
compared in [15].

Since the restoration filter resulting from (15.38) is widely used it is worth looking
further into its properties. When the degradation matrices D and C are block-circulant
(15.38) the resulting successive approximations iteration can be written in the discrete
frequency domain. The iteration takes the form

Fk�1(u,v) � �D∗(u,v)G(u,v) � (1 � �(|D(u,v)|2 � �|C(u,v)|2))Fk (u,v), (15.39)

where C(u,v) represents the 2D DFT of the impulse response of a highpass filter, such
as the 2D Laplacian. Following steps similar to the ones presented in Section 15.3.3, it is
straightforward to verify that in this case the restoration filter at the k-th iteration step
is given by

Hk (u,v) � �

k�1∑
��0

(1 � �(|D(u,v)|2 � �|C(u,v)|2))�D∗(u,v). (15.40)

Clearly if

|1 � �(|D(u,v)|2 � �|C(u,v)|2)|< 1 (15.41)

then

lim
k→�

Hk (u,v) � lim
k→�

�
1 � (1 � �(|D(u,v)|2 � �|C(u,v)|2))k

1 � (1 � �(|D(u,v)|2 � �|C(u,v)|2))

D∗(u,v) �
D∗(u,v)

|D(u,v)|2 � �|C(u,v)|2 . (15.42)

Notice that condition (15.41) is not satisfied at the frequencies for which Hd(u,v) �
|D(u,v)|2 � �|C(u,v)|2 � 0. It is therefore now not the zeros of the degradation matrix
which need to be considered, but the zeros of the regularized matrix, with DFT values
Hd(u,v). Clearly if Hd(u,v) is zero at certain frequencies, this means that both D(u,v)

and C(u,v) are zero at these frequencies. This demonstrates the purpose of regularization,
which is to remove the zeros of D(u,v) without altering the rest of its values, or in general
to make the matrix DT D � �CT C better conditioned than the matrix DT D.

For the frequencies at which Hd(u,v) � 0

lim
k→�

Hk (u,v) � lim
k→�

k · � · D∗(u,v) � 0, (15.43)

since D∗(u,v) � 0.

15.4.3.1 Experimental Results
The noisy and blurred image of Fig. 15.4(a) (1D motion blur over 8 pixels, BSNR � 20 dB)
is now restored using iteration (15.39), with � � 0.01, � � 1.0, and C the 2D Laplacian
operator. It is mentioned here that the regularization parameter is chosen to be equal to
�2

v
�2

Df
, as determined by a set theoretic restoration approach presented in [16]. The restored
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images after 20 iterations (ISNR � 2.12 dB), 50 iterations (ISNR � 0.98 dB), and at
convergence after 330 iterations (ISNR��1.01 dB) with the corresponding |Hk(u,v)|
in (15.40), are shown respectively in Figs. 15.6(a)–(c). In Fig. 15.6(d) the restored image
(ISNR � �1.64dB) by the direct implementation of the constrained least-squares fil-
ter in (15.42) is shown, along with the magnitude of the frequency response of the
restoration filter. It is clear now by comparing the restoration filters of Figs. 15.2(d)
and 15.6(c) and 15.2(e) and 15.6(d), that the high frequencies have been suppressed,
due to regularization, that is the addition in the denominator of the filter of the term
�|C(u,v)|2. Due to the iterative approximation of the constrained least-squares fil-
ter, however, the two filters shown in Figs. 15.6(c) and 15.6(d) differ primarily in the
vicinity of the low-frequency zeros of D(u,v). Ringing is still present, as it can be
primarily seen in Figs. 15.6(a) and 15.6(b), although is not as visible in Figs. 15.6(c)
and 15.6(d). Due to regularization the results in Figs. 15.6(c) and 15.6(d) are preferred
over the corresponding results with no regularization (� � 0.0), shown in Figs. 15.4(d)
and 15.4(e).

The value of the regularization parameter is very critical for the quality of the
restored image. The restored images with three different values of the regularization
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FIGURE 15.6

Restoration of the noisy-blurred image in Fig. 15.5(a) (motion over 8 pixels, BSNR � 20dB);
(a)–(c): images restored by iteration (15.39), after 20 iterations (ISNR � 2.12dB), 50 itera-
tions (ISNR � 0.98dB) and at convergence after 330 iterations (ISNR � �1.01dB), and the
corresponding |Hk(u, 0)| in (15.40); (d): image restored by the direct implementation of
the constrained least-squares filter (ISNR � �1.64dB), and the corresponding magnitude of
the frequency response of the restoration filter (Eq. (15.42)).

parameter are shown in Figs. 15.7(a)–(c), corresponding to � � 1.0 (ISNR � 2.4 dB),
� � 0.1 (ISNR � 2.96 dB), and � � 0.01 (ISNR � �1.80 dB). The corresponding mag-
nitudes of the error images, i.e., |original � restored|, scaled linearly to the 32–255 range
are shown in Figs. 15.7(d)–(f). What is observed is that for large values of � the restored
image is “smooth” while the error image contains the high-frequency information of
the original image (large bias of the estimate), while as � decreases the restored image
becomes more noisy and the error image takes the appearance of noise (large variance
of the estimate). It has been shown in [15] that the bias of the constrained least-squares
estimate is a monotonically increasing function of the regularization parameter, while
the variance of the estimate is a monotonically decreasing function of the estimate. This
implies that the MSE of the estimate, the sum of the bias and the variance, has a unique
minimum for a specific value of �.



15.4 Matrix-Vector Formulation 367

(a) (b) (c)

(d) (e) (f)

FIGURE 15.7

Direct constrained least-squares restorations of the noisy-blurred image in Fig. 15.5(a) (motion
over 8 pixels, BSNR � 20dB) with � equal to: (a) 1; (b) 0.1; (c) 0.01; (d)–(f): corresponding
|original – restored| linearly mapped to the range [32, 255].

15.4.4 Spatially Adaptive Iteration
Spatially adaptive image restoration is the next natural step in improving the quality
of the restored images. There are various ways to argue the introduction of spatial adap-
tivity, the most commonly used ones being the nonhomogeneity or nonstationarity of
the image field and the properties of the human visual system. In either case, the
functional to be minimized takes the form [11, 12]

M (�, f) � ‖Df � g‖2W1
� �‖Cf‖2W2

, (15.44)

in which case

�(f) � 
f M (�, f) � (DT WT
1 W1D � �CT WT

2 W2C)f � DT W1g. (15.45)

The choice of the diagonal weighting matrices W1 and W2 can be justified in various ways.
In [12] both matrices are determined by the diagonal noise visibility matrix V [17]. That
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is, W1 � VT V and W2 � I � VT V. The entries of V take values between 0 and 1. They
are equal to 0 at the edges (noise is not visible), equal to 1 at the flat regions (noise is
visible) and take values in between at the regions with moderate spatial activity.

15.4.4.1 Experimental Results
The resulting successive approximations iteration from the use of �(f) in (15.45) has
been tested with the noisy and blurred image we have been using so far in our expe-
riments, which is shown in Fig. 15.4(a). It should be emphasized here that although
matrices D and C are block-circulant, the iteration cannot be implemented in the discrete
frequency domain, since the weight matrices, W1 and W2, are diagonal, but not circulant.
Therefore, the iterative algorithm is implemented exclusively in the spatial domain, or
by switching between the frequency domain (where the convolutions are implemented)
and the spatial domain (where the weighting takes place). Clearly, from an implemen-
tation point of view the use of iterative algorithms offers a distinct advantage in this
particular case.

The iteratively restored image with W1 � 1 � W2, � � 0.01, and � � 0.1, is shown
in Fig. 15.8(a), at convergence after 381 iterations and ISNR = 0.61 dB. The entries of the
diagonal matrix W2, denoted by w2(i), are computed according to

w2(i) �
1

��2(i) � 1
, (15.46)

where �2(i) is the local variance at the ordered i-th pixel location, and � a tuning param-
eter. The resulting values of w2(i) are linearly mapped into the [0,1] range. These weights
computed from the degraded image are shown in Fig. 15.8(c), linearly mapped to the [32,
255] range, using a 3 � 3 window to find the local variance and � � 0.001. The image
restored by the nonadaptive algorithm, that is, W1 � W2 � I and the rest of the param-
eters the same, is shown in Fig. 15.8(b) (ISNR � �0.20 dB). The absolute value of
the difference between the images linearly mapped in the [32, 255] range is shown in
Fig. 15.8(d). It is clear that the two algorithms differ primarily at the vicinity of edges,
where the smoothing is downweighted or disabled with the adaptive algorithm. Spatially
adaptive algorithms in general can greatly improve the restoration results, since they can
adapt to the local characteristics of each image.

15.5 USE OF CONSTRAINTS
Iterative signal restoration algorithms regained popularity in the 1970s due to the realiz-
ation that improved solutions can be obtained by incorporating prior knowledge about
the solution into the restoration process. For example, we may know in advance that f is
bandlimited or spacelimited, or we may know on physical grounds that f can only have
nonnegative values. A convenient way of expressing such prior knowledge is to define a
constraint operator C, such that

f � Cf , (15.47)



15.5 Use of Constraints 369

(a) (b)

(c) (d)

FIGURE 15.8

Restoration of the noisy-blurred image in Fig. 15.5(a) (motion over 8 pixels, BSNR � 20dB),
using (a) the adaptive algorithm of (15.45); (b) the nonadaptive algorithm of iteration (15.39);
(c) values of the weight matrix in Eq. (15.46); (d) amplitude of the difference between images
(a) and (b) linearly mapped to the range [32, 255].

if and only if f satisfies the constraint. In general, C represents the concatenation of
constraint operators. With the use of constraints, iteration (15.29) becomes [9]

f0 � 0,

f̃k � Cfk ,

fk�1 � 	(f̃k). (15.48)

As already mentioned, a number of recovery problems, such as the bandlimited extrapo-
lation problem, and the reconstruction from phase or magnitude problem, can be solved
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with the use of algorithms of the form (15.48), by appropriately describing the distortion
and constraint operators [9].

The contraction mapping theorem [8] usually serves as a basis for establishing conver-
gence of iterative algorithms. Sufficient conditions for the convergence of the algorithms
presented in Section 15.4 are presented in [12]. Such conditions become identical to
the ones derived in Section 15.3 when all matrices involved are block-circulant. When
constraints are used, the sufficient condition for convergence of the iteration is that at
least one of the operators C and 	 is contractive while the other is nonexpansive. Usually
it is harder to prove convergence and determine the convergence rate of the constrained
iterative algorithm, taking also into account that some of the constraint operators are
nonlinear, such as the positivity constraint operator.

15.5.1 Experimental Results
We demonstrate the effectiveness of the positivity constraint with the use of a sim-
ple example. An 1D impulsive signal is shown in Fig. 15.9(a). Its degraded version by
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FIGURE 15.9

(a) Original signal; (b) blurred signal by motion blur over 8 samples; signals restored by iteration
(15.18); (c) with positivity constraint; (d) without positivity constraint.
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a motion blur over 8 samples is shown in Fig. 15.9(b). The blurred signal is restored by
iteration (15.18) (� � 1.0) with the use of the positivity constraint (Fig. 15.9(c), 370 iter-
ations, ISNR � 41.35), and without the use of the positivity constraint (Fig. 15.9(d), 543
iterations, ISNR � 11.05). The application of the positivity constraint, which represents
a nonexpansive mapping, simply sets to zero all negative values of the signal. Clearly a
considerably better restoration is represented by Fig. 15.9(c).

15.6 ADDITIONAL CONSIDERATIONS
In the previous sections we dealt exclusively with the image restoration problem, as
described by Eq. (15.1). As was mentioned in the introduction, there is a plethora of
inverse problems, i.e., problems described by Eq. (15.1), for which the iterative algorithms
presented so far can be applied. Inverse problems are representative examples of more
general recovery problems, i.e., problems for which information that is lost (due, for
example, to the imperfections of the imaging system or the transmission medium, or
the specific processing the signal is undergoing, such as compression), is attempted to
be recovered. A critical step in solving any such problem is the modeling of the signals
and systems involved, or in other words, the derivation of the degradation model. After
this is accomplished the solution approach needs to be decided (of course these two
steps do not need to be independent). In this chapter we dealt primarily with the image
restoration problem under a deterministic formulation and a successive approximations
based iterative solution approach. In the following four subsections we describe some
additional forms the successive approximations iteration can take, a stochastic modeling
of the restoration problem which results in successive approximations type of iterations,
the blind image deconvolution problem, and finally additional recent image recovery
applications.

15.6.1 Other Forms of the Iterative Algorithm
The basic iteration presented in previous sections can be extended in a number of ways.
One such way is to utilize the partially restored image at each iteration step in evaluating
unknown problem parameters or refining our prior knowledge about the original image.
A critical such parameter which directly controls the quality of the restoration results,
as was experimentally demonstrated in Fig. 15.8, is the regularization parameter � in
Eq. (15.37). As was already mentioned in Section 15.4.3, a number of approaches have
appeared in the literature for the evaluation of � [15]. It depends on the value of ‖g �
Df‖2 or its upper bound � in Eq. (15.36), but also on the value of ‖Cf‖2 or an upper
bound of it, or in other words on the value of f . This dependency of � on the unknown
original image f is expressed explicitly in [18], by rewriting the functional to be minimized
in Eq. (15.37) as

M (�(f), f) � ‖g � Df‖2 � �(f)‖Cf‖2. (15.49)
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The desirable properties of �(f) and various functional forms it can take are investigated
in detail in [18]. One such choice is given by

�(f) �
‖g � Df‖2

(1/�) � ‖Cf‖2 , (15.50)

with � constrained so that the denominator in Eq. (15.50) is positive. The successive
approximations iteration in this case then becomes

fk�1 � fk � �[DT g � (DT D � �(fk )CT C)fk ]. (15.51)

Sufficient conditions for the convergence of iteration (15.51) are derived in [18] in terms
of the parameter �, and also conditions which guarantee M (�(f), f) to be convex (the
relaxation parameter � can be set equal to 1 since it can be combined with the param-
eter �). Iteration (15.51) represents a major improvement toward the solution of the
restoration problem because (i) no prior knowledge, such as knowledge of the noise vari-
ance, is required for the determination of the regularization parameter, as instead such
information is extracted from the partially restored image; and (ii) the determination
of the regularization parameter does not constitute a separate, typically iterative step, as
it is performed simultaneously with the restoration of the image. The performance of
iteration (15.51) is studied in detail in [18] for various forms of the functional �(f) and
various initial conditions.

This framework of extracting information required by the restoration process at each
iteration step from the partially restored image has also been applied to the evaluation
of the weights W1 and W2 in iteration (15.45) [19] and in deriving algorithms which
use a different iteration-dependent regularization parameter for each discrete frequency
component [20].

Additional extensions of the basic form of the successive approximations algorithm
are represented by algorithms with higher rates of convergence [21, 22], algorithms with
a relaxation parameter � which depends on the iteration step (steepest descent and
conjugate gradient algorithms are examples of this), algorithms which depend on more
than one previous restoration steps (multistep algorithms [23]), and algorithms which
utilize the number of iterations as a means of regularizing the solution.

15.6.2 Hierarchical Bayesian Image Restoration
In the presentation so far we have assumed that the degradation and the images in
Eq. (15.1) are deterministic and the noise only represents a stochastic signal. A different
approach towards the derivation of the degradation model and a restoration solution is
represented by the Bayesian paradigm. According to it, knowledge about the structural
form of the noise and the structural behavior of the reconstructed image is used in
forming respectively p(g|f ,	) and p(f |�), where p(·|·) denotes a conditional probability
density function (pdf). For example, the following conditional pdf is typically used to
describe the structural form of the noise:

p(g|f ,	) �
1

Znoise(	)

{
exp

[
�

1

2
	‖g � Df‖2

]}
, (15.52)
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where Znoise(	) � (2
/	)N/2, with N , as mentioned earlier, the dimension of the vectors
f and g. Smoothness constraints on the original image can be incorporated under the
form of

p(f |�) � �q/2 exp

{
�

1

2
�S(f)

}
, (15.53)

where S(f) is a nonnegative quadratic form which usually corresponds to a conditional or
simultaneous autoregressive model in the statistical community or to placing constraints
on the first or second differences in the engineering community and q is the number
of positive eigenvalues of S [24]. A form of S(f) which has been used widely in the
engineering community and also in this chapter is

S(f) � ‖Cf‖2,

with C the Laplacian operator.
The parameters � and 	 are typically referred to as hyperparameters. If they are

known, according to the Bayesian paradigm, the image f(�,	) is selected as the restored
image, defined by

f(�,	) � arg{max
f

p(f |�)p(g|f ,	)}� arg{min
f
[�S(f) � 	‖g � Df‖2 ] }. (15.54)

If the hyperparameters are not known then they can be treated as random variables
and the hierarchical Bayesian approach can be followed. It consists of two stages. In the
first stage the conditional probabilities shown in Eqs. (15.52) and (15.53) are formed. In
the second stage the hyperprior p(�,	) is also formulated, resulting in the distribution
p(�,	, f , g). With the so-called evidence analysis, p(�,	, f , g) is integrated over f to give the
likelihood p(�,	|g), which is then maximized over the hyperparameters. Alternatively,
with the maximum a posteriori (MAP) analysis, p(�,	, f , g) is integrated over � and 	 to
obtain the true likelihood, which is then maximized over f to obtain the restored image.

Although in some cases it would be possible to establish relationships between the
hyperpriors, the following model of the global probability is typically used:

p(�,	, f , g) � p(�)p(	)p(f |�)p(g|f ,	). (15.55)

Flat or noninformative hyperpriors are used for p(�) and p(	) if no prior knowledge
about the hyperpriors exists. If such knowledge exists, as an example, a gamma distri-
bution can be used [24]. As expected, the form of these pdf impacts the subsequent
calculations.

Clearly the hierarchical Bayesian analysis offers a methodical procedure to evaluate
unknown parameters in the context of solving a recovery problem. A critical step in
its application is the determination of p(�) and p(	) and the above-mentioned integration
of p(�,	, f , g) either over f , or � and 	. Both flat and gamma hyperpriors p(�) and p(	)

have been considered in [24], utilizing both the evidence and MAP analyses. They resulted
in iterative algorithms for the evaluation of �, 	, and f . The important connection between
the hierarchical Bayesian approach and the iterative approach presented in Section 15.6.1
is that iteration (15.51) with �(f) given by Eq. (15.50) or any of the forms proposed in
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[18, 20] can now be derived by the hierarchical Bayesian analysis with the appropriate
choice of the required hyperpriors and the integration method. It should be made clear
that the regularization parameter � is equal to the ratio (	/�). A related result has
been obtained in [25] by deriving through a Bayesian analysis the same expressions
for the iterative evaluation of the weight matrices W1 and W2 as in iteration (15.45)
and Eq. (15.46). It is therefore significant that there is a precise interpretation of the
framework briefly described in the previous section, based on the stochastic modeling of
the signals and the unknown parameters.

15.6.3 Blind Deconvolution
Throughout this chapter, a fundamental assumption was that the exact form of the
degradation system is known. This assumption is valid in certain applications where the
degradation can be modeled accurately using the information about the technical design
of the system, or can be obtained through experimental approaches (as was done, for
example, with the Hubble Space Telescope). However, in many other applications the
exact form of the degradation system may not be known. In such cases, it is also desired
for the algorithm to provide an estimate of the unknown degradation system as well
as the original image. The problem of estimating the unknown original image f and
the degradation D from the observation g is referred to as blind deconvolution, when
D represents a linear and space-invariant (LSI) system. Blind deconvolution is a much
harder problem than image restoration due to the interdependency of the unknown
parameters.

As in image restoration, in blind deconvolution certain constraints have to be uti-
lized for both the impulse response of the degradation system and the original image
to transform the problem into a well-posed one. These constraints can be incorporated,
for example, in a regularization framework, or by using Bayesian modeling techniques,
as described in the previous subsection. Common constraints used for the degradation
system include nonnegativity, symmetry, and smoothness, among others. For instance,
a common degradation introduced in astronomical imaging is atmospheric turbulence,
which can be modeled using a smoothly changing impulse response, such as a Gaus-
sian function. On the other hand, out-of-focus blur is not smoothly varying, but has
abrupt transitions. These kinds of degradations are better modeled using total-variation
regularization methods [26].

Blind deconvolution methods can be classified into two main categories based on
the manner the unknowns are estimated. With a priori blur identification methods,
the degradation system is estimated separately from the original image, and then this
estimate is used in any image restoration method to estimate the original image. On the
other hand, joint blind deconvolution methods estimate the original image and identify
the blur simultaneously. The joint estimation is typically carried out using an alternating
procedure, i.e., at each iteration the unknown image is estimated using the degradation
estimate in the previous iteration, and vice versa.

Assuming that the original image is known, identifying the degradation system from
the observed and original images (referred to as the system identification) is the dual
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problem of image restoration, and all methods presented in this chapter, including
successive approximation iterations, can be applied for identifying the unknown degrada-
tion. Based on this observation in joint identification methods, the blind deconvolution
problem can be solved by composing two coupled successive approximations iterations.

As an example, blind deconvolution can be formulated by the minimization of the
following functional with respect to f and the impulse response d of the degradation
system:

M (�1,�2, f , d) � ‖Df � g‖2 � �1C1(f) � �2C2(d), (15.56)

where C1(f) and C2(d) denote operators on f and d, respectively, imposing constraints
on the unknowns. These operators, as was the case in Section 15.4.3, are generally used
to constrain the high-frequency energy of the restored image and the impulse response
of the degradation system. The necessary condition for a minimum is that the gradi-
ents of M (�1,�2, f , d) with respect to f and d are equal to zero. The minimum can be
found by applying two nested successive approximations iterations as follows: Once
an estimate of the image f i is calculated at iteration i, this estimate is used in the
successive approximation iteration to calculate an estimate di by finding the root of
�d(d, f i) � 
dM (�1,�2, f i , d) according to

di
k�1 � di

k � �d�d(di
k , f i). (15.57)

At convergence the estimate di is used to find an estimate f i�1 by finding the root of
�f (f , di) � 
f M (�1,�2, f , di) according to

f i�1
k�1 � f i�1

k � �f �f (f i�1
k , di). (15.58)

Note that although the constraints and prior knowledge about the degradation system
generally differ from those about the unknown image, the tools and analysis presented
earlier in this chapter can be applied to the blind deconvolution problem as well.

Overall, blind deconvolution tackles a more difficult, but also a more frequently
encountered problem than image restoration. Because of its general applicability to many
different areas, there has been considerable activity in developing methods for blind
deconvolution, and impressive (comparable to image restoration) results can be obtained
by the state-of-the-art methods (see [7] for a review of the major approaches).

15.6.4 Additional Applications
In this chapter we have concentrated on the application of the successive approxi-
mations iteration to the image restoration problem. However, as mentioned multiple
times already a number of recovery problems can find solutions with the use of a
successive approximations iteration. Three important recovery problems which have
been actively pursued in the last 10–15 years due to their theoretical challenge but
also their commercial significance are the removal of compression artifacts, resolution
enhancement, and restoration in medical imaging.
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15.6.4.1 Removal of Compression Artifacts
The problem of removing compression artifacts addresses the recovery of information
lost due to the quantization of parameters during compression. More specifically, in the
majority of existing image and video compression algorithms the image (or frame in
an image sequence) is divided into square blocks which are processed independently
from each other. The Discrete Cosine Transform (DCT) of such blocks (representing
either the image intensity when dealing with still images or intracoding of video blocks
or frames, or the displaced frame difference when dealing with intercoding of video
blocks or frames) is taken and the resulting DCT coefficients are quantized. As a result of
this processing, annoying blocking artifacts result, primarily at high compression ratios.
A number of techniques have been developed for removing such blocking artifacts for
both still images and video. For example, in [27, 28] the problem of removing the blocking
artifacts is formulated as a recovery problem, according to which an estimate of the
blocking artifact-free original image is estimated by utilizing the available quantized data,
knowledge about the quantizer step size, and prior knowledge about the smoothness of
the original image.

A deterministic formulation of the problem is followed in [27]. Two solutions
are developed for the removal of blocking artifacts in still images. The first one is
based on the CLS formulation and a successive approximations iteration is utilized
for obtaining the solution. The second approach is based on the theory of projections
onto convex sets (POCS), which has found applications in a number of recovery prob-
lems. The evidence analysis within the hierarchical Bayesian paradigm, mentioned
above, is applied to the same problem in [28]. Expressions for the iterative evaluation
of the unknown parameters and the reconstructed image are derived. The relation-
ship between the CLS-iteration adaptive successive approximations solution and the
hierarchical Bayesian solution discussed in the previous section is also applicable here.

15.6.4.2 Resolution Enhancement
Resolution enhancement (also referred to as super-resolution) is a problem which has
also seen considerable activity recently (for a recent review see [29–31] and references
therein). It addresses the problem of increasing the resolution of a single image utilizing
multiple aliased low-resolution images of the same scene with sub-pixel shifts among
them. It also addresses the problem of increasing the resolution of a video frame (and
consequently the whole sequence) of a dynamic video sequence by utilizing a number
of neighboring frames. In this case the shifts between any two frames are expressed by the
motion field. The low-resolution images and frames can be noisy and blurred (due to the
image acquisition system), or compressed, which further complicates the problem. There
are a number of potential applications of this technology. It can be utilized to increase
the resolution of any instrument by creating a number of images of the same scene, but
also to replace an expensive high-resolution instrument by one or more low-resolution
ones, or it can serve as a compression mechanism. Some of the techniques developed in
the literature address, in addition to the resolution enhancement problem, the simulta-
neous removal of blurring and compression artifacts, i.e., they combine the objectives of
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multiple applications mentioned in this chapter. For illustration purposes consider the
example shown in Fig. 15.10 [32]. In Fig. 15.10(a) the original high-resolution image is
shown. This image is blurred with a 4 � 4 noncausal uniform blur function and down-
sampled by a factor of 4 in each direction to generate 64 low-resolution images with
global subpixel shifts which are integer multiples of 1/4 in each direction. Noise of the
same variance was added to all low-resolution images (resulting in SNR of 30 dB for this
example). One of the low-resolution images (the one with zero shifts in each direction) is
shown in Fig. 15.10(b). The best bilinearly interpolated image is shown in Fig. 15.10(c). A
hierarchical Bayesian approach is utilized in [32] in deriving iterative algorithms for

(a) (b)

(c) (d)

FIGURE 15.10

Resolution enhancement example: (a) original image; (b) one of the 16 low-resolution images
with SNR � 30dB (all 16 images have the same SNR); (c) best bilinearly interpolated image;
(d) estimated high-resolution image by the hierarchical Bayesian approach [32].
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(a) (b) (c)

FIGURE 15.11

Resolution enhancement example: (a) one of the 16 low-resolution images (the SNR for the
low-resolution images is at random either 10 dB or 20 dB or 30 dB); (b) bilinearly interpolated
image; (c) estimated high-resolution image by the hierarchical Bayesian approach [32].

estimating the unknown parameters (an image model parameter similar to � in
Eq. (15.53) and the additive noise variance) and the high-resolution image by utiliz-
ing the 16 low-resolution images, assuming that the shifts and the blur are known. The
resulting high-resolution image is shown in Fig. 15.10(d). Finally, the same experiment
was repeated with the resolution chart image. One of the 16 low-resolution images is
shown in Fig. 15.11(a). The bilinearly interpolated image is shown in Fig. 15.11(b),
while the one generated by the hierarchical Bayesian approach is shown in Fig. 15.11(c).
The hierarchical Bayesian approach was also used for the recovery of a high-resolution
sequence from low-resolution and compressed observations [33].

15.6.4.3 Restoration in Medical Imaging
A very important emerging application area of image restoration algorithms is medical
imaging. A number of imaging techniques are being invented in a rapid way, and
medical imaging devices have many different imaging modalities. As in any other imag-
ing system, medical image acquisition devices also introduce degradation to the images,
and these degradations vary greatly among imaging applications. Currently, computer-
assisted tomography (CAT or CT), positron emission tomography (PET), single photon
emission computed tomography (SPECT), magnetic resonance imaging (MRI), and con-
focal microscopy are widely used both in medical research and diagnostics. In all these
modalities, certain degradations affect the acquired images (sometimes to a hinder-
ing extent), and image restoration methods play an important role in improving their
usability and extending the application of the medical imaging devices [34].

Medical imaging introduced many new challenging problems to the image restoration
research both at the modeling and algorithmic level. It is usually very difficult to obtain
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accurate models for medical imaging devices, and much more difficult to obtain a gen-
eral model for all medical imaging instruments. Moreover, common assumptions being
utilized in traditional image restoration do not hold in general. For example, the noise
in many medical imaging modalities is nonstationary, e.g., ultrasound speckle noise, and
the degradation generally depends not only on the imaging device (as is generally the
case in other imaging devices) but also on the physical location of the device and the
subject being imaged.

Despite these challenges, image restoration algorithms have found great use in medi-
cal imaging. For example, in conventional fluorescence microscopy, the image is degraded
by an out-of-focus blur caused by fluorescent objects not in focus. Therefore, the flu-
orescent objects interfere with the original object to be imaged, and they reduce the
contrast. Confocal microscopes are also affected by this problem, although to a much
lesser extent. To enhance the image quality, deconvolution methods are developed where
first the three-dimensional point spread function (PSF) of the system is obtained through
the instrument specifications and experimental measurements and second the effect of
the degradation is removed from the image stack by a deconvolution algorithm. The
quality of the acquired microscopic images can be significantly improved by this postpro-
cessing step. Commercial and freeware software as well as fully assembled “deconvolution
microscopes” are available and in use.

Another interesting application area is MRI with multiple surface coils. Traditionally,
MR images are acquired by a single whole body coil which has a homogeneous intensity
distribution across the image (bias-free) but creates images with a low signal-to-noise
ratio (SNR). To increase the SNR, multiple images are acquired which take a lot of
time and is inconvenient for both the patient and the medical staff. Recently, another
approach, called “nuclear magnetic resonance (NMR) phased array,” has been proposed
and is widely adapted in current MRI technology. It is based on simultaneously acquiring
multiple images with closely positioned NMR receiver coils and combining these images
after the acquisition. These individual surface coil images have higher SNRs than the
whole body coil images, and they shorten the acquisition time significantly. However,
they are degraded by bias fields due to the locations of each surface coil since the intensity
levels rapidly decrease with distance. Therefore, it is desired to combine the surface coil
images to remove the bias to obtain a high SNR and bias-free image.

The bias fields in surface coil images can be seen as smoothly varying functions over
the image that change the image intensity level depending on the location, that is, each
surface coil image can be modeled by the product of the original image and a smoothly
varying field, and can be expressed in matrix-vector notation by

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

gi,1

gi,2

·
·

gi,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
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0 di,2 0 · · 0

·
·
·
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⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f1
f2
·
·

fm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
⇒ gi � Di f � vi , (15.59)
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with gi the ith surface coil image, Di the ith bias field, and f1, f2, . . . , fm the pixels of the
original image. Assuming there are n coils, this imaging system can also be represented
as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g1

g2

·
·

gn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
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D2

·
·
·

Dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

f �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v1

v2

·
·

vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
⇒ g � Df � v, (15.60)

(a)

(b)

FIGURE 15.12

MR surface coil image combination example: (a) six surface coil images of a human abdomen;
(b) combined image using the algorithm in [35].
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where g represents the observed surface coil images, D the bias fields, and v the noise
in the observed images. This is the same degradation system as in (15.1), and therefore
restoration algorithms similar to the ones presented so far can be applied. For instance,
in [35], the spatially adaptive formulation (15.44) described in Section 15.4.4 is utilized
where the weights are estimated using the local variances in the image, and the regu-
larization parameter is calculated using (15.50) in Section 15.6.1. An example set of six
images of a human abdomen acquired by a surface coil array are shown in Fig. 15.12(a).
It is clear that some images are severely degraded by the bias fields, and some images
contain a high level of noise. Using the algorithm in [35], these images are combined
to obtain the image shown in Fig. 15.12(b). It is clear that the bias fields are removed
and the noise is significantly suppressed, so that this image is considerably more useful
than the individual images. Moreover, since the restoration process is performed as a
postprocessing step, the acquisition duration is not affected.

15.7 DISCUSSION
In this chapter we briefly described the application of the successive approximations-
based class of iterative algorithms to the problem of restoring a noisy and blurred
image. We presented and analyzed in some detail the simpler forms of the algorithm,
and briefly described an iteration-adaptive form of the algorithm following a deter-
ministic approach but also a hierarchical Bayesian approach. We also provided a brief
description of the blind image deconvolution problem and the use of iterative algo-
rithms in providing solutions to this problem. Finally, we briefly described other inverse
problems, i.e., the removal of blocking artifacts, the enhancement of resolution, and
the removal of bias fields in NMR phased array imaging, which have been solved using
the techniques described in this chapter. With this presentation we have simply touched
the “tip of the iceberg.” We only covered a small amount of the material on the topic.
More sophisticated forms of iterative image restoration algorithms were left out, since
they were deemed to be beyond the scope and level of this chapter.

It is the hope and the expectation of the authors that the presented material will form
a good introduction to the topic for the engineer or the student who would like to work
in this area.
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16.1 INTRODUCTION
The goal of lossless image compression is to represent an image signal with the smallest
possible number of bits without loss of any information, thereby speeding up transmis-
sion and minimizing storage requirements. The number of bits representing the signal
is typically expressed as an average bit rate (average number of bits per sample for still
images, and average number of bits per second for video). The goal of lossy compression
is to achieve the best possible fidelity given an available communication or storage bit rate
capacity or to minimize the number of bits representing the image signal subject to some
allowable loss of information. In this way, a much greater reduction in bit rate can be
attained as compared to lossless compression, which is necessary for enabling many real-
time applications involving the handling and transmission of audiovisual information.
The function of compression is often referred to as coding, for short.

Coding techniques are crucial for the effective transmission or storage of data-
intensive visual information. In fact, a single uncompressed color image or video frame
with a medium resolution of 500 � 500 pixels would require 100 seconds for transmis-
sion over an Integrated Services Digital Network (ISDN) link having a capacity of 64,000
bits per second (64 Kbps). The resulting delay is intolerably large considering that a delay
as small as 1 to 2 seconds is needed to conduct an interactive “slide show,” and a much
smaller delay (on the order of 0.1 second) is required for video transmission or play-
back. Although a CD-ROM device has a storage capacity of a few gigabits, its average
data-read throughput is only a few Megabits per second (about 1.2 Mbps to 1.5 Mbps
for the common 1� read speed CLV CDs). As a result, compression is essential for
the storage and real-time transmission of digital audiovisual information, where large
amounts of data must be handled by devices having a limited bandwidth and storage
capacity.

Lossless compression is possible because, in general, there is significant redundancy
present in image signals. This redundancy is proportional to the amount of correla-
tion among the image data samples. For example, in a natural still image, there is 385
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usually a high degree of spatial correlation among neighboring image samples. Also,
for video, there is additional temporal correlation among samples in successive video
frames. In color images and multispectral imagery (Chapter 8), there is correlation,
known as spectral correlation, between the image samples in the different spectral
components.

In lossless coding, the decoded image data should be identical both quantitatively
(numerically) and qualitatively (visually) to the original encoded image. Although this
requirement preserves exactly the accuracy of representation, it often severely limits the
amount of compression that can be achieved to a compression factor of two or three. In
order to achieve higher compression factors,perceptually lossless coding methods attempt
to remove redundant as well as perceptually irrelevant information; these methods require
that the encoded and decoded images be only visually, and not necessarily numerically,
identical. In this case, some loss of information is allowed as long as the recovered image
is perceived to be identical to the original one.

Although a higher reduction in bit rate can be achieved with lossy compression,
there exist several applications that require lossless coding, such as the compres-
sion of digital medical imagery and facsimile transmissions of bitonal images. These
applications triggered the development of several standards for lossless compression,
including the lossless JPEG standard (Section 16.4), facsimile compression standards,
and the JBIG and JBIG2 compression standards. More recently, the JPEG2000 stan-
dard was developed as a unified compression standard that integrates both lossy and
lossless compression into one system for different types of images including continuous-
tone, bilevel, text, and compound imagery. Furthermore, lossy coding schemes make
use of lossless coding components to minimize the redundancy in the signal being
compressed.

This chapter introduces the basics of lossless image coding and presents classical as
well as some more recently developed lossless compression methods. This chapter is
organized as follows. Section 16.2 introduces basic concepts in lossless image coding.
Section 16.3 reviews concepts from information theory and presents classical lossless
compression schemes including Huffman, Arithmetic, Lempel-Ziv-Welch (LZW), Elias,
and Exp-Golomb codes. Standards for lossless compression are presented in Section 16.4.
Section 16.5 introduces more recently developed lossless compression schemes and
presents the basics of perceptually lossless image coding.

16.2 BASICS OF LOSSLESS IMAGE CODING
The block diagram of a lossless coding system is shown in Fig. 16.1. The encoder
(Fig. 16.1(a)) takes as input an image and generates as output a compressed bitstream.
The decoder (Fig. 16.1(b)) takes as input the compressed bitstream and recovers the orig-
inal uncompressed image. In general, the encoder and decoder can each be each viewed
as consisting of three main stages. In this section, only the main elements of the encoder
will be discussed since the decoder performs the inverse operations of the encoder. As
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FIGURE 16.1

General lossless coding system.

shown in Fig. 16.1(a), the operations of a lossless image encoder can be grouped into
three stages:

1. Transformation: This stage applies a reversible (one-to-one) transformation to
the input image data. The purpose of this stage is to convert the input image data

f (n) into a form f̂ (n) that can be compressed more efficiently. For this purpose, the
selected transformation can aid in reducing the data correlation (interdependency,
redundancy), alter the data statistical distribution, and/or pack a large amount of
information into few data samples or subband regions. Typical transformations
include differential/predictive mapping, unitary transforms such as the discrete
cosine transform (DCT), subband decompositions such as wavelet transforms,
and color space conversions such as conversion from the highly correlated RGB
representation to the less correlated luminance-chrominance representation. A
combination of the above transforms can be used at this stage. For example, an
RGB color image can be transformed to its luminance-chrominance representation
followed by DCT or subband decomposition followed by predictive/differential
mapping. In some applications (e.g., low power), it might be desirable to operate
directly on the original data without incurring the additional cost of applying
a transformation; in this case, the transformation could be set to the identity
mapping.

2. Data-to-symbol mapping: This stage converts the image data f̂ (n) into entities
called symbols that can be efficiently coded by the final stage. The conversion into
symbols can be done through partitioning and/or run-length coding (RLC), for
example.

The image data can be partitioned into blocks by grouping neighboring data
samples together; in this case, each data block is a symbol. Grouping several data
units together allows the exploitation of any correlation that might be present
between the image data, and may result in higher compression ratios at the expense
of increasing the coding complexity. On the other hand, each separate data unit
can be taken to be a symbol without any further grouping or partitioning.
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Run-length
coding

1 1 1 0 0 1 0 0 0 0 (3, 1) (2, 0) (1, 1) (4, 0)

FIGURE 16.2

Illustration of run-length coding for a binary input sequence.

The basic idea behind RLC is to map a sequence of numbers into a sequence
of symbol pairs (run,value), where value is the value of a data sample in the input
data sequence and run or runlength is the number of times that data sample is
contiguously repeated. In this case, each pair (run,value) is a symbol. An example
illustrating RLC for a binary sequence is shown in Fig. 16.2. Different implementa-
tions might use a slightly different format. For example, if the input data sequence
has long runs of zeros, some coders such as the JPEG standard (Chapter 17) use
value to code only the value of the nonzero data samples and run to code the
number of zeros preceding each nonzero data sample.

Appropriate mapping of the input data into symbols is very important for
optimizing the coding. For example, grouping data points into small localized
sets, where each set is coded separately as a symbol, allows the coding scheme to
adapt to the changing local characteristics of the (transformed) image data. The
appropriate data-to-symbol mapping depends on the considered application and
the limitations in hardware/software complexity.

3. Lossless symbol coding: This stage generates a binary bitstream by assigning
binary codewords to the input symbols. Lossless symbol coding is commonly
referred to as noiseless coding or just lossless coding since this stage is where the
actual lossless coding into the final compressed bitstream is performed. The first
two stages can be regarded as preprocessing stages for mapping the data into a
form that can be more efficiently coded by this lossless coding stage.

Lossless compression is usually achieved by using variable-length codewords,
where the shorter codewords are assigned to the symbols that occur more fre-
quently. This variable-length codeword assignment is known as variable-length
coding (VLC) and also as entropy coding. Entropy coders, such as Huffman and
arithmetic coders, attempt to minimize the average bit rate (average number of bits
per symbol) needed to represent a sequence of symbols, based on the probability
of symbol occurrence. Universal codes, such as Elias codes [1] and Exp-Golomb
codes [2, 3], are variable-length codes that can encode positive integer values
into variable-length binary codewords without knowledge of the true probability
distribution of the occuring integer values. Entropy coding will be discussed in
more detail in Section 16.3. An alternative way to achieve compression is to code
variable-length strings of symbols using fixed-length binary codewords. This is the
basic strategy behind dictionary (Lempel-Ziv) codes, which are also described in
Section 16.3.

The generated lossless code (bitstream) should be uniquely decodable; i.e., the
bitstream can be decoded without ambiguity resulting in only one unique sequence
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of symbols (the original one). For variable-length codes, unique decodability is
achieved by imposing a prefix condition which states that no codeword can be
a prefix of another codeword. Codes that satisfy the prefix condition are called
prefix codes or instantaneously decodable codes, and they include Huffman, arith-
metic, Elias, and Exp-Golomb codes. Binary prefix codes can be represented as a
binary tree, and are also called tree-structured codes. For dictionary codes, unique
decodability can be easily achieved since the generated code words are fixed length.

Selecting which lossless coding method to use depends on the application and usually
involves a tradeoff between several factors including the implementation hardware or
software, the allowable coding delay, and the required compression level. Some of the
factors that need to be considered when choosing or devising a lossless compression
scheme are listed below.

1. Compression efficiency: Compression efficiency is usually given in the form of a
compression ratio CR ,

CR �
Total size in bits of original input image

Total size in bits of compressed bitstream
�

Total size in bits of encoder input

Total size in bits of encoder output
,

(16.1)

which compares the size of the original input image data with the size of the gen-
erated compressed bitstream. Compression efficiency is also commonly expressed
as an average bit rate B in bits per pixel, or bpp for short,

B �
Total size in bits of compressed bitstream

Total number of pixels in original input image
�

Total size in bits of encoder output

Total size in pixels of encoder input
.

(16.2)

As discussed in Section 16.3, for lossless coding, the achievable compression effi-
ciency is bounded by the entropy of the finite set of symbols generated as the
output of Stage 2, assuming these symbols are each coded separately, on a
one-by-one basis, by Stage 3.

2. Coding delay: The coding delay can be defined as the minimum time required
to both encode and decode an input data sample. The coding delay increases
with the total number of required arithmetic operations. It also usually increases
with an increase in memory requirements since memory usage usually leads to
communication delays. Minimizing the coding delay is especially important for
real-time applications.

3. Implementation complexity: Implementation complexity is measured in terms
of the total number of required arithmetic operations and in terms of the mem-
ory requirements. Alternatively, implementation complexity can be measured in
terms of the required number of arithmetic operations per second and the mem-
ory requirements for achieving a given coding delay or real-time performance. For
applications that put a limit on power consumption, the implementation com-
plexity would also include a measure of the level of power consumption. Higher
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compression efficiency can usually be achieved by increasing the implementation
complexity, which would in turn lead to an increase in the coding delay. In practice,
it is desirable to optimize the compression efficiency while keeping the imple-
mentation requirements as simple as possible. For some applications such as
database browsing and retrieval, only a low decoding complexity is needed since
the encoding is not performed as frequently as the decoding.

4. Robustness: For applications that require transmission of the compressed bit-
stream in error-prone environments, robustness of the coding method to
transmission errors becomes an important consideration.

5. Scalability: Scalable encoders generate a layered bitstream embedding a hierar-
chical representation of the input image data. In this way, the input data can be
recovered at different resolutions in a hierarchical manner (scalability in resolu-
tion), and the bit rate can be varied depending on the available resources using the
same encoded bitstream (scalability in bit rate; the encoding does not have to be
repeated to generate the different bit rates). The JPEG 2000 standard (Chapter 17)
is an example of a scalable image coder that generates an embedded bitstream
and that supports scalability in quality, resolution, spatial location, and image
components [4, Chapter 9].

16.3 LOSSLESS SYMBOL CODING
As mentioned in Section 16.2, lossless symbol coding is commonly referred to as lossless
coding or lossless compression. The popular lossless symbol coding schemes fall into one
of the following main categories:

■ Statistical schemes (Huffman, arithmetic): these schemes require knowledge of
the source symbol probability distribution; shorter code words are assigned to the
symbols with higher probability of occurrence (VLC); a statistical source model
(also called probability model) gives the symbol probabilities; the statistical source
model can be fixed, in which case the symbol probabilities are fixed, or adaptive, in
which case the symbol probabilities are calculated adaptively; sophisticated source
models can provide more accurate modeling of the source statistics and, thus,
achieve higher compression at the expense of an increase in complexity.

■ Dictionary-based schemes (Lempel-Ziv): these schemes do not require a priori
knowledge of the source symbol probability distribution; they dynamically con-
struct encoding and decoding tables (called dictionaries) of variable-length symbol
strings as they occur in the input data; as the encoding table is constructed,
fixed-length binary codewords are generated by indexing into the encoding table.

■ Structured universal coding schemes (Elias codes, Exponential-Golomb codes):
these schemes generate variable-length code words with a regular structure; they
operate on positive integers, which necessitates first mapping the source symbols
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to positive integers; no a priori knowledge of the true probability distribution of
the integer values is required, but these codes are constructed under the assumption
of a monotonically decreasing distribution, which implies that smaller integer
values are more probable than larger integer values.

The aforementioned statistical, dictionary-based, and structured universal coders attempt
to minimize the average bit rate without incurring any loss in fidelity. Such lossless coding
schemes are also referred to as entropy coding schemes. The field of information theory
gives lower bounds on the achievable bit rates. This section presents the popular classical
lossless symbol coding schemes, including Huffman, Arithmetic and Lempel-Ziv coding,
in addition to the structured Elias and Exp-Golomb universal codes. In order to gain
an insight into how the bit rate minimization is done by these different lossless coding
schemes, some important basic concepts from information theory are reviewed first.

16.3.1 Basic Concepts from Information Theory
Information theory makes heavy use of probability theory since information is related
to the degree of unpredictability and randomness in the generated messages. In here, the
generated messages are the symbols output by Stage 2 (Section 16.2).

An information source is characterized by the set of symbols S it is capable of gener-
ating and by the probability of occurrence of these symbols. For the considered lossless
image coding application, the information source is a discrete-time, discrete-amplitude
source with a finite set of unique symbols; i.e., S consists of a finite number of symbols
and is commonly called the source alphabet.

Let S consist of N symbols:

S � {s0, s1, . . . , sN �1}. (16.3)

Then the information source outputs a sequence of symbols {x1,x2,x3, . . . ,xi , . . .} drawn
from the set of symbols S, where x1 is the first output source sample, x2 is the second
output sample, and xi is the ith output sample from S. At any given time (given by the
output sequence index), the probability that the source outputs symbol sk is pk � P(sk),
0 � k � N � 1. Note that

∑N �1
k�0 pk � 1 since it is certain that the source outputs only

symbols from its alphabet S. The source is said to be stationary if its statistics (set of
probabilities) do not change with time.

The information associated with a symbol sk (0 � k � N � 1), also called self-
information, is defined as

Isk � log2(1/pk ) (bits) � � log2(pk ) (bits). (16.4)

From (16.4), it can be seen that Ik � 0 if pk � 1 (certain event) and Ik → � if pk � 0
(impossible event). Also, Ik is large when pk is small (unlikely symbols), as expected.

The information content of the source can be measured using the source entropy
H (S), which is a measure of the average amount of information per symbol. The source
entropy H (S), also known as first-order entropy or marginal entropy, is defined as the
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expected value of the self information and is given by

H (S) � E{Ik }� �

N �1∑

k�0

pk log2(pk ) (bits per symbol). (16.5)

Note that H (S) is maximal if the symbols in S are equiprobable (flat probability distribu-
tion), in which case H (S) � log2(N ) bits per symbol. A skewed probability distribution
results in a smaller source entropy.

In the case of memoryless coding, each source symbol is coded separately. For a given
lossless code C , let lk denote the length (number of bits) of the code word assigned to
code symbol sk (0 � k � N � 1). Then, the resulting average bit rate BC corresponding
to code C is

BC �

N �1∑

k�0

pk lk (bits per symbol). (16.6)

For any uniquely decodable lossless code C , the entropy H (S) is a lower bound on the
average bit rate BC [5]:

BC � H (S). (16.7)

So, H (S) puts a limit on the achievable average bit rate given that each symbol is coded
separately in a memoryless fashion.

In addition, a uniquely decodable prefix code C can always be constructed (e.g.,
Huffman coding - Section 16.3.3) such that

H (S) � BC � H (S) � 1. (16.8)

An important result which can be used in constructing prefix codes is the Kraft inequality:

N∑

k�1

2�lk � 1. (16.9)

Every uniquely decodable code has codewords with lengths satisfying the Kraft inequa-
lity (16.9), and prefix codes can be constructed with any set of lengths satisfying (16.9) [6].

Higher compression can be achieved by coding a block (subsequence, vector) of M
successive symbols jointly. The coding can be done as in the case of memoryless coding
by regarding each block of M symbols as one compound symbol S(M ) drawn from the
alphabet:

S(M ) � S � S � . . . � S︸ ︷︷ ︸
M times

, (16.10)

where � in (16.10) denotes a cartesian product, and the superscript (M ) denotes the size
of each compound block of symbols. Therefore, S(M ) is the set of all possible compound
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symbols of the form [x1,x2, . . . ,xM ], where xi ∈ S, 1 � i � M . Since S consists of N
symbols, S(M ) will contain L � N M compound symbols:

S(M ) � {s(M )
0 , s(M )

1 , . . . , s(M )
L�1}; L � N M . (16.11)

The previous results and definitions directly generalize by replacing S with S(M ) and
replacing the symbol probabilities pk � P(sk) (0 � k � N � 1) with the joint probabili-

ties (compound symbol probabilities) p(M )

k � P(s(M )

k ) (0 � k � L � 1). So, the entropy

of the set S(M ), which is the set of all compound symbols s(M )

k (0 � k � L � 1) is
given by

H (S(M )) � �

L�1∑

k�0

p(M )
k log2 (p(M )

k ). (16.12)

H (S(M )) is also called the Mth-order entropy of S. If S corresponds to a stationary source
(i.e., symbol probabilities do not change over time), H (S(M )) is related to the source
entropy H (S) as follows [5]:

H (S(M ))

M
� H (S), (16.13)

with equality if and only if the symbols in S are statistically independent (memoryless
source). The quantity

lim
M→�

H (S(M ))

M
(16.14)

is called the entropy rate of the source S and gives the average information per output
symbol drawn from S. For a stationary source, the limit in (16.14) always exists. Also,
from (16.13), the entropy rate is equal to the source entropy for the case of a memoryless
source.

As before each output (compound) symbol can be coded separately. For a given

lossless code C , if l(M )

k is the length of the codeword assigned to code symbol s(M )

k

(0 � k � L � 1), the resulting average bit rate B(M )
C in code bits per compound symbol is

B(M )
C �

L�1∑

k�0

p(M )
k l(M )

k (bits per compound symbol). (16.15)

Also, as before, a prefix code C can be constructed such that

H (S(M )) � B(M )
C � H (S(M )) � 1, (16.16)

where B(M )
C is the resulting average bit rate per compound symbol. The desired average

bit rate BC in bits per source symbol is equal to B(M )
C /M . So, dividing the terms in (16.16)

by M , we obtain

H (S(M ))

M
� BC �

H (S(M ))

M
�

1

M
. (16.17)
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From (16.17), it follows that, by jointly coding very large blocks of source symbols (M
very large), a source code C can be found with an average bit rate BC approaching
monotonically the entropy rate of the source as M goes to infinity. For a memoryless
source, (16.17) becomes

H (S) � BC � H (S) �
1

M
, (16.18)

where BC � B(M )
C /M .

From the discussion above, the statistics of the considered source (given by the symbol
probabilities) need to be known in order to compute the lower bounds on the achiev-
able bit rate. In addition, statistical-based entropy coding schemes, such as Huffman
(Section 16.3.3) and Arithmetic (Section 16.3.4) coding, require that the source statistics
be known or be estimated accurately. In practice, the source statistics can be estimated
from the histogram of a set of sample source symbols. For a nonstationary source, the
symbol probabilities need to be estimated adaptively since the source statistics change
over time.

In the case of block coding where M successive symbols are coded jointly as a com-
pound symbol s(M ), the joint probabilities P(s(M )) need to be estimated. These joint
probabilities are very difficult to calculate and the computational complexity grows
exponentially with the block size M , except when the source is memoryless in which
case the compound source entropy H (S(M )) � MH (S) based on (16.13).

However, in practice, the memoryless source model is not generally appropriate when
compressing digital imagery as various dependencies exist between the image data ele-
ments even after the transformation and mapping stages (Fig. 16.1). This is due to the
fact that the existing practical image transforms, such as the DCT (Chapter 17) and the
discrete wavelet transform (DWT) (Chapter 17), reduce the dependencies but do not
eliminate them as they cannot totally decorrelate the real-world image data. Therefore,
most state-of-the-art image compression coders model these dependencies by estimating
the statistics of a source with memory. The statistics of the source with memory are
usually estimated by computing conditional probabilities which provide context-based
modeling. Context-based modeling is a key component of context-based entropy cod-
ing which has been widely adopted in image compression schemes and is at the core of
the JPEG2000 image compression standard. Context-based entropy coding is discussed
below in Section 16.3.2.

16.3.2 Context-Based Entropy Coding
Context-based entropy coding is a key component of the JPEG-LS standard [7] and the
more recent JPEG2000 standard [4, 8] and has also been adopted as the final entropy
coding stage of various other state-of-the-art image and video compression schemes
[9, 10]. The contexts provide a model for estimating the probability of each possible
message to be coded, and the entropy coder translates the estimated probabilities into bits.

For sources with memory, the dependencies among adjacent symbols can be captured
by either estimating joint probabilities or conditional probabilities. As discussed earlier,
joint probabilities are difficult to calculate due to increased computational complexity,
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memory requirements, and coding delay. These issues can be resolved in practice by
estimating conditional probabilities as implied by the following entropy chain rule:

H (S1,S2, . . . ,SM ) �

M∑
i�1

H (SM�i |Si�1), (16.19)

where Si�1 � S1, . . . ,Si�1, and where Si , i � 1, . . . ,M are random variables that can take
on realizations drawn from a finite set such as the set S of (16.3). In this way, the entropy
coding can be performed incrementally one symbol at a time.

One way of calculating the conditional probabilities is to estimate those based on
a finite number of previous symbols in the data stream. A more common way of esti-
mating the conditional probabilities is to assign each possible realization si�1 of Si�1

to some conditioning class; in this latter case, the conditional probability p(Si |si�1)≈
p(Si |C(si�1)), where C(•) is the function that maps each possible realization si�1 to a
conditioning context.

Therefore,context-based entropy coding can be separated into 2 parts: a context-based
modeler and a coder. At each time instance i, the modeler tries to estimate p(Si |C(si�1)),
the probability of the next symbol to be coded based on the observed context. Because
the contexts are formed by the already coded symbols and the entropy coding is loss-
less, the same context is also available at the decoder, so no side information needs
to be transmitted. Given the estimated p̂(Si |C(si�1)), an ideal entropy coder places
� log2(p̂(Si � sk |C(si�1))) bits onto its output stream if Si � sk actually occurs.

The estimated probabilities p̂(Si |C(si�1)) can be precomputed through training and
made available to both the encoder and decoder before the actual coding starts. Alterna-
tively, these estimates can be adaptively computed and updated on the fly based on the
past-coded symbols. Practical applications generally require adaptive, online estimation
of these probabilities either because sufficient prior statistical knowledge is not available
or because these statistics are time-varying. One very natural way of estimating the prob-
abilities online is to count the number of times each symbol has occurred under a certain
context. The estimates at the encoder are updated with each encoded symbol, and the
estimates at the decoder are updated with each decoded symbol. This universal modeling
approach requires no a priori knowledge about the data to be coded, and the coding can
be completed in only one pass.

16.3.3 Huffman Coding
In [11], Huffman presented a simple technique for constructing prefix codes which results
in an average bit rate satisfying (16.8) when the source symbols are coded separately, or
(16.17) in the case of joint M -symbol vector coding. A tighter upper bound on the
resulting average bit rate is derived in [6].

The Huffman coding algorithm is based on the following optimality conditions for
a prefix code [11]: 1) If P(sk) > P(sj) (symbol sk more probable than symbol sj , k �� j),
then lk � lj , where lk and lj are the lengths of the codewords assigned to code symbols sk

and sj , respectively; 2) If the symbols are listed in the order of decreasing probabilities,
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the last two symbols in the ordered list are assigned codewords that have the same length
and are alike except for their final bit.

Given a source with alphabet S consisting of N symbols sk with probabilities pk �
P(sk) (0 � k � (N � 1)), a Huffman code corresponding to source S can be constructed
by iteratively constructing a binary tree as follows:

1. Arrange the symbols of S such that the probabilities pk are in decreasing order; i.e.,

p0 � p1 � . . . � p(N �1) (16.20)

and consider the ordered symbols sk , 0 � k � (N � 1) as the leaf nodes of a tree.
Let T be the set of the leaf nodes corresponding to the ordered symbols of S.

2. Take the two nodes in T with the smallest probabilities and merge them into a
new node whose probability is the sum of the probabilities of these two nodes. For
the tree construction, make the new resulting node the “parent” of the two least
probable nodes of T by connecting the new node to each of the two least probable
nodes. Each connection between two nodes form a “branch” of the tree; so two
new branches are generated. Assign a value of 1 to one branch and 0 to the other
branch.

3. Update T by replacing the two least probable nodes in T with their “parent” node
and reorder the nodes (with their subtrees) if needed. If T contains more than
one node, repeat from Step 2; otherwise the last node in T is the “root” node of
the tree.

4. The codeword of a symbol sk ∈ S (0 � k � (N � 1)) can be obtained by traversing
the linked path of the tree from the root node to the leaf node corresponding to
sk (0 � k � (N � 1)) while reading sequentially the bit values assigned to the tree
branches of the traversed path.

The Huffman code construction procedure is illustrated by the example shown in Fig. 16.3
for the source alphabet S � {s0, s1, s2, s3} with symbol probabilities as given in Table 16.1.
The resulting symbol codewords are listed in the 3rd column of Table 16.1. For this
example, the source entropy is H (S) � 1.84644 and the resulting average bit rate is
BH �

∑3
k�0 pk lk � 1.9 (bits per symbol), where lk is the length of the codeword assigned

TABLE 16.1 Example of Huffman code assignment.

Source symbol Probability Assigned codeword
sk pk

s0 0.1 111
s1 0.3 10
s2 0.4 0
s3 0.2 110
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(a) First iteration

5

s2 s1 s3 s0

0.3
10

0.30.4 0.2 0.1

(b) Second iteration

s2 s1 s3 s0

0.30.4 0.2 0.1

5

5
0.3

0.6

10

1

0

(c) Third and last iteration

s2 s1 s3 s0

5
5

0.3

0.6

10

1

0

0
1

0.30.4 0.2 0.1

FIGURE 16.3

Example of Huffman code construction for the source alphabet of Table 16.1.

to symbol sk of S. The symbol codewords are usually stored in a symbol-to-codeword
mapping table that is made available to both the encoder and the decoder.

If the symbol probabilities can be accurately computed, the above Huffman coding
procedure is optimal in the sense that it results in the minimal average bit rate among all
uniquely decodable codes assuming memoryless coding. Note that, for a given source S,
more than one Huffman code is possible but they are all optimal in the above sense. In
fact another optimal Huffman code can be obtained by simply taking the complement of
the resulting binary codewords.

As a result of memoryless coding, the resulting average bit rate is within one bit of the
source entropy since integer-length codewords are assigned to each symbol separately.
The described Huffman coding procedure can be directly applied to code a group of M
symbols jointly by replacing S with S(M ) of (16.10). In this case, higher compression can
be achieved (Section 16.3.1), but at the expense of an increase in memory and complexity
since the alphabet becomes much larger and joint probabilities need to be computed.

While encoding can be simply done by using the symbol-to-codeword mapping
table, the realization of the decoding operation is more involved. One way of decod-
ing the bitstream generated by a Huffman code is to first reconstruct the binary tree
from the symbol-to-codeword mapping table. Then, as the bitstream is read one bit at
a time, the tree is traversed starting at the root until a leaf node is reached. The symbol
corresponding to the attained leaf node is then output by the decoder. Restarting at the
root of the tree, the above tree traversal step is repeated until all the bitstream is decoded.
This decoding method produces a variable symbol rate at the decoder output since the
codewords vary in length.
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Another way to perform the decoding is to construct a lookup table from the
symbol-to-codeword mapping table. The constructed lookup table has 2lmax entries,
where lmax is the length of the longest codeword. The binary codewords are used to
index into the lookup table. The lookup table can be constructed as follows. Let lk be the
length of the codeword corresponding to symbol sk . For each symbol sk in the symbol-to-
codeword mapping table, place the pair of values (sk , lk) in all the table entries, for which
the lk leftmost address bits are equal to the codeword assigned to sk . Thus there will be
2(lmax�lk ) entries corresponding to symbol sk . For decoding, lmax bits are read from the
bitstream. These lmax bits are used to index into the lookup table to obtain the decoded
symbol sk , which is then output by the decoder, and the corresponding codeword length
lk . Then the next table index is formed by discarding the first lk bits of the current index
and appending to the right the next lk bits that are read from the bitstream. This process
is repeated until all the bitstream is decoded. This approach results in a relatively fast
decoding and in a fixed output symbol rate. However, the memory size and complexity
grows exponentially with lmax, which can be very large.

In order to limit the complexity, procedures to construct constrained-length Huffman
codes have been developed [12]. Constrained-length Huffman codes are Huffman codes
designed while limiting the maximum allowable codeword length to a specified value
lmax. The shortened Huffman codes result in a higher average bit rate compared to the
unconstrained-length Huffman code.

Since the symbols with the lowest probabilities result in the longest codewords, one
way of constructing shortened Huffman codes is to group the low probability symbols
into a compound symbol. The low probability symbols are taken to be the symbols in
S with a probability �2�lmax . The probability of the compound symbol is the sum of
the probabilities of the individual low-probability symbols. Then the original Huffman
coding procedure is applied to an input set of symbols formed by taking the original set of
symbols and replacing the low probability symbols with one compound symbol sc . When
one of the low probability symbols is generated by the source, it is encoded using the
codeword corresponding to sc followed by a second fixed-length binary code word cor-
responding to that particular symbol. The other “high probability” symbols are encoded
as usual by using the Huffman symbol-to-codeword mapping table.

In order to avoid having to send an additional codeword for the low probability
symbols, an alternative approach is to use the original unconstrained Huffman code
design procedure on the original set of symbols S with the probabilities of the low
probability symbols changed to be equal to 2�lmax . Other methods [12] involve solving
a constrained optimization problem to find the optimal codeword lengths lk (0 � k �
N � 1) that minimize the average bit rate subject to the constraints 1 � lk � lmax (0 �
k � N � 1). Once the optimal codeword lengths have been found, a prefix code can
be constructed using the Kraft inequality (16.9). In this case the codeword of length lk
corresponding to sk is given by the lk bits to the right of the binary point in the binary
representation of the fraction

∑
1�i�k�1 2�li .

The discussion above assumes that the source statistics are described by a fixed (non-
varying) set of source symbol probabilities. As a result, only one fixed set of codewords
need to be computed and supplied once to the encoder/decoder. This fixed model fails
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if the source statistics vary, since the performance of Huffman coding depends on how
accurately the source statistics are modeled. For example, images can contain different
data types, such as text and picture data, with different statistical characteristics. Adap-
tive Huffman coding changes the codeword set to match the locally estimated source
statistics. As the source statistics change, the code changes, remaining optimal for the
current estimate of source symbol probabilities. One simple way for adaptively estimat-
ing the symbol probabilities is to maintain a count of the number of occurrences of each
symbol [6]. The Huffman code can be dynamically changed by precomputing offline dif-
ferent codes corresponding to different source statistics. The precomputed codes are then
stored in symbol-to-codeword mapping tables that are made available to the encoder and
decoder. The code is changed by dynamically choosing a symbol-to-codeword mapping
table from the available tables based on the frequencies of the symbols that occurred so
far. However, in addition to storage and the run-time overhead incurred for selecting a
coding table, this approach requires a priori knowledge of the possible source statistics in
order to predesign the codes. Another approach is to dynamically redesign the Huffman
code while encoding based on the local probability estimates computed by the provided
source model. This model is also available at the decoder, allowing it to dynamically
alter its decoding tree or decoding table in synchrony with the encoder. Implementation
details of adaptive Huffman coding algorithms can be found in [6, 13].

In the case of context-based entropy coding, the described procedures are unchanged
except that now the symbol probabilities P(sk) are replaced with the symbol conditional
probabilities P(sk |Context) where the context is determined from previously occuring
neighboring symbols, as discussed in Section 16.3.2.

16.3.4 Arithmetic Coding
As indicated in Section 16.3.3, the main drawback of Huffman coding is that it assigns
an integer-length codeword to each symbol separately. As a result the bit rate cannot be
less than one bit per symbol unless the symbols are coded jointly. However, joint symbol
coding, which codes a block of symbols jointly as one compound symbol, results in delay
and in an increased complexity in terms of source modeling, computation, and memory.
Another drawback of Huffman coding is that the realization and the structure of the
encoding and decoding algorithms depend on the source statistical model. It follows
that any change in the source statistics would necessitate redesigning the Huffman codes
and changing the encoding and decoding trees, which can render adaptive coding more
difficult.

Arithmetic coding is a lossless coding method which does not suffer from the afore-
mentioned drawbacks and which tends to achieve a higher compression ratio than
Huffman coding. However, Huffman coding can generally be realized with simpler
software and hardware.

In arithmetic coding, each symbol does not need to be mapped into an integral num-
ber of bits. Thus, an average fractional bit rate (in bits per symbol) can be achieved
without the need for blocking the symbols into compound symbols. In addition, arith-
metic coding allows the source statistical model to be separate from the structure of
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the encoding and decoding procedures; i.e., the source statistics can be changed without
having to alter the computational steps in the encoding and decoding modules. This
separation makes arithmetic coding more attractive than Huffman for adaptive coding.

The arithmetic coding technique is a practical extended version of Elias code and was
initially developed by Pasco and Rissanen [14]. It was further developed by Rubin [15] to
allow for incremental encoding and decoding with fixed-point computation. An overview
of arithmetic coding is presented in [14] with C source code.

The basic idea behind arithmetic coding is to map the input sequence of symbols
into one single codeword. Symbol blocking is not needed since the codeword can be
determined and updated incrementally as each new symbol is input (symbol-by-symbol
coding). At any time, the determined codeword uniquely represents all the past occurring
symbols. Although the final codeword is represented using an integral number of bits,
the resulting average number of bits per symbol is obtained by dividing the length of
the codeword by the number of encoded symbols. For a sequence of M symbols, the
resulting average bit rate satisfies (16.17) and, therefore, approaches the optimum (16.14)
as the length M of the encoded sequence becomes very large.

In the actual arithmetic coding steps, the codeword is represented by a half-open
subinterval [Lc ,Hc )⊂ [0,1). The half-open subinterval gives the set of all codewords
that can be used to encode the input symbol sequence, which consists of all past
input symbols. So any real number within the subinterval [Lc ,Hc ) can be assigned
as the codeword representing all the past occurring symbols. The selected real code-
word is then transmitted in binary form (fractional binary representation, where 0.1
represents 1/2, 0.01 represents 1/4, 0.11 represents 3/4, and so on). When a new sym-
bol occurs, the current subinterval [Lc ,Hc ) is updated by finding a new subinterval
[L	

c ,H 	
c )⊂ [Lc ,Hc ) to represent the new change in the encoded sequence. The codeword

subinterval is chosen and updated such that its length is equal to the probability of
occurrence of the corresponding encoded input sequence. It follows that less probable
events (given by the input symbol sequences) are represented with shorter intervals and,
therefore, require longer codewords since more precision bits are required to represent
the narrower subintervals. So the arithmetic encoding procedure constructs, in a hier-
archical manner, a code subinterval which uniquely represents a sequence of successive
symbols.

In analogy with Huffman where the root node of the tree represents all possible
occurring symbols, the interval [0,1) here represents all possible occurring sequences
of symbols (all possible messages including single symbols). Also, considering the set
of all possible M -symbol sequences having the same length M , the total interval [0,1)
can be subdivided into nonoverlapping subintervals such that each M symbol sequence
is represented uniquely by one and only one subinterval whose length is equal to its
probability of occurrence.

Let S be the source alphabet consisting of N symbols s0, . . . , s(N �1). Let pk � P(sk)

be the probability of symbol sk , 0 � k � (N � 1). Since, initially, the input sequence will
consist of the first occurring symbol (M � 1), arithmetic coding begins by subdividing
the interval [0,1) into N nonoverlapping intervals, where each interval is assigned to a
distinct symbol sk ∈ S and has a length equal to the symbol probability pk . Let [Lsk ,Hsk )
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TABLE 16.2 Example of code subinterval construction
in arithmetic coding.

Source symbol Probability Symbol subinterval
sk pk [Lsk ,Hsk )

s0 0.1 [0, 0.1)
s1 0.3 [0.1, 0.4)
s2 0.4 [0.4, 0.8)
s3 0.2 [0.8, 1)

denote the interval assigned to symbol sk , where pk � Hsk � Lsk . This assignment is
illustrated in Table 16.2; the same source alphabet and source probabilities as in the
example of Fig. 16.3 are used for comparison with Huffman. In practice, the subinterval
limits Lsk and Hsk for symbol sk can be directly computed from the available symbol
probabilities and are equal to cumulative probabilities Pk as given below:

Lsk �

k�1∑
i�0

pk � Pk�1; 0 � k � (N � 1), (16.21)

Hsk �

k∑
i�0

pk � Pk ; 0 � k � (N � 1). (16.22)

Let [Lc ,Hc ) denote the code interval corresponding to the input sequence which
consists of the symbols that occurred so far. Initially, Lc � 0 and Hc � 1; so the initial
code interval is set to [0,1). Given an input sequence of symbols, the calculation of
[Lc ,Hc ) is performed based on the following encoding algorithm:

1. Lc � 0; Hc � 1.

2. Calculate code subinterval length,

length � Hc � Lc . (16.23)

3. Get next input symbol sk .

4. Update the code subinterval,

Lc � Lc � length · Lsk ,

Hc � Lc � length · Hsk . (16.24)

5. Repeat from Step 2 until all the input sequence has been encoded.

As indicated before, any real number within the final interval [Lc ,Hc ) can be used as a
valid codeword for uniquely encoding the considered input sequence. The binary repre-
sentation of the selected codeword is then transmitted. The above arithmetic encoding
procedure is illustrated in Table 16.3 for encoding the sequence of symbols s1 s0 s2 s3 s3.
Another representation of the encoding process within the context of the considered
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TABLE 16.3 Example of code subinterval construction
in arithmetic coding.

Iteration # Encoded symbol Code subinterval
I sk [Lc ,Hc )

1 s1 [0.1, 0.4)
2 s0 [0.1, 0.13)
3 s2 [0.112, 0.124)
4 s3 [0.1216, 0.124)
5 s3 [0.12352, 0.124)

1

0.1

0.4

0.8

0.1

0.4

0

0.13

0.22

0.34

0.1

0.13

0.103

0.112

0.124

0.112

0.124

0.1168

0.1216

0.1132

Code interval

0.1216

0.124

0.12256

0.12352

Input sequence: s1

s1

s0

s0

s2

s2

s3 s3

s3

0.12184

FIGURE 16.4

Arithmetic coding example.

example is shown in Fig. 16.4. Note that arithmetic coding can be viewed as remapping,
at each iteration, the symbol subintervals [Lsk ,Hsk ) (0 � k � (N � 1)) to the current
code subinterval [Lc ,Hc ). The mapping is done by rescaling the symbol subintervals to
fit within [Lc ,Hc ), while keeping them in the same relative positions. So when the next
input symbol occurs, its symbol subinterval becomes the new code subinterval, and the
process repeats until all input symbols are encoded.

In the arithmetic encoding procedure, the length of a code subinterval, length of
(16.23), is always equal to the product of the probabilities of the individual symbols
encoded so far, and it monotonically decreases at each iteration. As a result, the code inter-
val shrinks at every iteration. So, longer sequences result in narrower code subintervals
which would require the use of high-precision arithmetic. Also, a direct implementa-
tion of the presented arithmetic coding procedure produces an output only after all the
input symbols have been encoded. Implementations that overcome these problems are
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presented in [14, 15]. The basic idea is to begin outputting the leading bit of the result
as soon as it can be determined (incremental encoding), and then to shift out this bit
(which amounts to scaling the current code subinterval by 2). In order to illustrate how
incremental encoding would be possible, consider the example in Table 16.3. At the sec-
ond iteration, the leading part “0.1” can be output since it is not going to be changed by
the future encoding steps. A simple test to check whether a leading part can be output
is to compare the leading parts of Lc and Hc ; the leading digits that are the same can
then be output and they remain unchanged since the next code subinterval will become
smaller. For fixed-point computations, overflow and underflow errors can be avoided by
restricting the source alphabet size [12].

Given the value of the codeword, arithmetic decoding can be performed as follows:

1. Lc � 0; Hc � 1.

2. Calculate the code subinterval length,

length � Hc � Lc .

3. Find symbol subinterval [Lsk ,Hsk ) (0 � k � N � 1) such that

Lsk �
codeword � Lc

length
< Hsk .

4. Output symbol sk .

5. Update code subinterval,

Lc � Lc � length · Lsk

Hc � Lc � length · Hsk .

6. Repeat from Step 2 until last symbol is decoded.

In order to determine when to stop the decoding (i.e., which symbol is the last symbol),
a special end-of-sequence symbol is usually added to the source alphabet S and is handled
like the other symbols. In the case when fixed-length blocks of symbols are encoded, the
decoder can simply keep a count of the number of decoded symbols and no end-of-
sequence symbol is needed. As discussed before, incremental decoding can be achieved
before all the codeword bits are output [14, 15].

Context-based arithmetic coding has been widely used as the final entropy coding
stage in state-of-the-art image and video compression schemes, including the JPEG-LS
and the JPEG2000 standards. The same procedures and discussions hold for context-
based arithmetic coding with the symbol probabilities P(sk) replaced with conditional
symbol probabilities P(sk |Context) where the context is determined from previously
occuring neighboring symbols, as discussed in Section 16.3.2. In JPEG2000, context-
based adaptive binary arithmetic coding (CABAC) is used with 17 contexts to efficiently
code the binary significance, sign, and magnitude refinement information (Chapter 17).
Binary arithmetic coding work with a binary (two-symbol) source alphabet, can be
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implemented more efficiently than nonbinary arithmetic coders, and has universal
application as data symbols from any alphabet can be represented as a sequence of
binary symbols [16].

16.3.5 Lempel-Ziv Coding
Huffman coding (Section 16.3.3) and arithmetic coding (Section 16.3.4) require a priori
knowledge of the source symbol probabilities or of the source statistical model. In some
cases, a sufficiently accurate source model is difficult to obtain, especially when several
types of data (such as text, graphics, and natural pictures) are intermixed.

Universal coding schemes do not require a priori knowledge or explicit modeling of
the source statistics. A popular lossless universal coding scheme is a dictionary-based
coding method developed by Ziv and Lempel in 1977 [17] and known as Lempel-Ziv-77
(LZ77) coding. One year later, Ziv and Lempel presented an alternate dictionary-based
method known as LZ78.

Dictionary-based coders dynamically build a coding table (called dictionary) of
variable-length symbol strings as they occur in the input data. As the coding table is
constructed, fixed-length binary codewords are assigned to the variable-length input
symbol strings by indexing into the coding table. In Lempel-Ziv (LZ) coding, the decoder
can also dynamically reconstruct the coding table and the input sequence as the code bits
are received without any significant decoding delays. Although LZ codes do not explicitly
make use of the source probability distribution, they asymptotically approach the source
entropy rate for very long sequences [5]. Because of their adaptive nature, dictionary-
based codes are ineffective for short input sequences since these codes initially result in a
lot of bits being output. Short input sequences can thus result in data expansion instead
of compression.

There are several variations of LZ coding. They mainly differ in how the dictionary
is implemented, initialized, updated, and searched. Variants of the LZ77 algorithm have
been used in many other applications and provided the basis for the development of
many popular compression programs such as gzip, winzip, pkzip, and the public-domain
Portable Network Graphics (PNG) image compression format.

One popular LZ coding algorithm is known as the LZW algorithm, a variant of
the LZ78 algorithm developed by Welch [18]. This is the algorithm used for imple-
menting the compress command in the UNIX operating system. The LZW procedure is
also incorporated in the popular CompuServe GIF image format, where GIF stands for
Graphics Interchange Format. However, the LZW compression procedure is patented,
which decreased the popularity of compression programs and formats that make use of
LZW. This was one main reason that triggered the development of the public-domain
lossless PNG format.

Let S be the source alphabet consisting of N symbols sk (1 � k � N ). The basic steps
of the LZW algorithm can be stated as follows:

1. Initialize the first N entries of the dictionary with the individual source symbols
of S, as shown below.
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2. Parse the input sequence and find the longest input string of successive symbols w
(including the first still unencoded symbol s in the sequence) that has a matching
entry in the dictionary.

3. Encode w by outputing the index (address) of the matching entry as the codeword
for w .

4. Add to the dictionary the string ws formed by concatenating w and the next input
symbol s (following w).

5. Repeat from Step 2 for the remaining input symbols starting with the symbol s,
until the entire input sequence is encoded.

Consider the source alphabet S � {s1, s2, s3, s4}. The encoding procedure is illustrated for
the input sequence s1s2s1s2s3s2s1s2. The constructed dictionary is shown in Table 16.4. The
resulting code is given by the fixed-length binary representation of the following sequence
of dictionary addresses: 1 2 5 3 6 2. The length of the generated binary codewords depends
on the maximum allowed dictionary size. If the maximum dictionary size is M entries,
the length of the codewords would be log2 (M ) rounded to the next smallest integer.

The decoder constructs the same dictionary (Table 16.4) as the codewords are
received. The basic decoding steps can be described as follows:

1. Start with the same initial dictionary as the encoder. Also, initialize w to be the
empty string.

2. Get the next “codeword” and decode it by outputing the symbol string sm stored
at address “codeword” in dictionary.

3. Add to the dictionary the string ws formed by concatenating the previous decoded
string w (if any) and the first symbol s of the current decoded string.

4. Set w � m and repeat from Step 2 until all the codewords are decoded.

TABLE 16.4 Dictionary constructed while encoding the
sequence s1s2s1s2s3s2s1s2, which is emitted by a source
with alphabet S � {s1, s2, s3, s4}.
Address Entry

1 s1

2 s2

3 s3

4 s4

5 s1 s2

6 s2 s1

7 s1 s2 s3

8 s3 s2

9 s2 s1 s2

Address Entry

1 s1

2 s2

3 s3
...

...
N sN
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Note that the constructed dictionary has a prefix property; i.e., every string w in the
dictionary has its prefix string (formed by removing the last symbol of w) also in the
dictionary. Since the strings added to the dictionary can become very long, the actual
LZW implementation exploits the prefix property to render the dictionary construction
more tractable. To add a string ws to the dictionary, the LZW implementation only stores
the pair of values (c , s), where c is the address where the prefix string w is stored and s is
the last symbol of the considered string ws. So the dictionary is represented as a linked
list [5, 18].

16.3.6 Elias and Exponential-Golomb Codes
Similar to LZ coding, Elias codes [1] and Exponential-Golomb (Exp-Golomb) codes [2]
are universal codes that do not require knowledge of the true source statistics. They
belong to a class of structured codes that operate on the set of positive integers. Fur-
thermore, these codes do not require having a finite set of values and can code arbitrary
positive integers with an unknown upper bound. For these codes, each codeword can
be constructed in a regular manner based on the value of the corresponding positive
integer. This regular construction is formed based on the assumption that the probability
distribution decreases monotonically with increasing integer values, i.e., smaller integer
values are more probable than larger integer values. Signed integers can be coded by
remapping them to positive integers. For example, an integer i can be mapped to the
odd positive integer 2|i|� 1 if it is negative, and to the even positive integer 2|i| if it
is positive. Similarly, other one-to-one mapping can be formed to allow the coding of
the entire integer set including zero. Noninteger source symbols can also be coded by
first sorting them in the order of decreasing frequency of occurrence and then mapping
the sorted set of symbols to the set of positive integers using a one-to-one (bijection)
mapping, with smaller integer values being mapped to symbols with a higher frequency
of occurrence. In this case, each positive integer value can be regarded as the index of the
source symbol to which it is mapped, and can be referred to as the source symbol index
or the codeword number or the codeword index.

Elias [1] described a set of codes including alpha (�), beta (�), gamma (�), gamma	
(�	), delta (�), and omega (�) codes. For a positive integer I , the alpha code �(I ) is a
unary code that represents the value I with (I � 1) 0’s followed by a 1. The last 1 acts as a
terminating flag which is also referred to as a comma. For example, �(1) � 1, �(2) � 01,
�(3) � 001, �(4) � 0001, and so forth. The beta code of I , �(I ), is simply the natural
binary representation of I with the most significant bit set to 1. For example, �(1) � 1,
�(2) � 10, �(3) � 11, and �(4) � 100. One drawback of the beta code is that the code-
words are not decodable, since it is not a prefix code and it does not contain a way to
determine the length of the codewords. Thus the beta code is usually combined with
other codes to form other useful codes, such as Elias gamma, gamma	, delta, and omega
codes, and Exp-Golomb codes. The Exp-Golomb codes have been incorporated within
the H.264/AVC, also known as MPEG-4 Part 10, video coding standard to code different
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parameters and data values, including types of macro blocks, indices of reference frames,
motion vector differences, quantization parameters, patterns for coded blocks, and
others. Details about these codes are given below.

16.3.6.1 Elias Gamma (�) and Gamma	(�	) Codes
The Elias � and �	 codes are variants of each other with one code being a permutation
of the other code. The �	 code is also commonly referred to as a � code.

For a positive integer I , Elias �	 coding generates a binary codeword of the form

�	(I ) � [(L � 1) zeros][�(I )], (16.25)

where �(I ) is the beta code of I which corresponds to the natural binary representation of
I , and L is the length of (number of bits in) the binary codeword �(I ). L can be computed
as L � (�log2 (I )�� 1), where �.� denotes rounding to the nearest smaller integer value.
For example, �	(1) � 1, �	(2) � 010, �	(3) � 011, and �	(4) � 00100. In other words, an
Elias �	 code can be constructed for a positive integer I using the following procedure:

1. Find the natural binary representation, �(I ), of I .

2. Determine the total number of bits, L, in �(I ).

3. The codeword �	(I ) is formed as (L � 1) zeros followed by �(I ).

Alternatively, the Elias �	 code can be constructed as the unary alpha code �(L), where L
is the number of bits in �(I ), followed by the last (L � 1) bits of �(I ) (i.e., �(I ) with the
ommission of the most significant bit 1).

An Elias �	 code can be decoded by reading and counting the leading 0 bits until 1 is
reached, which gives a count of L � 1. Decoding then proceeds by reading the following
L � 1 bits and by appending those to 1 in order to get the �(I ) natural binary code. �(I )
is then converted into its corresponding integer value.

The Elias � code of I , �(I ), can be obtained as a permutation of the �	 code of I ,
�	(I ), by preceding each bit of the last L � 1 bits of the �(I ) codeword with one of the
bits of the �(L) codeword, where L is the length of �(I ). In other words, interleave the
first L bits in �	(I ) with the last L � 1 bits by alternating those. For example, �(1) � 1,
�(2) � 001, �(3) � 011, and �(4) � 00001.

16.3.6.2 Elias Delta (�) Code
For a positive integer I , Elias � coding generates a binary codeword of the form:

�(I ) � [(L	 � 1) zeros][�(L)][Last (L � 1) bits of �(I )]
� [�	(L)][Last (L � 1) bits of �(I )], (16.26)

where �(I ) and �(L) are the beta codes of I and L, respectively, L is the length of the
binary codeword �(I ), and L	 is the length of the binary codeword �(L). For example,
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�(1) � 1, �(2) � 0100, �(3) � 0101, and �(4) � 01100. In other words, Elias � code can
be constructed for a positive integer I using the following procedure:

1. Find the natural binary representation, �(I ), of I .

2. Determine the total number of bits, L, in �(I ).

3. Construct the �	 codeword, �	(L), of L, as discussed in Section 16.3.6.1.

4. The codeword �(I ) is formed as �	(L) followed by the last (L � 1) bits of �(I )
(i.e., �(I ) without the most significant bit 1).

An Elias � code can be decoded by reading and counting the leading 0 bits until 1 is
reached, which gives a count of L	 � 1. The L	 � 1 bits following the reached 1 bit are
then read and appended to the 1 bit, which gives �(L) and thus its corresponding integer
value L. The next L � 1 bits are then read and are appended to 1 in order to get �(I ).
�(I ) is then converted into its corresponding integer value I.

16.3.6.3 Elias Omega (�) Code
Similar to the previously discussed Elias � code, the Elias � code encodes the length L of
the beta code, �(I ) of I , but it does this encoding in a recursive manner.

For a positive integer I , Elias � coding generates a binary codeword of the form

�(I ) � [�(LN )][�(LN �1)] . . . [�(L1)][�(L0)][�(I )][0], (16.27)

where �(I ) is the beta code of I , �(Li) is the beta code of Li , i � 0, . . . ,N , and (Li � 1)

corresponds to the length of the codeword �(Li�1), for i � 1, . . . ,N . In (16.27), L0 � 1
corresponds to the length L of the codeword �(I ). The first codeword �(LN ) can only
be 10 or 11 for all positive integer values I > 1, and the other codewords �(Li), i �
0, . . . ,N � 1, have lengths greater than two. The Elias omega code is thus formed by
recursively encoding the lengths of the �(Li) codewords. The recursion stops when the
produced beta codeword has a length of two bits.

An Elias � code, �(I ), for a positive integer I can be constructed using the following
recursive procedure:

1. Set R � I and set �(I ) � [0].
2. Set C � �(I ).

3. Find the natural binary representation, �(R), of R.

4. Set �(I ) � [�(R)][C].
5. Determine the length (total number of bits) LR of �(R).

6. If LR is greater than 2, set R � LR � 1 and repeat from Step 2.

7. If LR is equal to 2, stop.

8. If LR is equal to 1, set �(I ) � [0] and stop.
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For example, �(1) � 0, �(2) � 100, �(3) � 110, and �(4) � 101000.
An Elias � code can be decoded by initially reading the first three bits. If the third bit

is 0, then the first two bits correspond to the beta code of the value of the integer data I ,
�(I ). If the third bit is one, then the first two bits correspond to the beta code of a length,
whose value indicates the number of bits to be read and placed following the third 1 bit
in order to form a beta code. The newly formed beta code corresponds either to a coded
length or to the coded data value I depending whether the next following bit is 0 or 1. So
the decoding proceeds by reading the next bit following the last formed beta code. If the
read bit is 1, the last formed beta code corresponds to the beta code of a length whose
value indicated the number of values to read following the read 1 bit. If the read bit is 0,
the last formed beta code corresponds to the beta code of I and the decoding terminates.

16.3.6.4 Exponential-Golomb Codes
Exponential-Golomb codes [2] are parameterized structured universal codes that encode
nonnegative integers, i.e., both positive integers and zero can be encoded in contrast to
the previously discussed Elias codes which do not provide a code for zero.

For a positive integer I , a kth order Exp-Golomb (Exp-Golomb) code generates a
binary codeword of the form

EGk (I ) � [(L	 � 1) zeros][(Most significant (L � k) bits of �(I )) � 1][Last k bits of �(I )]
� [(L	 � 1) zeros][�(1 � I/2k )][Last k bits of �(I )], (16.28)

where �(I ) is the beta code of I which corresponds to the natural binary representation
of I , L is the length of the binary codeword �(I ), and L	 is the length of the binary
codeword �(1 � I/2k), which corresponds to taking the first (L � k) bits of �(I ) and
arithmetically adding 1. The length L can be computed as L � (�log2 (I )�� 1), for I > 0,
where �.� denotes rounding to the nearest smaller integer. For I � 0, L � 1. Similarly, the
length L	 can be computed as L	 � (�log2 (1 � I/2k)�� 1).

For example, for k � 0, EG0(0) � 1, EG0(1) � 010, EG0(2) � 011, EG0(3) � 00100,
and EG0(4) � 00101. For k � 1, EG1(0) � 10, EG1(1) � 11, EG1(2) � 0100, EG1(3) �
0101, and EG1(4) � 0110.

Note that the Exp-Golomb code with order k � 0 of a nonnegative integer I , EG0(I ),
is equivalent to the Elias gamma	 code of I � 1, �	(I � 1). The zeroth-order (k � 0)
Exp-Golomb codes are used as part of the H.264/AVC (MPEG-4 Part 10) video coding
standard for coding parameters and data values related to macro blocks type, reference
frame index, motion vector differences, quantization parameters, patterns for coded
blocks, and other values [19].

A kth-order Exp-Golomb code can be decoded by first reading and counting the
leading 0 bits until 1 is reached. Let the number of counted 0’s be N . The binary codeword
�(I ) is then obtained by reading the next N bits following the 1 bit, appending those
read N bits to 1 in order to form a binary beta codeword, subtracting 1 from the formed
binary codeword, and then reading and appending the last k bits. The obtained �(I )
codeword is converted into its corresponding integer value I .
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16.4 LOSSLESS CODING STANDARDS
The need for interoperability between various systems have led to the formulation of
several international standards for lossless compression algorithms targeting different
applications. Examples include the standards formulated by the International Stan-
dards Organization (ISO), the International Electrotechnical Commission (IEC), and
the International Telecommunication Union (ITU), which was formerly known as the
International Consultative Committee for Telephone and Telegraph. A comparison of
the lossless still image compression standards is presented in [20].

Lossless image compression standards include lossless JPEG (Chapter 17), JPEG-LS
(Chapter 17), which supports lossless and near lossless compression, JPEG2000
(Chapter 17), which supports both lossless and scalable lossy compression, and facsimile
compression standards such as the ITU-T Group 3 (T.4), Group 4 (T.6), JBIG (T.82),
JBIG2 (T.88), and the Mixed Raster Content (MRC-T.44) standards [21]. While the
lossless JPEG, JPEG-LS, and JPEG2000 standards are optimized for the compression
of continuous-tone images, the facsimile compression standards are optimized for the
compression of bilevel images except for the lastest MRC standard which is targeted for
mixmode documents that can contain continuous-tone images in addition to text and
line art.

The remainder of this section presents a brief overview of the JBIG, JBIG2, lossless
JPEG, and JPEG2000 (with emphasis on lossless compression) standards. It is impor-
tant to note that the image and video compression standards generally only specify the
decoder-compatible bitstream syntax, thus leaving enough room for innovations and
flexibility in the encoder and decoder design. The presented coding procedures below are
popular standard implementations, but they can be modified as long as the generated
bitstream syntax is compatible with the considered standard.

16.4.1 The JBIG and JBIG2 Standards
The JBIG standard (ITU-T Recommendation T.82, 1993) was developed jointly by the
ITU and the ISO/IEC with the objective to provide improved lossless compression perfor-
mance, for both business-type documents and binary halftone images, as compared to the
existing standards. Another objective was to support progressive transmission. Grayscale
images are also supported by encoding separately each bit plane. Later, the same JBIG
committee drafted the JBIG2 standard (ITU-T Recommendation T.88, 2000) which pro-
vides improved lossless compression as compared to JBIG in addition to allowing lossy
compression of bilevel images.

The JBIG standard consists of a context-based arithmetic encoder which takes as
input the original binary image. The arithmetic encoder makes use of a context-based
modeler that estimates conditional probabilities based on causal templates. A causal
template consists of a set of already encoded neighboring pixels and is used as a con-
text for the model to compute the symbol probabilities. Causality is needed to allow
the decoder to recompute the same probabilities without the need to transmit side
information.
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JBIG supports sequential coding transmission (left to right, top to bottom) as well as
progressive transmission. Progressive transmission is supported by using a layered coding
scheme. In this scheme, a low resolution initial version of the image (initial layer) is first
encoded. Higher resolution layers can then be encoded and transmitted in the order of
increasing resolution. In this case the causal templates used by the modeler can include
pixels from the previously encoded layers in addition to already encoded pixels belonging
to the current layer.

Compared to the ITU Group 3 and Group 4 facsimile compression standards [12, 20],
the JBIG standard results in 20% to 50% more compression for business-type docu-
ments. For halftone images, JBIG results in compression ratios that are two to five times
greater than those obtained from the ITU Group 3 and Group 4 facsimile standards
[12, 20].

In contrast to JBIG, JBIG2 allows the bilevel document to be partitioned into three
types of regions: 1) text regions, 2) halftone regions, and 3) generic regions (such as
line drawings or other components that cannot be classified as text or halftone). Both
quality progressive and content progressive representations of a document are supported
and are achieved by ordering the different regions in the document. In addition to the
use of context-based arithmetic coding (MQ coding as in JBIG), JBIG2 allows also the
use of run-length MMR (modified modified relative address designate) Huffman cod-
ing as in the Group 4 (ITU-T.6) facsimile standard, when coding the generic regions.
Furthermore, JBIG2 supports both lossless and lossy compression. While the lossless
compression performance of JBIG2 is slightly better than JBIG, JBIG2 can result in sub-
stantial coding improvements if lossy compression is used to code some parts of the bilevel
documents.

16.4.2 The Lossless JPEG Standard
The JPEG standard was developed jointly by the ITU and ISO/IEC for the lossy and
lossless compression of continuous-tone, color or grayscale, still images [22]. This section
discusses very briefly the main components of the lossless mode of the JPEG standard
(known as lossless JPEG).

The lossless JPEG coding standard can be represented in terms of the general coding
structure of Fig. 16.1 as follows:

■ Stage 1: Linear prediction/differential (DPCM) coding is used to form prediction
residuals. The prediction residuals usually have a lower entropy than the original
input image. Thus higher compression ratios can be achieved.

■ Stage 2: The prediction residual is mapped into a pair of symbols (category, mag-
nitude), where the symbol category gives the number of bits needed to encode
magnitude.

■ Stage 3: For each pair of symbols (category, magnitude), Huffman coding is used
to code the symbol category. The symbol magnitude is then coded using a binary
codeword whose length is given by the value category. Arithmetic coding can also
be used in place of Huffman coding.
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Complete details about the lossless JPEG standard and related recent developments,
including JPEG-LS [23], are presented in Chapter 17.

16.4.3 The JPEG2000 Standard
JPEG2000 is the latest still image coding standard developed by the JPEG in order to
support new features that are demanded by current modern applications and that are
not supported by JPEG. Such features include lossy and lossless representations embed-
ded within the same codestream, highly scalable codestreams with different progression
orders (quality, resolution, spatial location, and component), region-of-interest (ROI)
coding, and support for continuous-tone, bilevel, and compound image coding.

JPEG2000 is divided into 12 different parts featuring different application areas.
JPEG2000 Part 1 [24] is the baseline standard and describes the minimal codestrean
syntax that must be followed for compliance with the standard. All the other parts should
include the features supported by this part. JPEG2000 Part 2 [25] is an extension of
Part 1 and supports add-ons to improve the performance, including different wavelet
filters with various subband decompositions. A brief overview of the JPEG2000 baseline
(Part 1) coding procedure is presented below.

JPEG2000 [24] is a wavelet-based bit plane coding method. In JPEG2000, the original
image is first divided into tiles (if needed). Each tile (subimage) is then coded indepen-
dently. For color images, two optional color transforms, an irreversible color transform
and a reversible color transform (RCT) are provided to decorrelate the color image com-
ponents and increase the compression efficiency. The RCT should be used for lossless
compression as it can be implemented using finite precision arithmetic and is perfectly
invertible. Each color image component is then coded separately by dividing it first
into tiles.

For each tile, the image samples are first shifted in level (if they are unsigned pixel
values) such that they form a symmetric distribution of the DWT coefficients for the low-
low (LL) subband. JPEG2000 (Part 1) supports two types of wavelet transforms: 1) an
irreversible floating point 9/7 DWT [26], and 2) a reversible integer 5/3 DWT [27]. For
lossless compression the 5/3 DWT should be used. After DC level shifting and the DWT,
if lossy compression is chosen, the transformed coefficients are quantized using a
deadzone scalar quantizer [4]. No quantization should be used in the case of lossless
compression. The coefficients in each subband are then divided into coding blocks. The
usual code block size is 64 � 64 or 32 � 32. Each coding block is then independently bit
plane coded from the most significant bit plane (MSB) to the least significant bit plane
using the embedded block coding with optimal truncation (EBCOT) algorithm [28].

The EBCOT algorithm consists of two coding stages known as tier-1 and tier-2 cod-
ing. In the tier-1 coding stage, each bit plane is fractionally coded using three coding
passes: significant propagation, magnitude refinement, and cleanup (except the MSB,
which is coded using only the cleanup pass). The significance propagation pass codes the
significance of each sample based upon the significance of the neighboring eight pixels.
The sign coding primitive is applied to code the sign information when a sample is coded
for the first time as a nonzero bit plane coefficient. The magnitude refinement pass codes
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only those samples that have already become significant. The cleanup pass will code the
remaining coefficients that are not coded during the first two passes. The output symbols
from each pass are entropy coded using context-based arithmetic coding. At the same
time, the rate increase and the distortion reduction associated with each coding pass is
recorded. This information is then used by the postcompression rate-distortion (PCRD)
optimization (PCRD-opt) algorithm to determine the contribution of each coding block
to the different quality layers in the final bitstream. Given the compressed bitstream for
each coding block and the rate allocation result, tier-2 coding is performed to form the
final coded bitstream. This two-tier coding structure gives great flexibility to the final
bitstream formation. By determining how to assemble the sub-bitstreams from each cod-
ing block to form the final bitstream, different progression (quality, resolution, position,
component) order can be realized. More details about the JPEG2000 standard are given
in Chapter 17.

16.5 OTHER DEVELOPMENTS IN LOSSLESS CODING
Several other lossless image coding systems have been proposed [7, 9, 29]. Most of these
systems can be described in terms of the general structure of Fig. 16.1, and they make
use of the lossless symbol coding techniques discussed in Section 16.3 or variations on
those. Among the recently developed coding systems, LOCO-I [7] was adopted as part
of the JPEG-LS standard (Chapter 17), since it exhibits the best compression/complexity
tradeoff. Context-based, Adaptive, Lossless Image Code (CALIC) [9] achieves the best
compression performance at a slightly higher complexity than LOCO-I. Perceptual-based
coding schemes can achieve higher compression ratios at a much reduced complexity
by removing perceptually-irrelevant information in addition to the redundant informa-
tion. In this case, the decoded image is required to only be visually, and not necessarily
numerically, identical to the original image. In what follows, CALIC and perceptual-based
image coding are introduced.

16.5.1 CALIC
CALIC represents one of the best performing practical and general purpose lossless image
coding techniques.

CALIC encodes and decodes an image in raster scan order with a single pass through
the image. For the purposes of context modeling and prediction, the coding process uses
a neighborhood of pixel values taken only from the previous two rows of the image.
Consequently, the encoding and decoding algorithms require a buffer that holds only
two rows of pixels that immediately precede the current pixel. Figure 16.5 presents a
schematic description of the encoding process in CALIC. Decoding is achieved by the
reverse process. As shown in Fig. 16.5, CALIC operates in two modes: binary mode and
continuous-tone mode. This allows the CALIC system to distinguish between binary and
continuous-tone images on a local, rather than a global, basis. This distinction between
the two modes is important due to the vastly different compression methodologies
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employed within each mode. The former uses predictive coding, whereas the latter codes
pixel values directly. CALIC selects one of the two modes depending on whether or not
the local neighborhood of the current pixel has more than two distinct pixel values. The
two-mode design contributes to the universality and robustness of CALIC over a wide
range of images.

In the binary mode, a context-based adaptive ternary arithmetic coder is used to code
three symbols, including an escape symbol. In the continuous-tone mode, the system
has four major integrated components: prediction, context selection and quantization,
context-based bias cancellation of prediction errors, and conditional entropy coding
of prediction errors. In the prediction step, a gradient-adjusted prediction ŷ of the
current pixel y is made. The predicted value ŷ is further adjusted via a bias cancellation
procedure that involves an error feedback loop of one-step delay. The feedback value
is the sample mean of prediction errors ē conditioned on the current context. This
results in an adaptive, context-based, nonlinear predictor y̌ � ŷ � ē. In Fig. 16.5, these
operations correspond to the blocks of “context quantization,” “error modeling,” and
the error feedback loop.

The bias corrected prediction error y̌ is finally entropy coded based on a few estimated
conditional probabilities in different conditioning states or coding contexts. A small
number of coding contexts are generated by context quantization. The context quantizer
partitions prediction error terms into a few classes by the expected error magnitude. The
described procedures in relation to the system are identified by the blocks of “context
quantization” and “conditional probabilities estimation” in Fig. 16.5. The details of this
context quantization scheme in association with entropy coding are given in [9].

CALIC has also been extended to exploit interband correlations found in multiband
images like color images, multispectral images, and 3D medical images. Interband CALIC
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Schematic description of CALIC (Courtesy of Nasir Memon).
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TABLE 16.5 Lossless bit rates with Intraband and Interband
CALIC (Courtesy of Nasir Memon).

Image JPEG-LS Intraband Interband
CALIC CALIC

band 3.36 3.20 2.72
aerial 4.01 3.78 3.47
cats 2.59 2.49 1.81
water 1.79 1.74 1.51
cmpnd1 1.30 1.21 1.02
cmpnd2 1.35 1.22 0.92
chart 2.74 2.62 2.58
ridgely 3.03 2.91 2.72

can give 10% to 30% improvement over intraband CALIC, depending on the type of
image. Table 16.5 shows bit rates achieved with intraband and interband CALIC on a set
of multiband images. For the sake of comparison, results obtained with JPEG-LS are also
included.

16.5.2 Perceptually Lossless Image Coding
The lossless coding methods presented so far require the decoded image data to be
identical both quantitatively (numerically) and qualitatively (visually) to the original
encoded image. This requirement usually limits the amount of compression that can
be achieved to a compression factor of two or three even when sophisticated adaptive
models are used as discussed in Section 16.5.1. In order to achieve higher compression
factors, perceptually lossless coding methods attempt to remove redundant as well as
perceptually irrelevant information.

Perceptual-based algorithms attempt to discriminate between signal components
which are and are not detected by the human receiver. They exploit the spatio-temporal
masking properties of the human visual system and establish thresholds of just-noticeable
distortion (JND) based on psychophysical contrast masking phenomena. The interest is
in bandlimited signals because of the fact that visual perception is mediated by a collec-
tion of individual mechanisms in the visual cortex, denoted channels or filters, that are
selective in terms of frequency and orientation [30]. Mathematical models for human
vision are discussed in Chapter 8.

Neurons respond to stimuli above a certain contrast. The necessary contrast to pro-
voke a response from the neurons is defined as the detection threshold. The inverse of the
detection threshold is the contrast sensitivity. Contrast sensitivity varies with frequency
(including spatial frequency, temporal frequency, and orientation) and can be measured
using detection experiments [31].

In detection experiments, the tested subject is presented with test images and needs
only to specify whether the target stimulus is visible or not visible. They are used to
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derive JND or detection thresholds in the absence or presence of a masking stimulus
superimposed over the target. For the image coding application, the input image is the
masker and the target (to be masked) is the quantization noise (distortion). JND contrast
sensitivity profiles, obtained as the inverse of the measured detection thresholds, are
derived by varying the target or the masker contrast, frequency, and orientation. The
common signals used in vision science for such experiments are sinusoidal gratings. For
image coding, bandlimited subband components are used [31].

Several perceptual image coding schemes have been proposed [31–35]. These schemes
differ in the way the perceptual thresholds are computed and used in coding the visual
data. For example, not all the schemes account for contrast masking in computing the
thresholds. One method called DCTune [33] fits within the framework of JPEG. Based
on a model of human perception that considers frequency sensitivity and contrast mask-
ing, it designs a fixed DCT quantization matrix (3 quantization matrices in the case of
color images) for each image. The fixed quantization matrix is selected to minimize an
overall perceptual distortion which is computed in terms of the perceptual thresholds.
In such block-based methods, a scalar value can be used for each block or macro block
to uniformly scale a fixed quantization matrix in order to account for the variation in
available masking (and as a means to control the bit rate) [34]. The quantization matrix
and the scalar value for each block need to be transmitted, resulting in additional side
information.

The perceptual image coder proposed by Safranek and Johnston [32] works in a
subband decomposition setting. Each subband is quantized using a uniform quantizer
with a fixed step size. The step size is determined by the JND threshold for uniform noise
at the most sensitive coefficient in the subband. The model used does not include contrast
masking. A scalar multiplier in the range of 2 to 2.5 is applied to uniformly scale all step
sizes in order to compensate for the conservative step size selection and to achieve a good
compression ratio.

Higher compression can be achieved by exploiting the varying perceptual character-
istics of the input image in a locally-adaptive fashion. Locally-adaptive perceptual image
coding requires computing and making use of image-dependent, locally-varying, mask-
ing thresholds to adapt the quantization to the varying characteristics of the visual data.
However, the main problem in using a locally-adaptive perceptual quantization strategy
is that the locally-varying masking thresholds are needed both at the encoder and at the
decoder in order to be able to reconstruct the coded visual data. This, in turn, would
require sending or storing a large amount of side information, which might lead to data
expansion instead of compression. The aforementioned perceptual-based compression
methods attempt to avoid this problem by giving up or significantly restricting the local
adaptation. They either choose a fixed quantization matrix for the whole image, select
one fixed step size for a whole subband, or scale all values in a fixed quantization matrix
uniformly.

In [31, 35], locally-adaptive perceptual image coders are presented without the need
for side information for the locally-varying perceptual thresholds. This is accomplished
by using a low-order linear predictor, at both the encoder and decoder, for estimating
the locally available amount of masking. The locally-adaptive perceptual image coding
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(a) Original Lena image, 8 bpp (b) Decoded Lena image at 0.361 bpp

FIGURE 16.6

Perceptually-lossless image compression [31]. The perceptual thresholds are computed for a
viewing distance equal to 6 times the image height.

schemes [31, 35] achieve higher compression ratios (25% improvement on average) in
comparison with the nonlocally adaptive schemes [32, 33] with no significant increase
in complexity. Figure 16.6 presents coding results obtained by using the locally adaptive
perceptual image coder of [31] for the Lena image. The original image is represented by 8
bits per pixel (bpp) and is shown in Fig. 16.6(a). The decoded perceptually-lossless image
is shown in Fig 16.6(b) and requires only 0.361 bpp (compression ratio CR � 22).
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17.1 INTRODUCTION
Joint Photographic Experts Group (JPEG) is currently a worldwide standard for
compression of digital images. The standard is named after the committee that created
it and continues to guide its evolution. This group consists of experts nominated by
national standards bodies and by leading companies engaged in image-related work. The
standardization effort is led by the International Standards Organization (ISO) and the
International Telecommunications Union Telecommunication Standardization Sector
(ITU-T). The JPEG committee has an official title of ISO/IEC JTC1 SC29 Working
Group 1, with a web site at http://www.jpeg.org. The committee is charged with the
responsibility of pooling efforts to pursue promising approaches to compression in order
to produce an effective set of standards for still image compression. The lossy JPEG
image compression procedure described in this chapter is part of the multipart set of
ISO standards IS 10918-1,2,3 (ITU-T Recommendations T.81, T.83, T.84). A subsequent
standardization effort was launched to improve compression efficiency and to support
several desired features. This effort led to the JPEG2000 standard. In this chapter, the
structure of the coder and decoder used in the JPEG and JPEG2000 standards and the
features and options supported by these standards are described.

The JPEG standardization activity commenced in 1986, and it generated twelve pro-
posals for consideration by the committee in March 1987. The initial effort produced
consensus that the compression should be based on the discrete cosine transform (DCT).
Subsequent refinement and enhancement led to the Committee Draft in 1990. Delibera-
tions on the JPEG Draft International Standard (DIS) submitted in 1991 culminated in
the International Standard (IS) being approved in 1992.

Although the JPEG and JPEG2000 standards define both lossy and lossless compres-
sion algorithms, the focus in this chapter is on the lossy compression component of
the JPEG and the JPEG2000 standards. JPEG lossy compression entails an irreversible
mapping of the image to a compressed bitstream, but the standard provides mechanisms
for a controlled loss of information. Lossy compression produces a bitstream that is
usually much smaller in size than that produced with lossless compression. Lossless image 421
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compression is described in detail in Chapter 16 of this Guide [20]. The JPEG lossless
standard is described in detail in The Handbook of Image and Video Processing [25].

The key features of the lossy JPEG standard are as follows:

■ Both sequential and progressive modes of encoding are permitted. These modes
refer to the manner in which quantized DCT coefficients are encoded. In sequential
coding, the coefficients are encoded on a block-by-block basis in a single scan that
proceeds from left to right and top to bottom. On the other hand, in progressive
encoding only partial information about the coefficients is encoded in the first scan
followed by encoding the residual information in successive scans.

■ Low complexity implementations in both hardware and software are feasible.

■ All types of images, regardless of source, content, resolution, color formats, etc.,
are permitted.

■ A graceful tradeoff in bit rate and quality is offered, except at very low bit rates.

■ A hierarchical mode with multiple levels of resolution is allowed.

■ Bit resolution of 8 to 12 bits is permitted.

■ A recommended file format, JPEG File Interchange Format (JFIF), enables the
exchange of JPEG bitstreams among a variety of platforms.

A JPEG compliant decoder has to support a minimum set of requirements, the imple-
mentation of which is collectively referred to as baseline implementation. Additional
features are supported in the extended implementation of the standard. The features
supported in the baseline implementation include the ability to provide the following:

■ a sequential build-up;

■ custom or default Huffman tables;

■ 8-bit precision per pixel for each component;

■ image scans with 1-4 components;

■ both interleaved and noninterleaved scans.

A JPEG extended system includes all features in a baseline implementation and
supports many additional features. It allows sequential buildup as well as an optional
progressive buildup. Either Huffman coding or arithmetic coding can be used in the
entropy coding unit. Precision of up to 12 bits per pixel is allowed. The extended system
includes an option for lossless coding.

The JPEG standard suffers from shortcomings in compression efficiency and pro-
gressive decoding. This led the JPEG committee to launch an effort in late 1996 and
early 1997 to create a new image compression standard. The initiative resulted in the
15444/ITU-T Recommendation T.8000 known as the JPEG2000 standard that is based
on wavelet analysis and encoding. The new standard is described in some detail in this
chapter.
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The rest of this chapter is organized as follows. In Section 17.2, we describe the struc-
ture of the JPEG codec and the units that it is comprised of. In Section 17.3, the role
and computation of the DCT is examined. Procedures for quantizing the DCT coeffi-
cients are presented in Section 17.4. In Section 17.5, the mapping of the quantized DCT
coefficients into symbols suitable for entropy coding is described. Syntactical issues and
organization of data units are discussed in Section 17.6. Section 17.7 describes alterna-
tive modes of operation like the progressive and hierarchical modes. In Section 17.8,
some extensions made to the standard, collectively known as JPEG Part 3, are described.
Sections 17.9 and 17.10 provide a description of the new JPEG2000 standard and its
coding architecture. The performance of JPEG2000 and the extensions included in
part 2 of the standard are briefly described in Section 17.11. Finally, Section 17.12 lists
further sources of information on the standards.

17.2 LOSSY JPEG CODEC STRUCTURE
It should be noted that in addition to defining an encoder and decoder, the JPEG stan-
dard also defines a syntax for representing the compressed data along with the associated
tables and parameters. In this chapter, however, we largely ignore these syntactical issues
and focus instead on the encoding and decoding procedures. We begin by examining
the structure of the JPEG encoding and decoding systems. The discussion centers on the
encoder structure and the building blocks that an encoder is comprised of. The decoder
essentially consists of the inverse operations of the encoding process carried out in
reverse.

17.2.1 Encoder Structure
The JPEG encoder and decoder are conveniently decomposed into units that are shown in
Fig. 17.1. Note that the encoder shown in Fig. 17.1 is applicable in open-loop/unbuffered
environments where the system is not operating under a constraint of a prescribed bit
rate/budget. The units constituting the encoder are described next.

17.2.1.1 Signal Transformation Unit: DCT
In JPEG image compression, each component array in the input image is first partitioned
into 8 � 8 rectangular blocks of data. A signal transformation unit computes the DCT
of each 8 � 8 block in order to map the signal reversibly into a representation that is
better suited for compression. The object of the transformation is to reconfigure the
information in the signal to capture the redundancies and to present the information
in a “machine-friendly” form that is convenient for disregarding the perceptually least
relevant content. The DCT captures the spatial redundancy and packs the signal energy
into a few DCT coefficients. The coefficient with zero frequency in both dimensions is
called the direct current (DC) coefficient, and the remaining 63 coefficients are called
alternating current (AC) coefficients.
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FIGURE 17.1

Constituent units of (a) JPEG encoder; (b) JPEG decoder.

17.2.1.2 Quantizer
If we wish to recover the original image exactly from the DCT coefficient array, then it
is necessary to represent the DCT coefficients with high precision. Such a representation
requires a large number of bits. In lossy compression, the DCT coefficients are mapped
into a relatively small set of possible values that are represented compactly by defining
and coding suitable symbols. The quantization unit performs this task of a many-to-one
mapping of the DCT coefficients so that the possible outputs are limited in number.
A key feature of the quantized DCT coefficients is that many of them are zero, making
them suitable for efficient coding.

17.2.1.3 Coefficient-to-Symbol Mapping Unit
The quantized DCT coefficients are mapped to new symbols to facilitate a compact
representation in the symbol coding unit that follows. The symbol definition unit can
also be viewed as part of the symbol coding unit. However, it is shown here as a separate
unit to emphasize the fact that the definition of symbols to be coded is an important task.
An effective definition of symbols for representing AC coefficients in JPEG is the “runs”
of zero coefficients followed by a nonzero terminating coefficient. For representing DC
coefficients, symbols are defined by computing the difference between the DC coefficient
in the current block and that in the previous block.



17.3 Discrete Cosine Transform 425

17.2.1.4 Entropy Coding Unit
This unit assigns a codeword to the symbols that appear at its input and generates
the bitstream that is to be transmitted or stored. Huffman coding is usually employed
for variable-length coding (VLC) of the symbols, with arithmetic coding allowed as an
option.

17.2.2 Decoder Structure
In a decoder the inverse operations are performed in an order that is the reverse of that in
the encoder. The coded bitstream contains coding and quantization tables which are first
extracted. The coded data are then applied to the entropy decoder which determines the
symbols that were encoded. The symbols are then mapped to an array of quantized and
scaled values of DCT coefficients. This array is then appropriately rescaled by multiplying
each entry with the corresponding entry in the quantization table to recover the approxi-
mations to the original DCT coefficients. The decoded image is then obtained by applying
the inverse two-dimensional (2D) DCT to the array of the recovered approximate DCT
coefficients.

In the next three sections, we consider each of the above encoder operations, DCT,
quantization, and symbol mapping and coding, in more detail.

17.3 DISCRETE COSINE TRANSFORM
Lossy JPEG compression is based on the use of transform coding using the DCT [2].
In DCT coding, each component of the image is subdivided into blocks of 8 � 8 pixels.
A 2D DCT is applied to each block of data to obtain an 8 � 8 array of coefficients.
If x[m,n] represents the image pixel values in a block, then the DCT is computed for each
block of the image data as follows:

X [u,v]� C[u]C[v]
4

7∑
m�0

7∑
n�0

x[m,n]cos
(2m � 1)u�

16
cos

(2n � 1)v�

16
0 � u,v � 7,

where

C[u]�
{

1√
2

u � 0,

1 1 � u � 7.

The original image samples can be recovered from the DCT coefficients by applying the
inverse discrete cosine transform (IDCT) as follows:

x[m,n]�
7∑

u�0

7∑
v�0

C[u]C[v]
4

X [u,v]cos
(2m � 1)u�

16
cos

(2n � 1)v�

16
0 � m,n � 7

The DCT, which belongs to the family of sinusoidal transforms, has received special
attention due to its success in compression of real-world images. It is seen from the
definition of the DCT that an 8 � 8 image block being transformed is being represented
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as a linear combination of real-valued basis vectors that consist of samples of a product
of one-dimensional (1D) cosinusoidal functions. The 2D transform can be expressed
as a product of 1D DCT transforms applied separably along the rows and columns of
the image block. The coefficients X(u,v) of the linear combination are referred to as
the DCT coefficients. For real-world digital images in which the inter-pixel correlation is
reasonably high and which can be characterized with first-order autoregressive models,
the performance of the DCT is very close to that of the Karhunen-Loeve transform
[2]. The discrete fourier transform (DFT) is not as efficient as DCT in representing
an 8 � 8 image block. This is because when the DFT is applied to each row of the
image, a periodic extension of the data, along with concomitant edge discontinuities,
produces high-frequency DFT coefficients that are larger than the DCT coefficients of
corresponding order. On the other hand, there is a mirror periodicity implied by the
DCT which avoids the discontinuities at the edges when image blocks are repeated. As
a result, the “high-frequency” or “high-order AC” coefficients are on the average smaller
than the corresponding DFT coefficients.

We consider an example of the computation of the 2D DCT of an 8 � 8 block in the
512 � 512 gray-scale image, Lena. The specific block chosen is shown in the image in
Fig. 17.2 (top) where the block is indicated with a black boundary with one corner of
the 8 � 8 block at [209, 297]. A closeup of the block enclosing part of the hat is shown in
Fig. 17.2 (bottom).

The 8-bit pixel values of the block chosen are shown in Fig. 17.3. After the DCT is
applied to this block, the 8 � 8 DCT coefficient array obtained is shown in Fig. 17.4.

The magnitude of the DCT coefficients exhibits a pattern in their occurrences in
the coefficient array. Also, their contribution to the perception of the information is not
uniform across the array. The DCT coefficients corresponding to the lowest frequency
basis functions are usually large in magnitude, and are also deemed to be perceptually
most significant. These properties are exploited in developing methods of quantization
and symbol coding. The bulk of the compression achieved in lossy transform coding
occurs in the quantization step. The compression level is controlled by changing the
total number of bits available to encode the blocks. The coefficients are quantized more
coarsely when a large compression factor is required.

17.4 QUANTIZATION
Each DCT coefficient X [m,n], 0 � m,n � 7, is mapped into one of a finite number of
levels determined by the compression factor desired.

17.4.1 DCT Coefficient Quantization Procedure
Quantization is done by dividing each element of the DCT coefficient array by a cor-
responding element in an 8 � 8 quantization matrix and rounding the result. Thus if
the entry q[m,n], 0 � m,n � 7, in the m-th row and n-th column of the quantiza-
tion matrix, is large then the corresponding DCT coefficient is coarsely quantized. The
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FIGURE 17.2

The original 512 � 512 Lena image (top) with an 8 � 8 block (bottom) identified with black
boundary and with one corner at [209, 297].
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187 188 189 202 209 175 66 41
191 186 193 209 193 98 40 39
188 187 202 202 144 53 35 37
189 195 206 172 58 47 43 45
197 204 194 106 50 48 42 45
208 204 151 50 41 41 41 53
209 179 68 42 35 36 40 47
200 117 53 41 34 38 39 63

FIGURE 17.3

The 8 � 8 block identified in Fig. 17.2.

915.6 451.3 25.6 212.6 16.1 212.3 7.9 27.3
216.8 19.8 2228.2 225.7 23.0 20.1 6.4 2.0
22.0 277.4 223.8 102.9 45.2 223.7 24.4 25.1
30.1 2.4 19.5 28.6 251.1 232.5 12.3 4.5
5.1 222.1 22.2 21.9 217.4 20.8 23.2 214.5

20.4 20.8 7.5 6.2 29.6 5.7 29.5 219.9
5.3 25.3 22.4 22.4 23.5 22.1 10.0 11.0
0.9 0.7 27.7 9.3 2.7 25.4 26.7 2.5

FIGURE 17.4

DCT of the 8 � 8 block in Fig. 17.3.

values of q[m,n] are restricted to be integers with 1 � q[m,n]� 255, and they deter-
mine the quantization step for the corresponding coefficient. The quantized coefficient is
given by

qX [m,n]�
[

X [m,n]
q[m,n]

]

round
.

A quantization table (or matrix) is required for each image component. How-
ever, a quantization table can be shared by multiple components. For example, in a
luminance-plus-chrominance Y � Cr � Cb representation, the two chrominance com-
ponents usually share a common quantization matrix. JPEG quantization tables given in
Annex K of the standard for luminance and components are shown in Fig. 17.5. These
tables were obtained from a series of psychovisual experiments to determine the visibility
thresholds for the DCT basis functions for a 760 � 576 image with chrominance com-
ponents downsampled by 2 in the horizontal direction and at a viewing distance equal
to six times the screen width. On examining the tables, we observe that the quantization
table for the chrominance components has larger values in general implying that the
quantization of the chrominance planes is coarser when compared with the luminance
plane. This is done to exploit the human visual system’s (HVS) relative insensitivity to
chrominance components as compared with luminance components. The tables shown
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FIGURE 17.5

Example quantization tables for luminance (left) and chrominance (right) components provided
in the informative sections of the standard.

have been known to offer satisfactory performance, on the average, over a wide variety
of applications and viewing conditions. Hence they have been widely accepted and over
the years have become known as the “default” quantization tables.

Quantization tables can also be constructed by casting the problem as one of optimum
allocation of a given budget of bits based on the coefficient statistics. The general principle
is to estimate the variances of the DCT coefficients and assign more bits to coefficients
with larger variances.

We now examine the quantization of the DCT coefficients given in Fig. 17.4 using
the luminance quantization table in Fig. 17.5(a). Each DCT coefficient is divided by the
corresponding entry in the quantization table, and the result is rounded to yield the array
of quantized DCT coefficients in Fig. 17.6. We observe that a large number of quantized
DCT coefficients are zero, making the array suitable for runlength coding as described in
Section 17.6. The block from the Lena image recovered after decoding is shown in Fig. 17.7.

17.4.2 Quantization Table Design
With lossy compression, the amount of distortion introduced in the image is inversely
related to the number of bits (bit rate) used to encode the image. The higher the rate,
the lower the distortion. Naturally, for a given rate, we would like to incur the minimum
possible distortion. Similarly, for a given distortion level, we would like to encode with
the minimum rate possible. Hence lossy compression techniques are often studied in
terms of their rate-distortion (RD) performance that bounds according to the highest
compression achievable at a given level of distortion they introduce over different bit
rates. The RD performance of JPEG is determined mainly by the quantization tables.
As mentioned before, the standard does not recommend any particular table or set of
tables and leaves their design completely to the user. While the image quality obtained
from the use of the “default” quantization tables described earlier is very good, there is a
need to provide flexibility to adjust the image quality by changing the overall bit rate. In
practice, scaled versions of the “default” quantization tables are very commonly used to
vary the quality and compression performance of JPEG. For example, the popular IJPEG
implementation, freely available in the public domain, allows this adjustment through
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57 41 2 0 0 0 0 0
18 1 216 21 0 0 0 0
0 25 21 4 1 0 0 0
2 0 0 0 21 0 0 0
0 21 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

FIGURE 17.6

8 � 8 discrete cosine transform block in Fig. 17.4 after quantization with the luminance quan-
tization table shown in Fig. 17.5.

181 185 196 208 203 159 86 27
191 189 197 203 178 118 58 25
192 193 197 185 136 72 36 33
184 199 195 151 90 48 38 43
185 207 185 110 52 43 49 44
201 198 151 74 32 40 48 38
213 161 92 47 32 35 41 45
216 122 43 32 39 32 36 58

FIGURE 17.7

The block selected from the Lena image recovered after decoding.

the use of quality factor Q for scaling all elements of the quantization table. The scaling
factor is computed as

Scale factor �

⎧⎪⎨
⎪⎩

� 5000
Q for 1 � Q < 50

200 � 2 ∗Q for 50 � Q � 99

1 for Q � 100

. (17.1)

Although varying the rate by scaling a base quantization table according to some fixed
scheme is convenient, it is clearly not optimal. Given an image and a bit rate, there exists
a quantization table that provides the “optimal” distortion at the given rate. Clearly, the
“optimal” table would vary with different images and different bit rates and even different
definitions of distortion such as mean square error (MSE) or perceptual distortion. To
get the best performance from JPEG in a given application, custom quantization tables
may need to be designed. Indeed, there has been a lot of work reported in the literature
addressing the issue of quantization table design for JPEG. Broadly speaking, this work
can be classified into three categories. The first deals with explicitly optimizing the RD
performance of JPEG based on statistical models for DCT coefficient distributions. The
second attempts to optimize the visual quality of the reconstructed image at a given
bit rate, given a set of display conditions and a perception model. The third addresses
constraints imposed by applications, such as optimization for printers.
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An example of the first approach is provided by the work of Ratnakar and Livny [30]
who propose RD-OPT, an efficient algorithm for constructing quantization tables with
optimal RD performance for a given image. The RD-OPT algorithm uses DCT coefficient
distribution statistics from any given image in a novel way to optimize quantization
tables simultaneously for the entire possible range of compression-quality tradeoffs. The
algorithm is restricted to the MSE-related distortion measures as it exploits the property
that the DCT is a unitary transform, that is, MSE in the pixel domain is the same as MSE
in the DCT domain. The RD-OPT essentially consists of the following three stages:

1. Gather DCT statistics for the given image or set of images. Essentially this step
involves counting how many times the n-th coefficient gets quantized to the value
v when the quantization step size is q and what is the MSE for the n-th coefficient
at this step size.

2. Use statistics collected above to calculate Rn(q), the rate for the nth coefficient
when the quantization step size is q and the corresponding distortion is Dn(q), for
each possible q. The rate Rn(q) is estimated from the corresponding first-order
entropy of the coefficient at the given quantization step size.

3. Compute R(Q) and D(Q), the rate and distortions for a quantization table Q, as

R(Q) �

63∑
n�0

Rn(Q[n]) and D(Q) �

63∑
n�0

Dn(Q[n]),

respectively. Use dynamic programming to optimize R(Q) against D(Q).

Optimizing quantization tables with respect to MSE may not be the best strategy
when the end image is to be viewed by a human. A better approach is to match the quan-
tization table to the human visual system HVS model. As mentioned before, the “default”
quantization tables were arrived at in an image independent manner, based on the visi-
bility of the DCT basis functions. Clearly, better performance could be achieved by an
image dependent approach that exploits HVS properties like frequency, contrast, and tex-
ture masking and sensitivity. A number of HVS model based techniques for quantization
table design have been proposed in the literature [3, 18, 41]. Such techniques perform
an analysis of the given image and arrive at a set of thresholds, one for each coefficient,
called the just noticeable distortion (JND) thresholds. The underlying idea being that if
the distortion introduced is at or just below these thresholds, the reconstructed image
will be perceptually distortion free.

Optimizing quantization tables with respect to MSE may also not be appropriate
when there are constraints on the type of distortion that can be tolerated. For example,
on examining Fig. 17.5, it is clear that the “high-frequency” AC quantization factors, i.e.,
q[m,n] for larger values of m and n, are significantly greater than the DC coefficient
q[0,0] and the “low-frequency” AC quantization factors. There are applications in which
the information of interest in an image may reside in the high-frequency AC coeffi-
cients. For example, in compression of radiographic images [34], the critical diagnostic
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information is often in the high-frequency components. The size of microcalcification in
mammograms is often so small that a coarse quantization of the higher AC coefficients
will be unacceptable. In such cases, JPEG allows custom tables to be provided in the
bitstreams.

Finally, quantization tables can also be optimized for hard copy devices like printers.
JPEG was designed for compressing images that are to be displayed on devices that use
cathode ray tube that offers a large range of pixel intensities. Hence, when an image
is rendered through a half-tone device [40] like a printer, the image quality could be
far from optimal. Vander Kam and Wong [37] give a closed-loop procedure to design
a quantization table that is optimum for a given half-toning and scaling method. The
basic idea behind their algorithm is to code more coarsely frequency components that are
corrupted by half-toning and to code more finely components that are left untouched by
half-toning. Similarly, to take into account the effects of scaling, their design procedure
assigns higher bit rate to the frequency components that correspond to a large gain in
the scaling filter response and lower bit rate to components that are attenuated by the
scaling filter.

17.5 COEFFICIENT-TO-SYMBOL MAPPING AND CODING
The quantizer makes the coding lossy, but it provides the major contribution in com-
pression. However, the nature of the quantized DCT coefficients and the preponderance
of zeros in the array leads to further compression with the use of lossless coding. This
requires that the quantized coefficients be mapped to symbols in such a way that the sym-
bols lend themselves to effective coding. For this purpose, JPEG treats the DC coefficient
and the set of AC coefficients in a different manner. Once the symbols are defined, they
are represented with Huffman coding or arithmetic coding.

In defining symbols for coding, the DCT coefficients are scanned by traversing the
quantized coefficient array in a zig-zag fashion shown in Fig. 17.8. The zig-zag scan
processes the DCT coefficients in increasing order of spatial frequency. Recall that the
quantized high-frequency coefficients are zero with high probability. Hence scanning in
this order leads to a sequence that contains a large number of trailing zero values and can
be efficiently coded as shown below.

The [0,0]-th element or the quantized DC coefficient is first separated from the
remaining string of 63 AC coefficients, and symbols are defined next as shown in Fig. 17.9.

17.5.1 DC Coefficient Symbols
The DC coefficients in adjacent blocks are highly correlated. This fact is exploited to
differentially code them. Let qXi[0,0] and qXi�1[0,0]denote the quantized DC coefficient
in blocks i and i � 1. The difference �i � qXi[0,0]� qXi�1[0,0] is computed. Assuming
a precision of 8 bits/pixel for each component, it follows that the largest DC coefficient
value (with q[0,0]= 1) is less than 2048, so that values of �i are in the range [�2047,2047].
If Huffman coding is used, then these possible values would require a very large coding
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FIGURE 17.8

Zig-zag scan procedure.

table. In order to limit the size of the coding table, the values in this range are grouped
into 12 size categories, which are assigned labels 0 through 11. Category k contains 2k

elements {� 2k�1, . . . ,� (2k � 1)}. The difference �i is mapped to a symbol described by
a pair (category, amplitude). The 12 categories are Huffman coded. To distinguish values
within the same category, extra k bits are used to represent a specific one of the possible
2k “amplitudes” of symbols within category k. The amplitude of �i {2k�1 � �i � 2k � 1}
is simply given by its binary representation. On the other hand, the amplitude of �i

{�2k � 1 � �i � �2k�1} is given by the one’s complement of the absolute value |�i | or
simply by the binary representation of �i � 2k � 1.

17.5.2 Mapping AC Coefficient to Symbols
As observed before, most of the quantized AC coefficients are zero. The zig-zag scanned
string of 63 coefficients contains many consecutive occurrences or“runs of zeros”, making
the quantized AC coefficients suitable for run-length coding (RLC). The symbols in this
case are conveniently defined as [size of run of zeros, nonzero terminating value], which
can then be entropy coded. However, the number of possible values of AC coefficients
is large as is evident from the definition of DCT. For 8-bit pixels, the allowed range of
AC coefficient values is [�1023,1023]. In view of the large coding tables this entails,
a procedure similar to that discussed above for DC coefficients is used. Categories are
defined for suitable grouped values that can terminate a run. Thus a run/category pair
together with the amplitude within a category is used to define a symbol. The category
definitions and amplitude bits generation use the same procedure as in DC coefficient
difference coding. Thus, a 4-bit category value is concatenated with a 4-bit run length to
get an 8-bit [run/category] symbol. This symbol is then encoded using either Huffman or
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(a) DC coding

Difference �i

22 [2,22] 01101

Code

(b) AC coding

Terminating
value

Run/
categ.

Code
length

Code Total
bits

Amplitude
bits

0/6 7 1111000 13 010110

0/5 5 11010 10 10010

1/1 4 1100 5 1

0/2 2 01 4 10

1/5 11 11111110110 16 01111

0/3 3 100 6 010

0/2 2 01 4 10

2/1 5 11100 6 0

0/1 2 00 3 0

3/3 12 111111110101 15 100

1/1 4 1100 5 1

5/1 7 1111010 8 1

5/1 7 1111010 8 0

41

18

1

2

216

25

2

21

21

4

21

1

21

EOB EOB 4

112

1010 4 2

Total bits for block

Rate 5 112/64 5 1.75 bits per pixel

[Category, Amplitude]

FIGURE 17.9

(a) Coding of DC coefficient with value 57, assuming that the previous block has a DC coefficient
of value 59; (b) Coding of AC coefficients.

arithmetic coding. There are two special cases that arise when coding the [run/category]
symbol. First, since the run value is restricted to 15, the symbol (15/0) is used to denote
fifteen zeroes followed by a zero. A number of such symbols can be cascaded to specify
larger runs. Second, if after a nonzero AC coefficient, all the remaining coefficients are
zero, then a special symbol (0/0) denoting an end-of-block (EOB) is encoded. Fig. 17.9
continues our example and shows the sequence of symbols generated for coding the
quantized DCT block in the example shown in Fig. 17.6.

17.5.3 Entropy Coding
The symbols defined for DC and AC coefficients are entropy coded using mostly Huffman
coding or, optionally and infrequently, arithmetic coding based on the probability esti-
mates of the symbols. Huffman coding is a method of VLC in which shorter code words
are assigned to the more frequently occurring symbols in order to achieve an average
symbol code word length that is as close to the symbol source entropy as possible.
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Huffman coding is optimal (meets the entropy bound) only when the symbol proba-
bilities are integral powers of 1/2. The technique of arithmetic coding [42] provides a
solution to attaining the theoretical bound of the source entropy. The baseline
implementation of the JPEG standard uses Huffman coding only.

If Huffman coding is used, then Huffman tables, up to a maximum of eight in number,
are specified in the bitstream. The tables constructed should not contain code words that
(a) are more than 16 bits long or (b) consist of all ones. Recommended tables are listed in
annex K of the standard. If these tables are applied to the output of the quantizer shown
in the first two columns of Fig. 17.9, then the algorithm produces output bits shown in
the following columns of the figure. The procedures for specification and generation of
the Huffman tables are identical to the ones used in the lossless standard [25].

17.6 IMAGE DATA FORMAT AND COMPONENTS
The JPEG standard is intended for the compression of both grayscale and color images.
In a grayscale image, there is a single “luminance” component. However, a color image
is represented with multiple components, and the JPEG standard sets stipulations on the
allowed number of components and data formats. The standard permits a maximum
of 255 color components which are rectangular arrays of pixel values represented with
8- to 12-bit precision. For each color component, the largest dimension supported in
either the horizontal or the vertical direction is 216 � 65,536.

All color component arrays do not necessarily have the same dimensions. Assume that
an image contains K color components denoted by Cn , n � 1,2, . . . ,K . Let the horizontal
and vertical dimensions of the n-th component be equal to Xn and Yn , respectively. Define
dimensions Xmax ,Ymax , and Xmin ,Ymin as

Xmax � maxK
n�1{Xn}, Ymax � maxK

n�1{Yn}

and

Xmin � minK
n�1{Xn}, Ymin � minK

n�1{Yn}.

Each color component Cn , n � 1,2, . . . ,K , is associated with relative horizontal and
vertical sampling factors, denoted by Hn and Vn respectively, where

Hn �
Xn

Xmin
, Vn �

Yn

Ymin
.

The standard restricts the possible values of Hn and Vn to the set of four integers 1,2,3,4.
The largest values of relative sampling factors are given by Hmax � max{Hn} and Vmax �
max{Vn}.

According to the JFIF, the color information is specified by [Xmax , Ymax , Hn and
Vn , n � 1,2, . . . ,K , Hmax , Vmax ]. The horizontal dimensions of the components are
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computed by the decoder as

Xn � �Xmax �
Hn

Hmax
�.

Example 1: Consider a raw image in a luminance-plus-chrominance representation
consisting of K � 3 components, C1 � Y , C2 � Cr , and C3 � Cb. Let the dimensions
of the luminance matrix (Y ) be X1 � 720 and Y1 � 480, and the dimensions of the two
chrominance matrices (Cr and Cb) be X2 � X3 � 360 and Y2 � Y3 � 240. In this case,
Xmax � 720 and Ymax � 480, and Xmin � 360 and Ymin � 240. The relative sampling
factors are H1 � V1 � 2 and H2 � V2 � H3 � V3 � 1.

When images have multiple components, the standard specifies formats for organizing
the data for the purpose of storage. In storing components, the standard provides the
option of using either interleaved or noninterleaved formats. Processing and storage
efficiency is aided, however, by interleaving the components where the data is read in
a single scan. Interleaving is performed by defining a data unit for lossy coding as a
single block of 8 � 8 pixels in each color component. This definition can be used to
partition the n-th color component Cn , n � 1, 2, . . . ,K , into rectangular blocks, each
of which contains Hn � Vn data units. A minimum coded unit (MCU) is then defined as
the smallest interleaved collection of data units obtained by successively picking Hn � Vn

data units from the n-th color component. Certain restrictions are imposed on the data
in order to be stored in the interleaved format:

■ The number of interleaved components should not exceed four;

■ An MCU should contain no more than ten data units, i.e.,

K∑
n�1

HnVn � 10.

If the above restrictions are not met, then the data is stored in a noninterleaved format,
where each component is processed in successive scans.

Example 2: Let us consider the case of storage of the Y , Cr , Cb components in
Example 1. The luminance component contains 90 � 60 data units, and each of the
two chrominance components contains 45 � 30 data units. Figure 17.10 shows both
a noninterleaved and an interleaved arrangement of the data for K � 3 components,
C1 � Y , C2 � Cr , and C3 � Cb, with H1 � V1 � 2 and H2 � V2 � H3 � V3 � 1. The
MCU in this case contains six data units, consisting of H1 � V1 � 4 data units of the Y
component and H2 � V2 � H3 � V3 � 1 each of the Cr and Cb components.

17.7 ALTERNATIVE MODES OF OPERATION
What has been described thus far in this chapter represents the JPEG sequential DCT
mode. The sequential DCT mode is the most commonly used mode of operation of
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FIGURE 17.10

Organizations of the data units in the Y , Cr , Cb components into noninterleaved and interleaved
formats.

JPEG and is required to be supported by any baseline implementation of the standard.
However, in addition to the sequential DCT mode, JPEG also defines a progressive DCT
mode, sequential lossless mode, and a hierarchical mode. In Figure 17.11 we show how
the different modes can be used. For example, the hierarchical mode could be used in
conjunction with any of the other modes as shown in the figure. In the lossless mode, JPEG
uses an entirely different algorithm based on predictive coding [25]. In this section we
restrict our attention to lossy compression and describe in greater detail the DCT-based
progressive and hierarchical modes of operation.

17.7.1 Progressive Mode
In some applications it may be advantageous to transmit an image in multiple passes,
such that after each pass an increasingly accurate approximation to the final image can
be constructed at the receiver. In the first pass, very few bits are transmitted and the
reconstructed image is equivalent to one obtained with a very low quality setting. Each of
the subsequent passes contain an increasing number of bits which are used to refine the
quality of the reconstructed image. The total number of bits transmitted is roughly the
same as would be needed to transmit the final image by the sequential DCT mode. One
example of an application which would benefit from progressive transmission is provided
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JPEG modes of operation.

by Internet image access, where a user might want to start examining the contents of the
entire page without waiting for each and every image contained in the page to be fully and
sequentially downloaded. Other examples include remote browsing of image databases,
tele-medicine, and network-centric computing in general. JPEG contains a progressive
mode of coding that is well suited to such applications. The disadvantage of progressive
transmission, of course, is that the image has to be decoded a multiple number of times,
and its use only makes sense if the decoder is faster than the communication link.

In the progressive mode, the DCT coefficients are encoded in a series of scans. JPEG
defines two ways for doing this: spectral selection and successive approximation. In the
spectral selection mode, DCT coefficients are assigned to different groups according to
their position in the DCT block, and during each pass, the DCT coefficients belonging to
a single group are transmitted. For example, consider the following grouping of the 64
DCT coefficients numbered from 0 to 63 in the zig-zag scan order,

{0}, {1, 2, 3}, {4, 5, 6, 7}, {8, . . . , 63}.
Here, only the DC coefficient is encoded in the first scan. This is a requirement imposed
by the standard. In the progressive DCT mode, DC coefficients are always sent in a
separate scan. The second scan of the example codes the first three AC coefficients in
zig-zag order, the third scan encodes the next four AC coefficients, and the fourth and
the last scan encodes the remaining coefficients. JPEG provides the syntax for specifying
the starting coefficient number and the final coefficient number being encoded in a
particular scan. This limits a group of coefficients being encoded in any given scan to
being successive in the zig-zag order. The first few DCT coefficients are often sufficient
to give a reasonable rendition of the image. In fact, just the DC coefficient can serve to
essentially identify the contents of an image, although the reconstructed image contains
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severe blocking artifacts. It should be noted that after all the scans are decoded, the final
image quality is the same as that obtained by a sequential mode of operation. The bit
rate, however, can be different as the entropy coding procedures for the progressive mode
are different as described later in this section.

In successive approximation coding, the DCT coefficients are sent in successive scans
with increasing level of precision. The DC coefficient, however, is sent in the first scan
with full precision, just as in the case of spectral selection coding. The AC coefficients
are sent bit plane by bit plane, starting from the most significant bit plane to the least
significant bit plane.

The entropy coding techniques used in the progressive mode are slightly different
from those used in the sequential mode. Since the DC coefficient is always sent as a
separate scan, the Huffman and arithmetic coding procedures used remain the same
as those in the sequential mode. However, coding of the AC coefficients is done a bit
differently. In spectral selection coding (without selective refinement) and in the first
stage of successive approximation coding, a new set of symbols is defined to indicate runs
of EOB codes. Recall that in the sequential mode the EOB code indicates that the rest of
the block contains zero coefficients. With spectral selection, each scan contains only a few
AC coefficients and the probability of encountering EOB is significantly higher. Similarly,
in successive approximation coding, each block consists of reduced precision coefficients,
leading again to a large number of EOB symbols being encoded. Hence, to exploit this
fact and achieve further reduction in bit rate, JPEG defines an additional set of fifteen
symbols, EOBn , each representing a run of 2n EOB codes. After each EOBi run-length
code, extra i bits are appended to specify the exact run-length.

It should be noted that the two progressive modes, spectral selection and successive
refinement, can be combined to give successive approximation in each spectral band being
encoded. This results in quite a complex codec, which to our knowledge is rarely used.

It is possible to transcode between progressive JPEG and sequential JPEG without any
loss in quality and approximately maintaining the same bit rate. Spectral selection results
in bit rates slightly higher than the sequential mode, whereas successive approximation
often results in lower bit rates. The differences however are small.

Despite the advantages of progressive transmission, there have not been many imple-
mentations of progressive JPEG codecs. There has been some interest in them due to the
proliferation of images on the Internet.

17.7.2 Hierarchical Mode
The hierarchical mode defines another form of progressive transmission where the image
is decomposed into a pyramidal structure of increasing resolution. The top-most layer in
the pyramid represents the image at the lowest resolution, and the base of the pyramid
represents the image at full resolution. There is a doubling of resolutions both in the
horizontal and vertical dimensions, between successive levels in the pyramid. Hierarchical
coding is useful when an image could be displayed at different resolutions in units such
as handheld devices, computer monitors of varying resolutions, and high-resolution
printers. In such a scenario, a multiresolution representation allows the transmission
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JPEG hierarchical mode.

of the appropriate layer to each requesting device, thereby making full use of available
bandwidth.

In the JPEG hierarchical mode, each image component is encoded as a sequence of
frames. The lowest resolution frame (level 1) is encoded using one of the sequential or
progressive modes. The remaining levels are encoded differentially. That is, an estimate I �

i
of the image, Ii , at the i�th level (i 	 2) is first formed by upsampling the low-resolution
image Ii�1 from the layer immediately above. Then the difference between I �

i and Ii is
encoded using modifications of the DCT-based modes or the lossless mode. If lossless
mode is used to code each refinement, then the final reconstruction using all layers is
lossless. The upsampling filter used is a bilinear interpolating filter that is specified by the
standard and cannot be specified by the user. Starting from the high-resolution image,
successive low-resolution images are created essentially by downsampling by two in each
direction. The exact downsampling filter to be used is not specified but the standard
cautions that the downsampling filter used be consistent with the fixed upsampling filter.
Note that the decoder does not need to know what downsampling filter was used in order
to decode a bitstream. Figure 17.12 depicts the sequence of operations performed at each
level of the hierarchy.

Since the differential frames are already signed values, they are not level-shifted prior
to forward discrete cosine transform (FDCT). Also, the DC coefficient is coded directly
rather than differentially. Other than these two features, the Huffman coding model in
the progressive mode is the same as that used in the sequential mode. Arithmetic coding
is, however, done a bit differently with conditioning states based on the use of differences
with the pixel to the left as well as the one above. For details the user is referred to [28].
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17.8 JPEG PART 3
JPEG has made some recent extensions to the original standard described in [11]. These
extensions are collectively known as JPEG Part 3. The most important elements of JPEG
part 3 are variable quantization and tiling, as described in more detail below.

17.8.1 Variable Quantization
One of the main limitations of the original JPEG standard was the fact that visible
artifacts can often appear in the decompressed image at moderate to high compression
ratios. This is especially true for parts of the image containing graphics, text, or some
synthesized components. Artifacts are also common in smooth regions and in image
blocks containing a single dominant edge. We consider compression of a 24 bits/pixel
color version of the Lena image. In Fig. 17.13 we show the reconstructed Lena image
with different compression ratios. At 24 to 1 compression we see few artifacts. However,
as the compression ratio is increased to 96 to 1, noticeable artifacts begin to appear.
Especially annoying is the “blocking artifact” in smooth regions of the image.

One approach to deal with this problem is to change the “coarseness” of quantization
as a function of image characteristics in the block being compressed. The latest extension
of the JPEG standard, called JPEG Part 3, allows rescaling of quantization matrix Q on a
block by block basis, thereby potentially changing the manner in which quantization is
performed for each block. The scaling operation is not done on the DC coefficient Y [0,0]
which is quantized in the same manner as in the baseline JPEG. The remaining 63 AC
coefficients, Y [u,v], are quantized as follows:

Ŷ [u,v]�
[

Y [u,v]� 16

Q[u,v]� QScale

]
,

where QScale is a parameter that can take on values from 1 to 112, with a default value of
16. For the decoder to correctly recover the quantized AC coefficients, it needs to know
the value of QScale used by the encoding process. The standard specifies the exact syntax
by which the encoder can specify change in QScale values. If no such change is signaled,
then the decoder continues using the QScale value that is in current use. The overhead
incurred in signaling a change in the scale factor is approximately 15 bits depending on
the Huffman table being employed.

It should be noted that the standard only specifies the syntax by means of which the
encoding process can signal changes made to the QScale value. It does not specify how
the encoder may determine if a change in QScale is desired and what the new value of
QScale should be. Typical methods for variable quantization proposed in the literature
use the fact that the HVS is less sensitive to quantization errors in highly active regions of
the image. Quantization errors are frequently more perceptible in blocks that are smooth
or contain a single dominant edge. Hence, prior to quantization, a few simple features for
each block are computed. These features are used to classify the block as either smooth,
edge, or texture, and so forth. On the basis of this classification as well as a simple activity
measure computed for the block, a QScale value is computed.
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FIGURE 17.13

Lena image at 24 to 1 (top) and 96 to 1 (bottom) compression ratios.
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For example, Konstantinides and Tretter [21] give an algorithm for computing QScale
factors for improving text quality on compound documents. They compute an activity
measure Mi for each image block as a function of the DCT coefficients as follows:

Mi �
1

64

⎡
⎣log2 |Yi [0,0]� Yi�1[0,0]|�

∑

j,k

log2 |Yi [j,k]|
⎤
⎦ . (17.2)

The QScale value for the block is then computed as

QScalei �

⎧⎪⎨
⎪⎩

a � Mi � b if 2 > a � Mi � b 	 0.4

0.4 a � Mi � b 	 0.4

2 a � Mi � b > 2.

(17.3)

The technique is only designed to detect text regions and will quantize high-activity tex-
tured regions in the image part at the same scale as text regions. Clearly, this is not optimal
as high-activity textured regions can be quantized very coarsely leading to improved com-
pression. In addition, the technique does not discriminate smooth blocks where artifacts
are often the first to appear.

Algorithms for variable quantization that perform a more extensive classification have
been proposed for video coding but nevertheless are also applicable to still image coding.
One such technique has been proposed by Chun et al. [10] who classify blocks as being
either smooth, edge, or texture, based on several parameters defined in the DCT domain
as shown below:

Eh : horizontal energy Ev : vertical energy Ed : diagonal energy
Ea : avg (Eh ,Ev ,Ed) Em : min(Eh ,Ev ,Ed) EM : max(Eh ,Ev ,Ed)

Em/M : ratio of Em and EM .

Ea represents the average high-frequency energy of the block, and is used to distinguish
between low-activity blocks and high-activity blocks. Low-activity (smooth) blocks sat-
isfy the relationship, Ea � T1, where T1 is a low-valued threshold. High-activity blocks
are further classified into texture blocks and edge blocks. Texture blocks are detected
under the assumption that they have relatively uniform energy distribution in compari-
son with edge blocks. Specifically, a block is deemed to be a texture block if it satisfies the
conditions: Ea > T1, Emin > T2, and Em/M > T3, where T1,T2, and T3 are experimentally
determined constants. All blocks which fail to satisfy the smoothness and texture tests
are classified as edge blocks.

17.8.2 Tiling
JPEG Part 3 defines a tiling capability whereby an image is subdivided into blocks or tiles,
each coded independently. Tiling facilitates the following features:

■ Display of an image region on a given screen size;

■ Fast access to image subregions;
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Different types of tilings allowed in JPEG Part 3: (a) simple; (b) composite; and (c) pyramidal.

■ Region of interest refinement;

■ Protection of large images from copying by giving access to only a part of it.

As shown in Fig. 17.14, the different types of tiling allowed by JPEG are as follows:

■ Simple tiling: This form of tiling is essentially used for dividing a large image
into multiple sub-images which are of the same size (except for edges) and are
nonoverlapping. In this mode, all tiles are required to have the same sampling
factors and components. Other parameters like quantization tables and Huffman
tables are allowed to change from tile to tile.

■ Composite tiling: This allows multiple resolutions on a single image display plane.
Tiles can overlap within a plane.

■ Pyramidal tiling: This is used for storing multiple resolutions of an image. Simple
tiling as described above is used in each resolution. Tiles are stored in raster order,
left to right, top to bottom, and low resolution to high resolution.
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Another Part 3 extension is selective refinement. This feature permits a scan in a
progressive mode, or a specific level of a hierarchical sequence, to cover only part of
the total image area. Selective refinement could be useful, for example, in telemedicine
applications where a radiologist could request refinements to specific areas of interest in
the image.

17.9 THE JPEG2000 STANDARD
The JPEG standard has proved to be a tremendous success over the past decade in
many digital imaging applications. However, as the needs of multimedia and imaging
applications evolved in areas such as medical imaging, reconnaissance, the Internet, and
mobile imaging, it became evident that the JPEG standard suffered from shortcomings
in compression efficiency and progressive decoding. This led the JPEG committee to
launch an effort in late 1996 and early 1997 to create a new image compression standard.
The intent was to provide a method that would support a range of features in a single
compressed bitstream for different types of still images such as bilevel, gray level, color,
multicomponent—in particular multispectral—or other types of imagery. A call for tech-
nical contributions was issued in March 1997. Twenty-four proposals were submitted for
consideration by the committee in November 1997. Their evaluation led to the selection
of a wavelet-based coding architecture as the backbone for the emerging coding system.
The initial solution, inspired by the wavelet trellis-coded quantization (WTCQ) algo-
rithm [32] based on combining wavelets and trellis-coded quantization (TCQ) [6, 23],
has been refined via a series of core experiments over the ensuing three years. The initia-
tive resulted in the ISO 15444/ITU-T Recommendation T.8000 known as the JPEG2000
standard. It comprises six parts that are either complete or nearly complete at the time
of writing this chapter, together with four new parts that are under development. The
status of the parts is available at the official website [19].

Part 1, in the spirit of the JPEG baseline system, specifies the core compression system
together with a minimal file format [13]. JPEG2000 Part 1 addresses some limitations of
existing standards by supporting the following features:

■ Lossless and lossy compression of continuous-tone and bilevel images with reduced
distortion and superior subjective performance.

■ Progressive transmission and decoding based on resolution scalability by pixel
accuracy (i.e., based on quality or signal-to-noise (SNR) scalability). The bytes
extracted are identical to those that would be generated if the image had been
encoded targeting the desired resolution or quality, the latter being directly available
without the need for decoding and re-encoding.

■ Random access to spatial regions (or regions of interest) as well as to components.
Each region can be accessed at a variety of resolutions and qualities.

■ Robustness to bit errors (e.g., for mobile image communication).
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■ Encoding capability for sequential scan, thereby avoiding the need to buffer the
entire image to be encoded. This is especially useful when manipulating images of
very large dimensions such as those encountered in reconnaissance (satellite and
radar) images.

Some of the above features are supported to a limited extent in the JPEG standard. For
instance, as described earlier, the JPEG standard has four modes of operation: sequential,
progressive, hierarchical, and lossless. These modes use different techniques for encod-
ing (e.g., the lossless compression mode relies on predictive coding, whereas the lossy
compression modes rely on the DCT). One drawback is that if the JPEG lossless mode
is used, then lossy decompression using the lossless encoded bitstream is not possible.
One major advantage of JPEG2000 is that these four operation modes are integrated in
it in a “compress once, decompress many” paradigm, with superior RD and subjective
performance over a large range of RD operating points.

Part 2 specifies extensions to the core compression system and a more complete file
format [14]. These extensions address additional coding features such as generalized
and variable quantization offsets, TCQ, visual masking, and multiple component trans-
formations. In addition it includes features for image editing such as cropping in the
compressed domain or mirroring and flipping in a partially-compressed domain.

Parts 3, 4, and 5 provide a specification for motion JPEG 2000, conformance testing,
and a description of a reference software implementation, respectively [15–17]. Four
parts, numbered 8–11, are still under development at the time of writing. Part 8 deals with
security aspects, Part 9 specifies an interactive protocol and an application programming
interface for accessing JPEG2000 compressed images and files via a network, Part 10 deals
with volumetric imaging, and Part 11 specifies the tools for wireless imaging.

The remainder of this chapter provides a brief overview of JPEG2000 Part 1 and
outlines the main extensions provided in Part 2. The JPEG2000 standard embeds efficient
lossy, near-lossless and lossless representations within the same stream. However, while
some coding tools (e.g., color transformations, discrete wavelet transforms) can be used
both for lossy and lossless coding, others can be used for lossy coding only. This led to the
specification of two coding paths or options referred to as the reversible (embedding lossy
and lossless representations) and irreversible (for lossy coding only) paths with common
and path-specific building blocks. This chapter presents the main components of the
two coding paths which can be used for lossy coding. Discussion of the components
specific to JPEG2000 lossless coding can be found in [25], and a detailed description of
the JPEG2000 coding tools and system can be found in [36]. Tutorials and overviews are
presented in [9, 29, 33].

17.10 JPEG2000 PART 1: CODING ARCHITECTURE
The coding architecture comprises two paths, the irreversible and the reversible paths
shown in Fig. 17.15. Both paths can be used for lossy coding by truncating the compressed
codestream at the desired bit rate. The input image may comprise one or more (up to
16, 384) signed or unsigned components to accommodate various forms of imagery,
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Main building blocks of the JPEG2000 coder. The path with boxes in dotted lines corresponds
to the JPEG2000 lossless coding mode [25].

including multispectral imagery. The various components may have different bit depth,
resolution, and sign specifications.

17.10.1 Preprocessing: Tiling, Level Offset, and Color Transforms
The first steps in both paths are optional and can be regarded as preprocessing steps.
The image is first, optionally, partitioned into rectangular and nonoverlapping tiles of
equal size. If the sample values are unsigned and represented with B bits, an offset of
�2B�1 is added leading to a signed representation in the range [�2B�1,2B�1] that is
symmetrically distributed about 0. The color component samples may be converted into
luminance and color difference components via an irreversible color transform (ICT)
or a reversible color transform (RCT) in the irreversible or reversible paths, respectively.



448 CHAPTER 17 JPEG and JPEG2000
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and can be used for lossy coding only. The RCT is a reversible integer-to-integer transform
that approximates the ICT. This color transform is required for lossless coding [25]. The
RCT can also be used for lossy coding, thereby allowing the embedding of both a lossy
and lossless representation of the image in a single codestream.

17.10.2 Discrete Wavelet Transform (DWT)
After tiling, each tile component is decomposed with a forward discrete wavelet transform
(DWT) into a set of L � 2l resolution levels using a dyadic decomposition. A detailed
and complete presentation of the theory and implementation of filter banks and wavelets
is beyond the scope of this chapter. The reader is referred to Chapter 6 [26] and to [38]
for additional insight on these issues.

The forward DWT is based on separable wavelet filters and can be irreversible or
reversible. The transforms are then referred to as reversible discrete wavelet transform
(RDWT) and irreversible discrete wavelet transform (IDWT). As for the color transform,
lossy coding can make use of both the IDWT and the RDWT. In the case of RDWT, the
codestream is truncated to reach a given bit rate. The use of the RDWT allows for both
lossless and lossy compression to be embedded in a single compressed codestream. In
contrast, lossless coding restricts us to the use of only RDWT.

The default RDWT is based on the spline 5/3 wavelet transform first introduced
in [22]. The RDWT filtering kernel is presented elsewhere [25] in this handbook. The
default irreversible transform, IDWT, is implemented with the Daubechies 9/7 wavelet
kernel [4]. The coefficients of the analysis and synthesis filters are given in Table 17.1.
Note however that, in JPEG2000 Part 2, other filtering kernels specified by the user can
be used to decompose the image.

TABLE 17.1 Indirect discrete wavelet transform analysis and synthesis filters coefficients.

Index Lowpass analysis Highpass analysis Lowpass synthesis Highpass synthesis

filter coefficient filter coefficient filter coefficient filter coefficient

0 0.602949018236360 1.115087052457000 1.115087052457000 0.602949018236360

�/�1 0.266864118442875 �0.591271763114250 0.591271763114250 �0.266864118442875

�/�2 �0.078223266528990 �0.057543526228500 �0.057543526228500 �0.078223266528990

�/�3 �0.016864118442875 0.091271763114250 �0.091271763114250 0.016864118442875

�/�4 �0.026748757410810 0.026748757410810
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These filtering kernels are of odd length. Their implementation at the boundary of
the image or subbands requires a symmetric signal extension. Two filtering modes are
possible: convolution- and lifting-based [26].

17.10.3 Quantization and Inverse Quantization
JPEG2000 adopts a scalar quantization strategy, similar to that in the JPEG baseline
system. One notable difference is in the use of a central deadzone quantizer. A detailed
description of the procedure can be found in [36]. This section provides only an outline
of the algorithm. In Part 1, the subband samples are quantized with a deadzone scalar
quantizer with a central interval that is twice the quantization step size. The quantization
of yi(n) is given by

ŷi(n) � sign(yi(n))� |yi(n)|

i
�, (17.4)

where 
i is the quantization step size in the subband i. The parameter 
i is chosen so

that 
i � 

√

1
Gi

, where Gi is the squared norm of the DWT synthesis basis vectors for

subband i and 
 is a parameter to be adjusted to meet given RD constraints. The step
size 
i is represented with two bytes, and consists of a 11-bit mantissa �i and a 5-bit
exponent �i :


i � 2Ri ��i
(

1 �
�i

211

)
, (17.5)

where Ri is the number of bits corresponding to the nominal dynamic range of the
coefficients in subband i. In the reversible path, the step size 
i is set to 1 by choosing
�i � 0 and �i � Ri .

The nominal dynamic range in subband i depends on the number of bits used to
represent the original tile component and on the wavelet transform used.

The choice of a deadzone that is twice the quantization step size allows for an optimal
bitstream embedded structure, i.e., for SNR scalability. The decoder can, by decoding up
to any truncation point, reconstruct an image identical to what would have been obtained
if encoded at the corresponding target bit rate. All image resolutions and qualities are
directly available from a single compressed stream (also called codestream) without the
need for decoding and re-encoding the existing codestream. In Part 2, the size of the
deadzone can have different values in the different subbands.

Two modes have been specified for signaling the quantization parameters: expounded
and derived. In the expounded mode, the pair of values (�i ,�i) for each subband are
explicitly transmitted. In the derived mode, codestream markers quantization default
and quantization coefficient supply step size parameters only for the lowest frequency
subband. The quantization parameters for other subbands i are then derived according to

(�i ,�i) � (�0 � li � L,�0), (17.6)

where L is the total number of wavelet decomposition levels and li is the number of levels
required to generate the subband i.
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The inverse quantization allows for a reconstruction bias from the quantizer
midpoint for nonzero indices to accommodate skewed probability distributions of
wavelet coefficients. The reconstructed values are thus computed as

ỹi �

⎧⎪⎨
⎪⎩

(ŷi � �)
i2
Mi �Ni if ŷi > 0,

(ŷi � �)
i2
Mi �Ni if ŷi < 0,

0 otherwise.

(17.7)

Here � is a parameter which controls the reconstruction bias; a value of � � 0.5
results in midpoint reconstruction. The term Mi denotes the maximum number of bits
for a quantizer index in subband i. Ni represents the number of bits to be decoded in the
case where the embedded bitstream is truncated prior to decoding.

17.10.4 Precincts and Code-blocks
Each subband, after quantization, is divided into nonoverlapping rectangular blocks,
called code-blocks, of equal size. The dimensions of the code-blocks are powers of 2 (e.g.,
of size 16 � 16 or 32 � 32), and the total number of coefficients in a code-block should
not exceed 4096. The code-blocks formed by the quantizer indexes corresponding to the
quantized wavelet coefficients constitute the input to the entropy coder. Collections of
spatially consistent code-blocks taken from each subband at each resolution level are
called precincts and will form a packet partition in the bitstream structure. The purpose
of precincts is to enable spatially progressive bitstreams. This point is further elaborated
in Section 17.10.6.

17.10.5 Entropy Coding
The JPEG2000 entropy coding technique is based on the EBCOT (Embedded Block Cod-
ing with Optimal Truncation) algorithm [35]. Each code-block Bi is encoded separately,
bit plane by bit plane, starting with the most significant bit plane (MSB) with a nonzero
element and progressing towards the least significant bit plane. The data in each bit plane
is scanned along the stripe pattern shown in Fig. 17.16 (with a stripe height of 4 sam-
ples) and encoded in three passes. Each pass collects contextual information that first
helps decide which primitives to encode. The primitives are then provided to a context-
dependent arithmetic coder. The bit plane encoding procedure is well suited for creating
an embedded bitstream. Note that the approach does not exploit interscale dependencies.
This potential loss in compression efficiency is compensated by beneficial features such
as spatial random access, geometric manipulations in the compression domain, and error
resilience.

17.10.5.1 Context Formation
Let si[k]� si[k1,k2] be the subband sample belonging to the block Bi at the horizontal
and vertical positions k1 and k2. Let �i[k] ∈ {�1,1} denote the sign of si[k] and �i[k]�
|si [k]|

�	i
, the amplitude of the quantized samples represented with Mi bits, where �	i is the
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quantization step of the subband 	i containing the block Bi . Let �b
i [k] be the bth bit of

the binary representation of �i[k].
A sample si[k] is said to be nonsignificant (
(si[k]) � 0) if the first nonzero bit �b

i [k]
of �i[k] is yet to be encountered. The statistical dependencies between neighboring
samples are captured via the formation of contexts which depend upon the significance
state variable 
(si[k]) associated with the eight-connect neighbors depicted in Fig. 17.17.
These contexts are grouped in the following categories:

■ h : number of significant horizontal neighbors, 0 � h � 2;

■ v : number of significant vertical neighbors, 0 � v � 2;

■ d : number of significant diagonal neighbors, 0 � d � 4.

Neighbors which lie beyond the code-block boundary are considered to be nonsignificant
to avoid dependence between code-blocks.
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17.10.5.2 Coding Primitives
Different subsets of the possible significance patterns form the contextual information (or
state variables) that is used to decide upon the primitive to code as well as the probability
model to use in arithmetic coding.

If the sample significance state variable is in the non-significant state, a combination
of the zero coding (ZC) and RLC primitives is used to encode whether the symbol is
significant or not in the current bit plane. If the four samples in a column defined by
the column-based stripe scanning pattern (see Fig. 17.16) have a zero significance state
value (
(si[k]) � 0), with zero-valued neighborhoods, then the RLC primitive is coded.
Otherwise, the value of the sample �b

i [k] in the current bit plane b is coded with the
primitive ZC . In other words, RLC coding occurs when all four locations of a column in
the scan pattern are nonsignificant and each location has only nonsignificant neighbors.

Once the first nonzero bit �b
i [k] has been encoded, the coefficient becomes significant

and its sign �i[k] is encoded with the sign coding (SC) primitive. The binary-valued sign
bit �i[k] is encoded conditionally to 5 different context states depending upon the sign
and significance of the immediate vertical and horizontal neighbors.

If a sample significance state variable is already significant, i.e., (
(si[k]) � 1), when
scanned in the current bit plane, then the magnitude refinement (MR) primitive encodes
the bit value �b

i [k]. Three contexts are used depending on whether or not (a) the immedi-
ate horizontal and vertical neighbors are significant and (b) the MR primitive has already
been applied to the sample in a previous bit plane.

17.10.5.3 Bit Plane Encoding Passes
Briefly, the different passes proceed as follows. In a first significance propagation pass

(Pp,1
i ), the insignificant coefficients that have the highest probability of becoming signif-

icant are encoded. A nonsignificant coefficient is considered to have a high probability
of becoming significant if at least one of its eight-connect neighbors is significant. For
each sample si[k] that is non-significant with a significant neighbor, the primitive ZC is
encoded followed by the primitive SC if �b

i [k]� 1.
Once the first nonzero bit has been encoded, the coefficient becomes significant and

its sign is encoded. All subsequent bits are called refinement bits. In the second pass,

referred to as the refinement pass (Pb,2
i ), the significant coefficients are refined by their

bit representation in the current bit plane. Following the stripe-based scanning pattern,
the primitive MR is encoded for each significant coefficient for which no information
has been encoded yet in the current bit plane b.

In a final normalization or cleanup pass (Pb
3 ), all the remaining coefficients in the

bit plane (i.e., the nonsignificant samples for which no information has yet been coded)
are encoded with the primitives ZC , RLC , and, if necessary, SC . The cleanup pass Pb

3
corresponds to the encoding of all the bit plane b samples.

The encoding in three passes, Pb
1 ,Pb

2 ,Pb
3 , leads to the creation of distinct subsets

in the bitstream. This structure in partial bit planes allows a fine granular bitstream
representation providing a large number of RD truncation points. The standard allows
the placement of bitstream truncation points at the end of each coding pass (this point is
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revisited in the sequel). The bitstream can thus be organized in such a way that the subset
leading to a larger reduction in distortion is transmitted first.

17.10.5.4 Arithmetic Coding
Entropy coding is done by means of an arithmetic coder that encodes binary symbols
(the primitives) using adaptive probability models conditioned by the corresponding
contextual information. A reduced number of contexts, up to a maximum of 9, is used
for each primitive. The corresponding probabilities are initialized at the beginning of each
code-block and then updated using a state automaton. The reduced number of contexts
allows for rapid probability adaptation. In a default operation mode, the encoding process
starts at the beginning of each code-block and terminates at the end of each code-block.
However, it is also possible to start and terminate the encoding process at the beginning
and at the end, respectively, of a partial bit plane in a code-block. This allows increased
error resilience of the codestream.

An arithmetic coder proceeds with recursive probability interval subdivisions. The
arithmetic coding principles are described in [25]. In brief, the interval [0,1] is partitioned
into two cells representing the binary symbols of the alphabet. The size of each cell is given
by the stationary probability of the corresponding symbol. The partition, and hence the
bounds of the different segments, of the unit interval is given by the cumulative stationary
probability of the alphabet symbols. The interval corresponding to the first symbol to
be encoded is chosen. It becomes the current interval that is again partitioned into
different segments. The subinterval associated with the more probable symbol (MPS) is
ordered ahead of the subinterval corresponding to the less probable symbol (LPS). The
symbols are thus often recognized as MPS and LPS rather than as 0 or 1. The bounds
of the different segments are hence driven by the statistical model of the source. The
codestream associated with the sequence of coded symbols points to the lower bound
of the final subinterval. The decoding of the sequence is performed by reproducing the
coder behavior in order to determine the sequence of subintervals pointed to by the
codestream.

Practical implementations use fixed precision integer arithmetic with integer repre-
sentations of fractional values. This potentially forces an approximation of the symbol
probabilities leading to some coding suboptimality. The corresponding states of the
encoder (interval values that cannot be reached by the encoder) are used to represent
markers which contribute to improving the error resilience of the codestream [36]. One
of the early practical implementations of arithmetic coding is known as the Q-coder
[27]. The JPEG2000 standard has adopted a modified version of the Q-coder, called the
MQ-coder, introduced in the JBIG2 standard [12] and available on a license and royalty-
free basis. The various versions of arithmetic coders inspired from the Q-coder often
differ by their stuffing procedure and the way they handle the carryover.

In order to reduce the number of symbols to encode, the standard specifies an option
that allows the bypassing of some coding passes. Once the fourth bit plane has been coded,
the data corresponding to the first and second passes is included as raw data without being
arithmetically encoded. Only the third pass is encoded. This coding option is referred to
as the lazy coding mode.
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17.10.6 Bitstream Organization
The compressed data resulting from the different coding passes can be arranged in
different configurations in order to accommodate a rich set of progression orders that are
dictated by the application needs of random access and scalability. This flexible progres-
sion order is enabled by essentially four bitstream structuring components: code-block,
precinct, packet, and layer.

17.10.6.1 Packets and Layers
The bitstream is organized as a succession of layers, each one being formed by a collection
of packets. The layer gathers sets of compressed partial bit plane data from all the code-
blocks of the different subbands and components of a tile. A packet is formed by an
aggregation of compressed partial bit planes of a set of code-blocks that correspond
to one spatial location at one resolution level and that define a precinct. The number
of bit plane coding passes contained in a packet varies for different code-blocks. Each
packet starts with a header that contains information about the number of coding passes
required for each code-block assigned to the packet. The code-block compressed data is
distributed across the different layers in the codestream. Each layer contains the additional
contributions from each code-block (see Figure 17.18). The number of coding passes for
a given code-block that are included in a layer is determined by RD optimization, and it
defines truncation points in the codestream [35].

Notions of precincts, code-blocks, packets, and layers are well suited to allow the
encoder to arrange the bitstream in an arbitrary progression manner, i.e., to accommodate
the different modes of scalability that are desired. Four types of progression, namely

B0 B1 B2 B3 B4 B5 B6 B7 B8

Layer 1

Layer 2

Layer 3

FIGURE 17.18

Code-block contributions to layers.
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resolution, quality, spatial, and component, can be achieved by an appropriate ordering
of the packets in the bitstream. For instance, layers and packets are key components for
allowing quality scalability, i.e., packets containing less significant bits can be discarded
to achieve lower bit rates and higher distortion. This flexible bitstream structuring gives
application developers a high degree of freedom. For example, images can be transmitted
over a network at arbitrary bit rates by using a layer-progressive order; lower resolutions,
corresponding to low-frequency subbands, can be sent first for image previewing; and
spatial browsing of large images is also possible through appropriate tile and/or partition
selection. All these operations do not require any re-encoding but only byte-wise copy
operations. Additional information on the different modes of scalability is provided in
the standard.

17.10.6.2 Truncation Points RD Optimization
The problem now is to find the packet length for all code-blocks, i.e., define truncation
point that will minimize the overall distortion. The recommended method to solve this
problem, which is not part of the standard, makes use of a RD optimization procedure.
Under certain assumptions about the quantization noise, the distortion is additive across
code-blocks. The overall distortion can thus be written as D �

∑
i Dni

i . There is thus
a need to search for the packet lengths ni so that the distortion is minimized under
the constraint of an overall bit rate, R �

∑
i Rni

i � Rmax . The distortion measure Dni
i is

defined as the MSE weighted by the square of the L2 norm of the wavelet basis functions
used for the subband i to which the code-block Bi belongs. This optimization problem
is solved using a Lagrangian formulation.

17.10.7 Additional Features
17.10.7.1 Region-of-Interest Coding
The JPEG2000 standard has a provision for defining the so-called regions-of-interest (ROI)
in an image. The objective is to encode the ROIs with a higher quality and possibly to
transmit them first in the bitstream so that they can be rendered first in a progressive
decoding scenario. To allow for ROI coding, an ROI mask must first be derived. A mask is
a map of the ROI in the image domain with nonzero values inside the ROI and zero values
outside. The mask identifies the set of pixels (or the corresponding wavelet coefficients)
that should be reconstructed with higher fidelity. ROI coding thus consists of encoding
the quantized wavelet coefficients corresponding to the ROI with a higher precision. The
ROI coding approach in JPEG2000 Part 1 is based on the MAXSHIFT method [8] which
is an extension of the ROI scaling-based method introduced in [5]. The ROI scaling
method consists of scaling up the coefficients belonging to the ROI or scaling down
the coefficients corresponding to non-ROI regions in the image. The goal of the scaling
operation is to place the bits of the ROI in higher bit planes than the bits associated with
the non-ROI regions as shown in Fig. 17.19. Thus, the ROI will be decoded before the
rest of the image, and if the bitstream is truncated, the ROI will be of higher quality.
The ROI scaling method described in [5] requires the coding and transmission of the
ROI shape information to the decoder. In order to minimize the decoder complexity,
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From left to right, no ROI coding, scaling method, and MAXSHIFT method for ROI coding.

the MAXSHIFT method adopted by JPEG2000 Part 1 shifts down all the coefficients not
belonging to the ROI by a certain number s of bits chosen so that 2s is larger than the
largest non-ROI coefficients. This ensures that the minimum value contained in the ROI
is higher than the maximum value of the non-ROI area. The compressed data associated
with the ROI will then be placed first in the bitstream. With this approach the decoder
does not need to generate the ROI mask. All the coefficients lower than the scaling value
belong to the non-ROI region. Therefore the ROI shape information does not need to
be encoded and transmitted. The drawback of this reduced complexity is that the ROI
cannot be encoded with multiple quality differentials with respect to the non-ROI area.

17.10.7.2 File Format
Part 1 of the JPEG2000 standard also defines an optional file format referred to as JP2. It
defines a set of data structures used to store information that may be required to render
and display the image such as the colorspace (with two methods of color specification),
the resolution of the image, the bit depth of the components, and the type and ordering
of the components. The JP2 file format also defines two mechanisms for embedding
application-specific data or metadata using either a universal unique identifier (UUID)
or XML [43].

17.10.7.3 Error Resilience
Arithmetic coding is very sensitive to transmission noise; when some bits are altered
by the channel, synchronization losses can occur at the receiver leading to error prop-
agation that results in dramatic symbol error rates. JPEG2000 Part 1 provides several
options to improve the error resilience of the codestream. First, the independent cod-
ing of the code-blocks limit error propagation across code-blocks boundaries. Certain
coding options such as terminating the arithmetic coding at the end of each coding pass
and reinitializing the contextual information at the beginning of the next coding pass
further confine error propagation within a partial bit plane of a code-block. The optional
lazy coding mode, that bypasses arithmetic coding for some passes, can also help to pro-
tect against error propagation. In addition, at the end of each cleanup pass, segmentation
symbols are added in the codestream. These markers can be exploited for error detection.
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If the segmentation symbol is not decoded properly, the data in the corresponding bit
plane and of the subsequent bit planes in the code-block should be discarded. Finally,
resynchronization markers, including the numbering of packets, are also inserted in front
of each packet in a tile.

17.11 PERFORMANCE AND EXTENSIONS
The performance of JPEG2000 when compared with the JPEG baseline algorithm is
briefly discussed in this section. The extensions included in Part 2 of the JPEG2000
standard are also listed.

17.11.1 Comparison of Performance
The efficiency of the JPEG2000 lossy coding algorithm in comparison with the JPEG
baseline compression standard has been extensively studied and key results are sum-
marized in [7, 9, 24]. The superior RD and error resilience performance, together with
features such as progressive coding by resolution, scalability, and region of interest, clearly
demonstrate the advantages of JPEG2000 over the baseline JPEG (with optimum Huff-
man codes). For coding common test images such as Foreman and Lena in the range
of 0.125-1.25 bits/pixel, an improvement in the peak signal-to-noise ratio (PSNR) for
JPEG2000 is consistently demonstrated at each compression ratio. For example, for the
Foreman image, an improvement of 1.5 to 4 dB is observed as the bits per pixel are reduced
from 1.2 to 0.12 [7].

17.11.2 Part 2 Extensions
Most of the technologies that have not been included in Part 1 due to their complexity
or because of intellectual property rights (IPR) issues have been included in Part 2 [14].
These extensions concern the use of the following:

■ different offset values for the different image components;

■ different deadzone sizes for the different subbands;

■ TCQ [23];

■ visual masking based on the application of a nonlinearity to the wavelet coefficients
[44, 45];

■ arbitrary wavelet decomposition for each tile component;

■ arbitrary wavelet filters;

■ single sample tile overlap;

■ arbitrary scaling of the ROI coefficients with the necessity to code and transmit the
ROI mask to the decoder;
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■ nonlinear transformations of component samples and transformations to
decorrelate multiple component data;

■ extensions to the JP2 file format.

17.12 ADDITIONAL INFORMATION
Some sources and links for further information on the standards are provided here.

17.12.1 Useful Information and Links for the JPEG Standard
A key source of information on the JPEG compression standard is the book by Pennebaker
and Mitchell [28]. This book also contains the entire text of the official committee draft
international standard ISO DIS 10918-1 and ISO DIS 10918-2. The official standards
document [11] contains information on JPEG Part 3.

The JPEG committee maintains an official website http://www.jpeg.org, which con-
tains general information about the committee and its activities, announcements, and
other useful links related to the different JPEG standards. The JPEG FAQ is located at
http://www.faqs.org/faqs/jpeg-faq/part1/preamble.html.

Free, portable C code for JPEG compression is available from the Independent JPEG
Group (IJG). Source code, documentation, and test files are included. Version 6b is
available from

ftp.uu.net:/graphics/jpeg/jpegsrc.v6b.tar.gz

and in ZIP archive format at

ftp.simtel.net:/pub/simtelnet/msdos/graphics/jpegsr6b.zip.

The IJG code includes a reusable JPEG compression/decompression library, plus sample
applications for compression, decompression, transcoding, and file format conversion.
The package is highly portable and has been used successfully on many machines ranging
from personal computers to super computers. The IJG code is free for both noncommer-
cial and commercial use; only an acknowledgement in your documentation is required to
use it in a product. A different free JPEG implementation, written by the PVRG group at
Stanford, is available from http://www.havefun.stanford.edu:/pub/jpeg/JPEGv1.2.1.tar.Z.
The PVRG code is designed for research and experimentation rather than production
use; it is slower, harder to use, and less portable than the IJG code, but the PVRG code is
easier to understand.

17.12.2 Useful Information and Links for the JPEG2000 Standard
Useful sources of information on the JPEG2000 compression standard include two books
published on the topic [1, 36]. Further information on the different parts of the JPEG2000
standard can be found on the JPEG website http://www.jpeg.org/jpeg2000.html. This
website provide links to sites from which various official standards and other documents
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can be downloaded. It also provides links to sites from which software implementations
of the standard can be downloaded. Some software implementations are available at the
following addresses:

■ JJ2000 software that can be accessed at http://www.jpeg2000.epfl.ch. The JJ2000
software is a Java implementation of JPEG2000 Part 1.

■ Kakadu software that can be accessed at http://www.ee.unsw.edu.au/taubman/
kakadu. The Kakadu software is a C++ implementation of JPEG2000 Part 1.
The Kakadu software is provided with the book [36].

■ Jasper software that can be accessed at http://www.ece.ubc.ca/mdadams/jasper/.
Jasper is a C implementation of JPEG2000 that is free for commercial use.
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18.1 WHAT ARE WAVELETS: WHY ARE THEY GOOD
FOR IMAGE CODING?

During the past 15 years, wavelets have made quite a splash in the field of image
compression. The FBI adopted a wavelet-based standard for fingerprint image com-
pression. The JPEG2000 image compression standard [1], which is a much more efficient
alternative to the old JPEG standard (see Chapter 17), is also based on wavelets. A natural
question to ask then is why wavelets have made such an impact on image compression.
This chapter will answer this question, providing both high-level intuition and illustra-
tive details based on state-of-the-art wavelet-based coding algorithms. Visually appealing
time-frequency-based analysis tools are sprinkled in generously to aid in our task.

Wavelets are tools for decomposing signals, such as images, into a hierarchy of increas-
ing resolutions: as we consider more and more resolution layers, we get a more and more
detailed look at the image. Figure 18.1 shows a three-level hierarchy wavelet decom-
position of the popular test image Lena from coarse to fine resolutions (for a detailed
treatment on wavelets and multiresolution decompositions, also see Chapter 6). Wavelets
can be regarded as “mathematical microscopes” that permit one to “zoom in” and “zoom
out” of images at multiple resolutions. The remarkable thing about the wavelet decom-
position is that it enables this zooming feature at absolutely no cost in terms of excess
redundancy: for an M � N image, there are exactly MN wavelet coefficients—exactly the
same as the number of original image pixels (see Fig. 18.2).

As a basic tool for decomposing signals, wavelets can be considered as duals to the
more traditional Fourier-based analysis methods that we encounter in traditional under-
graduate engineering curricula. Fourier analysis associates the very intuitive engineering
concept of “spectrum” or “frequency content” of the signal. Wavelet analysis, in con-
trast, associates the equally intuitive concept of “resolution” or “scale” of the signal. At
a functional level, Fourier analysis is to wavelet analysis as spectrum analyzers are to
microscopes.

As wavelets and multiresolution decompositions have been described in greater depth
in Chapter 6, our focus here will be more on the image compression application. Our
goal is to provide a self-contained treatment of wavelets within the scope of their role 463
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Level 0

Level 1

Level 2

Level 3

FIGURE 18.1

A three-level hierarchy wavelet decomposition of the 512 � 512 color Lena image. Level 1
(512 � 512) is the one-level wavelet representation of the original Lena at Level 0; Level 2
(256 � 256) shows the one-level wavelet representation of the lowpass image at Level 1; and
Level 3 (128 � 128) gives the one-level wavelet representation of the lowpass image at Level 2.
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FIGURE 18.2

A three-level wavelet representation of the Lena image generated from the top view of the three-
level hierarchy wavelet decomposition in Fig. 18.1. It has exactly the same number of samples
as in the image domain.

in image compression. More importantly, our goal is to provide a high-level explanation
for why they are well suited for image compression. Indeed, wavelets have superior
properties vis-a-vis the more traditional Fourier-based method in the form of the discrete
cosine transform (DCT) that is deployed in the old JPEG image compression standard
(see Chapter 17). We will also cover powerful generalizations of wavelets, known as
wavelet packets, that have already made an impact in the standardization world: the FBI
fingerprint compression standard is based on wavelet packets.

Although this chapter is about image coding,1 which involves two-dimensional (2D)
signals or images, it is much easier to understand the role of wavelets in image coding
using a one-dimensional (1D) framework, as the conceptual extension to 2D is straight-
forward. In the interests of clarity, we will therefore consider a 1D treatment here. The
story begins with what is known as the time-frequency analysis of the 1D signal. As
mentioned, wavelets are a tool for changing the coordinate system in which we represent
the signal: we transform the signal into another domain that is much better suited for
processing, e.g., compression. What makes for a good transform or analysis tool? At the
basic level, the goal is to be able to represent all the useful signal features and important
phenomena in as compact a manner as possible. It is important to be able to compact the
bulk of the signal energy into the fewest number of transform coefficients: this way, we
can discard the bulk of the transform domain data without losing too much information.
For example, if the signal is a time impulse, then the best thing is to do no transforms at

1We use the terms image compression and image coding interchangeably in this chapter.
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all! Keep the signal information in its original and sparse time-domain representation,
as that will maximize the temporal energy concentration or time resolution. However,
what if the signal has a critical frequency component (e.g., a low-frequency background
sinusoid) that lasts for a long time duration? In this case, the energy is spread out in
the time domain, but it would be succinctly captured in a single frequency coefficient if
one did a Fourier analysis of the signal. If we know that the signals of interest are pure
sinusoids, then Fourier analysis is the way to go. But, what if we want to capture both
the time impulse and the frequency impulse with good resolution? Can we get arbitrarily
fine resolution in both time and frequency?

The answer is no. There exists an uncertainty theorem (much like what we learn
in quantum physics), which disallows the existence of arbitrary resolution in time and
frequency [2]. A good way of conceptualizing these ideas and the role of wavelet basis
functions is through what is known as time-frequency“tiling” plots, as shown in Fig. 18.3,
which shows where the basis functions live on the time-frequency plane: i.e., where is
the bulk of the energy of the elementary basis elements localized? Consider the Fourier
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FIGURE 18.3

Tiling diagrams associated with the STFT bases and wavelet bases. (a) STFT bases and the tiling
diagram associated with a STFT expansion. STFT bases of different frequencies have the same
resolution (or length) in time; (b) Wavelet bases and tiling diagram associated with a wavelet
expansion. The time resolution is inversely proportional to frequency for wavelet bases.
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case first. As impulses in time are completely spread out in the frequency domain, all
localization is lost with Fourier analysis. To alleviate this problem, one typically decom-
poses the signal into finite-length chunks using windows or so-called short-time Fourier
transform (STFT). Then, the time-frequency tradeoffs will be determined by the win-
dow size. An STFT expansion consists of basis functions that are shifted versions of
one another in both time and frequency: some elements capture low-frequency events
localized in time, and others capture high-frequency events localized in time, but the
resolution or window size is constant in both time and frequency (see Fig. 18.3(a)). Note
that the uncertainty theorem says that the area of these tiles has to be nonzero.

Shown in Fig. 18.3(b) is the corresponding tiling diagram associated with the wavelet
expansion. The key difference between this and the Fourier case, which is the critical
point, is that the tiles are not all of the same size in time (or frequency). Some basis
elements have short time windows; others have short frequency windows. Of course, the
uncertainty theorem ensures that the area of each tile is constant and nonzero. It can be
shown that the basis functions are related to one another by shifts and scales as this is the
key to wavelet analysis.

Why are wavelets well suited for image compression? The answer lies in the time-
frequency (or more correctly, space-frequency) characteristics of typical natural images,
which turn out to be well captured by the wavelet basis functions shown in Fig. 18.3(b).
Note that the STFT tiling diagram of Fig. 18.3(a) is conceptually similar to what com-
mercial DCT-based image transform coding methods like JPEG use. Why are wavelets
inherently a better choice? Looking at Fig. 18.3(b), one can note that the wavelet basis
offers elements having good frequency resolution at lower frequency (the short and fat
basis elements) while simultaneously offering elements that have good time resolution at
higher frequencies (the tall and skinny basis elements).

This tradeoff works well for natural images and scenes that are typically composed of
a mixture of important long-term low-frequency trends that have larger spatial duration
(such as slowly varying backgrounds like the blue sky, and the surface of lakes) as well
as important transient short duration high-frequency phenomena such as sharp edges.
The wavelet representation turns out to be particularly well suited to capturing both
the transient high-frequency phenomena such as image edges (using the tall and skinny
tiles) and long spatial duration low-frequency phenomena such as image backgrounds
(the short and fat tiles). As natural images are dominated by a mixture of these kinds of
events,2 wavelets promise to be very efficient in capturing the bulk of the image energy
in a small fraction of the coefficients.

To summarize, the task of separating transient behavior from long-term trends is a
very difficult task in image analysis and compression. In the case of images, the difficulty
stems from the fact that statistical analysis methods often require the introduction of at
least some local stationarity assumption, i.e., the image statistics do not change abruptly

2Typical images also contain textures; however, conceptually, textures can be assumed to be a dense
concentration of edges, and so it is fairly accurate to model typical images as smooth regions delimited
by edges.
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over time. In practice, this assumption usually translates into ad hoc methods to block
data samples for analysis, methods that can potentially obscure important signal features:
e.g., if a block is chosen too big, a transient component might be totally neglected when
computing averages. The blocking artifact in JPEG decoded images at low rates is a result
of the block-based DCT approach. A fundamental contribution of wavelet theory [3] is
that it provides a unified framework in which transients and trends can be simultaneously
analyzed without the need to resort to blocking methods.

As a way of highlighting the benefits of having a sparse representation, such as that
provided by the wavelet decomposition, consider the lowest frequency band in the top
level (Level 3) of the three-level wavelet hierarchy of Lena in Fig. 18.1. This band is just
a downsampled (by a factor of 82 � 64) and smoothed version of the original image.
A very simple way of achieving compression is to simply retain this lowpass version and
throw away the rest of the wavelet data, instantly achieving a compression ratio of 64:1.
Note that if we want a full-size approximation to the original, we would have to inter-
polate the lowpass band by a factor of 64—this can be done efficiently by using a three-
stage synthesis filter bank (see Chapter 6). We may also desire better image fidelity, as
we may be compromising high-frequency image detail, especially perceptually important
high-frequency edge information. This is where wavelets are particularly attractive as they
are capable of capturing most image information in the highly subsampled low-frequency
band and additional localized edge information in spatial clusters of coefficients in the
high-frequency bands (see Fig. 18.1). The bulk of the wavelet data is insignificant and
can be discarded or quantized very coarsely.

Another attractive aspect of the coarse-to-fine nature of the wavelet representation
naturally facilitates a transmission scheme that progressively refines the received image
quality. That is, it would be highly beneficial to have an encoded bitstream that can
be chopped off at any desired point to provide a commensurate reconstruction image
quality. This is known as a progressive transmission feature or as an embedded bitstream
(see Fig. 18.4). Many modern wavelet image coders have this feature, as will be covered
in more detail in Section 18.5. This is ideally suited, for example, to Internet image
applications. As is well known, the Internet is a heterogeneous mess in terms of the
number of users and their computational capabilities and effective bandwidths. Wavelets
provide a natural way to satisfy users having disparate bandwidth and computational
capabilities: the low-end users can be provided a coarse quality approximation, whereas
higher-end users can use their increased bandwidth to get better fidelity. This is also very
useful for Web browsing applications, where having a coarse quality image with a short
waiting time may be preferable to having a detailed quality with an unacceptable delay.

These are some of the high-level reasons why wavelets represent a superior alternative
to traditional Fourier-based methods for compressing natural images: this is why the
JPEG2000 standard [1] uses wavelets instead of the Fourier-based DCT.

In this chapter, we will review the salient aspects of the general compression prob-
lem and the transform coding paradigm in particular, and highlight the key differences
between the class of early subband coders and the recent more advanced class of modern-
day wavelet image coders. We pick the celebrated embedded zerotree wavelet (EZW)
coder as a representative of this latter class, and we describe its operation by using a
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FIGURE 18.4

Multiresolution wavelet image representation naturally facilitates progressive transmission—
a desirable feature for the transmission of compressed images over heterogeneous packet
networks and wireless channels.

simple illustrative example. We conclude with more powerful generalizations of the basic
wavelet image coding framework to wavelet packets, which are particularly well suited to
handle special classes of images such as fingerprints.

18.2 THE COMPRESSION PROBLEM
Image compression falls under the general umbrella of data compression, which has been
studied theoretically in the field of information theory [4], pioneered by Claude Shannon
[5] in 1948. Information theory sets the fundamental bounds on compression perfor-
mance theoretically attainable for certain classes of sources. This is very useful because
it provides a theoretical benchmark against which one can compare the performance of
more practical but suboptimal coding algorithms.
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Historically, the lossless compression problem came first. Here the goal is to compress
the source with no loss of information. Shannon showed that given any discrete source
with a well-defined statistical characterization (i.e., a probability mass function), there is
a fundamental theoretical limit to how well you can compress the source before you start
to lose information. This limit is called the entropy of the source. In lay terms, entropy
refers to the uncertainty of the source. For example, a source that takes on any of N
discrete values a1,a2, . . . ,aN with equal probability has an entropy given by log2 N bits
per source symbol. If the symbols are not equally likely, however, then one can do better
because more predictable symbols should be assigned fewer bits. The fundamental limit
is the Shannon entropy of the source.

Lossless compression of images has been covered in Chapter 16. For image coding,
typical lossless compression ratios are of the order of 2:1 or at most 3:1. For a 512 � 512
8-bit grayscale image, the uncompressed representation is 256 Kbytes. Lossless compres-
sion would reduce this to at best ∼80 Kbytes, which may still be excessive for many
practical low-bandwidth transmission applications. Furthermore, lossless image com-
pression is for the most part overkill, as our human visual system is highly tolerant to
losses in visual information. For compression ratios in the range of 10:1 to 40:1 or more,
lossless compression cannot do the job, and one needs to resort to lossy compression
methods.

The formulation of the lossy data compression framework was also pioneered by
Shannon in his work on rate-distortion (RD) theory [6], in which he formalized the
theory of compressing certain limited classes of sources having well-defined statistical
properties, e.g., independent, identically distributed (i.i.d.) sources having a Gaussian
distribution subject to a fidelity criterion, i.e., subject to a tolerance on the maximum
allowable loss or distortion that can be endured. Typical distortion measures used are
mean square error (MSE) or peak signal-to-noise ratio (PSNR)3 between the original and
compressed versions. These fundamental compression performance bounds are called
the theoretical RD bounds for the source: they dictate the minimum rate R needed to
compress the source if the tolerable distortion level is D (or alternatively, what is the
minimum distortion D subject to a bit rate of R). These bounds are unfortunately not
constructive; i.e., Shannon did not give an actual algorithm for attaining these bounds,
and furthermore, they are based on arguments that assume infinite complexity and delay,
obviously impractical in real life. However, these bounds are useful in as much as they
provide valuable benchmarks for assessing the performance of more practical coding
algorithms. The major obstacle of course, as in the lossless case, is that these theoretical
bounds are available only for a narrow class of sources, and it is difficult to make the
connection to real world image sources which are difficult to model accurately with
simplistic statistical models.

Shannon’s theoretical RD framework has inspired the design of more practical
operational RD frameworks, in which the goal is similar but the framework is con-
strained to be more practical. Within the operational constraints of the chosen coding

3The PSNR is defined as 10 log10
2552

MSE and measured in decibels (dB).
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framework, the goal of operational RD theory is to minimize the rate R subject to a
distortion constraint D, or vice versa. The message of Shannon’s RD theory is that one
can come close to the theoretical compression limit of the source if one considers vectors
of source symbols that get infinitely large in dimension in the limit; i.e., it is a good
idea not to code the source symbols one at a time, but to consider chunks of them at
a time, and the bigger the chunks the better. This thinking has spawned an important
field known as vector quantization (VQ) [7], which, as the name indicates, is concerned
with the theory and practice of quantizing sources using high-dimensional VQ. There
are practical difficulties arising from making these vectors too high-dimensional because
of complexity constraints, so practical frameworks involve relatively small dimensional
vectors that are therefore further from the theoretical bound.

Due to this difficulty, there has been a much more popular image compression frame-
work that has taken off in practice: this is the transform coding framework [8] that forms
the basis of current commercial image and video compression standards like JPEG and
MPEG (see Chapters 9 and 10 in [9]). The transform coding paradigm can be construed
as a practical special case of VQ that can attain the promised gains of processing source
symbols in vectors through the use of efficiently implemented high dimensional source
transforms.

18.3 THE TRANSFORM CODING PARADIGM
In a typical transform image coding system, the encoder consists of a linear transform
operation, followed by quantization of transform coefficients, and lossless compression
of the quantized coefficients using an entropy coder. After the encoded bitstream of an
input image is transmitted over the channel (assumed to be perfect), the decoder undoes
all the functionalities applied in the encoder and tries to reconstruct a decoded image
that looks as close as possible to the original input image, based on the transmitted
information. A block diagram of this transform image paradigm is shown in Fig. 18.5.

For the sake of simplicity, let us look at a 1D example of how transform coding is
done (for 2D images, we treat the rows and columns separately as 1D signals). Suppose
we have a two-point signal, x0 � 216, x1 � 217. It takes 16 bits (8 bits for each sample)
to store this signal in a computer. In transform coding, we first put x0 and x1 in a column

vector X �

[
x0

x1

]
and apply an orthogonal transformation T to X to get Y �

[
y0

y1

]
�

TX �

[
1/
√

2 1/
√

2
1/
√

2 �1/
√

2

][
x0

x1

]
�

[
(x0 � x1)/

√
2

(x0 � x1)/
√

2

]
�

[
306.177
�.707

]
. The transform T can

be conceptualized as a counter-clockwise rotation of the signal vector X by 45◦ with
respect to the original (x0, x1) coordinate system. Alternatively and more conveniently,
one can think of the signal vector as being fixed and instead rotate the (x0, x1) coordinate
system by 45◦ clockwise to the new (y1, y0) coordinate system (see Fig. 18.6). Note that
the abscissa for the new coordinate system is now y1.

Orthogonality of the transform simply means that the length of Y is the same as
the length of X (which is even more obvious when one freezes the signal vector and
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Block diagrams of a typical transform image coding system: (a) encoder and (b) decoder
diagrams.
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The transform T can be conceptualized as a counter-clockwise rotation of the signal vector X
by 45◦ with respect to the original (x0, x1) coordinate system.

rotates the coordinate system as discussed above). This concept still carries over to the
case of high-dimensional transforms. If we decide to use the simplest form of quanti-
zation known as uniform scalar quantization, where we round off a real number to the
nearest integer multiple of a step size q (say q � 20), then the quantizer index vector Î ,
which captures what integer multiples of q are nearest to the entries of Y , is given by
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Î �

[
round(y0/q)

round(y1/q)

]
�

[
15
0

]
. We store (or transmit) Î as the compressed version of X

using 4 bits, achieving a compression ratio of 4:1. To decode X from Î , we first multi-
ply Î by q � 20 to dequantize, i.e., to form the quantized approximation Ŷ of Y with

Ŷ � q · Î �

[
300

0

]
, and then apply the inverse transform T �1 to Ŷ (which corresponds in

our example to a counter-clockwise rotation of the (y1,y0) coordinate system by 45◦, just
the reverse operation of the T operation on the original (x0,x1) coordinate system—see

Fig. 18.6) to get X̂ � T �1

[
qy0

qy1

]
�

[
1/
√

2 1/
√

2
1/
√

2 �1/
√

2

][
300

0

]
�

[
212.132
212.132

]
.

We see from the above example that, although we “zero out” or throw away the
transform coefficient y1 in quantization, the decoded version X̂ is still very close to X .
This is because the transform effectively compacts most of the energy in X into the first
coefficient y0, and renders the second coefficient y1 considerably insignificant to keep.
The transform T in our example actually computes a weighted sum and difference of
the two samples x0 and x1 in a manner that preserves the original energy. It is in fact the
simplest wavelet transform!

The energy compaction aspect of wavelet transforms was highlighted in Section 18.1.
Another goal of linear transformation is decorrelation. This can be seen from the fact
that, although the values of x0 and x1 are very close (highly correlated) before the trans-
form, y0 (sum) and y1 (difference) are very different (less correlated) after the transform.
Decorrelation has a nice geometric interpretation. A cloud of input samples of length-2
is shown along the 45◦ line in Fig. 18.7. The coordinates (x0,x1) at each point of the cloud
are nearly the same, reflecting the high degree of correlation among neighboring image
pixels. The linear transformation T essentially amounts to a rotation of the coordinate

FIGURE 18.7

Linear transformation amounts to a rotation of the coordinate system, making correlated samples
in the time domain less correlated in the transform domain.
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system. The axes of the new coordinate system are parallel and perpendicular to the ori-
entation of the cloud. The coordinates (y0,y1) are less correlated, as their magnitudes can
be quite different and the sign of y1 is random. If we assume x0 and x1 are samples
of a stationary random sequence X(n), then the correlation between y0 and y1 is
E{y0y1}� E{(x2

0 � x2
1 )/2}� 0. This decorrelation property has significance in terms

of how much gain one can get from transform coding than from doing signal process-
ing (quantization and coding) directly in the original signal domain, called pulse code
modulation (PCM) coding.

Transform coding has been extensively developed for coding of images and video,
where the DCT is commonly used because of its computational simplicity and its good
performance. But as shown in Section 18.1, the DCT is giving way to the wavelet trans-
form because of the latter’s superior energy compaction capability when applied to
natural images. Before discussing state-of-the-art wavelet coders and their advanced
features, we address the functional units that comprise a transform coding system,
namely the transform, quantizer, and entropy coder (see Fig. 18.5).

18.3.1 Transform Structure
The basic idea behind using a linear transformation is to make the task of compressing an
image in the transform domain after quantization easier than direct coding in the spatial
domain. A good transform, as has been mentioned, should be able to decorrelate the image
pixels and provide good energy compaction in the transform domain so that very few
quantized nonzero coefficients have to be encoded. It is also desirable for the transform
to be orthogonal so that the energy is conserved from the spatial domain to the trans-
form domain, and the distortion in the spatial domain introduced by quantization of
transform coefficients can be directly examined in the transform domain. What makes
the wavelet transform special in all possible choices is that it offers an efficient space-
frequency characterization for a broad class of natural images, as shown in Section 18.1.

18.3.2 Quantization
As the only source of information loss occurs in the quantization unit, efficient quantizer
design is a key component in wavelet image coding. Quantizers come in many differ-
ent shapes and forms, from very simple uniform scalar quantizers, such as the one in
the example earlier, to very complicated vector quantizers. Fixed length uniform scalar
quantizers are the simplest kind of quantizers: these simply round off real numbers to
the nearest integer multiples of a chosen step size. The quantizers are fixed length in the
sense that all quantization levels are assigned the same number of bits (e.g., an eight-level
quantizer would be assigned all binary three-tuples between 000 and 111). Fixed length
nonuniform scalar quantizers, in which the quantizer step sizes are not all the same, are
more powerful: one can optimize the design of these nonuniform step sizes to get what
is known as Lloyd-Max quantizers [10].

It is more efficient to do a joint design of the quantizer and the entropy coding func-
tional unit (this will be described in the next subsection) that follows the quantizer in
a lossy compression system. This joint design results in a so-called entropy-constrained
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quantizer that is more efficient but more complex, and results in variable length quan-
tizers in which the different quantization choices are assigned variable codelengths.
Variable length quantizers can come in either scalar, known as entropy-constrained
scalar quantization (ECSQ) [11], or vector varieties, known as entropy-constrained vec-
tor quantization (ECVQ) [7]. An efficient way of implementing vector quantizers is by
the use of so-called trellis coded quantization (TCQ) [12]. The performance of the quan-
tizer (in conjunction with the entropy coder) characterizes the operational RD function
of the source. The theoretical RD function characterizes the fundamental lossy compres-
sion limit theoretically attainable [13], and it is rarely known in analytical form except
for a few special cases, such as the i.i.d. Gaussian source [4]:

D(R) � �22�2R , (18.1)

where the Gaussian source is assumed to have zero mean and variance �2 and the rate
R is measured in bits per sample. Note from the formula that every extra bit reduces
the expected distortion by a factor of 4 (or increases the signal to noise ratio by 6 dB).
This formula agrees with our intuition that the distortion should decrease exponentially
as the rate increases. In fact, this is true when quantizing sources with other probability
distributions as well under high-resolution (or bit rate) conditions: the optimal RD
performance of encoding a zero mean stationary source with variance �2 takes the form
of [7]

D(R) � h�22�2R , (18.2)

where the factor h depends on the probability distribution of the source. For a Gaussian
source, h �

√
3�/2 with optimal scalar quantization. Under high-resolution conditions,

it can be shown that the optimal entropy-constrained scalar quantizer is a uniform one,
whose average distortion is only approximately 1.53 dB worse than the theoretical bound
attainable that is known as the Shannon bound [7, 11]. For low bit rate coding, most
current subband coders employ a uniform quantizer with a “deadzone” in the central
quantization bin. This simply means that the all-important central bin is wider than
the other bins: this turns out to be more efficient than having all bins be of the same
size. The performance of deadzone quantizers is nearly optimal for memoryless sources
even at low rates [14]. An additional advantage of using deadzone quantization is that,
when the deadzone is twice as much as the uniform step size, an embedded bitstream can
be generated by successive quantization. We will elaborate more on embedded wavelet
image coding in Section 18.5.

18.3.3 Entropy Coding
Once the quantization process is completed, the last encoding step is to use entropy cod-
ing to achieve the entropy rate of the quantizer. Entropy coding works like the Morse
code in electric telegraph: more frequently occurring symbols are represented by short
codewords, whereas symbols occurring less frequently are represented by longer code-
words. On average, entropy coding does better than assigning the same codelength to
all symbols. For example, a source that can take on any of the four symbols {A,B,C ,D}
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with equal likelihood has 2 bits of information or uncertainty, and its entropy is 2 bits
per symbol (e.g., one can assign a binary code of 00 to A, 01 to B, 10 to C , and 11 to D).
However if the symbols are not equally likely, e.g., if the probabilities of A,B,C , and D
are 0.5,0.25,0.125, and 0.125, respectively, then one can do much better on average by
not assigning the same number of bits to each symbol but rather by assigning fewer bits
to the more popular or predictable ones. This results in a variable length code. In fact,
one can show that the optimal code would be one in which A gets 1 bit, B gets 2 bits, and
C and D get 3 bits each (e.g., A � 0,B � 10,C � 110, and D � 111). This is called an
entropy code. With this code, one can compress the source with an average of only 1.75
bits per symbol, a 12.5% improvement in compression over the original 2 bits per sym-
bol associated with having fixed length codes for the symbols. The two popular entropy
coding methods are Huffman coding [15] and arithmetic coding [16]. A comprehensive
coverage of entropy coding is given in Chapter 16. The Shannon entropy [4] provides a
lower bound in terms of the amount of compression entropy coding can best achieve.
The optimal entropy code constructed in the example actually achieves the theoretical
Shannon entropy of the source.

18.4 SUBBAND CODING: THE EARLY DAYS
Subband coding normally uses bases of roughly equal bandwidth. Wavelet image coding
can be viewed as a special case of subband coding with logarithmically varying bandwidth
bases that satisfy certain properties.4 Early work on wavelet image coding was thus hidden
under the name of subband coding [8, 17], which builds upon the traditional transform
coding paradigm of energy compaction and decorrelation. The main idea of subband
coding is to treat different bands differently as each band can be modeled as a statistically
distinct process in quantization and coding.

To illustrate the design philosophy of early subband coders, let us again assume, for
example, that we are coding a vector source {x0,x1}, where both x0 and x1 are samples of
a stationary random sequence X(n) with zero mean and variance �2

x . If we code x0 and
x1 directly by using PCM coding, from our earlier discussion on quantization, the RD
performance can be approximated as

DPCM(R) � h�2
x 2�2R . (18.3)

In subband coding, two quantizers are designed: one for each of the two transform
coefficients y0 and y1. The goal is to choose rates R0 and R1 needed for coding y0 and y1

so that the average distortion

DSBC(R) � (D(R0) � D(R1))/2 (18.4)

is minimized with the constraint on the average bit rate

(R0 � R1)/2 � R. (18.5)

4Both wavelet image coding and subband coding are special cases of transform coding.
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Using the high rate approximation, we write D(R0) � h�2
y0

2�2R0 and D(R1) �

h�2
y1

2�2R1 ; then the solutions to this bit allocation problem are [8]

R0 � R �
1

2
log2

�y0

�y1

; R1 � R �
1

2
log2

�y0

�y1

, (18.6)

with the minimum average distortion being

DSBC(R) � h�y0 �y1 2�2R . (18.7)

Note that, at the optimal point, D(R0) � D(R1) � DSBC(R). That is, the quantizers
for y0 and y1 give the same distortion with optimal bit allocation. Since the transform
T is orthogonal, we have �2

x � (�2
y0

� �2
y1

)/2. The coding gain of using subband coding
over PCM is

DPCM(R)

DSBC(R)
�

�2
x

�y0 �y1

�
(�2

y0
� �2

y1
)/2

(�2
y0 �2

y1)
1/2

, (18.8)

the ratio of arithmetic mean to geometric mean of coefficient variances �2
y0

and �2
y1

. What
this important result states is that subband coding performs no worse than PCM coding,
and that the larger the disparity between coefficient variances, the bigger the subband
coding gain, because (�2

y0
� �2

y1
)/2 � (�2

y0
�2

y1
)1/2, with equality if �2

y0
� �2

y1
. This result

can be easily extended to the case when M > 2 uniform subbands (of equal size) are used
instead. The coding gain in this general case is as follows:

DPCM(R)

DSBC(R)
�

1
M
∑M�1

k�0 �2
k(∏M�1

k�0 �2
k

)1/M
, (18.9)

where �2
k is the sample variance of the kth band (0 � k � M � 1). The above assumes

that all M bands are of the same size. In the case of the subband or wavelet transform,
the sizes of the subbands are not the same (see Fig. 18.8), but the above formula can be
generalized pretty easily to account for this. As another extension of the results given in
the above example, it can be shown that the necessary condition for optimal bit allocation
is that all subbands should incur the same distortion at optimality—else it is possible to
steal some bits from the lower distortion bands to the higher distortion bands in a way
that makes the overall performance better.

Figure 18.8 shows typical bit allocation results for different subbands under a total
bit rate budget of 1 bit per pixel for wavelet image coding. Since low-frequency bands in
the upper-left corner have far more energy than high-frequency bands in the lower-right
corner (see Fig. 18.1), more bits have to be allocated to lowpass bands than to highpass
bands. The last two frequency bands in the bottom half are not coded (set to zero)
because of limited bit rate. Since subband coding treats wavelet coefficients according to
their frequency bands, it is effectively a frequency domain transform technique.

Initial wavelet-based coding algorithms, e.g., [18], followed exactly this subband cod-
ing methodology. These algorithms were designed to exploit the energy compaction
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FIGURE 18.8

Typical bit allocation results for different subbands. The unit of the numbers is bits per pixel.
These are designed to satisfy a total bit rate budget of 1 bit per pixel. That is, {[(8 � 6 � 5 �

5)/4 � 2 � 2 � 2]/4 � 1 � 0 � 0}/4 � 1.

properties of the wavelet transform only in the frequency domain by applying quantizers
optimized for the statistics of each frequency band. Such algorithms have demonstrated
small improvements in coding efficiency over standard transform-based algorithms.

18.5 NEW AND MORE EFFICIENT CLASS OF WAVELET CODERS
Because wavelet decompositions offer space-frequency representations of images, i.e.,
low-frequency coefficients have large spatial support (good for representing large image
background regions), whereas high-frequency coefficients have small spatial support
(good for representing spatially local phenomena such as edges), the wavelet represen-
tation calls for new quantization strategies that go beyond traditional subband coding
techniques to exploit this underlying space-frequency image characterization.

Shapiro made a breakthrough in 1993 with his EZW coding algorithm [19]. Since
then a new class of algorithms have been developed that achieve significantly improved
performance over the EZW coder. In particular, Said and Pearlman’s work on set parti-
tioning in hierarchical trees (SPIHT) [20], which improves the EZW coder, has established
zerotree techniques as the current state-of-the-art of wavelet image coding since the
SPIHT algorithm proves to be very successful for both lossy and lossless compression.

18.5.1 Zerotree-Based Framework and EZW Coding
A wavelet image representation can be thought of as a tree-structured spatial set of
coefficients. A wavelet coefficient tree is defined as the set of coefficients from different
bands that represent the same spatial region in the image. Figure 18.9 shows a three-
level wavelet decomposition of the Lena image, together with a wavelet coefficient tree
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FIGURE 18.9

Wavelet decomposition offers a tree-structured image representation. (a) Three-level wavelet
decomposition of the Lena image; (b) Spatial wavelet coefficient tree consisting of coefficients
from different bands that correspond to the same spatial region of the original image (e.g., the
eye of Lena). Arrows identify the parent-children dependencies.

structure representing the eye region of Lena. Arrows in Fig. 18.9(b) identify the parent-
children dependencies in a tree. The lowest frequency band of the decomposition is
represented by the root nodes (top) of the tree, the highest frequency bands by the
leaf nodes (bottom) of the tree, and each parent node represents a lower frequency
component than its children. Except for a root node, which has only three children
nodes, each parent node has four children nodes, the 2 � 2 region of the same spatial
location in the immediately higher frequency band.

Both the EZW and SPIHT algorithms [19, 20] are based on the idea of using multipass
zerotree coding to transmit the largest wavelet coefficients (in magnitude) at first. We
hereby use “zero coding” as a generic term for both schemes, but we focus on the popular
SPIHT coder because of its superior performance. A set of tree coefficients is significant
if the largest coefficient magnitude in the set is greater than or equal to a certain threshold
(e.g., a power of 2); otherwise, it is insignificant. Similarly, a coefficient is significant if its
magnitude is greater than or equal to the threshold; otherwise, it is insignificant. In each
pass the significance of a larger set in the tree is tested at first: if the set is insignificant, a
binary “zerotree” bit is used to set all coefficients in the set to zero; otherwise, the set is
partitioned into subsets (or child sets) for further significance tests. After all coefficients
are tested in one pass, the threshold is halved before the next pass.

The underlying assumption of the zerotree coding framework is that most images
can be modeled as having decaying power spectral densities. That is, if a parent node in
the wavelet coefficient tree is insignificant, it is very likely that its descendents are also
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FIGURE 18.10

Example of a three-level wavelet representation of an 8 � 8 image.

insignificant. The zerotree symbol is used very efficiently in this case to signify a spatial
subtree of zeros.

We give a SPIHT coding example to highlight the order of operations in zerotree
coding. Start with a simple three-level wavelet representation of an 8 � 8 image,5 as
shown in Fig. 18.10. The largest coefficient magnitude is 63. We can choose a threshold
in the first pass between 31.5 and 63. Let T1 � 32. Table 18.1 shows the first pass of the
SPIHT coding process, with the following comments:

1. The coefficient value 63 is greater than the threshold 32 and positive, so a sig-
nificance bit “1” is generated, followed by a positive sign bit “0.” After decoding
these symbols, the decoder knows the coefficient is between 32 and 64 and uses
the midpoint 48 as an estimate.6

2. The descendant set of coefficient �34 is significant; a significance bit “1” is
generated, followed by a significance test of each of its four children {49,10,
14,�13}.

3. The descendant set of coefficient �31 is significant; a significance bit “1” is gen-
erated, followed by a significance test of each of its four children {15,14,�9,�7}.

5This set of wavelet coefficients is the same as the one used by Shapiro in an example to showcase EZW
coding [19]. Curious readers can compare these two examples to see the difference between EZW and
SPIHT coding.
6The reconstruction value can be anywhere in the uncertainty interval (32,64). Choosing the midpoint is
the result of a simple form of minimax estimation.
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TABLE 18.1 First pass of the SPIHT coding process at threshold T1 � 32.

Coefficient Coefficient Binary Reconstruction
coordinates value symbol value Comments

(0,0) 63 1 (1)
0 48

(1,0) �34 1
1 �48

(0,1) �31 0 0
(1,1) 23 0 0

(1,0) �34 1 (2)
(2,0) 49 1

0 48
(3,0) 10 0 0
(2,1) 14 0 0
(3,1) �13 0 0

(0,1) �31 1 (3)
(0,2) 15 0 0
(1,2) 14 0 0
(0,3) �9 0 0
(1,3) �7 0 0

(1,1) 23 0 (4)

(1,0) �34 0 (5)

(0,1) �31 1 (6)

(0,2) 15 0 (7)

(1,2) 14 1 (8)
(2,4) �1 0 0
(3,4) 47 1

0 48
(2,5) �3 0 0
(3,5) 2 0 0

(0,3) �9 0 (9)
(1,3) �7 0

4. The descendant set of coefficient 23 is insignificant; an insignificance bit “0” is
generated. This zerotree bit is the only symbol generated in the current pass for
the whole descendant set of coefficient 23.

5. The grandchild set of coefficient �34 is insignificant; a binary bit“0” is generated.7

7In this example, we use the following convention: when a coefficient or set is significant, a binary bit “1” is
generated; otherwise, a binary bit “0” is generated. In the actual SPIHT implementation [20], this conven-
tion was not always followed—when a grandchild set is significant, a binary bit “0” is generated, otherwise,
a binary bit “1” is generated.
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6. The grandchild set of coefficient �31 is significant; a binary bit “1” is generated.

7. The descendant set of coefficient 15 is insignificant; an insignificance bit “0” is
generated. This zerotree bit is the only symbol generated in the current pass for
the whole descendant set of coefficient 15.

8. The descendant set of coefficient 14 is significant; a significance bit“1”is generated,
followed by a significance test of each of its four children {�1,47,�3,2}.

9. Coefficient �31 has four children {15,14,�9,�7}. Descendant sets of child 15 and
child 14 were tested for significance before. Now descendant sets of the remaining
two children �9 and �7 are tested.

In this example, the encoder generates 29 bits in the first pass. Along the process,
it identifies four significant coefficients {63,�34,49,47}. The decoder reconstructs each
coefficient based on these bits. When a set is insignificant, the decoder knows each
coefficient in the set is between �32 and 32 and uses the midpoint 0 as an estimate. The
reconstruction result at the end of the first pass is shown in Fig. 18.11(a).

The threshold is halved (T2 � T1/2 � 16) before the second pass, where insignificant
coefficients and sets in the first pass are tested for significance again against T2, and
significant coefficients found in the first pass are refined. The second pass thus consists
of the following:

1. Significance tests of the 12 insignificant coefficients found in the first pass—those
having reconstruction value 0 in Table 18.1. Coefficients �31 at (0, 1) and 23 at
(1, 1) are found to be significant in this pass; a sign bit is generated for each. The

   48

 0  0

 0  0  0  0  0

 0  0  0

 0  0  0  0  0  0

 0  0  0  0

 0 48  0  0  0

 0  0  0  0  0  0

 0  0  0  0  0

 0  0  0  0  0  0

  0

  0

  0

  0

  0

  0

  0

  0   0

  0

  0

  0

  0    0

   0

   0

   0

   0  0

248  48

(a)

 0

 0  0  0  0  0

 0  0  0

 0  0  0  0  0  0

 0  0  0  0

 0  0  0  0

 0  0  0  0  0  0

 0  0  0  0  0

 0  0  0  0  0  0

  0

  0

  0

  0

  0

  0

  0

  0   0

  0

  0

  0

  0    0

   0

   0

   0  0

  56 240  56

224 24

40

(b)

FIGURE 18.11

Reconstructions after the (a) first and (b) second passes in SPIHT coding.
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decoder knows the coefficient magnitude is between 16 and 32 and decode them
as �24 and 24.

2. The descendant set of coefficient 23 at (1, 1) is insignificant; so are the grandchild
set of coefficient 49 at (2, 0) and descendant sets of coefficients 15 at (0, 2), �9
at (0, 3), and �7 at (1, 3). A zerotree bit is generated in the current pass for each
insignificant descendant set.

3. Refinement of the four significant coefficients {63,�34,49,47} found in the first
pass. The coefficient magnitudes are identified as being either between 32 and 48,
which will be encoded with “0” and decoded as the midpoint 40, or between 48
and 64, which will be encoded with “1” and decoded as 56.

The encoder generates 23 bits (14 from step 1, 5 from step 2, and 4 from step 3) in the
second pass. Along the process it identifies two more significant coefficients. Together
with the four found in the first pass, the set of significant coefficients now becomes
{63,�34,49,47,�31,23}. The reconstruction result at the end of the second pass is
shown in Fig. 18.11(b).

The above encoding process continues from one pass to another and can stop at
any point. For better coding performance, arithmetic coding [16] can be used to further
compress the binary bitstream out of the SPIHT encoder.

From this example, we note that when the thresholds are powers of 2, zerotree cod-
ing can be thought of as a bit-plane coding scheme. It encodes one bit-plane at a time,
starting from the most significant bit. The effective quantizer in each pass is a deadzone
quantizer with the deadzone being twice the uniform step size. With the sign bits and
refinement bits (for coefficients that become significant in previous passes) being coded
on the fly, zerotree coding generates an embedded bitstream, which is highly desirable for
progressive transmission (see Fig. 18.4). A simple example of embedded representation
is the approximation of an irrational number (say � � 3.1415926535 · · · ) by a rational
number. If we were only allowed two digits after the decimal point, then � ≈ 3.14; if
three digits after the decimal point were allowed, then � ≈ 3.141; and so on. Each addi-
tional bit of the embedded bitstream is used to improve upon the previously decoded
image for successive approximation, so rate control in zerotree coding is exact, and no
loss is incurred if decoding stops at any point of the bitstream. The remarkable thing
about zerotree coding is that it outperforms almost all other schemes (such as JPEG
coding) while being embedded. This good performance can be partially attributed to the
fact that zerotree coding captures across-scale interdependencies of wavelet coefficients.
The zerotree symbol effectively zeros out a set of coefficients in a subtree, achieving the
coding gain of VQ [7] over scalar quantization.

Figure 18.12 shows the original Lena and Barbara images and their decoded versions
at 0.25 bit per pixel (32:1 compression ratio) by baseline JPEG and SPIHT [20]. These
images are coded at a relatively low bit rate to emphasize coding artifacts. The Bar-
bara image is known to be hard to compress because of its insignificant high-frequency
content (see the periodic stripe texture on Barbara’s trousers and scarf, and the checker-
board texture pattern on the tablecloth). The subjective difference in reconstruction
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FIGURE 18.12

Coding of the 512 � 512 Lena and Barbara images at 0.25 bit per pixel (compression ratio
of 32:1). Top: the original Lena and Barbara images. Middle: baseline JPEG decoded images,
PSNR � 31.6dB for Lena, and PSNR � 25.2dB for Barbara. Bottom: SPIHT decoded images,
PSNR � 34.1dB for Lena, and PSNR � 27.6dB for Barbara.
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quality between the two decoded versions of the same image is quite perceptible on a
high-resolution monitor. The JPEG decoded images show highly visible blocking artifacts
while the wavelet-based SPIHT decoded images have much sharper edges and preserve
most of the striped texture.

18.5.2 Advanced Wavelet Coders: High-Level Characterization
We saw that the main difference between the early class of subband image coding algo-
rithms and the zerotree-based compression framework is that the former exploits only
the frequency characterization of the wavelet image representation, whereas the latter
exploits both the spatial and frequency characterization. To be more precise, the early
class of coders was adept at exploiting the wavelet transform’s ability to concentrate
the image energy disparately in the different frequency bands, with the lower frequency
bands having a much higher energy density. What these coders failed to exploit was the
very definite spatial characterization of the wavelet representation. In fact, this is even
apparent to the naked eye if one views the wavelet decomposition of the Lena image in
Fig. 18.1, where the spatial structure of the image is clearly exposed in the high-frequency
wavelet bands, e.g., the edge structure of the hat and face and the feather texture. Failure
to exploit this spatial structure limited the performance potential of the early subband
coders.

In explicit terms, not only is it true that the energy density of the different wavelet
subbands is highly disparate, resulting in gains by separating the data set into statistically
dissimilar frequency groupings of data, but it is also true that the data in the high-
frequency subbands are highly spatially structured and clustered around the spatial edges
of the original image. The early class of coders exploited the conventional coding gain
associated with dissimilarity in the statistics of the frequency bands, but not the potential
coding gain from separating individual frequency band energy into spatially localized
clusters.

It is insightful to note that unlike the coding gain based on the frequency characteri-
zation, which is statistically predictable for typical images (the low-frequency subbands
have much higher energy density than the high frequency ones), there is a difficulty in
going after the coding gain associated with the spatial characterization that is not sta-
tistically predictable; after all, there is no reason to expect the upper-left corner of the
image to have more edges than the lower right. This calls for a drastically different way
of exploiting this structure—a way of pointing to the spatial location of significant edge
regions within each subband. At a high level, a zerotree is no more than an efficient
“pointing” data structure that incorporates the spatial characterization of wavelet coeffi-
cients by identifying tree-structured collections of insignificant spatial subregions across
hierarchical subbands.

Equipped with this high-level insight, it becomes clear that the zerotree approach is
but only one way to skin the cat. Researchers in the wavelet image compression com-
munity have found other ways to exploit this phenomenon by using an array of creative
ideas. The array of successful data structures in the research literature include (a) RD opti-
mized zerotree-based structures, (b) morphology- or region-growing-based structures,
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(c) spatial context modeling based structures, (d) statistical mixture modeling based
structures, (e) classification-based structures, and so on. Due to space limitations, we
omit the details of these advanced methods here.

18.6 ADAPTIVE WAVELET TRANSFORMS: WAVELET PACKETS
In noting how transform coding has become the de facto standard for image and video
compression, it is important to realize that the traditional approach of using a transform
with fixed frequency resolution (be it the logarithmic wavelet transform or the DCT)
is good only in an ensemble sense for a typical statistical class of images. This class is
well suited to the characteristics of the chosen fixed transform. This raises the natural
question; is it possible to do better by being adaptive in the transformation so as to
best match the features of the transform to the specific attributes of arbitrary individual
images that may not belong to the typical ensemble?

To be specific, the wavelet transform is a good fit for typical natural images that
have an exponentially decaying spectral density, with a mixture of strong stationary
low-frequency components (such as the image background) and perceptually important
short-duration high-frequency components (such as sharp image edges). The fit is good
because of the wavelet transform’s logarithmic decomposition structure, which results in
its well-advertised attributes of good frequency resolution at low frequencies, and good
time resolution at high frequencies (see Fig. 18.3(b)).

There are, however, important classes of images (or significant subimages) whose
attributes go against those offered by the wavelet decomposition, e.g., images having
strong highpass components. A good example is the periodic texture pattern in the
Barbara image of Fig. 18.12—see the trousers and scarf textures and the tablecloth texture.
Another special class of images for which the wavelet is not a good idea is the class
of fingerprint images (see Fig. 18.13 for a typical example) which has periodic high-
frequency ridge patterns. These images are better matched with decomposition elements
that have good frequency localization at high frequencies (corresponding to the texture
patterns), which the wavelet decomposition does not offer in its menu.

This motivates the search for alternative transform descriptions that are more adap-
tive in their representation, and that are more robust to a large class of images of unknown
or mismatched space-frequency characteristics. Although the task of finding an optimal
decomposition for every individual image in the world is an ill-posed problem, the situa-
tion gets more interesting if we consider a large but finite library of desirable transforms
and match the best transform in the library adaptively to the individual image. In order
to make this feasible, there are two requirements. First, the library must contain a good
representative set of entries (e.g., it would be good to include the conventional wavelet
decomposition). Second, it is essential that there exists a fast way of searching through
the library to find the best transform in an image-adaptive manner.

Both these requirements are met with an elegant generalization of the wavelet trans-
form, called the wavelet packet decomposition, also known sometimes as the best basis
framework. Wavelet packets were introduced to the signal processing community by
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FIGURE 18.13

Fingerprint image: image coding using logarithmic wavelet transform does not perform well for
fingerprint images such as this one with strong highpass ridge patterns.

Coifman and Wickerhauser [21]. They represent a huge library of orthogonal transforms
having a rich time-frequency diversity that also come with an easy-to-search capability,
thanks to the existence of fast algorithms that exploit the tree-structured nature of these
basis expansions—the tree-structure comes from the cascading of multirate filter bank
operations; see Chapter 6 and [3]. Wavelet packet bases essentially look like the wavelet
bases shown in Fig. 18.3(b), but they have more oscillations.

The wavelet decomposition, which corresponds to a logarithmic tree structure, is the
most famous member of the wavelet packet family. Whereas wavelets are best matched
to signals having a decaying energy spectrum, wavelet packets can be matched to signals
having almost arbitrary spectral profiles, such as signals having strong high-frequency
or mid-frequency stationary components, making them attractive for decomposing
images having significant texture patterns, as discussed earlier. There are an astronomical
number of basis choices available in the typical wavelet packet library: for example, it
can be shown that the library has over 1078 transforms for typical five-level 2D wavelet
packet image decompositions. The library is thus well equipped to deal efficiently with
arbitrary classes of images requiring diverse spatial-frequency resolution tradeoffs.

Using the concept of time-frequency tilings introduced in Section 18.1, it is easy to
see what wavelet packet tilings look like, and how they are a generalization of wavelets.
We again start with 1D signals. Tiling representations of several expansions are plotted
in Fig. 18.14. Figure 18.14(a) shows a uniform STFT-like expansion, where the tiles
are all of the same shape and size; Fig. 18.14(b) is the familiar wavelet expansion or
the logarithmic subband decomposition; Fig. 18.14(c) shows a wavelet packet expansion
where the bandwidths of the bases are neither uniformly nor logarithmically varying; and
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FIGURE 18.14

Tiling representations of several expansions for 1D signals. (a) STFT-like decomposition;
(b) wavelet decomposition; (c) wavelet packet decomposition, and (d) “anti-wavelet” packet
decomposition.

Fig. 18.14(d) highlights a wavelet packet expansion where the time-frequency attributes
are exactly the reverse of the wavelet case: the expansion has good frequency resolution at
higher frequencies, and good time localization at lower frequencies—we might call this
the “anti-wavelet” packet. There are a plethora of other options for the time-frequency
resolution tradeoff, and these all correspond to admissible wavelet packet choices.

The extra adaptivity of the wavelet packet framework is obtained at the price of
added computation in searching for the best wavelet packet basis, so an efficient fast
search algorithm is the key in applications involving wavelet packets. The problem of
searching for the best basis from the wavelet packet library for the compression problem
using an RD optimization framework and a fast tree-pruning algorithm was described
in [22].

The 1D wavelet packet bases can be easily extended to 2D by writing a 2D basis func-
tion as the product of two 1D basis functions. In another words, we can treat the rows
and columns of an image separately as 1D signals. The performance gains associated with
wavelet packets are obviously image-dependent. For difficult images such as Barbara in
Fig. 18.12, a wavelet packet decomposition shown in Fig. 18.15(a) gives much better cod-
ing performance than the wavelet decomposition. The wavelet packet decoded Barbara
image at 0.1825 b/p is shown in Fig. 18.15(b), whose visual quality (or PSNR) is the same
as the wavelet SPIHT decoded Barbara image at 0.25 b/p in Fig. 18.12. The bit rate saving
achieved by using a wavelet packet basis instead of the wavelet basis in this case is 27%
at the same visual quality.

An important practical application of wavelet packet expansions is the FBI wavelet
scalar quantization (WSQ) standard for fingerprint image compression [23]. Because of
the complexity associated with adaptive wavelet packet transforms, the FBI WSQ standard
uses a fixed wavelet packet decomposition in the transform stage. The transform structure
specified by the FBI WSQ standard is shown in Fig. 18.16. It was designed for 500 dots per
inch fingerprint images by spectral analysis and trial and error. A total of 64 subbands are
generated with a five-level wavelet packet decomposition. Trials by the FBI have shown
that the WSQ standard benefited from having fine frequency partitions in the middle
frequency region containing the fingerprint ridge patterns.
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(a) (b)

FIGURE 18.15

(a) A wavelet packet decomposition for the Barbara image. White lines represent frequency
boundaries. Highpass bands are processed for display; (b) Wavelet packet decoded Barbara at
0.1825 b/p. PSNR � 27.6dB.
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The wavelet packet transform structure given in the FBI WSQ specification. The number seq-
uence shows the labeling of the different subbands.
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FIGURE 18.17

Space-frequency segmentation and tiling for the Building image. The image to the left shows
that spatial segmentation separates the sky in the background from the building and the pond in
the foreground. The image to the right gives the best wavelet packet decomposition of each spatial
segment. Dark lines represent spatial segments; white lines represent subband boundaries of
wavelet packet decompositions. Note that the upper-left corners are the lowpass bands of wavelet
packet decompositions.

As an extension of adaptive wavelet packet transforms, one can introduce time-
variation by segmenting the signal in time and allowing the wavelet packet bases to evolve
with the signal. The result is a time-varying transform coding scheme that can adapt to
signal nonstationarities. Computationally fast algorithms are again very important for
finding the optimal signal expansions in such a time-varying system. For 2D images, the
simplest of these algorithms performs adaptive frequency segmentations over regions of
the image selected through a quadtree decomposition. More complicated algorithms pro-
vide combinations of frequency decomposition and spatial segmentation. These jointly
adaptive algorithms work particularly well for highly nonstationary images. Figure 18.17
shows the space-frequency tree segmentation and tiling for the Building image [24]. The
image to the left shows the spatial segmentation result that separates the sky in the back-
ground from the building and the pond in the foreground. The image to the right gives
the best wavelet packet decomposition for each spatial segment.

18.7 JPEG2000 AND RELATED DEVELOPMENTS
JPEG2000 by default employs the dyadic wavelet transform for natural images in many
standard applications. It also allows the choice of the more general wavelet packet trans-
forms for certain types of imagery (e.g., fingerprints and radar images). Instead of using
the zerotree-based SPIHT algorithm, JPEG2000 relies on embedded block coding with
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optimized truncation (EBCOT) [25] to provide a rich set of features such as quality
scalability, resolution scalability, spatial random access, and region-of-interest coding.
Besides robustness to image type changes in terms of compression performance, the
main advantage of the block-based EBCOT algorithm is that it provides easier random
access to local image components. On the other hand, both encoding and decoding in
SPIHT require nonlocal memory access to the whole tree of wavelet coefficients, caus-
ing reduction in throughput when coding large-size images. A thorough description
of the JPEG2000 standard is in [1]. Other JPEG2000 related references are Chapter 17
and [26, 27].

Although this chapter is about wavelet coding of 2D images, the wavelet coding
framework and its extension to wavelet packets apply to 3D video as well. Recent research
works (see [28] and references therein) on 3D scalable wavelet video coders based on the
framework of motion-compensated temporal filtering (MCTF) [29] have shown com-
petitive or better performance than the best MC-DCT-based standard video coder (e.g.,
H.264/AVC [30]). They have stirred considerable excitement in the video coding com-
munity and stimulated research efforts toward subband/wavelet interframe video coding,
especially in the area of scalable motion coding [31] within the context of MCTF. MCTF
can be conceptually viewed as the extension of wavelet-based coding in JPEG2000 from
2D images to 3D video. It nicely combines scalability features of wavelet-based coding
with motion compensation, which has been proven to be very efficient and necessary in
MC-DCT-based standard video coders. We refer the readers to a recent special issue [32]
on the latest results and Chapter 11 in [9] for an exposition of 3D subband/wavelet video
coding.

18.8 CONCLUSION
Since the introduction of wavelets as a signal processing tool in the late 1980s, a variety of
wavelet-based coding algorithms have advanced the limits of compression performance
well beyond that of the current commercial JPEG image coding standard. In this chapter,
we have provided very simple high-level insights, based on the intuitive concept of time-
frequency representations, into why wavelets are good for image coding. After introducing
the salient aspects of the compression problem in general and the transform coding
problem in particular, we have highlighted the key important differences between the
early class of subband coders and the more advanced class of modern-day wavelet image
coders. Selecting the EZW coding structure embodied in the celebrated SPIHT algorithm
as a representative of this latter class, we have detailed its operation by using a simple
illustrative example. We have also described the role of wavelet packets as a simple but
powerful generalization of the wavelet decomposition in order to offer a more robust
and adaptive transform image coding framework.

JPEG2000 is the result of the rapid progress made in wavelet image coding research in
the 1990s. The triumph of wavelet transform in the evolution of the JPEG2000 standard
underlines the importance of the fundamental insights provided in this chapter into why
wavelets are so attractive for image compression.
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19.1 INTRODUCTION
One of the most fundamental image analysis operations is edge detection. Edges are
often vital clues toward the analysis and interpretation of image information, both in
biological vision and in computer image analysis. Some sort of edge detection capability
is present in the visual systems of a wide variety of creatures, so it is obviously useful in
their abilities to perceive their surroundings.

For this discussion, it is important to define what is and is not meant by the term
“edge.” The everyday notion of an edge is usually a physical one, caused by either the
shapes of physical objects in three dimensions or by their inherent material properties.
Described in geometric terms, there are two types of physical edges: (1) the set of points
along which there is an abrupt change in local orientation of a physical surface and (2) the
set of points describing the boundary between two or more materially distinct regions of
a physical surface. Most of our perceptual senses, including vision, operate at a distance
and gather information using receptors that work in, at most, two dimensions. Only
the sense of touch, which requires direct contact to stimulate the skin’s pressure sensors,
is capable of direct perception of objects in three-dimensional (3D) space. However,
some physical edges of the second type may not be perceptible by touch because material
differences—for instance different colors of paint—do not always produce distinct tactile
sensations. Everyone first develops a working understanding of physical edges in early
childhood by touching and handling every object within reach.

The imaging process inherently performs a projection from a 3D scene to a two-
dimensional (2D) representation of that scene, according to the viewpoint of the imaging
device. Because of this projection process, edges in images have a somewhat different
meaning than physical edges. Although the precise definition depends on the applica-
tion context, an edge can generally be defined as a boundary or contour that separates
adjacent image regions having relatively distinct characteristics according to some fea-
ture of interest. Most often this feature is gray level or luminance, but others, such as
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reflectance, color, or texture, are sometimes used. In the most common situation where
luminance is of primary interest, edge pixels are those at the locations of abrupt gray level
change. To eliminate single-point impulses from consideration as edge pixels, one usually
requires that edges be sustained along a contour; i.e., an edge point must be part of an
edge structure having some minimum extent appropriate for the scale of interest. Edge
detection is the process of determining which pixels are the edge pixels. The result of the
edge detection process is typically an edge map, a new image that describes each original
pixel’s edge classification and perhaps additional edge attributes, such as magnitude and
orientation.

There is usually a strong correspondence between the physical edges of a set of objects
and the edges in images containing views of those objects. Infants and young children
learn this as they develop hand–eye coordination, gradually associating visual patterns
with touch sensations as they feel and handle items in their vicinity. There are many
situations, however, in which edges in an image do not correspond to physical edges. Illu-
mination differences are usually responsible for this effect—for example, the boundary
of a shadow cast across an otherwise uniform surface.

Conversely, physical edges do not always give rise to edges in images. This can also
be caused by certain cases of lighting and surface properties. Consider what happens
when one wishes to photograph a scene rich with physical edges—for example, a craggy
mountain face consisting of a single type of rock. When this scene is imaged while
the sun is directly behind the camera, no shadows are visible in the scene and hence
shadow-dependent edges are nonexistent in the photo. The only edges in such a photo
are produced by the differences in material reflectance, texture, or color. Since our rocky
subject material has little variation of these types, the result is a rather dull photograph
because of the lack of apparent depth caused by the missing edges. Thus images can
exhibit edges having no physical counterpart, and they can also miss capturing edges
that do. Although edge information can be very useful in the initial stages of such image
processing and analysis tasks as segmentation, registration, and object recognition, edges
are not completely reliable for these purposes.

If one defines an edge as an abrupt gray level change, then the derivative, or gradient,
is a natural basis for an edge detector. Figure 19.1 illustrates the idea with a continuous,
one-dimensional (1D) example of a bright central region against a dark background.
The left-hand portion of the gray level function fc (x) shows a smooth transition from
dark to bright as x increases. There must be a point x0 that marks the transition from
the low-amplitude region on the left to the adjacent high-amplitude region in the center.
The gradient approach to detecting this edge is to locate x0 where

∣∣f �
c (x)

∣∣ reaches a local

maximum or, equivalently, f �
c (x) reaches a local extremum, as shown in the second plot of

Fig. 19.1. The second derivative, or Laplacian approach, locates x0 where a zero-crossing
of f ��

c (x) occurs, as in the third plot of Fig. 19.1. The right-hand side of Fig. 19.1 illustrates
the case for a falling edge located at x1.

To use the gradient or the Laplacian approaches as the basis for practical image edge
detectors, one must extend the process to two dimensions, adapt to the discrete case, and
somehow deal with the difficulties presented by real images. Relative to the 1D edges
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fc (x)

f 'c (x)

0

0

x0 x1

0

f"c (x)

FIGURE 19.1

Edge detection in the 1D continuous case; changes in fc (x) indicate edges, and x0 and x1 are
the edge locations found by local extrema of f �

c (x) or by zero-crossings of f ��
c (x).

shown in Fig. 19.1, edges in 2D images have the additional quality of direction. One
usually wishes to find edges regardless of direction, but a directionally sensitive edge
detector can be useful at times. Also, the discrete nature of digital images requires the
use of an approximation to the derivative. Finally, there are a number of problems that
can confound the edge detection process in real images. These include noise, crosstalk or
interference between nearby edges, and inaccuracies resulting from the use of a discrete
grid. False edges, missing edges, and errors in edge location and orientation are often the
result.

Because the derivative operator acts as a highpass filter, edge detectors based on
it are sensitive to noise. It is easy for noise inherent in an image to corrupt the real
edges by shifting their apparent locations and by adding many false edge pixels. Unless
care is taken, seemingly moderate amounts of noise are capable of overwhelming the
edge detection process, rendering the results virtually useless. The wide variety of edge
detection algorithms developed over the past three decades exists, in large part, because
of the many ways proposed for dealing with noise and its effects. Most algorithms employ
noise-suppression filtering of some kind before applying the edge detector itself. Some
decompose the image into a set of lowpass or bandpass versions, apply the edge detector
to each, and merge the results. Still others use adaptive methods, modifying the edge
detector’s parameters and behavior according to the noise characteristics of the image
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data. Some recent work by Mathieu et al. [20] on fractional derivative operators shows
some promise for enriching the gradient and Laplacian possibilities for edge detection.
Fractional derivatives may allow better control of noise sensitivity, edge localization, and
error rate under various conditions.

An important tradeoff exists between correct detection of the actual edges and precise
location of their positions. Edge detection errors can occur in two forms: false positives,
in which nonedge pixels are misclassified as edge pixels, and false negatives, which are
the reverse. Detection errors of both types tend to increase with noise, making good
noise suppression very important in achieving a high detection accuracy. In general, the
potential for noise suppression improves with the spatial extent of the edge detection filter.
Hence, the goal of maximum detection accuracy calls for a large-sized filter. Errors in
edge localization also increase with noise. To achieve good localization, however, the filter
should generally be of small spatial extent. The goals of detection accuracy and location
accuracy are thus put into direct conflict, creating a kind of uncertainty principle for edge
detection [28].

In this chapter, we cover the basics of gradient and Laplacian edge detection methods
in some detail. Following each, we also describe several of the more important and useful
edge detection algorithms based on that approach. While the primary focus is on gray
level edge detectors, some discussion of edge detection in color and multispectral images
is included.

19.2 GRADIENT-BASED METHODS
19.2.1 Continuous Gradient
The core of gradient edge detection is, of course, the gradient operator, �. In continuous
form, applied to a continuous-space image, fc (x ,y), the gradient is defined as

�fc (x ,y) �
�fc (x ,y)

�x
ix �

�fc (x ,y)

�y
iy , (19.1)

where ix and iy are the unit vectors in the x and y directions. Notice that the gradient is a
vector, having both magnitude and direction. Its magnitude, |�fc (x0,y0)|, measures the
maximum rate of change in the intensity at the location (x0,y0). Its direction is that of
the greatest increase in intensity; i.e., it points “uphill.”

To produce an edge detector, one may simply extend the 1D case described earlier.
Consider the effect of finding the local extrema of �fc (x ,y) or the local maxima of

∣∣�fc (x ,y)
∣∣�

√(
�fc (x ,y)

�x

)2

�

(
�fc (x ,y)

�y

)2

. (19.2)

The precise meaning of “local” is very important here. If the maxima of Eq. (19.2)
are found over a 2D neighborhood, the result is a set of isolated points rather than
the desired edge contours. The problem stems from the fact that the gradient magni-
tude is seldom constant along a given edge, so finding the 2D local maxima yields only
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the locally strongest of the edge contour points. To fully construct edge contours, it is
better to apply Eq. (19.2) to a 1D local neighborhood, namely a line segment, whose
direction is chosen to cross the edge. The situation is then similar to that of Fig. 19.1,
where the point of locally maximum gradient magnitude is the edge point. Now the issue
becomes how to select the best direction for the line segment used for the search.

The most commonly used method of producing edge segments or contours from
Eq. (19.2) consists of two stages: thresholding and thinning. In the thresholding stage,
the gradient magnitude at every point is compared with a predefined threshold value, T .
All points satisfying the following criterion are classified as candidate edge points:

∣∣�fc (x ,y)
∣∣� T . (19.3)

The set of candidate edge points tends to form strips, which have positive width. Since
the desire is usually for zero-width boundary segments or contours to describe the edges,
a subsequent processing stage is needed to thin the strips to the final edge contours.
Edge contours derived from continuous-space images should have zero width because
any local maxima of

∣∣�fc (x ,y)
∣∣, along a line segment that crosses the edge, cannot be

adjacent points. For the case of discrete-space images, the nonzero pixel size imposes a
minimum practical edge width.

Edge thinning can be accomplished in a number of ways, depending on the appli-
cation, but thinning by nonmaximum suppression is usually the best choice. Generally
speaking, we wish to suppress any point that is not, in a 1D sense, a local maximum
in gradient magnitude. Since a 1D local neighborhood search typically produces a sin-
gle maximum, those points that are local maxima will form edge segments only one
point wide. One approach classifies an edge-strip point as an edge point if its gradient
magnitude is a local maximum in at least one direction. However, this thinning method
sometimes has the side effect of creating false edges near strong edge lines [17]. It is also
somewhat inefficient because of the computation required to check along a number of
different directions. A better, more efficient thinning approach checks only a single direc-
tion, the gradient direction, to test whether a given point is a local maximum in gradient
magnitude. The points that pass this scrutiny are classified as edge points. Looking in
the gradient direction essentially searches perpendicular to the edge itself, producing a
scenario similar to the 1D case shown in Fig. 19.1. The method is efficient because it is not
necessary to search in multiple directions. It also tends to produce edge segments hav-
ing good localization accuracy. These characteristics make the gradient direction, local
extremum method quite popular. The following steps summarize its implementation.

1. Using one of the techniques described in the next section, compute �f for all
pixels.

2. Determine candidate edge pixels by thresholding all pixels’ gradient magnitudes
by T .

3. Thin by supressing all candidate edge pixels whose gradient magnitude is not a
local maximum along its gradient direction. Those that survive nonmaximum
supression are classified as edge pixels.
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The order of the thinning and thresholding steps might be interchanged. If
thresholding is accomplished first, the computational cost of thinning can be signifi-
cantly reduced. However, it can become difficult to predict the number of edge pixels
that will be produced by a given threshold value. By thinning first, there tends to be
somewhat better predictability of the richness of the resulting edge map as a function of
the applied threshold.

Consider the effect of performing the thresholding and thinning operations in isola-
tion. If thresholding alone were done, the edges would show as strips or patches instead
of thin segments. If thinning were done without thresholding, that is, if edge points were
simply those having locally maximum gradient magnitude, many false edge points would
likely result because of noise. Noise tends to create false edge points because some points
in edge-free areas happen to have locally maximum gradient magnitudes. The threshold-
ing step of Eq. (19.3) is often useful to reduce noise either prior to or following thinning.
A variety of adaptive methods have been developed that adjust the threshold according
to certain image characteristics, such as an estimate of local signal-to-noise ratio. Adaptive
thresholding can often do a better job of noise suppression while reducing the amount
of edge fragmentation.

The edge maps in Fig. 19.3, computed from the original image in Fig. 19.2, illustrate
the effect of the thresholding and subsequent thinning steps.

The selection of the threshold value T is a tradeoff between the wish to fully capture
the actual edges in the image and the desire to reject noise. Increasing T decreases
sensitivity to noise at the cost of rejecting the weakest edges, forcing the edge segments to

FIGURE 19.2

Original cameraman image, 512 � 512 pixels.
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(a) (b)

FIGURE 19.3

Gradient edge detection steps, using the Sobel operator: (a) After thresholding
∣∣�f

∣∣; (b) after
thinning (a) by finding the local maximum of

∣∣�f
∣∣ along the gradient direction.

become more broken and fragmented. By decreasing T , one can obtain more connected
and richer edge contours, but the greater noise sensitivity is likely to produce more false
edges. If only thresholding is used, as in Eq. (19.3) and Fig. 19.3(a), the edge strips tend
to narrow as T increases and widen as it decreases. Figure 19.4 compares edge maps
obtained from several different threshold values.

Sometimes a directional edge detector is useful. One can be obtained by decomposing
the gradient into horizontal and vertical components and applying them separately.
Expressed in the continuous domain, the operators become:

∣∣∣∣
�fc (x ,y)

�x

∣∣∣∣� T for edges in the y direction,

∣∣∣∣
�fc (x ,y)

�y

∣∣∣∣� T for edges in the x direction.

An example of directional edge detection is illustrated in Fig. 19.5.
A directional edge detector can be constructed for any desired direction by using the

directional derivative along a unit vector n,

�fc
�n

� �fc (x ,y) · n,

�
�fc (x ,y)

�x
cos� �

�fc (x ,y)

�y
sin�, (19.4)
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(a) (b)

(c) (d)

FIGURE 19.4

Roberts edge maps obtained by using various threshold values: (a) T � 5; (b) T � 10; (c) T � 20;
and (d) T � 40. As T increases, more noise-induced edges are rejected along with the weaker
real edges.

where � is the angle of n relative to the positive x axis. The directional derivative is most
sensitive to edges perpendicular to n.

The continuous-space gradient magnitude produces an isotropic or rotationally sym-
metric edge detector, equally sensitive to edges in any direction [17]. It is easy to show
why

∣∣�f
∣∣ is isotropic. In addition to the original X -Y coordinate system, let us introduce

a new system, X �-Y �, which is rotated by an angle of � relative to X -Y . Let nx� and ny� be
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(a) (b)

FIGURE 19.5

Directional edge detection comparison, using the Sobel operator: (a) results of horizontal
difference operator; (b) results of vertical difference operator.

the unit vectors in the x� and y� directions, respectively. For the gradient magnitude to
be isotropic, the same result must be produced in both coordinate systems, regardless of
�. Using Eq. (19.4) along with abbreviated notation, the partial derivatives with respect
to the new coordinate axes are

fx� � �f · nx� � fx cos� � fy sin�,

fy� � �f · ny� � �fx sin� � fy cos�.

From this point, it is a simple matter of plugging into Eq. (19.2) to show the gradient
magnitudes are identical in both coordinate systems, regardless of the rotation angle, �.

Occasionally, one may wish to reduce the computation load of Eq. (19.2) by approxi-
mating the square root with a computationally simpler function. Three possibilities are

∣∣�fc (x ,y)
∣∣≈ max

{∣∣∣∣
�fc (x ,y)

�x

∣∣∣∣ ,
∣∣∣∣
�fc (x ,y)

�y

∣∣∣∣
}

, (19.5)

≈
∣∣∣∣
�fc (x ,y)

�x

∣∣∣∣�

∣∣∣∣
�fc (x ,y)

�y

∣∣∣∣ , (19.6)

≈ max

{∣∣∣∣
�fc (x ,y)

�x

∣∣∣∣ ,
∣∣∣∣
�fc (x ,y)

�y

∣∣∣∣
}

�
1

4
min

{∣∣∣∣
�fc (x ,y)

�x

∣∣∣∣ ,
∣∣∣∣
�fc (x ,y)

�y

∣∣∣∣
}

. (19.7)

One should be aware that approximations of this type may alter the properties of the
gradient somewhat. For instance, the approximated gradient magnitudes of Eqs. (19.5),
(19.6), and (19.7) are not isotropic and produce their greatest errors for purely diagonally
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oriented edges. All three estimates are correct only for the pure horizontal and vertical
cases. Otherwise, Eq. (19.5) consistently underestimates the true gradient magnitude
while Eq. (19.6) overestimates it. This makes Eq. (19.5) biased against diagonal edges
and Eq. (19.6) biased toward them. The estimate of Eq. (19.7) is by far the most accurate
of the three.

19.2.2 Discrete Gradient Operators
In the continuous-space image, fc (x ,y), let x and y represent the horizontal and vertical
axes, respectively. Let the discrete-space representation of fc (x ,y) be f (n1,n2), with n1

describing the horizontal position and n2 describing the vertical. Let us assume that the
positive directions of n1 and n2 are to the right and upward, respectively. For use on
discrete-space images, the continuous gradient’s derivative operators must be approxi-
mated in discrete form. The approximation takes the form of a pair of orthogonally
oriented filters, h1(n1,n2) and h2(n1,n2), which must be separately convolved with the
image. Based on Eq. (19.1), the gradient estimate is

�̂f (n1,n2) � f1(n1,n2) in1 � f2(n1,n2) in2 ,

where

f1(n1,n2) � f (n1,n2) ∗ h1(n1,n2)

f2(n1,n2) � f (n1,n2) ∗ h2(n1,n2).

Two filters are necessary because the gradient requires the computation of an orthogonal
pair of directional derivatives. The gradient magnitude and direction estimates can then
be computed as follows:

∣∣∣�̂f (n1,n2)

∣∣∣�
√

f 2
1 (n1,n2) � f 2

2 (n1,n2),

∠ �̂f (n1,n2) � tan�1
(

f2(n1,n2)

f1(n1,n2)

)
. (19.8)

Each of the filters implements a derivative and should not respond to a constant, so the
sum of its coefficients must always be zero. A more general statement of this property is
described later in this chapter by Eq. (19.12).

There are many possible derivative-approximation filters for use in gradient estima-
tion. Let us start with the simplest cases. Two simple approximation schemes for the
derivative in one dimension are

First difference: f (n) � f (n � 1),

Central difference:
1

2

[
f (n � 1) � f (n � 1)

]
,

which result in the following 1D convolutional filters:

First difference: h(n) � �(n) � �(n � 1) � [1 � 1], (19.9)

Central difference: h(n) � �(n � 1) � �(n � 1) �
1

2
[1 0 � 1].
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It is common practice to incorporate the dimensional reversal into the filter kernel
mask and then perform correlation instead of convolution. This exploits the close rela-
tionship between the discrete convolution and the correlation operators, thereby saving
a bit of computation. As a practical matter, the convolution and correlation responses to
a given gradient-based edge detection mask will differ only in sign. However, the mag-
nitude of the response—not its sign—is usually the important thing. Henceforth, the
filters are expressed as correlation masks and the dimensional reversal will be omitted.
For instance, the convolutional filters of Eq. (19.9) are expressed in correlational form,
with h(�n) listed as h(n) for simplicity:

First difference: h(n) � [�1 1],

Central difference: h(n) �
1

2
[�1 0 1].

(19.10)

The scaling factor of 1/2 for the central difference is caused by the two-pixel distance
between the nonzero samples. The origin positions for both filters are usually set at
(n1,n2), shown in boldface. The gradient magnitude threshold value can be easily adjus-
ted to compensate for any scaling, so the scale factor will be omitted from here on.

Let us now extend Eq. (19.10) to the 2D case. These derivative approximations can be
expressed as filter kernels, whose impulse responses, h1(n1,n2) and h2(n1,n2), are shown
dimensionally reversed as the following correlation masks:

First difference: h1(n1,n2) �

[
0 0

�1 1

]
, h2(n1,n2) �

[
1 0

�1 0

]
,

Central difference: h1(n1,n2) �

⎡
⎢⎣

0 0 0

�1 0 1

0 0 0

⎤
⎥⎦, h2(n1,n2) �

⎡
⎢⎣

0 1 0

0 0 0

0 �1 0

⎤
⎥⎦.

Again, the origin position is indicated by boldface. Filters h1(n1,n2) respond most
strongly to vertical edges and do not respond to horizontal edges. The h2(n1,n2)

counterparts respond to horizontal edges and not to vertical ones.
If used to detect edges, the pair of first difference filters above presents the problem

that the zero crossings of its two [�1 1] derivative kernels lie at different positions. This
prevents the two filters from measuring horizontal and vertical edge characteristics at the
same location, causing error in the estimated gradient. The central difference, caused by
the common center of its horizontal and vertical differencing kernels, avoids this position
mismatch problem. This benefit comes at the costs of larger filter size and the fact that
the measured gradient at a pixel (n1,n2) does not actually consider the value of that pixel.

Rotating the first difference kernels by an angle of �
4 and stretching the grid a bit

produces the h1(n1,n2) and h2(n1,n2) correlation masks for the Roberts operator:
[

0 1

�1 0

] [
1 0

0 �1

]
.

The Roberts operator’s component filters are tuned for diagonal edges rather than vertical
and horizontal ones. For use in an edge detector based on the gradient magnitude, it
is important only that the two filters be orthogonal. They need not be aligned with
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the n1 and n2 axes. The pair of Roberts filters has a common zero-crossing point for
their differencing kernels. This common center eliminates the position mismatch error
exhibited by the horizontal-vertical first difference pair, as described earlier. If the origins
of the Roberts kernels are positioned on the �1 samples, as is sometimes found in the
literature, then no common center point exists for their first differences.

The Roberts operator, like any simple first-difference gradient operator, has two unde-
sirable characteristics. First, the zero crossing of its [�1 1] diagonal kernel lies off grid,
but the edge location must be assigned to an actual pixel location, namely the one at
the filter’s origin. This can create edge location bias that may lead to location errors
approaching the interpixel distance. If we could use the central difference instead of the
first difference, this problem would be reduced because the central difference operator
inherently constrains its zero crossing to an exact pixel location.

The other difficulty caused by the first difference is its noise sensitivity. In fact, both
the first- and central-difference derivative estimators are quite sensitive to noise. The
noise problem can be reduced somewhat by incorporating smoothing into each filter in
the direction normal to that of the difference. Consider an example based on the central
difference in one direction for which we wish to smooth along the orthogonal direction
with a simple three-sample average. To that end, let us define the impulse responses of
two filters:

ha(n1) �
[

1 1 1
]

, hb(n2) �
[

�1 0 1
]

.

Since ha is a function only of n1 and hb depends only on n2, one can simply multiply them
as an outer product to form a separable derivative filter that incorporates smoothing:

ha(n1)hb(n2) � h1(n1,n2),

⎡
⎢⎣

1

1
1

⎤
⎥⎦
[

�1 0 1
]

�

⎡
⎢⎣

�1 0 1

�1 0 1

�1 0 1

⎤
⎥⎦.

Repeating this process for the orthogonal case produces the Prewitt operator mask:
⎡
⎢⎣

�1 0 1

�1 0 1

�1 0 1

⎤
⎥⎦

⎡
⎢⎣

1 1 1

0 0 0

�1 �1 �1

⎤
⎥⎦.

The Prewitt edge gradient operator simultaneously accomplishes differentiation in one
coordinate direction, using the central difference, and noise reduction in the orthogonal
direction, by means of local averaging. Because it uses the central difference instead of
the first difference, there is less edge-location bias.

In general, the smoothing characteristics can be adjusted by choosing an appropriate
lowpass filter kernel in place of the Prewitt’s three-sample average. One such variation is
the Sobel operator, one of the most widely used gradient edge detectors:

⎡
⎢⎣

�1 0 1

�2 0 2

�1 0 1

⎤
⎥⎦

⎡
⎢⎣

1 2 1

0 0 0

�1 �2 �1

⎤
⎥⎦.
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Sobel’s operator is often a better choice than Prewitt’s because the lowpass filter produced
by the [1 2 1] kernel results in a smoother frequency response compared with that of
[1 1 1].

The Prewitt and Sobel operators respond differently to diagonal edges than to hori-
zontal or vertical ones. This behavior is a consequence of the fact that their filter coeffi-
cients do not compensate for the different grid spacings in the diagonal and the horizontal
directions. The Prewitt operator is less sensitive to diagonal edges than to vertical or hor-
izontal ones. The opposite is true for the Sobel operator [23]. A variation designed for
equal gradient magnitude response to diagonal, horizontal, and vertical edges is the
Frei-Chen operator:

⎡
⎢⎣

�1 0 1

�
√

2 0
√

2

�1 0 1

⎤
⎥⎦

⎡
⎢⎣

1
√

2 1

0 0 0

�1 �
√

2 �1

⎤
⎥⎦.

However, even the Frei-Chen operator retains some directional sensitivity in gradient
magnitude, so it is not truly isotropic. The residual anisotropy is caused by the fact that
the difference operators used to approximate Eq. (19.1) are not rotationally symmetric.
Merron and Brady [21] describe a simple method for greatly reducing the residual direc-
tional bias by using a set of four difference operators instead of two. Their operators are
oriented in increments of �/4 radians, adding a pair of diagonal ones to the original hori-
zontal and vertical pair. Averaging the gradients produced by the diagonal operators with
those of the nondiagonal ones allows their complementary directional biases to reduce
the overall anisotropy. However, Ziou and Wang [31] have described how an isotropic
gradient applied to a discrete grid tends to introduce some anisotropy. They have also
analyzed the errors of gradient magnitude and direction as a function of edge translation
and orientation for several detectors. Figure 19.6 shows the results of performing edge
detection on an example image by applying the discrete gradient operators discussed
so far.

Haralick’s facet model [10, 11] provides another way of calculating the gradient in
order to perform edge detection. In the sloped facet model, a small neighborhood is
parameterized by �n2 � �n1 � 	, describing the plane that best fits the gray levels in
that neighborhood. The plane parameters � and � can be used to compute the gradient
magnitude:

∣∣�fc (n1,n2)
∣∣�

√
�2 � �2.

The facet model also provides means for computing directional derivatives, zero cross-
ings, and a variety of other useful operations.

Improved noise suppression is possible with increased kernel size. The additional
coefficients can be used to better approximate the desired continuous-space noise-
suppression filter. Greater filter extent can also be used to reduce directional sensitivity
by more accurately modeling an ideal isotropic filter. However, increasing the kernel
size will exacerbate edge localization problems and create interference between nearby
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(a) (b)

(c) (d)

FIGURE 19.6

Comparison of edge detection using various gradient operators: (a) Roberts; (b) 3 � 3 Prewitt;
(c) 3 � 3 Sobel; and (d) 3 � 3 Frei-Chen. In each case, the threshold has been set to allow a fair
comparison.

edges. Noise suppression can be improved by other methods as well. Papers by Bovik
et al. [3] and Hardie and Boncelet [12] are just two that describe the use of edge-
enhancing prefilters, which simultaneously suppress noise and steepen edges prior to
gradient edge detection.
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19.3 LAPLACIAN-BASED METHODS
19.3.1 Continuous Laplacian
The Laplacian is defined as

�2fc (x ,y) � � · �fc (x ,y) �
�2fc (x ,y)

�x2 �
�2fc (x ,y)

�y2 . (19.11)

The zero crossings of �2fc (x ,y) occur at the edge points of fc (x ,y) because of the second
derivative action (see Fig. 19.1). Laplacian-based edge detection has the nice property
that it produces edges of zero thickness, making edge-thinning steps unnecessary. This
is because the zero crossings themselves define the edge locations.

The continuous Laplacian is isotropic, favoring no particular edge orientation. Con-
sequently, its second partial terms in Eq. (19.11) can be oriented in any direction as long
as they remain perpendicular to each other. Consider an ideal, straight, noise-free edge
oriented in an arbitrary direction. Let us realign the first term of Eq. (19.11) parallel
to that edge and the second term perpendicular to it. The first term then generates no
response at all because it acts only along the edge. The second term produces a zero
crossing at the edge position along its edge-crossing profile.

An edge detector based solely on the zero crossings of the continuous Laplacian
produces closed edge contours if the image, f (x ,y), meets certain smoothness con-
straints [28]. The contours are closed because edge strength is not considered, so even the
slightest, most gradual intensity transition produces a zero crossing. In effect, the zero-
crossing contours define the boundaries that separate regions of nearly constant intensity
in the original image. The second derivative zero crossings occur at the local extrema of
the first derivative (see Fig. 19.1), but many zero crossings are not local maxima of the
gradient magnitude. Some local minima of the gradient magnitude give rise to phantom
edges, which can be largely eliminated by appropriately thresholding the edge strength.
Figure 19.7 illustrates a 1D example of a phantom edge.

Noise presents a problem for the Laplacian edge detector in several ways. First, the
second-derivative action of Eq. (19.11) makes the Laplacian even more sensitive to noise
than the first-derivative-based gradient. Second, noise produces many false edge contours
because it introduces variation to the constant-intensity regions in the noise-free image.
Third, noise alters the locations of the zero-crossing points, producing location errors
along the edge contours. The problem of noise-induced false edges can be addressed by
applying an additional test to the zero-crossing points. Only the zero crossings that satisfy
this new criterion are considered edge points. One commonly-used technique classifies a
zero crossing as an edge point if the local gray level variance exceeds a threshold amount.
Another method is to select the strong edges by thresholding the gradient magnitude or
the slope of the Laplacian output at the zero crossing. Both criteria serve to reject zero-
crossing points that are more likely caused by noise than by a real edge in the original
scene. Of course, thresholding the zero crossings in this manner tends to break up the
closed contours.
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fc (x)
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FIGURE 19.7

The zero crossing of f ��
c (x) at xp creates a phantom edge.

Like any derivative filter, the continuous-space Laplacian filter, hc (x ,y), has this
important zero-mean property [15]:

∫ �	

�	

∫ �	

�	
hc (x ,y)dxdy � 0. (19.12)

In other words, hc (x ,y) is a surface bounding equal volumes above and below zero. Con-
sequently, �2fc (x ,y) will also have equal volumes above and below zero. This property
eliminates any response that is due to the constant or DC bias contained in fc (x ,y). With-
out DC bias rejection, the filter’s edge detection performance would be compromised.
Gunn [15] has described the effect of truncation of the Laplacian and the subsequent
bias introduced when Eq. (19.12) is violated.

19.3.2 Discrete Laplacian Operators
It is useful to construct a filter to serve as the Laplacian operator when applied to a discrete-
space image. Recall that the gradient,which is a vector, required a pair of orthogonal filters.
The Laplacian is a scalar. Therefore, a single filter, h(n1,n2), is sufficient for realizing a
Laplacian operator. The Laplacian estimate for an image, f (n1,n2), is then

�̂2f (n1,n2) � f (n1,n2) ∗ h(n1,n2).
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One of the simplest Laplacian operators can be derived as follows. First needed is an
approximation to the derivative in x , so let us use a simple first difference:

�fc (x ,y)

�x
→ fx (n1,n2) � f (n1 � 1,n2) � f (n1,n2). (19.13)

The second derivative in x can be built by applying the first difference to Eq. (19.13).
However, we discussed earlier how the first difference produces location errors because
its zero crossing lies off grid. This second application of a first difference can be shifted
to counteract the error introduced by the previous one:

�2fc (x ,y)

�x2 → fxx (n1,n2) � fx (n1,n2) � fx (n1 � 1,n2). (19.14)

Combining the two derivative-approximation stages from Eqs. (19.13) and (19.14)
produces

�2fc (x ,y)

�x2 → fxx (n1,n2) � f (n1 � 1,n2) � 2f (n1,n2) � f (n1 � 1,n2) �
[

1 �2 1
]

.

(19.15)
Proceeding in an identical manner for y yields

�2fc (x ,y)

�y2 → fyy (n1,n2) � f (n1,n2 � 1) � 2f (n1,n2) � f (n1,n2 � 1) �

⎡
⎢⎣

1

�2
1

⎤
⎥⎦. (19.16)

Combining the x and y second partials of Eqs. (19.15) and (19.16) produces a filter,
h(n1,n2), which estimates the Laplacian:

�2fc (x ,y)→ �̂2f (n1,n2) � fxx(n1,n2) � fyy (n1,n2)

� f (n1 � 1,n2) � f (n1 � 1,n2) � f (n1,n2 � 1)

� f (n1,n2 � 1) � 4f (n1,n2)

�
[

1 �2 1
]

�

⎡
⎣

1
�2

1

⎤
⎦�

⎡
⎣

0 1 0
1 �4 1
0 1 0

⎤
⎦.

Other Laplacian estimation filters can be constructed using this method of designing
a pair of appropriate 1D second derivative filters and combining them into a single 2D
filter. The results depend on the choice of derivative approximator, the size of the desired
filter kernel, and the characteristics of any noise-reduction filtering applied. Two other
3 � 3 examples are

⎡
⎢⎣

1 1 1

1 �8 1

1 1 1

⎤
⎥⎦,

⎡
⎢⎣

�1 2 �1

2 �4 2

�1 2 �1

⎤
⎥⎦.

In general, a discrete-space smoothed Laplacian filter can be easily constructed by sam-
pling an appropriate continuous-space function, such as the Laplacian of Gaussian. When
constructing a Laplacian filter, make sure that the kernel’s coefficients sum to zero in order
to satisfy the discrete form of Eq. (19.12). Truncation effects may upset this property and
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create bias. If so, the filter coefficients should be adjusted in a way that restores proper
balance.

Locating zero crossings in the discrete-space image, �2f (n1,n2), is fairly straight-
forward. Each pixel should be compared to its eight immediate neighbors; a four-way
neighborhood comparison, while faster, may yield broken contours. If a pixel, p, differs
in sign with its neighbor, q, an edge lies between them. The pixel, p, is classified as a zero
crossing if

∣∣�2f (p)
∣∣


∣∣�2f (q)
∣∣ . (19.17)

19.3.3 The Laplacian of Gaussian (Marr-Hildreth Operator)
It is common for a single image to contain edges having widely different sharpnesses
and scales, from blurry and gradual to crisp and abrupt. Edge scale information is often
useful as an aid toward image understanding. For instance, edges at low resolution tend
to indicate gross shapes while texture tends to become important at higher resolutions.
An edge detected over a wide range of scale is more likely to be physically significant
in the scene than an edge found only within a narrow range of scale. Furthermore, the
effects of noise are usually most deleterious at the finer scales.

Marr and Hildreth [19] advocated the need for an operator that can be tuned to detect
edges at a particular scale. Their method is based on filtering the image with a Gaussian
kernel selected for a particular edge scale. The Gaussian smoothing operation serves
to band-limit the image to a small range of frequencies, reducing the noise sensitivity
problem when detecting zero crossings. The image is filtered over a variety of scales, and
the Laplacian zero crossings are computed at each. This produces a set of edge maps as
a function of edge scale. Each edge point can be considered to reside in a region of scale
space, for which edge point location is a function of x , y , and 
. Scale space has been
successfully used to refine and analyze edge maps [30].

The Gaussian has some very desirable properties that facilitate this edge detection
procedure. First, the Gaussian function is smooth and localized in both the spatial and
frequency domains, providing a good compromise between the need for avoiding false
edges and for minimizing errors in edge position. In fact, Torre and Poggio [28] describe
the Gaussian as the only real-valued function that minimizes the product of spatial- and
frequency-domain spreads. The Laplacian of Gaussian essentially acts as a bandpass filter
because of its differential and smoothing behavior. Second, the Gaussian is separable,
which helps make computation very efficient.

Omitting the scaling factor, the Gaussian filter can be written as

gc (x ,y) � exp

(
�

x2 � y2

2
2

)
. (19.18)

Its frequency response, G(�x ,�y ), is also Gaussian:

G(�x ,�y ) � 2�
2 exp

(
�


2

2

(
�2

x � �2
y

))
.

The 
 parameter is inversely related to the cutoff frequency.
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Because the convolution and Laplacian operations are both linear and shift invariant,
their computation order can be interchanged:

�2 [fc (x ,y) ∗ gc (x ,y)
]

�
[
�2gc (x ,y)

]
∗ fc (x ,y). (19.19)

Here we take advantage of the fact that the derivative is a linear operator. Therefore,
Gaussian filtering followed by differentiation is the same as filtering with the derivative
of a Gaussian. The right-hand side of Eq. (19.19) usually provides for more efficient
computation since �2gc (x ,y) can be prepared in advance due to its image independence.
The Laplacian of Gaussian (LoG) filter, hc (x ,y), therefore has the following impulse
response:

hc (x ,y) � �2gc (x ,y)

�
x2 � y2 � 2
2


4
exp

(
�

x2 � y2

2
2

)
. (19.20)

To implement the LoG in discrete form, one may construct a filter, h(n1,n2), by
sampling Eq. (19.20) after choosing a value of 
, then convolving with the image. If the
filter extent is not small, it is usually more efficient to work in the frequency domain
by multiplying the discrete Fourier transforms of the filter and the image, then inverse
transforming the result. The fast Fourier transform is the method of choice for computing
these transforms.

Although the discrete form of Eq. (19.20) is a 2D filter, Chen et al. [7] have shown
that it is actually the sum of two separable filters because the Gaussian itself is a separable
function. By constructing and applying the appropriate 1D filters successively to the
rows and columns of the image, the computational expense of 2D convolution becomes
unnecessary. Separable convolution to implement the LoG is roughly 1–2 orders of
magnitude more efficient than 2D convolution. If an image is M � M in size, the number
of operations at each pixel is M 2 for 2D convolution and only 2M if done in a separable,
1D manner.

Figure 19.8 shows an example of applying the LoG using various 
 values.
Figure 19.8(d) includes a gradient magnitude threshold, which suppresses noise and
breaks contours. Lim [17] describes an adaptive thresholding scheme that produces
better results.

Equation (19.20) has the shape of a sombrero or “Mexican hat.” Figure 19.9 shows
a perspective plot of �2gc (x ,y) and its frequency response, F

{
�2gc (x ,y)

}
. This profile

closely mimics the response of the spatial receptive field found in biological vision.
Biological receptive fields have been shown to have a circularly symmetric impulse
response, with a central excitory region surrounded by an inhibitory band.

When sampling the LoG to produce a discrete version, it is important to size the filter
large enough to avoid significant truncation effects. A good rule of thumb is to make
the filter at least three times the width of the LoG’s central excitory lobe [23]. Siohan
et al. [27] describe two approaches for the practical design of LoG filters. The errors in
edge location produced by the LoG have been analyzed in some detail by Berzins [2].
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(a) (b)

(c) (d)

FIGURE 19.8

Zero crossings of f ∗�2g for several values of 
, with (d) also thresholded: (a) 
 � 1.0;
(b) 
 � 1.5; (c) 
 � 2.0; (d) 
 � 2.0, and T � 20.

Gunn [15] has analyzed and described the relationship between the choice of LoG mask
size and the resulting probability of edge detection and localization errors.

Sarkar and Boyer [25] have developed an optimal recursive filter for use as a zero-
crossing edge detector. They observed that the optimal zero-crossing detector cannot
generally be obtained by simply taking the derivative of the optimal gradient detector.
Their filter has been optimized for step edges and to simultaneously achieve low error
rate, high edge localization precision, and low rate of spurious responses. These goals
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FIGURE 19.9

Plots of the LoG and its frequency response for 
 � 1: (a) ��2gc (x ,y), the negative of Eq. (19.20);
(b) F{�2gc (x ,y)}, the bandpass-shaped frequency response of Eq. (19.20).

are similar to those of Canny, whose method is described later in this chapter. The
Sarkar-Boyer filter is claimed to perform somewhat better than the LoG filter [25].

19.3.4 Difference of Gaussian
The Laplacian of Gaussian of Eq. (19.20) can be closely approximated by the differ-
ence of two Gaussians having properly-chosen scales. The difference of Gaussian (DoG)
filter is

hc (x ,y) � gc1(x ,y) � gc2(x ,y),

where


2


1
≈ 1.6,

and gc1, gc2 are evaluated using Eq. (19.18). However, the LoG is usually preferred because
it is theoretically optimal and its separability allows for efficient computation [19]. For
the same accuracy of results, the DoG requires a slightly larger filter size [14].

The technique of unsharp masking, used in photography, is basically a DoG’s opera-
tion done with light and negatives. Unsharp masking involves making a somewhat blurry
exposure of an original negative onto a new piece of film. When the film is developed,
it contains a blurred and inverted-brightness version of the original negative. Finally,
a print is made from these two negatives sandwiched together, producing a sharpened
image with the edges showing increased contrast.

Nature uses the DoGs as a basis for the architecture of the retina’s visual receptive field.
The spatial-domain impulse response of a photoreceptor cell in the mammalian retina
has a roughly Gaussian shape. The photoreceptor output feeds into horizontal cells in
the adjacent layer of neurons. Each horizontal cell averages the responses of the receptors
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in its immediate neighborhood, producing a Gaussian-shaped impulse response with a
higher 
 than that of a single photoreceptor. Both layers send their outputs to the third
layer, where bipolar neurons subtract the high-
 neighborhood averages from the central
photoreceptors’ low-
 responses. This produces a biological realization of the DoG filter,
approximating the behavior of the Laplacian of Gaussian. The retina actually implements
DoG bandpass filters at several spatial frequencies [18].

19.4 CANNY’S METHOD
Canny’s method [5] uses the concepts of both the first and second derivatives in a very
effective manner. His is a classic application of the gradient approach to edge detection
in the presence of additive white Gaussian noise, but it also incorporates elements of
the Laplacian approach. The method has three simultaneous goals: low rate of detection
errors, good edge localization, and only a single detection response per edge. Canny
assumed that false-positive and false-negative detection errors are equally undesirable
and so gave them equal weight. He further assumed that each edge has nearly constant
cross section and orientation, but his general method includes a way to effectively deal
with the cases of curved edges and corners. With these constraints, Canny determined
the optimal 1D edge detector for the step edge and showed that its impulse response can
be approximated fairly well by the derivative of a Gaussian.

An important action of Canny’s edge detector is to prevent multiple responses per
true edge. Without this criterion, the optimal step-edge detector would have an impulse
response in the form of a truncated signum function. (The signum function produces
�1 for any positive argument and �1 for any negative argument.) But this type of filter
has high bandwidth, allowing noise or texture to produce several local maxima in the
vicinity of the actual edge. The effect of the derivative of Gaussian is to prevent multiple
responses by smoothing the truncated signum in order to permit only one response peak
in the edge neighborhood. The choice of variance for the Gaussian kernel controls the
filter width and the amount of smoothing. This defines the width of the neighborhood
in which only a single peak is to be allowed. The variance selected should be proportional
to the amount of noise present. If the variance is chosen too low, the filter can produce
multiple detections for a single edge; if too high, edge localization suffers needlessly.
Because the edges in a given image are likely to differ in signal-to-noise ratio, a single-
filter implementation is usually not best for detecting them. Hence a thorough edge
detection procedure should operate at different scales.

Canny’s approach begins by smoothing the image with a Gaussian filter:

gc (x ,y) �
1



√

2�
exp

(
�

x2 � y2

2
2

)
. (19.21)

One may sample and truncate Eq. (19.21) to produce a finite-extent filter, g (n1,n2). At
each pixel, Eq. (19.8) is used to estimate the gradient direction. From a set of prepared
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edge detection filter masks having various orientations, the one oriented nearest to the
gradient direction for the targeted pixel is then chosen. When applied to the Gaussian-
smoothed image, this filter produces an estimate of gradient magnitude at that pixel.
One may instead apply simpler methods, such as the central difference operator, to
estimate the partial derivatives. The initial Gaussian smoothing step makes additional
smoothing along the edge, as with the Prewitt or Sobel operators, completely unnecessary.
Next, the goal is to suppress nonmaxima of the gradient magnitude by testing a 3 � 3
neighborhood, comparing the magnitude at the center pixel with those at interpolated
positions to either side along the gradient direction.

The pixels that survive to this point are candidates for the edge map. To produce an
edge map from these candidate pixels, Canny applies thresholding by gradient magnitude
in an adaptive manner with hysteresis. An estimate of the noise in the image determines
the values of a pair of thresholds, with the upper threshold typically two or three times
that of the lower. A candidate edge segment is included in the output edge map if at least
one of its pixels has a gradient magnitude exceeding the upper threshold, but pixels not
meeting the lower threshold are excluded. This hysteresis action helps reduce the problem
of broken edge contours while improving the ability to reject noise.

A set of edge maps over a range of scales can be produced by varying the 
 values
used to Gaussian-filter the image. Since smoothing at different scales produces differ-
ent errors in edge location, an edge segment that appears in multiple edge maps at
different scales may exhibit some position shift. Canny proposed unifying the set of
edge maps into a single result by a technique he called “feature synthesis,” which pro-
ceeds in a fine-to-coarse manner while tracking the edge segments within their possible
displacements.

The preoriented edge detection filters, mentioned previously, have some interesting
properties. Each mask includes a derivative of Gaussian function to perform the nearly
optimal directional derivative across the intended edge. A smooth, averaging profile
appears in the mask along the intended edge direction in order to reduce noise without
compromising the sharpness of the edge profile. In the smoothing direction, the filter
extent is usually several times that in the derivative direction when the filter is intended
for straight edges. Canny’s method includes a “goodness of fit” test to determine if the
selected filter is appropriate before it is applied. The test examines the gray level variance
of the strip of pixels along the smoothing direction of the filter. If the variance is small,
then the edge must be close to linear, and the filter is a good choice. A large variance
indicates the presence of curvature or a corner, in which case a better choice of filter
would have smaller extent in the smoothing direction. There were six oriented filters
used in Canny’s work, thus the greatest directional mismatch between the actual gradient
and the nearest filter is 15◦.

As discussed previously, edges can be detected from either the maxima of the gradient
magnitude or the zero crossings of the second derivative. Another way to realize the
essence of Canny’s method is to look for zero crossings of the second directional derivative
taken along the gradient direction. Let us examine the mathematical basis for this. If n is
a unit vector in the gradient direction, and f is the Gaussian-smoothed image, then we
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wish to find

�2f

�n2
� �

(
�f

�n

)
· n

� �
(
�f · n

) · n,

which can be expanded to the following form:

�2f

�n2
�

f 2
x fxx � 2fx fy fxy � f 2

y fyy√
f 2
x � f 2

y

. (19.22)

In Eq. (19.22), a concise notation has been used for the partial derivatives.
Like the Laplacian approach, Canny’s method looks for zero crossings of the second

derivative. The Laplacian’s second derivative is nondirectional; it includes a component
taken parallel to the edge and another taken across it. Canny’s method is evaluated
only in the gradient direction, directly across the local edge. A derivative taken along an
edge is counterproductive because it introduces noise without improving edge detection
capability. By being selective about the direction in which its derivatives are evaluated,
Canny’s approach avoids this source of noise and tends to produce better results.

Figures 19.10 and 19.11 illustrate the results of applying the Canny edge detector
of Eq. (19.22) after Gaussian smoothing, then looking for zero crossings. Figure 19.10
demonstrates the effect of using the same upper and lower thresholds, TU and TL , over
a range of 
 values. The behavior of hysteresis thresholding is shown in Fig. 19.11. The
partial derivatives were approximated using central differences. Thresholding was per-
formed with hysteresis, but using fixed threshold values for each image instead of Canny’s
noise-adaptive threshold values. Zero-crossing detection was implemented in an eight-
way manner, as described by Eq. (19.17) in the earlier discussion of discrete Laplacian
operators. Also, Canny’s preoriented edge detection filters were not used in preparing
these examples, so it was not possible to adapt the edge detection filters according to the
“goodness of fit” of the local edge profile as Canny did.

Ding and Goshtasby [9] have developed refinements to Canny’s method. Canny selects
edge pixels by comparing gradient magnitudes of neighboring pixels along the gradient
direction. Ding does this also, and classifies these as major edge pixels. He further selects
minor edge pixels as those having locally maximum gradient magnitude in any direction.
Next, the major-minor edge branch points are located. Branches that do not contain a
major edge are eliminated. The result is a decrease in the number of missed and broken
edges.

19.5 APPROACHES FOR COLOR AND MULTISPECTRAL IMAGES
Edge detection for color images presents additional challenges because of the three color
components used. The most straightforward technique is to perform edge detection
on the luminance component image while ignoring the chrominance information. The
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(a) (b)

(c) (d)

FIGURE 19.10

Canny edge detector of Eq. (19.22) applied after Gaussian smoothing over a range of 
:
(a) 
 � 0.5; (b) 
 � 1; (c) 
 � 2; and (d) 
 � 4. The thresholds are fixed in each case at TU � 10
and TL � 4.

only computational cost beyond that for grayscale images is incurred in obtaining the
luminance component image, if necessary. In many color spaces, such as YIQ, HSL,
CIELUV , and CIELAB, the luminance image is simply one of the components in that
representation. For others, such as RGB, computing the luminance image is usually easy
and efficient. The main drawback to luminance-only processing is that important edges
are often not confined to the luminance component. Therefore, a gray level difference in
the luminance component is often not the most appropriate criterion for edge detection
in color images.
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(a) (b)

(c) (d)

FIGURE 19.11

Canny edge detector of Eq. (19.22) applied after Gaussian smoothing with 
 � 2: (a) TU � 10,
TL � 1; (b) TU � TL � 10; (c) TU � 20, TL � 1; (d) TU � TL � 20. As TL is changed, notice the
effect on the results of hysteresis thresholding.

Another rather obvious approach is to apply a desired edge detection method sep-
arately to each color component and construct a cumulative edge map. One possibility
for overall gradient magnitude, shown here for the RGB color space, combines the
component gradient magnitudes [24]:

∣∣�fc (x ,y)
∣∣�

∣∣�fR(x ,y)
∣∣�

∣∣�fG(x ,y)
∣∣�

∣∣�fB(x ,y)
∣∣ .

The results, however, are biased according to the properties of the particular color space
used. It is often important to employ a color space that is appropriate for the target
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application. For example, edge detection that is intended to approximate the human
visual system’s behavior should utilize a color space having a perceptual basis, such as
CIELUV or perhaps HSL. Another complication is the fact that the components’ gradient
vectors may not always be similarly oriented, making the search for local maxima of
|�fc | along the gradient direction more difficult. If a total gradient image were to be
computed by summing the color component gradient vectors, not just their magnitudes,
then inconsistent orientations of the component gradients could destructively interfere
and nullify some edges.

Vector approaches to color edge detection, while generally less computationally effi-
cient, tend to have better theoretical justification. Euclidean distance in color space
between the color vectors of a given pixel and its neighbors can be a good basis for
an edge detector [24]. For the RGB case, the magnitude of the vector gradient is as
follows:

∣∣�fc (x ,y)
∣∣�

√∣∣�fR(x ,y)
∣∣2 �

∣∣�fG(x ,y)
∣∣2 �

∣∣�fB(x ,y)
∣∣2.

Trahanias and Venetsanopoulos [29] described the use of vector order statistics as the
basis for color edge detection. A later paper by Scharcanski and Venetsanopoulos [26]
furthered the concept. While not strictly founded on the gradient or Laplacian, their
techniques are effective and worth mention here because of their vector bases. The basic
idea is to look for changes in local vector statistics, particularly vector dispersion, to
indicate the presence of edges.

Multispectral images can have many components, complicating the edge detection
problem even further. Cebrián et al. [6] describe several methods that are useful for mul-
tispectral images having any number of components. Their description uses the second
directional derivative in the gradient direction as the basis for the edge detector, but other
types of detectors can be used instead. The components-average method forms a gray-
scale image by averaging all components, which have first been Gaussian-smoothed, and
then finds the edges in that image. The method generally works well because multispec-
tral images tend to have high correlation between components. However, it is possible
for edge information to diminish or vanish if the components destructively interfere.

Cumani [8] explored operators for computing the vector gradient and created an
edge detection approach based on combining the component gradients. A multispectral
contrast function is defined, and the image is searched for pixels having maximal direc-
tional contrast. Cumani’s method does not always detect edges present in the component
bands, but it better avoids the problem of destructive interference between bands.

The maximal gradient method constructs a single gradient image from the component
images [6]. The overall gradient image’s magnitude and direction values at a given pixel
are those of the component having the greatest gradient magnitude at that pixel. Some
edges can be missed by the maximal gradient technique because they may be swamped
by differently oriented, stronger edges present in another band.

The method of combining component edge maps is the least efficient because an edge
map must first be computed for every band. On the positive side, this method is capable
of detecting any edge that is detectable in at least one component image. Combination
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of component edge maps into a single result is made more difficult by the edge location
errors induced by Gaussian smoothing done in advance. The superimposed edges can
become smeared in width because of the accumulated uncertainty in edge localization.
A thinning step applied during the combination procedure can greatly reduce this edge
blurring problem.

19.6 SUMMARY
Gray level edge detection is most commonly performed by convolving an image, f , with
a filter that is somehow based on the idea of the derivative. Conceptually, edges can be
revealed by locating either the local extrema of the first derivative of f or the zero-crossings
of its second derivative. The gradient and the Laplacian are the primary derivative-based
functions used to construct such edge-detection filters. The gradient, �, is a 2D extension
of the first derivative while the Laplacian, �2, acts as a 2D second derivative. A variety
of edge detection algorithms and techniques have been developed that are based on the
gradient or Laplacian in some way. Like any type of derivative-based filter, ones based on
these two functions tend to be very sensitive to noise. Edge location errors, false edges,
and broken or missing edge segments are often problems with edge detection applied to
noisy images. For gradient techniques, thresholding is a common way to suppress noise
and can be done adaptively for better results. Gaussian smoothing is also very helpful
for noise suppression, especially when second-derivative methods such as the Laplacian
are used. The Laplacian of Gaussian approach can also provide edge information over a
range of scales, helping to further improve detection accuracy and noise suppression as
well as providing clues that may be useful during subsequent processing.

Recent comparisons of various edge detectors have been made by Heath et al. [13]
and Bowyer et al. [4]. They have concluded that the subjective quality of the results of
various edge detectors applied to real images is quite dependent on the images themselves.
Thus, there is no single edge detector that produces a consistently best overall result.
Furthermore, they found it difficult to predict the best choice of edge detector for a given
situation.
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20.1 INTRODUCTION AND MOTIVATION
20.1.1 Partial Differential Equations in Image and Video Processing
The collision of imaging and differential equations makes sense. Without motion or
change of scene or changes within the scene, imaging is worthless. First, consider a static
environment—we would not need vision in this environment, as the components of the
scene are unchanging. In a dynamic environment, however, vision becomes the most
valuable sense. Second, consider a constant-valued image with no internal changes or
edges. Such an image is devoid of value in the information-theoretic sense.

The need for imaging is based on the presence of change. The mechanism for change
in both time and space is described and governed by differential equations.

The partial differential equations (PDEs) of interest in this chapter enact diffusion. In
chemistry or heat transfer, diffusion is a process that equilibrates concentration differences
without creating or destroying mass. In image and video processing, we can consider the
mass to be the pixel intensities or the gradient magnitudes, for example.

These important differential equations are PDEs, since they contain partial derivatives
with respect to spatial coordinates and time. These equations, especially in the case
of anisotropic diffusion, are nonlinear PDEs since the diffusion coefficient is typically
nonlinear.

20.1.2 Edges and Anisotropic Diffusion
Sudden, sustained changes in image intensity are called edges. We know that the human
visual system makes extensive uses of edges to perform visual tasks such as object recog-
nition [1]. Humans can recognize complex 3D objects using only line drawings or image
edge information. Similarly, the extraction of edges from digital imagery allows a valu-
able abstraction of information and a reduction in processing and storage costs. Most 525
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definitions of image edges involve some concept of feature scale. Edges are said to exist
at certain scales—edges from detail existing at fine scales and edges from the boundaries
of large objects existing at large scales. Furthermore, large-scale edges exist at fine scales,
leading to a notion of edge causality.

In order to locate edges of various scales within an image, it is desirable to have an
image operator that computes a scaled version of a particular image or frame in a video
sequence. This operator should preserve the position of such edges and facilitate the
extraction of the edge map through the scale space. The tool of isotropic diffusion, a
linear lowpass filtering process, is not able to preserve the position of important edges
through the scale space. Anisotropic diffusion, however, meets this criterion and has
been used effectively in conjunction with edge detection.

The main benefit of anisotropic diffusion is edge preservation through the image
smoothing process. Anisotropic diffusion yields intra-region smoothing, not inter-region
smoothing, by impeding diffusion at the image edges. The anisotropic diffusion process
can be used to retain image features of a specified scale. Furthermore, the localized
computation of anisotropic diffusion allows efficient implementation on a locally-
interconnected computer architecture. Caselles et al. furnish additional motivation for
using diffusion in image and video processing [2]. The diffusion methods use localized
models where discrete filters become PDEs as the sample spacing goes to zero. The
PDE framework allows various properties to be proved or disproved including stability,
locality, causality, and the existence and uniqueness of solutions. Through the establi-
shed tools of numerical analysis, high degrees of accuracy and stability are possible.

In this chapter, we introduce diffusion for image and video processing. We specifi-
cally concentrate on the implementation of anisotropic diffusion, providing several
alternatives for the diffusion coefficient and the diffusion PDE. Energy-based variational
diffusion techniques are also reviewed. Recent advances in anisotropic diffusion proce-
sses, including multiresolution techniques, multispectral techniques, and techniques for
ultrasound and radar imagery, are discussed. Finally, the extraction of image edges after
anisotropic diffusion is addressed, and vector diffusion processes for attracting active
contours to boundaries are examined.

20.2 BACKGROUND ON DIFFUSION
20.2.1 Scale Space and Isotropic Diffusion
In order to introduce the diffusion-based processing methods and the associated processes
of edge detection, let us define some notation. Let I represent an image with real-valued
intensity I (x) image at position x in the domain �. When defining the PDEs for diffusion,
let It be the image at time t with intensities It (x). Corresponding with image I is the edge
map e—the image of “edge pixels” e(x) with Boolean range (0 = no edge, 1 = edge), or
real-valued range e(x) ∈ [0,1]. The set of edge positions in an image is denoted by �.

The concept of scale space is at the heart of diffusion-based image and video
processing. A scale space is a collection of images that begins with the original, fine
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scale image and progresses toward more coarse scale representations. Using a scale space,
important image processing tasks such as hierarchical searches, image coding, and image
segmentation may be efficiently realized. Implicit in the creation of a scale space is the
scale generating filter. Traditionally, linear filters have been used to scale an image. In
fact, the scale space of Witkin [3] can be derived using a Gaussian filter:

It � G� ∗ I0, (20.1)

where G� is a Gaussian kernel with standard deviation (scale) of �, and I0 � I is the
initial image. If

� �
√

t , (20.2)

then the Gaussian filter result may be achieved through an isotropic diffusion process
governed by

�It

�t
� �2It , (20.3)

where �2It is the Laplacian of It [3, 4]. To evolve one pixel of I, we have the follow-
ing PDE:

�It (x)

�t
� �2It (x). (20.4)

The Marr-Hildreth paradigm uses a Gaussian scale space to define multiscale edge
detection. Using the Gaussian-convolved (or diffused) images, one may detect edges
by applying the Laplacian operator and then finding zero-crossings [5]. This popular
method of edge detection, called the Laplacian-of-a-Gaussian (LoG), is strongly moti-
vated by the biological vision system. However, the edges detected from isotropic diffusion
(Gaussian scale space) suffer from artifacts such as corner rounding and from edge
localization error (deviation in detected edge position from the“true”edge position). The
localization errors increase with increased scale, precluding straightforward multiscale
image/video analysis. As a result, many researchers have pursued anisotropic diffusion as
a viable alternative for generating images suitable for edge detection. This chapter focuses
on such methods.

20.2.1.1 Anisotropic Diffusion
The main idea behind anisotropic diffusion is the introduction of a function that inhibits
smoothing at the image edges. This function, called the diffusion coefficient c(x), encour-
ages intra-region smoothing over inter-region smoothing. For example, if c(x) is constant
at all locations, then smoothing progresses in an isotropic manner. If c(x) is allowed
to vary according to the local image gradient, we have anisotropic diffusion. A basic
anisotropic diffusion PDE is

�It (x)

�t
� div {c(x)�It (x)} (20.5)

with I0 � I [6].
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The discrete formulation proposed in [6] will be used as a general framework for
implementation of anisotropic diffusion in this chapter. Here the image intensities are
updated according to

[I (x)]t�1 �

⎡
⎣I (x) � (�T )

�∑

d�1

cd (x)� Id (x)

⎤
⎦

t

, (20.6)

where � is the number of directions in which diffusion is computed, � Id(x) is the direc-
tional derivative (simple difference) in direction d at location x, and time (in iterations)
is given by t . �T is the time step—for stability, �T 	 1

2 in the 1D case, and �T 	 1
4 in

the 2D case using four diffusion directions. For 1D discrete-domain signals, the simple
differences � Id(x) with respect to the “western” and “eastern” neighbors, respectively
(neighbors to the left and right), are defined by

�I1(x) � I (x 
 h1) 
 I (x) (20.7)

and

�I2(x) � I (x � h2) 
 I (x). (20.8)

The parameters h1 and h2 define the sample spacing used to estimate the directional
derivatives. For the 2D case, the diffusion directions include the “northern” and “south-
ern” directions (up and down), as well as the “western” and “eastern” directions (left and
right). Given the motivation and basic definition of diffusion-based processing, we will
now define several implementations of anisotropic diffusion that can be applied for edge
extraction.

20.3 ANISOTROPIC DIFFUSION TECHNIQUES
20.3.1 The Diffusion Coefficient
The link between edge detection and anisotropic diffusion is found in the edge-preserving
nature of anisotropic diffusion. The function that impedes smoothing at the edges is
the diffusion coefficient. Therefore, the selection of the diffusion coefficient is the most
critical step in performing diffusion-based edge detection. We will review several possible
variants of the diffusion coefficient and discuss the associated positive and negative
attributes.

To simplify the notation, we will denote the diffusion coefficient at location x by
c(x) in the continuous case. For the discrete-domain case, cd(x) represents the diffusion
coefficient for direction d at location x. Although the diffusion coefficients here are
defined using c(x) for the continuous case, the functions are equivalent in the discrete-
domain case of cd(x). Typically c(x) is a nonincreasing function of |�I (x)|, the gradient
magnitude at position x. As such, we often refer to the diffusion coefficient as c(|�I (x)|).
For small values of |�I (x)|, c(x) tends to unity. As |�I (x)| increases, c(x) decreases to
zero. Teboul et al. [7] establish three conditions for edge-preserving diffusion coefficients.
These conditions are (1) lim

|�I (x)|→0
c(x) � M where 0 < M < �, (2) lim

|�I (x)|→�
c(x) � 0,



20.3 Anisotropic Diffusion Techniques 529

and (3) c(x) is a strictly decreasing function of |�I (x)|. Property 1 ensures isotropic
smoothing in regions of similar intensity, while property 2 preserves edges. The third
property is given in order to avoid numerical instability. While most of the coefficients
discussed here obey the first two properties, not all formulations obey the third property.

In [6], Perona and Malik propose

c(x) � exp

{



[
�I (x)

k

]2
}

(20.9)

and

c(x) �
1

1 �
[

�I (x)
k

]2 (20.10)

as diffusion coefficients. Diffusion operations using (20.9) and (20.10) have the ability
to sharpen edges (backward diffusion), and are inexpensive to compute. However, these
diffusion coefficients are unable to remove heavy-tailed noise and create “staircase” arti-
facts [8, 9]. See the example of smoothing using (20.9) on the noisy image in Fig. 20.1(a),
producing the result in Fig. 20.1(b). In this case, the anisotropic diffusion operation leaves
several outliers in the resultant image. A similar problem is observed in Fig. 20.2(b), using
the corrupted image in Fig. 20.2(a) as input. You et al. have also shown that (20.9) and
(20.10) lead to an ill-posed diffusion—a small perturbation in the data may cause a
significant change in the final result [10].

The inability of anisotropic diffusion to denoise an image has been addressed by
Catte et al. [11] and Alvarez et al. [12]. Their regularized diffusion operation uses a
modification of the gradient image used to compute the diffusion coefficients. In this
case, a Gaussian-convolved version of the image is employed in computing diffusion
coefficients. Using the same basic form as (20.9), we have

c(x) � exp

{



[
�S(x)

k

]2
}

, (20.11)

where S is the convolution of I and a Gaussian filter with standard deviation �:

S � I ∗G� . (20.12)

This method can be used to rapidly eliminate noise in the image as shown in Fig. 20.1(c).
In this case, the diffusion is well posed and converges to a unique result, under certain
conditions [11]. Drawbacks of this diffusion coefficient implementation include the
additional computational burden of filtering at each step and the introduction of a linear
filter into the edge-preserving anisotropic diffusion approach. The loss of sharpness due
to the linear filter is evident in Fig. 20.2(c). Although the noise is eradicated, the edges
are softened and blotching artifacts appear in the background of this example result.

Another modified gradient implementation, called morphological anisotropic diff-
usion, can be formed by substituting

S � (I ◦B) •B (20.13)
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(a) (b)

(c) (d)

FIGURE 20.1

Three implementations of anisotropic diffusion applied to an infrared image of a tank: (a) original
noisy image; (b) results obtained using anisotropic diffusion with (20.9); (c) results obtained
using modified gradient anisotropic diffusion with (20.11) and (20.12); (d) results obtained
using morphological anisotropic diffusion with (20.11) and (20.13).

into (20.11), where B is a structuring element of size m � m, I ◦B is the morpho-
logical opening of I by B, and I •B is the morphological closing of I by B. In [13],
the open-close and close-open filters were used in an alternating manner between itera-
tions, thus reducing grayscale bias of the open-close and close-open filters. As the result
in Fig. 20.1(d) demonstrates, the morphological anisotropic diffusion method can be
used to eliminate noise and insignificant features while preserving edges. Morphological
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anisotropic diffusion has the advantage of selecting feature scale (by specifying the
structuring element B) and selecting the gradient magnitude threshold, whereas pre-
vious anisotropic diffusions, such as (20.9) and (20.10), only allowed selection of the
gradient magnitude threshold.

You et al. introduce the following diffusion coefficient in [10]:

c(x) �

⎧⎨
⎩

1/T � p(T � �)p
1/T , �I (x) < T

1
/|�I (x)|� p(|�I (x)|� �)p
1/|�I (x)|, |�I (x)| T ,

(20.14)

(a)

(b) (c)

FIGURE 20.2

Continued
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(d) (e)

FIGURE 20.2

(a) Corrupted “cameraman” image (Laplacian noise, SNR � 13dB) used as input for results
in Figs. 20.2(b)–(e); (b) after 8 iterations of anisotropic diffusion with (20.9), k � 25; (c) after
8 iterations of anisotropic diffusion with (20.11) and (20.12), k � 25; (d) after 75 iterations
of anisotropic diffusion with (20.14), T � 6, e � 1, p � 0.5; (e) after 15 iterations of multigrid
anisotropic diffusion with (20.11) and (20.12), k � 6 [35].

where the parameters are constrained by � > 0 and 0 < p < 1. T is a threshold on the
gradient magnitude, similar to k in (20.9). This approach has the benefits of avoiding
staircase artifacts and removing impulse noise. The main drawback is computational
expense. As seen in Fig. 20.2(d), anisotropic diffusion with this diffusion coefficient
succeeds in removing noise and retaining important features from Fig. 20.2(a), but
requires a significant number of updates.

The diffusion coefficient

c(x) �
1

|�I (x)| (20.15)

is used in mean curvature motion formulations of diffusion [14], shock filters [15], and
locally monotonic (LOMO) diffusion [16]. One may notice that this diffusion coefficient
is parameter-free.

Designing a diffusion coefficient with robust statistics, Black et al. [17] model
anisotropic diffusion as a robust estimation procedure that finds a piecewise smooth
representation of an input image. A diffusion coefficient that utilizes the Tukey’s biweight
norm is given by

c(x) �
1

2

{
1 


[
�I (x)

�

]2
}2

(20.16)

for |�I (x)|	 � and is 0 otherwise. Here the parameter � represents scale. Where the
standard anisotropic diffusion coefficient as in (20.9) continues to smooth over edges
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while iterating, the robust formulation (20.16) preserves edges of a prescribed scale �
and effectively stops diffusion.

Here seven important versions of the diffusion coefficient were given that involve
tradeoffs between solution quality, solution expense, and convergence behavior. Other
research in the diffusion area focuses on the diffusion PDE itself. The next section
reveals significant modifications to the anisotropic diffusion PDE that affect fidelity to
the input image, edge quality, and convergence properties.

20.3.2 The Diffusion PDE
In addition to the basic anisotropic diffusion PDE given in Section 20.1.2, other diffusion
mechanisms may be employed to adaptively filter an image for edge detection. Nordstrom
[18] used an additional term to maintain fidelity to the input image, to avoid the selection
of a stopping time, and to avoid termination of the diffusion at a trivial solution, such as
a constant image. This PDE is given by

�It (x)

�t

 div {c(x)�It (x)}� I0(x) 
 It (x). (20.17)

Obviously, the right-hand side I0(x) 
 It (x) enforces an additional constraint that pena-
lizes deviation from the input image.

Just as Canny [19] modified the LoG edge detection technique by detecting zero-
crossings of the Laplacian only in the direction of the gradient, a similar edge-sensitive
approach can be taken with anisotropic diffusion. Here, the boundary-preserving diffu-
sion is executed only in the direction orthogonal to the gradient direction, whereas the
standard anisotropic diffusion schemes impede diffusion across the edge. If the rate of
change of intensity is set proportional to the second partial derivative in the direction
orthogonal to the gradient (called �), we have

�It (x)

�t
�

�2It (x)

��2 � |�It (x)|div

{
�It (x)

|�It (x)|
}

. (20.18)

This anisotropic diffusion model is called mean curvature motion, because it induces a
diffusion in which the connected components of the image level sets of the solution image
move in proportion to the boundary mean curvature. Several effective edge-preserving
diffusion methods have arisen from this framework including [20] and [21]. Alvarez
et al. [12] have used the mean curvature method in tandem with the regularized diffusion
coefficient of (20.11) and (20.12). The result is a processing method that preserves the
causality of edges through scale space. For edge-based hierarchical searches and multiscale
analyses, the edge causality property is extremely important.

The mean curvature method has also been given a graph theoretic interpretation
[22, 23]. Yezzi [23] treats the image as a graph in�n—a typical 2D grayscale image would
be a surface in �3 where the image intensity is the third parameter, and each pixel is a
graph node. Hence a color image could be considered a surface in �5. The curvature
motion of the graphs can be used as a model for smoothing and edge detection. For
example, let a 3D graph s be defined by s(x) = s(x , y) = [x , y , I (x , y)] for the 2D image I
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with x = (x , y). To implement mean curvature motion on this graph, the PDE is given by

�s(x)

�t
� h(x)n(x), (20.19)

where h(x) is the mean curvature,

h(x ,y) �

�2I (x ,y)

�x2

[
1 �

(
�I (x ,y)

�y

)2
]


 2

(
�I (x ,y)

�x

)(
�I (x ,y)

�y

)(
�2I (x ,y)

�x�y

)
�

�2I (x ,y)

�y2

[
1 �

(
�I (x ,y)

�x

)2
]

2

[
1 �

(
�I (x ,y)

�y

)2
�

(
�I (x ,y)

�y

)2
]3/2

,

(20.20)

and n(x) is the unit normal of the surface:

n(x ,y) �

[



�I (x ,y)

�x
,


�I (x ,y)

�x
, 1

]

√
1 �

(
�I (x ,y)

�y

)2

�

(
�I (x ,y)

�y

)2
. (20.21)

For a discrete implementation, the partial derivatives of I (x ,y) may be approximated
using simple differences. One-sided differences or central differences may be employed.
For example, a one-sided difference approximation for �I (x ,y)/�x is I (x � 1,y) 

I (x ,y). A central difference approximation for the same partial derivative is given by
1
2 [I (x � 1,y) 
 I (x 
 1,y)].

The standard mean curvature PDE (20.19) has the drawback of edge movement that
sacrifices edge sharpness. A remedy to this undesired movement is the use of projected
mean curvature vectors. Let z denote the unit vector in the vertical (intensity) direction
on the graph s. The projected mean curvature diffusion PDE can be formed by

�s(x)

�t
�

{[
h(x)n(x)

] · z
}

z. (20.22)

The PDE for updating image intensity is then

�I (x)

�t
�

�I (x ,y) � k2

[(
�I (x ,y)

�x

)2( �2I (x ,y)

�y2

)

 2

(
�I (x ,y)

�x

)(
�I (x ,y)

�y

)(
�2I (x ,y)

�x�y

)
�

(
�I (x ,y)

�y

)2 (�2I (x ,y)

�x2

)]

{
1 � k2

[
�I (x ,y)

]2
}2 ,

(20.23)

where k scales the intensity variable. When k is zero, we have isotropic diffusion, and
when k becomes larger, we have a damped geometric heat equation that preserves edges
but diffuses more slowly. The projected mean curvature PDE gives edge preservation
through scale space.

Another anisotropic diffusion technique leads to LOMO signals [16]. Unlike previous
diffusion techniques that diverge or converge to trivial signals, LOMO diffusion converges
rapidly to well-defined LOMO signals of the desired degree. (A signal is LOMO of degree
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d (LOMO-d) if each interval of length d is nonincreasing or nondecreasing.) The property
of local monotonicity allows both slow and rapid signal transitions (ramp and step edges)
while excluding outliers due to noise. The degree of local monotonicity defines the
signal scale. In contrast to other diffusion methods, LOMO diffusion does not require
an additional regularization step to process a noisy signal and uses no thresholds or
ad hoc parameters.

On a 1D signal, the basic LOMO diffusion operation is defined by (20.6) with � � 2
and using the diffusion coefficient (20.15), yields

[I (x)]t�1←
(
I (x) � (1/2)

{
sign [� I1(x)] � sign [� I2(x)]

})
t , (20.24)

where a time step of �T � 1/2 is used. Equation (20.24) is modified for the case where
the simple difference �I1(x) or �I2(x) is zero. Let �I1(x)←
�I2(x) in the case of
�I1(x) � 0; �I2(x)←
�I1(x) when �I2(x) � 0. The fixed point of (20.24) is defined
as ld(I, h1,h2), where h1 and h2 are the sample spacings used to compute the simple
differences �I1(x) and �I2(x), respectively (see (20.7) and (20.8)). Let ldd(I) denote the
LOMO diffusion sequence that gives a LOMO-d signal from the input I. For odd values
of d = 2m + 1,

ldd (I) � ld
(
. . . ld

(
ld
(
ld(I,m,m),m 
 1,m

)
,m 
 1,m 
 1

)
. . . , 1,1

)
. (20.25)

In (20.25), the process commences with ld(I,m,m) and continues with spacings of
decreasing widths until ld(I, 1,1) is implemented. For even values of d � 2m, the sequence
of operations is similar:

ldd (I) � ld
(
. . . ld

(
ld
(
ld(I,m 
 1,m),m 
 1,m 
 1

)
,m 
 2,m 
 1

)
. . . , 1,1

)
. (20.26)

To extend this method to two dimensions, the same procedure may be followed
using (20.6) with � � 4 [16]. Another possibility is diffusing orthogonal to the gradient
direction at each point in the image, using the 1D LOMO diffusion. Examples of 2D
LOMO diffusion and the associated edge detection results are given in Section 20.4.

20.3.3 Variational Formulation
The diffusion PDEs discussed thus far may be considered numerical methods that attempt
to minimize a cost or energy functional. Energy-based approaches to diffusion have been
effective for edge detection and image segmentation. Morel and Solimini [24] give an
excellent overview of the variational methods. Isotropic diffusion via the heat diffusion
equation leads to a minimization of the following energy:

E(I) �

∫

�

|�I (x)|2 dx. (20.27)

Given an initial image I0, the intermediate diffusion solutions may be considered a
descent on

E(I) � �2
∫

�

|�I (x)|2 dx �

∫

�

[
I (x) 
 I0(x)

]2
dx, (20.28)

where the regularization parameter � denotes scale [24].
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Likewise, anisotropic diffusion has a variational formulation. The energy associated
with the Perona and Malik diffusion is

E(I) � �2
∫

�

C
[
|�I (x)|2

]
dx �

∫

�

[I (x) 
 I0(x)]2 dx, (20.29)

where C is the integral of c�(x) with respect to the independent variable |�I (x)|2. Here
c�(x), as a function of |�I (x)|2, is equivalent to the diffusion coefficient c(x) as a function
of |�I (x)|, so c�(|�I (x)|2) � c(|�I (x)|). The Nordstrom [18] diffusion PDE (20.17)
yields steepest descent on this energy functional.

Teboul et al. have introduced a variational method that preserves edges and is useful
for edge detection. In their approach, image enhancement and edge preservation are
treated as two separate processes. The energy functional is given by

E(I, e) � �2
∫

�

[
e(x)2 |�I (x)|2 � k(e(x) 
 1)2

]
dx �

�2

k

∫

�

�(|�e(x)|)dx �

∫

�

[I (x) 
 I0(x)]2 dx,

(20.30)

where the real-valued variable e(x) is the edge strength at position x, and e(x) ∈ [0,1]. In
(20.30), the diffusion coefficient is defined by c(|�I (x)|) � ��(|�I (x)|)/2(|�I (x)|). An
additional regularization parameter � is needed, and k is essentially an edge threshold
parameter.

The energy functional in (20.30) leads to a system of two coupled PDEs:

I0(x) 
 It (x) 
 �2div
{

e(x)
[
�It (x)

]
�It (x)

}
� 0 (20.31)

and

e(x)

[
|�I (x)|2

k
� 1

]

 1 �

�2

k2 div
[
c(|�e(x)|)�e(x)

]
� 0. (20.32)

The coupled PDEs have the advantage of edge preservation within the adaptive smoot-
hing process. An edge map can be directly extracted from the final state of e.

This edge-preserving variational method is related to the segmentation approach of
Mumford and Shah [25]. The energy functional to be minimized is

E(I) � �2
∫

�\�
|�I (x)|2 dx �

∫

�\�
[I (x) 
 I0(x)]2 dx � 	�2

∫

�

d
, (20.33)

where
∫
�

d
 is the integrated length of the edges (Hausdorff measure), �\� is the set

of image locations that exclude the edge positions, and 	 is an additional weight parame-
ter. The additional edge-length term reflects the goal of computing a minimal-length edge
map for a given scale �. The Mumford-Shah functional has spurred several variational
image segmentation schemes, including PDE-based solutions [24].

In edge detection, thin, contiguous edges are typically desired. With diffusion-based
edge detectors, the edges may be“thick”or“broken”when a gradient magnitude threshold
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is applied after diffusion. The variational formulation allows the addition of additional
constraints that promote edge thinning and connectivity. Black et al. used two additional
terms, a hysteresis term for improved connectivity and a nonmaximum suppression term
for thinning [17]. A similar approach was taken in [26]. The additional terms allow the
effective extraction of spatially coherent outliers. This idea is also found in the design of
line processes for regularization [27].

20.3.4 Multiresolution Diffusion
One drawback of diffusion-based edge detection is the computational expense. Typically,
a large number (anywhere from 20 to 200) of iterative steps are needed to provide a
high-quality edge map. One solution to this dilemma is the use of multiresolution
schemes. Two such approaches have been investigated for edge detection: the anisotropic
diffusion pyramid and multigrid anisotropic diffusion.

In the case of isotropic diffusion, the Gaussian pyramid has been used for edge detec-
tion and image segmentation [28, 29]. The basic idea is that the scale generating operator
(a Gaussian filter, for example) can be used as an antialiasing filter before sampling. Then,
a set of image representations of increasing scale and decreasing resolution (in terms of
the number of pixels) can be generated. This image pyramid can be used for hierarchical
searches and coarse-to-fine edge detection.

The anisotropic diffusion pyramids [30, 31] are born from the same fundamen-
tal motivation as their isotropic, linear counterparts. However, with a nonlinear scale-
generating operator, the presampling operation is constrained morphologically, not by
the traditional sampling theorem. In the nonlinear case, the scale-generating operator
should remove image features not supported in the subsampled domain. Therefore,
morphological methods [32, 33] for creating image pyramids have also been used in
conjunction with the morphological sampling theorem [34].

The anisotropic diffusion pyramids are, in a way, ad hoc multigrid schemes. A multi-
grid scheme can be useful for diffusion-based edge detectors in two ways. First, like
the anisotropic diffusion pyramids, the number of diffusion updates may be decreased.
Second, the multigrid approach can be used to eliminate low-frequency error. The
anisotropic diffusion PDEs are stiff—they rapidly reduce high-frequency error (noise,
small details), but slowly reduce background variations and often create artifacts such as
blotches (false regions) or staircases (false step edges). See Fig. 20.3 for an example of a
staircasing artifact.

(a) (b) (c)

FIGURE 20.3

(a) Sigmoidal ramp edge; (b) after anisotropic diffusion with (9) (k � 10); (c) after multigrid
anisotropic diffusion with (9) (k � 10) [35].
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To implement a multigrid anisotropic diffusion operation [35], define J as an estimate
of the image I. A system of equations is defined by A(I) � 0 where

[A(I)](x) � (�T )

�∑

d�1

cd (x)� Id (x), (20.34)

which is relaxed by the discrete anisotropic diffusion PDE (20.6). For this system of
equations, the (unknown) algebraic error is E � I 
 J and the residual is R � 
A(J) for
image estimate J. The residual equation A(E) � R can be relaxed (diffused) in the same
manner as (20.34) using (20.6) to form an estimate of the error.

The first step is performing � diffusion steps on the original input image (level
L = 0). Then, the residual equation at the coarser grid L + 1 is

A(EL�1) � 
A
[
(JL)↓S

]
, (20.35)

where ↓S represents downsampling by a factor of S. Now, the residual equation (20.33)
can be relaxed using the discrete diffusion PDE (20.6) with an initial error estimate of
EL�1 � 0. The new error estimate EL�1 after relaxation can then be transferred to the
finer grid to correct the initial image estimate J in a simple two-grid scheme. Alternatively,
the process of transferring the residual to successively coarser grids can be continued until
a grid is reached in which a closed form solution is possible. Then, the error estimates
are propagated back to the original grid.

Additional steps may be taken to account for the nonlinearity of the anisotropic dif-
fusion PDE, such as implementing a full approximation scheme (FAS) multigrid system,
or by using a global linearization step in combination with a Newton method to solve
for the error iteratively [9, 19].

The results of applying multigrid anisotropic diffusion are shown in Fig. 20.2(e). In
just 15 updates, the multigrid anisotropic diffusion method was able to remove the noise
from Fig. 20.2(b) while preserving the significant objects and avoiding the introduction
of blotching artifacts.

20.3.5 Multispectral Anisotropic Diffusion
Color edge detection and boundary detection for multispectral imagery are important
tasks in general image/video processing, remote sensing, and biomedical image process-
ing. Applying anisotropic diffusion to each channel or spectral band separately is one
possible way of processing multichannel or multispectral image data. However, this single
band approach forfeits the richness of the multispectral data and provides individual edge
maps that do not possess corresponding edges.

Two solutions have emerged for diffusing multispectral imagery. The first, called
vector distance dissimilarity, utilizes a function of the gradients from each band to compute
an overall diffusion coefficient. For example, to compute the diffusion coefficient in the
“western” direction on an RGB color image, the following function could be applied:

�I1(x) �

√[
R(x 
 h1,y)
R(x ,y)

]2
�

[
G(x 
 h1,y) 
 G(x ,y)

]2
�

[
B(x 
 h1,y) 
 B(x ,y)

]2,

(20.36)
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where R(x) is the red band intensity at x, G(x) is the green band, and B(x) is the blue band.
Using the vector distance dissimilarity method, the standard diffusion coefficients such as
(20.9) can be employed. This technique was used in [38] for shape-based processing and
in [39] for processing remotely sensed imagery. An example of multispectral anisotropic
diffusion is shown in Fig. 20.4. Using the noisy multispectral image in Fig. 20.4(a) as
input, the vector distance dissimilarity method produces the smoothed result shown in
Fig. 20.4(b), which has an associated image of gradient magnitude shown in Fig. 20.4(c).
As can be witnessed in Fig. 20.4(c), an edge detector based on vector distance dissimilarity
is sensitive to noise and does not identify the important image boundaries.

The second method uses mean curvature motion and a multispectral gradient for-
mula to achieve anisotropic, edge-preserving diffusion. The idea behind mean curvature
motion, as discussed above, is to diffuse in the direction opposite to the gradient such
that the image level set objects move with a rate in proportion to their mean curvature.
With a grayscale image, the gradient is always perpendicular to the level set objects of the
image. In the multispectral case, this quality does not hold. A well-motivated diffusion is
defined by Sapiro and Ringach [40], using DiZenzo’s multispectral gradient formula [41].
In Fig. 20.4(d), results for multispectral anisotropic diffusion are shown for the mean
curvature approach of [40] used in combination with the modified gradient approach of
[11]. The edge map in Fig. 20.4(e) shows improved resilience to impulse noise over the
vector distance dissimilarity approach.

20.3.6 Speckle Reducing Anisotropic Diffusion
The anisotropic diffusion PDE introduced in (20.5) assumes that the image is corrupted
by additive noise. Speckle reducing anisotropic diffusion (SRAD) is a PDE technique for
image enhancement in which signal-dependent multiplicative noise is present, as with
radar and ultrasonic imaging. Whereas traditional anisotropic diffusion can be viewed
as the edge-sensitive version of classical linear filters (e.g., the Gaussian filter), SRAD
can be viewed as the edge-sensitive 3 version of classical speckle reducing filters that
emerged from the radar community (e.g., the Lee filter). SRAD smoothes the imagery
and enhances edges by inhibiting diffusion across edges and allowing isotropic diffusion
within homogeneous regions. For images containing signal-dependent, spatially corre-
lated multiplicative noise, SRAD excels over the adaptive filtering techniques designed
with additive noise models in mind.

The SRAD technique employs an adaptive speckle filter that uses a local statistic for
the coefficient of variation, defined as the ratio of standard deviation to mean, to measure
the strength of edges in speckle imagery. A discrete form of this operator in 2D is [42]

q(x) �

√√√√√
∣∣∣(1/2) |�I (x)|2 
 (1/16)(�2I (x))2

∣∣∣
[
I (x) � (1

/
4)�2I (x)

]2 , (20.37)

where �2I (x) is the Laplacian of image at position x, and �I (x) is the gradient of image
at position x.
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(a) (b)

(c) (d)

(e)

FIGURE 20.4

(a) SPOT multispectral image of the Seattle area, with additive Gaussian-distributed noise,
� � 10; (b) Vector distance dissimilarity diffusion result, using diffusion coefficient in (20.9);
(c) Edges (gradient magnitude) from result in (b); (d) Mean curvature motion (20.18) result
using diffusion coefficient from (20.11) and (20.12); (e) Edges (gradient magnitude) from
result in (d).
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(a) (b) (c)

FIGURE 20.5

(a) An ultrasound image of a prostate phantom with implanted radioactive seeds; (b) correspond-
ing SRAD-diffused image; (c) corresponding ICOV edge strength image [43].

The operator q(x) is called the instantaneous coefficient of variation (ICOV). The
ICOV uses the absolute value of the difference of a normalized gradient magnitude and
a normalized Laplacian operator to measure the strength of edges in speckled imagery.
The normalizing function I (x) � (1/4)�2I (x) gives a smoothed version of the image at
position x. This term compensates for the edge measurement localization error. The
ICOV allows for balanced and well-localized edge strength measurements in bright
regions as well as in dark regions. It has been shown that the ICOV operator optimizes
the edge detection in speckle imagery in terms of low false edge detection probability
and high edge localization accuracy [43]. Figure 20.5 shows an example of an ultrasound
image (Fig. 20.5(a)) that has been processed by SRAD (Fig. 20.5(b)) and where edges are
displayed using the ICOV values (Fig. 20.5(c)).

Given an intensity image I having no zero-valued intensities over the image domain,
the output image is evolved according to the following PDE:

�It (x)/�t � div
[
c
(
q(x)

)
�It (x)

]
, (20.38)

where � is the gradient operator, div is the divergence operator, and || denotes the
magnitude. The diffusion coefficient c(q(x)) is given by

c
(
q(x)

)
�

{
1 �

[
q2(x) 
 q̃2(x)

]

q̃2(x)(1 � q̃2(x))

}
1

, (20.39)

where q(x) is the ICOV as determined by (20.37), and q̃(x) is the current speckle noise
level. Example input and output images from an ultrasound image of the human heart
are shown in Fig. 20.6.

The diffusion coefficient c(q(x)) is proportional to the likelihood that a point x is in a
homogeneous speckle region at the update time. From (20.39), it is seen that the diffusion
coefficient exhibits nearly zero values at edges with high contrast (i.e., q(x) >> q̃(x)),
while in homogeneous speckle regions, the coefficient approaches unity. Hence, it is the
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FIGURE 20.6

(Left) Speckled ultrasound image of left ventricle in a human heart prior to SRAD; (right) same
image after SRAD enhancement.

diffusion coefficient that allows isotropic diffusion in homogeneous speckle regions and
prohibits diffusion across the edges.

The implementation issues connected with anisotropic diffusion include specification
of the diffusion coefficient and diffusion PDE, as discussed above. The anisotropic diffu-
sion method can be expedited through multiresolution implementations. Furthermore,
anisotropic diffusion can be extended to multispectral imagery and to ultrasound/radar
imagery. In the following section, we discuss the specific application of anisotropic
diffusion to edge detection.

20.4 APPLICATION OF ANISOTROPIC DIFFUSION TO EDGE
DETECTION

20.4.1 Edge Detection by Thresholding
Once anisotropic diffusion has been applied to an image I, a procedure needs to be defined
to extract the image edges e. The most typical procedure is to simply define a gradient
magnitude threshold, T , that defines the location of an edge. For example, e(x) � 1 if
|�I (x)|> T and e(x) � 0 otherwise. Of course, the question becomes one of selecting a
proper value for T . With typical diffusion coefficients such as (20.9) and (20.10), T � k
is often asserted. Another approach is to use the diffusion coefficient itself as the measure
of edge strength: e(x) � 1 if c(x) < T and e(x) � 0 otherwise.

T � �e of the image, as defined in [44]: �e � 1.4826med{|�I (x) 
 med(|�I (x)|)|}
where the med operator is the median performed over the entire image domain �.
The constant used (1.4826) is derived from the mean absolute deviation of the normal
distribution with unit variance [17].



20.4 Application of Anisotropic Diffusion to Edge Detection 543

20.4.2 Edge Detection from Image Features
Aside from thresholding the gradient magnitude of a diffusion result, a feature detection
approach may be used. As with Marr’s classical LoG detector, the inflection points of a
diffused image may be located by finding the zero-crossing in a Laplacian-convolved
result. However, if the anisotropic diffusion operation produces piecewise constant
images as in [10, 17], the gradient magnitude is sufficient to define thin, contiguous
edges.

With LOMO diffusion, other features that appear in the diffused image may be used
for edge detection. An advantage of LOMO diffusion is that no threshold is required for
edge detection. LOMO diffusion segments each row and column of the image into ramp
segments and constant segments. Within this framework, we can define concave-down,
concave-up, and ramp center edge detection processes. Consider an image row or column.
With a concave-down edge detection, the ascending (increasing intensity) segments mark
the beginning of an object and the descending (decreasing intensity) segments terminate
the object. With a concave-up edge detection, negative-going objects (in intensity) are
detected. The ramp center edge detection sets the boundary points at the centers of the
ramp edges, as the name implies. When no bias toward bright or dark objects is present,
a ramp center edge detection can be utilized.

Figure 20.7 provides two examples of feature-based edge detection using LOMO
diffusion. The images in Fig. 20.7(b) and (e) are the results of applying 2D LOMO
diffusion to Fig. 20.7(a) and (d), respectively. The concave-up edge detection given
in Fig. 20.7(c) reveals the boundaries of the blood cells. In Fig. 20.7(f), a ramp cen-
ter edge detection is used to find the boundaries between the aluminum grains of
Fig. 20.7(d).

20.4.3 Quantitative Evaluation of Edge Detection by Anisotropic
Diffusion

When choosing a suitable anisotropic diffusion process for edge detection, one may
evaluate the results qualitatively or use an objective measure. Three such quantitative
assessment tools include the percentage of edges correctly identified as edges, the percent-
age of false edges, and Pratt’s edge quality metric. Given ground truth edge information,
usually with synthetic data, one may measure the correlation between the ideal edge map
and the computed edge map. This correlation leads to a classification of “correct” edges
(where the computed edge map and ideal version match) and “false” edges. Another
method utilizes Pratt’s edge quality measurement [45]:

F �

IA∑
i�1

1

1 � �
(
d(i)2

)

max{IA , II } , (20.40)

where IA is the number of edge pixels detected in the diffused image result, II is the
number of edge pixels existing in the original, noise free imagery, d(i) is the Euclidean
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(a) (b) (c)

(d) (e) (f)

FIGURE 20.7

(a) Original “blood cells” image; (b) 2D LOMO-3 diffusion result; (c) Boundaries from concave-up
edge detection of image in (b); (d) Original “Aluminum Grains” image; (e) 2D LOMO-3 diffusion
result; (f) Boundaries from ramp center edge detection of image in (e).

distance between an edge location in the original image and the nearest detected edge,
and � is a scaling constant (with suggested value of 1/9 [45]). A “perfect” edge detection
result has value F = 1 in (20.40).

An example is given here where a synthetic image is corrupted by 40% salt and
pepper noise (Fig. 20.8). Three versions of anisotropic diffusion are implemented on
the noisy imagery using the diffusion coefficients from (20.9), from (20.11) and (20.12),
and from (20.11) and (20.13). The threshold of the edge detector was defined to be
equal to the gradient threshold of the diffusion coefficient, T � k. The results of the
numerical experiment are presented in Fig. 20.9 for several solution times. It may be
seen that the modified gradient coefficient [(20.11) and (20.12)] initially outperforms
the other diffusion methods in the edge quality measurement, but produces the poorest
identification percentage (due to the edge localization errors associated with the Gaussian
filter). The morphological anisotropic diffusion method [(20.11) and (20.13)] provides
significant performance improvement, providing a 70% identification of true edges and
a Pratt quality measurement of 0.95.
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(a) (b)

(d)(c)

FIGURE 20.8

Three implementations of anisotropic diffusion applied to synthetic imagery: (a) original image
corrupted with 40% salt and pepper noise; (b) results obtained using original anisotropic diffu-
sion with (20.9); (c) results obtained using modified gradient anisotropic diffusion with (20.11)
and (20.12); (d) results obtained using morphological anisotropic diffusion with (20.11) and
(20.13) [13].

In summary, edges may be extracted from a diffused image by applying a heuristically
selected threshold, by using a statistically motivated threshold, or by identifying features
in the processed imagery. The success of the edge detection method can be evaluated
qualitatively by visual inspection or quantitatively with edge quality metrics.
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FIGURE 20.9

Edge detector performance versus diffusion time for the results shown in Fig. 20.8. In the graphs,
(a) corresponds to anisotropic diffusion with (20.9); (b) corresponds to (20.11) and (20.12);
(c) corresponds to (20.11) and (20.13) [13].

20.5 USING VECTOR DIFFUSION AND PARAMETRIC ACTIVE
CONTOURS TO LOCATE EDGES

In this section, we discuss diffusion methods that drive a parametric active contour toward
the boundary of a desired object. Instead of the diffusion of intensities or of gradient
magnitude, we utilize here the diffusion of vectors that point toward strong edges.

20.5.1 Parametric Active Contours
Active contours (or snakes) may be used to detect the edges forming an object boundary,
given an initial guess (i.e., an initial contour). A parametric active contour is simply a set
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of contour points (X(s), Y (s)) parameterized by s ∈ [0,1]. Typically, parametric active
contours are implemented by finding the contour that minimizes E � Einternal � Eexternal,
where Einternal is the internal energy of the active contour that quantifies the contour
smoothness [46]:

Einternal �
1

2

1∫

0

⎧⎨
⎩�

[(
dX(s)

ds

)2

�

(
dY (s)

ds

)2
]

� �

⎡
⎣
(

d2X(s)

ds2

)2

�

(
d2Y (s)

ds2

)2
⎤
⎦
⎫⎬
⎭ds.

(20.41)

Here, � and � are two nonnegative weighting parameters expressing, respectively, the
degree of the resistance to stretching and bending of the contour. The external energy
Eexternal is typically defined such that the contour seeks the edges in the image, I :

Eexternal � 


1∫

0

f (X(s),Y (s))ds, where f (x ,y) � |�I (x ,y)|2. (20.42)

To minimize the contour energy (� Eexternal � Einternal), the calculus of variations
[47, 48] is applied to obtain the following Euler equations [46]:


�
d2X

ds2 � �
d4X

ds2 

�f

�x
� 0, 
�

d2Y

ds2 � �
d4Y

ds2 

�f

�y
� 0. (20.43)

To solve for the active contour positions such that (20.43) is satisfied, we can use PDEs
for which (X(s),Y (s)) are treated as a function of time as well:

�X

�t
� �

�2X

�s2 
 �
�4X

�s2 � u,
�Y

�t
� �

�2Y

�s2 
 �
�4Y

�s2 � v . (20.44)

Here the external forces on the contour, �f
�x and �f

�y , have been replaced by a force vec-

tor (u,v). It is this vector that “points” to the desired edge. Figure 20.10(b) shows the
external forces generated by gradient vector flow (GVF) for the circular target boundary
shown in Fig. 20.10(a).

20.5.2 Gradient Vector Flow
Diffusion can be used to capture an edge that is distant from the initial active contour. In
this situation, the active contour is not driven toward the edge using (20.42), because the
contour is not in “contact” with the gradient from the edge. To alleviate this problem, Xu
and Prince construct a force field by diffusing the external force (u, v) away from edges
into the homogeneous regions, while at the same time retaining the initial external force
at the boundaries. This vector diffusion is achieved by minimizing [49]

EGVF(u,v) �
1

2

∫ ∫
	(u2

x � u2
y � v2

x � v2
y ) � (f 2

x � f 2
y )((u 
 fx )2 � (v 
 fy )2)dxdy , (20.45)
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(a) (b) (c) (d)

FIGURE 20.10

(a) A circle; (b) the external forces on the active contour after vector diffusion by GVF; (c)
the external forces on the active contour after vector diffusion by MGVF with (vx,vy ) � (
1, 0);
(d) the external forces on the active contour after vector diffusion by MGVF with (vx,vy ) �

(
1,
1).

where 	 is a nonnegative parameter expressing the degree of smoothness of the field
(u,v) (and can be replaced by an edge-sensitive diffusion coefficient—see [50]), and f is
the edge-map as defined in (20.42). The interpretation of (20.45) is straightforward—
the first term keeps the vector field, (u,v), smooth, while the second term forces it to be
close to the external forces near the edges (i.e., where the edge-force strength is high).
Variational minimization of (20.19) results in the following two Euler equations [49]:

	�2u 
 (f 2
x � f 2

y )(u 
 fx ) � 0, 	�2v 
 (f 2
x � f 2

y )(v 
 fy ) � 0. (20.46)

Solving (20.46) for (u,v) results in a vector diffusion process called GVF. The resulting
(u,v) vectors can be used as the external force in (20.44). Figures 20.10(c) and (d) show
the external forces for a circular object for two directions of motion.

20.5.3 Motion Gradient Vector Flow
GVF can be modified to track a moving object boundary in a video sequence. Here we
assume that the direction of object motion (vx ,vy ) is known. Instead of computing the
components of external force (u and v) separately, we utilize a vector �w , which is the
gradient of a computed quantity w (at each point in the image). To obtain w , we minimize

EMGVF(w) �
1

2

∫ ∫ [
	H�(�w · (vx,vy ))

∣∣�w
∣∣2 � f (w 
 f )2

]
dxdy , (20.47)

where H� is a regularized Heaviside (step) function, f is the squared image gradient
magnitude as defined in (20.42), and 	 is a weight on smoothness of the vector field.
The first term in (20.47) encourages diffusion of motion gradient vectors in the direction
of flow, and discourages diffusion in the opposite direction. The second term forces the
magnitude of w to resemble that of f , the edge strength, where f is high in magnitude.

A gradient descent update for w is derived by way of variational calculus:

�w

��
� 	div(H�(�w · (vx,vy ))�w) 
 f (w 
 f ). (20.48)
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(a) (b)

FIGURE 20.11

(a) In tracking a white blood cell, the GVF vector diffusion fails to attract the active contour;
(b) successful detection is yielded by MGVF.

Thus (20.48) provides an external force that can guide an active contour to a moving
object boundary. The capture range of GVF is increased using the motion gradient
vector flow (MGVF) vector diffusion [51]. With MGVF, a tracking algorithm can simply
use the final position of the active contour from a previous video frame as the initial
contour in the subsequent frame. For an example of tracking using MGVF, see Fig. 20.11.

20.6 CONCLUSIONS
Anisotropic diffusion is an effective precursor to edge detection. The main benefit of
anisotropic diffusion over isotropic diffusion and linear filtering is edge preservation.
By properly specifying the diffusion PDE and the diffusion coefficient, an image can
be scaled, denoised, and simplified for boundary detection. For edge detection, the
most critical design step is specification of the diffusion coefficient. The variants of
the diffusion coefficient involve tradeoffs between sensitivity to noise, the ability to spec-
ify scale, convergence issues, and computational cost. The diverse implementations of
the anisotropic diffusion PDE result in improved fidelity to the original image, mean
curvature motion, and convergence to LOMO signals. As the diffusion PDE may be
considered a descent on an energy surface, the diffusion operation can be viewed in a
variational framework. Recent variational solutions produce optimized edge maps and
image segmentations in which certain edge-based features, such as edge length, curvature,
thickness, and connectivity, can be optimized.

The computational cost of anisotropic diffusion may be reduced by using multireso-
lution solutions, including the anisotropic diffusion pyramid and multigrid anisotropic
diffusion. Application of edge detection to multispectral imagery and to radar/ultrasound
imagery is possible through techniques presented in the literature. In general, the edge
detection step after anisotropic diffusion of the image is straightforward. Edges may be
detected using a simple gradient magnitude threshold, using robust statistics, or using a
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feature extraction technique. Active contours, used in conjunction with vector diffusion,
can be employed to extract meaningful object boundaries.
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21.1 INTRODUCTION
Recent advances in digital imaging technology,computational speed, storage capacity,and
networking have resulted in the proliferation of digital images, both still and video. As the
digital images are captured, stored, transmitted, and displayed in different devices, there
is a need to maintain image quality. The end users of these images, in an overwhelmingly
large number of applications, are human observers. In this chapter, we examine objective
criteria for the evaluation of image quality as perceived by an average human observer.
Even though we use the term image quality, we are primarily interested in image fidelity,
i.e., how close an image is to a given original or reference image. This paradigm of image
quality assessment (QA) is also known as full reference image QA. The development of
objective metrics for evaluating image quality without a reference image is quite different
and is outside the scope of this chapter.

Image QA plays a fundamental role in the design and evaluation of imaging and
image processing systems. As an example, QA algorithms can be used to systematically
evaluate the performance of different image compression algorithms that attempt to
minimize the number of bits required to store an image, while maintaining sufficiently
high image quality. Similarly, QA algorithms can be used to evaluate image acquisition
and display systems. Communication networks have developed tremendously over the
past decade, and images and video are frequently transported over optic fiber, packet
switched networks like the Internet, wireless systems, etc. Bandwidth efficiency of appli-
cations such as video conferencing and Video on Demand can be improved using QA
systems to evaluate the effects of channel errors on the transported images and video.
Further, QA algorithms can be used in “perceptually optimal” design of various compo-
nents of an image communication system. Finally, QA and the psychophysics of human
vision are closely related disciplines. Research on image and video QA may lend deep
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insights into the functioning of the human visual system (HVS), which would be of
great scientific value.

Subjective evaluations are accepted to be the most effective and reliable, albeit quite
cumbersome and expensive, way to assess image quality. A significant effort has been
dedicated for the development of subjective tests for image quality [56, 57]. There has
also been standards activity on subjective evaluation of image quality [58]. The study of
the topic of subjective evaluation of image quality is beyond the scope of this chapter.

The goal of an objective perceptual metric for image quality is to determine the
differences between two images that are visible to the HVS. Usually one of the images is
the reference which is considered to be “original,”“perfect,” or “uncorrupted.” The second
image has been modified or distorted in some sense. The output of the QA algorithm is
often a number that represents the probability that a human eye can detect a difference in
the two images or a number that quantifies the perceptual dissimilarity between the two
images. Alternatively, the output of an image quality metric could be a map of detection
probabilities or perceptual dissimilarity values.

Perhaps the earliest image quality metrics were the mean squared error (MSE) and
peak signal-to-noise ratio (PSNR) between the reference and distorted images. These
metrics are still widely used for performance evaluation, despite their well-known lim-
itations, due to their simplicity. Let f (n) and g (n) represent the value (intensity) of an
image pixel at location n. Usually the image pixels are arranged in a Cartesian grid and
n � (n1,n2). The MSE between f (n) and g (n) is defined as

MSE
[
f (n),g (n)

]
�

1

N

∑
n

[
f (n) � g (n)

]2 , (21.1)

where N is the total number of pixel locations in f (n) or g (n). The PSNR between these
image patches is defined as

PSNR
[
f (n),g (n)

]
� 10 log10

E2

MSE
[
f (n),g (n)

] , (21.2)

where E is the maximum value that a pixel can take. For example, for 8-bit grayscale
images, E � 255.

In Fig. 21.1, we show two distorted images generated from the same original image.
The first distorted image (Fig. 21.1(b)) was obtained by adding a constant number to
all signal samples. The second distorted image (Fig. 21.1(c)) was generated using the
same method except that the signs of the constant were randomly chosen to be positive
or negative. It can be easily shown that the MSE/PSNR between the original image and
both of the distorted images are exactly the same. However, the visual quality of the two
distorted images is drastically different. Another example is shown in Fig. 21.2, where
Fig. 21.2(b) was generated by adding independent white Gaussian noise to the original
texture image in Fig. 21.2(a). In Fig. 21.2(c), the signal sample values remained the same
as in Fig. 21.2(a), but the spatial ordering of the samples has been changed (through
a sorting procedure). Figure 21.2(d) was obtained from Fig. 21.2(b), by following the
same reordering procedure used to create Fig. 21.2(c). Again, the MSE/PSNR between
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(a)

(b) (c)

1 1

FIGURE 21.1

Failure of the Minkowski metric for image quality prediction. (a) original image; (b) distorted
image by adding a positive constant; (c) distorted image by adding the same constant, but with
random sign. Images (b) and (c) have the same Minkowski metric with respect to image (a), but
drastically different visual quality.

Figs. 21.2(a) and 21.2(b) and Figs. 21.2(c) and 21.2(d) is exactly the same. However,
Fig. 21.2(d) appears to be significantly noisier than Fig. 21.2(b).

The above examples clearly illustrate the failure of PSNR as an adequate measure
of visual quality. In this chapter, we will discuss three classes of image QA algorithms
that correlate with visual perception significantly better—human vision based metrics,
Structural SIMilarity (SSIM) metrics, and information theoretic metrics. Each of these
techniques approaches the image QA problem from a different perspective and using
different first principles. As we proceed in this chapter, in addition to discussing these
QA techniques, we will also attempt to shed light on the similarities, dissimilarities, and
interplay between these seemingly diverse techniques.

21.2 HUMAN VISION MODELING BASED METRICS
Human vision modeling based metrics utilize mathematical models of certain stages of
processing that occur in the visual systems of humans to construct a quality metric.
Most HVS-based methods take an engineering approach to solving the QA problem by
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Noise

(a)

Reordering
pixels

(b) (d)

(c)

1

FIGURE 21.2

Failure of the Minkowski metric for image quality prediction. (a) original texture image; (b) dis-
torted image by adding independent white Gaussian noise; (c) reordering of the pixels in image
(a) (by sorting pixel intensity values); (d) reordering of the pixels in image (b), by following the
same reordering used to create image (c). The Minkowski metrics between images (a) and (b)
and images (c) and (d) are the same, but image (d) appears much noisier than image (b).

measuring the threshold of visibility of signals and noise in the signals. These thresholds
are then utilized to normalize the error between the reference and distorted images to
obtain a perceptually meaningful error metric. To measure visibility thresholds, differ-
ent aspects of visual processing need to be taken into consideration such as response
to average brightness, contrast, spatial frequencies, orientations, etc. Other HVS-based
methods attempt to directly model the different stages of processing that occur in the
HVS that results in the observed visibility thresholds. In Section 21.2.1, we will discuss the
individual building blocks that comprise a HVS-based QA system. The function of these
blocks is to model concepts from the psychophysics of human perception that apply to
image quality metrics. In Section 21.2.2, we will discuss the details of several well-known
HVS-based QA systems. Each of these QA systems is comprised of some or all of the
building blocks discussed in Section 21.2.1, but uses different mathematical models for
each block.

21.2.1 Building Blocks
21.2.1.1 Preprocessing
Most QA algorithms include a preprocessing stage that typically comprises of calibra-
tion and registration. The array of numbers that represents an image is often mapped to
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units of visual frequencies or cycles per degree of visual angle, and the calibration stage
receives input parameters such as viewing distance and physical pixel spacings (screen
resolution) to perform this mapping. Other calibration parameters may include fixa-
tion depth and eccentricity of the images in the observer’s visual field [37, 38]. Display
calibration or an accurate model of the display device is an essential part of any image
quality metric [55], as the HVS can only see what the display can reproduce. Many qual-
ity metrics require that the input image values be converted to physical luminances1

before they enter the HVS model. In some cases, when the perceptual model is obtained
empirically, the effects of the display are incorporated in the model [40]. The obvious
disadvantage of this approach is that when the display changes, a new set of model
parameters must be obtained [43]. The study of display models is beyond the scope of
this chapter.

Registration, i.e., establishing point-by-point correspondence between two images, is
also necessary in most image QA systems. Often times, the performance of a QA model
can be extremely sensitive to registration errors since many QA systems operate pixel by
pixel (e.g., PSNR) or on local neighborhoods of pixels. Errors in registration would result
in a shift in the pixel or coefficient values being compared and degrade the performance
of the system.

21.2.1.2 Frequency Analysis
The frequency analysis stage decomposes the reference and test images into different
channels (usually called subbands) with different spatial frequencies and orientations
using a set of linear filters. In many QA models, this stage is intended to mimic simi-
lar processing that occurs in the HVS: neurons in the visual cortex respond selectively
to stimuli with particular spatial frequencies and orientations. Other QA models that
target specific image coders utilize the same decomposition as the compression sys-
tem and model the thresholds of visibility for each of the channels. Some examples of
such decompositions are shown in Fig. 21.3. The range of each axis is from �us/2 to
us/2 cycles per degree, where us is the sampling frequency. Figures 21.3(a)–(c) show
transforms that are polar separable and belong to the former category of decomposi-
tions (mimicking processing in the visual cortex). Figures 21.3(d)–(f) are used in QA
models in the latter category and depict transforms that are often used in compression
systems.

In the remainder of this chapter, we will use f (n) to denote the value (intensity,
grayscale, etc.) of an image pixel at location n. Usually the image pixels are arranged
in a Cartesian grid and n � (n1,n2). The value of the kth image subband at location
n will be denoted by b(k, n). The subband indexing k � (k1,k2) could be in Cartesian
or polar or even scalar coordinates. The same notation will be used to denote the kth
coefficient of the nth discrete cosine transform (DCT) block (both Cartesian coordinate
systems). This notation underscores the similarity between the two transformations,

1In video practice, the term luminance is sometimes, incorrectly, used to denote a nonlinear transformation
of luminance [75, p. 24].
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(a) Cortex transform (Watson)

(b) Cortex transform (Daly)

(c) Lubin’s transform

(d) Subband transform

(e) Wavelet transform

(f) DCT transform

FIGURE 21.3

The decomposition of the frequency plane corresponding to various transforms. The range of
each axis is from �us/2 to us/2 cycles per degree, where us is the sampling frequency.

even though we traditionally display the subband decomposition as a collection of
subbands and the DCT as a collection of block transforms: a regrouping of coeffi-
cients in the blocks of the DCT results in a representation very similar to a subband
decomposition.
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21.2.1.3 Contrast Sensitivity
The HVS’s contrast sensitivity function (CSF, also called the modulation transfer func-
tion) provides a characterization of its frequency response. The CSF can be thought of
as a bandpass filter. There have been several different classes of experiments used to
determine its characteristics which are described in detail in [59, Chapter 12].

One of these methods involves the measurement of visibility thresholds of sine-
wave gratings. For a fixed frequency, a set of stimuli consisting of sine waves of varying
amplitudes are constructed. These stimuli are presented to an observer, and the detection
threshold for that frequency is determined. This procedure is repeated for a large number
of grating frequencies. The resulting curve is called the CSF and is illustrated in Fig. 21.4.
Note that these experiments used sine-wave gratings at a single orientation. To fully
characterize the CSF, the experiments would need to be repeated with gratings at various
orientations. This has been accomplished and the results show that the HVS is not
perfectly isotropic. However, for the purposes of QA, it is close enough to isotropic that
this assumption is normally used.

It should also be noted that the spatial frequencies are in units of cycles per degree of
visual angle. This implies that the visibility of details at a particular frequency is a function
of viewing distance. As an observer moves away from an image, a fixed size feature in
the image takes up fewer degrees of visual angle. This action moves it to the right on
the contrast sensitivity curve, possibly requiring it to have greater contrast to remain
visible. On the other hand, moving closer to an image can allow previously imperceivable
details to rise above the visibility threshold. Given these observations, it is clear that
the minimum viewing distance is where distortion is maximally detectable. Therefore,
quality metrics often specify a minimum viewing distance and evaluate the distortion
metric at that point. Several“standard”minimum viewing distances have been established
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FIGURE 21.4

Spatial contrast sensitivity function (reprinted with permission from reference [63], p. 269).
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for subjective quality measurement and have generally been used with objective models
as well. These are six times image height for standard definition television and three times
image height for high definition television.

The baseline contrast sensitivity determines the amount of energy in each subband
that is required in order to detect the target in a (arbitrary or) flat mid-gray image. This is
sometimes referred to as the just noticeable difference (JND). We will use tb(k) to denote
the baseline sensitivity of the kth band or DCT coefficient. Note that the base sensitivity
is independent of the location n.

21.2.1.4 Luminance Masking
It is well known that the perception of lightness is a nonlinear function of luminance.
Some authors call this “light adaptation.” Others prefer the term “luminance masking,”
which groups it together with the other types of masking we will see below [41]. It is
called masking because the luminance of the original image signal masks the variations
in the distorted signal.

Consider the following experiment: create a series of images consisting of a back-
ground of uniform intensity, I , each with a square of a different intensity, I � �I , inserted
into its center. Show these to an observer in order of increasing �I . Ask the observer to
determine the point at which she can first detect the square. Then, repeat this experi-
ment for a large number of different values of background intensity. For a wide range of
background intensities, the ratio of the threshold value �I divided by I is a constant. This
equation

�I

I
� k (21.3)

is called Weber’s Law. The value for k is roughly 0.33.

21.2.1.5 Contrast Masking
We have dealt with stimuli that are either constant or contain a single frequency in
describing the luminance masking and contrast sensitivity properties of the visual system.
In general, this is not characteristic of natural scenes. They have a wide range of frequency
content over many different scales. Also, since the HVS is not a linear system, the CSF or
frequency response does not characterize the functioning of the HVS for any arbitrary
input. Study the following thought experiment: consider two images, a constant intensity
field and an image of a sand beach. Take a random noise process whose variance just
exceeds the amplitude and contrast sensitivity thresholds for the flat field image. Add this
noise field to both images. By definition, the noise will be detectable in the flat field image.
However, it will not be detectable in the beach image. The presence of the multitude of
frequency components in the beach image hides or masks the presence of the noise field.

Contrast masking refers to the reduction in visibility of one image component caused
by the presence of another image component with similar spatial location and frequency
content. As we mentioned earlier, the visual cortex in the HVS can be thought of as a
spatial frequency filter bank with octave spacing of subbands in radial frequency and
angular bands of roughly 30 degree spacing. The presence of a signal component in one
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of these subbands will raise the detection threshold for other signal components in the
same subband [64–66] or even neighboring subbands.

21.2.1.6 Error Pooling
The final step of an image quality metric is to combine the errors (at the output of the
models for various psychophysical phenomena) that have been computed for each spatial
frequency and orientation band and each spatial location, into a single number for each
pixel of the image, or a single number for the whole image. Some metrics convert the
JNDs to detection probabilities.

An example of error pooling is the following Minkowski metric:

E(n) �
1

M

⎧⎨
⎩
∑

k

∣∣∣∣∣
b(k, n) � b̂(k, n)

t (k, n)

∣∣∣∣∣
Q
⎫⎬
⎭

1/Q

, (21.4)

where bk(n) and b̂k(n) are the nth element of the kth subband of the original and
coded image, respectively, t (k, n) is the corresponding sensitivity threshold, and M is the
total number of subbands. In this case, the errors are pooled across frequency to obtain
a distortion measure for each spatial location. The value of Q varies from 2 (energy
summation) to infinity (maximum error).

21.2.2 HVS-Based Models
In this section, we will discuss some well-known HVS modeling based QA systems. We
will first discuss four general purpose QA models: the visible differences predictor (VDP),
the Sarnoff JND vision model, the Teo and Heeger model, and visual signal-to-noise ratio
(VSNR).

We will then discuss quality models that are designed specifically for different com-
pression systems: the perceptual image coder (PIC) and Watson’s DCT and wavelet-based
metrics. While still based on the properties of the HVS, these models adopt the frequency
decomposition of a given coder, which is chosen to provide high compression efficiency
as well as computational efficiency. The block diagram of a generic perceptually based
coder is shown in Fig. 21.5. The frequency analysis decomposes the image into several

Front
end

Frequency
analysis

Quantizer
Entropy
encoder

Contrast
sensitivity

Masking
model

FIGURE 21.5

Perceptual coder.
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components (subbands, wavelets, etc.) which are then quantized and entropy coded. The
frequency analysis and entropy coding are virtually lossless; the only losses occur at the
quantization step. The perceptual masking model is based on the frequency analysis and
regulates the quantization parameters to minimize the visibility of the errors. The visual
models can be incorporated in a compression scheme to minimize the visibility of the
quantization errors, or they can be used independently to evaluate its performance. While
coder-specific image quality metrics are quite effective in predicting the performance of
the coder they are designed for, they may not be as effective in predicting performance
across different coders [36, 83].

21.2.2.1 Visible Differences Predictor
The VDP is a model developed by Daly for the evaluation of high quality imaging systems
[37]. It is one of the most general and elaborate image quality metrics in the literature. It
accounts for variations in sensitivity due to light level, spatial frequency (CSF), and signal
content (contrast masking).

To model luminance masking or amplitude nonlinearities in the HVS, Daly includes a
simple point-by-point amplitude nonlinearity where the adaptation level for each image
pixel is solely determined from that pixel (as opposed to using the average luminance in a
neighborhood of the pixel). To account for contrast sensitivity, the VDP filters the image
by the CSF before the frequency decomposition. Once this normalization is accomplished
to account for the varying sensitivities of the HVS to different spatial frequencies, the
thresholds derived in the contrast masking stage become the same for all frequencies.

A variation of the Cortex transform shown in Fig. 21.3(b) is used in the VDP for the
frequency decomposition. Daly proposes two alternatives to convert the output of the
linear filter bank to units of contrast: local contrast, which uses the value of the baseband
at any given location to divide the values of all the other bands, and global contrast,
which divides all subbands by the average value of the input image. The conversion to
contrast is performed since to a first approximation the HVS produces a neural image
of local contrast [35]. The masking stage in the VDP utilizes a “threshold elevation”
approach, where a masking function is computed that measures the contrast threshold
of a signal as a function of the background (masker) contrast. This function is computed
for the case when the masker and signal are single, isolated frequencies. To obtain a
masking model for natural images, the VDP considers the results of experiments that
have measured the masking thresholds for both single frequencies and additive noise.
The VDP also allows for mutual masking which uses both the original and distorted
images to determine the degree of masking. The masking function used in the VDP is
illustrated in Fig. 21.6. Although the threshold elevation paradigm works quite well in
determining the discriminability between the reference and distorted images, it fails to
generalize to the case of supra-threshold distortions.

In the error pooling stage, a psychometric function is used to compute the probability
of discrimination at each pixel of the reference and test images to obtain a spatial map.
Further details of this algorithm can be found in [37], along with an interesting discussion
of different approaches used in the literature to model various stages of processing in the
HVS, including their merits and drawbacks.
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Contrast masking function.

21.2.2.2 Sarnoff JND Vision Model
The Sarnoff JND vision model received a technical Emmy award in 2000 and is one of
the best known QA systems based on human vision models. This model was developed
by Lubin and coworkers, and details of this algorithm can be found in [38].

Preprocessing steps in this model include calibration for distance of the observer
from the images. In addition, this model also accounts for fixation depth and eccentricity
of the observer’s visual field. The human eye does not sample an image uniformly since
the density of retinal cells drops off with eccentricity, resulting in a decreased spatial
resolution as we move away from the point of fixation of the observer. To account for
this effect, the Lubin model resamples the image to generate a modeled retinal image.
The Laplacian pyramid of Burt and Adelson [77] is used to decompose the image into
seven radial frequency bands. At this stage, the pyramid responses are converted to units
of local contrast by dividing each point in each level of the Laplacian pyramid by the
corresponding point obtained from the Gaussian pyramid two levels down in resolution.
Each pyramid level is then convolved with eight spatially oriented filters of Freeman and
Adelson [78], which constitute Hilbert transform pairs for four different orientations.
The frequency decomposition so obtained is illustrated in Fig. 21.3(c). The two Hilbert
transform pair outputs are squared and summed to obtain a local energy measure at
each pixel location, pyramid level, and orientation. To account for the contrast sensitivity
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of human vision, these local energy measures are normalized by the base sensitivities
for that position and pyramid level, where the base sensitivities are obtained from
the CSF.

The Sarnoff model does not use the threshold elevation approach to model masking
used by the VDP, instead adopting a transducer or a contrast gain control model. Gain
control models a mechanism that allows a neuron in the HVS to adjust its response to the
ambient contrast of the stimulus. Such a model generalizes better to the case of supra-
threshold distortions since it models an underlying mechanism in the visual system, as
opposed to measuring visibility thresholds. The transducer model used in [38] takes the
form of a sigmoid nonlinearity. A sigmoid function starts out flat, its slope increases to a
maximum, and then decreases back to zero, i.e., it changes curvature like the letter S.

Finally, a distance measure is calculated using a Minkowski error between the
responses of the test and distorted images at the output of the vision model. A psy-
chometric function is used to convert the distance measure to a probability value, and
the Sarnoff JND vision model outputs a spatial map that represents the probability that
an observer will be able to discriminate between the two input images (reference and
distorted) based on the information in that spatial location.

21.2.2.3 Teo and Heeger Model
The Teo and Heeger metric uses the steerable pyramid transform [79] which decomposes
the image into several spatial frequency and orientation bands [39]. A more detailed
discussion of this model, with a different transform, can be found in [80]. However, unlike
the other two models we saw above, it does not attempt to separate the contrast sensitivity
and contrast masking effects. Instead, Teo and Heeger propose a normalization model that
explains baseline contrast sensitivity, contrast masking, and masking that occurs when
the orientations of the target and the masker are different. The normalization model has
the following form:

R(k, n, i) � R(�,�, n, i) � �i
[b(�,�, n)]2∑

�[b(�,�, n)]2 � �i
2 , (21.5)

where R(k, n, i) is the normalized response of a sensor corresponding to the transform
coefficient b(�,�, n), k � (�,�) specifies the spatial frequency and orientation of the
band, n specifies the location, and i specifies one of four different contrast discrimination
bands characterized by different scaling and saturation constants, �i and �i

2, respectively.
The scaling and saturation constants �i and �i

2 are chosen to fit the experimental data
of Foley and Boynton. This model is also a contrast gain control model (similar to the
Sarnoff JND vision model) that uses a divisive normalization model to explain masking
effects. There is increasing evidence for divisive normalization mechanisms in the HVS,
and this model can account for various aspects of contrast masking in human vision [18,
31–34, 80]. Finally, the quality of the image is computed at each pixel as the Minkowski
error between the contrast masked responses to the two input images.
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21.2.2.4 Safranek-Johnston Perceptual Image Coder
The Safranek-Johnston PIC image coder was one of the first image coders to incorporate
an elaborate perceptual model [40]. It is calibrated for a given CRT display and viewing
conditions (six times image height). The PIC coder has the basic structure shown in
Fig. 21.5. It uses a separable generalized quadrature mirror filter (GQMF) bank for
subband analysis/synthesis shown in Fig. 21.3(d). The baseband is coded with DPCM
while all other subbands are coded with PCM. All subbands use uniform quantizers with
sophisticated entropy coding. The perceptual model specifies the amount of noise that
can be added to each subband of a given image so that the difference between the output
image and the original is just noticeable.

The model contains the following components: the base sensitivity tb(k) determines
the noise sensitivity in each subband given a flat mid-gray image and was obtained using
subjective experiments. The results are listed in a table. The second component is a
brightness adjustment denoted as �l(k, n). In general this would be a two dimensional
lookup table (for each subband and gray value). Safranek and Johnston made the rea-
sonable simplification that the brightness adjustment is the same for all subbands. The
final component is the texture masking adjustment. Safranek and Johnston [40] define
as texture any deviation from a flat field within a subband and use the following texture
masking adjustment:

�t (k, n) � max

⎧⎨
⎩1,

⎡
⎣∑

k

wMTF(k)et (k, n)

⎤
⎦

wt
⎫⎬
⎭ , (21.6)

where et (k, n) is the “texture energy” of subband k at location n, wMTF(k) is a weighting
factor for subband k determined empirically from the MTF of the HVS, and wt is a
constant equal to 0.15. The subband texture energy is given by

et (k, n) �

{
local variancem∈N(n)(b(0, m)), if k � 0
b(k, n)2, otherwise,

(21.7)

where N(n) is the neighborhood of the point n over which the variance is calculated.
In the Safranek-Johnston model, the overall sensitivity threshold is the product of three
terms

t (k, n) � �t (k, n) �l (k, n) tb(k), (21.8)

where �t (k, n) is the texture masking adjustment, �l(k, n) is the luminance masking
adjustment, and tb(k) is the baseline sensitivity threshold.

A simple metric based on the PIC coder can be defined as follows:

E �

⎧⎨
⎩

1

N

∑

n,k

[
b(k, n) � b̂(k, n)

t (k, n)

]Q
⎫⎬
⎭

1
Q

, (21.9)

where bk(n) and b̂k(n) are the nth element of the kth subband of the original and
coded image, respectively, t (k, n) is the corresponding perceptual threshold, and N is the
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(a) Original 512 � 512 image

(c) PIC coder at 0.52 bits/pixel, PSNR � 29.4 dB

(b) SPIHT coder at 0.52 bits/pixel, PSNR � 33.3 dB

(d) JPEG coder at 0.52 bits/pixel, PSNR � 30.5 dB

FIGURE 21.7

Continued

number of pixels in the image. A typical value for Q is 2. If the error pooling is done over
the subband index k only, as in (21.4), we obtain a spatial map of perceptually weighted
errors. This map is downsampled by the number of subbands in each dimension. A full
resolution map can also be obtained by doing the error pooling on the upsampled and
filtered subbands.

Figures 21.7(a)–(g) demonstrate the performance of the PIC metric. Figure 21.7(a)
shows an original 512 � 512 image. The grayscale resolution is 8 bits/pixel. Figure 21.7(b)
shows the image coded with the SPIHT coder [84] at 0.52 bits/pixel; the PSNR is 33.3 dB.
Figure 21.7(b) shows the same image coded with the PIC coder [40] at the same rate.
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(e) PIC metric for SPIHT coder, perceptual PSNR � 46.8 dB (f) PIC metric for PIC coder, perceptual PSNR � 49.5 dB

(g) PIC metric for JPEG coder, perceptual PSNR � 47.9 dB

FIGURE 21.7

The PSNR is considerably lower at 29.4 dB. This is not surprising as the SPIHT algorithm
is designed to minimize the MSE and has no perceptual weighting. The PIC coder
assumes a viewing distance of six image heights or 21 inches. Depending on the quality of
reproduction (which is not known at the time this chapter is written), at a close viewing
distance, the reader may see ringing near the edges of the PIC image. On the other hand,
the SPIHT image has considerable blurring, especially on the wall near the left edge
of the image. However, if the reader holds the image at the intended viewing distance
(approximately at arm’s length), the ringing disappears and all that remains visible is
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the blurring of the SPIHT image. Figures 21.7(e) and 21.7(f) show the corresponding
perceptual distortion maps provided by the PIC metric. The resolution is 128 � 128, and
the distortion increases with pixel brightness. Observe that the distortion is considerably
higher for the SPIHT image. In particular, the metric picks up the blurring on the wall
on the left. The perceptual PSNR (pooled over the whole image) is 46.8 dB for the SPIHT
image and 49.5 dB for the PIC image, in contrast to the PSNR values. Figure 21.7(d) shows
the image coded with the standard JPEG algorithm at 0.52 bits/pixel, and Fig. 21.7(g)
shows the PIC metric. The PSNR is 30.5 dB and the perceptual PSNR is 47.9 dB. At the
intended viewing distance, the quality of the JPEG image is higher than the SPIHT image
and worse than the PIC image as the metric indicates. Note that the quantization matrix
provides some perceptual weighting, which explains why the SPIHT image is superior
according to PSNR and inferior according to perceptual PSNR. The above examples
illustrate the power of image quality metrics.

21.2.2.5 Watson’s DCTune
Many current compression standards are based on a DCT decomposition. Watson [6, 41]
presented a model known as DCTune that computes the visibility thresholds for the DCT
coefficients, and thus provides a metric for image quality. Watson’s model was devel-
oped as a means to compute the perceptually optimal image-dependent quantization
matrix for DCT-based image coders like JPEG. It has also been used to further optimize
JPEG-compatible coders [42, 44, 81]. The JPEG compression standard is discussed in
Chapter 17.

Because of the popularity of DCT-based coders and computational efficiency of the
DCT, we will give a more detailed overview of DCTune and how it can be used to obtain
a metric of image quality.

The original reference and degraded images are partitioned into 8 � 8 pixel blocks and
transformed to the frequency domain using the forward DCT. The DCT decomposition is
similar to the subband decomposition and is shown in Fig. 21.7(f). Perceptual thresholds
are computed from the DCT coefficients of each block of data of the original image. For
each coefficient b(k, n), where k identifies the DCT coefficient and n denotes the block
within the reference image, a threshold t (k, n) is computed using models for contrast
sensitivity, luminance masking, and contrast masking.

The baseline contrast sensitivity thresholds tb(k) are determined by the method of
Peterson, et al. [85]. The quantization matrices can be obtained from the threshold
matrices by multiplying by 2. These baseline thresholds are then modified to account,
first for luminance masking, and then for contrast masking, in order to obtain the overall
sensitivity thresholds.

Since luminance masking is a function of only the average value of a region, it depends
only on the DC coefficient b(0, n) of each DCT block. The luminance-masked threshold
is given by

tl (k, n) � tb(k)

[
b(0, n)

b̄(0)

]aT

, (21.10)
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where b̄(0) is the DC coefficient corresponding to average luminance of the display (1024
for an 8-bit image using a JPEG compliant DCT implementation) and aT has a suggested
value of 0.649. This parameter controls the amount of luminance masking that takes
place. Setting it to zero turns off luminance masking.

The Watson model of contrast masking assumes that the visibility reduction is con-
fined to each coefficient in each block. The overall sensitivity threshold is determined as a
function of a contrast masking adjustment and the luminance-masked threshold tl(k, n):

t (k, n) � max
{

tl (k, n), |b(k, n)|wc (k)tl (k, n)1�wc (k)
}

, (21.11)

where wc (k) has values between 0 and 1. The exponent may be different for each fre-
quency, but is typically set to a constant in the neighborhood of 0.7. If wc (k) is 0, no
contrast masking occurs and the contrast masking adjustment is equal to 1.

A distortion visibility threshold d(k, n) is computed at each location as the error at
each location (the difference between the DCT coefficients in the original and distorted
images) weighted by the sensitivity threshold:

d(k, n) �
b(k, n) � b̂(k, n)

t (k, n)
, (21.12)

where b(k, n) and b̂(k, n) are the reference and distorted images, respectively. Note that
d(k, n) < 1 implies the distortion at that location is not visible, while d(k, n) > 1 implies
the distortion is visible.

To combine the distortion visibilities into a single value denoting the quality of
the image, error pooling is first done spatially. Then the pools of spatial errors are
pooled across frequency. Both pooling processes utilize the same probability summation
framework:

p(k) �

{∑
n

|d(k, n)|Qs

} 1
Qs

(21.13)

From psychophysical experiments, a value of 4 has been observed to be a good choice
for Qs .

The matrix p(k) provides a measure of the degree of visibility of artifacts at each
frequency that are then pooled across frequency using a similar procedure,

P �

⎧⎨
⎩
∑

k

p(k)Qf

⎫⎬
⎭

1
Qf

. (21.14)

Qf again can have many values depending on if average or worst case error is more
important. Low values emphasize average error, while setting Qf to infinity reduces the
summation to a maximum operator thus emphasizing worst case error.

DCTune has been shown to be very effective in predicting the performance of block-
based coders. However, it is not as effective in predicting performance across different
coders. In [36, 83], it was found that the metric predictions (they used Qf � Qs � 2)
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are not always consistent with subjective evaluations when comparing different coders.
It was found that this metric is strongly biased toward the JPEG algorithm. This is not
surprising since both the metric and the JPEG are based on the DCT.

21.2.2.6 Visual Signal-to-Noise Ratio
A general purpose quality metric known as the VSNR was developed by Chandler and
Hemami [30]. VSNR differs from other HVS-based techniques that we discuss in this
section in three main ways. Firstly, the computational models used in VSNR are derived
based on psychophysical experiments conducted to quantify the visual detectability of
distortions in natural images, as opposed to the sine wave gratings or Gabor patches
used in most other models. Second, VSNR attempts to quantify the perceived contrast of
supra-threshold distortions, and the model is not restricted to the regime of threshold of
visibility (such as the Daly model). Third, VSNR attempts to capture a mid-level property
of the HVS known as global precedence, while most other models discussed here only
consider low-level processes in the visual system.

In the preprocessing stage, VSNR accounts for viewing conditions (display resolution
and viewing distance) and display characteristics. The original image, f (n), and the pixel-
wise errors between the original and distorted images, f (n) � g (n), are decomposed
using an M -level discrete wavelet transform using the 9/7 biorthogonal filters. VSNR
defines a model to compute the average contrast signal-to-noise ratios (CSNR) at the
threshold of detection for wavelet distortions in natural images for each subband of the
wavelet decomposition. To determine whether the distortions are visible within each
octave band of frequencies, the actual contrast of the distortions is compared with the
corresponding contrast detection threshold. If the contrast of the distortions is lower
than the corresponding detection threshold for all frequencies, the distorted image is
declared to be of perfect quality.

In Section 21.2.1.3, we mentioned the CSF of human vision and several models
discussed here attempt to model this aspect of human perception. Although the CSF is
critical in determining whether the distortions are visible in the test image, the utility of
the CSF in measuring the visibility of supra-threshold distortions has been debated. The
perceived contrast of supra-threshold targets has been shown to depend much less on
spatial frequency than what is predicted by the CSF, a property also known as contrast
constancy. TheVSNR assumes contrast constancy,and if the distortion is supra-threshold,
the RMS contrast of the error signal is used as a measure of the perceived contrast of the
distortion, denoted by dpc .

Finally, the VSNR models the global precedence property of human vision—the visual
system has a preference for integrating edges in a coarse to fine scale fashion. VSNR mod-
els the global precedence preserving CSNR for each octave band of spatial frequencies.
This model satisfies the following property—for supra-threshold distortions, the CSNR
corresponding to coarse spatial frequencies is greater than the CSNR corresponding
to finer scales. Further, as the distortions become increasingly supra-threshold, coarser
scales have increasingly greater CSNR than finer scales in order to preserve visual inte-
gration of edges in a coarse to fine scale fashion. For a given distortion contrast, the
contrast of the distortions within each subband is compared with the corresponding
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global precedence preserving contrast specified by the model to compute a measure dgp

of the extent to which global precedence has been disrupted. The final quality metric is
a linear combination of dpc and dgp .

21.3 STRUCTURAL APPROACHES
In this section, we will discuss structural approaches to image QA. We will discuss the
SSIM philosophy in Section 21.3.1. We will show some illustrations of the performance
of this metric in Section 21.3.2. Finally, we will discuss the relation between SSIM-and
HVS-based metrics in Section 21.3.3.

21.3.1 The Structural Similarity Index
The most fundamental principle underlying structural approaches to image QA is that
the HVS is highly adapted to extract structural information from the visual scene, and
therefore a measurement of SSIM (or distortion) should provide a good approximation
to perceptual image quality. Depending on how structural information and structural
distortion are defined, there may be different ways to develop image QA algorithms. The
SSIM index is a specific implementation from the perspective of image formation. The
luminance of the surface of an object being observed is the product of the illumination
and the reflectance, but the structures of the objects in the scene are independent of the
illumination. Consequently, we wish to separate the influence of illumination from the
remaining information that represents object structures. Intuitively, the major impact
of illumination change in the image is the variation of the average local luminance and
contrast, and such variation should not have a strong effect on perceived image quality.

Consider two image patches f̃ and g̃ obtained from the reference and test images.
Mathematically, f̃ and g̃ denote two vectors of dimension N , where f̃ is composed of N
elements of f (n) spanned by a window B and similarly for g̃. To index each element of f̃ ,
we use the notation f̃ � [f̃1, f̃2, . . . , f̃N ]T .

First, the luminance of each signal is estimated as the mean intensity:

	f̃ �
1

N

N∑
i�1

f̃i . (21.15)

A luminance comparison function l(f̃ , g̃) is then defined as a function of 	f̃ and 	g̃ :

l[f̃ , g̃]� 2	f̃ 	g̃ � C1

	2
f̃

� 	2
g̃ � C1

, (21.16)

where the constant C1 is included to avoid instability when 	2
f̃

� 	2
g̃ is very close to zero.

One good choice is C1 � (K1E)2, where E is the dynamic range of the pixel values (255
for 8-bit grayscale images) and K1 << 1 is a small constant. Similar considerations also
apply to contrast comparison and structure comparison terms described below.
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The contrast of each image patch is defined as an unbiased estimate of the standard
deviation of the patch:

�2
f̃

�
1

N � 1

N∑
i�1

( f̃i � 	f̃ )
2. (21.17)

The contrast comparison c(f̃ , g̃) takes a similar form as the luminance comparison
function and is defined as a function of �f̃ and �g̃ :

c[f̃ , g̃]� 2�f̃ �g̃ � C2

�2
f̃

� �2
g̃ � C2

, (21.18)

where C2 is a nonnegative constant. C2 � (K2E)2, where K2 satisfies K2 << 1.
Third, the signal is normalized (divided) by its own standard deviation so that the

two signals being compared have unit standard deviation. The structure comparison
s(f̃ , g̃) is conducted on these normalized signals. The SSIM framework uses a geometric
interpretation, and the structures of the two images are associated with the direction
of the two unit vectors f̃ � 	f̃ /�f̃ and g̃ � 	g̃/�g̃ . The angle between the two vectors
provides a simple and effective measure to quantify SSIM. In particular, the correlation
coefficient between f̃ and g̃ corresponds to the cosine of the angle between them and is
used as the structure comparison function:

s[f̃ , g̃]�
�f̃ g̃ � C3

�f̃ �g̃ � C3
, (21.19)

where the sample covariance between f̃ and g̃ is estimated as

�f̃ g̃ �
1

N � 1

N∑
i�1

(f̃i � 	f̃ )(g̃i � 	g̃). (21.20)

Finally, the SSIM index between image patches f̃ and g̃ is defined as

SSIM[f̃ , g̃]� l[f̃ , g̃]
 · c[f̃ , g̃]� · s[f̃ , g̃]� , (21.21)

where 
, �, and � are parameters used to adjust the relative importance of the three
components.

The SSIM index and the three comparison functions—luminance, contrast, and
structure—satisfy the following desirable properties.

■ Symmetry : SSIM(f̃ , g̃) � SSIM(g̃, f̃). When quantifying the similarity between two
signals, exchanging the order of the input signals should not affect the resulting
measurement.

■ Boundedness: SSIM(f̃ , g̃) � 1. An upper bound can serve as an indication of how
close the two signals are to being perfectly identical.
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■ Unique maximum: SSIM(f̃ , g̃) � 1 if and only if f̃ � g̃. The perfect score is achieved
only when the signals being compared are identical. In other words, the similarity
measure should quantify any variations that may exist between the input signals.

The structure term of the SSIM index is independent of the luminance and contrast
of the local patches, which is physically sensible because the change of luminance and/or
contrast has little impact on the structures of the objects in the scene. Although the SSIM
index is defined by three terms, the structure term in the SSIM index is generally regarded
as the most important, since variations in luminance and contrast of an image do not
affect visual quality as much as structural distortions [28].

21.3.2 Image Quality Assessment Using SSIM
The SSIM index measures the SSIM between two images. If one of the images is regarded
as of perfect quality, then the SSIM index can be viewed as an indication of the quality
of the other image signal being compared. When applying the SSIM index approach to
large-size images, it is useful to compute it locally rather than globally. The reasons are
manifold. First, statistical features of images are usually spatially nonstationary. Second,
image distortions, which may or may not depend on the local image statistics, may
also vary across space. Third, due to the nonuniform retinal sampling feature of the
HVS, at typical viewing distances, only a local area in the image can be perceived with
high resolution by the human observer at one time instance. Finally, localized quality
measurement can provide a spatially varying quality map of the image, which delivers
more information about the quality degradation of the image. Such a quality map can
be used in different ways. It can be employed to indicate the quality variations across the
image. It can also be used to control image quality for space-variant image processing
systems, e.g., region-of-interest image coding and foveated image processing.

In early instantiations of the SSIM index approach [28], the local statistics 	f̃ , �f̃ ,
and �f̃ g̃ defined in Eqs. (21.15), (21.17), and (21.20) were computed within a local

8 � 8 square window. The window moves pixel-by-pixel from the top-left corner to the
bottom-right corner of the image. At each step, the local statistics and SSIM index are
calculated within the local window. One problem with this method is that the result-
ing SSIM index map often exhibits undesirable “blocking” artifacts as exemplified by
Fig. 21.8(c). Such “artifacts” are not desirable because they are created from the choice of
the quality measurement method (local square window) and not from image distortions.
In [29], a circular-symmetric Gaussian weighting function w � {wi , i � 1,2, . . .N } with

unit sum
(∑N

i�1 wi � 1
)

is adopted. The estimates of 	f̃ , �f̃ , and �f̃ g̃ are then modified

accordingly:

	f̃ �

N∑
i�1

wi f̃i , (21.22)

�2
f̃

�

N∑
i�1

wi(f̃i � 	f̃ )
2, (21.23)
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(a) (b)

(c) (d)

FIGURE 21.8

The effect of local window shape on SSIM index map. (a) original image; (b) impulsive noise
contaminated image; (c) SSIM index map using square windowing approach; (d) SSIM index
map using smoothed windowing approach. In both SSIM index maps, brighter indicates better
quality.

�f̃ g̃ �

N∑
i�1

wi(f̃i � 	f̃ )(g̃i � 	g̃). (21.24)

With such a smoothed windowing approach, the quality maps exhibit a locally
isotropic property as demonstrated in Fig. 21.8(d).

Figure 21.9 shows the SSIM index maps of a set of sample images with different
types of distortions. The absolute error map for each distorted image is also included
for comparison. The SSIM index and absolute error maps have been adjusted so that
brighter always indicates better quality in terms of the given quality/distortion measure.
It can be seen that the distorted images exhibit variable quality across space. For example,
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(c)

(g)

(k)

(d)

(h)

(l)

(a)

(e)

(i)

(b)

(f)

(j)

FIGURE 21.9

Sample distorted images and their quality/distortion maps (images are cropped to 160 � 160 for
visibility); (a), (e), and (i) original images; (b) Gaussian noise contaminated image; (f) JPEG2000
compressed image; (j) JPEG compressed image; (c), (g), and (k) SSIM index maps of the distorted
images, where brightness indicates the magnitude of the local SSIM index (squared for visibility);
(d), (h), and (l) absolute error maps of the distorted images, where darkness indicates the
absolute value of the local pixel difference. Note that in all quality/distortion maps ((c), (d), (g),
(h), (k), and (l)), brighter indicates better quality in terms of the underlying quality/distortion
measure.

in image 21.9(b), the noise over the face region appears to be much more significant
than that in the texture regions. However, the absolute error map 21.9(d) is completely
independent of the underlying image structures. By contrast, the SSIM index map 21.9(c)
gives perceptually consistent prediction. In image 21.9(f), the bit allocation scheme of
low bit-rate JPEG2000 compression leads to smooth representations of detailed image
structures. For example, the texture information of the roof of the building and the trees
is lost. This is very well indicated by the SSIM index map 21.9(g), but cannot be predicted
from the absolute error map 21.9(h). Some different types of distortions are caused by
low bit-rate JPEG compression. In image 21.9(j), the major distortions we observe are the
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blocking effect in the sky and the artifacts around the outer boundaries of the building.
Again, the absolute error map 21.9(l) fails to provide useful prediction, and the SSIM
index map 21.9(k) successfully predicts image quality variations across space. From these
sample images, we see that an image quality measure as simple as the SSIM index can
adapt to various kinds of image distortions and provide perceptually consistent quality
predictions.

The final step of an image quality measurement system is to combine the quality map
into one single quality score for the whole image. A convenient way is to use a weighted
summation. Let f (n) and g (n) be the two images being compared, and SSIM[f (n),g (n)]
the local SSIM index evaluated at location n. Then, the mean SSIM (MSSIM) index
between f (n) and g (n) is defined as:

MSSIM[f (n),g (n)]�
∑

n W (n) SSIM[f (n),g (n)]∑
n W (n)

, (21.25)

where W (n) is the weight given to the pixel location n. If all the samples in the quality map
are equally weighted, this results in the measure employed in [29]. There are two cases in
which nonuniform weighting is desirable. First, depending on the application, some prior
knowledge about the importance of different regions in the image is available, and such an
importance map can be converted into a weighting function. For example, object-based
region-of-interest image processing systems often segment the objects in the scene and
give different objects different importance. In a foveated image processing system, the
weighting function can be determined according to foveation in the HVS, i.e., the visual
resolution decreases gradually as a function of the distance from the fixation point [2, 3].
Note that the weighting function here is determined only by the spatial location and is
independent of the local image content. In the second case, the image content also plays
a role. It has been observed that different image textures attract human fixations with
varying degrees, and therefore different weights can be assigned. In [1], local variance-
weighted, local quality/distortion-weighted, and information-content-weighted pooling
functions were used. It was observed that these weighting functions may improve the
performance of image QA algorithms. For example, local variance-weighting is useful
to balance the extreme case where severe high-variance distortions concentrate at some
small areas in the image.

21.3.3 Relation to HVS-Based Models
In this section, we will relate the structure term in the SSIM index to MSE and human
vision based metrics [13, 17].

The MSE between image patches f̃ and g̃ is

MSE[f̃ , g̃]� 1

N

N∑
i�1

(f̃i � g̃i)
2.
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We define normalized random variables,

f̃ �
f̃ � 	f̃

�f̃

, (21.26)

g̃ �
g̃ � 	g̃

�g̃
. (21.27)

Observe that

MSE

(
f̃ � 	f̃

�f̃

,
g̃ � 	g̃

�g̃

)
� 2

(
1 �

�f̃ g̃

�f̃ �g

)
. (21.28)

Thus, the structure term in the SSIM index essentially computes an MSE between
image patches, after normalizing them for their mean and standard deviations. This is
not surprising in view of the fact that the structure term of the SSIM index is defined
to be independent of the mean and standard deviation of the image intensity values.
This relationship between the structure term of SSIM and MSE illustrates that simple
modifications to the MSE computation can help overcome some of its drawbacks such
as failure to detect brightness and contrast changes (illustrated in Fig. 21.1(b)).

We will now discuss the relation of SSIM to HVS-based metrics. We first look at
the structure term of the SSIM index, which is arguably the most important term in the
SSIM index [13, 17]. It is evident that the definition of the normalized variables in (21.26)
and (21.27) is very similar to divisive normalization models of contrast gain control in
HVS-based metrics. In fact, a SSIM contrast masking model can be defined by:

R[f̃i ]�
f̃i � 	f̃√

1
N
∑N

i�1

[
f̃i � 	f̃

]2
. (21.29)

We discussed in Section 21.2.1.6 that most HVS-based QA systems compute a
Minkowski error between the outputs of the contrast gain control model (as well as
models of other aspects of the HVS incorporated in QA) to the reference and test image
patches as an index of quality, often with a Minkowski exponent of 2 [38, 39, 41]. Simi-
larly, observe that the structure term of SSIM in (21.28) is a monotonic function of the
square of the Minkowski error between the outputs of the SSIM contrast gain control
model in (21.29) with exponent 2.

It is important to note that the SSIM indices perform the gain control normalization
in the image pixel domain. In (21.29), the contrast gain control model divisively inhibits
each pixel by pooling the responses of a local spatial neighborhood of pixels. However,
contrast masking in the HVS is a phenomenon that is better modeled in a frequency-
orientation decomposed domain. For example, the masking effect is maximum when the
orientation of the masker and the target are parallel and decreases when their orientations
are perpendicular [27]. The contrast masking models that we saw in Section 21.2.2 can
capture these effects since they normalize each filter output by pooling the responses at the
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same location of other filters tuned to different orientations. However, the SSIM metric
will not be able to account for such effects. Improved versions of the SSIM index that
use a frequency decomposition have been proposed [19, 20], and our discussion of the
relation between the SSIM index and the contrast masking models helps us understand
the reasons for the improved performance of these metrics. Interestingly, the square of
the response of the SSIM contrast gain control model defined by (21.29) is equal to the
response of the Teo and Heeger gain control model defined by (21.5) with �i � N and
�2

i � 0 for all i. Thus, if the vectors f̃ and g̃ at each spatial location n are defined using
the responses of a filter bank at that location (as is done in the Complex Wavelet SSIM
model [20]), the SSIM contrast masking model is just the square root of the Teo and
Heeger contrast masking model.

Also, (21.16) is connected with Weber’s law which was discussed in Section 21.2.1.4
[29]. According to Weber’s law, the HVS is sensitive to the relative rather than the absolute
luminance change. Letting R represent the ratio of the luminance of the distorted signal
relative to the reference signal, then we can write 	g̃ � R	f̃ . Substituting this into (21.16)
gives

l[f̃ , g̃]� 2R

1 � R2 � C1
	2

f̃

. (21.30)

If we assume C1 is small enough (relative to 	2
f̃
) to be ignored, then l[f̃ , g̃] is a function

only of R. In this sense, it is qualitatively consistent with Weber’s law.
This discussion shows that although the SSIM index was derived from very different

first principles, at least part of the reasons for its success can be attributed to similarities
it shares with models of the HVS.

21.4 INFORMATION THEORETIC APPROACHES
In this section, we discuss information theoretic approaches to image QA. We will discuss
the information theoretic metrics in Section 21.4.1. We will show some illustrations of
the performance of this metric in Section 21.4.2. Finally, we will discuss the relation
between SSIM and information theoretic metrics in Section 21.4.3.

21.4.1 Information Theoretic Metrics
In the information-theoretic approach to QA, the QA problem is viewed as an information
fidelity problem rather than a signal fidelity problem. An image source communicates to a
receiver through a channel that limits the amount of information that could flow through
it, thereby introducing distortions. The output of the image source is the reference image,
the output of the channel is the test image, and the visual quality of the test image
is computed as the amount of information shared between the test and the reference
signals, i.e., the mutual information between them. Thus, information fidelity methods
exploit the relationship between statistical image information and visual quality.
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Statistical models for signal sources and transmission channels are at the core of
information theoretic analysis techniques. A fundamental component of information
fidelity based QA methods is a model for image sources. Images and videos whose quality
needs to be assessed are usually optical images of the 3D visual environment or natural
scenes. Natural scenes form a very tiny subspace in the space of all possible image signals,
and researchers have developed sophisticated models that capture key statistical features
of natural images.

In this chapter, we present two full-reference QA methods based on the information-
fidelity paradigm. Both methods share a common mathematical framework. The first
method, the information fidelity criterion (IFC) [26], uses a distortion channel model
as depicted in Fig. 21.10. The IFC quantifies the information shared between the test
image and the distorted image. The other method we present in this chapter is the
visual information fidelity (VIF) measure [25], which uses an additional HVS channel
model and utilizes two aspects of image information for quantifying perceptual quality:
the information shared between the test and the reference images and the information
content of the reference image itself. This is depicted pictorially in Fig. 21.11.

Images and videos of the visual environment captured using high-quality capture
devices operating in the visual spectrum are broadly classified as natural scenes. This
differentiates them from text, computer-generated graphics scenes, cartoons and ani-
mations, paintings and drawings, random noise, or images and videos captured from

Image
source

Channel Receiver
Reference Test

FIGURE 21.10

The information-fidelity problem: a channel distorts images and limits the amount of information
that could flow from the source to the receiver. Quality should relate to the amount of information
about the reference image that could be extracted from the test image.

Natural image
source

Channel
(Distortion)

HVS

HVS

C D F

E

Receiver

Receiver

Reference

Test

FIGURE 21.11

An information-theoretic setup for quantifying visual quality using a distortion channel model as
well as an HVS model. The HVS also acts as a channel that limits the flow of information from
the source to the receiver. Image quality could also be quantified using a relative comparison of
the information in the upper path of the figure and the information in the lower path.



580 CHAPTER 21 Image Quality Assessment

nonvisual stimuli such as radar and sonar, X-rays, and ultrasounds. The model for natu-
ral images that is used in the information theoretic metrics is the Gaussian scale mixture
(GSM) model in the wavelet domain.

A GSM is a random field (RF) that can be expressed as a product of two independent
RFs [14]. That is, a GSM C � { �Cn : n ∈N }, where N denotes the set of spatial indices
for the RF, can be expressed as:

C � S · U � {Sn · �Un : n ∈N }, (21.31)

where S � {Sn : n ∈N } is an RF of positive scalars also known as the mixing density
and U � { �Un : n ∈N } is a Gaussian vector RF with mean zero and covariance matrix
CU . �Cn and �Un are M dimensional vectors, and we assume that for the RF U , �Un

is independent of �Um, ∀n �� m. We model each subband of a scale-space-orientation
wavelet decomposition (such as the steerable pyramid [15]) of an image as a GSM. We
partition the subband coefficients into nonoverlapping blocks of M coefficients each,
and model block n as the vector �Cn. Thus image blocks are assumed to be uncorrelated
with each other, and any linear correlations between wavelet coefficients are modeled
only through the covariance matrix CU .

One could easily make the following observations regarding the above model: C is
normally distributed given S (with mean zero, and covariance of �Cn being S2

nCU ), that
given Sn, Cn are independent of Sm for all n �� m, and that given S , �Cn are conditionally
independent of �Cm, ∀n �� m [14]. These properties of the GSM model make analytical
treatment of information fidelity possible.

The information theoretic metrics assume that the distorted image is obtained by
applying a distortion operator on the reference image. The distortion model used in the
information theoretic metrics is a signal attenuation and additive noise model in the
wavelet domain:

D � GC � V � {gn �Cn � �Vn : n ∈N }, (21.32)

where C denotes the RF from a subband in the reference signal, D � { �Dn : n ∈N }
denotes the RF from the corresponding subband from the test (distorted) signal, G �
{gn : n ∈N } is a deterministic scalar gain field, and V � { �Vn : n ∈N } is a stationary
additive zero-mean Gaussian noise RF with covariance matrix CV � �2

V I. The RF V is
white and is independent of S and U . We constrain the field G to be slowly varying.

This model captures important, and complementary, distortion types: blur, additive
noise, and global or local contrast changes. The attenuation factors gn would capture the
loss of signal energy in a subband due to blur distortion, and the process V would capture
the additive noise components separately.

We will now discuss the IFC and the VIF criteria in the following sections.

21.4.1.1 The Information Fidelity Criterion
The IFC quantifies the information shared between a test image and the reference image.
The reference image is assumed to pass through a channel yielding the test image, and
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the mutual information between the reference and the test images is used for predicting
visual quality.

Let �CN � { �C1, �C2, . . . , �CN } denote N elements from C. Let SN and �DN be correspond-
ingly defined. The IFC uses the mutual information between the reference and test images
conditioned on a fixed mixing multiplier in the GSM model, i.e., I ( �CN ; �EN |�SN � sN ),
as an indicator of visual quality. With the stated assumptions on C and the distortion
model, it can easily be shown that [26]

I ( �CN ; �DN |sN ) �
1

2

N∑
n�1

M∑

k�1

log2

(
1 �

g 2
n s2

nk

�2
V

)
, (21.33)

where k are the eigenvalues of CU .
Note that in the above treatment it is assumed that the model parameters sN , G, and

�2
V are known. Details of practical estimation of these parameters are given in Section

21.4.1.3. In the development of the IFC, we have so far only dealt with one subband. One
could easily incorporate multiple subbands by assuming that each subband is completely
independent of others in terms of the RFs as well as the distortion model parameters.
Thus the IFC is given by:

IFC �
∑

j∈subbands

I ( �CN ,j ; �DN ,j |sN ,j ), (21.34)

where the summation is carried over the subbands of interest, and �CN ,j represent Nj

elements of the RF Cj that describes the coefficients from subband j, and so on.

21.4.1.2 The Visual Information Fidelity Criterion
In addition to the distortion channel, VIF assumes that both the reference and distorted
images pass through the HVS, which acts as a “distortion channel” that imposes limits
on how much information could flow through it. The purpose of the HVS model in
the information fidelity setup is to quantify the uncertainty that the HVS adds to the
signal that flows through it. As a matter of analytical and computational simplicity, we
lump all sources of HVS uncertainty into one additive noise component that serves as a
distortion baseline in comparison to which the distortion added by the distortion channel
could be evaluated. We call this lumped HVS distortion visual noise and model it as a
stationary, zero mean, additive white Gaussian noise model in the wavelet domain. Thus,
we model the HVS noise in the wavelet domain as stationary RFs H � { �Hn : n ∈N } and
H� � { �H�

n : n ∈N }, where �Hi and �H�
i are zero-mean uncorrelated multivariate Gaussian

with the same dimensionality as �Cn:

E � C � H (reference image), (21.35)

F � D � H� (test image), (21.36)
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where E and F denote the visual signal at the output of the HVS model from the reference
and test images in one subband, respectively (Fig. 21.11). The RFs H and H� are assumed
to be independent of U , S , and V . We model the covariance of H and H� as

CH � CH � � �2
H I, (21.37)

where �2
H is an HVS model parameter (variance of the visual noise).

It can be shown [25] that

I ( �CN ; �EN |sN ) �
1

2

N∑
n�1

M∑

k�1

log2

(
1 �

s2
nk

�2
H

)
, (21.38)

I ( �CN ; �FN |sN ) �
1

2

N∑
n�1

M∑

k�1

log2

(
1 �

g 2
n s2

nk

�2
V � �2

H

)
, (21.39)

where k are the eigenvalues of CU .
I ( �CN ; �EN |sN ) and I ( �CN ; �F N |sN ) represent the information that could ideally be

extracted by the brain from a particular subband of the reference and test images, respec-
tively. A simple ratio of the two information measures relates quite well with visual
quality [25]. It is easy to motivate the suitability of this relationship between image infor-
mation and visual quality. When a human observer sees a distorted image, she has an
idea of the amount of information that she expects to receive in the image (modeled
through the known S field), and it is natural to expect the fraction of the expected
information that is actually received from the distorted image to relate well with visual
quality.

As with the IFC, the VIF could easily be extended to incorporate multiple subbands
by assuming that each subband is completely independent of others in terms of the RFs
as well as the distortion model parameters. Thus, the VIF is given by

VIF �

∑
j∈subbands I ( �CN ,j ; �FN ,j |sN ,j )

∑
j∈subbands I ( �CN ,j ; �EN ,j |sN ,j )

, (21.40)

where we sum over the subbands of interest, and �CN ,j represent N elements of the RF Cj

that describes the coefficients from subband j, and so on.
The VIF given in (21.40) is computed for a collection of wavelet coefficients that

could represent either an entire subband of an image or a spatially localized set of subband
coefficients. In the former case, the VIF is a single number that quantifies the information
fidelity for the entire image, whereas in the latter case, a sliding-window approach could
be used to compute a quality map that could visually illustrate how the visual quality of
the test image varies over space.
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21.4.1.3 Implementation Details
The source model parameters that need to be estimated from the data consist of the
field S . For the vector GSM model, the maximum-likelihood estimate of s2

n can be found
as follows [21]:

ŝ2
n �
�CT

n C�1
U
�Cn

M
. (21.41)

Estimation of the covariance matrix CU is also straightforward from the reference image
wavelet coefficients [21]:

ĈU �
1

N

N∑
n�1

�Cn �CT
n . (21.42)

In (21.41) and (21.42), 1
N

∑N
n�1 s2

n is assumed to be unity without loss of generality [21].
The parameters of the distortion channel are estimated locally. A spatially localized

block-window centered at coefficient n could be used to estimate gn and �2
V at n. The

value of the field G over the block centered at coefficient n, which we denote as gn, and
the variance of the RF V , which we denote as �2

V ,n, are fairly easy to estimate (by linear
regression) since both the input (the reference signal) and the output (the test signal) of
the system (21.32) are available:

ĝn � Ĉov(C ,D)Ĉov(C ,C)�1, (21.43)

�̂2
V ,n � Ĉov(D,D) � ĝnĈov(C ,D), (21.44)

where the covariances are approximated by sample estimates using sample points from
the corresponding blocks centered at coefficient n in the reference and the test signals.

For VIF, the HVS model is parameterized by only one parameter: the variance of
visual noise �2

H . It is easy to hand-optimize the value of the parameter �2
H by running

the algorithm over a range of values and observing its performance.

21.4.2 Image Quality Assessment Using Information
Theoretic Metrics

Firstly, note that the IFC is bounded below by zero (since mutual information is a nonneg-
ative quantity) and bounded above by �, which occurs when the reference and test images
are identical. One advantage of the IFC is that like the MSE, it does not depend upon
model parameters such as those associated with display device physics, data from visual
psychology experiments, viewing configuration information, or stabilizing constants.

Note that VIF is basically IFC normalized by the reference image information. The VIF
has a number of interesting features. Firstly, note thatVIF is bounded below by zero, which
indicates that all information about the reference image has been lost in the distortion
channel. Secondly, if the test image is an exact copy of the reference image, then VIF is
exactly unity (this property is satisfied by the SSIM index also). For many distortion types,
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VIF would lie in the interval [0,1]. Thirdly, a linear contrast enhancement of the reference
image that does not add noise would result in a VIF value larger than unity, signifying
that the contrast-enhanced image has a superior visual quality than the reference image!
It is common observation that contrast enhancement of images increases their perceptual
quality unless quantization, clipping, or display nonlinearities add additional distortion.
This improvement in visual quality is captured by the VIF.

We now illustrate the performance of VIF by an example. Figure 21.12 shows a
reference image and three of its distorted versions that come from three different types of

(a) Reference image (b) Contrast enhancement

(c) Blurred (d) JPEG compressed

FIGURE 21.12

The VIF has an interesting feature: it can capture the effects of linear contrast enhancements on
images and quantify the improvement in visual quality. A VIF value greater than unity indicates
this improvement, while a VIF value less than unity signifies a loss of visual quality. (a) Reference
Lena image (VIF � 1.0); (b) contrast stretched Lena image (VIF � 1.17); (c) Gaussian blur (VIF �

0.05); (d) JPEG compressed (VIF � 0.05).
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distortion, all of which have been adjusted to have about the same MSE with the reference
image. The distortion types illustrated in Fig. 21.12 are contrast stretch, Gaussian blur,
and JPEG compression. In comparison with the reference image, the contrast-enhanced
image has a better visual quality despite the fact that the “distortion” (in terms of a
perceivable difference with the reference image) is clearly visible. A VIF value larger than
unity indicates that the perceptual difference in fact constitutes improvement in visual
quality. In contrast, both the blurred image and the JPEG compressed image have clearly
visible distortions and poorer visual quality, which is captured by a low VIF measure.

Figure 21.13 illustrates spatial quality maps generated by VIF. Figure 21.13(a) shows
a reference image and Fig. 21.13(b) the corresponding JPEG2000 compressed image
in which the distortions are clearly visible. Figure 21.13(c) shows the reference image
information map. The information map shows the spread of statistical information in
the reference image. The statistical information content of the image is low in flat image
regions, whereas in textured regions and regions containing strong edges, it is high. The
quality map in Fig. 21.13(d) shows the proportion of the image information that has
been lost to JPEG2000 compression. Note that due to the nonlinear normalization in the
denominator of VIF, the scalar VIF value for a reference/test pair is not the mean of the
corresponding VIF-map.

21.4.3 Relation to HVS-Based Metrics and Structural Similarity
We will first discuss the relation between IFC and SSIM index [13, 17]. First of all, the GSM
model used in the information theoretic metrics results in the subband coefficients being
Gaussian distributed, when conditioned on a fixed mixing multiplier in the GSM model.
The linear distortion channel model results in the reference and test images being jointly
Gaussian. The definition of the correlation coefficient in the SSIM index in (21.19) is
obtained from regression analysis and implicitly assumes that the reference and test image
vectors are jointly Gaussian [22]. In fact, (21.19) coincides with the maximum likelihood
estimate of the correlation coefficient only under the assumption that the reference and
distorted image patches are jointly Gaussian distributed [22]. These observations hint at
the possibility that the IFC index may be closely related to SSIM. A well-known result
in information theory states that when two variables are jointly Gaussian, the mutual
information between them is a function of just the correlation coefficient [23, 24]. Thus,
recent results show that a scalar version of the IFC metric is a monotonic function of
the square of the structure term of the SSIM index when the SSIM index is applied
on subband filtered coefficients [13, 17]. The reasons for the monotonic relationship
between the SSIM index and the IFC index are the explicit assumption of a Gaussian
distribution on the reference and test image coefficients in the IFC index (conditioned
on a fixed mixing multiplier) and the implicit assumption of a Gaussian distribution in
the SSIM index (due to the use of regression analysis). These results indicate that the IFC
index is equivalent to multiscale SSIM indices since they satisfy a monotonic relationship.

Further, the concept of the correlation coefficient in SSIM was generalized to vector
valued variables using canonical correlation analysis to establish a monotonic relation
between the squares of the canonical correlation coefficients and the vector IFC index
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(a) Reference image (b) JPEG2000 compressed

(c) Reference image info. map (d) VIF map

FIGURE 21.13

Spatial maps showing how VIF captures spatial information loss.

[13, 17]. It was also established that the VIF index includes a structure comparison term
and a contrast comparison term (similar to the SSIM index), as opposed to just the
structure term in IFC. One of the properties of the VIF index observed in Section 21.4.2
was the fact that it can predict improvement in quality due to contrast enhancement. The
presence of the contrast comparison term in VIF explains this effect [13, 17].

We showed the relation between SSIM- and HVS-based metrics in Section 21.3.3.
From our discussion here, the relation between IFC-, VIF-, and HVS-based metrics is
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also immediately apparent. Similarities between the scalar IFC index and the HVS-based
metrics were also observed in [26]. It was shown that the IFC is functionally similar to
HVS-based FR QA algorithms [26]. The reader is referred to [13, 17] for a more thorough
treatment of this subject.

Having discussed the similarities between the SSIM and the information theoretic
frameworks, we will now discuss the differences between them. The SSIM metrics use
a measure of linear dependence between the reference and test image pixels, namely
the Pearson product moment correlation coefficient. However, the information theoretic
metrics use the mutual information, which is a more general measure of correlation that
can capture nonlinear dependencies between variables. The reason for the monotonic
relation between the square of the structure term of the SSIM index applied in the
subband filtered domain and the IFC index is due to the assumption that the reference
and test image coefficients are jointly Gaussian. This indicates that the structure term of
SSIM and IFC is equivalent under the statistical source model used in [26], and more
sophisticated statistical models are required in the IFC framework to distinguish it from
the SSIM index.

Although the information theoretic metrics use a more general and flexible notion of
correlation than the SSIM philosophy, the form of the relationship between the reference
and test images might affect visual quality. As an example, if one test image is a determin-
istic linear function of the reference image, while another test image is a deterministic
parabolic function of the reference image, the mutual information between the reference
and the test image is identical in both cases. However, it is unlikely that the visual quality
of both images is identical. We believe that further investigation of suitable models for
the distortion channel and the relation between such channel models and visual quality
are required to answer this question.

21.5 PERFORMANCE OF IMAGE QUALITY METRICS
In this section, we present results on the validation of some of the image quality metrics
presented in this chapter and present comparisons with PSNR. All results use the LIVE
image QA database [8] developed by Bovik and coworkers and further details can be
found in [7]. The validation is done using subjective quality scores obtained from a
group of human observers, and the performance of the QA algorithms is evaluated by
comparing the quality predictions of the algorithms against subjective scores.

In the LIVE database, 20–28 human subjects were asked to assign each image
with a score indicating their assessment of the quality of that image, defined as the
extent to which the artifacts were visible and annoying. Twenty-nine high-resolution
24-bits/pixel RGB color images (typically 768 � 512) were distorted using five distortion
types: JPEG2000, JPEG, white noise in the RGB components, Gaussian blur, and trans-
mission errors in the JPEG2000 bit stream using a fast-fading Rayleigh channel model.
A database was derived from the 29 images to yield a total of 779 distorted images, which,
together with the undistorted images, were then evaluated by human subjects. The raw
scores were processed to yield difference mean opinion scores for validation and testing.
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TABLE 21.1 Performance of different QA methods

Performance

Model LCC SROCC

PSNR 0.8709 0.8755
Sarnoff JND 0.9266 0.9291
Multiscale SSIM 0.9393 0.9527
IFC 0.9441 0.9459
VIF 0.9533 0.9584
VSNR 0.9233 0.9278

Usually, the predicted quality scores from a QA method are fitted to the subjective
quality scores using a monotonic nonlinear function to account for any nonlinearities
in the objective model. Numerical methods are used to do this fitting. For the results
presented here, a five-parameter nonlinearity (a logistic function with additive linear
term) was used, and the mapping function used is given by

Quality(x) � �1logistic (�2,(x � �3)) � �4x � �5, (21.45)

logistic(�,x) �
1

2
�

1

1 � exp(�x)
. (21.46)

Table 21.1 quantifies the performance of the various methods in terms of well-known
validation quantities: the linear correlation coefficient (LCC) between objective model
prediction and subjective quality and the Spearman rank order correlation coefficient
(SROCC) between them. Clearly, several of these quality metrics correlate very well with
visual perception. The performance of IFC and multiscale SSIM indices is comparable,
which is not surprising in view of the discussion in Section 21.4.3. Interestingly, the
SSIM index correlates very well with visual perception despite its simplicity and ease of
computation.

21.6 CONCLUSION
Hopefully, the reader has captured an understanding of the basic principles and difficul-
ties underlying the problem of image QA. Even when there is a reference image available,
as we have assumed in this chapter, the problem remains difficult owing to the subtleties
and remaining mysteries of human visual perception. Hopefully, the reader has also
found that recent progress has been significant, and that image QA algorithms exist that
correlate quite highly with human judgments. Ultimately, it is hoped that confidence in
these algorithms will become high enough that image quality algorithms can be used as
surrogates for human subjectivity.
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Naturally, significant problems remain. The use of partial image information instead
of a reference image—so-called reduced reference image QA—presents interesting oppor-
tunities where good performance can be achieved in realistic applications where only
partial data about the reference image may be available. More difficult yet is the situation
where no reference image information is available. This problem, called no-reference or
blind image QA, is very difficult to approach unless there is at least some information
regarding the types of distortions that might be encountered [5].

An interesting direction for future work is the further use of image QA algorithms as
objective functions for image optimization problems. For example, the SSIM index has
been used to optimize several important image processing problems, including image
restoration, image quantization, and image denoising [9–12]. Another interesting line
of inquiry is the use of image quality algorithms—or variations of them—for other
purposes than image quality assessment—such as speech quality assessment [4].

Lastly, we have not covered methods for assessing the quality of digital videos. There
are many sources of distortion that may occur owing to time-dependent processing of
videos, and interesting aspects of spatio-temporal visual perception come into play when
developing algorithms for video QA. Such algorithms are by necessity more involved
in their construction and complex in their execution. The reader is encouraged to read
Chapter 14 of the companion volume, The Essential Guide to Video Processing, for a
thorough discussion of this topic.
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22.1 INTRODUCTION
Digital watermarking is a relatively new research area that has attracted the interest
of numerous researchers both in academia and industry and has become one of the
hottest research topics in the multimedia signal processing community. Although the
term watermarking has slightly different meanings in the literature, one definition that
seems to prevail is the following [1]: Watermarking is the practice of imperceptibly alter-
ing a piece of data in order to embed information about the data. The above definition
reveals two important characteristics of watermarking. First, information embedding
should not cause perceptible changes to the host medium (sometimes called cover
medium or cover data). Second, the message should be related to the host medium.
In this sense, the watermarking techniques form a subset of information hiding tech-
niques, which also include cases where the hidden information is not related to the
host medium (e.g., in covert communications). However, certain authors use the term
watermarking with a meaning equivalent to that of information hiding in the general
sense.

A watermarking system should consist of two distinct modules: a module that embeds
the information in the host data and a module that detects if a given piece of data hosts a
watermark and subsequently retrieves the conveyed information. Depending on the type,
the amount, and the properties of the embedded information (e.g., robustness to host
signal alterations), as well as the type of host data, watermarking can serve a multitude
of applications as will be described in Section 22.2.

The first handful of papers on digital watermarking appeared in the late 1980s-early
1990s but very soon the area witnessed a tremendous growth and an explosion in the
number of published papers, mainly due to the fact that people believed, at that stage, that
watermarking could be a significant weapon in the battle against continuously increas-
ing digital media piracy. During the early days, researchers focused mainly on a limited 597
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range of host data, that is, digital image, video, and audio data. Later on, watermarking
techniques that are applicable to other media types appeared in the corresponding
literature. Such media types include but are not limited to voxel-based 3D images, 3D
models represented as polygonal meshes or parametric surfaces (e.g., NURBS surfaces),
vector graphics, GIS data (e.g., isosurface contours), animation parameters, object-based
video representations (e.g., MPEG 4 video objects), symbolic description of audio (e.g.,
MIDI files), text (either in ASCII format or as a binary image), software source code,
binary executables, java byte code, and numeric data sets (stock market data, scientific
data). This chapter will focus on still image watermarking. However,most of the principles
and techniques that will be presented are readily applicable to other media types.

Although, in its first steps, watermarking was dominated by heuristic approaches
without significant theoretical background and justification, soon researchers recog-
nized that solid theoretical foundations had to be set and worked toward this direction
by adopting and utilizing successful techniques, principles, and theoretical results from
several scientific areas like communications (detection theory, error correction codes,
spread spectrum communications), information theory (channel capacity), signal pro-
cessing (signal transforms, compression techniques), and cryptography. Today, although
the optimism of the early years is over, watermarking is still a very active research area,
despite the failure of the currently available watermarking technology to serve the needs
of the industry (as made clear by Secure Digital Music Initiative case [2]). Researchers
are now very well aware that devising effective watermarking schemes, especially for the
so-called security oriented applications (e.g., copyright protection, copy control, etc.), is
an extremely difficult task. However, the introduction of new application scenarios and
business models along with the small but steady steps toward solid theoretical founda-
tions of this discipline and the combination of watermarking with other technologies
like cryptography and perceptual hashing [3–5] are expected to keep the interest in this
new area alive [6, 7]. For a thorough review of existing schemes and a detailed discussion
on the main requirements of a watermarking scheme, the interested reader may con-
sult books [1, 8–11] and several review papers and journal special issues [12–17] that
have been published on this topic. The IEEE Transactions on Information Forensics and
Security is another excellent source of information regarding the latest developments in
the field.

This chapter is organized as follows. The main application domains of watermarking
are reviewed in Section 22.2. Properties and classification schemes of watermarking tech-
niques are presented in Section 22.3, whereas Section 22.4 presents the basic functional
modules of a watermarking scheme. Finally Sections 22.5 and 22.6 delve in more detail
into principles and techniques devised for two major application areas, namely copyright
protection and authentication.

22.2 APPLICATIONS OF WATERMARKING TECHNIQUES
Watermarking can be the enabling technology for a number of important appli-
cations [18–20]. Obviously, each application imposes different requirements on the
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watermarking system. As a consequence, watermarking algorithms targeting different
applications might be very different in nature. Furthermore, devising an efficient
watermarking scheme might be much more difficult for certain applications. In the
remainder of this section, we will briefly review some of the main application domains
of watermarking.

■ Owner identification and proof of ownership. This class of applications was the first
to be considered in the watermarking literature. In this case, the embedded data
can carry information about the legal owner or distributor or any rights holder of
a digital item and be used for notifying/warning a user that the item is copyrighted,
for tracking illegal copies of the item, or for possibly proving the ownership of the
item in the case of a legal dispute.

■ Broadcast monitoring. In this case, the embedded information is utilized for various
functions that are related to digital media (audio, video) broadcasting. The embed-
ded data can be used to verify whether the actual broadcasting of commercials took
place as scheduled, i.e., whether proper airtime allocation occurred, for devising
an automated royalty collection scheme for copyrighted material (songs, movies)
that is aired by broadcasting operators, or to collect information about the num-
ber of people who watched/listened to a certain broadcast (audience metering).
Broadcast monitoring is usually performed by automated monitoring stations and
is one of the watermarking applications that has found its way toward successful
commercialization.

■ Transaction tracking. In this application, each copy of a digital item that is dis-
tributed as part of a transaction bears a different watermark. The aim of this
watermark is not only to carry information about the legal owner/distributor
of the digital item but also to mark the specific transaction copy. As a conseq-
uence, the embedded information can be used for the identification of entities that
illegally distributed the digital item or did not adopt efficient security measures
for preventing the item from being copied or distributed and for deterring such
actions. Identification of movie theaters where illegal recording of a movie with
a handheld camera took place is a scenario that belongs to this category of appli-
cations. The watermarks used in such cases are often termed fingerprints and the
corresponding application fingerprinting. However, the same term is sometimes
used for the class of techniques that try to extract a unique descriptor (fingerprint)
for each digital item, which is invariant to content manipulation [3–5, 21]. Obvi-
ously these techniques (which are sometimes called perceptual or robust hashing
or replica detection techniques) are totally different from watermark-based finger-
printing, since they do not embed any data on the digital item, i.e., they are passive
techniques.

■ Usage control. In contrast to the applications mentioned above, where watermark-
ing is used to deter intellectual rights infringement or to help in identifying such
infringements, in usage control applications, the watermarking plays an active pro-
tection role by controlling the terms of use of the digital content. The embedded
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information can be used in conjunction with appropriate compliant devices to
prohibit unauthorized recording of a digital item (copy control) or playback of
unauthorized copies (playback control). The DVD copy and playback control
using watermarking complemented by content scrambling is an example of this
application [20, 22].

■ Authentication and tamper-proofing. In this case, the role of the watermark is to
verify the authenticity and integrity of a digital item for the benefit of either the
owner/distributor or the user. Example applications include the authentication of
surveillance videos in case their integrity is disputed [23], the authentication of crit-
ical documents (e.g., passports), and the authentication of news photos distributed
by a news agency. In this context, the watermarking techniques can either signal
an authentication violation even when the digital item is slightly altered or toler-
ate certain manipulations (e.g., valid mainstream lossy content compression) and
declare an item as nonauthentic only when “significant” alterations have occurred
(e.g., content editing). Certain watermarking methods used for authentication can
provide tampered region localization, e.g., can detect the image regions that have
been modified/edited.

■ Persistent item identification. According to this concept, watermarking is used for
associating an identifier with a digital item in a way that resists certain content
alterations. This identifier can be used, in conjunction with appropriate databases,
to convey various information about the digital item. Depending on the related
information, persistent identification can be the vehicle for some of the applications
presented above, e.g., owner identification, or usage control. Furthermore, the
attached information can be used both for carrying copyright information and for
enhancing the host data functionalities, e.g., by providing access to free services
and products, thus, implicitly, discouraging the user from removing the watermark
or illegally distributing the item and thus losing the added value provided by the
watermark. Persistent association is dealt with in the MPEG-21 standard.

■ Enhancement of legacy systems. Data embedded through watermarking can be used
for the enhancement of information or functionalities carried/provided by legacy
systems while ensuring backwards compatibility. For example, using techniques
capable of generating watermarks that are robust to analog to digital and digital
to analog conversion, one can embed in a digital image URLs that are related
to the depicted objects. When such an image is printed (e.g., in a magazine)
and then scanned by a reader, the embedded URL can be used for connecting
her automatically to the corresponding webpage [24]. Digital data embedding
in conventional analog PAL/SECAM signals is another application in this cate-
gory. In a more “futuristic” scenario, one can envision that information capable
of enabling stereoscopic viewing to stereo-enabled receivers could be embed-
ded through watermarking in conventional digital TV broadcasts. Using such an
approach, conventional TV receivers would continue to receive the conventional
signal with—hopefully—nonperceptible degradations.
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22.3 CLASSIFICATION OF WATERMARKING ALGORITHMS
Various types of watermarking techniques each with their own distinct properties and
characteristics can be found in the watermarking literature. In the following, we will
review the basic categories of watermarking schemes and provide descriptions for the
properties that distinguish each class from the rest.

A first classification of watermarking schemes can be organized on the basis of their
resistance to host medium modifications. Such modifications can either be the result
of common signal processing operations (e.g., lossy compression) or be specifically
devised and applied in order to render the watermark undetectable or affect the credibil-
ity and reliability of a watermarking system in other ways. Such modifications are usually
referred to as attacks. Attacks for intellectual property rights (IPR) protection water-
marking systems will be discussed in Section 22.5.2. The degree of resistance of a water-
marking method to host medium modifications is usually called robustness. Depending
on the level of robustness offered, one can distinguish between the following categories
of watermarking techniques:

■ Robust. In this class, the watermarks are designed so as to resist host signal manip-
ulations and are usually employed in IPR protection applications. Obviously, no
watermarking scheme can resist all types of modifications, regardless of their sever-
ity. As a consequence, robustness refers to a subset of all possible manipulations
and up to a certain degree of host signal degradation.

■ Fragile. In this case, the watermarks are designed to be vulnerable to all modifica-
tions, i.e., they become undetectable by even the slightest host data modification.
Fragile watermarks are more easy to devise than robust ones and are usually applied
in authentication scenarios.

■ Semifragile. This class of watermarks provides selective robustness to a certain set
of manipulations which are considered as legitimate and allowable, while being
vulnerable (fragile) to others. Such watermarks can also be used in authentica-
tion cases instead of fragile ones. In practice, all robust watermarks are essentially
semifragile, but in the former case, the selective robustness is not a requirement
imposed by the system designer but rather something that cannot be avoided.

In order to achieve a sufficient level of security, watermark embedding and detection
are usually controlled by a (usually secret) key K (see Section 22.4). In a way analogous
to cryptographic systems, the watermarking schemes can be distinguished in two classes
on the basis of whether the same key is used during embedding and detection:

■ Symmetric or privatekey. In such schemes, both watermark embedding and
detection are performed using the same key K .

■ Asymmetric or publickey. In contrast to the previous class, these watermarks can be
detected with a key that is different than the one that was used in the embedding
stage [25, 26]. Actually, a pair of keys is used in this case: a private key to generate
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the watermark for embedding, and a public one for detection. For each private key,
many public keys may be produced. Despite their advantages over their symmetric
counterparts, asymmetric schemes are much more difficult to devise.

In terms of the information taken into account during embedding, the watermarking
methods can be broadly classified in two categories:

■ Blind embedding schemes. Schemes belonging to this category consider the host
data as noise or interference. Therefore, these techniques essentially treat water-
marking like the classical communications problem of signal transmission over a
noisy channel, the only difference being that, in the case of watermarking, restric-
tions on the amount of distortions imposed on the channel (i.e., the host medium)
by the signal (the watermark) should be taken into consideration. In most cases,
these methods rely implicitly or explicitly on a certain degree of knowledge of the
host signal statistics, thus leading to the subclass of “known host statistics” meth-
ods. Essentially all methods developed in the first years of watermarking research
belong to this category, most of them revolving around the spread spectrum prin-
ciple where the watermark signal consists of a pseudorandom sequence embedded,
usually in an additive way, in the host signal.

■ Informed coding/embedding schemes. These schemes emerged after the work of Cox
et al. [27] and exploit the fact that during embedding, not only the statistics of the
host data but also the actual host data themselves are known. Knowledge of the host
data can be utilized to improve watermark detection performance through inter-
ference cancellation. These methods are also known as known host state methods
and treat watermarking as a problem of communication with side information at
the transmitter. Many of these schemes make use of the quantization index mod-
ulation (QIM) principle [28] for message coding where embedding is achieved by
quantizing the host signal or certain derived features using appropriately selected
quantizers. Quantizer selection is controlled by the signal to be embedded and
aims at minimizing host signal interference. Perceptual masking, i.e., utilization
of the host signal along with principles of human perception in order to modify
the watermark in a way that renders it imperceptible, is another form of informed
embedding. Both informed coding/embedding and perceptual masking will be
reviewed later on in this chapter.

With respect to the information conveyed by the watermark, watermarking systems
can be classified to one of the following two classes:

■ Zero-bit systems: Watermarking systems of this type can only check whether the
data under consideration host a watermark generated by a specific key K , i.e., verify
whether the data are watermarked or not. Certain authors use the term single-bit
when referring to systems of this category, implying that the existence or absence
of a specific watermark in the data essentially conveys one bit of information.
The term watermark detection is used in this chapter to denote the procedure
used to declare the presence of a watermark when one is indeed present in the
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host data and come up with a “no watermark present” answer when applied to
data hosting no watermark or hosting a different watermark than the one under
investigation.

■ Multiple-bit systems: These systems are capable of encoding a multiple-bit mes-
sage in the host data. For systems of this type, we make the distinction between
watermark detection and message decoding. The data under investigation are first
tested to verify whether they host a watermark or not. This procedure is identical
to the detection procedure described above for zero-bit watermarks. As soon as
the detection algorithm declares that the data are indeed watermarked, the embed-
ded message is decoded. Thus, for multiple-bit systems, watermark detection and
message decoding should be considered as two distinct steps that are performed
in cascade, the message decoding step taking place only if a watermark has been
found to reside in the data.

When it comes to watermark detection, watermarking methods can be categorized
into two main classes:

■ Techniques that require that the original signal is available during the detection
phase. These schemes are referred to as private, nonblind, or nonoblivious schemes
(see, for example, [29, 30]). Nonblind schemes can be considered as the extremum
of a more general category, that of informed detection schemes (e.g., [31]), which
include methods that require that some sort of information related to the host
signal (e.g., its original dimensions or a feature vector derived from the host signal)
is available at the detector.

■ Techniques that do not require the original signal (or other information about
it) for watermark detection. These techniques are called oblivious or blind. Due
to their wider scope of application, blind techniques received much more atten-
tion among researchers. Obviously, the lack of knowledge on the original host
signal makes blind detection a much more difficult task than nonblind detec-
tion. Correlation-based detection, where the decision on the watermark presence
is obtained by evaluating the correlation between the watermark and the signal
under investigation, is an approach that belongs in this category. Correlation
detection schemes implicitly assume that the host signal is Gaussian. Due to their
simplicity, they were very popular in the early days of watermarking (see, for
example, [32–34]). Later on, a number of researchers tried to devise optimal detec-
tors for a number of situations, where the Gaussianity assumption does not hold
[35–41]. Both correlation and optimal detectors will be reviewed later on in this
chapter.

With respect to the output of the watermark detection procedure, systems are categorized
as follows:

■ Hard decision detectors generate a binary output (watermark detected, watermark
not detected).
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■ Soft decision detectors provide along with the binary output a real number which
is essentially the value of the test statistic used for detection (e.g., the value of
the correlation between the signal under investigation and the watermark) and
is related to detection reliability. In this case, the binary decision is obtained by
internally thresholding this number using an appropriately selected threshold.

22.4 WATERMARK EMBEDDING, DETECTION, AND DECODING
Having described the main categories of watermarking algorithms along with their char-
acteristic properties, we can now proceed in providing more formal definitions of the
watermark embedding, detection, and decoding procedures.

Watermark embedding can be performed in the spatial domain [32, 42–44] by mod-
ulating the intensity of preselected samples or by modifying the magnitude of selected
coefficients in an appropriate transform domain, e.g., the discrete cosine transform
(DCT) [29, 45–47], discrete fourier transform (DFT) [34, 48], or wavelet transform
[33, 49, 50] domain. Watermark embedding can be considered as a function that involves
the host medium fo , the embedding key K (usually an integer), a set of parameters U that
control the embedding procedure, and, in the case of multiple-bit schemes, the message
m that is to be embedded in the data. The message can be a character string, a number,
or even multimedia data (audio, images). However at this stage it suffices to consider the
message as a sequence of bits. The set of parameters U can contain, among other things,
the so-called watermark embedding factor, i.e., a parameter that controls the amount
of degradation that will be inflicted to the host signal by the watermark. The output
of the watermark embedding function consists of the watermarked data fw . Thus, for
multiple-bit schemes, the watermark embedding function is of the following form:

fw � E( fo ,K ,m,U ), (22.1)

whereas for zero-bit schemes m is not an input parameter of the function.
In certain cases, it is much more intuitive to view watermark embedding as a two-

step procedure, i.e., a watermark generation step that results in the watermark signal
w, followed by a watermark embedding step that aims at actually embedding w in the
host data. For an informed embedding multiple-bit watermarking scheme, these two
functions are of the following form:

w � E1( fo ,K ,m,U ), (22.2)

fw � E2( fo ,w,U ). (22.3)

Watermark detection, in the way that is defined in this chapter, can be considered
as a function that receives as input the data f � under investigation, a key K � (which,
depending on whether the system is a symmetric or an asymmetric one, can be the
same as the embedding key or a different, public key) and, in case of nonblind schemes,
the original data fo . The output of this function is a binary digit d (0: watermark has
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been detected, 1: watermark has not been detected), complemented, in the case of soft
decision detectors, by a value r (usually in the range [0,1]) that corresponds to the
detection reliability. Therefore, the detection function takes the following form in the
case of blind and nonblind schemes, respectively:

{d , r}� D( f �,K �), (22.4)

{d , r}� D( f �, fo ,K �), (22.5)

where, as mentioned before, the reliability value r is available only in the case of soft
decision detectors.

In the case of multiple-bit watermarking systems, whenever D() declares that the
data are watermarked, message decoding takes place. In the case of blind schemes, this
operation can be expressed as follows:

m � Dec(d , f �,K �). (22.6)

The detection output d has been included among the arguments of function Dec to
denote the fact that Dec is called only if d � 1.

A schematic representation of the above procedures can be seen in Fig. 22.1.

Watermark
embedding

mf

K U

Watermark
detection

f �

K�

fw

f

r

d

Watermark
decoding

f �

K�

d

m

FIGURE 22.1

Modules of a watermarking system. Dashed lines indicate optional inputs or outputs.
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22.5 COPYRIGHT PROTECTION WATERMARKING
Copyright protection or more generally digital rights protection and management is a
major application domain of watermarking. It is actually an umbrella of applications
that encompasses owner identification, proof of ownership, transaction tracking, copy
and playback control, automated collection of royalties, etc. Watermarking techniques
aiming at copyright protection have to face some very difficult challenges, since they have
to cope with attempts to infringe digital rights through illegal copying, distribution, or
playback of multimedia data. Copyright protection applications belong to the class of
security-related applications, which are generally considered as the toughest watermark-
ing applications. In this section, we will present the basic requirements of a copyright
protection watermarking scheme, namely imperceptibility, cryptographical security, and
robustness; briefly describe methods, metrics, and benchmarking platforms for measur-
ing its performance; review the main categories of attacks against such a scheme; and
then proceed with providing information about the most important approaches that
have been proposed in the literature.

22.5.1 Requirements and Metrics
22.5.1.1 Imperceptibility—Visual Quality
By definition, host data alterations imposed by watermarks should be imperceptible.
Thus, imperceptibility is a requirement that is important in all watermarking applica-
tions and not only in copyright protection applications. In practice, the requirement of
imperceptibility implies that the perceptual quality of the watermarked data, in our case
digital images, should be kept high. Perceptual quality can be characterized either in
terms of absolute quality (or simply quality) of watermarked images, i.e., without refer-
ence to the originals, or in terms of the relative quality of the watermarked images with
respect to the originals, which is usually referred to as fidelity of the watermarked images.
Normally, viewers of watermarked images do not have access to the originals. Thus, for
those watermarking applications, quality is more important than fidelity. In order to
measure quality or fidelity, one needs to quantify the degree of distortion introduced to
an image due to watermarking and, if possible, indicate whether this distortion is visible
or not. The most effective way to conduct such measurements is by subjective evalua-
tion procedures. Many different subjective testing methodologies exist: Two-Alternative,
Forced-Choice tests [1], Double Stimulus Continuous Quality Scale tests [51], Double
Stimulus Impairment Scale tests [51], etc.

The perceptual quality of the watermarked images can be also measured in a quanti-
tative way by using image quality metrics like the signal-to-noise ratio (SNR) or the peak
signal-to-noise ratio (PSNR), considering the watermark as noise and the host image as
signal. However, these metrics exhibit poor correlation with the visual quality as per-
ceived by humans. Other quantitative metrics that correlate better with the perceptual
image quality can be used. Weighted PSNR [52, 53] which equals PSNR weighted at each
image pixel by the local noise visibility function (local signal activity) could be such a
metric. A wealth of image quality metrics are described in [54–56]. Moreover, a quality
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metric for images distorted by geometric attacks has been proposed in [57]. However, no
globally agreeable and effective visual quality metric currently exists.

Obviously, the notion of “high quality” is application-dependent. For example, a
certain amount of distortion on a movie might be perfectly acceptable for a television
broadcast but unacceptable if the movie is to be displayed in cinema. It should also be
noted that certain applications require that the alterations imposed on the image are
not only perceptually insignificant but also very small in a numerical sense, i.e., they
require that watermarking preserves the “numerical” quality of the data. Watermarking
of medical images that are to be used as input in diagnosis procedures whose performance
critically depends on the pixel intensities is such an example.

22.5.1.2 Robustness
As already mentioned in Section 22.3, robustness can be defined as the degree of resistance
of a watermarking method to modifications of the host signal due to either common
signal processing operations or operations devised specifically in order to render the
watermark undetectable. Watermarking systems aiming at copyright protection should
ideally exhibit high resistance to all attacks that might occur in the host data in a specific
application. This means that the detection performance of the system, i.e., its ability to
declare correctly the presence/absence of a watermark in an image, and in the case of
multiple-bit systems, its decoding performance, i.e., its ability to retrieve successfully the
hidden message bits, should not degrade significantly when data are altered due to inten-
tional or unintentional attacks. Naturally, the set of manipulations that the watermark
should be able to withstand and the severity of degradations that should be handled
successfully depend on the target application. For example, a watermarking method
designed to protect a database of high-quality/resolution images that are to be used in
desktop publishing need not be able to withstand high compression as such a manipu-
lation would make the images practically unusable and, thus, is not very likely to occur.
In order to measure the robustness of a watermarking method, one should be able to
measure the detection performance of the algorithm, usually in relation to the severity
of the degradation imposed by a certain attack. Furthermore, in the case of multiple-bit
algorithms, the decoding performance should be quantified [10].

Watermark Detection Performance Watermark detection can be considered as a
hypothesis testing problem, the two hypotheses (events) being

■ H0: the image under test hosts the watermark under investigation.

■ H1: the image under test does not host the watermark under investigation.

Hypothesis H1 can be further divided into two subhypotheses:

■ H1a : the image under test is not watermarked.

■ H1b : the image under test hosts a watermark different than the one under
investigation.
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Thus, the detection performance can be characterized by the false alarm (or false positive)
error and its corresponding probability Pfa , i.e., the probability to detect a watermark in
an image that is not watermarked or is watermarked with a different watermark than
the one under investigation, and the false rejection (or false negative) error, described by
the false rejection probability Pfr , i.e., the probability of not detecting a watermark in an
image that is indeed watermarked with the watermark under investigation. Depending
on the application, these two types of errors might have different importance. Pfa can be
evaluated using detection trials with erroneous watermarks (hypothesis H1b) or detection
trials on nonwatermarked images (hypothesis H1a). The former might sometimes be
preferable, since it usually corresponds to the worst case scenario. Furthermore, false
alarm probability evaluated on images watermarked by a different key than the one used
for detection provides an indication on whether the keys in the algorithm “keyspace”
are able to generate distinct “nonoverlapping” watermarks and, thus, lead to estimates of
the “effective keyspace.” One can distinguish between three types of false alarms and false
rejections [1]: those evaluated on a single image using multiple keys, those evaluated
on multiple images using a single key, and those evaluated on multiple images using
multiple keys.

In the case of soft decision detectors (see Section 22.3), one can derive the empirical
probability distribution functions (histograms) of the detection test statistic for both
hypotheses H0 and H1b (or H1a). By utilizing these empirical distributions, the proba-
bilities of false alarm Pfa(Tk) and false rejection Pfr (Tk) as a function of the detection
threshold T can be extracted. Using Pfa(Tk) and Pfr (Tk), we can plot the Receiver Operat-
ing Characteristic (ROC) curve, i.e., the plot of Pfa versus Pfr (Fig. 22.2). The ROC curve
provides an overall view of the watermark detection performance in various operating
conditions. Using the ROC curve, one can select the threshold value that gives a (Pfa , Pfr )
pair satisfying the application requirements. Furthermore, the ROC curve can be used
for the evaluation of other performance metrics, like the Pfa for a fixed, user-defined Pfr ,
the Pfr for a fixed, user-defined Pfa , and the equal error rate (EER), i.e., the point on the
ROC where Pfa � Pfr (Fig. 22.2).

Message Decoding Performance The decoding performance of a watermarking
method that supports message encoding can be characterized by the bit error rate (BER),
i.e., the probability of erroneously decoding one message bit. Since message decoding is
assumed to take place only in the case of successful detection, there is a close relation
between the decoding and detection performance. As a consequence, a BER value should
only be referenced along with the corresponding detection error probabilities, i.e., the
probabilities of false alarm and false rejection.

Another metric that is related to the decoding performance of a watermarking algo-
rithm is its payload, which can be defined as the maximum number of bits that can be
encoded in a fixed amount of host data and decoded with a prespecified BER or alter-
natively as the amount of data required to host a fixed number of bits so that they can
be decoded with a prespecified BER. Thus, the payload is expressed in information bits
that can be embedded per host image pixel. The performance of the watermark decoder
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Receiver Operating Characteristic curve.

can be also measured by the probability of error Pe , defined as the probability of getting
a wrong estimate of the hidden message m:

Pe � Pr
{

m̂ �� m
}

. (22.7)

Error correction codes can be used for correcting the watermark decoding errors. The
probability of getting a correct estimate of the message by using an error correction code
(e.g., BCH) that corrects R bit errors in M bits when the BER is q is given by [58]

Pd �

M∑
i�R

M !
i!(M � i)!q

i(1 � q)M�i . (22.8)
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22.5.1.3 Security
The notion of security of watermarking methods has recently attracted the interest of
the watermarking community. The distinction between robustness and security is still
not well defined and globally agreed upon. A possible, somewhat indirect, definition and
distinction is that attacks to robustness are those that aim at increasing the probability
of error of the watermarking channel whereas attacks to robustness try to provide an
attacker with knowledge on the secrets of the system, e.g., the secret key [59, 60].

According to the cryptanalysis point of view on security presented in [61] and inspired
by the works of Shannon [62] and Diffie-Hellman [63], security refers to the information
regarding the secret watermark key that becomes available (leaks) to an attacker through
watermarked data that she possesses. In more detail, the attacker is assumed to posses a
number of documents, watermarked with the same key and different messages. According
to Shannon’s approach (adapted to the case of watermarking), the watermarking method
is perfectly secure if no information regarding the secret key leaks from these “observa-
tions.” If the method is not perfectly secure, then the security level of the method can
be defined as the number of watermarked documents that an attacker needs in order to
fully discover the key.

The authors in [61] proceed in defining measures of information leakage for a water-
marking scheme. One such measure is equivocation which has been proposed by Shannon
[62] and can be used in methods where the secret key is a binary word. Equivoca-
tion measures the uncertainty of an attacker on the key value K when N observations
(watermarked documents) are available and is defined as:

H (K |ON ) � H (K) � I (K; ON ), (22.9)

where H (K |ON ) is the conditional entropy of K given the set of N observations ON ,
H (K) is the entropy of K (uncertainty on the value of the key when no observations are
available), and I (K; ON ) is the mutual information between the key and the N obser-
vations, which is the measure of information leakage due to the available observations.
An equivocation equal to zero corresponds to exact knowledge of the key. The minimum
number of observations that are required to achieve zero equivocation can be thought
of as a measure of the security level of the algorithm. Another measure of information
leakage is based on Fisher’s information matrix that measures the information provided
by a number of observations (in our case, watermarked data) about an unknown param-
eter (the watermark key). More details on this measure as well as information on how
this framework can be used to calculate the security level of some standard watermarking
methods can be found in [61].

It is important to note that, in compliance with one of the basic principles of cryptog-
raphy, namely Kerckhoff ’s principle, the security of a copyright protection watermarking
system should be based on the secrecy of keys that are used to embed/detect the watermark
rather than on the secrecy of the algorithms. This means that designers of a watermarking
system should assume that the embedding and detection algorithm (and perhaps their
software implementations) will be available to users of this system and the fact that these
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users cannot detect or remove the watermark should be based solely on their lack of
knowledge of the correct keys.

A thorough review on the topic of security can be found in [64].

22.5.2 Attacks Against Copyright Protection Watermarking Systems
As mentioned in the previous sections, a copyright protection watermarking system
should exhibit a significant degree of robustness to attacks. The most obvious effect of an
attack in a watermarking system is to render the watermark undetectable. Such attacks
can be classified into two categories [53]: removal attacks and desynchronization (or
geometrical) attacks. As implied by their name, removal attacks result in the removal
of the watermark from the host image or in a significant decrease of its energy relative
to the energy of the host signal. In most cases, removal attacks affect the amplitude of
the watermarked signal, i.e., in the case of images, the pixel intensity or color. Removal
attacks include linear or nonlinear filtering (e.g., arithmetic mean, median, Gaussian,
Wiener filtering), sharpening, contrast enhancement (e.g., through histogram equaliza-
tion), gamma correction, color quantization or color subsampling (e.g., due to format
conversion), lossy compression (JPEG, JPEG2000, etc.), and other common image pro-
cessing operations. Additive or multiplicative noise (Gaussian, uniform, salt and pepper
noise), insertion of multiple watermarks on a single image, or image printing and res-
canning (essentially a D/A-A/D conversion) are some additional examples of removal
attacks. Finally, intentional removal attacks, i.e., attacks that have been devised with the
intention to remove the watermark include, among others, the averaging attack where N
instances of the same image, each hosting a different watermark, are averaged in order
to obtain a watermark-free image, and the collusion attack where N images hosting the
same watermark are averaged to obtain a (noisy) version of the watermark signal. This
watermark estimate can be subsequently subtracted from each of the images to obtain
watermark-free images.

Contrary to removal attacks, desynchronization attacks do not remove the water-
mark but cause a loss of synchronization (usually loss of the image coordinates)
between the watermark signal embedded in the host signal and the watermark sig-
nal (see Section 22.5.4 for an example illustrating such a case). In other words, the
watermark signal is still embedded in the host signal (with its energy almost intact)
but cannot be detected. Desynchronization attacks usually involve global geometric dis-
tortions (i.e., distortions that are applied on the entire image using the same set of
parameters) like translation, rotation, mirroring, scaling and shearing (i.e., general affine
transformations), cropping, line or column removal, projective distortions (e.g., through
a perspective transformation), etc. Local geometric distortions, i.e., distortions that affect
subsets of an image, thus allowing an attacker to apply different operations with different
parameters on each subset, can also be very effective in inducing loss of synchronization.
The family of random bending attacks [65] which were first used in the Stirmark bench-
mark [66, 67] belong to this category. This family includes the bilinear transformation,
which changes the shape of a regular rectangular sampling grid into a generic quadri-
lateral, the random jitter attack, which changes the positions of the sampling points by
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a small random amount, and the global bending attack, which displaces the locations
of the sampling points by amounts that are sinusoidal functions of the points coordi-
nates. The mosaic attack [67] that involves cutting an image into nonoverlapping pieces
can also be considered a desynchronization attack. The small image tiles can be easily
assembled and displayed so as to be perceptually identical to the original image using
appropriate commands on the display software (e.g., the web browser). However, a detec-
tor applied on each image tile separately will fail to detect the watermark due to cropping.
Template removal attacks is another category of desynchronization attacks that are only
applicable to systems using a synchronization template (see Section 22.5.4.4) to regain
synchronization in case of geometric distortions. Such attacks first estimate and remove
the synchronization template from an image and then apply a geometric distortion to
render the watermark undetectable. A review of geometric attacks and the approaches
that have been proposed in order to cope with them is provided in [65].

Apart from the two attack categories described above, which are the most studied
in the watermarking literature, other attacks can be devised that do not aim at mak-
ing the watermark undetectable but try to harm a watermarking system or render the
watermarking concept unreliable by other means [1]. Such attacks include unauthorized
embedding attacks and unauthorized detection or decoding attacks. The copy attack [68]
is an attack that illustrates the concept of unauthorized embedding. Using this attack,
an attacker who is in possession of a method that can estimate the watermark that is
embedded in an image or a set of images (e.g., through the collusion attack mentioned
above) can subsequently embed this watermark in other watermark-free images. Thus, a
claim from a copyright owner that images bearing her watermark are her property can
be confronted by the attacker, who can show that this watermark exists in images that
do not belong to her, i.e., in the fake watermarked images that the attacker has created.
The single watermarked image counterfeit original (SWICO) and TWICO attacks [69]
also belong to this category. In short, the SWICO attack involves the creation of a fake
original image f by subtracting a watermark w from an image fw watermarked by another
person. The attacker can then claim that she has both the original image f � fw � w and
an image fw � f �w watermarked with her own watermark, thus causing an ownership
dispute.

Unauthorized detection attacks include attacks that aim at providing the attacker
with information on whether an image is watermarked and perhaps reveal the encoded
message (if any). Unauthorized detection is not a threat for all copyright protection
applications. An example of an unauthorized detection attack is a brute force, exhaus-
tive search approach where an attacker in possession of the detection algorithm checks
successively all keys in the key space in order to findout whether an image is watermarked.

In order to measure the effect of a certain attack on the detection or decoding per-
formance of an algorithm, plots of an appropriate performance metric (e.g., BER or
probability of false alarm) versus the attack severity can be constructed. For attacks
whose impact on the host image varies monotonically with respect to a certain param-
eter, it might be sufficient for the user to know only the most severe attack that the
algorithm can withstand [10]. For a chosen performance metric, the “breakdown point”
of the algorithm for this attack can be evaluated by increasing the attack severity (e.g.,
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decreasing the JPEG quality factor) in appropriately selected steps until the detector
output does not satisfy the chosen performance criterion. The strongest attack, for which
the algorithm performance is above the selected threshold, is the algorithm breakdown
point for this attack.

With respect to attacks that target the security of a watermarking system (see
Section 22.5.1.3), the authors in [61] (based on the Diffie-Hellman approach [63]) define
the following categories, on the basis of the information available to the attacker:

■ Watermark-only attacks, where the attacker has access to a number of watermarked
documents.

■ Known message attacks, where the attacker has access to a number of watermarked
documents and the messages that are hidden in them.

■ Known original attacks, where the attacker has access to a number of watermarked
documents as well as to the original, not watermarked documents.

The authors proceed in using the security framework that they developed to devise
attacks against the security of spread spectrum watermarking algorithms.

22.5.3 Benchmarking of Copyright Protection Image Watermarking
Algorithms

A benchmarking tool for image watermarking methods should be able to pinpoint the
advantages and disadvantages of such methods and enable the user to perform efficient
comparison of methods [10, 70]. Unfortunately, benchmarking of image watermarking
algorithms is not an easy task since it requires the cross-examination of a set of dependent
performance indicators like algorithmic complexity, decoding/detection performance,
and perceptual quality of watermarked images. As a consequence, one cannot derive a
single figure of merit but should deal with a set of performance indicators. An efficient
benchmarking system should be able to quantify and present in an intuitive way the
relations among the various performance indicators, e.g., the relation between watermark
detection performance and perceptual quality. A small number of attempts to create
benchmarking systems has taken place over the last few years, but this field is still in
need of more efficient methodologies and actual implementations. Three benchmarking
systems are presented below. OpenWatermark [71] and Watermark Evaluation Testbed
[72] are two additional benchmarking systems.

22.5.3.1 Stirmark
Stirmark [66, 73] is the first benchmarking tool that was developed. The source code of
the benchmark (version 4.0) is publicly available, and thus users can program their own
attacks in addition to those provided by the benchmark (sharpening, JPEG compression,
noise addition, filtering, scaling, cropping, shearing, rotation, column and line removal,
flipping, and “Stirmark” attack). The user should provide, apart from the embedding
and detection algorithms, appropriate command files (evaluation profiles) that define
the tests or the attacks that will be performed. One can perform tests for measuring
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how the embedding strength influences the PSNR of the watermarked image, tests for
the evaluation of the time required to perform embedding, and tests for measuring the
influence of attacks on the detection and decoding performance. In this last category
of tests, Stirmark performs for each attack parameter within a certain range embedding
and detection with a random key and message and measures the detection certainty or
the BER.

22.5.3.2 Checkmark
Checkmark [74] is essentially a successor of the previous Stirmark version (namely,
Stirmark version 3.1). In addition to the attacks implemented in Stirmark, Checkmark
provides a number of new attacks that include wavelet compression, projective transfor-
mations, modelling of video distortions, image warping, copy attack, template removal
attack, denoising, nonlinear line removal, collage attack, down/up sampling, dithering,
and thresholding. The developers of Checkmark provide the MATLAB source code of
the application and thus one can add new attacks to the existing ones. The benchmark
provides a number of “application templates” which are essentially lists of attacks related
to a specific application. In addition, Checkmark incorporates two new objective qual-
ity metrics: the weighted PSNR and the so-called Watson metric. Despite the major
improvements that have been introduced, the basic principles of Checkmark are very
similar to those of Stirmark 3.1. In both cases, the user should provide the benchmark
with a set of watermarked images and a detection routine along with a user-defined
detection rule. The attacks that are included in the application template that has been
selected by the user are applied in every watermarked image, and the detection routine is
used to provide the detection result. It should be noted that Checkmark was last updated
in 2001.

22.5.3.3 Optimark
Optimark [75] is a benchmarking platform that provides a graphical user interface and
incorporates the same attacks as Stirmark 3.1. These attacks can be performed either
one at a time or as a cascade. The user should supply embedding and detection/decod-
ing routines in the form of executable files. Optimark supports hard and soft decision
detectors. The user selects the set of test images, the set of keys and messages that will
be used in the trials, and the attacks that will be performed on the watermarked images.
Furthermore, she provides the set of PSNR values for the watermarked images, along
with the embedding factors that the embedding software should use in order to achieve
these PSNR values. Optimark performs in an automated way multiple trials using the
selected images, embedding strengths, attacks, keys, and messages. Detection using both
correct and erroneous keys (which are necessary for the evaluation of the probability of
false alarms) is performed. Message decoding performance is evaluated separately from
watermark detection. The “raw” results are processed by the benchmark in order to pro-
vide the user with a number of performance metrics and plots, depending on the type of
algorithm being tested. For example, when testing a multiple-bit algorithm that employs a
soft decision detector, the user can obtain the following metrics: ROC, EER, probability of
false alarm for a user-defined probability of false rejection, probability of false rejection
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for a user-defined probability of false alarm, plots of BER and percentage of perfectly
decoded messages versus the detection threshold ( for a specific message length), and
plot of payload versus the detection threshold ( for a specific BER). The software eval-
uates various complexity metrics like average embedding, detection, and decoding time
and provides an option to evaluate the algorithm breakdown point for a given attack.
Finally, it can summarize the results in various ways, e.g., provide average results for a set
of images and a specific attack or average results over a number of different attacks for a
specific image.

A thorough treatment of the subject of performance evaluation of watermarking
algorithms can be found in [1, 10].

22.5.4 Spread Spectrum Watermarking
Spread spectrum watermarking draws its name from spread spectrum communication
techniques [76] that are used to achieve secure signal transmission in the presence of
noise and/or interception attacks that generate an appropriate jamming signal to inter-
fere with the transmission. In such a situation, one can spread the energy of a symbol to
be transmitted either in the time domain by multiplying it by a pseudorandom sequence,
or in the frequency domain by spreading its energy over a large part of the signal
spectrum.

22.5.4.1 Blind Additive Embedding with Correlation Detection
In this section, a simple zero-bit spread spectrum watermarking system that consists of
a blind additive embedder and a blind correlation detector will be presented. Despite
its simplicity, this methodology has been utilized extensively, in many variations, in the
early days of watermarking [77, 78]. Means of improving or creating variants of the basic
algorithm will also be presented in this section.

The embedding procedure of this system employs the addition of a white, zero-mean
pseudorandom signal w (generated by using a secret key K in conjunction with the
appropriate generation function) on the host signal fo :

fw � fo � pw, (22.10)

where fw is the watermarked signal and p > 0 is a constant that controls the watermark
embedding energy (watermark embedding factor). Obviously, p is closely related to the
watermark perceptibility. On a per-sample basis, the above equation can be stated as
follows:

fw (n) � fo(n) � pw(n), n � 0, . . . ,N � 1, (22.11)

where N denotes the signal length. In the following, we will assume that Eqs. (22.10)
and (22.11) refer to the spatial domain. In case of image watermarking, the watermark
modifies the intensity or color of the image pixels, and fo , w, and fw are 2D signals.

As has already been mentioned, the watermark detection aims at verifying whether
a given watermark wd is embedded in the test signal ft . During detection, ft can be
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represented in the following form:

ft � fo � pwe . (22.12)

This equation can summarize all three possible detection hypotheses, namely:

■ the watermark wd is indeed embedded in the signal (event H0), which corresponds
to p �� 0 and we � wd

■ the watermark wd is not embedded in the signal (event H1), which can imply
either that no watermark is present (event H1a), or that the signal bears a different
watermark than the one under investigation (event H1b). In the equation above,
event H1a corresponds to p � 0, whereas event H1b corresponds to we �� wd .

In order to decide which event holds, i.e., which is the valid hypothesis, the correlation
between the signal under investigation and the watermark is evaluated:

c �
1

N

N�1∑
n�0

ft [n]wd [n]�
1

N

N �1∑
n�0

(
fo[n]wd [n]� pwe [n]wd [n]

)
. (22.13)

Such a detection scheme is usually called a correlation detector (also known as a
matched filter). By assuming statistical independence between the host signal fo and both
watermarks we and wd , an expression for the mean of the correlation c can be derived in
a straightforward manner [79]:

�c � E[c]� E

⎡
⎣ 1

N

N �1∑
n�0

(
fo[n]wd [n]� pwe [n]wd [n]

)
⎤
⎦

�
1

N

N �1∑
n�0

E[fo[n]]E[wd [n]]�
1

N
p

N �1∑
n�0

E [we [n]wd [n]] . (22.14)

Since the watermark has been chosen to be a zero-mean random signal, the first term
of the expression will be zero and, therefore, �c will depend only on the second term.
When the signal bears no watermark, i.e., when p � 0, the second term is also zero and
the mean value of the correlation is zero. Furthermore, when the signal bears a different
watermark than the one under investigation (we �� wd ), the second term will obtain
a small value, close to zero, as two watermarks generated using two different keys are
expected to be almost orthogonal to each other. When the signal hosts the watermark
under investigation, i.e., when p �� 0 and we � wd , the mean value of c can be easily
shown to be equal to p�2

w where �2
w is the variance of the watermark signal. Thus, the

conditional probability distributions pc |H0 , pc |H1 of the correlation value c under the
two hypotheses H0 and H1 will be centered around p�2

w and 0, respectively (Fig. 22.3).
Furthermore, for the case under study, these distributions will be approximately Gaussian.
For suitable values of p, �2

w and by assuming that the variances �2
c |H0

, �2
c |H1

of c under the
two hypotheses are reasonably small, a decision on the valid hypothesis can be obtained
by comparing c against a suitably selected threshold T > 0 that lies between 0 and p�2

w .
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FIGURE 22.3

Conditional pdfs of the correlation value c under hypotheses H0, H1.

More specifically, a decision to accept hypothesis H0 or H1 is taken when c > T and
c < T , respectively.

For a given threshold, the probabilities of false alarm Pfa(T ) and false rejection Pfr (T )

which characterize the performance of this system can be evaluated as follows:

Pfa(T ) � Prob{c > T |H1}�

∫ �

T
pc |H1(t )dt , (22.15)

Pfr (T ) � Prob{c < T |H0}�

∫ T

��
pc |H0(t )dt . (22.16)

Obviously, these two probabilities depend on �c |H0 , �c |H1 , �2
c |H0

, and �2
c |H1

. By observing
Fig. 22.3, one can conclude that the system performance improves (i.e., the proba-
bilities of false alarm and false rejection for a certain threshold decrease) as the two
distributions come further apart, i.e., as the difference �c |H0 � �c |H1 increases. Further-
more, the performance improves as the variances of the two distributions �2

c |H0
, �2

c |H1
decrease.

Provided that the additive embedding model (22.10) has been used and under the
assumptions that no attacks have been applied on the signal and that the host signal fo
is Gaussian, the detection theory states that the correlation detector described above is
optimal with respect to the Neyman-Pearson criterion, i.e., it minimizes the probability
of false rejection Pfr subject to a fixed probability of false alarm Pfa .

A variant of the above algorithm that employs nonblind detection can be easily devised
by subtracting the original signal fo from the signal under investigation before evaluating
the correlation c . It can be proven that such a substraction drastically improves the
performance of the algorithm by reducing the variance of the correlation distribution.
Instead of the correlation (22.13), one can also use the normalized correlation, i.e.,
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the correlation normalized by the magnitudes of the watermark and the watermarked
signal:

c �

∑N �1
n�0 ft [n]wd [n]√∑N �1

n�0 f 2
t [n]

∑N �1
n�0 w2

d [n]
. (22.17)

Normalized correlation can grant the system robustness to operations such as increase
or decrease of the overall image intensity.

The zero-bit system presented above can be easily extended to a system capable of
embedding one bit of information. In such a system, symbol 1 is embedded by using a
positive value of p whereas symbol 0 is embedded by using �p. Watermark detection
can be performed by comparing |c | against T , i.e., a watermark presence is declared
when |c |> T . In the case of a positive detection, the embedded bit can be decoded by
comparing c against T and �T , i.e., 0 is decoded if c < �T and 1 if c > T .

Another popular approach for embedding the watermark in the host signal is
multiplicative embedding:

fw (n) � fo(n) � pfo(n)w(n). (22.18)

Using such an embedding law, the embedded watermark pfo(k)w(k) becomes image-
dependent, thus providing an additional degree of robustness, e.g., against the collusion
attack. Furthermore, by modifying the magnitude of a watermark sample proportionally
to the magnitude of the corresponding signal sample (be it pixel intensity or magnitude of
a transform coefficient), i.e., by imposing larger modifications to large amplitude signal
samples, a form of elementary perceptual masking can be achieved.

The spectral characteristics and the spatial structure of the watermark play a very
important role to robustness against several attacks. These characteristics can be con-
trolled in the watermark generation procedure and affect the more general characteristics
of the watermarking system, like robustness and perceptual invisibility. In the following
sections, we will see the basic categories of watermarks as they are derived by the various
existing watermark generation techniques.

22.5.4.2 Chaotic Watermarks
Chaotic watermarks have been introduced as a promising alternative to pseudorandom
signals [79–84]. An overview of chaotic watermarking techniques can be found in [85,86].
Sequences generated by chaotic maps constitute an efficient alternative to pseudorandom
watermark sequences. A chaotic discrete-time signal x[n] can be generated by a chaotic
system with a single state variable by applying the recursion:

x[n]� T (x[n � 1]) � T n(x[0]) � T (T (. . . (T︸ ︷︷ ︸
n times

(x[0])) . . .)), (22.19)

where T (·) is a nonlinear transformation that maps scalars to scalars and x[0] is the
system initial condition. The notation T n(x[0]) is used to denote the nth application
of the map. It is obvious that a chaotic sequence x is fully described by the map T (·)
and the initial condition x[0]. By imposing certain constraints on the map or the initial
condition, chaotic sequences of infinite period can be obtained.
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A performance analysis of watermarking systems that use sequences generated by
piecewise-linear Markov maps and correlation detection is presented in [79]. One
property of these sequences is that their spectral characteristics are controlled by the
parameters of the map. That is, watermark sequences having uniform distribution and
controllable spectral characteristics can be generated using piecewise-linear Markov
maps. An example of a piecewise-linear Markov map is the skew tent map given by:

T : [0,1] → [0,1],

where T (x) �

{
1
� x , 0 � x � �

1
��1 x � 1

1�� , � < x � 1
, � ∈ (0,1). (22.20)

The autocorrelation function (ACF) of skew tent sequences depends only on the
parameter � of the skew tent map. Thus, by controlling the parameter �, we can generate
sequences having any desirable exponential ACF. The power spectral density of the skew
tent map can be easily derived [79]:

St (�) �
1 � (2� � 1)2

12(1 � (2� � 1)2 � 2(2� � 1)cos�)
. (22.21)

By varying the parameter �, either highpass (� < 0.5) or lowpass (� > 0.5) sequences
can be produced. For � � 0.5, the symmetric tent map is obtained. Sequences generated
by the symmetric tent map possess a white spectrum, since the ACF becomes the Dirac
delta function. The control over the spectral properties is very useful in watermarking
applications, since the spectral characteristics of the watermark sequence are directly
related to watermark robustness against attacks, such as filtering and compression.

The statistical analysis of chaotic watermarking systems that use a correlation detec-
tor was undertaken leading to a number of important observations on the watermarking
system detection performance [79]. Highpass chaotic watermarks prove to perform bet-
ter than white ones, whereas lowpass watermarks have the worst performance when
no distortion is inflicted on the watermarked signal. The controllable spectral/corre-
lation properties of Markov chaotic watermarks prove to be very important for the
overall system performance. Moreover, Markov maps that have appropriate second- and
third-order correlation statistics, like the skew tent map, perform better than sequences
with the same spectral properties generated by either Bernoulli or pseudorandom num-
ber generators [79].

The simple watermarking systems presented above using either pseudorandom or
chaotic generators and either additive or multiplicative embedding would not be robust
to geometric transformations, e.g., a slight image rotation or cropping, as such attacks
would cause a “loss of synchronization” (see Section 22.5.2) between the watermark
signal embedded in the host image and the watermark signal used for the correlation
evaluation. This happens because the success of the correlation detection method relies
on our ability to correlate the watermarked signal ft with the watermark wd in a way
that ensures that the n-th sample wd(n) of the watermark signal will be multiplied in
Eq. (22.13) with the watermarked signal sample ft (n) that hosts the same sample of the
watermark. In the case of geometric distortions, this “synchronization” will be lost and
chances are that the correlation c will be below T , i.e., a false rejection will occur.
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A brute force approach could involve the evaluation of the correlation between the
watermarked signal and all transformed versions of the watermark. For example, if the
image has been subject to rotation by an unknown angle, one can evaluate its correlation
with all rotated versions of the watermark and decide that the image is watermarked if the
correlation of one of these versions with the signal is above the threshold T . Obviously,
this approach has extremely large computational complexity, especially when the image
has been subject to a cascade of transforms (e.g., rotation and scaling). Multiple remedies
to this problem have been proposed that will be presented in detail in the following
sections.

22.5.4.3 Transformed Watermarks
The idea of transformed watermarks is to construct watermarks transformed in a specific
domain whose detection performance is invariant to the geometric distortions of the
watermarked image. For example, it is well known that the amplitude of the Fourier
transform is translation invariant:

f (x1 � a,x2 � b)↔ F(k1,k2)e�i(ak1�bk2). (22.22)

Therefore, if the watermark is embedded in the amplitude of the Fourier transform,
it will be insensitive to a spatial shift of the image. The transform space of Mellin-
Fourier is one such invariant space. It has been proposed for watermark embedding
because, when the watermark is applied to the amplitude of the Fourier transform, it is
invariant to translation, rotation, and scale of the watermarked image [30]. In order to
become invariant to translation, the image is transformed in the Fourier domain and the
amplitude of the Fourier is transformed using the log-polar mapping (LPM) defined as
follows:

x � e� cos�, (22.23)

y � e� sin�, (22.24)

with � ∈R and � ∈ [0,2�]. Any rotation in the spatial domain will cause rotation of the
Fourier amplitude and translation in the polar coordinate system. Similarly, a scaling
of the spatial domain will result in a translation in the logarithmic coordinate system.
That is, both rotation and scaling in the spatial domain are mapped to translation in the
LPM domain. Invariance to these translations is achieved by taking again the amplitude
of the Fourier of the LPM. Taking the Fourier of a LPM is equivalent to computing the
Mellin-Fourier transform. Combining the DFT and the Mellin-Fourier transform results
in rotation, scale, and translation transformation invariance.

The major drawback of the method above is that the various transforms decrease
the embedded watermark power. That is, the interpolation applied during the various
transforms constitutes an attack to the watermark, thus making it usually undetectable
even without any further distortion of the watermarked image. Indeed, in the watermark
embedding procedure, the watermark undergoes two inverse DFTs and one inverse LPM
along with the corresponding interpolations needed. In the detection procedure, two
DFTs and one LPM are needed as well. Thus, the watermark should be very strong in
order to resist all these transforms. Of course, stronger embedding means the possiblity of
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visually perceptible watermarks, i.e., quality reduction for the host image. To overcome
all these problems, iterative embedding has been proposed in [87]. The watermark is
embedded iteratively until it can be reliably detected after the transforms needed in the
detection procedure. Even in that case, reliable watermark detection demands very strong
embedding and the results are not very promising.

A transform-based blind watermarking approach with improved robustness against
geometric distortions has been proposed in [88]. The method is based on geometric
image normalization that takes place before both watermark embedding and extraction.
The image is normalized in order to meet a set of predefined moment criteria. The nor-
malization procedure makes the method invariant to affine transform attacks. However,
the proposed scheme is not robust against cropping or line-column removal.

Another reason the transform domains have been proposed for watermark embedding
is that they also provide robustness against other intentional or unintentional attacks,
such as filtering and compression. In such a case, the watermark affects the value of
certain transform coefficients and the watermarked signal is obtained by applying the
inverse transform on the watermarked coefficients. Transform domain watermarking
allows system designers to exploit the transform properties for the benefit of the system.
For this purpose, embedding, e.g., in the DFT, DWT, and DCT domains, has been pro-
posed. For example, one can embed the watermark signal in the low-to-middle frequency
coefficients of the DCT transform applied on small image blocks. By doing so, one can
ensure that the watermark will remain essentially intact by lowpass operations, e.g., JPEG
lossy compression or lowpass filtering, since these operations suppress mainly the higher
frequencies. Moreover, the distortions imposed on the signal due to watermarking can
be held at a reasonably low level as the lower frequencies, whose alterations are known to
cause visible distortions, will be kept intact. Embedding in the DWT transform domain
has been proposed for increased robustness against JPEG2000 compression. The 2D
Radon Wigner transform has been used for watermark embedding in order to obtain
robustness against geometrical attacks in [89].

Recently, a transform domain watermarking for color images has been proposed
[90]. The method considers color information in the L a∗ b∗ domain and treats colors
as quaternions. Quaternions have one real and three orthogonal imaginary components
and can be expressed in the form:

Q � a � ib � jc � kd , (22.25)

where a,b, c , and d are real numbers and i, j , and k are imaginary operators. Therefore,
quaternions can be used to represent data with up to four components and thus are
sufficient to represent the three-component color information in a single, vectorial for-
mat. Color images represented in quaternion format are transformed to the “frequency”
domain by using the discrete quaternion fourier transform (QFT) [91]. The watermark,
which is also represented in quaternion form, is additively embedded in the transform
domain. By imposing certain conditions, the modifications on the color of the image
can be restricted to yellow-blue component which ensures invisibility due to the low
sensitivity of the human visual system (HVS) to these colors. Detection is performed in
a nonblind way. From the above short description, it is obvious that in this case the main
reason to resort to a transform domain (QFT domain) is to ensure watermark invisibility.
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22.5.4.4 Template Watermarks
Another class of watermarks that have been proposed to cope with the problem of
geometrical transformations is the template watermarks class. A template is a structured
pattern that is embedded in the image and usually conveys geometrical information.
Basically, it is an additional signal that is used as a tool for recovering possible geometrical
transformations of the watermarked image. The template is usually a set of peaks in the
DFT domain [92–94]. The peaks are embedded in specific locations so as to define a
certain structure that can be easily recovered in the detection procedure. Templates that
can be used for watermarking applications are shown in Fig. 22.4.

As an example, we shall describe in more detail the template proposed in [92]. The
template peaks are distributed uniformly along two lines in the DFT domain at certain
angles. The angles and radii are chosen pseudorandomly by using a secret key. The
strength of the template can be determined adaptively. Inserting points at a strength
equal to the local average value of DFT points plus two standard deviations yields a
good compromise between visibility and robustness during decoding. Peaks in the high
frequencies are constructed to be less strong since, in these regions, the average spectra
power is usually lower than that of the low frequencies. This type of template is applicable
for all images. If someone uses more than two peak lines to construct the template, the
cost of the detection algorithm is increased. However, at least two peak lines are required
in order to resolve ambiguities arising from the symmetry of the magnitude of the DFT.
In particular, after a rotation in the spatial domain, an ambiguity will exist as to whether
the rotation was clockwise or counter-clockwise. Depending on features of the specific
watermark technology, there are different strategies for template generation.

The watermark detection process consists of two phases. First the affine transforma-
tion (if any) undergone by the watermarked image is determined, then the transformation
is inverted, and the watermark is detected. For detecting the template, some approaches
transform the template matching problem into a point-matching problem. After this
problem has been solved, the best candidates for the template points are identified. If an

FIGURE 22.4

Templates proposed for watermarking applications.
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affine transformation has been applied, the identified template points will differ from the
original ones. This change is exploited to estimate the applied affine transformation. The
corresponding inverse affine transformation is then applied for a better synchronization
of the watermark.

The major drawback of template watermarking is its vulnerability against the template
removal attack [95]. The main goal of this attack is to destroy, without any key knowledge,
the synchronization pattern of the watermark in order to fool the detection process after
an affine transformation of the image. An attacker does not need to know how the specific
template in a domain is constructed, since the template applied will always generate some
peaks in the target domain used for the template.

The attack can be easily applied by a attacker. In the first phase of the attack, the
watermarked image fw is filtered using a Wiener or median filter and an estimate of the

original image f̂o is derived. Then the watermark estimate ŵ is obtained by subtract-

ing the image f̂o from the watermarked image. Using the estimate of the watermark,
the peaks of the template are extracted in the appropriate transform domain (e.g., DFT).
The amplitude of the extracted peaks is modified by replacing the specific amplitude of the
watermarked image with the average amplitude value of the neighbors within a certain
window. In general, the attacker can apply the same procedure as the template detec-
tor in order to extract the template and then she can remove it from the watermarked
image. Once the template is removed, the watermark is vulnerable to any geometric
attack.

22.5.4.5 Special Structure Watermarks
To solve the problems of template-based watermarking, a different approach has been
proposed that involves watermarks whose spatial structure can provide either an invari-
ance to certain transforms or a significant reduction in the size of the parameter search
space (e.g., the space of possible rotation angles) that has to be searched during detection
in order to reestablish synchronization. In this case, self-reference watermarks are mostly
used in practice. The self-reference watermarks do not use any additional template to
cope with the geometrical transforms. Instead, the watermark itself is constructed so as
to attain a special spatial structure with desired statistical properties. The most often
used watermarks within this approach have self-similar features, i.e., repetition of the
same watermark in many spatial directions depending on the final goal and the targeting
attack. Spatial self-similarity of the watermarks reduces the search space parameters in
case of an affine transformation of the watermarked image [82, 96].

An example of self-similar watermarks is the so-called circularly-symmetric water-
mark. It is defined by [34, 96]:

W(r ,�) �

{
0, r < rmin or r > rmax

�b, rmin < r < rmax

, (22.26)

where (n1,n2) represent the spatial coordinates and r �
√

n2
1 � n2

2, � � arctan
( n2

n1

)
. rmin

and rmax are the minimum and maximum radii that define the watermark’s circular or
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ring-like support region. b is an integer representing the embedding level or watermark
strength. In order for W(r ,�) to attain sufficient lowpass characteristics and, thus, be
more robust to compression or lowpass filtering, its cyclic or ring-like support domain
(22.26) is additionally divided to a number of s sectors having an extend of s

360 degrees.
All watermark samples inside a sector for a constant radius are set equal to b or �b
according to a pseudorandom number generator initialized with a random key.

A circularly-symmetric watermark has the advantage of robustness against rotation
with angles less than s

360 degrees. In this case detection is possible without rotating
the watermark. When rotation angles are bigger, detection is performed faster since
watermark rotation is only needed for multiples of s

360 degrees. Spatial self-similarity with
respect to the cartesian grid is accomplished by repeating the basic circularly-symmetric
watermark at different positions in the image. Additionally, the shifted versions of the
basic watermark can also be scaled versions in order to cope with scaling attacks [97] or
rotated versions in order to cope with rotation attacks [42].

Another type of self-similar watermarks has been proposed in [98]. The basic water-
mark is replicated in the image in order to create four repetitions of the same watermark.
This enables nine peaks in the ACF that are used in order to recover geometrical trans-
formations. The descending character of the ACF peaks shaped by a triangular envelope
reduces the robustness of this approach to the geometrical attacks accompanied by a
lossy compression. The need for computing two DFTs of double image size to estimate
the ACF also creates some problems for fast embedding/detection in the case of large
images.

The known fact that periodic signals have a power spectrum containing peaks can
be used to obtain a regular grid of reference points that can easily be employed for
recovering from general affine transformation attacks. The existence of many peaks in
the magnitude spectrum of the periodically repeated watermark increases the probability
of detecting geometrical transforms even after lossy compression [94]. This fact indicates
the enhanced robustness of these watermarks. Furthermore, it is more difficult to remove
the peaks in the magnitude spectrum based on a local interpolation in comparison
with a template scheme. Such an attack would create considerable visible distortions
in the attacked image. A practical algorithm based on the magnitude spectrum of the
periodical watermarks is described in [94] for spatial, wavelet, or any transform domain.
First, the magnitude spectrum is computed from the estimated watermark. Due to the
periodicity of the embedded information, the estimated watermark spectrum possesses a
discrete structure. Assuming that the watermark is white noise within a block, the power
spectrum of the watermark will be uniformly distributed. Therefore, the magnitude
spectrum shows aligned and regularly spaced peaks. If an affine distortion was applied to
the host image, the peaks layout will be rescaled, rotated, and/or sheared, but alignments
will be preserved. Therefore, it is easy to estimate any affine geometrical distortion from
these peaks by fitting alignments and estimating periods of the peaks.

Of course, as in the case of using a watermark template, the attacker may try to estimate
the watermark, i.e., to find the peaks on the magnitude spectrum and then remove them
by interpolation. Another possible attack is to perform an affine transformation and,
afterwards, to embed a periodical signal that will create another regular grid of peaks that
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may deceive the detector. Finally, a critical issue in this approach is to find the minimum
number of watermark samples needed in order to have reliable detection.

22.5.4.6 Feature-Based Watermarks
Another approach for image watermarking robust against geometric distortions is based
on image feature detection. The methods that belong to this category try to find robust
feature points (also referred to as salient features) in a given image that can be detected
even after geometric attacks. These feature points are used to form local regions for
embedding. At the detection end, the feature points are (hopefully) robustly detected
and used for resynchronization.

One of the first methods that exploited this idea was based on facial features [99]. In
this method, the image to be watermarked was supposed to contain a face in frontal view
and the selected salient features were the eyes and mouth of the face. The watermark was
embedded in the facial region. In the detection phase, the facial features were localized and
used to compensate for the geometric attacks. Subsequently, watermark detection was
performed. Although the idea was interesting, its applicability was limited to facial images.

The use of the Gaussian kernel as a preprocessing filter to extract and stabilize image
feature points for watermarking has been proposed in [100]. The Gaussian kernel is a
circular and symmetric filter, leading to rotation-invariant filtering. The method selects
as feature points the locations having maximum filter response. Afterwards, the set of
feature points is used to form a mesh by means of Delaunay triangulation. This mesh
is then used to guide the watermarking process. In order to resist watermark-estimation
attacks, an image hashing is extracted and combined with the watermarks in order to gen-
erate hash-based, content-dependent watermarks. The major weakness of the proposed
method is its high complexity due to mesh warping, which makes the method unsuitable
for real-time applications.

Another feature-based image watermarking scheme that is robust against desyn-
chronization attacks has been proposed in [101]. Robust feature points, which can
survive various signal processing and affine transformations, are extracted by using the
Harris-Laplace detector. These feature points define neighborhood regions for watermark
embedding. The digital watermark is repeatedly embedded on the scale-space represen-
tation of the image (i.e., the extracted feature regions) by modulating the magnitudes
of DFT coefficients. In watermark detection, the salient features are recovered and the
geometric distortions are compensated. The digital watermark is recovered using a maxi-
mum membership criterion applied to the watermarked regions. Simulation results
have shown that the proposed scheme is robust against common signal processing and
desynchronization attacks.

22.5.4.7 Watermarking Systems Involving Optimal Detectors
As mentioned in the beginning of this section, the correlation detector is optimal only
in the case of additive watermarks and host signals following a Gaussian distribution.
In the case of watermarks embedded in the signal in a multiplicative way or when the
host signal follows a different distribution, detectors that are optimal in a certain sense
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can be constructed using the statistical detection and estimation theory. According to
this theory, a decision over the two hypotheses H0,H1 can be obtained by evaluating the
likelihood ratio L( ft ):

L( ft ) �
pft

( ft |H0)

pft
( ft |H1)

. (22.27)

In the previous formula, pft
( ft |H0), pft

( ft |H1) are the probability density functions of
the random vector ft , i.e., the watermarked signal, conditioned on the hypotheses H0,H1,
respectively. A decision is obtained by comparing L( ft ) against a properly selected thres-
hold T . More specifically, a decision to accept hypotheses H0 or H1 is taken when L( ft ) >

T and L( ft ) < T , respectively. The appropriate value of T depends on the performance
criterion that we wish to optimize. If an optimal detector with respect to the Neyman-
Pearson criterion (i.e., a detector that minimizes the probability of false rejection Pfr

subject to a fixed probability of false alarm Pfa) is to be designed, the threshold value that
achieves this minimization is the one evaluated by solving the following equation for T ,
assuming a fixed, user-provided probability of false alarm Pfa � e:

Pfa � e � Prob{L( ft ) > T |H1}�

∫ ��

T
pL(L|H1)dL. (22.28)

In the previous equation, pL(L|H1) is the pdf of the likelihood ratio L conditioned on
the hypothesis H1.

Various optimal detection schemes, for different situations, have been proposed in
the literature. Obviously, in order to obtain an analytic expression for the likelihood
ratio (22.27) and evaluate the threshold T using (22.28), one has to obtain analytic
expressions for the probability density functions that appear in these expressions. To
proceed with such derivations, certain assumptions about the statistics of the involved
quantities should be adopted. Optimal detectors for watermarks that have been embed-
ded with a multiplicative rule on the magnitude of the DFT coefficients are derived
in [39]. The watermark samples w(n) are assumed to be bivalued, {�1,1}, each value
having equal probability 0.5. The assumptions adopted in this chapter are that the host
signal is an ergodic, wide-sense stationary process that follows a first-order seperable ACF
and that the DFT coefficients are independent Gaussian random variables, each with a
different mean and variance. The authors verify the Gaussianity assumption through a
Kolmogorov-Smirnov test. Based on these assumptions, the authors proceed in deriving
an analytic expression for the probability distribution of the magnitude of the DFT
coefficients. Using this expression, expressions for pft

( ft |H0), pft
( ft |H1) are derived and

exploited to obtain the following analytic formula for L( ft ):

L( ft ) �

N�1∏

k�1

2
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In the previous expression, p is the embedding factor, I0() is the modified Bessel function,
and �2

I (k), �2
R(k) are the variances of the imaginary and the real part of the kth DFT

coefficient for which analytical expressions have been also derived in [39]. It should be
also noted that ft is the host signal which, in this case, consists of the magnitudes of the
DFT coefficients of the host signal. In order to evaluate the threshold in (22.28) for a
certain Pfa � e, the pdf pL(L|H1) of the likelihood ratio L conditioned on the hypothe-
ses H1 needs to be derived. The authors assume that L attains a Gaussian distribution
and proceed in an experimental evaluation of its mean �̂ and variance �̂. Using these
quantities, the threshold T can be found to be

T � �̂ � �̂
√

2 erf �1(2 Pfa � 0.5). (22.30)

Similar approaches have been proposed by others in order to derive optimal detec-
tors under other optimality criteria or embedding domains with different distributions
[35–41, 47].

22.5.5 Watermarking with Side Information
22.5.5.1 Informed Embedding Watermarking
A watermarking system that uses the information of the host signal (also called cover
signal) in the coding/embedding procedure is called an informed coding/embedding water-
marking system and is described in Fig. 22.5. An informed embedding scheme exploits
the information conveyed in the host signal f for generating a robust watermark w in the
spatial domain. The watermark generation can be seen as an optimization problem with
respect to a detection statistic or to a robustness measure as it will be described in the
following.

The simplest way to construct an informed embedding watermarking system is the
so-called precancellation, which has been proposed in communication systems [102]. In
such a system, the interference of the host signal is completely removed by setting the
watermark to be embedded as wa � w � fo . Thus, after embedding in the host signal,
the watermarked signal to be transmitted is equal to fw � fo � wa � w. That is, the host
signal is completely replaced by the watermark. It is obvious that this watermarking
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FIGURE 22.5

Watermarking with informed coding and informed embedding.
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system is optimal with respect to host signal cancellation, but it is unacceptable for
real applications, since the fidelity constraint is violated. That is, the host signal is not
preserved at all. In most cases where fidelity constraints are imposed in the watermark
generation and embedding procedure, the problem of generating an informed embedding
watermarking system is dealt with as an optimization problem. The problem can be
defined in two alternative ways:

■ Construct a watermark to be embedded in the given host signal that maximizes
watermark robustness, under the constraint that the perceptual distortion will be
inside a prescribed limit.

■ Construct a watermark to be embedded in the given host signal that minimizes
the perceptual distortion, under the constraint that the robustness of the resulting
watermark will be inside a prescribed limit.

More complicated optimization problems can be set where both perceptual distortion
and robustness are optimized inside prescribed limits. It is obvious that, in order to
solve the above optimization problems, someone has to define measures of robustness
and perceptual distortion. This task is not trivial and many researchers proposed such
measures under rather simplistic assumptions. For example, a detection statistic can be
assumed to measure the robustness of a watermarking system. This assumption is not
valid in most cases, since the robustness should be mostly determined for specific attacks.

If someone considers a watermarking system that uses linear correlation as a detec-
tion statistic, then it can be assumed that increased robustness means higher correlation
value between the watermarked signal and the watermark. Thus, imposing a constraint
on robustness can be considered as generating watermarks that have constant correlation
value with the watermarked signal (i.e., fw wT � c). This can be interpreted as moving
all the signals to be watermarked to a hyperplane in the high-dimensional space of the
host signal that is perpendicular to the watermark vector. This hyperplane corresponds to
constant correlation with the watermark signal. In such a watermarking scheme, the more
distant the hyperplane is from the detection threshold, the more robust the watermarking
scheme. Having constant linear correlation between the watermark and the watermarked
signal corresponds to constant robustness and, thus, the constrained optimization prob-
lem is reduced to finding a watermarked signal, i.e., a vector on this hyperplane that
is less perceptually distorted from the host signal. The optimal watermarked signal is
obviously the one that has the minimum Euclidean distance from the host signal, if the
MSE is used as a fidelity measure.

However, if someone wants to use normalized instead of linear correlation as a water-
mark detection statistic, then the above solution is not optimal. Indeed, for certain host
signals, the normalized correlation statistic may be lower than the detection threshold
even if the linear correlation is constant. This is valid since constant normalized cor-
relation corresponds to a hypercone in the high-dimensional space of the host signal
and not to a hyperplane. Thus, if someone wants to utilize normalized correlation as a
detection statistic, they should construct the watermark in a way that all watermarked
signals lie on a hypercone. The corresponding optimization problem (i.e., minimize
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perceptual distortion having constant robustness) is solved by finding the vector on the
hypercone that has minimum Euclidean distance from the host signal and thus minimizes
the MSE.

In the above analysis, the robustness measure that has been used was the detection
statistic. However, this assumption is rather simplistic, and in most cases, optimizing the
detection statistic prior to an attack does not guarantee optimal behavior against this
attack. Thus, someone may design the informed embedding watermarking algorithm
having as robustness measure an estimate of the robustness against a specific attack.
One simple attack that can be used for this purpose is the additive white Gaussian noise
(AWGN), which has been widely used in the literature to model the attacks incurred in
a transmission channel. In this case, the optimization problem can be described as the
minimization of the perceptual distortion after watermark embedding having constant
robustness against AWGN. Assuming that the detection statistic is the normalized corre-
lation, it can be easily proven that the optimal solution lies on a hyperboloid inside the
hypercone of the normalized correlation [27]. Finding the optimal watermarked vector
corresponds to finding the vector that lies on the hyperboloid that has minimum distance
from the host signal. The analytical solution of this problem involves the solution of a
quartic equation and, thus, for simplicity reasons the solution can be found by exhaustive
search.

From the above analysis, it is obvious that the watermarking scheme designer who
wants to use informed embedding has to decide on the robustness and perceptual distor-
tion measures that will be used and on the appropriate detection statistic. Unfortunately,
no robustness measure can be defined for the majority of common attacks. Furthermore,
if someone can define a robustness measure against one attack, it is most probable that
this measure will not be valid for other attacks. Another problem is that effective percep-
tual distortion measures are a research subject themselves since, in the case of images,
measuring the distortion involves the modelling of the HVS. For the above reasons,
the informed embedding watermarking systems cannot outperform the practical, often
heuristically designed, watermarking systems under common watermark attacks such as
image rotation, scaling, and cropping, despite their solid mathematical foundation.

A simple watermarking technique to utilize the interference of the host signal to
watermark detection, for improved performance, has been introduced in [103]. The
difference from the previous schemes is that it does not reject the host interference.
Instead, in the watermark embedding phase, the correlation output prior to embedding
is exploited in order to increase the embedding power and consequently the detector
response. Another advantage of the proposed method is the perceptual analysis step that
improves the perceptual quality of the watermarked content. The proposed technique is
effectively employed in both additive and multiplicative spread spectrum schemes.

22.5.5.2 Informed Coding Watermarking
Informed embedding algorithms yield better performance than their blind competitors.
However, the previously described algorithms do not fully exploit the information of the
host signal in that they do not use this information during the message coding procedure.
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That is, when multiple-bit watermarks are considered, the message coding procedure can
use the information of the host signal in order to select an appropriate code vector for the
specific host signal that minimizes the perceptual distortion of the watermarked signal
and maximizes the robustness in terms of appropriate measures. These algorithms that
take advantage of the side information during the message encoding procedure are called
informed coding watermarking algorithms. It is possible to combine informed embedding
and informed coding in order to achieve significantly better performance.

Informed coding has been described based on a theoretical result obtained by Costa
[104]. This result implies that the capacity of a watermarking system might not depend
on the distribution of the host signal but rather on the distortions the watermark must
survive (i.e., the desired level of robustness). Costa introduced the idea of “writing on
dirty paper” which can be described as follows: Having a piece of paper covered with
independent dirty spots of normally distributed intensity, someone has to write a message
using a limited amount of ink. The dirty paper, with the message on it, is then transmitted to
someone else, and acquires more normally distributed dirt on the way. If the receiver cannot
distinguish between the ink and the dirt, how much information can be reliably sent? Costa
presented this problem as an analogy to the communication channel shown in Fig. 22.6.
The channel has two independent white Gaussian noise sources. The first one represents
the host signal and the second one represents the attacks that the watermarked signal
may face. Before the transmitter chooses a signal to send, it is informed that the host
signal is fo . The transmitter should send a signal that is limited by a power constraint
that corresponds to the limited ink on the dirty paper example or to the perceptual
distortions constraint in a real watermarking system. Costa showed that, for the above
communication scheme, the first noise source has no effect on the channel capacity. That
is, if a watermarking scheme behaves enough like this dirty paper channel, its maximum
message payload should not depend on the host media.

Unfortunately, a real watermarking scheme has substantial differences from the dirty
paper communication scheme:

■ The two noise sources, especially the host signal, are rarely Gaussian.

■ The distortions implied by the channel (i.e., the second AWGN source) are
dependent on the watermarked signal.

Transmitter Receiver

First noise
source (AWGN)

Second noise
source (AWGN)

f

fw
mn

wm

n

FIGURE 22.6

Communication channel model proposed by Costa.



22.5 Copyright Protection Watermarking 631

■ The fidelity constraint (i.e., the constraint on perceptual distortions) cannot be
represented by the constrained power, since this is analogous to the MSE, which is
a poor perceptual distortion estimate.

For the above reasons, it is not straightforward to prove that the capacity of watermarking
is independent of the distribution of the host signal. Other researchers studied channels
that better model a real watermarking scheme [105]. They have shown that, even if
the second noise source is not AWGN but a hostile adversary that intentionally tries to
remove the watermark, the dirty paper theory result still holds. They have also found
that, even when the unwatermarked signal is not Gaussian, the result is approximately
true.

The basic idea of applying Costa’s theory to watermarking is using several alternative
code words for each message instead of a single one. The code word that will be used for
transmitting the message is the one that minimizes the interference of the host signal.
Let us consider a simple channel in which only two different host signals, f1 and f2, can
be transmitted. That is, the first AWGN source can generate only these two signals, while
the second AWGN source can generate any noise signal. Suppose that the transmitter
should send one of the M possible messages m. If the host signal to be transmitted is
f1, then the optimal solution for encoding the message m is to select w � m � f1 as the
signal to be transmitted, since it is known to the transmitter that the interference will
be f1. The constraint of the limited power of the watermark w defines a hypersphere in
the multidimensional space of the host signal that is centered in f1. All the watermarked
versions of f1 containing the different encoded messages should lie inside the hypersphere
and should be as far as possible from each other. If the host signal to be transmitted is the
signal f2, then the optimal solution is to construct the watermark as w � m � f2. Again
all the encoded messages should lie inside a hypersphere centered in f2. It is obvious that,
if the two host signals are sufficiently different from each other, the two hyperspheres do
not overlap and two different sets of code vectors can be used for encoding the messages
depending on the host signal. The receiver also uses two sets of code vectors and selects
the code vector that is closer, in terms of Euclidean distance, to the received signal.
This communication scheme is reliable even though the receiver does not have any side
information about the host signal.

The measures that indicate the robustness of the described scheme are firstly the
radius of the hyperspheres, which allows for many different messages to be encoded (i.e.,
be included and sufficiently scattered inside the hypersphere), and secondly, the distance
between the host signals which indicates the amount of noise that can de dealt with
without causing shifting to a set of code vectors different from the one used for encoding.

In a more realistic situation, the hyperspheres of the host signals will overlap and, more
generally, the number of different host signals will be unlimited, and thus generating a
set of code vectors for each host signal will be infeasible. In order to solve these problems
and design a scheme that can deal with the constraints of a real watermarking system,
the QIM method has been proposed [28]. QIM refers to embedding information by
first modulating an index or a sequence of indices with the embedded information and
then quantizing the host signal with the associated quantizer or sequence of quantizers.
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A simple example with two quantizers that are used to encode two different messages is
shown in Fig. 22.7. The size of the quantization cells, one of which is shown in this figure,
determines the distortion that can be tolerated. In QIM, each message is encoded using
a different quantizer that covers the entire multidimensional space of the host signal in
a structured manner. During the encoding procedure, the host signal is quantized using
the quantizer that corresponds to the message to be embedded. The distortion induced
by the quantization step is associated with the fidelity constraint, whereas the minimum
distance between the nodes of two different quantizers is associated with the maximum
perturbation that can be tolerated by the watermarking scheme.

A practical implementation of QIM is Dither Modulation, where the so-called dither
quantizers are used during message encoding. The property of these quantizers that ren-
ders them appropriate for QIM is that the quantization cells and reconstruction points of
any given quantizer are shifted versions of the quantization cells and the reconstruction
points of any other quantizer. This property is exploited in the message encoding pro-
cedure, where each possible message maps uniquely onto a different dither vector (i.e.,
quantizer) and the host signal is quantized using the resulting quantizer. The purpose of
dither modulation, which is commonly used to deal with quantization noise, is threefold
[106]. First, a pseudorandom dither signal can reduce quantization artifacts to produce
a perceptually superior quantized signal. Second, dither ensures that the quantization
noise is independent of the host signal. Third, the pseudorandom dither signal can be

X

FIGURE 22.7

Quantization index modulation for information embedding. Two different quantizers are depicted.
The input signal is quantized with the O-quantizer that corresponds to the first of the two possible
messages.
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considered to act as a key which is only known to the embedder and detector, thereby
improving the security of the system.

Many practical realizations of QIM have been proposed to deal with the problem of
the increased computational complexity of the original approach [107]. In most cases,
regular lattices are used as realization of the quantizers. The drawback of these lattice
codes is that they are not robust against valumetric scaling (i.e., multiplication of the
host signal by a gain factor) such as contrast changes in images. A small change on
the contrast of a watermarked image may result in errors in message decoding. If the
gain is constant throughout the feature sequence, the so-called fixed gain attack (FGA)
results. If the gain is not constant (e.g., 	-correction), the attack is more difficult to deal
with. Weakness against FGA is a serious drawback, e.g., with respect to classical spread
spectrum methods, since in many cases,multiplication by a constant factor does not intro-
duce any annoying artifacts, yet it results in a dramatic performance degradation of the
QIM-based methods.

Various approaches that try to remedy the valumetric scaling attack vulnerability of
QIM have been proposed. To this end, the embedding of an auxiliary pilot signal, to
be used by the decoder in order to recover from amplitude scaling, has been proposed
in [108]. However, this approach poses several problems, since the embedding of this
signal, which is deterministically known to both transmitting and receiving ends, reduces
the available payload and introduces an additional source of weakness against malicious
attacks because attackers can decide to attack either the watermark or the pilot signal.

Another class of methods is based on the idea of estimating the valumetric scaling
factor prior to detection. The estimated factor can be used either for reversing the attack
or for adapting the watermark detection parameters to agree with the valumetric charac-
teristics of the attacked image. In [106], the use of perceptual models has been proposed
in order to improve fidelity and provide resistance to valumetric scaling. The Watson’s
perceptual model is used in order to provide adaptive quantization steps, instead of the
constant step used in standard QIM, based on the perceptual characteristics of the image
to be watermarked. Moreover, the use of the perceptual model allows for compensation
for the valumetric scaling attack by estimating adaptively the quantization step in the
watermark detection phase, taking into account the undergone valumetric scaling.

A third way of dealing with valumetric scaling is by embedding the watermark in a
domain that is invariant to valumetric scaling. One such method has been presented in
[109], where a quantization-based data-hiding method, called Rational Dither Modula-
tion, was proposed. The proposed method modifies the conventional dither modulation
in such a way that the result becomes invariant to gain attacks. The method utilizes a
gain-invariant adaptive quantization step-size at both the embedder and decoder. Invari-
ance against FGA is obtained by applying conventional dither modulation to the ratio of
the current host sample and the previously generated watermarked sample. It is obvious
that the ratio of two consecutive pixel values is invariant to the FGA. The Rational Dither
Modulation method has been compared with improved spread-spectrum methods and
achieved much higher information embedding rates for the same bit error probability.

Finally, adoption of spherical codewords together with correlation decoding is another
way to deal with the valumetric scaling attack. A dirty paper coding technique of this
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category has been presented in [110]. Robustness against the gain attack is obtained by
adopting a set of (orthogonal) equienergetic codewords and a correlation-based decoder.
The performance of the dirty coding algorithm is further improved by replacing orthog-
onal with quasi-orthogonal codes, namely, Gold sequences, and by concatenating them
with an outer turbo code. The use of spherical codes to cope with the FGA relies on
the observation that using a minimum distance decoder on a set of codewords lying on
the surface of a sphere ensures that multiplication by a constant factor does not move a
point from one decoding region to the other. The problem with spherical codes is that
watermark embedding and recovery get very complicated, thus losing the simplicity of
lattice-based watermarking. An attempt, also in [110], to develop a simple watermarking
scheme relying on the properties of orthogonal spherical codes has given good results.
However, such results have been obtained at the expense of watermark payload.

22.5.5.3 Perceptual Masking
As we have previously seen, one of the watermark characteristics is imperceptibility which
can be defined using two different terms: fidelity and quality. Fidelity is a measure of the
similarity between the original host signal and the watermarked signal and, thus, should
be as high as possible. Image quality is a measure of the viewer’s satisfaction when viewing
an image. A high-quality image looks good (i.e., it has no obvious processing artifacts).
Thus, fidelity is a two argument measure, whereas quality is a single argument one.

From the above definitions, it is obvious that image quality may be reduced after
watermark embedding, only if the quality of the original host signal is high. However,
there are many cases where the quality of the original host signal is medium or low
(for example, surveillance images). In these cases, the objective is to maintain the image
quality. Preserving the quality after watermark embedding is achieved when the fidelity
is high, since in this case, the watermarked signal is indistinguishable from the original
host signal. High fidelity of the watermarked image assures quality preservation, whereas
high quality of the watermarked image does not assure high fidelity.

In the design of watermarking schemes using informed embedding or coding, we
have seen that the MSE is the simplest measure of the perceptual distortion implied
by the watermark. Constructing watermarks resulting in constant MSE between the
watermarked and the original signal was considered as a way of keeping constant fidelity.
However, in a real situation, two different watermarked signals that have the same MSE
when compared to their originals are not perceived as having the same fidelity, because
MSE does not correlate well with subjective fidelity. Instead of the MSE, other more
complex models have been proposed for measuring visual fidelity that is closer to the way
HVS works.

The properties of the HVS that are taken into account when constructing a
watermarking scheme are the following:

■ Sensitivity, which is related to the eye response to direct stimuli. For example, a
common sensitivity measure is the minimum brightness required for an eye to
perceive certain spatial or temporal image frequencies.
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■ Masking, which is a measure of the observer’s response to one stimulus
(watermark), when a second “masking” stimulus (host image) is also present. Thus,
by using visual masking, we can hide more information in a textured image region
than in a uniform region since texture provides a better mask.

■ Pooling, which is a single estimate of the overall change in the visual appearance of
an image that is caused by combining the perception of separate distortions.

The important issue is the adaptation of the watermark to the properties of the HVS,
i.e., content-adaptive watermarking. Assuming we are given a masking function con-
structed according to the HVS properties, we wish to embed the watermark into the host
image by keeping it under the threshold of visual imperceptibility. Perceptually adaptive
watermarking was mainly inspired by the achievements in perceptual-based image/video
compression, especially in the early stages of watermarking technology development.
Therefore, perceptual masking was mainly addressed in the transform domain.

One of the first approaches to content-adaptive digital watermarking was proposed
in [111]. This approach was based on the just noticeable difference, which was computed
in the DCT domain using a mask developed for lossy JPEG compression by Watson [112].
Another sophisticated approach takes into account the luminance and contrast sensitivity
of the HVS, and differentiates between the visibility of the edge and texture regions. The
resulting mask was used in the spatial image.

The next generation of content-adaptive digital watermarking methods utilizes the
idea that perceptual masking should be performed directly in the transform domain
(mostly wavelet domain) to be matched with the JPEG2000 image compression standard.
Perceptual masking performed in the transform domain has a number of advan-
tages. First, the watermark embedding process is accomplished in the same domain
as image/video compression, which renders watermarking-on-the-fly possible. Second,
it allows JPEG2000 compliance that ensures additional robustness of the watermarking
algorithms to lossy JPEG2000 compression. It should be noted that the mask and water-
mark energy allocation should be simultaneously adapted to the other types of lossy
compression algorithms such as DCT-based JPEG.

The factors that should be taken into account for the mask design to match HVS
properties are the following:

■ Background luminance sensitivity;

■ Contrast sensitivity depending on image subband or resolution;

■ Orientation sensitivity (anisotropy);

■ Edge and pattern (texture) masking.

The background luminance sensitivity is described according to Weber’s law: the eye
is less sensitive to noise in bright regions. For the subband sensitivity, experiments have
proven that the eye is differently stimulated depending on the frequency, orientation,
and luminance of the image content. Finally, the higher the texture energy of an image
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region is, the lower the visual sensitivity is with respect to content changes in this region.
The combination of high-frequency edges and low-frequency luminance variance is used
to calculate the texture masking factor. The edge proximity factor refers to the fact that
the higher the luminance difference of an edge is, the less the visual sensitivity is at the
vicinity of the edge. However, as we get away from the edge, the visual sensitivity is
reestablished.

To establish a bridge between the rate-distortion theory and content-adaptive water-
marking, a stochastic texture perceptual mask was prepared based on a noise visibility
function (NVF) developed earlier only for the spatial image domain [113]. This result was
also extended to the wavelet domain aiming at including the multi-resolution paradigm
in the stochastic framework to take into account a modulation transfer function (MTF) of
the HVS and to match the proposed watermarking algorithm with the image compres-
sion standard JPEG2000. Practically, this means that the assigned watermark strength
depends on the image subband. Such a modification leads to a nonwhite watermark
spectrum matched with the MTF, which was not the case for the spatial domain-based
version of the NVF. The second reason to use wavelet domain embedding is the desire
to incorporate the HVS anisotropy to different spatial directions in the perceptual mask.
The spatial domain version of the NVF uses isotropic image decomposition based on the
extraction of a local mean from the original image or its highpass filter output. In the
wavelet domain, the image coefficients in three basic spatial directions, i.e., vertical, hor-
izontal, and diagonal, are received as a result of the decomposition that better reflects the
HVS anisotropy properties. As a result, the watermark strength varies with orientations
in the proposed mask.

Recent efforts to incorporate perceptual masking principles in image watermarking
algorithms are described in [106, 114, 115].

22.6 IMAGE CONTENT INTEGRITY AND AUTHENTICATION
WATERMARKING

In this section, we focus on how watermarks can be used to assist in maintaining and
verifying image content integrity. Image editing is in many cases legitimate and desirable.
However, for many applications, modifications introduced by image editing may be
malicious or may affect image interpretation, thus resulting in image tampering. For
example, tampering with images acquired for medical applications may result in mis-
diagnosis. Changes in images that are used as evidence in a criminal trial can result in a
wrongful conviction. Image content authentication mainly focuses on the development
of fragile or semifragile watermarks.

In a real world application scenario, the image owner embeds a watermark so that
either she or the user is able to check if the image has been manipulated by someone.
Sometimes, the owner can subsequently become the user as well. The information con-
veyed by the watermark is related to the authenticity and/or integrity of the product. In
certain cases, it is interesting to detect which image regions have been altered. In general,
the attacker intends to alter the content of the product without distorting the watermark.



22.6 Image Content Integrity and Authentication Watermarking 637

This goal is the primary distinction between watermarking for image authentication and
for copyright protection. Alternatively, the attacker may try to copy the watermark from
a watermarked image to another image. This is the forgery attack. The watermark should
generally be destroyed by any authentication attack on the image. In some cases, it is
desirable that the watermark withstands certain attacks that do not degrade image qua-
lity (e.g., high-quality lossy compression). A usual application occurs when photographs
or movies are sent by news agencies (owners) to newspapers or TV channels (users). The
news broadcaster wants to be assured that the images are authentic before broadcasting.
Thus, the authenticity check is a procedure that concerns primarily the user of the image.
If someone wants to use an image authentication algorithm in front of a court, then the
user is the judge who needs to be assured of the image authenticity.

The purpose of an image authentication algorithm is to provide the user with all the
information needed about image authenticity. Image authentication algorithms usually
produce an authenticity measure in the range [0,1]. If is required that the image data
should not change at all, any image alteration is prohibited and the threshold for accepting
an image as authentic should be very high (or close to 1). Thus, the use of an authenticity
measure is enough to assure authenticity. This type of authentication is called complete or
exact or hard authentication. However, in certain cases of image content authentication
(e.g., in the case of stored surveillance images), legitimate distortions such as high-quality
image compression are allowed, i.e., an image is considered authentic even after high-
quality lossy compression. In such cases, the image authenticity measure is lower than 1
even for authentic images,where the image content remains unaltered. Thus, the use of the
authenticity measure alone is not adequate for deciding about the image authenticity. In
this case, the image authentication algorithm should have the ability of tamper proofing,
i.e., to detect the tampered image regions that change the image content. This type of
authentication is called content or selective or soft authentication. We shall use only the
terms complete and content authentication for the rest of this section.

It is obvious that the requirements of an image authentication scheme are different,
depending on whether we are considering complete or content authentication. In com-
plete authentication, the watermark should be destroyed even if a single bit has been
changed in the watermarked image. Localization of the tampered regions is a desirable
feature in complete authentication. In content authentication schemes, the basic require-
ment is that the watermark should be destroyed whenever an illegitimate distortion is
applied to the watermarked image and should not be destroyed when the distortions are
legitimate. It is obvious that the critical point is the characterization of a distortion as
legitimate or illegitimate. This issue cannot be dealt with universally but rather is specific
for each particular application. For example, uniform geometric distortions applied on
an image may be legitimate for a press agency but illegitimate for a medical applica-
tion. The distortions that are usually considered legitimate for many applications are
those that do not change in any manner the content of the image. Such distortions are
high-quality lossy compression, mild noise filtering, geometric transformations, etc. In
any case, the content authentication should have the ability of tampering localization.
That is, the image regions that have been subject to any illegitimate distortion should be
detected.
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In the extreme case of content authentication, only the semantic meaning of an image
should be preserved for an image to be considered as authentic. The semantic content of
the image can be represented in the form of a feature vector. In this case, content authen-
tication means that the feature vector of the image should always be extracted unaltered.
In this case, the image is considered authentic even if heavy distortions have significantly
reduced the image quality. Another characteristic of some content authentication algo-
rithms is the property of self restoration. Self restoration is ability of the algorithm to
restore the image to its original content even if the content has been distorted by ille-
gitimate manipulations. To this end, self-embedding has been proposed in [116]. In this
approach, a low-quality version of the image is embedded in the original image using
least significant bit (LSB) modulation. The low-quality information of each image block
is embedded in the LSBs of a different image block so as to assure that either the original
image block or the embedded one will be available at the restoration phase.

A general watermarking framework used for image authentication was presented in
[12]. This framework is comprised of three steps: the watermark generation, embedding,
and detection procedures. Let R and Z denote the set of real and integer numbers, respec-
tively, and U � {0,1,2}. Given an image f (x) : D ⊆ Z2→ Z and a watermark key k ∈ Z ,
a ternary watermark w(x) : G ⊆ Z2→ U can be produced by the watermark generation
procedure, where x denotes the coordinate vector of a pixel. In watermark generation,
either chaotic techniques or pseudorandom number generators can be used for produ-
cing the watermark w(x). The watermark embedding procedure of the watermark w(x)

in the image f (x) is given by

fw (x) � f (x)⊗w(x), (22.31)

where fw(x) is the watermarked image and ⊗ is a generalized superposition operator
which includes appropriate data truncation and quantization, if needed. The watermark
embedding procedure can be applied either in the spatial domain or in the other domains
(e.g., in the DFT, DWT, DCT domains). Watermark detection produces a binary decision
on image authenticity and the watermark detection credibility measured by the water-
mark detection ratio. Additionally, watermark detection produces an image denoting the
unaltered (authentic) regions of the watermarked image.

In the following, a brief description of the most important schemes proposed for
image authentication is presented. The first class of authentication methods is based on
using a separate header (digital signature) which must be known to the receiver that will
perform the authenticity check. These schemes, although not based on watermarking,
will be briefly reviewed since they appeared first in the literature. The development of
a “trustworthy digital camera” was proposed in [117]. A digital image is captured by a
camera and then is passed through a hash function. The output of the hash function
is encrypted by the photographer’s private key, and a separate authentication signal is
created. In order to ensure image authentication, the encrypted signal is decrypted by the
photographer’s public key and the hashed version of the original image is compared with
that of the received image. A compression tolerant method for image authentication is
proposed in [118]. The proposed scheme is based on the extraction of feature points that
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are almost unaffected by lossy compression. The major drawbacks of this method are the
need of a separate header for storing the digital signature and the low accuracy in the
detection of the tampered regions.

An authentication method that gives a distortion measurement instead of a binary
decision on image authenticity is proposed in [119]. It does not require a separate signa-
ture file or header for image authentication, but it cannot detect the image regions that
are authentic, if selective modifications to fine image details have been made. A method
for image authentication that is based on changing the LSB of the image pixels is pro-
posed in [120]. The method can detect alterations that are made in several image regions.
However, it is not robust to high-quality lossy compression.

Another class of authentication methods uses a transform domain such as DFT, DWT,
DCT, etc. for watermark embedding. These methods are usually more robust against
attacks such as filtering and compression [121]. A method in which a look-up table is
needed for image authentication is proposed in [122]. The watermark is embedded in
the DCT domain and attains robustness to lossy compression. This method is based on
[123], where the LUT is used for watermark embedding in the spatial domain. How-
ever, it is not robust against lossy compression and, furthermore, is very sensitive to the
forgery attack presented in [124]. A method for wavelet transform domain authentica-
tion watermarking is proposed in [125]. The detection of the tampered image regions is
not addressed, and the compression of the watermarked image is not supported. Instead,
the authentication algorithm is integrated within the SPIHT codec. This means that the
authentication algorithm protects the already compressed image. An image watermark-
ing method for tamper proofing and authentication is proposed in [126]. The watermark
is embedded in the discrete wavelet transform domain by quantizing the corresponding
wavelet coefficients. The method is robust against compression and succeeds in detecting
alterations of the host image, whether they are produced by changing fine image details
or by high-quality image compression. The major drawback of the proposed method is
that, when combined attacks are made to the watermarked image, the authenticity check
is based on the low DWT levels, i.e., levels 4 and 5. These levels contain a small number of
coefficients, and a decision about image authenticity based on the watermark detection at
these levels is unreliable, since each coefficient represents a region of 16 	 16 or 32 	 32
image pixels. Robustness against combined attacks is not supported.

An attack that has been developed for image authentication algorithms is presented
in [124] and succeeds in copying the watermark from a watermarked image to another
image that is not watermarked. The attack has been successfully applied to the methods
presented in [120, 127, 128]. Knowledge of the logo to be embedded is assumed in order
to forge the watermark. The main disadvantage that renders these methods vulnerable
to the attack is that they are blockwise independent. That is, the watermark in a certain
block depends neither on the entire image nor on other watermarked blocks. Another
fact that helps the attacker to estimate the inserted watermark statistically is that critical
watermark parameters, such as the positions of the watermarked pixels and the embedded
logo are known to the attacker.

Another technique for image authentication has been proposed in [129, 130]. It
is based on a modification of an established watermarking technique for copyright
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protection [12]. The image authentication algorithm generates a watermark according to
the owner’s private key. Subsequently, the watermark is imperceptibly embedded in the
image. In the authentication detection procedure, the watermark is extracted from the
image and a measure of tampering is produced for the entire image. The algorithm detects
the regions of the image that are altered/unaltered and, thus, are considered nonau-
thentic/authentic, respectively. The alterations that are produced by a relatively mild
compression and do not change significantly the quality of the image are also detected.
An example of an image authentication procedure using the image “Opera of Lyon”
(http://www.petitcolas.net/fabien/watermarking/image_database/index.html), which has
been used as a reference image for watermark benchmarking, is depicted in Fig. 22.8.

The method in [12] has been extended to support tampering detection using a
hierarchical structure in the detection phase that ensures accurate tamper localiza-
tion [131].

A novel framework for lossless (invertible) authentication watermarking, which
enables zero-distortion reconstruction of the original image upon verification, has been
proposed in [132]. The framework allows authentication of the watermarked images
before recovery of the original image. This reduces computational requirements in situ-
ations where either the verification step fails or the zero-distortion reconstruction is not
needed. The framework also enables public-key authentication without granting access
to the original and allows for efficient tamper localization. Effectiveness of the framework
is demonstrated by implementing it using hierarchical image authentication along with
lossless generalized-least significant bit data embedding.

A blind image watermarking method based on a multistage vector quantizer struc-
ture, which can be used simultaneously for both image authentication and copyright
protection, has been proposed in [133]. In this method, the semifragile watermark and
the robust watermark are embedded in different vector quantization stages using different
techniques. Simulation results demonstrated the effectiveness of the proposed algorithm
in terms of robustness and fragility. Another semifragile watermarking method that is

(a) (b) (c)

FIGURE 22.8

(a) Original watermarked image; (b) tampered watermarked image; (c) tampered regions.
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robust against lossy compression has been proposed in [134]. The proposed method uses
random bias and nonuniform quantization to improve the performance of the methods
proposed in [121].

Differentiating between malicious and incidental manipulations in content authen-
tication remains an open issue. Exploitation of robust watermarks with self-restoration
capabilities for image authentication is another research topic. The authentication of
certain regions instead of the whole image when only some regions are tampered with
has also attracted the attention of the watermarking community.
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23.1 INTRODUCTION
The problem of resolving the identity of a person can be categorized into two fundamen-
tally distinct types of problems with different inherent complexities [1]: (i) verification
and (ii) recognition. Verification (authentication) refers to the problem of confirming
or denying a person’s claimed identity (Am I who I claim I am?). Recognition (Who am
I?) refers to the problem of establishing a subject’s identity.1 A reliable personal iden-
tification is critical in many daily transactions. For example, access control to physical
facilities and computer privileges are becoming increasingly important to prevent their
abuse. There is an increasing interest in inexpensive and reliable personal identification
in many emerging civilian, commercial, and financial applications.

Typically, a person could be identified based on (i) a person’s possession (“something
that you possess”), e.g., permit physical access to a building to all persons whose identity
could be authenticated by possession of a key; (ii) a person’s knowledge of a piece of infor-
mation (“something that you know”), e.g., permit login access to a system to a person
who knows the user id and a password associated with it. Another approach to identifi-
cation is based on identifying physical characteristics of the person. The characteristics
could be either a person’s anatomical traits, e.g., fingerprints and hand geometry, or his
behavioral characteristics, e.g., voice and signature. This method of identification of a
person based on his anatomical/behavioral characteristics is called biometrics. Since these
physical characteristics cannot be forgotten (like passwords) and cannot be easily shared
or misplaced (like keys), they are generally considered to be a more reliable approach to
solving the personal identification problem.

23.2 EMERGING APPLICATIONS
Accurate identification of a person could deter crime and fraud, streamline business
processes, and save critical resources. Here are a few mind boggling numbers: about one

1Often, recognition is also referred to as identification.
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billion dollars in welfare benefits in the United States are annually claimed by “double
dipping”welfare recipients with fraudulent multiple identities [44]. MasterCard estimates
credit card fraud at $450 million per annum which includes charges made on lost and
stolen credit cards: unobtrusive personal identification of the legitimate ownership of a
credit card at the point of sale would greatly reduce credit card fraud. About 1 billion
dollars worth of cellular telephone calls are made by cellular bandwidth thieves—many
of which are made using stolen PINs and/or cellular phones. Again an identification of
the legitimate ownership of a cellular phone would prevent loss of bandwidth. A reliable
method of authenticating the legitimate owner of an ATM card would greatly reduce
ATM-related fraud worth approximately $3 billion annually [9]. A method of identifying
the rightful check payee would also save billions of dollars that are misappropriated
through fraudulent encashment of checks each year. A method of authentication of each
system login would eliminate illegal break-ins into traditionally secure (even federal
government) computers. The United States Immigration and Naturalization Service has
stated that each day it could detect/deter about 3,000 illegal immigrants crossing the
Mexican border without delaying legitimate persons entering the United States if it had
a quick way of establishing personal identification.

High-speed computer networks offer interesting opportunities for electronic com-
merce and electronic purse applications. Accurate authentication of identities over net-
works is expected to become one of the most important applications of biometric-based
authentication.

Miniaturization and mass-scale production of relatively inexpensive biometric sen-
sors (e.g., solid state fingerprint sensors) has facilitated the use of biometric-based
authentication in asset protection (laptops, PDAs, and cellular phones).

23.3 FINGERPRINT AS A BIOMETRIC
A smoothly flowing pattern formed by alternating crests (ridges) and troughs (valleys) on
the palmar aspect of a hand is called a palmprint. Formation of a palmprint depends on
the initial conditions of the embryonic mesoderm from which they develop. The pattern
on the pulp of each terminal phalanx (finger) is considered as an individual pattern and
is commonly referred to as a fingerprint (see Fig. 23.1). A fingerprint is believed to be
unique to each person (and each finger). Even the fingerprints of identical twins are
different.

Fingerprints are one of the most mature biometric technologies and are considered
legitimate evidence in courts of law all over the world. Fingerprints are, therefore, rou-
tinely used in forensic divisions worldwide for criminal investigations. More recently, an
increasing number of civilian and commercial applications are either using or actively
considering the use of fingerprint-based identification because of a better understand-
ing of fingerprints as well as demonstrated matching performance better than any other
existing biometric technology.
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(a) (b) (c)

(d) (e) (f)

FIGURE 23.1

Fingerprints and a fingerprint classification schema involving six categories: (a) arch; (b) tented
arch; (c) right loop; (d) left loop; (e) whorl; and (f) twin loop. Critical points in a fingerprint,
called core and delta, are marked as squares and triangles, respectively. Note that an arch type
fingerprint does not have a delta or a core. One of the two deltas in (e) and both the deltas in
(f) are not imaged. A sample minutiae ridge ending (◦) and ridge bifurcation (�) is illustrated
in (e). Each image is 512 � 512 with 256 gray levels and is scanned at 512 dpi resolution. All
feature points were manually extracted by one of the authors.

23.4 HISTORY OF FINGERPRINTS
Humans have used fingerprints for personal identification for a very long time [29]. Mod-
ern fingerprint matching techniques were initiated in the late 16th century [10]. Henry
Fauld, in 1880, first scientifically suggested the individuality and uniqueness of finger-
prints. At the same time, Herschel asserted that he had practiced fingerprint identification
for about 20 years [29]. This discovery established the foundation of modern fingerprint
identification. In the late 19th century, Sir Francis Galton conducted an extensive study
of fingerprints [29]. He introduced the minutiae features for fingerprint classification
in 1888. The discovery of the uniqueness of fingerprints caused an immediate decline
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in the prevalent use of anthropometric methods of identification and led to the adop-
tion of fingerprints as a more efficient method of identification [36]. An important
advance in fingerprint identification was made in 1899 by Edward Henry, who (actu-
ally his two assistants from India) established the famous “Henry system” of fingerprint
classification [10, 29]: an elaborate method of indexing fingerprints very much tuned
to facilitating the human experts performing (manual) fingerprint identification. In the
early 20th century, fingerprint identification was formally accepted as a valid personal
identification method by law enforcement agencies and became a standard procedure in
forensics [29]. Fingerprint identification agencies were set up worldwide and criminal
fingerprint databases were established [29]. With the advent of livescan fingerprinting
and availability of cheap fingerprint sensors, fingerprints are increasingly used in govern-
ment (US-VISIT program [40]) and commercial (Walt Disney World fingerprint
verification system [8]) applications for person identification.

23.5 SYSTEM ARCHITECTURE
The architecture of a fingerprint-based automatic identity authentication system is
shown in Fig. 23.2. It consists of four components: (i) user interface, (ii) system database,
(iii) enrollment module, and (iv) authentication module. The user interface provides
mechanisms for a user to indicate his identity and input his fingerprints into the system.
The system database consists of a collection of records, each of which corresponds to
an authorized person that has access to the system. In general, the records contain

Minutia

Extractor

Minutia

Matcher

Extractor

Minutia Quality

Authentication Module

Enrollment Module

Checker

User Name

System DatabaseUser Interface

FIGURE 23.2

Architecture of an automatic identity authentication system [22]. © IEEE.
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the following fields which are used for authentication purposes: (i) user name of the
person, (ii) minutiae templates of the person’s fingerprint, and (iii) other information
(e.g., specific user privileges).

The task of the enrollment module is to enroll persons and their fingerprints into
the system database. When the fingerprint images and the user name of a person to
be enrolled are fed to the enrollment module, a minutiae extraction algorithm is first
applied to the fingerprint images and the minutiae patterns are extracted. A quality
checking algorithm is used to ensure that the records in the system database only consist
of fingerprints of good quality, in which a significant number (default value is 25) of
genuine minutiae are detected. If a fingerprint image is of poor quality, it is enhanced to
improve the clarity of ridge/valley structures and mask out all the regions that cannot be
reliably recovered. The enhanced fingerprint image is fed to the minutiae extractor again.

The task of the authentication module is to authenticate the identity of the person
who intends to access the system. The person to be authenticated indicates his identity
and places his finger on the fingerprint scanner; a digital image of the fingerprint is
captured; minutiae pattern is extracted from the captured fingerprint image and fed to a
matching algorithm which matches it against the person’s minutiae templates stored in
the system database to establish the identity.

23.6 FINGERPRINT SENSING
There are two primary methods of capturing a fingerprint image: inked (offline) and
live scan (inkless) (see Fig. 23.3). An inked fingerprint image is typically acquired in the
following way: a trained professional2 obtains an impression of an inked finger on a
paper, and the impression is then scanned using a flat bed document scanner. The live
scan fingerprint is a collective term for a fingerprint image directly obtained from the
finger without the intermediate step of getting an impression on a paper. Acquisition of
inked fingerprints is cumbersome; in the context of an identity authentication system,
it is both infeasible and socially unacceptable. The most popular technology to obtain
a live-scan fingerprint image is based on the optical frustrated total internal reflection
(FTIR) concept [28]. When a finger is placed on one side of a glass platen (prism), ridges
of the finger are in contact with the platen, while the valleys of the finger are not in
contact with the platen (see Fig. 23.4). The rest of the imaging system essentially consists
of an assembly of an LED light source and a CCD placed on the other side of the glass
platen. The light source illuminates the glass at a certain angle, and the camera is placed
such that it can capture the light reflected from the glass. The light that incidents on
the platen at the glass surface touched by the ridges is randomly scattered while the

2Possibly, for reasons of expediency, MasterCard sends fingerprint kits to their credit card customers.
The kits are used by the customers themselves to create an inked fingerprint impression to be used for
enrollment.
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(a) (b) (c)

(d) (e) (f)

FIGURE 23.3

Fingerprint sensing: (a) An inked fingerprint image could be captured from the inked
impression of a finger; (b) a live-scan fingerprint is directly imaged from a live finger
based on optical total internal reflection principle: the light scatters where the finger (e.g.,
ridges) touches the glass prism and the light reflects where the finger (e.g., valleys) does
not touches the glass prism; (c) fingerprints captured using solid state sensors show a
smaller area of the finger than a typical fingerprint dab captured using optical scan-
ners; (d) rolled fingerprints are images depicting the nail-to-nail area of a finger; (e) a
3D fingerprint is reconstructed from touchless fingerprint sensors (adopted from [33]);
(f) a latent fingerprint refers to a partial print typically lifted from the scene of a crime.
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FIGURE 23.4

FTIR-based fingerprint sensing [30].
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FIGURE 23.5

Fingerprint sensors can be embedded in many consumer products.

light that incidents at the glass surface corresponding to valleys suffers total internal
reflection. Consequently, portions of the image formed on the imaging plane of the CCD
corresponding to ridges are dark and those corresponding to valleys are bright. In recent
years, capacitance-based solid state live-scan fingerprint sensors are gaining popularity
since they are very small in size and can be easily embedded into laptop computers,
mobile phones, computer peripherals, and the like (see Fig. 23.5). A capacitance-based
fingerprint sensor essentially consists of an array of electrodes. The fingerprint skin acts
as the other electrode, thereby, forming a miniature capacitor. The capacitance due to
the ridges is higher than those formed by valleys. This differential capacitance is the basis
of operation of a capacitance-based solid state sensor [45]. More recently, multispectral
sensors [38] and touchless sensors [33] have been invented.

23.7 FINGERPRINT FEATURES
Fingerprint features are generally categorized into three levels. Level 1 features are the
macro details of the fingerprint such as ridge flow, pattern type, and singular points
(e.g., core and delta). Level 2 features refer to minutiae such as ridge bifurcations and
endings. Level 3 features include all dimensional attributes of the ridge such as ridge
path deviation, width, shape, pores, edge contour, incipient ridges, breaks, creases, scars,
and other permanent details (see Fig. 23.6). While Level 1 features are mainly used for
fingerprint classification, Level 2 and Level 3 features can be used to establish the indi-
viduality of fingerprints. Minutiae-based representations are the most commonly used
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FIGURE 23.6

Fingerprint features at three levels [25]. © IEEE.

representation, primarily due to the following reasons: (i) minutiae capture much of
the individual information, (ii) minutiae-based representations are storage efficient, and
(iii) minutiae detection is relatively robust to various sources of fingerprint degradation.
Typically, minutiae-based representations rely on locations of the minutiae and the direc-
tions of ridges at the minutiae location. In recent years, with the advances in fingerprint
sensing technology, many sensors are now equipped with dual resolution (500 ppi/1000
ppi) scanning capability. Figure 23.7 shows the images captured at 500 ppi and 1000 ppi
by a CrossMatch L SCAN 1000P optical scanner for the same portion of a fingerprint.
Level 3 features are receiving more and more attention [6, 25] due to their importance in
matching latent fingerprints which generally contain much fewer minutiae than rolled
or plain fingerprints.
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(a) (b)

FIGURE 23.7

Local fingerprint images captured at (a) 500 ppi; and (b) 1000 ppi. Level 3 features such as
pores are more clearly visible in a higher resolution image.

23.8 FEATURE EXTRACTION
A feature extractor finds the ridge endings and ridge bifurcations from the input fin-
gerprint images. If ridges can be perfectly located in an input fingerprint image, then
minutiae extraction is a relatively simple task of extracting singular points in a thinned
ridge map. However, in practice, it is not always possible to obtain a perfect ridge map.
The performance of currently available minutiae extraction algorithms depends heavily
on the quality of the input fingerprint images. Due to a number of factors (aberrant
formations of epidermal ridges of fingerprints, postnatal marks, occupational marks,
problems with acquisition devices, etc.), fingerprint images may not always have
well-defined ridge structures.

A reliable minutiae extraction algorithm is critical to the performance of an auto-
matic identity authentication system using fingerprints. The overall flowchart of a typical
algorithm [22, 35] is depicted in Fig. 23.8. It mainly consists of three components:
(i) Orientation field estimation, (ii) ridge extraction, and (iii) minutiae extraction and
postprocessing.

1. Orientation Estimation: The orientation field of a fingerprint image represents
the directionality of ridges in the fingerprint image. It plays a very important role in
fingerprint image analysis. A number of methods have been proposed to estimate
the orientation field of fingerprint images [28]. A fingerprint image is typically
divided into a number of nonoverlapping blocks (e.g., 32 � 32 pixels), and an
orientation representative of the ridges in the block is assigned to the block based
on an analysis of grayscale gradients in the block. The block orientation could
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FIGURE 23.8

Flowchart of the minutiae extraction algorithm [22]. © IEEE.

be determined from the pixel gradient orientations based on, say, averaging [28],
voting [31], or optimization [35]. We have summarized the orientation estimation
algorithm in Fig. 23.9.

2. Segmentation: It is important to localize the portions of the fingerprint image
depicting the finger (foreground). The simplest approach segments the foreground
by global or adaptive thresholding. A novel and reliable approach to segmenta-
tion by Ratha et al. [35] exploits the fact that there is significant difference in the
magnitudes of variance in the gray levels along and across the flow of a finger-
print ridge. Typically, block size for variance computation spans 1-2 inter-ridge
distances.

3. Ridge Detection: Common approaches to ridge detection use either simple or
adaptive thresholding. These approaches may not work for noisy and low-contrast
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(a) Divide the input fingerprint image into blocks of size W � W .

(b) Compute the gradients Gx and Gy at each pixel in each block [4].

(c) Estimate the local orientation at each pixel (i, j) using the following equa-
tions [35]:

Vx (i, j) �

i� W
2∑

u�i� W
2

j� W
2∑

v�j� W
2

2Gx (u,v)Gy (u,v), (23.1)

Vy (i, j) �

i� W
2∑

u�i� W
2

j� W
2∑

v�j� W
2

(G2
x (u,v) � G2

y (u,v)), (23.2)

�(i, j) �
1

2
tan�1(

Vx (i, j)

Vy (i, j)
), (23.3)

where W is the size of the local window; Gx and Gy are the gradient magnitudes
in x and y directions, respectively.

(d) Compute the consistency level of the orientation field in the local neighborhood
of a block (i, j) with the following formula:

C(i, j) �
1

N

√√√√
∑

(i�, j�)∈D

∣∣�(i�, j�) � �(i, j)
∣∣2, (23.4)

|��� �|�
{

d if (d � (��� � � 360) mod 360) < 180,

d � 180 otherwise,
(23.5)

where D represents the local neighborhood around the block (i, j) (in our
system, the size of D is 5 � 5); N is the number of blocks within D; �(i�, j�) and
�(i, j) are local ridge orientations at blocks (i�, j�) and (i, j), respectively.

(e) If the consistency level Eq. (23.5) is above a certain threshold Tc , then the local
orientations around this region are re-estimated at a lower resolution level until
C(i, j) is below a certain level.

FIGURE 23.9

Hierarchical orientation field estimation algorithm [22]. © IEEE.

portions of the image. An important property of the ridges in a fingerprint image
is that the gray level values on ridges attain their local maxima along a direction
normal to the local ridge orientation [22, 35]. Pixels can be identified to be ridge
pixels based on this property. The extracted ridges may be thinned/cleaned using
standard thinning [32] and connected component algorithms [34].
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4. Minutiae Detection: Once the thinned ridge map is available, the ridge pixels with
three ridge pixel neighbors are identified as ridge bifurcations and those with one
ridge pixel neighbor identified as ridge endings. However, all the minutiae thus
detected are not genuine due to image processing artifacts and the noise in the
fingerprint image.

5. Postprocessing: In this stage, typically, genuine minutiae are gleaned from the
extracted minutiae using a number of heuristics. For instance, too many minutiae
in a small neighborhood may indicate noise and they could be discarded. Very close
ridge endings oriented antiparallel to each other may indicate spurious minutia
generated by a break in the ridge due to either poor contrast or a cut in the finger.
Two very closely located bifurcations sharing a common short ridge often suggest
extraneous minutia generated by bridging of adjacent ridges as a result of dirt or
image processing artifacts.

23.9 FINGERPRINT ENHANCEMENT
The performance of a fingerprint image matching algorithm relies critically on the quality
of the input fingerprint images. In practice, a significant percentage of acquired finger-
print images (approximately 10% according to our experience) is of poor quality. The
ridge structures in poor-quality fingerprint images are not always well defined and hence
they cannot be correctly detected. This leads to the following problems: (i) a significant
number of spurious minutiae may be created, (ii) a large percentage of genuine minutiae
may be ignored, and (iii) large errors in minutiae localization (position and orientation)
may be introduced. In order to ensure that the performance of the minutiae extraction
algorithm will be robust with respect to the quality of fingerprint images, an enhancement
algorithm which can improve the clarity of the ridge structures is necessary.

Typically, fingerprint enhancement approaches [7, 14, 18, 26] employ frequency
domain techniques [14, 15, 26] and are computationally demanding. In a small local
neighborhood, the ridges and furrows approximately form a two-dimensional sinusoidal
wave along the direction orthogonal to local ridge orientation. Thus, the ridges and
furrows in a small local neighborhood have well-defined local frequency and local ori-
entation properties. The common approaches employ bandpass filters which model the
frequency domain characteristics of a good-quality fingerprint image. The poor-quality
fingerprint image is processed using the filter to block the extraneous noise and pass
the fingerprint signal. Some methods may estimate the orientation and/or frequency of
ridges in each block in the fingerprint image and adaptively tune the filter characteristics
to match the ridge characteristics.

One typical variation of this theme segments the image into nonoverlapping square
blocks of widths larger than the average inter-ridge distance. Using a bank of directional
bandpass filters, each filter is matched to a predetermined model of generic fingerprint
ridges flowing in a certain direction; the filter generating a strong response indicates
the dominant direction of the ridge flow in the finger in the given block. The resulting
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orientation information is more accurate, leading to more reliable features. A single
block direction can never truly represent the directions of the ridges in the block and
may consequently introduce filter artifacts.

For instance, one common directional filter used for fingerprint enhancement is a
Gabor filter [21]. Gabor filters have both frequency-selective and orientation-selective
properties and have optimal joint resolution in both spatial and frequency domains. The
even-symmetric Gabor filter has the general form [21]:

h(x ,y) � exp

{
�

1

2
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x2

�2
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�
y2

�2
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]}
cos(2�u0x), (23.6)

where u0 is the frequency of a sinusoidal plane wave along the x-axis, and �x and �y are
the space constants of the Gaussian envelope along the x and y axes, respectively. Gabor
filters with arbitrary orientation can be obtained via a rotation of the x � y coordinate
system. The modulation transfer function (MTF) of the Gabor filter can be represented as
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where �u � 1/2��x and �v � 1/2��y . Figure 23.10 shows an even-symmetric Gabor
filter and its MTF. Typically, in a 500 dpi, 512 � 512 fingerprint image, a Gabor filter
with u0 � 60 cycles per image width (height), the radial bandwidth of 2.5 octaves, and
orientation � models the fingerprint ridges flowing in the direction � � �/2.

We summarize a novel approach to fingerprint enhancement proposed by Hong [16]
(see Fig. 23.11). It decomposes the given fingerprint image into several component images
using a bank of directional Gabor bandpass filters and extracts ridges from each of the
filtered bandpass images using a typical feature extraction algorithm [22]. By integrating
information from the sets of ridges extracted from filtered images, the enhancement
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FIGURE 23.10

An even-symmetric Gabor filter: (a) Gabor filter tuned to 60 cycles/width and 0◦ orientation;
(b) corresponding modulation transfer function.
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Fingerprint enhancement algorithm [16].
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algorithm infers the region of a fingerprint where there is sufficient information to be
considered for enhancement (recoverable region) and estimates a coarse-level ridge map
for the recoverable region. The information integration is based on the observation that
genuine ridges in a region evoke a strong response in the feature images extracted from
the filters oriented in the direction parallel to the ridge direction in that region and at
most a weak response in feature images extracted from the filters oriented in the direction
orthogonal to the ridge direction in that region. The coarse ridge map thus generated
consists of the ridges extracted from each filtered image which are mutually consistent,
and portions of the image where the ridge information is consistent across the filtered
images constitutes a recoverable region. The orientation field estimated from the coarse
ridge map (see Section 23.8) is more reliable than the orientation estimation from the
input fingerprint image.

After the orientation field is obtained, the fingerprint image can then be adaptively
enhanced by using the local orientation information. Let fi(x ,y) (i � 0, 1, 2, 3, 4, 5, 6,
7) denote the gray level value at pixel (x ,y) of the filtered image corresponding to the
orientation �i , �i � i ∗ 22.5◦. The gray level value at pixel (x ,y) of the enhanced image
can be interpolated according to the following formula:

fenh(x ,y) � a(x ,y)fp(x ,y)(x ,y) � (1 � a(x ,y))fq(x ,y)(x ,y), (23.8)

where p(x ,y) � � �(x ,y)

22.5 �, q(x ,y) � � �(x ,y)

22.5 � mod 8, a(x ,y) �
�(x ,y)�p(x ,y)

22.5 , and �(x ,y)

represents the value of the local orientation field at pixel (x ,y). The major reason that we
interpolate the enhanced image directly from the limited number of filtered images is that
the filtered images are already available and the above interpolation is computationally
efficient.

An example illustrating the results of a minutiae extraction algorithm on a noisy
input image and its enhanced counterpart is shown in Fig. 23.12. The improvement in
performance due to image enhancement was evaluated using the fingerprint matcher
described in Section 23.11. Figure 23.13 shows improvement in accuracy of the matcher

(a) (b) (c)

FIGURE 23.12

Fingerprint enhancement results: (a) a poor-quality fingerprint; (b) minutia extracted without
image enhancement; (c) minutiae extracted after image enhancement [16].
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Performance of fingerprint enhancement algorithm.

with and without image enhancement on the MSU database consisting of 700 fingerprint
images of 70 individuals (10 fingerprints per finger per individual).

23.10 FINGERPRINT CLASSIFICATION
Fingerprints have been traditionally classified into categories based on information in
the global patterns of ridges. In large-scale fingerprint identification systems, elaborate
methods of manual fingerprint classification systems were developed to index individ-
uals into bins based on classification of their fingerprints; these methods of binning
eliminate the need to match an input fingerprint(s) to the entire fingerprint database
in identification applications and significantly reduce the computing requirements
[3, 13, 23, 27, 42].

Efforts in automatic fingerprint classification have been exclusively directed at repli-
cating the manual fingerprint classification system. Figure 23.1 shows one prevalent
manual fingerprint classification scheme that has been the focus of many automatic fin-
gerprint classification efforts. It is important to note that the distribution of fingers into
the six classes (shown in Fig. 23.1) is highly skewed. Three fingerprint types, namely
left loop, right loop, and whorl, account for over 93% of the fingerprints. A fingerprint
classification system should be invariant to rotation, translation, and elastic distortion of
the frictional skin. In addition, often a significant part of the finger may not be imaged
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(e.g., dabs frequently miss deltas), and the classification methods requiring information
from the entire fingerprint may be too restrictive for many applications.

A number of approaches to fingerprint classification have been developed. Some of the
earliest approaches did not make use of the rich information in the ridge structures and
exclusively depended on the orientation field information. Although fingerprint land-
marks provide very effective fingerprint class clues, methods relying on the fingerprint
landmarks alone may not be very successful due to lack of availability of such informa-
tion in many fingerprint images and due to the difficulty in extracting the landmark
information from the noisy fingerprint images. As a result, successful approaches need
to (i) supplement the orientation field information with ridge information; (ii) use fin-
gerprint landmark information when available but devise alternative schemes when such
information cannot be extracted from the input fingerprint images; and (iii) use reliable
structural/syntactic pattern recognition methods in addition to statistical methods.

We summarize a method of classification [17] which takes into consideration the
above-mentioned design criteria that has been tested on a large database of realistic
fingerprints to classify fingers into five major categories: right loop, left loop, arch, tented
arch, and whorl.3

The orientation field determined from the input image may not be very accurate, and
the extracted ridges may contain many artifacts and, therefore, cannot be directly used for
fingerprint classification. A ridge verification stage assesses the reliability of the extracted
ridges based upon the length of each connected ridge segment and its alignment with
other adjacent ridges. Parallel adjacent subsegments typically indicate a good-quality
fingerprint region; the ridge/orientation estimates in these regions are used to refine the
estimates in the orientation field/ridge map.

1. Singular points: The Poincare index [28] on the orientation field is used to deter-
mine the number of delta (ND) and core (NC ) points in the fingerprint. A digital
closed curve, �, about 25 pixels long, around each pixel is used to compute the
Poincare index as defined below:

Poincare(i, j) �
1

2�

N�∑

k�0

�(k),

where

�(k) �

⎧⎪⎪⎨
⎪⎪⎩

�(k), if |�(k)|< �/2,

� � �(k), if �(k) 	 ��/2,

� � �(k), otherwise,

�(k) � O�(�x (i�),�y (i�)) � O�(�x (i),�y (i)),

i� � (i � 1)mod N�,

3Other types of prints, e.g., twin-loop, are not considered here but, in principle, could be lumped into
“other” or “reject” category.
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(a) (b) (c)

FIGURE 23.14

The axis of symmetry for (a) tented arch; (b) left loop; and (c) right loop.

O is the orientation field, and �x(i) and �y (i) denote the coordinates of the ith

point on the arc length parameterized closed curve �.

2. Symmetry: The feature extraction stage also estimates an axis locally symmetric
to the ridge structures at the core (see Fig. 23.14) and computes (i) �, the angle
between the symmetry axis and the line segment joining core and delta, (ii) �, the
average angle difference between the ridge orientation and the orientation of the
line segment joining the core and delta, and (iii) �, the number of ridges crossing
the line segment joining core and delta. The relative position, R, of the delta with
respect to the symmetry axis is determined as follows: R � 1 if the delta is on the
right side of the symmetry axis; R � 0, otherwise.

3. Ridge structure: The classifier not only uses the orientation information but also
utilizes the structural information in the extracted ridges. This feature summarizes
the overall nature of the ridge flow in the fingerprint. In particular, it classifies each
ridge of the fingerprint into three categories (as illustrated in Fig. 23.15):

■ Nonrecurring ridges: ridges which do not curve very much.

■ Type-1 recurring ridges: ridges which curve approximately �.

■ Type-2 fully recurring ridges: ridges which curve by more than �.

The classification algorithm summarized here essentially devises a sequence of tests
for determining the class of a fingerprint and conducts simpler tests earlier. For instance,
two core points are typically detected for a whorl which is an easier condition to verify
than detecting the number of Type-2 recurring ridges. The algorithm detects (i) whorl
based upon detection of either two core points or a sufficient number of Type-2 recurring
ridges; (ii) arch based upon the inability to detect either delta or core points; (iii) left
(right) loop based on the characteristic tilt of the symmetric axis, detection of a core
point, and detection of either a delta point or a sufficient number of Type-1 recurring
curves; and (iv) tented arch based on a relatively upright symmetric axis, detection of a
core point, and detection of either a delta point or a sufficient number of Type-1 recurring
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(a) (b) (c)

FIGURE 23.15

Three types of ridges. (a) Nonrecurring ridges; (b) Type-1 recurring ridges; and (c) Type-2 fully
recurring ridges.

curves. Another highlight of the algorithm is that it does not detect the salient character-
istics of any category from features detected in a fingerprint; it recomputes the features
with a different preprocessing method. For instance, in the current implementation, the
differential preprocessing consists of a different method/scale of smoothing.

Table 23.1 shows the results of the fingerprint classification algorithm on the NIST-4
database which contains 4,000 images (image size is 512 � 480) taken from 2,000 different
fingers, 2 images per finger. Five fingerprint classes are defined: (i) Arch, (ii) Tented arch,
(iii) Left loop, (iv) Right loop, and (v) Whorl. Fingerprints in this database are uniformly
distributed among these five classes (800 per class). The five-class error rate in classifying
these 4,000 fingerprints is 12.5%. The confusion matrix is given in Table 23.1; numbers
shown in bold font are correct classifications. Since a number of fingerprints in the
NIST-4 database are labeled (by human experts) as belonging to possibly two different
classes, each row of the confusion matrix in Table 23.1 does not sum up to 800. For the
five-class problem, most of the classification errors are due to misclassifying a tented
arch as an arch. By combining these two arch categories into a single class, the error
rate drops from 12.5% to 7.7%. Besides the tented arch-arch errors, the other errors

TABLE 23.1 Five-class classification results on the NIST-4
database; A-Arch, T-Tented Arch, L-Left loop, R-Right loop,
W-Whorl.

True class
Assigned class

A T L R W

A 885 13 10 11 0
T 179 384 54 14 5
L 31 27 755 3 20
R 30 47 3 717 16
W 6 1 15 15 759
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mainly come from misclassifications between arch/tented arch and loops and due to
poor image quality. Recently, Cappelli et al. [5] proposed a two-stage algorithm where
the Multispace Karhunen-Loeve transformation-based classifier is first used to transfer
the five-class problem into ten two-class problems and then the Subspace-based pattern
discrimination classifier is used for final classification. The accuracy in [5] for five-class
problems and four-class problems is 95.2% and 96.3%, respectively.

23.11 FINGERPRINT MATCHING
Given two (input and template) sets of features originating from two fingerprints, the
objective of the feature matching system is to determine whether or not the prints
represent the same finger. Fingerprint matching has been approached from several
different strategies [30], like image-based [2], ridge pattern-based, and point (minu-
tiae) pattern-based fingerprint representations. There also exist graph-based schemes
[19, 20, 39] for fingerprint matching. Image-based matching may not tolerate large
amounts of nonlinear distortion in the fingerprint ridge structures. Matchers critically
relying on extraction of ridges or their connectivity information may display drastic per-
formance degradation with a deterioration in the quality of the input fingerprints. It is
generally agreed that the point pattern matching (minutiae matching) approach facilitates
the design of a robust, simple, and fast verification algorithm while maintaining a small
template size.

The matching phase typically defines the similarity (distance) metric between two
fingerprint representations and determines whether a given pair of representations is
captured from the same finger (mated pair) based on whether this quantified
(dis)similarity is greater (less) than a certain (predetermined) threshold. The similar-
ity metric is based on the concept of correspondence in minutiae-based matching.
A minutiae in the input fingerprint and a minutiae in the template fingerprint are said to
be corresponding if they represent the identical minutiae scanned from the same finger.

In order to match two fingerprint representations, the minutiae-based matchers first
transform (register) the input and template fingerprint features into a common frame of
reference. The registration essentially involves alignment based on rotation/translation
and may optionally include scaling. The parameters of alignment are typically estimated
either from (i) singular points in the fingerprints, e.g., core and delta locations; (ii)
pose clustering based on minutia distribution [35]; or (iii) any other landmark features.
For example, Jain et al. [22] use a rotation/translation estimation method based on
properties of ridge segments associated with ridge ending minutiae.4 Feng [11] estimates
the transformation by using minutia descriptor which captures texture information and
neighboring minutiae information around a minutia.

4The input and template minutiae used for the alignment will be referred to as reference minutiae below.
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FIGURE 23.16

Two different fingerprint impressions of the same finger. In order to know the correspondence
between the minutiae of these two fingerprint images, all the minutiae must be precisely localized
and the deformation must be recovered [22]. © IEEE.

There are two major challenges involved in determining the correspondence between
two aligned fingerprint representations (see Fig. 23.16): (i) dirt/leftover smudges on the
sensing device and the presence of scratches/cuts on the finger either introduce spurious
minutiae or obliterate the genuine minutiae; (ii) variations in the area of the finger being
imaged and its pressure on the sensing device affect the number of genuine minutiae
captured and introduce displacements of the minutiae from their “true” locations due
to elastic distortion of the fingerprint skin. Consequently, a fingerprint matcher should
not only assume that the input fingerprint is a transformed template fingerprint by a
similarity transformation (rotation, translation, and scale), but it should also tolerate both
spurious minutiae as well as missing genuine minutiae and accommodate perturbations
of minutiae from their true locations. Figure 23.17 illustrates a typical situation of aligned
ridge structures of mated pairs. Note that the best alignment in one part (top left) of
the image may result in a large amount of displacements between the corresponding
minutiae in other regions (bottom right). In addition, observe that the distortion is
nonlinear: given the amount of distortions at two arbitrary locations on the finger, it is
not possible to predict the distortions at all the intervening points on the line joining the
two points.

The adaptive elastic string matching algorithm [22] summarized in this chapter
uses three attributes of the aligned minutiae for matching: its distance from the ref-
erence minutiae (radius), angle subtended to the reference minutiae (radial angle),
and local direction of the associated ridge (minutiae direction). The algorithm initi-
ates the matching by first representing the aligned input (template) minutiae as an input
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FIGURE 23.17

Aligned ridge structures of mated pairs. Note that the best alignment in one part (top left) of the
image results in large displacements between the corresponding minutiae in the other regions
(bottom right) [22]. © IEEE.

(template) minutiae string. The string representation is obtained by imposing a linear
ordering based on radial angles and radii. The resulting input and template minutiae
strings are matched using an inexact string matching algorithm to establish the corres-
pondence.

The inexact string matching algorithm essentially transforms (edits) the input string
to template string, and the number of edit operations is considered as a metric of the
(dis)similarity between the strings. While permitted edit operators model the impression
variations in a representation of a finger (deletion of the genuine minutiae, insertion of
spurious minutiae, and perturbation of the minutiae), the penalty associated with each
edit operator models the likelihood of that edit. The sum of penalties of all the edits (edit
distance) defines the similarity between the input and template minutiae strings. Among
several possible sets of edits that permit the transformation of the input minutiae string
into the reference minutiae string, the string matching algorithm chooses the transform
associated with the minimum cost based on dynamic programming.

The algorithm tentatively considers a candidate (aligned) input and a candidate tem-
plate minutiae in the input and template minutiae string to be a mismatch if their
attributes are not within a tolerance window (see Fig. 23.18) and penalizes them for
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FIGURE 23.18

Bounding box and its adjustment [22]. ©IEEE.

deletion/insertion edits. If the attributes are within the tolerance window, the amount
of penalty associated with the tentative match is proportional to the disparity in the
values of the attributes in the minutiae. The algorithm accommodates for the elastic
distortion by adaptively adjusting the parameters of the tolerance window based on the
most recent successful tentative match. The tentative matches (and correspondences) are
accepted if the edit distance for those correspondences is smaller than any other corres-
pondences.

Figure 23.19 shows the results of applying the matching algorithm to an input and
a template minutiae set pair. The outcome of the matching process is defined by a
matching score. Matching score is determined from the number of mated minutia from
the correspondences associated with the minimum cost of matching input and tem-
plate minutiae strings. The raw matching score is normalized by the total number of
minutia in the input and template fingerprint representations and is used for deciding
whether input and template fingerprints are mates. The higher the normalized score, the
larger the likelihood that the test and template fingerprints are the scans of the same
finger.

The results of performance evaluation of the fingerprint matching algorithm are
illustrated in Fig. 23.20 for 1,698 fingerprint images in the NIST 9 database [41] and in
Fig. 23.13 for 490 images of 70 individuals in the MSU database. Some sample points
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(a) (b)

(c) (d)

FIGURE 23.19

Results of applying the matching algorithm to an input minutiae set and a template; (a) input
minutiae set; (b) template minutiae set; (c) alignment result based on the minutiae marked
with green circles; (d) matching result where template minutiae and their correspondences are
connected by green lines [22]. © IEEE.

on the receiver operating characteristics curve are tabulated in Table 23.2. The accuracy
of fingerprint matching alogirthms heavily depends on the testing samples. For instance,
the best matcher in FpVTE2003 [43] achieved 99.9% true accept rate (TAR) at 1% false
accept rate (FAR), while the best matcher in FVC2006 [12] achieved only 91.8% TAR at
1% FAR on the first database in the test (DB1). Commercial fingerprint matchers are very
efficient. For instance, it takes about 32 ms for the best matcher in FVC2006 to extract
features and perform matching on a PC with an Intel Pentium IV 3.20 GHz.
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TABLE 23.2 False acceptance and false reject rates on two data sets with different
threshold values [22]. © IEEE.

Threshold False acceptance False reject False acceptance False reject
value rate rate rate rate

(MSU) (MSU) (NIST 9) (NIST 9)

7 0.07% 7.1% 0.073% 12.4%
8 0.02% 9.4% 0.023% 14.6%
9 0.01% 12.5% 0.012% 16.9%

10 0 14.3% 0.003% 19.5%
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FIGURE 23.20

Receiver operating characteristic curve for NIST 9 (CD No. 1) [22]. © IEEE.

23.12 SUMMARY AND FUTURE PROSPECTS
With recent advances in fingerprint sensing technology and improvements in the accu-
racy and matching speed of the fingerprint matching algorithms, automatic personal
identification based on a fingerprint is becoming an attractive alternative/comple-
ment to the traditional methods of identification. We have provided an overview of
fingerprint-based identification and summarized algorithms for fingerprint feature
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extraction, enhancement, matching, and classification. We have also presented a per-
formance evaluation of these algorithms.

The critical factor for the widespread use of fingerprints is in meeting the perfor-
mance (e.g., matching speed and accuracy) standards demanded by emerging civilian
identification applications. Unlike an identification based on passwords or tokens, the
accuracy of the fingerprint-based identification is not perfect. There is a growing demand
for faster and more accurate fingerprint matching algorithms which can (particularly)
handle poor-quality images. Some of the emerging applications (e.g., fingerprint-based
smartcards) will also benefit from a compact representation of a fingerprint and more effi-
cient algorithms. The design of highly reliable, accurate, and foolproof biometric-based
identification systems may warrant effective integration of discriminatory informa-
tion contained in several different biometrics and/or technologies. The issues involved
in integrating fingerprint-based identification with other biometric or nonbiometric
technologies constitute an important research topic [24, 37].

As biometric technology matures, there will be an increasing interaction among the
(biometric) market, (biometric) technology, and the (identification) applications. The
emerging interaction is expected to be influenced by the added value of the technology,
the sensitivities of the population, and the credibility of the service provider. It is too
early to predict where, how, and which biometric technology will evolve and be mated
with which applications. But it is certain that biometrics-based identification will have
a profound influence on the way we conduct our daily business. It is also certain that,
as the most mature and well-understood biometric, fingerprints will remain an integral
part of the preferred biometrics-based identification solutions in the years to come.
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24.1 INTRODUCTION
In most situations, identifying humans using faces is an effortless task for humans. Is this
true for computers? This very question defines the field of automatic face recognition
[1–3], one of the most active research areas in computer vision, pattern recognition, and
image understanding. Over the past decade, the problem of face recognition has attracted
substantial attention from various disciplines and has witnessed a skyrocketing growth of
the literature. Below, we mainly emphasize some key perspectives of the face recognition
problem.

24.1.1 Biometric Perspective
Face is a biometric. As a consequence, face recognition finds wide applications in authen-
tication, security, and so on. One recent application is the US-VISIT system by the
Department of Homeland Security (DHS), collecting foreign passengers’ fingerprints
and face images.

Biometric signatures of a person characterize their physiological or behavioral char-
acteristics. Physiological biometrics are innate or naturally occuring, while behavioral
biometrics arise from mannerisms or traits that are learned or acquired. Table 24.1 lists
commonly used biometrics. Biometric technologies provide the foundation for an exten-
sive array of highly secure identification and personal verification solutions. Compared
with conventional identification and verification methods based on personal identifica-
tion numbers (PINs) or passwords, biometric technologies offer many advantages. First,
biometrics are individualized traits while passwords may be used or stolen by someone
other than the authorized user. Also, biometrics are very convenient since there is nothing

677
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TABLE 24.1 A list of physiological and behavioral biometrics.

Type Examples

Physiological biometrics DNA, face, fingerprint, hand geometry,
iris, pulse, retinal, and body odor

Behavioral biometrics Face, gait, handwriting, signature, and voice

to carry or remember. In addition, biometric technologies are becoming more accurate
and less expensive.

Among all biometrics listed in Table 24.1, face is a very unique one because it is the
only biometric belonging to both the physiological and behavioral categories. While the
physiological part of the face has been widely exploited for face recognition, the behavioral
part has not yet been fully investigated. In addition, as reported in [4, 5], face enjoys many
advantages over other biometrics because it is a natural, nonintrusive, and easy-to-use
biometric. For example [4], among the six biometrics of face, finger, hand, voice, eye,
and signature, face biometric ranks the first in the compatibility evaluation of a machine
readable travel document (MRTD) system in terms of six criteria: enrollment, renewal,
machine-assisted identity verification requirements, redundancy, public perception, and
storage requirements and performance. Probably the most important feature of acquiring
the face biometric signature is that no cooperation is required during data acquisition.

Besides applications related to identification and verification such as access control,
law enforcement, ID and licensing, surveillance, etc., face recognition is also useful in
human-computer interaction, virtual reality, database retrieval, multimedia, computer
entertainment, etc. See [2, 3] for recent summaries on face recognition applications.

24.1.2 Experimental Perspective
Face recognition mainly involves the following three tasks [6]:

■ Verification: The recognition system determines if the query face image and the
claimed identity match.

■ Identification: The recognition system determines the identity of the query face
image.

■ Watch list: The recognition system first determines if the identity of the query face
image is in the watch list and, if yes, then identifies the individual.

Figure 24.1 illustrates the above three tasks and corresponding metrics used for
evaluation. Among these tasks, the watch list task is the most difficult one.

This chapter focuses only on the identification task. We follow the face recognition
test protocol FERET [7] widely used in the face recognition literature. FERET stands
for “facial recognition technology.” FERET assumes the availability of the following three
sets, namely a training set, a gallery set, and a probe set. The training set is provided for the
recognition algorithm to learn the features that are capable of characterizing the whole
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FIGURE 24.1

Three face recognition tasks: verification, identification, and watch list (courtesy of P. J. Phillips).

human face space. The gallery and probe sets are used in the testing stage. The gallery set
contains images with known identities and the probe set with unknown identities. The
algorithm associates descriptive features with images in the gallery and probe sets and
determines the identities of the probe images by comparing their associated features with
features associated with gallery images.

24.1.3 Theoretical Perspective
Face recognition is by nature an interdisciplinary research area, involving researchers from
pattern recognition, computer vision and graphics, image processing/understanding,
statistical computing, and machine learning. In addition, automatic face recognition
algorithms/systems are often guided by psychophysics and neural studies on how humans
perceive faces. A good summary of research on face perception is presented in [8]. We now
focus on the theoretical implication of pattern recognition for the task of face recognition.

We present a hierarchical study of face pattern. There are three levels forming the
hierarchy: pattern, visual pattern, and face pattern, each associated with a corresponding
theory of recognition. Accordingly, face recognition approaches can be grouped into
three categories.

Pattern and pattern recognition: Because face is first a pattern, any pattern recognition
theory [9] can be directly applied to a face recognition problem. In general, a vector
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representation is used in pattern recognition. A common way of deriving such a vector
representation from a 2D face image, say of size M � N , is through a “vectorization”
operator that stacks all pixels in a particular order, say a raster-scanning order, to an
MN � 1 vector. Obviously, given an arbitrary MN � 1 vector, it can be decoded into
an M � N image by an inverse-“vectorization” operator. Such a vector representation
corresponds to a holistic perception viewpoint in the psychophysics literature [10].

Subspace methods are pattern recognition techniques widely invoked in various face
recognition approaches. Two well-known appearance-based recognition schemes uti-
lize principal component analysis (PCA) and linear discriminant analysis (LDA). PCA
performs [11] an eigen-decomposition of the covariance matrix and consequently mini-
mizes the reconstruction error in the mean square sense. LDA minimizes the within-class
scatter while maximizing the between-class scatter. The PCA approach used in face recog-
nition is also known as the “Eigenface” approach [12]. The LDA approach [13] used
in face recognition is referred to as the “Fisherface” approach [14] since LDA is also
known as Fisher discriminant analysis. Further, PCA and LDA have been combined
(LDA after PCA) as in [14, 15] to obtain improved recognition. Other subspace meth-
ods such as independent component analysis [16], local feature analysis (LFA) [17],
probabilistic subspace [18, 19], and multiexemplar discriminant analysis [20] have also
been used. A comparison of these subspace methods is reported in [19, 21]. Other
than subspace methods, classical pattern recognition tools such as neural networks [22],
learning methods [23], and evolutionary pursuit/genetic algorithms [24] have also been
applied.

One concern in a regular pattern recognition problem is the “curse of dimensionality”
since usually M and N themselves are quite large numbers. In face recognition, because
of limitations in image acquisition, practical face recognition systems store only a small
number of samples per subject. This further aggravates the curse of dimensionality
problem.

Visual pattern and visual recognition: In the middle of the hierarchy sits the visual
pattern. Face is a visual pattern in the sense that it is a 2D appearance of a 3D object cap-
tured by an imaging system. Certainly, visual appearance is affected by the configuration
of the imaging system. An illustration of the imaging system is presented in Fig. 24.2.

There are two distinct characteristics of the imaging system: photometric and
geometric.

■ The photometric characteristics are related to the lighting source distribution in
the scene. Figure 24.3 shows the face images of a person captured under varying
illumination conditions. Numerous models have been proposed to describe the
illumination phenomenon, i.e., how the light travels when it hits the object. In
addition to its relationship with the light distribution such as light direction and
intensity, an illumination model is in general also relevant to surface material
properties of the illuminated object.

■ The geometric characteristic is about the camera properties and the relative posi-
tioning of the camera and the object. Camera properties include camera intrinsic
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An illustration of the imaging system.

parameters and camera imaging models. The imaging models widely studied in the
computer vision literature are orthographic, scale orthographic, and perspective
models. Due to the projective nature of the perspective model, the orthographic or
scale-orthograhic models are used in the face recognition community. The relative
positioning of the camera and the object results in pose variation, a key factor in
determining how the 2D appearances are produced. Figure 24.3 shows the face
images of a person captured at varying poses and illuminating conditions.

Studying photometric and geometric characteristics is one of the key problems in
the object recognition literature, and consequently visual recognition under illumination
and pose variations is the main challenge for object recognition. A full review of the
visual recognition literature is beyond the scope of the chapter. However, face recognition
addressing the photometric and geometric challenges is still an open question.

Approaches to face recognition under illumination variation are usually treated as
extensions of research efforts on illumination models. For example, if a simplified
Lambertian reflectance model ignoring the shadow pixels [26,27] is used, rank-3 subspace
can be constructed to cover appearances arbitrarily illuminated by a distant point source.
A low-dimensional subspace [28] can be found in the Lambertian model that includes
attached shadows. Face recognition is conducted by checking if a query face image lies
in the object-specific illumination subspace. To generalize from the object-specific illu-
mination subspace to class-specific illumination subspace, bilinear models are used in
[29–31]. Most face recognition approaches addressing pose variations use view-based
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Examples of the face images of one PIE [25] object with different illumination and poses.
The images are of size 48 � 40.

appearance representations [32–34]. Face recognition under variations in illumination
and poses is more difficult compared with recognition when only one variation is present.
Proposed approaches in the literature include [35–39], among which the 3D morphable
model [35] yields the best recognition performance. The feature-based approach [40]
is reported to be partially robust to illumination and pose variations. Sections 24.2 and
24.3 present detailed reviews of the related literature.

Another important extension of visual pattern recognition is in exploiting video. The
ubiquitousness of video sequences calls upon novel recognition algorithms based on
videos. Because a video sequence is a collection of still images, face recognition from
still images certainly applies to video sequences. However, an important property of a
video sequence is its temporal dimension or dynamics. Recent psychophysical and neural
studies [41] demonstrate the role of movement in face recognition: Famous faces are
easier to recognize when presented in moving sequences than in still photographs, even
under a range of different types of degradations. Computational approaches utilizing
such temporal information include [42–46]. Clearly, due to the free movement of human
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faces and uncontrolled environments, issues like illumination and pose variations still
exist. Besides these issues, localizing faces or face segmentation in a cluttered environment
in video sequences is very challenging too.

In surveillance scenarios, further challenges include poor video quality and lower
resolution. For example, the face region can be as small as 15 � 15. Most feature-based
approaches [35, 40] need face images of size as large as 128 � 128. The attractiveness
of the video sequence is that the video provides multiple observations with temporal
continuity.

Face pattern and face recognition: At the top of the hierarchy lies the face pattern. The
face pattern specializes the visual pattern by specializing the object to be a human face.
Therefore, face-specific properties or characteristics should be taken into account when
performing face recognition.

■ Expression and deformation. Humans exhibit emotions. The natural way to express
the emotions is through facial expressions, yielding patterns under nonrigid defor-
mations. The nonrigidity introduces very high degrees of freedom and perplexes
the recognition task. Figure 24.4(a) shows the face images of a person exhibiting
different expressions. While face expression analysis has attracted a lot of atten-
tion [49, 50], recognition under facial expression variation has not been fully
explored.

■ Aging. Face appearances vary significantly with age and such variations are spe-
cific to an individual. Theoretical modeling of aging [48] is very difficult due to
the individualized variation. Figure 24.4(b) shows the face images of a person at
different ages.

■ Face surface. One speciality of the face surface is its bilateral symmetry. The sym-
metry constraint has been widely exploited in [31, 51, 52]. In addition, surface
integrability is an inherent property of any surface, which has also been used in
[27, 31, 53].

(a)

(b)

FIGURE 24.4

(a) Appearances of a person with different facial expressions (from [47]). (b) Appearances of a
person at different ages (from [48]).
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■ Self-similarity. There is a strong visual similarity among face images of different
individuals. Geometric positioning of facial features such as eyes, noses, and
mouths is similar across individuals. Early face recognition approaches in the 1970s
[54, 55] used the distances between feature points to describe the face and achieved
some success. Also, the properties of face surface materials are similar within the
same race. As a consequence of visual similarity, the “shapes” of the face appear-
ance manifolds belonging to different subjects are similar. This is the foundation
of approaches [19, 20] that attempt to capture the “shape” characteristics using the
so-called intraperson space.

■ Makeup, cosmetic, etc. These factors are very individualized and unpredictable.
Other than the effect of glasses which has been studied in [14], effects induced
by other factors are not widely understood in the recognition literature. However,
modeling these factors can be useful for face animation in the computer graphics
literature.

24.1.4 Unconstrained Face Recognition
A wide array of face recognition approaches has been proposed in the literature. Early
face recognizers [11–14, 16–19] yielded unsatisfactory results especially when confronted
with unconstrained scenarios such as varying illumination, varying poses, expression,
and aging. In addition, the recognizers have been further hampered by the registration
requirement as the images that the recognizers process contain transformed appearances
of the object. Recent advances in face recognition have focused on face recognition under
illumination and pose variations [28, 30–33, 35, 39, 56]. Face recognition under variations
in expression [57] and aging [58–61] have been investigated too.

In this chapter, we attempt to present some representative face recognition works
that deal with illumination, pose, and aging variations. Section 24.2 describes the linear
Lambertian object approach [31, 62] for face recognition under illumination variation
and Section 24.3 the illuminating light field approach [39, 63] for face recognition under
illumination and pose variations. Finally, Section 24.4 elaborates face modeling and
verification across age progression [59–61].

24.2 LINEAR LAMBERTIAN OBJECT: FACE RECOGNITION UNDER
ILLUMINATION VARIATION

24.2.1 Linear Lambertian Objects
Definition: A linear Lambertian object is defined as a visual object simultaneously obeying
the following two properties:

■ It is linearly spanned by basis objects.

■ It follows the Lambertian reflectance model with a varying albedo field.
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A good example of a linear Lambertian object is the human face.1 Linearity [12, 14, 56]
characterizes the appearances of an image ensemble for a class of objects. It assumes that
an image h is expressed as a linear combination of basis images hi , i.e.,

h �

m∑
i�1

fihi , (24.1)

where fi ’s are blending coefficients. In other words, the basis images span the image
ensemble. Typically, the basis images are learned using images not necessarily illuminated
under the same lighting condition. This forces the learned basis images to inadequately
cover variations in both identity and illumination.

The Lambertian reflectance model [26, 28, 64] with varying albedo field is widely
used in the literature to depict the appearance of certain reasonably matte objects such
as faces. It assumes that a pixel h is represented as

h � max(p nT
3�1s3�1,0), (24.2)

where [.]T denotes the transpose, p is the albedo at the pixel, n is the unit surface normal
vector at the pixel, and s (a 3 � 1 unit vector multiplied by its intensity) specifies the
direction and magnitude of a light source. When the pixel is not directly facing the light
source, an attached shadow occurs with zero intensity. Another kind of shadow is the cast
shadow that is generated when the light source is blocked due to object geometry.

An image h is a collection of d pixels {hi , i � 1, . . . ,d}. 2 By stacking all the pixels into
a column vector, we have

hd�1 � [h1,h2, . . . ,hd ]T � max([(p1nT
1)s, . . . ,(pd nT

d )s]T, 0) � max(Td�3 s3�1,0), (24.3)

where the T � [p1n1,p2n2, . . . ,pdnd ]T matrix encodes the product of albedos and surface
normal vectors for all d pixels. This Lambertian model is specific to the object, and
consequently, we call the T matrix an object-specific albedo-shape matrix.

The process of combining the above two properties is equivalent to imposing the
restriction of the same light source on the basis images, with each basis image expressed
as hi(s) � max(Tis, 0). Therefore, Eq. (24.1) becomes

h �

m∑
i�1

fi max(Tis, 0). (24.4)

This is the generative model for the linear Lambertian object. It is evident that the key
difference between employing the linear Lambertian property and conventional subspace

1One may argue that specular properties of skin and eyes and the reflectance properties of hair violate the
Lambertian assumption. However, the hair is excluded by preprocessing and the pixels in specular regions
are excluded in our algorithm using the indicator function. Except under extreme lighting conditions, the
number of pixels in specular regions is not significantly large.
2The index i corresponds to a spatial position x � (x ,y). We will interchange both notations. For instance,
we might also use x � 1, . . . ,d .
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analysis is in the basis image hi : for a linear Lambertian object, it is now a function of
the light source s through the matrix Ti . We denote all the matrices Ti compactly by
W � [T1,T2, . . . ,Tm]. Since the W matrix encodes all albedos and surface normals for a
class of objects, we call it a class-specific albedo-shape matrix.

The linear Lambertian object concept provides a unique opportunity to study the
appearances of an image ensemble for a class of objects under illumination variations
and opens the door to many applications. In [62], two important applications, namely
generalized photometric stereo and illumination-invariant face recognition, are considered.
Generalized photometric stereo studies the modeling part or the inverse problem; in
particular, it attempts to recover the class-specific albedo-shape matrix. An illumination-
invariant face recognition experiment validates the assumption of a linear Lambertian
object.

Here we focus on the face recognition part. Section 24.2.2 reviews the literature on
face recognition under illumination variations, and Section 24.2.3 discusses the effect of
attached shadow. We then address face recognition in the presence of a single light source
in Section 24.2.4 and in the presence of multiple light sources in Section 24.2.5.

24.2.2 Literature Review and Proposed Approach
Face recognition under illumination variation is a very challenging problem. The key
is to successfully separate the illumination source from the observed appearance. Once
separated, what remains is illuminant-invariant and is appropriate for recognition. In
addition to variations due to changes in illumination, various issues embedded in the
recognition setting make recognition even more difficult. Different recognition settings
can be formed in terms of the identity and illumination overlaps among the training,
gallery, and probe sets. The most difficult setting, which is the focus here, is obviously the
one in which there is no overlap at all among the three sets in terms of both identity and
illumination, except the identity overlap between the gallery and the probe sets. In this
setting, generalizations from known illuminations to unknown illuminations and from
known identities to unknown identities are particularly desired.

State-of-the-art research efforts can be grouped into three streams: subspace methods,
reflectance-model methods, and 3D-model-based methods. (i) The first approach is very
popular for the recognition problem. After removing the first three eigenvectors, PCA
was reported to be more robust to illumination variation than the ordinary PCA or the
“Eigenface” approach [12]. LDA [14, 37] has also been modified to handle illumination
variations. In general, subspace learning methods are able to capture the generic face space
and thus recognize objects given images not present in the training set. The disadvantage
is that subspace learning is actually tuned to the lighting conditions of the training set;
therefore if the illumination conditions are not similar among the training, gallery, and
probe sets, recognition performance may deteriorate. (ii) The second approach [26, 28, 30,
36, 52, 65] employs a Lambertian reflectance model with a varying albedo field, mostly
ignoring both attached and cast shadows. The main disadvantage of this approach is
the lack of generalization from known objects to unknown objects, with the exception of
[30, 65]. In [30], Shashua and Raviv used an ideal-class assumption. All objects belonging
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to the ideal class are assumed to have the same shape. The work of Zhang and Samaras
[65] utilized the regularity of the harmonic image exemplars to perform face recognition
under varying lighting conditions. (iii) The third approach employs 3D models. The
“Eigenhead” approach [66] assumes that the 3D geometry (or 3D depth information) of
any face lies in a linear space spanned by the 3D geometry of the training ensemble and
uses a constant albedo field. The morphable model approach [35] is based on a synthesis-
and-analysis strategy, assuming both geometry and texture are linearly spanned by those
of the training ensemble. It is able to handle both illumination and pose variations.
The weakness of 3D model-based approaches is that they require complicated fitting
algorithms and images of relatively big size.

Compared with the above, the proposed recognition scheme possesses the following
properties: (i) it is able to recognize new objects not present in the training set; (ii) it is
able to handle new lighting conditions not present in the training set; and (iii) no explicit
3D model or prior knowledge about illumination conditions is needed. In other words,
we combine the advantages of subspace learning and reflectance model-based methods.

24.2.3 The Importance of the Attached Shadow
In general, objects like faces do not have all the surface points facing the illumination
source, which leads to the formation of attached shadows. The cast and attached shadows
are often ignored to keep the subspace of the observed images a three [26] or with the
addition of an ambient component [27], a four dimensional subspace. Inherent nonlin-
earity in Lambert’s law can account for the formation of attached shadows. Therefore,
these generative approaches either ignore this nonlinearity completely or try to somehow
ignore the shadow pixels. Here we present some illustrations to highlight the role attached
shadows can play.

Consider the problem of illumination estimation given only one image of a 3D surface
and the following three options:

Completely linear: �(s) �‖ h � pnTs ‖2; (24.5)

Shadow pixels ignored: �(s) �‖ � ◦ (h � pnTs) ‖2; (24.6)

Nonlinear rule: �(s) �‖ h � max(pnTs, 0) ‖2 . (24.7)

The error curves for the linear method and the method that ignores shadows keep getting
worse as the number of shadow pixels increases. Clearly, the linear method penalizes the
correct illumination at the shadow pixels by having nonzero error values for those pixels.
On the other hand, when shadows are ignored, the illuminations that produce wrong
values for the shadow pixels do not get penalized there. Figure 24.5 shows the error
surfaces for the three methods for a given face image of known shape and albedo. For
each hypothesized illumination direction s, we compute the cost function �(s) defined in
(24.5), (24.6), and (24.7); therefore, we have an error surface for each method. The lower
the error is for a hypothesized illumination direction s, the darker the surface looks at
the corresponding point on the sphere. The global minimum is far from the true value
using the first approach but is correct up to a discretization error for the second and third
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The error surfaces for the estimation of the light source direction given a face image of known
shape and albedo. The three plots correspond to the three approaches described in the text. The
lower the error is for a particular illumination direction, the darker the error sphere looks at the
point corresponding to that direction. The true and estimated values of the illumination direction
are listed along with their plots.

approaches. In fact, the second and third methods will always produce the same global
minimum (assuming � is correct), but the global minimum will always be less ambiguous
in the third case because several wrongly hypothesized illumination directions do not
get penalized enough in the second approach due to the exclusion of the shadow pixels
(Fig. 24.5).

Therefore, given the class-specific albedo-shape matrix W � [T1,T2, . . . ,Tm], the
recovery of the identity vector f and illumination s can be posed as the following
optimization problem:

[Problem-I] min
f,s

�(f,s) �‖ h �

m∑
i�1

fi max(Tis, 0) ‖2 �(1Tf � 1)2. (24.8)

Please note that s is not a unit vector as it also contains the intensity of the illumination
source.

The minimization of (24.8) is performed using an iterative approach, fixing f for
optimizing � w.r.t. s and fixing s for optimization w.r.t. f. In each iteration, f can be
estimated by solving a linear least-squares (LS) problem but a nonlinear LS solution
is required to estimate s. The nonlinear optimization is performed using the lsqnonlin
function in MATLAB which is based on the interior-reflective Newton method. For most
faces, the function value did not change much after 4-5 iterations. Therefore, the iterative
optimization was always stopped after five iterations. The whole process took about 5-7
seconds per image on a normal desktop.

24.2.4 Recognition in the Presence of a Single Light Source
The linear Lambertian object renders an illumination-invariant signature that is the
blending linear coefficient fi in (24.4), since the single light source is fully described
by the s vector. Therefore, even based on a single image, we can achieve robust face
recognition under illumination variation.
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Recognition setting: As mentioned earlier, we study an extreme recognition setting with
the following features: there is no identity overlap between training, gallery, and probe
sets; only one image per object is stored in the gallery set; the lighting conditions for
the training, gallery, and probe sets are completely unknown. The class-specific albedo-
shape matrix W is derived from the training set. For simplicity, we assume that W is
readily constructed from 3D face models.

Our recognition strategy is as follows:

■ With W given, learn the identity signature f for both gallery and probe sets,
assuming no knowledge of illumination directions.

■ Perform recognition using the nearest correlation coefficient (or vector cosine).
Suppose that a gallery image g has its signature fg and a probe image p has its
signature fp , their vector cosine is defined as

cos(p,g ) � (fp , fg )/

√
(fp , fp)(fg , fg ),

where (x,y) is an inner-product such as (x,y) � xT�y with � learned or given. We
simply set � as an identity matrix.

We use the pose, illumination, and expression (PIE) database [25] in our experiment.3

Figure 24.6(a) shows the distribution of all 21 flashes used in PIE and their estimated
positions using our algorithm. Since the flashes are almost symmetrically distributed
about the head position, we only use 12 of them distributed on the right half of the unit
sphere in Figure 24.6(a). More specifically, the flashes used are f08, f09, f11-f17, and f20-f22.
In total, we used 68 � 12 � 816 images in a fixed view as there are 68 subjects in the PIE
database. Figure 24.6(b) displays one PIE object under the selected 12 illuminants. We
use only the frontal view, but we do not assume that the directions and intensities of the
illuminants are known.

Affine registration is performed by aligning the eyes and mouth to desired positions.
No flow computation is carried on for further pixelwise alignment as opposed to [35].
After the preprocessing step, the cropped out face image is of size 48 by 40 (i.e., d � 1920).
Also, we only process gray images by taking the average of the red, green, and blue channels
of their color versions. All 68 images under one illumination are used to form a gallery
set and under another illumination to form a probe set. The training set is taken from
sources other than the PIE dataset. Thus, we have 12 � 11 � 132 tests, each test giving
rise to a recognition score.

Experiments and results: Method-I models the attached shadow using nonlinearity
(i.e., the Problem-I). We form the W matrix using Vetter’s 3D face database [35] that

3We use the “illum” part of the PIE database that is close to the Lambertian model as in [37], while the
“light” part that includes an ambient light is used in [35].
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(a) Flash distribution in the PIE database. For illustrative purposes, we move their positions on
a unit sphere as only the illuminant directions matter. “o” means the ground truth and “x” the
estimated values. (b) One PIE object under the selected 12 illuminants (from left to right, f08, f09,
f11 � f17, and f20 � f22).

contains 100 3D face scans. Table 24.2 shows the recognition results of Method-I.
The average rate is 96%, which is significantly better than that of PCA (51%) and
LDA (64%).4

One of the key assumptions of the linear Lambertian object is the linearity in the
identity. In the above two methods, the linearity is assumed for the holistic object; their
difference lies in handling shadows in the Lambertian model. In Method-II, we gen-
eralized the holistic linearity to piecewise linearity. We simply divided the face image
into 16 regions with equal size. For each region, we used Method-I for recovering
the blending coefficient; however, the blending coefficients for different regions can
be different. Table 24.2 reports the recognition score for all possible recognition set-
tings; on the average, we achieved almost perfect performance, 99.1% in recognition
accuracy!

In the above methods, we also achieved an estimate of illuminant direction.
Figure 24.5 shows the estimated illuminant directions. It is quite accurate for estima-
tion of directions of flashes near a frontal pose. But when the flashes are significantly
off-frontal, accuracy goes down slightly.

4To train the PCA and LDA basis images, we used all 68 � 12 � 816 images in the gallery set, while in
Method-I and Method-II, we used the Vetter’s dataset as the training set, which is different from the PIE.
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TABLE 24.2 Recognition rate obtained by Method-I and Method-II. ‘F ’ means 100
and “fnn” means flash no. nn. In each cell, the left number is from Method-I and the
right number from Method-II.

Gallery f08 f09 f11 f12 f13 f14 f15 f16 f17 f20 f21 f22 Average

Probe

f08 -/- F/F F/F F/F 96/F 97/F 81/97 72/96 50/81 F/F 97/F 84/99 90/98

f09 F/F -/- F/F F/F F/F 99/F 97/F 96/99 75/96 F/F F/F 97/F 97/F

f11 F/F F/F -/- F/F F/F 97/F 94/F 78/91 63/F F/F 99/F 94/F 94/99

f12 F/99 F/99 F/F -/- F/F F/F F/F 99/F 90/97 F/F F/F F/F 99/F

f13 97/99 F/99 F/F F/F -/- F/F F/F F/F 96/F F/F F/F F/F 99/F

f14 94/99 F/99 F/F F/F F/F -/- F/F F/F 99/99 F/F F/F F/F 99/F

f15 88/99 97/99 97/F F/F F/F F/F -/- F/F F/F 97/F F/F F/F 98/F

f16 74/97 90/99 81/F 93/F F/F F/F F/F -/- F/99 76/F 97/F F/F 93/F

f17 59/87 74/94 63/85 87/F 99/F 99/F F/F F/F - 71/88 94/F F/F 87/96

f20 99/99 F/F F/F F/F F/F 99/F 96/F 82/F 71/93 -/- F/F 97/F 95/99

f21 97/99 F/99 F/F F/F F/F F/F F/F 99/F 96/F F/F - F/F 99/F

f22 93/99 F/99 99/F F/F F/F F/F F/F F/F 99/99 99/F F/F - 99/F

Average 92/98 97/99 95/99 98/F F/F 99/F 97/F 94/F 87/96 95/99 99/F 98/F 96/99.1

24.2.5 Recognition in the Presence of Multiple Light Sources
Most of the cited face recognition approaches (except [28, 36, 65, 67]), including those
proposed in the above section, assume that the face is illuminated by a single dominant
light source which does not hold in most real conditions. This probably is one of the major
reasons that these approaches have not been applied for the face recognition problem
using a large database of realistic images. In this section, we modify our formulation so
that it can handle faces illuminated by arbitrarily placed multiple light sources. It turns
out that the nonlinearity in Lambert’s law is very important to this task. We extend our
earlier analysis to directly incorporate the attached shadows rather than excluding them
from computation.

We use a result that an image of an arbitrarily illuminated face can be approximated
by low dimensional linear subspace [28] that can be generated by a linear combination
of the images of the same face in the same pose, illuminated by nine different light
sources placed at preselected positions [67]. Lee et al [67] show that this approximation
is quite good for a wide range of illumination conditions. Hence, a face image can be
written as

h �

9∑
j�1

�j max(Tŝj , 0), (24.9)
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where { ŝ1, ŝ2, . . . , ŝ9} are the prespecified illumination directions. As proposed in [67],
we use the following directions for { ŝ1, ŝ2, . . . , ŝ9}:

� � {0,49,�68,73,77,�84,�84,82,�50}◦;
� � {0,17,0,�18,37,47,�47,�56,�84}◦. (24.10)

Under this formulation, Eq. (24.8) changes to

[Problem-III] min
f,�

�(f,�) �‖ h �

m∑
i�1

fi

9∑
j�1

�j max(Ti ŝj , 0) ‖2 �(1Tf � 1)2, (24.11)

where f � [f1, f2, . . . , fm]T and �9�1 � [�1,�2, . . . ,�9]T. Thus one can potentially recover
the illumination-free identity vector f without using any prior knowledge of the number
of light sources or any need to check different hypotheses about them.

In (24.11), the objective function is minimized with respect to f and �. This gives us
the illumination-free identity vector f which is used for recognition. The optimization is
done in an iterative fashion by fixing one parameter and estimating the other and vice
versa. We will identify this method as Method-III.

By defining a d � m matrix Wf as

Wf �

[ 9∑
j�1

�j max(T1 ŝj , 0),
9∑

j�1

�j max(T2 ŝj , 0), . . . ,
9∑

j�1

�j max(Tm ŝj , 0)

]
,

it is easy to show that

f �

[
Wf
1T

]†[ h
1

]
, (24.12)

where hd�1 is the vectorized input face image, [.]† is the Moore-Penrose inverse, and
1m�1 is the m-dimensional vector of ones, included to handle scale ambiguity between f
and �.

Looking carefully at the objective function (e.g., Eq. (24.11)), one can easily observe
that � too can be estimated by solving a linear LS problem (as { ŝ1, ŝ2, . . . ŝ9} is known).
This avoids the need for any nonlinear optimization here. Recall that nonlinear LS was
required to estimate s in the approach proposed for the single light source case. The
expression for � can be written as:

� � W†
�h, (24.13)

where

W� �

[ m∑
i�1

fi max(Ti ŝ1,0),
m∑

i�1

fi max(Ti ŝ2,0), . . . ,
m∑

i�1

fi max(Ti ŝ9,0)

]

d�9
. (24.14)
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For most of the face images, the iterative optimization converged within 5-6 iterations.
As there is no nonlinear optimization involved, it took just 2-3 seconds to recover f and �
from a given face image using a desktop. More experimental results can be found in [62].

24.3 ILLUMINATING LIGHT FIELD: FACE RECOGNITION UNDER
ILLUMINATION AND POSE VARIATIONS

24.3.1 Literature Review
In addition to the two factors of illumination and identity involved in face recognition
under illumination variation, face recognition under illumination and pose variations
needs to address the third factor of face pose. The issue of pose essentially amounts
to a correspondence problem. If dense correspondences across poses are available and
if a Lambertian reflectance model is further assumed, a rank-1 constraint is implied
because theoretically a 3D model can be recovered and used to render novel poses.
However, recovering a 3D model from 2D images is a difficult task. There are two types of
approaches: model-based and image-based. Model-based approaches [35, 68–70] require
explicit knowledge of prior 3D models, while image-based approaches [71–74] do not
use prior 3D models. In general, model-based approaches [35, 68–70] register the 2D
face image to 3D models that are given beforehand. In [68, 69], a generative face model is
deformed through bundle adjustment to fit 2D images. In [70], a generative face model
is used to regularize the 3D model recovered using the structure from motion (SfM)
algorithm. In [35], 3D morphable models are constructed based on many prior 3D
models. There are mainly three types of image-based approaches: SfM [71], visual hull
[72, 73], and light field rendering [74, 75] methods. The SfM approach [71] using sparse
correspondence does not reliably recover the 3D model amenable for practical use. The
visual hull methods [72, 73] assume that the shape of the object is convex, which is not
always satisfied by the human face, and further require accurate calibration information.
The light field rendering methods [74, 75] relax the requirement of calibration by a fine
quantization of the pose space and recover a novel view by sampling the captured data
that form the so-called light field. The approach herein is image-based, so no prior 3D
models are used. It handles a given set of views through an analysis analogous to the light
field concept. However, no novel poses are rendered.

The literature on face recognition under illumination variation has been reviewed in
the previous section. Face recognition under pose variation takes into account the two
factors of identity and pose. As mentioned earlier, pose variation essentially amounts
to a correspondence problem. If dense correspondences across poses are available and a
Lambertian reflectance is assumed, then a rank-1 constraint is implied. Unfortunately,
finding correspondences is a very difficult task and, therefore, there exists no subspace
based on an appearance representation when confronted with pose variation. Approaches
to face recognition under pose variation [33, 34, 36] avoid the correspondence problem
by sampling the continuous pose space into a set of poses, viz storing multiple images at
different poses for each person, at least in the training set. In [34], view-based“Eigenfaces”
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are learned from the training set and used for recognition. In [36], a denser sampling
is used to cover the pose space. However, [36] uses object-specific images and hence
appearances belonging to a novel object (i.e., not in the training set) cannot be handled.
In [33], the concept of light field [74] is used to characterize the continuous pose space.
“Eigen” light fields are learned from the training set. However, the implementation of [33]
still discretizes the pose space and recognition can be based on probe images at poses in the
discretized set. One should note that the light field is not related to illumination variation.
Face recognition approaches to handling both illumination and pose variations include
[35, 37, 76, 77]. The approach [35] uses morphable 3D models to characterize human
faces. Both geometry and texture are linearly spanned by those of the training ensemble
consisting of 3D prior models. It is able to handle both illumination and pose variations.
Its only weakness is a complicated fitting algorithm. Recently, a fitting algorithm more
efficient than [35] has been proposed in [78]. In [37], the Fisher light field is proposed
to handle both illumination and pose variations, where the light field is used to cover the
pose variation and the Fisher discriminant analysis to cover the illumination variation.
Since discriminant analysis is a statistical analysis tool which minimizes the within-
class scatter while maximizing the between-class clatter and has no relationship with
any physical illumination model, it is questionable that discriminant analysis is able to
generalize to new lighting conditions. Instead, this generalization may be inferior because
discriminant analysis tends to overly tune to the lighting conditions in the training set.
The “Tensorface” approach [76] uses a multilinear analysis to handle various factors such
as identity, illumination, pose, and expression. The factors of identity and illumination
are suitable for linear analysis, as evidenced by the “Eigenface” approach (assuming a
fixed illumination and a fixed pose) and the subspace induced by the Lambertian model,
respectively. However, the factor of expression is arguably amenable for linear analysis
and the factor of pose is not amenable for linear analysis. In [77], preliminary results are
reported by first warping the albedo and surface normal fields at the desired pose and
then carrying on recognition as usual.

24.3.2 Illumination- and Pose-Invariant Identity Signature
The light field measures the radiance in free space (free of occluders) as a 4D function
of position and direction. An image is a 2D slice of the 4D light field. If the space is only
2D, the light field is then a 2D function. This is illustrated in Fig. 24.7 (also see another
illustration in [33]), where a camera conceptually moves along a circle, within which a
square object with four differently colored sides resides. The 2D light field L is a function
of � and � as properly defined in Fig. 24.7. The image of the 2D object is just a vertical
line. If the camera is allowed to leave the circle, then a curve is traced out in the light field
to form the image, i.e., the light field is accordingly sampled.

Constructing a light field is a practically difficult task. However, in the context of
view-based face recognition, where only some specific poses are of interest with each
pose sampling a subset of the light field, we can only focus on the portion of the light
field that is equivalent to the union of these subsets. Suppose that the K poses of interest
are {v1, . . . ,vK } and the images at these poses are {h(v1),h(v2), . . . ,h(vK )}. The portion of
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FIGURE 24.7

This figure illustrates the 2D light field of a 2D object (a square with four differently colored
sides), which is placed within a circle. The angles � and � are used to relate the viewpoint with
the radiance from the object. The right image shows the actual light field for the square object.
See another illustration in [33].

the light field of focus is nothing but L
.

� [h(v1)
T,h(v2)

T, . . . ,h(vK )T]T, which is a “long”
Kd � 1 vector obtained by stacking all the images at all these poses. The introduction of
such a “long” vector eases our computation: (i) If we are interested in a particular view
v , we just simply take out those rows corresponding to this view. (ii) This allows us to
perform the PCA as discussed below on the ensemble consisting of a collection of such
“long” vectors, yielding a pose-invariant identity encoding.

Before presenting the details of the PCA implementation, we make the following
remarks. While characterizing the appearances of one object at given views using the
concept of light field is legitimate, generalizing this to many objects is questionable
since the light fields belonging to different objects are not in correspondence, i.e., they
are not shape-free in the terminology of [56, 79]. The mismatch in correspondence
arises from differences among different objects in head sizes, head locations in world
coordinator systems, positions of facial features (e.g., eye, lip, nose tip), etc. Typically,
correspondences between different objects are established using face normalization, or
registration is performed. Unfortunately, the normalization step that cannot be modeled
by a simple camera movement ruins the static scene requirement in the light field theory.
On the other hand, as argued in [56, 79], since the shape-free appearance is amenable for
linear analysis, we can pursue PCA on the shape-free vector L, similar to the “Eigen” light
field approach [33].

Starting from {Ln ; n � 1, . . . ,N } of the training samples, the PCA finds eigenvectors
{ei ; i � 1, . . . ,m} which span a rank-m subspace. Using the fact [11, 12] that if YTY has
an eigenpair (�,v), then YYT has a corresponding eigenpair (�,Yv), we know that ei is
just a linear combination of the Lns, i.e., there exist ains such that

ei �
∑

n

ainLn . (24.15)
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For an arbitrary subject, its L vector lies in this rank-m subspace. In other words,
there exist coefficients fi such that

L �

m∑
i�1

fiei � Ef, (24.16)

where E
.

� [e1,e2, . . . , em]Kd�m and f � [f1, f2, . . . , fm]Tm�1.
As mentioned earlier, to obtain an image hv at a particular pose v (a collection of d

pixels), one should sample the L vector by taking out corresponding rows. Denoting this
row sampling operator as Rv , we have

hv � Rv [L]� Rv [Ef]� Rv [E]f � Ev f, (24.17)

where Ev .
� [Rv [e1],Rv [e2], . . . ,Rv [em]]d�m . Eq. (24.17) has an important implication:

f is a pose-invariant identity signature such that when K � 1, the above analysis simply
reduces to the regular “Eigenface” approach [12] at a fixed pose. The assumption of a set
of fixed poses can be “relaxed” by registering an image at an arbitrary pose not in the set
to the nearest pose in the set using flow computation techniques or rendering a novel
poses using given poses.

The light field vector L is constructed under fixed illumination s and now denoted by
Ls . It also follows the Lambertian reflectance model:

Ls � max(Us, 0), (24.18)

where U is a matrix encoding the products of the albedos and the surface normals of all
pixels present in Ls and does not depend on s. Following the assumption of the linear
Lambertian object, we have

Ls �

m∑
i�1

fiL
s
i �

m∑
i�1

fi max(Uis, 0), (24.19)

where Ls
i is the basis light field vector with Ui being its corresponding albedo and surface

normal matrix.
An image hvs under pose v and illumination s is

hvs � Rv [Ls ]�
m∑

i�1

fi max(Rv [Ui ]s, 0). (24.20)

Equation (24.20) has an important implication: the coefficient vector f provides an
illumination- and pose-invariant identity signature because the pose is absorbed in Ui

and the illumination is absorbed in s.
The remaining questions are how to learn the basis matrix W from a given training

ensemble and how to compute the blending coefficient vector f as well as s for an arbitrary
image hvs . This is similar to what is presented in Section 24.2. The detailed solutions are
available in [63].
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24.3.3 Implementations and Experiments
We use the “illum” subset of the PIE database [25] in our experiments. This subset has
68 subjects under 21 illuminations and 13 poses. Out of the 21 illuminations, we select
12 of them, f16, f15, f13, f21, f12, f11, f08, f06, f10, f18, f04, and f02, as in [37], which typically
span the set of variations. Out of the 13 poses, we select 9 of them, c22, c02, c37, c05, c27,
c29, c11, c14, and c34, which cover from the left profile to the frontal to the right profile.
In total, we have 68 � 12 � 9 � 7,344 images. Figure 24.3 displays one PIE object under
illumination and pose variations.

Registration is performed by aligning the eyes and mouth to desired positions. No
flow computation is carried on for further alignment. After the preprocessing step, the
face image is of size 48 by 40, i.e., d � 1920. Also, we only use grayscale images by taking
the average of the red, green, and blue channels of their color versions. We believe that
our recognition rates can be boosted by using color images and finer registrations.

We randomly divide the 68 subjects into two parts. The first 34 subjects are used in
the training set (i.e., m � 34) and the remaining 34 subjects are used in the gallery and
probe sets. It is guaranteed that there is no identity overlap between the training set and
the gallery and probe sets. To form the L vector, we use images at all available poses. Since
the illumination model has generalization capability, we can select a minimum of three
lighting sources in the training set. In our experiments, the training set includes only nine
selected lighting sources (i.e., r � 9) to cover the second-order harmonic components
[28]. We do not exhaust all the 12 lighting sources during training; hence the generaliza-
tion capability is required in the testing stage. Notice that this is not possible in the Fisher
light field approach [37] that exhausts all illumination.

The images belonging to the remaining 34 subjects are used in the gallery and probe
sets. We use all 34 images under one illumination sp and one pose vp to form a gallery
set and under the other illumination sg and the other pose vg to form a probe set. There
are three cases of interest: same pose but different illumination, different pose but same
illumination, and different pose and different illumination. We mainly concentrate on
the third case with sp �� sg and vp �� vg . Thus, we have (9 � 12)2 � (9 � 12) � 11,556
tests, with each test giving rise to a recognition score. To make the recognition more
difficult, we assume that the lighting conditions for the training, gallery, and probe sets
are completely unknown when recovering the identity signatures. However, the pose
information is known.

Our strategy is to

1. Learn Ui from the training set using the bilinear learning algorithm [29, 31].

2. With Ui given, learn the identity signature f (as well as s) for all the gallery and
probe elements. Learning f and s from one single image takes about 1-2 seconds
in a MATLAB implementation.

3. Perform recognition using the nearest correlation coefficient.

Table 24.3 shows the recognition results for all probe sets with a fixed gallery set
(c27, f11), whose gallery images are at a frontal pose and under frontal illumination.
Using this table we make the following observations. The case of same pose but different
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TABLE 24.3 In each cell, the left number is the recognition rate for all the probe sets with a fixed gallery set (c27, f11) and the
right number is the average recognition rates for all the gallery sets. Say the gallery is set at (vg � c27, sg � f12), the average rate
is taken over all the probe sets (vp, sp) where vp �� vg and sp �� sg . For example, the average rate for (c27,f11) is the average of
the rates in Table 24.3 excluding the row c27 and the column f11.

f16 f15 f13 f21 f12 f11 f08 f06 f10 f18 f04 f02 avg

c22 56/44 41/44 62/46 68/45 71/46 71/49 53/46 65/49 41/44 44/32 38/30 21/14 52/41
c02 71/55 76/58 76/59 91/62 88/63 94/62 94/60 94/60 85/54 71/48 50/40 32/22 77/54
c37 79/56 82/59 82/61 94/64 94/65 97/62 94/60 94/58 76/51 65/47 65/45 50/34 81/55
c05 68/56 85/63 97/66 100/67 100/68 97/65 97/59 97/58 91/54 82/51 71/45 44/36 86/57
c27 94/62 100/66 100/69 100/70 100/70 -/70 100/65 100/69 100/68 97/67 94/65 76/54 97/66
c29 74/46 82/53 91/53 100/61 100/60 100/63 97/59 97/62 94/66 91/68 88/62 65/60 90/60
c11 50/41 53/43 68/50 79/53 85/55 97/61 97/57 88/58 79/56 82/61 71/58 62/51 76/54
c14 15/19 24/24 44/39 71/49 76/53 82/53 74/58 82/61 82/60 74/61 79/57 56/48 63/49
c34 18/16 18/21 47/38 50/44 56/46 65/51 62/48 56/51 44/46 44/45 41/45 38/42 45/41

avg 58/44 62/48 74/53 84/57 86/59 88/60 85/57 86/59 77/56 72/53 66/50 49/40 74/53
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illumination has an average rate 97% (i.e., the average of all 11 cells on the row c27), the
case of different pose but same illumination has an average rate 88% (i.e., the average of
all 8 cells on the column f11), and the case of different pose and different illumination has
an average rate 70% (i.e., the average of all 88 cells excluding the row c27 and the column
f11). This shows that illumination variation is easier to handle than pose variation, and
variations in both pose and illumination are the most difficult to deal with.

We now focus on the case of different pose and different illumination. For each gallery
set, we average the recognition scores of all the probe sets with both pose and illumination
different from the gallery set. Table 24.3 also shows the average recognition rates for all
the gallery sets. As an interesting comparison, the “grand” average is 53% (the last cell in
Table 24.3) while that of the Fisher light field approach [37] is 36%. In general, when the
poses and lighting sources of the gallery and probe sets become far apart, the recognition
rates decrease. The best gallery sets for recognition are those in frontal poses and under
frontal illumination, and the worst gallery sets are those in profile views and off-frontal
illumination. As shown in Fig. 24.3, the worst gallery sets consist of face images almost
invisible (see for example the images (c22, f02) and (c34, f16)) on which recognition can be
hardly performed.

Figure 24.8 presents the curves of the average recognition rates (i.e., the last columns
and last rows of Table 24.3) across poses and illumination. Clearly the effect of illumi-
nation variation is not as strong as due to pose variation in the sense that the curves
of average recognition rates across illumination are flatter than those across poses.
Figure 24.8 also shows the curves of the average recognition rates obtained based on
the top 3 and top 5 matches. Using more matches increases the recognition rates signif-
icantly, which demonstrates the efficiency of our recognition scheme. For comparison,
Fig. 24.8 also plots the average rates obtained using the baseline PCA or the “Eigenface”
approach [12]. These rates are well below ours. The“grand”average for the PCA approach
is below 10% if the top 1 match is used.

24.4 FACE MODELING AND VERIFICATION ACROSS AGE
PROGRESSION

Apart from factors such as illumination, pose variations, and facial expressions that result
in appearance changes, facial aging effects induce notable variations in one’s appearance.
Facial aging effects are often perceived in the form of gradual changes in facial shape and
facial texture. Further, factors such as age group, gender, ethnicity, and weight loss/gain are
said to influence the manifestation of facial aging effects. Developing a face recognition
system that is well equipped in handling aging effects involves building computational
models for facial shape and textural variations with age. In this section, we discuss
computational models that characterize facial aging effects during different ages and
briefly illustrate their application in performing face recognition across age progression.

Though face recognition systems have been in research for decades, it is only recently
that there has been an enhanced interest in developing face recognition systems that are
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FIGURE 24.8

The average recognition rates across illumination (the top row) and across poses (the bottom row) for three cases. Case (a) shows the average
recognition rate (averaging over all illumination/poses and all gallery sets) obtained by the proposed algorithm using the top n matches. Case (b)
shows the average recognition rate (averaging over all illumination/poses for the gallery set (c27, f11) only) obtained by the proposed algorithm
using the top n matches. Case(c) shows the average recognition rate (averaging over all illumination/poses and all gallery sets) obtained by the
“Eigenface” algorithm using the top n matches.



24.4 Face Modeling and Verification Across Age Progression 701

robust to aging effects. Researchers from psychophysics laid the foundations for studies
related to facial aging effects. D’arcy Thompson studied morphogenesis by means of
geometric transformation functions applied on biological forms. Pittenger and Shaw [80]
and Todd et al [81] identified certain forms of force configurations that when applied on
2D face profiles induce facial aging effects. Figure 24.9 illustrates the effect of applying the
“revised” cardioidal strain transformation model on profile faces. The aforementioned
transformation model is said to reflect the remodeling of fluid filled spherical objects
with applied pressure. O’Toole et al [82] studied the effects of facial wrinkles in increasing
the perceived age of faces. Ramanathan and Chellappa [59] developed a Bayesian age-
difference classifier with the objective of developing systems that could perform face
verification across age progression. The results from many such studies highlight the
importance of developing computational models that characterize both growth-related
shape variations and textural variations, such as wrinkles and other skin artifacts, in
developing a facial aging model.

In this section, we shall present computational models that characterize shape vari-
ations that faces undergo during different stages of growth. Facial shape variations due
to aging can be observed by means of facial feature drifts and progressive variations in
the shape of facial contours, across ages. While facial shape variations during formative
years are primarily due to craniofacial growth, during adulthood, facial shape variations
are predominantly driven by the changing physical properties of facial muscles. Hence,
we propose shape variation models for each of the age groups that best account for the
factors that induce such variations.

Pressure � R0 (1 � cos(�))

Original Profile
Profile with k � 0.04
Profile with k � 0.08
Profile with k � 0.12
Profile with k � 0.16
Profile with k � 0.20

(a) (b)

�
Origin

(R0, �)

(R1, �)

�

FIGURE 24.9

(a) Remodeling of a fluid filled spherical object; (b) facial growth simulated on the profile of a
child’s face using the “revised” cardioidal strain transformations.
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24.4.1 Shape Transformation Model for Young Individuals [60]
Drawing inspiration from the “revised” cardioidal strain transformation model pro-
posed in psychophysics [81], we propose a craniofacial growth model that assumes the
underlying form:

P�R0(1 � cos(�0)),

R1 � R0 � k(R0 � R0 cos(�0)), (24.21)

�1 � �0.

The model described above characterizes facial feature drifts as caused by internal
pressures that are resultants of craniofacial growth. In the above Eq. (24.21), P denotes
the pressure at the particular point on the object surface acting radially outward. (R0, �0)
and (R1, �1) denote the angular coordinates of a point on the surface of the object before
and after the transformation. k denotes a growth-related constant. Face anthropometric
studies [83] come in handy in providing dense facial measurements extracted across dif-
ferent facial features across ages. Age-based facial measurements extracted across different
facial features play a crucial role in developing the proposed growth model. Figure 24.10
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FIGURE 24.10

Face anthropometry: of the 57 facial landmarks defined in [83], we choose 24 landmarks illus-
trated above for our study. We further illustrate some of the key facial measurements that were
used to develop the growth model.
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illustrates the 24 facial landmarks and some of the important facial measurements that
were used in our study.

Given the pressure model (24.21) and the age-based facial measurements, developing
the craniofacial growth model amounts to identifying the growth parameters associated
with different facial features. Let the facial growth parameters of the “revised” cardioidal
strain transformation model that correspond to facial landmarks designated by [n, sn, ls,
sto, li, sl , gn, en, ex , ps, pi, zy , al , ch, go] be [k1, k2, . . . k15]. The facial growth parameters
for different age transformations can be computed using anthropometric constraints
on facial proportions. The computation of facial growth parameters is formulated as a
nonlinear optimization problem. We identified 52 facial proportions that can be reliably
estimated using the photogrammetry of frontal face images. Anthropometric constraints
based on proportion indices translate into linear and nonlinear constraints on selected
facial growth parameters. While constraints based on proportion indices such as the
intercanthal index and nasal index result in linear constraints on the growth parameters,
constraints based on proportion indices such as the eye fissure index and orbital width
index result in nonlinear constraints on the growth parameters.

Let the constraints derived using proportion indices be denoted as r1(k) � 	1, r2(k) �
	2, . . . , rN (k) � 	N . The objective function f (k) that needs to be minimized w.r.t k is
defined as

f (k) �
1

2

N∑
i�1

(ri(k) � 	i)
2. (24.22)

The following equations illustrate the constraints that were derived using different facial
proportion indices.

r1 :
[ n�gn

zy�zy � c1
]≡ �

(1)
1 k1 � �

(1)
2 k7 � �

(1)
3 k12 � 	1

r2 :
[ al�al

ch�ch � c2
]≡ �

(2)
1 k13 � �

(2)
2 k14 � 	2

r3 :
[ li�sl

sto�sl � c3
]≡ �

(3)
1 k4 � �

(3)
2 k5 � �

(3)
3 k6 � 	3

r4 :
[ sto�gn

gn�zy � c4
]≡ �

(4)
1 k5 � �

(4)
2 k7 � �

(4)
3 k12 � �

(4)
4 k2

4 � �
(4)
5 k2

7

��
(4)
6 k2

12 � �
(4)
7 k4 k7 � �

(4)
8 k7 k12 � 	4

(�i
j and 	i are constants. ci is an age-based proportion index obtained from [83].)

We use the Levenberg-Marquardt nonlinear optimization algorithm [84] to compute
the growth parameters that minimize the objective function in an iterative fashion. Next,
using the growth parameters computed over selected facial landmarks, we compute the
growth parameters over the entire face region. This is formulated as a scattered data
interpolation problem [85]. Figure 24.11 shows some of the age transformation results
obtained using the proposed model.
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FIGURE 24.11

Age transformation results on different individuals. (The original images shown above were taken
from the FG-Net database [86].)

24.4.2 Shape Transformation Model for Adults [61]
We propose a facial shape variation model that represents facial feature deformations
observed during adulthood as that driven by the changing physical properties of the
underlying facial muscles. The model is based on the assumption that the degrees of
freedom associated with facial feature deformations are directly related to the physical
properties and geometric orientations of the underlying facial muscles.

x(i)
t1

� x(i)
t0

� k(i) [P(i)
t0
]
x

, (24.23)

y(i)
t1

� y(i)
t0

� k(i) [P(i)
t0
]
y

,
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where (x(i)
t0

,y(i)
t0

) and (x(i)
t1

,y(i)
t1

) correspond to the cartesian coordinates of the ith facial

feature at ages t0 and t1, k(i) corresponds to a facial growth parameter, and [P (i)
t0
]x , [P(i)

t0
]y

corresponds to the orthogonal components of the pressure applied on the ith facial
feature at age t0.

We propose a physically based parametric muscle model for human faces that implic-
itly accounts for the physical properties, geometric orientations, and functionalities of
each of the individual facial muscles. Drawing inspiration from Waters’ muscle model
[87], we identify three types of facial muscles, namely linear muscles, sheet muscles, and
sphincter muscles, based on their functionalities. Further, we propose transformation
models for each muscle type.

The following factors are to be taken into consideration while developing the pressure
models. (i) Muscle functionality and gravitational forces: The proposed pressure models
reflect the muscle functionalities such as the “stretch” operation and the “contraction”
operation. The direction of applied pressure reflects the effects of gravitational forces.
(ii) Points of origin and insertion for each muscle: The degrees of freedom associated with
muscle deformations are minimum at their points of origin (fixed end) and maximum
at their points of insertion (free end). Hence, the deformations induced over a facial
feature directly depend on the distance of the facial feature from the point of origin of
the underlying muscle. The transformation models proposed on each muscle type are
illustrated below.

1. Linear muscle (�,�)

Linear muscles correspond to the“stretch operation.” These muscles are described
by their attributes namely the muscle length (�) and the muscle orientation w.r.t
to the facial axis (�). The farther a feature is from the muscle’s point of origin, the
greater the chances that the feature undergoes deformation. Hence, the pressure
is modeled such that P(i) ��(i). (�i is the distance of the ith feature from the
point of origin.) The corresponding shape transformation model is described
below:

x(i)
t1

� x(i)
t0

� k [�(i) sin�],

y(i)
t1

� y(i)
t0

� k [�(i) cos�].

2. Sheet muscle (�,�,�,
)

Sheet muscles correspond to the “stretch operation” as well. They are described
by four of their attributes (muscle length, angles subtended, etc.). The pressure
applied on a fiducial feature is modeled as P (i) � �(i) sec �(i), the distance of
the ith feature from the point(s) of origin of the underlying muscles. The shape
transformation model is described below:

x(i)
t1

� x(i)
t0

� k [�(i) sec �(i) sin(� � �(i))],

y(i)
t1

� y(i)
t0

� k [�(i) sec �(i) cos(� � �(i))].
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3. Sphincter muscle (�,	)

The sphincter muscle corresponds to the “contraction/expansion” operation and
is described by two attributes. The pressure modeled as a function of the
distance from the point of origin, P (i) � r (i)(�(i))cos�(i), is directed radially
inward/outward:

x(i)
t1

� x(i)
t0

� k [r(i)(�(i))cos2 �(i)],

y(i)
t1

� y(i)
t0

� k [r(i)(�(i))cos�(i) sin�(i)].

Figure 24.12 illustrates the muscle-based pressure distributions described above.
From a database that comprises 1200 pairs of age separated face images (predomi-

nantly Caucasian), we selected 50 pairs of face images each undergoing the following
age transformations (in years): 20s→ 30s, 30s→ 40s, 40s→ 50s, 50s→ 60s, and
60s→ 70s. We selected 48 facial features from each image pair and extracted 44 projec-
tive measurements (21 horizontal measurements and 23 vertical measurements) across
the facial features. We analyze the intrapair shape transformations from the perspective
of weight-loss, weight-gain, and weight-retention and select the appropriate training sets
for each case. Again, following an approach similar to that described in the previous
section, we compute the muscle parameters by studying the transformation of ratios of
facial distances across age transformations.

24.4.3 Texture Transformation Model
From a modeling perspective, facial wrinkles and other forms of textural variations
observed in aging faces can be characterized on the image domain by means of image

gradients. Let (I (i)
t1

, I (i)
t2

), 1 � i � N correspond to pairs of age-separated face images of
N individuals undergoing similar age transformations (t1→ t2). In order to study the
facial wrinkle variations across age transformation, we identify four facial regions which
tend to have a high propensity toward developing wrinkles, namely the forehead region
(W1), the eye-burrow region (W2), the nasal region (W3), and the lower chin region
(W4). Wn , 1 � n � 4 corresponds to the facial mask that helps isolate the desired facial

region. Let �I (i)
t1

and �I (i)
t2

correspond to the image gradients of the ith image at t1 and
t2 years, 1 � i � N . Given a test image Jt1 at t1 years, the image gradient of which is �J t1 ,
we induce textural variations by incorporating the region-based gradient differences that
were learned from the set of training images discussed above:

�J t2 � �J t1 �
1

N

N∑
i�1

4∑
n�1

Wn ·
(

�I (i)
t2

� �I (i)
t1

)
. (24.24)

The transformed image Jt2 is obtained by solving the Poisson equation corresponding to
image reconstructions from gradient fields [88]. Figure 24.13 provides an overview of
the proposed facial aging model.
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(i) Muscle-based pressure distribution

(iii) Pressure modeled on
       sheet muscles

(iv) Pressure modeled on
 sphincter muscles

(ii) Pressure modeled
 on linear muscle

FIGURE 24.12

Muscle-based pressure illustration.

The proposed facial aging models were used to perform face recognition across age
transformations on two databases. The first database was comprised of age-separated
face images of individuals under 18 years of age and the second comprised of age-
separated face images of adults. On a database that comprises 260 age-separated image
pairs of adults, we perform face recognition across age progression. The image pairs
were compiled from both the Passport database [59] and the FG-NET database [86].
We adopt PCA to perform recognition across ages under the following three settings: no
transformation in shape and texture, performing shape transformation, and performing
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FIGURE 24.13

An overview of the proposed facial aging model: facial shape variations induced for the cases
of weight-gain and weight-loss are illustrated. Further, the effects of gradient transformations in
inducing textural variations are illustrated as well.

TABLE 24.4 Face recognition across ages.

Experimental Setting Rank 1 (%)

No transformations 38
Shape transformations 41
Shape and texture transformations 51

shape and textural transformation. Table 24.4 reports the rank 1 recognition score under
the three settings. The experimental results highlight the significance of transforming
shape and texture when performing face recognition across ages.

A similar performance improvement was observed on the face database that comprises
individuals under 18 years of age. For a more detailed account on the experimental results,
we refer the readers to our earlier works [60, 61].

24.5 CONCLUSIONS
This chapter presented a hierarchical framework for face pattern and face recognition
theory. Current face recognition approaches are classified according to their placements
in this framework. We then presented the linear Lambertian object model for face recog-
nition under illumination variation and the illuminating light field algorithm for face
recognition under both illumination and pose variations. Finally, we discussed methods
for face recognition and modeling across age progression.
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CHAPTER

25How Iris Recognition Works
John Daugman

University of Cambridge

Algorithms developed by the author for recognizing persons by their iris patterns [1–3]
are the basis of all current public deployments of iris-based automated biometric identi-
fication. To date, many millions of persons across many countries have enrolled with this
system, most commonly for expedited border crossing in lieu of passport presentation
but also in government security watch-list screening programs. The recognition princi-
ple is the failure of a test of statistical independence on iris phase structure, as encoded
by multiscale quadrature Gabor wavelets. The combinatorial complexity of this phase
information across different persons spans about 249 degrees of freedom and generates a
discrimination entropy of about 3.2 bits/mm2 over the iris, enabling real-time decisions
about personal identity with extremely high confidence. These high confidence levels are
important because they allow very large databases to be searched exhaustively (one-to-
many “identification mode”), without making false matches, despite so many chances.
Biometrics that lack this property can only survive one-to-one (“verification”) or few
comparisons. This chapter explains the iris recognition algorithms and presents results
of 9.1 million comparisons among eye images from trials in Britain, the USA, Japan, and
Korea.

25.1 INTRODUCTION
Reliable automatic recognition of persons has long been an attractive goal. As in all
pattern recognition problems, the key issue is the relation between interclass and intraclass
variability: objects can be reliably classified only if the variation among different instances
of a given class is less than the variation between different classes. For example in face
recognition, difficulties arise from the fact that the face is a changeable social organ
displaying a variety of expressions, as well as being an active 3D object whose image
varies with viewing angle, pose, illumination, accoutrements, and age [4, 5]. It has been
shown that even for “mug shot” (pose-invariant) images taken at least one year apart,
even the best algorithms have unacceptably large error rates [6–8]. Against this intraclass
(same face) variation, interclass variation is limited because different faces possess the
same basic set of features, in the same canonical geometry. 715
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Following the fundamental principle that interclass variation should be larger than
intraclass variation, iris patterns offer a powerful alternative approach to reliable visual
recognition of persons when imaging can be done at distances of about a meter or less,
and especially when there is a need to search very large databases without incurring any
false matches despite a huge number of possibilities. Although small (11 mm diameter)
and sometimes problematic to image, the iris has the great mathematical advantage that
its pattern variability among different persons is enormous. In addition, as an internal
(yet externally visible) organ of the eye, the iris is well protected from the environment
and stable over time. As a planar object its image is relatively insensitive to angle of
illumination, and changes in viewing angle cause only affine transformations; even the
nonaffine pattern distortion caused by pupillary dilation is readily reversible in the image
coding stage. Finally, the ease of localizing eyes in faces, and the distinctive annular shape
of the iris, facilitates reliable and precise isolation of this feature and the creation of a
size-invariant representation.

The iris begins to form in the third month of gestation [9] and the structures creating
its pattern are largely complete by the eighth month, although pigment accretion can
continue into the first postnatal years. Its complex pattern can contain many distinctive
features such as arching ligaments, furrows, ridges, crypts, rings, corona, freckles, and a
zigzag collarette, some of which may be seen in Fig. 25.1. Iris color is determined mainly
by the density of melanin pigment [10] in its anterior layer and stroma, with blue irises
resulting from an absence of pigment: long wavelength light penetrates while shorter
wavelengths are scattered by the stroma. The striated trabecular meshwork of elastic
pectinate ligament creates the predominant texture under visible light, whereas in the
near infrared (NIR) wavelengths used for unobtrusive imaging, deeper and somewhat
more slowly modulated stromal features dominate the iris pattern. In NIR wavelengths,
even darkly pigmented irises reveal rich and complex features.

25.2 LOCALIZING THE IRIS AND ITS BOUNDARIES
To capture the rich details of iris patterns, an imaging system should resolve a minimum
of 70 pixels in iris radius. In most deployments of these algorithms to date, the resolved
iris radius has typically been 80 to 130 pixels. Monochrome CCD cameras (480 � 640)
have been used because NIR illumination in the 700 nm–900 nm band was required for
imaging to be unintrusive to humans. Some imaging platforms deployed a wide-angle
camera for coarse localization of eyes in faces to steer the optics of a narrow-angle pan/tilt
camera that acquired higher resolution images of eyes. There exist many alternative
methods for finding and tracking facial features such as the eyes, and this well-researched
topic will not be discussed further here. Most images in the present database were acquired
without active pan/tilt camera optics, instead exploiting visual feedback via a mirror or
video image to enable cooperating subjects to position their own eyes within the field of
view of a single narrow-angle camera.
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FIGURE 25.1

Examples of human iris patterns, imaged monochromatically at a distance of about 35 cm. The
outline overlays show the results of the iris and pupil localization and eyelid detection steps.
One cannot assume that the iris boundaries are concentric nor even circular. The bit streams
pictured are the result of demodulation with complex-valued 2D Gabor wavelets to encode the
phase sequence of each iris pattern.

Image focus assessment is performed in real-time (faster than video frame rate)
by measuring spectral power in middle and upper frequency bands of the 2D Fourier
spectrum of each image frame and seeking to maximize this quantity either by moving an
active lens or by providing audio feedback to subjects to adjust their range appropriately.
The video rate execution speed of focus assessment (i.e., within a few milliseconds on an
ARM device) is achieved by using a bandpass 2D filter kernel requiring only summation
and differencing of pixels, and no multiplications, within the 2D convolution necessary
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to estimate power in the selected 2D spectral bands. Details are provided in Section 25.9
(Appendix).

Images satisfying a minimum focus criterion are then analyzed to find the iris, with
initially circular approximations of its boundaries using a coarse-to-fine strategy termi-
nating in estimates of the center coordinates and radius of both the iris and the pupil.
Although the results of the iris search greatly constrain the pupil search, concentricity of
these boundaries cannot be assumed. Very often the pupil center is nasal, and inferior,
to the iris center. Its radius can range from 0.1 to 0.8 of the iris radius. Thus, all three
parameters defining the pupil when approximated as a circle must be estimated separately
from those of the iris. A very effective integrodifferential operator for determining these
parameters is:

max(r ,x0,y0)

∣∣∣∣∣G�(r) ∗ �

�r

∮
r ,x0,y0

I (x ,y)

2�r
ds

∣∣∣∣∣ , (25.1)

where I (x ,y) is an image such as Fig. 25.1 containing an eye. The operator searches over
the image domain (x ,y) for the maximum in the blurred partial derivative with respect
to increasing radius r of the normalized contour integral of I (x ,y) along a circular arc
ds of radius r and center coordinates (x0,y0). The symbol ∗ denotes convolution, and
G�(r) is a smoothing function such as a Gaussian of scale �. The complete operator
behaves as a circular edge detector, blurred at a scale set by �, searching iteratively for
the maximal contour integral derivative at successively finer scales of analysis through
the three parameter space of center coordinates and radius (x0,y0, r) defining a path of
contour integration.

The operator in (25.1) serves to find both the pupillary boundary and the outer
(limbus) boundary of the iris in a mutually reinforcing manner. Once the coarse-to-fine
iterative searches for both these boundaries have reached single pixel precision, then a
similar approach to detecting curvilinear edges is used to localize both the upper and lower
eyelid boundaries. The path of contour integration in (25.1) is changed from circular to
arcuate, with spline parameters fitted by statistical estimation methods to model each
eyelid boundary. Images with less than 50% of the iris visible between the fitted eyelid
splines are deemed inadequate, e.g., in blink. The result of all these localization operations
is the isolation of iris tissue from other image regions, as illustrated in Fig. 25.1 by the
graphical overlay on the eye.

Because the inner and outer boundaries of the iris are often not actually circles, perfor-
mance in iris recognition is significantly improved by relaxing both of those assumptions,
replacing them with more disciplined methods for faithfully detecting and modeling
those boundaries whatever their shapes, and defining a more flexible and generalized
coordinate system on their basis. Because the iris outer boundary is often partly occluded
by eyelids, and the iris inner boundary may be partly occluded by reflections from illu-
mination, and sometimes both boundaries may also be partly occluded by reflections
from eyeglasses, it is necessary to fit flexible contours that can tolerate interruptions and
continue their trajectory across them on a principled basis, driven somehow by the data
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that exists elsewhere. A further constraint is that both the inner and outer boundary
models must form closed curves. A final goal is that we would like to impose a constraint
on smoothness, based on the credibility of any evidence for nonsmooth curvature.

An excellent way to achieve all these goals is to describe the iris inner and outer
boundaries in terms of “active contours” based on discrete Fourier series expansions
of the contour data. By employing Fourier components whose frequencies are integer
multiples of 1/(2�), closure, orthogonality, and completeness are ensured. Selecting the
number of frequency components allows control over the degree of smoothness that is
imposed and over the fidelity of the approximation. In essence, truncating the discrete
Fourier series after a certain number of terms amounts to lowpass filtering the boundary
curvature data in the active contour model. The estimation procedure is to compute a
Fourier expansion of N regularly-spaced angular samples of radial gradient edge data
{r�} for � � 0 to � � N � 1. A set of M discrete Fourier coefficients {Ck}, for k � 0 to
k � M � 1, are computed from the data sequence {r�} as follows:

Ck �

N �1∑
��0

r�e�2�ik�/N .

Note that the zeroth-order coefficient or “DC term” C0 extracts information about
the average curvature of the (pupil or outer iris) boundary, in other words, about its
radius when it is approximated just as a simple circle.

From these M discrete Fourier coefficients, an approximation to the corresponding
iris boundary (now without interruptions, and at a resolution determined by M ) is
obtained as the new sequence {R�} for � � 0 to � � N � 1:

R� �
1

N

M�1∑

k�0

Ck e2�ik�/N .

As is generally true of active contour methods, there is a tradeoff between how pre-
cisely one wants the model to fit all the data (improved by increasing M ), versus how
much one wishes to impose constraints such as keeping the model simple and of low-
dimensional curvature (achieved by reducing M , for example M � 1 enforces a circular
model). Thus the number M of activated Fourier coefficients is a specification for the
number of degrees-of-freedom in the shape model. A good choice of M for capturing
the true pupil boundary with appropriate fidelity is M � 17, whereas a good choice for
the iris outer boundary where the data is often much weaker is M � 5. It is also useful
to impose monotonically decreasing weights on the computed Fourier coefficients {Ck}
as a further control on the resolution of the approximation {R�} ≈ {r�}, which amounts
to lowpass filtering the curvature map in its Fourier representation. Altogether these
manipulations, particularly the two different choices for M , implement the computer
vision principle that strong data (the pupil boundary) may be modeled with only weak
contraints, whereas weak data (the outer boundary) should be modeled with strong
constraints.
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The active contour models for the inner and outer iris boundaries support an
isometric mapping of the iris tissue between them, regardless of the actual shapes of
the contours, and with robustness to gaps such as are caused by eyelid interruptions. This
dimensionless, pseudopolar mapping and its invariances for recognition will be discussed
in Section 25.5.

25.3 IRIS FEATURE ENCODING BY 2D GABOR WAVELET
DEMODULATION

Each isolated iris pattern is then demodulated to extract its phase information using
quadrature 2D Gabor wavelets [11–13]. This encoding process is illustrated in Fig. 25.2.
It amounts to a patchwise phase quantization of the iris pattern, by identifying in which
quadrant of the complex plane each resultant phasor lies when a given area of the iris is
projected onto complex-valued 2D Gabor wavelets:

h{Re,Im} � sgn{Re,Im}
∫

�

∫
�

I (�,�)e�i�(�0��) · e�(r0��)2/	2
e�(�0��)2/
2

�d�d�, (25.2)

Phase-quadrant demodulation code

[0, 0] [1, 0]

[1, 1][0, 1]

Re

Im

FIGURE 25.2

The phase demodulation process used to encode iris patterns. Local regions of an iris are pro-
jected (25.2) onto quadrature 2D Gabor wavelets, generating complex-valued coefficients whose
real and imaginary parts specify the coordinates of a phasor in the complex plane. The angle of
each phasor is quantized to one of the four quadrants, setting 2 bits of phase information. This
process is repeated all across the iris with many wavelet sizes, frequencies, and orientations to
extract 2,048 bits.
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where h{Re,Im} can be regarded as a complex-valued bit whose real and imaginary parts
are either 1 or 0 (sgn) depending on the sign of the 2D integral; I (�,�) is the raw iris
image in a dimensionless polar coordinate system that is size- and translation-invariant,
and which also corrects for pupil dilation as explained in a later section; 	 and 
 are
the multiscale 2D wavelet size parameters, spanning an 8-fold range from 0.15 mm to
1.2 mm on the iris; � is wavelet frequency, spanning 3 octaves in inverse proportion to

; and (r0,�0) represent the polar coordinates of each region of iris for which the phasor
coordinates h{Re,Im} are computed. Such phase quadrant coding sequences are illustrated
for two irises by the bit streams shown graphically in Fig. 25.1. A desirable feature of
the phase code definition given in Fig. 25.2 is that it is a cyclic or gray code: in rotating
between any adjacent phase quadrants, only a single bit changes, unlike a binary code
in which 2 bits may change, making some errors arbitrarily more costly than others.
Altogether 2048 such phase bits (256 bytes) are computed for each iris, but in a major
improvement over the author’s earlier [1] algorithms, now an equal number of masking
bits are also computed to signify whether any iris region is obscured by eyelids, contains
any eyelash occlusions, specular reflections, boundary artifacts of hard contact lenses, or
contains a poor signal-to-noise ratio and thus should be ignored in the demodulation
code as artifact.

The 2D Gabor wavelets were chosen for the extraction of iris information because of
the nice optimality properties of these wavelets. Following the Heisenberg Uncertainty
Principle as it applies generally to mathematical functions, filters that are well localized in
frequency are poorly localized in space (or time), and vice versa. The 2D Gabor wavelets
have the maximal joint resolution in the two domains simultaneously [11, 12], which
means that both “what” and “where” information about iris features is extracted with
optimal simultaneous resolution. A further nice property of 2D Gabor wavelets is that
because they are complex-valued, they allow the definition and assignment of phase
variables to any point in the image.

Only phase information is used for recognizing irises because amplitude information
is not very discriminating, and it depends upon extraneous factors such as imaging
contrast, illumination, and camera gain. The phase bit settings which code the sequence
of projection quadrants as shown in Fig. 25.2 capture the information of wavelet zero-
crossings, as is clear from the sign operator in (25.2). The extraction of phase has the
further advantage that phase angles remain defined regardless of how poor the image
contrast may be, as illustrated by the extremely out-of-focus image in Fig. 25.3. Its
phase bit stream has statistical properties such as run lengths similar to those of the codes
for the properly focused eye images in Fig. 25.1. (Fig. 25.3 also illustrates the robustness
of the iris- and pupil-finding operators and the eyelid detection operators, despite poor
focus.) The benefit which arises from the fact that phase bits are set also for a poorly
focused image as shown here, even if based only on random CCD thermal noise, is
that different poorly focused irises never become confused with each other when their
phase codes are compared. By contrast, images of different faces look increasingly alike
when poorly resolved, and can be confused with each other by appearance-based face
recognition algorithms.
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FIGURE 25.3

Illustration that even for poorly focused eye images, the bits of a demodulation phase sequence
are still set, primarily by random CCD noise. This prevents poorly focused eye images from being
falsely matched, as they may be in amplitude-based representations.

25.4 THE TEST OF STATISTICAL INDEPENDENCE:
COMBINATORICS OF PHASE SEQUENCES

The key to iris recognition is the failure of a test of statistical independence, which involves
so many degrees-of-freedom that this test is virtually guaranteed to be passed whenever
the phase codes for two different eyes are compared, but to be uniquely failed when any
eye’s phase code is compared with another version of itself.

The test of statistical independence is implemented by the simple Boolean Exclusive-
OR operator (XOR) applied to the 2048 bit phase vectors that encode any two iris patterns,
masked (AND’ed) by both of their corresponding mask bit vectors to prevent noniris
artifacts from influencing iris comparisons. The XOR operator

⊗
detects disagreement

between any corresponding pair of bits, while the AND operator
⋂

ensures that the
compared bits are both deemed to have been uncorrupted by eyelashes, eyelids, specular
reflections, or other noise. The norms (‖ ‖) of the resultant bit vector and of the AND’ed
mask vectors are then measured in order to compute a fractional Hamming Distance
(HD) as the measure of the dissimilarity between any two irises, whose two phase code
bit vectors are denoted {codeA, codeB} and whose mask bit vectors are denoted {maskA,
maskB}:

HD �
‖(codeA

⊗
codeB)

⋂
maskA

⋂
maskB‖

‖maskA
⋂

maskB‖ . (25.3)

The denominator tallies the total number of phase bits that mattered in iris comparisons
after artifacts such as eyelashes and specular reflections were discounted, so the resulting
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HD is a fractional measure of dissimilarity; 0 would represent a perfect match. The
Boolean operators

⊗
and

⋂
are applied in vector form to binary strings of length up

to the word length of the CPU, as a single machine instruction. Thus for example on an
ordinary 32-bit machine, any two integers between 0 and 4 billion can be XOR’ed in a
single machine instruction to generate a third such integer, each of whose bits in a binary
expansion is the XOR of the corresponding pair of bits of the original two integers. This
implementation of (25.3) in parallel 32-bit chunks enables extremely rapid comparisons
of iris codes when searching through a large database to find a match. On a 300 MHz
CPU, such exhaustive searches are performed at a rate of about 100,000 irises per second;
on a 3 GHz server, about a million iris comparisons can be performed per second.

Because any given bit in the phase code for an iris is equally likely to be 1 or 0,
and different irises are uncorrelated, the expected proportion of agreeing bits between
the codes for two different irises is HD � 0.500. The histogram in Fig. 25.4 shows the
distribution of HDs obtained from 9.1 million comparisons between different pairings
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FIGURE 25.4

Distribution of Hamming distances from all 9.1 million possible comparisons between different
pairs of irises in the database. The histogram forms a perfect binomial distribution with p � 0.5
and N � 249 degrees-of-freedom, as shown by the solid curve (25.4). The data implies that it is
extremely improbable for two different irises to disagree in less than about a third of their phase
information.
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of iris images acquired by licensees of these algorithms in the UK, the USA, Japan,
and Korea. There were 4258 different iris images, including 10 each of one subset of
70 eyes. Excluding those duplicates of (700 � 9) same-eye comparisons, not double-
counting pairs, and not comparing any image with itself, the total number of unique
pairings between different eye images whose HDs could be computed was ((4258 �
4257 � 700 � 9)/2) � 9,060,003. Their observed mean HD was p � 0.499 with standard
deviation � � 0.0317; their full distribution in Fig. 25.4 corresponds to a binomial having
N � p(1 � p)/�2 � 249 degrees-of-freedom, as shown by the solid curve. The extremely
close fit of the theoretical binomial to the observed distribution is a consequence of
the fact that each comparison between two phase code bits from two different irises is
essentially a Bernoulli trial, albeit with correlations between successive “coin tosses.”

In the phase code for any given iris, only small subsets of bits are mutually independent
due to the internal correlations, especially radial, within an iris. (If all N � 2048 phase bits
were independent, then the distribution in Fig. 25.4 would be very much sharper, with
an expected standard deviation of only

√
p(1 � p)/N � 0.011, and so the HD interval

between 0.49 and 0.51 would contain most of the distribution.) Bernoulli trials that are
correlated [14] remain binomially distributed but with a reduction in N , the effective
number of tosses, and hence an increase in the � of the normalized HD distribution. The
form and width of the HD distribution in Fig. 25.4 tell us that the amount of difference
between the phase codes for different irises is distributed equivalently to runs of 249
tosses of a fair coin (Bernoulli trials with p � 0.5,N � 249). Expressing this variation
as a discrimination entropy [15] and using typical iris and pupil diameters of 11 mm
and 5 mm, respectively, the observed amount of statistical variability among different iris
patterns corresponds to an information density of about 3.2 bits/mm2 on the iris.

The theoretical binomial distribution plotted as the solid curve in Fig. 25.4 has the
fractional functional form

f (x) �
N !

m!(N � m)! pm(1 � p)(N �m), (25.4)

where N � 249, p � 0.5, and x � m/N is the outcome fraction of N Bernoulli trials
(e.g., coin tosses that are “heads” in each run). In our case, x is the HD, the fraction of
phase bits that happen to agree when two different irises are compared. To validate such
a statistical model, we must also study the behavior of the tails, by examining quantile-
quantile plots of the observed cumulatives versus the theoretically predicted cumulatives
from 0 up to sequential points in the tail. Such a “Q-Q” plot is given in Fig. 25.5. The
straight line relationship reveals very precise agreement between model and data, over a
range of more than three orders of magnitude. It is clear from both Figs. 25.4 and 25.5 that
it is extremely improbable that two different irises might disagree by chance in fewer than
at least a third of their bits. (Of the 9.1 million iris comparisons plotted in the histogram
of Fig. 25.4, the smallest HD observed was 0.334.) Computing the cumulative of f (x)

from 0 to 0.333 indicates that the probability of such an event is about 1 in 16 million.
The cumulative from 0 to just 0.300 is 1 in 10 billion. Thus, even the observation of a
relatively poor degree of match between the phase codes for two different iris images (say,
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Quantile-quantile plot of the observed cumulatives under the left tail of the histogram in Fig. 25.4
versus the predicted binomial cumulatives. The close agreement over several orders of magnitude
strongly confirms the binomial model for phase bit comparisons between different irises.

70% agreement or HD � 0.300) would still provide extraordinarily compelling evidence
of identity, because the test of statistical independence is still failed so convincingly.

Genetically identical eyes were compared in the same manner, in order to discover the
degree to which their textural patterns were correlated and hence genetically determined.
A convenient source of genetically identical irises is the right and left pair from any given
person; such pairs have the same genetic relationship as the four irises of monozygotic
twins or indeed the prospective 2N irises of N clones. Although eye color is of course
strongly determined genetically, as is overall iris appearance, the detailed patterns of
genetically identical irises appear to be as uncorrelated as they are among unrelated eyes.
Using the same methods as described above, 648 right/left iris pairs from 324 persons
were compared pairwise. Their mean HD was 0.497 with standard deviation 0.031, and
their distribution (Fig. 25.6) was statistically indistinguishable from the distribution for
unrelated eyes (Fig. 25.4). A set of six pairwise comparisons among the eyes of actual
monozygotic twins also yielded a result (mean HD � 0.507) expected for unrelated eyes.
It appears that the phenotypic random patterns visible in the human iris are almost
entirely epigenetic [16].
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FIGURE 25.6

Distribution of Hamming distances between genetically identical irises in 648 paired eyes from
324 persons. The data are statistically indistinguishable from that shown in Fig. 25.4 compar-
ing unrelated irises. Unlike eye color, the phase structure of iris patterns therefore appears to
be epigenetic, arising from random events and circumstances in the morphogenesis of this
tissue.

25.5 RECOGNIZING IRISES REGARDLESS OF SIZE, POSITION,
AND ORIENTATION

Robust representations for pattern recognition must be invariant to changes in the size,
position, and orientation of the patterns. In the case of iris recognition, this means we
must create a representation that is invariant to the optical size of the iris in the image
(which depends upon the distance to the eye and the camera optical magnification factor);
the size of the pupil within the iris (which introduces a nonaffine pattern deformation);
the location of the iris within the image; and the iris orientation, which depends upon
head tilt, torsional eye rotation within its socket (cyclovergence), and camera angles,
compounded with imaging through pan/tilt eye-finding mirrors that introduce addi-
tional image rotation factors as a function of eye position, camera position, and mirror
angles. Fortunately, invariance to all these factors can readily be achieved.
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For on-axis but possibly rotated iris images, it is natural to use a projected pseudopolar
coordinate system. The coordinate grid is not necessarily polar nor symmetric, since
circular boundaries are not assumed and in most eyes the pupil is not central in the iris; it is
not unusual for its nasal displacement to be as much as 15%. This coordinate system can be
described as doubly-dimensionless: the angular variable is inherently dimensionless, but
in this case the radial variable is also dimensionless, because it ranges from the pupillary
boundary to the limbus always as a unit interval [0, 1]. The dilation and constriction
of the elastic meshwork of the iris when the pupil changes size is intrinsically modeled
by this coordinate system as the stretching of a homogeneous rubber sheet, having the
topology of an annulus anchored along its outer perimeter, with tension controlled by
an (off-centered) interior ring of variable radius.

The homogeneous rubber sheet model assigns to each point on the iris, regardless
of its size and pupillary dilation, a pair of real coordinates (r ,�) where r is on the unit
interval [0, 1] and � is angle [0, 2�]. This normalization or remapping of the iris image
I (x ,y) from raw cartesian coordinates (x ,y) to the dimensionless pseudopolar coordinate
system (r ,�) can be represented as

I (x(r ,�),y(r ,�))→ I (r ,�), (25.5)

where x(r ,�) and y(r ,�) are defined as linear combinations of both the set of pupil-
lary boundary points (xp(�),yp(�)) and the set of limbus boundary points along the
outer perimeter of the iris (xs(�),ys(�)) bordering the sclera, as determined by the active
contour models that were initialized by the maxima of the operator (25.1):

x(r ,�) � (1 � r)xp(�) � rxs(�), (25.6)

y(r ,�) � (1 � r)yp(�) � rys(�). (25.7)

Since the radial coordinate ranges from the iris inner boundary to its outer boundary as
a unit interval, it inherently corrects for the elastic pattern deformation in the iris when
the pupil changes in size.

The localization of the iris and the coordinate system described above achieve invari-
ance to the 2D position and size of the iris and to the dilation of the pupil within the iris.
However, it would not be invariant to the orientation of the iris within the image plane.
The most efficient way to achieve iris recognition with orientation invariance is not to
rotate the image itself using the Euler matrix but rather to compute the iris phase code in
a single canonical orientation and then to compare this very compact representation at
many discrete orientations by cyclic scrolling of its angular variable. The statistical conse-
quences of seeking the best match after numerous relative rotations of two iris codes are
straightforward. Let f0(x) be the raw density distribution obtained for the HDs between
different irises after comparing them only in a single relative orientation; for example,
f0(x) might be the binomial defined in (25.4). Then F0(x), the cumulative of f0(x) from
0 to x , becomes the probability of getting a false match in such a test when using HD
acceptance criterion x :

F0(x) �

∫ x

0
f0(x)dx (25.8)
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or, equivalently,

f0(x) �
d

dx
F0(x). (25.9)

Clearly, then, the probability of not making a false match when using criterion x is
1 � F0(x) after a single test, and it is [1 � F0(x)]n after carrying out n such tests indepen-
dently at n different relative orientations. It follows that the probability of a false match
after a “best of n” test of agreement, when using HD criterion x , regardless of the actual
form of the raw unrotated distribution f0(x), is

Fn(x) � 1 � [1 � F0(x)]n (25.10)

and the expected density fn(x) associated with this cumulative is

fn(x) �
d

dx
Fn(x)

� nf0(x) [1 � F0(x)]n�1 . (25.11)

Each of the 9.1 million pairings of different iris images whose HD distribution was
shown in Fig. 25.4 was submitted to further comparisons in each of seven relative orien-
tations. This generated 63 million HD outcomes, but in each group of seven associated
with any one pair of irises, only the best match (smallest HD) was retained. The his-
togram of these new 9.1 million best HDs is shown in Fig. 25.7. Since only the smallest
value in each group of seven samples was retained, the new distribution is skewed and
biased to a lower mean value (HD � 0.458), as expected from the theory of extreme
value sampling. The solid curve in Fig. 25.7 is a plot of (25.11), incorporating (25.4) and
(25.8) as its terms, and it shows an excellent fit between theory (binomial extreme value
sampling) and data. The fact that the minimum HD observed in all these millions of
rotated comparisons was about 0.33 illustrates the extreme improbability that the phase
sequences for two different irises might disagree in fewer than a third of their bits. This
suggests that in order to identify people by their iris patterns with high confidence, we
need to demand only a very forgiving degree of match (say, HD � 0.32).

25.6 UNIQUENESS OF FAILING THE TEST OF STATISTICAL
INDEPENDENCE

The statistical data and theory presented above show that we can perform iris recognition
successfully just by a test of statistical independence. Any two different irises are statisti-
cally “guaranteed” to pass this test of independence; and any two images that fail this test
must be images of the same iris. Thus, it is the unique failure of the test of independence,
which is the basis for iris recognition.

It is informative to calculate the significance of any observed HD matching score, in
terms of the likelihood that it could have arisen by chance from two different irises. These
probabilities give a confidence level associated with any recognition decision. Figure 25.8



25.6 Uniqueness of Failing the Test of Statistical Independence 729

10
0,

00
0

90
0,

00
0

50
0,

00
0

C
ou

nt
IrisCode comparisons after rotations: best matches

9,060,003 different iris comparisons

Solid curve: Binomial min value PDF,
249 degrees-of-freedom, 7 samples, p5 0.5

mean 5 0.458,  stnd.dev. 5 0.0196
min 5 0.329,  max 5 0.546

All bits
agree

All bits
disagree

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Hamming distance 

FIGURE 25.7

Distribution of Hamming distances for the same set of 9.1 million comparisons shown in Fig. 25.4,
but allowing for seven relative rotations and preserving only the best match found for each pair.
This “best of n” test skews the distribution to the left and reduces its mean from about 0.5
to 0.458. The solid curve is the theoretical prediction for such “extreme-value” sampling, as
described by (25.4) and (25.8)–(11).

shows the false match probabilities marked off in cumulatives along the tail of the distri-
bution presented in Fig. 25.7 (same theoretical curve (25.11) as plotted in Fig. 25.7 and
with the justification presented in Figs. 25.4 and 25.5.) Table 25.1 enumerates false match
probabilities, the cumulatives of (25.11), as a more fine-grained function of HD decision
criterion between 0.26 and 0.35.

Calculation of the large factorial terms in (25.4) was done with Stirling’s approxima-
tion which errs by less than 1% for n � 9:

n! ≈ exp(n ln(n) � n �
1

2
ln(2�n)). (25.12)

The practical importance of the astronomical odds against a false match when the
match quality is better than about HD � 0.32, as shown in Fig. 25.8 and Table 25.1, is that
such high confidence levels allow very large databases to be searched exhaustively without
succumbing to any of the many opportunities for suffering a false match. The require-
ments of operating in one-to-many “identification” mode are vastly more demanding
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FIGURE 25.8

Calculated cumulatives under the left tail of the distribution seen in Fig. 25.7, up to sequential
points, using the functional analysis described by (25.4) and (25.8)–(11). The extremely rapid
attenuation of these cumulatives reflects the binomial combinatorics that dominate (25.4). This
accounts for the very high confidence levels against a false match, when executing this test of
statistical independence.

than operating merely in one-to-one “verification” mode (in which an identity must first
be explicitly asserted, which is then verified in a yes/no decision by comparison against
just the single nominated template).

If P1 is the false match probability for single one-to-one verification trials, then
clearly PN , the probability of making at least one false match when searching a database
of N unrelated patterns, is:

PN � 1 � (1 � P1)
N (25.13)

because (1 � P1) is the probability of not making a false match in single comparisons;
this must happen N independent times; and so (1 � P1)

N is the probability that such a
false match never occurs.

It is interesting to consider how a seemingly impressive biometric one-to-one “veri-
fier” would perform in exhaustive search mode once databases become larger than about
100, in view of (25.13). For example, a face recognition algorithm that truly achieved
99.9% correct rejection when tested on nonidentical faces, hence making only 0.1% false
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TABLE 25.1 Cumulatives under (25.11) giving single
false match probabilities for various HD criteria.

HD Criterion Odds of False Match

0.26 1 in 1013

0.27 1 in 1012

0.28 1 in 1011

0.29 1 in 13 billion
0.30 1 in 1.5 billion
0.31 1 in 185 million
0.32 1 in 26 million
0.33 1 in 4 million
0.34 1 in 690,000
0.35 1 in 133,000

matches, would seem to be performing at a very impressive level because it must confuse
no more than 10% of all identical twin pairs (since about 1% of all persons in the general
population have an identical twin). But even with its P1 � 0.001, how good would it be
for searching large databases?

Using (25.13) we see that when the search database size has reached merely N � 200
unrelated faces, the probability of at least one false match among them is already 18%.
When the search database is just N � 2000 unrelated faces, the probability of at least one
false match has reached 86%. Clearly, identification is vastly more demanding than one-
to-one verification, and even for moderate database sizes, merely“good”verifiers are of no
use as identifiers. Observing the approximation that PN ≈ NP1 for small P1 << 1

N << 1,
when searching a database of size N , an identifier needs to be roughly N times better
than a verifier to achieve comparable odds against making false matches.

The algorithms for iris recognition exploit the extremely rapid attenuation of the HD
distribution tail created by binomial combinatorics to accommodate very large database
searches without suffering false matches. The HD threshold is adaptive to maintain
PN < 10�6 regardless of how large the search database size N is. As Table 25.1 illustrates,
this means that if the search database contains 1 million different iris patterns, it is only
necessary for the HD match criterion to adjust downwards from 0.33 to 0.27 in order to
maintain still a net false match probability of 10�6 for the entire database.

25.7 DECISION ENVIRONMENT FOR IRIS RECOGNITION
The overall “decidability” of the task of recognizing persons by their iris patterns is
revealed by comparing the HD distributions for same versus different irises. The left
distribution in Fig. 25.9 shows the HDs computed between 7,070 different pairs of same-
eye images at different times, under different conditions, and usually with different
cameras; and the right distribution gives the same 9.1 million comparisons among
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FIGURE 25.9

The decision environment for iris recognition under relatively unfavorable conditions, using
images acquired at different distances and by different optical platforms.

different eyes shown earlier. To the degree that one can confidently decide whether an
observed sample belongs to the left or the right distribution in Fig. 25.9, iris recognition
can be successfully performed. Such a dual distribution representation of the decision
problem may be called the “decision environment,” because it reveals the extent to which
the two cases (same versus different) are separable and thus how reliably decisions can
be made, since the overlap between the two distributions determines the error rates.

Whereas Fig. 25.9 shows the decision environment under less favorable conditions
(images acquired by different camera platforms), Fig. 25.10 shows the decision environ-
ment under ideal (almost artificial) conditions. Subjects’ eyes were imaged in a laboratory
setting using always the same camera with fixed zoom factor and at fixed distance and
with fixed illumination. Not surprisingly, more than half of such image comparisons
achieved an HD of 0.00, and the average HD was a mere 0.019. It is clear from comparing
Figs. 25.9 and 25.10 that the “authentics” distribution for iris recognition (the similar-
ity between different images of the same eye, as shown in the left-side distributions)
depends very strongly upon the image acquisition conditions. However, the measured
similarity for “imposters” (the right-side distribution) is almost completely independent
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FIGURE 25.10

The Decision Environment for iris recognition under very favorable conditions, always using the
same camera, distance, and lighting.

of imaging factors. Instead, it just reflects the combinatorics of Bernoulli trials, as bits
from independent binary sources (the phase codes for different irises) are compared.

For two-choice decision tasks (e.g., same versus different), such as biometric decision
making, the “decidability” index d� is one measure of how well separated the two distri-
butions are, since recognition errors would be caused by their overlap. If their two means
are �1 and �2 and their two standard deviations are �1 and �2, then d� is defined as

d� �
|�1 � �2|√
(�2

1 � �2
2)/2

. (25.14)

This measure of decidability is independent of how liberal or conservative the acceptance
threshold used is. Rather, by measuring separation, it reflects the degree to which any
improvement in (say) the false match error rate must be paid for by a worsening of the
failure-to-match error rate. The performance of any biometric technology can be cali-
brated by its d� score, among other metrics. The measured decidability for iris recognition
is d� � 7.3 for the nonideal (crossed platform) conditions presented in Fig. 25.9, and it
is d� � 14.1 for the ideal imaging conditions presented in Fig. 25.10.
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Based on the left-side distributions in Figs. 25.9 and 25.10, one could calculate a table
of probabilities of failure to match, as a function of HD match criterion, just as we did
earlier in Table 25.1 for false match probabilities based on the right-side distribution.
However, such estimates may not be stable because the “authentics” distributions depend
strongly on the quality of imaging (e.g., motion blur, focus, and noise) and would be
different for different optical platforms. As illustrated earlier by the badly defocused
image of Fig. 25.3, phase bits are still set randomly with binomial statistics in poor
imaging, and so the right distribution is the stable asymptotic form both in the case
of well-imaged irises (Fig. 25.10) and poorly imaged irises (Fig. 25.9). Imaging quality
determines how much the same-iris distribution evolves and migrates leftward, away
from the asymptotic different-iris distribution on the right. In any case, we note that for
the 7,070 same-iris comparisons shown in Fig. 25.9, their highest HD was 0.327 which
is below the smallest HD of 0.329 for the 9.1 million comparisons between different
irises. Thus a decision criterion slightly below 0.33 for the empirical datasets shown
can perfectly separate the dual distributions. At this criterion, using the cumulatives of
(25.11) as tabulated in Table 25.1, the theoretical false match probability is 1 in 4 million.

Notwithstanding this diversity among iris patterns and their apparent singularity
because of so many dimensions of random variation, their utility as a basis for automatic
personal identification would depend upon their relative stability over time. There is
a popular belief that the iris changes systematically with one’s health or personality,
and even that its detailed features reveal the states of individual organs (“iridology”);
but such claims have been discredited (e.g., [17, 18]) as medical fraud. In any case, the
recognition principle described here is intrinsically tolerant of a large proportion of the
iris information being corrupted, say up to about a third, without significantly impairing
the inference of personal identity by the simple test of statistical independence.

25.8 SPEED PERFORMANCE SUMMARY
On a low-cost 300 MHz reduced instruction set (RISC) processor, the execution times for
the critical steps in iris recognition are as shown in Table 25.2, using optimized integer
code.

The search engine can perform about 100,000 full comparisons between different
irises per second on each such 300 MHz CPU, or 1 million in about a second on a
3 GHz server, because of the efficient implementation of the matching process in terms
of elementary Boolean operators

⊗
and

⋂
acting in parallel on the computed phase bit

sequences. If a database contained many millions of enrolled persons, then the inherent
parallelism of the search process should be exploited for the sake of speed by dividing
up the full database into smaller chunks to be searched in parallel. The confidence levels
shown in Table 25.1 indicate how the decision threshold should be adapted for each of
these parallel search engines, in order to ensure that no false matches were made despite
several large-scale searches being conducted independently. The mathematics of the iris
recognition algorithms, particularly the binomial-class distributions (25.4) (25.11) that
they generate when comparing different irises, make it clear that databases the size of
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TABLE 25.2 Execution speeds of various stages in the iris
recognition process on a 300 MHz RISC processor.

Operation Time

Assess image focus 15 msec
Scrub specular reflections 56 msec
Localize eye and iris 90 msec
Fit pupillary boundary 12 msec
Detect and fit both eyelids 93 msec
Remove lashes and contact lens edges 78 msec
Demodulation and IrisCode creation 102 msec
XOR comparison of two IrisCodes 10 �s

an entire country’s population could be searched in parallel to make confident and
rapid identification decisions using parallel banks of inexpensive CPUs, if such iris code
databases existed.

25.9 APPENDIX: 2D FOCUS ASSESSMENT AT THE VIDEO
FRAME RATE

The acquisition of iris images in good focus is made difficult by the optical magnification
requirements, the restrictions on illumination, and the target motion, distance, and size.
All these factors act to limit the possible depth of field of the optics, because they create
a requirement for a lower F number to accommodate both the shorter integration time
(to reduce motion blur) and the light dilution associated with long focal length. The iris
is a 1 cm target within a roughly 3 cm wide field that one would like to acquire at a
range of about 30 cm to 50 cm and with a resolution of about 5 line pairs per mm. In
a fixed-focus optical system, the acquisition of iris images almost always begins in poor
focus. It is therefore desirable to compute focus scores for image frames very rapidly,
either to control a moving lens element or to provide audible feedback to the subject for
range adjustment, or to select which of several frames in a video sequence is in best focus.

Optical defocus can be fully described as a phenomenon of the 2D Fourier domain. An
image represented as a 2D function of the real plane, I (x ,y), has a 2D Fourier transform
F(�,�) defined as

F(�,�) �
1

(2�)2

∫ ∫
I (x ,y)exp(�i(�x � �y))dxdy . (25.15)

In the image domain, defocus is normally represented as convolution of a perfectly
focused image by the 2D point-spread function of the defocused optics. This point-
spread function is often modeled as a Gaussian whose space constant is proportional
to the degree of defocus. Thus for perfectly focused optics, this optical point-spread
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function shrinks almost to a delta function, and convolution with a delta function has no
effect on the image. Progressively defocused optics equates to convolving with ever wider
point-spread functions.

If the convolving optical point-spread function causing defocus is an isotropic Gaus-
sian whose width represents the degree of defocus, it is clear that defocus is equivalent to
multiplying the 2D Fourier transform of a perfectly focused image with the 2D Fourier
transform of the “defocusing” (convolving) Gaussian. This latter quantity is itself just
another 2D Gaussian within the Fourier domain, and its spread constant there (�) is the
reciprocal of that of the image-domain convolving Gaussian that represented the optical
point-spread function. Thus the 2D Fourier transform D�(�,�) of an image defocused
by degree 1/� can be related to F(�,�), the 2D Fourier transform of the corresponding
perfectly focused image, by a simple model such as

D�(�,�) � exp

(
�

�2 � �2

�2

)
F(�,�). (25.16)

This expression reveals that the effect of defocus is to attenuate primarily the highest
frequencies in the image and that lower frequency components are affected correspond-
ingly less, since the exponential term approaches unity as the frequencies (�,�) become
small. (For simplicity, this analysis has assumed isotropic optics and isotropic blur, and
the optical point-spread function has been described as a Gaussian just for illustration.
But the analysis can readily be generalized to non-Gaussian and to anisotropic optical
point-spread functions.)

This spectral analysis of defocus suggests that an effective way to estimate the quality
of focus of a broadband image is simply to measure its total power in the 2D Fourier
domain at higher spatial frequencies, since these are the most attenuated by defocus.
One may also perform a kind of “contrast normalization” to make such a spectrally-
based focus measure independent of image content, by comparing the ratio of power in
higher frequency bands to that in slightly lower frequency bands. Such spectrally-based
measurements are facilitated by exploiting Parseval’s Theorem for conserved total power
in the two domains:

∫ ∫
|I (x ,y)|2dxdy �

∫ ∫
|F(�,�)|2d�d�. (25.17)

Thus, highpass filtering an image, or bandpass filtering it within a ring of high spatial
frequency (requiring only a 2D convolution in the image domain), and integrating the
power contained in it, is equivalent to computing the actual 2D Fourier transform of
the image (a more costly operation) and performing the corresponding explicit mea-
surement in the selected frequency band. Since the computational complexity of a fast
Fourier transform on n � n data is O(n2 log2 n), some 3 million floating-point operations
are avoided which would otherwise be needed to compute the spectral measurements
explicitly. Instead, only about 6,000 integer multiplications per image are needed by this
algorithm, and no floating-point operations. Computation of focus scores is based only
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on simple algebraic combinations of pixel values within local closed neighborhoods,
repeated across the image.

Pixels are combined according to the following (8 � 8) convolution kernel:

�1 �1 �1 �1 �1 �1 �1 �1
�1 �1 �1 �1 �1 �1 �1 �1
�1 �1 �3 �3 �3 �3 �1 �1
�1 �1 �3 �3 �3 �3 �1 �1
�1 �1 �3 �3 �3 �3 �1 �1
�1 �1 �3 �3 �3 �3 �1 �1
�1 �1 �1 �1 �1 �1 �1 �1
�1 �1 �1 �1 �1 �1 �1 �1

The simple weights mean that the sum of the central (4 � 4) pixels can just be tripled,
and then the outer 48 pixels subtracted from this quantity; the result is squared and
accumulated as per (25.17); and then the kernel moves to the next position in the image,
selecting every 4th row and 4th column. This highly efficient discrete convolution has a
simple 2D Fourier analysis.

The above kernel is equivalent to the superposition of two centered square box func-
tions, one of size (8 � 8) and amplitude �1, and the other one of size (4 � 4) and
amplitude �4. (For the central region in which they overlap, the two therefore sum to
+3.) The 2D Fourier transform of each of these square functions is a 2D “sinc” function,
whose size parameters differ by a factor of two in each of the dimensions and whose
amplitudes are equal but opposite, since the two component boxes have equal but oppo-
site volumes. Thus the overall kernel has a 2D Fourier transform K (�,�) which is the
difference of two, differently-sized, 2D sinc functions:

K (�,�) �
sin(�) sin(�)

�2� �
�

sin(2�) sin(2�)

4�2� �
. (25.18)

The square of this function of � and � in the 2D Fourier domain is plotted in Fig. 25.11,
revealing K 2(�,�), the convolution kernel’s 2D power spectrum.

Clearly, low spatial frequencies (near the center of the power spectral plot in Fig. 25.11)
are ignored, reflecting the fact that the pixel weights in the convolution kernel all sum to
zero, while a bandpass ring of upper frequencies is selected by this filter. The total power in
that band is the spectral measurement of focus. Finally, this summated 2D spectral power
is passed through a compressive nonlinearity of the form: f (x) � 100 · x2/(x2 � c2)

(where parameter c is the half-power corresponding to a focus score of 50%), in order
to generate a normalized focus score in the range of 0 to 100 for any image. The com-
plete execution time of this 2D focus assessment algorithm, implemented in C using
pointer arithmetic and operating on a (480 � 640) image, is 15 msec on a 300 MHz RISC
processor.
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FIGURE 25.11

The 2D Fourier power spectrum of the convolution kernel used for rapid focus assessment.
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26.1 INTRODUCTION
The term tomography refers to the general class of devices and procedures for produc-
ing two dimensional (2D) cross-sectional images of a three dimensional (3D) object.
Tomographic systems make it possible to image the internal structure of objects in a
noninvasive and nondestructive manner. By far the best known application is the com-
puter assisted tomography (CAT or simply CT) scanner for X-ray imaging of the human
body. Other medical imaging devices, including positron emission tomography (PET),
single photon emission computed tomography (SPECT) and magnetic resonance imag-
ing (MRI) systems, also make use of tomographic principles. Outside of the biomedical
realm, tomography is used in diverse applications such as microscopy, nondestructive
testing, radar imaging, geophysical imaging, and radio astronomy.

We will restrict our attention here to image reconstruction methods for X-ray CT,
PET, and SPECT. In all three modalities, the data can be modeled as a collection of line
integrals of the unknown image. Many of the methods described here can also be applied
to other tomographic problems.

We describe 2D image reconstruction from parallel and fan-beam projections and
3D reconstruction from sets of 2D projections. Algorithms derived from the analytic
relationships between functions and their line integrals, the so-called “direct methods,”
are described in Sections 26.3–26.5. In Section 26.6 we describe the class of “iterative
methods” that are based on a finite dimensional discretization of the problem. We will
include key results and algorithms for a range of imaging geometries, including systems
currently in development. References to the appropriate sources for a complete develop-
ment are also included. Our objective is to convey the wide range of methods available
for reconstruction from projections and to highlight some recent developments in what
remains a highly active area of research.

741
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26.2 BACKGROUND
26.2.1 X-ray Computed Tomography
In conventional X-ray radiography, a stationary source and a planar detector are used to
produce a 2D projection image of the patient. The image has intensity proportional to
the amount by which the X-rays are attenuated as they pass through the body, i.e., the
3D spatial distribution of X-ray attenuation coefficients is projected into a 2D image.
The resulting image provides important diagnostic information due to differences in the
attenuation coefficients of bone, muscle, fat, and other tissues in the 40–120 keV range
used in clinical radiography [1].

X-rays passing through an object experience exponential attenuation proportional
to the linear attenuation coefficient of the object. The intensity of a collimated beam of
monoenergetic X-radiation exiting a uniform block of material with linear attenuation
coefficient � and depth d is given by I � I0e��d , where I0 is the intensity of the incident
beam. For objects with spatially variant attenuation �(z) along the path length z , this
relationship generalizes to

I � I0e�
∫

�(z)dz , (26.1)

where
∫

�(z)dz is a line integral through �(z).
Let �(x ,y ,z) represent the 3D distribution of attenuation coefficients within the

human body. Consider a simplified model of a radiography system that produces a
broad parallel beam of X-rays passing through the patient in the z direction. An ideal
2D detector array or film in the (x ,y)-plane would produce an image with intensity
proportional to the negative logarithm of the attenuated X-ray beam, i.e., � log(I/I0).
The following projection image would then be formed at the ideal detector:

r(x ,y) �

∫
�(x ,y ,z)dz . (26.2)

The utility of conventional radiography is limited due to the projection of 3D anatomy
into a 2D image, causing certain structures to be obscured. For example, lung tumors,
which have a higher density than the surrounding normal tissue, may be obscured by
a more dense rib that projects into the same area in the radiograph. CT systems over-
come this problem by reconstructing 2D cross sections of the 3D attenuation coefficient
distribution.

The concept of the line integral is common to both the radiographic projection (26.2)
and CT. Consider the first clinical X-ray CT system for which the inventor, G. Hounsfield,
received the 1979 Nobel prize in medicine (the prize was shared with the mathematician
A. Cormack) [2]. A collimated X-ray source and detector are translated on either side
of the patient so that a single plane is illuminated, as illustrated in Fig. 26.1(a). After
applying a logarithmic transformation, the detected X-ray measurements are a set of line
integrals representing a 1D parallel projection of the 2D X-ray attenuation coefficient
distribution in the illuminated plane. By rotating the source and detector around the
patient other 1D projections can be measured in the same plane. The image can then
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FIGURE 26.1

(a) Schematic representation of a first-generation CT scanner that uses translation and rotation
of the source and a single detector to collect a complete set of 1D parallel projections; (b) The
current generation of CT scanners use a fan X-ray beam and an array of detectors, which requires
rotation only.

be reconstructed from these parallel-beam projections using the methods described in
Section 26.3.1.

One major limitation of the first generation of CT systems was that the translation
and rotation of the detectors was slow and a single scan would take several minutes.
X-ray projection data can be collected far more quickly using the fan-beam X-ray source
geometry employed in the current generation of CT scanners as illustrated in Fig. 26.1(b).
Since an array of detectors is used, the system can simultaneously collect data for all
projection paths that pass through the current location of the X-ray source. In this case,
the X-ray source need not be translated, and a complete set of data is obtained through
a single rotation of the source around the patient. Using this configuration, modern
scanners can scan a single plane in less than one second. Methods for reconstruction
from fan-beam data are described in Section 26.3.2.

Recently developed spiral CT systems allow continuous acquisition of data as the
patient bed is moved through the scanner [3]. The detector traces out a helical orbit
with respect to the patient allowing rapid collection of projections over a 3D volume.
These data require special reconstruction algorithms as described in Section 26.4.2. In
an effort to simultaneously collect fully 3D CT data, a number of systems have been
developed that use a cone-beam of X-rays and a 2D rather than 1D array of detectors [3].
Cone-beam systems are now widespread in clinical CT and they also play an important
role in industrial applications. Methods for cone-beam reconstruction are described in
Sections 26.5.2 and 26.5.3.

The above descriptions can only be considered approximate because a number of fac-
tors complicate the X-ray CT problem. For example, the X-ray beam typically contains
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a broad spectrum of energies and therefore an energy dependence should be included
in (26.1) [1]. The theoretical development of CT methods usually assumes a monoen-
ergetic source. For broadband X-ray sources, the beam becomes “hardened” as it passes
through the object, i.e., the lower energies are attenuated faster than the higher energies.
This effect causes a beam hardening artifact in CT images that is reduced in practice
using a data calibration procedure [4, 5].

In X-ray CT data the high photon flux produces relatively high signal-to-noise ratio.
However, the data are corrupted by the detection of scattered X-rays that do not conform
to the line integral model. Calibration procedures are required to compensate for this
effect as well as for the effects of variable detector sensitivity. A final important factor in
the acquisition of CT data is the issue of sampling. Each 1D projection is undersampled
by approximately a factor of two in terms of the attainable resolution as determined
by detector size. Methods to compensate for this problem in fan-beam systems using
fractional detector offsets are described in [3].

26.2.2 Nuclear Imaging Using PET and SPECT
PET and SPECT are methods for producing images of the spatial distribution of
biochemical tracers or probes that have been tagged with radioactive isotopes [1]. By
tagging different molecules with positron or gamma-ray emitters, PET and SPECT can
be used to reconstruct images of the spatial distribution of a wide range of biochemical
probes. Applications include the use of tracers to measure glucose metabolism, angio-
genesis, and cell proliferation for the detection and staging of cancer, imaging of cardiac
function, imaging of gene expression, and studies of neurochemistry using a range of
neuro-receptors and transmitters [6–8]. In recent years, smaller animal versions of clinical
scanners have been developed for research applications in drug development, studies of
animal models of human disease, and genomic and proteomic studies in live animals [9].

SPECT systems detect emissions using a “gamma camera.” This camera is a com-
bination of a sodium iodide scintillation crystal and an array of photomultiplier tubes
(PMTs). The PMTs measure the location on the camera surface at which each gamma ray
photon is absorbed by the scintillator [1]. A mechanical collimator, consisting of a sheet
of dense metal in which a large number of parallel holes have been drilled, is attached
to the front of the camera as illustrated in Fig. 26.2(a). The collimated camera is only
sensitive to gamma rays traveling in a direction parallel to the holes in the collimator. The
total number of gamma rays detected at a given pixel in the camera will be approximately
proportional to the total activity (or line integral) along the line that passes through the
patient and is parallel to the holes in the collimator. Thus when viewing a patient from
a fixed camera position, we collect a 2D projection image of the 3D distribution of the
tracer. By collecting data as the camera is rotated to multiple positions around the patient,
we obtain parallel-beam projections for a contiguous set of parallel 2D slices through the
patient, Fig. 26.2(b). The distribution can be reconstructed slice-by-slice using the same
parallel-beam reconstruction methods as are used for X-ray CT.

Other collection geometries can be realized by modifying the collimator design [6].
For imaging an organ, such as the brain or heart, that is smaller than the surface area



26.2 Background 745
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Detectors
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(c)

FIGURE 26.2

Schematic representation of a SPECT system: (a) cross-sectional view of a system with paral-
lel hole collimator: gamma rays normally incident to the camera surface are detected, others
are stopped by the collimator so that the camera records parallel projections of the source dis-
tribution; (b) Rotation of the camera around the patient produces a complete set of parallel
projections; (c) Different collimators can be used to collect converging or diverging fan and
cone-beam projections; shown is a converging cone-beam collimator.

of the camera, improved sensitivity can be realized by using converging fan-beam or
cone-beam collimators as illustrated in Fig. 26.2(c). Similarly, diverging collimators can
be used for imaging larger objects. Images are reconstructed from these fan-beam and
cone-beam data using the methods in Sections 26.3.2 and 26.5.2, respectively. Cone-beam
methods have not been widely used in clinical SPECT because of the practical difficulties
in acquiring complete data (see Section 26.5.2), however the new generation of small
animal SPECT systems does make use of cone-beam methods for data aquired using pin-
hole collimators. While the vast majority of SPECT systems use rotating planar gamma
cameras, other systems have been constructed using a cylindrical scintillation detector
that surrounds the patient. A rotating cylindrical collimator defines the projection geom-
etry. Although the physical design of these cylindrical systems is quite different from that
of the rotating camera, in most cases the reconstruction problem can still be reduced to
one of the three basic forms: parallel, fan or cone-beam.

PET is based on the physical property that a positron produced by a radioactive
nucleus travels a very short distance and then annihilates with an electron to form a pair
of high-energy (511 keV) photons [7]. The pair of photons travel in opposite directions
along a straight line path. Detection of the positions at which the photon pair intersects
a ring of detectors allows us to approximately define a line that contains the positron
emitter, as illustrated in Fig. 26.3(a). The total number of photon pairs measured by a
detector pair will be proportional to the total number of positron emissions along the
line joining the detectors, i.e., the number of detected events between a detector pair is
an approximate line integral of the tracer density.

A PET scanner requires one or more rings of photon detectors coupled to a timing
circuit that detects coincident photon pairs by checking that both photons arrive at the
detectors within a few nanoseconds of each other. PET detectors are usually constructed
using a combination of scintillation crystals and PMTs. A unique aspect of PET is that
the ring of detectors surrounding the subject allows simultaneous acquisition of a
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FIGURE 26.3

(a) Schematic showing how coincidence detection of photon pair produced by electron-positron
annihilation determines the line along which the positron was annihilated; (b) In 2D sys-
tems, septa between adjacent rings of detectors prevent coincidence detection between rings;
(c) Removal of the septa produces a fully 3D PET system in which cross-plane coincidences
are collected and used to reconstruct the source distribution.

complete data set; no rotation of the detector system is required. A schematic view
of two PET scanners is shown in Fig. 26.3. In the 2D scanner, multiple rings of detec-
tors surround the patient with dense material, or “septa,” separating each ring. These
septa stop photons traveling between rings so that coincidence events are collected only
between pairs of detectors in a single ring. We refer to this configuration as a 2D scanner
since the data are separable and the image can be reconstructed as a series of 2D sections.
In contrast, the 3D scanners have no septa so that coincidence photons can be detected
between planes. In this case the reconstruction problem is not separable and must be
treated directly in 3D.

PET data can be viewed as sets of approximate line integrals. In 2D mode, the data
are sets of parallel-beam projections and the image can be reconstructed using methods
equivalent to those in parallel-beam X-ray CT. In the 3D case, the data are still line
integrals, but new algorithms are required to deal with the between-plane coincidences
that represent incomplete projections through the patient. These methods are described
in Sections 26.4 and 26.5.

As with X-ray CT, the line integral model is only approximate. Finite and spatially
variant detector resolution is not accounted for in the line integral model and has a
major impact on image quality [10]. The number of photons detected in PET and SPECT
is relatively small so that photon-limited noise is also a factor limiting image quality. The
data are further corrupted by additional noise due to scattered photons. Also, in both
PET and SPECT, the probability of detecting an emission is reduced by the relatively
high probability of Compton scatter of photons before they reach the detector. These
attenuation effects can be quantified by performing a separate “transmission” scan in
which the scattering properties of the body are measured. This information must then
be incorporated into the reconstruction algorithm [7, 10]. While all these effects can, to
some degree, be compensated for within the framework of analytic reconstruction from
line integrals, they are more readily and accurately dealt with using the finite dimensional
statistical formulations described in Section 26.6.
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26.2.3 Mathematical Preliminaries
Since we deal with both 2D and 3D reconstruction problems here, we will use the
following unified definition of the line integrals of an image f (x):

g (a,�) �

�∫

��

f (a � t�)dt ||�||� 1. (26.3)

Here g is the integral of f over the line passing through a and oriented in the
direction �.

For parallel projections we consider only a fixed � (the projection direction). To avoid
redundant parameterization of line integrals, we only consider those a perpendicular to
� (i.e., a · � � 0). We say a parallel projection g (·,�) is truncated if some nonzero line
integrals are not measured. Generally, truncation is due to the use of a finite detector
system which may be too small to gather a complete projection of the object at some
orientation �.

For fan-beam and cone-beam systems, we consider a to be fixed for a single projec-
tion; a is the fan-vertex or cone-vertex, which in practice would be the position of the
X-ray source or the focal point of a converging collimator. Again, truncation of a pro-
jection g (a, ·) refers to line integrals which are not available, typically due to the limited
extent of the detector.

26.2.4 Examples
We conclude this introductory section with examples of CT, PET, and SPECT images
collected from the current generation of scanners (see Fig. 26.4). These images clearly

(a) (b) (c)

FIGURE 26.4

Examples of brain scans using: (a) X-ray CT, a nonlinear grayscale is used to enhance contrast
between soft tissue regions within the brain; (b) PET, this image shows an image of glucose
metabolism obtained using an analog of glucose labelled with the positron emitting isotope,
fluorine-18; (c) SPECT, this is a brain perfusion scan using a technitium-99m ligand (image
Courtesy of J.E. Bowsher, Duke University Medical Center).
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FIGURE 26.5

Volume rendering from a sequence of X-ray CT images showing the abdominal cavity and kidneys
(CT images courtesy of G.E. Medical Systems).

reveal the differences between the high resolution, low-noise images produced by X-ray
CT scanners and the lower resolution and noisy images produced by the nuclear imaging
instruments. These differences are primarily due to the photon flux in X-ray CT which
is many orders of magnitude higher than the individually detected photons in nuclear
medicine imaging. In diagnostic imaging, these modalities are highly complementary
since X-ray CT reveals information about the patients anatomy while PET and SPECT
images contain functional information. For further insight into the ability of X-ray CT
to produce high-resolution anatomical images, we show a set of 3D renderings from CT
data in Fig. 26.5.

26.3 2D IMAGE RECONSTRUCTION
26.3.1 Fourier Space and Filtered Backprojection Methods

for Parallel-Beam Projections
For 2D parallel-beam projections the general notation of (26.1) can be refined as illus-
trated in Fig. 26.6. We parameterize the direction of the rays using �, so � � (cos�, sin�).
For the position a perpendicular to �, we write a � (�u sin�, u cos�) � u�⊥ where
u is the scalar coordinate indicating the distance from the origin to the integra-
tion line, or equivalently, the projection element index for the �-projection. Since �
depends only on � and a then depends on u, we simplify the notation by writing
g (u,�) � g (a,�) � ∫f (a � t�)dt . For the parallel-beam case, the function g is the Radon
transform of the image f [4].

Practical inversion methods can be developed using the relationship between the
Radon and Fourier transforms. The projection slice theorem is the basic result that is
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FIGURE 26.6

The coordinate system used to describe parallel-beam projection data.

used in developing these methods [4]. This theorem states that the 1D Fourier transform
of the parallel projection at angle � is equal to the 2D image Fourier transform evaluated
along the line through the origin in the direction � � �/2, i.e.;

G(U ,�) �

�∫

��

g (u,�)e�juU du � F(X)
∣∣
X�U �⊥ � F(�U sin�,U cos�), (26.4)

where F(X) � F(X ,Y ) is the 2D image Fourier transform,

F(X) � F(X ,Y ) �

�∫

��

�∫

��

f (x ,y)e�jxX e�jyY dxdy �

∫ ∫

R2

f (x)e�j(X ·x)dx . (26.5)

This result, illustrated in Fig. 26.7, can be employed in a number of ways. The discrete
Fourier transform (DFT, see Chapter 5) of the samples of each 1D projection can be used
to compute approximate values of the image Fourier transform. If the angular projection
spacing is ��, then the DFTs of all projections will produce samples of the 2D image
Fourier transform on a polar sampling grid. The samples’ loci lie at the intersections of
radial lines, spaced by ��, with circles of radii equal to integer multiples of the DFT
frequency sampling interval. Once these samples are computed, the image can be recon-
structed by first interpolating these values onto a regular cartesian grid and then applying
an inverse 2D DFT. Design of these Fourier reconstruction methods involves a tradeoff
between computational complexity and accuracy of the interpolating function [4].

A more elegant solution can be found by reworking (26.4) into a spatial domain
representation. It is then straightforward to show that the image can be recovered using
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FIGURE 26.7

Illustration of the projection slice theorem. The 2D image at left is projected at angle � to produce
the 1D projection g (u,�). The 1D Fourier transform G(U ,�) of this projection is equal to the 2D
image Fourier transform, F(X ,Y ) along the radial line at angle � � �/2.

the following equations [11]:

f (x) �
1

2

2�∫

0

g̃ (u,�)
∣∣
u�ux ,�

d�, (26.6)

where

g̃ (u,�) �
1

4�2

�∫

��

G(U ,�)|U |ejuU dU , (26.7)

and ux ,� � x · �⊥ is the u-value of the parallel projection at angle � of the point x , see
Fig. 26.6.

These two equations form the basis of the widely used filtered backprojection algo-
rithm. Equation (26.7) is a linear shift-invariant filtering of the projection data with a
filter with frequency response H (U ) � |U |. The gain of this filter increases monotonically
with frequency and the reconstruction is therefore unstable. However by assuming that
the data g (u,�), and hence the corresponding image, are bandlimited to a maximum
frequency U � Umax , we need only consider the finite bandwidth filter with impulse
response:

h(u) �

Umax∫

�Umax

|U |ejuU dU . (26.8)
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The filtered projections g̃ (u,�) are found by convolving g (u,�) with h(u) scaled by
1/4�2. To reduce effects of noise in the data, the response of this filter can be tapered off
at higher frequencies [4, 11].

The integrand g̃ (ux ,�,�) in (26.6) can be viewed as an image with constant values
along lines in the � direction that is formed by “backprojecting” the filtered projection
at angle �. Summing (or in the limit, integrating) these backprojected images for all
� produces the reconstructed image. Although this summation involves � ∈ [0,2�],
in practice only 180 degrees of projection measurements are collected because opposing
parallel-beam projections contain indentical information. In (26.6), the integration limits
can be replaced with � ∈ [0,�] and the factor of 1/2 can be removed. This filtered
backprojection method, or the modification described below for the fan-beam geometry,
was the basis for image reconstruction in almost all commercially available CT systems,
at least until the end of the twentieth century.

26.3.2 Fan-Beam Filtered Backprojection
X-ray CT data can be collected more rapidly using an array of detectors and a fan-
beam X-ray source so that all elements in the array are simultaneously exposed to the
X-rays. This arrangement gives rise to a natural fan-beam data collection geometry as
illustrated in Fig. 26.1(b). The source and detector array are rotated around the patient
and a set of fan-beam projections, g (a,�), are collected, where a represents the position
of the source and � specifies the individual line integrals in the projections. For a radius
of rotation A, we parameterize the motion of the source as a � (A cos�,A sin�). For
the case of a circular arc of detectors whose center is the fan-source and which rotates
with the source, a particular detector element is conveniently specified using the relative
angle � as shown in Fig. 26.8(a). The fan-beam projection notation is then simplified to
g (�,�) � g (a,�) �

∫
f (a � t�)dt , where � � (�cos(� � �),� sin(� � �)).

ax

u

�

a
x

A

�

�

(a) (b)

FIGURE 26.8

Illustration of the coordinate system for fan-beam tomography using (a) circular arc and (b) linear
detector array arrangements.
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The projection data could be resorted into equivalent parallel projections and the
above reconstruction methods applied. Fortuitously this resorting is unnecessary. It can
be shown [12] that reconstruction of the image can be performed using a fan-beam ver-
sion of the filtered backprojection method. Development of this inverse method involves
substitution of the fan-beam data in the parallel-beam formulae, (26.6) and (26.7), and
applying a change of variables with the appropriate Jacobian. After some manipulation,
the equations can be reduced to the form

f (x) �
1

2

2�∫

0

1

r2 g̃ (�,�)
∣∣
�x ,���

d� , (26.9)

where r � ||x � a|| is the distance from the point x to the fan-beam source,

g̃ (�,�) �
1

4�2

�∫

��

(A cos��g (�,��))h(sin(� � ��))d��, (26.10)

where � is the maximum value of � required to ensure that data are not truncated. In
(26.9), �x ,� � cos�1((A2 � (x · a))/(rA)) indicates the value in the �-projection for
the line passing through the point x .

As in the parallel-beam case, this reconstruction method involves a two step proce-
dure: filtering, in this case with a preweighting factor A cos�, and backprojection. The
backprojection for fan-beam data is performed along the paths converging at the location
of the X-ray source and includes an inverse square-distance weighting factor. The filter
h(u) was given in (26.8) and, as before, can include a smoothing window tailored to the
expected noise in the measured data.

In some fan-beam tomography applications the detector bank might be linear rather
than curved. In principle, the same formula could be used by interpolating to obtain
values sampled evenly in �. However, there is an alternative formula suitable for linear
detectors. In this case, we use u to indicate the projection line for a scaled version of the
flat detector corresponding to a virtual flat detector passing through the origin as shown
in Fig. 26.8(b). The simplified notation is g (�,u) � g (a,�) �

∫
f (a � t�)dt , where a �

(A cos�,A sin�) as before, and � � (u sin� � A cos�,�u cos�,�A sin�)/
√

u2 � A2.
The derivation of the fan-beam formula for linear detectors is virtually the same as

for the curved detectors and results in equations of the form

f (x) �
1

2

2�∫

0

(
A2 � u2

r2 g̃ (a,u)

)∣∣∣∣
u�ux ,�

d� , (26.11)

g̃ (a,u) �
1

4�2

�∫

��

(
A√

A2 � ur2
g (a,u�)

)
h(u � u�)du�, (26.12)



26.3 2D Image Reconstruction 753

where, as before, r � ‖x � a‖ is the distance between x and the source point a, and
ux ,� � A tan� specifies the line passing through x in the � projection. The limits of
integration [��,�] in the filtering step (26.12) are replaced in practice with the finite
range of u corresponding to nonzero values of the projection data g (�,u).

The existence of a filtered backprojection algorithm for these two fan-beam geome-
tries is quite fortuitous, and does not occur for all detector sampling schemes. In fact
these are two of only four sampling arrangements that admit this convenient recon-
struction form [13]. In general, the filtering step must be replaced with a more general
linear operation on the weighted projection values, and results in a more computationally
intensive algorithm.

For the fan-beam geometry, opposing projections do not contain the same informa-
tion, although all line integrals are measured twice over the range of 2� measurements.
The redundancy is interwoven in the projections. An angular range of � � 2� can be
used with careful adjustments to (26.11) and (26.12) to obtain a fast “short scan” recon-
struction [4]. These short scan modes are used in clinical CT systems including spiral CT
systems as discussed in Section 26.4.2.

26.3.3 Region of Interest Reconstruction
Important new developments in fan-beam image reconstruction occurred at the turn of
the century. New image reconstruction formulas were established that admitted partial
reconstruction of the object if less than a short scan of fan-beam measurements had
been collected. Observe from equations (26.11) and (26.12) that reconstruction at the
point x uses all the data, namely all lines passing through the image. From these formulas,
it is not possible to obtain even a partial image if some of the data are missing. The new
image reconstruction formulas however, are able to recover part of the image, often
referred to as a region of interest, from part of the data. For fan-beam scanning with a
contiguous circular motion of the source, any region of interest inside the convex hull of
the source trajectory can be recovered using the formulas. For noncontiguous trajectories
and for noncircular motions, the description of which regions of interest are recoverable
are more complicated [14].

These and other developments in fan-beam reconstruction have ignited new research
into region of interest reconstruction. The general region of interest problem can be
stated as follows. Given a subset of the measured data, what is the largest region of
interest that can be reliably reconstructed? This problem occurs naturally in the case of
truncated projections where the object is too large to be viewed by the detector and some
line integral measurements are missing in the data. As a simple guide to establishing an
appropriate region of interest, any part of the object that is not subjected to measure-
ments over a full 180 degrees cannot be accurately reconstructed. The converse however
does not always hold.

The existence of inversion formulas that can achieve image reconstruction from sub-
sets of the data immediately implies that for the complete data problem, there must be
many reconstruction formulas, not just those described in Sections 26.3.1 and 26.3.2.
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One class of such inversion formulas [15] involves a concept called the virtual fan-beam
method, and is based on the “less than short scan” fan-beam developments [14]. Another
class of inversion formulas is based on the concept of differentiated backprojection
(DBP) with a subsequent inversion of the truncated Hilbert transform (ITHT). This
DBP+ITHT method has useful generalizations to region of interest reconstruction in
3D cone-beam imaging. The 2D version of DBP+ITHT for parallel beam geometries is
described here; more details, including the fan-beam version can be found in [16].

The DBP step consists of performing a backprojection of the derivative of the parallel
projection data g (u,�) to obtain an intermediate image b(x) � b(x ,y):

b(x ,y) �

�/2∫

��/2

	

	u
g (u,�)

∣∣∣
u�ux ,�

d�. (26.13)

The ITHT step performs a one-dimensional filtering in the vertical (y) direction of the
DBP image b(x ,y). The reconstruction can be obtained along the line x � x0 according
to the following formula,

f (x0,y) �
1

2�
√

(y � L)(U � y)

⎛
⎝

U∫

L

√
(s � L)(U � s)

b(x0, s)

�(y � s)
ds � C

⎞
⎠ . (26.14)

The lower and upper bounds of integration, L and U , are selected freely subject to the
constraints that (i) L < y < U , (ii) the DBP image b(x0, s) is available from Eq. (26.13) for
all s ∈ (L,U ), and (iii) f (x0,y) � 0 for all y /∈ (L,U ). The constant C must be determined
from the data. One simple method is to use a priori information such as a known value
of f (x0,y∗) with L < y∗ < U , and applying Eq. (26.14). Typically, the point (x0,y∗)
is known to be outside the object and therefore f (x0,y∗) � 0, from which one would
obtain

C �

U∫

L

√
(s � L)(U � s)

b(x0, s)

�(y∗� s)
ds. (26.15)

As an illustration of the DBP+ITHT method, consider an elliptical object that extends
past the circular field of view of the scanner. Only those lines crossing the dashed circle
in Fig. 26.9 are measured, so the DBP image b(x) is only available inside this circle. Full
angular coverage (180 degrees) occurs for those points inside the dashed circle. However
reconstruction can only be performed using the DBP�ITHT method inside the shaded
region of the figure, due to condition (iii) on the selection of L and U . For all vertical
lines in the shaded region, reconstruction is achieved by selecting L, U , and y∗ following
the generic example in Fig. 26.9.

General region of interest reconstruction in two dimensions is still an open research
area. Reconstruction formulas only exist for certain special cases, and the existence of
reliable region of interest reconstruction from missing data subsets is not yet resolved in
general.
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FIGURE 26.9

Illustration of the DBP� ITHT method applied to the elliptical object with truncated measure-
ments. Only lines passing through the dotted circle are measured. Any region of interest inside
the shaded part of the diagram can be reconstructed using DBP� ITHT, by filtering along vertical
lines such as x � x0. All points of the form f (x0,y) can be found by choosing L and U outside
the ellipse but inside the circle, and y* inside (L,U ) but outside the ellipse.

26.4 EXTENDING 2D METHODS INTO 3D
26.4.1 Extracting 2D Data from 3D
A full 3D image can be built up by repeatedly performing 2D image reconstruction on a
set of parallel contiguous slices. In X-ray CT, SPECT, and PET, this has been a standard
method for volume tomographic reconstruction. Mathematically we use fz (x) � fz (x ,y)

to represent the z-slice of f (x ,y ,z), and gz (u,�) to represent the line integrals in this
z-slice. Reconstruction for each z is performed sequentially using techniques described
in Section 26.3.

More sophisticated methods of building 3D tomographic images have been developed
for a number of applications. For example, in spiral X-ray CT, the patient is moved
continuously through the scanner so no fixed discrete set of tomographic slices is defined.
In this case, there is flexibility in choosing the slice spacing and the absolute slice loca-
tion, however there is no slice position for which a complete set of projection data is
measured. We describe image reconstruction for spiral CT in Section 26.4.2.

In a more general framework, we call an image reconstruction problem fully 3D
if the data cannot be separated into a set of parallel contiguous and independent 2D
slices. An example is 3D PET which allows measurement of oblique coincidence events
and therefore must handle line integrals that cross multiple transverse planes as shown
in Fig. 26.3(c). Other examples of fully 3D problems include cone-beam SPECT and
cone-beam X-ray CT where the diverging geometry of the rays precludes any sorting
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arrangement into parallel planes. Fully 3D image reconstruction is described in more
detail in Section 26.5, but a common feature of these methods is the heavy computational
load associated with the 3D backprojection step. Since 2D reconstruction is generally
very fast, a number of approaches reduce computation cost by converting a fully 3D
problem into a multislice 2D problem. These rebinning procedures involve approxi-
mations that in some instances are very good, so significant improvements in image
reconstruction time can be achieved with little resolution loss. One such example is the
Fourier rebinning (FORE) method used in 3D PET imaging where an order of magnitude
improvement in computation time is achieved over the standard fully 3D methods; the
method is described in Section 26.4.3.

26.4.2 Spiral CT
In spiral CT, a conventional fan-beam X-ray source and detector system rotates around
the patient while the bed is translated along its long axis, as illustrated in Fig. 26.10. This
supplementary motion, although it complicates the image reconstruction algorithms
and results in slightly blurred images, provides the capability to scan large regions of the
patient in a single breath hold.

The helical motion is characterized by the pitch P which is the amount of translation in
the axial or z-direction for a full rotation of the source and detector assembly. Therefore
� � 2�z/P and we can write g (z ,�) � g (a,�) �

∫
f (a, t�)dt which is similar to the

fan-beam geometry of Section 26.3.2, with a � (A cos�,A sin�,z) and � � (�cos(� �
�),� sin(� � �), 0). Note that � now ranges from 0 to 2�n as z ranges from 0 to nP ,
where n is the number of turns of the helix. The usual method of reconstruction involves
estimating a full set of fan-beam projections gz (�,�) for each transverse plane, using
the available projections at other points on the helix. If the reconstruction on transverse

z

z1 z2

z

y

x

P

(a) (b)

z3

FIGURE 26.10

Illustration of spiral or helical CT geometry. (a) Relative to a stationary bed, the source and
detector circle the patient in a helical fashion with pitch P ; (b) To reconstruct cross section
fz (x ,y), missing projections are interpolated from neighboring points on the helix at which data
were collected.
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plane z is required, the standard fan-beam CT algorithm is used,

fz (x) �
1

2

2�∫

0

1

r2 g̃z (�,�)
∣∣
���z ,x ,�

d� (26.16)

g̃z (�,�) �
1

4�2

�∫

��

(A cos��gz (�,��))h(sin(� � ��) d��, (26.17)

where �z ,x ,� indicates the relative projection angle � found by projecting in the z plane at
angle � through the point (x ,y ,z), and r is the distance (in the z plane) between the point
(x ,y ,z) and the virtual source at angular position �. In the simplest case, the z-plane
projections gz (�,�) are estimated by a weighted sum of the measured projections at the
same angular position above and below z on the helix:

gz (�,�)≈ w1g (z1,�) � w2g (z2,�)

w1 � w2
(26.18)

for some suitable weights w1 and w2, and where, as illustrated in Fig. 26.10, z1 and z2 lie
within one pitch P of the reconstruction plane z . Note that in (26.18), z1/P differs from
� by some multiple of 2�, and similarly for z2.

Various schemes for choosing the weights w1 and w2 exist [17]. Each weighting scheme
establishes a tradeoff between increased image noise from unbalanced contributions,
and inherent axial blurring artifacts from the geometric approximation of the estimation
process. When the image noise is particularly low, a short-scan version of the fan-beam
reconstruction algorithm might be used. This version reduces the range of contribut-
ing projections to � � � from 2� and correspondingly reduces the maximum distance
required to estimate a projection gz (�, �). Even more elaborate estimation schemes exist,
such as approximating gz (�, �) on a line-by-line basis. Figure 26.10(b) illustrates how
the line integral gz (�, �) could be estimated from a value in the z3 projection.

The choice of pitch P represents a compromise between maximizing the axial cov-
erage of the patient, and avoiding unacceptable artifacts from the geometric estimation.
Generally the pitch is chosen between one and two times the thickness of the detector in
the axial direction [17].

In recent years, “multislice” CT scanners have been constructed with multiple rows
of detectors. For four detector rows or less, the typical approach has been to ignore the
divergence of the rays in the axial direction and treat the system as several interwoven
helices so that the methods described above can be applied. The pitch is usually tun-
able, and does not normally exceed the axial extent of the detectors. However, newer
systems with a greater number of detector rows involve a nonnegligible axial divergence
of the X-rays and need to be treated using cone-beam techniques to correctly handle
the divergence issue. Section 26.5.2 describes cone-beam tomography in general and
Section 26.5.3 discusses the situation for spiral (or helical) CT.
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26.4.3 Rebinning Methods in 3D PET
PET data is generally sorted into parallel-beam projections, g (u, �) as described in
Section 26.3.1. For a multiring 2D PET scanner, the data are usually processed slice-
by-slice. Using z to denote the axis of the scanner, the data are reconstructed using (26.6)
and (26.7) applied to each z-slice as follows:

fz (x) �
1

2

2�∫

0

g̃z (u,�)

∣∣∣
u�uz ,x ,�

d�, (26.19)

g̃z (u,�) �
1

4�2

�∫

��

gz (u�,�)h(u � u�)du, (26.20)

with uz ,x ,� � (x ,y ,z) · (� sin�, cos�, 0). The data gz (u,�) are found from sampled
values of u and � determined by the ring geometry: the radius R and the number of
crystals (typically several hundred). In (26.19) and (26.20), z is usually chosen to match
the center of each detector ring. In practice, 2D scanners do allow detection of coin-
cidences between adjacent rings. By using the single-slice rebinning (SSRB) technique
described below, slices midway between adjacent detector rings can also be reconstructed
from 2D scanner data.

Current commercial 3D PET scanners usually consist of a few tens of detector rings
and have the capability to detect oblique photon pairs that strike detectors in different
rings. These fully 3D data require more advanced reconstruction techniques. The fully
3D version of (26.19) and (26.20) is given in Section 26.5. In this section, we describe
two popular rebinning methods, where the data are first processed to form indepen-
dent 2D projections gz (u,�) from which (26.19) and (26.20) are then used for image
reconstruction.

Let � denote the spacing between rings. Let gl ,m(u,�) denote the resulting line inte-
gral, with endpoints on rings l and m, whose 2D projection variables are (u,�) when
the line is projected onto the x � y plane, as shown in Fig. 26.11. In the SSRB method

u

lm

(a) (b)

B

A A

B

�

z

y

x
x

y

z

FIGURE 26.11

Oblique line integrals (along the path AB in (a)) between different rings of detectors can be
rebinned into equivalent in plane data either directly using SSRB, or indirectly using FORE;
(b) The relationship between the projected line integral path and the parameters (u,�).
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[18], all line integral data are reassigned to the slice midway between the rings where the
detection occurred. Thus

gz (u,�)≈ �
(l ,m)∈	z

gl ,m(u,�), where 	z �

{
(l ,m) :

(l � m)�

2
� z

}
, (26.21)

and reconstruction proceeds according to (26.19) and (26.20).
A more sophisticated method, known as FORE [19], effectively performs the rebin-

ning operation in the 2D frequency domain. The rebinned data gz (u,�) are found using
the following transformations:

g̃l ,m(u,�) � gl ,m(u,�)
2
√

R2 � u2
√

4R2 � 4u2 � (l � m)2�2
, (26.22)

G̃l ,m(U ,k�) �

�∫

��

2�∫

0

ḡl ,m(u,�)e�j(Uu�k��)d�du , (26.23)

Gz (U ,k�)≈
∑

(l ,m)
	z

G̃l ,m(U ,k�) , (26.24)

where 	z �

{
l ,m :

(l � m)�

2
�

(l � m)�

2

k�

U
√

R2 � U 2
� z

}
(26.25)

and

gz (u,�) �
∑

k�

�∫

��

Gz (U ,k�)e
j(Uu�k��)

dU . (26.26)

Both SSRB and FORE are approximate techniques, and the geometrical misplacement
of the data can cause artifacts in the reconstructed images. However, FORE is far more
accurate than SSRB yet almost as fast computationally (compared to the subsequent
reconstruction time using (26.19) and (26.20)). In [19] a mathematically exact rebinning
formula is presented, and it is shown that SSRB and FORE represent zeroth- and first-
order versions of this formula. However algorithms using the exact version are less
practical than SSRB or FORE.

26.5 3D IMAGE RECONSTRUCTION
26.5.1 Fully 3D Reconstruction with Missing Data
In 3D image reconstruction, parallel-beam projection data can be specified using �, the
direction of the line integrals, and two scalars (u,v) that indicate offsets in directions
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�1 and �2 perpendicular to �. Therefore g (u,v ,�) � g (a,�) �
∫

f (a � t�)dt , where
a � u�1 � u�2, and {�, �1,�2} is an orthonormal system. Note that all vectors in this
section are 3D.

Image reconstruction can be performed using a 3D version of the filtered backpro-
jection formulas (26.6) and (26.7) given in Section 26.3.1:

f (x) �
1

2

∫

	

g̃ (u,v ,�)

∣∣∣∣u � ux ,�

v � vx ,�

d�, (26.27)

g̃ (u,v ,�) �
1

8�3

�∫

��

�∫

��

G(U ,V ,�)H	(U ,V ,�)ej(uU �uV )dU dV , (26.28)

where, in the surface integral of (26.23), d� can be written as sin�d�d� for � having
polar angle � and azimuthal angle �; and where (ux ,�,vx ,�) � (x · �1,x · �2) represents
the (u,v) coordinates of the line with orientation � passing through x . The subset 	 of
the unit sphere represents the measured directions {�} and must satisfy Orlov’s condition
for data completeness in order for (26.27) and (26.28) to be valid. Orlov’s condition
requires that every great circle on the unit sphere intersects the region 	. The tomographic
reconstruction filter H	(U ,V ,�) depends on the measured dataset [20]. In the special
case that 	 is the whole sphere S2, then H	(U ,V ,�) �

√
U 2 � V 2.

In 3D PET imaging, data can be sorted according to the parameterization g (u,v ,�).
The set of measured projections can be described by 	
 � {� � (�x ,�y ,�z ) : |�z |�
sin
}, where 
 represents the most oblique line integral possible, 
 � atan(L/(2R)), for
a scanner radius of R and axial extent L. Provided none of the projections are truncated,
reconstruction can be performed according to (26.23) and (26.24) using the Colsher filter
H	


(U ,V ,�) � H 
(U ,V ,�) given by

H 
(U ,V ,�) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
U 2 � V 2 if

√
U 2 � �2

z V 2 < (sin
)
√

U 2 � V 2

�

2

√
U 2 � V 2

sin�1
(

(sin
)
√

U 2 � V 2/

√
U 2 � �2

z V 2
) otherwise.

(26.29)

In practice the object occupies most of the axial extent of the scanner so nearly all
projections are truncated. However, there is always a subset 	
� of the projections which
are not truncated, and from these projections a reconstruction can be performed to obtain
the image f 
�(x) using (26.28) and (26.29) with H 
�(U ,V ,�). In the absence of noise,
this reconstruction would be sufficient, but to include partially measured projections
a technique known as the “reprojection method” is used. All truncated projections are
completed by estimating the missing line integrals based on the initial reconstruction
f 
�(x). Then, in a second step, reconstruction from the entire data set is performed using
H 
(U ,V ,�) to obtain the final image f 
(x) [21].
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26.5.2 Cone-Beam Tomography
For cone-beam projections, it is convenient to use the general notation g (a,�), where a
and � are 3D vectors. For an X-ray system, the position of the source would be represented
by a, and the direction of individual ray-sums obtained from that source would be
indicated by �. Due to difficulties obtaining sufficient tomographic data (see below), the
source and/or detector may follow elaborate trajectories in space relative to the object;
therefore a general description of their orientations is required. For applications involving
a planar detector, we replace � with (u,v), coordinates on an imaginary detector centered
at the origin and lying in the plane perpendicular to a. The source point a is assumed
never to lie on the scanner axis e3. The u-axis lies in the detector plane in the direction
e3 � a. The v-direction is perpendicular to u and points in the same direction as e3 as
shown in Fig. 26.12(b).

In the simplest applications, the detector and source rotate in a circle about the
scanner axis e3. If the radius of rotation is A, the source trajectory is parameterized
by �g ∈ [0,2�] as a � (A cos�,A sin�, 0). In this case, the v-axis in the detector stays
aligned with e3 and the u-axis points in the tangent direction to the motion of the source.
Physical detector measurements can easily be scaled to this virtual detector system, just as
for the fan-beam example of Section 26.3.2. Thus g (�,u,v) � g (a,�) �

∫
f (a � t �)dt ,

where � � (�u sin� � A cos�,u cos� � A sin�,v).
The algorithm of Feldkamp et al. [22] is based on the fan-beam formula for flat

detectors (see Section 26.3.2) and collapses to this formula in the central plane z � 0
where only fan-beam measurements are taken:

fFDK(x ) �
1

2

2�∫

0

(
A2 � u2 � v2

r2 g̃ (�,u,v)

)∣∣∣∣u � ux ,�

v � vx ,�

d� (26.30)

e3

v

u

a
x

(b)(a)

a

FIGURE 26.12

(a) 2D planar projections of a 3D object are collected in a cone-beam system as line integrals
through the object from the cone vertex a to the detector; (b) The coordinate system for the cone-
beam geometry—the cone vertices a can follow an arbitrary trajectory provided Tuy’s condition
is satisfied.
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3D Shepp phantom

Disks phantom

Vertical Transverse Vertical Transverse

Object Reconstruction

Vertical Transverse Vertical Transverse 

FIGURE 26.13

Example of cone-beam reconstructions from a circular orbit—the obvious artifacts are a result
of the incompleteness in the data. Other trajectories, such as a helix or a circle plus line, give
complete data and artifact free reconstructions.

g̃ (�,u,v) �
1

4�2

�∫

��

(
A√

A2 � u�2 � v�2
g (�,u�,v�)

)
h(u � u�)du�. (26.31)

Similarly to (26.11), r � ‖x � a‖ is the distance between x and the source position a,
and (ux ,�,vx ,�) are the coordinates on the detector of the cone-beam projection of x , see
Fig. 26.12.

Figure 26.13 shows two images of reconstructions from mathematically simulated
data. Using a magnified grayscale to reveal the 1% contrast structures, the top images
show both a high quality reconstruction in the horizontal transverse slice at the level of the
circular trajectory, and apparent decreased intensity on planes above and below this level.
These artifacts are characteristic of the Feldkamp algorithm. The bottom images, showing
reconstructions for the “disks” phantom, exhibit cross-talk between transverse planes and
some other less dramatic artifacts. The disk phantom is specifically designed to illustrate
the difficulty in using cone-beam measurements for a circular trajectory. Frequencies
along and near the scanner axis are not measured, and objects with high amplitudes in
this direction produce poor reconstructions. Generally the artifacts manifested in the
reconstructed images depend on the object being imaged and on its position relative to
the plane of the trajectory.

For the cone-beam configuration, requirements for a tomographically complete set
of measurements are known as Tuy’s condition. Tuy’s condition is expressed in terms of
a geometric relationship among the trajectory of the cone-beam vertex point (the source
point) and the size and position of the object being scanned. Tuy’s condition requires
that every plane that cuts through the object must also contain some point of the vertex
trajectory. Furthermore, it is assumed that the detector is large enough to measure the
entire object at all positions of the trajectory, i.e., the projections should not be truncated.
For the examples given in Fig. 26.13, the artifacts arose because the circular trajectory
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did not satisfy Tuy’s condition (even though the projections were not truncated). In this
sense, the measurements were incomplete and artifacts were inevitable.

Analytic reconstruction methods for cone-beam configurations satisfying Tuy’s com-
pleteness condition are generally based on a transform pair that plays a similar role to the
Fourier transform in the projection slice theorem for classical parallel-beam tomography.
A mathematical result due to Grangeat [23] links the information in a single cone-beam
projection to a subset of the transform domain, just as the Fourier slice theorem links a
parallel projection to a certain subset of the Fourier domain. This relationship is defined
through the “B transform,” the derivative of the 3D Radon transform:

Bf (s,�) � p(s,�) �
1

2�

∫

R3

f (x)��(x · � � s)dx , (26.32)

B�1p(x ) � f (x ) �
1

4�

∫

S2

∫

R

p(s,�)��(s � x · �)dsd�, (26.33)

where s is a scalar and ‖�‖� 1. The symbol �� represents the derivative of the Dirac delta

function whose action is defined by
∫ �

�� f (s)��(s0 � s)ds � f �(s0).
Grangeat’s formula can be written as

1

4�

∫

S2

g (a,�)��(� · �)d� � p(s,�)|s�a · � . (26.34)

An analysis of (26.34) shows that if Tuy’s condition is satisfied, then all values are available
in the B domain representation of f (x ), namely p(s,�) [23].

Equations (26.33) and (26.34) form the basis for a reconstruction algorithm. All values
in the B domain can be found from cone-beam projections, and f (x ) can be recovered
from the inverse transform B�1. Care must be taken to ensure that the B domain is
sampled uniformly in s and �, and that if two different cone-beam projections provide
the same value of p(s,�), the contributions must be normalized. The method follows the
concept of direct Fourier reconstruction described in Section 26.3.1.

A filtered backprojection type of formulation for cone-beam reconstruction is also
possible, see, for example, [27]. If the trajectory is a piecewise smooth path, param-
eterized mathematically by � ∈ ⊂ R, a reconstruction formula similar to filtered
backprojection can be derived from Eqs. (26.33) and (26.34):

f (x) �
1

2

∫



g̃ (a(�),�)

r2

∣∣∣∣
���x ,�

d�, (26.35)

g̃ (a(�),�) �
�1

8�2

∫

S2

⎛
⎜⎝
∫

S2

g (a(�),��)��(�� · r)d��

⎞
⎟⎠��(�� · �)M (�,�)|a�(�) · �|d�. (26.36)

Here r � ‖x � a(�)‖, �x ,� � (x � a(�))/‖x � a(�)‖ is the line passing through
x for the a(�) projection, and the function M must be chosen to normalize multiple
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contributions in the B domain [27]. The normalization condition is 1 � �
n(�,s)
k�1 M (�,�k),

where n(�, s) is the number of vertices lying in the plane with unit normal � and displace-
ment s, and �1,�2 . . .�n(�,s) indicate the vertex locations where the path a() intersects
the plane. By Tuy’s condition, n(�, s) > 0 for |s|< R.

These equations must be tailored to the specific application. When the variables are
changed to reflect the planar detector arrangement specified at the beginning of this
subsection, the above equations resemble the Feldkamp algorithm with a much more
complicated “filtering” step. To simplify notation, we write A for the varying distance
‖a(�)‖ of the vertex from the origin.

f (x) �
1

2

∫



(
A2 � u2 � v2

r2
g̃ (a(�),u,v)

)∣∣∣∣u � ux ,�

v � vx ,�

d�, (26.37)

g̃ (a(�),u,v) �
�1

4�2

�∫

0

⎛
⎝ d

dt
T (�,�)

√
A2 � t 2

A2

⎛
⎝ d

dt

∫

R

A√
A2 � u�2 � v �2

g (a,u�,v�)dl

⎞
⎠
⎞
⎠

t � u cos�

�v sin�

d�,

(26.38)

where, in the innermost integration, (u�,v�) � (t cos� � l sin�, t sin� � l cos�); the
function T (�,�) � |a�(�) · �|M (�,�) contains all the dependency on the particular

trajectory. Note that in (26.38), � � (A cos�eu � A sin�ev � t ew)/(
√

A2 � t 2) where
the detector coordinate axes are eu and ev , and ew � �a(�)/A.

Although these equations are only valid when the cone-beam configuration satisfies
Tuy’s condition, the algorithm of Eqs. (26.37) and (26.38) collapses to the Feldkamp
algorithm when a circular trajectory is specified. This general algorithm has been refined
and tailored for specific applications involving truncated projections. Practical methods
have been published for the case of source trajectories containing a circle.

26.5.3 Helical Multi-Slice CT Imaging
The case of a helical trajectory is particularly important for the lastest generation of
CT scanners with many detector rows. The framework of (26.35) and (26.36) does not
apply directly to helical CT scanning because the projections in any practical CT scanner
will always be truncated in the axial direction. Furthermore, different segments of the
helical trajectory are used to reconstruct different parts of the patient. The methods used
to treat these problems appeal to specific properties of the helical trajectory, such as
the PI-line, which is the unique line passing through a specified point in the image and
connecting two trajectory points within a single turn of the helix. Using these properties,
recent theoretical developments in helical image reconstruction are being described in a
framework similar to (26.35) and (26.36), with careful choices for the function M . The
goal of helical cone-beam image reconstruction is to find a fast, accurate filtered back-
projection algorithm that can handle the axial truncation with the minimum detector
usage yet with the flexibility to incorporate redundant information when a small pitch is
used for improved signal-to-noise ratios in the images.
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In the late 1990s, advances in detector technology allowed complete transitioning
of X-ray CT from a 2D tool toward a fully 3D imaging technique. This transition had
been initiated in 1990 with the spiral data acquisition concept, which allowed faster
axial coverage than the old step-and-shoot mode. However, the gain was modest until
1998, when the single detector row could finally be replaced by four detector rows that
quadrupled the axial coverage without compromising temporal resolution. Soon after,
systems with 16, 32, 64, and even 320 detector rows (Toshiba, 2008) found their way onto
the medical market so that imaging the full thorax in less than 5 seconds is nowadays
easily achieved by some systems.

In a multirow scanner, the detector rows are stacked one above the other in the
direction of the rotation axis and data acquisition proceeds with translation of the patient
bed while the source detector assembly rotates, thus defining a helical cone-beam data
acquisition geometry. The collected data is a function of three parameters and is denoted
here as g (�,,w), with w giving the z position of the detector row relative to the z
position of the X-ray source, while � and  are the usual parameters of fan-beam data
acquisition with equiangular rays. (Note that we call the z-axis the translation axis of the
patient bed.) Formally,

g (�,,w) �

�∫

0

f

(
a(�) �

t√
w2 � D2

(D sineu(�) � D cosev (�) � wew (�))

)
dt , (26.39)

where a(�) � (R cos�,R sin�,h�) is the source position with 2�h the distance covered
by turn, where D is the curvature radius of the detector rows, and where f is the linear
attenuation coefficient to be reconstructed. Also,

eu(�) � (� sin �, cos �, 0),

ev (�) � (�cos �,� sin �, 0), (26.40)

ew (�) � (0,0,1),

are a set of unit orthogonal vectors that are convenient for a mathematical description of
the data.

Many reconstruction techniques have been developed for accurate reconstruction of
f from g , some approximate, others theoretically-exact. We present here the theoretically-
exact method of Katsevich [24], which represented a breakthrough and has led to the
development of many reconstruction algorithms since its development in 2002. This
method efficiently yields f at any given location P as a backprojection of filtered data.
The backprojection is performed only over a finite interval in � that varies with P and is
denoted as I (P) here. The endpoints, �i(P) and �o(P), of this interval define two source
positions that lie on a line through P and are separated by less than a helix turn (i.e.,
|�i(P) � �o(P)|< 2�). Danielsson showed in 1997 that this particular backprojection
interval is uniquely defined for each P within the field-of-view of the scanner, while Tam
showed at the same time how masking the data so as to constrain the backprojection to
I (P) can improve the reconstruction quality. Nowadays, the backprojection interval I (P)

is commonly called the Tam-Danielsson window [25].
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Katsevich’s method takes the form

f (P) �
1

2�

�o(P)∫

�i (P)

gF (�,∗,w∗)
v∗ d�, (26.41)

where ∗ and w∗ are the detector coordinates of the line through P , and v∗ is the distance
between P and the source after projection in a plane orthogonal to the z axis. When
denoting the coordinates of P as x ,y ,z , these quantities are

v∗ � R � x cos� � y sin�,

∗ � atan

(
1

v∗ (�x sin� � y cos�)

)
, (26.42)

w∗ �
D cos∗

v∗ (z � h�).

The filtered data, gF , is obtained by convolving a differentiated version of the data, g �,
along a family of curves on the detector surface. These curves can be parameterized by
an angle � following the curve equation

ŵ(;�) �
Dh

R

(
� cos �

�

tan�
sin

)
. (26.43)

The required range for � is � ∈ [��/2 � m ,�/2 � m] where m is the maximum fan
angle. The computation of gF from g � proceeds in four steps:

■ Step 1: Apply a length-correction weight to obtain g2(�,,w) �
Dg �(�,,w)√

w2�D2
.

■ Step 2: Interpolate the data so as to create data onto the � curves, according to
g3(�,,�) � g2(�,,w(̂;�)).

■ Step 3: Apply an angular 1D Hilbert transform in  to get

g4(�,,�) �

�/2∫

��/2

hH (sin( � �))g3(�,�,�)d�, (26.44)

where hH is the 1D inverse Fourier transform of �isgn v .

■ Step 4: Rebin the convolved data back into the original detector geometry and
postweight the result with cos, to get

gF (�,,w) � cos g4(�,,
(,w)), (26.45)

where �(,w) is the solution of smallest absolute value of the equation

w �
Dh

R

(
� cos �

�

tan�
sin

)
(26.46)

in �.
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The differentiated data from which gF is calculated is obtained by differentiating
the original data while maintaining constant the ray direction, and may be expressed in
the form

g �(�,,w) �

(
	

	�
�

	

	

)
g (�,,w). (26.47)

Details on how to achieve a numerically robust implementation of the various steps
involved in the Katsevich method can be found in [25] and [26].

26.6 ITERATIVE RECONSTRUCTION METHODS
26.6.1 Finite Dimensional Formulations and Algebraic

Reconstruction Technique
As noted above, the line integral model on which all of the preceding methods are
based is only approximate. Furthermore, there is no explicit modeling of noise in these
approaches; noise in the data is typically reduced by tapering off the response of the
projection filters before backprojection. In X-ray CT, the beam is highly collimated,
the detectors are high resolution, and the number of photons per measurement is very
large; consequently the line integral approximation is adequate to produce low noise
images at submillimeter resolution in humans. However, this may not be the case in
industrial and other nonmedical applications, and these systems may benefit from more
accurate modeling of the data and noise. In the case of PET and SPECT, the often low
intrinsic resolution of detectors, depth dependent and geometric resolution losses, and
the typically low photon count, can lead to rather poor resolution at acceptable noise
levels when using direct reconstruction methods. An alternative to the direct approach is
to use a finite dimensional model in which the detection system and the noise statistics
can be modeled more accurately. Research in this area has lead to the development of
a large class of reconstruction methods that often outperform the direct methods that
often outperform the direct methods, as illustrated in Fig. 26.15.

We will assume that the image is adequately represented using a finite set of basis
functions. While there has been some interest in alternative basis elements, almost all
researchers currently use a cubic voxel basis function. Each voxel is an indicator function
on a cubic region centered at one of the image sampling points in a regular 2D or
3D lattice. The image value at each voxel is proportional to the quantity being imaged
integrated over the volume spanned by the voxel. To allow a unified treatment of 2D
and 3D problems, a single index will be used to represent the lexicographically ordered
elements of the image f � {f1, f2 . . . fN }. Similarly, the elements of the measured projections
will be represented in lexicographically ordered form as y � {y1,y2 . . .yM }.

In X-ray CT, we can model the attenuation of a finite width X-ray beam as the
integral of the linear attenuation coefficient over the path (or strip) through which the
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FIGURE 26.14

Example of a PET scan of metabolic activity using FDG, an F-18 tagged analog of glucose. This
tracer is used in detection of malignant tumors. The left image shows a reconstruction of a slice
through the chest of a patient with breast cancer; the tumor is visible in the bright region in
the upper left region of the chest. This image was reconstructed using the Bayesian method
described in [33] and illustrates the improvement in image quality that can be realized using a
statistically based approach, in comparison to a direct reconstruction method which was used
to reconstruct the right image from the same data.

beam passes. Thus the measurements can be written as

yi �

∫ ∫
x ,y 
 strip{i}

f (x ,y)dxdy �

N∑
j�1

Hij fj , (26.48)

where fj is the attenuation coefficient at the jth voxel. The elements H (i, j) of the pro-
jection matrix H are equal to the area of intersection of the ith strip with the indicator
function on the jth voxel. Equation (26.48) represents a huge set of simultaneous linear
equations, y�Hf, that can be solved to compute the CT image f (see Fig. 26.14). In prin-
ciple the system can be solved using standard methods. However, the size of these systems
coupled with the special structure of H motivated research into more efficient special-
ized numerical procedures. These methods exploit the key property that H is very sparse,
i.e., most elements in the matrix are zero, since the path along which each integration is
performed intersects only a small fraction of the image pixels.

One algorithm that makes good use of the sparseness property is the algebraic recon-
struction technique (ART) [28]. This method finds the solution to the set of equations
in an iterative fashion through successive orthogonal projection of the current image
estimate onto hyperplanes defined by each row of H . If this procedure converges, the
solution will be a point where all of the hyperplanes intersect, i.e., a solution to (26.48).
Let f n represent the vector of image pixel values at the nth iteration, and let hT

i represent
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FIGURE 26.15

Illustration of the pixel-based finite dimensional formulation used in iterative X-ray CT recon-
struction. The matrix element Hij gives the contribution of the jth voxel to the ith measurement
and is proportional to the areas of intersection of the voxel with the strip that joins the source
and detector.

the ith row of H . The ART method has the following form:

f n�1 � f n �

(
yi � hT

i f n

hT
i hi

)
hi i � (n mod N ) � 1. (26.49)

ART can also be viewed in terms of the backprojection operator used in filtered back-
projection: each iteration of (26.49) is equivalent to adding to the current image estimate
f n the weighted backprojection of the error between the ith measured projection sample
and the projection corresponding to f n . ART will converge to a solution of (26.48) pro-
vided the system of equations is consistent. In the inconsistent case, the iterations will
not converge to a single solution, and the properties of the image at a particular stopping
point will be dependent on the sequence in which the data are ordered. Many variations
of the ART can be found in the literature. These variations exhibit differences in
convergence behavior, sensitivity to noise, and optimality properties [29].

26.6.2 Statistical Formulations
The ART method does not directly consider the presence of noise in the data. While
acceptable in high SNR X-ray CT data, the low photon counting statistics found in
PET and SPECT should be explicitly considered. The finite dimensional formulation in
Section 26.6.1 can be extended to model both the physics of PET and SPECT detection
and the statistical fluctuations due to noise.

Rather than simply assume a strip integral model as in (26.48), we can instead use the
matrix relating image and data to more exactly model the probability, Pij , of detecting an
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emission from voxel site j at detector element i[30, 33]. To differentiate this probabilistic
model from the strip integral one, we will denote the detection probability matrix by P .
The elements of this matrix are dependent on the specific data acquisition geometry and
other factors such as detector efficiency, attenuation effects within the subject, and the
underlying physics of gamma ray emission for SPECT or positron-electron annihilation
for PET.

In PET and SPECT, the mean of the data can be estimated for a particular image as
the linear transformation

E(y) � Pf, (26.50)

where f represents the mean emission rates from each image voxel. In practice, these data
are corrupted by additive noise terms due to scatter and either “random coincidences”
in PET [7] or background radiation in SPECT [6]. The methods described below can be
modified relatively easily to include these factors but these issues will not be addressed
further here. See [31] and [32] for a more in depth review of these and other factors that
affect statistical reconstruction methods in PET and SPECT.

In both PET and SPECT, external radiation sources are used to perform transmission
measurements. These are used to correct for attenuation in the emission studies. Just as
in X-ray CT, it is possible to reconstruct an image of attenuation coefficients from these
transmission measurements. In this case, the unknown image f is the set of attenuation
coefficients for each voxel and the transition probability matrix P , in the simplest case,
has elements Pij equal to the fractional intersection of the ith projection ray with the jth
voxel. If E(y) represents the mean value of the transmission measurement, and assuming
that the source intensity is a constant , then we can model the mean of the transmission
data as

E(yi) � exp

{
�
∑

j
Pij fj

}
. (26.51)

For both emission and transmission measurements, the data can be modeled as
collections of independent Poisson random variables, mean Ey, with joint probability:

p(y/f ) �

M∏
i�1

E(yi)
yie�E(yi)

yi ! . (26.52)

The physical model for the detection system is included in the likelihood function in
the mapping from the image f to the mean of the detected events E(y) using (26.50) and
(26.51) for the transmission and emission case, respectively. Using this basic model, we
can develop estimators based on maximum likelihood (ML) or Bayesian image estimation
principles.

26.6.3 Maximum Likelihood Methods
The ML estimator is the image that maximizes the likelihood (26.52) over the set of
feasible images, f � 0. The EM (expectation maximization) algorithm can be applied to



26.6 Iterative Reconstruction Methods 771

the emission CT problem resulting in an iterative algorithm which has the elegant closed
form update equation [34]:

f n�1
j �

f n
j∑

i
Pij

∑
i

Pij yi∑
l Pil f

n
l

. (26.53)

This algorithm has a number of interesting properties including the fact that the solution
is naturally constrained by the iteration to be nonnegative. Unfortunately the method
tends to exhibit very slow convergence and is often unstable at higher iterations. The
variance problem is inherent in the ill-conditioned Fisher information matrix. This effect
can be reduced using ad hoc stopping rules where the iterations are terminated before
convergence. An alternative approach to reducing variance is through penalized ML or
Bayesian methods as described in Section 26.6.4.

A number of modifications of the EM algorithm have been proposed to speedup
convergence. The most widely used of these is the ordered subsets EM (OSEM) algorithm
in which each iteration uses only a subset of the data [35]. Let {Sk},k � 1, . . .Q, be a
disjoint partition of the set {1,2, . . .M } representing the indices of the data. Let n denote
the iteration number, defined as the number of complete cycles through the Q subsets,

and define f (n,0)
j � f (n�1,Q)

j . Then one complete iteration of OSEM is given by

f (n,k)
j �

f (n,k�1)
i∑

i 
 Sk
Pij

∑
i
Sk

Pij yi∑
l Pl f

(n,k�1)
l

for j � 1, . . .N ; k � 1, . . .Q. (26.54)

In the early iterations, OSEM produces remarkable improvements in convergence
rates compared to EM, although subsequent iterations over the entire data is required
for ultimate convergence. The OSEM algorithm has now been widely adopted for recon-
struction of clinical PET scans since it achieves significant improvements in image quality
for photon-limited data when compared to analytic methods, and does so in clinically
acceptable reconstruction times. In the case of 3D PET, computation cost is further
reduced by using the Fourier rebinning method of Section 26.4.3 to reduce the data to
a set of 2D sinograms (one per axial slice) and then applying OSEM to each 2D slice in
turn [36].

The corresponding ML problem for transmission data does not have a closed form EM
algorithm. However, both emission and transmission ML problems can be solved effec-
tively using standard gradient ascent aproaches such as the conjugate gradient method.
In fact it is easily shown that the emission EM algorithm can also be written as a
steepest descent algorithm with a diagonal preconditioner equal to the current image
estimate [37].

In recent years, a great deal of progress has been made in developing fast algorithms for
emission and transmission tomography that borrow ideas from both the EM and OSEM
approaches to generate convergent algorithms. The EM algorithm can be viewed as one
of a general class of “optimization transfer” methods [38]. These methods replace the
original objective function (f ; y) at each iteration with a surrogate function 
(f , f n; y)
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that satisfies the following properties:

(f n; y) � 
(f n, f n; y), (26.55)

(f ; y) � 
(f , f n; y). (26.56)

These two conditions in combination can be used to ensure that if f n�1 is chosen as
the maximizer of 
(f , f n; y), then (f n; y) is a non-decreasing sequence in fn . The
surrogates are chosen so that they are more easily optimized than the original objective at
each iteration. Careful choice of these objective functions can lead to closed form update
equations, even for the tramission reconstruction problem, and to faster convergence
than that exhibited by the original EM algorithm.

The second approach to development of more rapidly converging algorithms is to use
subsets of the data at each iteration. As implemented in the original OSEM algorithm, this
does not lead to convergence. However, it is possible to use this concept within a globally
convergent framework. Methods of this type are referred to as “incremental gradient”
methods and are based on rewriting the objective function as a sum over subobjective
functions [39]:

( f ; y) �

Q∑

k�1

k (f ; yk ), (26.57)

where k(f;yk) represents the portion of the objective function that is dependent only
on the subset of the data: {yi : (i ∈ Sk)}. Iteratively updating the image estimate with
respect to each subobjective in turn and using an appropriate relaxation scheme can lead
to rapid initial convergence and guarantee global convergence. Since the surrogate and
incremental gradient approaches are general, they are applicable to both emission and
transmission reconstruction, and also to both the ML problem described above and the
Bayesian or penalized ML formulations described below.

26.6.4 Bayesian Reconstruction Methods
As noted above, direct ML estimates of PET images exhibit high variance due to ill-
conditioning. Some form of regularization is required to produce acceptable images.
Often regularization is accomplished simply by starting with a smooth initial estimate
and terminating a ML search before convergence. Here we consider explicit regularization
procedures in which a prior distribution is introduced through a Bayesian reformula-
tion of the problem. Some authors prefer to present these regularization procedures as
penalized ML methods but the differences are largely semantic.

By introduction of random field models for the unknown image, Bayesian methods
can address the ill-posedness inherent in PET image estimation. In an attempt to capture
the locally structured properties of images, researchers in emission tomography, and
many other image processing applications, have adopted Gibbs distributions as a suitable
class of prior [40]. The Markovian properties of these distributions make them both
theoretically attractive as a formalism for describing empirical local image properties,
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as well as computationally appealing, since the local nature of their associated energy
functions results in computationally efficient update strategies. The majority of work
using Gibbs distributions in tomographic applications involves relatively simple pairwise
interaction models where the Gibbs energy function is formed as a sum of potentials,
each defined on neighboring pairs of pixels. These potential functions can be chosen to
reflect the piecewise smooth property of many images. The existence of sharp intensity
changes, corresponding to the edges of objects in the image, can also be modeled using
more complex MRF (Markov random field) models. The Bayesian formulation also offers
the potential for combining data from multiple modalities. For example, high resolution
anatomical X-ray CT or MR images can be used to improve the quality of reconstructions
from low resolution PET or SPECT data [41].

Let p(f ) denote the Gibbs prior that captures the expected statistical characteristics
of the image. The posterior probability for the image conditioned on the data is then
given by Bayes theorem:

p(f |y) �
p(y|f )p(f )

p(y)
. (26.58)

Bayesian estimators in tomography are usually of the maximum a posteriori (MAP)
type. The MAP solution is given by maximizing the posterior probability p(f | y) with
respect to f. For each dataset, the denominator of the right-hand side of (26.58) is a con-
stant so that the MAP solution can be found by maximizing the log of the numerator, i.e.,

max
f

Lnp(y|f ) � Lnp(f ). (26.59)

A large number of algorithms have been developed for computing the MAP solution.
The EM algorithm (26.53) can be extended to include a prior term (see for example [41])
and hence maximize (26.59). This algorithm suffers from the same slow convergence
problems as (26.53). Alternatively, (26.59) can be maximized using standard nonlinear
optimization algorithms such as the preconditioned conjugate gradient method [33] or
coordinate-wise optimization [42]. The specific algorithmic form is found by applying
these standard methods to (26.59) after substituting both the log of the likelihood func-
tion (26.52) in place of Ln p(y|f ) and the log of the Gibbs density in place of Ln p(y|f).
Alternatively, optimization transfer and incremental gradient methods can be modified
to include prior distribution and have been used effectively to design rapidly converging
algorithms. For compound Gibbs priors that involve line processes, mean field annealing
techniques can be combined with any of the above methods [41],[32].

26.7 SUMMARY
We have summarized direct and iterative approaches to 2D and 3D tomographic recon-
struction for X-ray CT, PET, and SPECT. With the exception of the rebinning algorithms,
which can be used in place of fully 3D reconstruction methods, the choice of direct
reconstruction algorithm is determined primarily by the data collection geometry. On
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the other hand, the iterative approaches (ART, ML, and MAP) can be applied to any
collection geometry in PET and SPECT. Furthermore, after appropriate modifications
to account for differences in the mapping from image to data, these methods are also
applicable to transmission PET and SPECT data. X-ray CT data are not Poisson so a
different likelihood model is required if ML or MAP methods are to be used.

Image processing for CT remains an active area of research. In large part, development
is driven by construction of new imaging systems which are continuing to improve the
resolution of these technologies. Carefully tailored reconstruction algorithms will help
to realize the full potential of these new systems. In the realm of X-ray CT, new spiral and
cone-beam systems are extending the capabilities of CT systems to allow fast volumetric
imaging for medical and other applications. In PET and SPECT, recent developments
are also aimed at achieving high-resolution volumetric imaging through combinations
of new detector and collimator designs with fast, accurate reconstruction algorithms. In
addition to advances resulting from new instrumentation developments, current areas of
intense research activity include theoretical analysis of algorithm performance, combin-
ing accurate modeling with fast implementations of iterative methods, direct methods
that account for factors not included in the line integral model, and development of
methods for fast dynamic volumetric (4D) imaging.
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27.1 INTRODUCTION
Recent advances in the field of microscopy have been driven not only by technological
innovations in engineering, optics, computer science, and precision manufacturing but
also by fundamental discoveries in chemical and biological sciences. The last two decades
have seen various changes to the microscope, resulting in the current modern microscope,
which is a powerful tool in biological research and development. Although most of the
changes pertain to advances in optics, today’s microscopes are also fitted with ergonomic
features, and they include automation of several manual functions. Microscopes today
offer automated focusing, selection of objectives and filters, as well as light control
and a wide range of other features. Moreover, the increasing complexity of biological
experiments performed with optical microscopy, and the complexity of data that can be
obtained, has resulted in even more sophisticated optical microscopy systems [1–5].

Traditionally, microscopy-based research has relied on visual interpretation and
qualitative descriptions of the observed samples by experts. The most important ben-
efit of this approach is that the robustness of the human visual system, coupled with
advanced cognitive abilities, allows trained personnel to perceive variations in illumi-
nation and contrast, recognize significant objects or events based on appearance, and
differentiate among a large variety of normal and abnormal phenotypes. The limiting
factors are that manual analysis can become tedious and time consuming, and it is not
scalable for large studies.

Although a completely automated microscope is not required in most applications,
there are a growing number of applications for which it is, such as medium-large scale
screening of specimens with different protocols, deconvolution, fluorescence resonance
energy transfer (FRET) imaging, multi-spectral imaging, and ion ratio imaging [6].
Furthermore, computer technology is changing the ways we access equipment, view
samples, and record, manage, and disseminate images. Digital imaging has created the
need for archiving, managing, manipulating, and quantifying images. The coupling of
computers to microscope systems has resulted in the development of optical imaging 777
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systems that can perform complicated experiments, and provide more data, convenient
storage of and access to the data, and, perhaps most importantly, substantial aid in the
analysis of large volumes of data.

Quantitative methods for computer-assisted morphometry and cytometry have
become well established during the past decade [7–9]. In complex experiments involv-
ing a myriad of peripheral devices, computer technology is useful for controlling filter
wheels, shutters, automated stages, and cameras. Computer-assisted microscopy allows
the extraction of quantitative, reproducible, diagnostically relevant information while
reducing subjective influences of human operators. It increases the quality and relevance
of data and enables comparison and verification of the results. Standardized and auto-
mated systems are needed to generate consistent results among different experiments
and laboratories, while enhancing productivity and realizing cost savings. The advan-
tages of computerized microscopy include the ability to (1) control and synchronize
the functions of multiple peripheral devices, (2) extract information using quantitative
methods, (3) analyze data to determine statistical significance, (4) reduce cost by reliev-
ing humans of tedious duties, and (5) support significantly expanded testing volumes
without concomitant requirements for additional personnel and floor space.

Computerized microscopy is useful in (1) color and monochrome brightfield
applications with thick specimens that require multiple optical sections (i.e., z-planes),
(2) applications in fluorescence microscopy that require the acquisition of more than
one wavelength, (3) applications that require large specimens to be scanned, (i.e., when
adjacent areas need be scanned and “tiled” together to create a much larger image), and
(4) time-lapse or motion analysis applications. Although computerized microscopy sys-
tems expedite data collection by automating the process, the real power of the system
is the extraction from the images of useful, quantitative information that previously
required human interpretation.

Generic digital image processing algorithms can often be applied successfully, but they
sometimes fail to exploit fully the information contained in microscope images. This is
because the optics that produced a particular image are poorly understood. Computer-
ized microscopy systems need to tailor image processing algorithms to particular forms
of microscopy such as brightfield, darkfield, phase contrast, interference contrast, fluo-
rescence, and confocal systems [10]. Further, the theory of microscopy is complicated,
and agreement with data is less than perfect. The challenge is to synthesize theoretical
models and empirical evidence in order to tackle particular image analysis problems [11].

Automated image analysis system design begins by specifying requirements for the
system and then selecting image processing functions that meet those requirements. It is
difficult to describe a generic set of algorithms for object identification and classification,
and actual systems are often limited to one or a few specific applications. Universal
systems, capable of automatically learning and finding desired user information, do
not exist. In this chapter, we describe an automated imaging system for use in clinical
cytogenetics. Image analysis algorithms specific to particular applications are discussed
separately.

We present an overview of what constitutes a microscope imaging system, with spe-
cial emphasis on automation of image acquisition and analysis, and imaging techniques



27.2 Computer-Assisted Microscopy Systems 779

used in the context of biological applications—specifically clinical cytogenetics. Instru-
mentation is discussed, including motorized stages and filters, cameras and digitizer
boards, software algorithms (including image enhancement, autofocusing, object detec-
tion and relocation), and features for operator review and data analysis for computerized
microscopy.

27.2 COMPUTER-ASSISTED MICROSCOPY SYSTEMS
The modern microscopy imaging system is composed of five basic components: the
microscope, a lighting source, a specimen stage control, an image acquisition device, and
a postacquisition image analysis system. The microscope can be practically any high-end
optical device, such as those offered by Leica, Meiji, Nikon, Olympus, and Zeiss, which
meets the initial resolution and functionality requirements of the experiments for which
the instrument will be used. The components of a computer-assisted microscopy system
are depicted in Fig. 27.1. The core of any computer-assisted microscopy system is the
microscope, which creates an image of the specimen. An image sensor, such as a CCD
camera or a photomultiplier tube (PMT), converts the magnified image to an analog
voltage signal. The signal is then digitized and stored in a computer for later retrieval or
analysis. Several peripheral devices, such as motorized X, Y stages, Z-axis motors, and
filter wheels, are fitted to the microscope to perform different kinds of experiments. A
host computer interfaces the separate hardware components to the microscope. Com-
munication with the peripheral devices is through hardware boards that reside in the
system’s host computer and use the computer’s internal bus. The PCI bus is well suited
for imaging applications due to its high speed of operation and support from many man-
ufacturers. Other types of connections include serial lines (RS-232, RS-485), USB, and
the GPIB bus.

Microscope

XYZ
Motorized

stage

Camera

Computer

Frame grabber

Stage controller

Filter wheelFilter controller

Software

FIGURE 27.1

Components of a computer-assisted microscopy system.
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Automation is implemented via software tailored to control the experiment, for exam-
ple, by automatically selecting the wavelength and intensity of excitation light, positioning
the specimen in the field of view (FOV), autofocusing, and capturing single- or multi-
channel images. The microscope and the associated optics and detectors determine the
quality of the image data obtained, and care must be taken to match the components
to obtain the best possible results. Overall, the system contains computer software and
hardware that can automatically scan microscope slides, find the optimal focus position,
capture images, manipulate those images via preprocessing to remove noise, segment the
images to identify objects therein, extract relevant information about each object (e.g.,
size, presence or absence of a diagnostic marker), and finally classify them according to
the experimental specifications.

27.2.1 Hardware
The basic components of a computerized microscopy system can be broken down into
three fundamental areas. These are (1) automation of the microscope’s X-, Y- and
Z-axes, (2) control of fluorescence excitation or brightfield illumination, and (3) control
of the image sensing device. In most instances, these components can be added easily
to any commercially available microscope. Motorized stages and filter wheels are readily
available and can be custom fitted to a variety of different microscopes. Similarly, focus
drives are available to control the Z-axis position of the stage (or the microscope head in
the case of fixed stage microscopes). Automated X, Y stages allow movement of the stage
in the X- and Y-axes, shutters control the exposure of both the fluorescent and incan-
descent light, monochromators or filter wheels are used to select a specific excitation
wavelength, and image sensors, such as CCD cameras or PMTs, capture images. Given
the number of hardware options available, the selection of components depends on the
efficiency and precision requirements of the particular application. Cortese presents a
listing of commercial vendors, for a variety of microscope components [12].

27.2.1.1 Illumination Source
Most commercially available microscopes have built-in light sources for brightfield and
fluorescence microscopy. For transmitted light microscopy, an incandescent tungsten-
halogen bulb supplies illumination. These lamps operate in a“halogen regenerative cycle”
wherein the evaporated metal is returned back to the filament, thereby keeping the glass
bulb clean and maintaining a constant light output and color temperature throughout the
life of the lamp. These lamps are low in cost and have extended lifespan, but are not very
bright at the shorter wavelengths. Fluorescence microscopy uses either mercury (Hg) or
xenon (Xe) arc lamps, which provide better spectral quality. Mercury lamps operate on
vaporized metal plasma and provide a characteristic spectrum of distinct lines at specific
wavelengths, whereas xenon lamps provide an output that is constant, with more spectral
lines but slightly reduced brightness. Both the Hg and Xe arc lamps require careful align-
ment for uniform sample illumination. Most recently, EFOS Inc. (Missisauga, Ontario)
has developed a novel fluorescence illuminator, the X-CiteTM, which delivers a uniform
FOV and maximum energy spectrum from a 50 W metal-halide lamp, outperforming
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100 W mercury-arc lamps with a 2,000-hour lifespan. Alternatively, Photon Technology
International Inc. (Lawrenceville, NJ) has developed the NovaLightTM, an illuminator
that delivers up to seven times the output of conventional arc lamps. These new arc
lamp systems offer longer lifespan, do not require lamp alignment, and provide stable,
ozone-free output.

In fluorescence illumination, the excitation light and emission light are controlled by
filters inserted in the light path between the illuminator and the specimen, and again
between the specimen and the image sensor. A wide variety of filter cubes is available
from major manufacturers, who produce filter sets suitable for most of the common
fluorophores in use today. Other illumination sources include arc-discharge lamps and
light emitting diodes (LEDs). Nonlaser LEDs provide a cheaper and more compact option
because of their small size. They can provide light at various wavelengths with low
power consumption and low heat generation. Lasers can also be used as light sources,
but they are expensive and are commonly employed only for specialized techniques
such as confocal fluorescence microscopy, optical trapping, lifetime imaging studies,
photobleaching recovery studies, and total internal reflection fluorescence imaging. The
most common types of lasers used in microscopy are continuous wave lasers (for confocal
microscopy) and pulsed lasers (for multiphoton microscopy) [13].

Mechanical or electronic optical shutters can be used to control the amount of time
that the specimen is exposed to illumination. They typically allow various opening and
closing patterns and can allow 100% transmission or complete extinction of the light. The
minimum opening speed of most commercially available shutters is on the order of 10
milliseconds. In multimode light microscopy applications, they are often used to switch
between transmitted and fluorescence imaging, with shutters in both the transmitted
light path and the fluorescence path. Shutters come with computer interface controllers
that allow both manual and remote opening and closing. Controlling the exposure time
can reduce photobleaching in fluorescence imaging applications.

27.2.1.2 Filter Control
Filter control on microscopes can be automated in two ways: (1) a motorized filter turret
(available on most motorized microscopes) that moves an entire filter cube assembly
(including the excitation and emission filters and dichroic mirror) or (2) filters mounted
on wheels positioned in either the excitation or emission path, or both.

Filter wheels are used on microscopes, cameras, and video systems to position a
selected filter in the imaging path quickly and accurately. Typically, a filter or combination
of filters is used to attenuate the light intensity or to prevent unwanted spectral wave-
lengths from contaminating the recorded image. They are used in machine vision, parts
inspection, and research applications, especially those involving fluorescent microscopy,
spectrophotometry, photometry, color photography, and optical and infrared imaging.

Fluorescence illumination and observation is the most rapidly expanding microscopy
technique employed today in the medical and biological sciences. Fluorescence probes
(fluorochromes) have unique individual excitation and emission spectra. Typically, there
is overlap between the higher wavelength end of the excitation spectrum and the lower
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wavelength end of the emission spectrum. A combination of filters (made up of an
excitation filter, a dichromatic beamsplitter, and a barrier filter) is used to separate the
excitation and emission light and improve image contrast. This is achieved by the proper
selection of filters to block or pass specific wavelength bands of the spectrum. Chroma
Technology Corp. (Brattleboro, VT) and Omega Optical Inc. (Brattleboro) provide a
number of filter sets designed for specific combinations of fluorescence probes, for a
variety of single- and multiple-labeling fluorescence microscopy applications.

In automated microscopy, a convenient approach to providing the required wave-
lengths of excitation light is to use a filter wheel coupled with a multispectral lamp (e.g.,
mercury or xenon). Filter wheels can be fitted to either the excitation or emission (or
both) ports of a microscope. Mounting flanges allow filter wheels to be effectively inserted
into the optical path of most microscopes without affecting camera or eyepiece focus.
In epifluorescence microscopy, excitation filter wheels control the illumination spectrum
before it enters the objective, whereas emission filter wheels are mounted on the camera
port and select a unique emission wavelength.

Another common application of a filter wheel is to introduce neutral density (ND)
filters into the optical path. ND filters attenuate the light passing through the microscope
optics. This can allow the lamp to operate at a higher brightness level (to provide enhanced
color balance), and they afford aperture adjustment for depth-of-field effects without
saturating the camera. Typically, ND filters are graduated in degrees of light absorption.

Filter wheels are generally available with mountings for between three and twelve
filters. The filters in the wheel may be of different colors, thickness, or materials. For
multispectral applications requiring a large number of wavelengths, two or more filter
wheels may be used to allow for more filters or to control separately the upper and lower
cutoff wavelengths of a passband. For example, a dual filter wheel system with two six-
filter wheels could provide ten individual filters (one open position in each wheel), with
the potential for as many as thirty-six combinations. The most common use of dual filter
wheels is to combine a bandpass filter with a ND filter to control both the wavelength
and intensity of the fluorescence excitation.

For automated microscopy applications, motorized filter wheels with controller
systems are interfaced to a computer, permitting direct communications via RS-232,
GPIB, or USB serial ports. Typically, such systems also offer optional filter wheel control
via a keypad. Automation and programming of unique filter sequences are conducted
through the RS-232 interface. A simple command language (provided by the manufac-
turer) is used to retrieve filter status and to select filters. Often there is also an integrated
shutter that can be opened and closed by commands sent to the serial port. The typ-
ically adjacent filter switching speed of commercially available shutters is on the order
of 30–100 milliseconds. Filter wheels are provided by vendors such as Prior Scientific,
Inc. (Rockland, MA), Ludl Electronic Products, Ltd. (Hawthorne, NY), Applied Scientific
Instruments (Eugene, OR), and Marzhauser Wetzlar (Germany).

27.2.1.3 X, Y Stage Positioning and Z-axis motors
X, Y motorized stages and Z-axis (focus drive) motors form an integral part of any
computer-assisted microscopy system. They allow a specimen to be positioned accurately



27.2 Computer-Assisted Microscopy Systems 783

and automatically relative to the microscope objective. They also allow optical sectioning
of thick specimens and automatic focus. The stages can be customized to hold specimens
on microscope slides, petri dishes, or cell plates. X, Y linear translation stages are typically
driven by a stepper motor and a controller that interfaces to the host computer. Typically,
the X, Y resolution of such systems ranges from 0.1�5�m.

Translation stages are important because they allow automated scanning of specimen
slides, thus increasing the speed of data collection. An important feature of computer-
controlled motorized stages is the ability to move the slide to a previously located position.
This is useful in experiments where serial observations of a specimen require removal,
restaining, and subsequent return of specimens to the microscope stage. Specimen posi-
tioning provides the ability to return to specific coordinates and thus to view the same
region of the slide that was observed prior to removal of the slide.

Z-axis motors allow controlled movement of the specimen in the vertical (Z or axial)
direction, thus providing the capability for automatic focusing, and collection of optical
sections of specimens (i.e., sets of images taken at different focal planes). The minimum
Z-axis step size of typical focus motors can range from 0.01�0.05�m.

Burleigh Instruments Inc. (Fishers, NY) offers an extensive line of micropositioning
devices for the life sciences. Prior Scientific Inc. (Rockland) has the OptiScanTM and
ProScanTM stage products that fit most upright and inverted microscopes and include a
controller capable of managing the stage. Other vendors include Ludl Electronic Products,
Ltd. (Hawthorne), Applied Scientific Instruments (Eugene), Sutter Instrument Company
(Novato, CA), and Marzhauser Wetzlar (Germany).

27.2.1.4 Image Sensors
With the advent of high-resolution solid state cameras, such as the slow scan, cooled
charge coupled device (CCD) camera, photographic film cameras are now being replaced
by digital imaging systems. CCDs are the most frequently used image detectors as they
have many advantages, including larger dynamic range, good quantum efficiency, low
noise, linear response, and negligible geometrical distortion. CCD cameras are extensively
used because of their low-light image capturing ability. A CCD camera is a light-sensitive,
silicon, solid-state device. This imaging technology is based on collecting photons on
the surface of a silicon grid containing many collection wells or pixels (for example,
a 512 � 512-pixel grid). The photons within a well are subsequently converted to an
electrical charge via the photoelectric effect, which is then passed to an image digitizer
for conversion into an electrical signal that represents the intensity of the pixel. The
intensities for all pixels over the grid are organized as a digital image and projected as a
single video frame.

The variety of light detection methods and the number of imaging devices currently
available [12] to the researcher make the selection process complex and often confusing.
Many types of image sensors exist, and the choice is often dictated by the requirements
of a given experiment. CCD camera selection typically involves the choice of appropriate
parameters for several features. Two operational modes, interlaced scan and progressive
scan, are available. Interlaced cameras scan an image in two steps, usually odd and even
horizontal lines, and then reconstruct it in a buffer, which decreases monitor flickering.



784 CHAPTER 27 Computer-Assisted Microscopy

Progressive scan cameras transfer an entire image without interlacing. Another design
issue in CCD cameras is the number of chips. Single-chip cameras generate color using
specialized sensor areas that detect R (red), G (green), and B (blue) components, whereas
multiple-chip designs (3CCD) use a beam-splitter and R-, G-, and B-chips to detect
each color component. The resolution is higher for the 3CCD cameras when compared
with single-chip cameras. The sensor size of the camera determines its sensitivity and
resolution. CCD cameras also have a frame rate of over 30 frames per second, and a digital
output rate (usually in cycles/second or Hz) dependent on the analog-digital converter.
CCD cameras can be “cooled” to sub-zero temperatures, thus minimizing noise and
thermal variations, which reduces the dark current (i.e., the charge accumulated within
the CCD, in the absence of light) and allows longer integration times for image capture.
The digital dynamic range or bit depth is another important feature when choosing a
CCD camera. For example, an 8-bit image can store 256 shades of gray and a 12-bit
image can store 4,096. A 12-bit image can reveal greater detail than an 8-bit one; and
quantification is also more precise in 12-bit images. The level of overall noise (in decibels,
or dB) for a CCD camera is usually expressed as a signal/noise (S/N) ratio: S/N (dB) =
20 ∗ log (S/N). Thus, a S/N ratio of 100/1 is equivalent to 40 dB. Due to the low-light
conditions inherent in fluorescence imaging, camera sensitivity is more critical here than
in transmitted light microscopy. To increase sensitivity for low-light observation, image
intensifiers may be used to amplify light before it reaches the camera faceplate. CCDs that
are not intensified may increase sensitivity using “binning” (or “super-pixeling”). This
technique increases sensitivity and frame rate by grouping pixel intensities.

Specialty cameras are particularly well suited for scientific applications in computer-
ized microscopy systems since they offer unique features like large chip area, resolution
up to 4k � 4k pixels, digital output, cooling to reduce noise and dark current, flexible
timing, and full computer control. Suppliers of CCD cameras include Cooke Corpora-
tion (Auburn Hills, MI), Diagnostic Instruments (Sterling Heights, MI), Dage-MTI Inc.
(Michigan City, IN), Optronics Inc. (Muskogee, OK), Cohu Inc. (San Diego, CA), and
Roper Scientific Inc. (Duluth, GA). Cortese [12] provides a comprehensive listing of
camera vendors.

Frame grabbers are image processing computer boards that capture and store image
data. In a computerized microscopy system, digitizer boards (frame grabbers) are typ-
ically used in conjunction with CCD cameras for digitizing the microscope image for
further analysis and permanent storage. The type of imaging board must be matched
to the camera in terms of type of signal format, resolution, and precision. Acquisition
formats include RS-170, CCIR, RS-330, RS-422, NTSC, Y/C, PAL, and RGB. For frame
grabbers that can handle camera outputs in digital format, the input pixel acquisition
depth is important to consider. The pixel depth refers to the number of bits used to
the store the gray level at each pixel. Increasing pixel depth increases the amount of
detail that can be reproduced in the scanned image. Frame grabbers are available in
8-, 12-, 16-, and 24-bit pixel depth formats. The 8-, 12-, and 16-bit frame grabbers
allow digitization of monochrome images, whereas 24-bit frame grabbers are designed
to work with RGB cameras and can be used to acquire three monochrome video sig-
nals synchronously. Frame grabbers are provided by Scion Corporation (Frederick, MD),
MuTech Corporation (Billerica, MA), and National Instruments (Austin, TX).
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27.2.2 Image Capture
Capturing a digital image of a specimen should be done in such a way that a high-quality
analog image of that specimen can be recovered by interpolation. The sampling theorem
tells us that a band-limited analytic function can be recovered, without error, from its
sample points if (1) interpolation is done with a suitable interpolation function and (2)
the function contains no energy at frequencies above one-half the sampling frequency.
That is, the function is band-limited at fc , and the sample spacing is �x � 1/(2fc ).

Since the imaging optics are fundamentally band-limited, the latter requirement is
rather easily met. The former, however, is frankly impossible. Any interpolating function
that satisfies the sampling theorem, such as sin(�x)/�x , is of infinite extent. Thus, for
practical reasons, one cannot hope to recover the function exactly. The amount of recon-
struction error, however, can be reduced by oversampling. Using a sample spacing that is
one-half to one-third of that required by the sampling theorem will reduce interpolation
error significantly but at the cost of larger image files.

Each component in the image capture chain (optics, image sensor, A-to-D converter,
etc.) has its own transfer function. Each of these tends to fall off with increasing frequency.
Since the overall transfer function is the product of all these, it will generally be worse
(i.e., fall off faster) than any of the individual transfer functions. Thus no one component
single-handedly limits resolution, and all must be considered in the system design.

The factors that degrade an image in the digitizing process are (1) blurring, (2) noise,
(3) aliasing (4) shading, (5) photometric nonlinearity, and (6) geometric distortion. If
the level of each of these can be kept low enough, then the digital images obtained from
the microscope will be useful for the task at hand. Each type of degradation should be
considered in the system design.

Blurring is minimized by keeping the overall system transfer function relatively flat
over the frequency range of interest. The noise level can be controlled by choosing quality
components and by cooling the image sensor, if necessary. The RMS noise level should
be no more than about one gray level (e.g., 1/256 � 0.39% for 8-bit data). Aliasing is
avoided if the sample spacing satisfies the sampling theorem, as stated above. Shading can
be minimized by proper alignment of the microscope components and further corrected
with background subtraction. Photometric nonlinearity, if problematic, can be corrected
by a suitably designed grayscale transformation. Geometric distortion, if problematic,
can be corrected by a suitably designed geometric transformation.

Each application has its own specific requirements in each of these six areas.
While none of the six sources of degradation can be eliminated completely, each can
be controlled by proper system design, instrument setup, and postprocessing where
necessary.

27.2.3 Imaging Software
In computerized microscopy systems, the complexity and number of variables that need
to be configured, monitored, and adjusted prior to and during data collection are enor-
mous, but they can easily be managed by software created specifically for this purpose.
For example, to create a 3D image of a thick specimen, images of the sample are taken as
the specimen stage is systematically and carefully moved along the Z-axis. For multiple
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fluorescent probe analyses on the same sample, the change in excitation wavelength and
collection of emission data must be precisely controlled. These and other experimental
operations are controlled and managed by the software. Software plays a major role in
computer-assisted microscopy.

The software of an automated microscopy system has three functions: (1) control of
peripheral devices (stage, filter, camera, etc.), (2) image processing and analysis, and (3)
the user-interface. Peripheral devices are controlled by integrated computer interfaces
(controllers) or proprietary interface cards. This component includes the core functions
of the automated imaging system. It involves the control of the motorized stage for
slide scanning, the focus motor for autofocusing and optical sectioning, the filter wheel
control for filter selection, shutter control, camera integration time, and image capture
and storage.

The second software component involves image preprocessing and analysis. Typical
algorithms integrated in this component include image editing functions, geometri-
cal manipulations, morphological filtering, smoothing, background subtraction, color
separation, object segmentation, and classification. This software component is also
responsible for collecting and storing additional information about the experiment, such
as excitation wavelength, number of frames averaged, time, date, and other information
pertinent to the experiment.

The user interface component is critical for user control and communicating with the
other components of the software package, as well as providing feedback and reporting
results. Commonly used graphical user interface (GUI) elements include (1) buttons
for simple actions such as grabbing an image, (2) input fields for numerical values and
textual information, (3) menus for choices, (4) windows for displaying acquired images,
and (5) windows presenting extracted information about the current experiment.

27.3 SOFTWARE FOR HARDWARE CONTROL
Devices such as cameras, filter wheels, and microscope stages can be controlled by com-
mands sent through an RS-232 serial connection. Typically, the device will respond
with confirmations or status information. Every device uses a particular communication
protocol and has its own set of commands. Software designed to integrate such equip-
ment needs to send the appropriate commands and acts on any information that comes
back from the device. Typical operations include transmitting and receiving serial data,
correctly terminating commands, recognizing incoming commands, flushing the serial
buffers, and waiting while a device is busy. Stage controllers, for example, move samples
under a microscope, in one or more axes. The commands sent to an axis motor typically
include operations such as the following: Home (move the stage to the home position in
this axis), Move (move to an absolute position), and Relative move (move to a position
relative to the current position). These commands are defined by the manufacturer of the
device and can be easily integrated into the algorithms that interact with the peripheral
devices. Some of the key algorithms used in computerized microscopy are described in
the following sections.
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27.3.1 Automated Slide Scanning
Three important parameters must be considered when designing software for stage
control: (1) speed of scanning is important when a large area of the slide is to be viewed to
capture numerous cells for automated analysis, (2) range of scanning is useful to deter-
mine the number of slides that need to be analyzed (single slide versus multiple slide
holding stages), and (3) precision of movement is critical for automated tasks such as
autofocusing and relocation of cells. Typically a stepping accuracy of a few micrometers
is needed for precise relocation and focusing.

Scanning a specimen slide involves repeating a series of steps until the entire slide, or a
user-defined area thereof, has been scanned. In a typical scanning algorithm, each FOV is
focused automatically, after which an image is acquired. When image capture is complete,
the stage is moved to the next FOV. Generally, an algorithm to implement automated
slide scanning moves the slide in a raster pattern. For example, it moves vertically down
the user-selected area and then retraces back to the top, and moves a predetermined
fixed distance across and then starts another scan vertically downward. This process
is continued until the entire user-defined area has been scanned. The step sizes in the
X- and Y-directions are adjusted (depending on the pixel size for the objective in use) so
that there is no overlap between the adjacent fields.

Scanning speed is an important feature in a computerized microscopy system. Factors
that influence the scanning rate include stage movement, filter movement, the readout
rate of the CCD chip, and the time required for focusing. The scanning rate is computed
as the total area scanned per unit time. It also depends upon the sampling density of
the image, varying inversely with the square of the sampling density and the integration
time [10].

The cutoff frequency �c for an imaging system is given by

�c �
4� ·NA

�
, (27.1)

where NA is the numerical aperture, and � is the wavelength.
The Nyquist sampling theorem states that an image can be reconstructed from its sam-

ples without error if the sampling frequency is at least 2 ·�c . Sampling density is defined
as the number of pixels per unit length. The choice of sampling density can be based on
the Nyquist sampling theorem or on the required measurement precision. The decision
should be based on the requirements of the system. For autofocusing, depth-of-focus,
or image restoration applications, the Nyquist theorem should be used. If measurements
derived from microscope images are required, then the sampling frequency should be
derived from the measurement specifications [11].

27.3.2 Autofocusing
Automatic focusing is essential for automated microscopy when fully automated image
acquisition in unattended operation is required. It also facilitates objective and consistent
image measurements for quantitative analysis.
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Two approaches are used for autofocusing. One, known as “active” focusing, is based
on surface sensing, while the other, known as “passive” focusing, is based on image
analysis. Surface sensing methods require a single surface from which light or sound is
reflected and calibration of the in-focus location. These methods are generally impractical
for light microscopy since there is usually more than one reflective surface (e.g., slide and
coverslip), and specimens vary in thickness. The image analysis approach depends only
on focus measurements from the image itself. The in-focus position is found by locating
the maximum of a focus function computed on a series of images acquired at different
Z-axis positions. The focus function is a measure of image sharpness, as a function of
Z-axis position. A sequence of images taken along the Z-axis has to be acquired to find
the focus position. The value of the focus function is computed for each image captured
at a different Z-position. The maximum value of the focus function identifies the optimal
focal plane. These methods are not sensitive to multiple reflective surfaces and therefore
are widely used in light microscopy.

27.3.2.1 Focus Functions
Several groups have developed and tested focus functions for automated microscopy.
The autofocus functions can be broadly categorized into methods based on (1) edge
strength, (2) image contrast, (3) autocorrelation, and (4) the Fourier spectrum of an
image [14]. Johnson and Goforth at JPL [15] and Dew et al. [16] used hardware that
integrates the highpass filtered video signal in a real-time autofocusing system. Harms
and Aus [17] evaluated a Laplacian-based autofocus parameter that mimics the receptive
fields in the human eye. Groen et al. advanced eight criteria for evaluating autofocus
parameters and compared eleven parameters [18]. Their results varied somewhat with
different types of specimens, but two “gradient squared” functions, along with gray level
variance, proved best in their testing on brightfield images. Boddeke et al. argued that
the most effective autofocus parameters emphasize the mid-frequency range, since the
optical transfer function (OTF) does not change with defocus at either the high- or
low-frequency end [19]. They also argued for “binning” to reduce noise and for fitting
a parabola to the focus parameter values to interpolate the exact point of best focus.
Firestone et al. [20] tested autofocus functions and found those that sum gradients to
be effective. Vollath presented new autofocus functions based on autocorrelation [21]
and considered the effects of noise [22]. Brenner et al. [23], Erteza [24, 25], and Muller
and Buffington [26] also advanced and tested autofocus functions based on the sum
of squared gradients. Price and Gough [27] advanced a new prefiltered 2D Laplacian
parameter and evaluated 11 functions in fluorescence and phase-contrast microscopy.
They found that, in fluorescence microscopy, (1) the gradient-based parameters gave
sharper peaks, and thus had narrower operating ranges than the statistical parameters,
(2) the gradient and statistical techniques did not agree exactly on the point of best
focus, and (3) autocorrelation-based parameters performed similarly to gradient-based
ones. Geusebroek et al. proposed an autofocusing algorithm based on the signal power
after convolving the image with a first-order derivative of a Gaussian filter [28]. This
technique was found to be generally applicable to several light microscopy modalities
including fluorescence, brightfield, and phase-contrast microscopy on a wide variety
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of preparation and specimen types. An exhaustive search for finding the maximum
focus position was used to circumvent problems caused by noisy focus function curves.
Santos et al. systematically evaluated 13 autofocus functions for analytical fluorescent
image cytometry studies of counterstained nuclei [29]. Using a proposed figure-of-merit
criterion that weights five different features of a focus function, the test results suggested
that focus functions based on correlation measures had the best performance for the type
of images they studied. Selecting an appropriate focus function is critical for autofocus-
ing, and it depends largely on the requirements of the system, specifically the mode of
microscopy and the type of specimens being examined.

The step size for obtaining a sequence of images along the Z-axis can be computed
using the focal depth of a microscope objective, which is approximately

DOF �
�

2 ·NA2 , (27.2)

where � is the wavelength, and NA is the numerical aperture of the objective. One can
take a series of images spaced by approximately that distance along the optical axis of the
microscope to effect the optical equivalent of serial sectioning.

27.3.2.2 Autofocus Speed
An important factor in most autofocusing is the time-consuming nature of the procedure.
To reduce autofocusing time when scanning a slide, the number of FOVs that are focused
should be reduced. This may be achieved by extrapolation or interpolation strategies to
estimate the focus position of most fields based on the measured focus positions of a
few fields. Interpolation can be used to estimate the focus position of a particular field
from previously measured positions from at least three adjacent fields. This estimation
is thus based on local information, and a focusing error in one field will only influence
the estimated focus position of neighboring FOVs. In the interpolation approach, the
focus positions of a number of FOVs across the entire slide have to be measured initially.
A linear surface (z � ax � by � e) is then fitted through these measured values. During
scanning, the fitted linear surface is used to calculate the focus position of each field.
A disadvantage of this approach arises when the area to be scanned is large. For increased
scanning times, the linear fit may not reliable because the position of the focal plane may
change over time due to temperature-induced sample variations.

Another approach to improve the speed of autofocusing algorithms is to use a two-
phase focusing approach. Initially, a coarse focus phase may be implemented using larger
Z-step sizes. The first two samples are used to determine the direction of the focus. The
algorithm then steps in the determined direction until the last focus value is lower than
the previous one. The in-focus Z-position is then located between adjacent Z-positions
with the highest and second highest focus value. A second, fine focus phase then repeats
the same procedure with smaller Z-step sizes. The starting point is the optimal focus
position determined by the coarse focus phase. The fine focus phase then samples the
focus function along N positions equidistant about the coarse phase in-focus Z-position.
The final estimation of the in-focus Z-position is calculated through a quadratic fit of
the N points. The outcome of a robust autofocus algorithm should be a sharp peak in
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the focus function at the in-focus position as shown in Fig. 27.2. The selected autofocus
algorithm for computerized microscopy should be generally applicable on a large variety
of microscopic modes and a large variety of preparation techniques and specimen types.

27.3.3 Image Capture
Most frame grabber boards come with source code examples designed to illustrate impor-
tant features of the board. The features covered include initialization, triggering, and
real-time control of I/O lines. Customized software for image capture can be devel-
oped around the drivers and libraries provided by the manufacturers of the camera and
digitizer boards.
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Two-phase approach to autofocusing, using a coarse focus and a separate fine focus function.
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27.4 IMAGE PROCESSING AND ANALYSIS SOFTWARE
In any computerized microscopy system, quantitative data is obtained, and certain
tasks are automated, using image processing and analysis techniques. Most automated
microscopy applications are based on the measurement of features that cannot be
obtained reliably by visual inspection. While visualization of images allows a qualita-
tive analysis of the objects of interest, quantitative measures are usually essential to define
and understand the biological processes. Digital image processing theory provides a
number of tools to enhance images and to measure size, shape, and intensity features
accurately. In addition to autofocusing, scanning, and image capture algorithms, com-
puterized microscopy requires specific image processing algorithms to obtain the desired
results. We discuss some of those here.

27.4.1 Correction of Instrumentation-based Errors
Most modern microscopy equipment is constructed to minimize phase distortion and
optical aberrations. Nevertheless, no optical system is completely free of distortion, and,
in practice, aberrations are always present to some extent. The choice and configuration
of an automated microscopy system has a profound effect on the quality of the acquired
image. For instance, changing filters in multicolor fluorescence microscopy may cause
shifts in the spatial location of the imaged objects due to changes in the optical path.
This effect can be corrected by choosing multiband filter cubes (including the excitation,
emission, and dichroic components), which can simultaneously transmit and/or reflect
multiple wavelengths of light, thereby eliminating aberrations introduced by the physical
switching of filters. Alternatively, the images acquired at different wavelengths can be
digitally corrected by estimating the amount of pixel shift occurring at each wavelength.
Calibration images can be obtained using colored microspheres that are excited using
various filter combinations, and the pixel shift occurring at different wavelengths for an
imaged microsphere can be computed from the sequentially recorded images obtained by
switching filters. The amount of pixel shift thus calculated can be used to correct images
subsequently acquired.

Alignment of the light source for uniform sample illumination is also critical. Even
with appropriately adjusted lamps, variation in the light intensity across an image is
typical of most microscope images. Image processing algorithms that correct background
intensity variations are described in the following sections.

27.4.2 Background Shading Correction
Quantitative image analysis typically involves measuring the brightness of regions in
the image as a means of identification, that is it is often assumed that the same type
of feature will be similar in intensity wherever it appears in the image. Differences in
intensity values among different object features can then be used to differentiate between
several features for counting, measurement, or identification. In most imaging processes,
illumination sources can create intensity variations across the FOV. Even with proper
calibration, one can only approximate uniform illumination of the scene being imaged.
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This is particularly true for the microscope system. Both the halogen (transmitted light)
and mercury (fluorescence light) lamps have to be adjusted for uniform illumination
of the FOV prior to use. Moreover, microscope optics and/or cameras may also show
vignetting, in which the corners of the image are darker than the center because the
light is partially absorbed. The process of eliminating these defects by application of
image processing to facilitate object segmentation or to obtain accurate quantitative
measurements is known as background correction or background flattening.

27.4.2.1 Background Subtraction
For microscopy applications, there are two approaches that are popular for background
flattening [30]. In the first approach, a“background”image is acquired in which a uniform
reference surface or specimen is inserted in place of actual samples to be viewed, and
an image of the FOV is recorded. This is the background image, and it represents the
intensity variations that occur without a specimen in the light path, only due to any
inhomogeneity in illumination source, the system optics, or camera, and can then be
used to correct all subsequent images. When the background image is subtracted from a
given image, areas that are similar to the background will be replaced with values close
to the mean background intensity. The process is called background subtraction and
is applied to flatten or even out the background intensity variations in a microscope
image. It should be noted that, if the camera is logarithmic with a gamma of 1.0, then
the background image should be subtracted. However, if the camera is linear, then the
acquired image should be divided by the background image. Background subtraction
can be used to produce a flat background and compensate for nonuniform lighting,
nonuniform camera response, or minor optic artifacts (such as dust specks that mar
the background of images captured from a microscope). In the process of subtracting
(or dividing) one image by another, some of the dynamic range of the original data
will be lost.

27.4.2.2 Surface Fitting
The second approach is to use the process of surface fitting to estimate the background
image. This approach is especially useful when a reference specimen or the imaging
system is not available to experimentally acquire a background image [31]. Typically,
a polynomial function can be used to estimate variations of background brightness as
a function of location. The process involves an initial determination of an appropriate
grid of background sampling points. By selecting a number of points in the image, a
list of brightness values and locations can be acquired. In particular, it is critical that
the points selected for surface fitting represent true background areas in the image and
not foreground (or object) pixels. If a foreground pixel is mistaken for a background
pixel, the surface fit will be biased, resulting in an overestimation of the background. In
some cases, it is practical to locate the points automatically for background fitting. This is
feasible when working with images, which have distinct objects that are well distributed
throughout the image area and contain the darkest (or lightest) pixels present. The image
can then be subdivided into a grid of smaller squares or rectangles, the darkest (or lightest)
pixels in each subregion located, and these points used for the fitting [31]. Another issue
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is the spatial distribution and frequency of the sampled points. The greater the number of
valid points which are uniformly spread over the entire image, the greater the accuracy of
the estimated surface fit. A least-squares fitting approach may then be used to determine
the coefficients of the polynomial function. For a third-order polynomial, the functional
form of the fitted background is

B(x ,y) � a0 � a1 · x � a2 · y � a3 · xy � a4 · x2 � a5 · y2 � a6 · x2y � a7 · xy2 � a8 · x3 � a9 · y3.

(27.3)

This polynomial has 10 (a0–a9) fitted constants. In order to get a good fit and diminish
sensitivity to minor fluctuations in individual pixels, it is usual to require several times the
minimum number of points. We have found that using approximately three times the total
number of coefficients to be estimated is sufficient. Figure 27.3(A–E) demonstrates the
process of background subtraction. Panel A shows the original image, panel B presents
its 2D intensity distribution as a surface plot, panel C shows the background surface
estimated via the surface fitting algorithm, panel D shows the background subtracted
image, and panel E presents its 2D intensity distribution as a surface plot.

100

80

60

40

20

0
0

50
100

0

50

100

100

80

60

40

20

0
0

50
100

0

50

100

100

80

60

40

20

0
0

50
100

0

50

100

(A)

(D) (E)

(B) (C)

FIGURE 27.3

Background subtraction via surface fitting. Panel A shows the original image; panel B presents
its 2D intensity distribution as a surface plot; panel C shows the background surface estimated
via the surface fitting algorithm; panel D shows the background subtracted image; and panel E
presents its 2D intensity distribution as a surface plot.
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27.4.2.3 Other Approaches
Another approach used to remove the background is frequency domain filtering.
It assumes that the background variation in the image is a low-frequency signal and can
be separated in frequency space from the higher frequencies that define the foreground
objects in the image. A highpass filter can then be used to remove the low-frequency
background components [30].

Other techniques for removing the background include nonlinear filtering [32] and
mathematical morphology [33]. Morphological filtering is used when the background
variation is irregular and cannot be estimated by surface fitting. The assumption behind
this method is that foreground objects are limited in size and smaller than the scale
of background variations, and the intensity of the background differs from that of the
features. The approach is to use an appropriate structuring element to describe the
foreground objects. Neighborhood operations are used to compare each pixel to its
neighbors. Regions larger than the structuring element are taken as background. This
operation is performed for each pixel in the image, and a new image is produced as a
result. The result of applying this operation to the entire image is to shrink the foreground
objects by the radius of the structuring element and to extend the local background
brightness values into the area previously covered by objects.

Reducing brightness variations by subtracting a background image, whether it is
obtained by measurement, mathematical fitting, or image processing, is not a cost-free
process. Subtraction reduces the dynamic range of the grayscale, and clipping must be
avoided in the subtraction process or it might interfere with subsequent analysis of the
image.

27.4.3 Color Compensation
Many of the problems encountered in the automatic identification of objects in color
(RGB) images result from the fact that all three fluorophores appear in all three color
channels due to the unavoidable overlap among fluorophore emission spectra and camera
sensitivity spectra. The result is that the red dye shows up in the green and blue channel
images, and the green and blue dyes are smeared across all three color channels as well.
Castleman [34] describes a process that effectively isolates three fluorophores by sepa-
rating them into three color channels (RGB) of the digitized color image. The method,
which can account for black level and unequal integration times [34], is a preprocessing
technique that can be applied to color images prior to segmentation.

The technique yields separate, quantitative maps of the distribution of each fluo-
rophore in the specimen. The premise is that the imaging process linearly distributes the
light emitted from each fluorophore among the different color channels. For example, for
an N-color system, each N � 1 pixel vector needs to be premultiplied by an N � N com-
pensation matrix. Then for a three color RGB system, the following linear transformation
may be applied:

y � ECx � b, (27.4)
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where y is the vector of RGB gray levels recorded at a given pixel, and x is the 3 � 1 vector
of actual fluorophore brightness at that pixel. C is the 3 � 3 color smear matrix, which
specifies how the fluorophore brightnesses are spread among the three color channels.
Each element cij is the proportion of the brightness from fluorophore i that appears in
the color channel j of the digitized image. The elements of this matrix are determined
experimentally for a particular combination of camera, color filters, and fluorophores.
E specifies the relative exposure time used in each channel, i.e., each element eij is the
ratio of the current exposure time for color channel i, to the exposure time used for
the color spread calibration image. The column vector b accounts for the black level
offset of the digitizer, that is, bi is the gray level that corresponds to zero brightness in
channel i.

Then the true brightness values for each pixel can be determined by solving Eq. (27.4)
as follows:

x � C�1E�1[y � b], (27.5)

where C�1 is the color compensation matrix. This model assumes that the gray level in
each channel is proportional to integration time, and that the black levels are constant
with integration time. With CCD cameras both of these conditions are satisfied to a good
approximation.

27.4.4 Image Enhancement
In microscopy, the diffraction phenomenon due to the wave nature of light introduces
an artifact in the images obtained. The OTF, which is the Fourier transform of the
point spread function (PSF) of the microscope, describes mathematically how the system
treats periodic structures [35]. It is a function that shows how the image components at
different frequencies are attenuated as they pass through the objective lens. Normally the
OTF drops off at higher frequencies and goes to zero at the optical cutoff frequency and
beyond. Frequencies above the cutoff are not recorded in the microscope image, whereas
mid-frequencies are attenuated (i.e., mid-sized specimen structures lose contrast).

Image enhancement methods improve the quality of an image by increasing contrast
and resolution, thereby making the image easier to interpret. Lowpass filtering operations
are typically used to reduce random noise. In microscope images, the region of interest
(specimen) dominates the low and middle frequencies, whereas random noise is often
dominant at the high end of the frequency spectrum. Thus lowpass filters reduce noise
but discriminate against the smallest structures in the image. Also, highpass filters are
sometimes beneficial to restore partially the loss of contrast of mid-sized objects. Thus,
for microscope images, a properly designed filter combination has not only to boost the
midrange frequencies to compensate for the optics but also must attenuate the highest
frequencies since they are dominated with noise. Image enhancement techniques for
microscope images are reviewed in [36].
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27.4.5 Segmentation for Object Identification
The ultimate goal of most computerized microscopy applications is to identify in images
unique objects that are relevant to a specific application. Segmentation refers to the
process of separating the desired object (or objects) of interest from the background in
an image. A variety of techniques can be used to do this. They range from the simple
(such as thresholding and masking) to the complex (such as edge/boundary detection,
region growing, and clustering algorithms). The literature contains hundreds of seg-
mentation techniques, but there is no single method that can be considered good for all
images, nor are all methods equally good for a particular type of image. Segmentation
methods vary depending on the imaging modality, application domain, method being
automatic or semiautomatic, and other specific factors. While some methods employ
pure intensity-based pattern recognition techniques such as thresholding followed by
connected component analysis [37, 38], some other methods apply explicit models to
extract information [39, 41]. Depending on the image quality and the general image arti-
facts such as noise, some segmentation methods may require image preprocessing prior
to the segmentation algorithm [42, 43]. On the other hand, some methods apply postpro-
cessing to overcome the problems arising from over-segmentation. Overall, segmentation
methods can be broadly categorized into point-based, edge-based, and region-based
methods.

27.4.5.1 Point-based Methods
In most biomedical applications, segmentation is a two-class problem, namely the objects,
such as cells, nuclei, chromosomes, and the background. Thresholding is a point-based
approach that is useful for segmenting objects from a contrasting background. Thus, it
is commonly used when segmenting microscope images of cells. Thresholding consists
of segmenting an image into two regions: a particle region and a background region. In
its most simple form, this process works by setting to white all pixels that belong to a
gray level interval, called the threshold interval, and setting all other pixels in the image
to black. The resulting image is referred to as a binary image. For color images, three
thresholds must be specified, one for each color component. Threshold values can be
chosen manually or by using automated techniques. Automated thresholding techniques
select a threshold, which optimizes a specified characteristic of the resulting images.
These techniques include clustering, entropy, metric, moments, and interclass variance.
Clustering is unique in that it is a multiclass thresholding method. In other words, instead
of producing only binary images, it can specify multiple threshold levels, which result in
images with three or more gray level values.

27.4.5.2 Threshold Selection
Threshold determination from the image histogram is probably one of the most widely
used techniques. When the distributions of the background and the object pixels are
known and unimodal, then the threshold value can be determined by applying the Bayes
rule [44]. However, in most biological applications, both the foreground object and
the background distributions are unknown. Moreover, most images have a dominant
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background peak present. In these cases, two approaches are commonly used to determine
the threshold. The first approach assumes that the background peak shows a normal
distribution, and the threshold is determined as an offset based on the mean and the
width of the background peak. The second approach, known as the triangle method,
determines the largest vertical distance from a line drawn from the background peak to
the highest occurring gray level value [44].

There are many thresholding algorithms published in the literature, and selecting an
appropriate one can be a difficult task. The selection of an appropriate algorithm depends
upon the image content and type of information required post-segmentation. Some of
the common thresholding algorithms are discussed. The Ridler and Calvard algorithm
uses an iterative clustering approach [45]. The mean image intensity value is chosen
as an initial estimate of the threshold is made. Pixels above and below the threshold
are assigned to the object and background classes, respectively. The threshold is then
iteratively estimated as the mean of the two class means. The Tsai algorithm determines
the threshold so that the first three moments of the input image are preserved in the output
image [46]. The Otsu algorithm is based on discriminant analysis and uses the zeroth-
and the first-order cumulative moments of the histogram for calculating the threshold
value [47]. The image content is classified into foreground and background classes.
The threshold value is the one that maximizes between-class variance or equivalently
minimizes within-class variance. The Kapur et al. algorithm uses the entropy of the
image [48]. It also classifies the image content as two classes of events with each class
characterized by a probability density function (pdf). The method then maximizes the
sum of the entropy of the two pdfs to converge to a single threshold value.

Depending on the brightness values in the image, a global or adaptive approach for
thresholding may be used. If the background gray level is constant throughout the image,
and if the foreground objects also have an equal contrast that is above the background,
then a global threshold value can be used to segment the entire image. However, if the
background gray level is not constant, and the contrast of objects varies within the image,
then an adaptive thresholding approach should be used to determine the threshold value
as a slowly varying function of the position in the image. In this approach, the image
is divided into rectangular subimages, and the threshold for each subimage is deter-
mined [44].

27.4.5.3 Edge-based Methods
Edge-based segmentation is achieved by searching for edge points in an image using an
edge detection filter or by boundary tracking. The goal is to classify pixels as edge pixels
or non-edge pixels, depending on whether they exhibit rapid intensity changes from their
neighbors.

Typically, an edge-detection filter, such as the gradient operator, is first used to identify
potential edge points. This is followed by a thresholding operation to label the edge points
and then an operation to connect them together to form edges. Edges that are several
pixels thick are often shrunk to single pixel width by using a thining operation, while
algorithms such as boundary chain-coding and curve-fitting are used to connect edges
with gaps to form continuous boundaries.
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Boundary tracking algorithms typically begin by transforming an image into one that
highlights edges as high gray level using, for example, a gradient magnitude operator.
In the transformed image, each pixel has a value proportional to the slope in its neigh-
borhood in the original image. A pixel presenting a local maximum gray level is chosen
as the first edge point, and boundary tracking is initiated by searching its neighborhood
(e.g., 3 � 3) for the second edge point with the maximum gray level. Further edge points
are similarly found based on current and previous boundary points. This method is
described in detail elsewhere [49].

Overall, edge-based segmentation is most useful for images with “good boundaries,”
that is, where the intensity varies sharply across object boundaries and is homogeneous
along the edge. A major disadvantage of edge-based algorithms is that they can result
in noisy, discontinuous edges that require complex postprocessing to generate closed
boundaries. Typically, discontinuous boundaries are subsequently joined using morpho-
logical matching or energy optimization techniques. An advantage of edge detection is
the relative simplicity of computational processing. This is due to the significant decrease
in the number of pixels that must be classified and stored when considering only the
pixels of the edge, as opposed to all the pixels in the object of interest.

27.4.5.4 Region-based Methods
In this approach, groups of adjacent pixels in a neighborhood wherein the value of a
specific feature (intensity, texture, etc.) remains nearly the same are extracted as a region.
Region growing, split and merge techniques, or a combination of these are commonly
used for segmentation. Typically, in region growing a pixel or a small group of pixels
is picked as the seed. These seeds can be either interactively marked or automatically
picked. It is crucial to address this issue carefully, because too few or too many seeds
can result in under- or over-segmented images, respectively. After this the neighboring
seeds are grouped together or separated based on predefined measures of similarity or
dissimilarity [50].

There are several other approaches to segmentation, such as model-based approaches
[51], artificial intelligence-based approaches [52], and neural network-based approaches
[53]. Model-based approaches are further divided into two categories: (1) deformable
models and (2) parametric models. Although there is a wide range of segmentation
methods in different categories, most often multiple techniques are used together to
solve different segmentation problems.

27.4.6 Object Measurement
The ultimate goal of any image processing task is to obtain quantitative measurement
of an area of interest extracted from an image or of the image as a whole. The basic
objectives of object measurement are application dependent. It can be used simply to
provide a measure of the object morphology or structure by defining its properties in
terms of area, perimeter, intensity, color, shape, etc. It can also be used to discriminate
between objects by measuring and comparing their properties.
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Object measurements can be broadly classified as (1) geometric measures, (2) ones
based on the histogram of the object image, and (3) those based on the intensity of the
object. Geometric measures include those that quantify object structure, and these can be
computed for both binary and grayscale objects. In contrast, histogram- and intensity-
based measures are applicable to grayscale objects. Another category of measures, which
are distance-based, can be used for computing the distance between objects, or between
two or more components of objects. For a more detailed treatment of the subject matter,
the reader should consult the broader image analysis literature [54–56]. In computing
measurements of an object, it is important to keep in mind the specific application and
its requirements. A critical factor in selecting an object measurement is its robustness.
The robustness of a measurement is its ability to provide consistent results on different
images and in different applications. Another important consideration is the invariance
of the measurement under rotation, translation, and scale. When deciding on the set of
object measures to use these considerations should guide one in identifying a suitable
choice.

27.4.7 The User Interface
The final component of the software package for a computerized microscopy system is
the graphical user interface. The software for peripheral device control, image capture,
preprocessing, and image analysis has to be embedded in a user interface. Dialogue boxes
are provided to control the automated microscope, to adjust parameters for tuning the
object finding algorithm, to define the features of interest, and to specify the scan area of
the slide and/or the maximum number of objects that have to be analyzed. Parameters
such as object size and cluster size are dependent on magnification, specimen type, and
quality of the slides. The operator can tune these parameters on a trial and error basis.
Windows are available during screening to show the performance of the image analysis
algorithms and the data generated. Also, images containing relevant information for each
scan must be stored in a gallery for future viewing, and for relocation if required. The
operator can scroll through this window and rank the images according to the features
identified. This allows the operator to select for visual inspection those images containing
critical biological information.

27.5 A COMPUTERIZED MICROSCOPY SYSTEM FOR CLINICAL
CYTOGENETICS

Our group has developed a computerized microscopy system for the use in the field of
clinical cytogenetics.

27.5.1 Hardware
The instrument is assembled around a Zeiss Axioskop or an Olympus BX-51 epi-
illumination microscope, equipped with a 100 W mercury lamp for fluorescence imaging
and a 30 W halogen source for conventional light microscopy. The microscope is fitted



800 CHAPTER 27 Computer-Assisted Microscopy

with a ProScan motorized scanning stage system (Prior Scientific Inc., Rockland), with
three degrees of motion (X, Y, and Z), and a four-specimen slide holder. The system
provides 9 � 3-inch travel, repeatability to � 1.0�m, and step size from 0.1 to 5.0�m.
The translation and focus motor drives can be remotely controlled via custom computer
algorithms, and a high precision joystick is included for operator control. The spatial
resolution of the scanning stage is 0.5�m in X and Y and 0.05�m in the Z direction,
allowing precise coarse and fine control of stage position. A Dage 330T cooled triple chip
color camera (Dage-MTI Inc., Michigan) capable of on-chip integration up to 8 seconds
and 575-line resolution is used in conjunction with a Scion-CG7 (Scion Corporation,
Frederick, ML) 24-bit frame grabber to allow simultaneous acquisition of all three color
channels (640 � 480 � 3). Alternatively, the Photometrics SenSysTM (Roper Scientific,
Inc., Tucson, AZ) camera, which is a low light CCD having 768 � 512 pixels (9 � 9 mm)
by 4096 gray levels and 1.4 MHz readout speed, is also available. For fluorescence
imaging, a 6-position slider bar is available with filters typically used in multispectral
three-color and four-color fluorescence in situ hybridization (FISH) sample. Several
objectives are available, including the Zeiss (Carl Zeiss Microimaging Inc., Thornwood,
NY) PlanApo 100X NA 1.4 objective, CP Achromat 10X NA 0.25, Plan-Neofluar 20X
NA 0.5, Achroplan 63X NA 0.95, Meiji S-Plan 40X NA 0.65, Olympus UplanApo 100X
NA 1.35, Olympus UplanApo 60X NA 0.9, and Olympus UplanApo 40X N.A. 0.5–1.0.
The automated microscope system is controlled by proprietary software running on a
PowerMac G4 computer (Apple Inc., Cupertino, CA).

27.5.2 Software
The software that controls the automated microscope includes functions for spatial and
photometric calibration, automatic focus, image scanning and digitization, background
subtraction, color compensation, nuclei segmentation, location, measurement, and FISH
dot counting [31].

27.5.2.1 Autofocus
Autofocus is done by a two-pass algorithm designed to determine first whether the field
in question is empty or not, and then to bring the image into sharp focus. The first pass
of the algorithm examines images at three Z-axis positions to determine whether there
is enough variation among the images to indicate the presence of objects in the field to
focus on. The sum over the image of the squared second derivatives described by Groen
et al. [18] is used as the focus function f (x);

f (x) �
∑

i

∑
j
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�2g

(
x ,y

)

�x2

)2

, (27.6)

where g (i, j) is the image intensity at pixel (i, j). A second-order difference is used to
estimate the second-order derivative (Laplacian filter):

�2g (x ,y)

�x2 ≈ �2g

�x2 � g (i, j � 1) � 2g (i, j) � g (i, j � 1). (27.7)
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The Laplacian filter strongly enhances the higher spatial frequencies and proves to be
ideal for our application. At the point of maximal focus value, the histogram is examined
above a predetermined threshold to determine the presence of cells in the image.

Once the coarse focus step is complete, a different algorithm brings the image into
sharp focus. The focus is considered to lie between the two Z-axis locations that bracket
the location that gave the highest value in the course focus step. A hill-climbing algo-
rithm is then used with a “fine focus” function based on gradients along 51 equispaced
horizontal and vertical lines in the image. Images are acquired at various Z-locations,
“splitting the difference” and moving toward locations with higher gradient values until
the Z-location with the highest gradient value is found, to within the depth of focus of
the optical system. To ensure that the background image of all the color channels is in
sharp focus, the fine focus value is taken to be the sum of the fine focus function outputs
for each of the three (or four) color channels.

The coarse focus routine determines the plane of focus (3 frames) and is followed
by a fine focus algorithm that finds the optimal focus plane (∼ 5�8 frames). The total
number of images analyzed during the fine focus routine depends upon how close the
coarse focus algorithm got to the optimal focus plane. The closer the coarse focus comes
to the optimal focus position, the fewer steps are required in the fine focus routine.
The autofocus technique works with any objective by specifying its numerical aperture,
which is needed to determine the depth of focus, and focus step size. It is conducted at
the beginning of every scan, and it may be done for every scan position or at regular
intervals as defined by the user. A default interval of 10 scan positions is programmed.
We found that the images are “in-focus” over a relatively large area of the slide, and
frequent refocusing is not required. For an integration time of 0.5 seconds we recorded
an average autofocus time of 28 � 4 seconds. The variability in the focusing time is due
to the varying number of image frames captured during the fine focus routine. The total
time for autofocus depends upon image content (which will affect processing time), and
the integration time for image capture.

The autofocusing method described above is based on image analysis done only at
the resolution of the captured images. This approach has a few shortcomings. First, the
high-frequency noise inherent in microscope images can produce an unreliable autofocus
function when processed at full image resolution. Second, the presence of multiple peaks
(occurring due to noise) may result in a local maximum rather than the global maximum
being identified as the optimal focus or at least warrant the use of exhaustive search
techniques to find optimum focus. Third, computing the autofocus function values at
full resolution involves a much larger number of pixels than computing them at a lower
image resolution. To address these issues, a new approach based on multiresolution image
analysis has been introduced for microscope autofocusing [14].

Unlike its single-resolution counterparts, the multiresolution approach seeks to
exploit salient image features from image representations not just at one particular reso-
lution but across multiple resolutions. Many well-known image transforms, such as the
Laplacian pyramid, B-splines, and wavelet transforms, can be used to generate multires-
olution representations of microscope images. Multiresolution analysis has the following
characteristics: (1) salient image features are preserved and are correlated across multiple
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resolutions, whereas the noise is not, (2) it yields generally smoother autofocus function
curves at lower resolutions than at full resolution, and (3) if the autofocus measurement
and search are carried out at lower resolutions, the computational load is reduced expo-
nentially. A wavelet-transform-based method to compute autofocus functions at multiple
resolutions has been developed by our group and is described in detail elsewhere [14].

27.5.2.2 Slide Scanning
The algorithm to implement automated slide scanning moves the slide in a raster pattern.
It goes vertically down the user-selected area and then retraces back to the top. It moves to
a predetermined fixed distance across and then starts another scan vertically downward.
This process is continued until the entire user-defined area has been scanned. The step size
in the X- and Y-directions is adjusted (depending on the pixel spacing for the objective
in use) such that there is no overlap between the sequentially scanned fields.

The system was designed to implement slide scanning in two modes depending on
the slide preparation. A “spread” mode allows the entire slide to be scanned, whereas a
“cytospin” mode may be used to scan slides prepared by centrifugal cytology. Both the
spread and cytospin modes also have the capability to allow user-defined areas (via fixed
area or lasso) to be scanned. The average slide-scanning rate recorded for the system is 12
images/min. This value represents the total scanning and processing (autofocusing and
image analysis) rate. Image analysis algorithms are tailored for each specific application.

27.6 APPLICATIONS IN CLINICAL CYTOGENETICS
Cytogenetics is the study of chromosomes, especially in regard to their structure and
relation to genetic disease. Clinical cytogenetics involves the microscopic analysis of chro-
mosomal abnormalities such as an increase or reduction in the number of chromosomes
or a translocation of part of one chromosome onto another. Advances in the use of DNA
probes have allowed cytogeneticists to label chromosomes and determine if a specific
DNA sequence is present on the target chromosome. This has been useful in detecting
abnormalities beyond the resolution level of studying banded chromosomes in the micro-
scope and also in determining the location of specific genes on chromosomes. Clinical
tests are routinely performed on patients in order to screen for and identify genetic prob-
lems associated with chromosome morphology. Typical tests offered include karyotype
analysis, prenatal and postnatal aneuploidy screening by PCR or FISH, microdeletion and
duplication testing via FISH, telomere testing via FISH, MFISH (multiplex FISH), and
chromosome breakage and translocation testing. The computerized microscopy system
described above has been applied to the following cytogenetic screening tests.

27.6.1 Fetal Cell Screening in Maternal Blood
Scientists have documented the presence of a few fetal cells in maternal blood and have
envisioned using them to enable noninvasive prenatal screening. Using fetal cells isolated
from maternal peripheral blood samples eliminates the procedure-related risks associated
with amniocentesis and chorionic villus sampling [57].
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The minute proportion of fetal cells found in maternal blood can now be enriched
to one per few thousand using magnetic activated cell sorting [58] or fluorescence acti-
vated cell sorting [59], or a combination of the two. Aneuploidies can then be detected
with chromosome-specific DNA probes via FISH [60]. Microscopy-based approaches
have been used to identify fetal cells in maternal blood, but the small number of fetal
cells present in the maternal circulation limits accuracy and makes cell detection labor
intensive. This creates the need for a computerized microscopy system to allow repeat-
able, unbiased, and practical detection of the small proportions of fetal cells in enriched
maternal blood samples.

FISH is one of the methods currently under investigation for the automated detection
of fetal cells. It is a quick, inexpensive, accurate, sensitive, and relatively specific method
that allows detection of the autosomal trisomies 13, 18, and 21, X and Y abnormalities,
and any other chromosome abnormality for which a specific probe is available.

We used the system to detect fetal cells in FISH-labeled maternal blood. The sepa-
rated cells in enriched maternal blood were examined for gender and genetic aneuploidy
using chromosome-specific DNA probes via FISH. The nucleus was counterstained with
DAPI (4’,6-Diamidino-2-phenylindole), and chromosomes X and Y were labeled with
SpectrumGreen and SpectrumOrange, respectively (Vysis Inc., Downers Grove, IL).

If the fetus is male, FISH can be used directly, with one probe targeting the
Y-chromosome, and different colored probes for other chromosomes, to detect aneuploi-
dies. An automated system can examine enough cells to locate several fetal (Y-positive)
cells and then make a determination about aneuploidy in the fetus. If the fetus is female,
one must analyze a number of cells that is sufficient to rule out the possibility of aneuploid
fetal cells.

Specific image analysis algorithms were employed to detect the cells and FISH dots,
following background subtraction and color compensation. The digitized images were
initially thresholded in the user-defined cell channel (generally, blue for the DAPI coun-
terstain) to obtain binary images of cells. The cells were then uniquely identified using a
region labeling procedure [61]. The 8-connected pixel neighborhood is used to determine
the pixel belonging to a certain object. Each pixel in the connected neighborhood is then
assigned a unique number so that finally all the pixels belonging to an object will have
the same unique label. The number of pixels in each object is computed and used as a
measure of cell size. Subsequently, shape analysis is used to discard large cell clusters and
noncircular objects. Further, a morphological technique is used for automatically cutting
touching cells apart. The morphological algorithm shrinks the objects until they separate
and then thins the background to define cutting lines. An exclusive OR operation then
separates cells. Cell boundaries are smoothed by a series of erosions and dilations, and
the smoothed boundary is used to obtain an estimate of the cellular perimeter. ANDing
this thresholded and morphologically processed mask with the other two red and green
planes of the color compensated image yields grayscale images containing only dots that
lie within the cells. Objects are then located by thresholding in the probe color channels,
using smoothed boundaries as masks. A minimum size criterion is used to eliminate
noise spikes, and shape analysis is used to flag noncompact dots. The remaining objects
are counted. The locations of dots found are compared with the cell masks to associate
each chromosomal dot with its corresponding cell. Finally, we implemented a statistical
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model to determine unbiased estimates of the proportion of cells having a given number
of dots. The befuddlement theory provides guidelines for dot counting algorithm devel-
opment by establishing the point at which further reduction of dot-counting errors will
not materially improve the estimate [62]. This occurs when statistical sampling error
outweighs dot-counting error. Isolated cells with dots are then evaluated to determine
gender and/or aneuploidy and finally classified as fetal or maternal cells. Once the fetal
cells have been identified by the automated image analysis algorithms, the stage and
image coordinates of such cells are stored in a table along with the cell’s morphological
features, such as area, shape factor, and dot count. The detected cells can be automatically
relocated at any subsequent time by centering upon the centroid of the cells using the
previously stored stage and image coordinates. The results of automated image analysis
are illustrated in Fig. 27.4. The software accurately (1) detects single cells, (2) separates
touching cells, and (3) detects the green dots in the isolated cells. The fetal cell screening
system evaluation is presented in a recent publication [63].

27.6.2 Subtelomeric FISH for Detection of Cryptic Translocations
Subtelomeric FISH (STFISH) uses a complete set of telomere region-specific FISH probes
designed to hybridize to the unique subtelomeric regions of every human chromo-
some. Recently, a version of these probes became commercially available (ChromoProbe
MultiprobeTM T-System, Cytocell Ltd.). The assay allows for simultaneous analysis of
the telomeric regions of every human chromosome on a single microscope slide, except
the p-arms of the acrocentric chromosomes. It is anticipated that these probes will be

FIGURE 27.4

Fluorescence image of seven female (XX) cells. Adult female blood was processed via FISH.
Cells are counterstained blue (DAPI); X chromosomes are labeled in green (FITC). Results of
automated image analysis. As illustrated in the right panel, the software accurately detects single
cells, separates touching cells, and detects the green dots in individual cells.
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extremely valuable in the identification of submicroscopic telomeric aberrations. These
are thought to account for a substantial, yet previously under-recognized, proportion of
cases of mental retardation in the population. The utility of these probes is evident in that
numerous recent reports describe cryptic telomere rearrangements or submicroscopic
telomeric deletions [64].

27.6.2.1 The STFISH assay
STFISH uses a special 24-well slide template that permits visualization of the subtelomeric
regions of every chromosome pair at fixed positions on the slide template (Fig. 27.5).
Each well has telomeric-region-specific probes for a single chromosome; for example,
well 1 has DNA probes specific to the telomeric regions of chromosome 1 and well 24
has DNA probes specific for the Y chromosome telomeres. At present, the assay requires
a manual examination of all 24 wells. When screening anomalies, first each of the 24
regions on the slide must be viewed to find metaphases. The second step involves image
acquisition, followed by appropriate image labeling (to indicate the region on the slide
from which the image was captured), and saving the images. This is required to identify
the chromosomes correctly. The third step involves an examination of the saved images
of one or more metaphases from each of the 24 regions. This examination involves
the identification of the (labeled green) p-regions and the (red labeled) q-regions for
each pair of chromosomes in each of the 24 regions. Finally, the last step requires the
correlation of any deleted or additional p- or q-arm telomeric material within the 24
regions to allow the interpretation of the telomeric translocation, if present. A trained
cytogenecist takes approximately 3 hours to complete reading a slide for the STFISH
assay, and an additional hour to complete data analysis. Furthermore, the procedure is
not only labor intensive, but it requires trained cytogenecists for slide reading and data

FIGURE 27.5

Illustration of the “MultiprobeTM coverslip device” (top) divided into 24 raised square platforms
and the “template microscope slide” (bottom) demarcated into 24 squares.
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interpretation. This procedure is even more tedious in cases without prior knowledge of
the chromosomal anomaly.

It is apparent that computerized microscopy can be applied to produce labor and
time savings for this procedure. Automated motorized stages, combined with computer
controlled digital image capture, can implement slide scanning, metaphase finding, and
image capture, labeling, and saving (steps 1 and 2). This removes the tedious and labor-
intensive component of the procedure, allowing a cytogeneticist to examine a gallery
of stored images rapidly for data interpretation. Image analysis algorithms can also be
implemented to automatically flag images that have missing or additional telomeric
material (steps 3 and 4). This would further increase the speed of data interpretation.
Finally, automated relocation capability can be implemented, allowing the cytogeneticist
to perform rapid visual examination of the slide for any of the previously recorded images.

We recorded a slide scanning time (including autofocusing, scanning, and image
analysis) of 4 images/min (∼0.04 mm2/min) for an integration time of 0.5 seconds. The
slide-scanning algorithm was designed to scan the special Cytocell, Inc. template slide
that is used for the STFISH. As seen in Fig. 27.5, the template slide is divided into 24
squares (3 rows of 8) labeled from 1 to 22, X and Y. Each square in the grid is scanned, and
the metaphases found in each square are associated with the corresponding chromosome
label. This is accomplished by creating a lookup table that maps each square in the grid
to fixed stage coordinates. The stage coordinates of the four vertices of each square are
located and stored.

27.6.2.2 User Interface
The user interface for the newly designed slide-scanning algorithm is presented in
Fig. 27.6. The 24 well regions of the Cytocell template slide are mapped to the correspond-
ing stage coordinates as shown in Fig. 27.6. The crosshair (seen in region 12) indicates
the current position of the objective. The user can select a particular slide region, or a
range of slide regions, as desired for scanning. For each selected region, scanning begins
at the center and continues in a circular scan outward, toward the periphery. This process
is continued until either the entire selected region is scanned or a predefined number of
metaphases have been found. The default is to scan the entire slide, starting at region 1
and ending at region 23 (for female specimens) or 24 (for male specimens), with a stop
limit of 5 metaphases per region. For example, at the end of the default scan, the image
gallery would have a total of 120 metaphase images for a male specimen. The step size
in both the X- and Y-directions can be adjusted (depending on pixel size, as dictated by
the objective in use) so that there is no overlap between sequential scan fields. This is
controlled by the X- and Y-axis factors shown in the user interface in Fig. 27.6.

27.6.2.3 Metaphase Finding
Image analysis capability for this application includes locating the metaphases in the
images. The software first uses gray-level thresholding and boundary tracking algorithms
to find objects in the image. The isolated objects are then classified using a set of user-
defined parameters to identify metaphases. The key classification parameters include the
size and shape of the objects, clustering of similar objects in a group, and the number
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FIGURE 27.6

User interface for automated scanning of the Cytocell MultiprobeTM template microscope slide.
The user can select a region to scan at the click of a mouse button (Ex: regions 20, 21, and 22
were selected above). Either the entire selected region can be scanned or the user can define
the number of metaphases per region (Ex: 5 metaphases, as shown above). Scanning then
continues with the next selected region. The X-axis and Y-axis factors adjust the scanning step
size in X and Y, and may be used to capture overlapping regions to avoid the loss of cells that
fall between adjacent image frames.

of objects in a group. This works because chromosomes in a metaphase are typically
rod-like and are clustered together in groups of approximately 46.

Figure 27.7 shows the user interface for metaphase finding, with default object para-
meters for images captured with a 100X objective. These parameter values, when tested
on more than ten images, accurately identified all the metaphases therein. The result for
a representative metaphase image appears in Fig. 27.8. The objects shown in green were
selected as members of a cluster, and the clustering algorithm rejected the objects shown
in red. The green box encloses the cluster of objects identified as a metaphase. Red boxes
show clusters that were rejected (see the lower left corner in Fig. 27.8). Metaphases located
at a distance of 15 mm from the boundaries of the squares are also discarded to avoid
attempting to analyze metaphases that overlap two neighboring squares. Every metaphase
located in an individual square on the Cytocell slide is assigned to a group numbered
like the square on the template slide. Images in which metaphases are found are labeled
according to their slide region and are stored in an image gallery. These metaphases
can be relocated automatically at a later time, using previously stored stage and image
coordinates. The automatically identified metaphases are then visually examined for the
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FIGURE 27.7

User interface for automated metaphase finding preferences. The object parameters were empir-
ically determined to operate best on typical metaphase specimens captured using a 100X
objective.

detection of subtelomeric rearrangements. Figures 27.9 and 27.10 show images of the
subtelomeric assay. This specimen has a distal monosomic 2q deletion and is trisomic for
distal 17q. The subtelomeric regions on the shorter arms (p) are labeled green with FITC,
and the subtelomeric regions on the longer arms (q) are labeled red using Texas Red. As
seen in Fig. 27.9, chromosome 2 is deleted for distal q. Figure 27.10 shows trisomy for
distal 17q, with a cryptic translocation of distal 17q on chromosome 2.

27.6.3 Detection of Gene Duplications
Recent studies have shown that chromosomal deletions and duplications result in human
diseases with complex phenotypic abnormalities [65, 66]. The current understanding
is that duplications of segments of the human genome may eventually be shown to
be responsible for many human traits [67]. Following the recent sequencing of the
human genome, a future task of the human genome project is to delineate genome
architectural features, such as low-copy and region-specific repeats (duplications). The
eventual identification of these may enable prediction of several regions susceptible to
rearrangements associated with genomic disorders. However, current-screening methods
for genetic anomalies that use FISH, especially duplication analysis, have not advanced
beyond manual screening of specimens. We used the system for computerized microscopy
to support fast, accurate, and inexpensive screening of gene duplications. Our approach
is to use readily available DNA probes for the specific disorders, such as (1) neuropathies:
Charcot-Marie-Tooth Disease (CMT1A) and hereditary neuropathy with pressure palsies,
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FIGURE 27.8

The output of the metaphase finding algorithm. The isolated objects are labeled aa-az, ba-bz,
and ca (total 53 objects), and then classified using the parameters described in Fig. 27.7. The
objects in green were classified as objects of a cluster, while red objects are rejected. A cluster
of objects outlined by a green box is identified as a metaphase, while cluster objects outlined by
a red box are rejected.

(2) neurological disorders: Pelizaeus-Merzbacher disease and X-linked spastic paraple-
gia, (3) muscular wasting disorders: Duchene and Becker muscular dystrophy, and (4)
contiguous-gene syndromes: Smith-Magenis syndrome, for interphase FISH, followed by
automated genetic screening to detect gene duplications.

27.6.3.1 Dot-Finding
Our system software was tailored for this particular application to perform the following
tasks. After an image is acquired, it was to be analyzed to identify nuclei and to detect
dots. This involves the following six steps: (1) find the nucleus objects and find the dot
objects within the nucleus, (2) determine if each dot object represents a single FISH
signal or multiple signals, (3) measure the separation distance between duplicated dots,
(4) classify the isolated dots as single, double, split, or overlapping, (5) count the dots,
and (6) generate a report. The algorithms for cell and dot finding are described earlier in
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FIGURE 27.9

FISH was performed using subtelomeric DNA probes for chromosome 2. The q-arms are labeled
red (Texas Red) and the p-arms are labeled green (FITC). This specimen is deleted for distal
2q (monosomic). Subtelomeric FISH was performed using the Chromoprobe MultiprobeTM

T System from Cytocell Ltd. Imaging was performed using a computerized microscopy system.

FIGURE 27.10

FISH was performed using subtelomeric DNA probes for chromosome 17. The q-arms are labeled
red (Texas Red) and the p-arms are labeled green (FITC). The specimen is trisomic for distal
17q and carries a cryptic translocation (derivative 2). Subtelomeric FISH was performed using
the Chromoprobe MultiprobeTM T System from Cytocell Ltd. Imaging was performed using a
computerized microscopy system.
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the fetal cell project. Specialized algorithms were developed to identify duplicated gene
signals.

We implemented the following algorithm to separate individual neighboring dots
and to measure the distance between the two dots. Following the dot-finding algorithm,
we initially determined the number of dot objects for the target fluorophore (which
labeled the gene of interest). In cells carrying a duplication, the nuclei would have a
total of three FISH signals for the target gene, of which two signals would occur on the
abnormal chromosome (indicating a duplication) and one signal would occur on the
normal chromosome. The shape of each dot object was initially measured (using existing
shape analysis algorithms) to determine if it is a single or double dot. If the boundary of
the dot had low eccentricity, the dot was initially tagged as a single dot. If the eccentricity
was relatively high, the object had a higher probability of being a double dot. If the cell
nuclei had three dot objects for the target gene, we initially isolated the two objects that
were tagged as potential single dots and were nearest to each other to represent FISH
signals on the abnormal chromosome. This was achieved by determining the centroid of
each dot object [61] as a measure of its spatial position in the cell nuclei. A subimage of
the dot objects was then obtained by cropping a square region enclosing the FISH signals.
Figure 27.11(a) shows a cropped imaged of two FISH signals.

27.6.3.2 Surface Fitting
We obtain morphological and image features for the dot objects by surface fitting, using
the sum of two rotated Gaussian surfaces as a model. The sum of two rotated Gaussian
surfaces was modeled as follows:

f
(

xa ,ya ,Aa ,xa0,ya0,�ax ,�ay ,�a ,xb ,yb ,Ab ,xb0,yb0,�bx ,�by ,�b

)
� A � B, (27.8)
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and
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2�2
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]
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In the equations above, A is the amplitude, xo , yo are the position, �x and �y are the
standard deviations (radii) in the two directions, x ,y , are surface points, and � is the
angle of rotation with respect to the X-axis. These parameters are used with the subscript
a or b to represent the two Gaussian surfaces. A least-squared minimization of the mean-
squared error was performed using the Quasi Newton Minimization technique [68]. To
recover the surface, we estimated the following 12 parameters:

Aa ,xa0,ya0,�ax ,�ay ,�a ,Ab ,xb0,yb0,�bx ,�by , and �b .

The image data points from the subimage containing the dot objects (Fig. 27.11(a)) were
used as input points for the minimization routine. Initial estimates for the size parameters
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FIGURE 27.11

Surface fitting using the sum of two rotated Gaussians as a model. (a) original image; (b) surface
plot of (a); (c) contour plot of (b); (d) surface plot of reconstructed image; (e) contour plot of (d);
and (f) reconstructed image.
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were obtained from the input data points, as follows. The centroid of the dot objects was
used as an estimate for (x0, y0), the average image intensity was used to estimate A, the
angle of rotation was set to an initial value of 45°, and the standard deviations (�) in
the x and y directions were set to a value of 1.0. The minimization was performed using
a constraint tolerance (CTOL) of 0.001 and a convergence tolerance (TOL) of 0.001.
The value of CTOL controls the precision of the solution. The larger the value, the less
precise the solution may be. For smaller values of CTOL, a more precise solution may be
found, but the processing time is increased. The value of TOL controls the duration of an
iteration. Typically, we were able to estimate the parameters with negligible error values
computed as the square root of the sum of squared residuals (computed value-expected
value).

For double dots, the estimated parameters for A and B (Eq. 27.8) differ, and may then
be used to represent two single dots that are each modeled as a 2D Gaussian surface.
If surface-fitting procedure is actually performed on a single (elliptical) dot, then the
estimated parameters from the two Gaussian surfaces in the model have equal �x and
�y values, and their position (x ,y) was nearly equal (i.e., within 2 or 3 pixels of each
other).

The performance of the surface-fitting algorithm is illustrated in Fig. 27.11. An
image of FISH signals (dots) and its corresponding surface and contour plots are
illustrated in Figs. 27.11(a) and (b), respectively. A contour plot of the surface is pre-
sented in Fig. 27.11(c). Surface fitting was performed to obtain the model parameters,
and Figs. 27.11(d)–(e) show the surface plot and contour of the estimated model.
Figure 27.11(f) presents the image that was reconstructed using the estimated parameters
from the surface fitting.

We tested the algorithm and it performed successfully in all the cases tested. Overall the
performance of the algorithm was optimal, except for poor quality images. For images
that had an extremely low signal-to-noise ratio, the iteration procedure took slightly
longer to converge to the solution resulting in a 1–2% reduction in the processing speed.
Similarly, the single dot (from the normal homologous chromosome) was modeled using
a single 2D rotated Gaussian to compute its size and integrated intensity.

27.6.3.3 Ellipse Fitting
In order to compute the separation distance between double dots, the boundary for each
dot was computed using the parameters estimated from the surface-fitting algorithm.
This was achieved by modeling each dot as an ellipse. The following equation was used
to model a single rotated ellipse:

f (x ,y) �

[(
xcos� � ysin�

)
�
(
x0cos� � y0sin�

)]2
2�x

�

[(
xsin� � ycos�

)
�
(
x0sin� � y0cos�

)]2
2�y

.

(27.11)

The estimated values for x0, y0, �x , �y , and q obtained from the surface modeling
were used in the equation above, and the equation was solved to compute the bound-
ary points by setting f (x ,y) to the value of 1.0. Figure 27.12(a) and (b) illustrates the
boundary points obtained for the sample image presented in Fig. 27.11. The next step
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was to compute the separation distance between two dots. The procedure is illustrated in
Fig. 27.13. Briefly, the line segment joining the centroids of the two dots was computed
as follows:

y �
(x � x1)(y1 � y2)

(x1 � x2)
� y1. (27.12)

This is called the peak to peak distance (PP). The point of intersection of PP with the
boundary of each of the dots was then determined by simultaneously solving Eqs. (27.11)
and (27.12). Segment PP intersects each dot boundary at two points (4 points total). The
point of intersection closest to the midpoint of segment PP was chosen for each dot
(shown as (ix1, iy1) and (ix2, iy2) in Fig. 27.12). Then the shortest distance between two
dots was taken as the separation distance (SD) and computed as the length of the line
segment joining (ix1, iy1) and (ix2, iy2) using the following equation:

SD �

√
(ix1 � ix2)2 � (iy1 � iy2)2. (27.13)

The separation distance was then normalized with respect to the size of the cell (cell
radius) to obtain a relative measure of the distance. Finally, the total integrated fluores-
cence intensity and average intensity for each dot were computed using intensity values
of all pixels with the boundary. The separation distance and the average fluorescence
intensity were then used to classify the dots as described below.

27.6.3.4 Multiple Dots
In gene duplication studies, it is important to determine whether a gene is duplicated or
single. Duplicated genes are represented in FISH images as two dots of the same color
that are separated by a distance greater than or equal to the diameter of a single dot.
We developed image analysis algorithms to classify dots and to determine the separation
distance between the dots.

FISH dots can occur as touching dots, split dot signals, overlapping dots, or sepa-
rated dots. The measured values of the separation distance (SD), average intensity (IS)
and diameter (DS) for single signals, and average intensity I1 and I2 for duplicated sig-
nals were used to classify the dots. The single dot represents the unduplicated gene on
the homologous chromosome, and double dots represent the target pair of dots to be
classified. Typically, for touching dots the separation distance is zero. A FISH signal is
sometimes smeared so that a single dot splits into (appears as) two dots. This is called a
split signal. In this case one dot is usually smaller than the other. The separation distance
for split dots is less than one-fourth the size of the single dot, and the intensity of both
or at least one dot is less than the intensity of the single dot. During the “S” phase of
the cell cycle during DNA synthesis, chromosomes are replicated and thus two dots are
seen in FISH images. These are called replicated signals. The distance between replicated
dots is typically small, because the separation distance is proportional to the width of
the sister chromatids. However, since the gene locus is itself replicated, the intensity and
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(b) Contour plot of reconstructed image (obtained via surface fitting) with dot
boundaries superimposed
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FIGURE 27.12

Automated measurement of separation distance between duplicated dots.
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Dot 1

x1, y1
Dot 2 

x2, y2 

ix1, iy1

ix2, iy2

PP

: Dot boundary estimated from equation (2)
x1, y1 : Centroid of Dot 1
x2, y2 : Centroid of Dot 2
PP : Peak to peak distance between Dot 1, and Dot 2
ix1, iy1 : Point of intersection of PP with Dot 1
ix2, iy2 : Point of intersection of PP with Dot 2
SD : Separation distance between Dot 1 and Dot 2
R1 : Radius of Dot 1
R2 : Radius of Dot 2

R1

R2

SD

FIGURE 27.13

Schematic illustrating the computation of the separation distance.

size of each dot is equal to that of the single dot. Finally, duplicated signals are used to
represent true gene duplication. These dots are well separated from each other such that
the separation distance between the dots is greater than or equal to the half the size of the
single dot, and each has a size and intensity equal to that of a single dot. These criteria
are illustrated and outlined in Fig. 27.14. The diameter and intensity of the signal (on the
normal chromosome) are chosen for the single dot parameters. Intensity values are con-
sidered significant only if the intensity values change by >40% (for either an increase or a
reduction). This is because several other factors such as background noise, homogeneity
of the light source, and type and concentration of the probe affect the intensity value.
Thus, small changes were neglected and only large variations in intensity are considered
while classifying the signals. Finally, the ratio of the separation distance to the diameter
of a single dot (SD/DS) was used to classify the signals based on the criteria outlined in
Fig. 27.14. If this ratio takes values equal to 0.5,1.0,2.0,3.0, . . ., this indicates that one
half, one, two, three, . . ., dots can occupy the space between the duplicated genes. The
dots were classified based on two parameters: the ratio SD/DS and the intensity ratio
(I1 + I2)/IS. Split signals have values of SD/DS ≈ 0.0 – 1.0, and IS ≈ I1 + I2, replicated
signals have a SD/DS value <0.0 – 0.5, and (I1 + I2)/IS≈ 2.0, and duplicated signals have
a SD/DS ratio 	0.5, and (I1 + I2)/IS≈ 2.0.

Figure 27.15 presents an image of a cell showing a duplication pattern for CMT1A. The
PMP22 cosmid contig was labeled with digoxigenin and detected with antidigoxigenin
conjugated to rhodamine, which fluoresces red. The FL1 cosmid contig was labeled with
biotin and detected with avidin conjugated to FITC, which fluoresces green. FL1 cosmid
was used as an internal control to facilitate chromosome identification and to check
hybridization efficiency. In each interphase nucleus, the normal chromosome 17 displays
one green and one red signal. In cells carrying the duplication, the abnormal chromosome
17 shows one green signal and two red signals (Fig. 27.15).
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Criteria for identifying FISH signals

SD
DS

(I1�I2)
IS

D1� D2�DS

Split 0.0�0.5 1.0 No

Replicated 0.0�0.5 2.0 Yes

Duplicated �0.5 2.0 Yes

Let Single represent the unduplicated signal on the
homologous chromosome, with diameter DS and integrated
intensity Is.

Double dots can be classified as Split,Replicated and
Duplicated. Let D1 and D2 represent the diameter, and I1 and
I2 represent the integrated intensities of the two dots in the pair.

Let SD be the shortest distance, and PP be the peak to peak
distance (as defined in Fig. 27.5).

Single

Replicated
Split

Duplicated

SD

DS

FIGURE 27.14

Criteria for classifying split, replicated, and duplicated signals.

27.6.3.5 Performance
The results of our study are presented in Table 27.1. A total of 10 patient samples were
analyzed, with 3�15 cells per sample. An average value of 1.46 � 0.43 and 2.21 � 0.45
was measured for SD/DS and I1 + I2 / IS, respectively. The SD between duplicated dots
is of a known size, i.e., 1.5 MB, whereas since the signal is duplicated, the intensity of
each replicated signal should match that of a single gene giving an intensity ratio of
2.0. The within and across sample variability for SD/DS was found to be ∼30% and
∼15%, respectively. The within and across sample variability for I1 + I2/IS was found to
be ∼22% and ∼20%, respectively. The automated analysis was able to correctly identify
10/10 (100%) of the samples as gene duplications.

27.6.4 Four-Color FISH for Aneuploidy Screening
The AneuVysion Assay (Vysis Inc., Downers Grove) is a prenatal test that provides rapid
(24 to 48 hour) detection of trisomy 13, 18, and 21 (Down syndrome) and aneuploidy of
sex chromosomes X and Y. The probe mixture for chromosomes 18 (SpectrumAquaTM
D18Z1, alpha satellite DNA (18p11.1-q11.1)), X (SpectrumGreenTM DXZ1, alpha satel-
lite DNA (Xp11.1-q11.1)), and Y (SpectrumOrangeTM DYZ3, alpha satellite DNA
(Yp11.1-q11.1)) is a three-color FISH assay. This results in four-color images, using
aqua, green, and orange for the dots, and blue for the cell nuclei. The system uses a
cooled three-chip RGB camera and a 24-bit frame grabber board, allowing simultane-
ously capture of three color channels in a single video frame time. Use of the cooled
three-chip camera facilitates the capture of high-resolution RGB images that are free
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FIGURE 27.15

Representative cell for CMT1A showing a duplication pattern. The PMP22 cosmid contig was
labeled with digoxigenin and detected with antidigoxigenin conjugated to rhodamine, which
fluoresces red. The FL1 cosmid contig (internal control) was labeled with biotin and detected
with avidin conjugated to FITC, which fluoresces green. In each interphase nucleus, the normal
chromosome 17 displays one green and one red signal. A duplication is seen here with the
abnormal chromosome 17 showing one green signal and two red signals.

of color aliasing. The system can capture four-color FISH images (blue cells with red,
green, and aqua signals). Typically, when digitizing four-color images with an RGB cam-
era, one of the three color channels captures the fourth color in a second scan. For
FISH samples that use, for example, a blue counterstain, with SpectrumAqua, Spec-
trumGreen, and SpectrumOrange labeling chromosomes 18, X and Y, respectively, the
SpectrumOrange fluorophore is imaged in the red channel, the SpectrumGreen fluo-
rophore in the green channel, and both DAPI and SpectrumAqua are imaged in the
blue channel.
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TABLE 27.1 Results using CMT1A specimens with a known 1.5 MB duplication.

Signal percentage Automated analysis for separation distance (SD) of duplicated signals (Dot1, Dot2)
(N≈ 100) Radius of signals (	) Intensity of signals (	) SD/DS I1+I2 / IS

No. 3 dots 2 dots # of cells Single Dot1 Dot2 IS I1 I2 	 � � 	 � �

1. 70 30 15 2.0 1.5 1.7 42.9 39.1 41.5 1.4 � 0.4 2.0 � 0.7
2. 80 20 5 1.3 1.3 0.9 18.7 30.2 16.0 1.5 � 0.3 2.2 � 0.4
3. 80 20 9 1.6 1.3 1.4 26.0 25.3 25.4 1.3 � 0.4 2.0 � 0.4
4. 80 20 10 1.5 1.1 1.2 27.3 29.4 31.7 1.4 � 0.3 2.2 � 1.0
5. 70 30 3 1.6 1.5 1.4 51.2 39.7 45.3 1.6 � 0.3 1.6 � 0.5
6. 70 30 3 2.9 2.9 2.5 100.4 79.5 93.7 1.1 � 0.6 1.7 � 0.1
7. 80 20 4 2.2 2.1 1.7 110.4 112.5 108.1 1.5 � 0.5 2.0 � 0.5
8. 74 26 3 2.0 1.8 2.3 107.7 118.6 111.8 1.0 � 0.4 2.1 � 0.2
9. 74 26 3 2.1 2.9 2.0 31.0 50.5 49.0 1.7 � 0.5 3.2 � 0.2

10. 70 30 5 3.2 2.5 2.1 134.7 144.8 138.4 1.7 � 0.6 2.2 � 0.5
Average 1.46 � 0.43 2.12 � 0.45
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27.6.4.1 Image Acquisition
The system employs a novel solution to allow four-color sample processing using an RGB
camera. The system employs a filter wheel fitted with a 420 nm longpass (LP) filter in
the excitation path, and it captures RGB images using a Quad-band (red, green, blue,
aqua) optical filter set. In this setup, the Quad filter is stationary, and image capture is
done in two frame-grab cycles. First, the LP filter is positioned in the light path to block
DAPI excitation, and the red, green, and aqua channels are captured simultaneously.
Next, the LP filter automatically moves out of the excitation path, and the DAPI image
is acquired in the blue channel. Thus, we automatically capture four-color images with
an RGB camera in two video frame times. The resulting digital image is stored with four
channels, one for each color.

27.6.4.2 Spectral Overlap
Since each of the four fluorophores is imaged in a separate channel, the problem of
analyzing different color dots occurring at the same X-Y location is eliminated. However,
to achieve total discrimination between different color signals, the effects of spectral
overlap should be minimized. As seen in Fig. 27.16 (top panel), the RGBA image clearly
shows the blue nucleus, and the red, green, and aqua dots. The individual red, green,
blue, and aqua components of the image are also shown. As seen in each component
image, in addition to the true color for each channel (white arrows), there is color
bleed-through that occurs from neighboring spectral regions (yellow arrows). This is
due to the unavoidable overlap among fluorophore emission spectra and RGB camera
sensitivity spectra. The RGBA image was corrected to remove the overlap and separate
the fluorophores using color compensation [34]. Figure 27.16 (bottom panel) shows
the results of color compensation. The spectral bleed-through is effectively removed,
and the different color dots are clearly separated in the individual color component
images. Thus, using a 3-CCD color camera, along with the background subtraction and
color compensation algorithms discussed above, we obtain good spectral separation with
rapid image capture. Similarly, appropriate filter optics, used in conjunction with image
processing, allows the capture of multicolor images. Following image capture, the cell and
dot finding algorithms described above are applied to implement automatic aneuploidy
screening.

27.6.5 Thick Specimen Imaging
Automated microscope instruments almost uniformly do their analysis on 2D images, and
their ability to handle thick specimens is severely limited. In thick specimen preparations,
structures that fall above or below the focal plane are obscured or lost. The reliability of
automated microscopy could be highly increased if the thick specimen limitation were
resolved. We have developed a technique for enhancing the image content available in
microscope images of thick sections by performing optical section deblurring, followed
by image fusion using wavelet transforms.
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Color compensation applied to an image of a FISH labelled lymphocyte. The nucleus is
counterstained with DAPI, and dots are labelled with red (chromosome Y), green
(chromosome 21), and aqua (chromosome X). The original image and individual red (R),
green (G), aqua (A) and blue (B) channels are shown in the top panel. The compensated
image and its component channels are shown in the bottom panel. The spectral overlap
and its effective removal via color compensation is evident in the green channel image.
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FIGURE 27.16

A four-color image captured using a RGB camera and color compensation.
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27.6.5.1 Deblurring
Weinstein and Castleman pioneered the deblurring of optical section images using a
simple method that involves subtracting adjacent plane images that have been blurred
with an appropriate defocus psf [69], given by

fj ≈ gj �

M∑
i�1

(
gj�i ∗ h�i � gj�i ∗ hi

) ∗ k0, (27.14)

where fj is the specimen brightness distribution at focus level j, gj is the optical section
image obtained at level j , hi is the blurring psf due to being out of focus by the amount i, k0

is a heuristically designed highpass filter, and the ∗ represents the convolution operation.
Thus one can partially remove the defocused structures by subtracting 2M adjacent

plane images that have been blurred with the appropriate defocus psf and convolved with
a suitable highpass filter k0. The filter, k0, and the number, M , of adjacent planes must be
selected to give good results. While this technique cannot recover the specimen function
exactly, it does improve optical section images at reasonable computational expense. It is
often necessary to use only a small number, M , of adjacent planes to remove most of the
defocused information. Figure 27.17 shows images from transmitted light microscopy
and fluorescence microscopy that have been deblurred using optical sections above and
below at a Z-interval of 1�m. While this technique cannot recover the specimen function
exactly, it does improve optical section images at reasonable computational expense.

FIGURE 27.17

Deblurring. The top row shows images of FISH-labeled lymphocytes. The left three images are
from an optical section stack taken one micron apart. The right image is the middle one deblurred.
The in-plane dots are brighter, while the out-of-plane dots are removed. The bottom row shows
transmitted images of May-Giemsa stained blood cells. The left three images are from an optical
section stack taken one-half micron apart. The rightmost image is the middle one deblurred.
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27.6.5.2 Image Fusion
One effective way to combine a set of deblurred optical section images into a single 2D
image containing the detail from each involves the use of the wavelet transform [8].
A linear transformation is defined by a set of basis functions. It represents an image by
a set of coefficients that specify what mix of basis functions is required to reconstruct
that image. Reconstruction is effected by summing the basis functions in proportions
specified by the coefficients. The coefficients thus reflect how much each of the basis
functions resembles a component of the original image. If a few of the basis functions
match the components of the image, then their coefficients will be large and the other
coefficients will be negligible, yielding a very compact representation. The coefficients
that correspond to the desired components of the image can be increased in magnitude,
prior to reconstruction, to enhance those components.

27.6.5.3 Wavelet Design
A wavelet transform is a linear transformation in which the basis functions (except the
first) are scaled and shifted versions of one function, called the “mother wavelet.” If the
wavelet can be selected to resemble components of the image, then a compact represen-
tation results. There is considerable flexibility in the design of basis functions. Thus it
is often possible to design wavelet basis functions that are similar to the image compo-
nents of interest. These components, then, are represented compactly in the transform
by relatively few coefficients. These coefficients can be increased in amplitude, at the
expense of the remaining components, to enhance the interesting content of the image.
Fast algorithms exist for the computation of wavelet transforms.

Mallat’s iterative algorithm for implementing the one-dimensional discrete wavelet
transform (DWT) [70, 71] is shown in Fig. 27.18. In the design of an orthonormal DWT,
one begins with a“scaling vector,”h0(k), of even length. The elements of the scaling vector
must satisfy certain constraints imposed by invertibility. For example, the elements must

f(i)

g1(k)

h0(�k)
~

f1(k)

fr(i)

h1(�k)

h0(k)

h1(k)
~

+

FIGURE 27.18

Mallat’s (1D) DWT algorithm. The left half shows one step of decomposition, while the right
half shows one step of reconstruction. The down and up arrows indicate downsampling and
upsampling by a factor of two, respectively. For an orthonormal transform, the two filters on the
right are the same as the two on the left. Further steps of decomposition and reconstruction are
introduced at the open circle.
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sum to
√

2, their squares must sum to unity, and the sum of the even-numbered elements
must equal the sum of the odds [65]. From h0(k) is generated a “wavelet vector”

h1(k) �� (�1)k h0(�k). (27.15)

These two vectors are used as discrete convolution kernels in the system of Fig. 27.18 to
implement the DWT. For example, all possible four-element orthonormal scaling vectors
are specified by

h0 � [c1c3 c1 c2 �c2c3]T , (27.16)

where

c3 �

√
1 �

(
c2
1 � c2

2

)
√

c2
1 � c2

2

, (27.17)

and c1 and c2 are free choice parameters. All even-length orthonormal scaling vectors,
and biorthogonal scaling vectors of any length, can be similarly parameterized.

Mallat’s algorithm leads to the “cascade” algorithm of Daubechies [70, 71], which is a
simple method for constructing the basis functions that correspond to specified scaling
and wavelet vectors. With these tools it is then simple to specify and design wavelet
transforms with desired properties. Given parameterized scaling and wavelet vectors, first
select the parameter values (e.g., c1 and c2, above) and then use the cascade algorithm to
construct the corresponding scaling function and basic wavelet. These show the form of
the basis functions of that wavelet transform. Repeat the process using different parameter
values until the desired basis function shape is attained. Then use h0(k) and h1(k) in the
2D version of Mallat’s algorithm to implement the wavelet transform and its inverse.

27.6.5.4 Wavelet Fusion
Image fusion is the technique of combining multiple images into one that preserves
the interesting detail of each [72]. The wavelet transform affords a convenient way to
fuse images. One simply takes, at each coefficient position, the coefficient value having
maximum absolute amplitude and then reconstructs an image from all such maximum-
amplitude coefficients. If the basis functions match the interesting components of the
image, then the fused image will contain the interesting components collected up from
all of the input images. The images can be combined in the transform domain by taking
the maximum-amplitude coefficient at each coordinate. An inverse wavelet transform of
the resulting coefficients then reconstructs the fused image. We found that deblurring
prior to wavelet fusion significantly improves the measured sharpness of the processed
images. An example of wavelet image fusion using transmitted light and fluorescence
images is shown in Fig. 27.19. Optical section deblurring followed by image fusion
produced an image in which all of the dots are visible for the fluorescence images. We
use these techniques to improve the information content of images from thick samples.
Specifically, this technique improves the dot information in acquired FISH images because
it incorporates data from focal planes above and below.
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27.7 COMMERCIALLY AVAILABLE SYSTEMS
Computer-assisted microscopy systems can vary in price, sensitivity, and capability. The
selection of a system depends upon the experimental applications for which it will be used.
Typically, the selection is based on requirements for image resolution, sensitivity, light
conditions, image acquisition time, image storage requirements, and most importantly
the postacquisition image processing and analysis required. Other considerations are the
technical demands of assembling the component hardware and configuring software.
Computerized imaging systems can be assembled from component parts or obtained
from a supplier as a fully integrated system. Several companies offer fully integrated
computerized microscopy systems and/or provide customized solutions for specialized
systems.

A brief listing of some of the commercially available systems is provided here.
Applied Precision Inc. (Issaquah, WA) provides a computerized imaging instrument,
the DeltaVisionTM Restoration Microscopy System for applications such as 3D time
course studies with live cell material. Applied Precision also offers the softWoRxTM

Imaging Workstation for post-acquisition image processing such as deconvolution,
3D segmentation, and rendering. Universal Imaging Corp. (West Chester, PA) provides
software, including the MetaMorphTM, MetaViewTM, and MetaFluorTM systems, which
can be customized for computerized microscopy applications in transmitted light, time

FIGURE 27.19

Image fusion using transmitted light and fluorescence images. The top row shows FISH-labeled
lymphocytes. The left three images are from a deblurred optical section stack taken one micron
apart. The right image is the fusion of the three using the biorthogonal 2,2 wavelet transform.
Notice that the fused image has all of the dots in focus. The bottom rows demonstrate a similar
effect in transmitted light images. The deblurring process, followed by image fusion, enhances
image detail.
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lapse studies, and fluorescence microscopy. VayTek Inc. (Fairfield, Iowa) provides an
integrated microscopy imaging system, the ProteusTM system, that can be custom con-
figured to any microscopy system. VayTek’s proprietary software for deconvolution and
3D reconstruction, including MicroTomeTM, VoxBlastTM, HazeBusterTM, VtraceTM, and
Volume-ScanTM, can also be custom configured for most current microscopy systems.
ChromaVision Medical Systems Inc. (San Juan, CA) provides an Automated Cellular
Imaging System that allows cell detection based on color-, size-, and shape-based morpho-
metric features. MetaSystems GmbH (Altlussheim, Germany) provides a computerized
microscopy system based on Zeiss optics for scanning and imaging pathology slides, cyto-
genetic slides for FISH, MFISH, and metaphase detection, oncology slides, and for rare
cell detection, primarily from blood, bone marrow, or tissue section samples. Applied
Imaging Corp. (Santa Clara, CA), now part of MetaSystems GmbH, Germany, provides
fully automated scanning and image analysis systems. Their MDSTM system provides
automated slide scanning using brightfield or fluorescent illumination to allow standard
karyotyping, FISH, and comparative genomic hybridization, as well as rare cell detection.
They also have the OncopathTM and Ariol Sl-50TM image analysis systems for oncology
and clinical pathology applications.

The field of automated imaging is also of great interest to pharmaceutical and
biotechnology companies. Many are now developing high-throughput and high-content
screening platforms for automated analysis of intracellular localization and dynamics
of proteins and to view the effects of a drug on living cells more quickly. High-
content imaging systems for cell-based assays have proliferated in the past year, examples
include Cellomic’s ArrayScan system and KineticScan workstation (Cellomics, Inc., Pitts-
burgh, PA); Amersham’s INCell Analyzer 1000 and 3000 (Amersham Biosciences Corp.,
Piscataway, NJ); Acumen Bioscience’s Explorer system (Melbourn, United Kingdom);
CompuCyte’s iCyte imaging cytometer and LSC laser scanning cytometer (CompuCyte
Corporation, Cambridge, MA); Atto Bioscience’s Pathway HT kinetic cell imaging sys-
tem (Atto Bioscience Inc., Rockville, MD); Universal Imaging’s Discovery-1 system (Uni-
versal Imaging Corporation, Downingtown, PA); and Q3DM’s (now part of Beckman
Coulter, San Diego, CA), EIDAQ 100 High-Throughput Microscopy (HTM) system
(recently discontinued).

27.8 CONCLUSIONS
The rapid development of microscopy techniques over the last few decades has been
accompanied by similar advances in the development of new fluorescent probes and
improvements in automated microscope systems and software. Advanced applications
such as deconvolution, FRET, and ion ratio imaging require sophisticated routines for
controlling automated microscopes and peripheral devices such as filter wheels, shut-
ters, automated stages, and cameras. Computer-assisted microscopy provides the ability
to enhance the speed of microscope data acquisition and data analysis, thus relieving
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humans of tedious tasks. Not only the cost efficiency is improved due to the correspond-
ing reduction in labor costs and space but also errors associated with operator bias are
eliminated. Researchers are not only relieved from tedious manual tasks but may also
quickly examine thousands of cells, plates, and slides, as well as precisely determine some
informative activity against a cell, and collect and mine massive amounts of data. The
process is also repeatable and reproducible with a high degree of precision.

We have described a specific configuration of a computerized fluorescence microscope
with applications in clinical cytogenetics. Fetal cell screening from maternal blood has
the potential to revolutionize the future of prenatal genetic testing, making noninvasive
testing available to all pregnant women. Its clinical realization will be practical only via an
automated screening procedure because of the rare number of fetal cells available. Spe-
cialized slides, based on the grid template, such as the subtelomeric FISH assay, require
automated scanning methods to increase accuracy and efficiency of the screening pro-
tocol. Similarly, automated techniques are necessary to allow the quantitative analysis
for the measurement of the separation distance for detection of duplicated genes. Thick
specimen imaging using deblurring methods allows the detection of cell structures that
are distributed throughout the volume of the entire cell. Thus, there are sound reasons
for pursuing the goal of automation in medical cytogenetics. Not only does automation
increase laboratory throughput, it also decreases laboratories’ costs for performing tests.
And as tests become more objective, the liability of laboratories also decreases. The mar-
ket for comprehensive automated tests is vast in terms of both size (whether measured
in test volume or dollars) and potential impact on people’s lives.

The effective commercial use of computer-assisted microscopy and quantitative image
analysis requires the careful integration of automated microscopy, high-quality image
acquisition, and powerful analytical algorithms that can rationally detect, count, and
quantify areas of interest. Typically, the systems should provide walk-away scanning
operation with automated slide loaders that can queue several (50 to 200) slides. Addi-
tionally, the automated microscopy systems should have the capability to integrate with
viewing stations to create a network for reviewing images, analyzing data, and gener-
ating reports. There has been an increase in the commercialization of computerized
microscopy and high-content imaging systems over that past five years. Clearly, future
developments in this field will be of great interest to biotechnology. All signs indicate that
superior optical instrumentation and software for cell research are on the development
horizon.
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CHAPTER

28Towards Video Processing
Alan C. Bovik

The University of Texas at Austin

Hopefully the reader has found the Essential Guide to Image Processing to be a valuable
resource for understanding the principles of digital image processing, ranging from the
very basic to the more advanced. The range of readers interested in the topic is quite
broad, since image processing is vital to nearly every branch of science and engineering,
and increasingly, in our daily lives.

Of course our experience of images is not limited to the still images that are considered
in this Guide. Indeed, much of the richness of visual information is created by scene
changes recorded as time-varying visual information. Devices for sensors and recording
moving images have been evolving very rapidly in terms of speed,accuracy,and sensitivity,
and for nearly every type of available radiation. These time-varying images, regardless of
modality, are collectively referred to as video.

Of course the main application of digital video processing is to provide high-quality
visible-light videos for human consumption. The ongoing explosion of digital and high-
definition television, videos on the internet, and wireless video on handheld devices
ensures that there will be significant interest in topics in digital video processing for a
long time.

Video analysis is still a young field with considerable work left to be done. By mining
the rich spatio-temporal information that is available in video, it is possible to analyze
the growth or evolutionary properties of dynamic physical phenomena or of living spec-
imens. More broadly, video streams may be analyzed to detect movement for security
purposes, for vehicle guidance or navigation, and for tracking moving objects, including
people.

Digital video processing encompasses many approaches that derive from the essential
principles of digital image processing (of still images) found in this Guide. Indeed, it is
best to become conversant in the techniques of digital image processing before embarking
on the study of digital video processing. However, there is one important aspect of video
processing that significantly distinguishes it from still image processing, makes necessary
significant modifications of still image processing methods for adaptation to video, and
also requires the development of entirely new processing philosophies. That aspect is
motion.
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Digital videos are taken from a real world containing 3D objects in motion. These
objects in motion project to images that are in motion, meaning that the image intensities
and/or colors are in motion at the image plane. Motion has attributes that are both simple
and complex. Simple, because most visual motion is relatively smooth in the sense that
the instantaneous velocities of 3D objects do not usually change very quickly. Yet object
motion can also be complex, and includes deformations (when objects change shape),
occlusions (when one object moves in front of another), acceleration (when objects
change their direction), and so on.

It is largely the motion of these 3D objects and their 2D projections that determines
our visual experience of the world. The way in which motion is handled in video process-
ing largely determines how videos will be perceived or analyzed. Indeed, one of the first
steps in a large percentage of video processing algorithms is motion estimation, whereby
the movement of intensities or colors is estimated. These motion estimates can be used
in a wide variety of ways for video processing and analysis.

Other ways wherein video presents special challenges relate to the significant increase
in data volume. The extra (temporal) dimension of video implies significant increases in
required storage, bandwidth, and processing resources. Naturally it is of high interest to
find efficient algorithms that exploit some of the special characteristics of video, such as
temporal redundancy, in video processing.

The companion book to this one, the Essential Guide to Video Processing, explains the
significant problems encountered in video processing, beginning with the essentials of
video sampling, through motion estimation and tracking, common processing steps such
as enhancement and interpolation, the extremely important topic of video compression,
and on to more advanced topics such as video quality assessment, video networking, video
security, and wireless video. Like the current book, the companion video Guide finishes
with a series of interesting and essential applications including video surveillance, video
analysis of faces, medical video processing, and video-speech analysis.

It is our hope that the reader will embark on the second leg of their voyage of discov-
ery into one of the most exciting and timely technological topics of our age. The first leg,
digital image processing, while extremely fascinating and important on its own intellec-
tual and practical merits, is in many ways a prelude to the broader, more sophisticated,
and more challenging topic of digital video processing.
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defined, 525
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hierarchical mode, 439–440
progressive mode, 437–439
signal transformation unit, 423–424

Discrete cosine transform coefficients, 557–558,
568–569, 621

mapping, 424
quantization, 426–429
zig-zag scan procedure, 433

Discrete Fourier transform (DFT), 8, 35–36, 37f,
103–115, 228, 236, 237, 352, 620, 622,
749

computation of, 112
cyclic convolution property of, 107–110, 109f
displaying, 112–115, 113f, 114f
image frequencies and, 115–121, 116f–118f
image periodicity implied by, 106–107
linear convolution using, 110–112, 111f
linearity and invertibility of, 105
periodicity of, 106
symmetry of, 106

Discrete Fourier transform coefficients, 626–627
Discrete morphological gradient, 312
Discrete scaling functions, 135
Discrete system representation

of color-matching, 183–184
one-dimensional, 175–177

Discrete wavelet transform (DWT), 394,
448–449, 621, 823

coefficients of analysis of indirect, 448t
Discrete wavelets, 135

Discrete-space Fourier transform (DSFT),
100–103

convolution and, 103
inversion of, 101
linearity of, 101
magnitude and phase of, 101–102
symmetry of, 102
translation of, 102

Discrete-space linear convolution, 103
Discrete-space sinusoid, 97–100, 99f
Display of images, 170–173
Distortions

geometric, 611–612, 619–621, 625
in natural images, 570
perceptual, 628–630
supra-threshold, 562, 570
types, 575, 575f, 580, 584f

Dither modulation, 632
Dot-finding in computer-assisted microscopy,

809–811
DSFT, see Discrete-space Fourier transform
DWT, see Discrete wavelet transform

E
EBCOT, see Embedded block coding with

optimal truncation algorithm
Edge causality property, 533
Edge detection

algorithms for, 497
from anisotropic diffusion, see Anisotropic

diffusion
Canny’s method, 516–518
concave-down, 543
concave-up, 543
in 1D continuous case, 497f
errors in, 498
gradient-based methods

continuous gradient, 498–504,
500f–503f

discrete gradient operators, 504–508, 508f
from image features, 543
from isotropic diffusion, 527
Laplacian-based methods

continuous Laplacian, 509–510
and difference of Gaussian, 515–516
with discrete Laplacian operators,

510–512
Laplacian of Gaussian, 512–515

morphological, 311–314
multiscale, 527
for multispectral images, 518–522, 538
quantitative evaluation of, 543–545
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Edge detection (continued)
ramp center, 543
by thresholding, 542

Edge detection filter, 797
Edge detector, 509

directional, 501
performance vs. diffusion time, 546f

Edge location errors, 522
Edge preservation, 526, 528, see also Anisotropic

diffusion
Edge proximity factor, 636
Edges

and anisotropic diffusion, 525–526
defined, 525
physical, 495, 496
scales for, 526
sharpness, 529, 534

Education, image processing
IPLab, 39
VcDemo, 39

Eigenface approach to face recognition, 680, 694
Electromagnetic spectrum, 3f
Elias codes, 406–409
Elias delta (d) code, 407–408
Elias gamma (g) code, 407
Elias gamma� (g� c) code, 407
Elias omega (w) code, 408
Ellipse fitting in computer-assisted microscopy,

813–814
EM algorithm, see Expectation-minimization

algorithm
Embedded block coding with optimal truncation

(EBCOT) algorithm, 412, 490
Embedded zerotree wavelet (EZW), 215, 468,

478–485, 479f
Emission images, 4, 5f
Empirical Bayesian methods for optimal

denoising, 258–259
Encoder structure, 423
End-of-block (EOB) codes, 439
Energy spectrum, 230–231
Entropy, defined, 470
Entropy coding, 388, 434–435, 439

context-based, 394–395
JPEG2000 standard, 450
in transform coding paradigm, 475–476

Entropy coding unit, 425
Entropy rate, 393
Entropy-constrained scalar quantization

(ECSQ), 475
Entropy-constrained vector quantization

(ECVQ), 475

EOB codes, see End-of-block codes
Equal error rate (EER), 608
Erosion filter, 83, 85f, 86, 86f
Estimation theory, elements of, 146–148
Expectation-minimization (EM) algorithm, 346
Exponential-Golomb (Exp-Golomb) codes,

406–409
EZW, see Embedded zerotree wavelet

F
Face modeling, 699
Face pattern and face recognition, 683
Face recognition, 677

across age progression, 699, 708t
approaches, 679

face pattern and face recognition, 683
pattern and pattern recognition, 679–680
visual pattern and visual recognition,

680–683
biometric perspective, 677–678
experimental perspective, 678–679
under illumination variation, 684–693
light field, 693–699
in multiple light sources, 691–693
photometric and geometric characteristics,

680–681
under pose variations, 693
problem, 686
rates, 698t, 700f
in single light source, 688–691
subspace learning methods, 686
task, 678, 679f
theoretical perspective, 679–684, 681f, 682f
unconstrained, 684

Face recognition test protocol (FERET), 678
Face surface, 683
Face verification, 699
Facial aging effects, 699
Facial expression and deformation, 683, 683f
Facial image feature extraction, 316
Facial shape variations, 701
Facial wrinkles, 701, 706
False contouring effect, 12, 32
Fan-beam data, 743, 745
Fan-beam projection, 751–753
Fast Fourier transform (FFT), 29, 112
Feature detection, morphological operators for,

309–310
Feature synthesis, 517
FERET, see Face recognition test protocol
Fetal cell screening in maternal blood, 802–804
FFT, see Fast Fourier transform
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Field of view (FOV) devices, 107
Filter banks, 129–130, 129f
Filter wheels, 781, 782
Fingerprint

automatic identity authentication system,
architecture of, 652–653, 652f

as biometric, 650
classification, 651f, 664–668

algorithm on NIST-4 database, 667t
approaches to, 665
automatic, 664
manual, 664

enhancement, 660–664
algorithm, 662f, 664f
frequency domain techniques, 660
results, 663f

features, 655–656, 656f
Henry system of, 652
history of, 651–652
identification agencies, 652
landmarks, 665
matching, 668–673

false acceptance and false reject rates, 673f
image-based, 668
point pattern, 668
receiver operating curve for, 673f
ridge pattern, 668
score, 671

minutiae-based representations of, 655–656
sensors, 655, 655f

Fingerprint image, 657f
inked (offline), 653, 654f
live scan (inkless), 653, 654f
orientation field of, 657, 665
quality of, 660
ridges in, 659

Fingerprint image compression, wavelet-based
standard for, 463, 465, 487f, 488

Fingerprint sensing, 653–655, 654f
Finite impulse response (FIR) filters, 127

cost functions, 276, 277f
effects of negative weights on, 276, 277f
outputs of linear, 276

First-order entropy, 391
FISH, see Fluorescent in situ hybridization
Fisher light field, 694
Fisherface approach to face recognition, 680
Fisher’s information matrix, 610
Fixed gain attack (FGA), 633
Flat bed document scanner, 653
Flat zones, 301
Fluorescence probes, 781

Fluorescence resonance energy transfer (FRET)
imaging, 777

Fluorescent, cool and warm white, power spectra
of, 195f

Fluorescent in situ hybridization (FISH), 800, 803
four-color, 817–818

image acquisition in, 820
spectral overlap in, 820

FORE, see Fourier rebinning method
Forgery attack, 637
Forward-looking infrared (FLIR) image, 4
Fourier domain

Gaussian PSF in, 331f
image formation model in, 325f
PSF in, 329f

Fourier domain restoration filters, 342
Fourier rebinning (FORE) method, 756
Fourier space, CT image reconstruction, 748
Fourier transform, 208, 620, 748

magnitude of
of inverse filter response, 333f
of restored image, 333f, 336f

of PSF, modulus of, 328, 328f
Fourier transform analysis

discrete-space, 100–103
and sinusoidal functions, 97–100, 99f
two-dimensional discrete, 103–115

Fourier transform coefficient, 249
Fovea of eye, 14
Frame grabbers, 784
Frei-Chen operator, 507
Frequency response, 227–229, 228, 229
Frequency spectrum, 194
Frustrated total internal reflection (FTIR), 653,

654f
Full reference image QA, see Image quality

assessment (QA)
Full-scale histogram stretch, 53–55

G
Gabor filter, 661, 661f
Gabor transform, 137
Gamma camera, 744
Gamut mapping, 197
Gaussian density, 208, 213

parameters, 214, 214f
Gaussian distribution, generalized, 213
Gaussian filter, 236–239, 527, 529

application of, 237
sidelobes, 236

Gaussian function, 512
Gaussian kernel, 625
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Gaussian mixture models, 153
Gaussian model, 207–211

parameters, 219f
Gaussian noise, 143, 149–150, 149f, 151f
Gaussian pyramid, 123–125, 124f, 127–128, 537,

563
Gaussian scale mixture (GSM), 218, 256, 580, 585
Gaussian scale-space, 238, 238f, 239, 527
Gaussian spectral model, image randomly drawn

from, 211
Gaussian white noise, 210, 213, 214, 234f, 245f,

250
with FIR-sharpener, 289f
WM-sharpener, 289f

Gene duplications, detection of, 808–817
dot-finding, 809–811
ellipse fitting, 813–814
multiple dots, 814–817
surface fitting, 811–813, 812f

Generalized Gaussian distribution, 213
Generalized inverse solution, 354
Generalized quadrature mirror filter (GQMF),

565
Geometric attacks, see Desynchronization attacks
Geometric distortions, 611–612, 619–621, 625
Geometric image operations, 43, 65–68

bilinear interpolation, 66
image rotation, 67
image translation, 66–67
image zoom, 67–68, 68f
nearest neighbor interpolation, 65–66

Geometric wavelets, 139, 139f
Gradient vector flow (GVF), 547–548, 548f
Gradient-based techniques of edge detection,

498–508, 500f–503f, 508f
Grain noise, 143
Granularity, 115–118, 116f–118f
Graphics interchange format (GIF), 404–405
Grassmann’s laws, 181
Gray level image processing

arithmetic operations between images, 43,
60–65

geometric image operations, 65–68
image histogram in, 44–47, 45f, 46f
linear point operations, 34–35, 36f, 47–55
nonlinear point operations, 55–60
notation for, 44

Gray-level images, morphological filters for,
295–296

Grayscale images, 410
Grayscale plot, 172f
Grayscale quantization, 32f

Graytone mapping, 173
GSM, see Gaussian scale mixture
GVF, see Gradient vector flow

H
Half-peak bandwidth, 232
Halogen regenerative cycle, 780
Hamming distance (HD) in iris recognition,

722–728, 723f, 726f, 729f, 731t
Hand–eye coordination, 496
Haralick’s facet model, 507
Hard decision detectors, 603
Harris-Laplace detector, 625
Heisenberg uncertainty principle, 721
Helical multi-slice CT imaging, 764–767
Hexagonal sampling, 180
Hierarchical Bayesian approach, 373, 378
Hierarchical Bayesian image restoration,

372–374
High-frequency sound waves, 2
Highpass filter, 229

for image sharpening, 286
Hilbert transform pairs, 563
Histogram approaches

bimodal, 71, 72, 73f
effects of multiplicative image scaling on,

51f, 52f
multimodal, 74f

Histogram equalization, 56–59, 58f, 59f
digital, 57

Histogram flattening, 56
Histogram shaping, 59–60
Hit-miss filter, 309
Hough transform methods, 37–38, 40f
Huffman coding, 395, 425, 434–435

construction procedure, 396, 397f
technique, 395–399

Human vision modeling based metrics, 555–556
calibration, 557
contrast masking, 560–561, 577
contrast sensitivity function, 559–560, 559f
error pooling, 561
frequency analysis, 557–558, 558f
luminance masking, 560
preprocessing, 556–557
registration, 557

Human visual subspace (HVSS), 183
Human visual system (HVS), 137–138, 553

as distortion channel, 581
properties of, 634–635

Human visual system (HVS)-based models,
561–562
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perceptual coder, 561
relation between SSIM and, 576–578
Safranek-Johnston perceptual image coder,

565–568
Sarnoff JND vision model, 563–564
Teo and Heeger model, 564
visible differences predictor, 562
visual signal-to-noise ratio, 570
Watson’s DCTune, 568–570

HVS, see Human visual system
HVSS, see Human visual subspace

I
ICOV, see Instantaneous coefficient of variation
ICT, see Irreversible color transform
IDSFT, see Inverse discrete-space Fourier

transform
IDWT, see Irreversible discrete wavelet transform
IFC, see Information fidelity criterion
Illumination-free identity vector, 692
Image averaging for noise reduction, 61–63, 63f
Image coding

lossless, 385, 387f
basics of, 385–390
CALIC, 413–415, 414f, 415t
implementation complexity, 389
information theory, 391–394
JBIG and JBIG2 standards, 410–411
JPEG standard, 411–412
JPEG2000 standard, 412–413
perceptually, 415–417, 417f
standards, 410–413
symbol coding, 390–409

techniques, 385
Image compression, 36–37, 39f
Image data

format, 435–436
size of, 15–17

Image denoising, 210, 215, 242
Image differencing for change detection, 63–65
Image editing software, 34
Image fidelity, 553

watermarked, 606, 634
Image filtering, linear and nonlinear, 36
Image formation model

in Fourier domain, 325f
in spatial domain, 325f

Image frequency
and DFT, 115–121
granularity of, 115–118, 116f–118f
orientation, 118–121, 119f–121f

Image histogram, 44–47

cumulative normalized, 57, 58
normalized, 57, 58
skewed, 45, 46

Image noise cleaning, 277–281, see also Impulse
noise cleaning

Image processing
aspect of, 1, 2
for LabView, 24–31

Image quality, 634
Image quality assessment (QA), 553, see also

Human vision modeling based
metrics; Information theoretic
metrics; Structural Similarity (SSIM)
index

algorithms, 553–555
information theoretic approaches to,

578–587
performance of methods in, 588t
structural approaches to, 571–578

Image quality metrics, 554
of copyright protection watermarking, 606
performance of, 587–588
validation of, 587–588

Image resolution parameters, 17t
Image restoration, 324

algorithms, 330–342
iterative, 349

Image sharpening, 284–289
application of, 285
based on the weighted median filter, 288
definition of, 285
with FIR-sharpener, 289f
by high-frequency emphasis, 285, 286f
highpass filtering for, 286
operation of, 286
with positive and negative slope edges, 287,

288f
with WM-sharpener, 289f

Image smoothing, 300–301, 309
Image subband, comparison of statistics of

coefficients from, 219f
Image thresholding, 71–77
Image zooming, 282–284
Images

digitization of, 6–7
dimension of, 6, 7f
quantized, 9–13, 12–14f
sampled, 7–9, 8f, 10f
scale of, 4–6
types of, 2–4

Improvement in SNR (ISNR), 356
Impulse function, two dimensional, 225, 226



844 Index

Impulse noise cleaning, 277–281
with CWM smoother, 277, 278f, 279f

Impulse response, 227–229, 360
of ideal LPF, 234
moving average filter, 232
truncated, 235

Information fidelity criterion (IFC), 579, 579f,
580–581, 583

relation between SSIM and, 585–587
Information fidelity methods, 578–580
Information theoretic metrics, 578–580

image quality assessment using, 583–585
implementation of, 583
relation between SSIM and, 585–587

Information theory in lossless image coding,
391–394

Informed coding watermarking, 602, 627f,
629–634

Informed embedding watermarking, 602,
627–629, 627f

optimization problem, 628
precancellation, 627

Inked fingerprint image, 653, 654f
Input-output system

color calibration, 196–201
two-dimensional, 226f

unit impulse response of, 227
Instantaneous coefficient of variation (ICOV),

541
Instantaneously decodable codes, 389
Integrated Services Digital Network (ISDN), 385
International Electrotechnical Commission

(IEC), 410
International Standards Organization (ISO), 410
International Telecommunication Union (ITU),

410
Interpolation

bilinear, 66
nearest neighbor, 65–66

Inverse discrete-space Fourier transform
(IDSFT), 100, 106

Inverse filter, 332
Inverse quantization, 449–450
Inversion of truncated Hilbert transform

(ITHT), 754
Iris, 716

boundaries, 718–719
active contour models for, 719–720

localizing, 716–720
phase code for, 723–724, 727

Iris patterns, 716, 717f

encoding by 2D Gabor wavelet
demodulation, 720–722, 720f

features, 716
imaging system of, 716
phase information of, 720–721

Iris recognition
authentics distribution for, 732, 734
2D focus assessment at video frame rate,

735–738
decidability for, 733
decision environment for, 731–734,

732f, 733f
execution speeds of various stages in,

734–735, 735t
hamming distance (HD) in, 722–728, 723f,

726f, 729f, 731t
image focus assessment in, 717
of monozygotic twins, 725
principle, 715
pseudopolar coordinate system, 727
pupil in, 718
quantile-quantile plot of, 725f
size, position, and orientation in, 726–728
test of statistical independence, 722–726

unique failure of, 728–731
Irreversible color transform (ICT), 448
Irreversible discrete wavelet transform (IDWT),

448
ISNR, see Improvement in SNR
Isotropic diffusion, 526, 537

edge detected from, 527
scale space and, 526–527

Iterative algorithms, recovery, 350
Iterative filters, 338–342
Iterative restoration, 339, 340f, 341

advantage of, 339–341
disadvantage of, 341–342

J
JBIG and JBIG2 standards, 410–411
Joint histograms of wavelet coefficients,

216, 217f
Joint Photographic Experts Group, see JPEG
JPEG, 386, 411–412

color transforms, 447–448
compression, 568–569, 575, 585, 635
encoder and decoder, 424
error resilience, 456–457
features of, 422
file format, 456
hierarchical mode, 439–440
level offset, 447–448
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lossy codec structure, 423–425
lossy compression of, 421, 425
modes of operation, 438f, 446
progressive mode, 437–439
simple, composite, and pyramidal tiling, 444f
tiling, 443–445, 447–448
variable quantization, 441–443

JPEG2000 standard, 410, 412–413, 445–446,
490–491

advantage of, 446
coding architecture of, 446–453
comparing JPEG baseline algorithm with, 457
compression, 575, 585, 635
context formation, 450–451
entropy coding, 450
inverse quantization, 449–450
performance of, 457–458
quantization, 449–450

Just-noticeable distortion (JND), 415

K
Kerckhoff ’s principle, 610
Kolmogorov-Smirnov test, 626
Kraft inequality, 392
Kronecker delta function, 225
Kurtosis criterion, 212, 213f

L
Laboratory for Image and Video Engineering

(LIVE), 23
LabVIEW (Laboratory Virtual Instrument

Engineering Workbench)
development environment, 25–27
for image processing, 24–31
NI vision for, 27–31

Laplacian filters, 125, 801
Laplacian of Gaussian (LoG), 512–515, 527, 533
Laplacian operator, 373
Laplacian pyramid, 124f, 125, 128, 563
Laplacian-based methods

continuous Laplacian, 509–510
and difference of Gaussian, 515–516
with discrete Laplacian operators, 510–512
Laplacian of Gaussian, 512–515

Laplacian-of-Gaussian convolution,
zero-crossings of, 310

Laser scanning confocal microscope (LSCM), 62
Least-squares filters, 332–338
Least-squares iteration, 362–363

constrained, 363
Lempel-Ziv (LZ) coding, 404–406
Lena image, 464f, 468, 469f, 478, 479, 483, 484f

Light emitting diodes (LEDs), 781
Likelihood ratio test, 73, 74, 308
Line integral, 742
Linear and space-invariant (LSI) system, 374
Linear convolution, 110–112, 111f, 227–229

response of ideal LPF, 236
Linear correlation coefficient (LCC), 588
Linear degradation, 350
Linear discriminant analysis (LDA) in face

recognition, 680
Linear edge operators, 310–311
Linear estimators, 147, 210
Linear filters, 36, 529

application of, 225
with application to image enhancement,

225–239
Linear image enhancement, 230–239
Linear image processing filters, 229
Linear Lambertian object, 684–686
Linear motion blur, 327–328

modulus of Fourier transform of, 344f
Linear muscles, 705
Linear space invariant (LSI) systems, 226
Linear transformation, 473
Live scan fingerprint image, 653, 654f
Local feature analysis (LFA) in face recognition,

680
Locally monotonic (LOMO) diffusion, 534–535,

543, 544f
LoG, see Laplacian of Gaussian
Logarithmic point operations, 55–56
Log-likelihood function, 346
Log-polar mapping (LPM), 620
LOMO diffusion, see Locally monotonic

diffusion
Longpass (LP) filter, 820
Lossless image compression, 385
Lossless symbol coding schemes, 390
Lowpass filter (LPF), 233–236

application of Ideal, 237f
impulse response of, 234
linear convolution response of, 236
ringing phenomena, 235

Low-resolution images, 376
LPF, see Lowpass filter
LSI, see Linear and space-invariant system
Luminance components, 428, 436

quantization tables for, 429f
Luminance levels, 180t
Luminance masking, 560
LZW (Lempel-Ziv-Welch) algorithm, 404
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M
Machine readable travel document (MRTD)

system, 678
Magnetic resonance imaging (MRI), 378, 741
Magnitude refinement (MR) primitive, 452
Majority filter, 83, 90, 90f
Marginal entropy, 391
Marginal histograms, log of, 219f
Markov assumption, 206
Markov random field (MRF) models, 773
Marr-Hildreth operator, 512–515
Matched filter, see Correlation detector
Matrix-vector formulation, 361–368

basic iteration, 362
constrained least-squares iteration, 363, 366f
experimental results, 364–367, 366f, 368
least-squares iteration, 362–363
spatially adaptive iteration, 367–368

Maximum a posteriori (MAP), 210, 773
Maximum likelihood blur estimation, 345–346

by EM procedure, 347f
Maximum likelihood (ML) estimator, 266
Mean absolute error (MAE), 147
Mean curvature motion, 533–534, 539
Mean square error (MSE), 247, 356, 431, 470,

554, 634
relation between SSIM index and, 576–577

Mean SSIM (MSSIM) index, 576
Median

of noisy image, 300f
vs. open-closing, 300

Median filters, 90, 91f, 297
Medical imaging in restoration, 378–381
Mellin-Fourier transform, 620
Metamerism, see Color aliasing
Metamers, 183, 187–188
Metaphase finding in clinical cytogenetics,

806–808, 808f–810f
MGVF, see Motion gradient vector flow
Micrograph of cellular specimens, binarized

image for, 74, 75f
Microscopy, advances in, 777, see also

Computer-assisted microscopy
Min-blur edge detection operator, 314
Minimum coded unit (MCU), 436
Minimum mean squared error (MMSE), 146, 210
Minkowski closing, 295
Minkowski error, 564, 577
Minkowski metric, 555f, 556f, 561
Minkowski opening, 295, 314
Minutiae extraction algorithm

flowchart of, 658f

minutiae detection, 660
orientation estimation, 657–658, 659f
postprocessing, 660
ridge detection, 658–659
segmentation, 658

Modulation transfer function (MTF), 636, 661
Monochromatic spectra, 183
Monochrome images, display of, 173–174
Morphological anisotropic diffusion, 529–530
Morphological correlation, 307
Morphological edge detection, 311–314
Morphological filters, 82–90, 83f–86f, 88f, 89f

for binary Images, 294–295
designing, 317–319
for gray-level images, 295–296

Morphological open-closing
median vs., 300
of noisy image, 300f

Morphological operators, 294–299
algebraic generalizations of, 298–299
digital edge, 312–313
for edge detection, 309–310
for peak or valley detection, 314
for template matching, 307–309
universality of, 296–297

Morphological rank linear (MRL) filters, 319
Morphological reconstruction, 303
Morphometry, computer-assisted, 778
Most significant bit plane (MSB), 412
Motion estimation, 834
Motion gradient vector flow (MGVF), 548–549,

548f, 549f
Motion-compensated temporal filtering

(MCTF), 491
Moving average filter, 231–233

application of, 233, 234f
impulse response, 232
sidelobes, 232, 233f

MQ-code, 453
MR primitive, see Magnitude refinement

primitive
MSE, see Mean square error
Multidimensional processing, 178
Multidimensional signals, 6
Multidimensional system representation,

177–179
differences, 178
similarities, 178

Multiframe filters, 326
Multigrid anisotropic diffusion, 537–538
Multiple light sources, face recognition in,

691–693
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Multiple-bit watermarking systems, 603, 605, 630
Multiplicative image scaling, 50–51, 51f, 52f
Multiresolution diffusion, 537–538
Multiscale decomposition, 245

five-band, 254, 256
Multiscale denoising, 244

of photographic images, 241–260
Multiscale image representation, distinguishing

images from, 242–244
Multiscale wavelet coefficients, 216

amplitudes of, 216f
empirical joint distributions of, 217f

Multispectral anisotropic diffusion, 538–539,
540f

Multispectral contrast function, 521
Multispectral gradient formula, 539
Multispectral images, edge detection for, 518–522
Muscle-based pressure distributions, 707f

N
Narrower bandwidth lowpass filter, 231
Natural scenes, 579
Neutral density (ND) filters, 782
Neyman-Pearson criterion, 617, 626
NI vision assistant tool, 30–31, 31f
NI vision tool, 27–30

virtual instruments
image processing, 28–29
machine vision, 29–30
vision utilities, 28

Noise, see also Speckle
and CCD imaging, 160–161
definition, 143
types of

Gaussian noise, 149–150, 149f, 151f
heavy tailed, 150–154
photographic grain, 159–160
photon counting, 156–158, 158f
quantization, 155–156, 157f
salt and pepper, 154–155, 155f
uniform, 155–156, 157f

Noise attenuation, 280–281
Noise coefficients, 249, 251–252
Noise energy, 246
Noise leakage, 232
Noise models, 308

estimation theory in, 146–148
and notions of probability, 144–146
speckle in, 161–166, 165f, 166f

Noise reduction, image averaging for, 61–63,
63f

Noise suppression, 300–301

Noise variance, 246
estimation of, 334

Noise visibility function (NVF), 636
Noise-free image, 280f
Noiseless coding, 388
Noisy-blurred image, 359
Noncolorimetric scanner, 198
Nonlinear filtering, 36

for image analysis, 263–289
for image enhancement, 263–289

Nonlinearity of eye, 191
Normalization model, 564
NovaLightTM, 781
Nuclear imaging using PET and SPECT,

744–746
Nuclear magnetic resonance (NMR), 379
Nyquist sampling theorem, 787

O
Open filter, morphological, 87–88, 88f, 89f
Optical transfer function (OTF), 788
Optimal denoising

Bayesian model for, 258
empirical Bayesian methods for, 258–259

Optimark, 614–615
OptiScanTM, 783
Ordered subsets EM (OSEM) algorithm, 771
Oriented filters, 229
Orlov’s condition, 760
Otsu algorithm, 797
Out-of-focus blur

fringe elements of discrete, 329f
modulus of Fourier transform of, 344f
uniform, 329–330

P
Palmprint, 650, see also Fingerprint
Parallel-beam projections, 746, 748
Parametric active contours, 546–547
Partial differential equations (PDEs), 525

anisotropic diffusion, 527, 533–535, 537–538
mean curvature diffusion, 527, 533–535

Pattern and pattern recognition, 679–680
Payload, 608
PBFs, see Positive Boolean functions
PCRD, see Post compression rate-distortion
PDEs, see Partial differential equations
Peak signal-to-noise ratio (PSNR), 146, 247, 257f,

457, 470, 488, 554, 567–568, 606, 614
Perceptual distortion, 628–630
Perceptual image coder, 416–417
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Perceptual masking, 602, 634–636
Performance meter, 32f
Permutation weighted median smoothers,

271–272
center weights, 271–272c
output of, 272, 281f

Personal identification, see also Face recognition;
Fingerprint; Iris recognition

applications for, 649–650
Personal identification numbers (PINs), 677
PET, see Positron emission tomography
Phosphors, CRT monitor, 184f
Photoelectric effect, 783
Photographic grain noise, 159–160
Photographic images, multiscale denoising of,

241–260
Photometrics SenSysTM, 800
Photomultiplier tubes (PMTs), 744
Physical functions, analog images as, 179–180
Physiological biometrics, 677, 678t
Piecewise-linear Markov maps, 619
Pixels, 8

polyphase interpolation of, 283, 284f
quantized, 9, 11f

POCS, see Projections onto convex sets
Poincare index, 665
Point operations, 43, 47

linear, 34–35, 36f, 47–55
additive image offset, 48–50, 49f
full-scale histogram stretch, 53–55
image negative in, 51–53, 53f
multiplicative image scaling, 50–51, 51f,

52f
nonlinear, 55–60

histogram equalization, 56–59, 58f, 59f
histogram shaping, 59–60

Point-spread function (PSF), 326, 328, 330, 379
modulus of Fourier transform of, 328, 328f

Poisson counting noise, 156–158, 158f
Polyphase interpolation of pixels, 283, 284f
Portable Network Graphics (PNG) image, 404
Pose, illumination, and expression (PIE)

database, 689, 690f
Pose variations, face recognition under, 693

identity signature, 694–696
illumination and, 693–699
implementations and experiments, 697
literature on, 693–694

Pose-invariant identity signature, 694
Positive Boolean functions (PBFs), 274
Positron emission tomography (PET), 378, 741,

768f

nuclear imaging using, 744–746, 746f
rebinning methods in, 758–759

Post compression rate-distortion (PCRD), 413
Power complementary filters, 130
Power laws, 209
Power spectral estimates, 209f
Power spectrum, 209, 334

calculation of, 335
CIE XYZ color-matching functions, 193f

Pratt’s edge quality measurement, 543
Precincts, definition of, 450
Prediction coefficients, MSE estimates of, 335,

335t
Prefix codes, 389
Prewitt edge gradient operator, 506, 507
Principal component analysis (PCA) in face

recognition, 680
Printer, calibration, 199–200
Probability in noise models, 144–146
Probability theory, 391
Projection slice theorem, 748, 750f, 763
Projections onto convex sets (POCS), 376
ProScanTM, 783
Pseudo-device-dependent space, 196
Pseudo-inverse filter, 359
Pseudo-inverse solution, 354
PSF, see Point-spread function
PSNR, see Peak signal-to-noise ratio
Pulse code modulation (PCM) coding, 474
Pupil in iris recognition, 718
Pyramid representations, 126–128

decimation and interpolation, 126–127
Gaussian pyramid, 123–125, 124f, 127–128
Laplacian pyramid, 124f, 125, 128

Q
Q-coder, see Arithmetic coding
QScale value, 441, 442
Quadrature mirror filters (QMF), 130
Quality assessment, image, see Image quality

assessment
Quantization, 9–13, 12–14f, 474–475
Quantization errors, 441
Quantization index modulation (QIM), 602,

631–633, 632f
Quantization noise, 632
Quantization table design, 429–432
Quantizer, 424
Quaternion Fourier transform (QFT), 621
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R
Radial openings, 301, 302f
Radiant spectra, 189
Radiation, types of interaction of, 3
Random field, 230
Rank filtering, 297, 308–309
Rate-distortion (RD)

bounds, 470
optimization, truncation points, 431, 455
performance, 430
theory, 470

Rational dither modulation, 633
RCT, see Reversible color transform
RD, see Rate-distortion
RDWT, see Reversible discrete wavelet transform
Rebinning methods in 3D PET, 758–759
Reblurring, 354
Reconstruction closing, 304, 305f
Reconstruction filters, 302–305
Reconstruction opening, 302–305, 302f

dome/basin extraction with, 316–317
Red Green Blue (RGB) image, 186, 200, 820
Refinement bits, 452
Reflection images, 3, 5f
Region labeling, 77–79

algorithm, 77–78, 78f
in binary image processing, 77–78
minor region removal algorithm, 78–79, 79f
region counting algorithm, 78, 79f

Region-of-interest (ROI)
coding, 412, 455–456, 456f
scaling, 455, 456f

Removal attacks, 611
Resolution enhancement, 376–378, 377f
Resolution of image, 123
Restoration, iterative image, 349

additional considerations, 371
algorithms, 371
blind deconvolution, 374
hierarchical Bayesian, 372–374, 376
matrix-vector formulation, 361–368
in medical imaging, 378–381
use of constraints, 368–371

Restoration filters, 331, 360
Reversible color transform (RCT), 412, 448
Reversible discrete wavelet transform (RDWT),

448
Ridge, 655

detection, 658–659
endings and bifurcations, 657
extraction, 661
maps, 663, 665

nonrecurring, 666, 667f
structures, 660, 666–668, 670f
Type-1 and 2, 666, 667f

Ridgelets, 139, 139f
Ridler and Calvard algorithm, 797
Ringing artifacts, 360
RLC, see Run-length coding
Roberts filters, 505, 506
Roberts operator, 505, 506
Robust estimator, 267
Robustness

of coding method, 390
of watermarking systems, 607–609, 628

Rods of eye, 14
ROI, see Region-of-interest
Run-length coding (RLC), 387

in binary image processing, 93–94, 94f
for binary input sequence, 388f
primitive, 452

Running median smoothers, 264–266
operation of, 265f
recursive, 266

S
Safranek-Johnston perceptual image coder,

565–568, 566f–567f
components, 565
performance of, 566

Said and Pearlman’s work on set partitioning in
hierarchical trees (SPIHT), 478, 480f,
481t, 482t, 567–568

Sampling, 175
in A/D conversion, 7–9, 8f, 10f
color, 182, 193–196
for color aliasing, 189–191
hexagonal, 180
of sensors, 193–196

Sarnoff JND vision model, 563–564
SC primitive, see Sign coding primitive
Scalability in lossless image coding, 390
Scale, concept of, 123
Scale generating filter, 527, 537
Scale space, 526

Gaussian, 527
and isotropic diffusion, 526–527

Scale-invariance, 206, 209
in frequency domain, 208

Scanner
calibration of, 198–199
colorimetric recording, 198
noncolorimetric, 198

Scanning pattern, stripe bit plane, 451f
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Scatterplots, 207f
Segmentation in computer-assisted software

approaches, 798
edge-based methods, 797–798
point-based methods, 796
region-based methods, 798

Self information, 391
Self-dual reconstruction filter, 305
Self-similar watermarks, 623–624
Sensor

color, 182
fingerprint, 655, 655f
sampling of, 193–196

Set dilation, 294–295
Set erosion, 294–295
Shaded surface plot, 170, 171f
Shannon’s RD theory, 470, 471
Shape transformation model

for adults, 704–706
for young individuals, 702–704

Sheet muscles, 705
Short-time Fourier transform (STFT), 467
Sifting property, 226
Sign coding (SC) primitive, 412, 452
Signal, Image, and Video Audiovisualization

gallery (SIVA), 19, 23, 24
binary image processing, 33–34, 35f
discrete Fourier transform, 35–36, 37f
Hough transform, 37–38, 40f
image processing demos, 31–38, 33t
linear and nonlinear filtering, 36
linear point operations, 34–35, 36f
quantization and sampling, 31–33, 32f, 34f

Signal coefficients, log histograms of, 249, 250f
Signal covariance matrix, 210
Signal dilation, 296
Signal transformation unit, DCT, 423–424
Signal-to-noise ratio (SNR), 331, 333f, 379, 606
Signature, identity, 694
Single photon emission computed tomography

(SPECT), 378, 741, 744–746, 745f
Single watermarked image counterfeit original

(SWICO) attack, 612
Single-slice rebinning (SSRB) technique, 758
Sinusoidal functions, 97–100, 99f
Skew tent map, 619
Slide scanning algorithm, 802, 806
Smoothed image, zero-crossings of directional

derivatives of, 310–311
SNR, see Signal-to-noise ratio
Sobel operators, 506, 507
Soft decision detectors, 604–605, 608, 614

Source alphabet, 391
Space-frequency representations, 478
Space-frequency tree segmentation, 490, 490f
Spatial aliasing, 109
Spatial domain, image formation model in,

325f
Spatial domain filter, 342
Spatial domain iteration, 339
Spatial sampling, 180
Spatially adaptive iteration, 367–368
Spatially invariant degradation, 350, 351–361

basic algorithm, 351
convergence, 352–354
degradation model, 351
experimental results, 355–361
reblurring, 354
ringing artifacts in, 360

Spearman rank order correlation coefficient
(SROCC), 588

Speckle, see also Noise
atmospheric, 165–166
in coherent light imaging, 161–165, 165f,

166f
interferometry, 166

Speckle reducing anisotropic diffusion (SRAD),
539–542, 541f, 542f

Spectral blur estimation, 344–345
Spectral selection coding, 438
Sphincter muscle, 706
Spiral CT, 756–757, 756f
Spread spectrum watermarking

and blind additive embedding, 615–618
involving optimal detectors, 625–627

Square matrix, 363
SRAD, see Speckle reducing anisotropic diffusion
SSIM index, see Structural Similarity index
SSRB, see Single-slice rebinning technique
Stack filters, 298
Stack smoothers, 274
Stacking constraints, 273
Staircase artifact, 529, 537
STFT, see Short-time Fourier transform
Stirmark, 613–614
Structural Similarity (SSIM) index, 571–573

and absolute error maps, 574–576
boundedness, 572
contrast gain control model, 577–578
contrast masking model, 577–578
correlation coefficient in, 585
distorted images and quality/distortion

maps, 575f
effect of local window shape on, 574f
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image quality assessment using, 573–576
relation to HVS-based models, 576–578
relation to IFC, 585–587
relation to MSE, 576–577
structure term of, 573
symmetry, 572
unique maximum, 573

Structure from motion (SfM) algorithm, 693
Subband coding, 476
Subband coefficient denoising, 249–253
Subband decomposition, 138
Subband denoising, 244–249

neighborhood thresholding, 253–256
neighborhood weighting, 256–257

Subtelomeric fluorescent in situ hybridization
(SFISH) assay, 805f

for detection of cryptic translocations,
804–805

metaphase finding in, 806–808, 808f–810f
user interface in, 806

Successive approximation coding, 438, 439
Successive approximations iteration

application of, 375
CLS formulation and, 376

Superposition property, 226
Surface fitting in computer-assisted microscopy,

792–793, 793f, 811–813, 812f
Surface sensing methods, 788
Symbols in lossless image coding, 387–388
Synthesis filters coefficients, 448t

T
Tail probabilities in noise models, 152
Tam-Danielsson window, 765
Template watermarks, 622–623, 622f
Teo and Heeger model, 564

contrast masking, 578
gain control, 578

Texture blocks, 443
Texture masking factor, 636
Texture transformation model, 706–708
Thermal noise, 161
Thick specimen imaging

deblurring, 822, 822f
image fusion, 823
wavelet design, 823–824
wavelet fusion, 824

Threshold decomposition smoothers, 272–275
Tiling representations

of several expansions, 487, 488
time-frequency, 487

Time-domain representation, 466

Toggle filter, 306, 306f
iterated, 306, 306f, 307

Top-hat transformation, 314–316
Transform coding paradigm, 471–476, 472f,

473f
entropy coding, 475–476
quantization, 474–475
transform structure, 474

Transformation in lossless image coding, 387
Transformed watermarks, 620–621
Translation-invariance, 206
Tree-structured codes, 389
Trellis coded quantization (TCQ), 475
Tristimulus values, 185–186, 189–190
Tsai algorithm, 797
Tuy’s condition, 762

U
Uncertainty theorem, 466
Unconstrained face recognition, 684
Uniform color spaces, 191–192
Unit impulse response, 227
Unit sample sequence, 225
User-interface for slide-scanning algorithm, 806,

807f
US-VISIT system, 677

V
Valumetric scaling attack, 633
Variable-length coding (VLC), 388
Variable-length symbol strings, 404
Variance field, square root of, 219f
Variational methods, 535–537
VDP, see Visible differences predictor
Vector diffusion, 546–549
Vector distance dissimilarity, 538–539
Vector quantization (VQ), 471
Video analysis, 833
Video compression algorithms, 63
Video sequence, 682
VIF, see Visual information fidelity
Virtual instruments (VIs), 24, 33t

block diagram, 25, 26f, 27
front panel, 25, 26f
icon and connector pane, 27
image processing, 28–29
machine vision, 29–30
vision utilities, 28

VIs, see Virtual instruments
Visible differences predictor (VDP), 562
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Visual image properties, capturing, with
probabilistic models, 205–220

Visual information fidelity (VIF), 579, 579f,
581–582

performance of, 584, 584f
spatial quality maps by, 586f, 587

Visual pattern and visual recognition, 680–683
Visual quality, 578, 581–582, 584
Visual signal-to-noise ratio (VSNR), 570
VLC, see Variable-length coding
VQ, see Vector quantization
VSNR, see Visual signal-to-noise ratio

W
Watermarking

characteristics of, 597
content-adaptive, 635
copyright protection, see Copyright

protection watermarking
Costa’s theory to, 630–631
decoding, 604–605

error correction codes, 609
performance of, 608–609

digital, 597
image content integrity and authentication,

636–641
informed coding, 627f, 629–634
informed embedding, 627–629
modules of, 605f
perceptual quality of, 606
with side information, 627–636

Watermarking techniques
applications of, 598–600

authentication and tamper-proofing,
600

broadcast monitoring, 599
enhancement of legacy systems, 600
persistent item identification, 600
transaction tracking, 599
usage control, 599–600

classification of, 601–604
information leakage for, 610
message decoding performance of, 608–609

Watermarks
asymmetric (publickey), 601
chaotic, 618–620
circularly-symmetric, 623–624
detection, 603, 615, 618, 622

affine transformation, 622–623
definition of, 604
hypothesis testing problem, 607
performance of, 607–608

receiver operating characteristic (ROC)
curve, 608, 609f

embedding, 604
multiplicative embedding, 618
as two-step procedure, 604

feature-based, 625
fragile, 601, 636
nonoverlapping, 608
robust, 601
self-similar, 623–624
semifragile, 601, 636, 640
special structure, 623–625
symmetric (privatekey), 601
template, 622–623, 622f
transformed, 620–621

Watson metric, 614
Watson’s DCTune, 568–570
Wavelet coefficient tree, 478
Wavelet decomposition, 124f, 125, 130–133, 132f,

133f
Wavelet filters, 130
Wavelet image compression, 463

and EZW coding, 478–485, 479f
high-level characterization, 485–486
JPEG2000 standard, 490–491
as subband coding, 476–478
transform coding paradigm, 471–476, 472f,

473f
wavelet packets, 486–490, 490f

Wavelet local contextual models, 215–219
Wavelet marginal model, 211–215
Wavelet packets, 138, 486–490, 490f
Wavelet representations, 129–138, 468, 469f

applications, 138
continuous wavelet bases, 135–136, 136f
discrete wavelet bases, 133–135, 134f, 135f
filter banks, 129–130, 129f
and human visual system, 137–138

Wavelet scalar quantization (WSQ) standard,
488

Wavelet subband, 219f
Wavelet theory, 468
Wavelet transform, 213–214, 823

undecimated, 138
Wavelets

defined, 463
geometric, 139, 139f

Weber’s law, 560, 578, 635
Weighted median filters, 275–277

computation, 276
outputs of, 276
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Weighted median interpolation, 285f
Weighted median smoothers, 267–269, see also

Running median smoothers
computation, 267
operation, 268, 268f
recursive, 269

Weighting function, 576
Welch estimate, 193
White Gaussian noise, 210, 213, 214, 234f, 245f,

250f, 554
Wiener filter, 147, 249, 254, 333, 334
Wiener restoration, 336f
Windows in binary image morphology, 80–82,

81f
Wraparound convolution, 107

X
X-ray computed tomography, 742–744, 743f

Y
YIQ color coordinate system, 15
Yule-Walker equations, 335

Z
Zero coding (ZC) primitive, 452
Zero-bit watermarking systems, 602–603, 618
Zero-mean additive white noise model, 230
Zero-padding in linear convolution, 110, 111f
Zerotree-based framework and EZW coding,

478–485, 479f
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