GEOMETRIC A

AN ORMET ORIENTED APPROACH TO 0ROMETRY

Kautyumes Tevies i O vnigut e Gimitagn

mputer Science

4

Morgan Kaufmann Publishers is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

Copyright (©) 2007 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written
permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may
also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting
“Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted

ISBN: 978-0-12-374942-0

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in China
09 10 11 5432

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID Qi hre Foundation

1.1
1.2
1.3
1.4
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
3.1
3.2
3.3
3.4

Example of the use of geometric algebra

Code to generate Figure 1.1

Example of the use of geometric algebra

The outer product and its interpretations

Spanning homogeneous subspaces in a 3-D vector space
Imagining vector addition

Bivector representations

Imagining bivector addition in 2-D space

Bivector addition in 3-D space

The associativity of the outer product

Solving linear equations with bivectors

Intersecting lines in the plane

Code for drawing bivectors

Drawing bivectors screenshot (Example 1)

The orientation of front- and back-facing polygons

A wire-frame torus with and without backface culling
The code that renders a model from its 2-D vertices (Exercise 2)
Sampling a vector field and summing trivectors

Code to test for singularity (Example 3)

A helix-shaped singularity, as detected by Example 3
Computing the scalar product of 2-blades

From scalar product to contraction

The contraction of a vector onto a 2-blade

Duality of vectors in 2-D

XX

11
25
27
32
33
34
35
40
41
58
59
59
60
61
62
63
64
70
72
76
81

LIST OF FIGURES

3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
4.1
4.2
4.3
4.4
4.5
4.6
5.1
5.2
5.3
5.4
6.1
6.2
6.3
6.4
6.5
6.6
7.1
7.2
7.3
7.4
7.5
7.6

7.7
7.8

Duality of vectors and bivectors in 3-D

Projection onto a subspace

Three uses of the cross product

Duality and the cross product

Orthonormalization code (Example 1)

Orthonormalization

Reciprocal frame code

Color space conversion code (Example 4)

Color space conversion screenshot

The defining properties of a linear transformation

Projection onto a line a in the b-direction

A rotation around the origin of unit vectors in the plane
Projection of a vector onto a bivector

Matrix representation of projection code

Transforming normals vector

The ambiguity of the magnitude of the intersection of two planes
The meet of two oriented planes

A line meeting a plane in the origin

When the join of two (near-)parallel vectors becomes a 2-blade (Example 3)
Non-invertibility of the subspace products

Ratios of vectors

Projection and rejection of a vector

Reflecting a vector in a line

Gram-Schmidt orthogonalization

Gram-Schmidt orthogonalization code (Example 2)

Line and plane reflection

A rotation in a plane parallel to I is two reflections in vectors in that plane
A rotor in action

Sense of rotation

The unique rotor-based rotations in the range ¢ = [0,47)

(a) A spherical triangle. (b) Composition of rotations through concatenation
of rotor arcs

A reflector in action

The rotor product in Euclidean spaces as a Taylor series

Xxxi

82

84

87

89

93

94

96

97

98
100
104
105
121
122
123
126
130
131
140
142
146
156
158
163
164
169
170
171
175
176

180
189
197

xxii

7.9

7.10
7.11
7.12
7.13
8.1

8.2

8.3

10.1
10.2
10.3
10.4
10.5
10.6
10.7

11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15
12.1
12.2
12.3
12.4

LIST OF FIGURES

Interactive version of Figure 7.2 205
Rotation matrix to rotor conversion 207
2-D Julia fractal code 210
A 2-D Julia fractal, computed using the geometric product of real vectors 211
3-D Julia fractal 212
Directional differentiation of a vector inversion 227
Changes in reflection of a rotating mirror 229
The directional derivative of the spherical projection 241
A triangle a + b 4+ ¢ = 0 in a directed plane I 249
The angle between a vector and a bivector (see text) 252
A spherical triangle 253
Interpolation of rotations 259
Interpolation of rotations (Example 1) 266
Crystallography (Example 2) 267
External camera calibration (Example 3) 268
The extra dimension of the homogeneous representation space 274
Representing offset subspaces in R"*! 280
Defining offset subspaces fully in the base space 288
The dual hyperplane representation in R? and R! 290
The intersection of two offset lines L and M to produce a point 293
The meet of two skew lines 295
The relative orientation of oriented flats 296
The combinations of four points taken in the cross ratio 300
The combinations of four lines taken in the cross ratio 301
Conics in the homogeneous model 308
Finding a line through a point, perpendicular to a given line 310
The orthogonal projection in the homogeneous model (see text) 315
The beginning of a row of equidistant telegraph poles 319
Example 2 in action 323
Perspective projection (Example 4) 325
Pliicker coordinates of a line in 3-D 329
A pinhole camera 337
The epipolar constraint 342

The plane of rays generated by a line observation L 343

LIST OF FIGURES

12.5
12.6
12.7
12.8
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12
14.13
14.14
15.1
15.2
15.3
15.4
15.5
15.6
15.7

The projection of the optical center onto all rays generates an eyeball
Reconstruction of motion capture data

Reconstruction of markers

Crossing lines code

Euclidean transformations as multiple reflections in planes
Flat elements in the conformal model

Planar reflection in the conformal model

Chasles’ screw

Computation of the logarithm of a rigid body motion

Rigid body motion interpolation

Reflection in a rotating mirror

The output of the solution to Example 2

Example 4 in action: the interpolation of rigid body motions
Dual rounds in the conformal model

Intersection of two spheres of decreasing radii

Visualization of a 2-D Euclidean point on the representative paraboloid

The representation of a circle on the representative paraboloid

Cross section of the parabola of null vectors

Visualization of the intersection of circles on the representative paraboloid

A Voronoi diagram in the conformal model

Inner product as distance measure

Forward kinematics of a robot arm

Inverse kinematics of a robot arm

A Voronoi diagram of a set of points, as computed by Example 1
Euclid’s elements (Example 2)

Example 3 in action

Fitting-a-sphere code

The meet and plunge of three spheres

The plunge of diverse elements

The meet and plunge of two spheres at decreasing distances
Visualization of flats as plunge

Orbits of a dual line versor

Tangents of elements

Factorization of rounds

xxiii

348
351
352
354
366
373
377
382
384
385
387
393
394
398
405
411
412
413
414
416
418
421
422
429
432
433
435
439
441
442
443
444
445
447

XXiv

15.8
15.9
15.10
15.11
15.12
15.13
15.14
15.15
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13
16.14
16.15
16.16
19.1
19.2
20.1
20.2

21.2
22.1
22.2
22.3

LIST OF FIGURES

Affine combination of conformal points

Affine combination of circles and point pairs

Orthogonal projections in the conformal model of Euclidean geometry
Various kinds of vectors in the conformal model

Definition of symbols for the Voronoi derivations

Construction of a contour circle

Screenshot of Example 2

Screenshot of Example 3 on projection and plunge

Inversion in a sphere

Reflection in a sphere

Generation of a snail shell

Swapping scaling and translation

Computation of the logarithm of a positively scaled rigid body motion
Loxodromes

Conformal orbits

Hyperbolic geometry

Spherical geometry

Imaging by the eye

Reflection in a point pair

Dupin cycloid as the inversion of a torus into a sphere

Metrical Mystery Tour

Function matrix4x4 ToVersor()

Function Tog(const TRSversor &V)

Screenshot of Example 4

Function canonical ReorderingSign(int a, int b)

Function gp_op (BasisBlade a, BasisBlade b)

Matrices for geometric product, outer product, and left contraction
Implementation of the outer product of multivectors

Venn diagrams illustrating union, intersection, and the delta product of
two sets

Venn diagrams illustrating meet, join, and the delta product of two blades

Basic tool-chain from source code to running application
Code generated by Gaigen 2

Generated matrix-point multiplication code

448
449
450
452
456
462
463
464
467
469
472
473
475
478
479
481
482
484
485
486
487
489
493
495
514
515
525
527

536
537
544
551
553

LIST OF FIGURES

23.1
23.2
23.3
23.4

Teapot polygonal mesh
Screenshot of the user interface of the modeler
Rotating an object

The spaceball interface

560
567
570
571

2.1
2.2
2.3
2.4
5.1
7.1
8.1
8.2
10.1
11.1
11.2
11.3
114
12.1
12.2
13.1

13.2
13.3
13.4
14.1
16.1
16.2

Geometrical properties of a subspace

Pascal’s triangle of the number of basis k-blades in n-dimensional space
Notational conventions for blades and multivectors for Part I of this book
C++ Operator bindings

The order of the arguments for a meet may affect the sign of the result
Reflection of an oriented subspace X in a subspace A

Directional differentiation and vector derivatives

Elementary results of multivector differentiation

The point group 2Hy

The geometric algebra of the homogeneous model of 3-D Euclidean space
The number of blades representing subspaces and directions

Nonzero blades in the homogeneous model of Euclidean geometry
Specialized multivector types in the h3ga

Common Pliicker coordinate computations

Transformation of the flats in the homogeneous model

Multiplication table for the inner product of the conformal model of 3-D

Euclidean geometry 3, for two choices of basis

The interpretation of vectors in the conformal model

A list of the most important specialized multivector types in C3ga
Constants in C3ga

Nonzero blades in the conformal model of Euclidean geometry
Basic operations in the conformal model and their versors

Common proper transformations of some of the standard elements of the
conformal model

XXvi

43

45

47

55
134
190
226
237
255
273
287
291
320
330
335

361
363
391
392
407
476

477

LIST OF TABLES

18.1
19.1
19.2
19.3
22.1

Matrix representations of Clifford algebras of signatures (p, q)

The bitmap representation of basis blades

Bitwise boolean operators used in Java code examples

Reversion, grade involution, and Clifford Conjugate for basis blades

Performance benchmarks for the ray tracer

xxvii

507
512
513
519
555

Section

Title

Model

1.1
2.13.1
2.13.2
2.13.3
3.11.1
3.11.2
3.11.3
3.11.4
4.9.1
4.9.2

4.9.3

5.11.1
5.11.2
5.11.3
6.7.1

6.7.2

7.10.1
7.10.2
7.10.3
7.10.4
7.10.5
10.7.1
10.7.2

An Example in Geometric Algebra
Drawing Bivectors

Exercise: Hidden Surface Removal
Singularities in Vector Fields

Orthonormalization

Exercise: Implementing the Cross Product

Reciprocal Frames
Color Space Conversion
Orthogonal Projection

Orthogonal Projection, Matrix
Representation

Transforming Normal Vectors

The Meet and Join

Efficiency

Floating Point Issues

Exercise: Subspace Products Retrieved
Gram-Schmidt Orthogonalization
Reflecting in Vectors

Two Reflections Equals One Rotation
Matrix-Rotor Conversion 1

Exercise: Matrix-Rotor Conversion 2
Julia Fractals

Interpolating Rotations

Crystallography

3-D conformal

2-D vector space
3-D vector space
3-D vector space
3-D vector space
3-D vector space
3-D vector space
3-D vector space

3-D vector space

3-D vector space
3-D vector space
3-D vector space
3-D vector space
3-D vector space
3-D vector space
3-D vector space
3-D vector space
3-D vector space
3-D vector space
3-D vector space
2-D vector space
3-D vector space

3-D vector space

58
61
63
93
96
97
98
122

122
123
138
139
139
161
162
204
204
204
206
208
265
267

xxviii

LIST OF PROGRAMMING EXAMPLES

Xxxix

Section Title Model
10.7.3 External Camera Calibration 3-D vector space 269
11.13.1 Working with Points 3-D homogeneous 321
11.13.2 Intersecting Primitives 3-D homogeneous 322
11.13.3 Don’t Add Lines 3-D homogeneous 324
11.13.4 Perspective Projection 3-D homogeneous 326
12.5.1 Loading Transformations into OpenGL 3-D homogeneous 349
12.5.2 Transforming Primitives with OpenGL

Matrices 3-D homogeneous 350
12.5.3 Marker Reconstruction in Optical

Motion Capture 3-D homogeneous 352
13.10.1 Metric Matters 3-D conformal 390
13.10.2 Exercise: The Distance Between Points 3-D conformal 393
13.10.3 Loading Transformations into

OpenGL, Again 3-D conformal 394
13.10.4 Interpolation of Rigid Body Motions 3-D conformal 395
14.9.1 Voronoi Diagrams and Delaunay

Triangulations 2-D conformal 430
14.9.2 Exercise: Drawing Euclid’s Elements 3-D conformal 431
14.9.3 Conformal Primitives and Intersections 3-D conformal 433
14.9.4 Fitting a Sphere to a Set of Points 3-D conformal 435
15.8.1 The Plunge 3-D conformal 462
15.8.2 Affine Combinations of Points 2-D conformal 463
15.8.3 Euclidean Projections 3-D conformal 464
16.10.1 Homogeneous 4 x 4 Matrices to

Conformal Versors 3-D conformal 488
16.10.2 Logarithm of Scaled Rigid Body Motion 3-D conformal 493
16.10.3 Interpolation of Scaled Rigid Body

Motions 3-D conformal 493
16.10.4 The Seashell 3-D conformal 494

Geometric algebra is a powerful and practical framework for the representation and
solution of geometrical problems. We believe it to be eminently suitable to those sub-
fields of computer science in which such issues occur: computer graphics, robotics, and
computer vision. We wrote this book to explain the basic structure of geometric algebra,
and to help the reader become a practical user. We employ various tools to get there:

 Explanations that are not more mathematical than we deem necessary, connecting
algebra and geometry at every step

A large number of interactive illustrations to get the “object-oriented” feeling of
constructions that are dependent only on the geometric elements in them (rather
than on coordinates)

e Drills and structural exercises for almost every chapter
¢ Detailed programming examples on elements of practical applications

* An extensive section on the implementational aspects of geometric algebra (Part I1I
of this book)

This is the first book on geometric algebra that has been written especially for the com-
puter science audience. When reading it, you should remember that geometric algebra
is fundamentally simple, and fundamentally simplifying. That simplicity will not always
be clear; precisely because it is so fundamental, it does basic things in a slightly different
way and in a different notation. This requires your full attention, notably in the begin-
ning, when we only seem to go over familiar things in a perhaps irritatingly different
manner. The patterns we uncover, and the coordinate-free way in which we encode them,
will all pay off in the end in generally applicable quantitative geometrical operators and
constructions.

We emphasize that this is not primarily a book on programming, and that the subtitle
“An Object-oriented Approach to Geometry” should not be interpreted too literally. It is
intended to convey that we finally achieve clean computational “objects” (in the sense of
object-oriented programming) to correspond to the oriented elements and operators of
geometry by identifying them with “oriented objects” of the algebra.

XXXi

xxxii PREFACE

AUDIENCE

The book is aimed at a graduate level; we only assume basic linear algebra (and a bit of
calculus in Chapter 8). No prior knowledge of the techniques of computer graphics or
robotics is required, though if you are familiar with those fields you will appreciate how
much easier things are in geometric algebra. The book should also be well suited for self-
study at the post-graduate level; in fact, we tried to write the book that we would have
wanted ourselves for this purpose. Depending on your level of interest, you may want to
read it in different ways.

 If you are a seasoned user of geometry and well versed in the techniques of casting
geometry in linear algebra, but don’t have much time, you will still find this book
worthwhile. In a comfortable reading, you can absorb what is different in geometric
algebra, and its structure will help you understand all those old tricks in your library.
In our experience, it makes many arcane techniques comprehensible, and it helped
us to learn from useful math books that we would otherwise never have dared to
read. You may never actually use geometric algebra, but you will find it enlightening
all the same. And who knows—you may come back for more.

e Ifyou are currently writing code using the coordinate-based linear algebra, a back-
ground study of the techniques in this book will be helpful and constructive. The
advantages for the previous category will apply to you as well. Moreover, you may
find yourself doing derivations of formulas you need to program in the compact
geometric algebra manner, and this will clarify and improve your implementations,
even if you continue writing those in the old linear algebra vocabulary. In particular,
the thinking behind your code will be more geometrical, less coordinate-based, and
this will make it more transparent, more flexibly applicable (for instance, in higher
dimensions), and ready to be translated into geometric algebra after the revolution.

« Ifyou are starting out in geometric programming, take the time to absorb this book
thoroughly. This geometric algebra way of thinking is quite natural, and we are
rather envious that you can learn it from scratch, without having to unlearn old
methods. With study and practice you will be able to write programs in geometric
algebra rather fluently, and eventually contribute actively to its development.

Our style in this book is factual. We give you the necessary mathematics, but always relate
the algebra to the geometry, so that you get the complete picture. Occasionally, there is
a need for more extensive proofs to convince you of the consistency of aspects of the
framework. When such a proof became too lengthy and did not further the arguments, it
was relegated to an appendix. The derivations that remain in the text should be worth your
time, since they are good practice in developing your skills. We have attempted to avoid
the “pitfall of imprecision” in this somewhat narrative presentation style by providing the
fundamental chapters with a summary of the essential results, for easy consultation via
the index.

PREFACE xxxiii

HISTORY

We do not constantly attribute all results, but that does not mean that we think that we
developed all this ourselves. By its very nature, geometric algebra collates many partial
results in a single framework, and the original sources become hard to trace in their orig-
inal context. It is part of the pleasure of geometric algebra that it empowers the user; by
mastering just a few techniques, you can usually easily rediscover the result you need.

Once you grasp its essence, geometric algebra will become so natural that you will wonder
why we have not done geometry this way all along. The reason is a history of geometric
(mis)representation, for almost all elements of geometric algebra are not new—in hind-
sight. Elements of the quantitative characterization of geometric constructions directly in
terms of its elements are already present in the work of René Descartes (1595-1650); how-
ever, his followers thought it was easier to reduce his techniques to coordinate systems not
related to the elements (nevertheless calling them Cartesian, in his honor). This gave us
the mixed blessing of coordinates, and the tiresome custom of specifying geometry at the
coordinate level (whereas coordinates should be relegated to the lowest implementational
level, reserved for the actual computations). To have a more direct means of expression,
Hermann Grassmann (1809-1877) developed a theory of extended quantities, allowing
geometry to be based on more than points and vectors. Unfortunately, his ideas were
ahead of their time, and his very compact notation made his work more obscure than it
should have been. William Rowan Hamilton (1805-1865) developed quaternions for the
algebra of rotations in 3D, and William Kingdon Clifford (1845-1879) defined a more
general product between vectors that could incorporate general rigid body motions.

All these individual contributions pointed toward a geometric algebra, and at the end
of the 19th century, there were various potentially useful systems to represent aspects
of geometry. Gibbs (1839—-1903) made a special selection of useful techniques for the 3D
geometry of engineering, and this limited framework is basically what we have been using
ever since in the geometrical applications of linear algebra. In a typical quote from his
biography “using ideas of Grassmann, Gibbs produced a system much more easily applied
to physics than that of Hamilton.” In the process, we lost geometric algebra. Linear alge-
bra and matrices, with their coordinate representations, became the mainstay of doing
geometry, both in practice and in mathematical development. Matrices work, but in their
usual form they only work on vectors, and this ignores Grassmann’s insight that extended
qualities can be elements of computation. (Tensors partially fix this, but in a cumbersome
coordinate-based notation.)

With the arrival of quantum physics, convenient alternative representations for spatial
motions were developed (notably for rotations), using complex numbers in “spinors.”
The complex nature of spinors was mistaken for an essential aspect of quantum mechanics,
and the representations were not reapplied to everyday geometry. David Hestenes
(1933—present) was perhaps the first to realize that the representational techniques in
relativity and quantum mechanics were essentially manifestations of a fundamental

XXXiv PREFACE

“algebra of spatial relationships” that needed to be explored. He rescued the half-forgotten
geometric algebra (by now called Clifford algebra and developed in nongeometric direc-
tions), developed it into an alternative to the classical linear algebra—based representa-
tions, and started advocating its universal use. In the 1990s, his voice was heard, and with
the implementation of geometric algebra into interactive computer programs its practical
applicability is becoming more apparent.

We can now finally begin to pick up the thread of geometrical representation where it
was left around 1900. Gibbs was wrong in assuming that computing with the geometry of
3D space requires only representations of 3D points, although he did give us a powerful
system to compute with those. This book will demonstrate that allowing more extended
quantities in higher-dimensional representational spaces provides a more convenient exe-
cutable language for geometry. Maybe we could have had this all along; but perhaps we
indeed needed to wait for the arrival of computers to appreciate the effectiveness of this
approach.

SOFTWARE

There are three main software packages associated with this book, each written with a
different goal in mind (interaction, efficiency and illustration of algorithms, respectively).
All three were developed by us, and can be found on the web site:

http://www.geometricalgebra.net

for free downloading.

e GAViewer is an interactive program that we used to generate the majority of the
figures in this book. It was originally developed as a teaching tool, and a web tutorial
is available, using GAViewer to explain the basics of geometric algebra. You can use
GAViewer when reading the book to type in algebraic formulas and have them act on
geometrical elements interactively. This interaction should aid your understanding
of the correspondence between geometry and algebra considerably. The (simplified)
code of the figures provides a starting point for your own experimentation.

e Gaigen? is geometric algebra implementation in C++ (and Java), intended for
applications requiring more speed and efficiency than a simple tutorial. The GA
sandbox source code package used for the programming examples and exercises in
this book is built on top of Gaigen 2. To compile and run the programming exam-
ples in Part I and Part II, you only have to download the sandbox package from the
web site.

 Our simplistic but educational “reference implementation” implements all algo-
rithms and techniques discussed in Part IIL. It is written in Java and intended to
show only the essential structure; we do not deem it usable for anything that is com-
putationally intensive, since it can easily be 10 to 100 times slower than Gaigen 2.

PREFACE XXXV

If you are serious about implementing further applications, you can start with the GA
sandbox package, or other available implementations of geometric algebra, or even write
your own package.

ACKNOWLEDGMENTS

Of those who have helped us develop this work, we especially thank David Hestenes, not
only for reinvigorating geometric algebra, but also for giving Leo an early introduction to
the conformal model at a half-year sabbatical at Arizona State University. We are grateful
to Joan Lasenby of Cambridge University for her detailed comments on the early chapters,
and for providing some of the applied examples. We are also indebted to Timaeus Bouma
for his keen insights that allowed our software to be well-founded in mathematical fact.

We gratefully acknowledge the support of the University of Amsterdam, especially pro-
fessor Frans Groen; NWO (Netherlands Organization for Scientific Research) in project
612.012.006; and NSERC (Natural Sciences and Engineering Research Council of Canada).

Ultimately, though, this book would have been impossible without the home front:

Leo Dorst’s parents and his wife Phyllis have always utterly supported him in his quest
to understand new aspects of math and life; he dedicates this book to them. This second
printing is also dedicated to his wondrous daughter Mia, fortuitously born one year after
our book first appeared.

Daniel Fontijne owes many thanks to Yvonne for providing the fun and artistic reasons to
study geometric algebra, and to Femke and Tijmen for the many refreshing breaks while
working at home.

Stephen Mann would like to thank Jeanette, Mei, and Lilly for their support during the
writing of this book.

SECOND CORRECTED PRINTING

This is the second printing of the book, correcting a number of errors found in the first
printing by ourselves and alert readers and originally reported on the book’s web site. We
are grateful to all contributors (for full attribution, see the web site), especially Gregory
Grunberg, Philip J. Kuntz, Ron Goldman, Mark McLaughlin, and Jeroen Spandaw, who
each found several errors. But by far the greatest contributor was Allan Cortzen, who
reported many errors, some quite subtle.

1T WHY GEOMETRIC
ALGEBRA?

This book is about geometric algebra, a powerful computational system to describe and
solve geometrical problems. You will see that it covers familiar ground—lines, planes,
spheres, rotations, linear transformations, and more—but in an unfamiliar way. Our
intention is to show you how basic operations on basic geometrical objects can be done
differently, and better, using this new framework.

The intention of this first chapter is to give you a fair impression of what geometric
algebra can do, how it does it, what old habits you will need to extend or replace, and
what you will gain in the process.

1.1 AN EXAMPLE IN GEOMETRIC ALGEBRA

To convey the compactness of expression of geometric algebra, we give a brief example of
a geometric situation, its description in geometric algebra, and the accompanying code
that executes this description. It helps us discuss some of the important properties of the
computational framework. You should of course read between the lines: you will be able
to understand this example fully only at the end of Part II, but the principles should be
clear enough now.

2 WHY GEOMETRIC ALGEBRA?

Suppose that we have three points ¢, ¢z, 3 in a 3-D space with a Euclidean metric, a line
L, and a plane IT. We would like to construct a circle C through the three points, rotate
it around the line L, and then reflect the whole scene in the plane IT. This is depicted
in Figure 1.1. Here is how geometric algebra encodes this in its conformal model of
Euclidean geometry:

1. Circle. The three points are denoted by three elements cj, ¢z, and ¢3. The oriented
circle through them is
C=ciANcpAcs.

The A symbol denotes the outer product, which constructs new elements of com-

putation by an algebraic operation that geometrically connects basic elements (in
this case, it connects points to form a circle). The outer product is antisymmetric:
if you wanted a circle with opposite orientation through these points, it would
be —C, which could be made as —C = ¢; Ac3 A co.

2. Rotation. The rotation of the circle C is made by a sandwiching product with an
element R called a rotor, as
C — RCIR.

Figure 1.1: The rotation of a circle C (determined by three points ¢j, ¢, c3) around a line L,
and the reflections of those elements in a plane II.

CHAPTER 1

SECTION 1.1

AN EXAMPLE IN GEOMETRIC ALGEBRA 3

The product involved here is the geometric product, which is the fundamental
product of geometric algebra, and its corresponding division. The geometric prod-
uct multiplies transformations. It is structure-preserving, because the rotated circle
through three points is the circle through the three rotated points:

R(c1 Aea Ae3)/R = (Rei/R) A (Rea/R) A (Rez/R).

Moreover, any element, not just a circle, is rotated by the same rotor-based formula.
We define the value of the rotor that turns around the line L below.

3. Line. An oriented line L is also an element of geometric algebra. It can be con-

structed as a “circle” passing through two given points a; and a, and the point at
infinity oo, using the same outer product as in item 1:

L=a; Nay A co.

Alternatively, if you have a point on L and a direction vector u for L, you can make
the same element as

L=a; AuA co.

This specifies exactly the same element L by the same outer product, even though it
takes different arguments. This algebraic equivalence saves the construction of many
specific data types and their corresponding methods for what are geometrically the
same elements.

The point at infinity oo is an essential element of this operational model of
Euclidean geometry. It is a finite element of the algebra, with well-defined
algebraic properties.

. Line Rotation. The rotor that represents a rotation around the line L, with rotation

angle ¢, is
R =exp(d L*/2).

This shows that geometric algebra contains an exponentiation that can make ele-
ments into rotation operators. The element L* is the dual of the line L. Dualization
is an operation that takes the geometric complement. For the line L, its dual can be
visualized as the nest of cylinders surrounding it.

If you would like to perform the rotation in N small steps, you can interpolate the
rotor, using its logarithm to compute RN and applying that N times (we have
done so in Figure 1.1, to give a better impression of the transformation). Other
transformations, such as general rigid body motions, have logarithms as well in

geometric algebra and can therefore be interpolated.

. Plane. To reflect the whole situation with the line and the circles in a plane IT, we first

need to represent that plane. Again, there are alternatives. The most straightforward
is to construct the plane with the outer product of three points py, p2, p3 on the plane

4 WHY GEOMETRIC ALGEBRA?

and the point at infinity oo, as IT = p; A p» A p3 A oo. Alternatively, we can instead
employ a specification by a normal vector n and a point p on the plane. This is a
specification of the dual plane 7 = IT*, its geometric complement:

%= p](noo) = n— (p-n) .

Here | is a contraction product, used for metric computations in geometric alge-
bra; it is a generalization of the inner product (or dot product) from vectors to the
general elements of the algebra. The duality operation above is a special case of the
contraction.

The change from p to p in the equation is not a typo: p denotes a point, p is its
location vector relative to the (arbitrary) origin. The two entities are clearly distinct
elements of geometric algebra, though computationally related.

6. Reflection. Either the plane IT or its geometric complement 7 determine a reflection
operator. Points, circles, or lines (in fact, any element X) reflect in the plane in the
same way:

XV —nXir

Here the reflection plane z, which is an oriented object of geometric algebra, acts
as a reflector, again by means of a sandwiching using the geometric product. Note
that the reflected circle has the proper orientation in Figure 1.1.

As with the rotation in item 2, there is obvious structure preservation: the
reflection of the rotated circle is the rotation of the reflected circle (in the
reflected line). We can even reflect the rotor to become R’ = wexp(b L*/2)/n =
exp(—¢ (—xL*/x)/2), which is the rotor around the reflected line, automatically
turning in the opposite orientation.

7. Programming. In total, the scene of Figure 1.1 can be generated by a simple C++
program computing directly with the geometric objects in the problem statement,
shown in Figure 1.2. The outcome is plotted immediately through the calls to the
multivector drawing function draw (). And since it has been fully specified in terms
of geometric entities, one can easily change any of them and update the picture.
The computations are fast enough to do this and much more involved calculations
in real time; the rendering is typically the slowest component.

Although the language is still unfamiliar, we hope you can see that this is geometric pro-
gramming at a very desirable level, in terms of quantities that have a direct geometrical
meaning. Each item occurring in any of the computations can be visualized. None of the
operations on the elements needed to be specified in terms of their coordinates. Coor-
dinates are only needed when entering the data, to specify precisely which points and
lines are to be operated upon. The absence of this quantitative information may suggest
that geometric algebra is merely an abstract specification language with obscure opera-
tors that merely convey the mathematical logic of geometry. It is much more than that: all
expressions are quantitative prescriptions of computations, and can be executed directly.
Geometric algebra is a programming language, especially tailored to handle geometry.

CHAPTER 1

SECTION 1.1 AN EXAMPLE IN GEOMETRIC ALGEBRA 5

// 11, 12, cl, c2, c3, pl are points, n is a direction vector
// OpenGL commands to set color are not shown
line L; circle C; dualPlane p;

L =unit_r(11 ~ 12 ~ ni); // ni represents the point at infinity
C cl » c2 » c3;
p =pl << (n *ni);

draw(L); // draw line (red)
draw(C); // draw cicle (green)
draw(p); // draw plane (yellow)

draw(—p * L * inverse(p)); // draw reflected Tine (magenta)
draw(—p * C * inverse(p)); // draw reflected circle (blue)

// compute rotation versor:

const float phi = (float)(M_PI / 2.0);
TRversor R;

R = exp(0.5f * phi * dual(L));

draw(R * C * inverse(R)); // draw rotated cicle (green)

// draw reflected, rotated circle (blue)
draw(—=p * R * C * inverse(R) * inverse(p));

// draw interpolated circles
pointPair LR = log(R); // get log of R
for (float alpha = 0; alpha < 1.0; alpha += 0.1f)
{
// compute interpolated rotor
TRversor iR;
iR = exp(alpha * LR);

// draw rotated circle (light green)
draw(iR * C * inverse(iR));

// draw reflected, rotated circle (light blue)
draw(—p * iR * C * inverse(iR) * inverse(p));

Figure 1.2: Code to generate Figure 1.1.

You may be concerned about the many different products that occurred in this application.
If geometric algebra needs a new product for every new operation, its power would
be understandable, but the system would rapidly grow unwieldy. This is perhaps the
biggest surprise of all: there is only one product that does it all. It is the geometric product

6 WHY GEOMETRIC ALGEBRA?

(discovered by William Kingdon Clifford in the 1870s), which we used implicitly
in the example in the sandwiching operations of rotation and reflection. The other
products (A, |, *, sandwiching) are all specially derived products for the purposes of span-
ning, metric projection, complementation, and operating on other elements. They can all
be defined in terms of the geometric product, and they correspond closely to how we think
about geometry classically. That is the main reason that they have been given special sym-
bols. Once you get used to them, you will appreciate the extra readability they offer. But
it is important to realize that you really only need to implement one product to get the
whole consistent functionality of geometric algebra.

Because of the structural properties of geometric algebra, this example can be extended
in many ways. To name a few:

e Spherical Reflection. If we had instead wanted to reflect this situation in a sphere,
this is done by
X = —oX/o.

Here o is the dual representation of a sphere (it encodes a sphere with center ¢ pass-
ing through p as the representational vector p | (c A o0)). We depict this in Figure 1.3.

RC/R

Figure 1.3: The rotation of a circle C (determined by three points cj, ¢z, c3) around a line L,
and the reflections of those elements in a sphere ©.

CHAPTER 1

SECTION 1.2

HOW IT WORKS AND HOW IT’S DIFFERENT 7

The only thing that is different from the program generating Figure 1.1 is that the
plane 7 was replaced by the sphere o, not only geometrically, but also algebraically.
This generates the new reflection, which reflects the line L to become the circle
M = —o L/o. It also converts the reflected rotor around M into the operation ¢ R/o,
which generates a scaled rotation around a circle, depicted in the figure. The whole
structure of geometric relationships is nicely preserved.

Intersections. The n-based reflection operator of item 6 takes the line L and pro-
duces the reflected line —z L/, without even computing the intersection point of
the line and the plane. If we had wanted to compute the intersection of line and
plane, that would have been the point z| L = IT* | L. This is another universal prod-
uct, the meet, which computes the intersection of two elements IT and L.

Differentiation. It is even possible to symbolically differentiate the final expression
of the reflected rotated circle to any of the geometrical elements occurring in it. This
permits a sensitivity analysis or a local linearization; for instance, discovering how
the resulting reflected rotated circle would change if the plane 7 were to be moved
and tilted slightly.

1.2 HOW IT WORKS AND HOW IT’S DIFFERENT

The example has given you an impression of what geometric algebra can do. To under-
stand the structure of the book, you need a better feeling for what geometric algebra is,
and how it relates to more classical techniques such as linear algebra.

The main features of geometric algebra are:

Vector Spaces as Modeling Tools. Vectors can be used to represent aspects of geom-
etry, but the precise correspondence is a modeling choice. Geometric algebra offers
three increasingly powerful models for Euclidean geometry.

Subspaces as Elements of Computation. Geometric algebra has products to com-
bine vectors to new elements of computation. They represent oriented subspaces of
any dimension, and they have rich geometric interpretations within the models.

Linear Transformations Extended. A linear transformation on the vector space dic-
tates how subspaces transform; this augments the power of linear algebra in a struc-
tural manner to the extended elements.

Universal Orthogonal Transformations. Geometric algebra has a special represen-
tation of orthogonal transformations that is efficient and universally applicable in
the same form to all geometric elements.

Objects Are Operators. Geometric objects and operators are represented on a par,
and exchangeable: objects can act as operators, and operators can be transformed
like geometrical objects.

8 WHY GEOMETRIC ALGEBRA?

¢ Closed Form Interpolation and Perturbation. There is a geometric calculus that can
be applied directly to geometrical objects and operators. It allows straightforward
interpolation of Euclidean motions.

In the following subsections, we elaborate on each of these topics.

1.2.1 VECTOR SPACES AS MODELING TOOLS

When you use linear algebra to describe the geometry of elements in space, you use a real
vector space R"”. Geometric algebra starts with the same domain. In both frameworks,
the vectors in an m-dimensional vector space R™ represent 1-D directions in that space.
You can think of them as denoting lines through the origin. To do geometry flexibly, we
want more than directions; we also want points in space. The vector space R” does not
have those by itself, though its vectors can be used to represent them.

Here it is necessary to be more precise. There are two structures involved in doing geo-
metrical computations, both confusingly called “space.”

e There is the physical 3-D space of everyday experience (what roboticists call the task
space). It contains the objects that we want to describe computationally, to move
around, to analyze data about, or to simply draw.

o Mathematics has developed the concept of a vector space, which is a space of abstract
entities with properties originally inspired by the geometry of physical space.

Although an m-dimensional vector space is a mathematical generalization of 3-D physical
space, it does not follow that 3-D physical space is best described by a 3-D vector space.
In fact, in applications we are less interested in the space than in the geometry, which
concerns the objects residing in the space. That geometry is defined by the motions that
can freely move objects. In Euclidean geometry, those motions are translations, rotations,
and reflections. Whenever two objects differ only by such transformations we refer to
them as the same object, but at a different location, with a different orientation, or viewed
in a mirror. (Sometimes scaling is also included in the permitted equivalences.)

So we should wonder what computational model, based in a vector space framework, can
conveniently represent these natural motions of Euclidean geometry. Since the motions
involve certain measures to be preserved (such as size), we typically use a metric vector
space to model it. We present three possibilities that will recur in this book:

1. The Vector Space Model. A 3-D vector space with a Euclidean metric is well suited to
describe the algebra of directions in 3-D physical space, and the operation of rotation
that transforms directions. Rotations (and reflections) are orthogonal linear trans-
formations: they preserve distances and angles. They can be represented by 3 x 3
orthogonal matrices or as quaternions (although the latter are not in the linear alge-
bra of R3, we will see that they are in the geometric algebra of R3).

2. The Homogeneous Model. If you also want to describe translations in 3-D space,
it is advantageous to use homogeneous coordinates. This employs the vectors of a

CHAPTER 1

SECTION 1.2

HOW IT WORKS AND HOW IT’S DIFFERENT 9

4-D vector space to represent points in physical 3-D space. Translations now also
become linear transformations, and therefore combine well with the 3-D matrix
representation of rotations.

The extra fourth dimension of the vector space can be interpreted as the point at the
origin in the physical space. There is some freedom in choosing the metric of this
4-D vector space, which makes this model suitable for projective geometry.

3. The Conformal Model. If we want the translations in 3-D physical space represented
as orthogonal transformations (just as rotations were in the 3-D vector space model),
we can do so by employing a 5-D vector space. This 5-D space needs to be given a
special metric to embed the metric properties of Euclidean space. It is expressed as
R*%!, a5-D vector space with a Minkowski metric.

The vectors of the vector space R*! can be interpreted as dual spheres in 3-D phys-
ical space, including the zero-radius spheres that are points. The two extra dimen-
sions are the point at the origin and the point at infinity.

This model was used in the example of Figure 1.1. It is called the conformal model
because we get more geometry than merely the Euclidean motions: all conformal
(i.e., angle-preserving) transformations can be represented as orthogonal transfor-
mations. One of those is inversion in a sphere, which explains why we could use a
spherical reflector in Figure 1.3.

Although these models can all be treated and programmed using standard linear algebra,
there is great advantage to using geometric algebra instead:

e Geometric algebra uses the subspace structure of the vector spaces to construct
extended objects.

e Geometric algebra contains a particularly powerful method to represent orthogonal
transformations.

The former is useful to all three models of Euclidean geometry; the latter specifically
works for the first and third. In fact, the conformal model was invented before geometric
algebra, but it lay dormant. Only with the tools that geometric algebra offers can we real-
ize its computational potential. We will treat all these models in Part II of this book, with
special attention to the conformal model. In Part I, we develop the techniques of geomet-
ric algebra, and prefer to illustrate those with the more familiar vector space model, to
develop your intuition for its computational capabilities.

1.2.2 SUBSPACES AS ELEMENTS OF COMPUTATION

Whatever model you use to describe the geometry of physical space, understanding vector
spaces and their transformations is a fundamental prerequisite. Linear algebra gives you
techniques to compute with the basic elements (the vectors) by using matrices. Geometric
algebra focuses on the subspaces of a vector space as elements of computation. It constructs
these systematically from the underlying vector space, and extends the matrix techniques

10 WHY GEOMETRIC ALGEBRA?

to transform them, even supplanting those completely when the transformations are
orthogonal.

The outer product A has the constructive role of making subspaces out of vectors. It uses
k independent vectors v; to construct the computational element vi Avy A - - - Avg, which
represents the k-dimensional subspace spanned by the v;. Such a subspace is proper (also
known as homogeneous): it contains the origin of the vector space, the zero vector 0. An
m-dimensional vector space has many independent proper subspaces: there are (f) sub-
spaces of k dimensions, for a total of 2" subspaces of any dimension. This is a considerable
amount of structure that comes for free with the vector space R, which can be exploited
to encode geometric entities.

Depending on how the vector space R is used to model geometry, we obtain different
geometric interpretations of its outer product.

* In the vector space model, a vector represents a 1-D direction in space, which can
be used to encode the direction of a line through the origin. This is a 1-D proper
subspace. The outer product of two vectors then denotes a 2-D direction, which
signifies the attitude of an oriented plane through the origin, a 2-D proper subspace
of the vector space. The outer product of three vectors is a volume. Each of those
has a magnitude and an orientation. This is illustrated in Figure 1.4(a,b).

e In the homogeneous model, a vector of the vector space represents a point in the
physical space it models. Now the outer product of two vectors represents an ori-
ented line in the physical space, and the outer product of three vectors is interpreted
as an oriented plane. This is illustrated in Figure 1.4(c,d). By the way, this represen-
tation of lines is the geometric algebra form of Pliicker coordinates, now naturally
embedded in the rest of the framework.

e In the conformal model, the points of physical space are viewed as spheres of radius
zero and represented as vectors of the vector space. The outer product of three points
then represents an oriented circle, and the outer product of four points an oriented
sphere. This is illustrated in Figure 1.4(e,f). If we include the point at infinity in
the outer product, we get the “flat” elements that we could already represent in the
homogeneous model, as the example in Section 1.1 showed.

It is very satisfying that there is one abstract product underlying such diverse construc-
tions. However, these varied geometrical interpretations can confuse the study of its alge-
braic properties, so when we treat the outer product in Chapter 2 and the rest of Part I,
we prefer to focus on the vector space model to guide your intuitive understanding of
geometric algebra. In that form, the outer product dates back to Hermann Grassmann
(1840) and is the foundation of the Grassmann algebra of the extended quantities we call
proper subspaces. Grassmann algebra is the foundation of geometric algebra.

In standard linear algebra, subspaces are not this explicitly represented or constructed.
One can assemble vectors v; as columns in a matrix [[V]] = [vi v2 - - - vi]l, and then treat
the image of this matrix, im([[V]]), as a representation of the subspace, but this is not an

CHAPTER 1

SECTION 1.2 HOW IT WORKS AND HOW IT’S DIFFERENT 1

(a) (b)
b .
ea
a eC
(© (d)
b
b
a
Y a
c
(e ()
Figure 1.4: The outer product and its interpretations in the various models of Euclidean
geometry. (a,b): the vector space model; (c,d): the homogeneous model; and (e,f): the con-
formal model.

12 WHY GEOMETRIC ALGEBRA?

integral part of the algebra; it is not a product in the same sense that the dot product is. If
the matrix is square, we can take the determinant det([[V]]) to represent the amount of area
or volume of the subspace and its orientation, but if it is not square, such measures are less
easily represented. Subspaces are simply not well represented in standard linear algebra.

1.2.3 LINEAR TRANSFORMATIONS EXTENDED

Linear transformations are defined by how they transform vectors in the vector space R™.
As these vectors transform, so do the subspaces spanned by them. That fully defines how
to extend a linear transformation to the subspace structure.

If one uses a matrix for the representation of the linear transformation on the vector space
level, it is straightforward and automatic to extend this to a matrix that works on the sub-
space levels. You just take the outer product of its action on the basis vectors as its defini-
tion on the basis for subspaces. Now you can perform the same linear transformation on
any subspace.

This way of thinking about linear transformations, with its use of the outer product,
already provides structural advantages over the usual coordinate-based methods. Pro-
grams embedding this automatic transference of a vector space mapping to its subspaces
are simpler. Moreover, they permit one to choose a representation for geometric elements
that transforms most simply within this framework. An example is the representation of
the attitude of a plane through the origin; its representation by a normal vector has more
complicated transformations than its equally valid representation by an outer product of
two vectors.

Within the subspace representation, a general product can be given for the intersection
of subspaces (the meet product), which also transform in a structure-preserving manner
under the extended linear transformations (the transform of an intersection is the inter-
section of the transforms). This uses more than the outer product alone; it also requires
the contraction, or dualization.

The resulting consistent subspace algebra is good to understand first. Its subspace
products are the algebraic extensions of familiar techniques in standard linear algebra.
Seeing them in this more general framework will improve the way you program in lin-
ear algebra, even if you do not make explicit use of the extended data structures that the
subspaces provide. Therefore we begin our journey with the treatment of this subspace
algebra, in Chapters 2 to 5.

1.2.4 UNIVERSAL ORTHOGONAL TRANSFORMATIONS

In the vector space model and the conformal model, orthogonal transformations are used
to represent basic motions of Euclidean geometry. This makes that type of linear transfor-
mation fundamental to doing geometry in those models. (General linear transformations
are still useful to represent deformations of elements, on top of the basic motions of the
geometry, but they are not as crucial).

CHAPTER 1

SECTION 1.2

HOW IT WORKS AND HOW IT’S DIFFERENT 13

Geometric algebra has a special way to represent orthogonal transformations, more
powerful than using orthogonal matrices. These are versors, and the example in
Section 1.1 showed two instances of them: a rotor and a reflector. A versor V transforms
any element X of the geometric algebra according to the versor product:

X (=D)YVX/V,

where the sign factor depends on the dimensionality of X and V, and need not concern us
in this introduction. This operator product transcends matrices in that it can act directly
on arbitrary elements: vectors, subspaces, and operators.

The product involved in the sandwiching of the versor product is the geometric product;
as a consequence, subsequent operators multiply by the geometric product. For instance,
Ry (Ry X/R1)/Ry = (Ra Ry) X/(Ra Ry). This product is linear, associative, and invertible,
but not commutative. That matches its geometric interpretation: orthogonal transfor-
mations are linear, associative, and invertible, but their order matters.

The two-sidedness of the versor product of an operator may come as a bit of a surprise,
but you probably have seen such two-sided products before in a geometrical context.

* When the vectors of a space transform by a motion represented by [M] (so that [x]]
becomes [M] [x]]), a matrix [A]] transforms to become [M] [A] [M] ~}. Note that
in linear algebra, vectors and operators transform differently, whereas in geometric
algebra they transform in the same manner.

e Another classical occurrence of the two-sided product is the quaternion repre-
sentation of 3-D rotations. Those are in fact rotors and, therefore, versors. In
the classical representation, you need to employ three imaginary numbers to repre-
sent them properly. We will see in Chapter 7 how geometric algebra simply uses
the real subspaces of a 3-D vector space to construct quaternions. Quaternions
are not intrinsically imaginary! Moreover, when given this context, they become
universal operators, capable of rotating geometric subspaces (rather than only
being applicable to other quaternions).

The versor form of an orthogonal transformation automatically guarantees the preserva-
tion of algebraic structure (more technically known as covariance). Geometrically, this
implies that the construction of an object from moved components equals the movement of
the object constructed from the original components. Here, “construction” can be the con-
nection of the outer product, the intersection of the meet, the complementation of the
duality operation, or any other geometrically significant operation.

You have seen in the example how this simplifies constructions. In traditional linear
algebra, one can only transform vectors properly, using the matrices. So to move any
construction one has built, one has to move the vectors on which it was based and rebuild
it from scratch. With geometric algebra, it is possible to move the construction itself: the
lines, circles, and other components, and moreover all of these are moved by the same
versor construction with the same versor representing the motion.

14 WHY GEOMETRIC ALGEBRA?

You need no longer to be concerned about the type of element you are moving; they all
automatically transform correctly. That means you also do not need to invent and build
special functions to move lines, planes, or normal vectors and can avoid defining a motion
method for each data structure, because all are generic. In fact, those differing methods
may have been one of the reasons that forced you to distinguish the types in the first
place. Now even that is not necessary, because they all find their place algebraically rather
than by explicit construction, so fewer data types are required. This in turn reduces the
number of cases in your program flow, and therefore may ultimately simplify the program
itself.

1.2.5 OBJECTS ARE OPERATORS

In geometric algebra, operators can be specified directly in terms of geometric elements
intrinsic to the problem.

We saw in Section 1.1, item 6, how the dual plane z (i.e., an object) could be used imme-
diately as the reflector (i.e., an operator) to produce the reflected line and circles. We also
constructed the rotor representing the rotation around the line L by exponentiating the
line in item 4.

Geometric algebra offers a range of constructions to make versors. It is particularly simple
to make the versors representing basic motions as ratios (i.e., using the division of the
geometric product): the ratio of two planes is a rotation versor, the ratio of two points is
a translation versor, and the ratio of two lines in 3-D is the screw motion that turns and
slides one into the other. These constructions are very intuitive and satisfyingly general.

As you know, it is much harder to define operators in such direct geometrical terms using
linear algebra. We summarize the usual techniques:

e There are several methods to construct rotation operators. Particularly intricate are
various kinds of standardized systems of orientating frames by subsequent rota-
tions around Euler angles, a source of errors due to the arbitrariness of the coordi-
nate frames. One can construct a rotation matrix from the rotation axis directly (by
Rodrigues’ formula), and this is especially simple for a quaternion (which is already
an element of geometric algebra). Unfortunately, even those are merely rotations at
the origin. There is no simple formula like the exp($bL*/2) of geometric algebra to
convert a general axis L into a rotation operator.

» Translations are defined by the difference of vectors, which is simple enough, but
note that it is a different procedure from defining rotations.

* A general rigid body motion converting one frame into another can be artificially
split into its rotational aspects and translational aspects to produce the matrix.
Unfortunately, the resulting motion matrix is hard to interpolate. More rewarding
is a screw representation, but this requires specialized data structures and Chasles’
theorem to compute.

CHAPTER 1

SECTION 1.3

PROGRAMMING GEOMETRY 15

The point is that these linear algebra constructions are specific for each case, and
apparently tricky enough that the inventors are often remembered by name. By contrast,
the geometric algebra definition of a motion operator as a ratio is easily reinvented by any
application programmer.

1.2.6 CLOSED-FORM INTERPOLATION AND PERTURBATION

In many applications, one would like to apply a motion gradually or deform it
continuously (for instance, to provide smooth camera motion between specified views).
In geometric algebra, interpolation of motions is simple: one just applies the correspond-
ing versor V piecemeal, in N steps of VI/N_ That Nt root of a motion versor V can be
determined by a logarithm, in closed form, as exp(log(V')/N). For a rotor representing a
rotation at the origin, this retrieves the famous “slerp” interpolation formula of quater-
nions, but it extends beyond that to general Euclidean motions. Blending of motions can
be done by blending their logarithms.

By contrast, it is notoriously difficult to interpolate matrices. The logarithm of a matrix
can be defined but it is not elementary, and not in closed form. A straightforward way to
compute it is to take the eigenvalue decomposition of the rigid body motion matrix in
the homogeneous coordinate framework, and take the Nth root of the diagonal matrix.
Such numerical techniques makes the matrix logarithm expensive to compute and hard
to analyze.

Perturbations of motions are particularly easy to perform in geometric algebra: the small
change in the versor-based motion VX/V to any element X can be simply computed as
X x B, the commutator product of X with the bivector logarithm of the perturbing versor.
This is part of geometric calculus, an integrated method of taking derivatives of geometric
elements relative to other geometric elements. It naturally gets into differential geom-
etry, a natural constituent of any complete framework that deals with the geometry of
physical space.

1.3 PROGRAMMING GEOMETRY

The structural possibilities of the algebra may theoretically be rich and inviting, but that
does not necessarily mean that you would want to use it in practical applications. Yet we
think you might.

1.3.1 YOU CAN ONLY GAIN

Geometric algebra is backwards-compatible with the methods you already use in your
geometrical applications.

Using geometric algebra does not obviate any of the old techniques. Matrices, cross prod-
ucts, Pliicker coordinates, complex numbers, and quaternions in their classical form are

16 WHY GEOMETRIC ALGEBRA?

all included in geometric algebra, and it is simple to revert to them. We will indicate these
connections at the appropriate places in the book, and in some applications we actually
revert to classical linear algebra when we find that it is more efficient or that it provides
numerical tools that have not yet been developed for geometric algebra. Yet seeing all these
classical techniques in the context of the full algebra enriches them, and emphasizes their
specific geometric nature.

The geometric algebra framework also exposes their cross-connections and provides uni-
versal operators, which can save time and code. For example, if you need to rotate a line,
and you have a quaternion, you now have a choice: you can convert the quaternion to a
rotation matrix and apply that to the positional and directional aspects of the line sepa-
rately (the classical method), or you view the quaternion as a rotor and apply it immedi-
ately to the line representation (the geometric algebra method).

1.3.2 SOFTWARE IMPLEMENTATION

We have made several remarks on the simpler software structure that geometric
algebra enables: universal operators, therefore fewer data types, no conversions between
formalisms, and consequently a simpler data flow.

Having said that, there are some genuine concerns related to the size of geometric algebra.
If you use the conformal model to calculate with the Euclidean geometry of 3-D space,
you use a 5-D vector space and its 2° = 32 subspaces. In effect, that requires a basis of 32
elements to represent an arbitrary element. Combining two elements could mean 32 x 32
real multiplies per geometric product, which seems prohibitive.

This is where the actual structure of geometric algebra comes to the rescue. We will explain
these issues in detail in Part III, but we can reassure you now: geometric algebra can
compete with classical approaches if one uses its algebraic structure to guide the imple-
mentation.

¢ Flements of geometric algebra are formed as products of other elements. This
implies that one cannot make an arbitrary element of the 32-dimensional frame-
work. Objects typically have a single dimensionality (which is three for circles and
lines) or a special structure (all flats contain the point at infinity o). This makes
the structure of geometrically significant elements rather sparse. A good software
implementation can use this to reduce both storage and computation.

 On the other hand, the 32 slots of the algebra are all used somehow, because they are
geometrically relevant. In a classical program, you might make a circle in 3-D and
would then have to think of a way to store its seven parameters in a data structure. In
geometric algebra, it automatically occupies some of the (g) = 10 slots of 3-vector
elements in the 5-D model. As long as you only allocate the elements you need, you
are not using more space than usual; you are just using the pre-existing structure to
keep track of them.

CHAPTER 1

SECTION 1.4 THE STRUCTURE OF THIS BOOK 17

 Using linear algebra, as you operate on the composite elements, you would have
to invent and write methods (for instance, to intersect a circle and a plane). This
would require special operations that you yourself would need to optimize for good
performance. By contrast, in geometric algebra everything reduces to a few basic
products, and their implementation can be optimized in advance. Moreover, these
are so well-structured that this optimization can be automated.

e Sinceall is present in a single computational framework, there is no need for conver-
sions between mathematically different elements (such as quaternions and rotation
matrices). Though at the lower level such conversions may be done for reasons of
efficiency, the applications programmer works within a unified system of geomet-
rically significant elements of computation.

Using insights and techniques like this, we have implemented the conformal model and
have used it in a typical ray-tracing application with a speed 25 percent slower than the
optimized classical implementation (which makes it about as costly as the commonly used
homogeneous coordinates and quaternion methods), and we believe that this overhead
may be reduced to about 5 to 10 percent. Whether this is an acceptable price to pay for a
much simpler high-level code is for you to decide.

We believe that geometric algebra will be competitive with classical methods when we also
adapt algorithms to its new capabilities. For instance, to do a high-resolution rendering,
you now have an alternative to using a much more dense triangulation (requiring many
more computations). You could use the new and simple description of perturbations to
differentially adapt rays of a coarse resolution to render an ostensibly smoother surface.
Such computation-saving techniques would easily compensate for the slight loss of speed
per calculation.

Such algorithms need to be developed if geometric algebra is to make it in the real world.
We have written this book to raise a new generation of practitioners with sufficient fun-
damental, intuitive, and practical understanding of geometric algebra to help us develop
these new techniques in spatial programming.

1.4 THE STRUCTURE OF THIS BOOK

We have chosen to write this book as a gradual development of the algebraic terms in tan-
dem with geometric intuition. We describe the geometric concepts with increasing preci-
sion, and simultaneously develop the computational tools, culminating in the conformal
model for Euclidean geometry. We do so in a style that is not more mathematical than
we deem necessary, hopefully without sacrificing exactness of meaning. We believe this
approach is more accessible than axiomatizing geometric algebra first, and then having
to discover its significance afterwards.

The book consists of three parts that should be read in order (though sometimes a
specialized chapter could be skipped without missing too much).

18 WHY GEOMETRIC ALGEBRA?

1.4.1 PART I: GEOMETRIC ALGEBRA

First, we get you accustomed to the outer product that spans subspaces (and to the
desirability of the “algebraification of geometry”), then to a metric product that extends
the usual dot product to these subspaces. These relatively straightforward extensions from
linear algebra to a multilinear algebra (or subspace algebra) already allow you to extend
linear mappings and to construct general intersection products for subspaces. Those capa-
bilities will extend your linear algebra tool kit considerably.

Then we make the transition to true geometric algebra with the introduction of the
geometric product, which incorporates all that went before and contains more beyond
that. Here the disadvantage of the approach in this book is momentarily annoying, since
we have to show that the new definitions of the terms from the earlier chapters are “back-
wards compatible.” But once that has been established, we can rapidly move on from
considering objects (the subspaces) to operators acting on them. We then easily absorb
tools you may not have expected to encounter in real vector spaces, such as complex num-
bers and quaternions. Both are available in an integrated manner, real in all normal senses
of the word, and geometrically easily understood.

Part I concludes with a chapter on geometric differentiation, to show that differential
geometry is a natural aspect of geometric algebra (even though we will use it only inci-
dentally in this book).

1.4.2 PART Il: MODELS OF GEOMETRY

In Part II the new algebra will be used as a tool to model aspects of mostly Euclidean
geometry. First, we treat directions in space, using the vector space model, already familiar
from the visualizations used in Part I to motivate the algebra.

Next, we extend the vector embedding trick of homogeneous coordinates from practical
computer science to the complete homogeneous model of geometric algebra, which
includes Pliicker coordinates and other useful methods.

Finally, in Chapter 13 we can begin to treat the conformal model of the motivating exam-
ple in Section 1.1. The conformal model is the model that has Euclidean geometry as an
intrinsic part of its structure; all Euclidean motions are represented as orthogonal trans-
formations. We devote four chapters to its definition, constructions, operators, and its
ability to describe general conformal transformations.

1.4.3 PART lIl: IMPLEMENTATION OF GEOMETRIC ALGEBRA

To use geometric algebra, you will need an implementation. Some are available, or you
may decide to write your own. Naive implementations run slow, because of the size of the
algebra (32-D for the basis of the conformal model of a 3-D Euclidean space).

CHAPTER 1

SECTION 1.5

THE STRUCTURE OF THE CHAPTERS 19

In the third part of this book, we give a computer scientist’s view of the algebraic
structure and describe aspects that are relevant to any efficient implementation, using its
multiplicative and sparse nature. We end with a simple ray tracer to enable comparison
of computational speeds of the various methods in a computer graphics application.

1.5 THE STRUCTURE OF THE CHAPTERS

Each regular chapter consists of an explanation of the structure of its subject. We explain
this by developing the algebra with the geometry, and provide examples and illustrations.
Most of the figures in this book have been rendered using our own software package,
GAViewer. This package and the code for the figures are available on our web site,

http://www.geometricalgebra.net.

We recommend that you download the software, install it, and follow the instructions to
upload the figures. You can then interact with them. At the very least you should be able to
use your mouse for 3-D rotation and translation to get the proper spatial impression of the
scene. But most figures also allow you to interactively modify the independent elements
of the scene and study how the dependent elements then change.

You can even study the way we have constructed them' and change them on a command
line; though if you plan to do that we suggest that you first complete the GAV i ewer tutorial
on the web site. This will also allow you to type in formulas of numerical examples.

If you really plan to use geometric algebra for programming, we recommend doing the
drills and programming exercises with each chapter. The programming exercises use a
special library, the GA sandbox, also available from the web site. It provides the basic data
structures and embedding of the products so that you can program directly in geometric
algebra. This should most closely correspond to how you are likely to use it as an extension
of your present programming environment.

We also provide structural exercises that help you think about the coherence of the geo-
metric algebra subject in each chapter and ask you to extend some of the material or
provide simple proofs. For answers to these exercises, consult the web site.

Historically, geometric algebra has many precursors, and we will naturally touch upon
those as we develop our concepts and terms. We do not meticulously attribute all results
and thoughts, but occasionally provide a bit of historic perspective and contrast with tra-
ditional approaches. At the end of each chapter, we will give some recommended literature
for further study.

1 But be warned that some illustrative figures of the simpler models may use elements of the conformal model in
their code, since that is the most natural language to specify general elements of Euclidean geometry.

2 SPANNING ORIENTED
SUBSPACES

After many attempts at formalizing space and spatial relationships, the concept of a vector
space emerged as the useful framework for geometrical computations. We use it as our
point of departure, and use some of the standard linear algebra governing its mappings.
Yet already we will have much to add to its usual structure. By the end of this chapter you
will realize that a vector space is much more than merely a space of vectors, and that it is
straightforward and useful to extend it computationally.

The crucial idea is to make the subspaces of a vector space explicit elements of computa-
tion. To build our algebra of subspaces, we revisit the familiar lines and planes through the
origin. We investigate their geometrical properties carefully, and formalize those by the
aid of a new algebraic outer product, which algebraically builds subspaces from vectors.

We consider the structure it gives us for the Grassmann space of subspaces of a vector
space R”, and define many terms to describe its features.

Throughout this chapter, we consider a real n-dimensional vector space R”, but have no
need for a metric; and we only treat its homogeneous subspaces (i.e., subspaces containing
the origin).

23

24 SPANNING ORIENTED SUBSPACES

2.1 VECTOR SPACES

We start with an n-dimensional vector space. However, the definition of a vector space
in linear algebra is more general than what we need in this book, being defined over
arbitrary fields of scalars. Since we are interested in computing with spatial elements, we
will immediately narrow our focus and consider only n-dimensional vector spaces over
the real numbers R. Such a vector space R" consists, by definition, of elements called
vectors and an addition and multiplication by reals (called scalars), such that

(1) x+y € R” Vx,y€eR"

(2) x+y)+z = x+(y+z) Vxy,zeR"

(3) d0eR"” : x+0=x VxeR"

(4) dyeR" : x4+y=0 VxeR"

(5) x+y = y+x Vx,y € R"

(6) a(x+y) = ax+ay VaeR,x,yeR"
(7) (a+pP)x = ax+fx Va,feR,xeR"”
(8) (ap)x = a(fx) Va,peR,x € R"
) 1x x VxeR"

Properties (1-4) make the vector space into a group, property (5) even into a commutative
group, and properties (6-9) define how scalar multiplication works on its elements. All
this shows that scalars are considered separate from vectors, and that no other elements
are part of the usual definition of a vector space.

Such a vector space can contain subspaces that are also vector spaces. The dimensionality
of a (sub)space is the maximum number of independent vectors in it (i.e., vectors that
cannot be expressed as a scalar-weighted sum of other vectors). These subspaces must
obviously contain the element 0, and are sometimes called homogeneous subspaces (or
proper subspaces).

In standard linear algebra, specific homogeneous subspaces are defined implicitly,
typically by sets of vector equations, or explicitly by parameterized expressions. That is
workable, but it is really too cumbersome for such important algebraic features of any
vector space. We will first turn subspaces into direct elements of computation, following
the pioneering work by Grassmann (in 1844) that unfortunately did not make it into the
mainstream linear algebra texts.

To do so, we revisit the familiar homogeneous subspaces of a vector space in their geo-
metrical interpretation. We list their properties, defining terms that unify those across
dimensions. This uncovers an algebraic product that can span them, thus making those
subspaces and their properties elements of computation.

The concept of a subspace is independent of any metric properties a vector space might
have. In this chapter, we therefore avoid using a metric and the inner product that

CHAPTER 2

SECTION 2.2

ORIENTED LINE ELEMENTS 25

defines it. This also implies that we cannot use orthonormal bases in our examples, which
may make them look a bit less specific than they could be. Of course, the concepts still
work when you do have a metric, and some of the exercises bring this out. This is the only
chapter in which we avoid using a metric, since that is the cleanest way to show that the
results actually hold for a vector space with any kind of metric.

2.2 ORIENTED LINE ELEMENTS

To develop our thinking about subspaces, we consider the homogeneous subspaces of a
3-D space, sketched in Figure 2.1. We skip over the 0-D subspace of Figure 2.1(a) for the
moment, and start with lines through the origin.

2.2.1 PROPERTIES OF HOMOGENEOUS LINES

A line through the origin is a 1-D homogeneous subspace of the vector space R”. It is
characterized by any nonzero vector a, in the sense that any vector x denoting a point
on the line is a multiple of a. This gives a correspondence between the geometry and the
algebra of a line:

x on line determined by a < x = Aa, for some 4 € R, (2.1)

see Figure 2.1(b). If you think of a line as a set of points, then any scalar multiple of a
determines the same line. For many applications, this is enough, but in others you need
more detailed properties, such as its heading (opposite for a and —a) and its speed (twice
as much for 2a as for a). The characterization of a line by a vector allows it to have those
extra properties. In preparation for more general subspaces, we attempt to find descriptive

(@) (b) () (d)

Figure 2.1: Spanning homogeneous subspaces in a 3-D vector space.

26 SPANNING ORIENTED SUBSPACES

terms for those features that can transcend vectors. At first, these terms will seem merely
intuitive, but we can give them more exact definitions when we are done, in Table 2.1.

* A line has an attitude (or stance) in the surrounding space; it is characterized by
pa, for any nonzero p. We will use the term attitude purely in the sense of the sub-
space occupied by the line; lines characterized by a and —a have the same attitude.
They both determine the same linear line-like carrier stretching to infinity in both
directions.

» We can give the line an orientation; this means that we care about the sign of 4 in
(2.1). Then a and —a represent lines of different orientation (but 2a has the same
orientation as a).! We will reserve the term direction for a combination of attitude
and orientation; so the set of all vectors Aa with the same a and the same sign of 4
represent lines with the same direction.

e We also care about a distance measure along the line, which is quantified in the
magnitude of a. Here we should be careful in choosing our term, since “magnitude”
suggests a metric measure by which we can compare different lines. For now, we
cannot, since we are still working in a nonmetric vector space. We choose to use the
term weight (because the term speed does not transfer well to higher-dimensional
subspaces). A line with twice the weight could be said to pass through its points twice
as fast for the same change in 4. We will allow the weight to be negative, in which
case the line is oriented oppositely to a standard direction for that 1-D subspace.

Those three properties of an oriented line through the origin are all part of its specification
by a vector.

2.2.2 VISUALIZING VECTORS

As is customary, we visualize vectors as arrows. The straightness of the arrow indicates its
nature of representing a 1-D subspace; the length is its weight, the attitude is indicated by
the shaft, and the orientation by the ordering from tail to arrowhead.

The addition of arrows can be represented by the familiar parallelogram construction:
place the two arrows to be added with their tails together, complete the parallelogram to
obtain a fourth location, and the result is an arrow from the tails to the opposite point, as
in Figure 2.2.

This and all similar figures have been generated using our software GAViewer, and you
can download these figures to view and change them interactively (see Section 1.5).

The visualizations serve an important purpose in this book, and the interactive software
is essential to get a good feeling for geometric algebra. Vector addition is a good example
of the principle. If you would work on paper, in coordinates, you might think that vector
addition in 3-D is the addition of three scalars. It is implemented in that way, of course,

1 This use of the term oriented line is common in oriented projective geometry (see [60]).

CHAPTER 2

SECTION 2.3 ORIENTED AREA ELEMENTS 27

a+b

Figure 2.2: Imagining vector addition.

to generate the figures. But you should think and feel that vector addition is geometric: it
completes the parallelogram of a and b, and algebraically there is no need to go lower than
the notation a+b, which has all the properties you need. After you have loaded Figure 2.2
in GAViewer, you can drag a and b, and see the resulting change in a + b, in 3-D. That
conveys precisely this coordinate-free feeling. Playing with this and the other figures will
aid your intuition. It will help you dare to leave coordinates behind, and think about the
algebra at the proper level of geometric primitives.

2.3 ORIENTED AREA ELEMENTS

2.3.1 PROPERTIES OF PLANES

A plane through the origin is a 2-D homogeneous subspace of the vector space R". It may
be determined by two linearly independent vectors, a and b, in the sense that any vector
x in the plane can be written as

x = Aa + ub.

This specification is not unique. For instance, replacing a and b by (a + b)/v2 and
(a — b)/v2 gives the same set of vectors, as do many other linear combinations on a and
b. We should think about replacing the specification with something more appropriate,
which will make it easier to verify whether two specifications refer to the same plane.

Moreover, just like the homogeneous line, a homogeneous plane has more properties than
just being a set of vectors. We list those properties, illustrated in Figure 2.1(c):

e A homogeneous plane has an attitude in the surrounding n-dimensional space
R”. This is its “subspace aspect” of being a particular planar carrier. In 3-D, this
is the property traditionally characterized by a normal vector for the plane, with

28 SPANNING ORIENTED SUBSPACES

any weight or orientation. But such a characterization by a vector is insufficient for
a planar subspace of an n-dimensional space. (Another defect is that it character-
izes the nonmetric concept of a particular 2-D subspace by a metric construction
involving perpendicularity.)

e A plane may be considered to have an orientation, in the sense that the plane
determined by two vectors a and b would have the opposite orientation of a plane
determined by the vectors b and a. We use this often when we specify angles, speak-
ing of the angle from a to b as being of opposite sign to the angle from b to a. The
sign of the angle should be referred to more properly as relative to the orientation
of the plane in which its defining vectors reside.

A plane has a measure of area, which we shall call its weight. The plane determined by
the vectors 2a and b has twice the weight (or double the area measure) of the plane
determined by the vectors a and b. As with vectors, this weight is for now only a
relative measure within planes of the same attitude. (We would need a metric to
compare areas within different planes.)

In linear algebra, the orientation and the area measure are both well represented by the
determinant of a matrix made of the two spanning vectors a and b of the plane: the ori-
entation is its sign, the area measure its weight (both relative to orientation and area mea-
sure of the basis used to specify the coordinates of a and b). In 2-D, this specifies an area
element of the plane. In 3-D, such an area element would be incomplete without a specifi-
cation of the attitude of the plane in which it resides. Of course we would prefer to have a
single algebraic element that contains all this geometric information about the plane.

2.3.2 INTRODUCING THE OUTER PRODUCT

We now introduce a product between vectors to aid in the specification of the plane con-
taining the two vectors a and b. Its definition should allow us to retrieve all geometrical
properties of the plane. We denote this algebraic product by a A b.

The algebraic consequence of our geometrical desire to give the plane an orientation is
that aAb should be opposite in sign to bAa, so thataAb = —bAa. When b coincides with
a, this would give the somewhat unusual algebraic resultaAa = —aAa. This suggests that
the square of a, using this product, must be zero. Geometrically, this is very reasonable:
the vector a does not span a planar element with itself, and we may encode that as a planar
element with weight zero.”

When we decrease the angle between a and b, the area spanned by a and b gets smaller as
they become more parallel. In fact, in a space with a Euclidean metric you would expect
the measure of area associated with the planar element a A b to be ||a|| ||b|| sin &, with
¢ the angle between them. However, we should not make such an explicit property part
of the definition of a A b—it involves just too many extraneous concepts like norm and

2 We use “span” here informally, and different from the use in some linear algebra texts, where the span of two
identical vectors would still be their common 1-D subspace rather than zero. That span is not very well-behaved;
it is not even linear. In Chapter 5, its geometry will be encoded by the join product.

CHAPTER 2

SECTION 2.3

ORIENTED AREA ELEMENTS 29

angle, which are moreover intrinsically metric. Instead, we try to define the product so
that this metric area formula is a consequence of more basic axioms. We note that the area
measure increases linearly in the magnitude of each of the vector factors of the product.
So let us at least make the product bilinear, giving it proper scaling and distributivity
relative to the constituent vectors.

Bilinearity and antisymmetry are already enough to define the product a A b completely.
We call the result the outer product of a and b. In view of the above, its defining proper-
ties are:

Antisymmetry: aAb=-bAa
Scaling: aA (fb) =p(aAb)
Distributivity: aA(b+c)=(aAb)+(aAc)

We pronounce a A b as “a wedge b.” The outcome of the outer product a A b of two
vectors is called a bivector or, more properly, 2-blade (we explain the difference between
these terms in Section 2.9.3). It is an element of the algebra we are developing that is
different from the scalars and vectors we have seen so far. Since the outer product is linear,
its outcomes are elements of a linear space, the “bivector space.” If we denote that space
by /\2 R", the outer product is a mapping A : R” x R" — /\2 R™.

You may think ofaAb as the span of aand b, in a quantitative manner, or as an oriented area
element ofa particular homogeneous plane. Let us verify that that geometric interpretation
is indeed consistent with its algebraic properties. If we take a basis {ej,e,} in the subspace
with the same attitude asa A b, we can writea = aje; + ax ey andb = by e; + by es.
Then, using the definition, we develop the outer product to a recognizable form:

aAb=(aje;+are)) AN(bie; +brer)
=arbieghNei+a e Nex+arbiexNel+aybres ANey
(arby—axb)e Ney (2.2)

since the antisymmetry implies that e; A e; = —e; A ey, so it must be equal to 0—as is
any outer product of parallel vectors.

We can write the final result in terms of a determinant by introducing the matrix [[a b]]
with, as its columns, the coefficients of a and b on the {e;,e;}-basis. This yields

aAb=det([ab]) e Aep.

This determinant you know from linear algebra as a relative measure for the oriented
area spanned by a and b relative to the area spanned by the basis vectors e; and e,. Its
value is what we called the relative weight of a plane element. The other part of the result,
e; A e, can then be consistently interpreted as the geometrical unit in which area in this
plane is measured (i.e., the amount of standard area with the correct attitude, in the plane
spanned by the basis vectors e| and e). The orientation of the plane, and hence the relative
orientation of a A b, is specified by the order of e; and e;.

30 SPANNING ORIENTED SUBSPACES

The outcome of a A b neatly contains all three geometric properties in one algebraic
element of computation, as we had hoped. If you want to see what happens when you
have a Euclidean metric in the plane, do structural exercise 1.

In summary, we have the following algebraic representation of the geometry of homoge-
neous planes:

a A b is a weighted, oriented area element of the 2-D subspace spanned by a and b
(or other vectors producing the same attitude)

(see Figure 2.1(c), which also denotes a piece of the infinite homogeneous plane of which
a A bis a part). This element a A b may become zero when a and b are parallel, or when
either vector has zero norm, in agreement with our geometrical intuition that no planar
element is spanned in those cases.

When we have multiple area elements in different planes in space, we cannot choose inde-
pendent bases for each of them. Yet it is still possible to decompose a A b on a bivector
basis for the whole space. We demonstrate this in a 3-D space R? with a totally arbi-
trary basis {ej,ez,e3} (not necessarily orthonormal). Let the coefficients of a and b on
this basis be a; and b;, respectively. Then we compute, using the definition of the outer
product:

aAb

(aje; + azey + azes) A (bre; + brep + byes)

aibi(e; Aep) +arby(er Aey) +aibs(er Aes) +

arbi(ex Ney) +arbr(ey Aey) +arbz(er Aes) +

asbi(es Ney) +azby(es Aey) + azbs(es Aes) (2.3)

(a1by — azb1) ey Aey + (axbz —azby) ex Aes + (azhy —arbz) ez Aeg

This cannot be simplified further. We see that an outer product of two vectors in 3-D
space can be written as a scalar-weighted sum of three standard elements e; A ey, 2 A e3,
e3 A ej. Their weighting coefficients are obviously 2-D determinants, which we know
represent directed area measures, now of the components of the original plane on the
coordinate planes of the basis. The formula is then consistent with the interpretation
of these three elements as standard area elements for the coordinate planes of the basis
vectors.

It is a pleasant surprise that area elements in 3-D have such a decomposable struc-
ture as a weighted sum over a basis. Mathematically, this means that they reside
in their own bivector space of A*R3, of three dimensions, with basis elements
ep =e;Ney, €3 =exNe3, ez =e3 A 61.3

3 This bivector space satisfies the mathematical axioms of a vector space, but it would be geometrically confusing
to call its elements vectors. We will reserve the term vector exclusively for the elements of R".

CHAPTER 2

SECTION 2.3

ORIENTED AREA ELEMENTS 31

Any area element of the form a A b can be decomposed onto a basis of standard
area elements.

In 3-D space, the converse also holds: a weighted sum of basis 2-blades is an area element
that can be factorized by the outer product in the form a A b. But that property does
not hold in n-dimensional space; you cannot in general make factorizable 2-blades of the
form a A b simply by adding basis bivectors with arbitrary weights. We get back to this
important issue in Section 2.9.

With the outer product, we can generate additional structure from our initial 3-D vector
space R? and its real scalars R. You already know from linear algebra that determinants
of 2 x 2 matrices with 2-D vectors as columns are scalar areas, and that determinants of
3 x 3 matrices of 3-D vectors are scalar volumes; now we also have 2-D-oriented areas
spanned by 3-D vectors as a 3-D linear space of 2-D determinants. Subspaces and their
measures are beginning to fall into a new pattern.

2.3.3 VISUALIZING BIVECTORS

The algebraic properties of a bivector in 3-D are equivalent to those of a directed area
element. It is good to get a mental picture of such area elements, and of their interac-
tion using addition, that stays close to their algebraic properties. This will help us to “see”
bivectors in problems and their solutions.

A first attempt might be Figure 2.3(a): aAb as the parallelogram spanned by a and b. Since
that does not convey the orientation (it looks commutative rather than anticommutative),
we need to denote this orientation by something extra, such as by the oriented circular
arc inside. We could also use a representation like Figure 2.3(b), in which the orientation
follows naturally from the order of the arrows. We can extend this to show some more of
the anticommutativity of the construction, which impliesaAb = (-bAa) =bA (-a) =
(—a) A (—b) by showing all of those four vectors along the border, as in Figure 2.3(c). This
shows that none of the vertices of the parallelogram can be seen as an anchor. Therefore
the depiction of the bivector is free to move translationally within its carrier plane, though
we will prefer drawing it near the origin. Also, since a A a = 0, we have to remember that
drawing the corresponding parallelogram is equivalent to drawing nothing at all, rather
than some flattened shape.

Not only can we imagine sliding the bivector out of the origin, but we can also reshape it in
some ways without changing its algebraic value. Anticommutativity of the outer product
implies, for instance, that (a — %b) Ab=aAb=(a— %b) A (%a + %b). Therefore, we
are allowed to reshape the parallelogram geometrically by sliding the arrows along any
of its parallel sides (Figure 2.3(d, e)), obtaining another faithful depiction of the same
bivector a A b. If you have a coordinate system, there may be an advantage to redrawing the
bivector to have sides to be aligned with the coordinate vectors. But you should realize that
there is no unique way of doing this; sinceaAb = (2a) A (b/2), and so on, the magnitudes
of the components are adjustable (as long as area and orientation remain the same).

32 SPANNING ORIENTED SUBSPACES CHAPTER 2

(d)

®

Figure 2.3: Bivector representations.

In fact, as soon as we have computed a bivector quantity, we have lost the identity of the
vectors that generated it. We may therefore prefer to denote it by a circular area in the
plane, as in Figure 2.3(f) (as long as we realize that even this circular shape is arbitrary).

We cannot emphasize enough that these redrawings all represent the same element. The
algebraic bivector is not specific on shape; geometrically, it is an amount of oriented area
in a specific plane, that’s all. Initially, this may appear too vague to be useful; but we will
soon see that this “reshapeability” is a strength, not a weakness.

2.3.4 VISUALIZING BIVECTOR ADDITION

We can also make a geometrical representation of bivector addition. In the same plane,
addition of bivectors can be done by reshaping them until they can be added visually,
preserving both magnitude and orientation of their area during the reshaping, (see Fig-
ure 2.4). To add c Ad to aAb (assumed to be in the same plane!), first reshape cAd to be of
the form (yc) A (—b); see Figure 2.4(b). Place them side to side so that the (—b) side of the
first bivector matches the b side of the second. Then reshape the area again, so thatc A d
is finally of the form aa A b, as in Figure 2.4(c). Now the result is obviously (1 + a)a A b.
But of course, you could change the order of the arguments and do not really need to do
the reshaping at all. It is just a matter of putting oriented areas together and algebraically
it is handled automatically by adding their coefficients relative to a bivector basis.

SECTION 2.4 ORIENTED VOLUME ELEMENTS 33

(b) ©

Figure 2.4: Imagining bivector addition in 2-D space.

Now consider the addition of two bivectors in R3. In 3-D space, two homogeneous planes
intersect in at least a homogeneous line, so two bivectors must have some vector in com-
mon. Calling this vector e, we can then reshape the two addends to have e as a factor.
Then they are both aligned with e, and the bivector addition reduces to vector addition.
For example, we compute (3e; Aey)+(e3Aey) (as illustrated in Figure 2.5(a)) by factoring
out e = e and adding 3e; and e3 (Figure 2.5(b)). You have to be a bit careful, since you
may have to change the sign of one of the vectors before adding (Figures 2.5(c, d)) due to
the antisymmetry of the outer product.

In higher-dimensional spaces, this geometric construction is likely to fail, since in general
you will not be able to find a common 1-D direction for two planes. Algebraically this
corresponds to the fact that not all bivectors can be factored as the outer product of two
vectors; we call the ones that can 2-blades. The algebraic difference between bivectors and
2-blades will be treated in detail in Section 2.9.3.

2.4 ORIENTED VOLUME ELEMENTS

2.4.1 PROPERTIES OF VOLUMES

We now consider representations of oriented volumes. By analogy with homogeneous
lines and planes, volumes can be treated as 3-D homogeneous subspaces of a vector space
R”. They have the geometric properties we found for lines and planes, illustrated by anal-
ogy in Figure 2.1(d).

e Although it is somewhat hard to visualize for us 3-D beings, volumes have an atti-
tude in spaces of more than three dimensions, denoting the 3-D subspace that con-
tains them. In a 3-D space there is, of course, only one choice—all volumes are
proportional to the volume of the unit cube.

34 SPANNING ORIENTED SUBSPACES

€3

e;A €,

(@

€3

e;A e, &(3.&1 +e)Ae,

3e,

(b)

e;ne,

(—3e,+ej)ne,

&

—3e,;

(d)

Figure 2.5: Bivector addition in 3-D space: orientation matters. (a),(b): (3e; A e)
+ (e3 Nex) = (3e; +e3) Aey; (c),(d): (ex A3ey) + (e3 Aey) = (—3e; +e3) Aey, Which is a different
bivector.

CHAPTER 2

SECTION 2.4 ORIENTED VOLUME ELEMENTS 35

» The volume has an orientation, usually referred to as handedness. In the 3-D space
of our example, the volume spanned by ey, e, e3 (in that order), has opposite orien-
tation from that spanned by ej, e, — e3 (in that order); use a mirror in the (e; Aey)
plane to see this. The latter has the same orientation as the volume spanned by
e, ¢ej,e3 (in that order—use two more mirrors), and of any odd permutation of
(e1, e, e3). Orientation of volumes is thus an antisymmetric property, and there-
fore there exist only two different orientations (a glove can be right-handed or left-
handed—that’s all).

» Volume has a scalar weight. It is well known from linear algebra that in 3-D space the
signed magnitude of the volume spanned by a, b, and c is proportional to the deter-
minant of the coefficient matrix [[ab c]] with a, b, and ¢ as columns. It is therefore
an antisymmetric linear function of the vectors.

We should try to find an algebraic product to represent these geometric properties of
volumes.

2.4.2 ASSOCIATIVITY OF THE OUTER PRODUCT

The antisymmetry we signaled in the classical characterization of volume measures is a
clue to its representation in our new algebra. We simply attempt to extend the “span”
operation of the outer product to more than two terms. Algebraically, the most natural
way is to define the outer product to be associative:

associativity: (aAb)Ac=aA (bAc).

We can thus write the volume element as a A b A ¢ without ambiguity. (You should realize
that the outer product is still pairwise antisymmetric, so thataAbAc = —-aAcAb =
c A a A b, etc.) Geometrically, this property would imply that we can span the same
oriented volume in different ways as the span of a planar element and a vector; if that were
not true, this algebraic formalization would be inappropriate. Fortunately, Figure 2.6 con-
firms the geometric validity of the algebraic associativity. It visualizes the volumeaAbAc
in several equivalent ways, all leading to the same oriented amount of 3-space.

a b = a b = a b = a b

Figure 2.6: The associativity of the outer product.

36 SPANNING ORIENTED SUBSPACES

We call the element formed as the outer product of three vectors a trivector or 3-blade (the
difference is explained in Section 2.9.3). To verify its interpretation, we may introduce
an arbitrary basis {e;, ey, e3} in R3. Then the defining properties of the outer product
yield

aAbAc=
= (a1e1 + azes + azez) A (bre; + bres + bzes) A (crer + coen + cze3) (2.4)

= (a1bycz — a1bszcy + apbscy — asbicz + azbico — azbacy) eg Aey Aes.

Therefore, any trivector in space R3isa multiple of the trivector e; A e; A e3. The pro-
portionality is the determinant of the spanning vectors on the basis {ey, e, e3}, which we
recognize as the (relative) volume and its sign as the orientation relative to e; Aey Aez. In
linear algebra, we would write that scalar as the determinant det([[ab c]|) of the matrix,
with a, b, and ¢ as columns. So the properties of a volume in the 3-D space R® may
be characterized by a scalar, at least if we have agreed upon some convention about the
order of the basis elements (i.e., a handedness of the basis). That is indeed how it is done
classically.

In subtle difference, our algebra of the outer product permits us to treat a volume ele-
ment as a single trivector. This is tidier, since it requires no bookkeeping of an extraneous
convention: as the handedness of the basis changes, the trivector coefficient automatically
changes its orientation appropriately. It is also clearly different from a scalar, even in 3-D
space, because it has the geometrical unit volume as part of its value. We can therefore
clearly express what happens when that is chosen differently (for instance, with a left-
handed rather than right-handed orientation). Moreover, this representation of volume
elements as the outer product of three vectors carries over unchanged to spaces of arbi-
trary dimensionality, and those will be surprisingly important, even for computations on
3-D space.

2.4.3 VISUALIZATION OF TRIVECTORS

In our geometric verification of associativity, we met the obvious visualization of a 3-blade
a A b A cin Figure 2.6, relating it to its vector factors a, b, and c.

Of course, this amount of oriented volume may be sheared (similar to what we did to
bivectors) as long as you do not change magnitude or orientation. If you have a basis, it is
sometimes convenient to align it with the basis vectors. If there are no vectors available,
just a trivector, you could draw it as a spherical volume, with some convention on how to
denote its orientation.

In R3, the algebraic addition of trivectors is just a matter of adding their signed scalar
magnitudes. Since that has no aspects of geometrical attitude, explicit visualization of
trivector addition in 3-D is not really useful.

CHAPTER 2

SECTION 2.6

QUADVECTORS IN 3-D ARE ZERO 37

2.5 QUADVECTORS IN 3-D ARE ZERO

In the 3-D space R? the outer product of any four vectors a, b, ¢, d is zero. This is an
automatic consequence of the outer product properties, and easily shown.

In R3, only three vectors can be independent, and therefore the fourth (d) must be
expressible as a weighted sum of the other three:

d=aa+fb+yc

Associativity, distributivity, and antisymmetry then make the outer product of these four
vectors zero:

aAbAcAd=aAbAcA(aa+pb+yc)
aAbAcA(@a)+aAbAcA(fb)+aAbACA(yc)
0.

So the highest-order element that can exist in the subspace algebra of R? is a trivector.
It should be clear that this is not a limitation of the outer product algebra in general: if
the space had more dimensions, the outer product would create the appropriate hyper-
volumes, each with an attitude, orientation, and magnitude.

It is satisfying that the geometric uselessness of the construction of elements of higher
dimension than n in R" is reflected in the automatic algebraic outcome of 0. Geometri-
cally, we should interpret that element O as the empty subspace of any dimensionality. So
this one element 0 is the zero scalar, the zero vector, the zero bivector, and so on. There
is no algebraic or geometric reason to distinguish between those, for the empty subspace
has no attitude, orientation, or weight.

2.6 SCALARS INTERPRETED GEOMETRICALLY

We extend the new pattern of constructing subspaces downwards as well, to the lowest
dimensional subspaces. In a consistent view, the set of points at the origin should be
considered as a 0-D homogeneous subspace (just as lines through the origin were 1-D,
and homogeneous planes were 2-D). The previous sections then suggest that it might
be represented algebraically by an outer product of zero vector terms. The most general
such element is a scalar (since only the scaling property of the outer product remains).
So scalars are 0-blades and can be used to represent homogeneous points (i.e., points at
the origin). Treating scalars as homogeneous points keeps our algebra and its geometrical
interpretation nicely consistent, even though you may initially feel that we are stretching
analogies a bit too far.

38 SPANNING ORIENTED SUBSPACES

A 0-blade is depicted in Figure 2.1(a). As a subspace, it has the properties of attitude,
orientation, and magnitude.

o Attitude. The attitude (the locational aspect of the point) is not very interesting; all
homogeneous points sit at the origin.

e Orientation. The orientation of the point is the sign of the scalar that represents
it. This will be useful. For instance, in R?, the point of intersection of a homoge-
neous line and a homogeneous plane can be assigned a different sign depending on
whether the line enters the plane from the back or the front.

o Weight. A point has a weight, which can for instance be used to indicate the inter-
section strength of a line and a plane in R? (we will see that a line almost parallel to
a plane leads to a weaker intersection than one perpendicular to it).

Note that this inclusion of scalars among the subspaces reduces the artificial distinction
between scalars in a field and vectors in a space that we had in the traditional vector space
definition of Section 2.1. They are merely subspaces, just like all other subspaces distin-
guished by their dimensionality.

Striving towards a complete and consistent mathematical structure, we would like to have
the outer product defined between any two elements, including scalars. So we extend
the definition of the outer product to include scalars, in a straightforward manner, by
defining

aANx=xANa=ax, and aAf=af fora,f €R. (2.5)

In this view, the usual scalar multiplication in the vector space R” definition of Section 2.1
is really the outer product in disguise. In this chapter, there has therefore in fact been only
a single product in use.

By the way, beware of assuming that the outer product for scalars should have been
antisymmetric to be consistent with the outer product for vectors. The outer product is
not even antisymmetric for bivectors or 2-blades, for the property of associativity enforces
symmetry. This is easily demonstrated:

(aghap) A(byAby) =a;Aax Aby ADby

—a;AbiAay Aby

biAajAay ADby

—b;AajAby Aay

by AbyAaj Aay
= (b; Aby) A (a; Aay).

The general rule is given in Section 2.10: only for two elements of odd dimensionality is
the outer product antisymmetric.

By (2.5), the algebraic fact that all scalars are a multiple of the number 1 can be interpreted
geometrically: the 0-vector 1 represents the standard point at the origin, and all other

CHAPTER 2

SECTION 2.7

APPLICATIONS 39

weighted points at the origin are a multiple of it. Visualization of a scalar is therefore
simply as a weighted point at the origin, as in Figure 2.1(a), and addition of such elements
merely results in the addition of their weights. There is very little geometry in scalars, but
they are part of the general pattern.

2.7 APPLICATIONS

Having subspaces as elements of computation is only the beginning of geometric algebra,
but it already allows us a slightly different perspective on the solutions to some common
problems in linear algebra.

2.7.1 SOLVING LINEAR EQUATIONS

If you have a basis {a,b} in R?, any vector x € R? can be written as
x=aa+ fb,

for some a and S, which need to be determined. With the outer product, you can solve
such equations explicitly and draw a picture of the solution.

We proceed by taking the outer product of both sides with a and with b, respectively. This
yields two equations that simplify due to the antisymmetry of the outer product:

xANa=aaNa+pfbAra=pbAa
xAb=aaAb+pfbAb=aaAb.

Since the 2-blades occurring on both sides must reside in the same homogeneous plane,
they are both scalar multiples of the same basic 2-blade characterizing that plane.
Therefore, their ratio is well defined. We write it as a division (symbolically, for now;
when we have the full geometric algebra in Chapter 6, this will be algebraically exact).
Using this ratio, # and « are immediately computable in terms of x, a, and b. This gives
the decomposition

_xXAb XAa

X = a+
aAb bAa

b (2.6)

Figure 2.7 shows the geometric interpretation of this decomposition. The blue parallelo-
gram representing the bivector x A a is algebraically equivalent to various reshapings of
the same amount of area. We reshape it by sliding the vector pointing to x, along a line
parallel to a, until it points in the direction b. That gives the other blue parallelogram,
computationally fully identical to the first. Now the ratio of area of this blue parallelo-
gram to the area of b A a (also indicated) is precisely the stretch of b required. The same
holds for the green parallelogram x A b, which should be divided by a A b. Notice the
implicit sign change between the two cases, inherent in the denominator.

40 SPANNING ORIENTED SUBSPACES

XAa
bAa

XAb
—a
aAnb

Figure 2.7: Solving linear equations with bivectors.

The geometrical reshapeability of the bivector is precisely the feature that gives us the
correct algebraic formula. Practice “seeing” this, as it gives you a new tool for finding com-
pact expressions in a coordinate-free manner. Play with the interactive figure in GAViewer
to convince yourself that this works in all cases and relative directions of a, b, and x as long
as they are coplanar (except, of course, when a A b = 0).

In elementary linear algebra, we would view the expression for x as two equations for
and f, in components:

aia+b f=x
aa+ by f=x.

Then Cramer’s rule specifies the solutions as the ratio of two determinants:

derc | Uy e T
Xy by X2 az
a=———— f=
der(| O |l derc || 71 [
a bg b2 an

When you realize that the ratio of bivectors in a common plane is simply the ratio of their
weights, which can be expressed as determinants, you realize that our earlier solution is in
fact Cramer’s rule. Yet Cramer’s rule is usually explained as algebra, not as the geometrical
ratio of areas it really is. The fact that it uses coordinates in its formulation easily makes
one lose sight of the geometry involved.

To solve equations involving # basis vectors in R", the same technique applies. You then
need to take more outer products to get the parameters (see structural exercise 4).

CHAPTER 2

SECTION 2.7

APPLICATIONS 41

2.7.2 INTERSECTING PLANAR LINES

Again in R?, consider the problem of intersecting a line L with position vector p and
direction vector u, with a line M with position vector q and direction vector v. This is
depicted in Figure 2.8.

Its similarity to Figure 2.7 is clear. To find the intersection point x, we need to add an
amount of u and v, so we are effectively decomposing x in that basis. We might wish to
use (2.6), but that would contain the unknown x on the right-hand side in the bivectors
x A uand x A v, so this approach appears to fail.

However, we have another way of making precisely those bivectors, for they are
reshapeable: x A u = p A u, and x A v = q A v. Therefore, the same geometrical method
now solves the intersection point as

qAYv PAu
X=——u+——V

2.7
uAv vAu (2.7)

This procedure shows that the flexibility in the geometric reshapeability of the bivectors
gives an enjoyable amount of algebraic freedom. Once you learn to see bivectors in your
problems, solutions can become fairly immediate.

This was merely meant to be an illustrative example of the use of the outer product. Much
later, in Section 11.7.1, we will revisit lines and their representation, and the above com-
putation will be a specific case of the meet operation, which will remove its somewhat
arbitrary nature. We will then also treat skew lines in 3-D.

Figure 2.8: Intersecting lines in the plane.

42 SPANNING ORIENTED SUBSPACES

2.8 HOMOGENEOUS SUBSPACE REPRESENTATION

Apart from these initial applications, we can also use this new algebraic instrument of the
outer product to formalize some useful geometrical properties.

2.8.1 PARALLELNESS

The outer product of two vectors a and b forms a 2-blade proportional to their spanned
area in their common plane. When you keep a constant but make b increasingly more
parallel to it (by turning it in the common plane), you find that the weight of the bivector
becomes smaller, for the area spanned by the vectors decreases. When the vectors are
parallel, the bivector is zero; when they move beyond parallel (b turning to the other
side of a) the bivector acquires the opposite orientation.

A 2-blade may thus be used as a measure of parallelness: a A b equals zero if and only if a
and b are parallel (i.e., lie on the same 1-D subspace). Therefore x A a = 0, considered as
an equation in x for a given a, defines the vectors x of the homogeneous line determined
by a. We cannot solve such equations yet (we will need a division for that, which we will
only discuss in Chapter 6), but it is already easy to verify that x = Aa is a solution (and in
fact, the general solution). So we may surmise:

x on line determinedbya < x=41a & xAa=0

Therefore “2-blades being zero” produces homogeneous line equations. When used in
this way only the attitude of the line characterization matters, since both orientation and
weight are scalar factors that can be divided out.

To obtain an equation for a plane, recognize that a 3-blade is zero if and only if the three
vectors that compose it lie in the same plane (2-D subspace). Geometrically, we would
say that they do not span a volume; the corresponding algebraic expression conveys that
they are linearly dependent. It follows that we can use a 2-blade a A b to represent a plane
through the origin, by using it to detect the vectors that do not span a volume with it:

x on plane determinedbyaandb <= x=Jla+ub < xAaAb=0
Using both a and b is in fact a bit too specific, as we mentioned at the beginning of this
chapter; the same plane could have been characterized by different vectors. It is better to
talk only about the 2-blade B of the plane:

vector xinplaneof B < xAB =0.
This 2-blade B even represents a directed plane, for we can say that a point y is at the

positive side of the plane if y A B is a positive volume (i.e., a positive multiple of the
standard volume I3 = e A e; A e3 for some standard basis {ei}?zl of the space).

CHAPTER 2

SECTION 2.8

HOMOGENEOUS SUBSPACE REPRESENTATION 43

2.8.2 DIRECT REPRESENTATION OF ORIENTED WEIGHTED
SUBSPACES

These constructions are easily extended. In general, if we have a k-dimensional
homogeneous subspace A spanned by k vectors aj, - - -,a;, we can form the k-blade
A = aj; A --- A ag. We call this blade A the direct representation of the homogeneous
subspace A (as opposed to the dual representation, which we will meet later). By that we
mean that any vector in A satisfies x A A = 0, and that, vice versa, any vector X satisfying
this equation is in A.

A is a direct representationof A 1 (x€ A < xANA=0)

This will become such a useful construction that we will often identify the subspace A
with the blade A, and say that a vector is contained in a blade. Of course, there is an
orientation and a weight involved in A that is not usually assumed for A, so A is a more
precise characterization of the geometry, with the properties defined on Table 2.1.

It is also convenient to lift this concept of containment from vectors to the level of blades.
We will say that A is contained in B, denoted A C B, if all vectors in A are also in B. In
formula:

ajAN---Nap=ACB < a;AB=0, i=1,...,k (2.8)

Beware that this is not the same as A A B = 0, since that would already hold if only one of
the vectors in A was contained in B.

2.8.3 NONMETRIC LENGTHS, AREAS, AND VOLUMES

Nowhere in this chapter have we used a metric for our computations. The outer product,
which is the product of spanning and weighting, does not need one. Yet the lengths, areas,
and volumes that can be computed using the outer product appear to have a metric feeling
to them. We must emphasize that the lengths measurable by the outer product are always
length ratios along the same line through the origin, that the areas are ratios of areas in

Algebraic definition of the terms we use to denote the geometrical properties of a subspace as represented by

a blade A.
Term Definition
Attitude The equivalence class 1A, for any 1 € R

(Relative) weight

The valueof Ain A = A1

(where I is a selected standard subspace with the same attitude)

(Relative) orientation The sign of the weight relative to I

44 SPANNING ORIENTED SUBSPACES

the same plane through the origin, and that volumes similarly are ratios of volumes in the
same space. For such ratios of full-grade elements within the same subspace you do not
need a metric measure.

It is only when comparing lengths, areas, and volumes from different homogeneous sub-
spaces that you need to introduce a metric. The metric permits you to rotate one vector
onto another to check that the lengths are identical or what their ratio is. We will do that
in the next chapter, using a Euclidean metric.

Having said that, we already have some useful instruments. In an n-dimensional space
R" we can compare arbitrary hypervolumes. If we have n vectors a; (i = 1,...,n), then
the hypervolume of the parallelepiped spanned by them is proportional to a unit hyper-
volume in R” by the magnitude of a; A ... A a,. The hypervolume of a simplex in that
space, which is the convex body containing the origin and the n endpoints of the vectors
a; (i=1,---,n),isafraction of that:

1
—ajA---Aa,.
n!

The same formula also applies to a simplex in each k-dimensional subspace of the
n-dimensional subspace, as

E ajN---Nag.
This one formula computes the relative oriented volume of a tetrahedron in 3-D, of the
relative oriented area of a triangle in 2-D, of the relative oriented length of a vector in 1-D,
and it even works for the relative oriented weight of a scalar in 0-D.

2.9 THE GRADED ALGEBRA OF SUBSPACES

We have introduced the geometric algebra of the outer product step by step. This section
makes an inventory of the general patterns we have uncovered and introduces descriptive
terms for its algebraic aspects.

2.9.1 BLADES AND GRADES

The outer product of k vectors is called a k-blade. This name (from Hestenes [33])
reflects its higher-dimensional nature and its flatness when used as a representation of
a k-dimensional homogeneous subspace in a vector space model. A vector is a 1-blade, a
bivector is a 2-blade (in 3-space), and a scalar may be referred to as a 0-blade.

The number k is called the grade of the k-blade (though you may find the term step in
some literature). Algebraically, it is the number of vector factors in a nonzero k-blade,
and we denote it by the grade() symbol:

grade(a; A --- Aag) = k.

CHAPTER 2

SECTION 2.9

THE GRADED ALGEBRA OF SUBSPACES 45

Geometrically, the grade is the dimensionality of the subspace that the k-blade
represents, in the manner of Section 2.8.2. But we prefer to reserve the term dimension
for the dimensionality # of the space R” that we are considering. In terms of blades and
grades, the dimension is the highest grade that a nonzero blade may have in a chosen
(sub)space.

The outer product construction connects blades and their grades:
grade(A A B) = grade(A) + grade(B).

Since the outcome of the product A A B may be zero for arbitrary A and B, the element 0
must be allowed to have any appropriate grade. There is no algebraic reason to discriminate
among the zero scalar, zero vector, and so on. Geometrically, the element 0 of the subspace
algebra represents the empty subspace—which can clearly be of any grade.

2.9.2 THE LADDER OF SUBSPACES

We have seen that the blades can be decomposed as a weighted sum of basis blades. If we
construct k-blades in an n-dimensional space, because of the antisymmetry of the outer
product for vectors there are (Z) elements in this basis. The k-blades therefore reside in

a (})-dimensional linear space /\k R". But we will soon see that not all elements of this
linear space are k-blades. Plotting the numbers of basis k-blades for various 1, we obtain
an inventory of the ladder of k-blades of different grades as in Table 2.2; you may recognize
Pascal’s triangle.

Ablade of highest possible dimension is often called a pseudoscalar of the space. It obtained
this name in algebraic recognition that it is like a scalar, in that it defines a 1-D hypervol-
ume space in which all hypervolumes are multiples of each other. According to Table 2.2,
it has a basis consisting of a single blade, as we saw in Section 2.4.2 for 3-blades in R.

Pascal’s triangle of the number of basis k-blades in n-dimensional space.

subspace grade k
ni01 2 3 45
01
171 1
211 2 1
3/1 3 3 1
411 4 6 4 1
5/1 5 10 10 5 1

46 SPANNING ORIENTED SUBSPACES

It is often sensible to appoint one n-blade as the unit pseudoscalar, both in magnitude and
in orientation, relative to which the other volumes are measured. This is especially possible
in a vector space with a nondegenerate metric, where we can introduce an orthonormal
basis {e;}"_ |, and the natural choiceis I, = e; A --- Ae,.

When we are focused on a specific subspace of the full #-dimensional space, we will often
speak of the pseudoscalar of that subspace—again meaning the largest blade that can
reside in that subspace. We will use I, for the chosen unit pseudoscalar of R”, and I for
the pseudoscalar of a subspace, or another I-like symbol.

2.9.3 k-BLADES VERSUS k-VECTORS

We have constructed k-blades as the outer product of k vector factors. By derivations like
we did for 2-blades in (2.3), it is easy to show that the properties of the outer product
allow k-blades in R” to to be decomposed on an (})-dimensional basis.

One might be tempted to reverse this construction and attempt to make k-blades as a
weighted combination of these basis k-blades. However, this does not work, for such sums
are usually not factorizable in terms of the outer product. The first example occurs in R*.
If {e, 2, €3, €4} is a basis for R*, then the element A = e; Aey +e3 A ey simply can not be
written as a 2-blade a A b. We ask you to convince yourself of this in structural exercise 5.

We have no geometric interpretation for such nonblades in our vector space model. They
are certainly not subspaces, for they contain no vectors; the equation xA (e; Ae; +e3Aes)
= 0 can be shown to have no vector solution (other than 0). The geometrical role of such
elements, if any, is different.

Yet it is very tempting to consider the linear space /\k R" spanned by the basis k-blades
as a mathematical object of study, in which addition is permitted as a construction of
new elements. A typical element constructed as a weighted sum of basis blades is called a
k-vector; its grade aspect is often called step. You will find much mathematical literature
about the algebraic properties of such constructions—though necessarily little about its
geometric significance. Within the context of k-vectors, the blades are sometimes known
as simple k-vectors (or some other term reflecting their factorizability).

The k-blades are elements of this space (remember this: k-blades are k-vectors), but it is
not elementary to specify the necessary and sufficient conditions for a k-vector to be a
k-blade. (This problem has only recently been solved in [20], and the outcome is not
easily summarized.) Only 0-vectors, 1-vectors, (n — 1)-vectors, and n-vectors are always
also blades in n-dimensional space. As a consequence, in 3-D space all k-vectors are
k-blades, but already in 4-D space one can make 2-vectors that are not 2-blades. Since
we need 4-D and even 5-D vector spaces to model 3-D physical space, the distinction
between k-blades and k-vectors will be important to us.

Because of the bilinear nature of the outer product, it is quite natural to extend it from
k-blades to k-vectors by distributing the operation over the sum of blades. Follow-
ing established mathematical tradition, it is tempting to give the most general form of

CHAPTER 2

SECTION 2.9

THE GRADED ALGEBRA OF SUBSPACES 47

any theorem, and supplant k-blades by k-vectors wherever we can, whether the result
is geometrically meaningful or not. We do this every now and then, when we find a
geometric reason for doing so. Yet some theorems we will encounter later are true for
blades only, so we need a way to distinguish them notationally from the k-vectors.

In Part I of this book, we denote k-vectors by nonbold capital letters and k-blades by
bold capital letters, possibly denoting the grade as a subscript (in Part II, we will need the
distinction between bold and nonbold to denote something else). So Ay is a k-blade, but
Ay is a k-vector (which is not necessarily a blade). Vectors are always blades, and denoted
by bold lowercase, such as a. Scalars are blades, and denoted by lowercase Greek, such as
a. These conventions are summarized in Table 2.3.

2.9.4 THE GRASSMANN ALGEBRA OF MULTIVECTORS

The construction of k-vectors as a sum of k-blades makes sense algebraically, but since
its elements are not necessarily subspaces, we cannot be assured of the geometrical

Notational Conventions for Blades and Multivectors for Part | of This Book.
a, P, etc. Scalar
a;, b, etc. Scalar components of vectors
a, b, etc. Vector
€ Basis vector, typically in an orthonormal basis
b; Basis vector, nonorthonormal basis
A,B, etc. General blade
Aj,By, etc. General blade of grade k
A, By, etc. A k-vector, not necessarily a blade
A, B, etc. General multivector, not necessarily a k-vector or a blade
L, L etc. (Unit) pseudoscalars
R” n-Dimensional vector space over the field R
/\k R” The linear space of k-vectors, in which k-blades also reside
AR" The linear space of multivectors (Grassmann space)
grade(A) The grade of A
(A)k The k-grade part of a multivector A
A The reverse of A, equal to (—1)grade(A)(grade(A)_l)/ 2A
A The grade involution of A, equal to (—1)8rde@ A

48 SPANNING ORIENTED SUBSPACES

significance. We will therefore exclude it from geometric algebra—at least until we know
the corresponding geometry. Still, it is a well-studied structure with useful theorems, so
we will discuss it briefly to give you access to that literature.

If we allow the addition of k-blades to make k-vectors, we obtain what mathematicians
call a graded algebra, since each element has a well-defined grade (even though not each
element is a product of k vector factors). But they do not stop there. When they also allow
the addition between elements of different grades, they obtain the most general structure
that can be made out of addition + and outer product A. This results in a linear space of
elements of mixed grade; these are called multivectors.

It is simple to extend the outer product to multivectors, using its linearity and distribu-
tivity. For instance:

(I+eDNAN(I+e)=1A14+1Ney+eAl+eNey=1+e +e+e Aep.

Mathematicians call the structure thus created the Grassmann algebra (or exterior algebra)
for the Grassmann space, \R". The name pays homage to Hermann Grassmann (1809—
1877), who defined the outer product to make subspaces into elements of computation.
It is a somewhat ironic attribution, as Grassmann might actually have preferred not to
admit the k-vectors (let alone the multivectors) in an algebra named after him, since they
cannot represent the geometrical subspaces he intended to encode formally.

The Grassmann algebra of a 3-D vector space with basis {e;, ey, e3} is in itself a linear
space of 23 = 8 dimensions. A basis for it is

1 , enene3, egANe,exNes,e3Ne, egAeyNes } (2.9)
{ —— = X -~ S ———
scalars vector space bivector space trivector space

In an n-dimensional space, there are (Z) basis elements of grade k. The total number of
independent k-vectors of any grade supported by the vector space R" is

& (n
=2"

2 ()

Therefore the Grassmann algebra of an n-dimensional space requires a basis of 2" ele-
ments. This same basis is of course also useful for the decomposition of k-blades, so an
algebra for blades also has (Z) basis blades of grade k, for a total of 2" over all the blades.
But we reiterate that when we list that basis for blades, we should only intend it for
decomposition purposes, not as a linear space of arbitrary additive combinations. There is
unfortunately no standard notation for the submanifold of the k-vector space /\k R" that
contains the blades, so we will use the slightly less precise k-vector notation even when we
mean k-blades only, and let the context make that distinction.

When we have multivectors of mixed grade, it is convenient to have the grade operator
O @ AR" > /\k R", which selects the multivector part of grade k (note that this is

CHAPTER 2

SECTION 2.9

THE GRADED ALGEBRA OF SUBSPACES 49

not necessarily a k-blade). With that, we can express the outer product between arbitrary
elements of the Grassmann algebra as

n n
ANB= "N (A A (B
k=0 =0
The grade-raising property of the outer product can be stated in terms of the grade

operator as
k

(ANB)i = Y (A)i A (B (2.10)
i=0
The result of (2.10) may be 0, so as before 0 is a multivector of any grade. Within a Grass-
mann algebra, the multivector 0 has the properties of the zero element of both outer
product and addition:
OANA=0 and 0+A=A.

These sensible correspondences should be enough to “translate” the literature on Grass-
mann algebra, and peruse it for geometrically meaningful results.

2.9.5 REVERSION AND GRADE INVOLUTION

In future computations, we often need to reverse the order of the vectors spanning a blade,
and other monadic operations on blades. We introduce notations for them now, since we
have all the necessary ingredients, and give some useful properties.

Define the reversion™ as an operation that takes a k-blade A = a; A ay A --- A a; and
produces its reverse:

reversion: A=arAap_1 A---ANaj, (2.11)
which just has all vectors of A in reverse order. The notation by the tilde is chosen to be
reminiscent of an editor’s notation for an interchange of terms. (Some literature denotes
it by A" instead, since it is related to complex conjugation in a certain context.) This defi-
nition appears to require a factorization of A, but its consequence is that a reversion just
leads to a grade-dependent change of sign for A. In (2.11), we can restore the terms in A
to their original order in A. This requires %k(k — 1) swaps of neighboring terms, which

provides an overall sign of (=DFE=D/2 55 e may equivalently define, for a k-blade Ay:

~ 1
reversion: Ay = (—l)fk(k_l)Ak. (2.12)

This is the preferred definition in computations. Note that this sign change exhibits a
++ — — ++ — — - - - pattern over the grades, with a periodicity of four.

By extension, we can apply a similar definition to the reversion of a general multivector
consisting of a sum of elements of different grades in a Grassmann algebra. This is then
simply defined as the monadic operation™: AR" - AR”"

A= Z(—l)%k"“”m)k.
k

50 SPANNING ORIENTED SUBSPACES

The reversion has the following useful structural properties:
(A) =A and (AAB) =B AA.

which, together with its action on scalars and vectors, actually may be used to define
it algebraically. In mathematical terms, the reversion is often called an anti-involution
because of these properties; it is an involution since doing it twice is the identity, and it is
anti since it reverses order of the reverses.

By contrast, the useful grade involution is defined as the monadic operation”: /\k R" —
/\k R" that swaps the parity of the grade:

grade involution: Kk = (—l)k Ay

The grade involution is easily extended to multivectors, and has the properties

(A) =A and (AAB) =A AB.

These properties for the grade involution and the reversion above have nonbold A and B,
so these are formulated for multivectors. Of course they also hold for the special case of
blades. You can always specialize the theorems of Grassmann algebra in this manner. But
do not reverse this process carelessly: only the linear and distributive properties of blades
extend to multivectors!

2.10 SUMMARY OF OUTER PRODUCT PROPERTIES

Assembling the elements of the definitions throughout this chapter, we now have enough
to specify the outer product in the full generality of our needs in this book. We have com-
pacted them a little; the scaling law now follows from associativity and the outer product
with scalars, and so on.

In this list, « is a scalar, a and b are vectors, and A and B general multivectors of possibly
mixed grade.

The outer product is a dyadic product A : AR" x AR" - AR", with the
following properties:

associativity: ANBAC)=(AAB)AC

distributivity: AN(B+C)=(AAB)+(AANC)

distributivity: (A+B)AC=(AANC)+(BAC)
antisymmetry: aAb=—-bAa

scalars: aNa=aAa=aa

We will often use a A as the natural notation for a A A.

CHAPTER 2

SECTION 2.12

EXERCISES 5

This set of rules enables computation of any outer product: the distributivity laws allow
expansion to outer products of blades, associativity reduces those to outer products of
vectors, and antisymmetry and scalar multiplication then permit full simplification to
some standard form.

The antisymmetry property for vectors can be lifted to blades. For a k-blade Ay and an
I-blade By, it becomes

A AB = (=DM B A Ay (2.13)

It is good practice in the properties of the outer product to prove this for yourself. Note
that (2.13) implies that the outer product is only antisymmetric for two blades of odd
grade (which of course includes vectors).

We repeat the important grade-raising property of the outer product:
grade(A A B) = grade(A) + grade(B).

This explicitly shows how the outer product constructs the ladder of blades from mere
vectors, and is in fact a mapping A : /\k R" x /\l R" — /\k+l R" connecting blades of
specific grades.

2.11 FURTHER READING

With only the outer product defined, it is a bit early to refer you to useful and productive
literature. If you are interested in a bit of history, the idea to encode subspaces originated
with Hermann Grassmann. There has been some recent recognition of the debt we owe
him, as well as embarrassment at the historical neglect of his ideas in mainstream linear
algebra [59, 28]. This makes for frustrating reading, for it makes you realize that we could
have had these techniques in our tool kit all along.

2.12 EXERCISES

2.12.1 DRILLS

1. Compute the outer products of the following 3-space expressions, giving the results
relative to the basis {1,e;,e2,e3,e; A ey, e Ae3, ez Aej,e; Aey Aez}. Show your
work.

(@) (e1+ex)A(er +e3)

(b) (er +ex+e3)A(2e))

() (e1—ex)A(er —e3)

(d) (e +e2)A(0.5e +2er + 3e3)
(e) (e1Aex) (e +e3)

(f) (e1+e)A(erhex+exnes)

52

SPANNING ORIENTED SUBSPACES

Given the 2-blade B = e; A (e; — e3) that represents a plane, determine if each of
the following vectors lies in that plane. Show your work.

(@) e

(b) er+e

(c) et+e+es
(d) 2e; —e)t+e3

What is the area of the parallelogram spanned by the vectors a = e; + 2e; and
b = —e| — e, (relative to the area of e; A e)?

. Compute the intersection of the nonhomogeneous line L with position vector e

and direction vector e;, and the line M with position vector e, and direction vector
(e; + e2), using 2-blades. Does the basis {e},e;} have to be orthonormal?
Compute (2 + 3e3) A (e + e A e3) using the grade-based defining equations of
Section 2.9.4.

2.12.2 STRUCTURAL EXERCISES

1.

The outer product was defined for a vector space R” without a metric, but it is of
course still defined when we do have a metric space. In R? with Euclidean metric,
choose an orthonormal basis {ej,e;} in the plane of a and b such that e; is parallel
toa. Writea = ae; and b = f(cos ¢ e; + sin d e3), where ¢ is the angle from a to
b. Evaluate the outer product. Your result should be:

aAb = afsind (e; Aep). (2.14)

What is the geometrical interpretation?
Reconcile (2.14) (which uses lengths a and f and an angle ¢) with (2.2) (which
uses coordinates).

. The anticommutative algebra has unusual properties, so you should be careful

when computing. For real numbers (x + y) (x — y) = x> — y?, and for the dot
product of two vectors (in a metric vector space) this corresponds simply to
(x+vy)-(x—y) =x-x—y-vy. Now for comparison compute (x +y) A (x —y)
and simplify as far as possible. You should get —2x Ay, which is a rather different
result than the other products give! Verify with a drawing that this algebraic result
makes perfect sense geometrically in terms of oriented areas.

Solve a 3-D version of the problem in Section 2.7.1:

x=aa+pb+yc

using an appropriate choice of outer products to selectively compute a, f, y. What
is the geometry of the resulting solution?

Consider R* with basis {e,—}il. Show that the 2-vector B = ej A ey +e3 A ey
is not a 2-blade. (i.e., it cannot be written as the outer product of two vectors).
(Hint: Set a A b = B, develop a and b onto the basis, expand the outer product
onto the bivector basis, and attempt to solve the resulting set of scalar equations.)

CHAPTER 2

SECTION 2.13 PROGRAMMING EXAMPLES AND EXERCISES 53

6. Show that B = e Aey +e3 Aey of the previous exercise does not contain any vector
other than 0 (see Section 2.8.2 for the definition of contain).

7. (The general case of the previous exercises.) Show that a non-zero A contains pre-
cisely k independent vectors if and only if A is of the form A = aj Aay A --- A ag
(i.e., if and only if A is a k-blade). This shows that among the multivectors, only
k-blades represent k-dimensional subspaces.

8. In some literature on Grassmann algebras, one defines the Clifford conjugate
Ay as

Clifford conjugate: Ar = A

Is it an involution or an anti-involution? Derive the sign-change for Ay as an alter-
native definition of the Clifford conjugate.
9. Prove (2.13): A AB; = (=DM By A Ay

2.13 PROGRAMMING EXAMPLES AND EXERCISES

At the end of nearly every chapter in Part I and Part II, we provide some C++ program-
ming examples to make the material less abstract. Some examples simply provide interac-
tive versions of figures that you may also find in the book, as alternatives to the GAViewer
versions, that are closer to the way you would program them yourselves. Other examples
illustrate some important concept that is introduced in the chapter. A few examples go
further and actually compute something useful and applicable, like singularity detection
or external camera calibration. Yet other examples benchmark the performance of certain
techniques and compare efficiency of the solutions of geometric algebra with the classical
way. In all, we have intended the examples to be a helpful starting point for your own
programming work.

The source code package for the examples can be downloaded from the web site:
http://www.geometricalgebra.net

The package contains projects or makefiles for Windows (Visual Studio .NET) and Linux,
Mac OS X, and Solaris (GCC, autotools). We refer you to the instructions provided with
the package on how to install it. Our solutions to the programming exercises are provided
in the package in a separate directory to help you when you are stuck.

The package comes with a library that we have entitled GA Sandbox. This library
should make it easy to play around with geometric algebra as used in this book. All
basic operations are implemented for the various models of geometry, along with several
useful algorithms. The implementation is based on our geometric algebra implementa-
tion Gaigen 2.

Below is a list of peculiarities of the GA sandbox implementation to bear in mind when
reading the source code listings. To learn more about using the sandbox implementation,

54 SPANNING ORIENTED SUBSPACES CHAPTER 2

see the documentation that comes with the package. To learn more about implementation
of geometric algebra in general, see Part III of this book.

Models

We use various models of geometry, and the sandbox provides an implementation for
each of them:

e2ga : The vector space model of 2-D Euclidean geometry (2-D algebra).
e3ga : The vector space model of 3-D Euclidean geometry (3-D algebra).
h3ga :The homogeneous model of 3-D Euclidean geometry (4-D algebra).
c3ga :The conformal model of 3-D Euclidean geometry (5-D algebra).

Note that the number in the name of each implementation refers to the physical space
that is modeled, not to the dimension of the vector space of algebra. Also note that using
a particular algebra is only a matter of taste and simplicity. The conformal model c3ga
embeds all the other models, so in principle we could use it to do everything; but as the
book builds up to this model, so do the examples.

General Multivectors Versus Specialized Multivectors

Gaigen 2 allows you to use both general multivectors and specialized multivectors. Exam-
ples of specialized multivector classes are vector, bivector, and rotor. These classes
can store only the coordinates that are required to represent those types. The other coor-
dinates are assumed to be 0 (for example, assigning a vector value to a bivector variable
always results in 0, because the bivector cannot hold a vector value). Using specialized
multivectors saves memory, and—more importantly—allows the implementation to be
highly optimized.

However, sometimes you may need a variable that can hold any multivector value, because
you may not know whether the variable will be a vector, a rotor, or any other value. For
this purpose, the mv class is provided. It is slower than the specialized classes, but more
generic.

Underscore Constructors

Due to the internals of Gaigen 2, there are conversion functions that we have named
“underscore constructors.” The underscore constructor is not really a constructor in the
C++ sense, but rather a regular function that converts an arbitrary multivector value to a
specialized multivector variable. Using underscore constructors is required under certain
conditions. For example, if you want to assign general multivector to a vector, you should
write:

mv X = el;
vector v = _vector(X); // <— note the underscore constructor

SECTION 2.13

PROGRAMMING EXAMPLES AND EXERCISES 55

We trust that you do not find the underscore constructors to be very distracting when
reading the source code, since they actually help remind you of the type of function argu-
ments. For example:

mv X = el;

mv Y = e2 "~ e3;

// call function float foo(vector v, bivector b):
float result = foo(_vector(X), _bivector(Y));

Operator Bindings

The C++ operator bindings are listed in Table 2.4. Most of these will be defined only later
in the book, but it is good to have them all in one table. The geometric product is denoted
by a half-space in the book, but this would obviously cause confusion in the code, so we
use *. This resembles the notation for the scalar product * of Chapter 3. Since the scalar
product is used only rarely in both book and code, this should not be a problem. The
symbols for the contractions of Chapter 3 have been chosen to point at the elements of
lowest grade (i.e., the left contraction points left). We will see how the vector inner prod-
uct coincides with the contractions and the scalar product, so we need no special symbol
for it. That is convenient, since “.” is reserved for referencing the members of a class or
structure in C++.

Coordinates
Although geometric algebra is coordinate-free at the level of application programming, its
implementations make heavy use of coordinates internally. While we can avoid exposing

C++ Operator Bindings.

Code Book
Symbol Functionality Symbol
+ Addition +
- Subtraction (binary), negation (unary) -

* Geometric product

) Outer product A
< Left contraction]
>> Right contraction L
% Scalar product *

<Lor%or>> Vector inner product

56 SPANNING ORIENTED SUBSPACES CHAPTER 2

ourselves to coordinates most of the time (and you should practice this!), occasionally we
need to access them:

e The most common reason is to transfer multivector values to a library that is not
based on geometric algebra. For example, to send a vertex to OpenGL, we would
use:

vector v = ...;
glVertex3f(v.el(), v.e2(), v.e3());

The functions el (), e2(), and e3() return the respective coordinates of the vec-
tor. You can also retrieve all coordinates as an array using the getC () function, so
that you may act on them with matrices:

vector v = ...;
const float *C = v.getC(vector_el_e2 e3);
glVertex3fv(C); // <— this line is just an example of

// how to use 'C’

Constants such as vector_el_e2_e3 must be passed to getC() for two paternal-
istic reasons:

1. The constant improves readability: the reader immediately knows how many
coordinates are returned, and what basis blades they refer to.

2. Gaigen?2 generates its implementation from specification. Someone
could decide to reorder the coordinates of vector (e.g., e2 before e1), and
regenerate the implementation. In that case, the constant would change from
vector_el_e2_e3tovector_e2_el_e3. Theresultis that code based on the
old vector_el_e?_e3 constant will not compile anymore. That is of course
preferable to compiling but producing nonsense results at run-time.

e Sometimes we may need to transfer coordinates from one algebra model to another.
This is not (yet) automated in Gaigen 2, so we do it by copying the coordinates one
by one.

e There are algebraic ways of writing coordinates as components of projections
involving scalar products or contractions. While those may be useful to see what
is going on geometrically, they are an inefficient way of retrieving coordinates in a
program in the rare cases that you really need them and know what you are doing.
Therefore we permit you to to retrieve them more directly. For instance, the fol-
lowing two lines produce identical results on an orthonormal basis:
bivector B = ...;

float ele2Coordinate_a = B.ele2();
float ele2Coordinate_b _Float(reverse(el *» e2)<<B);

Use this capability sparingly, especially when learning geometric algebra, or you
will tend to revert to componentwise linear algebra throughout and not see the
benefits of computing directly with the geometric elements themselves.

SECTION 2.13

PROGRAMMING EXAMPLES AND EXERCISES 57

The vector type

Because we experienced compilation problems with versions of GCC lower than 3.0,
we had to explicitly qualify the vector type in all examples. For instance, we write
e3ga::vector instead of just vector when we are in the e3ga model. This prevents old
GCC versions from confusing e3ga: :vector with std: :vector, which is an array type
provided by the C++ standard template library.

2.13.1 DRAWING BIVECTORS

In this first example, we draw a grid of 2-D bivectors. The code is shown in Figure 2.9 and
the output is shown in Figure 2.10. We take two vectors v1 and v2. Vector v1 is fixed to
e, and v? is rotated 360 degrees in 24 steps of 15 degrees.

The vectors are rendered by the default multivector drawing function draw (). We provide
two ways to draw the bivectors: as a parallelogram or as a disc. The discs are rendered by
draw(), but the parallelograms we render ourselves. To switch between the two bivector
drawing modes, click anywhere and select the mode from the popup menu.

2.13.2 EXERCISE: HIDDEN SURFACE REMOVAL

In computer graphics, 3-D models are often built from convex polygons. Each polygon
is defined by an ordered list of vertices. Most of the time, triangles (3 vertices) or quads
(4 vertices) are used. When a solid model is rendered opaque, polygons that face away
from the camera are invisible. Because these back-facing polygons are invisible, no time
needs to be spent on rasterizing them if they can be singled out early on.

Back-facing polygons can be identified by computing the orientation of the projected
(2-D) vertices of the polygon. The convention is that 3-D models are constructed such that
the vertices of a polygon have a counterclockwise order when observed from the outside
of the model (see Figure 2.11). Back-facing polygons have a clockwise vertex order.

In the example, the surface is triangulated, so we need to find a way to determine the
relative orientation of a triangle formed by the endpoints of three vectors a, b, ¢ in
2-D. It is not a A b A ¢, for that would be zero. Instead, we should consider one of the
vertices a as an anchor, and use the bivector spanned by the difference vectors (b —a) and
(c —a) relative to the standard bivector e; A e;. After this hint, implementation should be
straightforward.

We have provided the code that renders a 3-D model from 2-D vertices (Figure 2.13).
As you can see on the left in Figure 2.12, the code renders the model without back-
face culling. The model is rendered as a wireframe so that you can see the back-facing
polygons. The right side of Figure 2.12 is the result you should get when you have
correctly implemented back-face culling.

58

SPANNING ORIENTED SUBSPACES

e3ga::vector vl, v2, vl_plus_v2;
bivector B;

float step = 2 * M_PI / (nbBivectorX * nbBivectorY);
for (float a = 0; a < 2 * M_PI; a += step) {

// vector 1 is fixed to el

vl = el;

// compute vector 2:
vZ2 = cos(a) * el + sin(a) * e2;

// compute the bivector:
B =vl *v2;

// draw vector 1 (red), vector 2 (green)
glColor3f(1.0f, 0.0f, 0.0f);

draw(vl);

glColor3f(0.0f, 1.0f, 0.0f);

draw(v2);

// draw outer product vIi*vZ:

glColor3f(0.0f, 0.0f, 1.0f);

if (lg_drawParallelogram) {
draw(B);

|

else {

vl _plus_v2 = vl + v2;

// draw QUAD with vertices

// origin —> vl —> (vl+v2) —> v2
gl1Begin(GL_QUADS);
glVertex2f(0.0f, 0.0f);
glVertex2f(vl.el(), vl.e2());
glVertex2f(vl_plus_v2.el(), vl_plus_v2.e2());
glVertex2f(v2.el(), v2.e2());
glend();

/1
}

Figure 2.9: Code for drawing bivectors.

CHAPTER 2

SECTION 2.13

PROGRAMMING EXAMPLES AND EXERCISES

T HA ometric Algebra, Chapter 2, Example 1: Drawing Bivectors

0 0.26%1"e2 0.50%1"e2 0.71%1"e2 0.67"e1e2 0.97"e1e2

L e e & OB

1.00°%17e2 0.97e1"e2 0.ai el el 07171 el 0.50%e1 el 0.26"e1 e

1} - 0.Z6"el ez - 0.50%el ez - 0.71"el ez - 0&7"el ez - 087"el ez
T — -~ &y 8N
- 1.00%etl e - 0.97el el - 0.E7"el el - 0.71"etl el - 0.50%el el - 0.26%el el

59

Figure 2.10: Drawing bivectors screenshot (Example 1).

Counterclockwise/ Clockwise/
front-facing back-facing
c b
a
b
a c

Figure 2.11: The orientation of front- and back-facing polygons.

60 SPANNING ORIENTED SUBSPACES

EAGeometric Algebra, Chapter 2, Example 2: Hidden Surfa... [H[=l E3

[EAGeometric Algebra, Chapter 2, Example 2: Hidden Surfa... [[=] B3

TANOR
AN
AShaas V2
Nk‘*ﬂ-ﬁm
\) N AR
e

Uy

=

/]

Figure 2.12: On the left, a wireframe torus without back-face culling. On the right, the same
torus with back-face culling.

In the sample code, use the left mouse button to rotate the model. The middle and right
mouse buttons pop up a menu that allows you to select another model.

If you wonder where the 2-D projected vertices originally came from, we used the OpenGL
feedback mechanism to obtain the 2-D viewport coordinates of standard GLUT models.
These models can be rendered using a simple call to gTutSolid... (). GLUT provides
functions for rendering teapots, cubes, spheres, cones, tori, dodecahedrons, octahedrons,
tetrahedrons, and icosahedrons. See the getGLUTmode12D() function at the bottom of
the source file.

2.13.3 SINGULARITIES IN VECTOR FIELDS

As a more advanced application of the outer product, we will show how to use it to locate
singularities in a vector field. A vector field is defined by a function V that assigns a vector
to every point in space.

For this example, we will work in a 3-D space with a basis {e;, €2, e3}. So for every point
p in space characterized by a position vector p = xe; + y e, + zes, the function V assigns
a vector V(p). A simple example of a vector field is the function

V(p) =xe; +2yey +4zes. (2.15)

A singularity in a vector field occurs at any point at which V(p) = 0. In the vector field
in (2.15), there is a singularity at p = 0, since V(0) = 0. In vector field analysis, it is

CHAPTER 2

SECTION 2.13 PROGRAMMING EXAMPLES AND EXERCISES 61

// render model
for (unsigned int i = 0; 1 < g_polygons2D.size(); i++) |{

// get 2D vertices of the polygon:

const e3ga::vector &vl = g_vertices2D[g_polygons2D[il[0]];
const e3ga::vector &v2 = g_vertices2D[g_polygons2D[il[1]];
const e3ga::vector &v3 g_vertices2D[g_polygons2D[iJ[2]];

// Exercise:

// Insert code to remove back—facing polygons here.

// You can extract the el”e?2 coordinate of a bivector B’ using:
// float ¢ = B.ele2();

//

// draw polygon

g1Begin(GL_POLYGON);

for (unsigned int j = 0; j < g_polygons2D[i].size(); j++)
glVertex2f(
g_vertices2D[g_polygons2D[il[j1].el(),
g_vertices2D[g_polygons2D[i][jl1].e2());

glEnd();

}

Figure 2.13: The code that renders a model from its 2-D vertices (Exercise 2).

important to find the locations of singularities. For arbitrary vector fields, that is much
more difficult than for the field above.

Consider what happens if we place a box around a singularity and do the following:

¢ Evaluate the vector field V(p) at all the points p on the surface of this box;
e Normalize each vector to vV(p) = V(p)/||V(p)| (this requires a metric);
e Place the tail of each vector at the origin.

We now find that the heads of these normalized vectors form a unit sphere at the origin,
since they point in all directions. On the other hand, if we place a box around a region of
space that does not contain a singularity and repeat the above process, then the tips of the
vectors only form part of a sphere. Further, almost all points on this partial sphere have
two vectors pointing to it.

While mathematically this process will either give us a sphere or a partial sphere, it requires
evaluating the vector field at all points on the surface of the box. In practice, we can only
sample the vector field at a small number of points and then test the sampled vectors to
see if we approximately have a covering of a sphere.

62 SPANNING ORIENTED SUBSPACES

This is where trivectors come in handy. To test if the sampled vector field approximately
yields a sphere, we first triangulate the sample points, and then for each triangle of sample
points Apjpap3, we form the trivector T; = év(pl) A V(p2) A V(p3) of the normalized
vector fields evaluated at those locations. This trivector T; has the same volume as the
tetrahedron formed by the center of the sphere and the three normalized vectors. If we
sum the trivectors formed by the normalized vectors of all the triangles of the sample
points, the magnitude of the resulting trivector T will approximately be the volume of the
sphere if there is a singularity inside the cube that we sampled. If there is no singularity
inside the sampling cube, then roughly speaking, each trivector appears twice in the sum,
but with opposite sign, and thus T will have a magnitude 0.

Figure 2.14 illustrates the process using a small number of points on the cube. Typically,
we normalize T by the volume of the unit sphere, so the magnitude of T should be close
to 1 if there is a singularity inside the cube, and close to 0 otherwise.

Figure 2.15 shows code to test for a singularity within a cube. We assume that the vector
field has been sampled on a regular grid on each face of the cube and that each vector
has been prenormalized. The SumFace () procedure computes the sum of the trivectors
spanned by two triangles made up of the vertices of one square on the face of the cube.
The TestSingularity() procedure calls the SumFace() procedure for each face of the
cube, and sums the value computed for each face. It then normalizes the result by the
volume of a unit sphere.

The algorithm can be improved and extended to find higher-order singularities and to
find curves and surfaces consisting of singularities. For more details, see [45]. A complex
example is shown in Figure 2.16, where the vector field is the gradient of the function
(x — c0s(2))? + (y — sin(2))?.

@

(©)

Figure 2.14: Sampling V over a cube and summing the trivectors on the unit sphere.

CHAPTER 2

SECTION 2.13 PROGRAMMING EXAMPLES AND EXERCISES

63

/*
Sum over face
The ’vf’ array contains the pre-normalized vector field for the face.
The face is evaluated in a grid-like fashion
at (’gridSize’+1) X (’gridSize’+1) Tocations.
The resulting (trivector) volume is returned.
*/
trivector sumFace(const vector *vf, int gridSize) {
trivector sum3d;
for (int il = 0; i1 < gridSize; il++) {
for (int i2 = 0; i2 < gridSize; i2++) |

// cvf = ’current vector field’ and points into the vf array
cvf = vf + il * (gridSize + 1) + 12;
trivector a = _trivector(cvf[0] » cvflgridSize + 2] ~ cvflgridSize + 1]);

trivector b = _trivector(cvf[0] ~ cvf[l] » cvflgridSize + 21);
sum3d += a+b;
}
}
return sum3d/6.0f;
}

/*
Visits each of the 6 faces of the cube, computes the volume.
Returns true is a singularity is detected
*/
bool testSingularity(const vector *cubel[6], int gridSize) {
// visit all 6 faces
for (int i =0; 7 < 6; i++) |
sum3d += sumFace(cubel[i], gridSize);
b

// normalize sum
sum3d /= 4.0f * 3.14159f / 3.0f;

// detect point singularity
return ((norm_e(sum3d) > 0.9) && (norm_e(sum3d) < 1.1));

Figure 2.15: Code to test for singularity (Example 3). The code was edited for readability. For the unedited source code,
see the GA sandbox source code package.

64 SPANNING ORIENTED SUBSPACES CHAPTER 2

[SNSXS) [x| Geometric Algebra, Chapter 2, Example 3: Vector Field Singularity Detection

Figure 2.16: A helix-shaped singularity, as detected by Example 3.

3 METRIC PRODUCTS
OF SUBSPACES

With the outer product of the previous chapter we can span subspaces. It also enables us
to compare lengths on a line, areas in the same plane, and volumes in the same space.
We clearly have a need to compare lengths on different lines and areas in different planes.
The nonmetrical outer product cannot do that, so in this chapter we extend our subspace
algebra with a real-valued scalar product to serve this (geo)metric need. It generalizes the
familiar dot product between vectors to act between blades of the same grade.

Then we carry the algebra further, and investigate how the scalar product and the outer
product interact. This automatically leads to an inner product between subspaces of dif-
ferent dimensionality that we call the contraction. The contraction of subspace A onto
subspace B computes the part of B leastlike A. That also gives us a dual way to characterize
subspaces, through blades denoting their orthogonal complement.

With these metric products, we can easily compute geometrically useful operations like
the orthogonal projection and determine reciprocal frames for nonorthonormal coordi-
nate systems. We can even use them to embed the 3-D cross product, although we provide
strong arguments for using geometric algebra constructs instead.

65

66 METRIC PRODUCTS OF SUBSPACES

3.1 SIZING UP SUBSPACES

3.1.1 METRICS, NORMS, AND ANGLES

To establish quantitative measures of subspaces, we need them to be defined in an
n-dimensional metric space R". Such a metric space is just a vector space with a way to
compute the norm of an arbitrary vector. That capability can be specified in several ways.
The mathematically preferred method is to use a bilinear form Q, which is a scalar-valued
function of vectors. That is equivalent to defining an inner producta-b = Q[a,b] between
two arbitrary vectors a and b (also known as the dot product). Algebraically, it returns a
scalar from two vectors, so it is a mapping - : R” x R” — R, and it is linear and symmetric.
It defines a metric on the vector space R".

For most of this chapter, you can safely develop your intuition by thinking of a Euclidean
metric in which the dot product is positive definite (the latter meaning that a-a is only zero
when a is). Any positive definite metric can be rescaled to a Euclidean metric by choosing
one’s coordinate axes properly, so this appears quite general enough. These positive defi-
nite metrics are called nondegenerate. They may seem to be all you need to do Euclidean
geometry. But as we already indicated in Chapter 1, there are useful models of Euclidean
geometry that use vector spaces with non-Euclidean metrics in their representation of
elements in physical space. Such degenerate metrics are no longer positive definite, so that
for some vector a the inner product a - a can be negative. For some vectors, a - a can even
be zero without a being zero; such a vector is called a null vector. More detail at this point
would distract from our main goal in this chapter, which is to extend the dot product
to blades, so we provide Appendix A as additional explanation. As a notation for these
metric spaces, we use RP4 for a space with p positive dimensions and g negative dimen-
sions. A space R™? is then an n-dimensional metric space that is effectively a space with a
Euclidean metric. We write R” if we are not specific on a metric. We will only start using
degenerate metrics in Chapter 13.

We commonly use the algebraically defined inner product to compute geometrically
useful properties. We compute the length (or norm) ||a|| of a vector a, through

lal* =a-a,
and the cosine of the angle ¢ between vectors a and b through

a-b

— 3.1
llall bl G

cosd =

We clearly want such capabilities for general subspaces of the same grade: to be able
to assign an absolute measure to their weight (length, area, volume, etc.) and to com-
pare their relative attitudes by an angle measure. We provide for this geometric need
algebraically by introducing a real-valued scalar product between blades of the same
grade.

CHAPTER 3

SECTION 3.1

SIZING UP SUBSPACES 67

3.1.2 DEFINITION OF THE SCALAR PRODUCT =

The scalar product is a mapping from a pair of k-blades to the real numbers, and
we will denote it by an asterisk (x). In mathematical terms, we define a function
* /\k R" x /\k R" — R. (Do not confuse this terminology with the scalar multipli-
cation in the vector space R", which is a mapping R x R” — R”, making a vector x out of
a vector x. As we have seen in the previous chapter, that is essentially the outer product.)

The inner product of vectors is a special case of this scalar product, as applied to vec-
tors. When applied to k-blades, it should at least be backwards compatible with that
vector inner product in the case of 1-blades. In fact, the scalar product of two k-blades
A =ajA---ANagand B = by A- - -A by can be defined using all combinations of inner prod-
ucts between their vector factors, and this provides that compatibility. It implies that the
metric introduced in the original vector space R"” automatically tells us how to measure
the k-blades in /\k R". The precise combination must borrow the antisymmetric flavor of
the spanning product to make it independent of the factorization of the blades A and B,
so that it becomes a quantitative measure that can indeed be interpreted as an absolute
area or (hyper)volume.

Let usjust define it first, and then show that it works in the next few pages. We conveniently
employ the standard notation of a determinant to define the scalar product. It may look
intimidating at first, but it is compact and computable.

For k-blades A = a; A ... Aayand B = b; A... A by and scalars a and B, the scalar
product % : N'R" x A*R" - R is defined as

axf=ap
al'bk al‘bk_l a1-b1
a2'bk az‘bk_l a2-b1

AxB=| . _ (3.2)
ar-br ag-bry ... ap-by

A B =0 between blades of unequal grades

Note that the symmetry of the determinant implies some useful symmetries in the scalar
product, which we can use in derivations:

BxA=A*B=A:xB. (3.3)

Here the tilde denotes the reversion operation of (2.11) or (2.12).

3.1.3 THE SQUARED NORM OF A SUBSPACE

The (squared) norm of a blade can now be defined in terms of its scalar product through

squared norm : IAlIZ = A = A. (3.4)

68 METRIC PRODUCTS OF SUBSPACES CHAPTER 3

Let us verify that this algebraic expression indeed gives us a sensible geometric measure
of the weight of the subspace represented by the blade, as an area or (hyper)volume.

e Vectors. The scalar product of two vectors a and b is clearly equal to the standard
dot product of the vectors, a - b. In particular, a * a will give us the squared length
of the vector a.

e 2-Blades. For a 2-blade A, factorizable by the outer product as a; A ay, we obtain

Al = (a1 Aap) * (ar Aa)™

(ay Nag) * (a2 Aay)

aj-a; aj;-az

a-a; ap-a

(a1 -a)(ax -) — (a1 -)%

This expression is more easily interpreted when we introduce the angle y between
a; and ap and use (3.1):

IAlI* = (a1 -a1)(a2 - a2) — () - a2)?
= llar|I*lla2ll* (1 = (cos w)?)

= (laillllazll sin)

We recognize this as the squared area of the parallelogram spanned by a; and ay,
precisely as we had hoped when we defined the outer product. Moreover, the prop-
erties of the determinant make this independent of the factorization of the blade:
factorizing instead as A = a; A (a + Aap) results in the same value for the scalar
product, as you can easily verify.

* k-Blades. We know from the previous chapter that the k-volume associated with a
k-blade A = a; A -- - A aj is proportional to the determinant of the matrix [A] =
[[a; --- ak]l. Once you realize that the scalar product definition of the squared norm
can be written in terms of a matrix product as IA]I? = det(TATT [ATD, you can use
the properties of determinants to simplify this to det([A]))2. So indeed, for k-blades,
we do compute the squared k-dimensional hypervolume.

3.1.4 THE ANGLE BETWEEN SUBSPACES

Applying the scalar product to two different blades of the same grade, we also would hope
that the scalar product A * B has a geometrical meaning that expresses the cosine of the
relative angle ¢ between A and B in terms of the scalar product (in analogy to the dot
product equation (3.1)). This is indeed the case, and the precise definition is

A*B

_— 3.5
TAT B (3:3)

angle: cos¢ =

SECTION 3.1 SIZING UP SUBSPACES 69

Let us verify that the scalar product indeed yields the correct angle.

e Vectors. This formula clearly works for vectors, since it reverts to the well-known
vector formula cos & = (a - b)/(]|a|| ||b]]).

o 2-Blades. For 2-blades A = a; A a; and B = b; A by, we would define their relative
angle conceptually by finding out what it takes to turn one onto the other, as illus-
trated in Figure 3.1(a) and (b). In 3-D, this involves first finding a common factor
c with [|c|| = 1. Next, we reshape the two 2-blades to have ¢ as one component and
a vector perpendicular to c as the other component:

ajANap=aAcwitha-c=0,
b;Aby=bAcwithb-c=0.
Now evaluating the scalar product shows that the angle between the original
2-blades A and B has effectively been reduced to the angle between the vectors a
and b, for which we have a clear definition through the inner product formula:
AxB = (a; Aa) * (b Aby)™
=(Ac)x(bAc)”
(anc)x(cADb)

a-ba-c

c-bc-c

a-b 0
0 1

a-b

llall [[bll cos ¢

= ||AllIB| cos ¢,

where we used that ||A|| = ||, easily derived from [|A||> = |laAc|®> = (a-a)
(c-¢)—(a-c)?> =a-a = |a||? and the fact that norms are positive.

So the formula works for 2-blades, giving the angle we expect. Of course, in practice
you would evaluate it directly algebraically using the definition, and without the
geometric reshaping involving c—the derivation was merely meant to show that
the resulting value indeed gives the angle we desire.

e k-Blades. The 2-blade example also motivates the result for general k-blades. All
common factors between the two blades can be taken out (as ¢ was in the example
above), and they don’t affect the cosine value. Of the remainder, there are three
possibilities:

1. Only scalars are left. The blades were then multiples of each other, so their
angle is 0, the cosine equals 1, and the scalar product is the product of their
norms.

70 METRIC PRODUCTS OF SUBSPACES CHAPTER 3

(a) (b)

Figure 3.1: Computing the scalar product of 2-blades.

2. We are left with one vector in each term. We can then rotate one vector onto
the other with a well-defined rotation, so their relative angle and its cosine are
well defined through the usual dot product formula. We saw that in the 2-blade
example above.

3. We are left with totally disjoint subblades of at least grade 2. We then need
at least two rotations in orthogonal 2-blades to bring the subblades into align-
ment (see [52]). The cosine computed by (3.5) is now equal to the product of
the cosines of these orthogonal rotations, and therefore zero if at least one of
them is over a right angle. In that case, the blades should be considered per-
pendicular. (An example of such a situation in 4-D space involves the 2-blades
A =e Nesand B = (cosae; — sinaep) A (cos fe3 — sin fes). Verify that
ANB = —sinasinfle; A ey A e3 A ey, so that they are indeed disjoint, while
their cosine equals A B = cos acos f.)

Reinterpreting a zero cosine within this larger context, it means that two blades are per-
pendicular if they require at least one right-angle rotation to align them. This sounds like
a reasonable enough extension of the concept of perpendicularity to such higher dimen-
sional spaces. In this case, the algebraic imperative should probably inform our geometric
intuition, which is ill-developed for more than three dimensions.

SECTION 3.2

FROM SCALAR PRODUCT TO CONTRACTION 71

As an aside at this point, you may remark that the two useful geometrical properties we
can recover from the scalar product (norm and cosine) both involve a reversion of the
second argument. If we would have absorbed that reversion into the definition of the
scalar product, those formulas would be simpler, and the definition would be tidied up
as well (since we would get a matrix, of which element (i, j) would be a; - b;). This is true,
and done in some mathematical texts such as [41] (though the reversion then pops up
soon after, in the definition of the contraction product). We have chosen (3.2) since that
coincides with the scalar product that you will find in geometric algebra literature, though
defined in a different manner (and then quite naturally leading to that relatively reversed
form, as we will see in Chapter 6).

3.2 FROM SCALAR PRODUCT TO CONTRACTION

In the computation of the relative weight and the attitude of k-dimensional subspaces of
the same grade, we sensibly reduced the scalar products to a lower-dimensional situation
by factoring out a common blade. This dimension reduction of subspaces is of course
very useful geometrically, since it focuses the computation on the geometrically different
factors of the subspaces. We now formalize it algebraically, in terms of the outer product
and scalar product so that our subspace algebra remains consistent. Fortunately, that
formalization can be done relatively simply using the mathematical structure of the
subspace algebra. The geometric interpretation then follows the algebraic justification.

3.2.1 IMPLICIT DEFINITION OF CONTRACTION |

We first define a contraction operation implicitly. Our implicit definition is fashioned by
using the scalar product on blades of the same grade with a common factor A, and then
insisting that the scalar product of the two blades be equal to the scalar product of those
blades with the common factor A removed. That obviously constrains the algebraic prop-
erties of the removal operation and in fact makes the removal operation into a product
that we identify with the contraction.

Let B and Y be blades of the same grade, with a common factor A. Writing Y = X A A, let
us try to remove this common factor A from Y. (Figure 3.2 illustrates this for the 2-blades
xAaand B, with common vector factor a.) We attempt to rewrite the scalar product Y #B
as a scalar product of X with “A removed from B”. For now we denote the latter by A|B,
an obviously asymmetrical notation for an obviously asymmetrical geometric concept.
So we should have

(XAA)«B=Xx(A|B) (3.6)

as a desired property of this new element A|B. This somewhat defines the properties of
the new blade A |B relative to this chosen Y (and hence X). We could pick another Y (still

72 METRIC PRODUCTS OF SUBSPACES CHAPTER 3

(a) (b)

Figure 3.2: From scalar product to contraction. The scalar product between a 2-blade Y = x A a and a 2-blade B can be
reduced to a computation on vectors by taking a out. That results in the evaluation of x with the vector a|B, the contraction
of aon B.

with a common factor of A with B, so actually we have picked another X) and learn a
bit more about the value of A|B. If fact, we can try all possibilities for X, of all grades,
and if the metric is nondegenerate this actually completely determines what A |B must
be (see structural exercise 1 for an example). If the metric is degenerate, vectors can have
an inner product of zero without being zero themselves, and this means that the value of
A |B cannot be determined completely (see structural exercise 2).

These properties imply that (at least in nondegenerate metrics) this element A]B is not
just a weird shorthand notation for a reduced blade, but that we have actually defined a
new product in our subspace algebra, making a new blade from its two factors. We call
A |B the contraction of A onto B.

We can easily compute the grade of this new element. The left side of (3.6) is nonzero if
grade(X)+grade(A) = grade(B), and the right side is nonzero if grade(A |B) = grade(X).
Therefore,

grade(A |B) = grade(B) — grade(A)

(with only positive grades allowed), and we see that the contraction is a grade-reducing
product between blades. As a function mapping defined between blades of different
grades | : A'R" x A'R" - AFR?, it is bilinear since both the outer product and
the scalar product are. For the same reason, it is distributive over addition, so that we
could lift its definition to the full Grassmann algebra context. But as always, we will

SECTION 3.2

FROM SCALAR PRODUCT TO CONTRACTION 73

mostly use it on blades, and we keep our explanation simple by restricting ourselves to
blades in this chapter.

When the grades of A and B are the same, X is a nonzero scalar; call this scalar & Then
the left-hand side of (3.6) is (6 A A) % B = £(A * B), while the right-hand side equals
& (A]B). So for same-grade blades, the contraction is identical to the scalar product. We can
therefore view the contraction as the general grade-reduction product applying to any
pair of blades, automatically reducing to the more specific scalar product when it can. This
reduces the number of symbols, so it is what one uses in practice—although it somewhat
obscures the fact that the scalar product is more fundamental.

3.2.2 COMPUTING THE CONTRACTION EXPLICITLY

The definition of the contraction by (3.6) has two disadvantages: it is implicit, and it
only works for nondegenerate metrics. We need a universally valid, explicitly constructive,
computational formula for A|B.

We give it now, in an axiomatic form that immediately suggests a recursive program to
evaluate the contraction. Of course we have to show that this procedure indeed computes
the same product as the implicit definition of (3.6) (when that is defined), and that takes
a bit of work.

The contraction | is a product producing a (I — k)-blade from a k-blade and
an I-blade (so it is a bilinear mapping | : AR" x A'R" - A7FR"), with the
following defining properties:

a|B=aB (3.7)
Bla =0 ifgrade(B) >0 (3.8)
alb=a-b (3.9)
a](BAC) = (a]B) AC+ (=1)&BB A (a|C) (3.10)
(AAB)|C = A|(B]C), (3.11)

where «a is a scalar, a and b are vectors, and A, B, and C are blades (which could be
scalars or vectors as well as higher-dimensional blades).

It follows that the contraction has useful bilinear and distributive properties:

(A+B)|C=A|C+B|C (3.12)
A|[(B+C)=A|B+A|C (3.13)
(@A)|B = a(A|B) = A](aB) (3.14)

Before we relate this new explicit definition to the implicit definition of (3.6), note that
it can indeed be used to compute the contraction product of arbitrary blades by the

74 METRIC PRODUCTS OF SUBSPACES

following procedure. We first split off a vector a from any first argument k-blade Ay in
the expression Ax]B;. Then, writing Ax = Ax_; A a, we use (3.11) as

Ai|B; = (Ar-1 ANa)|B; = A](a] By). (3.15)

Here, a|B; is an (I — 1)-blade. Therefore we have reduced the contraction of a k-blade
onto an [-blade to that of a (k—1)-blade onto an (I—1)-blade. Proceeding by splitting off
additional vectors, we can therefore reduce the expression completely to that of a scalar
0-blade and a (k—I)-blade, or an (I—k)-blade and a scalar (which gives 0 if I # k by (3.8)).

For instance, let us compute the contraction of A = e; A e; onto B = e; A e3 A ey, with
{ei}?zl an orthonormal basis in the Euclidean metric space R™, so that e; - e; = 0 for
i#j,and e; - e, = 1. We indicate the rewriting steps:

(e1 Nex)](er NesNey) =

=er|(ex](e; Ae3 Nep)) by (3.11)
=er] ((ex]er) A (e3 ANex) —ep A(ex](e3 Aer))) by (3.10)
=e1] ((e2]er) A(e3 Aex) —er A((ex]e3) Nex —e3 A(ex]er))) by (3.10)
=e](e; Ne3) by (3.9)
= (er]er) Ne3 —ey A(er]e3) by (3.10)
= €3.

We showed this computation in all its detail; with (3.16), below, such evaluations become
one-liners, done on sight.

If you want to have the contraction defined for general multivectors in the context of
a Grassmann algebra, you just use the linear properties of the contraction to write its
arguments as a sum of blades, and use distributivity to reduce the result to a sum of con-
tractions of blades.

3.2.3 ALGEBRAIC SUBTLETIES

In Appendix B.2, we give the actual proof that the explicit definition of (3.7)—(3.11) agrees
with the implicit definition (3.6). Reading through the proof will familiarize you with the
algebra and its techniques, but it is better to first understand the geometrical meaning of
the contraction as explained in the next section. So you had better leave the proof for a
second pass.

Still, a really useful thing to come out of the detailed proof in the Appendix B is a for-
mula that permits us to do the contraction x| A of a vector x on a blade A by passing the
operation x| through the factored blade. It is

k
x|(aj AayA---Nag) = Z:(—l)’l_1 ajNayA---AXJa)A--- Nag. (3.16)

i=1

CHAPTER 3

SECTION 3.3

GEOMETRIC INTERPRETATION OF THE CONTRACTION 75

Since x|a; = x - a;, this reduces the contraction of a vector onto a blade to a series of inner
products. This basically implements the product occurring on the left-hand side of (3.15)
as a one-liner, and therefore facilitates the evaluation of arbitrary contractions between
blades. The special case for bivectors is

x|(aj Aay) = (x-aj)ay — (x-ax)ag (3.17)

We will use it often in computations where we chose to drop the wedges for the scalar
multiples.

3.3 GEOMETRIC INTERPRETATION OF THE
CONTRACTION

All the above formulas are the unavoidable algebraic consequences of our simple desire
to design a product that could factor the metric scalar product. Now the time has come
to investigate the geometric properties of this new product between subspaces. We begin
with the following observations to develop our intuition about the contraction of two
blades:

1. A|B is a blade when A and B are, so A|B represents an oriented subspace with
specific attitude, orientation, and weight.

2. Theblade A |B represents a subspace that is contained in B. To show this, factor one
vector a out of A, giving A = A’ A a. Then, by (3.11), we obtain

A|B = (A’ Aa)|B=A'|(a]B).

The term a|B is of the form (3.16), and it is definitely in B since it only contains
vectors of B. Now split another vector off and recurse—the property of remaining
in B inherits. Recursion stops when all that is left of A is a scalar; then (3.7) shows
that the final result is still in B. At any point in this recursion, we may encounter a 0
result, notably when the grade of A exceeds that of B. But 0 is the empty blade, and
as such contained in any blade (of any grade), so it is also in B.

3. For a vector x, having x|A = 0 means that x is perpendicular to all vectors in A.
This follows immediately from the expansion (3.16): the right-hand side can only
be zero if all x|a; = x - a; are zero; therefore x is perpendicular to all vectors in a
basis of the subspace A; therefore x is perpendicular to all of A.

4. The outcome of A |B is perpendicular to the subspace A. The proof is simple: take
a vector a of A, then a A A = 0. Now by (3.11) for the contraction, a|](A|B) =
(@anA)|B =0]|B =0, soais perpendicular to A|B by item 3 above. But a was just
an arbitrary vector in A. Choosing a set of vectors that forms a basis for A, we can
thus show that all of them are perpendicular to A |B. Therefore, the whole subspace
A is perpendicular to the subspace A|B.

5. The norm of the blade A|B is proportional to the norm of A, the norm of B, and
the cosine of the angle between A and its projection onto B. The derivation of this

76 METRIC PRODUCTS OF SUBSPACES

is a straightforward application of the norm and angle definitions. It may be found
in Appendix B.4, but is probably better appreciated after learning about orthogonal
projections in Section 3.6.

6. As we have seen,
grade(A|B) = grade(B) — grade(A).

This confirms the original motivation of A|B as “A taken out of B”: the subspace
B loses the dimension of A in the contraction. Since blades with negative grades do
not exist, the contraction result is zero when grade(A) > grade(B).

We attempt to summarize these results as:

The contraction A on B of an a-blade A and a b-blade B is a specific subblade of B
of grade b — a perpendicular to A, with a weight proportional to the norm of B and
to the norm of the projection of A onto B.

When we equate blades with subspaces, we see that this is a compact geometric statement
about the meaning of the contraction. It combines the two geometrical concepts of con-
tainment in a subspace and perpendicularity into one product with well-defined algebraic
properties. Still, the statement is rather involved. We provide a more geometrically intu-
itive visualization of the contraction in Section 3.6 (in terms of the projection of A onto B).

For a 2-blade B and a vector x, the situation in 3-D is depicted in Figure 3.3: x|B is a
vector on a line in the plane determined by B, perpendicular to x. (Obviously, all vectors

Figure 3.3: The contraction of a vector onto a 2-blade, in a right-handed 3-D Euclidean space.

CHAPTER 3

SECTION 3.4

THE OTHER CONTRACTION | 77

along the line determined by the x| B would be sensible results, as long as they are linear
in the magnitudes of x and B.) Intuitively, you could think of x| B as the blade of the largest
subspace of B that is most unlike x.

The geometric meaning of the contraction as the largest subspace most unlike a given
space even extends to the extreme cases of scalars interpreted geometrically as weighted
points at the origin, as long as you realize that the algebraic blade “zero” should be
interpreted geometrically as the empty subspace. We give structural exercises 4—6 to
explore that point and convince you of the consistency across the whole range of
validity.

We stated that the norm of A|B is in general proportional to the norms of B and the
projection of A onto B. In the example of Figure 3.3, this is perhaps most easily shown by
introducing orthonormal coordinates {ei}?zl. Choose them such that B = ||B||e; A e
and x = ||x|| (e; cos ¢ + e3 sin), then you compute easily that x| B = ||x|| ||B|| cos ¢ ez,
confirming all aspects of attitude, orientation, and weight.

When x is perpendicular to B, the contraction is zero. In the example we should inter-
pret that geometrically as the nonuniqueness of a 1-D subspace of the 2-blade B that is
perpendicular to x (any homogeneous line in B would do). The small weight of the con-
traction blade in an almost perpendicular situation is then an indication of the numerical
significance or numerical instability of the result. That interpretation is confirmed by the
opposite situation: when x is contained in B, the cosine is 1, and the contraction is the
orthogonal vector within the plane. Nothing is lost in the projection to the plane that
determines the norm of x| B, and in that sense x is as stably perpendicular to its projec-
tion as it can ever be.

3.4 THE OTHER CONTRACTION |

We motivated the original definition of A|B in (3.6) in terms of geometrical subspaces
as “A taken out of B”. This is clearly asymmetrical in A and B, and we could also have
used the same geometrical intuition to define an operation B|A, interpreted as “take B
and remove A from it.” The two are so closely related that we really only need one to set
up our algebra, but occasionally formulas get simpler when we switch over to this other
contraction. Let us briefly study their relationship.

Define the right contraction implicitly by taking A out of the scalar product:
right contraction : B % (AAX) = (B[A) *X. (3.18)

This is a simple interchange of the order of factors relative to (3.6). The relationship
between the two contractions is easily established from the reversion symmetry of the
scalar product (3.3) as

B[A = (A]B) = (-1)"®*DA]B, (3.19)

78 METRIC PRODUCTS OF SUBSPACES

with a = grade(A) and b = grade(B). The first equat1on follows from a straightforward
computation usmg the reversmn 51gns X * (B LA) = Xx* (B]JA) = (B|A) *X = B *
(AANX) =B (X /\A) (X/\A) *B = (X * AJB) So B|A and A|B differ only by a
grade-dependent sign, which can be computed by using (2.12) repeatedly.

Although it therefore does not lead to a fundamentally new product, this right contraction
is convenient at times for compact notation of relationships. It can be developed axiomati-
cally along the same lines as the regular (left) contraction, and has a similar (but reverse)
grade reduction property:

grade(B|A) = grade(B) — grade(A).

For vectors, both contractions reduce to the familiar inner product, so we can see them
as generalized inner products now acting on blades (or even on multivectors).

The terms we have used for the contractions correspond to the usage in [39]. It is some-
what unfortunate that the left contraction is denoted by a right parenthesis symbol |,
and the right contraction by a left symbol |. The terminology is that something is being
contracted from the left or from the right, and the hook on the parenthesis points to
the contractor rather than to the contractee. We pronounce the left contraction A|B as
“A (contracted) on B,” and the right contraction B|A as “B (contracted) by A.” We will
mostly use the left contraction to express our results.

Most other authors use definitions of inner products that differ from both left and right
contraction. The geometry behind those products is essentially the same as for the con-
tractions, but their algebraic implementation generally leads to more involved and con-
ditional expressions for advanced results. We explore these issues in detail in Section B.1
of Appendix B.

3.5 ORTHOGONALITY AND DUALITY

3.5.1 NONASSOCIATIVITY OF THE CONTRACTION

Algebraically, the contraction is nonassociative, for A|(B|C) is not equal to (A|B)|C.
It cannot be, for even the grades of both expressions are unequal, being respectively
grade(C) — grade(B) — grade(A), and grade(C) — grade(B) + grade(A). So what do the
two expressions A| (B|C) and (A]B)]C) represent, and how are they different?

o The geometrical interpretation of the expression A|(B|C) is: first restrict the out-
come to B] C, the subspace of C that is perpendicular to B; then from that subspace
pick the subspace perpendicular to A. We can of course construct this as the sub-
space that is in C and perpendicular to both A and to B. The equivalence of both
procedures is the geometrical interpretation of the defining property (3.11), which
reads

(AAB)|]C=A]|(B|C) (universally valid) (3.20)

CHAPTER 3

SECTION 3.5 ORTHOGONALITY AND DUALITY 79

e The other possibility of composing the contractions (A|B)]|C is not part of our
defining properties. It can also be simplified to an expression using the outer prod-
uct, though the result is not universal but conditional:

(A]B)]C = A A (B]C) whenACC (3.21)

The proof is nontrivial, and is in Section B.3 of Appendix B.

The geometrical interpretation of this formula is a bit of a tongue-twister. The
left-hand side, (A]B)] C, asks us to take the part of a subspace B that is most unlike A
(in the sense of orthogonal containment), and then remove that from C. The right-
hand side, A A (B]C), suggests that we have then actually only taken B out of C,
and have effectively put A back into the result. That feels more or less correct, but
not quite. To make it hold, we need the condition that A was in C to begin with—
we could not “reconstruct” any other parts of A by the double complementarity of
(A|B)|C.

We will refer to (3.20) and (3.21) together as the duality formulas for reasons that become
clear below.

3.5.2 THE INVERSE OF A BLADE

There is no unique inverse A~! of a blade A that would satisfy the equation A|A 1=,
for we can always add a blade perpendicular to A to A~! and still satisfy the equation.
Still, we can define a unique blade that works as an inverse of a k-blade Ay relative to the
contraction. We define it as'

A A
inverse of a blade: A;l = k 5= (—1)"("—1)/2 —kz (3.22)
1Al [l Akl

Note that this is a blade of the same grade as Ay, representing a subspace with the same
attitude, and differing from Ay only by its weight and possibly its orientation. You can
easily verify that this is indeed an inverse of A for the contraction:

A _ AddAc _ AclAx _

AdAT! = A = — =
Akl ArxAr ArAg

1, (3.23)

using the equivalence of scalar product and contraction for blades of equal grade.
The inverse of a vector a is thus

a~l =a/|a|?

1 Later, when we have introduced the associative geometric product in Chapter 6, this will be found to be “the”
inverse, relative to that product. Since that inverse can be defined completely in terms of the contraction, we
have chosen to define it now and use the same symbol to denote it, to prevent a proliferation of notations.

80 METRIC PRODUCTS OF SUBSPACES

and as you would expect, a unit vector is its own inverse. That is not true for general
blades, as shown by the inverses of the unit blades e; A e; and e; A e; A e3 (defined in the
standard orthonormal basis):

(eq /\eg)_1 =eyNe =—e ANey

(e1Ahexhes) ' =esherhe; = —e AexAes

When we use unit pseudoscalars I, = e; Aey A --- A e, for an n-dimensional Euclidean
metric space R™, the inverse is simply the reverse:”

;' =T,

Inverses of unit pseudoscalars are important in the formulation of duality; for consistency
in orientations, you should always remember to include the reverse.

For a null blade, which has norm zero (see Appendix A), the inverse is not defined. In
computations involving the contractions of null blades, one can substitute it by the recip-
rocal of the blade, which we will meet in Section 3.8. This is a more involved concept, only
well defined in “balanced” algebras. We have preferred to keep the formulas in our initial
explanations simple, by focusing on nondegenerate metrics and the inverse rather than
general metrics and the reciprocal. When we start using the degenerate metrics seriously
(in Chapter 13), we will be more careful.

3.5.3 ORTHOGONAL COMPLEMENT AND DUALITY

Given a k-blade Ay in the space R" with unit pseudoscalar I,,, its dual is obtained by the
dualization mapping * : /\k R" — /\”_k R" defined by

dualization: A} = A] | S

The operation “taking the dual” is linear in Ay, and it results in a blade with the same
magnitude as Ay and a well-defined orientation. The reason for the inverse pseudoscalar
is clear when we use it on a (hyper) volume blade such as a A b A c. We have seen in the
previous chapter how such an n-blade is proportional to the pseudoscalar I,, by a scalar
that is the oriented volume. With the definition of dual, that oriented scalar volume is
simply its dual, (a A b A ¢)*, without extraneous signs.

Figure 3.4 shows a 2-D example of dualization: the dual of vector in a space with coun-
terclockwise orientation is the clockwise vector perpendicular to it. This is easily proved:
choose coordinates such that a = ae; and I, = e; A e5. Then

a* =ae|(exNe)) = —ae.

2 Ina general metric space R4 (see A.1 in Appendix A), this changes to I;]q = (—l)qu, as you can easily verify.

CHAPTER 3

SECTION 3.5 ORTHOGONALITY AND DUALITY 81

LN

(a”) =-a

Figure 3.4: Duality of vectors in 2-D, with a counterclockwise-oriented pseudoscalar I,. The
dual of the red vector a is the blue vector a* obtained by rotating it clockwise over /2. The
dual of that blue vector is (a*)*, which is —a.

This vector is indeed perpendicular to a. But note that the expression a|T requires no

coordinates to denote such a vector perpendicular to a. In fact, for a vector a in the
I-plane, |I, acts like an operator that rotates a clockwise over %ﬂ' in the plane I, inde-
pendent of any coordinate system. We will get back to such operators in Chapter 7.

Taking the dual again does not result in the original vector, but in its opposite:
(@) = —aer](exNej) = —ae; = —a.
This is a property of other dimensionalities as well. Let us derive the general result:

AN = AL = A n @
— (_1)"("—1)/2 Ak /\ (InJ’fn) = (_l)n(n—l)/Z Ak /\ l = (_1)”(11-1)/2 Ak

(we used (3.21) in this derivation). There is a dimension-dependent sign, with the pat-
tern + + — — 4+ + — — - - -, so for 2-D and 3-D, this minus sign in the double reversion
occurs. If we need to be careful about signs, we should use an undualization operation to
retrieve the proper element of which the dual would be A. It is simply defined through:

undualization: A~ = A|l,.

If there is any ambiguity concerning the pseudoscalar relative to which the duality is taken,
then we will write it out in full.

Figure 3.5 illustrates dualization in R>? with its Euclidean metric. We define a right-
handed pseudoscalar I3 = e; A e, A ez relative to the standard orthonormal basis
{e1,ep,e3}. A general vector a = aje; + azep + azes is dualized to

a* = aJI3_l

82 METRIC PRODUCTS OF SUBSPACES

4"

(@

Figure 3.5: Duality of vectors and bivectors in 3-D, with a right-handed pseudoscalar. (a) The
dual of a bivector A is the vector a. Grabbing the vector with your right hand has the fingers
moving with the orientation of the bivector. (b) The vector whose dual is the bivector A is
then —a. Now bivector and vector appear to have a left-handed relationship.

= (a1e1 + mex +azes)|(e3 Nex Aey)
=-—ajeyNes—arezNe; —aze; Nep.

By our geometric interpretation of the contraction, this 2-blade A = a* denotes a plane
that is the orthogonal complement to a. Note that A has the same coefficients as a had on its
orthonormal basis of vectors, but now on a 2-blade basis that can be associated with the
orthonormal vector basis in a natural manner. In this way, a vector is naturally associated
with a 2-blade, in 3-D space. (Of course, this is similar to what we would do classically:
we use a as the normal vector for the plane A, but that only works in 3-D space.)

Whenever you have forgotten the signs involved in a desired dualization, it is simplest to
make a quick check using a standardized situation of vectors and 2-blades along the axes
in an orthonormal basis {ei};’:l (such ase;* =e;|(e; A e]) = —ep, so this is a clockwise
rotation). But this usage of coordinates should only be a check: with enough practice, you
will be able to avoid the extraneous coordinates in the specification of your actual geo-
metrical computations. This will save unnecessary writing and maintain clear geometrical
relationships of the elements introduced.

3.5.4 THE DUALITY RELATIONSHIPS

There is a dual relationship between the contraction and the outer product, which we can
see explicitly by using the two properties (3.20) and (3.21) when C is a unit pseudoscalar
I, for the space R". Since all blades are contained in the pseudoscalar, both properties
now become universally valid and can be written using the duality operator:

(AAB)" = A|(BY)

(A]B)* = AA(B*) for ACL (3.24)

CHAPTER 3

SECTION 3.6

ORTHOGONAL PROJECTION OF SUBSPACES 83

These duality relationships are very important in simplification of formulas. You can often
evaluate an expression a lot more compactly by taking the dual, change a contraction into
an outer product, use its properties, undualize, and so on. We will see many examples of
this technique in the coming chapters.

3.5.5 DUAL REPRESENTATION OF SUBSPACES

The duality relationships permit us to represent geometrical subspaces in a dual manner.

We have seen in Section 2.8 how a blade A can represent a subspace directly, checking
whether a vector x is in it by testing whether x A A = 0. We introduce the dual representa-
tion of a subspace A simply by taking the dual of the defining equation x A A = 0 using
(3.24). We obtain

D = A™ is the dual representation of A : (x€ A < x|D=0).

The blade D that dually represents the subspace A is also a direct representation of the
orthogonal complement of the subspace .A. You can confirm this by finding all vectors y
for which y A D = 0 and again using (3.24). This mirrors and generalizes the practice in
elementary linear algebra to have a normal vector n represent a homogeneous hyperplane
through the equationx - n = 0.

Once we really start doing geometry in Part II, we will very flexibly switch between the
direct representation and the dual representation, and this will be a powerful way of find-
ing the simplest expressions for our geometrical operations. It is therefore pleasant to have
both representations present within our algebra of blades.

Readers who are acquainted with Grassmann-Cayley algebras will note that we have used
the contraction to construct the dual representation, and that this therefore involves the
metric of the space. Grassmann-Cayley algebra has a seemingly nonmetric way of making
dualities, using mathematical constructions called 1-forms. We view these as a disguised
form of metric. Since we will be mostly working in R” and usually have an obvious metric,
the metric road to duality through the contraction is more convenient in our applications.
It saves us from having to introduce a lot of mathematical terminology that we do not
really need.

3.6 ORTHOGONAL PROJECTION OF SUBSPACES

With the contraction and the inverse, we have the ingredients to construct the
orthogonal projection of a subspace represented by a blade X onto a subspace represented
by a blade B. We assume that this blade B has an inverse relative to the contraction, the
blade B~

To introduce the construction, consider Figure 3.6, which depicts the projection of a vec-
tor on a 2-blade. The vector x|B is a vector in the B-plane perpendicular to x, and that

84 METRIC PRODUCTS OF SUBSPACES

C >~

x 1B
(xIB)IB!

Figure 3.6: Projection of a vector x onto a subspace B.

means that it is also perpendicular to the projection of x on B. Therefore we can simply
rotate x| B over #/2 in the B-plane to obtain the projection. A rotation with the correct
sign is performed by the dual within that plane (i.e., by the operation |B~!). The string
of operations then yields (x|B)|B™, as depicted in the figure.

Inspired by this 3-D example, we define the (orthogonal) projection Pg[] : R — R" as
orthogonal projection of vector x onto B : Pg[x] = (x|B)|B -1 (3.25)

This mapping is linear in x, but nonlinear in B. In fact, only the attitude of B affects
the outcome; its weight and orientation are divided out. In this operation, B acts as an
unoriented, unweighted subspace.

A projection should be idempotent (applying it twice should be the same as applying it
once). This is easily verified using the duality properties of Section 3.5.1:
Pe[Palx]] = (((x|B)JB~")|B)]B~" = ((x|B)]B~") A (BJB~)
= ((x|B)|B~') A 1= Pg[x].
To investigate its properties further, let us write x as x = x, + x|, where x, |B = 0, while

x|] B # 0. In a space with a Euclidean metric, we would say that x, is perpendicular to B.
The projection kills this perpendicular part of x,

Pelx] = (x.|B)|B™" + (x|B)|B~" = 0+x A (BJB™") =x,

leaving the part x; that is contained in B! and hence in B. This is just what you would
expect of a projection.

When you consider the projection of a general blade X onto the blade B, the principles
are the same. The contraction X|B produces a subblade of B that is perpendicular to X

CHAPTER 3

SECTION 3.6

ORTHOGONAL PROJECTION OF SUBSPACES 85

and of grade (b — x), where b = grade(B) and x = grade(X). The projection is a subblade
of B of the same grade as X. Such a blade can be made from X|B by dualization of the
contraction. The correct sign and magnitude to be in agreement with the formula for the
vector projection implies the use of B~!. In total, we obtain for the orthogonal projection
of a blade X onto a blade B:

projection of X onto B : Pg[X] = (X|B)|B -1 (3.26)

Note that if you try to project a subspace of too high a grade onto B, the contraction
automatically causes the result to be zero. Even when grade(X) < grade(B) this may
happen; it all depends on the relative geometric positions of the subspaces, as it should.

The reasoning to achieve the projection formula (3.26) was rather geometrical, but it can
also can be derived in a more algebraic manner. Section B.4 in Appendix B gives a proof
in terms of the present chapter, but the next chapter gives a perhaps more satisfying proof
by naturally extending the projection of a vector to act on a blade, in Section 4.2.2.

Since the projection is more intuitive than the contraction, you may prefer to make (3.26)
the formulation of the geometry of the contraction. Through a contraction by B on both
sides, we obtain

X|B = Pp[X]]B,
and this inspires the following characterization of the contraction:

The contraction A|B is the subblade of B of grade b — a that is dual (by B) to the
projection of A onto B.

As long as you realize that “dual by B” is shorthand for | B, the geometrical properties of
the contraction listed in Section 3.3 follow easily.

This geometric characterization of A|B probably makes a lot more intuitive sense to you
than our earlier description of A|B as the part of B least like A, for the description in
terms of projection and perpendicularity (which is what the dual signifies) better matches
the usual primitive operations of linear algebra. Yet algebraically, the contraction is the
simpler concept, for unlike the projection of A onto B, it is linear in both A and B. That makes
it a better choice than the projection as a primitive operation on subspaces, algebraically
on a par with the outer product A A B, even though we have to get used to its geometry.

To return to (3.26), it is actually somewhat better to define the projection through
projection of X onto B: Pp[X] = (X/B™YH]B. (3.27)

Writing it in this manner makes it obviously an element of B rather than of B~!. For
nonnull blades, there is no difference in outcome, since it simply moves the normalization
1/||B||?. For the null-blades that may occur in degenerate metrics (see Appendix A), the
inverse does not exist and needs to be replaced by the reciprocal relative to the contraction.

86 METRIC PRODUCTS OF SUBSPACES

The reciprocal of B may then differ from B by more than scaling, and even have a different
attitude. The projection (3.26) is no longer guaranteed to produce a subblade of B, as we
would want, but (3.27) always will.

3.7 THE 3-D CROSS PRODUCT

In 3-D Euclidean space R>?, one is used to having the cross product available. In the
algebra as we are constructing it now, we have avoided it, for two reasons: we can make
it anyway if we need it, and better still, another construction can take its place that
generalizes to arbitrary dimensions for all uses of the cross product. We demonstrate these
points in this section.

3.7.1 USES OF THE CROSS PRODUCT

First, when do we use a cross product in classical vector computations in 3-D Euclidean
space?

e Normal Vectors. The cross product is used to determine the vector a perpendicular
to a plane A, called the normal vector of the plane (see Figure 3.7(a)). This vector can
be obtained from two vectors x and y in the plane as their cross product x x y. This
works in 3-D space only (though it is often used in 2-D space as well, through the
cheat of embedding it in a 3-D space). This representation is then used to character-
ize the plane, for instance, to perform reflections in it when the plane is the tangent
plane to some object that is to be rendered in computer graphics. Unfortunately, this
representation of the tangent plane does not transform simply under linear trans-
formations as a regular vector, and requires special code to transform the normal
vector (you need to use the inverse transpose mapping, scaled by a determinant, as
we will show in Section 4.3.6).

* Rotational Velocities. We also use the cross product to compute the velocity of a
point at location x turning around an axis a (also indicated by a vector). Then the
instantaneous velocity is proportional to a x x (see Figure 3.7(b)). Yet the indication
of a rotation by a rotation axis works only in 3-D space; even in 2-D, the axis points
out of the plane of the space, and is therefore not really a part of it. In 4-D, a rota-
tion in a plane needs a plane of axes to denote it, since there are two independent
directions perpendicular to any plane. Even for computations in 3-D Euclidean
geometry, such higher-dimensional rotations are relevant: we need them in the 5-D
operational model R*! to perform 3-D motions efficiently (in Chapter 13).

o Intersecting Planes. A third use is to compute the intersection of two homogeneous
planes A and B in 3-D space: if both are characterized by their normals a and b, the
line of intersection is along the vector a x b (see Figure 3.7(c)). This construction
is a bit of a trick, specific for that precise situation, and it does not generalize in a
straightforward manner to the intersection of other homogeneous subspaces such

CHAPTER 3

SECTION 3.7 THE 3-D CROSS PRODUCT 87
axb
b b
axx
b A
a
anb axb
B
a
(@) (b) (©

Figure 3.7: Three uses of the cross product.

as lines, or to other dimensions. You can also use it to intersect general lines in 2-D
through the embedding in homogeneous coordinates, but that’s about it.

All these uses have their limitations, and none extends easily to higher-dimensional
spaces. The cross product is, basically, a 3-D trick, and we need to replace it with some-
thing more universally applicable.

3.7.2 THE CROSS PRODUCT INCORPORATED

Let us take the characterization of the plane spanned by two vectors a and b as the defining
example to redo the cross product with our subspace products. Using our subspace alge-
bra, we would characterize the plane by the 2-blade a A b and the subspace normal to
it in the space with pseudoscalar I,, by the orthogonal complement (a A b)|I,;'. In 3-D
Euclidean space R3Y, the inverse pseudoscalar 13_1 equals —I3, and the orthogonal com-
plement is then indeed a vector, computed as (a Ab)* = (b A a)|I5.

The classical method computes the normal vector as a x b. Both ways of computing the
normal vector must be equivalent, so we obtain a definition of the cross product in terms
of the outer product and contraction:

axb=(aAb)"=@Ab)L;’ (3.28)

Note that this definition indicates explicitly that there are two geometrical concepts
involved in the cross product: spanning, and taking the orthogonal complement. The lat-
ter is related to the metric of the embedding space (since it ultimately contains the inner
product), and this makes the cross product a rather involved construction. In the next
chapter, we will see that it also makes its transformation laws complicated.

88 METRIC PRODUCTS OF SUBSPACES

Let us verify (3.28) by a coordinate-based computation in an orthonormal basis
{e1, ez, e3} for the 3-D Euclidean space R>0. Leta = aje; + azer +azez and b = bje; +
bye; + bzes. Then

axb = (apb3 —azby) e; + (az3by —aibz) ez + (a1by, — arby) es. (3.29)
In (2.3), we have a coordinate expression for a A b:
aAb=(aiby —arbi)e; Nex + (aybs — azby) ey Aes + (azby —aybz) ez Aey.

It is easy to take the dual of this by using (e; A e2)](e3 A ez A e;) = e3 and the like. The
result indeed agrees with the above.

So in terms of coordinates, we are computing very similar quantities whether we useaAb
ora x b. Yeta A b is a simpler concept geometrically, because it does not depend on a
metric, and it is usable in #-dimensional space (not just 3-D). You used to be forced into
using the dual concept a x b since you could only treat vectors in standard linear algebra.
Now that we know that it is actually the dual of a bivector a A b, we had better not dualize
itand usea A b “asis.”

This does not lose any geometry, for all computations with the cross product depicted in
Figure 3.7 can be recast into geometric algebra. Let us check them oft:

o Normal Vectors. We have just seen that a plane can be characterized directly by its
bivector rather than by a normal vector constructed from two vectors in it.

* Velocities. For the velocity representation involving the cross product a x x, we note
that our algebra provides a suggestive rewriting through the duality properties:

axx=(aAx)" =—-(xAa)" = —x]a" =x]A, (3.30)

where A = a|I3 is the 2-blade whose dual is a. This is depicted in Figure 3.8.
So we can replace the computation of the velocity of x during a rotation around
the axis a by a computation involving the rotation plane A. That actually works in
n-dimensional space (even in n = 2, where a rotation “axis” does not really exist!).
(From Chapter 7 onward, we will even be able to define a rotation in n-dimensional
space directly in terms of its rotation plane A, as exp(A).)

o Intersecting Planes. The intersection of the two homogeneous planes of Figure 3.7(c)
can be written in terms of the bivectors as

axb= (ALY ABIL™)IL™ = BIL™H] (AL ™))
= (B]I;7) A = (B)JA.
We shall see (in Chapter 5) that this final expression generalizes to intersections of

subspaces of arbitrary dimension as the meet of B and A. That will be the algebraic
representation for the general incidence operator on subspaces.

CHAPTER 3

SECTION 3.8

APPLICATION: RECIPROCAL FRAMES 89

x/A=axx

Figure 3.8: The 3-D cross product a x x can be constructed as the contraction x|A on the
dual A of a.

In summary, we can use our other products and the blades to replace the specific and
peculiar 3-D cross product on vector representations in a manner that works for all
dimensions. Therefore, we will do so. Apart from revisiting it in the context of linear
transformations in Chapter 4, where we find more arguments against its use, we will not
employ the cross product any more (except occasionally to show the classical form of some
of our results). If you have used the cross product a lot, you may wonder what happened
to some of the identities that were useful in geometric computations (such as the bac-cab
formula). Structural exercises 10-12 show you what to substitute for them.

3.8 APPLICATION: RECIPROCAL FRAMES

Although we avoid using coordinates in our computations, they are often required to
present their results. We therefore need a way to retrieve the coefficient x; of some vector
x, expressibleasx = Y’ x;b; on some basis {b;}'_ . If the basis happens to be orthonormal,
then this is simple: x; = x - b, as is easily verified. However, we would like the flexibility
to choose our bases arbitrarily to correspond to whatever the important directions are in
any given problem. We then need a more general expression.

In a metric space R” with chosen basis {b,—}?=1 and pseudoscalar I, = by Aby A--- A Db,

we can do this as follows. Associate with each basis vector b; a reciprocal basis vector b,
defined as

b = (=)' (b AbyA---AB;A---ADb)|L (3.31)

90 METRIC PRODUCTS OF SUBSPACES

Here the inverted arc denotes the removal of the vector b;, so this vector b’ is the dual of
an (n—1)-blade spanned by all vectors except b; (as in (3.16)). The reciprocals of the basis
vectors form a basis {b’} i, for the vector space.

The two bases {b;}!_, and {bi}:?:1 are mutually orthonormal, for

bi-b = (=1)"b;] ((b1 /\~~-/\Bj/\---/\b,,)JI;1>
= (=1)"'(biAby A~ ABj A+ ADYL!
=5 (by A+ AT,
= 51,1,
=5/, (3.32)

where the selector symbol 5ij is defined to be 1 when i = j, and 0 otherwise.

In spaces without an orthonormal basis, it is common to express the coefficients of a
vector x by a superscript, so thatx = Y, %' b;. (Some authors, like [15], then use a sum-
mation convention, in which summation is implied when the same index appears above
and below, but we will not employ it.) It is now straightforward to verify that x' = x - b

b= () w7y b=) X b) =) wsl =«
X (jx ;)]_x(])]_x ;=X
Therefore:

Even on a nonorthonormal basis, the coefficients of a vector representation can be
computed by an inner product with appropriately chosen basis vectors.

It should be noted that orthonormal basis vectors have the same attitude as their
reciprocal:

b = +b' if {b;}'_, is an orthonormal basis,

with the + sign for positive vectors for which b; - b; = +1, and the — sign for negative
vectors for which b;-b; = —1. In a Euclidean metric space R™, the reciprocal basis vectors
therefore equal the basis vectors, and the distinction is merely notational.

Reciprocal frames are especially useful, as they allow consistent and convenient treatment
of nonorthonormal bases. These are known techniques from standard linear algebra. Usu-
ally, the reciprocal basis vectors are formulated in terms of minors of certain determinants.
It is satisfying to see how easily (3.31) defines the reciprocal basis as a geometrical con-
struction, namely as the orthogonal complement of the span of the other vectors. The
geometrically interpretable algebraic formula shows clearly that, for a general basis, the
coefficient of b; depends on all vectors; for an orthogonal basis, it would only depend on
b; itself.

CHAPTER 3

SECTION 3.10

EXERCISES 91

3.9 FURTHER READING

When reading other literature in geometric algebra, you will find that most authors use
slightly different inner products. These alternatives are spelled out and compared in Sec-
tion B.1 of Appendix B. We maintain that the contractions are more pure mathematically
and geometrically, and they lead to fewer conditional computations in your code. That is
why we use them in this book.

We tried to convey their geometrical relevance for computer science in [17] (though with
limited success), inspired by [39] and [41]. The latter gives links to the mathematical
origins of the construction.

3.10 EXERCISES

3.10.1 DRILLS

1. Leta =e; +e;andb = e, + e3 in a 3-D Euclidean space R*% with orthonormal
basis {ej, 3, e3}. Compute the following expressions, giving the results relative to
the basis {1,e,e2,e3,e1 Aey,ex Aes,e3 Aep, e Aey Aes}. Show your work.

(@) ei]a

(b) eiJ(anb)

(c) (anb)e

(d) (Ra+b)|(a+Db)
(e) al(ejAexNnes)
(f) a*

(g @Ab)”

(h) a]b”

2. Compute the cosine of the angle between the following subspaces given on an
orthonormal basis of a Euclidean space:

(a) ejandaeg

(b) (ej+e)Aesande; Aes

(¢) (coscde;+sinder)Aesandey Aes
(d) ejAeyande; Aey

3. Set up and draw the reciprocal frame for vectors b; and b, on an orthogonal basis
{e1,e2} represented as by = e; and b, = e; + e,. Use the reciprocal frame to
compute the coordinates of the vector x = 3e; + e, on the {by, by }-basis.

3.10.2 STRUCTURAL EXERCISES

1. In 2-D Euclidean space R>0 with orthonormal basis {e;, e>}, let us determine the
value of the contraction e; | (e; A e;) by means of its implicit definition (3.6) with

92

METRIC PRODUCTS OF SUBSPACES

A =ej; and B = ej A ep. Let X range over the basis of the blades: {1,e;,e2,e; Aep}.
This produces four equations, each of which gives you information on the coeffi-
cient of the corresponding basis element in the final result. Show that e;] (e Aep) =
0(1)+0C(er)+1(e2) +0(e; Aep).

. (continued from previous) Change the metric such that e; - e = 0. This is a

nondegenerate metric, of which e; is a null vector (see Appendix A). Show that
you cannot now determine the coefficient of e, in the value of e; | (e A e2) through
the procedure based on (3.6). Then use the explicit definition of the contraction to
show that the contraction is still well defined, and equal to e; [(e] A e2) = e5.

. Derive the following dualities for the right contraction, corresponding to (3.20) and

(3.21) for the usual (left) contraction:

C|l(BAA) = (C|B)|A universally valid (3.33)
C|(B]A) = (C|[B)AA whenACC (3.34)

Then give the counterpart of (3.24). (Hint: use (3.19).)

. Verify the geometric interpretation of the usual inner product between vectors, in

the light of viewing it as a specific example of the contraction. In agreement with
Section 3.3, show that x - a can be interpreted as an element of the 0-dimensional
subspace of a perpendicular to the subspace x.

. The equation x|a@ = 0 (in (3.8)) also has a consistent geometric interpretation

in the sense of Section 3.3. Since the scalar a denotes the point at the origin, x|«
has the following semantics: the subspace of vectors perpendicular to x, contained
in the 0-blade a. Give a plausible correctness argument of this statement.

. Similar to the previous two exercises, verify the geometric semantics of (3.7).

7. Duality in 1-D Euclidean space should avoid the extra sign involved in double dual-

ity, as specified in (3.24). Show this explicitly, by taking the dual of a vector a relative
to a suitably chosen unit pseudoscalar for the 1-D space and dualizing again.

. We have seen in Section 2.4 how in 3-D space a trivector a A b A ¢ can be written as

aAbAc=det([abc])e; Aey Aes,

with [[a b c]] the 3 x 3 matrix having the three 3-D vectors a, b, ¢ as columns (a con-
struction borrowed from standard linear algebra). Express this determinant fully in
terms of our subspace algebra.

. In a plane with unit pseudoscalar I, we can rotate a vector by a right angle using

the fact that contraction x|I is a perpendicular to x. Therefore, you can construct
an orthogonal basis for the plane from any vector in it. Use this capability to give a
coordinate-free specification of a rotation of a vector x over ¢ radians in that plane.
Make sure you get the rotation direction correctly related to the plane’s orientation.
(We will do rotations properly in Chapter 7.)

CHAPTER 3

SECTION 3.11 PROGRAMMING EXAMPLES AND EXERCISES 93

10. Using the definition of the cross product (3.28), verify that you can compute the
volume spanned by three vectors a, b, and cas a- (b x ¢). What is the corresponding
formula using A and |?

11. Derive the notorious bac-cab formula for the cross product (i.e., a x (b x ¢) =
b(a-c) —c(a-b)), directly from its definition (3.28). What is the corresponding
formula using A and], and what is its geometric interpretation?

12. The inner product formula for cross productsis (a x b) - (¢ xd) = (a-¢)(b-d) —
(a-d) (b-c). Derive it from (3.28). What is the corresponding formula using A and
|, and what is its geometric interpretation?

13. In a nonorthonormal basis, the outer product b’ Ab; of a vector and its corres-
ponding reciprocal is not generally zero. However, when summed over all basis
vectors, all those 2-blades cancel out:

Zb" Ab; =0. (3.35)
i

Show this by expressing b’ on the usual basis {b;}, and using a symmetry argument
on the resulting double summation.

3.11 PROGRAMMING EXAMPLES AND EXERCISES

3.11.1 ORTHONORMALIZATION

In this example we use the contraction product and the outer product to orthonormalize
a set of three vectors. The code is given in Figure 3.9, and Figure 3.10 shows a screenshot

void computeOrthoVectors(const e3ga::vector nonOrtho[3], e3ga::vector ortho[3]) {

// compute ortho vector 1:
// unit_e() returns a unit multivector (Euclidean metric)
ortho[0] = unit_e(nonOrthol0]);

// compute ortho vector 2:
// << is the operator used for the left contraction
ortho[l] = unit_e(ortho[0] << (ortho[0] * nonOrthol[1]));

// compute ortho vector 3:
ortho[2] = unit_e((ortho[1] ~ ortho[0]) <<
(ortho[0] »~ ortho[1l] ~ nonQOrthol[2]));

Figure 3.9: Orthonormalization code (Example 1).

94 METRIC PRODUCTS OF SUBSPACES

=R Geometric Algebra, Chapter 3, Ekample 1: Orthonormalization

MNOM-ORTHOMORMAL ORTHOMORMAL

-use mouse 1o drag vectors and orit scene

Figure 3.10: Orthonormalization: nonorthonormal vectors on the left, orthonormal vectors
on the right (Example 1).

of its output. The first vector is normalized using the function unit_e (). This function
takes any multivector and returns its unit in the sense that the Euclidean norm (sum of
the squares of all coordinates) is 1. unit_e () assumes that its input is nonzero.

The second vector is computed in two steps. First, the bivector containing the first two
vectors is computed. Then, the first vector is removed from the bivector using the left
contraction (the << operator), resulting in the second vector, orthogonal to the first. This
is in fact a computation of the dual within the plane of the two vectors.

The third vector is determined by computing the trivector spanned by all three vectors and
removing the bivector spanned by the first two vectors (this is duality in their common
space). In 3-D this step is actually redundant, as the third vector is fully determined by
the first two vectors. It can be computed using dualization of the bivector or using the
cross product (see the next exercise). We will generalize this example to Gram-Schmidt
orthogonalization in programming exercise 6.7.2 of Chapter 6.

What happens when the input vectors become dependent?

3.11.2 EXERCISE: IMPLEMENTING THE CROSS PRODUCT

When you download the code for exercise 2 of this Chapter, you will find that it contains
a bare-bones crossProduct () function:

/// returns a x b
e3ga::vector crossProduct(const e3ga::vector &a,
const e3ga::vector &b) {
// exercise: compute the cross product, return it:
return _vector(0);
}

CHAPTER 3

SECTION 3.11

PROGRAMMING EXAMPLES AND EXERCISES 95

Fill in the function such that it computes the cross product, according to the method
of in Section 3.7. The function dual() is available to compute the dual of multivectors.
If you need the pseudoscalar, use the constant 13, or its inverse, 131.

You can check that your implementation works by running the example: drag the input
vectors (red and green) around, and verify that the blue vector stays orthogonal to them.

3.11.3 RECIPROCAL FRAMES

In this example, we explore the construction of reciprocal frames as explained in
Section 3.8. The example program allows you to manipulate three vectors and see the
reciprocal frame of these three vectors. Drag the mouse (using any button) to change
the vectors and orbit the scene. When you play around with the example, note the
following:

e When you make a vector longer, its reciprocal vector becomes shorter.

e The reciprocal of a vector is always orthogonal to the other two vectors in the origi-
nal frame. The easiest way to verify this is by “orbiting” the scene, but you may want
to take it upon yourself to draw the orthogonal plane as an exercise.

Figure 3.11 lists the code to compute a reciprocal frame.

Note that the example code uses a class called mv. In the code shown so far, we always used
specialized multivector classes such as vector, bivector, and trivector. The general
multivector class mv is required here because we have the need for variables that can hold
different multivector types. For example, in the following loop, the multivector P holds
four types of values: first a scalar, then a vector, then a bivector, and finally a trivector.

mv P=(i &1) ? —1.0f : 1.0f; // = pow(—1, 1)

for (unsigned int j = 0; j < nbVectors; j++)

it (j!=1) P = 1IF[j];

Working with general multivectors is not as efficient as working with specialized
multivectors, but sometimes we cannot avoid them.

3.11.4 COLOR SPACE CONVERSION

The reciprocal frame algorithm can be used to do color space conversion. Common
conversions (e.g., RGB to YUV) are from one orthogonal frame to another, so that the
reciprocal frame is not really necessary. The following is an example when computing
the reciprocal frame is required.

Suppose you want to detect the light emitted by red, green, and blue LEDs in a digital
image. The colors of the LEDs are unlikely to be pure red, pure green, and pure blue
in the RGB color space. But it is possible to transform the color space such that the
LEDs do register as such coordinate directions. First, measure the RGB values of the
different LEDs in the digital image. Then, compute the reciprocal frame of these three

96 METRIC PRODUCTS OF SUBSPACES CHAPTER 3

/**

Computes the reciprocal frame 'RF’ of input frame "IF’

Throws std::string when vectors in ’IF’ are not independent,

or if one of the IF[i] is null.

*/

void reciprocalfFrame(e3ga::vector *IF, e3ga::vector *RF, int nbVectors) f{
// Treat special cases (’nbVectors’ equals 0 or 1)
// ... (not shown here)

// compute pseudoscalar I’ of space spanned by input frame:
mv I = IF[0];
for (unsigned int i = 1; i < nbVectors; i++) I ~= IF[i];
if (_Float(norm_r2(I)) == 0.0)
throw std::string()

// compute inverse of ’I°’
mv Ii = inverse(Il);

// compute the vectors of the reciprocal framevector
for (unsigned int i = 0; 1 < nbVectors; i++) {
// compute outer product of all vectors except IF[i]
mv P=(i&1l)? —1.0f : 1.0f; // = pow(—1, 1)
for (unsigned int j = 0; j < nbVectors; j++)
if (j !=1) P ~=1IFL[j];

// compute reciprocal vector i’
RF[1] = _vector(P << I1);

}

return;

Figure 3.11: Reciprocal frame code (Example 3). Edited for readability: some code was removed at the beginning of the
function that dealt with special cases for which (nbVectors < 2).

“color vectors” and use the reciprocal frame to convert the image colors. The code that
implements this is shown in Figure 3.12.

The example program lets you play around by sampling different color values and seeing
the result of the conversion in real time. Figure 3.13 shows an example.

You can sample colors at any point in the viewport, including the color-bar at the
top. The code that draws this bar is also based on the subspace algebra: A unit vec-
tor in the “white”direction in the color space is initialized, then the dual of this vector
is computed and factorized:

SECTION 3.11 PROGRAMMING EXAMPLES AND EXERCISES

// get “white’ vector:
e3ga::vector white = _vector(unit_e(el + e2 + e3));

// Get two vectors, orthogonal to white:

// factorizeBlade() find two vectors such that
// dual(white) == 0[1] ~ 0[2]

e3ga::vector 0[2];

factorizeBlade(dual(white), 0);

97

/**
Converts colors in ’“source’ images to ’dest’ image, according
to the input color frame ’IFcolors’. Reciprocal vectors are returned
in *RFcolors’.
*/
void colorSpaceConvert(
const unsigned char *source,
unsigned char *dest,
unsigned int width, unsigned int height,
const e3ga::vector *IFcolors,
e3ga::vector *RFcolors) {
// compute reciprocal frame
reciprocalfFrame(IFcolors, RFcolors, 3);

for (unsigned int i = 0; 1 < (width * height) * 3; i += 3) {
// convert RGB pixel to vector:
e3ga::vector c(vector_el_e2_e3, (float)sourceli + 0], (float)sourceli + 17,
(float)sourceli + 21);

// compute colors in in destination image:
float red = _Float(c << g_RFcolors[0]);
float green = _Float(c << g_RFcolors[1]);
float blue = _Float(c << g_RFcolors[2]);

// clip colors:

if (red < 0.0f) red = 0.0f;

else if (red > 255.0f) red = 255.0f;

if (green < 0.0f) green = 0.0f;

else if (green > 255.0f) green = 255.0f;
if (blue < 0.0f) blue = 0.0f;

else if (blue > 255.0f) blue = 255.0f;

// set colors in destination image

dest[i + 0] = (unsigned char)(red + 0.5f); // +0.5f for correct rounding
dest[i + 1] (unsigned char)(green + 0.5f);

dest[i + 2] (unsigned char)(blue + 0.5f);

Figure 3.12: Color space conversion code (Example 4).

98 METRIC PRODUCTS OF SUBSPACES

8eoe |X| Geometric Algebra, Chapter 3, Example 4: Color Space Conversion

-use left mouse button to “sample” colors —
-use other mouse buttons for popup menu sy
P

Figure 3.13: Color space conversion screenshot (Example 4). On the left is the original
image: a photo of some computer parts that contains red, green, and blue patches. On the right
is an example of a converted image: the colors of the parts have been converted to “pure”
red, green, and blue.

We now have a frame which spans the RGB color space. We can generate all fully saturated
colors by performing a rotation in the 0[0] A 0[1]-plane:

// alpha runs from 0 to 2 PI
for (float angle = 0.0f; angle < PIZ2; angle += STEP) {
// generate all fully saturated colors:
e3ga::vector C = _vector(white + cos(angle) * Q0[0] +
sin(angle) * 0[11);

// set current color:
glColor3fv(C.getC(vector_el_e2_e3));

// draw small patch in the current color:
//

CHAPTER 3

4 LINEAR TRANSFORMATIONS
OF SUBSPACES

Linear transformations of a vector space R" change its vectors. When this happens,
the blades spanned by those vectors change quite naturally to become the spans of the
transformed vectors. That defines the extension of a linear transformation to the full sub-
space algebra. This embedding gives us more powerful tools to apply linear transforma-
tions immediately to subspaces, without needing to first decompose those subspaces into
vectors.

We study the resulting structure in this chapter. The algebra dictates how we should do
the outer products and contractions of transformed blades, and in that way gives us the
transformation formulas for the products themselves. Transforming contractions is a lot
more involved than transforming outer products (since it involves the metric of the space),
but the effort pays off by providing a compact coordinate-free formula for the inverse of
a linear transformation.

In this book we will mostly be interested in orthogonal transformations. We can
easily derive some of their properties in this chapter and see why they are special (they
are the only transformations that are structure-preserving for the contraction). Their real
importance and ease of representation will be revealed only in Chapter 7.

At first reading, you can skim through this chapter, taking in only the principle of the
outermorphism, which takes the structure preservation of the outer product as its tenet
and the transformation formulas for the other products. The main facts are summarized
in Section 4.6.

99

100 LINEAR TRANSFORMATIONS OF SUBSPACES

flox]

fx] XAY fIx]
X+y

ox

(a) (b)

Figure 4.1: The defining properties of a linear transformation.

4.1 LINEAR TRANSFORMATIONS OF VECTORS

We are interested in linear transformations, mapping a vector space R” onto itself.! Such
a linear transformation f : R” — R" has the defining properties

flax + Byl = af[x] + Bf[y], (4.1)

where a,f € R are scalars and x,y € R" are vectors. It is convenient to see this as two
conditions:

flax] = af[x] (4.2)
flx+yl = flx] + flyl

The first condition means that a line through the origin remains a straight line through the

origin, with a preservation of ratios of vectors along the lines (Figure 4.1(a)). The second

condition means that the parallelogram-based addition is preserved (see Figure 4.1(b)).

Examples of such linear transformations on subspaces include scaling, rotation (but only
around an axis through origin), and reflection (but only relative to subspace containing
the origin), but not translation, which tends to produce nonhomogeneous, offset spaces.

1 In this chapter, we perform linear transformations within the same space R”, not from one space to another.
Though the same principles apply to both, the additional notation involved in such space-to-space transformations
would hide the basic structural simplicity we need to expose here.

CHAPTER 4

SECTION 4.2

OUTERMORPHISMS: LINEAR TRANSFORMATIONS OF BLADES 101

Linear transformations therefore do not include certain important transformations that
we definitely want to include in our treatment of geometry. Yet linear transformations are
important, because we will see in Part Il how we can construct those desirables using linear
transformations in higher-dimensional operational models of affine or Euclidean space.
Also, linear mappings provide a local description of a wide class of arbitrary mappings,
which is a successful way to study those in differential geometry.

4.2 OUTERMORPHISMS: LINEAR
TRANSFORMATIONS OF BLADES

We start with a specific linear transformation f in the vector space R”, which maps vectors
to vectors. We will use sans serif type to denote these linear transformations to distinguish
them from the blades (and other elements we introduce later), and denote their action
by square brackets to avoid confusion with the grouping brackets of the products, and
remind ourselves of their linearity. So f[x] denotes the action of the linear transformation
f on the vector x.

We would like to find a natural extension that makes f act on arbitrary blades, or even
arbitrary multivectors. We will argue that this natural extension should be done according
to the following simple rules:

fla] = a for scalar a
f[A A B] = f[A] A f[B] (4.3)
f[A + B] = f[A] + f[B]

where A and B are blades of arbitrary grade (even grade 0), although the results imme-
diately generalize to general multivectors by the imposed linearity. (The third rule is a
consequence of the second and (4.2), at least for same-grade blades, but we prefer to have
it explicit so that linearity can be easily extended to multivectors.)

An extension of a map of vectors to vectors in this manner to the whole of the Grass-
mann algebra is called extension as a (linear) outermorphism, since the second property
shows that we obtain a morphism (i.e., a mapping) that commutes with the outer prod-
uct. The properties in (4.3) fully define the outermorphism corresponding to the linear
transformation f.

Outermorphisms have nice algebraic properties that are essential to their geometrical
usage:

 Blades Remain Blades. Geometrically, oriented subspaces are transformed to
oriented subspaces.

o Grades Are Preserved. The linear transformation f turns vectors into vectors. Then
it follows immediately from the second rule that grade(f[A]) = grade(A) for blades.

102 LINEAR TRANSFORMATIONS OF SUBSPACES

Geometrically, this means that the dimensionality of subspaces does not change
under a linear transformation.

e Preservation of Factorization. If A and B have a blade C in common (so that they
may be written as A = A’ A Cand B = C A B/, for appropriately chosen A’ and B'),
then f[A] and f[B] have f[C] in common. Geometrically, this means that the meet
(intersection) of subspaces is preserved.

If you are happy with (4.3) as a definition, you can move on to Section 4.2.2. If you need
some motivation to convince yourself of its consistency with the algebra of subspaces as
we developed it thus far, read the next section.

4.2.1 MOTIVATION OF THE OUTERMORPHISM

Let us take a step back from the algebraic generalization of a linear transformation in (4.3)
and show its geometric plausibility.

In the beginning, we have nothing more than the linear transformation f from vectors
to vectors T : R” — R”". It obviously satisfies the linearity axioms of (4.2), graphically
depicted in Figure 4.1.

We want linear transformations on all k-blades. Starting with 2-blades, we introduce a
linear transformation f; mapping 2-blades to 2-blades (i.e., 2 : /\2 R" — /\2 R"™).
Linearity of f, now means linearity for 2-blades, so satisfying fo[@A] = af;[A] and
f2[A + B] = f5[A] + f,[B] — where A and B are 2-blades. But this mapping f; cannot be
totally arbitrary. One way to construct the 2-blades is by using two vectors. IfA = x Ay,
how should we relate (acting on vectors in R") to f; (acting on 2-blades in /\2 R™), so
that we get a consistent structure to our subspace algebra? Figure 4.1 provides the clue:
the parallelogram construction is preserved under f by the linearity axioms—and such
a construction occurs not only in defining the sum of vectors, but also in defining the 2-
blade through the outer product (compare Figure 2.2 to Figure 2.3(a)). So we must connect
the two linear transformations and f; in a structurally consistent manner by setting

falx Ayl = flx] A flyl.

This 2-blade is linear in x and y, and so are both sides of this equation, guaranteeing that
the construction is internally consistent. For instance: fr[a(x A y)] = fal(ax) Ay] =
flax] A fly]l = af[x] A fly] = afa[x A y], which is a proof that f; thus defined indeed
has one of the linearity properties. Since it is so consistent, we can consider f and f; as
the same linear transformation, just overloaded to apply to arguments of different grade,
so we denote them both by f.

The story for 3-blades is similar—the parallelepiped construction can be interpreted as
a span (outer product) or as an addition diagram (linearity). Equating the two suggests
defining

CHAPTER 4

SECTION 4.2

OUTERMORPHISMS: LINEAR TRANSFORMATIONS OF BLADES 103

flx Ay Az] = f[x] A fly] A flz].

Associativity of the outer product gives us associativity for the outermorphism f, and then
f naturally extends to all grades.

There is also a strong suggestion of how we should relate a linear transformation among
scalars (i.e., 0-blades) to the linear transformation f of vectors in a consistent manner.
Remember that by (2.5), the standard product of a vector with a scalar is just the outer
product in disguise. As a consequence, the first linearity condition of (4.2) can be read
in our exterior algebra as f[a A x] = a A f[x]. To keep the outermorphism property, it is
therefore natural to define

fla] = a

as the extension of f to scalars. The geometric semantics of this is that the point at the
origin remains fixed under a linear transformation, in all its qualities, including weight
and sign.

This is how the whole ladder of subspaces is affected naturally by the linear transformation
of the underlying vector space, preserving the structure of the spanning product that went
into its construction: the span of the transforms is the transform of the span.

4.2.2 EXAMPLES OF OUTERMORPHISMS
Let us look at some simple examples of such extensions of linear transformations.

1. Uniform Scaling. This is the linear transformation S[x] = ax. On an n-blade A =
aj Aay A--- Aay, this gives

S[A] = S[a;] A S[az] A - -+ A S[a,] = " A. (4.4)

For 2-blades represented as parallelograms, this contains the well-known result that
as each of the sides is multiplied by a, the area is multiplied by a?; but it is more, since
it also contains the statement that the attitude of the 2-blade remains the same, and
so does its orientation, even when a is negative. And since 2-blades have no fixed
shape, the same applies to any area in the plane: as the linear measure gets scaled by
@, the area measure scales by a2,

For a 3-blade I3 = a; A ay A a3 in 3-D space, we obtain S[I3] = o’ 13, as expected.
When « is negative, there is thus an orientation change of the volume. Again, noth-
ing shatteringly new in its geometric interpretation, but note how in the formulation
of such statements, their computation and their proof are all an intrinsic part of the
algebra at a very elementary level. That is how we would want it.

2. Parallel Projection onto a Line. In the plane with 2-blade a A b, let the linear trans-
formation P be such that P[a] = a, while P[b] = 0. This is a projection in the
b-direction onto the a-line (see Figure 4.2). Since any vector x in this plane can be
written as an a-component plus a b-component, this determines the transformation

104

LINEAR TRANSFORMATIONS OF SUBSPACES

a PIx]

Figure 4.2: Projection onto a line a in the b-direction.

Plx] = Plaa+ pb] = aa (4.5)

(where @ can be computed as (xAb)/(aAb) using the reciprocal frame of Section 3.8
or the techniques of Section 2.7.1). Extending this P as an outermorphism, we find
that P[aAb] = P[a] A P[b] = a A 0 = 0. Any 2-blade in the plane a A b becomes 0:
this transformation makes areas disappear.

You may have expected the answer to be P[a A b] = P[a], because intuitively the
plane aAb becomes the line a. But this is not what an outermorphism does (it always
preserves grade), so we must be careful with such naive geometrical motivations for
the results of algebraic computations. The image of the plane of vectors is indeed
the line of vectors, but the plane of vectors is not equivalent to the 2-blade of the
plane!

. Planar Rotation. Consider two independent unit vectors u and v that span a 2-blade

uAv. This 2-blade determines a plane through the origin in a Euclidean space R™°,
Let R be a rotation around the origin in this plane, a linear transformation. Let the
rotation be such that it turns u to v, so R[u] = v. Since the whole plane rotates,
the vector originally at v also rotates to a unit vector w = R[v]. Since the rotation
around the origin is linear, the parallelogram spanned by u and v transforms to
another parallelogram spanned by v = R[u] and w = R[v] (see Figure 4.3). The
sketch shows that u A v and v A w are identical 2-blades, so u A v = v A w. This
permits us to compute the effect of the rotation on a 2-blade:

RluAv]=R[u]AR[v]=vAw=uAv. (4.6)

It follows that the 2-blade u A v is preserved under the rotation. This corresponds
well to our insight that a rotation plane is an invariant of a rotation. But note
how specific (4.6) is: it states that all properties of the plane—attitude, area mea-
sure, and orientation—are preserved. It is remarkable that although the vectors

CHAPTER 4

SECTION 4.2 OUTERMORPHISMS: LINEAR TRANSFORMATIONS OF BLADES 105

VAW

UAvV

Figure 4.3: A rotation around the origin of unit vectors in the plane of the page, described
by 2-blades.

u and v themselves are not preserved (they rotate), their 2-blade is. We might
express this as a rotation has no real eigenvectors in its plane, but it has a real
eigenblade of grade 2: the plane itself.

Note that we have not specified any space in which we perform the rotation,
assuming only that it has as least 2 dimensions for the 2-blade to be nonzero. So
our picture and reasoning apply to any space of more than 1 dimension.

4. Point Reflections. In a point reflection through the origin, all vectors change sign.
So this is a uniform scaling by —1. Then (4.4) shows that an n-blade changes by
(—1)": blades of even grades are unchanged, and blades of odd grades obtain the
opposite orientation. Note that this does not depend on the dimensionality of the
space in which they are embedded. As an example, point reflection in 3-D space
changes the orientation of 3-blades, that is, the handedness of objects: a right-hand
glove becomes a left-hand glove (see also structural exercise 1). We will see soon that
this cannot be undone by a rotation, using an argument that only involves the outer
product.

5. Orthogonal Projection. In (3.25) we met the orthogonal projection of a vector x
onto a blade B as Pg[x] = ((x]B)|B~"). Since the mapping is linear, we can extend
it as an outermorphism to construct the projection of a higher-order subspace X
onto B. Let us first extend this orthogonal projection from the vector x to the bivec-
tor xAy. By outermorphism, the projection of (xAy) onto B should be Pg[x]APg[y].
Now we have a straightforward derivation in which we challenge you to identify the
rewriting rules.

106 LINEAR TRANSFORMATIONS OF SUBSPACES

Pe[x] A Pely]l = (x|B)|B~') A ((y/B)|B™")
= ((x/B)JB™")|(y]B))|B~"
(((xIB)|B~") Ay)|B)|B~!

- ((vA(JB)JB))]B) B~
- (vI((JB)/B~")|B)) B!
=
=

vl (x]B)A(B~'|B))) B!
ylx]B)) B~
—((yAx)]B) B!
(xAy)]B)|B~!
Pelx Ayl

The final result is, therefore, that we can just apply the projection formula directly
to the blade x Ay to get the outermorphism. Similar steps can be used to provide an
inductive proof of the general result for blades of (3.26).

Geometrically, the outermorphism property implies that the projection formula
generalizes to higher-order blades in a pleasant way. Our algebra permits the direct
projection of subspaces without the necessity of breaking them up into vectors, pro-
jecting those, and recomposing the result.

These examples show how merely having the outer product already refines and extends
our analysis and application of linear transformations.

4.2.3 THE DETERMINANT OF A LINEAR TRANSFORMATION

We have seen in Chapter 2 how in an n-dimensional space, the blade of highest grade
that can be constructed without being identical to 0 is an n-blade, which is a pseudoscalar
for the space. The grade-preservation property of a linear transformation f implies that a
linear transformation on a pseudoscalar I,, produces another pseudoscalar. Moreover, all
pseudoscalars are scalar multiples of each other, since the space of n-blades A" R"isa 1-D
linear space. Therefore we find f[I,,] = 61,,, with § a scalar. This defines & as the change
in pseudoscalar magnitude and orientation, as a ratio of the transformed n-dimensional
hypervolume (for that is what a pseudoscalar is) to the original hypervolume. It is called
the determinant of f, denoted det(f). So we have the important implicit definition

determinant . f[I,] = det(f) L,,. (4.7)

This scalar number det(f) is indeed equivalent in value to that concept in linear algebra, so
we are not abusing the name. There, too, the determinant is a ratio of signed hypervolume
measures.

The usual way of teaching linear algebra in the applied sciences relies heavily on matrix
representations. You might be excused for believing that linear algebra is about matrices

CHAPTER 4

SECTION 4.2

OUTERMORPHISMS: LINEAR TRANSFORMATIONS OF BLADES 107

rather than about linear transformations, and that the determinant is just a property of
a square matrix rather than a fundamental property of a linear transformation. But it
is just that, and it can be defined without referring to matrices. We have just done so in
(4.7), even managing to avoid coordinates altogether. We briefly show how we can use this
geometrical approach to retrieve the determinants of some common transformations.

o Determinant of a Rotation. The example of the rotation in the Euclidean plane
indicated by the blade u A v demonstrated that Rflu Av] = u A v. Sinceu A vis
proportional to the pseudoscalar I, of the plane, this implies

R[] =I,.

Therefore the determinant of a 2-D rotation equals 1.

If the rotation plane is embedded within an n-dimensional Euclidean metric space
R™Y, then we can span a pseudoscalar for the n-dimensional embedding space
using I, combined with (n — 2) vectors perpendicular to the plane. Each of those
vectors is not affected by the rotation, so for the part of the space they span we
have R[I,—] = I,— (where I,,_; is a pseudoscalar for the (n — 2)-dimensional
space), by the outermorphism property. We thus find: R[I,] = R[I; A I,_5] =
R[I2] A R[I,—2] = Io AL,_» = I,. So the determinant of a rotation still equals 1,
even in an n-dimensional space (n > 2).

 Determinant of a Point Reflection. We have seen that a point reflection satisfies
f[I,] = (—=1)"L,. Thus its determinant equals 1 in even dimensions and —1 in odd
dimensions. This suggests that in even dimensions, a reflection can be performed
as a rotation, and indeed it can.

e Determinant of a Projection onto a Line. The projection P onto a line has a deter-
minant that varies with the dimensionality of the space R”. We have seen how any
blade with grade exceeding 1 becomes zero. Therefore any pseudoscalar of R” with
n > 1is projected to 0, and det(P) = 0. However, for n = 1 the line must necessarily
be the whole space R!. Now the projection is the identity, so det(P) = 1.

We can continue the theme of determinants. Applying two linear transformations
f:R" - R"and g : R" — R", first T then g, we obtain a composite transforma-
tion that is again linear (as you can easily show) and that can therefore also be extended
as an outermorphism. We denote this composite transformation by (gof). We compute
its determinant:

det(gof) I, = (goN[I,] = glf[I,]] = det(f) g[I,] = det(g) det(f) L..
Therefore, we get the composition rule of determinants:
det(gof) = det(g) det(f). (4.8)

This is a well-known result, derived within this context of the outer product in a straight-
forward algebraic manner with satisfying geometrical semantics.

108 LINEAR TRANSFORMATIONS OF SUBSPACES

4.3 LINEAR TRANSFORMATION OF THE METRIC
PRODUCTS

The linear transformation f has been extended to an outermorpishm to transform an
outer product completely naturally as

f[A A B] = f[A] A f[B].

Of course, we should also understand how the scalar product and the contraction trans-
form; those three combined will then enable us to transform arbitrary geometric com-
positions and will give us the full extent of linear transformations in our subspace
algebra.

The scalar product is easily transformed, but the contraction takes a bit more work and
requires us to introduce an important concept: the adjoint of a linear transformation.

4.3.1 LINEAR TRANSFORMATION OF THE SCALAR PRODUCT

The scalar product returns a scalar, so it transforms under a linear transformation as
f[A*B] = Ax*B. (4.9)

This looks straightforward, but when you remember that A = A is the squared norm of
the blade A, does this now mean that no linear transformation can change the norm? Or,
a related question since A * B is proportional to the cosine of the angle between A and
B, does this mean that no linear transformation can change the angle? That would imply
that all linear transformations are orthogonal transformations.

Resolve these problems for yourself—or take a hint from structural exercise 6.

4.3.2 THE ADJOINT OF A LINEAR TRANSFORMATION

The transformation f[A|B] for the contraction A |B will follow from our definitions so
far, but can only be formulated compactly when we introduce an additional construction:
the adjoint of . We do this first.

The adj(71'm‘1_C of the linear transformation f : AR"” - AR”" is a linear transformation
f: AR" > AR”, defined implicitly for vectors by the equation

adjoint transformation : %[a] *b = a * f[b] (4.10)

for all a and b of R". In nondegenerate metrics, this defines it fully. In degenerate met-
rics, we have similar incompleteness issues as for (3.6)—you can then use an explicit,
coordinate-based formula. This is explored in structural exercise 9.

It is strange to have the definition so implicit. To show that the adjoint is actually a familiar
concept from linear algebra, we momentarily convert the equation to matrix notation.

CHAPTER 4

SECTION 4.3

LINEAR TRANSFORMATION OF THE METRIC PRODUCTS 109

Let [[f]] be the matrix of the mapping f and |[1_C]] be the matrix of 1_5, and convert the inner
product to a matrix product. Vectors like a are represented as a column matrix [[a]]. By
transferring (4.10) to matrix notation in the case of a Euclidean orthonormal basis and
by using the matrix transpose, we obtain

[al” [F1Ib] = ([1al)” [b] = [al” [17 [bI,

so[%]] = [f]|”. This implies that for vectors in a Euclidean orthonormal basis, the adjoint
of f is the transpose mapping, specified in a coordinate-free manner.

For blades (and even for multivectors), we extend fasan outermorphism. This leads to
adjoint transformation : 1_C[A] * B = A % f[B], (4.11)

which we could have taken as the definition of the adjoint for blades. For general f, it
follows easily from the symmetry of the scalar product that

—h1l

=1,

since ?[A] « B = A % f[B] = f[A] = B, for all b. Another useful property is
=

which is easily shown from the definition (4.10).

Some examples:

o Iffis the uniform scaling defined by f[x] = ax, then 1_C[x] -a=x-(aa) = (ax)-afor
all xand a. This yields T_C[x] = a X, soin this casef = f , the adjoint equals the original
transformation. As an outermorphism on blades, the adjoint is also W_C[X] = f[X].

e A special case of the uniform scaling is the point-reflection into the origin, which
has @ = —1. Again, f= f, but now also o1

e InFigure 4.2, we met the line projection P[x] = a (xAb)/(aAb) = a (xAb)] (aAb) -1
Its adjoint is E[x] = (x-a)b](a A b)~L. This, therefore, is proportional to the dual
of b in the (a A b) plane.

4.3.3 LINEAR TRANSFORMATION OF THE CONTRACTION

To demonstrate how the contraction product transforms under linear transformations,
we first show

f{f[A] | B] = A|f(B], (4.12)
which we derive simply using the scalar product definition:
X (A[T[B]) = (XA A) = T[B]
= f[XAA] B

110 LINEAR TRANSFORMATIONS OF SUBSPACES

= (f[X] A f[A]) * B
= f[X] = (f[A]] B)
= X % f[f[A] | B].

If f is invertible (which happens precisely when f is invertible), we can define A’ =

- [A]. Substituting that in (4.12) and dropping the prime gives the promised trans-
formation law for the contraction product:

contraction transformation : f[A]B] = £l [A] | f[B]. (4.13)

By the linearity of the functions and operators involved, this is of course immediately

extendable to arbitrary multivectors as f[A|B] = T ~'[A]|f[B].

The result of (4.13) is very powerful, but unfortunately rather abstract. We have not found
an easy geometric picture that will convince you of its necessary truth. But the interpre-
tation of the contraction A|B as “the part of B that remains when A is taken out in a per-
pendicular manner” (to paraphrase) helps remember the placement of f and its derived
mappings. Obviously, the transformed result is a part of B, so it should transform as f[B];
and taking A out could explain the inverse f -1 doing so in an orthogonal manner justifies

the adjoint f.

4.3.4 ORTHOGONAL TRANSFORMATIONS

If a linear transformation of vectors preserves their inner product, we call it an orthogonal
transformation. It then satisfies

orthogonal transformation : f[a] - f[b] = a- b,for alla,b € R".

Since orthogonal transformations are invertible, we may set a = f_l[x], to obtain
x - f[b] = £ [x] - b for all x, b. It follows that
f=f",

so for an orthogonal transformation, the adjoint equals the inverse transformation. You
probably knew this fact from linear algebra, in terms of the inverse of an orthogonal matrix
is its transpose. In the present context, “inverse equals adjoint” is a statement about the
mappings rather than their matrices, and by outermorphism, it also holds for the outer-
morphism extension of the mapping to blades.

With this, the transformation formula of the contraction is much simpler when f is an
orthogonal transformation:

flA]B] = f[A] | f[B].

Therefore, for orthogonal transformations, the contraction transforms in a structure-
preserving manner: the contraction of the transformed blades is the transformation

CHAPTER 4

SECTION 4.3

LINEAR TRANSFORMATION OF THE METRIC PRODUCTS 111

of the contraction. Orthogonal transformations are thus “innermorphisms” as well as
outermorphisms (since the contraction is actually an inner product for blades).

Familiar examples are reflections and rotations. In fact, they are the prototypical
orthogonal transformations, and we will discover in Chapter 7 that the general case can
always be written as a rotation followed by a reflection (or vice versa).

4.3.5 TRANSFORMING A DUAL REPRESENTATION

The dual of a blade X is X* = X|I,'. When X undergoes a linear transformation f,
the dual is transformed as well. We should define the transformation f* of the dual by
demanding that it preserve the duality relationship: the f*-transform of the dual should
be the dual of the f-transformed X. In formula:

dual transformation . *[X*] = (f[X])".
That specifies it. We introduce D = X*, and find
f'[D] = (fID~* D"
= fIDJL, 11!
= ('] LD | 1,
= f DI A (FILI] 1Y
= det(f) F~'[D], (4.14)

as the necessary definition of the linear transformation on duals. Since this is not gen-
erally equal to f[D], it implies that blades that are intended as dual representations do
not transform in the same way as blades that are intended as direct representations. In
a proper representation of geometry, we therefore need to indicate how a blade is to be
interpreted before we can act on it appropriately with a linear transformation.

Note that the outermorphism transformation law of direct blades is nonmetric, since it
only involves the outer product. By contrast, T* = det(f) f~! is metric, since it is express-

ible in terms of the adjoint f whose definition involves the scalar product. This makes
sense, since in our algebra of subspaces dualization is a metric concept.

An orthogonal transformation has a determinant equal to +1 (see structural exercise 10),
and has T~ = f. For such transformations, the dual representation therefore transforms
rather nicely: *[X*] = +f[X*]. For rotations, which have determinant +1, this is com-
pletely structure-preserving: the dual of the transform is the transform of the dual. For
rotations it is therefore not necessary to know whether a blade is a dual or direct rep-
resentation before you can transform it. For orthogonal transformations containing a
reflection, which have determinant —1, the extra minus sign in the dual is caused by the
reflection of the pseudoscalar of the space. It now makes a difference whether you desire
to take the dual of the transform relative to the original pseudoscalar (then you need the
—1), or relative to the transformed pseudoscalar (then there is no sign).

112 LINEAR TRANSFORMATIONS OF SUBSPACES

4.3.6 APPLICATION: LINEAR TRANSFORMATION
OF THE CROSS PRODUCT

As we discussed in Section 3.7, the cross product is an inherently 3-D construct, and
we can replace all its uses by elements of our subspace algebra that generalize to
n-dimensional space:

axb=(aAb)*=@nrb)|I;".

It is interesting to derive an additional argument as to why the cross product should not
be used: the normal vector ax b of aand b, used as a characterization of the homogeneous
plane spanned by a and b, behaves rather awkwardly under a linear transformation f. For
its definition clearly shows that it is a dual representation of a 2-blade, and therefore it
should transform according to (4.14):

axb — det(f)f'[a x b]. (4.15)

This is not equal to f[a] x f[b], so the normal vector of the transforms does not equal the
transform of the normal vector.

In computer graphics and engineering applications, it is customary to use “vector” as a
synonym for a tuple of coordinates as well as for a geometrical 1-D direction. The three
coefficients of n = a x b are a vector in the sense of a 3-tuple, but the geometry of
n makes this vector transform unlike a geometrical direction, so it is called a normal
vector. Even though it is given on the same basis as a regular vector, it requires its own
methods to be transformed. The transformation of such a normal vector under the linear
transformation with matrix [f]] on regular vectors must explicitly be implemented as the
matrix det(f) [T ~'] = det(f) [f~7, where [f]~7 is the inverse of the transposed matrix.
Within the code, such a different transformation for seemingly similar 3-tuples can only
be invoked if their data type is kept explicitly. Even then, novices easily get confused; this
is a common source of programming error. We provide a programming exercise at the
end of this chapter to explore the differences.

In our subspace algebra, we have two choices. We can introduce normal vectors, which
then of course need to transform according to f* = det(f) f ~!. They do so automatically
when we define them explicitly in the code. Or we can just characterize the same quantity
using the original 2-blade a A b, which transforms according to the outermorphism f
as f[a A b] = f[a] A f[b]. As a characterization of either a plane or a rotation (through
its rotation plane), the 2-blade is just as admissible as the classical normal vector, and
now you don’t need to remember how it transforms. This transformational simplicity
reinforces the practical considerations of Section 3.7, and reaffirms our decision to drop
the cross product from sound practice in geometrical representation.

CHAPTER 4

SECTION 4.4

INVERSES OF OUTERMORPHISMS 113

4.4 INVERSES OF OUTERMORPHISMS

With the transformation formula for the contraction, we can derive a closed form,
coordinate-free formula for the inverse of an outermorphism. First, we compute

fIAIL; '] = £ [A]] 1, '] = det) F (AT 1,70

Since det(f) = det() I, # I, = f[I;'1 % L, = I; % f[I,] = det() ;" * 1, = det(f), we
can substitute det(f) by det(f). Now do the contraction of both sides on I,,, giving?

fIAJT T,

Al = 4.16
Al detf ()
In terms of duals, (4.16) reads
o fIAY)
Al =)
LAl detf

Mathematicians may object to the use of duality in this formula: taking the inverse of a
mapping does not necessarily require a metric space, whereas duality is of course a metric
concept. It turns out that the two dualities in (4.16) cancel each other, in the sense that
the result does not depend on the precise form of the metric any more, and is therefore
actually nonmetric. We feel that if you have a metric (as you often do), you should use it.
If you don’t have one, you can temporarily introduce a convenient one (e.g., Euclidean)
and compute on.

Here are some examples of evaluation of the inverse on various blades:

1. Pseudoscalar.

_ f[11] I, 1
showing that det(f_]) = (detf) 1.
2. Scalar.
e = flal; '] 1, _ adetf (I;']1,) _ adetf e
detf detf detf

as expected since the inverse is also a linear transformation.
3. Vectors.

L flalL L,
Flal = detf

2 When rereading this book, you may want to replace the contractions in formula (4.16) by the geometric product
of Chapter 6.

114 LINEAR TRANSFORMATIONS OF SUBSPACES

For vectors there is no simplification of the basic equation, but when you follow
this computation for the matrix of ! on some basis, you find that you have essen-
tially the minor-based construction of the inverse from classical linear algebra (see
structural exercise 15). But remember, that construction only applies to f acting on
vectors, whereas (4.16) is much more powerful because it also applies to the outer-
morphism extension on arbitrary blades and multivectors.

4.5 MATRIX REPRESENTATIONS

A matrix is a convenient way of representing a linear transformation relative to a given
basis. It is specific to that basis, and therein lies its strength (it is efficient) and its weakness
(you cannot tell what it does directly from its form). Matrices are used in implementa-
tions of geometric algebra, though usually hidden from the user. You do not need them
to specify your linear transformations, but they are an efficient implementation of the
specified transformation at the very lowest level.

We introduce our notation for matrices, and show how they can be written completely in
terms of the products from subspace algebra to convey their geometric specificity. Then
we construct the matrix of the outermorphism of a linear transformation f acting on all
multivectors of A R".

4.5.1 MATRICES FOR VECTOR TRANSFORMATIONS

If you have a basis {b;}!_, (not necessarily orthonormal) for the vector space R", you can

use this to define a matrix representation of a linear transformation f of that space. This
can then be used to transform arbitrary vectors, since they can be written as a weighted
sum of basis vectors, over which f distributes.

We define a column representation of the vector x, in which the element in the j™ row of
the column is labeled by a superscript as [x]]. Then

Ix]/ = x/ = x- b/,

using the reciprocal frame from Section 3.8. We define the matrix through specification
of its element (j, i), which is the j-coordinate of the transformed b;:

I71) = flbi] - b, (4.17)

For this matrix, the superscript index j labels the row of matrix, and the subscript index i
labels the column (so it is consistent with viewing a vector as a matrix with 1 column and
n rows). Equation (4.17) implies that the i™ column of the matrix is the image of the i™
basis vector b; under the transformation f.

CHAPTER 4

SECTION 4.5

MATRIX REPRESENTATIONS 115

The transformation of an arbitrary vector x can be composed from the matrix
contributions as

flxI = Y flee-b) bl = Y Y x-b)(Fbil-b) b= Y O Il [xI'by.

i=1 j=1 i=1 j=1 i=1

Taking the inner product with b and using b; - b/ = 6; (according to (3.32)), the b;-
coefficient of the transformed vector is

[fx1 = fIx] - b7 = Y IF1) Ix].

i=1

We have thus retrieved the familiar multiplication of a vector by a matrix, which may be
denoted in shorthand over all rows as

[fIxI0 = [F] 1]

Writing out (4.17) using the techniques of (3.32), we find the matrix element fully
expressed in geometric algebra (remember that I, = by A --- A b,, and Bj means that
b; is omitted):

[F1) = (=17 fIb1) (by A=+~ A DA~ Aby]LT)
= (=1Y""(fbJAby A--- ADj A=+ AL
=(by A= Abig Af[b] A A Ab L (4.18)

So the recipe to construct the matrix element is that f[b;] takes the place of b; in the first
factor of the expression I, |1, L

The general expression of (4.18) denotes explicitly which geometrical concepts are
involved in the definition of the matrix of a transformation: a particular basis (not nec-
essarily orthonormal) and a particular choice of pseudoscalar for the space. The latter
is automatically determined once one specifies the basis vectors in the desired order, as
I, = biA- - -Ab,. But (4.18) demonstrates that there is a rather involved object at the basis
of the common way of doing linear algebra. This has advantages in its compactness; but
taking it fully as the basis of expression, one loses the power to express simpler concepts
when those would suffice.

4.5.2 MATRICES FOR OUTERMORPHISMS

A linear mapping can be represented as a matrix, and this holds not only for the original
mapping on vectors, but also on the outermorphism mappings on each of the k-blades
(or k-vectors). This follows the same procedure as for vectors, but now on a basis for the
(:)—dimensional space /\k R" of k-blades (or k-vectors) in R".

116 LINEAR TRANSFORMATIONS OF SUBSPACES

We first need to establish a basis and a reciprocal basis for that space. Let us illustrate
the principle for bivectors; the generalization is straightforward. If the basis of the vector
space is {b;}”

i > then we can take as our basis 2-blades:
b,’j =b; A bj.

There is no natural order among them (except perhaps in 3-D, where you can take them
in order of the missing index: {by3,b31,b;2}, with cyclically varying indices). You should
see ij as a single index running through its (}) possible values. We denote that by a capital
index, so a general bivector would be expressible as X = Y, X'by, with appropriately
chosen coefficients X'.

In a metric space R”, the reciprocal basis corresponding to the basis {b;} is then
constructed using the reciprocal basis vectors:

b7 = (b'Ab/)".

The reversion makes the scalar product between the basis vectors behave as if it were an
orthonormal basis under the scalar product (or, if you prefer, the contraction):

by # b’ = by # b7 = (b; Ab;) * (b A b)) = (b; b)) (b; x b)) = 1,
and the scalar product is zero for unequal indices. Therefore
b xb =4

The coefficient X! of a bivector X on the basis {b;} is then X = b’, so that we can
write

X = Z(x x bl) by.
I

With this preparation, the matrix of the outermorphism of f can be defined by complete
analogy with the vector case as

[f1, = flbi] + b,

This is enough to compute the matrix. If the linear transformation f is expensive to evalu-
ate, you may prefer a form that expresses this matrix directly in terms of the vectors f[b;].
Let us expand the general term, reverting to the specific vector indices:

[l],:],z = f[bi,i,] % b2
= (flbs,] A flby, 1) * (b2 ADT)
= (f[b;] # ™) (f[b;,]+ b/) — (f[b;] ™) (fb;,] + b2)
= I, W0, — 0 OO
By either method, the outermorphism matrix can be constructed from the matrix acting

on the basis vectors. In any implementation, this trivial computation of the outermor-
phism should be hidden from the user, who should simply be allowed to apply the linear

CHAPTER 4

SECTION 4.7

SUGGESTIONS FOR FURTHER READING 117

transformation to any element of the algebra. The programming exercise in Section 4.9.2
lets you enjoy this functionality, and compares the efficiency of the matrix approach to
the regular subspace algebra implementation of the outermorphism.

4.6 SUMMARY

We summarize the most important results of this chapter:

e A linear transformation f : R” — R" can always be extended as an outermorphism
to a linear transformation working on blades in all of A R”, also denoted by f.

 Under a linear transformation f (extended as an outermorphism), the products of
the subspace algebra transform as follows:

f[A A B] = f[A] A f[B]
f[A*xB]=AxB
f[A]B] = f~'[A]Jf[B],

where f is the adjoint transformation (basically, the transpose of matrix algebra).
The structure of the outer product is therefore preserved by any linear transfor-
mation.

o There is a coordinate-free formula for the inverse of a linear transformation
f:R" - R" which reads

_ fIAIL T,

A
(Al detf

 For orthogonal transformations, f=1 = f, so the structure of the contraction is
preserved by any orthogonal transformations.

4.7 SUGGESTIONS FOR FURTHER READING

In this single chapter, we have explained all you need to know for this book about linear
transformations in general. We will home in on the orthogonal transformations in par-
ticular, and the powerful ways geometric algebra offers to represent them, in Chapter 7.
But of course a lot more can be said about linear transformations and how they can be
analyzed using the tools of the algebra of subspaces.

118 LINEAR TRANSFORMATIONS OF SUBSPACES

Some of the following literature is better studied when you have also learned about the
geometric product (after Chapter 6), but it seems most appropriate to give you this list of
material on linear transformations in the eponymous chapter.

» A very accessible article by Hestenes [27] gives a good entry to linear transforma-
tions as viewed by geometric algebra, and uses its tools to expose the structure of
linear algebra.

» Working with blades as computational elements is very similar to developing a
multilinear algebra (though in a metric manner). Classically, that quickly gets
into tensor representations of multilinear mappings. Doran and Lasenby ([15],
Chapter 4) relate this clearly to the geometric algebra representation.

e Numerical techniques in linear algebra rely heavily on techniques like the
singular value decomposition (SVD) and eigenvector analysis. The extension of
such tools to geometric algebra should be straightforward and would give us the
general eigenspaces. As yet, little numerical work exists that uses it directly, though
[1] gives some initial results.

» We will have more to say about the representation of orthogonal transformations
in the “Further Reading” list of Chapter 7.

4.8 STRUCTURAL EXERCISES

1. Point mirroring in 3-D space leads to a change of orientation of the volume
3-blades. We know this spatial inversion better from reflection in a mirror. Show
that this has indeed the same effect. (Hint: Let the mirror plane be characterized by
a 2-blade B, and let a be a vector perpendicular to B (for example, a = B*). Then
define the linear transformation performing the mirror reflection, and apply it to a
sensibly chosen 3-blade in this setup. Why does your result generalize to arbitrary
3-blades?)

2. Let us compute the determinant according to (4.7) in a 2-D space and compare it
to the classical determinant. Take a basis {by, b, }, not necessarily orthonormal. Let
the linear mapping f be such that f[b;] = x and f[b,] = y. Develop x and y onto
the basis x = x1b; + xoby and y = y;b; + y2bs. Use I, = x A'y and compute the
determinant according to (4.7). Now compute the matrix of f on the given basis,
and compute its classical determinant. The results should match.

3. You may want to apply a linear mapping f to a k-dimensional subspace. You could
then be tempted to use (4.7) with its pseudoscalar Iy substituted for I, to define
what the determinant of f is on this subspace. Why doesn’t this work?

4. Consider the linear transformation of vectors in the aAb plane determined by what
happens to the vectors a and b: f[a] = 5a—3b and f [b] = 3a—5b. Use classical linear
algebra methods to find eigenvectors and their eigenvalues. Now use our algebra to
determine the determinant, and an eigen-2-blade with its corresponding eigenvalue,
and then interpret the geometry of the transformation.

CHAPTER 4

SECTION 4.8 STRUCTURAL EXERCISES 119

10.

11.
12.

13.

14.
15.

Design a nontrivial linear map f : R? — R? that has an eigenvector and an
eigen-2-blade, both with eigenvalue 1.

When deriving the linear transformation of the scalar product f[A*B] = A= B
in Section 4.3.1, we raised the issue that this appears to mean that every linear
transformation leaves the squared norm A A invariant. Show that this is of course
not true. (Hint: What is the formula for the squared norm of the transformed A
actually?)

To continue with the previous problem after you know about the adjoint in
Section 4.3.2, rewrite the correct expression for the squared norm of f[A] in the
form A * g[A] and determine g in terms of f. This is the metric mapping corre-
sponding to the transformation f, and it shows that the transformed space can be
treated as a space with a new inner producta - b = a * g[b].

Continuing from the previous problem, show that the metric mapping corre-
sponding to an orthogonal transformation is the identity. Therefore, orthogonal
transformations preserve norms (and cosines of angles).

Show that in a non-degenerate metric space R” with arbitrary basis {b;}}_,, the
adjoint of a linear transformation f can be constructed as
n
fIx] =) (o flb) b, (4.19)

i=1

Show that an orthogonal transformation has a determinant of +1.
Give an expression for 1_C[AJ B]. Hint: Consider the symmetry of (4.10).

Give an example of a linear transformation for which the transformed cross product
f[a x b] is not parallel to the cross product of the transforms f[a] x f[b]. That of
course implies it is not perpendicular to f[a] and f[b], so it has ceased to be a normal
vector. This theme is further explored in the programming exercise of Section 4.9.3
below.

For the shear x — f[x] = x + s(x - e;) e; (on the standard orthonormal basis of
RrR™0), compute the transformation matrix [[f;] (to act on vectors). Also compute
the matrix [[f}]). Verify the results in a picture of the shear of a planar line and its
normal vector.

Verify that (4.18) indeed gives the identity matrix for the identity mapping.
The classical closed-form formula for the inverse of a matrix [A] is
dj([TA
[t < 2AAD
det([AT)

where adj([A]]) is the classical adjoint matrix, of which the (3,7)™ element equals

(=1 det([[A;;1), with [A;] a minor matrix obtained from [A] by omitting the

7™ row and the i column. Show that this terrific coordinate-based construction

is identical to the coordinate-free formula (4.16). Equation (4.20) is very hard to

(4.20)

)th

120

16.

17.

LINEAR TRANSFORMATIONS OF SUBSPACES

compute with algebraically, though we will say that it is easy to implement. (We
should mention that in practice, one implements matrix inversion by Gaussian
elimination, so that (4.20) is usually treated as little more than a mathematical
curiosity, neither good for derivation nor for implementation.)

Continuing the previous exercise, give an expression in matrix form of the dual
mapping * = det(f) f~!. This should endow the involved algebraic concept of a
matrix of minors with a clear geometrical meaning.

In standard linear algebra, one way to encode a subspace is as the image of a matrix.
The subspace spanned by the basis {by,..., b} is then the image of the matrix
[B]] = [[b; - - - bx]l. The orthogonal projection of a vector x onto this subspace in
[[B] is computed using the projection matrix as the vector

[BICIBI 1B~ 1B1 [x].

Show that this is, in fact, the same mapping as our (x|B)|B ~1 of (3.25). How would
you describe the extension to an outermorphism in standard linear algebra?

4.9 PROGRAMMING EXAMPLES AND EXERCISES

4.9.1 ORTHOGONAL PROJECTION

This example lets you manipulate three vectors. One of the vectors gets projected onto

the 2-blade spanned by the other two. The code is very simple:

// g_vectors[] is a global array of 3 vectors.

// compute bivector (*4 to make it a bit larger):

bivector B = _bivector(4.0f * g_vectors[0] ~ g_vectors[1]);

// project g_vectors[2] onto the bivector
// The symbol <<’ is the left contraction

e3ga::vector P = _vector((g_vectors[2] << inverse(B)) << B);

The output of this example is shown in Figure 4.4. In the next example, we use the outer-

morphism matrix representation of the projection to do the same thing.

4.9.2 ORTHOGONAL PROJECTION, MATRIX REPRESENTATION

Outermorphisms are great because they can be summarized into their respective matrix

representation, one matrix for each grade of blades. These outermorphism matrices can
then be applied to any blade instead of the original outermorphism defined explicitly in
terms of subspace products. That matrix approach is usually faster.

CHAPTER 4

SECTION 4.9 PROGRAMMING EXAMPLES AND EXERCISES 121

8enoe [X| Geometric Algebra, Chapter 4, ple 1: Projection

-use mouse buttons to drag (red, green, blue) vectors and fa orbit the scene

Figure 4.4: Projection. The blue vector is projected onto the bivector spanned by the red
and green vector.

In this example, we redo the previous example, this time using the outermorphism matri-
ces to apply the transformation. See the code in Figure 4.5. First, we compute the images
of all basis vectors under the linear transformation—in this case, orthogonal projection.
Those images are used to initialize the matrix representation M of the transformation on
vectors:

om M(imageOfEl, imageOfEZ2, imageOfE3);

The om class (for outermorphism matrix) contains a matrix for each grade part 1,2,---n
of elements in the n-dimensional space R”. Given the images of the basis vectors, it ini-
tializes all outermorphism matrices using the method described in Section 4.5.2. Once
the om class is initialized, it can be applied to any blade, for example,

e3ga::vector P = _vector(apply_om(M, g_vectors[2]));

The example program may take some time to start up because it also contains a lit-
tle benchmark that is called at the start of the main() function. The benchmark times

122 LINEAR TRANSFORMATIONS OF SUBSPACES

// g_vectors[] is a global array of 3 vectors.

// compute bivector (*4 to make it a bit larger):
bivector B = _bivector(4.0f * g_vectors[0] ~ g_vectors[1]);

// we need the images of the 3 basis vectors under the

// projection:

e3ga::vector imageOfEl = _vector((el << inverse(B)) << B);
e3ga::vector image0fE2 = _vector((e2 << inverse(B)) << B);
e3ga::vector imageOfE3 = _vector((e3 << inverse(B)) << B);
// initialize the matrix representation

om M(imageOfEl, imageOfE2, imageOfE3);

// apply the matrix to the vector:
e3ga::vector P = _vector(apply_om(M, g_vectors[2]));

Figure 4.5: Matrix representation of projection code.

how many seconds it takes to do 1,000,000 projections, either using the regular method
of computing the projection as (X|B)|B~! or using the precomputed outermorphism
matrix representation. The results are printed to the console. On one of our machines,
the result was

So using the outermorphism matrix representation was about twice as fast as using the
explicit product method. The result on your machine depends on your CPU architec-
ture as well as your compiler, but in general, the outermorphism matrix representation is
faster.

4.9.3 TRANSFORMING NORMAL VECTORS

As we explained in Section 4.3.6, normal vectors transform differently from regular vec-
tors under a linear transformation. We use non-uniform scaling as an example. The dra-
matically different results are illustrated in Figure 4.6.

The code for initializing the non-uniform scaling outermorphism matrix is:

// initialize the outermorphism
// g_scale is a global array of floats
om M(

_vector(g_scale[0] * el),

CHAPTER 4

SECTION 4.9 PROGRAMMING EXAMPLES AND EXERCISES 123

THA Geomgetric Algebra, Chaptern d, Example 3: Transforming Normals Vectors s 0O X

-use left mouse button to orbit scene
-use other mouse buttons to select model and narmal visibility

seaie <1 | —
scaie ez [N
scaie 2 [N

Figure 4.6: Transforming normal vectors. The screenshot shows a squashed dodecahedron.
The correct normals—computed with 2-blades—are shown in green, the bad normals in red.
It is clear that the red normals are not orthogonal to the surface, especially for the two top
polygons.

_vector(g_scale[1] * e2),
_vector(g_scale[2] * e3));

The good and bad normals are then computed as

// compute the normals

// g_normals3D is a global array of vectors

// g_attitude3D is a global array of bivectors
e3ga::vector badNormal, goodNormal;

badNormal = unit_e(apply_om(M, g_normals3D[i]));
goodNormal = unit_e(dual(apply_om(M, g_attitude3D[i])));

Asin Section 2.13.2, the 3-D models are extracted from GLUT, this time using two orthog-
onal projections. See the getGLUTmode13D() function.

5 INTERSECTION AND
UNION OF SUBSPACES

Geometric algebra contains operations to determine the union and intersection of
subspaces, the join and meet products.

These products are of course important in geometry, and it is therefore disappointing to
learn that they are not very tidy algebraically. In particular, they are not (bi-)linear: a small
disturbance in their arguments may lead to major changes in their outcome as geometric
degeneracies occur. This will give their treatment a different flavor than the products we
introduced so far.

Butmeet and join are still very useful. Even when applied to the subspaces at the origin,
meet and join generalize some specific formulas from 3-D linear algebra into a more
unified framework and extend them to subspaces intersecting in n-dimensional space.
Their full power will be unleashed later, in Part II, when we can use them to intersect
offset subspaces and even spheres, circles, and the like. Yet it is good to understand their
algebraic structure first, and we now have all the tools to do so.

5.1 THE PHENOMENOLOGY OF INTERSECTION

When we intersect two planes through the origin in 3-D, the outcome is usually a
line. In terms of subspaces as blades, two grade-2 elements produce a grade-1 element.

125

126 INTERSECTION AND UNION OF SUBSPACES

However, if the two planes happen to coincide, we would want the geometric outcome
of their intersection to be that plane of coincidence, which is of grade 2. None of the
products we have seen so far can do this grade switching in the result as a consequence
of the geometric relationship of their arguments, so there must be something new going
on algebraically. In fact, an incidence product encoding this geometry cannot be linear,
since even a small disturbance of one of the input planes can lead to this discontinuity
in the result.

That nonlinearity prohibits extending the intersection and union easily from blades
(which represent subspaces) to general multivectors (which do not). That we cannot do
this makes sense for geometrical reasons as well, because any definition of geometrical
union and intersection should be based on containment of the result in the arguments,
or vice versa, and this is only well defined for subspaces. Algebraically, we will therefore
have to limit intersection and union to blades. These are the first products that must be
constrained to operate within the limited algebra of subspaces, not in the full Grassmann
algebra of multivectors.

But even then, an algebraic problem that we can foresee geometrically is that the desired
outcome does not have all the properties of a blade, because it is not meaningful to assign
a unique magnitude and orientation (i.e., a sign) to the blade representing the subspace
of intersection. This is illustrated in Figure 5.1(a) and (b) for two planes represented by
2-blades. Since those 2-blades may be reshaped without changing their value as blades,
both depictions are permitted—but they each suggest a different intersection magnitude.
It is equally easy to change the orientation of the possible intersection line. Therefore, the
outcome of the intersection of two blades is a subspace, but one of which only the attitude
matters.

(a) (b)

Figure5.1: The ambiguity of the magnitude of the intersection of two planes, A and B. Both
figures are acceptable solutions to the problem of finding blades representing the union J and
intersection M of the subspaces represented by the same 2-blades A and B.

CHAPTER 5

SECTION 5.2

INTERSECTION THROUGH OUTER FACTORIZATION 127

We are going to design two products between blades to compute with intersections. They
will be called meet and join, and denoted by N and U to signify that they are meant to
represent the geometric intersection and union of two blades. The setlike notation will not
be confusing (we hardly use sets in this book), and in fact is a helpful reminder that the
resulting elements are not fully quantified blades and that the products are nonlinear.'

5.2 INTERSECTION THROUGH OUTER
FACTORIZATION

Consider two blades A and B, which happen to contain some common blade. To be pre-
cise, let M be the largest common divisor of A and B in the sense of the outer product.
This is the algebraic formalization of their geometric intersection; we will call it their meet
and denote it by A N B.

Algebraically, we should be able to factor out M from both A and B, since it is contained
in both. We do this in a particular order, writing

A=A'"AM and B=MAB. (5.1)

If A and B are disjoint, then M is a scalar (a 0-blade).

A and B together reside within a blade J, their smallest common multiple in terms of
the outer product. This is a pseudoscalar of the subspace in which this meet intersection
problem actually resides. We will call it their join and denote it by A U B, for it is the
geometric union of the subspaces. It is clear that join and meet are related through the
factorization, for we can write

AUB=A'AMAB and AnNB=M. (5.2)

We already observed, when we discussed the geometry of Figure 5.1, that we should expect
this factorization by M not to be unique. Indeed, in (5.1) we may multiply M by a scalar
7. Then A’ must be multiplied by 1/y to preserve A, and similar for B. As a consequence,
this would multiply the join result of (5.2) by 1/y. So we can always trade off a scalar
factor between the meet and the join, of any weight or sign. This ambiguity need not be
a problem in geometrical usage of the outcome. For instance, a projection of a vector x to
the meet subspace M is given by (x| M) |M, and this is invariant to the scalar ambiguity
since it involves both M and M~

1 The reader should be warned that the terminology of “join"” and “meet” is used in some literature in a different
sense, directly corresponding to our outer product, and our operation of contraction with a dual, respectively.
Those are then truly linear products, though they do not always compute the geometric union and intersection
(they return zero in degenerate situations). To add to the confusion, that literature uses the notations V for their
“join" and A for their “meet.”

128 INTERSECTION AND UNION OF SUBSPACES

The first use of meet and join in nonmetric projective geometry seems to have induced
people to neglect the magnitude and sign completely. Yet this is a pity, for there are situa-
tions in which consistent use of relative magnitudes conveys useful geometric information
(for instance, on the sines of intersection angles). To enable this, we will develop consistent
formulas for meet and join based on the same factorization. We can then guarantee that
meet and join of the same subspaces can be used consistently, and we will demonstrate
how that can be applied. Of course you can always ignore this quantitative precision in
any application where you do not need it—in that case, the order of the factors in (5.1)
and (5.2) can be chosen arbitrarily.

5.3 RELATIONSHIPS BETWEEN MEET AND JOIN

For practical use, we have to make the computational relationships between meet and
join more explicit than merely relating them through their factorization. To do so, we
first need formulas for A" and B’. Neither contain any factors also in M, so we can use the
contraction to define them as the part of A not in M and the part of B not in M. But to
be quantitative, we have to be careful about the order of the arguments and about their
normalization:

B =M"!|B, and A’ =AM, (5.3)

where we employed both contractions for simplicity of expression. If you are uncomfort-
able with using the contractions in this direct manner, you may derive the former more
formally from the identity B' = M~!|(M A B’), which holds since a basis for B’ can be
chosen that is orthogonal to all of the factors of M ™! and hence of M. The expression for
A’ can be derived in a similar manner. This shows why we need to use the inverse of M to
achieve proper normalization.

But this means we can only proceed if M has an inverse. This may seem to restrict the kind
of spaces in which we can do intersections, excluding those with null vectors, and that
would be a serious limitation in practice. However, we will lift that apparent restriction
in Section 5.7 (when we show that both join and meet are independent of the particular
metric, as you may already suspect, since after all they are based on factorization by the
nonmetric outer product). For now, assume that all blades are in the algebra of a Euclidean
vector space.

Denoting the grades of the elements by the corresponding lowercase letters (where j is the
grade of the join J), we have various simple relationships between them

d=a-m, V=b-m, j=a+b-—m, m+j=a+b, (5.4)

and these help in keeping track of the various quantitative relationships we are going to
derive. Together with consideration of order and normalization, all can then be remem-
bered easily.

CHAPTER 5

SECTION 5.4

USING MEET AND JOIN 129

With (5.3), the join in terms of the meet can be written in two ways:
J=AUB=AAM!|B)=(A|M"") AB. (5.5)
We can also solve for the meet in terms of the join. We first establish

1=J+]J " = AAM ' |B)] =A% (M |B)]J7H)
= (A AM) =M ABJIT)) = A« BIT).

Then 1 = BJJ7) = AIM™) = M ABI) «A = M A B]JTH)A
NowM=MA1=MA (M ABIJT)]A) = MM ABIIT))]A = BIITHIA,
so that we obtain:

M=ANnB=(B|J HA. (5.6)

This formula to compute M from J (given A and B) is often used in applications, since
when subspaces A and B are in general position it is easy to specify a blade J for their join.

The dual of this relationship shows the structure of the meet more clearly: taking the
inner product with J~! on both sides of (5.6), we obtain M|J~! = (B[J™H]A)|J! =
BJJ™H A (A]T7Y). So relative to the join, the dual meet is the outer product of the
duals:

M[J™ =BT A @AIh. (5.7)
This is often compactly denoted as
dual meet : (ANB)* = B* A A¥, (5.8)

but then you have to remember that this is not the dual relative to the pseudoscalar I, of
the total space, but only of the pseudoscalar of the subspace within which the intersection
problem resides (i.e., of the joinJ = AUB).

Some more expressions relating the four quantities A, B, M, and J are given in the struc-
tural exercises. It should be noted that such relationships between meet and join do not
give us a formula or algorithm to compute either. In higher-dimensional subspaces, the
search for a join of arbitrary blades requires care, for it can easily lead to an exponential
algorithm. An O(n) algorithm will be given in Section 21.7, but we cannot explain that at
this point since it uses the geometric product of Chapter 6.

5.4 USING MEET AND JOIN

In practice, the join is often more easily determined than the meet, since the most
interesting intersections and unions of subspaces tend to occur when they are in gen-
eral position within some subspace with a known pseudoscalar (two planes in space, a
line and a plane in space, etc.). Then the join is just the pseudoscalar of that common
subspace, and (5.6) gives the meet. A numerical example conveys this most directly.

130 INTERSECTION AND UNION OF SUBSPACES

We intersect two planes represented by the 2-blades A = %(el +e) A (ep +e3)
and B = e A e;. Note that we have normalized them to facilitate interpreting the
relative quantitative aspects. These are homogeneous planes in general position in
3-D space, so their join is proportional to I3 = e] Aep Aes. It makes sense to orient
J with I so that we simply take J = I5. This gives for the meet:

ANB = ((erne)l(es neanen))]((er +e) Aer+e3))

= Lel(i+e)A(e+e)

=-Z(e+e)= —\/g(%) (5.9)

(the last step expresses the result in normalized form). Figure 5.2 shows the answer;
the sign of A N B is the right-hand rule applied to the turn required to make A
coincide with B, in the correct orientation. We will show that the magnitude of the
meet equals the sine of the smallest angle between them, so that in this example

their angle is asin(—4/2/3), measured from A to B.

Classically, one would compute the intersection of two homogeneous planes in 3-space
by first converting them to normal vectors and then taking the cross product. We can see
that this gives the same answer in this nondegenerate case in 3-space, using the definition
of the cross product (3.28) and our duality equations (3.20), (3.21), and remembering
that the dual 2-blades are vectors:

A" xB* = (A" ABH = —(B*AAH) = (B*AA") " =B*]A=ANB (5.10)

So the classical result is a special case of (5.6) or (5.8). But formulas (5.6) and (5.8) are
much more general: they apply to the intersection of subspaces of any grade, within a
space of any dimension.

Figure 5.2: The meet of two oriented planes.

CHAPTER 5

SECTION 5.5

JOIN AND MEET ARE MOSTLY LINEAR 131

5.5 JOIN AND MEET ARE MOSTLY LINEAR

Once the join has been selected, the formula of (5.6) for the meet shows that the meet
is linear in A and B since it can be expressed by contraction products, which are clearly
linear. If we change A and/or B such that the join does not change, this remains true.
In this sense, the meet is mostly linear. However, as soon as some degeneracy occurs or
is resolved, the join changes in a nonlinear manner and the meet formula enters a new
domain (within which it is again linear). You can tell that this happens when the meet with
your selected join returns zero. That signals degeneracy and the need to pick another
join.

As a geometric example, assume that in 3-D we have a homogeneous line a (a vector) and
a homogeneous plane B (a 2-blade), as in Figure 5.3. As long as the line is not contained
in the plane (so that they are in general position), the pseudoscalar I3 can be used as the
join]J, and the meet varies nicely with both arguments.

M=anB=B|z)]Ja=B*-a=b-a.

This is a scalar, geometrically denoting the common point at the origin, with a magnitude
proportional to the cosine of angle between the line a and the normal vector b = B|I3~!
of the plane; that is, proportional to the sine of the angle of line and plane (and weighted
by their magnitudes). It changes sign as the line enters the plane from below rather than

Figure 5.3: A line meeting a plane in the origin in a point. If the join is taken to be the
right-handed pseudoscalar, the intersection point is positive when the line pierces the oriented
plane as shown. Other normal coordinates can be chosen to bear this out: Let B = e; A e,
a = aje + ayer +azes, then with] = e; Aey Aez you find M = anB = B*|a = a3 = ||a]| sind,
which is positive in the situation shown.

132 INTERSECTION AND UNION OF SUBSPACES

above, with above and below determined by the orientation of the plane B relative to the
pseudoscalar chosen for the join (i.e., the orientation of the common space). This shows
the use of the sign of the meet; it gives the sense of intersection and allows us to elimi-
nate surface intersections of rays coming from inside an object (if we orient its boundary
properly and consistently). It also shows why the sign of a scalar (i.e., the orientation of a
point at the origin) can be important in the algebra of subspaces.

Precisely when the line becomes coincident with the plane, this expression for the meet
becomes zero. This is the signal that it is actually no longer the proper meet, for the join
must be changed to a normalized version I, of the plane B, which is now the smallest
common subspace. The problem has essentially become 2-D. We find then find that the
meet is the line a, weighted:

M= (B]L;")]a = fa,

with f = B| I;l the signed magnitude of the B-plane. This expression is also linear in both
arguments a and B, as long as we vary them so that the join does not change (so we may
only rotate and scale the line within the plane I,, and only change weight or orientation
of the plane B, not its attitude).

This example generalizes to k-spaces in n-dimensional space: the meet is linear as long as
the join does not change, and it degrades gracefully to zero to denote that such a change
of join becomes necessary.

5.6 QUANTITATIVE PROPERTIES OF THE MEET

If you normalize the join, you can interpret the value of the meet as proportional to the
sine between A and its projection on B (or vice versa, depending on the relative grades).
We encountered a particular instance of this in the example of Figure 5.2.

We can see that this holds in general, as follows. Focus on A’ relative to the space B.
The join should be proportional to the blade J = A’ A B. Let the pseudoscalar of this
space be I, then normalizing the join to I implies division of J by the scalar J | I =g~
This rescaling of the join implies that the meet should be rescaled to become MJ*, so
proportional to the scalar J*. Now inspect J* = (A’ AB)". This is proportional to the
volume spanned by A’ and B—and we know from the previous chapters that the magni-
tude of a spanned volume involves the sine of the relative angle between the arguments.
Alternatively, we can rewrite J* = A’|(B*) = A" x B*. This scalar product is proportional
to the cosine of the angle between A’ and the orthogonal complement of B. That can be
converted to the sine of the complementary angle, retrieving the same interpretation:

The magnitude of themeet A N B of normalized blades A and B within a normalized
join denotes the sine of the angle from A to B.

CHAPTER 5

SECTION 5.7

LINEAR TRANSFORMATION OF MEET AND JOIN 133

The sine measure is quite natural as an indication of the relative attitudes of homogeneous
spaces. In classical numerical analysis, the absolute value of the sine of the angle between
subspaces is a well-known measure for the distance between subspaces in terms of their
orthogonality: it is 1 if the spaces are orthogonal, and decays gracefully to 0 as the spaces
get more parallel.

The sign of the sine is worth studying in more detail, for it indicates from which direction
A approaches B. However, we have to be careful with this interpretation: there may be a
sign change depending on whether we compute A N B or B N A. One should study this
sign only relative to the choice of sign for the pseudoscalar for the space spanned by the
join during normalization. Let us therefore compare B N A with A N B relative to the
same join, by means of the dualization formula (5.8):

BNA=(A*AB*)™"
= (=100 (B* A A*)™*
= (=)D ANB,

using (2.13) to swap the arguments of the outer product. Therefore, it depends on the
grades of the elements whether the meet is symmetric or antisymmetric. Two lines
through the origin in a plane (a = b = 1,j = 2) meet in antisymmetric fashion:
A NB = —B N A. This makes sense, since if we swap the lines then we are measuring
the sine of an opposite angle, and this is of opposite sign. On the other hand, a line and a
plane through the origin in space (a = 1, b = 2,j = 3) meet symmetrically: ANB = BNA.
There is still a sine involved, which changes sign as the relative orientation changes so that
we can tell whether the line passes from the front or the back of the plane. But in the com-
putation, it apparently does not matter whether the line meets the plane or vice versa.

This subtle interplay of signs of orientation of the join, the relative attitudes in space,
and the order of arguments in the meet requires some experience to interpret properly.
We give some examples of the ordering sign for common situations in Table 5.1.

5.7 LINEAR TRANSFORMATION OF MEET AND JOIN

Even though the meet and join are not completely linear in their arguments, they do
transform tidily under invertible linear transformations in a structure-preserving manner
(by which we mean that the transform of the meet equals the meet of the transforms).
This paradoxical result holds because such transformations cannot change the relative
attitudes of the blades involved in any real way: if A was not contained in B before a linear
transformation f, then f[A] will also not be contained in f[B] after the transformation.
In that sense, the preservation of meet and join is a structural property of linear trans-
formations. The proof of this fundamental property is not hard, since we know how the
outer product and the contraction transform.

134

INTERSECTION AND UNION OF SUBSPACES

The order of the arguments for a computed meet may affect the sign of the result.
This table shows the signs for some common geometrical situations. A plus denotes no sign
change, a minus a change. The vector space model in which all elements pass through the

origin is denoted as orig. This is the algebra of the homogeneous subspaces in Part |.

For convenient referencing, we have also listed some results for the 4D homogeneous
model (hom) and the 5D conformal model of 3-dimensional Euclidean space (conf), which will
only be treated in Part Il. In the bottom block, ‘line” and ‘plane’ can always substituted for
‘circle” and 'sphere’. The order sensitivity does not depend on the model used, since only the
‘co-dimensions’ (j —a) and (j — b) matter.

Elements in meet join Space a,b,j a,b,j a,b,j | Sign
orig hom conf
Two origin points Point 0,0,0 1,1,1 2,2,2 +
Origin point and origin line | Line 0,1,1 1,22 | 23,3 +
Two origin lines Plane 1,1,2 2,2,3 3,3,4 —
Two origin lines Line 1,1,1 2,2,2 3,3,3 +
Two origin planes Space 2,2,3 3,34 44,5 -
Origin line and origin plane | Space 1,23 | 234 | 34,5 +
Origin line and origin plane Plane 1,2,2 2,3,3 3,4,4 +
Two parallel lines Plane 2,2,3 3,3,4 —
Two intersecting lines Plane 2,23 | 3,34 -
Two skew lines Space 2,24 | 3,3,5 +
Two intersecting planes Space 3,3,4 4,4,5 -
Two parallel planes Space 3,3,4 4,45 —
Line and plane Space 2,3,4 3,4,5 +
Line and plane Plane 2,3,3 3,4,4 +
Point and line Plane 1,23 | 2,34 +
Point and plane Space 1,34 | 24,5 -
Point and circle Sphere 1,3,4 +
Point and sphere Space 1,4,5 +
Point pair and circle Sphere 2,3,4 +
Point pair and sphere Sphere 2,4,4 +
Circle and sphere Space 3,4,5 +
Circle and sphere Sphere 3,4,4 +
Circle and circle Space 3,3,5 +
Circle and circle Sphere 3,3,4 -
Tangent vector and sphere Sphere 2,4,4 +
Sphere and sphere Space 44,5 -

CHAPTER 5

SECTION 5.7

LINEAR TRANSFORMATION OF MEET AND JOIN 135

First, the join is made by a factorization in terms of the outer product. Since a linear
transformation is an outermorphism, the linear mapping f preserves the outer product
factorization, and we obtain trivially that

f[AUB] = f[A] U f[B].

The meet also transforms in a structure preserving manner:
f[A N B] = f[A] n f[B].

The reason is simply that the defining relationships of (5.1) and (5.2) between
A,B,J = AUBand M = A N B only involve the outer product; therefore a linear trans-
formation T, acting as an outermorphism, preserves all these relationships between the
transformed entities.

When converting the expression f[A] N f[B] to a computational form involving the con-
traction analogous to (5.6), these outermorphic correspondences imply that one should
use duality relative to the transformed join f[J], not the original join J. So the transfor-
mation of (5.6) reads explicitly:

flAnBl = (fBII) IfAl

This is really different from (f [(B1]J~!)Jf [A], since f[J] is in general not even proportional
to J. This dependence on the join dualization is a good reason to use the explicit (5.7)
rather than the overly compact (5.8).

Since a linear transformation usually changes the metric measures of elements (except
when it is an orthogonal transformation), the preservation of meet and join under gen-
eral linear transformations shows that these are actually nonmetric products. For the join,
that is perhaps not too surprising (since it is like an outer product), but the occurrence of
the two contractions in the computation of the meet makes it look decidedly metric. The
nonmetric nature of the result must mean that these two contractions effectively cancel in
their metric properties. In that sense, we have merely used the contraction to write things
compactly. Mathematicians encoding union and intersection for the nonmetric projective
spaces have devised a special and rather cumbersome notation for the nonmetric dual-
ity that is actually involved here. (It is called the Hodge dual, and its proper definition
requires the introduction of the n-dimensional space of 1-forms.) We will not employ it,
and just use our metric contraction instead.

But it is relevant to note that the precise form of the metric does not matter. If we ever need
to compute meet and join in spaces with unusual metrics, we can always assume that
we are in a Euclidean metric if that simplifies our computations. This is why we had no
compunction about using the inverses M~! and J~! in our derivations; they can always
be made to exist by embedding the whole computation temporarily in a Euclidean metric.
We will apply this principle in the algorithm to compute meet and join in Chapter 21.

136 INTERSECTION AND UNION OF SUBSPACES

5.8 OFFSET SUBSPACES

So far we have only treated subspaces containing the origin, and although we have been
able to do that case in general, it is of course not the most relevant case in applications.
We postpone the treatment of the intersection of subspaces offset from the origin to their
proper formalization as elements of the homogeneous model in Chapter 11. There we
will show that parallel lines have a finite meet and that skew lines in space meet in a scalar
proportional to their orthogonal Euclidean distance.

More surprisingly still, in Chapter 13 we will introduce an operational model of Euclidean
geometry in which the meet of spheres, circles, lines, and planes can be computed by
straightforward application of the subspace intersection formulas of the present
chapter.

5.9 FURTHER READING

Themeet and jo1n are strangely positioned within the literature on algebras for subspaces:
they are either neglected (presumably because they are algebraically not very tidy), or
an attempt is made to take them as axiomatic products replacing the outer product and
contraction.

e Themeet and join are treated seriously and extensively in Stolfi’s classical book on
oriented projective geometry [60]. It is richly illustrated, and sharpens the intuition
of working with oriented subspaces. It also gives an algorithm for meet and join
in terms of the matrix representation of subspaces. Unfortunately, it does not treat
metric geometry.

e When meet and join are taken as basic products, they are linearized: the join is
redefined as the outer product of its arguments, and the meet is defined through
duality (our (5.8)). It is then called the regressive product. This alternative algebra of
subspaces tends to be nonmetric, with nonmetric duality, and is not easily extended
to geometric algebra. Still, the work is mathematically interesting; a rather complete
account is [3].

* Wenoted that the outcomes of meet and jo1n are not fully qualified subspaces, since
there is an ambiguity about their absolute weight and orientation. Within the con-
text of geometric algebra, they are perhaps more properly represented as projection
operators than as blades. This has been explored in [8]. An interesting subalgebra
results, which forms the basis of algorithms to compute meet and join.

e The fundamental nature of meet and join for the treatment of linear algebra is
displayed in [27]. When reading that and other literature founded in geometric
algebra, beware that the use of an inner product that is not the contraction
(see Appendix B) tends to create seemingly exceptional outcomes for meet and

CHAPTER 5

SECTION 5.10 EXERCISES 137

join when scalars or pseudoscalars are involved. The contractions avoids those
exceptions; this issue is explained in [17] as one of the reasons to prefer them.

5.10 EXERCISES

5.10.1 DRILLS
Compute join AU B and meet A N B for the following blades:

A =¢;and B = e;.

A=eand B =e¢;.

A =e; and B = 2e;.

A=e; and B = (e] + &)/V2.

A=e and B =cosde +sinde;.
A=e Nepand B =cosde; +sindep.
A=e ANepyand B =e;.

A =¢e; ANeyand B = ey + 0.00001 e;3.

® N AU RN

5.10.2 STRUCTURAL EXERCISES

1. There is an interesting reciprocal relationship between A, B, J, and M.
B]J) x @AM =1

Verify the steps in the following proof: 1 = M™! * M = M~ x ((B]J™)]A) =
M TABITY) A= ®BJJ) = (AIM™!). Then prove in a similar manner:

M By« (7' A) =1

2. Find the error in this part of a ‘proof’ of the meet transformation formula of
page 135 (from the first printing of this book):

Let us first establish how the inverse of the join transforms by transforming

the join normalization equation J ey =1:

1=f1=fg" «J1=F'07"1%],

so that ~![J~1] = [~
3. Compute meet and join of two vectors a and b in general position, and show that
the magnitude of their meet (relative to their join) is the sine of their angle. Relate
the sign of the sine to the order of intersection. In this case, the meet should be
antisymmetric.

138 INTERSECTION AND UNION OF SUBSPACES

4. Compute the meet and join of two parallel vectors u and v. The meet should now
be symmetric. (Hint: Use one of them as the join.)

5. As an exercise in symbolic manipulation of the products so far, let us consider the
meet ofaAB and aA C, where a is a vector and the blades B and C have no common
factor. The answer should obviously be proportional to a, but what precisely is the
proportionality factor? (Hint: If you get stuck, the next exercise derives the answer
as (@aABAC)Y)

6. Verify the steps in the following computation of the answer to the previous exercise.
They are rather ingenious; note the third step especially, and the conversion to a
scalar product (check the grades involved!). The join for dualization should be a
blade proportional to a A B A C (if it is zero our suppositions are wrong, and vice
versa). Here goes:

@AB)N@AC) = (@AC)*A@AB)) " = (@]C)A@]B"))
(al (C*Aa]B")) " = (a] (C*AG@AB)*))™
an(C*](anB)) =aA (C"x(aAB))
aA((@AB)%C") =an ((anB)|C*)
aA(@aABAC)™.

7. Use the previous derivation to derive the general factorization of the meet:
(AAB)N(AAC)=A(AABAC), (5.11)

where A, B, and C have no common factors.

5.11 PROGRAMMING EXAMPLES AND EXERCISES

5.11.1 THE MEET AND JOIN

This example allows you to interactively select and manipulate two multivectors. The
multivectors can be vector-valued or 2-blade-valued. Either the meet or the join of the
multivectors are drawn:

// M1 and M2 are the two multivectors
mv X;
if (g_draw == DRAW_MEET) X = meet(Ml, M2);
else X = join(M1, M2);
/] . (set color, scale)

draw(X);
Note that we use multivectors (class mv) here because neither the input nor the output
has a fixed multivector type. As demonstrated in the next example, working with the mv

CHAPTER 5

SECTION 5.11

PROGRAMMING EXAMPLES AND EXERCISES 139

class in general and the meet () and join() functions in particular is much slower than
the specialized classes and the ordinary products.

To make it easier to produce degenerate cases—such as two parallel vectors—we round
the coordinates of multivectors M1 and M2 to multiples of 0.2. This causes them to move
in a stepwise fashion.

5.11.2 EFFICIENCY

In Gaigen 2, the implementation of the meet and join is very slow compared to the other
products. This example performs a benchmark to demonstrate this. It creates 1,000,000
pairs of random vectors and bivectors. It then times how long it takes to compute the
outer product of these pairs, and how long it takes to compute the join of these pairs. In
our benchmark the join is about 100 times slower than outer product. There are several
reasons for this:

e To compute the meet and join, a specialized (factorization) algorithm is used,
whereas computing the outer product is as simple as multiplying and summing
coordinates in the right way. See Section 21.7 for a description of the meet and
join algorithm used in this example.

e The algorithm uses the mv class instead of the specialized types such as vector and
bivector. The mv class uses coordinate compression, which is slow.

e The ordinary subspace products are just very efficient in Gaigen 2.

It may be possible to optimize the meet and join to a level where they are about 10
times slower than the regular products. But in general, you should try to avoid the meet
and join in your programs if you care about efficiency. If you know the relative posi-
tion of elements involved, just use the formula B* | A in the appropriate subspace instead
of ANB.

5.11.3 FLOATING POINT ISSUES

As stated above, the meet and join are computed by a factorization algorithm. Before the
factorization starts, the algorithm computes what the grade of the output should be. This
involves comparing a condition number (similar to that of a matrix) to a small threshold
value. Hence, the algorithm will flip-flop between grades in degenerate cases (e.g., near-
parallel vectors).

This example (see Figure 5.4) searches for the point where the join of two (near-)parallel
vectors changes from a vector to a 2-blade. It starts with a very small probe epsilon of
10719 and tests if e; U (e] + 10710 e5) is a 2-blade. If not, it grows the probe epsilon, and
loops. In the example, the flip-flop occurs when b = e; + 1.007748 — x 1077 e,, which is
to be expected, because the meet-join algorithm uses an epsilon of 1077,

140

INTERSECTION AND UNION OF SUBSPACES CHAPTER 5

// get two vectors, initialize ’a’ to ’el’
e3ga::vector a, b;
a = el;

float probekEpsilon = le-10f;

while (true) {// the Toop will be broken when the join is a bivector;
// add a tiny bit of ’e2’ to b:
b = el + probeEpsilon * e2;

// compute the join
mv X = join(a, b);

// get analysis of "X’
mvAnalysis AX(X);

// check if blade, and if a blade, then is it a 2-blade or a vector?
if (lAX.isBlade()) {

// this should never happen

printf("Error: the join of a and b is not a blade!\n");

return -1;
|
else {
// compute string "join(..., ...)"
std::string str = "join(" + a.toString_e() + ", " + b.toString_e() + ")";

if (AX.bladeSubclass() == mvAnalysis::BIVECTOR) {
printf("%s is a 2-blade\n", str.c_str());
return 0; // terminate
}
else printf("%s is a vector\n", str.c_str());
}

// Grow ’probeEpsilon’ a Tittle such that it won’t take forever to reach
// the point where join(a, b) is a 2-blade:
probeEpsilon *= 1.01f;

Figure 5.4: Searching for the point at which the join of two (near-)parallel vectors becomes a 2-blade (Example 3).

6 THE FUNDAMENTAL
PRODUCT OF GEOMETRIC
ALGEBRA

We have seen how the outer product and the contraction characterize rather different
properties of subspaces: qualitative spanning and quantitative measurements. Together,
they have given us an enriched view of the linear algebra of subspaces. This much has
been known for some time, and is part of the branch of applied mathematics that is called
Grassmann-Cayley algebra.

In this chapter we will start afresh and introduce the basics of Clifford algebra to
develop a powerful geometric algebra. This geometric algebra will incorporate operators
on subspaces into our framework, and permit us to displace the constructions of the sub-
space algebra in a structure-preserving manner. The crucial construction is to unify the
qualitative and quantitative subspace products into a single geometric product, more fun-
damental than either. The geometric product is invertible, and it allows us to manipulate
and solve equations about geometrical quantities almost as if they were regular arith-
metical expressions. The true power of this geometric product will become clear in the
next chapter, when we use it to define the versor product construction for operators. This
chapter defines the geometric product, first for vectors and then for general multivectors.
Subsequently, we show how the geometric product indeed subsumes the earlier products
(which is a bit of tedious but necessary algebra), and we end with the use of its invertibility
to define general projection and rejection operations through geometric division.

141

142 THE FUNDAMENTAL PRODUCT OF GEOMETRIC ALGEBRA

6.1 THE GEOMETRIC PRODUCT FOR VECTORS

6.1.1 AN INVERTIBLE PRODUCT FOR GEOMETRY

Consider a fixed and known vector a and an unknown vector x, both in a Euclidean vector
space R". Let us assume that all we know about x is the scalar value a of its inner prod-
uct with a. Then x must satisfy x - a = a. This implies that the endpoint of x lies on
a hyperplane perpendicular to the direction of a. In Figure 6.1, this is sketched in R°
as the yellow plane. Geometrically, it is clear that we cannot retrieve x from a and a.
Algebraically, this means that there is no unique “inner division”. If there were, we could
invert the inner product and retrieve x from its product with a by means of some formula
like (x - a)/a = x.

The outer product is not much better in this respect. Suppose that we were told the value
of the outer product of a and x is to be the bivector B. That bivector must of course be
an area element of the plane shared by a and x. The equation x A a = B defines a line in
space, offset from the origin. (You can see this as follows: let p be a solution of p Aa = B.
Then x satisfies x A a = p A a, so that (x — p) A a = 0. We saw in Section 2.8.1 that this
implies (x — p) = Aa. Therefore x = p + Aa, a general point on the line through p in the
direction a.) This line has been sketched in blue in Figure 6.1. The endpoint of x must be
on this line; but knowing the line does not specify x. This is the geometrical reason why
we cannot algebraically retrieve x from knowing the outer product B and a; there is no
“outer division”, and no formula such that (x A a)/a = x for all x.

We thus see that, when taken separately, the two products with a are insufficient to
retrieve x; yet they are somehow complementary. Indeed, combining the two pieces

Figure 6.1: Combination of the noninvertible subspace products leads to the invertible geo-
metric product (see text).

CHAPTER 6

SECTION 6.1

THE GEOMETRIC PRODUCT FOR VECTORS 143

of information is obviously enough to fully determine x, with its endpoint at the
intersection of the hyperplane and the line, as illustrated in Figure 6.1 for 3-D space.
Therefore a product of x and a that contains both the inner product and outer product
information should be invertible.

6.1.2 SYMMETRY AND ANTISYMMETRY

There is a clean way to construct a composite product from the inner product x-a and the
outer product x A a. It is based on their symmetries. The inner product x - a is symmetric
in x and a, for it retains its value when x and a are interchanged. The outer product x A a
is antisymmetric; it changes sign under exchange of x and a.

We can now make a new product between x and a such that the inner product is its sym-
metric part and the outer product its antisymmetric part. That defines it uniquely. This
product is called the geometric product (though some call it the Clifford product after its
1872 inventor William Kingdon Clifford). It is so central that we use the empty symbol
to denote it, writing x a for the geometric product of x and a.

The demands on its symmetric and antisymmetric parts give the equations
X-a= %(xa+ax) (6.1)

and
XAa= %(xa—ax). (6.2)

By adding these equations, we find that the geometric product of the vectors x and a
must be

geometric product for vectors : xa=x-a+XxAa. (6.3)

This product of two vectors produces a multivector that consists of a scalar part and a
2-blade part. That is unusual; our previous products always produced outcomes of a single
grade. But it is precisely because the parts of different grades do not mix in an addition
that they can be retrieved separately. That makes the geometric product invertible.

6.1.3 PROPERTIES OF THE GEOMETRIC PRODUCT
Let us check the algebraic properties of this new product between vectors:

o Commutativity. The geometric product of two general vectors is not commutative,
for the equation xa = ax would imply that x A a = 0. This means that commu-
tativity only happens when x and a are parallel. On the other hand, the product is
also not anticommutative, for that would imply x - a = 0, which is also a special
relationship of x and a. As a consequence of this lack of general commutativity, we
should be very careful about the order of the factors in the product xa.

144 THE FUNDAMENTAL PRODUCT OF GEOMETRIC ALGEBRA

 Linearity and Distributivity. The geometric product is linear and distributive,
since both the inner and the outer product are, and these properties inherit under
addition.

e Associativity. Definition 6.3 does not specify how to compute the geometric prod-
uct of more than two vector factors. We have motivated our definition because we
wanted an invertible product so that (xa)/a would be equal to x (with division
defined in terms of the geometric product). This suggests that we should define the
product to be associative. The desired equation then holds, since we could rewrite
it to (xa)/a = x (a/a) = x. Moreover, in an associative algebra, each invertible ele-
ment has a unique inverse, so the division would be uniquely defined. (We clarify
that point later, in Section 6.1.5.)

We give the fully general algebraic definition of the geometric product in Section 6.2.1.
But first, we would like to familiarize you with the use of having such a product for vectors,
to aid your intuition and acceptance of this new construction.

6.1.4 THE GEOMETRIC PRODUCT FOR VECTORS ON A BASIS

When asked to evaluate the geometric product of two vectors a and b given in a coordinate
basis, we can simply evaluate their inner and outer products and add them. However, it
is more direct to expand the geometric product in terms of a sum of geometric products
of the coordinate vectors. We then need to establish what those basis products are.

Let us take an orthonormal basis {e;} in a metric space R". The geometric product of a
basis vector with itself evaluates to a scalar derived from the metric:

eiei=¢i-eteNe=¢ e =0[eel

where we used either the inner product or the bilinear form Q of the metric space (see
Appendix A). In a Euclidean space R™Y, this is of course simply equal to 1 for all orthonor-
mal basis vectors.

For two different vectors from the orthonormal basis, we get
ee=¢e-¢+eNe=¢eNej

This does not simplify further, but it does show that e;e; = —eje; when i # j. We
sometimes denote e; e; as e;; to show more clearly that it is a single element of the algebra.
This element has an unusual property:

eé = (ejej)) (eje) =ei(eje))ej=—e;(eje)ej=—(eie)(ee) = —1. (6.4)

Therefore the algebra of the real Euclidean vector space R>" contains an element e;, that
squares to —1 under the geometric product! It is not the imaginary unit from complex
numbers, but a real 2-blade, representing a unit plane.

CHAPTER 6

SECTION 6.1

THE GEOMETRIC PRODUCT FOR VECTORS 145

In a 2-D vector space, the element ej; completes the algebra. Multiplying e, with e;
reverts to something we already had:

epe =ejey e = —eyere; = —ex (e -ep),

so this is simply a multiple of e,. For the 2-D Euclidean space R>° with orthonormal
basis, the full multiplication table is:

1 el | e |en

1 1 €] e | epn
€] €] 1 en | e
€ € | —e2 1 —€]
ep|len| —e | e | -1

Now we can use the linearity and distributivity to compute the geometric product of any
two vectors. For a = aje; + aze; and b = bie; + byes:

ab

(are) + azey) (bre; + brer)
arbi(er e1) + axba(er €2) + arba(er e2) + axbi(ez 1)
(a1b1 + azb2) + (a1by — axby) er2

By the extension of these techniques, the geometric product can be computed for vectors
in n-dimensional space.

6.1.5 DIVIDING BY A VECTOR

Since the geometric product on vectors is invertible, a vector a should have an inverse.
This inverse a ~! is easy to find:

. -1 a a
inverse of avector: a= = — = ——. (6.5)
a-a |a|?

This indeed works, for
1 1
a a=—aa=—(a-a+a/\a) =—1(a-a+0)=1.
a-a a-a

Vectors with zero norms (the null vectors of Appendix A) do not have inverses.

The associativity of the geometric product makes the inverse of a vector unique. If a’
would also be an inverse of a, thena’ a = 1. Now right-multiply both sides by a ~!, regroup
by associativity, and you get a’ = a~!. Therefore, there is only one inverse.!

1 Note that the inverse for the geometric product is the same we used as “an” inverse for the inner product in
Section 3.5.2; it was then not unigue, but we conveniently picked one that would be useful in the wider context
that we have now reached.

146 THE FUNDAMENTAL PRODUCT OF GEOMETRIC ALGEBRA

Having the inverse allows us to divide by vectors, so that we indeed can retrieve x from
knowing the value of (xa) and a, as was our goal:

(xa)a_1 = x(aa_l) =X

This shows the necessity of the associativity property. We often prefer to denote this by
a division sign as (xa)/a, but note that the noncommutativity of the geometric product
implies that division is also noncommutative. So using the notation /a is permitted as
long as we remember that this means “division on the right by a.”

Geometrically, the inverse of a vector a is a vector in the same direction as a, and properly
rescaled.

6.1.6 RATIOS OF VECTORS AS OPERATORS

Having an algebraic definition of the division of vectors already helps to solve geometric
problems. In a 2-D Euclidean space R>, we can pose the similarity problem illustrated
in Figure 6.2:

Given two vectors a and b, and a third vector ¢ (in the plane of a and b), determine
xsothatxistocasbistoa (i.e,solvex:c=Db: a).

It is geometrically intuitive what we would want: a proportionality involving both the
relative length and angle of b and a should be transferred to x and c.

We take a leap of faith, and read this ratio in terms of the geometric product. So we guess
that the solution to this might be the solution to the equation

xc!l=bal.
The solution is immediate through right-multiplication of both sides by c:

x=(ba e (6.6)

Figure 6.2: Ratios of vectors.

CHAPTER 6

SECTION 6.2

THE GEOMETRIC PRODUCT OF MULTIVECTORS 147

This is a fully computable expression. For instance, with a = e; (so that a”l =¢),
b = e; + e, and ¢ = 2e; in the standard orthonormal basis, we obtain x = ((e;+
e) el_l) 2ep = 2(1 —ejex) ey = 2(exy — ep). Draw a picture like Figure 6.2 to convince
yourself of the correctness of this outcome.

In fact, we might see (ba~!) in (6.6) as an operator that acts on ¢ to produce x. The
operator is parametrized by a and b, and it should be capable of both rotation and scaling
to produce x from c. From the construction above, we would suspect that it only depends
on the relative angle and size of the vectors a and b. If that is so, we may as well take a to
be the unit vector e; and b = p (cos ¢ e + sin ¢ e3), with p the relative length and ¢ the
relative angle (from a to b). Then we compute that the rotation/scaling operator is

ba!l = p(cosdpe; +sindey) e =p(cosd —sindepy).

You may verify that b a~! acts on the basis vector e; to produce p (cosde; + sindey),
and on e; it yields p (cos ¢ e; —sin ¢ e). Moreover, since the geometric product is linear,
these results can be used to produce the result on a general vector ¢ = ¢; e; + ¢, €3, which
yields the x of our problem:

x = p(cicosd —cpsind)e; + p(c;sind + ¢ cos d) ep. (6.7)

This is precisely the solution we would expect to the original problem, if we would have
expanded it in coordinates. It is clearly a rotation combined with a scaling. You would
represent it in terms of a matrix operation as

x| _ pcosd —psind 1 (6.8)
x psind pcosd all’
when expressed on the {e}, e;} basis.

It is highly satisfactory that our geometric product not only produces this result, but that
it does so in the form (6.6): x = (b/a) c. That expression is immediately derivable from
the original problem statement and completely formulated in terms of the elements of
the problem, rather than using an extraneous coordinate system. If you have to write
code, that is how you would want to specify it in a high-level programming language for
geometry; in comparison, (6.7) and especially (6.8) feel like assembly code, with their use
of coordinates reminiscent of registers.

The coordinate-free operator b/a is a good example of the kind of operational power that
the geometric product gives us. We will have much more to say about such operators in
Chapter 7.

6.2 THE GEOMETRIC PRODUCT OF MULTIVECTORS

In the definition of the geometric product for vectors, we followed a geometric motivation
and defined it in terms of inner product and outer product, loosely following its historic

148 THE FUNDAMENTAL PRODUCT OF GEOMETRIC ALGEBRA

process of invention by Clifford. We then claimed it was actually more fundamental than
either. If that is indeed the case, we should be able to start with the geometric product
and define it algebraically without reference to the other products. We do that now, for it
allows us to extend the geometric product properly beyond vector terms and use it as the
foundation of our geometric algebra.

6.2.1 ALGEBRAIC DEFINITION OF THE GEOMETRIC PRODUCT

We start with a metric vector space R” and its linear space of subspaces /A R”. Its metric is
characterized by a bilinear form Q (see Appendix A), or, equivalently, by a inner product
of vectors.

We define the geometric product from AR” x AR" to A R”" by the following properties:

e Scalars. The geometric product is an extension of the usual scalar multiplication in
R”, so the expressions

af and ax, a,fER

can from now on be read as involving the geometric product. We will explicitly
define this multiplication by a scalar to be commutative with any element A:

aA=Aa forall aeR, A€ /\Rn.

o Scalar Squares. The geometric product x> = xx of a vector x with itself is defined to
be a scalar, equivalent to the metric quantity x - x = Q[x,x]. This ties the geometric
product to the metric of the vector space R".

Distributivity and Linearity. The geometric product is defined to be distributive
over the addition of elements:

AB+C)=AB+AC and (A+B)C=AC+BC

This also defines the general linearity of the geometric product (since A can be a
scalar).

Associativity. The geometric product is defined to be associative:
ABC)=(AB)C

so that we may write A B C without confusion about the result.

o Commutativity Not Required!. The geometric product is not defined to be either
purely commutative or purely anticommutative (although it may be either, for
suitably chosen factors). This is essential, as it permits the geometric product to

CHAPTER 6

SECTION 6.2

THE GEOMETRIC PRODUCT OF MULTIVECTORS 149

unite the commutative properties of metric computations with the anticommuta-
tive properties of spanning to produce a product that is complete in its geometric
properties.

Note that our original definition (6.3) of the geometric product as a sum of inner
and outer product is not part of these algebraic defining properties. We will actually
rederive (6.3), and with it will define the outer product and contraction in terms of the
geometric product. Such a procedure demonstrates that it is indeed the more fundamen-
tal of the three, our order of treatment in this book notwithstanding.

The geometric product makes our algebra of A R” into a true geometric algebra, and we
will use that term from now on. It transcends the subspace algebra we have used so far,
and has a much more rich, powerful, and consistent structure. While subspace algebra was
similar to Grassmann-Cayley algebra, geometric algebra closely resembles a nongeomet-
rical mathematical construction called Clifford algebra. The terms are often used inter-
changeably by others, but we will make a distinction. For the moment, you can think of
geometric algebra as the geometrically significant part of Clifford algebra. We will be able
to make this distinction more precise in Section 7.7.2.

6.2.2 EVALUATING THE GEOMETRIC PRODUCT

Since the above are all the properties of the geometric product, they should enable the
expansion of arbitrary expressions of the geometric product of multivectors. Let us do
some of this before we proceed—we will develop faster techniques to compute with
the geometric product, but it is important to realize that these definitions are indeed
complete.

The completeness is most easily shown when we have an orthonormal basis for the metric
vector space R". We should demonstrate that we can compute the geometric product
of any two basis vectors. This should of course agree with our special case for vectors,
computed in Section 6.1.4, but we are not allowed to use those. We should work fully
from the algebraic definition just given.

The geometric product of a basis vector with itself is easy, since by definition it can be
expressed in terms of the bilinear form or the inner product that is part of the definition
of the metric vector space:
eiej=¢-e = (leje]
But the geometric product of two different basis vectors e; e; does not appear to allow
simplification by the axioms:
€ ¢ = ?

We know from the vector computations that it cannot be simplified, but we would at
least like to be able to show that e; e; = —e; e; to be in correspondence with the geometric
product as we defined it earlier for vectors.

150 THE FUNDAMENTAL PRODUCT OF GEOMETRIC ALGEBRA

There is a neat trick called polarization that comes to the rescue. The bilinear form or
inner product of the metric vector space can be evaluated on any two vectors. The bilinear
nature gives an identity for Q[x, y] or x-y that can be manipulated into a symmetric shape:

xy=3(&x+y) G+y) - &0 - (§-y)
= 3 (x+y x+y) - xx) = (yy))
= 3(xy+Yyx) (6.9)
Therefore the inner product x - y of two general vectors is the symmetric part of their

geometric product. We are thus able to derive part of our motivating definitions of
Section 6.1.2 from the algebraic definition above.

This symmetry property gives us the idea to manipulate our different basis vectors by
splitting the product in its symmetric and antisymmetric parts:

1 1
s(eiejt+eje)+ 5(eiej—ee)

€; ej

1
€ e+ i(ei € — € e)

0+ %(ei € —¢€ €),
since in the orthonormal basis e; - ¢; = 0 for i # j. It follows that
€€ = —¢¢.

So the new definition indeed permits us to derive this important property of the multi-
plication of basis vectors.

With the multiplication of the basis elements established, we can use associativity,
linearity, and distributivity to compute the geometric product of any two elements in
the linear space AR".

6.2.3 GRADES AND THE GEOMETRIC PRODUCT

At this point you may object that we have not really shown that the geometric product,
constructing elements starting from a metric vector space R", really generates the same
linear structure of elements of different grades that we had before. We are therefore for-
mally not allowed to write A R" for the space in which geometric algebra lives.

That is a correct objection; but if the spaces are not the same, they are certainly
algebraically isomorphic, and that is good enough to identify them geometrically. The
reason is that the orthonormal basis of the vector space R” leads to a basis for the prod-
uct structure that satisfies e; e; = —e; e;. That is the essence in generating the higher-
grade elements. This property is identical to the outer product antisymmetric property
e; Aej = —ej A e;. The identity of these properties means that we can use the geometric
product to at least faithfully reconstruct the basis of the ladder of subspaces A R” that we
originally made using the outer product.

CHAPTER 6

SECTION 6.3

THE SUBSPACE PRODUCTS RETRIEVED 151

And even though the geometric product has richer properties than the outer product,
we cannot make other elements beyond the ladder of subspaces. Consider for example
e; (eje) as an attempt to make something new. Had we used the outer product, the
construction ej A (ejez) = ej A (e] Aey) would have been zero. For the geometric product,
the result is not zero, but it reverts to something we already have:

2
ej(ejex) =ejejep = (e))ey,

so this is ey, depending on the metric. You can generalize this argument to show that
nothing beyond the elements of AR" can be made; the scalar squares foil any such
attempt. Therefore, the geometric product of a metric vector space R” “lives” in precisely
the same structure /A R” as the outer product of the same space R".

However, this analysis brings out an important difference between the geometric product
and the outer product. When multiplying the extended basis elements of grade k and
grade [by the outer product, we are left with a single element of grade k + I (or zero).
With the geometric product, the product of two basis elements of grade k and I may have
any of the grades

k=1, k=1 +2,...,(k+1—=2), (k+D.

The highest grade (k + I) occurs when all basis vectors in the elements are different. (The
geometric product is then essentially the same as the outer product of those elements.)
But each vector in common between the two basis elements reduces the grade by two as it
combines to produce a scalar. The extreme case is when all the vectors in one are contained
in the other, leaving only |k —]| factors as a result. (The geometric product is then the left
or right contraction of one argument onto the other.)

If we now have arbitrary elements Ay and B; of grade k and I, respectively, these can be
decomposed on the bases of /\k R" and /\l R”. When we multiply them using the geo-
metric product, any or all of the possible grades between |k — I| and (k +) may occur.
Therefore the geometric product produces multivectors of mixed grade. The grade() opera-
tion no longer has a single integer value in geometric algebra.

The algebraic invertibility of the geometric product can now be understood in principle.
The series of terms in the geometric product of the two elements Ay and Bj apparently
give us a complete inventory of their relative geometric relationship, allowing full recon-
struction of one when we are given the other.

6.3 THE SUBSPACE PRODUCTS RETRIEVED

The geometric product is the fundamental product in geometric algebra—you will
not need any other product, since it contains all geometric relationships between
its arguments. Yet we have seen that the subspace products (by which we mean the
outer product, scalar product, and contraction) are also useful geometrically. In fact,

152 THE FUNDAMENTAL PRODUCT OF GEOMETRIC ALGEBRA

the whole geometrical concept of subspace requires the outer product to be encoded
in our algebra.

Since we want to have those products to “do geometry,” we should show that they are
included in our geometric algebra based on the geometric product. There are two routes:

e We could use the symmetries of the geometric product to retrieve outer product
and contraction (basically reversing the construction that motivated the geomet-
ric product in Section 6.1.2). This is actually only partly successful. It does not
define the subspace products fully, but it does show that they are consistent with
the symmetry structure of the geometric product. When we perform the analysis
in Section 6.3.1 below, we obtain many useful relationships between the various
products.

* We can identify the subspace products of blades as certain well-defined grades of
their geometric product. This indeed defines them fully, though it gives us less alge-
braic insight in their relationships. We do this in Section 6.3.2.

In the practice of applying the subspace products, both approaches are useful. Depending
on the geometrical problem that one tries to solve computationally, either may feel like
the more direct route. That is why we present both.

6.3.1 THE SUBSPACE PRODUCTS FROM SYMMETRY

The familiar outer product of a vector a with a blade B can be related to the geometric
product by the following two expressions:

a/\B=%(aB+ﬁa), (6.10)

BAa=1(Ba+aB), (6.11)

where B = (—1)8rade(B) B is the grade involution of B introduced in Section 2.9.5. (Writing
the equations in this form makes it easier to lift them to general multivectors B.)

The proof of these statements may be found in Section C.1 of Appendix C. It demonstrates
that the two equations above indeed identify the same outer product structure that we
had before, at least when one of the factors is a vector, and it proves the associativity
(xAy) Az = x A (y A z) of the product thus defined. Because of that associativity, this
outer product in terms of the geometric product can be extended to general blades, and
by linearity to general multivectors. Only the case of two scalars is formally not included,
but other than that this outer product is isomorphic to the outer product we had before.

The contractions can be related to the geometric product in similar fashion when they
involve a vector factor a:

a|B=1(aB-Ba), (6.12)

Bla= (Ba-aB). (6.13)

CHAPTER 6

SECTION 6.3

THE SUBSPACE PRODUCTS RETRIEVED 153

The proof of these statements may be found in Section C.2 of Appendix C.
Unfortunately, because of lack of associativity, we cannot prove the defining equation
(3.11) AJ(BJC) = (A A B)]C (nor its counterpart for the right contraction). Neither
can we define the contraction result on two scalar arguments in this manner. So although
the products defined by (6.12) and (6.13) are consistent with the earlier contractions, the
contractions based on the symmetries of the geometric product are not pinned down
very precisely. This algebraic freedom partly explains the variation in inner products in
the geometric algebra literature exposed in Appendix B.

But at least for a vector factor, the constructions above define the subspace products
uniquely. Conversely, this means that the geometric product of a vector with an arbitrary
multivector can be decomposed using the contraction and the outer product.

aB=a|B+aAB, (6.14)

ﬁa:ﬁ[a+ﬁ/\a=—aJB+a/\B, (6.15)

where we used (3.19) to convert the right contraction to a left contraction. These equa-
tions subsume and generalize (6.3).

The subspace product definitions permit us to change the order of multiplications in a
geometric product, which is often convenient in evaluating expressions:

~

Ba=aB-2a|]B=-aB+2aAB (6.16)
and
aB=§a+2aJB=—ﬁa+2a/\B. (6.17)

In all these equations, you may note that right-multiplication of B by a is always accom-
panied by a grade involution the formulas become simplest or most symmetrical when
you define them in terms of a B, a| B, and a A B, combined with B a, B la (= —a|B), and
BAa (= aAB). This grade involution is apparently the natural geometric sign when mov-
ing a vector to the right of a blade. We will see this phenomenon reappear throughout the
equations of geometric algebra.

You may be puzzled by a paradox in the associativity of the various products. According to
(6.14), the geometric product is the sum of the outer product and contraction. Both the
geometric product and the outer product are associative, whereas the contraction is not.
How can the sum of something associative and something nonassociative ever be asso-
ciative itself? The solution is: don’t look at it that way. Instead, start with the geometric
product, which is defined to be associative. Then derive the outer product as (6.10) (i.e.,
as half the sum of a geometric product and its swapped version). This is associative since
addition is associative. Then derive the contraction as (6.12) (i.e., as half the difference of
a geometric product and its swapped version). This is nonassociative, since subtraction is
nonassociative. Now there is no paradox.

By linearity, all equations in this section are easily extended from a blade B to a general
multivector B.

154 THE FUNDAMENTAL PRODUCT OF GEOMETRIC ALGEBRA

6.3.2 THE SUBSPACE PRODUCTS AS SELECTED GRADES

An alternative way of obtaining the subspace products from the geometric product is as
parts of well-chosen grades using the k-grade selection operator ()x. For the geometric
product on vectors, this is simple:

a-b=<(ab)y and aAb = (ab),. (6.18)

This generalizes as follows:

Ax AB; = (Ar Bpiy (6.19)
Ai|B; = (Ax Bk (6.20)
Ag|B; = (Ax Bt (6.21)

Ar #B; = (A;B))o (6.22)

Blades of negative grade are zero—so the left contraction | is zero when k > I, and the
right contraction | is zero when k < [. By linearity of the geometric product, all these
definitions can be lifted from blades to k-vectors and then to multivectors as a sum over
the appropriate grades.

In contrast to the symmetry-based approach, these equations are complete definitions for
all arguments. The proofs that these equations give the same products we had in the earlier
chapters may be found in Section C.3 of Appendix C. It involves some new manipulation
techniques that are useful to study.

A surprising property of these definitions is that the selection of certain grades of the
geometric product of blades apparently produces another blade. Beware that this does
not generalize to the selection of other grade parts!

Once these correspondences with the old subspace products have been established, some
of the properties of the subspace products can be used to simplify grade-based expressions
and vice versa. For instance, the symmetry property A B = B % A of the scalar product
can be easily lifted to multivectors as A % B = B % A. This implies

(AB)o = (BA)o (6.23)
which is a useful cyclic reordering property of the grade-0 symbol.

The grade approach to the subspace products is a feasible way of implementing all
products in geometric algebra based on a single implemented product (the geometric
product). This is explored in programming exercise 6.7.1.

6.4 GEOMETRIC DIVISION

With the integration of subspace products with the geometric product, we have a more
powerful algebra to analyze subspaces. We now combine our new capability of division

CHAPTER 6

SECTION 6.4

GEOMETRIC DIVISION 155

by a subspace with the earlier techniques. This not only generalizes the projection, but it
also produces the compact representation of a new construction: subspace reflection.

6.4.1 INVERSES OF BLADES

The geometric product is invertible, so dividing by a multivector has a unique meaning,
equivalent to multiplication by the inverse of the multivector. However, not all multivec-
tors have inverses. Fortunately, we are mostly interested in two kinds: blades, and multi-
vectors that can be written as a product of invertible vectors. The latter are called versors,
and we treat them in Chapter 7; they are obviously invertible (their inverse is formed by
the inverses of the vector factors, in reverse order).

Blades are also invertible, if they have a nonzero norm (i.e., if they are not null-blades; see
Appendix A). The inverse of a blade A is then

A A A

inverse of a blade A: A~! = = — = >
AxA Axn Al

(6.24)

where A is the reverse of Section 2.9.5. This formula is based on the property that
the squared norm of a blade is a scalar, which makes the division well defined and
unambiguous (since a scalar commutes with the geometric product, its right-division
and left-division coincide). Its validity is most easily verified using an orthogonal fac-
torization of the blade A as a product of orthogonal vectors: A = ajaj - --a. Such
a factorization can be made for invertible blades by the Gram-Schmidt procedure of

Section 6.7.2. By computing the geometric product AA vector by vector, you find that
it is equal to A % A, so that the inverse formula is indeed correct.

This inverse of a blade is unique, by the associativity argument also used in Section 6.1.5.

6.4.2 DECOMPOSITION: PROJECTION TO SUBSPACES

We can express a vector x trivially relative to an invertible blade A as x = x(AA™!).
Moving the brackets by associativity and invoking (6.14), we get a pleasantly suggestive
rewriting. Let us first explore this for a 1-blade A, the vector a.

x = (xa)a”!
= (x~a+x/\a)a_1
=(x-a)a '+ (xAa)a’! (6.25)
The first term in (6.25) is a vector (since it is a scalar times a vector). We recognize it as
(x-a)a~! = (x-a"")a = (x]a!)]a; that is, as the orthogonal projection of x onto a (see

Section 3.6). We can now write it as a division:

projection of x onto a: (x]a)/a.

156 THE FUNDAMENTAL PRODUCT OF GEOMETRIC ALGEBRA

It is the component of x in the a-direction. The second term in (6.25) must then be the
component of x that contains no a-components at all (since the two terms must add to
produce x). We follow Hestenes [33] in calling this the rejection of x by a:

rejection of x by a: (x A a)/a

We can imagine its construction visually as in Figure 6.3: span the bivector x A a. This is
a reshapeable area element, and it is equivalent to a rectangle perpendicular to a spanned
by some vector r perpendicular to a. That rectangular element can be written as the outer
product r A a, but because r is perpendicular to a (implying that r - a = 0), we can even
write it as a geometric product:

xNa=rANa=r-a+rAa=ra,

This rewriting is helpful because the geometric product is invertible; that makes this equa-
tion for r solvable. Through right-division by a on ra = x A a, we obtain the solution
r = (x A a)/a, which is indeed the rejection of x by a.

We thus see that the identity x = (xa)/a, when written out in terms of the inner product
and the outer product, is actually a decomposition of the vector x relative to a, providing
its a-component and non-a-component. It offers us the possibility of describing a vector
relative to another vector, but does so in a satisfyingly coordinate-free manner.

Returning to the general blade A and again invoking (6.14), we find the decomposition

x=xA)A ' = x]AAT +(xAA) AT (6.26)

(xAa)/a

(x-a)/a

Figure 6.3: Projection and rejection of x relative to a.

CHAPTER 6

SECTION 6.4

GEOMETRIC DIVISION 157

You may expect that the first term is a 1-blade fully contained in A, and that it should be
equal to the projection of x onto A.

projection of x onto A: (x]A)/A.

We have encountered this before (in Section 3.6) as (x| A)JA_I, which commutes with
all products. But structural exercise 7 explores why we can replace the contraction by a
geometric division in this formula.

The second term is again called the rejection of x by A,
rejection of x by A: (x A A)/A,

since it is a vector perpendicular to A. To prove that fact compactly, we combine the sub-
space products and the grade selection of the geometric product (to be frank, it took us
about an hour to make it this simple). If (x A A) A~! is perpendicular to A, it should be
perpendicular to any vector in A. Let us pick one, a, and compute the inner product:

a- (xAAAT!) =(axAA)AT

1 ~
= E(axAA_l +aAxA
1 ~
= E(ax—AaxA'l +2(anA)xA
1
= E(ax—axA_lA—O)O
1
= z(ax— ax)y = 0.

Identify the steps we took—they are all based on formulas in this chapter and you will
see an instructive example of how the grade approach and the symmetry approach to the
subspace products can be combined. In the rejection, we can substitute the geometric
productin (x A A) A~ by a right contraction (see structural exercise 8).

Although we can replace the geometric products by contractions in both projection and
rejection, there is not necessarily an advantage in doing so. The geometric product is
invertible, and this often helps to simplify expressions, so that would plead in favor of
leaving it. On the other hand, the contraction helps remind us of the containment rela-
tionships (subspaces taken out of other subspaces), and makes it easier to apply duality
relationships to convert the subspace products.

Since projection and rejection are linear transformations, we can extend them from vec-
tors to general blades as outermorphisms (and even to multivectors, by linearity). For the
projection, we have done this before in Section 4.2.2, and we derived that it boils down to
substituting the general blade X for the vector x, to obtain

projection of X onto A: X +— (X]A)A™L (6.27)

However, the outermorphic extension of the rejection quickly disappoints, since it
becomes a rather trivial operation (although indeed linear). For (X A A)A~! is zero

158 THE FUNDAMENTAL PRODUCT OF GEOMETRIC ALGEBRA

as soon as X contains at least one common vector with A (and if both X and A were
bivectors in 3-D, this would always be the case). The easiest way to express the concept
of the rejection of a general blade X by a subspace A is simply as the difference of X and
its projection: X + X — (X]A)A~!. However, this is not a proper subspace operation;
it does not necessarily produce a blade (see structural exercise 9), so it should be used
with care. The rejection is not as tidy as it appears at first sight, when we introduced
it for vectors.

6.4.3 THE OTHER DIVISION: REFLECTION

We have seen that the geometric product is noncommutative. This implies that geometric
division (which is just geometric multiplication by the inverse) is not commutative either.
We have also seen that division of (xa) by a on the right (i.e., right division) produces x,

as you would hope. Let us investigate the result of left division:
a'xa=a"! (xa)

1
= —a(xa)
aa

1 .
axa — [since scalars commute]
aa

= (ax)a_1
=@-x)a'+@Arx)a!
=(x-a)a - (xAa)a~! (6.28)

Compare this to the decomposition of (6.26) (which was made with right division):
(xa) a’l= (x-a) a '+ xANa) a L.

We observe that in (6.28) the non-a-component of x (which we called the rejection
of a) is subtracted from the projection of x onto a, rather than added. Figure 6.4 shows

(x na)/a

(x-a)/a

axa~l

Figure 6.4: Reflection of xin a.

CHAPTER 6

SECTION 6.6

EXERCISES 159

the effect: the vector x is reflected in the a-line. Only when x and a have the same direction
is there no difference between the two types of division (but they then trivially both
result in x).

The bad news is that we have to be careful about the order of division, but the good news
is that we have found a simple way to make line reflections: we can reflect x through a by
sandwiching x between a and a ! as a~! xa or equivalently axa~!. This is actually one
of the basic constructions in geometric algebra, so common that it could be considered
as a product in its own right, the “versor product” of x by a. It can be extended to blades,

and is then a powerful way to represent orthogonal transformations.

The next chapter is fully devoted to this important operation.

6.5 FURTHER READING

With the geometric product, you are almost ready to read the literature on geometric
algebra. However, since that typically involves the special representations of operators by
rotors and versors, we recommend that you wait for one more chapter.

But if you are interested in the historical roots, an inspirational piece (without rotors) that
focuses on the development of number systems for geometry is David Hestenes’ Origins of
Geometric Algebra, Chapter 1 in [29]. It traces the developments from Euclid via Descartes
to Grassmann, and, implicitly, Clifford. Leo can recommend it as the piece that got him
hooked, back in 1997.

6.6 EXERCISES

6.6.1 DRILLS

1. Leta=e; +eyand b = e; + 3 in a 3-D Euclidean space with orthonormal basis
{e1, e, e3}. Compute the following expressions, giving the results relative to the
basis {1,e;,e2,e3,e2 Ae3,e3 Aej,e; Aex, e Aey Aes}. Show your work.

(a) aa

(b) ab

(c) ba

(d) (e1ner)a
(e) a(ernep)
(f) (e1nhexne3)a
(g a=!

(h) ba™!

(i) (e1ne)™!

160

2.

THE FUNDAMENTAL PRODUCT OF GEOMETRIC ALGEBRA

Make a full geometric product multiplication table for the 8 basis elements
{1,e1,ex,e3,e] Aes,ex Aes,e3 Aej, e Aex Aes); (a) in a Euclidean metric R0
and (b) in a metric R>! with e; - e; = —1.

6.6.2 STRUCTURAL EXERCISES

1.

Section 6.1.1 demonstrated the noninvertibility of contraction and outer prod-
uct. Show by a geometrical example that the cross product of two vectors is
not invertible either. Also give an algebraic argument based on its (invertible)
relationship to the outer product.

. The pseudoscalar is the highest-order blade in the algebra of AR". It receives its

name because in many dimensions it is like a scalar in its commutation properties
with vectors under the geometric product. In which dimensions does it commute
with all vectors?

The outer product can be defined as the completely antisymmetric summed aver-
age of all permutations of geometric products of its factors, with a sign for each
term depending on oddness or evenness of the permutation. For the 3-blade, this
means:

1
XAyAz= 5(xyz—yxz+yzx—zyx+zxy—xzy)

Derive this formula.

The parts of a certain grade of a geometric product of blades are not necessarily
blades. Show that in a 4-D space with orthonormal basis {e:,-}?=1 , a counterexample
is (e (e1 +e2) (e2 + €3) (e] + e4))2. (You may want to use software for this. If you
find a simpler counterexample, let us know...)

Show that the definition of the scalar product as A% B = (A B)g is equivalent to the
determinant definition of (3.2). You will then also understand why the matrix in
the latter definition has the apparently reversed a; - by_; as element (i,) for k-blades.
Originally, we motivated the contraction as the counterpart of an outer product
relative to the scalar product, which led to the implicit definition (3.6):

(XAA)%B =X (A]B).

Prove this part of the definition using the grade-based definitions of A, *, and] in
Section 6.3.2.

In the formula (x]A~!) A, we can replace the geometric product by a contrac-
tion, so that it is in fact the projection (x|A~!)| A. Show this, using the suggestion
that x| A ™! might be a subblade of A—which you first need to demonstrate. After
that, decompose x|A ™! as a product of orthogonal vectors, and evaluate the two
formulas to show their equivalence.

As a counterpart of the previous exercise, show that (x AA™)A = (x AA™!)|A.
(Hint: Write the second A as a wedge product of orthogonal vectors, and peel them
off one by one).

CHAPTER 6

SECTION 6.7 PROGRAMMING EXAMPLES AND EXERCISES 161

9. Ina4-D space with orthonormal basis {ei}?= 1> Project the 2-blade X = (e; +€2) A

(e3 + e4) onto the 2-blade A = (e; A e3). Then determine the rejection as the
difference of X and its projection. Show that this is not a blade. (See also structural
exercise 5 of Chapter 2.)

10. Letan orthonormal coordinate system {e;} ?:1 be given in 3-D Euclidean space R*°.
Compute the support vector (i.e., the vector of the point on the line closest to the
origin) of the line with direction u = e; + 2e; — e3, through the point p = e; —3e;.
What is the distance of the line to the origin?

6.7 PROGRAMMING EXAMPLES AND EXERCISES

6.7.1 EXERCISE: SUBSPACE PRODUCTS RETRIEVED

The geometric product is the fundamental product of geometric algebra. Other products
are derived from it. In these exercises, we follow Section 6.3 and implement two different
ways of retrieving the left contraction and the outer product from the geometric product.

Exercise 1a: The Symmetry Approach (for Vectors Only)
Implement the outer product of a vector and any multivector using (6.10):

anB = %(aB+§a).
Implement the left contraction of a vector and any multivector using (6.12):
a|B=1(aB-Ba).

The downloadable example code provides a bare-bones framework for doing this. You
should complete the following functions:

// exercise la: complete in this function

mv outerProduct_la(const e3ga::vector &a, const mv &B) {
printf()
return 0.0f;

}

// exercise la: complete in this function

mv leftContraction_la(const e3ga::vector &a, const mv &B) {
printf()3
return 0.0f;

}

After you have completed the functions, compile and run the example. The testing code
will complain if you made a mistake in the implementation. You may need the following
functions:

e gradeInvolution(const mv &X) computes the grade involution of a multi-
vector.

162 THE FUNDAMENTAL PRODUCT OF GEOMETRIC ALGEBRA

e gp(const mv &X, const mv &Y) computes the geometric product of two
multivectors. The * operator is bound to it, see Table 2.4.

Exercise 1b: The Grade Approach
Equations (6.19) and (6.20) provide another way to obtain the outer product and the left
contraction, respectively:

A AB; = (ArBpgy
Ar|B; = (A By«

Implement this by filling in outerProduct_1b() and TeftContraction_1b() in the
example code.

// exercise 1b: complete in this function

mv outerProduct_1lb(const mv &A, const mv &B) {
printf()s
return 0.0f;

}

// exercise 1b: complete in this function

mv leftContraction_lb(const mv &A, const mv &B) {
printf()
return 0.0f;

}

You may need the following functions:

e takeGrade(const mv &X, int gradeUsageBitmap) extracts grade parts from
multivector. The gradeUsageBitmap is a bitwise or of the constants GRADE_O,
GRADE_1, GRADE_2, and GRADE_3, which have values 1, 2, 4, 8, respectively. So,
to extract grade k, you can also use takeGrade(X, 1 << k). In the context of
integers, the << operator means bitwise shift left, of course.

e If you want to know whether a grade part is present in a multivector variable X,
you can use ((X.gu() & GRADE_k) != 0), where k is the grade part index. For
example ((X.gu() & GRADE_2) != 0) is true when the bivector grade part is
present in X.

6.7.2 GRAM-SCHMIDT ORTHOGONALIZATION

Geometric algebra does not require the representation of its elements in terms of a par-
ticular basis of vectors. Therefore, the specific treatment of issues like orthogonalization
are much less necessary. Yet it is sometimes convenient to have an orthogonal basis, and
such a basis is simple to construct using our products. We saw a first glimpse of this in the
example of Section 3.11.1, using the contraction. Now that we have the geometric product
we can give a more general and more complete treatment of orthogonalization.

CHAPTER 6

SECTION 6.7

PROGRAMMING EXAMPLES AND EXERCISES 163

Suppose we have a set of three vectors vy, v, v3 in a Euclidean space, as in Figure 6.5(a),
and would like to form them into an orthogonal basis. The perpendicularized frame
will have its vectors denoted as by, by, bs; we arbitrarily keep v; as the first of those
(Figure 6.5(b)):

b1 =Vi.
Then we form the rejection of v, by v, which is automatically perpendicular to vy, by
forming vy A by (Figure 6.5(c)) and dividing out b; to orthogonalize it (Figure 6.5(d)):

b2 =W A bl)/bl

O

(a) (b) (c)

(d) (e) ®

Figure 6.5: Gram-Schmidt orthogonalization as repeated rejections (see text).

164 THE FUNDAMENTAL PRODUCT OF GEOMETRIC ALGEBRA CHAPTER 6

That is our second vector of the frame. Now we take the rejection of v3 by b; A by, which
is perpendicular to both b; and b,. Graphically, this is done by forming the trivector
v3 Abj Ab; (Figure 6.5(e)), and straightening it by dividing it by b; A b, (Figure 6.5(f)).
Algebraically, b3 is:

bs; = (v3 Ab; Aby)/(by Aby),

and we are done. This is the Gram-Schmidt orthogonalization procedure, rewritten in
geometric algebra.

Figure 6.6 gives code listing for orthogonalizing an n-dimensional basis. Note that we
view the selection of the first vector as a (rather trivial) rejection to produce clean code.
Also note that the function throws a std: : string when it detects a null blade. The rest
of the example is identical to that of Section 3.11.1.

The result of the Gram-Schmidt orthogonalization implies that vectors spanning a sub-
space can be orthogonalized if they are invertible. This has consequences for the blade
representing that subspace, for using the new basis we can write it as a geometric product
of vectors by b, - - - by rather than as an outer product of vectors vi A v A - -+ A V. This
is often useful in algebraic manipulation inside proofs, since the geometric product has

/**

Uses GA to perform Gram-Schmidt orthogonalization.

Fhrows std::string when input vectors ’vIn’ are dependent.

Results are returned in *vOut’.

*/

void GramSchmidtGA(const e3ga::vector vIn[], e3ga::vector vOut[], int nbVectors) {
mv B =1;

for (int i = 0; i < nbVectors; i++) {
mv newB = vIn[i] ~ B;

// check for dependence of input vectors:
if (_Float(norm_r2(newB)) == 0.0f)
throw std::string()s

// compute orthogonal vector ’i’
vOut[i]l = _vector(newB * inverse(B));

B = newB;

Figure 6.6: Gram-Schmidt orthogonalization code (Example 2).

SECTION 6.7

PROGRAMMING EXAMPLES AND EXERCISES 165

richer algebraic properties; for instance, it is invertible, whereas the outer product is not.
Since orthogonal vectors anticommute, we have: an invertible blade can be written as a
geometric product of anticommuting vectors.

In non-Euclidean metrics, null vectors and null blades occur and those are noninvert-
ible. This implies we cannot use the division the orthogonalization algorithm requires.
Yet even in such a space, a blade can be written as a geometric product of anticommut-
ing vectors; we just have to compute them in a different manner. We recommend the
method described in Section 19.4 as the numerically stable way of finding these anticom-
muting vectors. The method amounts to computing the metric matrix of the blade and
computing its eigenvalue decomposition; the eigenvectors are then used to compute the
anticommuting vectors that span the blade.

7 ORTHOGONAL
TRANSFORMATIONS
AS VERSORS

Reflection in a line is represented by a sandwiching construction involving the geometric
product. Though that may have seemed a curiosity in the previous chapter, we will show
that it is crucial to the representation of operators in geometric algebra. Geometrically, all
orthogonal transformations can be considered as multiple reflections. Algebraically, this
leads to their representation as a geometric product of unit vectors.

An even number of reflections gives a rotation, represented as a rotor—the geometric
product of an even number of unit vectors. We show that rotors encompass and extend
complex numbers and quaternions, and present a real 3-D visualization of the quaternion
product. Rotors transcend quaternions in that they can be applied to elements of any
grade, in a space of any dimension.

The distinction between subspaces and operators fades when we realize that any sub-
space generates a reflection operator, which can act on any element. The concept of
a versor (a product of vectors to be used as an operator in a sandwiching product)
combines all these representations of orthogonal transformations. We show that versors
preserve the structure of geometric constructions and can be universally applied to any
geometrical element. This is a unique feature of geometric algebra, and it can simplify
code considerably.

167

168 ORTHOGONAL TRANSFORMATIONS AS VERSORS

The chapter ends with a discussion of the difference between geometric algebra and
Clifford algebra, and a preliminary consideration of issues in efficient implementation
to convince you of the practical usability of the versor techniques in writing efficient code
for geometry.

7.1 REFLECTIONS OF SUBSPACES

We have seen in Section 6.4 how we can construct the reflection of a vector x in a line
through the origin characterized by a vector a as

reflection of X ina-line: x — 2(x-a)a”' —x=axa .

The magnitude or orientation of a are irrelevant to the outcome, since the inversion
removes any scalar factor. Only the attitude of the line matters.

Since line reflection is a linear transformation on x, we should be able to extend it from
vectors to general blades X as an outermorphism. The result is

reflection of X in a-line: X + aXa™'. (7.1)

This is indeed relatively straightforward to prove by induction using X = xx A Xj—; and
assuming that it holds for Xj_;. Then

(axka_l) A (@aXg—1 a_l) = %(axk a”! aXy_1 a '+ a)A(k_l a”! axka_l)
=taXe-Da ' +aXorx)a™h)
=a (%(kak—l + X Xk)) a™!

=a(xx /\Xk_l)a_]
= ana_1

and the induction basis is of course the trivial statement for scalars a&a~! = &. See struc-
tural exercise 1 for another way of not proving this. As always, we can extend the linear
transformation from blades X to general multivectors X by linearity.

By the simple trick of swapping the sign in (7.1), we can modify the line reflection formula
into a hyperplane reflection formula. For the reflection of a vector x in the plane A is equiv-
alent to swapping the sign of the rejection of x by that plane (i.e., itisx—2(x A A) / A). By
inserting a pseudoscalar and its inverse and using duality, we can rewrite this as x —
2(x]a) / a, with a = A* the normal vector of the hyperplane. This can be rewritten as
before in terms of a geometric product, yielding

reflection of x in dual hyperplane a: x — —axa !

Note that the precise sign of the dualization of the hyperplane A to produce a is not
important, due to the absorption of any scalar factors by the subsequent inverse. Figure 7.1
compares the two kinds of reflections.

CHAPTER 7

SECTION 7.2 ROTATIONS OF SUBSPACES 169

—axal

.a)/
Jpa/'(xa)a

A

axa!

Figure 7.1: Line and plane reflection of a vector x in a vector a, used as line direction or as
normal vector for the plane A.

This hyperplane reflection is actually what we mean by a reflection—in 3-D, it reflects in
a plane, which is like looking into a mirror. It extends to blades by outermorphism as the

linear transformation a: A*R" — A'R” defined by
reflection of X in dual hyperplane a: X — a[X] = aXal, (7.2)

where X = (=1)8radeX) X ig the grade involution.

To be a reflection, its determinant should be —1 in a space of any dimensionality. With
the pseudoscalar of n-dimensional space denoted as I,;, we can check this easily using
definition (4.7) of a determinant in geometric algebra:

det(a) = al,a HI ' =a@,a) =a(-a~ 1)1 = —1.

Here we used the fact that a is contained in the space I,;, and therefore a A I, = 0, so
that al, = —T, a. So the determinant is indeed —1. If you would repeat the determinant
computation for the line reflection, you would find (—1)"*! for the determinant in
n-dimensional space. This shows that in 3-D, a line reflection is actually not a reflection
but a rotation (see structural exercise 3). By contrast, hyperplane reflections are indeed
proper reflections in any dimension.

7.2 ROTATIONS OF SUBSPACES

Having reflections as a sandwiching product leads naturally to the representation of rota-
tions. For by a well-known theorem, any rotation can be represented as an even number
of reflections. In geometric algebra, this statement can be converted immediately into a
computational form.

170 ORTHOGONAL TRANSFORMATIONS AS VERSORS

7.2.1 3-D ROTORS AS DOUBLE REFLECTORS

Two reflections make a rotation, even in R3 (see Figure 7.2). Since an even number of
reflections absorbs any sign, we may make these reflections either both line reflections
axa~! or both (dual) hyperplane reflections —axa !, whichever feels most natural or is
easiest to visualize. The figure uses line reflections.

As the figure shows, first reflecting in a, then in b, gives a rotation over an axis perpen-
dicular to the a A b-plane, over an angle that is twice the angle from a to b (and this angle
and plane also give the sense of rotation, clockwise or anticlockwise in the plane). In this
construction, only the plane and relative angle of the vectors a and b matter. GAViewer
or the programming example in Section 7.10.2 each provide an interactive version. We
strongly recommend playing with either if you need to tune your intuition.

It is simple to convert this geometrical idea into algebra. The operation
x> baxa)b~ =ba~'xab™' = (b/a)x(b/a)~"!

is the double reflection, and therefore produces the rotation in the a A b plane (we moved
some scalar squared norms around to get a pleasant expression). We observe that this
rotation is generated by an element R = b/a = ba~!, as applied to a vector by the recipe

rotation of x: x + RxR7!.

b(axa1)b-!

Figure 7.2: A rotation in a plane is identical to two reflections in vectors in that plane,
separated by half the rotation angle.

CHAPTER 7

SECTION 7.2

ROTATIONS OF SUBSPACES 17

Note that this element R is not necessarily a blade, since it is a geometric product. That
is why we do not denote it by a bold symbol. It defines a linear transformation that we
denote by R[].

Since rotation is a linear transformation, it can be extended as an outermorphism. You
can easily show by mimicking the proof of (7.1) that a blade X rotates to R[X] defined by

rotation of X: X +— R[X]= RXR™. (7.3)

There are no extra signs in this transformation formula, unlike the reflection formula of
(7.2); the double reflection has canceled them all. As a consequence, the determinant of
a rotation is +1 in a space of any dimension:

det(R) = (RI,R™")/I, =RR'I, 17! = 1.

Geometrically, this means that there is no orientation change of the pseudoscalar.

Equation (7.3) can even be extended to arbitrary multivectors, for the rotation is linear.
That means that we are now capable of rotating any multivector, not just a vector, with
the same formula. In 3-D, this is already helpful: we can rotate a plane (represented as a
2-blade) directly without having to dualize it first to a normal vector (see Figure 7.3). On
the other hand, if it had been given dually, we could rotate it in that form as well. These
capabilities extend to higher-dimensional spaces and in Part II will permit us to rotate
Euclidean circles, spheres, and other elements, all using the same operation.

It is common practice to take out the scaling factor in R = b/a, reducing it to a unit
element called a rotor. That obviously makes no difference to the application to a blade,

Figure 7.3: The same operation RX/R rotates a vector, a 2-blade, or any element of the
algebra.

172 ORTHOGONAL TRANSFORMATIONS AS VERSORS

since any scaling factor in R is canceled by the reciprocal factor in R~!. To compute the
normalization of a rotor, we need to compute the scalar product of a mixed-grade multi-
vector, which we have not done before. Using (6.22) and (6.23), it is straightforward:

IRI>=R*R = (ba~'a~'b)y = (b* (a™")?)o = b*/a%.

Therefore ||R|| = %||b]|/||al|, and dividing it out produces a properly normalized rotor.

To construct a rotor to represent the rotation from a to b, we can either do what we just
did (start with general a and b and taking out the norm ratio), or just define it as the ratio
of two unit vectors b and a from the start. When we do the latter, R = ba~! = ba, and
R~' =ab = R. It follows that the inverse of a rotor is its reverse:

so that the rotation of X can be performed as R[X] = RXR. Performing the normal-
ization once is often better in practice than having to compute its inverse with each
application, so we will use these normalized rotors constructed from unit vectors as the
representation of rotations in this chapter.

7.2.2 ROTORS PERFORM ROTATIONS

It is natural to relate the rotor b/a to the geometrical relationships of the two vectors:
their common plane a A b and their relative angle. We can use those geometric elements
to encode it algebraically, by developing the geometric product of the unit vectors in terms
of their inner and outer product, and those in terms of angle and plane. Since b and a were
assumed to be unit vectors, we have b/a = ba, and compute

R=Dba=b-a+bAa=cos(¢/2) —1I sin(d/2), (7.4)

where ¢/2 is the angle from a to b, and I is the unit 2-blade for the (a A b)-plane. This
rotor involving the angle ¢/2 actually rotates over ¢ (as Figure 7.2 suggests, and as we will
show below).

The action of a rotor may appear a bit magical at first. It is good to see in detail how the
sandwiching works to produce a rotation of a vector x in a Euclidean space. To do so, we
introduce notations for the various components of x relative to the rotation plane. What
we would hope when we apply the rotor to x is that

e The component of x perpendicular to the rotation plane (i.e., the rejection x;
defined by x; = (x A I)/T) remains unchanged,;

¢ The component of x within the plane (i.e., the projection x = (x|I)/I) gets short-
ened by cos ¢;

* A component of x perpendicular to the projection in the plane (i.e., x; = x|
I = x) I) gets added, with a scaling factor sin ¢.

CHAPTER 7

SECTION 7.2

ROTATIONS OF SUBSPACES 173

It seems a lot to ask of the simple formula RxR , but we can derive that this is indeed
precisely what it does. The structure of the derivation is simplified when we denote ¢ =
cos(¢/2), s = sin(¢p/2), and note beforehand that the rejection and projection satisfy the
commutation relations x; I = Ix; and xj I = —Ix (these relations actually define them
fully, by the relationships of Section 6.3.1). Also, we have seen in (6.4) that in a Euclidean
space I = —1, which is essential to make the whole thing work. Then

RxR = R(x¢ +X||)§

= (c—=sD) (x; +x)) (c+sI)

= &xp — S AxpD) + es(xq L = Ixp) + es(xg L = Txp) + P — 2 (Ixg0)
(c2 + SZ)XT + (c2 - sz)x” + 2csx) 1
Xy +cosbx) +sindxy,

which is the desired result. Note especially how the vector x, , which was not originally
present, is generated automatically. It is very satisfying that the whole process is driven
by the algebraic commutation rules that encode the various geometrical perpendicular-
ity and containment relationships. This shows that we truly have an algebra capable of
mimicking geometry.

The unit vectors in the directions X3, X||, and x; form an orthonormal basis for the rel-
evant subspace of the vector space involved in this rotation. The rotor application has
constructed this frame automatically from the vector x that needs to be rotated. This is in
contrast to rotation matrices, which use a fixed frame for the total space that is unrelated
to the elements to be processed. Such a fixed frame then necessitates a lot of coordinate
coefficients to represent an arbitrary rotation. Even when the frame has been well chosen
(so that for instance e A e; is the rotation plane), the sine and cosine of the angle occur
twice in the rotation matrix:

cosp —sing O --- O

sing cosd O --- O

R = 0 0 1 -~ 0
0 0 o --- 1

When multiplying rotations, this double occurrence causes needless double work that
rotors avoid (like quaternions; we show the relationship in Section 7.3.5). So although it
would seem like a waste to construct a new frame for each vector, the rotation representa-
tion we have shown can actually be more efficient than a rotation matrix implementation.
After all, we never actually construct the frame; we merely perform R xR.

There is a classical way of generating a 3-D rotation matrix that is also based on the
construction x4 4 cos ¢ x| + sin ¢ x, . It is Rodrigues’ formula, which uses a unit vector a

174 ORTHOGONAL TRANSFORMATIONS AS VERSORS

in the direction of the rotation axis to constructx; = a(a-x), x| = x—a(a-X),X, = axXx,
resulting in the rotation matrix

Rodrigues’ formula: [[R] = [allal” + cos & ([17 - [al [[a]]T) +sin¢ [a™]],

where [[a*]] is the matrix corresponding to the cross product operation. This is a
coordinate-free specification of an operator based on geometric principles. The geometric
principle may be the same as before, but note that this formula is an explicit construction
rather than an automatic consequence. Unfortunately it only works in 3-D (as the use of
the cross product betrays). Moreover, it constructs a matrix that only applies to vectors
rather than a universal rotation operation.

We emphasize that for a rotation, the bivector angle I contains all information: both the
angle and the plane in which it should be measured. From this bivector angle, one can
immediately construct the rotor performing the corresponding rotation. We will see a
straightforward method for that in Section 7.4, and may write Ry4 to foreshadow this.

7.2.3 A SENSE OF ROTATION

Using the transformation formula x RxR , we see that a rotor R and “minus that
rotor” (—R) give the same resulting rotation. This does not necessarily mean that the
representation of rotations by rotors is two-valued: these rotors can be distinguished when
doing relative rotations of connected objects. Such relative rotations can be achieved in
two ways: by going clockwise or counterclockwise. You may think that you cannot tell
from the result which it was, but it is useful to discriminate them in some applications (it
can prevent you from curling up the wires on your robot). Let us call this property the
sense of a rotation. It comes for free with the rotor representation.

We derive the rotation angle for the negative rotor —Ryq, by rewriting it into standard
form:

—cos(dh/2) + I sin(dp/2)
= cos ((27r + ¢)/2) —1Isin ((27r + d))/2)
Riz+d)- (7.5)

—Rip

It is now obvious that Ryy, and —Ry¢ lead to the same result on a vector since a rotation
over 2z + ¢ is the same as a rotation over ¢, see Figure 7.4. Yet the following real-life
experiment called the plate trick shows that this is actually not true for connected objects.

Hold out your hand in front of your shoulder, a hand-length away, palm upwards
and carrying a plate. Now make a motion with your arm that rotates the plate hor-
izontally in its plane over 2z. After completion, you will have your elbow sticking
up awkwardly in the air. Continue the plate rotation over another 2z (you may
have to wriggle your body a little to keep the plate turning in its plane). Perhaps

CHAPTER 7

SECTION 7.2 ROTATIONS OF SUBSPACES 175

— -

_qu) = R—l(Zn—¢) = Rl(2n+¢)

Figure 7.4: Sense of rotation.

surprisingly, both you and the plate are now back in their original position: a 47
rotation equals the identity on coupled bodies. This is a more subtle result than the
usual statement: a 27 rotation equals the identity for isolated elements (like a plate
by itself).

The shortest way to achieve an angle of 2z + ¢ for the plate (with the same position of
the elbow) is to turn the other way over 47 — (27 + &) = 27— ¢. Therefore it makes sense
to say that — Ry, is a rotation over that effective angle, but in the opposite direction. That
geometrical insight is confirmed by evaluating the negated rotor by a different algebraic
route:

=Ry = —cos(dp/2) + 1 sin(b/2)
= cos((2z — $)/2) + 1 sin((2x — b)/2)
= Royen-d)-
This is indeed the rotation over the complementary angle 2z — &, in the plane —I with

opposite orientation, see Figure 7.4. Therefore we can uniquely assign the rotor’s angles
in the range [0, 47) to actual rotations of different magnitudes and senses, as in Figure 7.5.

Comparing this figure with the sign changes of the sine and cosine of half the rotation
angle gives a clear test for which the rotation exactly is encoded by a given rotor R.

e The cosine cos(¢d/2) = (R)g changes sign as |$/2] exceeds 7/2, so exactly when the
absolute value of the effective rotation angle ¢ exceeds 7. A positive value of the

176 ORTHOGONAL TRANSFORMATIONS AS VERSORS

| @191@101

0 T 2T 3n 47

Figure 7.5: The unique rotor-based rotations in the range & = [0,477).

scalar part of the rotor tells you that this is a rotation over the smallest angle
(whether clockwise or counterclockwise).

 Thesign of sin(dp/2) = (R), I gives the sense of rotation: positive indicates a rotation
following the orientation of I, negative follows the orientation of —I.

The occurrence of I in the expression for the sense of rotation is necessary: since I defines
what orientation we mean by (counter)clockwise, the sense of rotation should also change
when we change the sign of I.

Mathematically, it is often said that the rotors constitute a double covering of the rota-
tion group—one physical rotation is being represented in two distinct ways (R and —R).
We now see how this sign actually conveys geometrically significant information about
the rotation process rather than the rotation result. Hestenes [29] calls the rotors oriented
rotations, which is a good term to have. It is the half-angle representation that enables us
to distinguish the various orientations.

7.3 COMPOSITION OF ROTATIONS

The composition of rotations follows automatically from their representation as a geo-
metric product:

The rotor of successive rotations, first Ry then Ry, is their geometric product Ry R;.

This is easily shown by associativity of the geometric product, since Ry (R} xR)R,
(RoR;)Xx(RyRy) . That the result is indeed a rotor follows from (R, R;) (Ry Ry)
RyRiRiRy=1.

We expand this composition in detail in this section to sharpen our intuition, both alge-
braically and geometrically, and to relate it to other rotation representations such as
complex numbers and quaternions.

CHAPTER 7

SECTION 7.3

COMPOSITION OF ROTATIONS 177

7.3.1 MULTIPLE ROTATIONS IN 2-D

If we rotate in a single plane with pseudoscalar I, we are effectively dealing with rotations
in a 2-D Euclidean subspace R*. Performing the 2-D rotation Ry, after Ryg, results in
the total rotation Ry(¢,+¢,)> as you would expect. This also shows that planar rotations
commute.

The algebraic demonstration is straightforward:

Rip, Rip, =
= ((cos(dy/2) — I sin(dh,/2)) (cos(d;/2) — 1 sin(d,/2))
= (cos(y/2) cos(dp,/2) — sin(,/2) sin(¢p;/2))
— 1 (cos(d,/2) sin(d;/2) + sin(d,/2) cos(d,/2))
= cos((dy + $)/2) = I sin((d, + b)/2)
= Ry, +¢))-
Algebraically, this looks like the standard computation using a product of complex num-

bers, since I = —1. We prefer to view it as a calculation in the real geometric algebra of
coplanar elements.

In 2-D, rotations do not actually require the rotor sandwiching product RxR to be
applied. Since any vector x in the I-plane satisfies the anticommutation relationship
xI = —Ix, we can bring a rotor to the other side:

Rip xR_1¢ = (cos($/2) — T sin($/2)) x (cos(db/2) +1 sin($/2))
x ((cos(¢/2) + I sin(d/2)) (cos(p/2) +1I sin(p/2))
X

(cos ¢ +1 sin d)) (7.6)
cosd —Isind)x.

The two final lines show alternative forms for the one-sided planar rotation. We have
met the final form, using left multiplication, when we did the motivating problem in
Section 6.1.6.

In summary, in a plane (and in a plane only!) the half-angle rotors in the sandwiching
product can be converted to whole-angle, one-sided products using either left or right
multiplication.

7.3.2 REAL 2-D ROTORS SUBSUME COMPLEX NUMBERS

We have just shown how the rotation of a vector x in a plane I containing it can be sim-
plified from the two-sided sandwiching form to a postmultiplication:

x + x(cos¢ +Isind). (7.7)

Because I? = —1, this is reminiscent of complex numbers, a well-known tool to perform
rotations in the complex plane. Yet our approach must be subtly different, for the vector

178 ORTHOGONAL TRANSFORMATIONS AS VERSORS

x anticommutes with the 2-blade I (i.e., xI = —Ix), whereas if x and I had been complex
numbers they should have commuted with each other. Also, we are in a real plane, not in
a complex plane at all. What is going on here? How can such different algebras lead to the
same (or at least isomorphic) results?

The answer lies in the special role of the real axis in the complex plane. The selection of
such a special reference direction destroys the geometrical symmetries of the plane and
changes the algebra of the symbols. Let e be the unit vector in the direction of the real
axis, then a complex number X corresponding to the vector x in the plane denotes how
to rotate and scale e to get to x. In terms of geometric algebra, this is the ratio X = x/e
(see Section 6.1.6). So

a complex number is a geometric ratio of a vector to a fixed vector.

To be specific, the complex number corresponding to a vector a = aje; + azep in the
I = e; A e-plane relative to the ‘real axis’ e is

A=aleg=a —ap L. (7.8)

The original vector addition can of course be lifted to these complex numbers by linearity
of the geometric product:

A+ B=(ale; +b/e1) = (a+b)/e1 = (a; + bl) —(ap + bz)l.
Two such complex numbers multiply according to the geometric product:
AB= (a1 —ax 1) (b1 — by 1) = (ar1by — axb2) — (a1by + azby) L

This product is obviously commutative. With sum and product thus defined, our complex
numbers are clearly isomorphic to the usual complex numbers and their multiplication,
ifyouseti=—L

Yet we will not use complex numbers to do geometry in the plane, for they lose the dis-
tinction between vectors and operators; the vectors have effectively become represented as
rotation/scaling operators. The capability to describe such operators compactly was part
of the attraction of complex numbers when they were first introduced. But we really want
both vectors and operators in our geometry, so we want all elements that can be made in
the basis:

{1,er,e2,e1 Ney =1},

That is precisely what the geometric algebra of the plane provides, in an integrated manner
that also contains the algebraic and geometrical relationships between vectors and oper-
ators. Complex numbers only use the basis {1,I}. They are only half of what is required
to do all of Euclidean planar geometry.

To show the power of this way of looking at complex numbers, programming
exercise 7.10.5 computes the fractal Julia sets using only real vectors. That formulation
makes their extension to n-dimensional space straightforward.

CHAPTER 7

SECTION 7.3

COMPOSITION OF ROTATIONS 179

7.3.3 MULTIPLE ROTATIONS IN 3-D

Let us investigate what happens in Euclidean 3-D space when we perform the rotor Ry, 4,
after Ry, ¢,, with different planes I, and I;. It is convenient to have a shorthand for the
trigonometric functions involved; let us use cl.' = cos(¢;/2) and si’ = sin(¢,;/2), with the
prime to remind us of the halving of the angle. The total rotor after multiplication has
only grade 0 and grade 2 terms, since grade 4 cannot exist in 3-D space. The grade-2
term, which is in general a bivector, can be written as a 2-blade, since in the geometric
algebra of a 3-D space, all bivectors are 2-blades. Thus in 3-D space, we compute for the
rotor composition

(c; —Tasy) (e = 1is))

L r ! /N /N r .’
=16 +5155 T2)0 —cy5; It —¢55 1o + 575, (T2 1y)a.

!/ !/
¢ —Iis;

We have split the result in the scalar part (i.e., 0-blade) and 2-blade parts. Note how the
geometric product generates five terms out of the product of two factors of two terms,
since I I} has both a 0-grade part and a 2-grade part (and in more than 3-D, there would
even be a 4-grade part).

I, and I, are standard rotations with rotor angles of z/2 in the planes of the rotations
we want to compose (they correspond to 180 degree rotations). The scalar (I I1)g
is the cosine ¢, of the angle ¢, between those planes, and (I>I;); is the oriented
plane I, perpendicular to both, weighted by the sine s, of the angle ¢, from I; to I,.
Substituting this, using nonprimed ¢, and s, for cosine and sine of a nonhalved angle,
we get

! ! ! !’ !’ r ! r !
cf = Lis{ = (cjcy +s55c1) — (eg5 It +cys; I — s{sys. 11). (7.9)

That gives the total rotor; if you need its plane and angle separately you should take the
normalized grade-2 part and use an arc tangent function on the scaling factors of the two
parts to retrieve the angle. (We will encapsulate this later in the logarithm function for
3-D rotation, in Section 10.3.3.)

We emphasize that these computations do not need to be written out explicitly. In a pro-
gram, the product of two rotors is just Ry Rj. We spelled them out in coordinates chiefly
to convince you that this simple multiplication indeed implements all the correct details
of the composition of rotations.

7.3.4 VISUALIZING 3-D ROTATIONS

Consider the equation given by the scalar part of (7.9), and write it out in full
detail:

cos(d,/2) = cos(d/2) cos(d,/2) + sin(d/2) sin(d,/2) cos(db).

180 ORTHOGONAL TRANSFORMATIONS AS VERSORS

This is precisely the cosine law for sides from spherical trigonometry, depicted in
Figure 7.6(a). It means that we can imagine the multiplicative composition of rotors in
3-D as the addition of half-angle spherical arcs, as in Figure 7.6(b).

That is also confirmed by remembering that a rotation is a double reflection in a “vee”
formed by two unit vectors in the rotation plane through the origin, separated by half
the rotation angle as in Figure 7.2. The actual absolute orientation of these vectors in the
plane is immaterial (as you may check; it must be rotationally invariant, since any vector
out of the plane can be rotated by the construction!). Now, composing two rotations (in
possibly different planes) is identical to composing two double reflections; it is natural to
rotate the two vees of vectors so that the first and last vectors of both vees coincide. Then
it is obvious that those two reflections cancel each other in the composition (algebraically,
they are divided by themselves), while the other two remain to give the vee for the resulting
rotation. To complete the visualization, surround these unit vectors by a sphere, and you
see the characteristics of the rotation sphere representation: each vee of vectors determines
an arc of half the rotation angle, and their composition is the completion of a spherical
triangle.

The addition of freely sliding spherical arcs on great circles is such a simple means to
compose rotations that it deserves to be better known, whether you use geometric algebra
or not. Structural exercise 8 gives some practice in its geometry and the accompanying
algebra.

(@) (b)

Figure 7.6: (a) A spherical triangle. (b) Composition of rotations through concatenation of
rotor arcs. RyR, is the composite rotor of doing first Ry, then R,, and is the arc completing the
spherical triangle.

CHAPTER 7

SECTION 7.3

COMPOSITION OF ROTATIONS 181

7.3.5 UNIT QUATERNIONS SUBSUMED

The rotors in 3-D space are closely related to quaternions. In our view, unit
quaternions are rotors separated from their natural context in the geometric algebra of
real 3-D Euclidean space R3". Because of their mathematical origin, people view them as
imaginary, and that makes them unfortunately much more mysterious than they need to
be. Identifying them with rotors helps, since those are real operators in a real vector space,
with (in 2-D and 3-D) a scalar part (related to the cosine of the angle) and a 2-blade part
(containing sine and rotation plane). The 2-blades have a negative square, but that does
not make them imaginary. The spherical arc visualization of rotors renders them com-
pletely real, in both the English and the mathematical senses of the word. The same real
visualization works for unit quaternions.

Let us spell out the correspondence between rotors and unit quaternions precisely.
A quaternion consists of two parts, a scalar part and a complex vector part:

quaternion: q = qo + q.

We will consider only unit quaternions, characterized by qg + |1§]|?> = 1. The nonscalar
part of a unit quaternion is often seen as a kind of vector that denotes the rotation axis,
but expressed on a strange basis of complex vector quantities 7, j, k that square to —1 and
anticommute. For us, ¢ and its basis elements are not vectors but basis 2-blades of the
coordinate planes:

i=-I3e; =e3er, j=-I3e; = eje3, k= —I3e3 = ezey,

Note that ij = k and cyclic, and jjk = —1. The three components of an element on this
2-blade basis represent not the rotation unit axis vector e, but the rotation plane I. The
two are related simply by geometric duality (i.e., quantitative orthogonal complement) as

axiseto 2-bladeI: e=1I" = II3_1, soel; =1,
and their coefficients are similar, though on totally different bases (basis vectors for the
axis e, basis 2-blades for the rotation plane I).

The standard notation for a unit quaternion q = qo +q separates it into a scalar partand a
supposedly complex vector part denoting the axis. This naturally corresponds to a rotor
R = gp — ql3 having a scalar part and a 2-blade part:

unit quaternion qo +q < rotor qo — qIs. (7.10)
(The minus sign derives from the rotor definition (7.4).) In the latter, q is now a real
vector denoting a rotation axis. When combining these quantities, the common geometric

product naturally takes over the role of the rather ad hoc quaternion product. We embed
unit quaternions as rotors, perform the multiplication, and transfer back:

qp = (g0 +q) (po+P) (quaternion product!)

182 ORTHOGONAL TRANSFORMATIONS AS VERSORS

< (g0 — qI3) (po — pI3) (geometric product!)

= qopo + (I3qIzp)o — (qpo + qop — (I3qlsp)2 I;) I3

= qopo — (qpP)o — (qpo + qop + (qp)2 I;) Iz

= qopo—q-P—(qpo+qp+qxp)ls

< (q0po —q - P) + (poq + goP + q X P)- (7.11)

There is one conversion step in there that may require some extra explanation:
(qp)213_1 = (qA p)I3_1 = q x p, by (3.28). The inner product and cross product in
(7.11) are just defined as the usual combinations of the coefficients of the complex
vectors.

With the above, we have retrieved the usual multiplication formula from quaternion liter-
ature, but using only quantities from the real geometric algebra of the 3-D Euclidean space
R>0, This shows that the unit quaternion product is really just the geometric product on
rotors. The quaternion product formula betrays its three-dimensional origin clearly in its
use of the cross product, whereas the geometric product formula is universal and works
for rotors in n-dimensional space.

The geometric algebra method gives us a more natural context to use the quaternions.
In fact, we don’t use them, for like complex numbers in 2-D they are only half of what
is needed to do Euclidean geometry in 3-D. We really need both rotation operators and
vectors, separately, in a clear algebraic relationship. The rotation operators are rotors that
obey the same multiplication rule as unit quaternions; the structural similarity between
(7.9) and (7.11) should be obvious. This is explored in structural exercise 10. Of course,
the rule must be the same, since both rotors and quaternions can effectively encode the
composition of 3-D rotations.

We summarize the advantages of rotors: In contrast to unit quaternions, rotors can rotate
k-dimensional subspaces, not only in 3-D but even in n-dimensional space. Geometri-
cally, they provide us with a clear and real visualization of unit quaternions, exposed in
the previous section as half-angle arcs on a rotation sphere, which can be composed by
sliding and addition. It is a pity that the mere occurrence of some elements that square to
—1 appears to have stifled all sensible attempts to visualization in the usual approach to
quaternions, making them appear unnecessarily complex. Keep using them if you already
did, but at least do so with a real understanding of what they are. This is explored in
Structural Exercise 10.

7.4 THEEXPONENTIAL REPRESENTATION OF ROTORS

In Section 7.3.1, we made a basic rotor as the ratio of two unit vectors, which is effectively
their geometric product. Multiple applications then lead to:

In a Euclidean space R™°, a rotor is the geometric product of an even number of unit
vectors.

CHAPTER 7

SECTION 7.4

THE EXPONENTIAL REPRESENTATION OF ROTORS 183

The inverse of a rotor composed of such unit vectors is simply its reverse. This is not
guaranteed in general metrics, which have unit vectors that square to —1. Butif R R would
be —1, R would not even produce a linear transformation, for it would reverse the sign
of scalars. Therefore, we should prevent this and have as a definition for the more general
spaces:

A rotor R is the geometric product of an even number of unit vectors, such that R R=1

Even within those more sharply defined rotors, mathematicians such as Riesz [52] make
a further important distinction between rotors that are “continuously connected to the
identity” and those that are not. This property implies that some rotors can be performed
gradually in small amounts (such as rotations), but that in the more general metrics there
are also rotors that are like reflections and generate a discontinous motion. Only the for-
mer are candidates for the proper orthogonal transformations that we hope to represent
by rotors.

You can always attempt to construct rotors as products of vectors, but checking whether
you have actually made a proper rotor becomes cumbersome. Fortunately, there is an
alternative representation in which this is trivial, and moreover, it often corresponds more
directly to the givens in a geometric problem. It is the exponential representation, which
computes a Euclidean rotor immediately from its intended rotation plane and angle. That
construction generalizes unchanged to other metrics.

7.4.1 PURE ROTORS AS EXPONENTIALS OF 2-BLADES

We have seen how in Euclidean 3-D space, a rotor R4, can be written as the sum of a scalar
and a 2-blade, involving a cosine and a sine of the scalar angle ¢. We can also express the
rotor in terms of its bivector angle using the exponential form of the rotor:

Rip = cos(d/2) — I sin(d/2) = e 1472, (7.12)

The exponential on the right-hand side is defined by the usual power series. The cor-
rectness of this exponential rewriting can be demonstrated by collecting the terms in
this series with and without a net factor of I. Because I> = —1 in the Euclidean met-
ric, that leaves the familiar scalar power series of sine and cosine. To show the structure
of this derivation more clearly, we define y = —¢/2.

Iy (y)? (Iy)’
Ty _ -
e —1+1!+ o + 3 +--,
vyt v oy oy
=(1_E+Z_.”)+I(ﬂ_§+§_“.)
= cosy + I siny. (7.13)

After some practice, you will no longer need to use the scalar plus bivector form of the
rotor Ryy to perform derivations but will be able to use its exponential form instead.

184 ORTHOGONAL TRANSFORMATIONS AS VERSORS

For instance, if you have the component x| of a vector x that is contained in I, then
x| I = —Ix). From this you should dare to state the commutation rule for the versor
Ry immediately as x| Ry, = R_1¢ X and use it to show directly that

Rig X| EId) S x| A02 (x| eId)/Z) 02 x| o

or, if you would rather, 1o x|. So within the I-plane, the formula x — x el performs a
rotation. This result is (7.6), now with a more compact computational derivation.

Clearly, the exponential representation in (7.13) is algebraically isomorphic to the expo-
nential representation of a unit complex number by the correspondence exposed in
Section 7.3.2. The result,

" +1=0,

famously involving “all” relevant computational elements of elementary calculus, is
obtained from (7.12) by setting i = —I and ¢ = 27, as e”'* = —1. Its geometric meaning
is that a rotation over 2z in any plane I has the rotor —1 (not +1; remember the plate
trick!).

7.4.2 TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

Though the motivation of the exponential form of a rotor was through Euclidean
rotations, the Taylor series definition can be used in arbitrary metric spaces R”. When
we write out the exponential exp(A) for a pure rotor (with A a 2-blade from AR")
the even powers all become scalar, because a 2-blade A squares to a scalar in any
metric (as all blades do). The odd powers become a multiple of A for the same
reason.

In a Euclidean metric, a basic 2-blade squares to —1, and this generates the trigonometric
functions sine and cosine we saw appear above. In general metrics, a 2-blade may have
a positive square, or even a zero square (for a null 2-blade). Therefore, the computation
will essentially reduce to some scalar power series out of the familiar list:

N x?
expx = +ﬁ+§+“"
B
smx=x+§+§+ >

2 4

x x
coshx=1+a+ﬂ+ >
L © x
smx:x—§+§—~-,

2 o
cosx = 1——+——---

CHAPTER 7

SECTION 7.4

THE EXPONENTIAL REPRESENTATION OF ROTORS 185

With this preparation we obtain, for any blade A € AR"™:

cosa+ASi%“=cosa+Usina if A2 = —a?
exp(A) =< 1+A=14aU if A2
cosha+ASi“%’=cosha+Usinha if A2 =a?

(7.14)

|
R

The alternative forms pull out the unit-blade U in the A direction (so that A = Ua, for
positive «). Note the particularly simple form for null-blades; hardly any term survives in
the expansion.

We will need all of these expressions when we model Euclidean geometry in Part II. The
trigonometry (for A% < 0) describes the composition of Euclidean rotations, the null
case (AZ=0) will represent Euclidean translations, and the hyperbolic case (A2 >0)
will perform scalings.

7.4.3 ROTORS AS EXPONENTIALS OF BIVECTORS

Pure rotors are exponentials of 2-blades, and we have just defined them for all metrics.
As the exponential representation of the 3-D Euclidean rotation is such a convenient
parameterization of the rotor, the question arises whether all rotors in all spaces can be
written in such a form. Since 2-blades coincide with bivectors only in 2-D and 3-D, we will
at least need to admit exponentials of bivectors (rather than just 2-blades) as the general
form of rotors. Could this be the most general form?

Detailed investigation shows that matters are mathematically more complicated. It is
unfortunately not true that any rotor in any space can be written as the exponential of
a bivector. However, Riesz [52] shows that in the Euclidean spaces R™Y and R%" and in
the Minkowski spaces R"~1>! and R'>"~! there exists a bivector B such that every orthog-
onal transformation L[x] continuously connected to the identity can be written as:

L[x] = e 5% x B2, (7.15)

So for those spaces, a rotor that is continuously connected to the identity can be expressed
as the exponential of a bivector. We are fortunate that our main interests in this book are
precisely these Euclidean and Minkowski spaces, for in no other spaces does this statement
hold for all orthogonal transformations continuously connected to the identity, or their
rotors.

Moreover, in these n-dimensional Euclidean and Minkowski spaces (and again only in
those), an arbitrary bivector B can be written as the sum of commuting 2-blades. This
allows us to (de)compose the bivector exponential as

B2 = BB _ B2 B2 (7.16)

where the 2-blades B; are orthogonal in the sense that they all commute. In effect, any
rotor can then be made from pure rotors.

186 ORTHOGONAL TRANSFORMATIONS AS VERSORS

Even when you use noncommuting bivectors in the construction (7.16) of a rotor from
pure rotors, the result will be a rotor (since rotors connected to the identity form a group
under the geometric product). However, in general you are not allowed to add the expo-
nents of successive exponentials in geometric algebra:

eBeA ;é €B+A,

for the series expansion of the left-hand side (which may change when A and B are
swapped) is simply different than the expansion on the right (which is symmetric in A
and B). The terms to second order already show this:

eBer =(1+B+ 1B+ -)(1+A+1A%+..)
=1+B+A+1(B*+2BA+A%)+---
#1+(B+A)+1B*+BA+AB+A) +- -

1+B+A)+1B+A?+--
B+A

=e€

So even to second order, e+ would only equal eBe® if AB = BA (i, if A and B
commute). However, when this condition holds, it can be shown that addition of the
exponents is indeed permitted. Therefore,

eBtA = ¢BeA if AB=BA.

Itis not “only if” because of some accidental exceptions involving rotations over multiples
of z in properly chosen rotation planes (e.g., take A = 37 ey A e3 and B = 47 e3 A eg; the
2-blades do not commute, but since exp(A) = —1 is scalar, the exponentials do).

An alternative form to (7.16) is to write the exponential as a product of vectors:
P = (byboi1) -+ (baby),

in which the b; are unit vectors (so that bi2 = %1), related to the 2-blades B; of (7.16) by
B; = byj_1 Aby;. Still, there are subtle issues: if you use this to construct the exponential
as a product of vectors, you may accompany an odd number of the b; by a minus sign,
resulting in the rotor —e7B/2 rather than ¢=5/2. This would still work well to represent the
orthogonal transformation, since the sandwiching product in (7.15) leads to the same
result. Indeed, in most spaces another bivector C can be found so that e Cl2 = _g B2
for those spaces, so this is in fact an identical construction. The only exceptions are the
Minkowski spaces up to dimension 4. In R">!, one can find no C for any B; in R>!
and R"2, one can find no C for B such that B> > 0; and in R>' and R!3, only for
B? = 0 can no C be found. The final case has some geometrical relevance in this book;

it occurs as the conformal model of a 2-D Euclidean space.

CHAPTER 7

SECTION 7.4

THE EXPONENTIAL REPRESENTATION OF ROTORS 187

In these small Minkowski spaces there apparently exist rotors that are not continuously
connected to the identity. Generally, it is true that:

In Euclidean and Minkowski spaces, rotors connected to the identity are exponentials
of bivectors.

We have also shown the reverse statement, that in these spaces any exponential of a bivec-
tor is a rotor.

7.4.4 LOGARITHMS

Since we have the exponential expression R = e~#/? to make a rotor from a bivector B, we
also would like the inverse: given a rotor, extract the bivector that could generate it. This
would be a logarithm function for bivector exponentials.

Having such a logarithm is very relevant for interpolation, for it would allow us to define
the N root of a rotor R as

RYN = exp(log(R)/N).
The result is a rotor that performs the rotation from X to RX R as N smaller rotations,
which can be drawn as interpolation results:

RXR = (RI/N (Rl/N. .. (RI/NxﬁI/N) .- .ﬁllN) ﬁl/N) (N factors in total).

For 3-D rotations, we do this in Section 10.3.3. When rotors are used to represent general
3-D rigid body motions in Chapter 13, the rotor logarithm will allow us to interpolate
such motions in closed form.

But in geometric algebra, logarithms are somewhat involved. One problem is that the
logarithm does not have a unique value. For instance, even with a simple rotation in a
single 2-blade, we have seen how Ry¢, = Ry(¢+4zk)» S0 that we can always add a multiple
of 47 to the outcome. One usually takes one value (for instance the one with the smallest
norm) as the principal value of the logarithm. We will do so implicitly (some denote that
principal value as Log(R), with a capital L, as a reminder, but we will just use the log R
notation).

A second problem is finding a closed form formula. If the bivector is a 2-blade, its
exponential expansion involves standard trigonometric or hyperbolic functions, and
its principal logarithm can be found using the inverse functions atan or atanh (we do
this for rotors in R>? in Section 10.3.3). However, the general rotor is the exponent
of a bivector, not a 2-blade. Since a bivector does not usually square to a scalar, there
are now no simple expansions of the exponential, and many mixed terms result. If we
want to get back to the basic trigonometric or hyperbolic functions (to get geometrically
significant parameters like bivector angles, translation vectors, and scalings), we then
need to factorize the total expression. That would effectively split the bivector into
mutually commuting 2-blades with sensible geometric meaning, and would make the

188 ORTHOGONAL TRANSFORMATIONS AS VERSORS

logarithm extractable in closed form. Unfortunately this factorization is hard to do in
general. In this book, we will derive specific formulas for specific transformations we
encounter (Euclidean rotations, Euclidean rigid body motions, rigid body motions with
positive scaling) in the appropriate chapters of Part II.

7.5 SUBSPACES AS OPERATORS

The rotations we have just treated so extensively are generated as an even number of
hyperplane reflections. We now study the reflections in general subspaces. Like rotors,
they also employ a sandwiching product, effectively using subspaces as operators on other
subspaces. The analysis reveals that we need to keep track of how a blade represents a sub-
space (dually or directly) to process it correctly. Our understanding of general reflections
then allows us to specify the conditions for containment and perpendicularity of sub-
spaces in n-dimensional space as compact commutation relationships.

More patterns appear: projections to subspaces can also be written as sandwiching, but
now use the contraction. And operators may be transformed like objects: the reflection
of a rotation operator in the motivating example of Chapter 1 now finds its justification.

7.5.1 REFLECTION BY SUBSPACES

If we have a blade A representing a subspace, the reflection in it should invert the rejection
of a vector by that blade, so

reflection of x in subspace A: x + x—2(x AA)A™! = —AxA~L

Extending this as an outermorphism, each grade in X contributes a factor (=1)**! fora
total formula that reads

reflection of X in subspace A: X +— (—1*@*DAXA™L,

with x = grade(X) and a = grade(A). We can use a subspace in this manner as a reflector.

The resulting equation does not match our earlier formula for the hyperplane in (7.2),
since we characterized that by its dual a=A"*. So let us derive the formula for such a
reflection in a dually represented blade as well, setting D = AL, .

(_I)X(CH-I)AXA—l — (_1)x(a+1)DInXIn—1 D—l
- (_l)x(n+a+2)DXD—l
= (-D“DXD,

since d = grade(D) = grade(A|I,; H=n- grade(A) = n — a. We have thus found

reflection of X in dual subspaceD: X +— (-1)* DXD™!.

CHAPTER 7

SECTION 7.5

SUBSPACES AS OPERATORS 189

This matches (7.2) when D is a vector. It is an instance of the general sandwiching
formula involving geometric products, since we could have written the dual blade as
a geometric product of orthogonal factors using the Gram-Schmidt orthogonalization
procedure. Incidentally, this also shows geometrically why a blade should square to
a scalar: double reflection must be the identity, and that is represented by a scalar
rotor.

These reflections of oriented subspaces are illustrated in Figure 7.7. The difference in
the formulas for the different characterizations (direct or dual) of the mirrors imply
that our software will apparently need to realize whether a mirroring blade is given
in its direct representation or in its dual representation when we perform a reflection.
The same is true for the blade X that gets reflected, if you want duality relative to the
original pseudoscalar rather than to the reflected pseudoscalar. We ask you to derive the
proper expressions yourself in structural exercise 11. The set of equations that results
for the reflection operator is collected in Table 7.1.

That is how involved the geometry of reflection is when you want to keep track of the
orientation of the spaces. However, realize the power inherent in these formulas: we can
now reflect any oriented subspace into any subspace within a space of any dimensionality,
and get a result of the correct attitude, magnitude, and orientation. That is worth a bit of
precision in the administration. Of course, if you don’t want to keep track of the orienta-
tion, the formulas all become identical to AX A ™!

B* AB*/A

Figure 7.7: A plane acting as a reflector of oriented subspaces. The reflection of a direct
blade X in a subspace A is (—1)*“*DA X /A. This formula gives a different sign for the red vector
x and the yellow bivector B. The reflection of a dual element Y in A is A is (=1)0*D@+DAX/A.
This implies that the blue normal vector b = B* reflects differently from the regular vector x to
correctly remain the normal vector of the reflected B.

190 ORTHOGONAL TRANSFORMATIONS AS VERSORS

Reflection of an oriented subspace X in a subspace A. When either is repre-
sented dually rather than directly, the signs change as indicated. WWhen the dual representation
Y = X" is the input, one usually desires to have the outcome also in dual form relative to the
same original unreflected pseudoscalar. That result has been indicated, where a = grade(A),
d = grade(D), x = grade(X). y = grade(Y). (Duality with respect to the reflected pseudoscalar is
formula-preserving and would obey the first column with X — Y and x — y.)

X direct Y = X* dual
A direct (=D)¥a+rh AX AT (=)o+D@tD+n-1) Ay A~1
D = A* dual (-)*DXD™! (=Hothdpyp-!

7.5.2 SUBSPACE PROJECTION AS SANDWICHING

In the reflection formula
X > (=1)DAXAT]

the subspace A acts on the subspace X as a reflector. The subspace A is then effectively
used as an operator, using the geometric product in its sandwiching.

In the same abstract sense, a subspace can act as an orthogonal projector. We have seen the
formula for that in Section 3.6 as (X]A)]A ™. That formula can actually also be written
in sandwich form, but now using the (nonassociative) contractions instead of the (asso-
ciative) geometric product. This even includes the necessary orientation sign above, by
courtesy of (3.19):

X & XJAAT = ()HDQAIX) AT = (D) DAX]AT.

In this sense, we can switch from a subspace used as a reflector to a subspace used as a
projector by replacing the geometric products with the contractions. Both sandwiching
operators are grade-preserving. The algebraic properties of geometric product and con-
traction lead to different properties on repetition, for the reflector is an involution (doing
it twice is the identity), while the projector is idempotent (doing it twice is like doing it
once).

7.5.3 TRANSFORMATIONS AS OBJECTS

We just saw how subspaces can be operators acting through the sandwiching product.
Conversely, operators transform as subspaces.

CHAPTER 7

SECTION 7.6

VERSORS GENERATE ORTHOGONAL TRANSFORMATIONS 191

For instance, we may want to rotate the plane I of a rotation R; = Ry = cos(¢p/2) —
I sin(¢/2) to become a different rotation plane—such nested rotations are common in
robotics and hierarchical modeling, where the shoulder rotates the elbow rotation, which
in turn rotates the wrist rotation. What is the rotor of this new rotation of R, applied to
R;?Itis not (R Ry), for that would merely apply the rotation R after we have applied R .

The clue is that the rotation R, should rotate the I plane of R; to become R, IR 5. That
makes the new rotor

R) = cos(¢/2) — (RyIR2) sin(d/2) = Ry (cos(d/2) — I sin(¢/2)) R» = Ry RR,

where we used the commutativity of scalars to absorb all terms under the application of
Ry. The result is that the rotor R; is rotated by Ry, precisely as the phrasing of the problem
suggested. (Structural exercise 9 should illustrate this on the spherical image.) Comparing
to (7.3), we see that rotors can be rotated just like subspaces or any other element of the
algebra. We could actually have derived that immediately, by using the linearity of the
outermorphism, but is good to have a geometrical argument for this algebraic result.

The same reasoning and derivation holds for reflections. We can even reflect rotation
operators, as the example in Chapter 1 showed. The result of the reflection of a rotor Ry,
in a hyperplane dually characterized by n is a rotation in the reflected plane:

nRigpn ™" = n(cos(d/2) — I sin($/2)) n~"
cos(d/2) — (nIn™h sin(¢d/2)
= RnIn*Id)-

We may summarize these principles as

concatenated transformations use the geometric product, but nested transformations
use the sandwiching product.

If you compare this to linear algebra, you know that concatenated rotations would be
done by a total rotation matrix that is the product of the successive rotation matrices:
[R21l [R;]I, whereas a nested transformation requires a sandwich: [Ry]| [R;] [R2] ', so
that is similar. One would then apply this to a vector x as [R]] [x]l, whereas in geometric
algebra the application to a general element X (vector, operator, etc.) would be RXR ™.
So in linear algebra, the application to an object obeys the same rule as concatenation of
operators, whereas in geometric algebra it is like their nesting.

7.6 VERSORS GENERATE ORTHOGONAL
TRANSFORMATIONS

We have seen a single reflection in a hyperplane, and how an even number of succes-
sive reflections generates a rotation. An odd number of reflections is a rotation-plus-
reflection, sometimes called an antirotation. All are of the form X + VX V~!. We call

192 ORTHOGONAL TRANSFORMATIONS AS VERSORS

such a sandwiching a versor product, and the element V a versor. Since these operations
are so powerful, it pays to analyze them in more detail. We especially need to be careful
about their signs (as the analysis of reflections already showed), and we are interested in
their structural properties.

7.6.1 THE VERSOR PRODUCT

The subsequent application of sandwiching products x +— —vxv~
V1, V2, - -+, Vi leads to an overall operation that is

!'using the vectors

1 1 -1

X (—l)kvk CVQVIXV] UV, SV
Let us define a k-versor as an element of the geometric algebra /A R” that can be obtained
by multiplying k vectors using the geometric product:

versor: V =vVi---vVyV].
Then we can write the total sandwiching product on the vector x as
X '\7XV_1, (7.17)

where V is the grade involution of V, equal to +V if k is even and —V when k is odd. The
inverse of V is of course simply obtained by the inverse vector factors in opposite order:
-1 11 -1
V=vi---vavy, then V7' =v v, eV
For a unit V, the inverse is the reverse. Null vectors (which square to zero; see Section A.4
in Appendix A) cannot be used as factors in this operation, for they do not have inverses.

The operation of (7.17) is a linear transformation on x, and it can be extended as an
outermorphism to produce a general form that we call the versor product V : /\k R" —
/\k R” on a blade X:

versor productof VonX: x » V[X] = (-1)" VX vl (7.18)

Here x = grade(X) and v = grade(V). The latter is a slight abuse of notation, since V does
not have a unique grade; it is allowed since only the parity of v matters, and this is all odd
or all even for a versor.

Linearity permits us to extend this definition beyond blades to a general multivector X,
where we have to take the sum over the grade parts of X. If the grades are mixed, this
cannot be simplified, but if the grades of X are all odd or even (and this is typically the
case), this is a simple generalization of (7.18): substitute the general X for the blade X.

CHAPTER 7

SECTION 7.6

VERSORS GENERATE ORTHOGONAL TRANSFORMATIONS 193

Versors clearly multiply by the geometric product, since they are themselves constructed
as the geometric product of vectors, and their corresponding versor transformations com-
pose naturally:

VL Vixvihvyl =G Vpx(vm vl = (v x(a v L

And vice versa: the versor of a composition of operators is the geometric product of their
versors. Thus versors reveal the true geometrical meaning of the algebraically introduced
geometric product: it multiplies geometrical operators.

7.6.2 EVEN AND ODD VERSORS

We have seen that some versors represent reflections and that two reflections make a
rotation. The different geometrical feeling between these kinds of operations is how
they treat handedness; rotations preserve it, while reflections manage to turn a right
hand into a left hand. This is well represented in the signs of the determinants of their
transformations if we view them as linear transformations, both in geometric algebra
and classically. But the versor representation makes distinguishing them even simpler;
the important difference is between odd and even versors (i.e., versors made up of an
odd or even number of reflections). This is precisely the difference between an odd and
even number of vector factors in the versor. And since the geometric product contains
only all even or all odd terms, this corresponds to the oddness or evenness of their
grades. All odd-grade versors are reflections, and all even-grade versors are rotations in
their vector space R". This is easily proved using (7.18)

det (V) = VL, /L, = (=)™ VL, V' = (=)™ Dy y=lg 171 = -1y,
This result is independent of the metric of the space R".

Because of this difference in properties, it makes sense to have the versor product for
even and odd versors listed separately:

even versors : X — VX V™! (7.19)
odd versors : X > VX V! (7.20)

As before, these formulas even apply to arbitrary multivectors X. For even versors, this
is the substitution of X by X; for odd versors, one should sum over the results for odd
and even grades of X separately—the grade involution takes care of the proper signs of
the various grade parts of X.

7.6.3 ORTHOGONAL TRANSFORMATIONS ARE
VERSOR PRODUCTS

Not every linear transformation can be written in the form of a versor product. In fact,
the ones that can are precisely the orthogonal transformations. You may already suspect

194 ORTHOGONAL TRANSFORMATIONS AS VERSORS

this from their determinants, but we can also show this more directly. The crucial
property is to verify what happens to an inner product of vectors after transformation:

Vix] - V[yl = (=VxV). (=Vyvh
= (VxV ' VyVv T = (Vxy VT ho = (xy V7! V) = (xy)o
=x-y=V[x-yl

The inner product is preserved, so this is an orthogonal transformation. The derivation
is easily reversed to show that any such linear transformation can be written as a versor
product.

Because the versor product is an orthogonal transformation, it transforms the con-
traction in a structure-preserving manner. (The adjoint equals the inverse, which is
represented by the reverse of the versor, modulo an irrelevant scalar factor; see struc-
tural exercise 5.) And because the versor product is a linear transformation, it can be
extended as an outermorphism—therefore it also preserves the outer product. In fact,
the versor product preserves the geometric product. For even versors, this is a one-liner:

VIA]V[B] = VAV' VBV~ = VABV~! = V[AB],

and for odd versors it is not much harder to prove once you realize that AB= (A B)A.

Since a versor product is also grade-preserving, all constructions that are made as grade
selections of a geometric product are obviously preserved by the versor product. This
includes all subspace products:

V[AB] = V[A] V[B]
V[A AB] = V[A] A V[B]
V[A+B] = V[A] V[B] (=Ax*B)
VIA|B] = V[A] | V[B]
VIA[B] = V[A] | V[B]

Such structure-preservation properties easily extend to functions of multivectors, notably
the exponential of bivectors:

V[exp(B)] = exp(V[B]). (7.21)

So, the transformation of a rotor can be found by transforming its bivector. We will use this
frequently, so it is good to convince you explicitly why this holds. Since B is a bivector,
we have no bothersome signs:

exp(V[B]) = 1 + VBV~ + L(VBVH)? 4 ...
=1+VBV '+ LVvBV'VvBV T +...

CHAPTER 7

SECTION 7.6

VERSORS GENERATE ORTHOGONAL TRANSFORMATIONS 195

=1+VBV '+ L(VB*V)+
=V(+B+ 4B +--) V!
= V[exp(B)],

so (7.21) is simply a consequence of the structure preservation of the geometric product
by the versor product.

This property of structure preservation makes versor-based transformations easy to
work with. In fact, we are going to make it the basis of all geometrical computations in
geometric algebra by choosing a proper space to represent geometries in. We call these
operational models of the geometries, and will especially develop the operational models
R of a Euclidean space E" in Chapters 13 and 16. In that model, all Euclidean
transformations (including translations) are orthogonal transformations encoded by
Versors.

7.6.4 VERSORS, BLADES, ROTORS, AND SPINORS
We now have many elements that can be used in the versor-type sandwiching products.

e Versor. A versor is a geometric product of invertible vectors.

* Rotor. A rotor R is a geometric product of an even number of unit vectors such
that R~! = R. It can be written as the exponential of a bivector in most spaces
of interest (see Section 7.4.3 for the fine print).

 Blade. A blade is an outer product of vectors. If it is to be used in a reflection
operation, it uses a sandwiching product, and therefore it should be invertible.
Invertible blades can always be written as a geometric product of mutually orthog-
onal vectors (by the Gram-Schmidt procedure).

Therefore we have the following relationships:

All invertible blades are versors (but few versors are blades).
Rotors are even unit versors (whose inverse is their reverse), and vice versa.
All even unit blades whose inverse is their reverse are rotors, but few rotors are blades.

A prototypical case of a blade acting in a versor product is the 2-blade I = e; A e; in
R™0. If it is the special case of a rotor (for rotor angle —7), it generates the rotation
x — IxT over —x in the I-plane. The same blade could also be used as a reflector; then
it would generate —I x1.

In the literature of mathematical physics there are elements called spinors, traditionally
associated with the description of rotations in quantum mechanics. These are closely
related to rotors. It is useful to understand this link, since some of the spinor literature
is relevant to geometry.

Spinors are not introduced as geometric products of vectors, but as elements that preserve
grade under a sandwiching product in a Clifford algebra. Consider the set of elements S

196 ORTHOGONAL TRANSFORMATIONS AS VERSORS

that can transform a vector x into a vector by the operation SxS~!. (This is called
the Clifford group.) When such elements are normalized to S S = %1 and of even grades,
they are called spinors, making up a spin group (though some authors appear to permit
odd spinors as well [51]).

The special spin group is the subgroup of the spin group consisting of the elements for
which S = +1. Its elements are most closely related to the rotors, but careful study
shows (see e.g., [33], pg. 106) that there are some special spinors that are not rotors.
They consist of the weighted sum of a rotor and its dual, but they are rare (they only
occur in spaces whose dimensionality mod 4 equals 0). So it is almost true that “special
spinor” and “rotor” are equivalent terms. In summary:

All rotors are special spinors; almost all special spinors are rotors.

This way of looking at rotors is interesting, for it casts a slightly different light on their
exponential representation. Can we show that the exponential of a general bivector,
when used in a versor product, is indeed a transformation from vectors to vectors? Let
us expand the exponentials:!

e—B/Z xeB/Z

(1-1B+1B2)*+--)x(1+ 1B+ 1B2)* +-)
X — %Bx+ %XB+ %(B2X—ZBXB+XBZ) + -
x+ (x|B) + 4 (x|B)]B) + £ ((x|B)|B)|B) +---. (7.22)

The result clearly produces a vector: each contraction of a vector with a bivector gives
a vector, so the successive nestings keep producing vector terms. For a simple rotation
represented by a Euclidean 2-blade B = I, we depict the series of terms in Figure 7.8;
it generates increasingly accurate approximations for the rotation result, correct in
magnitude and geometry. Each subsequent contraction by I¢$ rotates and scales the
previous contribution. Note that only the first term x may contain a component (xAB)/B
that is not contained in B.

7.7 THE PRODUCT STRUCTURE OF
GEOMETRIC ALGEBRA

7.7.1 THE PRODUCTS SUMMARIZED

We now have a number of products with geometrical meanings for subspaces and their
operators. They are all based on the geometric product. We have the outer product to span
subspaces. We have the scalar product to compute norms and angles between subspaces

1 If the grouping of the elements into compact contractions seems inspired, there will be a more structural
way of deriving this equation when you have learned to differentiate in Chapter 8.

CHAPTER 7

SECTION 7.7

THE PRODUCT STRUCTURE OF GEOMETRIC ALGEBRA 197

(x IB)IB/2! (xIB)/B/2!

x]B

((x]B)IB)IB/3!

(((x1B)IB)IB)B/4!

B)IB)IB)|B/4!
<IB ((x1B)JB)|B)IB/

(a) (b)

Figure 7.8: The rotor product in Euclidean spaces as a Taylor series (a) in 2-D, and (b) in 3-D. The subsequent terms
are denoted by the blue lines, converging to the rotation result.

of the same grade. It is subsumed by the contractions, which extends this capability
to different grades. Then there is the versor product, which can apply subspaces as
operators acting on other subspaces to produce reflections and rotations. Sandwiching
using the contractions produces projection operators. Finally, there is the geometric
product, which acts as a multiplication of versor operators and as the foundation of
the whole system. The basic principles by which these varied operators are constructed
is always the geometric product and (anti-)commutation combined with addition or
grade selection.

All these products are bilinear and distributive over addition. We have met two more
products that are of geometrical significance, but which only have these properties
in a piecewise manner: meet and join. To retain their meaning of “intersection” and
“union”, these can only be applied to blades, and should adapt themselves in a nonlinear
manner to the geometric degeneracy of their arguments. This makes them algebraically
less tidy than the basic products above.

With this collection of products, the foundation of geometric algebra is virtually com-
plete (only one more operation and product will be introduced in the next chapter:
differentiation and the associated commutator product with a bivector). Any element
or operation from linear algebra can now be substituted by a corresponding element

198 ORTHOGONAL TRANSFORMATIONS AS VERSORS

and coordinate-free operator from geometric algebra. For simplicity of structure and
universality of code, this is always advantageous, though it may come at a computational
price—we treat that issue briefly below (Section 7.7.3) and extensively in Part III.

The algebraic foundation by itself cannot be applied immediately to geometric problems
in applications: a modeling step is required to identify the proper algebraic concepts to
encode features of the situation. For Euclidean, affine, and projective geometry, there
are standard recommended ways of modeling. These are explained in Part II, which is
essential reading if you want to use geometric algebra effectively.

7.7.2 GEOMETRIC ALGEBRA VERSUS CLIFFORD ALGEBRA

The consistency of our constructions so far allows us to express our opinion on the
difference between geometric algebra and Clifford algebra. The following is by no means
generally accepted, but we have found it a useful distinction for practical purposes,
especially as a foundation for developing efficient implementations for the various
admissible operations in Part III.

e Clifford algebra is defined in the same multivector space AR" of a metric space
R" as geometric algebra. It has the same definition of the geometric product
to construct elements from other elements. It moreover permits us to construct
elements by a universal addition, also defined between any two elements.

* By contrast, in our view of geometric algebra we only permit exclusively multiplicative
constructions and combinations of elements. The obvious exceptions to this are
the two basis elements in the whole construction: the vector space and its field R,
which were linear from the start, and their duals (since duality is an isomorphic
construction). Thus the only elements in the geometric algebra A R” that we allow
to be added constructively are of grade O (scalars), grade 1 (vectors), grade (n—1)
(covectors), and grade n (pseudoscalars).

Of course, many of the products in geometric algebra are bilinear and allow generalization
over addition through their distributivity. But we view that additive structure only as
convenient for the decomposition of those products, never as a construction of new
elements. The distributivity property is convenient in implementations, since it allows
the representation of an arbitrary element on a basis. We then store the coefficients
it has on that basis, and are allowed to reconstruct the element by recomposing the
terms, but never should we play the game of making new elements by adding arbitrarily
weighted basis elements, as in Clifford algebra. The reason is simply that we have no
geometric interpretation for such elements.

By contrast, all elements produced by multiplication using any of our products do have a
geometrical interpretation. The blades among them, from the subalgebra involving only
the inner and outer products (and of course including duality, meet, and join) are clearly
subspaces. They can even be drawn. The elements involving the geometric product are
versors representing orthogonal transformations, and they act on the subspace elements

CHAPTER 7

SECTION 7.7

THE PRODUCT STRUCTURE OF GEOMETRIC ALGEBRA 199

through the versor product to again provide drawable elements. There is therefore never
a doubt about the geometrical nature of any of the multiplicatively constructed elements.

A similar contrast exists between Grassmann algebra, which permits arbitrary addition,
and what we called subspace algebra in our early chapters, permitting only the multiplica-
tive constructions. Unfortunately, mathematics has developed the additive Grassmann
and Clifford algebras to a much greater extent than their multiplicative parts. Much of
that work is irrelevant to their geometrical usage. It may even be incomplete, for what
would have been good and useful geometrical theorems may not be stated because they
are not generally valid when addition is allowed, and therefore are considered less pure.
When consulting the mathematical literature, be on the lookout for results on “simple”
multivectors, which require factorizability by the outer product (and are therefore about
blades) or the geometric product (and are thus about versors).

The sole exception we have been forced to make so far to our multiplicative principle
involves exponentiation. When one multiplies two rotors, a rotor results. Starting from
rotors that can be represented as the exponentials of 2-blades, we can construct the
exponentials of general bivectors as geometrically significant operators. Permitting their
logarithm as an operation in our algebra, we should therefore permit general addition of
bivectors as a constructive operation—but the resulting elements may then subsequently
only be used for exponentiation. As such, this is still our multiplicative principle, merely
expressed in logarithmic form.

In the grade approach to geometric algebra, the multiplicative principle is much less
easily formulated. The direct translation from the subspace product motivation would
permit us only to use the grade parts that define those products; that is the limited set
exposed in Section 6.3.2. Beyond that, there may be more geometrically relevant grades
(such the minimum and maximum grade of a geometric product that we will meet in
Section 21.7), but the general issue of admissible grades in the multiplicative principle
has not yet been thoroughly explored.

The multiplicative principle is beginning to be acknowledged by mathematicians.
It will be interesting to see whether this will unearth hitherto dormant results in Clifford
algebra with patently geometrical applications. For now, we have made the multiplicative
principle the basis of our implementation (and it is part of the reason why it is among
the fastest known). We have not yet encountered geometrical situations that we cannot
represent and process.

7.7.3 BUT—IS IT EFFICIENT?

The use of blades as elements of computation and of rotors as operators to perform
orthogonal transformations on them permits us to encode a lot of geometry in a compact,
coordinate-free, and universal manner. As a consequence, we need to distinguish fewer
data types in geometric constructions. That in turn simplifies the flow of algorithms.
The resulting code looks a lot more compact and readable, since all operators can be

200 ORTHOGONAL TRANSFORMATIONS AS VERSORS

encoded in terms of geometrical elements of the application, rather than in unrelated
coordinate systems. But is that code also more efficient?

This question is not easily answered. There are many facets to the issue because there
are many different kinds of operations in a geometry, and the balance may differ per
application. When we do a practical comparison for a ray tracer in Part I1I (see Table 22.1),
the fastest implementation of geometric algebra is 25 percent slower than an optimized,
explicitly written-out classical implementation. That cost of geometric algebra is about
the same as the performance that can be achieved by the currently commonly used
homogeneous coordinates and quaternions (which provide much less universality than
geometric algebra). We believe a 5 to 10 percent overhead for the use of geometric
algebra should be achievable in such applications. This would be an acceptable price
to pay for the much cleaner structure of the code, with a much reduced number of
data types and an elimination of the corresponding special operations that need to be
explicitly defined on them.

Let us briefly discuss some of the relevant issues in making an efficient implementation
of geometric algebra, with special emphasis on the orthogonal transformation of blades,
which will be the structural backbone of geometric modeling in Part II.

* For the composition of orthogonal transformations, rotors are superior in up to
10 dimensions. The geometric algebra of an n-dimensional space has a general
basis of 2" elements. Rotors, which are only even-dimensional, in principle require
21 parameters for their specification (though typical rotors use only a part of this).
Linear transformations specified by matrices need n x n matrices with n?

parameters (and typically need them all). Rotors are therefore more efficient for

storage of transformations in less than 7 dimensions (and for the practical dimen-
sionalities of 3, 4, 5 about twice as efficient). Composing transformations as rotors
takes 2" operations, and composing them as matrices requires 1> operations. There-
fore in fewer than 10 dimensions, rotors are more efficient than matrices (in the
practical dimensions 3, 4, 5 about four times more). The reason for this gain by
rotors in composition is partly that they do not represent general linear transfor-
mations, just the orthogonal transformations, and that they can really exploit that

algebraic limitation, whereas matrices cannot. Unit quaternions are rotors in 3-D,

and of course well known to be efficient for the composition of rotations.

o For the linear transformation of vectors, matrices are always superior. To perform

an nx n matrix on an n-dimensional vector (orthogonal or not) takes #> operations.
A general rotor could require as much as 2"~ x 1 x 2"~! = 22"~ in a straight-
forward implementation of its two-sided product. This is always more, in the
practical dimensions about four times more. Part of the computations can be
saved by realizing that grade-preservation of the rotor operation must mean that
some terms cancel (so that they do not need to be computed). Other techniques
may reduce the computation further, but not enough to make the direct rotor

approach competitive. The conversion of a rotor to a matrix may therefore be

CHAPTER 7

SECTION 7.8 FURTHER READING 201

an advantageous way to apply it to a vector. This is what one typically does for
the unit quaternions, which are 3-D rotors; we treat their conversion matrix in
Sections 7.10.3 and 7.10.4.

o For the linear transformation of general blades, outermorphism matrices beat
vector matrices and rotors. A general k-blade is specifiable on a (Z)-dimensional
basis. When we wantto transforma k-blade by an orthogonal transformation, we have
three possibilities: rotors, outermorphism matrices (see Section 4.5), or matrices on

the constituent vectors followed by recomposition. These take, respectively, (k) 22

. . . . 2 .
operations (using grade preservation-based reduction), (1)” operations, and kn? +

k (x) operations (the final term is an estimate of the complexity of the outer product
construction). Of those three, the outermorphism matrix is cheapest (even for k = 1,
when it reverts to the vector matrix of the previous item). Thus the generalized linear
algebra that geometric algebra offers pays off in a different form.

e For optimal orthogonal transformation, use rotors in a code generator. Although
outermorphism matrices are relatively cheap to use on k-blades, they are not the
optimum. They do not employ all the structure of the computation, for they use
neither the fact that the element to be transformed is a k-versor or a k-blade (rather
than a general k-vector), nor can they use our knowledge that the transformation
is orthogonal. Therefore they can still be improved by explicitly spelling out the
products involved for each specific type of multivector. If you can predict the
grade of the elements beforehand, such grade-based accelerations can be built in
at compile time. But even at run time it may be worth testing the multivector type
of an element and jumping to some specialized part of the code. This engenders
no overhead at all if you can predict and specify the multivector type for each
variable in your code. In this approach, the rotor multiplication formula is crucial,
since it can be used by the symbolic code generator to derive all required formulas
in a unified manner.

The bottom line is: geometric algebra works, the structural simplicity it brings can be
used directly in high-level programming, and the computational overhead can be kept
low (in the order of 5-10 percent). But the actual low implementational level on which
the computations take place needs to be carefully designed, for a literal implementation
of the geometric algebra products can rapidly become too expensive. We devote Part
III of this book completely to these implementational issues.

7.8 FURTHER READING

In this chapter, most of the literature on the foundations of geometric algebra has
become accessible, and you might even read some of the mathematical literature on
Clifford algebra.

The obviously geometrically relevant literature on rotors (and spinors) has been absorbed
into geometric algebra so you can read about it in the language of this book. The basic

202

ORTHOGONAL TRANSFORMATIONS AS VERSORS

sources are [33] and [15], who also relate it to Lie groups in much more detail than we

do in this book. Other references about the actual use of rotors in geometric applications
will be supplied with the appropriate chapters in Part II.

For an entry to the more mathematical literature, we can recommend Clifford Algebras
and Spinors [41]. Together with [52] and [51], it gives the precise mathematics. Though
all are short on actual geometry, they can be used to answer questions about the validity

of perceived patterns that one may be tempted to use in implementations.

7.9 EXERCISES

7.9.1 DRILLS

NN LD

Compute R| = Re ne, z /2 and apply to e;.

Compute Ry = exp(e3 A e; 7/4) and apply to ex A ey.

Compute Ry Ry and apply to e; A es.

Compute the axis and angle of Ry R;.

Compute the product of the rotors Re,,r /2 and Re,,z 2 and apply to ejs.
Reflect (e] + e3) A ez in the plane ej A ey.

Reflect the dual plane reflector e; in the plane e A e3.

7.9.2 STRUCTURAL EXERCISES

1.

The generalization of the line reflection from axa~! to aXa~! seems straightfor-
ward when we remember that a k-blade can be written as the geometric product
of k mutually orthogonal vectors: X = x; Xy - - - X, and then simply compute
the outermorphism as (axjaH (axpa™!)---(axra~!) = aXa~!. The result is
correct but the proof is wrong as it stands. Why? (Hint: Can you guarantee the
factorization after reflection?)

We have seen that for a Euclidean unit 2-blade, I* = —1. Interpret this geomet-
rically in terms of versors.

. Verify that a line reflection in 3-D can be performed as a rotation. Which rotation?

Give the axis and angle. Verify that this reflection can be applied to any blade.

. Show that the fact that the geometric product transforms naturally under applica-

tion of a versor, together with linearity, implies that the contraction is preserved.
(Hint: An intermediate step uses linearity to show that the outer product is
preserved.)

Show from the definition of the adjoint (in Section 4.3.2) that the adjoint of a
transformation that can be written as a versor product with a versor V is a versor
product with the versor V™', Relate this to the orthogonality of a versor-based
transformation.

CHAPTER 7

SECTION 7.9 EXERCISES 203

6.

10.

11.

12.

13.

14.

We can reflect mirrors into mirrors to compute the effective mirror of a total
reflection. Why can you ignore all signs in that computation and therefore
universally use M, M M; for the reflection of mirror 1 in mirror 2 regardless of
whether they have been represented directly or dually?

Match the computation of the composition of 2-D rotations in Section 7.3.1 to
that of the 3-D rotations in Section 7.3.3, both algebraically and in the geometric
visualization.

To study the spherical image of rotation composition, take a rotation in the eje3
plane over z/2, followed by a rotation in the eze, plane over z/2. As rotors,
these are (1 — eje3)/v2 and (1 — eze;)/v2. Draw two great circles, with poses
corresponding to the rotation planes eje3 and ezep. On these great circles, the
rotations over /2 are represented as oriented arcs of length 7/4 (the corresponding
rotor angle). These arcs are freely movable along their great circles. To compose
the rotations, make them meet so that you can perform R; and then R,. This is a
depiction as in Figure 7.6. The arc completing the spherical triangle is in a skew
plane with a length that looks like it might be #/3. Do an actual computation to
confirm this value for the rotor angle and a plane of (—eze; — eje3 + eze)/V3.
The resulting rotation is over —27/3 in this plane. Rewrite this using (7.10), and
show that the rotation axis is (:el —ey+e3).

. Draw the rotated rotor Ry Rj R as an arc in the spherical image. (Hint: What

would you expect it to be based on its geometric meaning? Warning: It is not
simply the R; arc rotated over the Ry-arc!)

Establish the precise correspondence between the quantities in the rotor com-
position (7.9) and the quaternion product of (7.11). (Warning: This is a painful
exercise in keeping things straight, and not very rewarding.)

Derive the formulas for the reflection of a dual blade Y = X* from the formulas
for reflection of a directly represented blade X. Derive the last column of Table 7.1
from the column before. Make sure you take the dual of both input and output
relative to the same unreflected pseudoscalar I,,.

A special case of reflection is when A is the scalar 1. Derive the algebraic outcome
and interpret geometrically. Another special case is A = I,,; compute that and
interpret. Why is the latter outcome not the dual of the former?

You can project onto a rotor and get a geometrically meaningful result. Give
the geometric interpretation of the projection Pr[x] = (x] R)R-!. (Hint: Think
“chord.”) For rotors, it matters whether you put the inverse on the first or the
last factor: what is (x|R ™) R?

In R®? with the usual basis, perform a rotation in the e; A e; plane followed by
a rotation in the e3 A e4 plane. Compute the rotor of the composition, and show
that this is the exponent of a bivector, not of a 2-blade. (Hint: See structural
exercise 5 of Chapter 2.) Note also that the rotor is not of the simple form “scalar
plus 2-blade” of Section 7.4 (or even “scalar plus bivector”).

204 ORTHOGONAL TRANSFORMATIONS AS VERSORS

7.10 PROGRAMMING EXAMPLES AND EXERCISES

7.10.1 REFLECTING IN VECTORS

The code of the first example is a straightforward implementation of the line reflection
equation:

e3ga::vector reflectVector(const e3ga::vector &a,
const e3ga::vector &x) {
return _vector(a * x * inverse(a));
}

The program allows you to interactively manipulate both a (red) and x (green). You
can use the popup menu to switch to a mode that shows you that this also works for
bivectors.

7.10.2 TWO REFLECTIONS EQUAL ONE ROTATION

This example displays an interactive version of Figure 7.2. The input vector (green)
is successively reflected in two different (red) vectors. The end result is that the input
vector is rotated, as expected. To reflect the input vector we invoke reflectVector()
twice:
// update the reflected/ rotated vectors
g_reflectedVector = reflectVector(g_reflectionVectorl,
g_inputVector);

g_rotatedVector = reflectVector(g_reflectionVector?,
g_reflectedVector);

Figure 7.9 shows a screenshot.

7.10.3 MATRIX-ROTOR CONVERSION 1

To connect to programs and libraries not based on geometric algebra (such as OpenGL),
you may need to convert back and forth between rotors and matrices. This example
provides the code for the 3-D case. The algorithms are based on geometric intuition—see
the next exercise for more efficient solutions.

Rotor To Matrix Conversion

The columns of a (rotation) matrix are the images of the basis vectors under the
transformation. To convert from rotor to matrix, we transform ey, e;, and e3 and copy
them into the matrix. The implementation is straightforward:

void rotorToMatrix(const rotor &R, float M[9]) {
// compute images of the basis vectors:
rotor Ri = _rotor(inverse(R));
e3ga::vector image[3] = {
_vector(R*el *Ri), // image of el
_vector(R *e2 *Ri), // image of e?

CHAPTER 7

SECTION 7.10 PROGRAMMING EXAMPLES AND EXERCISES 205

eoe || Geometric Algebra, Chapter 7, Example 2: Two Reflections == One Rotation

The green vector is reflected, first in one red vector, then in the other,
Use the left mouse button to drag the (green or red) vectors and orhit the scene

Figure 7.9: Interactive version of Figure 7.2.

_vector(R *e3 *Ri) // image of e3
1
// copy coordinates to matrix:
for (int i =0; 1 <3; i++)
for (int j=0; j<3; j++)
M[j * 3+ i]=1imagel[il.getC(vector_el_e2_e3)[jl;

Rotation Matrix To Rotor Conversion

Conversion from matrix to rotor is more complicated. Again we start with the fact
that the columns of the matrix are the images of the basis vectors. We should remember
that rotors are ambiguous: we can always increase the angle by 4z to get another rotor
that is equivalent. And since a rotation matrix does not specify the sense of rotation,
R and —R are both acceptable solutions. We compute the smallest rotor (i.e., with the
smallest angle) as our solution in three steps:

206 ORTHOGONAL TRANSFORMATIONS AS VERSORS

e First, compute the smallest rotor R; that rotates e; to the image of e; under the
matrix transform.

e Then, compute the smallest rotor R, that rotates R; ey/R; to its image of e, under
the matrix transform. Because of orthogonality, this rotor will leave R; e;/R;
unchanged.

e Finally, compute the full rotor: R = Ry R;.

Because of orthogonality, e3 automatically transforms correctly to R e3/R. The code for
this algorithm:

// note: very imprecise in some situations; do NOT use this
// function in practice

rotor matrixToRotor(const float M[9]) {
e3ga::vector imageOfEl(vector_el_e2_e3,
MCO *3+0], M[1 *3+0], M[2*3+0]1);
e3ga::vector imageOfE2(vector_el_e2_e3,
MEO*3+ 1], M[1 *3+ 1], M[2*3+11);

rotor R1 = rotorFromVectorToVector(_vector(el), imageOfEl);
rotor R2 =rotorFromVectorToVector(_vector(R1* e2 *inverse(R1)),
imageOfE2);

return _rotor(R2 * R1);
}

There is a compact formula that computes the smallest rotor that rotates a unit vector
a to another unit vector b, in 3-D. It is

R=_1tba (7.23)

V2(1+b-a)

(We discuss it in more context in Section 10.3.2, but we use it now.) It is implemented
in the function rotorfFromVectorToVector(). The rotor formula is unstable when
a-b ~ —1, which happens near a rotation over 180 degrees (the rotation plane is then
not accurately determined, neither geometrically nor algebraically). This also makes the
code listed above unstable. We work around this limitation in two ways in the stable
version of the function, shown in Figure 7.10. This first is to pick the first basis vector
such that a 180-degree rotation is not required. This is tested using if (M[0 * 3+ 0] >
—0.9f) {/*...*/}. The second is to provide a default rotation plane (2-blade) to be
used by rotorFromVectorToVector()—this plane must be orthogonal to the image
of the first basis vector. rotorFromVectorToVector() uses this plane in situations
where the rotation is near 180 degrees to come up with a solution for this geometrically
degenerate case.

7.10.4 EXERCISE: MATRIX-ROTOR CONVERSION 2

The conversion functions we presented above are (geometrically) intuitive, but they are
not the most efficient solutions. A much better way is to perform the rotation on the

CHAPTER 7

SECTION 7.10 PROGRAMMING EXAMPLES AND EXERCISES

207

rotor matrixToRotorStable(const float M[9]) {
e3ga::vector imageOfEl(vector_el_e?2_e3,
MCO*3+0], M[1 *3+0], M[2*3+0]);
e3ga::vector imageOfE2(vector_el_e?2_e3,
MEO*3+ 1], M[1 *3+ 1], M[2*3+1]);
e3ga::vector imageOfE3(vector_el_e2_e3,
MLO*3+2], M[1*3+2], M[2*3+2]);

if (M[O*3+0]> — 0.9f)
{
rotor R1 = rotorFromVectorToVector(_vector(el), imageOfEl);

rotor R2 = rotorfFromVectorToVector(_vector(R1* e2* inverse(R1)),

imageOfE2,_bivector(dual(imageOfEl)));
return _rotor(unit_e(R2 * R1));
}
else if (M[1*3+1]1> —0.9f)
{
rotor Rl=rotorFromVectorToVector(_vector(e2), image0fE2);
rotor R2=rotorFromVectorToVector(_vector(R1* e3* inverse(R1)),
imageOfE3,_bivector(dual(imageOfE2)));
return _rotor(unit_e(R2 * R1));
}
else
{
rotor R1 = rotorFromVectorToVector(_vector(e3), imageOfE3);

rotor R2 = rotorFromVectorToVector(_vector(R1* el* inverse(R1)),

imageOfEl,_bivector(dual(imageOfE3)));
return _rotor(unit_e(R2 * R1));
}
}

Figure 7.10: Rotation matrix to rotor conversion.

unit basis vectors symbolically and encode the results. This is straightforward. On an
orthonormal basis {e;}, with associated bivector basis e;; = e; A e;, let the rotor to be

converted be

R=w+xe3 +ye3 +ze.

The normalization of the rotor implies that w? + x> + y* + z> = 1. Then one computes

Relﬁ = (w+xe23 + yes3; +ze12)e1 (w—xe23 —ye3] —Zelz)
= (w2+x2—y2—22)e1+2(—wz+xy)e2+2(wy+xz)e3
= (1 —2()/2 +22)) e +2(—wz+xy)er + 2 (wy + x2) es.

208 ORTHOGONAL TRANSFORMATIONS AS VERSORS

The transformation of the other basis vectors is obtained by cyclicity (resubstituting
the indices 1 - 2 - 3 — 1 and values x — y - z — x). The result is the matrix that
implements the linear transformation of applying the rotor R to a vector:

1-2y2 222 2yx+2wz 2zx — 2wy
[RI= | 2xy—2wz 1-2z2-2x> 2zy+2wx
2xz+ 2wy 2yz —2wx 1 —2x% -2y

This basically is also how one converts a quaternion into a matrix. If you already have
software for that, you can use it, though you may need to to initialize a rotor from its
(quaternion) coordinates, which is the implementation of the correspondence of (7.10):

float w, X, y, z;
rotor R(rotor_scalar_ele2_e2e3_e3el, w, —z, —Xx, —y);

Here w, X, y, and z are the coordinates of a classic quaternion (which are not always
defined in the same way, so beware what correspondence between the quaternion units
i, j, k, and the basis bivectors should be used!).

Implement this rotor to matrix conversion and test its speed when applied to vectors.
The example code provides the basic framework for testing and timing. In our solution,
this classic version was about four times faster than the geometric version.

The converse function, to convert a rotation matrix into a rotor, can also be sped up.
Here we can use the standard conversion of a matrix to a unit quaternion. Consider
the form of the matrix above and use combinations of the elements to retrieve the
four parameters. Addition of selected off-diagonal elements gives products of two of
the parameters; the diagonal elements can be added with appropriate signs to give the
square of only one variable, which is enough to compute the rest. Any trusted site on
quaternion computations gives the details.

7.10.5 JULIA FRACTALS

Fractals are usually introduced using complex numbers. But with the subsumption of
complex numbers into geometric algebra, as explained in Section 7.3.2, they are just
as easily generated using vectors in a real geometric algebra. This has the additional
advantage that they can be extended to more than two dimensions without changing
the algorithm. We explore this for Julia fractals, based on [37].

In the classic computation of 2-D fractal images, the image space is considered to be
a complex plane. Each pixel (indicated by its complex coordinates) is inside the fractal
set if, under repeated application of some mathematical function, the result does not
tend to infinity.

For the Julia set, the complex function is an iterative computation, computing the
complex number Xj;; as the p™ power of the previous number and some additive
constant complex number C:

CHAPTER 7

SECTION 7.10

PROGRAMMING EXAMPLES AND EXERCISES 209

Xpa1 = XL +C. (7.24)

The initial Xy to which the function is applied is defined as
Xo=x+1y, (7.25)

where x and y are the coordinates of the pixel in the image. The fractal picture is obtained
by coloring the pixel according to the value of Xy after a fixed number of iterations.
By varying C, different images are obtained. The constant integer p is commonly 2, but
other values are possible.

The function above can be converted into geometric algebra and then just becomes
an operation on the vectors of a real plane. We have seen in (7.8) that each complex
number X is associated with a vector as X = x/e, with e denoting the unit direction
vector of the real axis.

Taking in particular the fractal with p = 2 involves using the complex square of Xj.
With the substitution X =x/e, this can be computed by a geometric product involving
only real vectors:

X +1 el = xke_l xke_1 +ce_1,

which is equivalent to
Xk+] = XkeXg+cC.

This is clearly a vector, proportional (by xi) to the reflection of the constant unit vector
e in the previous vector x, with ¢ added. The initial complex number Xj is replaced by
the vector x in the image plane for which we want to compute the value of the fractal
function.

With these substitutions, the fractals are computed in a real geometric algebra. Nothing
in this new formulation refers to the plane of vectors, so fractals are easily extended to
n-dimensional Euclidean space by taking the initial x and ¢ as vectors in that space.
In 3-D, this leads to what are known as quaternionic fractals, though without actually
using quaternions. An example of a 3-D fractal is shown in Figure 7.13.

We have implemented the basic algorithm; see the code listing in Figure 7.11. An example
of the output is shown in Figure 7.12. Note that we terminate the evaluation of the
value in the inner loop after a maximum of maxIter iterations. This is done to make
the example more responsive—you can zoom, translate, and change the value of ¢ using
the mouse buttons. By default maxIter = 10, but you can modify this value by pressing
1 to 9 on the keyboard.

Exercise 5a

Experiment with changing the power p in the fractal algorithm. You first need to derive
the corresponding vector update equation!

210 ORTHOGONAL TRANSFORMATIONS AS VERSORS CHAPTER 7

void computeFractal(const e2ga::vector &translation, const eZ2ga::vector &c,
mv::Float zoom, int maxIter,
std::vector<unsigned char> &rgbBuffer, int width, int height)

int idx=0;

// weusee=el ("__el_ct_
__el_ct__e;

" stands for ’el constant type’)

// for each pixel in the image, evaluate fractal function:
for (int imageY = 0; imageY < height; imageY++) {
for (int imageX = 0; imageX < width; imageX++) {
float imageXf = (float)(imageX— width/2);
float imageYf = (float)(imageY— height/2);
e2ga::vector p(vector_el_e2, imageXf, imageYf);
e2ga::vector x = _vector(zoom * p — translation);

for (int i =0; 1 <maxIter; i++) {

x =_vector(x *e*x+c); //p=2

if (_Float(norm_e2(x)) > ledf) break; //led = "infinity’
}

// convert to grey-scale value:

float valF =_Float(norm_e(x)) /10.0f;

unsigned char val = (valF > 255) ? 255 : (unsigned char)(valF + 0.5f);
rgbBuffer[idx + 0] = rgbBuffer[idx + 1] = rghbBuffer[idx + 2] =val;

idx +=3;

Figure 7.11: 2-D Julia fractal code.

Exercise 5b

If you are feeling adventurous, try implementing the #n-D version.

7.10.6 EXTRA EXAMPLE: ROTATIONS USED IN OUR
USER INTERFACE

The following code is used to orbit the scene in a lot of different examples:

// Called by GLUT when mouse is dragged:
void MouseMotion(int x, int y) {

SECTION 7.10 PROGRAMMING EXAMPLES AND EXERCISES 21

e3ga::vector mousePos = mousePosToVector(x, y);
e3ga::vector motion = _vector(mousePos — g_prevMousePos);

// update rotor
if (g_rotateModelQutOfPlane)
g_modelRotor = _rotor (e3ga::exp(0.005f * (motion » e3ga::e3))
* g_modelRotor);
else g_modelRotor = _rotor(e3ga::exp(0.00001f * (motion "~ mousePos))
* g_modelRotor);

// remember mouse pos for next motion:
g_prevMousePos = mousePos;
}

The function starts with determining the mouse motion relative to the previous mouse
event. Since it ends with storing the current mouse position for the next mouse event,
the interesting part must be in the middle.

E2Geometric Algebra, Chapter 7, Example 5: Fractals | _ (O] x|

Figure 7.12: A 2-D Julia fractal, computed using the geometric product of real vectors.

212 ORTHOGONAL TRANSFORMATIONS AS VERSORS

A 3-D Julia fractal. Image from [37], by courtesy of the Lasenby family.

The middle section of the function updates the g_modelRotor in one of two different
ways, depending on the value of the boolean g_rotateModelOut0fPlane:

1. If g_rotateModel0utOfPlane is false, the rotation is in the screen plane. The
updating rotor is formed by computing the exponent of the 2-blade spanned by
the motion and the mousePos.

2. If g_rotateModel0utOfPlane is true, the rotation is outside the screen plane.
The updating rotor is formed by computing the exponent of the 2-blade spanned
by the motion and the vector e3, which is orthogonal to the screen plane.

CHAPTER 7

8 GEOMETRIC
DIFFERENTIATION

Differentiation is the process of computing with changes in quantities. When the changes
are small, those computations can be linear to a good approximation, and it is not too
hard to develop a calculus for geometry by analogy to classical analysis.

When formulated with geometric algebra, it becomes possible to differentiate not only
with respect to a scalar (as in real calculus) or a vector (as in vector calculus), but also with
respect to general multivectors and k-blades. The differentiation operators follow the rules
of geometric algebra: they are themselves elements that must use the noncommutative
geometric product in their multiplication when applied to other elements. As you might
expect, this has precisely the right geometric consequences for the differentiation process
to give geometrically significant results.

This chapter is a bit of a sideline to the main flow of thought in this book. Although the
later chapters occasionally use differentiation in their examples, it is not essential. You
can easily skip it at first reading, and move on to Part II on the modeling of geometries.
We include the subject because it is important for geometric optimization and differential
geometry. These techniques are beginning to appear in practical applications of geometric
algebra.

213

214 GEOMETRIC DIFFERENTIATION

8.1 GEOMETRICAL CHANGES BY ORTHOGONAL
TRANSFORMATIONS

The geometrical elements we have constructed are of various types, and within the context
of the geometry they can change in different ways. Each of these kinds of changes should
find their place in a suitably defined calculus for geometric elements.

* Orthogonal Transformations. Elements of a geometry change when they are trans-
formed, and the class of transformations that is permitted determines the kind
of geometry one has. We are especially interested in Euclidean geometry and the
accompanying transformations of rotation, reflection, and translation (and, by a
stretch of the term Euclidean, scaling). We have already seen that rotations and
reflections can be represented by versors, since they are orthogonal transformations.
In Part II, we will show that it is possible to set up a model of Euclidean geometry
so that translations and scaling are also representable by versors, which will unify
the whole structure of operators.

Orthogonal transformations represented by versors thus become central to
doing geometric algebra. Among these, we are especially interested in rotors, since
they cause the smooth continuous changes that are typical of motions. In their
representation as exponents of bivectors, the calculus of rotors is surprisingly easy
to treat: all differentiation reduces to computing commutators with the bivec-
tors of the transformations. This has a natural connection with the Lie algebras
that are used classically to compute the calculus of continuous transformation
groups.

o Parameterizations. An element of the geometry is often parametrized in terms of
other elements. A specific case is location-dependence, which is parameterization
by the positional vector x, or time-dependence on a scalar time parameter 7. A more
involved instance of parameterization is explicit geometric relational dependence,
such as, for example, when an element X is reflected using a plane mirror a to make
aXa ! Asthe parameter element changes (for instance because it is transformed,
such as when the mirror a rotates), the parametrized element changes as well. Geo-
metric algebra provides a calculus to compute with such changes.

This calculus consists of a scalar operator called the directional derivative to mea-
sure how the parametrized element reacts to a known change in the parameter (and
the result is of the same type as the original), and of a total geometric derivative
that specifies the change relative to any change in the parameter (and that returns
an operator of a different type than its argument). The latter is more general (the
directional derivative merely describes its components), and particularly useful in
geometric integration theory (not treated in this book; see Section 8.8 for pointers).

In all of this, we have to be a bit careful about just copying the classical linear techniques,
such as Taylor series definitions. Simply adding linear approximations of perturbations to
a blade may not add up to a perturbed blade (but instead result in some nonfactorizable

CHAPTER 8

SECTION 8.2

TRANSFORMATIONAL CHANGES 215

multivector), so we need to develop things in a structure-preserving manner. That is why
we start with the calculus of versors, and develop the more classical derivatives in the
remainder of the chapter.

8.2 TRANSFORMATIONAL CHANGES

First, let us consider an element X that has been changed by a rotor R. In the Euclidean
and Minkowski spaces that interest us, the rotor can be written as the exponential of a
bivector R = exp(—B/2), and when we develop this in a power series in B, we get

eBPXEP? = X+ LXB-BX) +--- (8.1)

The first-order term involves a combination that we will encounter a lot in our consider-
ations, so it pays to define it as a new and useful product in geometric algebra. We briefly
introduce it and its properties in Section 8.2.1. Then we play around with variations of
changes to this basic transformation equation.

e We study what kind of changes small rotors can effect in an element X in
Section 8.2.2. Once we have encoded motions as rotors (in Part II), those will be
what we mean by “moving X slightly.” Those motions together form a Lie algebra,
which we connect to geometric algebra in Section 8.2.3.

e Those small changes in X can be propagated simply to other motions that X may
undergo, as we show in Section 8.2.4.

e The most involved change is when the parameters of a motion themselves get
moved—for instance, when a rotation plane translates or a mirror starts rotating.
We study that in Section 8.2.5.

Each of these cases can be described by a well-chosen commutator product, some exactly,
some to first order in the magnitude of the change.

8.2.1 THE COMMUTATOR PRODUCT

The commutator product of two general elements of geometric algebra is defined as the
product x : AR" x AR" - AR" defined by

XxB=1(XB-BX).

It is clearly bilinear and distributive, since it consists of a sum of geometric products,
bilinear in the arguments. We have purposely not used the bold blade notation for its
arguments, since its typical use involves more general multivectors.

This product is not associative. Instead of the identity (AxB)x C = Ax (Bx C), so that
(AxB)x C— Ax(BxC) would be zero, we have

(AxB)xC—Ax(BxC)=Bx(CxA),

216 GEOMETRIC DIFFERENTIATION

which is more symmetrically expressed as the Jacobi identity:
(AxB)xC+ (CxA)xB+ (BxC)xA =0. (8.2)

You can prove this easily yourself in structural exercise 1.

Even though the commutator product can be defined for general multivectors, we will not
need it in completely general form: in our calculus of rotors, one of the two arguments (say
the second argument B) is always a bivector. This has a property of grade-preservation (as
we soon show):

grade(X x B) = grade(X) when grade(B) = 2.

When used in this way, the commutator product is a grade-preserving product
X : /\k R" x /\2 R" - /\k R", extended to the whole space A R". This property of grade-
preservation is important geometrically, for clearly we want all terms in a Taylor series
like (8.1), showing the perturbation of X, to be of the same grade as X.

We prove this grade-preserving property in a slightly roundabout way. We first note
that the terms X B and B X contain the grades x — 2, x, and x + 2 (where x = grade(X)),
since they are geometric products. The subtraction in the commutator product can kill
some terms, so the whole range of grades may not be there. To investigate this, we take
the reverse of the commutator to find

We observe that the commutator product gets the same overall sign under reversion as
X (namely (=1)**=D/2). Among the potential terms of grade x — 2, x, and x + 2, only
the grade of x has precisely that same grade-dependent sign for all grades. (This is due
to the sign pattern of the reversion over the grades, whichis + + — — ++ - —++ -+,
so that two grades up or two grades down may have opposite signs from grade x, for
general x.) Therefore X x B must be of grade x, and the commutator product with a bivec-
tor is grade-preserving.

As an aside, having the commutator product permits listing a pleasing series of equations,
expressing the geometric product in terms of other products when one of the arguments
is a scalar a, a vector a, or a bivector A (not necessarily a 2-blade):

aX=aANX
aX=aAX+alX
AX=ANX+A|X+AxX

All equations hold for any multivector X.

You may have failed to notice the rather subtle difference between the commutator
symbol x and the cross-product symbol x. Fortunately, there is little danger of confusing

CHAPTER 8

SECTION 8.2

TRANSFORMATIONAL CHANGES 217

them in formulas, since we will use the commutator product only when one of the
arguments is a bivector (which is an uppercase symbol, only bold if we know that it is
a 2-blade), and the cross product only when both arguments are 3-D vectors (which are
always lowercase bold).

8.2.2 ROTOR-INDUCED CHANGES

After this introduction of the commutator product, we resume our treatment of the geo-
metrical changes. Using the commutator notation, the transformation of X by the rotor
exp(—B/2) can be developed in a Taylor series as

e B2 XeP? = X+ XxB+ $(XxB)xB+ 4 (XxB)xB)xB+--- (8.3)

You can prove this yourself, guided by structural exercise 2. The series continues the pat-
tern as the generalization of the earlier (7.22) for vectors only. Since the commutator
product with the bivector is grade-preserving, X remains of the same grade under this
transformation (as it should, since the versor product is fully structure-preserving for all
products).

Now suppose that the rotor is close to the identity. It is then the exponential of a small
bivector —6B/2, with § &~ 0. We can write, in orders of §:

e OBI2 X B2 — X 4 X x 6B+ O(6°). (8.4)

We read this as specifying the small change in an element X under a small orthogo-
nal transformation. Such a small transformation must be represented by an even versor,
which we can normalize to a rotor. The transformation caused by an odd versor cannot
be continuously connected to the identity (i.e., done in small steps); you can perform a
small amount of rotation, but not a small amount of reflection. We call small changes
caused by small transformations perturbations.

To preserve the geometric meaning of X, we must demand that any small change 6X
to it must be writable as the application of a small rotor to it. These are the only
kinds of small changes we should consider in our calculus. They are the proper gen-
eralization in geometric algebra of the additive change 6X in a quantity X, beyond the
scalars and vectors of the classical framework. Any small changes that cannot be writ-
ten in this form may disrupt the algebraic structure of X, and with that its geometric
interpretation.

Elements of geometric algebra should only be perturbed by rotors.

We found in (8.4) that to first order, such a change can be written as X x (6B), with 6B a
small bivector.

Remembering that rotors represent orthogonal transformations, you can see how even
for a Euclidean vector x a general additive change 6x is not permitted. Orthogonal

218 GEOMETRIC DIFFERENTIATION

transformations must preserve the norm, and this can only happen if the change 6x is
perpendicular to x. This must mean that x - (6x) = 0. The general element of grade 1 and
linear in x with that property is 6x = x| 6B, with 6B a small general bivector (for indeed
x - (x|6B) = x| (x|6B) = (x Ax)|6B = 0). And for vectors,

6x = x|6B = }(x5B — 6Bx) = xx 6B,

so that it indeed has the desired form of a commutator product.

This limitation of the changes may appear unnecessarily restrictive, since it even forbids a
simple translational change 6x to a vector x. Indeed it does, for x denotes a 1-D direction,
and that should only be turned by a rotor. But fortunately this limitation to rotors does not
automatically mean that we cannot translate geometrical points in any direction. It merely
necessitates us to find a way to represent that geometrical point in geometric algebra such
that its translation is a rotor. In such a representation, any small translation would be
permitted. We will present such a representation in Chapter 13. For now, please accept
that the principle of allowing only rotor-type changes is not a geometrical limitation, but
merely an algebraic structuring of the treatment of such changes.

8.2.3 MULTIPLE ROTOR-INDUCED CHANGES

When two small changes occur successively, by exp(—5;A/2) and exp(—8,B/2), respec-
tively, the resulting total change is

6—623/2 e—élA/ZXeélA/Z eézB/Z —

=X+ Xx(5;A+6B) +
+1 (X% 81A) x 814 + 2(X x §1A) x 62B + (X x 8,B) x 6,B) + O(8°).

To first order in the 8s, the changes act independently and additively, but there is an inter-
esting and asymmetrical structure in the second-order changes. This is most clearly seen
when we attempt to undo the changes in opposite order. Many terms cancel (obviously
those of first grade), and the Jacobi identity can be used to merge two terms, giving the
result

6528/2 eﬁlA/2 6—623/2 e—ﬁlA/Z Xeﬁ;A/Z 6623/2 e—élA/Z 6_523/2 —

= X+ Xx(81Ax 8,B) + O(8%).

To the first relevant order, this changes X by an additive commutator with a bivector.
Therefore, the commutator combination of two changes together acts like a new versor-
type change, according to the bivector (6;A x §,B):

6523/2 eélA/2 6—523/2 e—5IA/2 XeélA/2 6523/2 6—51A/2 6_623/2 —

CHAPTER 8

SECTION 8.2

TRANSFORMATIONAL CHANGES 219

~ 6_6152A X B/2 X€5152A X B/2

The new versor is of a smaller order than the two original changes (6> rather than 6).
Studying this combination of changes in transformations gets us into Lie algebra, classi-
cally used to analyze small continuous transformations. It can for instance be employed
(in control theory) to prove that a few standard transformations suffice to achieve any
transformation. In geometric algebra, the Lie algebra computations reduce to making a
bivector basis for the space of transformations. That amounts to choosing a few bivectors
as basic and trying to make the others by commutator products, commutators of com-
mutators, and so on. This is possible because the algebra of bivectors is closed under the
commutator product. If you can make a basis for the whole bivector space, this proves
that any motion can be achieved by doing commutators of motions.

As an example, let us consider the combination of two rotations in Euclidean 3-space,
in the A=e; A e; plane and the B=e; A e3 plane, and investigate if we can make any
rotation by a combination of these basic rotations. The commutator of the bivectors is
A x B = —e3 Aey, so that performing a small rotation over angle ¢ in the A plane followed
by a small rotation y in the B plane, and then reversing them, leads to a small rotation
¢y in the e; A e3 plane. That rotation was not among our basic transformations, but it
clearly completes the set of bivectors for rotors. It shows that with the two rotations we
can make the third independent rotation. Directions in 3-D space are controllable with
only two basic rotations.

By contrast, translations in 3-D really need three independent components to reach an
arbitrary position. The reason is that translations commute, so that any commutator is
zero. Geometrically, this implies that no independent translation can be created from two
translations in a plane. (We will meet the bivectors of translations only later, in Chapter 13,
but the argument is simple enough not to require precise representation.)

As a third example, consider the maneuvering of a car. You can only steer and drive (for-
ward or backward), yet you can reach any position in any orientation. The car is obviously
controllable. The basic parallel parking maneuver that allows a car to move sideways is
actually a (simplified) sequence of two commutators of the steer and drive actions. For
more details, see [16].

8.2.4 TRANSFORMATION OF A CHANGE

In Section 8.2.2, we showed the nature of small changes in elements like X caused by
small rotors. Such changes can propagate through additional versors. For instance, if we
have the transformation X = VX/V, and X is perturbed by a versor with characterizing
bivector A, we can rewrite the result in terms of a perturbation of the original result:

V(e—é'A/ZXe5A/2) V—l — (V€_5A/2 V—l) (VX V—l) (VeéA/Z V_l).

Therefore, the result of the mapping gets perturbed by the mapped perturbation

220 GEOMETRIC DIFFERENTIATION

_ _ _ -1
Ve 5A/2V 1 e VoAV /2)

by (7.21). You can simply substitute the error bivector 6A by V §A/V to get the total error
bivector of the perturbation on VX/V. No need for first-order approximations, the result
is exact, and also holds for odd V.

8.2.5 CHANGE OF A TRANSFORMATION

Things are somewhat more subtle when it is not X that is perturbed in the mapping
X — VX/V, but the versor V (which may be odd or even, though we temporarily drop
the sign to show the structure of the argument more clearly). This happens, for instance,
when you reflect in a plane that has some uncertainty in its parameters. When the versor

—0A/2 Ve&A/2

V becomes e , the total perturbation is

(e—ﬁA/Z Ve&A/Z)X(e—(SA/Z V—l €5A/2).

We need to express this in terms of a versor operation on the transformation result VX/V
to find out how that is perturbed. When we do so, the transformation versor on VX/V
can be rewritten to first order as

AR eBAR -l o (V4 VXA V! = 1 4+ (VX BA)V. (8.5)

These are the first few terms of the Taylor series of the exponential exp((V x 6A4)/V'), con-
sidered as a function of A. So we find for the versor operator computing the perturbed
result to first order:

e—&A/Z Ve(SA/Z V—l — e(VX 5A)/V'

This should be written as the versor e"%%/2, and that demand defines the bivector of the
local perturbation 6B as

0B = =2(Vx6A)IV = 6A — VSA/V. (8.6)

This method of computation of a versor using only a first-order Taylor series is fine, as
long as you remember that this is only valid to first order. The resulting versor is not the
exact result valid for a big change to V. We can imagine the local validity of this technique
when we rotate a mirror around a general axis. To a good approximation, the reflection
rotates around the projection of the rotation axis onto the mirror, and that is described by
the first-order rotor so that the reflection describes a circular arc. However, as the mirror
rotates more, this projected axis changes and higher-order effects kick in; the circular arc
was just a local second-order approximation to what is actually a caustic. (We will treat
this application in Section 8.5.2.)

CHAPTER 8

SECTION 8.4

SCALAR DIFFERENTIATION 221

8.3 PARAMETRIC DIFFERENTIATION

After this treatment of the transformational changes of an element, we study the second
type of change we mentioned in the introduction.

Parametric differentiation is concerned with changes in elements in their dependence on
their defining constituents. As such, it generalizes both the usual scalar differentiation and
the derivative from vector calculus. All differentiation is based on functional dependence
of scalar functions. In the usual approach, when these scalar functions are coordinate
functions of a parameterized spatial curve or a vector field, the derivatives themselves
can be reassembled into a geometric quantity such as the tangent vector to the curve or
the divergence of the vector field. Such elements are truly geometric in that they do not
depend on the coordinate functions that were introduced, but this is not always clear from
either their derivation, their form, or their use.

Geometric algebra offers a way of computing with derivatives without using coordinates
in the first place, by developing a calculus to apply them to its elements constructed using
its products. However, proper coordinate-free definitions of the geometrical derivatives
along these lines would require us to view them as a ratio of integrals. This would lead us
a bit too far astray—ryou are referred to [26] for such a treatment. Here we will follow a
more direct coordinate-based route, starting from scalar differentiation, but we quickly
rise above that to attain truly geometric differentiation, expressed in coordinate-free for-
mulas and techniques.

We construct our differentiation operators from specific to general, in the order of scalar
differentiation, directional vector differentiation, total vector differentiation, and multi-
vector differentiation. The final concept is the most general and contains the others, but
we prefer to build up to it gradually.

8.4 SCALAR DIFFERENTIATION

Scalar differentiation of a multivector-valued function F(z) relative to its scalar para-
meter 7 is defined in the usual manner:

di F(7) = lim w
T -0 €

Geometric algebra has little to add to this form of differentiation, even though the
function can now take values in the algebra. This type of differentiation is simply a
scalar operator that commutes with all elements of the algebra. Therefore, it can be
freely moved in a geometric product of multivector-valued functions, and obeys the
product rule:

LF(x) G(1)] = L[F(1)] G(r) + F(z) L[G(7)]. (8.7)

222 GEOMETRIC DIFFERENTIATION

Yet we will see later that scalar differentiation is a particular instance of a more general
multivector differentiation, and in preparation for that we denote it as 0.

Since the function F is typically defined using geometric algebra products, the dif-
ferentiation result may also allow compact formulation using those products, so it is
worth carrying out these differentiations symbolically. The following gives a simple
example:

Leta vector x follow a curve on an orbit parameterized as x(z) by the time parameter
7. If we want to differentiate the scalar-valued vector function x + x* (involving
the geometric product) along the curve, this is done in careful detail as follows:

0:x(7)% = 0¢[x(7) x(7)]
= 0;[x(7)] x(7) + x(7) 9;[x(7)] (product rule)
= 20.[x(7)] - x(7) (inner product definition)

=2x(7) - x(7) (dot for time derivative)

The result of the scalar operator 9, applied to the scalar-valued function x(7)? is
therefore a scalar, as you would expect. We will often leave the parameterization
understood, and would then denote this in shorthand as 9,x* = 2x - x.

The scalar differentiation can easily be applied to the constructions of geometric algebra.
As an example, we show the scalar differentiation of a time-dependent rotor equation. Let
the rotor be R = ¢71%/2, where the bivector angle I¢ is a function of 7 so that both rota-
tion plane and rotation angle may vary. We use the rotor to produce a time-dependent,
rotated version X(7) = R(t) X R(z) ! of some constant blade X . For constant I, scalar
differentiation with respect to time gives (using chain rule and commutation rules)

ar[e—ld)/ZXOech/z]

= —%ar[ld)](e_ld’/zxoel‘b/z) + %(e_ld)/zxoeld)/z)ar[ld)]

= 1(X0,[1$] — 9-[1d] X)

X x 07 [1d]. (8.8)

0:X(7)

This retrieves the commutator form of the change in a rotor transformation: X changes
in first order by its commutator with the derivative of the bivector of the change. This
agrees with our analysis of changes in a rotor-based transformation as a commutator
in (8.4). For the more general case of a variable I, see Structural Exercise 6.

The simple expression that results assumes a more familiar form when X is a vector x in
3-space, the attitude of the rotation plane is fixed so that d%l = 0, and we introduce a
scalar angular velocity w = c%d). It is then common practice to introduce the vector dual
to the plane as the angular velocity vector @, so ® = (wl)* = wl/I3. We obtain

dx=xx3I$) =xx(@h) =x](@h) = xA®)]; =0 xXx,

CHAPTER 8

SECTION 8.4

SCALAR DIFFERENTIATION 223

where the final symbol x is the 3-D vector cross product. This shows the correspondence
of our scalar differentiation with the classical way of expressing the change.

As before when we treated other operations, we find that an equally simple geometric
algebra expression is much more general than the classical expression; here (8.8) describes
the differential rotation of k-dimensional subspaces in #-dimensional space rather than
merely of vectors in 3-D.

8.4.1 APPLICATION: RADIUS OF CURVATURE OF A
PLANAR CURVE

In the differential geometry of planar curves in the Euclidean plane R>?, you often want
a local description of a parameterized curve r(7) in terms of its local tangent circle. That
characterizes the curve well to second order; the local curvature is the reciprocal of the
radius of this tangent circle. The following derivation is a good example of a proper
classical coordinate-free treatment, borrowed from [50], which we are then able to com-
plete to a closed-form solution using geometric algebra.

Let the local tangent circle be characterized by its center ¢ and its radius p. Then a
point r lies on it if it satisfies (c — r)> = p?. Now we let r be the parameterized curve
point r(z), which relative to its parameter 7 has first derivative f(r) and second deriva-
tive (7). (This handy overdot notation of these “fluxions” is common in physics texts.)
Taking derivatives of the defining equation, we get the following list of requirements
on c and p:

(c-n?=p
2(c—=r)-t=0
2t t+2(c—1r)-f=0

Our source [50] stops here, but we can continue because we have geometric algebra.
The occurrence of (¢ — r) in an inner product with both r and ¥ makes us wonder what
(c—1)] (fA¥) might be, since that contains both terms by (3.17). Because of the equations
above, it is fortunately independent of both ¢ and p:

(c—0)]@EAD)={(c—1)-B)f—((c—1)-P)F = —(1"-1")1":—1"3 (8.9)

Moreover, since in 2-D any trivector is zero, so is (c—r) A(fA¥). Therefore, the contraction
in (8.9) can be replaced by a geometric product. Since that is invertible, we can perform
right division and obtain
I"3
cC=r——
FAF
as the closed-form solution for ¢, and by substitution we obtain p*:

’ (f3)2
p=\T——"—]-
AT

224 GEOMETRIC DIFFERENTIATION

In both expressions, we recognize the occurrence of the reciprocal of the rejection of ¥ by
r—so only the component of ¥ orthogonal to ¥ contributes to these geometric quantities
(the other part is related to reparameterization, and is geometrically less interesting). The
center of the tangent circle is clearly in the direction orthogonal to ¥.

The ensuing expression for the curvature requires a square root of a square of a vector; its
sign should be related to choosing a positive direction for vectors orthogonal to f. Using
the pseudoscalar I, of the plane for dualization, we use " as the positive direction relative
to f. Then the curvature is

@A)

== e

This is easily converted to the familiar coordinate form by setting r(7) = x(7) e; + ¥(7) €2,
with the parameter derivatives of the functions x and y denoted by overdots:

R
@

This expression takes considerably more work to derive when using coordinates from the
start.

8.5 DIRECTIONAL DIFFERENTIATION

Let F(x) be an element of geometric algebra dependent on a vector x. (If x is the position
vector, this would be a position-dependent quantity, such as a vector field or a bivector
field in the space R”.) We may want to know how F(x) changes at a particular value of x if
we would move in the direction a. It will clearly vary by an amount of the same grade type
as F itself, so such a directional differentiation is a scalar operator on F(x). It is denoted
by (a % dx)—we will explain why soon—and defined as

(a % 0y) F(x) = lim €0 —F®)

e—0 €
Since it is a scalar operator, it commutes with all elements. You might expect that this
implies that it acts very much like differentiation in real calculus, but that is incorrect: the
geometric products in the functions it acts on make for rather different (but geometrically
correct) results.

As an example, the function x ~ x° is defined everywhere, and gives a scalar field
on the vector space R". Its directional derivative is

CHAPTER 8

SECTION 8.5

DIRECTIONAL DIFFERENTIATION 225

(x+ea)> —x?

(a*d)[x*] = lim ————— (definition)
€— €
. + eax + €%a’ .
= lim cxareaxrea (definition)
e—0 €
=xa+ax (limit process)
=2a-x (inner product definition)

You see the familiar result: there is no variation when a is perpendicular to x, and
maximum variation in the x-direction.

Since the differentiation is a scalar operator, it can be moved freely through expressions,
and obeys a product rule like (8.7).

8.5.1 TABLE OF ELEMENTARY RESULTS

We do some basic derivations and collect them in Table 8.1, which contains other results
that follow the same pattern. (In our derivations here, we assume that all vectors reside
in the same space, but the table is slightly more general and requires projection of the
parameter vectors to the space of x, hence the occurrence of P[a]. We explain this in
Section 8.6.)

e The identity function F(x) = x has the derivative you would expect:

(ax0y)X = 111% (xtea)-x -
€—

Scalar differentiation of the inner product leads to a substitution of x by its
change a:

(axdy)(x-b)=a-b.
e The inner product with a vector-valued linear function f unexpectedly pulls in the

adjoint function f of Section 4.3.2:

(a % dy) (f[x] - b) = (a % dy) (x - f[b]) = a - f[b].

The scalar derivative of the inverse 1/x = x ! gives a surprising result:

1 1 1
—1 .
=1 - - -
(@xdx e e <x+€a x>
1 X+ea 1
= lim — - =
e~0 ¢ \x2+2a-x X
o1 x(1+ex La) 1
= lim - - =
=0 ¢ \x2(1+2ea-x1) x
1 1
=1im—< (1+ex™ a)(1—2€a x_')——>
e—=0 € X

226

GEOMETRIC DIFFERENTIATION

the lower-dimensional manifold.

Directional derivatives and vector derivatives of common functions in an
m-dimensional vector manifold R” within a larger vector manifold R". Here x, a are vectors, A
is a blade, P[] is shorthand for the projection Py, []: R" — R™ locally mapping vectors onto

(a*x0x)X
(a*dy) (x-b)
(adg)x !

(a# dx) |||

X
(a* 0X) W

P[a]

Pla]-b
—x~!Pla]x~!
k(Pla] - x) [|x[|*~2

Pla] — k(P[a] - x)/x
B[

Ox X

Ox - X

Ox N X
Ox(x - a)
Ox(X N a)
Ox(xA)
Ox(x | A)
Ox(X A A)
Ox(Ax)
oxlIx|l
oxllx]*

0y —=—
X Ik

ox (f[x] - y)

m
0

P[a]

(m—1)P[a]

m P[A]

grade(A) P[A]

(m — grade(A)) P[A]
(m — 2 grade(A)) P[A]

X

i
kllx|*>x

m—k
[Ix|[*

PIflyl]

CHAPTER 8

SECTION 8.5

DIRECTIONAL DIFFERENTIATION 227

=x"! (x_1 a—2a-x 1

=—x"lax7L
This clearly differs from the classical result in real analysis (ignoring all commuta-
tion restrictions, we would get the familiar —a/x?). The construction can be imme-
diately interpreted geometrically, as in Figure 8.1. When you realize that x ! is the
inversion of x in the unit sphere, you see that a change a in x is a 1/x?-scaled version
of the reflection of a relative to the plane perpendicular to x, which is exactly what
the differentiation result signifies.

o For powers of the norm, which are scalar functions, we retrieve a semblance of the
usual calculus result.

1
(a0 I = lim ~ (Jlx+eall* = 1xI1)
e—0 €
1
= tim = (Il CV 1+ 26xT -) = 1xl))
e—0 €
1
= lim - <||x||k(1 +kex~! - a)— ||x||k>
e—=0 €
= kx-a|x|[<2.

The other entries of Table 8.1 can be demonstrated using similar techniques.

(x+a)!

X+a

Figure 8.1: Directional differentiation of a vector inversion. The small additive perturbation
vector a is reflected in the plane with normal x to make —xax ™!, and the result scaled by 1/x
to produce —x~'ax~! as the correct difference (to first order) between (x+a)~' and x~!.

228 GEOMETRIC DIFFERENTIATION

8.5.2 APPLICATION: TILTING A MIRROR

Consider the situation where we have a planar mirror in the origin with normal vector n
(not necessarily a unit normal). The reflection of an element X in this mirror is given by
(see Section 7.1):

X B n[X]= nXn '

We now perturb the mirror, for instance by a small rotation, and want to know what
happens to the reflection result. Let us do this in two steps: first we see how any change
in n affects the reflection result; then we relate the change in n to the parameters of the
perturbing rotational action on the mirror.

o For the first step, we apply the directional derivative for an a-change in n:

aXn!'+nX (—n_1 an_l)

(an_l) (n)/(\ n_l) - (n)/(\ n_l) (an_l)
= 2(an_l)x(n)/(\n_])

= (n)? n_l)x(Zn_1 Aa)

(a*d)nXn1

The final simplification holds because the scalar part n~! - a of n~! a does not con-
tribute to the commutator product result.

The result shows that it is the part of a perpendicular to n that causes changes to the
reflection. This is, of course, just what we would have expected, since the magnitude
of n does not affect the reflection n[X] atall. A small orthogonal change to a vector is
effectively a rotation, so the directional derivative is eminently suited to process the
rotational change. But there is more: to first order, the change in the reflection n[X]
can be written as a commutator. Therefore, it can be represented (at least locally)
as a rotor transformation. Comparing with (8.4), we see that the bivector B of the
transforming rotor equals B = 2n~! A a. So the reflected element n[X] describes
a rotation as the mirror normal changes by a, in the plane n~! Aa, by a rotation
angle ||n~! A a]|. Recognizing this is in fact a local integration, since it reverses the
differentiation process.

 In the second step, we need to relate the change a in the mirror normal n to an
actual transformation. Let us rotate the mirror using a rotor exp(—Id/2), with I the
unit 2-blade of the rotation plane and ¢ a small angle. Then, according to (8.3), the
normal vector n changes to first order by the vector n x Ip. This is therefore what
we should use as our a.

» Combining the two results, the bivector of the total transformation in the reflected
Xis
B=2n_1/\a=2d>n_1/\(nxl)=2d>n_1/\(nJI). (8.10)

That result is valid in any number of dimensions. It gives the bivector of the resulting
rotation of n[X], which specifies both the rotation plane and its angle.

CHAPTER 8

SECTION 8.5

DIRECTIONAL DIFFERENTIATION 229

To get a better feeling for the geometry of (8.10) in 3-D, introduce the unit rotational axis
of the mirror motion m = I*, normalize n to unity, and express the result as a rotational
axis b = B*. Some manipulation gives

b=2dn|(n Am) =2d(mAn)/n.

This axis is the rejection of m by n, or (if you prefer) the projection of the axis m onto the
plane with normal vector n. That projection obtains a factor sin y of the angle y between
n and m. The rotation angle f for the reflection n[X] of X under the rotation of ¢ around
the m axis is the norm of b, which evaluates as

f = 2dsin(y). (8.11)

This is a rather powerful result acquired with fairly little effort, only at the very last
moment requiring some trivial trigonometry. Figure 8.2 sketches the situation. Two

true R[N[x]]
18t order R[n[x]]

—nxn-!

Figure8.2: Changes inreflection of a rotating mirror. The yellow mirror with normal n rotates
around the m axis over an angle &, producing the green mirror plane. This changes the reflec-
tion —nxn~! of a vector x to the gray vector. That change is to first order described as the
rotation of —nxn~! around an axis that is the projection of m on the n plane, over an angle
2¢ siny, where yis the angle between n and m. This involved and geometrically quantitative
figure is the result of only a few lines of coordinate-free computation in geometric algebra.

230 GEOMETRIC DIFFERENTIATION

special cases make perfect sense: if y = 0, then n and m are aligned, and indeed no
rotation over m changes the reflection of X; and if y = #/2, then n and m are per-
pendicular, and any rotation ¢ of the rotation plane becomes a 2¢ rotation of the
reflection n[X].

We will get back to this rotated reflection in its full generality in Section 13.7.

8.6 VECTOR DIFFERENTIATION

In scalar differentiation, we consider a vector function as a changing in time (or some
such scalar parameter). We may also want to consider F(x) as a function of position as
encoded by the vector variable x, and differentiate directly relative to that variable. This
is most easily defined by developing it on a basis, doing a directional differentiation with
respect to each of the components, and reassembling the result in one quantity. It is the
V-operator of vector analysis, but we will denote it as dx. This explicitly specifies the vari-
able relative to which we differentiate and prepares for a generalization beyond vectors
and toward differential geometry. On a basis {e;}!”, for the space R™ in which x resides,
let x* denote the coordinate functions of the vector x so that it can be written as

m
X = Z x'e;.

i+1

We will be setting up this vector differentiation in a very general framework, in which
the space R™ of x may reside on a manifold (curved subspace) within a larger space R"
(for instance, x may lie on a 2-D surface in 3-D space). The basis for R” may then not be
orthonormal, so we use the reciprocal basis of Section 3.8, and compute x* as x* = e’ - x.

The directional derivative in the coordinate direction of e; is simply the scalar derivative
of the coordinate function:
il .
(e dx) = o O«

As their notation suggests, we can assemble the results of each of these directional oper-
ators and consider them as the components of a more general vector derivative operation
defined on this basis as

M=

o= Y € (e % dy) = Z e 2. (8.12)

1 i

1

(When you study reciprocal frames, expressions like these are actually coordinate-free
when they contain the upper and lower indices that cancel; in physics, lower-index vectors
are called covariant and upper-index vectors contravariant, but we will not follow that
terminology here.)

The operator 0y computes the total change in its argument when x changes in all possible
ways, but it keeps track of those changes in a geometrical manner, registering the e;-related

CHAPTER 8

SECTION 8.6

VECTOR DIFFERENTIATION 231

scalar change in the magnitude of the e’ component of the total change. Preserving this
geometrical information is surprisingly powerful, and in advanced geometric calculus it
is shown that this operator can be inverted by integration (see [26]).

You should interpret the grade of the operator dy as a vector (i.e., as the grade of its sub-
script). As a geometrical vector operator, it should conform to the commutation rules for
geometric products. We will not use the square application brackets here, for it is more
productive to see this as a geometric element rather than as a linear operator, and to move
it to other places in the sequence of symbols for computational purposes. The subscript
x in dx denotes which vector variable is being differentiated (and this is necessary when
there is more than one).

As an example, we apply the vector differentiation to the function F(x) = x2, rela-
tive to its vector parameter x:

0x x> = Y e, (3 xixk e ek) (coordinate definition)
i ik
=Ye xkei-er+ Y xiei- e (coordinate independence)
j P
Pk j (8.13)
=2Y¢ (e-x) (linearity)
i

=2x.

We obtain the result 2x, which you might have expected from pattern matching
with scalar differentiation (though that is a dangerous principle to apply). The
result is not a vector, but a vector field that has the value 2x at a location x.
This vector field is in fact the gradient of the scalar function x> (i.e., the
direction in which it varies most, with a magnitude that indicates the amount
of variation).

The recognition of the multiplication in dx F(x) as the geometric product makes it quite
natural to expand this in terms of the inner and outer product, simply applying (6.14):

0x F(x) = 0y | F(X) + dx A F(x).

For a vector-valued function F, the first term corresponds to the usual divergence
operator div[F(x)] = V - F(x), and the second term is related to the curl operator
rot[F(x)] = V x F(x), written in terms of the 3-D cross product; it is actually its dual.
As with the other uses of the cross product, replacing the curl by an outer-product-
based construction ensures validity in arbitrary dimensionality. If F is scalar-valued,
then only the dx A F(x) term remains, and is identical to the gradient operator
grad[F(x)] = VF(x). For a symmetric vector function F* (equal to its adjoint), the
part dx A F¥[x] equals zero, for a skew-symmetric vector function F~ (opposite to
its adjoint), the part dx - F~[x] equals zero.

232 GEOMETRIC DIFFERENTIATION

8.6.1 ELEMENTARY RESULTS OF VECTOR DIFFERENTIATION

We have introduced the vector differentiation as the geometric algebra equivalent of
the V-operator from vector analysis. Although the definition as we have given it uses
coordinates, the vector differentiation is a proper geometrical operation that is not
dependent on any chosen coordinate system. When you apply it, you should avoid
coordinates, and instead use results from a table of standard functions (combined
with product rule and chain rule of differentiation). We give such a collection of
useful elementary results in Table 8.1, and derive some of its more educational entries
below.

o Identity Function x. The identity function F(x) = x has a derivative that depends
on the dimensionality of the space R in which x resides.

OxX = Z ¢ %[Z xjej]
i j

_ el e — i
—Z(Sie ej—Ze €;

iy] i

=2ei-ei+2eiAei=2 l+0=m
i i i

(Here we used Y, e ne = 0, given as (3.35).) This algebraic derivation gives
a clue for the correct geometrical way to look at this: all changes in all direc-
tions are to be taken into account. In m-dimensional space, there are m directions,
and each of these provide a unit change in coordinates with each unit step, for a
total of m.

Since the vector differentiation applies as a geometric product, you can split the
result in an inner and outer product part that the computation above has shown to
obey dx - x = m and dx A x = 0. The outer product result dy A x = 0 shows that you
can think of dy as being like a vector in the x direction, and the inner product result
then shows that it is like m/x (but view these as no more than mnemonics; dy is of
course not a vector but an operator).

e Inner Product x - a. When we study the change in the scalar quantity F(x) = x - a
(geometrically the projected component of x onto a vector a~!), we should in gen-
eral allow for the variations of x to be in its m-dimensional manifold (curved sub-
space), whereas a may be a vector of the encompassing space R" (for instance, x on
a sphere, a a general vector in 3-D space; x - a is well defined everywhere on the
sphere, so it has a derivative).

Two things happen to the measured changes caused by variations in x. First, even
when x and a are in the same m-dimensional space, the quantity x-a can only pick up
the changes in the direction a, so summing over all directions only this 1-D variation
remains. Second, x cannot really vary in the a-direction, since it has to remain in its

CHAPTER 8

SECTION 8.6 VECTOR DIFFERENTIATION 233

m-dimensional manifold, or more accurately, in the tangent space at x isomorphic
to R™, for which {e;} " is the basis. It is the projection of the a-direction onto this
tangent space that must be the actual gradient.

The algebraic computation confirms this, with indices i and j ranging over
coordinates for the space in which x resides, and k over the space of a, using a
local coordinate basis for the total n-dimensional space in which the problem is

defined:
Ok (x-a) = Zei %[Z ijakej - ex]
i ik
= Z Zukei(ei~ek)
ik
= Y dei=Pylal,

since the summation of the a components is only done for the elements in the
basis of the tangent space at x with pseudoscalar I,,,. In tables, we will use P[a] as
shorthand.

e Outer Product x A a. When we compute the variation of the bivector x A a, this can
be rewritten as the variation of xa — x - a. The variation over x in the first term
causes a factor m (the dimensionality of the space that x resides in), but of course it
picks up only the part P[a] of a. The second term we have seen above, and the total
variation is now dy (x A a) = (m — 1) P[a].

e Norm ||x||. Geometrically, what would you expect the derivative of the norm to be?
Since it is a scalar function, the vector derivative will be the gradient of the norm, i.e.,
the direction in which it increases most steeply weighted by the weight of increase.
So the answer should be x/||x||, the unit vector in the x direction. The algebraic
computation confirms that it is:

i ; 1/2
o lIx|l = Zelax,»(z“ Xk e; - er)
ik

i b
=Y e xre e+) e eni2lxll)
i k j

e (e /x|

x/||x]|.

This result depends on the metric through the norm ||x]|.

 Adjoint as Derivative. When we introduced the adjoint f of a function f in Sec-

tion 4.3.2, we only had an implicit definition through x * f[y] = f[x] % y. Using the
vector derivative, we can define the adjoint explicitly as

234 GEOMETRIC DIFFERENTIATION

fIx] = oy (fly] *), (8.14)

where both x and y are in the same space R™ (to avoid the need for a projection).
You can prove it immediately by rewriting the argument of the differentiation using
the earlier definition. This definition can also be applied to nonlinear functions, and
it then computes a local adjoint, which may be different at every location x.

8.6.2 PROPERTIES OF VECTOR DIFFERENTIATION

The vector differentiation operator is clearly linear. It also obeys a product rule, though we
need to take care of its noncommutativity. Therefore, it becomes inconvenient to denote
its application by square brackets; we need a more specific notation. Dropping the refer-
ence to x for readability, we express the product rule as

d(FG)=0FG+0FG,

where in each term the accent denotes on what factor the scalar differentiation part of
the 0 should should act—the geometric vector part is not allowed to roam, so we cannot
simply say that the operator acts on the element just to the right of it. To give an example:

Oy (XX) = Ox XX + 0x XX = Ox XX + 0y (2(X - X) — XX) = 204 (X - X) = 2x.
Note that the subtle swap to get the elements into standard order precisely kills the term
Ox XX = MX.
Because of the noncommutativity, there are other product rules, such as
FIG=FoG+FoG,
with the accents again denoting how to match each differentiation with its argument.
There is also a chain rule, which looks a bit complicated. Let the coordinate x be hidden

by a vector-valued function vy, so that the dependence of F on x is F(y(x)). Then the chain
rule of vector differentiation is

ox F(y(x)) = Ox (Y()\() * ()y) F(y).

The two geometric products in this equation can be executed in either order due to
associativity. If we start from the right, this states that we should first consider F as a
function of y and do a directional differentiation in the y(x)-direction; that typically
gives something involving both y(x) and y. We should not substitute x in the latter, but
differentiate the x-dependence in the former. This can be confusing, so let us do an
example.

Let G(y) = y?, and y(x) = (x- a)b. If we would just evaluate G as a function of x by
substitution, we would get G(x) = (x - a)? b2, so that 0x G(x) = 2(x - a) ab’. The
chain rule application should produce the same answer.

CHAPTER 8

SECTION 8.7

MULTIVECTOR DIFFERENTIATION 235

We first evaluate from the right, so we start with the directional differentiation
of G(y) = y?. For a general vector z, the directional derivative (z * dy) v =2z-y,
so with z = y(x) the result is 2 y(x) - y = 2 (x- a) (b - y). Note that we kept y. In the
second step, this expression needs to be differentiated to x, giving OX(Z(X -a)(b-
y)) = 2a(b - y). That is the answer, but we prefer it in terms of x, so we should
substitute the expression for y in terms of x, giving the same result as before.

If instead we had evaluated from the left, we would first need to evaluate
Ox (y(i{) * 6y) = Oy ((x -a) b) * dy = a (b * dy). Do not be bothered by the presence
of dy in this derivation; since it is not differentiating anything, it behaves just like
a vector. Now we apply the resulting operator to G(y) = y?, giving 2a (b - y) as in
the other evaluation order. Here, too, you would need to substitute the expression
y(x) to get the result in terms of x.

The operator we just evaluated can be rewritten using the definition of the
adjoint of the function y(x) = (x - a)b, which is y(x) = (x - b) a. We then rec-
ognize a (b * dy) as the adjoint of the y-function applied on dy, i.e., y[dy]. We can
also use the adjoint to write the actual answer for our differentiation of the squar-
ing function G as 2 y(y(x)), which actually holds for any function y used to wrap
the argument x.

The implicit understanding of how to deal with the substitutions in the equation is a bit
cumbersome. A more proper notation for the process may be to keep the x in there at all
steps:

dx G(y(x)) = 0x (Y(X) * dyn) G(y(x)) = Y9y] G(y(x)). (8.15)

The final rewriting uses the differential definition of the adjoint of (8.14) (which also
holds for nonlinear vector functions y). This usage was motivated in the example. It
means that we treat the differentiation operator dy) just as the vector it essentially is.
Then the differentiation with respect to y(x) should be understood as above, but the
lack of an accent denotes that that particular x-dependence should not be differentiated
by Ox.

So in the end, the chain rule is essentially a transformation of the differentiation opera-
tor: when an argument gets wrapped into a function, the differentiation with respect to that
argument gets wrapped into the adjoint of that function.

8.7 MULTIVECTOR DIFFERENTIATION

We can extend these forms of differentiation beyond vectors to general multivectors,
though for geometric algebra, the extension to differentiation with respect to blades and
versors is most useful. Another extension is the differentiation with respect to a linear
function of multivectors, which finds uses in optimization. We will not treat that here,
but refer to Chapter 11 in [15].

236 GEOMETRIC DIFFERENTIATION

8.7.1 DEFINITION

The definition of directional multivector differentiation is a straightforward extension of
the idea behind the directional vector differentiation. You simply vary the argument X of
a function additively in its A-component, so that A should at least be of the same grade as
X (as for instance when X is perturbed by a transformation, to first order). The definition
reflects this grade-matching in its use of the scalar product:

F(X + €A) — F(X)

(A * 0x) F(X) = lim
e—0 €

We emphasize that this is a scalar operator, since the grade of the result is the same as that
of the original function.

As in the case of the vector derivative, we can see the directional multivector derivative
as merely one component of a more general multivector derivative. We introduce coordi-
nates now for the total 2" -dimensional space of multivectors in the tangent space R” at
X. To distinguish it clearly from the m-dimensional vector basis, let us denote this mul-
tivector basis by a running capital index: {el}?:]. As with the vector basis in the vector
derivative, this may not be orthonormal, so we also employ a reciprocal basis {e’ }%:1; see
also Section 3.8. Then the multivector derivative is defined as

ax =Y e (erxx),

1

where e; in principle runs over all 2" elements 1, e;, €; A ej, and so on, and the scalar
product selects only the basis elements that are components of X.

This clearly contains vector differentiation as a special case. But also scalar differentiation
is included: if we let X be a scalar X = 7, only the basis element e = 1 is selected, so
0, =1(1%0;)=0=%09;) = %., conforming to our earlier definition of this symbol. For
scalars, directional differentiation and multivector differentiation coincide.

As with the vector derivative, the coordinate-based definition should be used to derive
elementary coordinate-free results, which should then be the basis of all actual compu-
tations. We have collected some in Table 8.2, including results on scalar functions that
often occur in optimization problems. The pattern of derivation of these equations is
completely analogous to that for vector differentiation.

8.7.2 APPLICATION: ESTIMATING ROTORS OPTIMALLY

This example is taken from [36]. We are given k labeled vectors u;, which have been rotated
to become k correspondingly labeled vectors v;. We want to try and retrieve that rotor
from this data. If both sets of vectors are measured with some noise (as they usually are),
we cannot exactly reconstruct the rotor R, but we have to estimate it. Let us use as our
criterion for fit the minimization of the total squared distance between our estimated

CHAPTER 8

SECTION 8.7

MULTIVECTOR DIFFERENTIATION 237

Elementary results of multivector differentiation. The multivector varies in the
space AR™, contained in the larger space AR". The map P[] projects from the latter to the
former.

(Axdx)X = P[A]

(Axda)X = P[A]

Axox) Xk = PIAIXM! + XPlAIXF2 4. + X1 PLA]
oxX = m

oxlIX|> = 2X

ox(XxA) = P[A]

ox(XxA) = PIA]

ox(X~'xA) = P=x"'AX™Y

oxlIXIt = kXX

rotation vectors compared to where we measured them. This is an old problem, known in
biometrics literature as the Procrustes problem and in astronautics as Wahba’s problem.

So we need to find the rotor R that minimizes

k k
[(R) = Z(v,- —Ru;R)? = Z(vi2 +u? — 2(v; Ru; R)o). (8.16)
i=1 i=1

Preferably, we would like to differentiate this with respect to R and set the resulting
derivative to zero to find the optimal solution. However, the rotor normalization
condition RR = 1 makes this mathematically somewhat involved. It is easier to
temporarily replace the rotor R by a versor V and consequently to replace R by V-1,

238 GEOMETRIC DIFFERENTIATION

and then to differentiate relative to the unconstrained V to compute the optimum
V.. Clearly the terms without R (or V) do not affect the optimum, so

k

V., = argmaxy (Z (vi Vu; V_1)0> .
i=1

Now we differentiate by dy and use the product rule. We can use some of the results

from Table 8.2 once we realize that this is differentiation of a scalar product and use its
symmetry and reordering properties (as (6.23)):

k
IvT(V) = Y ov(vi Vui V7l

i=1

k
= X (ovV @V lvpl + vV = vl
i=1
k
= Z (wVlvi =V (vivy) v
i=1
k
=2V Y (v v Avy
i=1

Therefore the rotor R, that minimizes I'(R) must be the one that satisfies

k
Y (RawR.) Avi =0. (8.17)
i=1
This algebraic result makes geometric sense. For each v;, it ignores the components that
are just scalings of the corresponding rotated u;; the rotation cannot affect those parts
anyway. Only the perpendicular components matter, and those should cancel overall if
the rotation is to be optimal—if not, a small extra twist could align the vectors better.

The result so far does not give us the optimal rotor R,. explicitly; it has merely restated the
optimization condition in a manner that shows what the essential components of the data
are that determine the solution. Our reference [36] now cleverly uses vector differentiation
to manipulate the equation to a form that can be solved by standard linear algebra. First,
they observe that if we introduce the linear function

k
flx] = Z u; (v; - X),

i=1

the condition (8.17) can be written as

oA R AR = 4 Y (0630 Rewi Ro) = Ry w R - 005)

i—1

CHAPTER 8

SECTION 8.8

FURTHER READING 239

k
=— Z(R*u,-ﬁ*) Av; = 0.
i=1

This kind of pulling out a differentiation operator is a good trick to remember. The result-
ing equation expresses the fact that R, f[x] R, is a symmetric function of x. The function
f itself is therefore the R,-rotated version of a symmetrical function.

We could proceed symbolically with geometric algebra to find the symmetric part of R, [f]
(by adding the adjoint f[R,] and dividing by two), and its inverse (using (4.16)), and tak-
ing that out of the function; what remains is then the rotation by the desired rotor. How-
ever, [36] at this point switches over to using numerical linear algebra. In linear algebra,
any linear function f has a polar decomposition in a symmetric function followed by an
orthogonal transformation, and this can be computed using the singular value decom-
position (SVD) of its matrix [f] as T = [UTLSTIVIT = @UILVID (VI LSIIvVI®.
Using this result, the matrix of the optimal rotation R, is [V] [UT”, where [U] and [V]
are derived from the SVD of [f]] = Zle ;] [viT7. This rotation matrix is easily con-
verted back into the optimal rotor R, see Section 7.10.4.

This simple matrix computation algorithm is indeed the standard solution to the Pro-
crustes problem. In the usual manner of its derivation, formulated in terms of involved
matrix manipulations, one may have some doubts as to whether the SVD (with its inher-
ent use of the Frobenius metric on matrices) is indeed the optimal solution to origi-
nal optimization problem (which involved the Euclidean distance). In the formulation
above, the intermediate result (8.17) shows that this is indeed correct, and that the
SVD is merely used to compute the decomposition rather than to perform the actual
optimization.

From a purist point of view, it is of course a pity that the last part of the solution had
to revert temporarily to a matrix formulation to compute a rotor. We expect that appro-
priate numerical techniques will be developed soon completely within the framework of
geometric algebra.

8.8 FURTHER READING

The main reference for further reading on geometric calculus is the classic book by
Hestenes [33], which introduced much of it. It contains a wealth of material, including
an indication of how geometric calculus could be used to rephrase differential geometry.
His web site contains more material, including some new introductions such as [26].

The approach in Doran and Lasenby’s book [15] is tailored towards physicists, and it has
good and practical introductions to the techniques of geometric calculus. Read them for
directed integration theory. They are practitioners who use it daily, and they give just the
right amount of math to get applicable results.

240

GEOMETRIC DIFFERENTIATION

8.9 EXERCISES

8.9.1 DRILLS
1. Compute the radius of the tangent circle for the circular motion
r(r) = exp(—Ir) e; in the plane I = e; A ey, at the general location r(7).
2. Compute the following derivatives:
1. (a%dy)x
2. Ox x3
3. (a*0y) (xb/x)
4. 0 (xb/x)
5. Xox
6. XA 0y
7. X- 0y
3. Show that the coordinate vectors are related to differentiation through e = a%kx‘
4. Show that the reciprocal frame vectors are the gradients of coordinate functions:

ek = 0xxk.

8.9.2 STRUCTURAL EXERCISES

1.

Prove the Jacobi identity (8.2) and relate it to nonassociativity of the bivector

algebra.

. Derive the Taylor expansion of a rotor transformation:

eB2XeP? = X+ XxB+ % (XxB)xB) +---.

Do this by assuming that the first-order term is correct for small bivectors, it is eas-
ily derived by setting exp(—B/2) ~ 1 — B/2. Now write a versor involving a finite
B as versors involving B/2, B/4, B/8, and so on and build up the total form through
repeated application of the smallest bivector forms. That should give the full
expansion.

The Baker-Campbell-Hausdorff formula writes the product of two exponentials as
a third, and gives a series expansion of its value:

with

C=A+B+AxB+ 1 (Ax(AxB)+Bx(BxA))+---.
Show that these first terms of the series are correct. This formula again shows the
importance of the commutator A x B in quantifying the difference with fully com-

muting variables. We should warn you that the general terms of the series are more
complicated than the first few suggest.

CHAPTER 8

EXERCISES P2y

X+a

x/IxIl

Figure 8.3: The directional derivative of the spherical projection.

4. Directional differentiation of spherical projection.
Suppose that we project a vector x on the unit sphere by the function x — P[x] =
x/||x]|. Compute its directional derivative in the a direction, as a standard differ-
ential quotient using Taylor series expansion. Use geometric algebra to write the
result compactly, and give its geometric meaning. (Hint: See Figure 8.3.)

5. Justify the following form of Taylor’s expansion formula of a function F around the
location x:

F(x +a) = e*% F(x),

where you can interpret the exponent in a natural manner as a symbolic expansion
instruction.

6. For variable I(7), the resulting d;X(7) of (8.8) can still be written as a commutator
X x B with a bivector B. Derive the explicit expression for B:

B = 19[d] + a1 (¢ — 1)1

Hint: One way is to use the result B = —2 07[R] R from [15].

9 MODELING GEOMETRIES

So far we have been treating only homogeneous subspaces of the vector spaces (i.e.,
subspaces containing the origin). We have spanned them, projected them, and rotated
them, but we have not moved them off the origin to make more interesting geometri-
cal structures such as lines floating in space. You might fear that we need to extend our
framework considerably to incorporate such new geometrical elements and their algebra,
introducing offset blades as algebraic primitives.

However, significant extensions turn out to be unnecessary, by using a simple trick that
is a lot more generic than it appears at first: these offset elements of geometry in a vector
space R” can also be represented by blades, but in a representational space R"*! with
one extra dimension. The geometric algebra of that space then gives us most of what
we need to compute in R”. Since the blades of that higher-dimensional space R"*! are
its homogeneous subspaces, this is called the homogeneous model of geometry (though
“homogenized” might be more accurate, for we have made things homogeneous in R"*!
that were not in R").

In this view, more complicated geometrical objects do not require new operations or tech-
niques in geometric algebra, merely the standard computations in a higher-dimensional
space, followed by an interpretation step. The geometric algebra approach considerably
extends the classical techniques of homogeneous coordinates, so it pays to redevelop this
fairly well-known material. The homogeneous model permits us to represent offset
subspaces as blades, and transformations on them as linear transformations and their
outermorphisms. As we develop the details in Chapter 11, we find that the geometric

245

246 MODELING GEOMETRIES

algebra approach exposes some weaknesses in the homogeneous model. It turns out that
we cannot really define a useful inner product in the representation space R"*! that
represents the metric aspects of the original space R” well; we can only revert to the
inner product of R”. As a consequence, we also have no compelling geometric product,
and our geometric algebra of R"*! is impoverished, being reduced to outer product and
nonmetric uses of duality (such as meet and join). This restricts the natural use of the
homogeneous model to applications in which the metric is less important than the aspects
of spanning and intersection. The standard example is the projective geometry involved
in imaging by multiple cameras, and we treat that application in detail in Chapter 12. Still,
the quantitative capabilities of geometric algebra do help in assigning some useful relative
metrical meaning to ratios of computed elements.

The better model to treat the metric aspects of Euclidean geometry is a representation
that can make full use of the power of geometric algebra. That is the conformal model
of Chapter 13, which requires two extra dimensions. It provides an isometric model of
Euclidean geometry. In this representation, all Euclidean transformations become repre-
sentable as versors, and are therefore manifestly structure-preserving. This gives a satis-
fyingly transparent structure for dealing with objects and operators, far transcending the
classical homogeneous coordinate techniques. We initially show how this indeed extends
the homogeneous model with metric capabilities, such as the smooth interpolation of
rigid body motions in Chapter 13. Then in Chapter 14 we find that there are other
elements of Euclidean geometry naturally represented as blades in this model: spheres,
circles, point pairs, and tangents. These begin to suggest applications and algorithms that
transcend the usual methods. To develop the tools for those, we look at the new construc-
tions in detail in Chapter 15. In the last chapter on the conformal model, we find the
reason behind its name: all conformal (angle-preserving) transformations are versors,
and this now also gives us the possibility to smoothly interpolate rigid body motions with
scaling. In all of these chapters, the use of the interactive software is important to convey
how natural and intuitive these new tools can become.

But first, we should make more explicit how the regular n-dimensional geometric alge-
bra, used as a vector space model, gives us tools to treat the directional aspects of an
n-dimensional space. This capability of computing with an algebra of directions will
transfer to the more powerful models as a directional submodel at every location in space.

CHAPTER 9

10 THE VECTOR SPACE
MODEL: THE ALGEBRA
OF DIRECTIONS

When we developed geometric algebra in the first part of this book, we illustrated the
principles with pictures in which vectors are represented as arrows at the origin, bivectors
as area elements at the origin, and so on. This is the purest way to show the geometric
properties corresponding to the algebra.

The examples showed that you can already use this algebra of the mathematical vector
space R” to model useful aspects of Euclidean geometry, for it is the algebra of directions
of n-dimensional Euclidean space. We explore some more properties of this model in this
chapter, with special emphasis on computations with directions in 2-D and 3-D. Most
topics are illustrated with programming exercises at the end of the chapter.

First we show how the vector space model can be used to derive fundamental results in the
mathematics of angular relationships. We give the basic laws of trigonometry in the plane
and in space, and show how rotors can be used to label and classify the crystallographic
point groups.

Then we compute with 3-D rotations in their rotor representation, establishing some
straightforward techniques to construct a rotor from a given geometrical situation, either
deterministically or in an optimal estimation procedure. The logarithm of a 3-D rotor
enables us to interpolate rotations.

247

248 THE VECTOR SPACE MODEL: THE ALGEBRA OF DIRECTIONS

Finally, we give an application to external camera calibration, to show how the vector
space model can mix directional and locational aspects.

10.1 THE NATURAL MODEL FOR DIRECTIONS

There are n independent 1-D directions in an #-dimensional physical space, and they can
conveniently be drawn as vectors at the origin. Mathematically, they form a vector space
R", for they can be added and scaled with real numbers to produce other legitimate 1-D
directions. The metric of the directions in the physical space (typically Euclidean) can be
used to induce a metric in this mathematical representation. That gives a model of the
directions in physical space in terms of the geometric algebra of a metric vector space R".

The vector space model thus constructed is indeed a good computational representation of
spatial directions at the origin. We have used it in all our illustrations of the geometrical
properties of geometric algebra in Part I. This already gave a list of powerful abilities,
directly applicable to computations with directions. We list the main results.

e The k-dimensional directions in n-dimensional space can be composed as outer
products of k 1-D directions (represented as vectors). These k-blades can be decom-
posed on an (Z)—dimensional basis. Only for grades 0, 1, (n—1), and # can k-blades
be constructed by arbitrary addition of basis elements.

« Directions have an attitude, a weight, and an orientation.

* Relative angles between k-dimensional directions can be computed using the con-
traction, even when they are of different grades. A k-direction can be represented
by its dual, the direction of its orthogonal complement.

* Intersection and union of k-directions is defined by meet and join, which are a
specific combination of outer product and duality. The orthogonal projection of
k-directions is also well defined by the contraction.

e Directions can be used to reflect other directions using sandwiching products
(where some care is required to process their orientation properly).

* Directions can be rotated using rotors and multiplied by the geometric product to
produce such rotors.

Beyond these structural properties, true for the abstract directions of a general vector
space R", we need specific techniques to use the blades of the vector space model to solve
particular geometrical problems, notably in the Euclidean spaces R? and R3.

10.2 ANGULAR RELATIONSHIPS

The vector space model is the natural model to treat angular relationships at a single
location. To show this, we derive the elementary laws of sines and cosines in a

CHAPTER 10

SECTION 10.2

ANGULAR RELATIONSHIPS 249

planar triangle; some similar relationships in a spherical triangle; and the point groups
of crystallography. The results are not new, but intended as examples of how you can
now think about such problems in a purely directional manner using geometric algebra.
Especially the ability to divide and multiply vectors will simplify both the computations
and the definition of the oriented angular parameters in the configurations.

10.2.1 THE GEOMETRY OF PLANAR TRIANGLES

The combination of rotors in the same plane is sufficient to derive the various relation-
ships between sides and angles in triangles. We repeat the derivation of these laws as given
in [29], pp. 68-70, since this application shows the simplicity and power of geometric
algebra nicely. Quantities that are required to characterize the properties are completely
definable in terms of the original elements of the problem.

In Figure 10.1(a) we have indicated a triangle in the 2-D Euclidean I-plane, composed of
three vectors a, b, c that have the relationship

a+b+c=0. (10.1)

These vectors indicate weighted directions, and their weights can be drawn as their
lengths. Although they have been drawn offset from the origin, there are no actual posi-
tional aspects to this triangle and its relationships. This is shown by redrawing all vectors
involved as emanating from the origin, in a purist version of the triangle, as Figure 10.1(b).
The relevant geometric algebra of both figures is the same.

Figure 10.1: Atriangle a+b+c = 0in a directed plane I, and an equivalent configuration for
treatment with the vector space model.

250 THE VECTOR SPACE MODEL: THE ALGEBRA OF DIRECTIONS

Solving this equation a + b + ¢ = 0 for ¢, and squaring, we get
cz=(a+b)2=a2+b2+ab+ba=a2+b2+2a-b. (10.2)

We may introduce the angle a between ¢ and —b (in that order), and similarly g and y
(see Figure 10.1), and we can introduce the lengths of the sides ||a||, ||b||, and ||c||. The
picture defines what is meant, but in geometric algebra we would rather define those
elements unambiguously as properties of the geometric ratios of the original vectors.
Section 6.1.6 gives the principle. Carefully observing the required angles and signs leads
to the exact definitions:

—b/a = ||b|l/|la]l €7, —c/b=|c||/|Ib]l % —alc = ||al|/||c|| €. (10.3)

Daring to make such definitions is a skill that you should master, for it is the transition
from the classical methods of thinking about angles (with the associated headaches on
the choice of signs) to the automated computations of geometric algebra. Make sure
you understand the precise relationship between these definitions and the figure they
represent!

When combined with the basic property (10.1), the angle definitions (10.3) fully define
all relationships in the triangle. It just takes geometrically inspired algebraic manipula-
tion to bring them out. For instance, we can multiply these equations. Remembering that
exponentials of commuting arguments are additive, we obtain by (10.3)

AP0 = Jaglrelh — (_c/b)(—b/a)(—alc) = —1 = F (10.4)

This implies that
a+ f+y=x mod (2x), (10.5)
which is a rather familiar result.

To obtain other classics, we split the geometric product in a contraction and an outer
product, thereby separating the equations into their scalar and bivector parts. This auto-
matically introduces the trigonometric functions as components of the rotors.

We multiply both sides of (10.3) by ||a||?, and so on, and obtain six equations:
—b-a = bl [lall cosy, —bnaa=|b|lallsiny,

—c-b =c|]||Ib]] cosa, —cAb=]c|]|b|lTIsina,

—a-c=|la]l|lc|| cosp, —aAc =|alllc||Tsinp.

Then the earlier results can be put into the classical form. Equation (10.2) is the law of
cosines:

llcll? = llall* + IIblI* = 2]fall Ib]| cos . (10.6)

CHAPTER 10

SECTION 10.2

ANGULAR RELATIONSHIPS 251

Taking the outer product of (10.1) with a, b, and ¢, we obtain
aAb=DbAc=cAa, (10.7)

which leads to the law of sines in the I-plane:

sina sinfi siny

e _ 5y (10.8)
[lall IIbl] Il<ll

We have divided out the plane I in which this holds to achieve this classical form. But in
fact, (10.7) is more specific and is valid in any plane I in n-dimensional space.

In the classical formulation, the area of the triangle is % [|a]] ||b|| sin y (or a similar expres-
sion). We see that in the directed plane I, we can define the oriented area A of the triangle
naturally by the equivalent ratios

aAb DbAc cAa
= = (10.9)

A= ST =70 21

This is a proper geometric quantity that relates the area to the orientation of the plane it
is measured in.

10.2.2 ANGULAR RELATIONSHIPS IN 3-D

In a 3-D Euclidean space, geometrical directions can be indicated by vectors or bivectors
(which are always 2-blades). The scalars and trivectors have trivial directional aspects and
are mostly used for their orientations and magnitudes.

Relative angles between the directional elements are fully represented by their geometric
ratios. Let us consider only unit elements, so that we can fully focus on the angles. Between
two unit directional elements, there are three possibilities:

o Two Vectors. The geometric ratio of two unit vectors u and v is a rotor R = v/u. It
contains in its components both the rotation plane I and the relative angle ¢ of the
two vectors. These can be retrieved from the rotor as the bivector angle I, using
the logarithm function defined below in Section 10.3.3. Note that only the product
of plane and angle is a well-defined geometric quantity, since each separately has an
ambiguity of magnitude and orientation. In that sense, scalar angles are ungeomet-
rical and should be avoided in computations, since they necessitate the nongeomet-
rical choice of standard orientation for the I-plane. Since you probably only need
the angles to use them in a rotation operator anyway, you may as well keep their
bivector with their magnitude as a single bivector angle.

» Two Bivectors (2-Blades). The geometric ratio of two unit 2-blades U and V also
defines a rotor R = V/U. This is most easily seen by introducing their normal
vectors u = U* = U/I3 and v = V* = V/I3. Substituting gives R = V/U = v/u.
Therefore, this reduces to the previous case. The bivector angle between two

252 THE VECTOR SPACE MODEL: THE ALGEBRA OF DIRECTIONS CHAPTER 10

bivectors is automatically measured in a plane perpendicular to the common
line of the two planes, and this plane and the angle are found as the bivector
angle log(V/U).

o Vector and Bivector (2-Blade). When we have a unit bivector U and a unit vec-
tor v, we previously defined the cosine of their angle through the contraction, as
in Figure 3.2(b). With the geometric product, we can proceed slightly differently,
defining the full bivector angle. We try to determine a unit vector w in the plane U
and perpendicular to v, such that it can rotate v into the plane over an angle « as
ve"3¢ | after which that rotated version of v and w together span U. The sketch of
Figure 10.2 shows that this mouthful is the algebraic demand

WI3(X

U=ve w.

This fully determines both w and & as aspects of the geometric product v U. It is sim-
plest to make a rotor out of the element v U by undualization to show its bivector:

VUI3 — ewI3aw13 - ewI3(7r/2+a)'

Taking the logarithm retrieves this bivector, which gives all parameters in one oper-
ation (though it is a pity not to get the actual bivector angle awI3).

Angular relationships between three directions can also be defined. They are much
more involved, because there are various standard ways of characterizing the parame-
ters of the spherical triangle, as depicted in Figure 10.3. These are its vertices (represented

Figure 10.2: The angle between a vector and a bivector (see text).

SECTION 10.2

ANGULAR RELATIONSHIPS 253

Figure 10.3: A spherical triangle and its characterizing parameters.

by three vectors), its sides (the angles between the vectors), its angles (the angles between
the bivectors containing its sides), and its altitudes (angle between vector and plane bivec-
tor). The various combinations of these quantities provide the laws of spherical geometry.
Geometric algebra again permits compact and computationally complete specification of
the relationships.

The bivectors containing the vertices can be defined through
a/b = ¢S, bie = A, Ha=eb, (10.10)

where &, b, ¢ are the unit vectors pointing at the vertices of the spherical triangle. The
weights A, B, C of the bivectors A, B, C are the edge lengths, measured as angles on the unit
sphere. The bivectors can be used to define the angles of the spherical triangle, through

B/A = —¢B¢, C/B = —eB?, A/C = -, (10.11)

with A,]é, C now denoting the unit bivectors and I the unit pseudoscalar of R3O, The
weights of the vectors a, b, ¢ thus defined are the internal angles a, b, c of the spherical
triangle in Figure 10.3.

Multiplication of the unit vector expressions leads to

AeBeC = 1,

254 THE VECTOR SPACE MODEL: THE ALGEBRA OF DIRECTIONS CHAPTER 10

and multiplication of the unit bivector expressions gives

eI3C eI3b eI3a — _1.

We have met the former in the guise of the multiplication of rotors in Section 7.3.4.
That should give you the confidence that these expressions can indeed lead to the cor-
rect expressions for sine and cosine formulas, when split in their different grades. To
be specific, you can work out that the scalar part of the unit vector expression gives the
identity

cos C = cosA cos B+ sinAsinBcosc

known as the cosine law for sides. The minus sign in the bivector expression leads to subtle
differences between the laws for the sides and for the angles. The scalar part is now

cosc = —cosa cosb + sinasinbcos C.

which is known as the cosine law for angles.

For the full details on these and other laws of spherical trigonometry, we refer to Appendix
A of [29], highly recommended reading for anybody using spherical trigonometry. When
we get more versed in geometric algebra, we should probably not reduce the geometry
of these spherical triangles to the set of classical scalar relationships, learning instead to
compute directly with the rotors, vectors, and bivectors involved.

10.2.3 ROTATION GROUPS AND CRYSTALLOGRAPHY

A famous old puzzle in the mathematics of physics has been the classification of crys-
tallographic groups: how many ways are there to make crystals in space? This is clearly
a geometric problem, and one would hope that geometric algebra could help out. The
vector space model, which provides the algebra of directions, can be used to solve a sub-
problem: how can one select the local symmetry of reflections and rotations to combine
well, in the sense that multiple reflections and rotations generate only a finite number of
elements? Such a set of operators is called a point group.

We use a unit vector a (with a2 = 1) to denote a local plane of reflection. When used as
the normal vector of this plane, it generates the reflection of a vector x as —axa. This
transformation is insensitive to the sign of a. However, we can in principle distinguish the
planes a and —a by their orientation, and for accurate classification of the point groups
we should use such oriented planes.

In a 3-D crystal, there are several symmetry planes for reflection. In the algebra, they
are each denoted by their vector versors. As the reflections combine as operators, new
symmetries appear as the products of these versors. To form a crystal, the combined set
of operators should form a finite set, so that a single point (atom) transformed by all

SECTION 10.2

ANGULAR RELATIONSHIPS 255

operators of the crystal is only equivalent to a finite number of other atoms around the
same point.

An even number of reflections generates a rotation, which is represented by the geometric
product of the corresponding normal vectors to give an operator like R = ab. A six-fold
symmetry at the local point implies that applying the rotation operator x +— RxR six
times gives back the original x. Two possible conditions would satisfy this demand: R® = 1
and R® = —1. The latter is more specific, and uses the possibility of geometric algebra to
represent oriented rotations (see also Section 7.2.3). Since we need to reflect other oper-
ators (not just points), we use the —1. That gives the most accurate classification of the
symmetries of the crystal. In general, R?” = 1 for a p-fold symmetry.

To use a particular example in 2-D, suppose we have two generating vectors a and b
representing reflecting planes. These induce symmetries in the plane. To be a four-fold
symmetry, we have the three demands:

a*=1 b*=1, @?®=1.

Clearly the generating vectors of this point group should be unit vectors with a relative
angle of 7/4 to satisfy these demands. The rotation and reflection operators that are pos-
sible by the combinations of these vectors are listed in Table 10.1. There are 16 symmetry
operators, which together form the group 2Hy of [30]. Each of these elements is a local
symmetry V; of the crystal. If you start with a single location vector x and generate all
elementsx; = V;xV; 7, you find 8 equivalent locations for atoms in the symmetry group
of this crystal. This is demonstrated in the programming example in Section 10.7.2.

The defining relations on two vectors is sufficient to determine all points groups in 2-D.
In 3-D, three generating vectors are required. If we have the demands in the form

(@ab)? = (bo)* = (ca)” = 1,

The operators of the point group 2H,, with defining relations a* = b* = (ab)® = 1.
The terms positive and negative are relative (but consistent), and based on the ordering of a
and b. These generate the symmetries of the crystal.

Positive Negative Positive Negative
Rotations Rotations Reflections Reflections
1 -1 a —-a
ab —ab aba —aba
(ab)? (ba)? —bab bab
—ba ba -b b

256 THE VECTOR SPACE MODEL: THE ALGEBRA OF DIRECTIONS

then the rotors generated by this can be written as
(ab) = elc’ir/p, (be) = eIa’ﬂ/q, (ca) = er'Jr/r,

in which I is the pseudoscalar of the 3-D space, and a’ and so on are the poles (unit axes)
of the rotations. Careful analysis performed by Coxeter (in a different, non-GA represen-
tation) reveals that a necessary condition for finitely representable solutions is:

Ly 1,1
;taty>L

The integer solutions to this equation then generate the point groups in 3-D space. The
complete classification may be found in [30].

Geometric algebra thus classifies the groups by sets of vectors in relative positions; these
not only represent the reflection planes (which is how more classical solutions also char-
acterize the symmetry), but they can immediately be used to generate the operators that
perform all the operations in the group simply by the geometric product.

The extension to crystallographic groups imposes the additional condition that the point
groups should remain closed under translation. We cannot treat those with the same sim-
plicity within the vector space model. Our reference [30] develops the crystallographic
groups further, using the conformal model described in Chapter 13 to include transla-
tions with the same ease.

10.3 COMPUTING WITH 3-D ROTORS

The Euclidean space R*? is a structural model of orientations in 3-D. In this model, rota-
tions are represented by rotors. Those are structure-preserving and easily interpolated.
We have already treated many of their structural properties when we introduced them in
the general setting of #n-dimensional algebras. Even though they did not then necessarily
represent 3-D rotations, those provided a good and immediate illustration. We revisit and
extend that material to provide the practical tools for 3-D rotors: how to find them from
frames, how to determine their bivectors, and how to interpolate them.

10.3.1 DETERMINING A ROTOR FROM A ROTATION PLANE
AND AN ANGLE

The most natural way to find a rotor in any geometrical problem is to know the rota-
tion plane represented by the 2-blade I and the desired rotation angle ¢ (measured to be
positive in the orientation of I). Their product gives the geometric quantity I, which
does not depend on the choice of the orientation of the plane. We called this the bivector
angle in Section 7.2.2 (that is actually a misnomer in more than three dimensions, where

CHAPTER 10

SECTION 10.3

COMPUTING WITH 3-D ROTORS 257

it should then more properly be called a 2-blade angle, but that is rather a mouthful). The
rotor in terms of the bivector angle is

R= e—Id)/Z‘

We have seen how this is essentially a quaternion in Section 7.3.5, and in the programming
exercise of Sections 7.10.3 and 7.10.4 showed how to convert between rotation matrices,
quaternions, and rotors. In Section 7.3.4, we gave a pleasant visualization of the
composition of rotations as the addition of half-angle arcs on a unit sphere.

If you have been able to determine the cosine ¢ of the rotation angle in some way
(for instance, through a scalar product), you can use this fairly directly to determine the
rotor as

R=vV(1+02-+v(1-0,2L (10.12)

The square roots are expressions of the cosine and sine of the half angle in terms of the
cosine. When you take the standard positive values of the square roots, the orientation of
I denotes the direction of rotation.

10.3.2 DETERMINING A ROTOR FROM A FRAME
ROTATION IN 3-D

A rotor can be found when you know how enough vectors rotate. In any number of dimen-
sions, there is a cheap way to make the unique rotor turning unit vector a to unit vector b
in their common plane. This of course involves the half angle between them, which may
seem expensive to compute. However, a unit vector in that half-angle direction is easily
found by adding the vectors a and b and normalizing. The rotor is then the geometric
ratio of this vector with a. That gives

1+b
R=_—_—122 (10.13)

V2(1+a-b)
You should realize that this is one of many rotations that can turn a into b. It is the simplest
in the sense that it only involves their common plane. The formula is unstable when a and
b are close to opposite; when they are truly opposite, there is no unique rotation plane to
turn one into the other.

In general, you would need to know the image of several vectors before you can determine
the exact relative rotor. In 3-D Euclidean space, there is a compact formula to retrieve the
rotor from the three vectors of a frame {e;} (which does not even have to be orthogonal)
and their images {f;}. Itis

3
R~1+Zfie,',
i=1

which needs to be properly scaled to become a rotor (for which of course RR=1).
Note that it uses the reciprocal frame of the vectors f; (see Section 3.8). It does not give

258 THE VECTOR SPACE MODEL: THE ALGEBRA OF DIRECTIONS

the correct result for rotations over z (returning zero instead), and is unstable near
rotations close to z. These consequences were already explored in the programming
exercise of Section 7.10.3.

We give a rather advanced derivation of this formula, invoking vector derivatives. The
only reason for doing this is to show the general n-dimensional pattern, should you ever
need it, before we home in on the 3-D-only case.

Zfie; = ZReiﬁei
= R, (Ra)
= n=2R (0(R)o + 2(R)2 + 4(R)a + - --)
L3 _4R(R),
= 3—4R([R - (R)o)
= 4(R)yR—1

and the result follows, since this shows that R is proportional to 1 + Y. f ie; in 3-D.

10.3.3 THE LOGARITHM OF A 3-D ROTOR

As we saw in Section 7.4.3, general rotors are the exponentials of bivectors. In the 3-D
vector space model of R>Y, it is fairly straightforward to retrieve that bivector from the
rotor. In such a 3-D space, the rotors are exponentials of 2-blades, since all bivectors are
2-blades in 3-D.

An explicit principal logarithm (as explained in Section 7.4.4) is easy to give for a rotor
R = exp(—Id/2). It can be determined by writing out the expression for the rotor in its
grades and reassembling those using standard trigonometric functions on the grade parts:

—Id/2 = log(R)
= log(exp(—1d/2))
= log(cos($/2) — I sin($/2))

(R IR
T < IRyl) ' (1014

There are some special cases that should be borne in mind. Obviously, when the scalar
(R)o equals zero, the division in the atan is ill-defined, even though there is still a well-
defined rotation plane, and therefore a well-defined logarithm. In an implementation,
you should use the atan2 function to provide numerical stability and additionally make
(10.14) valid for the second and third quadrant. In two other cases, namely when the
rotor equals 1 or —1, the rotation plane is ambiguous. For the identity rotation, the small
angle makes the behavior around R = 1 still numerically stable, and the logarithm is
virtually zero. But the ambiguity at R = —1 cannot be resolved without making arbitrary
choices. These cases are recognizable in the pseudocode of Figure 13.5 (where the rotation
logarithm is presented as part of the logarithm of the general rigid body motion).

CHAPTER 10

SECTION 10.3

COMPUTING WITH 3-D ROTORS 259

This formula (10.14) can be extended from a rotor to a nonunit versor; there is then an
additional term of log(||R]|).

10.3.4 ROTATION INTERPOLATION

When you want to interpolate between two known orientations, you can do this by divid-
ing the rotor between the extreme poses in equal amounts. This requires being able to take
the n th root of a rotor through using its logarithm. For the Euclidean rotors in the 3-D
vector space model of R*?, this can be done explicitly.

Let us suppose we know the initial and final rotor in the interpolation sequence as R and
Ry, respectively. Then the total rotation that needs to be performed is characterized by the
rotor R = Ry/R;. To perform this total rotation in # steps, one needs to apply the rotor

r=RY", 1 times. In the geometric algebra formulation, this is simply
R=Ry/R, = s o lb/@n) _ JlogR)n,

This formula requires the bivector corresponding to the rotor, which we derived in (10.14)
as its principal logarithm. The rotor that needs to be applied to the original element after
k applications is 7 Ry, and of course we should have " R; = R,. That gives the simple
program of programming exercise 10.7.1. See also Figure 10.4.

An alternative is to give the resulting rotor not in multiplicative form, but to use the
trigonometric functions to give a closed expression of the interpolation going on between

R,[X]

R, [X]

Figure 10.4: The interpolation of rotations illustrated on a bivector X. The poses R;[X] and
R,[X] are interpolated by performing the rotor R,/R; in eight equal steps.

260 THE VECTOR SPACE MODEL: THE ALGEBRA OF DIRECTIONS

R; and Ry. This is the way it is found in the quaternion literature, where this is known as
slerp interpolation (for spherical-linear interpolation). To derive the formula, note that the
requirement Ry/R; = cos(¢/2) — I sin(d/2) gives IRy = (Ry — Ry cos($/2))/ sin(¢p/2).
Then the linear interpolation is achieved by rotation over a fraction A¢/2 of the angle,
from R; towards R,. This is the rotor e~ MO/ 2R;, which may be expressed as

Rj = (cos(Ad/2) — Isin(Ad/2)) R
Ry sin(db/2) cos(Ad/2) — Ry cos(db/2) sin(Ad/2) + Ry sin(Ad/2)

sin(¢/2)
_ sin((1 =)d/2) sin(Ab/2)
T sin(d/2) LT Sin(d/2) Ra (10.15)

This is the linear interpolation formula for rotations (see [56]). It is valid in #-dimensional
space.

In our software, we prefer not to use this explicit form, but instead the structurally simpler
formulation in terms of the incremental rotor r. In the bivector formulation, one can
easily design more sophisticated interpolation algorithms that interpolate between several
rotors, such as bivector splines.

10.4 APPLICATION: ESTIMATION IN THE VECTOR
SPACE MODEL

For applications in synthetically generated computer graphics, the generative techniques
for rotations suffice, but in the analytical fields of computer vision and robotics you need
to determine rotations based on noisy data.

10.4.1 NOISY ROTOR ESTIMATION

If your data is noisy, you should of course not establish the rotation based on three frame
vectors as in Section 10.3.2, but instead use a rotor estimation technique. You could try to
use the frame estimation on triplets of rotors and average their bivectors, but it is better
to do a proper estimation minimizing a well-defined cost function.

We encountered such a technique in Section 8.7.2, when we used the rotation estimation
problem to give an example of multivector differentiation. Its outcome is a useful result
that you can easily implement even without understanding the details of its derivation.

10.4.2 EXTERNAL CAMERA CALIBRATION

When you have a set of cameras of unknown relative positions and attitudes observ-
ing one scene, you can only integrate their views if you have calibrated the setup (i.e.,
estimated the parameters of their relative geometry). You can collect the data for such

CHAPTER 10

SECTION 10.4

APPLICATION: ESTIMATION IN THE VECTOR SPACE MODEL 261

a calibration by moving a spherical marker around in the scene and synchronizing the
cameras to record their various views of it at the corresponding times, as illustrated
in Figure 10.7. The observed data is of course inherently noisy, and you need to do
some processing to determine the “best” estimate for their relative poses. We describe
an algorithm for this, taken from [38], culminating in the programming exercise of
Section 10.7.3. Our source assumes that the cameras have been calibrated internally.
This involves a determination of the parameters of their optics and internal geome-
try, so that we can interpret a pixel in an image as coming from a well-determined
spatial direction relative to its optical axis. Geometrically, it turns the camera into a
measurement instrument for spatial directions.

Let us consider M + 1 cameras. We arbitrarily take one of them as our reference camera
number 0, and characterize the location of the optical center of camera j relative to the
center of camera 0 by the translation vector t; and its orientation by the rotor R;. We
mostly follow the notation of [38] for easy reference, which uses bold capitals for vectors
in the world, and lowercase for vectors within the cameras. We will simplify the situation
by assuming that the marker is visible in all cameras at all times (our reference deals with
occlusions; this is not hard but leads to extra administration).

The marker is shown N times at different locations X in the real world. Relative to camera
J» it is seen at the location X; given implicitly by

X;=t+ R Xj ﬁj.

However, all that camera j can do is register that it sees the center of the marker in its
image, and (using the internal calibration) know that it should be somewhere along the
ray in direction x;; from its optical center. The scaling factor along this ray is o;;; if we
would know its value, the camera would be a 3-D sensor that would measure o;j; x;; = Xjj,
and then R; and t; could be used to compute the true location of the measured points.
But the only data we have are the x;; for all the cameras. All other parameters must be
estimated. This is the external calibration problem.

The estimation of all parameters is done well when the reconstructed 3-D points are not
too different from their actual locations. When we measure this deviation as the sum of
the squared differences, it implies that we want to minimize the scalar quantity

I'= (X,' -t — Rjojix; ﬁj)z.

™M=
™=

-
I
]

Now partial differentiation with respect to the various parameters can be used to derive
partial solutions, assuming other quantities are known. This employs the geometric dif-
ferentiation techniques from Chapter 8. The results are simple to interpret geometrically
and are the estimators you would probably have proposed even without being able to
show that they are the optimal solutions.

262

THE VECTOR SPACE MODEL: THE ALGEBRA OF DIRECTIONS

* Optimaltranslationt; given R;, 6, X;, and the data x;;. This involves differentiation

of the cost function relative to t;. The zero derivative is attained at

N
tj = I%I (Xi - R; O'ininj). (10.16)

i=1

This is simply the average difference of where camera j would reconstruct the points
based on its presumed rotations and their true average location.

Optimal rotation R; given X; and the data x;;. The differentiation with respect to
a rotor was treated in Section 8.7.2 when optimizing (8.16). Here the result corre-
sponding to (8.17) is that the optimal R; must satisfy
N
((Xi - tj) A (Rj Cij Xij Rj)) =0.

i=

—_

The geometrical interpretation is that the optimal rotor rotates to minimize the
transverse components of all X; when reconstructed by camera j. Substituting the
expression for the optimal t; leads to

N
Z ((Xi -X)A (R]‘ Gij Xjj R]’)) =0, (10.17)
i=1

where X = 1%1 fj: 1 X is the centroid of the world points. As in Section 8.7.2, this

optimal R can be found by a singular value decomposition of a linear function
defined in terms of the other parameters.
Optimal scaling c;; given R;, t;, X;, and the data x;;. This requires scalar differenti-
ation of I', and results in

oij = (Xi—t) - (Rix; ' Ry). (10.18)
This is almost a division of the estimated Xj; by the rotated x;;, except that the inner
product makes only the parts along the ray contribute (so that a scalar results).

Optimal world points given t;, R, 6;;, and the data x;;. Setting the vector derivative
of I" with respect to X to zero yields

X

X; = ﬁ (ti +R; o-,-jx,-jl?j). (10.19)
=1

J

This is simply the average of the estimations of the location of world point i by
each camera.

CHAPTER 10

SECTION 10.5 CONVENIENT ABUSE: LOCATIONS AS DIRECTIONS 263

 Optimal world points X; given tj, R, and the data x;;. The optimum for ¢;; of
(10.18) can be substituted in (10.19) to find a system of linear equations for X;
using R;, tj, and the data x;;. That system can be solved optimally by a least squares
technique.

o Optimal translations t; given R; and the data x;;. Another substitution of (10.18)
and combination with the result for the X; leads to a system of homogeneous linear
equations for the t; using an estimate of the R; and the data x;;. That system can be
solved optimally using an SVD.

With these composite results, the following iterative scheme can be formulated:

1. Make an initial guess of the R; based on the data using a standard stereo vision algo-
rithm (the geometrical basis for such algorithms will be explained in Section 12.2).

2. Estimate the t; using the estimate of R; and the data x;;.

3. Estimate the world points X; using R;, t;, and the data x;;.
4. Estimate the scaling o;; using (10.18).
5

. Obtain a new estimation for R; using (10.17) and iterate from step 2.

The authors of [38] report that a dozen or so iterations are required for convergence
(depending on the number of cameras). The resulting calibration algorithm is fully linear.
In modern calibration practice, it is customary to use the outcome of such linear algo-
rithms as an initial estimate for a few steps of subsequent nonlinear optimization to
improve the estimation.

This algorithm is the basis of the programming example of Section 10.7.3. The com-
pact and direct derivation of the partial solution formulas (10.16) through (10.19) are an
exemplary usage of geometric algebra for these kinds of geometrical optimization prob-
lems in the vector space model.

10.5 CONVENIENT ABUSE: LOCATIONS
AS DIRECTIONS

The vector space model is the natural model to compute with directions and the ultimate
tool for this purpose. It will remain clearly recognizable as a submodel providing the alge-
bra of Euclidean directions, even as we move on to more sophisticated models in the next
chapters.

In a purist point of view, the vector space model would not be used for other tasks. Yet
we can, of course, model location in the vector space model, in the same way as it has
always been done in elementary linear algebra. We just view a location as obtained by
traveling in a certain direction denoted by a direction vector p, over a distance given by
its norm. This treats a direction vector as a position vector, and particularly for problems

264 THE VECTOR SPACE MODEL: THE ALGEBRA OF DIRECTIONS

only involving point objects, it is not bad practice. The calibration example of the pre-
vious section shows that it can be very effective, and since that is a problem in which
locations are actually observed as directions, the vector space model is in fact its natural
setting.

When you also have geometrical elements other than pure directions (such as line or
plane offset from the origin), you run into the familiar problems that the use of classical
linear algebra also entailed: translations of such elements require administration of object
types and corresponding data structures. For instance, you can characterize a line by a
position vector and a direction vector, but you should keep them clearly separate, for
under a translation over a vector t, the position needs to change but the direction should
not. Uniformity is only obtained by having a single algebraic element representing the
line, with a representation of translation that can operate on it directly. The vector space
model does not provide that in a structural manner. You need to encode this structure
explicitly or use at least the homogeneous model.

Examples of the “convenient abuse” of directions as locations abound in all graphics
and robotics literature, as well as in typical physics textbooks. Hestenes [29] shows how
geometric algebra can be used effectively in the vector space model to do all of classical
physics. The vector space model does not lack computational power, and its rotors help
considerably in simplifying classical problems like the orbits of planets in a gravitational
field (which involve locations, but viewed from the sun so that their directional treatment
becomes natural). But this computational power can only be wielded by manually keeping
track of what geometry is represented by each element and which operations are permit-
ted to be performed on it. That is less a problem for physics (which tends to connect its
equations by natural language anyway), but it is a major source of programming errors in
computer graphics (as reported in [23, 44]). The models of the next chapters will provide
alternatives in which a more extended algebra is used to perform simultaneously both the
computations and the bookkeeping of geometrical elements.

10.6 FURTHER READING

The vector space model may seem prevalent in almost all linear algebra texts, since it is
the most basic way to treat geometry with vectors. However, in geometric algebra, the
full vector space model naturally includes blades and rotors. Not many texts incorporate
those in their treatment of basic geometry.

Your best background material for advanced use of the vector space model of geometric
algebra are texts in introductory physics (such as [29] and [15]). For current use in prac-
tical problems, the papers using geometric algebra in professional journals on computer
vision and robotics are your best source, though these increasingly use the more powerful
conformal model to address problems involving direction and location.

CHAPTER 10

SECTION 10.7

PROGRAMMING EXAMPLES AND EXERCISES 265

10.7 PROGRAMMING EXAMPLES AND EXERCISES

10.7.1 INTERPOLATING ROTATIONS

Interpolating rotations is an important problem with many applications. It is straightfor-
ward to implement once you are able to compute the logarithm of a rotor. This can be
implemented as follows (see Section 10.3.3):

bivector log(const rotor &R) {
// get the bivector/2-blade part of R
bivector B = _bivector(R);

// compute the ’reverse norm’ of the bivector part of R:
mv::Float R2 = _Float(norm_r(B));

// check to avoid divide-by-zero
// (and also below zero due to FP roundoff):
if (R2 <= 0.0){
if (_Float(R) < 0) {
// the user asks for log(—1)
// we return a 360 degree rotation in an arbitrary plane:
return _bivector((float)M_PI * (el ~ e2));
}
else
return bivector(); // return log(l) =0
}

// return the log:
return _bivector(B * ((float)atan2(R2, _Float(R)) / R2));

When you look for this function in the GA sandbox source code package, note that it
resides in the file e3ga_uti1.cpp in the 1ibgasandbox directory and not in the main
source file of this example. The same is true for the exp() function listed below. This
exp() is a specialization of the generic exponentiation algorithm, as described in Sec-
tions 7.4 and 21.3.

rotor exp(const bivector &x) {
// compute the square
mv::Float x2 = _Float(x << x);

// x2 must always be <= 0, but round off error can make it
// positive:
if (x2 > 0.0f) x2 = 0.0f;

// compute half angle:
mv::Float ha = sqrt(— x2);

266 THE VECTOR SPACE MODEL: THE ALGEBRA OF DIRECTIONS

if (ha == (mv::Float)0.0) return _rotor((mv::Float)1.0);
// return rotor:
return _rotor((mv::Float)cos(ha) +
((mv::Float)sin(ha) / ha) * x);
}

Now that we can go back and forth between rotor and bivector representations of rota-
tions, interpolating rotations becomes straightforward: given two rotors src and dst, we
first compute their difference as the ratio inverse(src) * dst. Then we compute the
10g() of the difference, and scale by the interpolation parameter alpha (which will run
from O to 1). The final step is reconstructing the rotor using exp (), and putting it back
in the original frame by multiplying with src:
rotor interpolateRotor(const rotor &src, const
rotor &dst, mv::Float alpha) {
// return src * exp(alpha * log(inverse(src) * dst));
return _rotor(src * exp(_bivector(alpha *

log(_rotor(inverse(src) * dst)))));
}

The example uses this code to display a rotating/translating frame with a trail following
behind it, as seen in Figure 10.5. Interpolation of translations is done the classical way:

e3ga::vector interpolateVector(
const e3ga::vector &src, const e3ga::vector &dst,
mv::Float alpha) f{
return _vector((1.0f — alpha) * src + alpha * dst);
}

80e |x| Geometric Algebra, Chapter 10, Example 1: Interpolation Rotations

Figure 10.5: Interpolation of rotations (Example 1).

CHAPTER 10

SECTION 10.7

PROGRAMMING EXAMPLES AND EXERCISES 267

In later examples—when we gain the additional ability to represent translation and
scalings as rotors—we will redo this example. Only the 10g() and exp() functions will
change; the interpolation function remains essentially the same (see Sections 13.10.4 and
16.10.3).

10.7.2 CRYSTALLOGRAPHY IMPLEMENTATION

We have made an implementation to play with the vectors generating symmetries of crys-
tal lattices. An example of the output is Figure 10.6. The application works for the point
groups in 3-D. It shows three input vectors a, b, c drawn as black line segments, which are
the basic generators of the symmetry operators from Section 10.2.3. You can drag those
around to investigate possible nearby symmetries.

The operators are computed from the initial generators in a brute force manner, by repeat-
edly multiplying them with each other to make new versors until no new symmetry oper-
ators are found. To get a true point group, a, b, and ¢ should be chosen in particular ways,

=3 Geometric Algebra, Chapter 10, Example 2: Crystallography H=

Use the left mouse button to drag the red point and the black lines (or to orhif).
Use the other mouse buttons to access the popup menu which containg pre- programmed configurations

Figure 10.6: Crystallography (Example 2). This example shows the 24 symmetries of a
hexagonal crystal generated from a single red point.

268 THE VECTOR SPACE MODEL: THE ALGEBRA OF DIRECTIONS

and for some should be considered as composite operators like (ac). If the generators are
not in the proper configuration to generate a point group, their combination may lead
to an infinite number of versors, but we arbitrarily cut off the generation at 200 different
versors. The largest true point group of cubic symmetry has 48 operators.

To draw the point groups, the code applies the operators to a single (draggable) input
point. A popup menu can be used to initialize the vectors to preprogrammed configu-
rations (cubic, hexagonal, tetragonal, orthorhombic, triclinic, monoclinic, and trigonal),
corresponding to the seven main point groups. For more details on how to generate all
the subgroups (32 in total), consult [30].

10.7.3 EXTERNAL CAMERA CALIBRATION

This example implements the external calibration of [38], as summarized in Section 10.4.2.

It assumes that the cameras have already been calibrated internally (we used the method
of Zhang [63]), and that we have an initial external calibration (we used the 8-point algo-
rithm, see e.g., [25]).

The data provided with the example is actual calibration data from a geometric-algebra-
based motion capture system built by the authors. The data contains the initial 8-point
calibration estimation, but we have deliberately decreased the quality of the initial esti-
mation to make the effect of the refinement more pronounced. Figure 10.7 shows the
reconstruction of the markers seen by the cameras after completion of the calibration.

T s Geometric Algebra, Chapter 10, Example 3; External Camera Calibration e OX

Current cost function: 9.383037e-08

Use left mouse buttan to orbit scene

Use other mouse buttons to access popup-menu

In popup-menu, use "Refine .." o refine the calibration.

Figure 10.7: External camera calibration (Example 3). The cameras are drawn as red wire-
frame pyramids (view volume) with a line indicating their viewing direction. The marker points
used for calibration are drawn as black dots. A line connects the marker points to show how
the single marker was waved through the viewing volume of the cameras.

CHAPTER 10

SECTION 10.7

PROGRAMMING EXAMPLES AND EXERCISES 269

To implement (10.16) through (10.19), we first need some context. The data is kept in a
class State. This state contains cameras in array m_cam, and 3-D world points in array
m_pt:

class State {
public:
// ... (constructors, etc)

// the cameras
std::vector<Camera> m_cam;

// the reconstructed markers, for each frame
std::vector<e3ga::vector> m_pt;

// is reconstruction of markers valid?
std::vector<bool> m_ptValid;
b

The reconstruction of a marker is invalid when it is visible to only one camera.

Each camera carries its own 2-D marker measurements (m_pt), rotation (m_R and m_Rom),
translation (m_t), scaling o;; (m_sigma), and per-marker visibility (m_visible).
(We ignored visibility issues when we explained the algorithm, but it is included in [38]
and implemented in the code.)

class Camera {
public:
// ... (constructors, etc)

// rotation

rotor m_R;

// rotation matrix
om m_Rom;

// translation
e3ga::vector m_t;

// for each frame, is a marker visible?

std::vector<bool> m_visible;

// for each frame, the 2D’ point in the image plane

// (normalized image coordinates, i.e., the e3 coordinate = —1)
std::vector<e3ga::vector> m_pt;

// for each frame the estimated multiplication factor of m_pt
std::vector<mv::Float> m_sigma;

b

Now each of the equations in Section 10.4.2 can be implemented and those functions
combined in the total algorithm. As an example, (10.16) leads to the code:

270

THE VECTOR SPACE MODEL: THE ALGEBRA OF DIRECTIONS

void State::updateTranslation() {

}

Iterate over all cameras
(start at ’1’ because translation of first camera is always 0)

for (unsigned int ¢ = 1; ¢ < m_cam.size(); ct++) {

Camera &C = m_cam[c];

vector sum;
int nbVisible = 0;
for (unsigned int i = 0; 1 < m_pt.size(); i++t) {
if ((C.m_visiblel[i]) && m_ptValid[il) {
sum += _vector(m_pt[i] - C.m_sigmali] *
(apply_om(C.m_Rom, C.m_pt[i])));
nbVisible++;

C.m_t = sum * (1.0f / (mv::Float)nbVisible);

Note that for efficiency we use the outermorphism matrix representation of the rotor to
apply it to vectors by means of the function apply_om(). You can consult the rest of the
code in the GA sandbox source code package.

We will encounter the motion capture system again in Section 12.5.3, when we reconstruct

3-D markers from the raw 2-D data.

CHAPTER 10

11 THE HOMOGENEOUS
MODEL

While the 3-D vector space model can nicely model directions, it is usually considered
to be inadequate for use in 3-D computer graphics, primarily because of a desire to treat
points and vectors as different elements that are transformed differently by translations.
Instead, people commonly use an extension of linear algebra known as homogeneous coor-
dinates. This is often described as augmenting a 3-D vector v with coordinates (v{,v2,v3)T
to a 4-vector (v1,v2,v3,1)T. This extension makes nonlinear operations such as translations
implementable as linear mappings.

For the homogeneous model in geometric algebra, the modeling principle is the same: we
embed our n-dimensional base space R” (which you may think of as Euclidean R, to be
specific) in an (1 + 1)-dimensional representational vector space R"*!, of which we then
use the inherent algebra. That produces a complete algebraic framework, which is well
suited to compute with oriented flats, subspaces offset from the origin in R" represented
as blades in R™*!,

The algebra of R"*! provides generally applicable formulas for translation, rotation, and
even affine and projective transformations in the base space R”. The operations of meet
and join always return sensible results for incidences of flats. For instance, for two parallel
lines the meet returns the common direction of the lines as a point at infinity weighted by
their mutual distance. We derive useful covariant and invariant measures, including the
projectively invariant cross ratio, in terms of geometric algebra.

271

272 THE HOMOGENEOUS MODEL

We treat these subjects in the following order: after defining the embedding space in
Section 11.1, we introduce the blades of R"*! representing the flats of the base space R"
in Section 11.2 through Section 11.6. This will enable you to represent offset points, lines,
and planes, either directly or dually. We combine the flats using the incidence operations
of meet and join in Section 11.7. The resulting unified generic intersections and unions
can simplify the data flow of programs considerably. Moreover, some of the incidence
constructions are cross ratios and can be interpreted as defining motion-invariant mea-
sures. Then we study motions and transformations in Section 11.8 and show that all direct
flats are moved by the same linear transformation, and all dual flats by another. This will
simplify your code even more. We provide some initial guidance in constructions using
the homogeneous model in Section 11.9, but end on a more somber note: the homoge-
neous model has some deficiencies in dealing with Euclidean metric properties. They will
be fixed—but not in this model.

11.1 HOMOGENEOUS REPRESENTATION SPACE

As in all chapters in Part IT on modeling, we are interested in representing geometric
elements and operations in the space R", which typically has a Euclidean metric. The
homogeneous model differs from the vector space model of the previous chapter in
its roundabout representation method: it embeds R” in a space R"*! with one more
dimension and then uses the algebra of R"*! to represent those elements of R" in a
structured manner. That structure is the gain, for when we program the geometry,
the homogeneous model provides an automatic and consistent framework of data
structures for the elements we represent, as well as a more universal set of geometrical
operators.

In this chapter, we will therefore continually have to switch between a geometric element
and its representation, much more explicitly than we did before. We will denote those
transitions explicitly in the beginning, but as we grow familiar with the model it becomes
convenient to let representations coincide with the elements they represent, to avoid get-
ting too pedantic.

Let us call R” the base space and the higher space R"*! the (homogeneous) representation
space. We view this construction as an embedding of R” inside R"*! in a straightforward,
linear manner; we just add an extra dimension. We denote the unit vector in this “new”
dimension by ey.

We are free to define the metric of the homogeneous representation space as long as we
make sure that it coincides with the metric of R” whenever both are defined. A metric is
completely determined by the inner product, so given the value of x - y when both x and
y are in R”, we use that same value for the same vectors when viewed as part of the larger
space R"*!. Then we can use the same dot notation for the inner product in R"+!; where
they coincide, they agree anyway.

CHAPTER 11

SECTION 11.1

HOMOGENEOUS REPRESENTATION SPACE 273

We now conveniently choose the metric of R™*! such that ey - x = 0 for any x € R". That
just implies that ey is perpendicular to the subspace R". This splits the representation
space R™! nicely; a general vector x in R"*! can always be written as x = &) ey + X, an
eo-component and a R"”-component (either or both of which may be zero). For conve-
nience, we will denote quantities completely residing in the subspace R” by bold font
(such as x or e}) and those that do not by a regular math font (such as x or ep).

Our definition of the inner product in R"*! is not yet complete, for we can only com-
pute the inner product between two arbitrary vectors if we also know how to evaluate
eo - €9. Of course this quantity is not part of the real geometry we want to describe—
that resides completely in the base space R". Since we have no geometrical reasons to
choose a particular value of ¢ - eg, we should choose it for reasons of computational con-
venience. The choice ¢y - ¢g = 0 would make ey noninvertible, which is inconvenient to
many computations (such as taking a dual). The other natural choices are ¢y - ¢g = +1
and ep - eg = —1; both occur in the literature. We support both in this book, or rather,
we do not choose between them simply by conscientiously writing ¢, ! whenever we need
the inverse of e). If the metric would have ey - ¢ = +1, you can substitute ¢, l= ep; if you
prefer eg - eg = —1, you can substitute ¢, ! = _¢. Keeping the inverse notation explicit in
this manner has the additional advantage that it enables easy checking of the dimensional
correctness of expressions at a glance. We reiterate that the actual choice for this part of
the metric will not affect real geometric quantities computed from the model; the extra
ep-dimension is imaginary (in the literal sense of residing only in the imagination of our-
selves or of our computer). No computable geometric property should depend on it, for
it is merely a mathematical device to make computations more homogeneous.

The multiplication table for the inner product of the various types of vectors is summa-
rized in Table 11.1 for a 3-D Euclidean space represented by a 4-D homogeneous space.
When we do not focus on a metric, we will denote the homogeneous space by R"*.
Should we need to differentiate, then we denote by R"+1 the all-Euclidean space in which
eg = +1, and by R™! the space in which e(z) =-1.

Specification of the geometric algebra of the homogeneous model of a 3-D
Euclidean space—the inner product table for the canonical basis {ep,e;,e;,e3}. For eg, we allow
a choice of +1 or —1. We have overloaded the dot notation for the inner product in both the
homogeneous space and the Euclidean space without possible confusion, since they coincide
for all arguments on which they are both defined.

€0 €1 € | €

e x1 0 00
el 110 0
& 0 1 0
e3 0 0 1

274 THE HOMOGENEOUS MODEL

11.2 ALL POINTS ARE VECTORS

One of the motivations for a higher dimensional space for our geometry is to make a
distinction between points and vectors. A point in the base space R” is a location marker,
whereas a vector in R” is a direction. In the vector space model of the previous chapter,
there was hardly a distinction, for we had to use the vectors to mark locations (they were
all we had). In the homogeneous model, location and directions are represented differ-
ently. This is the first instance of an interface between an element of the base space and
its representation, and it is the foundation of the model.

11.2.1 FINITE POINTS

To give the algebra of the homogeneous representation space R"*! a geometric meaning,
we interpret ey as the point at the origin. A point at any other location p is made through
translation of the point at the origin over the Euclidean vector p. This is done by adding p
to eg. This construction therefore gives the representation of the point P in the base space
R" at location p as the vector p in the homogeneous representation space R"*:

point to vector: p = eg + Pp.

Algebraically, p is just a regular vector in R"*!; geometrically, we interpret it as a point of
R" (see Figure 11.1(a).) We call such a point representation p with unit coefficient for ey a
unit point. You can visualize this construction as in Figure 11.1(a) (necessarily drawn for
n=2).

(b)

Figure 11.1: Elements of the base space R" are represented by embedding it in a homoge-
neous representation space of one more dimension. The extra vector is ey, and it is perpendic-
ular to all vectors p of R”. (a) It is convenient to draw R” at the tip of e, to denote the location
of vectors p = ey + p of R"*! representing unit points of R”. (b) A general point a(ey + p) with a
weight « is still interpreted as having location p.

CHAPTER 11

SECTION 11.2

ALL POINTS ARE VECTORS 275

A more general vector in R"*! would be a multiple of this: a (g + p). We interpret that
as a point of R” at the same location p, but with a different weight. We can retrieve these
real geometric quantities location (or position vector) and weight easily from a point rep-
resentative p € R™! as illustrated in Figure 11.1(b):

¢ (e Ap)
— —ey = -
e P € Ip
The fancy rewriting of the location anticipates a general pattern later. You should view the

computational patterns as selection operations: in the expression for p = a ey + a p, the
computation e; 1. p takes ey out of the terms in the expression containing it. That leaves a.

weight : eal - p; location : (11.1)

The expression ealj (eo A p) is more involved. The part between brackets kills terms con-
taining eg, and then the subsequent inner product with ¢, ! restores the rest by removing
the extra ey, so it selects the part of p that does not contain ey (it is actually a rejection).
Such expressions will occur throughout this chapter.

These algebraic formulas are easy enough to implement in any program, but not very effi-
cient. In a coordinate representation of p as p = (po,p1 ,pg,p3)T on the basis {eg,ep,e2,e3},
you would implement these selection operations more directly. Simply take the coordinate
Po as the weight, and (p1,p2,p3)T/po as the position vector of the location. That is the same
as in the usual homogeneous coordinate-based representation. The algebraic formulation
of (11.1) is the coordinate-free way to show the essential structure. This structure is useful
in symbolic manipulations of equations, and it will generalize to lines and planes.

We actually use the general formulas in our program specifications in Gaigen2. Our code
generator recognizes at compile time that they can be implemented as selection opera-
tions, so we suffer no performance loss for this structural generality.

11.2.2 INFINITE POINTS AND ATTITUDES

It is clear that the interpretation (11.1) of a homogeneous vector as a point at a specific
location only works when ¢ . p # 0. If not, the vector has no ey-component and it is
therefore of the form au, a vector completely in R”. Such vectors have a different geo-
metric interpretation: they are directions in the base space, just as they were in the vector
space model:

weighted 1-direction : au € R".

In fact, in the homogeneous model there are two ways of thinking about such a vector:
as a direction in R" determining a weighted, oriented attitude in space, or as a point at
infinity in R". The latter is also called an improper point, and is consistent with it being
the limiting case of the finite point p = ey + p when p gets so large that it dwarfs eg.
Despite this associated interpretation in the base space R”, au is a finite element of the
representational space R"*!. On the other hand, it is consistent to view p as a direction
because it is in the purely directional subalgebra R" of the total space R"*!, which we have
used as the algebra of directions before in the vector space model of Chapter 10.

276 THE HOMOGENEOUS MODEL

It may be a personal choice to decide which explanation suits your intuition better. At the
first encounter, you probably prefer the “direction” interpretation, since it so naturally
builds on the familiar geometry of the vector space model. However, it was a major insight
in (projective) geometry that many theorems get more universal by incorporating well-
defined “improper” points at infinity on par with the “proper” finite points. Two lines
in a plane then always intersect in a point, be it finite or infinite (and in the latter case
we tend to say that they have the same direction). That is an argument in favor of using
the improper point at infinity conceptualization. The semantics make no difference to the
algebra or the geometry, of course, but some flexibility here may make you more dextrous
in converting geometrical situations into algebraic formulas. The unification in this point
of view will also extend to flats of higher grade.

For a direction (or improper point) p, a unit normalization such that p - p = 1 is natural,
but a nonunit weight has a natural geometric meaning as a velocity or as a density.

11.2.3 ADDITION OF POINTS

Since points (finite or infinite) in the base space R" are represented as vectors in the repre-
sentation space R"*!, we may be tempted to add them. Of course, that addition is purely
an operation in the representation space, of which a sensible geometric interpretation in
the base space needs to be found if it is to be permitted in the model.

Adding a finite point represented by the vector p to itself gives the vector 2 p = 2¢ + 2p,
which we interpret as a point with double the weight at the same location. We can clearly
take any multiple, and it is a bonus feature of the homogeneous model that points have
such a natural weight associated with them. The weighted points will appear in incidences,
for instance as the result of the meet of a line and a plane, where the weight denotes the
significance of the intersection (weight £1 for a perpendicular intersection, weight close
to zero for a grazing intersection). We saw this at the origin in Section 5.5. Having points
being more than mere location markers is a useful extension to our quantitative geometry.
Such weights for locations were not available in the vector space model.

Adding an infinite point (or 1-direction) to itself has the interpretation we saw in the
vector space model; it represents the same attitude, with double the weight. Depending on
its use, you may interpret this as a direction with twice the velocity or half the density, both
eminently sensible geometric notions. Addition of different direction vectors also makes
sense; it is like adding velocities, an elementary operation in the physical interpretation
of geometry (and historically actually the motivation for vector addition).

Adding two different points is less clearly interpretable, unless we also view it as a physical
operation, and p+4 is then the representation of the center of mass of p and g. For denoting
their weights by m,, and m,, we find that their sum

p+aq=(my(eo+p))+ (mq(eo+q) = (my +my) eo + (my p + my q)

CHAPTER 11

SECTION 11.2

ALL POINTS ARE VECTORS 277

mp p+mq

mp+mq
result for the physical interpretation. It is nice to get this for free, and it suggests that the
homogeneous model contains more than just mathematical geometry (as practiced in the
classical geometry courses), or alternatively that some things we think of as fundamental

descriptive elements of physics are actually geometrical.

is interpreted as a point with weight 1, +m, at the location 3 precisely the correct

In many computer graphics applications focusing on geometry, one prefers to compute
with unit points, which only have a location. We believe (with [24]) that this is unnec-
essarily limiting and that it pays to think of weighted points (especially as one ultimately
wants to include physics in rendered worlds anyway!). However, some essential algorithms
(such as de Casteljau’s curve evaluation algorithm) appear to depend on unit points. If
you only want unit points as input and output, you need to introduce a special weighted
addition called the affine combination, in which the weights add to unity:

k k
p:Zaipi with Za,:l (11.2)
i=1 i=1

It is easy to verify that ¢, Lop=1if N ! pi = 1 for all p;, so unit points as input lead to a
unit point as output. For two unit points p and ¢, addition with equal weight gives

1

which clearly computes the unit point in the middle. For k points p;, one computes the
unit point at the centroid by equal weighting:

k
centroid = % 2 pi-
i=1

This is a clearly purely geometric quantity, though actually it is a special case of the
center of mass for weighted points. Later, in Section 11.8.8, we will see that affine
transformations preserve weights, so that the affine combination is an affinely invariant
construction—hence its name.

The final addition we should consider is that of an infinite point and a finite point, which
in R™! looks innocent enough (it is again just vector addition). If the finite point is a
unit point p and the infinite point represented by the vector t, this gives the point p + t
at location p + t. So adding an infinite point (or 1-direction) to a unit point translates
it. If the point p is not a unit point but has a weight m, the resulting point is still p + t,
which is now interpreted as a point of weight m at the location p + t/m. An image from
physics suggests itself: t is not a translation (i.e., not a displacement) but an impulse, and
a heavy point responds to that with a smaller movement (per time unit). But actually, we
prefer to reparameterize and define point translations properly scaled to the point so that
they can be linear transformations. A translation over t of a point p with mass m is then
p+mt=p+ (651 - p) t, which is linear in p. More about translations in Section 11.8.2.

278 THE HOMOGENEOUS MODEL

In summary, addition of points in the base space (finite or not) makes geometric sense, so
addition of vectors in the representational space is permissible. Since scalar multiplication
also has a meaning in terms of weights, we can indeed consider R"*! as a vector space
without getting uninterpretable operations.

11.2.4 TERMINOLOGY: FROM PRECISE TO CONVENIENT

We have seen how in the vector space model of Chapter 10 the vector p can be used indi-
rectly to represent an offset point of R" at the location represented by a direction vector
p. That common practice mixes the concepts of directions, locations, and points. In the
homogeneous model, we consider the vector p = ey + p (which is really a direction in
the representational space R"*!) as a representation of a point in the space R", clearly
distinct from a position vector p in that space. Our distinct geometric concepts of point
and position are now represented by different algebraic quantities in the homogeneous
model, and this helps the structural clarity of our geometrical computations. After a bit
of habituation, you will conveniently think of p as a point of R", even though it is a vector
of R™1,

When we need precision in our statements, we will denote points of the n-dimensional
Euclidean space in script (“The point P...”), the vectors and blades in the correspond-
ing vector space in bold, (“...at location p...”) and vectors and blades in the (n + 1)-
dimensional homogeneous space in italic (“...represented by the vector p.”). But mostly
we will simply talk about the (unit) point p, in a convenient abuse of notation and
terminology.

11.3 ALL LINES ARE 2-BLADES

Using the addition of points, we can generate the points on the infinite line connecting p
and q as a p + f g, letting a and f vary over all reals. However, this does not represent the
line as a single element of computation—it is just a parameterized set of points. We would
prefer to represent the line connecting p to q in R” as a blade in our algebra of R"*!. As
we would hope, the algebraic structure provides just that.

11.3.1 FINITE LINES

Since we have a full geometric algebra for the homogeneous representation space R"*!,
we also have the outer product available. From vectors p and g (representing points 7 and
Q) we can therefore form p A g, and investigate its properties. Already at first glance, it
looks promising as the representation of the line through 7 and Q: p and g are contained
in it, in the sense that a vector can be contained in a blade, because p A (p A g) = 0 and
g A (p A) = 0. Those are statements in R"*!, which suggest an interpretation in R" as

the point represented by x is on the line represented by pAq if and only if xA(pAq) = 0,

CHAPTER 11

SECTION 11.3

ALL LINES ARE 2-BLADES 279

giving an algebraic procedure in R"! corresponding to the concept of “lying on” in R".
Immediately the linearity of the outer product shows that any vector of the form e p+ fq
is also in p A ¢, and no other vectors of R"*! are. So we can indeed use p A g as our line
representation. Note that this is what we called the direct representation in Section 2.8.2,
since we use an outer product test for containment of a point. The geometry of this rep-
resentation principle is illustrated in Figure 11.2(a).

Let us look at p A q in more detail. Substituting the quantities p and q from the base space
R" (we use unit points, since any multiples define the same line in the sense of the outer
product; we discuss line weight later) gives us

pAg=(eo+pP)A(eo+qQ =eAq+pAe+pAq=eA(q—p)+pAq (11.3)

We recognize q—p as the vector from p to q, which is the vector of R” denoting the direc-
tion of the line from the point at p to the point at q. It has a direction (the carrier of q—p),
an orientation (from p to q), and a weight (the distance from p to q).

The other term, the 2-blade p A q, we call the moment of the line (although that term is
classically used for a similar concept, which is scalar). The moment encodes the distance
of the line to the origin, as we will derive below.

But lines can be specified in other ways. When dealing with lines as rays, we would prefer
to encode a line by a point p on it (the source of the ray), and its direction vector a,
rather than by two points. It should still give a line, so the two representations should
be related. And indeed, they can be converted into each other through the algebra of the
outer product. When we know two points p and g on the line, we seta =g —p = q—p,
and then the antisymmetry allows us to write

pAg=pA@—-p)=pA(Q-p)=pAa

Therefore, exactly the same 2-blade can be made by the point p and the direction vector
a as from two points p and g, even using the same operator to combine the data! Using the
terminology we introduced for points, a direction like a is an improper point, and the
equation p A g = p A a shows that a finite line can always be represented by two points,
one of which may be improper. It is the same line in R”, represented by the same 2-blade
R™!, as Figure 11.2(b) shows for the representation of a line in R?.

The reshapability of the 2-blade that represents the line of course permits many more
representations. For instance, if we shift both points along the line by the same amount
Aa to become p + Aa and g + Aa, the new points still span the same line in moment,
direction, and even in weight. Just take their outer product to prove this equivalence:
(p+Aa)A(q+Aa) = pAg+(p—q)Ada+A*ana = pAg, computationally indistinguishable
from the line spanned by p and gq. A particularly symmetrical form of line representation
is by its affine midpoint (i.e., the centroid) and its direction,

+
p/\q=1%A(q—p),

as you can easily verify.

280 THE HOMOGENEOUS MODEL CHAPTER 11

(a)
(b)
q
€o

[

© A
Figure 11.2: Representing offset subspaces in R™!: an offset line in R? is represented as a 2-blade of the homogeneous
representation space R*. In (a) the 2-blade of the line is defined as p A g for two unit points p and g on the line. In (b) the
2-blade has been reshaped to show the direction vector a = q — p = ¢ — p as one of its factors. In (c) the 2-blade has been
reshaped to show that the support point d = ¢y + d, with d - a = 0, is another factor. The moment of the line is da.

SECTION 11.3

ALL LINES ARE 2-BLADES 281

The geometrical equivalence of all these lines is a good feature to have, since it permits
the comparison of elements created in different ways. But you will need to get used to
the geometrically pure nature of the resulting line element: it is the line, and just the line,
though with the properties of weight and orientation. The 2-blade no longer explicitly
contains any points. So the 2-blade line representation p A g in the homogeneous model
is not the localized line segment between p and g, and p A a is not the half line at p in the
a-direction. The positional information on the constructors p and ¢q is mostly lost in the
outer product; only the distance to the origin remains as positional aspect, and it denotes
where the line is located, not where it starts. If you need the line segment, you should
keep the points (or at least one of them; the other can be reconstructed from pand p A g
asg=p+e, '(p A 9)). If you want the ray starting from a point p, you should keep the
point p as well as the directed line.

To show that the distance to the origin is contained in p A g, we rewrite the 2-blade by
using the (perpendicular) support vector d of the line. It is the position vector of a special
point d, the support point, which is the point on the line closest to the origin. We find it
as the rejection of the location of an arbitrary point p by the line direction a:

support vector : d = Pha_ p_/\q’

a q-p
where the division is right division. Deriving this is simple: we must havepAa =dAa
(since d is on the line) and d - a = 0, so that da = p A a. This is illustrated in Figure
11.2(c). Now we can denote the line L as the geometric product of its support point and
its direction: L = da.

Of course, after we have used the outer product we no longer have the factors available
that constructed it, so the above computation cannot be performed as written. All we
have is a 2-blade L, and we should rewrite the expressions for its parameters in terms
of operations that can be applied to this 2-blade. When you realize that direction and
support are actually defined by the unique rewriting of L as the geometric product L =
(eo + d) a, such expressions are easy to find using selection operations. The quantity da
is the moment M of the line, often more convenient to use than its support. The two are
related by d = M/a.

With this preparation, we can retrieve the relevant geometrical elements from the line
2-blade L by the following algebraic manipulations:
I -1
direction: a=¢, |L,
moment : M = ealj (ep A L),

ey 1(eo AL)
support vector : d = B E——
e JL

We will show in Section 12.1 that in an implementation, these algebraic operations are
done by selection of the appropriate coordinate tuples. Despite their apparent algebraic

282 THE HOMOGENEOUS MODEL

complexity, they can be reduced to simple addressing. This can be done automatically
during compilation, and therefore the operations do not cost any real computation time
(except the support vector, which involves a division; this is the reason to prefer the use
of moments instead, whenever we can).

11.3.2 LINES AT INFINITY

We have composed two finite points, as well as a finite point and an infinite point, and
both are interpretable as lines in R". The algebra of R"*! also permits the composition
of two improper points using the outer product, and you may wonder how we should
interpret such an element p A q (which is in R"*!, but completely in its subspace R").
It contains no finite points (the equation x A (p A q) = 0 has no solution), but it does
contain all 1-D directions that can be constructed as weighted sums of p and q. We can
call this either a 2-D direction (for it is a purely 2-blade of R”, the space of directions of
Chapter 10) or an oriented line at infinity, or simply an improper line. When you think
of the improper points p and q as two stars (either because you view them as points at
infinity, or as the directions in which those stars lie), this improper line is the oriented
circle on the heavenly sphere passing through both of them.

With this interpretation, the 2-blades in the algebra of the homogeneous representation
space are all accounted for as finite or infinite lines. It is satisfying that the composition
with the outer product constructs the correct element “line” whatever name we might
prefer to give to the constituents (although we had to slightly adapt and refine our geo-
metrical concept of a line to match the algebraic properties). This consistency cleans up
our geometry programs considerably:

» We will not need separate data structures for geometrically seemingly different, but
algebraically equivalent, elements of the model (such as a line made of two points p
and q versus a line constructed of a point p and an improper point a).

e There is a universal constructor (the outer product) to make lines out of such points
(improper or not), which is moreover an integral part of the algebra.

You can see how this begins to extend the geometric algebra version of the homogeneous
model beyond the algebraically naive homogeneous coordinate formulation.

11.3.3 DON'T ADD LINES

The linear structure of the bivectors in R"*! may tempt us to add two lines, hoping to
produce another line interestingly related to them. But we will not allow this operation!
Algebraically, it seems reasonable, but geometrically it is not: the result is in general not
interpretable as a line, for it may not be a 2-blade. Here Clifford algebra (which permits
addition) and geometric algebra (which should focus on blades and versors and therefore
prefers multiplicative constructions) part ways. This is a specific instance of the multi-
plicative principle we discussed in Section 7.7.2.

CHAPTER 11

SECTION 11.4

ALL PLANES ARE 3-BLADES 283

The smallest dimension in which the sum of two 2-blades may not be a 2-blade is 4, so
that the addition of lines needs to be forbidden for base spaces of three dimensions or
more. In a base space of two dimensions, it could be permitted, but universality of the
code suggests forbidding it there as well. There must be something special going on in R?
that we may be able to generalize and that just happens to look like addition. And indeed,
what is special about 2-D is that any two lines have a point in common (which may be an
improper point at infinity).

e If the common point is finite, the two lines L and M pass through a common point
p and can therefore be rewritten as L = pAuand M = pAv;thenal + fM =
a(pAuw)+ f(pAv) = pA(au+ fv) can generate any line through the point p from
just these two. It gives us the idea to generate a pencil of lines in the point p from
some given lines, and that indeed works in any dimensionality. With a local basis
of n lines through one point in n-dimensional space, you can describe all the lines
through that point as linear combinations.

e If the common point is the infinite point u, then the lines L and M have a direction
in common and can be written as L = pAuand M = gAu. Now linear combinations
produce general lines of the form (a p+ fq) Au = rAu, all translated parallel versions
of the original lines. This is called a parallel pencil of lines.

In a 2-D base space (with its 3-D homogeneous representation space), one of these two
cases is guaranteed for two lines, so we can add lines blindly.

In n-dimensional space you can translate in # directions (though one of them produces
coincident lines, so it is less interesting). If the lines have no point in common (finite or
infinite), they cannot be added in any useful geometric sense. Simplicity of the algebra
suggests that we forbid adding of lines in all cases so that we have universally applicable
operations. If you really want to make another line through the same point from a given
line, you should rotate it around that point, since that gives much better properties (for
instance, it preserves the weight, and you of course know the plane and angle of their rel-
ative directions since you did the rotation yourself). If you want to make a line parallel to
another line, you should just translate it (rather than adding another parallel line to it);
that gives a more sensible description of where it goes. We will meet rotation and transla-
tion operators in Section 11.8. However, such operations do assume a certain geometry of
the space: rotations are Fuclidean, translations are at least affine. If the base space merely
has a projective geometry, you have no choice but to resort to a pencil-like construction;
but then you should remember that you cannot apply it universally.

11.4 ALL PLANES ARE 3-BLADES

A plane IT is determined by three points P, Q, R. By complete analogy to the line, the
3-blade p A g A r represents the plane, and it can be written in several equivalent forms:

PAGAT=pA(@—p)A(r—p)=pA(Q—P)A(r—p)=pAA.

284 THE HOMOGENEOUS MODEL

The final form shows that it has a location (here determined by p) and a pure 2-blade A
of R" as its 2-D direction. In one of many consistent interpretations, this is therefore the
connection of the finite point p to a specific line at infinity A, but we can also construct
it as the point r connected to the finite line p A (q — p), and many intermediate forms.
As with the line, all these constructors of the plane are equivalent and lead to the same
data element.

Planes at infinity, composed of only improper points, also exist in base spaces of suf-
ficiently high dimension. In a general base space R® or the Euclidean 3-space R>, we
would identify the plane at infinity with the heavenly sphere at infinity: it contains all
infinite points. It can also be considered as a 3-D direction; that is, an oriented volume
(which gives it a distinctly different geometrical feeling).

The antisymmetry of the outer product permits us to replace the point p characterizing
the location of the plane in the blade p A A by any affine combination of points on the
plane and still represent the same plane in all its aspects of location, direction, orientation,
and weight. A particularly symmetrical way of writing the plane is as

ptg+r
TA(p/\q+q/\r+r/\p),

pPAgGAT=
in which we recognize the centroid of the triangle formed by the points p, ¢, and r, as
well as the sum of the oriented line carriers of its three sides. Unfortunately, many of the
properties of that triangle disappear in the antisymmetric outer product that constructs
the oriented and weighted plane of its carrier, though the weight of the 3-blade repre-
senting the plane is twice the area of the triangle (if one uses unit points, see structural
exercise 4). As for lines, this gives the capability to compare planar elements generated
in different ways: coplanar elements differ by a scalar, oppositely oriented elements by a
sign, and equal area elements have the same norm. But of course p A g A ris not the trian-
gle through p, g, and r, so any specific information on vertices or edges needs to be kept
separately if needed.

We can also define the support point d as the point that allows us to express the plane as
a geometric product IT = d A, which defines it. When you do the computation, you find
a nicely symmetric expression for the support vector d of the plane in the base space, as

At AN
PAGAr (11.4)

- PAQ+qAT+TAD

This equation is completely expressed in terms of quantities of the vector space model,
but such expressions about offset subspaces are more easily derived in the homogeneous
model. Equation (11.4) has an interesting geometric interpretation in terms of the recip-
rocal frame of the basis {p,q,r} (see structural exercise 6).

As with the lines, planes should not be added to produce new planes, because they usually
will not. In a 3-D base space, however, the planes are represented as trivectors in a 4-D

CHAPTER 11

SECTION 11.5

k-FLATS AS (k + 1)-BLADES 285

representational space. In that space, all 3-vectors are 3-blades, so adding planes in 3-D
is permitted (as is the addition of (n — 1)-dimensional offset hyperplanes in a general
n-dimensional base space). Also, all planes containing a common line form a pencil of
planes—factoring out the line shows that adding such planes is just like vector addition,
and therefore allowed. Yet it is better practice to produce new planes in the pencil by
rotation or translation, if the geometry of the space permits.

11.5 k-FLATS AS (k + 1)-BLADES

11.5.1 FINITE k-FLATS

The pattern of constructing flats continues: taking the outer product of (k+ 1) points gives
afinite (k+1)-blade in the homogeneous representation space R"*!, directly representing
a k-dimensional offset subspace in the n-dimensional base space R". In the specification
by some point p at p and a base space direction A, the offset k-space X is represented by
the blade

X=pAp1ApaA--- APk =pAP1—PIAP2—P)A - A(Pk—P) =pAA = (eg+Pp)NA.

We will call such general subspaces flats (following [60]), or k-flat for a flat of rank k (the
rank is the grade of its direction A, the dimensionality of the offset subspace in the base
space).

11.5.2 INFINITE k-FLATS

In complete analogy to the infinite lines and planes, an improper k-flat is made up from
(k + 1) points at infinity and is therefore a (k + 1)-blade in the base space. There is a
potential confusion here between the term k-flat and its grade (k+ 1), but remember that
the (k + 1)-blade resides in the representational space R"*! and the k-flat is its interpre-
tation in the base space R". The confusion here is that the (k + 1)-blade happens to be
completely within the copy of R” that is in R"*!, but it is of lesser dimensionality than if
it had been in the vector space model of the base space. As two examples, the vector (1-
blade) u is a point at infinity (0-blade), and the heavenly sphere in 3-D is 2-dimensional,
but represented by a 3-blade in the representational space.

With both finite and infinite flats accounted for in the homogeneous representation space
R"1, we get a highly satisfying semantics for the outer product, not merely referring to
the spanning of subspaces by weighted directions (as we had in all previous chapters), but
now also including the localizing positions (with the proper localization ambiguity).

11.5.3 PARAMETERS OF k-FLATS

The parameters of these general flats are similar to what they were for lines and planes
(and, in hindsight, points): for finite flats there is a direction A, a moment M, and a sup-
port vector d (or equivalently a support point d); for infinite flats, only a direction.

286 THE HOMOGENEOUS MODEL

The parameters for the finite k-flat are simply retrieved from the representation above, in
the manner we have seen before for lines and planes:

direction : A= eale,

moment : M = ealj(eo A X),

-1
e, |(eo AN X)
supportvector : d =M/A = 01—
e 1X
. . X
unit support point : d = X/A = ——.
e, 1X

Having the parameters permits flexible rewriting of X to suit particular computations.
Use of the support point d allows us to rewrite the flat not merely as an outer product
d A A, but as the geometric product d A:

(ep + position vector) A direction = (eg + support vector) direction.

That very demand actually defines the support point.

11.5.4 THE NUMBER OF PARAMETERS OF AN OFFSET FLAT

In an n-dimensional space, you need a lot of parameters to determine an offset k-space in
allits aspects of direction, orientation, location, and weight. The representation pAA, with
A a k-blade permits us to count them: there are (Z) required to determine the direction
A as a k-blade (including its weight), and (n — k) independent degrees of freedom that
remain of the (k + 1)-blade that determines the moment M = p A A (this is the freedom
of the rejection of an n-dimensional position vector by a k-dimensional direction). This
gives a total of (Z) + 1 — k, and its dependence on # and k is tabulated in Table 11.2 for
some low-dimensional cases.

When the points spanning the (k+ 1)-blade are all improper points (or points at infinity),
we obtain a pure base space (k+ 1)-blade representing a k-dimensional direction element.
There are (kil) such elements (including their weights). The number of parameters in
those blades is also indicated in Table 11.2.

11.6 DIRECT AND DUAL REPRESENTATIONS OF FLATS

As with the proper subspaces in the vector space model of Chapter 10, the offset subspaces
of the homogeneous model can be represented in two related ways: directly and dually.
We need both representations to compute effectively.

11.6.1 DIRECT REPRESENTATION

In Part I, we got used to visualizing blades as being subspaces through the origin. Of course
the blades representing the offset flats are precisely that, though in the (n+1)-dimensional

CHAPTER 11

SECTION 11.6 DIRECT AND DUAL REPRESENTATIONS OF FLATS 287

(a) The number of parameters of offset and weighted k-space elements in
n-space. (b) The number of parameters in k-dimensional directions (the improper blades).

(a) Subspace Grade k (b) Direction Grade k

(one less than blade grade!) (one less than blade grade!)

n 0 1 2 3 4 5 n 0 1 2 3 4

0 1 0 0

1 2 1 1 1

2 3 3 2 2 1

3 4 5 1 3 3

4 5 7 5 1 4 4 6 4 1

5 6 9 13 12 6 1 5 5 10 10 5 1

homogeneous representation space R"+!. Figure 11.2(a) gave an example for the 2-blade
representing a line in the base space R? as an origin plane in the representation space R3.
It is good to make explicit how the containment of a vector x in such a blade of R"*!
precisely retrieves the containment relationship of the vector x (and the associated point
P) in the base space of geometrical interest R”.

The direct interpretation of such a (k + 1)-blade in the homogeneous representation
is done by testing the membership of a general point x using the outer product as in
Section 2.8.2. So we test whether a unit point x (at x) is on the flat through unit point p
with direction element A by forming the outer product of x with p A A and requiring it to
vanish:

o
|

=xApANA=xAN(Pp—x)NA
xAP—-X)NA=eAN(P—X)ANA+XAPAA.

Since ey is orthogonal to the bold base space elements, this leads to the two equations
x-p)ANA=0; andxApAA=0.

Taking the outer product of the former with x shows that the latter is automatically sat-
isfied when the former is. Therefore the condition x A (p A A) = 0 in the homogeneous
representation space is equivalent to (x — p) A A = 0 in the base space.

From the vector space model, we know that this is precisely the condition for the vector
(x—p) to lie on the subspace with direction A passing through the origin in the base space.
This of course implies that the position vector x reaches to the offset subspace at location

288 THE HOMOGENEOUS MODEL

(@)

Figure 11.3: Defining offset subspaces fully in the base space by requiring the difference
vector x — p to be contained in the direction blade A (or a), as required by the condition
(x—p)AA = 0. Also shown is the alternative interpretation of this equation: xAA = pAA, which
holds by the reshapeable nature of the blades involved.

p. For a line in 2-D and a plane in 3-D, these conditions are sketched in Figure 11.3(a)

and (b).

We can convert this condition to the familiar parametric equation for a point on the offset

A-spaceatp. Let A =aj Aay A - -+ A a, then the general solution to the equation
x—p)AajAhapA---ANag=0

is given by a linear combination of the direction factors:

X—p=Aia; + Aay + -+ + Arag. (11.5)

You recognize the various cases for k = 1 (a line), k = 2 (a plane), and even k = 0
(a point). The parameters 4; for a given vector x can be computed easily (see structural
exercise 7).

For an improper flat A, the equation x A A = 0 has no solution (for we can never make
the part ey A A be equal to 0). So an improper flat contains no proper (finite) points. Of
course, an improper k-blade does contain k independent directions (i.e., it does contain
k independent improper points).

11.6.2 DUAL REPRESENTATION

When we treated subspaces in Section 3.5.5, we found that an equivalent representation is
by their orthogonal complement. Algebraically, that is computed through duality relative
to the pseudoscalar of the space in which the blade resides.

CHAPTER 11

SECTION 11.6

DIRECT AND DUAL REPRESENTATIONS OF FLATS 289

We can do this here as well, but we must of course compute relative to the representational
space R™*!, Let us take as the pseudoscalar for that the (1 + I)-blade

Inv1=e AL, =e 1y,

with I, the pseudoscalar for the base space R"” (which is why we write it as a bold blade).
Because of the orthogonality of the representational dimension ey to the base space, we
can choose to use the outer product or the geometric product, whichever is more conve-
nient for the computation at hand.

Duality with this pseudoscalar requires its inverse:

X =Xx|17}

n+1

=X](1, " eg") = X*e; .

We introduced two shorthands for duals here, the six-pointed star for the representational
space R™*! and the five-pointed star for the dual in the base space R” (the mnemonic is
that six is one more than five). The base space dual should really only be used on elements
of that base space, and then should provide the link to the vector space model (which is
after all the algebra of the base space). We have to use the proper inverse of ey to absorb
the ambiguity in choice of sign for the metric of the representational space we mentioned
in Section 11.1. It has the additional advantage of showing at a glance whether we have a
blade or a dual blade. Unfortunately this is only on paper, for in an implementation ¢; !
is substituted by +eg or —ep, so there is no obvious qualitative distinction.

With the pseudoscalar thus defined, the dual of the general flat X = pA A can be expressed
in various equivalent forms. Each has its own use, so we give them all:

= (pNA)" =p]A”

= pJ (A"r h (multiplicative form)
= A* —-€ (pJ A* (additive form) (11.6)
= A"r + e, lM* (direction and moment)

= (e, 0 -d-)M* (support and moment)

The grade involution emerges to properly keep track of the orlentatlon Note that the

grade involution extends over the dual, so that A* = (-D" A", These signs are partly
caused by our choice of pseudoscalar.

The simplest dual element of this form is a hyperplane with a direction characterized by
a unit normal vector n = A* at an oriented distance from the origin (positive when in
the n-direction). Then we can take the point at location d = §n to localize it, so that we
obtain as the dual of the hyperplane:

ﬂEH*:—n+5eal.

This vector is indicated in Figure 11.4 for a hyperplane in R2, which is a line, and a hyper-
plane in R!, which is a point. The latter figure is a cross section of the former.

290 THE HOMOGENEOUS MODEL CHAPTER 11

Figure 11.4: The dual hyperplane representation in R? and R! for a hyperplane with support vector d = én, with n a unit
vector. Itis the vector —n + 8 ¢;'; the figures are drawn for ¢j' = +¢.

In the dual representation, testing whether a point x lies on a dual flat X* is now done by
demanding the contraction x| X* to be zero. We can write this out to check that it leads
to the correct condition on base space elements (after some rewriting):

0=x|X"=x]| (1;; —eal(pjg‘\")) = (x—p)Jl?’ +ea1 ((x/\p)JX;).

Both terms should be independently zero because of the independence of ¢; ! with the
bold base space elements. Moreover, when the first term is zero,

0= (x—p)|A%,

the second is as well (for that can be written as —¢; ! ((XJ ((x - p)JZ;))). Therefore,

the condition 0 = x| X* is identical to (x — p) being perpendicular to the dual of the
direction in the base space. This is simply the dual of the direct representation condition
(x—p)AA = 0, so all is consistent and the dual approach leads to the same offset subspace
as the direct approach.

For the dual plane representation above, the dual condition yields
0=x|7=(e+x)- (—n+5egl) =6—X-n,
which indeed retrieves the familiar, purely Euclidean base space condition
Xx-n=26 (11.7)

for a point to lie on a hyperplane characterized by a unit normal vector n at distance &
from the origin. That is the normal equation of the hyperplane, also known as its Hesse
normal form.

This is all in accordance with how one treats such hyperplanes and equations in the usual
homogeneous coordinates representation, where a hyperplane is represented as a covector

SECTION 11.6

DIRECT AND DUAL REPRESENTATIONS OF FLATS 291

[[n; —6] and the probe point as the vector [x; 177, Their matrix product thenisx-n—§, and
requiring this to be zero gives the same normal equation. We discuss this correspondence
in more detail in Section 12.1, where we also show that we have considerably generalized
the principle beyond planes that may be represented by vectors, to arbitrary offset flats of
any grade such as lines in their dual form.

The same parameters we derived from directly represented blades in Section 11.5.3 can of
course be derived from their dual representations. This can be done by dualizing the for-
mula for a parameter derived from X and manipulating it until it contains an expression
on terms of X*, or more directly by using familiar techniques on some of the equivalent
expressions in (11.6). The results are listed in Table 11.3 for easy reference.

All nonzero blades in the homogeneous model of Euclidean geometry, and their
parameters. A blade X represents either a finite flat, a dual finite flat, or a flat at infinity (direct
or dual), which we denote as direction. These have the generic forms denoted in the top row,
where A denotes a purely Euclidean blade of appropriate grade. Dual directions transform in
the same manner as directions. The operations on the blades may look complicated, but in an
implementation they can be implemented at compile time as coordinate selections. Rotation
and translation are treated in Section 11.8.

Finite Flat Dual Finite Flat Direction
X=eA+dAA Xt = A* —¢5' (d]A%) A
(Dual) direction A= eale A* = ¢ (eal AX") X
—1
e, 1(eo N X) —ep | X*
Support d= OJT d= %
e 1X eo] (e, AX)
Moment M= ealj (eo A X) M* = ¢y | X*
Rotation RXR™! RX*R™! RXR™!
Translation X+tA (e(;lJX) X - eal A (L] X*) X

292 THE HOMOGENEOUS MODEL

11.7 INCIDENCE RELATIONSHIPS

The flats we have introduced can be combined. The outcome of spanning operations,
duality, and incidence operations on flats are again flats. They form a complete system of
computing with such relationships between offset subspaces. This could of course only be
achieved by encoding both the proper flats and the improper flats. Two planes now always
have a line in common, even when they are parallel (in which case it is an improper line
at infinity).

These geometrical properties are reflected in our algebra by closure under A, *, and N
(since the meet is the dual of the outer product of the duals, the third follows automatically
from the others). In particular, whatever computation we perform, we will always obtain
an element of the algebra. There is therefore no need for exceptional treatment of lines,
points, directions, and so on; we can always compute on, regardless of the type of the
outcome. Only at the very end of our computations, when we need to render the results,
we may need to test for the type of element that is the final outcome, and compute its
parameters.

11.7.1 EXAMPLES OF INCIDENCE COMPUTATIONS

We give some examples of incidences in the homogeneous model, expanding the natural
form AN B = B*| A of the meet in Chapter 5 down to the consequences for the Euclidean
parameters of the flats in the base space. The purpose of this is not to show you how to
do such computations, for you would never do them in real life. Your geometric algebra
software will automatically take care of computation and interpretation in a structural
manner. But to learn to rely on that, you need to see the correspondence to the classical
approach at least once. This permits us to point out the differences, and demonstrate how
the unification of the structure can simplify the flow of your code.

Two Lines in a Plane

When we have two lines in the same plane I through the origin in R”, say L = egu + U
and M = ¢y v+ V, their meet at a point can be computed. For this we need their join.
Assuming first that the lines are in general position in the plane I, the join is the com-
mon plane representative e I in the homogeneous representation space R"*!. Since both
arguments of the meet are of the same type, it is convenient to use the dual computation
LNM = (M*AL*)™*. We rewrite a dual in terms of the Euclidean dual:

L*=(eu+U)I "¢ = —u* + U*¢)'.

You should realize that in the plane considered, u* is a vector and U* is a scalar. Their
commutative properties then enable a fairly quick simplification of results:

CHAPTER 11

SECTION 11.7

INCIDENCE RELATIONSHIPS

LAM= ((—v* +V*) A (—u* + U* 1))
—% L TF

= (VAU T (Viur e) - (U v el

o (VAU T 4 Vi u—U*y

293

e(MAV* +V*¥u—-U*v. (11.8)

(For the final step, we used (v* A u*)™* = v*.u = u-v*= (u A v)*.) That is the result of
the meet with this join as the plane of the lines. Depending on whether (u A v)* is zero
or not, we have two interpretations: the lines intersect in a finite point or in an infinite
point. Therefore, a single computation in the homogeneous model R"*! captures several
cases that are different in R”. We spell them out to show that they correspond to some
familiar expressions.

o Finite Intersection Point. If (w Av)* # 0, we can write the result of (11.8) as a

weighted point in its homogeneous representation:

A U
LNM=(uAv)* <eo+—u+—v>
uAv vAu

This shows that the result is indeed a point, at the location - u + -2 v, and

uAv vAu

with a weight (u A v)*. The correctness of the l