
Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

CCgg LLaanngguuaaggee SSppeecciifificcaattiioonn
Copyright (c) 2001−2008NVIDIA Corp.

This is version 2.0 of the Cg Language specification. This language specification describes version 2.0 of
the Cg language

LL aanngguuaaggee OOvveerrvviieeww
The Cg language is primarily modeled onANSI C, but adopts some ideas from modern languages such as
C++ and Java, and from earlier shading languages such as RenderMan and the Stanford shading language.
The language also introduces a few new ideas. Inparticular, it includes features designed to represent data
flow in stream-processing architectures such as GPUs.Profiles, which are specified at compile time, may
subset certain features of the language, including the ability to implement loops and the precision at which
certain computations are performed.

Like C, Cg is designed primarily as a low-level programming language. Features are provided that map as
directly as possible to hardware capabilities. Higher level abstractions are designed primarily to not get in
the way of writing code that maps directly to the hardware in the most efficient way possible. The changes
in the language from C primarily reflect differences in the way GPU hardware works compared to conven-
tional CPUs.GPUs are designed to run large numbers of small threads of processing in parallel, each run-
ning a copy of the same program on a different data set.

DDii ffff eerr eenncceess ffrroomm AANNSSII CC
Cg was developed based on theANSI-C language with the following major additions, deletions, and
changes. (This is a summary-more detail is provided later in this document):

SSiill eenntt IInnccoommppaattiibbiilliittiieess

Most of the changes fromANSI C are either omissions or additions, but there are a few potentially silent
incompatibilities. Theseare changes within Cg that could cause a program that compiles without errors to
behave in a manner different from C:

• The type promotion rules for constants are different when the constant is not explicitly typed using a
type cast or type suffix. In general, a binary operation between a constant that is not explicitly typed
and a variable is performed at the variable’s precision, rather than at the constant’s default precision.

• Declarations ofstruct perform an automatictypedef (as in C++) and thus could override a previ-
ously declared type.

• Arrays are first-class types that are distinct from pointers.As a result, array assignments semantically
perform a copy operation for the entire array.

SSiimmiill aarr OOppeerraattiioonnss TThhaatt MMuusstt bbee EExxpprreesssseedd DDiiffffeerreennttllyy

There are several changes that force the same operation to be expressed differently in Cg than in C:

• A Boolean type,bool , is introduced, with corresponding implications for operators and control con-
structs.

• Arrays are first-class types because Cg does not support pointers.

• Functions pass values by value/result, and thus use anout or inout modifier in the formal parameter
list to return a parameter. By default, formal parameters arein , but it is acceptable to specify this
explicitly. Parameters can also be specified asin out , which is semantically the same asinout .

CC ffeeaattuurreess nnoott pprreesseenntt iinn CCgg

• Language profiles (described in the Profiles section) may subset language capabilities in a variety of
ways. Inparticular, language profiles may restrict the use of for and while loops.For example, some
profiles may only support loops that can be fully unrolled at compile time.

Cg Toolkit 2.0 1

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

• Reserved keywordsgoto , switch , case , anddefault are not supported, nor are labels.

• Pointers and pointer-related capabilities, such as the& and−> operators, are not supported.

• Arrays are supported, but with some limitations on size and dimensionality. Restrictions on the use of
computed subscripts are also permitted. Arrays may be designated aspacked . The operations
allowed on packed arrays may be different from those allowed on unpacked arrays.Predefined
packed types are provided for vectors and matrices. It is strongly recommended that these predefined
types be used.

• There is noenum or union .

• There are no bit-field declarations in structures.

• All integral types are implicitly signed, there is nosignedkeyword.

CCgg ffeeaattuurreess nnoott pprreesseenntt iinn CC

• A binding semanticmay be associated with a structure tag, a variable, or a structure element to denote
that object’s mapping to a specific hardware orAPI resource. Bindingsemantics are described in the
Binding Semanticssection.

• There is a built-in swizzle operator:.xyzw or .rgba for vectors. Thisoperator allows the compo-
nents of a vector to be rearranged and also replicated. It also allows the creation of a vector from a
scalar.

• For an lvalue, the swizzle operator allows components of a vector or matrix to be selectively written.

• There is a similar built-in swizzle operator for matrices:
._m<row><col>[_m<row><col>][...] . This operator allows access to individual matrix
components and allows the creation of a vector from elements of a matrix.For compatibility with
DirectX 8 notation, there is a second form of matrix swizzle, which is described later.

• Numeric data types are different. Cg’s primary numeric data types arefloat , half , and fixed .
Fragment profiles are required to support all three data types, but may choose to implementhalf
and/orfixed at float precision. Vertex profiles are required to supporthalf andfloat , but may
choose to implementhalf at float precision. Vertex profiles may omit support forfixed opera-
tions, but must still support definition offixed variables. Cgallows profiles to omit run-time sup-
port for int and other integer types. Cg allows profiles to treatdouble asfloat .

• Many operators support per-element vector operations.

• The?: , , &&, ! , and comparison operators can be used withbool vectors to perform multiple con-
ditional operations simultaneously.

The side effects of all operands to vector?: , , and&&operators are always executed.

• Non-static global variables, and parameters to top-level functions (such asmain()) may be designated
as uniform . A uniform variable may be read and written within a program, just like any other
variable. However, the uniform modifier indicates that the initial value of the variable/parameter is
expected to be constant across a large number of invocations of the program.

• A new set ofsampler* types represents handles to texture sampler units.

• Functions may have default values for their parameters, as in C++. These defaults are expressed using
assignment syntax.

• Function and operator overloading is supported.

• Variables may be defined anywhere before they are used, rather than just at the beginning of a scope as
in C. (That is, we adopt the C++ rules that govern where variable declarations are allowed.) Variables
may not be redeclared within the same scope.

Cg Toolkit 2.0 2

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

• Vector constructors, such as the formfloat4(1,2,3,4) , and matrix constructors may be used
anywhere in an expression.

• A struct definition automatically performs a correspondingtypedef , as in C++.

• C++−style// comments are allowed in addition to C-style/* ... */ comments.

• A limited form of inheritance is supported;interface types may be defined which contain only
member functions (no data members) andstruct types may inherit from a single interface and pro-
vide specific implementations for all the member functions.Interface objects may not be created; a
variable of interface type may have any implementing struct type assigned to it.

DDeettaaiill eedd LLaanngguuaaggee SSppeecciifificcaattiioonn
DDeefifinnii tt iioonnss

The following definitions are based on theANSI C standard:

Object:
An object is a region of data storage in the execution environment, the contents of which can represent
values. When referenced, an object may be interpreted as having a particular type.

Declaration:
A declaration specifies the interpretation and attributes of a set of identifiers.

Definition:
A declaration that also causes storage to be reserved for an object or code that will be generated for a
function named by an identifier is a definition.

PPrr oofifilleess

Compilation of a Cg program, a top-level function, always occurs in the context of a compilation profile.
The profile specifies whether certain optional language features are supported.These optional language
features include certain control constructs and standard library functions. The compilation profile also
defines the precision of thefloat , half , and fixed data types, and specifies whether thefixed and
sampler* data types are fully or only partially supported.The profile also specifies the environment in
which the program will be run. The choice of a compilation profile is made externally to the language, by
using a compiler command-line switch, for example.

The profile restrictions are only applied to the top-level function that is being compiled and to any variables
or functions that it references, either directly or indirectly. If a function is present in the source code, but
not called directly or indirectly by the top-level function, it is free to use capabilities that are not supported
by the current profile.

The intent of these rules is to allow a single Cg source file to contain many different top-level functions that
are targeted at different profiles. The core Cg language specification is sufficiently complete to allow all of
these functions to be parsed.The restrictions provided by a compilation profile are only needed for code
generation, and are therefore only applied to those functions for which code is being generated.This speci-
fication uses the word ‘‘program’’ to refer to the top-level function, any functions the top-level function
calls, and any global variables or typedef definitions it references.

Each profile must have a separate specification that describes its characteristics and limitations.

This core Cg specification requires certain minimum capabilities for all profiles.In some cases, the core
specification distinguishes between vertex-program and fragment-program profiles, with different minimum
capabilities for each.

DDeeccllaarr aatt iioonnss aanndd ddeeccllaarraattiioonn ssppeecciififieerrss..

A Cg program consists of a series of declarations, each of which declares one or more variables or func-
tions, or declares and defines a single function.Each declaration consists of zero or more declaration speci-
fiers, a type, and one or more declarators. Some of the declaration specifiers are the same as those inANSI
C; others are new to Cg

Cg Toolkit 2.0 3

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

ccoonnsstt
Marks a variable as a constant that cannot be assigned to within the program. Unless this is combined
with uniform or varying , the declarator must include an initializer to give the variable a value.

eexxtteerr nn
Marks this declaration as solely a declaration and not a definition.There must be a non-extern dec-
laration elsewhere in the program.

iinn Only usable on parameter andvarying declarations. Marksthe parameter or varying as an input to
the function or program. Function parameters with noin , out , or inout specifier are implicitlyin

iinnllii nnee
Only usable on a function definition.Tells the compiler that it should always inline calls to the func-
tion if at all possible.

iinnoouutt
Only usable on parameter andvarying declarations. Marksthe parameter or varying as both an
input to and an output from the function or program

ssttaatt iicc
Only usable on global variables. Marksthe variable as ’private’ to the program, and not visible exter-
nally. Cannot be combined withuniform or varying

oouutt Only usable on parameter andvarying declarations. Marksthe parameter or varying as an output
from the function or program

uunnii ff oorrmm
Only usable on global variables and parameters to the top-level main function of a program.If speci-
fied on a non-top-level function parameter it is ignored. The intent of this rule is to allow a function to
serve as either a top-level function or as one that is not.

Note thatuniform variables may be read and written just like non-uniform variables. Theuni-
form qualifier simply provides information about how the initial value of the variable is to be speci-
fied and stored, through a mechanism external to the language.

vv aarr yyiinngg
Only usable on global variables and parameters to the top-level main function of a program.If speci-
fied on a non-top-level function parameter it is ignored.

pprr oofifillee nnaammee
The name of any profile (or profile wildcard— see Profiles) may be used as a specifier on any func-
tion declaration. It defines a function that is only visible in the corresponding profiles.

The specifiersuniform andvarying specify how data is transferred between the rest of the world and a
Cg program.Typically, the initial value of auniform variable or parameter is stored in a different class
of hardware register for avarying . Furthermore, the external mechanism for specifying the initial value
of uniform variables or parameters may be different than that used for specifying the initial value of
varying variables or parameters.Parameters qualified asuniform are normally treated as persistent
state, whilevarying parameters are treated as streaming data, with a new value specified for each stream
record (such as within a vertex array).

Non-static global variables are treated asuniform by default, while parameters to the top-level func-
tion are treated asvarying by default.

Each declaration is visible (‘‘in scope’’) from the point of its declarator until the end of the enclosing block
or the end of the compilation unit if outside any block. Declarationsin named scopes (such as structs and
interfaces) may be visible outside of their scope using explicit scope qualifiers, as in C++.

Cg Toolkit 2.0 4

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

SSeemmaanntt iiccss

Each declarator in a declaration may optionally have a semantic specified with it.A semantic specifies how
the variable is connected to the environment in which the program runs. All semantics are profile specific
(so they hav edifferent meanings in different profiles), though there is some attempt to be consistent across
profiles. Eachprofile specification must specify the set of semantics which the profile understands, as well
as what behavior occurs for any other unspecified semantics.

FFuunncctt iioonn DDeeccllaarraattiioonnss

Functions are declared essentially as in C.A function that does not return a value must be declared with a
void return type.A function that takes no parameters may be declared in one of two ways:

As in C, using the void keyword:
functionName(void)

With no parameters at all:
functionName()

Functions may be declared asstatic . If so, they may not be compiled as a program and are not visible
externally

FFuunncctt iioonn oovveerrllooaaddiinngg aanndd ooppttiioonnaall aarrgguummeennttss

Cg supports function overloading; that is you may define multiple functions with the same name. The func-
tion actually called at any giv en call site is based on the types of the arguments at that call site; the defini-
tion that best matches is called. See the the Overload resolution entry elsewhere in this document section
for the precise rules.Trailing arguments with initializers are optional arguments; defining a function with
optional arguments is equivalent to defining multiple overloaded functions that differ by having and not
having the optional argument. Thevalue of the initializer is used only for the version that does not have the
argument and is ignored if the argument is present.

OOvv eerrllooaaddiinngg ooff FFuunnccttiioonnss bbyy PPrroofifillee

Cg supports overloading of functions by compilation profile. This capability allows a function to be imple-
mented differently for different profiles.It is also useful because different profiles may support different
subsets of the language capabilities, and because the most efficient implementation of a function may be
different for different profiles.

The profile name must precede the return type name in the function declaration. For example, to define two
different versions of the functionmyfunc for theprofileA andprofileB profiles:

profileA float myfunc(float x) {...};
profileB float myfunc(float x) {...};

If a type is defined (using atypedef) that has the same name as a profile, the identifier is treated as a type
name, and is not available for profile overloading at any subsequent point in the file.

If a function definition does not include a profile, the function is referred to as an ‘‘open-profile’’ f unction.
Open-profile functions apply to all profiles.

Several wildcard profile names are defined. The namevs matches any vertex profile, while the nameps
matches any fragment or pixel profile. The namesps_1 andps_2 match any DX8 pixel shader 1.x profile,
or DX9 pixel shader 2.x profile, respectively. Similarly, the namesvs_1 andvs_2 match any DX vertex
shader 1.x or 2.x, respectively. Additional valid wildcard profile names may be defined by individual pro-
files.

In general, the most specific version of a function is used. More details are provided in the section on func-
tion overloading, but roughly speaking, the search order is the following:

Cg Toolkit 2.0 5

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

1. version of the function with the exact profile overload

2. version of the function with the most specific wildcard profile overload (e.g.vs , ‘‘ps_1’’)

3. version of function with no profile overload

This search process allows generic versions of a function to be defined that can be overridden as needed for
particular hardware.

SSyynnttaaxx ffoorr PPaarraammeetteerrss iinn FFuunnccttiioonn DDeefifinniittiioonnss

Functions are declared in a manner similar to C, but the parameters in function definitions may include a
binding semantic (discussed later) and a default value.

Each parameter in a function definition takes the following form:

<declspecs> <type> identifier [: <binding_semantic>] [= <default>]

<default> is an expression that resolves to a constant at compile time.

Default values are only permitted foruniform parameters, and forin parameters to non top-level func-
tions.

FFuunncctt iioonn CCaallllss

A function call returns an rvalue. Therefore, if a function returns an array, the array may be read but not
written. For example, the following is allowed:

y = myfunc(x)[2];

But, this is not:

myfunc(x)[2] = y;

For multiple function calls within an expression, the calls can occur in any order — it is undefined.

TT yyppeess

Cg’s types are as follows:

• The int type is preferably 32−bit two’s complement. Profilesmay optionally treatint asfloat .

• The unsigned type is preferably a 32−bit ordinal value. unsigned may also be used with other
integer types to make different sized unsigned values

• The char , short , and long types are two’s complement integers of various sizes. The only
requirement is thatchar is no larger thatshort , short is no larger thanint andlong is at least
as large asint

• The float type is as close as possible to theIEEE single precision (32−bit) floating point format.
Profiles must support thefloat data type.

• Thehalf type is lower-precision IEEE-like floating point. Profiles must support thehalf type, but
may choose to implement it with the same precision as thefloat type.

• The fixed type is a signed type with a range of at least [−2,2) and with at least 10 bits of fractional
precision. Overflow operations on the data type clamp rather than wrap. Fragment profiles must sup-
port thefixed type, but may implement it with the same precision as thehalf or float types.
Vertex profiles are required to provide partial support (as defined below) for thefixed type. Vertex
profiles have the option to provide full support for thefixed type or to implement thefixed type
with the same precision as thehalf or float types.

• Thebool type represents Boolean values. Objectsof bool type are either true or false.

Cg Toolkit 2.0 6

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

• The cint type is 32−bit two’s complement. Thistype is meaningful only at compile time; it is not
possible to declare objects of typecint .

• The cfloat type is IEEE single-precision (32−bit) floating point.This type is meaningful only at
compile time; it is not possible to declare objects of typecfloat .

• Thevoid type may not be used in any expression. Itmay only be used as the return type of functions
that do not return a value.

• Thesampler* types are handles to texture objects.Formal parameters of a program or function may
be of typesampler* . No other definition ofsampler* variables is permitted.A sampler* vari-
able may only be used by passing it to another function as anin parameter. Assignment tosam-
pler* variables is not permitted, andsampler* expressions are not permitted.

The following sampler types are always defined:sampler , sampler1D , sampler2D , sam-
pler3D , samplerCUBE , samplerRECT .

The basesampler type may be used in any context in which a more specific sampler type is valid.
However, asampler variable must be used in a consistent way throughout the program.For exam-
ple, it cannot be used in place of both asampler1D and asampler2D in the same program.The
sampler type is deprecated and only provided for backwards compatibility with Cg 1.0

Fragment profiles are required to fully support thesampler , sampler1D , sampler2D , sam-
pler3D , and samplerCUBE data types. Fragment profiles are required to provide partial support
(as defined below) for thesamplerRECT data type and may optionally provide full support for this
data type.

Vertex profiles are required to provide partial support for the six sampler data types and may option-
ally provide full support for these data types.

• An array type is a collection of one or more elements of the same type.An array variable has a single
index.

• Some array types may be optionally designated aspacked , using thepacked type modifier. The
storage format of apacked type may be different from the storage format of the corresponding
unpacked type. The storage format of packed types is implementation dependent, but must be consis-
tent for any particular combination of compiler and profile.The operations supported on a packed
type in a particular profile may be different than the operations supported on the corresponding
unpacked type in that same profile. Profiles may define a maximum allowable size for packed arrays,
but must support at least size 4 for packed vector (1D array) types, and 4x4 for packed matrix (2D
array) types.

• When declaring an array of arrays in a single declaration, thepacked modifier refers to all of the
arrays. However, it is possible to declare an unpacked array ofpacked arrays by declaring the first
level of array in atypedef using thepacked keyword and then declaring an array of this type in a
second statement. It is not possible to declare a packed array of unpacked arrays.

• For any supported numeric data typeTYPE, implementations must support the following packed array
types, which are calledvector types. Type identifiers must be predefined for these types in the global
scope:

typedef packed TYPE TYPE1[1];
typedef packed TYPE TYPE2[2];
typedef packed TYPE TYPE3[3];
typedef packed TYPE TYPE4[4];

For example, implementations must predefine the type identifiersfloat1 , float2 , float3 ,
float4 , and so on for any other supported numeric type.

Cg Toolkit 2.0 7

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

• For any supported numeric data typeTYPE, implementations must support the following packed array
types, which are calledmatrix types. Implementations must also predefine type identifiers (in the
global scope) to represent these types:

packed TYPE1 TYPE1x1[1];
packed TYPE2 TYPE1x2[1];
packed TYPE3 TYPE1x3[1];
packed TYPE4 TYPE1x4[1];
packed TYPE1 TYPE2x1[2];
packed TYPE2 TYPE2x2[2];
packed TYPE3 TYPE2x3[2];
packed TYPE4 TYPE2x4[2];
packed TYPE1 TYPE3x1[3];
packed TYPE2 TYPE3x2[3];
packed TYPE3 TYPE3x3[3];
packed TYPE4 TYPE3x4[3];
packed TYPE1 TYPE4x1[4];
packed TYPE2 TYPE4x2[4];
packed TYPE3 TYPE4x3[4];
packed TYPE4 TYPE4x4[4];

For example, implementations must predefine the type identifiersfloat2x1 , float3x3 ,
float4x4 , and so on. A typedef follows the usual matrix-naming convention of TYPEr-
ows_X_columns . If we declarefloat4x4 a , then

a[3] is equivalent to a._m30_m31_m32_m33

Both expressions extract the third row of the matrix.

• Implementations are required to support indexing of vectors and matrices with constant indices.

• A struct type is a collection of one or more members of possibly different types. It may include
both function members (methods) and data members (fields).

SStt rr uucctt aanndd IInntteerrffaaccee ttyyppeess

Interface types are defined with ainterfacekeyword in place of the normalstructkeyword. Interface types
may only declare member functions, not data members.Interface member functions may only be declared,
not defined (no default implementations in C++parlance).

Struct types may inherit from a single interface type, and must define an implementation member function
for every member function declared in the interface type.

PP aarrttiiaall SSuuppppoorrtt ooff TTyyppeess

This specification mandates ‘‘partial support’’ f or some types.Partial support for a type requires the fol-
lowing:

• Definitions and declarations using the type are supported.

• Assignment and copy of objects of that type are supported (including implicit copies when passing
function parameters).

• Top-level function parameters may be defined using that type.

If a type is partially supported, variables may be defined using that type but no useful operations can be per-
formed on them.Partial support for types makes it easier to share data structures in code that is targeted at
different profiles.

Cg Toolkit 2.0 8

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

TT yyppee CCaatteeggoorriieess

• Thesigned integraltype category includes typescint , char , short , int , and long .

• The unsigned integral type category includes typesunsigned char , unsigned short ,
unsigned int , andunsigned long . unsigned is the same asunsigned int

• The integralcategory includes bothsigned integralandunsigned integraltypes

• The floating type category includes typescfloat , float , half , and fixed (Note that floating
really means floating or fixed/fractional.)

• Thenumerictype category includesintegralandfloatingtypes.

• Thecompile-timetype category includes typescfloat andcint . These types are used by the com-
piler for constant type conversions.

• The dynamictype category includes all interface and the unsized array entry elsewhere in this docu-
ment types

• The concretetype category includes all types that are not included in thecompile-timeanddynamic
type category.

• Thescalartype category includes all types in the numeric category, thebool type, and all types in the
compile-time category. In this specification, a reference to a <category> type (such as a reference to a
numeric type) means one of the types included in the category (such asfloat , half , or fixed).

CCoonnssttaannttss

Constant literals are defined as in C, including an optional0 or 0x prefix for octal or hexadecimal con-
stants, ande exponent suffix for floating point constants. A constant may be explicitly typed or implicitly
typed. Explicittyping of a constant is performed, as in C, by suffixing the constant with a one or two char-
acters indicating the type of the constant:

• dd for double

• ff for float

• hh for half

• ii for int

• ll for long

• ssfor short

• tt for char

• uu for unsigned , which may also be followed byss, tt , ii , or ll

• xx for fixed

Any constant that is not explicitly typed is implicitly typed. If the constant includes a decimal point or an
’e’ exponent suffix, it is implicitly typed ascfloat . If it does not include a decimal point, it is implicitly
typed ascint .

By default, constants are base 10.For compatibility with C, integer hexadecimal constants may be speci-
fied by prefixing the constant with0x , and integer octal constants may be specified by prefixing the con-
stant with0.

Compile-time constant folding is preferably performed at the same precision that would be used if the oper-
ation were performed at run time. Some compilation profiles may allow some precision flexibility for the
hardware; in such cases the compiler should ideally perform the constant folding at the highest hardware
precision allowed for that data type in that profile.

If constant folding cannot be performed at run-time precision, it may optionally be performed using the pre-
cision indicated below for each of the numeric datatypes:

Cg Toolkit 2.0 9

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

float
s23e8 (‘‘fp32’’) IEEE single precision floating point

half
s10e5 (‘‘fp16’’) floating point w/IEEE semantics

fixed
S1.10 fixed point, clamping to [−2, 2)

double
s52e11 (‘‘fp64’’) IEEE double precision floating point

int signed32 bit twos-complement integer

char
signed 8 bit twos-complement integer

short
signed 16 bit twos-complement integer

long
signed 64 bit twos-complement integer

TT yyppee CCoonnvveerrssiioonnss

Some type conversions are allowed implicitly, while others require an cast. Some implicit conversions may
cause a warning, which can be suppressed by using an explicit cast. Explicit casts are indicated using C-
style syntax (e.g., castingvariable to thefloat4 type may be achieved via ‘‘(float4)variablename’’).

Scalar conversions:
Implicit conversion of any scalar numeric type to any other scalar numeric type is allowed. Awarning
may be issued if the conversion is implicit and it is possible that precision is lost. implicit conversion
of any scalar object type to any compatible scalar object type is also allowed. Conversions between
incompatible scalar object types or object and numeric types are not allowed, even with an explicit
cast. ‘‘sampler’’ is compatible with ‘‘sampler1D’’, ‘ ‘sampler2D’’, ‘ ‘sampler3D’’, ‘ ‘samplerCube’’, and
‘‘ samplerRECT’’. No other object types are compatible (‘‘sampler1D’’ is not compatible with ‘‘sam-
pler2D’’, even though both are compatible with ‘‘sampler’’).

Scalar types may be implicitly converted to vectors and matrixes of compatible type. The scalar will
be replicated to all elements of the vector or matrix.Scalar types may also be explicitly cast to struc-
ture types if the scalar type can be legally cast to every member of the structure.

Vector conversions
Vectors may be converted to scalar types (selects the first element of the vector). Awarning is issued
if this is done implicitly. A vector may also be implicitly converted to another vector of the same size
and compatible element type.

A vector may be converted to a smaller compatible vector, or a matrix of the same total size, but a
warning if issued if an explicit cast is not used.

Matrix conversions
Matrixes may be converted to a scalar type (selects to 0,0 element). As with vectors, this causes a
warning if its done implicitly. A matrix may also be converted implicitly to a matrix of the same size
and shape and compatible element type

A Matrix may be converted to a smaller matrix type (selects the upper- left submatrix), or to a vector
of the same total size, but a warning is issued if an explicit cast is not used.

Structure conversions
a structure may be explicitly cast to the type of its first member, or to another structure type with the
same number of members, if each member of the struct can be converted to the corresponding member
of the new struct. Noimplicit conversions of struct types are allowed.

Cg Toolkit 2.0 10

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

Array conversions
An array may be explicitly converted to another array type with the same number of elements and a
compatible element type.A compatible element type is any type to which the element type of the ini-
tial array may be implicitly converted to. No implicit conversions of array types are allowed.

Source type
 Scalar Vector Matrix Struct Array

T - ----+--------+--------+--------+--------+--------+
a Scalar A W W E(3) -
r - ----+--------+--------+--------+--------+--------+
g Vector A A/W(1) W(2) E(3) E(6)
e - ----+--------+--------+--------+--------+--------+
t Matrix A W(2) A/W(1) E(3) E(7)

-----+--------+--------+--------+--------+--------+
t S truct E E(4) E(4) E(4/5) E(4)
y - ----+--------+--------+--------+--------+--------+
p Array - E(6) E(7) E(3) E(6)
e - ----+--------+--------+--------+--------+--------+

A = allowed implicitly or explicitly
W = allowed, but warning issued if implicit
E = only allowed with explicit cast
- = n ot allowed

notes
(1) not allowed if target is larger than source. Warning if

target is smaller than source
(2) only allowed if source and target are the same total size
(3) only if the first member of the source can be converted to

the target
(4) only if the target struct contains a single field of the

source type
(5) only if both source and target have the same number of

members and each member of the source can be converted
to the corresponding member of the target.

(6) Source and target sizes must be the same and element types
must be compatible

(7) Array type must be an array of vectors that matches the
matrix type.

Explicit casts are:

• compile-time type when applied to expressions of compile-time type.

• numeric type when applied to expressions of numeric or compile-time types.

• numeric vector type when applied to another vector type of the same number of elements.

• numeric matrix type when applied to another matrix type of the same
number of rows and columns.

TT yyppee EEqquuiivvaalleennccyy

Type T1 is equivalent to type T2 if any of the following are true:

• T2 is equivalent to T1.

Cg Toolkit 2.0 11

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

• T1 and T2 are the same scalar, vector, or structure type.

A packed array type isnotequivalent to the same size unpacked array.

• T1 is a typedef name of T2.

• T1 and T2 are arrays of equivalent types with the same number of elements.

• The unqualified types of T1 and T2 are equivalent, and both types have the same qualifications.

• T1 and T2 are functions with equivalent return types, the same number of parameters, and all corre-
sponding parameters are pair-wise equivalent.

TT yyppee--PPrroommoottiioonn RRuulleess

The cfloat andcint types behave like float and int types, except for the usual arithmetic conver-
sion behavior (defined below) and function-overloading rules (defined later).

Theusual arithmetic conversionsfor binary operators are defined as follows:

1. If one operand iscint it is converted to the other type

2. If one operand iscfloat and the other isfloating, thecfloat is converted to the other type

3. If both operands arefloatingthen the smaller type is converted to the larger type

4. If one operand isfloating and the other isintegral, the integral argument is converted to the floating
type.

5. If both operands areintegral the smaller type is converted to the larger type

6. If one operand issigned integral while the other isunsigned integral and they are the same size, the
signed type is converted to unsigned.

Note that conversions happen prior to performing the operation.

AAssssiiggnnmmeenntt

Assignment of an expression to a concrete typed object converts the expression to the type of the object.
The resulting value is then assigned to the object or value.

The value of the assignment expressions (=, *= , and so on) is defined as in C:

An assignment expression has the value of the left operand after the assignment but is not an lvalue. The
type of an assignment expression is the type of the left operand unless the left operand has a qualified type,
in which case it is the unqualified version of the type of the left operand. The side effect of updating the
stored value of the left operand occurs between the previous and the next sequence point.

An assignment of an expression to a dynamic typed object is only possible if the type of the expression is
compatible with the dynamic object type. The object will then take on the type of the expression assigned
to it until the next assignment to it.

‘‘ ‘‘ SSmmeeaarr iinngg’’ ’’ ooff SSccaallaarrss ttoo VVeeccttoorrss

If a binary operator is applied to a vector and a scalar, the scalar is automatically type-promoted to a same-
sized vector by replicating the scalar into each component. The ternary?: operator also supports smear-
ing. Thebinary rule is applied to the second and third operands first, and then the binary rule is applied to
this result and the first operand.

NNaammeessppaacceess

Just as in C, there are two namespaces. Each has multiple scopes, as in C.

• Tag namespace, which consists ofstruct tags

Cg Toolkit 2.0 12

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

• Regular namespace:

− typedef names (including an automatictypedef from astruct declaration)

− variables

− function names

AArrrr aayyss aanndd SSuubbssccrriippttiinngg

Arrays are declared as in C, except that they may optionally be declared to bepacked , as described ear-
lier. Arrays in Cg are first-class types, so array parameters to functions and programs must be declared
using array syntax, rather than pointer syntax.Likewise, assignment of anarray−typed object implies an
array copy rather than a pointer copy.

Arrays with size[1] may be declared but are considered a different type from the corresponding non-array
type.

Because the language does not currently support pointers, the storage order of arrays is only visible when
an application passes parameters to a vertex or fragment program.Therefore, the compiler is currently free
to allocate temporary variables as it sees fit.

The declaration and use of arrays of arrays is in the same style as in C. That is, if the 2D arrayA is
declared as

float A[4][4];

then, the following statements are true:

• The array is indexed as A[row][column];

• The array can be built with a constructor using

float4x4 A = { { A[0][0], A[0][1], A[0][2], A[0][3] },
{ A [1][0], A[1][1], A[1][2], A[1][3] },
{ A [2][0], A[2][1], A[2][2], A[2][3] },
{ A [3][0], A[3][1], A[3][2], A[3][3] } };

• A[0] is equivalent tofloat4(A[0][0], A[0][1], A[0][2], A[0][3])

Support must be provided for structs containing arrays.

Unsized Arrays

Objects may be declared asunsizedarrays by using a declaration with an empty size[] and no initializer.
If a declarator uses unsized array syntax with an initializer, it is declared with a concrete (sized) array type
based on the declarator. Unsized arrays are dynamic typed objects that take on the size of any array
assigned to them.

Minimum Array Requirements

Profiles are required to provide partial support for certain kinds of arrays. This partial support is designed
to support vectors and matrices in all profiles.For vertex profiles, it is additionally designed to support
arrays of light state (indexed by light number) passed as uniform parameters, and arrays of skinning matri-
ces passed as uniform parameters.

Profiles must support subscripting, copying, size querying and swizzling of vectors and matrices.However,
subscripting with run-time computed indices is not required to be supported.

Vertex profiles must support the following operations for any non-packed array that is a uniform parameter
to the program, or is an element of a structure that is a uniform parameter to the program. This requirement
also applies when the array is indirectly a uniform program parameter (that is, it and or the structure con-
taining it has been passed via a chain ofin function parameters). The three operations that must be sup-
ported are

Cg Toolkit 2.0 13

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

• rvalue subscripting by a run-time computed value or a compile-time value.

• passing the entire array as a parameter to a function, where the corresponding formal function parame-
ter is declared asin .

• querying the size of the array with a.length suffix.

The following operations are explicitly not required to be supported:

• lvalue-subscripting

• copying

• other operators, including multiply, add, compare, and so on

Note that when a uniform array is rvalue subscripted, the result is an expression, and this expression is no
longer considered to be auniform program parameter. Therefore, if this expression is an array, its subse-
quent use must conform to the standard rules for array usage.

These rules are not limited to arrays of numeric types, and thus imply support for arrays of struct, arrays of
matrices, and arrays of vectors when the array is auniform program parameter. Maximum array sizes
may be limited by the number of available registers or other resource limits, and compilers are permitted to
issue error messages in these cases.However, profiles must support sizes of at leastfloat arr[8] ,
float4 arr[8] , and float4x4 arr[4][4] .

Fragment profiles are not required to support any operations on arbitrarily sized arrays; only support for
vectors and matrices is required.

FFuunncctt iioonn OOvveerrllooaaddiinngg

Multiple functions may be defined with the same name, as long as the definitions can be distinguished by
unqualified parameter types and do not have an open-profile conflict (as described in the section on open
functions).

Function-matching rules:

1. Addall visible functions with a matching name in the calling scope to the set of function candidates.

2. Eliminatefunctions whose profile conflicts with the current compilation profile.

3. Eliminatefunctions with the wrong number of formal parameters. If a candidate function has excess
formal parameters, and each of the excess parameters has a default value, do not eliminate the func-
tion.

4. If the set is empty, fail.

5. For each actual parameter expression in sequence (left to right), perform the following:

a. If the type of the actual parameter matches the unqualified type of the corresponding formal
parameter in any function in the set, remove all functions whose corresponding parameter does
not match exactly.

b. If there is a function with a dynamically typed formal argument which is compatible with the
actual parameter type, remove all functions whose corresponding parameter is not similarly com-
patible.

B. If there is a defined promotion for the type of the actual parameter to the unqualified type of the
formal parameter of any function, remove all functions for which this is not true from the set.

d. If there is a valid implicit cast that converts the type of the actual parameter to the unqualified
type of the formal parameter of any function, remove all functions for which this is not true from
the set

e. Fail.

Cg Toolkit 2.0 14

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

6. Choosea function based on profile:

a. If there is at least one function with a profile that exactly matches the compilation profile, discard
all functions that don’t exactly match.

b. Otherwise, if there is at least one function with a wildcard profile that matches the compilation
profile, determine the ’most specific’ matching wildcard profile in the candidate set. Discard all
functions except those with this ’most specific’ wildcard profile.How ’specific’ a given wildcard
profile name is relative to a particular profile is determined by the profile specification.

7. If the number of functions remaining in the set is not one, then fail.

GGlloobbaall VVaarriiaabblleess

Global variables are declared and used as in C. Non-static variables may have a semantic associated with
them. Uniformnon-static variables may have their value set through the run-timeAPI.

UUssee ooff UUnniinniittiiaalliizzeedd VVaarriiaabblleess

It is incorrect for a program to use an uninitialized static or local variable. However, the compiler is not
obligated to detect such errors, even if it would be possible to do so by compile-time data-flow analysis.
The value obtained from reading an uninitialized variable is undefined. This same rule applies to the
implicit use of a variable that occurs when it is returned by a top-level function. Inparticular, if a top-level
function returns astruct , and some element of thatstruct is never written, then the value of that ele-
ment is undefined.

Note: The language designers did not choose to define variables as being initialized to zero because that
would result in a performance penalty in cases where the compiler is unable to determine if a variable is
properly initialized by the programmer.

PPrr eepprr oocceessssoorr

Cg profiles must support the fullANSI C standard preprocessor capabilities:#if , #define , and so on.
However, while #include must be supported the mechanism by which the file to be included is located is
implementation defined.

OOvv eerrvviieeww ooff BBiinnddiinngg SSeemmaannttiiccss
In stream-processing architectures, data packets flow between different programmable units. On aGPU, for
example, packets of vertex data flow from the application to the vertex program.

Because packets are produced by one program (the application, in this case), and consumed by another (the
vertex program), there must be some mechanism for defining the interface between the two. Cgallows the
user to choose between two different approaches to defining these interfaces.

The first approach is to associate a binding semantic with each element of the packet. Thisapproach is a
bind-by-nameapproach. For example, an output with the binding semanticFOOis fed to an input with the
binding semanticFOO. Profiles may allow the user to define arbitrary identifiers in this ‘‘semantic names-
pace’’, or they may restrict the allowed identifiers to a predefined set. Often, these predefined names corre-
spond to the names of hardware registers orAPI resources.

In some cases, predefined names may control non-programmable parts of the hardware. For example, ver-
tex programs normally compute a position that is fed to the rasterizer, and this position is stored in an out-
put with the binding semanticPOSITION.

For any profile, there are two namespaces for predefined binding semantics— the namespace used forin
variables and the namespace used forout variables. Theprimary implication of having two namespaces is
that the binding semantic cannot be used to implicitly specify whether a variable isin or out .

The second approach to defining data packets is to describe the data that is present in a packet and allow the
compiler to decide how to store it. In Cg, the user can describe the contents of a data packet by placing all
of its contents into astruct . When astruct is used in this manner, we refer to it as aconnector. The
two approaches are not mutually exclusive, as is discussed later. The connector approach allows the user to
rely on a combination of user-specified semantic bindings and compiler-determined bindings.

Cg Toolkit 2.0 15

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

BBiinnddiinngg SSeemmaannttiiccss

A binding semantic may be associated with an input to a top-level function or a global variable in one of
three ways:

• The binding semantic is specified in the formal parameter declaration for the function. The syntax for
formal parameters to a function is:

[const] [in out inout] <type> <identifier> [: <binding-semantic>] [= <initializer>];

• If the formal parameter is astruct , the binding semantic may be specified with an element of the
struct when thestruct is defined:

struct <struct-tag> {
<type> <identifier>[: <binding-semantic>];

...
};

• If the input to the function is implicit (a non-static global variable that is read by the function), the
binding semantic may be specified when the non-static global variable is declared:

[varying [in out]] <type> <identifier> [: <binding-semantic>];

If the non-static global variable is astruct, the binding semantic may be specified when the
struct is defined, as described in the second bullet above.

• A binding semantic may be associated with the output of a top-level function in a similar manner:

<type> <identifier> (<parameter-list>) [: <binding-semantic>]
{

:

Another method available for specifying a semantic for an output value is to return astruct , and to spec-
ify the bindingsemantic(s) with elements of thestruct when thestruct is defined.In addition, if the
output is a formal parameter, then the binding semantic may be specified using the same approach used to
specify binding semantics for inputs.

AAllii aassiinngg ooff SSeemmaannttiiccss

Semantics must honor a copy-on-input and copy-on-output model. Thus, if the same input binding seman-
tic is used for two different variables, those variables are initialized with the same value, but the variables
are not aliased thereafter. Output aliasing is illegal, but implementations are not required to detect it. If the
compiler does not issue an error on a program that aliases output binding semantics, the results are unde-
fined.

AAddddii tt iioonnaall DDeettaaiillss ffoorr BBiinnddiinngg SSeemmaannttiiccss

The following are somewhat redundant, but provide extra clarity:

• Semantic names are case-insensitive.

• Semantics attached to parameters to non-main functions are ignored.

• Input semantics may be aliased by multiple variables.

• Output semantics may not be aliased.

Cg Toolkit 2.0 16

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

UUssiinngg aa SSttrruuccttuurree ttoo DDeefifinnee BBiinnddiinngg SSeemmaannttiiccss ((CCoonnnneeccttoorrss))

Cg profiles may optionally allow the user to avoid the requirement that a binding semantic be specified for
ev ery non-uniform input (or output) variable to a top-level program. To avoid this requirement, all the non-
uniform variables should be included within a singlestruct . The compiler automatically allocates the
elements of this structure to hardware resources in a manner that allows any program that returns this
struct to interoperate with any program that uses thisstruct as an input.

It is not required that all non-uniform inputs be included within a single struct in order to omit binding
semantics. Bindingsemantics may be omitted from any input or output, and the compiler
performs automatic allocation of that input or output to a hardware resource.However, to guarantee inter-
operability of one program’s output with another program’s input when automatic binding is performed, it
is necessary to put all of the variables in a singlestruct .

It is permissible to explicitly specify a binding semantic for some elements of thestruct , but not others.
The compiler’s automatic allocation must honor these explicit bindings. The allowed set of explicitly spec-
ified binding semantics is defined by the allocation-rule identifier. The most common use of this capability
is to bind variables to hardware registers that write to, or read from, non-programmable parts of the hard-
ware. For example, in a typical vertex-program profile, the outputstruct would contain an element with
an explicitly specifiedPOSITIONsemantic. Thiselement is used to control the hardware rasterizer.

DDeefifinniinngg BBiinnddiinngg SSeemmaannttiiccss vviiaa aann eexxtteerrnnaall AAPPII

It may be possible to define binding semantics on inputs and outputs by using an externalAPI that manipu-
lates the programs environment. TheCg RuntimeAPI is such anAPI that allows this, and others may exist.

HHoo ww PPrrooggrraammss RReecceeiivvee aanndd RReettuurrnn DDaattaa
A program is a non-static function that has been designated as the main entry point at compilation time.
The varying inputs to the program come from this top-level function’s varying in parameters, and any
global varying variables that do not have an out modifier. The uniform inputs to the program come from
the top-level function’s uniform in parameters and from any non-static global variables that are referenced
by the top-level function or by any functions that it calls. The output of the program comes from the return
value of the function (which is always implicitly varying), from any out parameters, which must also be
varying, and from anyvarying out global variables that are written by the program.

Parameters to a program of typesampler* are implicitlyconst .

SSttaatteemmeennttss aanndd EExxpprreessssiioonnss
Statements are expressed just as in C, unless an exception is stated elsewhere in this document. Addition-
ally,

• if , while , and for require bool expressions in the appropriate places.

• Assignment is performed using=. The assignment operator returns a value, just as in C, so assign-
ments may be chained.

• The new discard statement terminates execution of the program for the current data element (such
as the current vertex or current fragment) and suppresses its output. Vertex profiles may choose to omit
support fordiscard .

MM iinniimmuumm RReeqquuiirreemmeennttss ffoorr iiff,, wwhhiillee,, ffoorr

The minimum requirements are as follows:

• All profiles should supportif , but such support is not strictly required for older hardware.

• All profiles should supportfor andwhile loops if the number of loop iterations can be determined
at compile time. ‘‘ Can be determined at compile time’’ is defined as follows: The loop-iteration
expressions can be evaluated at compile time by use of intra-procedural constant propagation and fold-
ing, where the variables through which constant values are propagated do not appear as lvalues within
any kind of control statement (if , for , or while) or ?: construct. Profilesmay choose to support
more general constant propagation techniques, but such support is not required.

Cg Toolkit 2.0 17

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

• Profiles may optionally support fully generalfor andwhile loops.

NNeeww VVeeccttoorr OOppeerraattoorrss

These new operators are defined for vector types:

• Vector construction operator:typeID(...) :

This operator builds a vector from multiple scalars or shorter vectors:

− float4(scalar, scalar, scalar, scalar)

− float4(float3, scalar)

• Matrix construction operator:typeID(...) :

This operator builds a matrix from multiple rows.

Each row may be specified either as multiple scalars or as any combination of scalars and vectors with
the appropriate size, e.g.

float3x3(1, 2, 3, 4, 5, 6, 7, 8, 9)
float3x3(float3, float3, float3)
float3x3(1, float2, float3, 1, 1, 1)

• Vector swizzle operator: (.)

a = b.xxyz; // A swizzle operator example

− At least one swizzle character must follow the operator.

− There are three sets of swizzle characters and they may not be mixed: Set one isxyzw = 0123 ,
set two is rgba = 0123 , and set three isstpq = 0123 .

− The vector swizzle operator may only be applied to vectors or to scalars.

− Applying the vector swizzle operator to a scalar gives the same result as applying the operator to
a vector of length one. Thus,myscalar.xxx and float3(myscalar, myscalar,
myscalar) yield the same value.

− If only one swizzle character is specified, the result is a scalar not a vector of length one.There-
fore, the expressionb.y returns a scalar.

− Care is required when swizzling a constant scalar because of ambiguity in the use of the decimal
point character. For example, to create a three-vector from a scalar, use one of the following:
(1).xxx or 1..xxx or 1.0.xxx or 1.0f.xxx

− The size of the returned vector is determined by the number of swizzle characters.Therefore, the
size of the result may be larger or smaller than the size of the original vector. For example,
float2(0,1).xxyy andfloat4(0,0,1,1) yields the same result.

• Matrix swizzle operator:

For any matrix type of the form ’<type><rows>x<columns>’, the notation: ’<matrixOb-
ject>._m<row><col>[_m<row><col>][...]’ can be used to access individual matrix elements (in the
case of only one <row>,<col> pair) or to construct vectors from elements of a matrix (in the case of
more than one <row>,<col> pair). The row and column numbers are zero-based.

For example:

float4x4 myMatrix;
float myFloatScalar;
float4 myFloatVec4;

Cg Toolkit 2.0 18

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

// Set myFloatScalar to myMatrix[3][2]
myFloatScalar = myMatrix._m32;

// Assign the main diagonal of myMatrix to myFloatVec4
myFloatVec4 = myMatrix._m00_m11_m22_m33;

For compatibility with the D3DMatrix data type, Cg also allows one-based swizzles, using a form with
themomitted after the_: ’<matrixObject>._<row><col>[_<row><col>][...]’ In this form, the indexes
for <row> and <col> are one-based, rather than the C standard zero-based. So, the two forms are func-
tionally equivalent:

float4x4 myMatrix;
float4 myVec;

// These two statements are functionally equivalent:
myVec = myMatrix._m00_m23_m11_m31;
myVec = myMatrix._11_34_22_42;

Because of the confusion that can be caused by the one-based indexing, its use is strongly discouraged.
Also one-based indexing and zero-based indexing cannot be mixed in a single swizzle

The matrix swizzles may only be applied to matrices.When multiple components are extracted from a
matrix using a swizzle, the result is an appropriately sized vector. When a swizzle is used to extract a
single component from a matrix, the result is a scalar.

• The write-mask operator: (.) It can only be applied to an lvalue that is a vector or matrix. It allows
assignment to particular elements of a vector or matrix, leaving other elements unchanged. It looks
exactly like a swizzle, with the additional restriction that a component cannot be repeated.

AArr ii tthhmmeett iicc PPrreecciissiioonn aanndd RRaannggee

Some hardware may not conform exactly toIEEE arithmetic rules.Fixed-point data types do not have
IEEE-defined rules.

Optimizations are permitted to produce slightly different results than unoptimized code. Constant folding
must be done with approximately the correct precision and range, but is not required to produce bit-exact
results. Itis recommended that compilers provide an option either to forbid these optimizations or to guar-
antee that they are made in bit-exact fashion.

OOppeerraattoorr PPrreecceeddeennccee

Cg uses the same operator precedence as C for operators that are common between the two languages.

The swizzle and write-mask operators (.) hav ethe same precedence as the structure member operator (.)
and the array index operator[] .

OOppeerraattoorr EEnnhhaanncceemmeennttss

The standard C arithmetic operators (+, −, * , / , %, unary −) are extended to support vectors and matri-
ces. Sizesof vectors and matrices must be appropriately matched, according to standard mathematical
rules. Scalar-to-vector promotion, as described earlier, allows relaxation of these rules.

MM [[nn]][[mm]]
Matrix with n rows andmcolumns

VV[[nn]]
Vector withn elements

−−VV[[nn]] −−>> VV[[nn]]
Unary vector negate

Cg Toolkit 2.0 19

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

−−MM [[nn]] −−>> MM[[nn]]
Unary matrix negate

VV[[nn]] ** VV[[nn]] −−>> VV[[nn]]
Componentwise *

VV[[nn]] // VV[[nn]] −−>> VV[[nn]]
Componentwise /

VV[[nn]] %% VV[[nn]] −−>> VV[[nn]]
Componentwise %

VV[[nn]] ++ VV[[nn]] −−>> VV[[nn]]
Componentwise +

VV[[nn]] −− VV[[nn]] −−>> VV[[nn]]
Componentwise −

MM [[nn]][[mm]] ** MM[[nn]][[mm]] −−>> MM[[nn]][[mm]]
Componentwise *

MM [[nn]][[mm]] // MM[[nn]][[mm]] −−>> MM[[nn]][[mm]]
Componentwise /

MM [[nn]][[mm]] %% MM[[nn]][[mm]] −−>> MM[[nn]][[mm]]
Componentwise %

MM [[nn]][[mm]] ++ MM[[nn]][[mm]] −−>> MM[[nn]][[mm]]
Componentwise +

MM [[nn]][[mm]] −− MM[[nn]][[mm]] −−>> MM[[nn]][[mm]]
Componentwise −

OOppeerraattoorr ss

Boolean

&& !

Boolean operators may be applied tobool packed bool vectors, in which case they are applied in element-
wise fashion to produce a result vector of the same size. Each operand must be abool vector of the same
size.

Both sides of && and are always evaluated; there is no short-circuiting as there is in C.

Comparisons

< > <= >= ! = ==

Comparison operators may be applied to numeric vectors. Bothoperands must be vectors of the same size.
The comparison operation is performed in elementwise fashion to produce abool vector of the same size.

Comparison operators may also be applied tobool vectors. For the purpose of relational comparisons,
true is treated as one andfalse is treated as zero.The comparison operation is performed in element-
wise fashion to produce abool vector of the same size.

Comparison operators may also be applied to numeric or bool scalars.

Arithmetic

+ - * / % + + - - u nary- unary+

The arithmetic operator% is the remainder operator, as in C. It may only be applied to two operands of
cint or int types.

When/ or %is used withcint or int operands, C rules for integer/ and%apply.

Cg Toolkit 2.0 20

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

The C operators that combine assignment with arithmetic operations (such as+=) are also supported when
the corresponding arithmetic operator is supported by Cg.

Conditional Operator

?:

If the first operand is of typebool , one of the following must hold for the second and third operands:

• Both operands have compatible structure types.

• Both operands are scalars with numeric orbool type.

• Both operands are vectors with numeric orbool type, where the two vectors are of the same size,
which is less than or equal to four.

If the first operand is a packed vector ofbool , then the conditional selection is performed on an element-
wise basis. Both the second and third operands must be numeric vectors of the same size as the first
operand.

Unlike C, side effects in the expressions in the second and third operands are always executed, regardless of
the condition.

Miscellaneous Operators

(typecast) ,

Cg supports C’s typecast and comma operators.

RReesseerr vveedd WWoorrddss
The following are currently used reserved words in Cg.A ’ *’ indicates that the reserved word is case-
insensitive.

_ _[anything] (i.e. any identifier with two underscores as a prefix)
asm*
asm_fragment
auto
bool
break
case
catch
char
class
column_major
compile
const
const_cast
continue
decl*
default
delete
discard
do
double
dword*
dynamic_cast
else
emit

Cg Toolkit 2.0 21

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

enum
explicit
extern
false
fixed
float*
for
friend
get
goto
half
if
in
inline
inout
int
interface
long
matrix*
mutable
namespace
new
operator
out
packed
pass*
pixelfragment*
pixelshader*
private
protected
public
register
reinterpret_cast
return
row_major
sampler
sampler_state
sampler1D
sampler2D
sampler3D
samplerCUBE
shared
short
signed
sizeof
static
static_cast
string*
struct
switch
technique*
template

Cg Toolkit 2.0 22

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

texture*
texture1D
texture2D
texture3D
textureCUBE
textureRECT
this
throw
true
try
typedef
typeid
typename
uniform
union
unsigned
using
vector*
vertexfragment*
vertexshader*
virtual
void
volatile
while

CCgg SSttaannddaarrdd LLiibbrraarryy FFuunnccttiioonnss
Cg provides a set of built-in functions and structures to simplifyGPU programming. Thesefunctions are
similar in spirit to the C standard library functions, providing a convenient set of common functions.

The Cg Standard Library is documented in ‘‘spec_stdlib.txt’’.

VVEERR TTEEXX PPRROOGGRRAAMM PPRROOFFIILLEESS
A few features of the Cg language that are specific to vertex program profiles are required to be imple-
mented in the same manner for all vertex program profiles.

MM aannddaattoorr yy CCoommppuuttaattiioonn ooff PPoossiittiioonn OOuuttppuutt

Vertex program profiles may (and typically do) require that the program compute a position output.This
homogeneous clip-space position is used by the hardware rasterizerand must be stored in a program output
with an output binding semantic ofPOSITION (or HPOSfor backward compatibility).

PP oossiittiioonn IInnvvaarriiaannccee

In many graphics APIs, the user can choose between two different approaches to specifying per-vertex
computations: use a built-in configurable ‘‘fixed-function’’ pipeline or specify a user-written vertex pro-
gram. If the user wishes to mix these two approaches, it is sometimes desirable to guarantee that the posi-
tion computed by the first approach is bit-identical to the position computed by the second approach.This
‘‘ position invariance’’ is particularly important for multipass rendering.

Support for position invariance is optional in Cg vertex profiles, but for those vertex profiles that support it,
the following rules apply:

• Position invariance with respect to the fixed function pipeline is guaranteed if two conditions are met:

− A #pragma position_invariant <top−level−function−name> appears before
the body of the top-level function for the vertex program.

− The vertex program computes position as follows:

OUT_POSITION = mul(MVP, IN_POSITION)

Cg Toolkit 2.0 23

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

where:

OUT_POSITION
is a variable (or structure element) of typefloat4 with an output binding semantic of
POSITION or HPOS.

IN_POSITION
is a variable (or structure element) of typefloat4 with an input binding semantic of
POSITION.

MVP
is a uniform variable (or structure element) of typefloat4x4 with an input binding
semantic that causes it to track the fixed-function modelview-projection matrix. (The name
of this binding semantic is currently profile-specific— for OpenGL profiles, the semantic
state.matrix.mvp is recommended).

• If the first condition is met but not the second, the compiler is encouraged to issue a warning.

• Implementations may choose to recognize more general versions of the second condition (such as the
variables being copy propagated from the original inputs and outputs), but this additional generality is
not required.

BBiinnddiinngg SSeemmaannttiiccss ffoorr OOuuttppuuttss

As shown in Table 10, there are two output binding semantics for vertex program profiles:

Table 10 Vertex Output Binding Semantics
Name Meaning Type Default Value
-------- ------- ------ -------------
POSITION Homogeneous clip-space float4 Undefined

position; fed to rasterizer.
PSIZE Point size float Undefined

Profiles may define additional output binding semantics with specific behaviors, and these definitions are
expected to be consistent across commonly used profiles.

FFRRAA GGMMEENNTT PPRROOGGRRAAMM PPRROOFFIILLEESS
A few features of the Cg language that are specific to fragment program profiles are required to be imple-
mented in the same manner for all fragment program profiles.

BBiinnddiinngg sseemmaannttiiccss ffoorr oouuttppuuttss

As shown in Table 11, there are three output binding semantics for fragment program profiles:

Table 11 Fragment Output Binding Semantics
Name Meaning Type Default Value
---- ------- ------ -------------
COLOR RGBAoutput color float4 Undefined
COLOR0 Same as COLOR
DEPTH Fragment depth value float Interpolated depth from rasterizer

(in range [0,1]) (in range [0,1])

Profiles may define additional output binding semantics with specific behaviors, and these definitions are
expected to be consistent across commonly used profiles.

If a program desires an output color alpha of 1.0, it should explicitly write a value of 1.0 to theWcompo-
nent of theCOLORoutput. Thelanguage does *not* define a default value for this output.

Note: If the target hardware uses a default value for this output, the compiler may choose to optimize away
an explicit write specified by the user if it matches the default hardware value. Suchdefaults are not
exposed in the language.)

Cg Toolkit 2.0 24

Cg_language(Cg) CgLanguage Specification Cg_language(Cg)

In contrast, the language does define a default value for theDEPTHoutput. Thisdefault value is the inter-
polated depth obtained from the rasterizer. Semantically, this default value is copied to the output at the
beginning of the execution of the fragment program.

As discussed earlier, when a binding semantic is applied to an output, the type of the output variable is not
required to match the type of the binding semantic.For example, the following is legal, although not rec-
ommended:

struct myfragoutput {
float2 mycolor : COLOR;

}

In such cases, the variable is implicitly copied (with a typecast) to the semantic upon program completion.
If the variable’s vector size is shorter than the semantic’s vector size, the larger-numbered components of
the semantic receive their default values if applicable, and otherwise are undefined. In the case above, theR
andGcomponents of the output color are obtained frommycolor , while theB andA components of the
color are undefined.

Cg Toolkit 2.0 25

