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Preface

Computational geometry emerged from the field of algorithms design and
analysis in the late 1970s. It has grown into a recognized discipline with its
own journals, conferences, and a large community of active researchers. The
success of the field as a research discipline can on the one hand be explained
from the beauty of the problems studied and the solutions obtained, and, on the
other hand, by the many application domains—computer graphics, geographic
information systems (GIS), robotics, and others—in which geometric algorithms
play a fundamental role.

For many geometric problems the early algorithmic solutions were either
slow or difficult to understand and implement. In recent years a number of new
algorithmic techniques have been developed that improved and simplified many
of the previous approaches. In this textbook we have tried to make these modern
algorithmic solutions accessible to a large audience. The book has been written
as a textbook for a course in computational geometry, but it can also be used for
self-study.

Structure of the book. Each of the sixteen chapters (except the introductory
chapter) starts with a problem arising in one of the application domains. This
problem is then transformed into a purely geometric one, which is solved
using techniques from computational geometry. The geometric problem and the
concepts and techniques needed to solve it are the real topic of each chapter. The
choice of the applications was guided by the topics in computational geometry
we wanted to cover; they are not meant to provide a good coverage of the
application domains. The purpose of the applications is to motivate the reader;
the goal of the chapters is not to provide ready-to-use solutions for them. Having
said this, we believe that knowledge of computational geometry is important
to solve geometric problems in application areas efficiently. We hope that our
book will not only raise the interest of people from the algorithms community,
but also from people in the application areas.

For most geometric problems treated we give just one solution, even when
a number of different solutions exist. In general we have chosen the solution
that is easiest to understand and implement. This is not necessarily the most
efficient solution. We also took care that the book contains a good mixture of
techniques like divide-and-conquer, plane sweep, and randomized algorithms.
We decided not to treat all sorts of variations to the problems; we felt it is more
important to introduce all main topics in computational geometry than to give
more detailed information about a smaller number of topics.
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Several chapters contain one or more sections marked with a star. They con-
tain improvements of the solution, extensions, or explain the relation between
various problems. They are not essential for understanding the remainder of the
book.

Every chapter concludes with a section that is entitled Notes and Comments.
These sections indicate where the results described in the chapter originated,
mention other solutions, generalizations, and improvements, and provide refer-
ences. They can be skipped, but do contain useful material for those who want
to know more about the topic of the chapter.

At the end of each chapter a number of exercises is provided. These range
from easy tests to check whether the reader understands the material to more
elaborate questions that extend the material covered. Difficult exercises and
exercises about starred sections are indicated with a star.

A course outline. Even though the chapters in this book are largely indepen-
dent, they should preferably not be treated in an arbitrary order. For instance,
Chapter 2 introduces plane sweep algorithms, and it is best to read this chapter
before any of the other chapters that use this technique. Similarly, Chapter 4
should be read before any other chapter that uses randomized algorithms.

For a first course on computational geometry, we advise treating Chapters 1—
10 in the given order. They cover the concepts and techniques that, according
to us, should be present in any course on computational geometry. When more
material can be covered, a selection can be made from the remaining chapters.

Prerequisites. The book can be used as a textbook for a high-level under-
graduate course or a low-level graduate course, depending on the rest of the
curriculum. Readers are assumed to have a basic knowledge of the design and
analysis of algorithms and data structures: they should be familiar with big-Oh
notations and simple algorithmic techniques like sorting, binary search, and
balanced search trees. No knowledge of the application domains is required, and
hardly any knowledge of geometry. The analysis of the randomized algorithms
uses some very elementary probability theory.

Implementations. The algorithms in this book are presented in a pseudo-
code that, although rather high-level, is detailed enough to make it relatively
easy to implement them. In particular we have tried to indicate how to handle
degenerate cases, which are often a source of frustration when it comes to
implementing.

We believe that it is very useful to implement one or more of the algorithms;
it will give a feeling for the complexity of the algorithms in practice. Each
chapter can be seen as a programming project. Depending on the amount of
time available one can either just implement the plain geometric algorithms, or
implement the application as well.

To implement a geometric algorithm a number of basic data types—points,
lines, polygons, and so on—and basic routines that operate on them are needed.
Implementing these basic routines in a robust manner is not easy, and takes a lot



of time. Although it is good to do this at least once, it is useful to have a software
library available that contains the basic data types and routines. Pointers to such
libraries can be found on our Web site.

Web site. This book is accompanied by a Web site, which contains a list of
errata collected for each edition of the book, all figures and the pseudo code for
all algorithms, as well as some other resources. The address is

http://www.cs.uu.nl/geobook/

You can also use the address given on our Web site to send us errors you
have found, or any other comments you have about the book.

About the third edition. This third edition contains two major additions: In
Chapter 7, on Voronoi diagrams, we now also discuss Voronoi diagrams of line
segments and farthest-point Voronoi diagrams. In Chapter 12, we have included
an extra section on binary space partition trees for low-density scenes, as an
introduction to realistic input models. In addition, a large number of small and
some larger errors have been corrected (see the list of errata for the second
edition on the Web site). We have also updated the notes and comments of every
chapter to include references to recent results and recent literature. We have
tried not to change the numbering of sections and exercises, so that it should be
possible for students in a course to still use the second edition.

Acknowledgments. Writing a textbook is a long process, even with four
authors. Many people contributed to the original first edition by providing
useful advice on what to put in the book and what not, by reading chapters and
suggesting changes, and by finding and correcting errors. Many more provided
feedback and found errors in the first two editions. We would like to thank all of
them, in particular Pankaj Agarwal, Helmut Alt, Marshall Bern, Jit Bose, Hazel
Everett, Gerald Farin, Steve Fortune, Geert-Jan Giezeman, Mordecai Golin, Dan
Halperin, Richard Karp, Matthew Katz, Klara Kedem, Nelson Max, Joseph S. B.
Mitchell, René van Oostrum, Giinter Rote, Henry Shapiro, Sven Skyum, Jack
Snoeyink, Gert Vegter, Peter Widmayer, Chee Yap, and Giinther Ziegler. We
also would like to thank Springer-Verlag for their advice and support during the
creation of this book, its new editions, and the translations into other languages
(at the time of writing, Japanese, Chinese, and Polish).

Finally we would like to acknowledge the support of the Netherlands’ Or-
ganization for Scientific Research (N.W.0.) and the Korea Research Founda-
tion (KRF).

January 2008 Mark de Berg
Otfried Cheong

Marc van Kreveld

Mark Overmars
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1 Computational Geometry

Introduction

Imagine you are walking on the campus of a university and suddenly you realize

you have to make an urgent phone call. There are many public phones on

campus and of course you want to go to the nearest one. But which one is the

nearest? It would be helpful to have a map on which you could look up the

nearest public phone, wherever on campus you are. The map should show a

subdivision of the campus into regions, and for each region indicate the nearest

public phone. What would these regions look like? And how could we compute ClC
them?

Even though this is not such a terribly important issue, it describes the basics
of a fundamental geometric concept, which plays a role in many applications. (
The subdivision of the campus is a so-called Voronoi diagram, and it will be (
studied in Chapter 7 in this book. It can be used to model trading areas of
different cities, to guide robots, and even to describe and simulate the growth
of crystals. Computing a geometric structure like a Voronoi diagram requires (
geometric algorithms. Such algorithms form the topic of this book.

A second example. Assume you located the closest public phone. With
a campus map in hand you will probably have little problem in getting to the
phone along a reasonably short path, without hitting walls and other objects.
But programming a robot to perform the same task is a lot more difficult. Again,
the heart of the problem is geometric: given a collection of geometric obstacles,
we have to find a short connection between two points, avoiding collisions with
the obstacles. Solving this so-called motion planning problem is of crucial
importance in robotics. Chapters 13 and 15 deal with geometric algorithms
required for motion planning. (

A third example. Assume you don’t have one map but two: one with
a description of the various buildings, including the public phones, and one
indicating the roads on the campus. To plan a motion to the public phone we
have to overlay these maps, that is, we have to combine the information in
the two maps. Overlaying maps is one of the basic operations of geographic I:l
information systems. It involves locating the position of objects from one map
in the other, computing the intersection of various features, and so on. Chapter 2
deals with this problem. 1
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not convex

These are just three examples of geometric problems requiring carefully de-
signed geometric algorithms for their solution. In the 1970s the field of compu-
tational geometry emerged, dealing with such geometric problems. It can be
defined as the systematic study of algorithms and data structures for geometric
objects, with a focus on exact algorithms that are asymptotically fast. Many
researchers were attracted by the challenges posed by the geometric problems.
The road from problem formulation to efficient and elegant solutions has often
been long, with many difficult and sub-optimal intermediate results. Today there
is a rich collection of geometric algorithms that are efficient, and relatively easy
to understand and implement.

This book describes the most important notions, techniques, algorithms,
and data structures from computational geometry in a way that we hope will be
attractive to readers who are interested in applying results from computational
geometry. Each chapter is motivated with a real computational problem that
requires geometric algorithms for its solution. To show the wide applicability
of computational geometry, the problems were taken from various application
areas: robotics, computer graphics, CAD/CAM, and geographic information
systems.

You should not expect ready-to-implement software solutions for major
problems in the application areas. Every chapter deals with a single concept in
computational geometry; the applications only serve to introduce and motivate
the concepts. They also illustrate the process of modeling an engineering
problem and finding an exact solution.

1.1 An Example: Convex Hulls

Good solutions to algorithmic problems of a geometric nature are mostly based
on two ingredients. One is a thorough understanding of the geometric properties
of the problem, the other is a proper application of algorithmic techniques and
data structures. If you don’t understand the geometry of the problem, all the
algorithms of the world won’t help you to solve it efficiently. On the other hand,
even if you perfectly understand the geometry of the problem, it is hard to solve
it effectively if you don’t know the right algorithmic techniques. This book will
give you a thorough understanding of the most important geometric concepts
and algorithmic techniques.

To illustrate the issues that arise in developing a geometric algorithm, this
section deals with one of the first problems that was studied in computational
geometry: the computation of planar convex hulls. We’ll skip the motivation
for this problem here; if you are interested you can read the introduction to
Chapter 11, where we study convex hulls in 3-dimensional space.

A subset S of the plane is called convex if and only if for any pair of points
P,q € S the line segment pq is completely contained in S. The convex hull
CH(S) of a set S is the smallest convex set that contains S. To be more precise,
it is the intersection of all convex sets that contain S.



We will study the problem of computing the convex hull of a finite set P
of n points in the plane. We can visualize what the convex hull looks like by a
thought experiment. Imagine that the points are nails sticking out of the plane,
take an elastic rubber band, hold it around the nails, and let it go. It will snap
around the nails, minimizing its length. The area enclosed by the rubber band
is the convex hull of P. This leads to an alternative definition of the convex
hull of a finite set P of points in the plane: it is the unique convex polygon
whose vertices are points from P and that contains all points of P. Of course
we should prove rigorously that this is well defined—that is, that the polygon is
unique—and that the definition is equivalent to the one given earlier, but let’s
skip that in this introductory chapter.

How do we compute the convex hull? Before we can answer this question we
must ask another question: what does it mean to compute the convex hull?
As we have seen, the convex hull of P is a convex polygon. A natural way
to represent a polygon is by listing its vertices in clockwise order, starting
with an arbitrary one. So the problem we want to solve is this: given a set
P ={p1,p2,-..,pn} of points in the plane, compute a list that contains those
points from P that are the vertices of CH(P), listed in clockwise order.

P9

P4

input = set of points:

P1,P2,P3,P4,P5,P6,P7,P8: P9

. P2
output = representation of the convex hull:

P4, DPs,P8,P2,P9

P8

The first definition of convex hulls is of little help when we want to design
an algorithm to compute the convex hull. It talks about the intersection of all
convex sets containing P, of which there are infinitely many. The observation
that CH(P) is a convex polygon is more useful. Let’s see what the edges of
CH(P) are. Both endpoints p and ¢ of such an edge are points of P, and if we
direct the line through p and g such that CH(P) lies to the right, then all the
points of P must lie to the right of this line. The reverse is also true: if all points
of P\ {p,q} lie to the right of the directed line through p and g, then pg is an
edge of CH(P).

Now that we understand the geometry of the problem a little bit better we can
develop an algorithm. We will describe it in a style of pseudocode we will use
throughout this book.

Algorithm SLOWCONVEXHULL(P)

Input. A set P of points in the plane.

Output. A list £ containing the vertices of CIH(P) in clockwise order.
1. E<0.

2. for all ordered pairs (p,q) € P x P with p not equal to ¢

3. do valid < true

Section 1.1
AN EXAMPLE: CONVEX HULLS

Figure 1.1
Computing a convex hull
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destination of €]

= origin of &3

4 for all points r € P not equal to p or g

5. do if 7 lies to the left of the directed line from p to ¢

6. then valid — false.

7 if valid then Add the directed edge pq to E.

8. From the set E of edges construct a list £ of vertices of CH(P), sorted in
clockwise order.

Two steps in the algorithm are perhaps not entirely clear.

The first one is line 5: how do we test whether a point lies to the left or to the
right of a directed line? This is one of the primitive operations required in most
geometric algorithms. Throughout this book we assume that such operations
are available. It is clear that they can be performed in constant time so the
actual implementation will not affect the asymptotic running time in order of
magnitude. This is not to say that such primitive operations are unimportant or
trivial. They are not easy to implement correctly and their implementation will
affect the actual running time of the algorithm. Fortunately, software libraries
containing such primitive operations are nowadays available. We conclude that
we don’t have to worry about the test in line 5; we may assume that we have a
function available performing the test for us in constant time.

The other step of the algorithm that requires some explanation is the last one.
In the loop of lines 2—7 we determine the set E of convex hull edges. From E we
can construct the list £ as follows. The edges in E are directed, so we can speak
about the origin and the destination of an edge. Because the edges are directed
such that the other points lie to their right, the destination of an edge comes
after its origin when the vertices are listed in clockwise order. Now remove
an arbitrary edge €] from E. Put the origin of ¢] as the first point into £, and
the destination as the second point. Find the edge ¢> in E whose origin is the
destination of ¢7, remove it from E, and append its destination to £. Next, find
the edge e3 whose origin is the destination of ¢, remove it from E, and append
its destination to £. We continue in this manner until there is only one edge left
in E. Then we are done; the destination of the remaining edge is necessarily the
origin of €1, which is already the first point in £. A simple implementation of
this procedure takes O(n?) time. This can easily be improved to O(nlogn), but
the time required for the rest of the algorithm dominates the total running time
anyway.

Analyzing the time complexity of SLOWCONVEXHULL is easy. We check
n* — n pairs of points. For each pair we look at the n — 2 other points to see
whether they all lie on the right side. This will take O(n?) time in total. The
final step takes O(n?) time, so the total running time is O(n?). An algorithm
with a cubic running time is too slow to be of practical use for anything but the
smallest input sets. The problem is that we did not use any clever algorithmic
design techniques; we just translated the geometric insight into an algorithm in
a brute-force manner. But before we try to do better, it is useful to make several
observations about this algorithm.

We have been a bit careless when deriving the criterion of when a pair p,q
defines an edge of CH(P). A point r does not always lie to the right or to the



left of the line through p and ¢, it can also happen that it lies on this line. What
should we do then? This is what we call a degenerate case, or a degeneracy for
short. We prefer to ignore such situations when we first think about a problem,
so that we don’t get confused when we try to figure out the geometric properties
of a problem. However, these situations do arise in practice. For instance, if
we create the points by clicking on a screen with a mouse, all points will have
small integer coordinates, and it is quite likely that we will create three points
on a line.

To make the algorithm correct in the presence of degeneracies we must
reformulate the criterion above as follows: a directed edge Fq is an edge of
CH(P) if and only if all other points r € P lie either strictly to the right of the
directed line through p and g, or they lie on the open line segment pg. (We
assume that there are no coinciding points in P.) So we have to replace line 5 of
the algorithm by this more complicated test.

We have been ignoring another important issue that can influence the correctness
of the result of our algorithm. We implicitly assumed that we can somehow
test exactly whether a point lies to the right or to the left of a given line. This
is not necessarily true: if the points are given in floating point coordinates and
the computations are done using floating point arithmetic, then there will be
rounding errors that may distort the outcome of tests.

Imagine that there are three points p, g, and r, that are nearly collinear, and
that all other points lie far to the right of them. Our algorithm tests the pairs
(p,q), (r,q), and (p,r). Since these points are nearly collinear, it is possible that
the rounding errors lead us to decide that r lies to the right of the line from p to
g, that p lies to the right of the line from r to ¢, and that g lies to the right of the
line from p to r. Of course this is geometrically impossible—but the floating
point arithmetic doesn’t know that! In this case the algorithm will accept all
three edges. Even worse, all three tests could give the opposite answer, in which
case the algorithm rejects all three edges, leading to a gap in the boundary of
the convex hull. And this leads to a serious problem when we try to construct
the sorted list of convex hull vertices in the last step of our algorithm. This step
assumes that there is exactly one edge starting in every convex hull vertex, and
exactly one edge ending there. Due to the rounding errors there can suddenly be
two, or no, edges starting in vertex p. This can cause the program implementing
our simple algorithm to crash, since the last step has not been designed to deal
with such inconsistent data.

Although we have proven the algorithm to be correct and to handle all
special cases, it is not robust: small errors in the computations can make it
fail in completely unexpected ways. The problem is that we have proven the
correctness assuming that we can compute exactly with real numbers.

We have designed our first geometric algorithm. It computes the convex hull
of a set of points in the plane. However, it is quite slow—its running time is

O(n)—, it deals with degenerate cases in an awkward way, and it is not robust.

We should try to do better.

Section 1.1
AN EXAMPLE: CONVEX HULLS
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upper hull

~ e ® 4
lower hull

points deleted

To this end we apply a standard algorithmic design technique: we will
develop an incremental algorithm. This means that we will add the points in P
one by one, updating our solution after each addition. We give this incremental
approach a geometric flavor by adding the points from left to right. So we first
sort the points by x-coordinate, obtaining a sorted sequence p1, ..., p,, and then
we add them in that order. Because we are working from left to right, it would
be convenient if the convex hull vertices were also ordered from left to right
as they occur along the boundary. But this is not the case. Therefore we first
compute only those convex hull vertices that lie on the upper hull, which is the
part of the convex hull running from the leftmost point p; to the rightmost point
pn when the vertices are listed in clockwise order. In other words, the upper
hull contains the convex hull edges bounding the convex hull from above. In a
second scan, which is performed from right to left, we compute the remaining
part of the convex hull, the lower hull.

The basic step in the incremental algorithm is the update of the upper hull
after adding a point p;. In other words, given the upper hull of the points
P1,---,Pi—1, we have to compute the upper hull of py,..., p;. This can be done
as follows. When we walk around the boundary of a polygon in clockwise order,
we make a turn at every vertex. For an arbitrary polygon this can be both a
right turn and a left turn, but for a convex polygon every turn must be a right
turn. This suggests handling the addition of p; in the following way. Let Lypper
be a list that stores the upper vertices in left-to-right order. We first append p;
to Lypper- This is correct because p; is the rightmost point of the ones added so
far, so it must be on the upper hull. Next, we check whether the last three points
in Lypper make a right turn. If this is the case there is nothing more to do; Lypper
contains the vertices of the upper hull of py,..., p;, and we can proceed to the
next point, p; . But if the last three points make a left turn, we have to delete
the middle one from the upper hull. In this case we are not finished yet: it could
be that the new last three points still do not make a right turn, in which case we
again have to delete the middle one. We continue in this manner until the last
three points make a right turn, or until there are only two points left.

We now give the algorithm in pseudocode. The pseudocode computes both the
upper hull and the lower hull. The latter is done by treating the points from right
to left, analogous to the computation of the upper hull.

Algorithm CONVEXHULL(P)
Input. A set P of points in the plane.
Output. A list containing the vertices of CH(P) in clockwise order.
1. Sort the points by x-coordinate, resulting in a sequence py,..., py.
2. Put the points p; and p; in a list Lypper, With py as the first point.
3. fori<3ton
4 do Append p; t0 Lypper.
5 while L e contains more than two points and the last three points
in Lypper do not make a right turn
do Delete the middle of the last three points from Lypper.
Put the points p, and p,_1 in a list Ljoyer, With p,, as the first point.

s



8. fori<— n—2downto 1

9. do Append p; to Liower-

10. while L,y contains more than 2 points and the last three points
in Ljgwer do not make a right turn

11. do Delete the middle of the last three points from Ljoyer-

12. Remove the first and the last point from Ligyer to avoid duplication of the
points where the upper and lower hull meet.

13. Append Liower t0 Lypper, and call the resulting list L.

14. return L

Once again, when we look closer we realize that the above algorithm is not
correct. Without mentioning it, we made the assumption that no two points have
the same x-coordinate. If this assumption is not valid the order on x-coordinate
is not well defined. Fortunately, this turns out not to be a serious problem.
We only have to generalize the ordering in a suitable way: rather than using
only the x-coordinate of the points to define the order, we use the lexicographic
order. This means that we first sort by x-coordinate, and if points have the same
x-coordinate we sort them by y-coordinate.

Another special case we have ignored is that the three points for which we
have to determine whether they make a left or a right turn lie on a straight line.
In this case the middle point should not occur on the convex hull, so collinear
points must be treated as if they make a left turn. In other words, we should use
a test that returns true if the three points make a right turn, and false otherwise.
(Note that this is simpler than the test required in the previous algorithm when
there were collinear points.)

With these modifications the algorithm correctly computes the convex hull:
the first scan computes the upper hull, which is now defined as the part of the
convex hull running from the lexicographically smallest vertex to the lexico-
graphically largest vertex, and the second scan computes the remaining part of
the convex hull.

What does our algorithm do in the presence of rounding errors in the floating
point arithmetic? When such errors occur, it can happen that a point is removed
from the convex hull although it should be there, or that a point inside the real
convex hull is not removed. But the structural integrity of the algorithm is
unharmed: it will compute a closed polygonal chain. After all, the output is
a list of points that we can interpret as the clockwise listing of the vertices of
a polygon, and any three consecutive points form a right turn or, because of
the rounding errors, they almost form a right turn. Moreover, no point in P
can be far outside the computed hull. The only problem that can still occur is
that, when three points lie very close together, a turn that is actually a sharp
left turn can be interpretated as a right turn. This might result in a dent in the
resulting polygon. A way out of this is to make sure that points in the input
that are very close together are considered as being the same point, for example
by rounding. Hence, although the result need not be exactly correct—but then,
we cannot hope for an exact result if we use inexact arithmetic—it does make
sense. For many applications this is good enough. Still, it is wise to be careful
in the implementation of the basic test to avoid errors as much as possible.

Section 1.1
AN EXAMPLE: CONVEX HULLS

>

not a right turn




Chapter 1

COMPUTATIONAL GEOMETRY

empty region

J4

We conclude with the following theorem:

Theorem 1.1 The convex hull of a set of n points in the plane can be computed
in O(nlogn) time.

Proof. We will prove the correctness of the computation of the upper hull; the
lower hull computation can be proved correct using similar arguments. The
proof is by induction on the number of point treated. Before the for-loop starts,
the list Lypper contains the points p; and p», which trivially form the upper
hull of {p1,p2}. Now suppose that Lypper contains the upper hull vertices
of {p1,...,pi—1} and consider the addition of p;. After the execution of the
while-loop and because of the induction hypothesis, we know that the points in
Lypper form a chain that only makes right turns. Moreover, the chain starts at the
lexicographically smallest point of {py,..., p;} and ends at the lexicographically
largest point, namely p;. If we can show that all points of {py,...,p;} that are
not in Lypper are below the chain, then Lypper contains the correct points. By
induction we know there is no point above the chain that we had before p; was
added. Since the old chain lies below the new chain, the only possibility for a
point to lie above the new chain is if it lies in the vertical slab between p;_; and
pi. But this is not possible, since such a point would be in between p;_; and p;
in the lexicographical order. (You should verify that a similar argument holds if
pi—1 and p;, or any other points, have the same x-coordinate.)

To prove the time bound, we note that sorting the points lexicographically
can be done in O(nlogn) time. Now consider the computation of the upper hull.
The for-loop is executed a linear number of times. The question that remains
is how often the while-loop inside it is executed. For each execution of the
for-loop the while-loop is executed at least once. For any extra execution a
point is deleted from the current hull. As each point can be deleted only once
during the construction of the upper hull, the total number of extra executions
over all for-loops is bounded by n. Similarly, the computation of the lower hull
takes O(n) time. Due to the sorting step, the total time required for computing
the convex hull is O(nlogn). Hl

The final convex hull algorithm is simple to describe and easy to implement.
It only requires lexicographic sorting and a test whether three consecutive points
make a right turn. From the original definition of the problem it was far from
obvious that such an easy and efficient solution would exist.

1.2 Degeneracies and Robustness

As we have seen in the previous section, the development of a geometric
algorithm often goes through three phases.

In the first phase, we try to ignore everything that will clutter our understanding
of the geometric concepts we are dealing with. Sometimes collinear points are
a nuisance, sometimes vertical line segments are. When first trying to design or
understand an algorithm, it is often helpful to ignore these degenerate cases.



In the second phase, we have to adjust the algorithm designed in the first phase
to be correct in the presence of degenerate cases. Beginners tend to do this
by adding a huge number of case distinctions to their algorithms. In many
situations there is a better way. By considering the geometry of the problem
again, one can often integrate special cases with the general case. For example,
in the convex hull algorithm we only had to use the lexicographical order instead
of the order on x-coordinate to deal with points with equal x-coordinate. For
most algorithms in this book we have tried to take this integrated approach to
deal with special cases. Still, it is easier not to think about such cases upon first
reading. Only after understanding how the algorithm works in the general case
should you think about degeneracies.

If you study the computational geometry literature, you will find that many
authors ignore special cases, often by formulating specific assumptions on the
input. For example, in the convex hull problem we could have ignored special
cases by simply stating that we assume that the input is such that no three
points are collinear and no two points have the same x-coordinate. From a
theoretical point of view, such assumptions are usually justified: the goal is
then to establish the computational complexity of a problem and, although it is
tedious to work out the details, degenerate cases can almost always be handled
without increasing the asymptotic complexity of the algorithm. But special cases
definitely increase the complexity of the implementations. Most researchers in
computational geometry today are aware that their general position assumptions
are not satisfied in practical applications and that an integrated treatment of the
special cases is normally the best way to handle them. Furthermore, there are
general techniques—so-called symbolic perturbation schemes—that allow one
to ignore special cases during the design and implementation, and still have an
algorithm that is correct in the presence of degeneracies.

The third phase is the actual implementation. Now one needs to think about
the primitive operations, like testing whether a point lies to the left, to the right,
or on a directed line. If you are lucky you have a geometric software library
available that contains the operations you need, otherwise you must implement
them yourself.

Another issue that arises in the implementation phase is that the assumption
of doing exact arithmetic with real numbers breaks down, and it is necessary
to understand the consequences. Robustness problems are often a cause of
frustration when implementing geometric algorithms. Solving robustness prob-
lems is not easy. One solution is to use a package providing exact arithmetic
(using integers, rationals, or even algebraic numbers, depending on the type
of problem) but this will be slow. Alternatively, one can adapt the algorithm
to detect inconsistencies and take appropriate actions to avoid crashing the
program. In this case it is not guaranteed that the algorithm produces the correct
output, and it is important to establish the exact properties that the output has.
This is what we did in the previous section, when we developed the convex
hull algorithm: the result might not be a convex polygon but we know that the
structure of the output is correct and that the output polygon is very close to the
convex hull. Finally, it is possible to predict, based on the input, the precision in

Section 1.2
DEGENERACIES AND ROBUSTNESS
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the number representation required to solve the problem correctly.

Which approach is best depends on the application. If speed is not an issue,
exact arithmetic is preferred. In other cases it is not so important that the result
of the algorithm is precise. For example, when displaying the convex hull of a
set of points, it is most likely not noticeable when the polygon deviates slightly
from the true convex hull. In this case we can use a careful implementation
based on floating point arithmetic.

In the rest of this book we focus on the design phase of geometric algorithms;
we won’t say much about the problems that arise in the implementation phase.

1.3 Application Domains

As indicated before, we have chosen a motivating example application for every
geometric concept, algorithm, or data structure introduced in this book. Most of
the applications stem from the areas of computer graphics, robotics, geographic
information systems, and CAD/CAM. For those not familiar with these fields,
we give a brief description of the areas and indicate some of the geometric
problems that arise in them.

Computer graphics. Computer graphics is concerned with creating images
of modeled scenes for display on a computer screen, a printer, or other output
device. The scenes vary from simple two-dimensional drawings—consisting of
lines, polygons, and other primitive objects—to realistic-looking 3-dimensional
scenes including light sources, textures, and so on. The latter type of scene can
easily contain over a million polygons or curved surface patches.

Because scenes consist of geometric objects, geometric algorithms play an
important role in computer graphics.

For 2-dimensional graphics, typical questions involve the intersection of
certain primitives, determining the primitive pointed to with the mouse, or deter-
mining the subset of primitives that lie within a particular region. Chapters 6, 10,
and 16 describe techniques useful for some of these problems.

When dealing with 3-dimensional problems the geometric questions be-
come more complex. A crucial step in displaying a 3-dimensional scene is
hidden surface removal: determine the part of a scene visible from a particular
viewpoint or, in other words, discard the parts that lie behind other objects. In
Chapter 12 we study one approach to this problem.

To create realistic-looking scenes we have to take light into account. This
creates many new problems, such as the computation of shadows. Hence,
realistic image synthesis requires complicated display techniques, like ray
tracing and radiosity. When dealing with moving objects and in virtual reality
applications, it is important to detect collisions between objects. All these
situations involve geometric problems.

Robotics. The field of robotics studies the design and use of robots. As robots
are geometric objects that operate in a 3-dimensional space—the real world—it



is obvious that geometric problems arise at many places. At the beginning of  Section 1.3

this chapter we already introduced the motion planning problem, where a robot ~ APPLICATION DOMAINS
has to find a path in an environment with obstacles. In Chapters 13 and 15 we
study some simple cases of motion planning. Motion planning is one aspect
of the more general problem of task planning. One would like to give a robot
high-level tasks—*vacuum the room”—and let the robot figure out the best way
to execute the task. This involves planning motions, planning the order in which
to perform subtasks, and so on.

Other geometric problems occur in the design of robots and work cells in
which the robot has to operate. Most industrial robots are robot arms with a
fixed base. The parts operated on by the robot arm have to be supplied in such
a way that the robot can easily grasp them. Some of the parts may have to be
immobilized so that the robot can work on them. They may also have to be
turned to a known orientation before the robot can work on them. These are
all geometric problems, sometimes with a kinematic component. Some of the
algorithms described in this book are applicable in such problems. For example,
the smallest enclosing disc problem, treated in Section 4.7, can be used for
optimal placement of robot arms.

Geographic information systems. A geographic information system, or GIS
for short, stores geographical data like the shape of countries, the height of
mountains, the course of rivers, the type of vegetation at different locations,
population density, or rainfall. They can also store human-made structures
such as cities, roads, railways, electricity lines, or gas pipes. A GIS can be
used to extract information about certain regions and, in particular, to obtain
information about the relation between different types of data. For example,
a biologist may want to relate the average rainfall to the existence of certain
plants, and a civil engineer may need to query a GIS to determine whether there
are any gas pipes underneath a lot where excavation works are to be performed.

As most geographic information concerns properties of points and regions
on the earth’s surface, geometric problems occur in abundance here. Moreover,
the amount of data is so large that efficient algorithms are a must. Below we
mention the GIS-related problems treated in this book.

A first question is how to store geographic data. Suppose that we want to
develop a car guidance system, which shows the driver at any moment where she
is. This requires storing a huge map of roads and other data. At every moment
we have to be able to determine the position of the car on the map and to quickly
select a small portion of the map for display on the on-board computer. Efficient
data structures are needed for these operations. Chapters 6, 10, and 16 describe
computational geometry solutions to these problems.

The information about the height in some mountainous terrain is usually
only available at certain sample points. For other positions we have to obtain
the heights by interpolating between nearby sample points. But which sample
points should we choose? Chapter 9 deals with this problem.

The combination of different types of data is one of the most important
operations in a GIS. For example, we may want to check which houses lie in 11
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a forest, locate all bridges by checking where roads cross rivers, or determine
a good location for a new golf course by finding a slightly hilly, rather cheap
area not too far from a particular town. A GIS usually stores different types of
data in separate maps. To combine the data we have to overlay different maps.
Chapter 2 deals with a problem arising when we want to compute the overlay.

Finally, we mention the same example we gave at the beginning of this
chapter: the location of the nearest public phone (or hospital, or any other
facility). This requires the computation of a Voronoi diagram, a structure
studied in detail in Chapter 7.

CAD/CAM. Computer aided design (CAD) concerns itself with the design
of products with a computer. The products can vary from printed circuit boards,
machine parts, or furniture, to complete buildings. In all cases the resulting
product is a geometric entity and, hence, it is to be expected that all sorts of
geometric problems appear. Indeed, CAD packages have to deal with intersec-
tions and unions of objects, with decomposing objects and object boundaries
into simpler shapes, and with visualizing the designed products.

To decide whether a design meets the specifications certain tests are needed.
Often one does not need to build a prototype for these tests, and a simulation
suffices. Chapter 14 deals with a problem arising in the simulation of heat
emission by a printed circuit board.

Once an object has been designed and tested, it has to be manufactured.
Computer aided manufacturing (CAM) packages can be of assistance here.
CAM involves many geometric problems. Chapter 4 studies one of them.

A recent trend is design for assembly, where assembly decisions are already
taken into account during the design stage. A CAD system supporting this
would allow designers to test their design for feasibility, answering questions
like: can the product be built easily using a certain manufacturing process?
Many of these questions require geometric algorithms to be answered.

Other applications domains. There are many more application domains
where geometric problems occur and geometric algorithms and data structures
can be used to solve them.

For example, in molecular modeling, molecules are often represented by
collections of intersecting balls in space, one ball for each atom. Typical
questions are to compute the union of the atom balls to obtain the molecule
surface, or to compute where two molecules can touch each other.

Another area is pattern recognition. Consider for example an optical char-
acter recognition system. Such a system scans a paper with text on it with the
goal of recognizing the text characters. A basic step is to match the image of a
character against a collection of stored characters to find the one that best fits it.
This leads to a geometric problem: given two geometric objects, determine how
well they resemble each other.

Even certain areas that at first sight do not seem to be geometric can ben-
efit from geometric algorithms, because it is often possible to formulate non-
geometric problem in geometric terms. In Chapter 5, for instance, we will see



how records in a database can be interpreted as points in a higher-dimensional
space, and we will present a geometric data structure such that certain queries
on the records can be answered efficiently.

We hope that the above collection of geometric problems makes it clear that
computational geometry plays a role in many different areas of computer sci-
ence. The algorithms, data structures, and techniques described in this book
will provide you with the tools needed to attack such geometric problems
successfully.

1.4 Notes and Comments

Every chapter of this book ends with a section entitled Notes and Comments.
These sections indicate where the results described in the chapter came from,
indicate generalizations and improvements, and provide references. They can
be skipped but do contain useful material for those who want to know more
about the topic of the chapter. More information can also be found in the
Handbook of Computational Geometry [331] and the Handbook of Discrete and
Computational Geometry [191].

In this chapter the geometric problem treated in detail was the computation
of the convex hull of a set of points in the plane. This is a classic topic in
computational geometry and the amount of literature about it is huge. The
algorithm described in this chapter is commonly known as Graham’s scan, and
is based on a modification by Andrew [17] of one of the earliest algorithms by
Graham [192]. This is only one of the many O(nlogn) algorithms available for
solving the problem. A divide-and-conquer approach was given by Preparata
and Hong [322]. Also an incremental method exists that inserts the points
one by one in O(logn) time per insertion [321]. Overmars and van Leeuwen
generalized this to a method in which points could be both inserted and deleted
in O(log? n) time [305]. Other results on dynamic convex hulls were obtained
by Hershberger and Suri [211], Chan [83], and Brodal and Jacob [73].

Even though an Q(nlogn) lower bound is known for the problem [393]
many authors have tried to improve the result. This makes sense because in many
applications the number of points that appear on the convex hull is relatively
small, while the lower bound result assumes that (almost) all points show up
on the convex hull. Hence, it is useful to look at algorithms whose running
time depends on the complexity of the convex hull. Jarvis [221] introduced
a wrapping technique, often referred to as Jarvis’s march, that computes the
convex hull in O(h - n) time where A is the complexity of the convex hull. The
same worst-case performance is achieved by the algorithm of Overmars and
van Leeuwen [303], based on earlier work by Bykat [79], Eddy [156], and
Green and Silverman [193]. This algorithm has the advantage that its expected
running time is linear for many distributions of points. Finally, Kirkpatrick
and Seidel [238] improved the result to O(nlogh), and recently Chan [82]
discovered a much simpler algorithm to achieve the same result.

Section 1.4
NOTES AND COMMENTS
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The convex hull can be defined in any dimension. Convex hulls in 3-
dimensional space can still be computed in O(nlogn) time, as we will see in
Chapter 11. For dimensions higher than 3, however, the complexity of the
convex hull is no longer linear in the number of points. See the notes and
comments of Chapter 11 for more details.

In the past years a number of general methods for handling special cases have
been suggested. These symbolic perturbation schemes perturb the input in such
a way that all degeneracies disappear. However, the perturbation is only done
symbolically. This technique was introduced by Edelsbrunner and Miicke [164]
and later refined by Yap [397] and Emiris and Canny [172, 171]. Symbolic
perturbation relieves the programmer of the burden of degeneracies, but it
has some drawbacks: the use of a symbolic perturbation library slows down
the algorithm, and sometimes one needs to recover the “real result” from the
“perturbed result”, which is not always easy. These drawbacks led Burnikel et
al. [78] to claim that it is both simpler (in terms of programming effort) and
more efficient (in terms of running time) to deal directly with degenerate inputs.

Robustness in geometric algorithms is a topic that has recently received a lot of
interest. Most geometric comparisons can be formulated as computing the sign
of some determinant. A possible way to deal with the inexactness in floating
point arithmetic when evaluating this sign is to choose a small threshold value
€ and to say that the determinant is zero when the outcome of the floating
point computation is less than €. When implemented naively, this can lead to
inconsistencies (for instance, for three points a,b,c we may decide that a = b
and b = ¢ but a # c¢) that cause the program to fail. Guibas et al. [198] showed
that combining such an approach with interval arithmetic and backwards error
analysis can give robust algorithms. Another option is to use exact arithmetic.
Here one computes as many bits of the determinant as are needed to determine its
sign. This will slow down the computation, but techniques have been developed
to keep the performance penalty relatively small [182, 256, 395]. Besides
these general approaches, there have been a number papers dealing with robust
computation in specific problems [34, 37, 81, 145, 180, 181, 219, 279].

We gave a brief overview of the application domains from which we took our
examples, which serve to show the motivation behind the various geometric
notions and algorithms studied in this book. Below are some references to
textbooks you can consult if you want to know more about the application
domains. Of course there are many more good books about these domains than
the few we mention.

There is a large number of books on computer graphics. The book by Foley
et al. [179] is very extensive and generally considered one of the best books on
the topic. Other good books are the ones by Shirley et al. [359] and Watt [381].

An extensive overview of robotics and the motion planning problem can be
found in the book of Choset et al. [127], and in the somewhat older books of
Latombe [243] and Hopcroft, Schwartz, and Sharir [217]. More information on
geometric aspects of robotics is provided by the book of Selig [348].



There is a large collection of books about geographic information systems,  Section 1.5
but most of them do not consider algorithmic issues in much detail. Some  EXERCISES
general textbooks are the ones by DeMers [140], Longley et al. [257], and
Worboys and Duckham [392]. Data structures for spatial data are described
extensively in the book of Samet [335].

The books by Faux and Pratt [175], Mortenson [285], and Hoffmann [216]
are good introductory texts on CAD/CAM and geometric modeling.

1.5 Exercises

1.1 The convex hull of a set S is defined to be the intersection of all convex
sets that contain S. For the convex hull of a set of points it was indicated
that the convex hull is the convex set with smallest perimeter. We want to
show that these are equivalent definitions.

a. Prove that the intersection of two convex sets is again convex. This
implies that the intersection of a finite family of convex sets is convex
as well.

b. Prove that the smallest perimeter polygon P containing a set of points
P is convex.

c. Prove that any convex set containing the set of points P contains the
smallest perimeter polygon P.

1.2 Let P be a set of points in the plane. Let P be the convex polygon whose
vertices are points from P and that contains all points in P. Prove that this
polygon P is uniquely defined, and that it is the intersection of all convex
sets containing P.

1.3 Let E be an unsorted set of n segments that are the edges of a convex
polygon. Describe an O(nlogn) algorithm that computes from E a list
containing all vertices of the polygon, sorted in clockwise order.

1.4 For the convex hull algorithm we have to be able to test whether a point
r lies left or right of the directed line through two points p and ¢g. Let

pP= (anpy)’ q= (‘JX7C]y)’ and r = (rx,ry).

a. Show that the sign of the determinant

Px Py
D=|1 g« gqy
I e ny

determines whether r lies left or right of the line.
b. Show that |D| in fact is twice the surface of the triangle determined by
p,q,and r.
c. Why is this an attractive way to implement the basic test in algorithm
CONVEXHULL? Give an argument for both integer and floating point
coordinates. 15
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1.5

1.6

1.7

1.8

1.9

Verify that the algorithm CONVEXHULL with the indicated modifications
correctly computes the convex hull, also of degenerate sets of points.
Consider for example such nasty cases as a set of points that all lie on one
(vertical) line.

In many situations we need to compute convex hulls of objects other than
points.

a. Let S be a set of n line segments in the plane. Prove that the convex
hull of S is exactly the same as the convex hull of the 2n endpoints of
the segments.

b.* Let P be a non-convex polygon. Describe an algorithm that computes
the convex hull of P in O(n) time. Hint: Use a variant of algorithm
CONVEXHULL where the vertices are not treated in lexicographical
order, but in some other order.

Consider the following alternative approach to computing the convex hull
of a set of points in the plane: We start with the rightmost point. This is
the first point p; of the convex hull. Now imagine that we start with a
vertical line and rotate it clockwise until it hits another point p,. This is
the second point on the convex hull. We continue rotating the line but this
time around p» until we hit a point p3. In this way we continue until we
reach p; again.

. Give pseudocode for this algorithm.

. What degenerate cases can occur and how can we deal with them?

. Prove that the algorithm correctly computes the convex hull.

. Prove that the algorithm can be implemented to run in time O(n - h),
where £ is the complexity of the convex hull.

e. What problems might occur when we deal with inexact floating point

arithmetic?

o0 o

The O(nlogn) algorithm to compute the convex hull of a set of n points
in the plane that was described in this chapter is based on the paradigm
of incremental construction: add the points one by one, and update the
convex hull after each addition. In this exercise we shall develop an
algorithm based on another paradigm, namely divide-and-conquer.

a. Let P and P; be two disjoint convex polygons with n vertices in total.
Give an O(n) time algorithm that computes the convex hull of P; U P,.

b. Use the algorithm from part a to develop an O(nlogn) time divide-and-
conquer algorithm to compute the convex hull of a set of n points in
the plane.

Suppose that we have a subroutine CONVEXHULL available for comput-
ing the convex hull of a set of points in the plane. Its output is a list of con-
vex hull vertices, sorted in clockwise order. Now let S = {x1,x2,...,%,}
be a set of n numbers. Show that S can be sorted in O(n) time plus the
time needed for one call to CONVEXHULL. Since the sorting problem
has an Q(nlogn) lower bound, this implies that the convex hull problem



has an Q(nlogn) lower bound as well. Hence, the algorithm presented in
this chapter is asymptotically optimal.

1.10 Let S be a set of n (possibly intersecting) unit circles in the plane. We
want to compute the convex hull of S.

a. Show that the boundary of the convex hull of S consists of straight
line segments and pieces of circles in S.

b. Show that each circle can occur at most once on the boundary of the
convex hull.

c. Let S be the set of points that are the centers of the circles in S. Show
that a circle in S appears on the boundary of the convex hull if and
only if the center of the circle lies on the convex hull of .

d. Give an O(nlogn) algorithm for computing the convex hull of S.

e.* Give an O(nlogn) algorithm for the case in which the circles in S
have different radii.

Section 1.5
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2 Line Segment Intersection
Thematic Map Overlay

When you are visiting a country, maps are an invaluable source of information.
They tell you where tourist attractions are located, they indicate the roads and
railway lines to get there, they show small lakes, and so on. Unfortunately,
they can also be a source of frustration, as it is often difficult to find the right
information: even when you know the approximate position of a small town,
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Figure 2.1
Cities, rivers, railroads, and their
overlay in western Canada

it can still be difficult to spot it on the map. To make maps more readable,
geographic information systems split them into several layers. Each layer is a
thematic map, that is, it stores only one type of information. Thus there will
be a layer storing the roads, a layer storing the cities, a layer storing the rivers, 19
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and so on. The theme of a layer can also be more abstract. For instance, there
could be a layer for the population density, for average precipitation, habitat of
the grizzly bear, or for vegetation. The type of geometric information stored
in a layer can be very different: the layer for a road map could store the roads
as collections of line segments (or curves, perhaps), the layer for cities could
contain points labeled with city names, and the layer for vegetation could store
a subdivision of the map into regions labeled with the type of vegetation.

Users of a geographic information system can select one of the thematic
maps for display. To find a small town you would select the layer storing cities,
and you would not be distracted by information such as the names of rivers
and lakes. After you have spotted the town, you probably want to know how to
get there. To this end geographic information systems allow users to view an
overlay of several maps—see Figure 2.1. Using an overlay of the road map and
the map storing cities you can now figure out how to get to the town. When two
or more thematic map layers are shown together, intersections in the overlay
are positions of special interest. For example, when viewing the overlay of
the layer for the roads and the layer for the rivers, it would be useful if the
intersections were clearly marked. In this example the two maps are basically
networks, and the intersections are points. In other cases one is interested in
the intersection of complete regions. For instance, geographers studying the
climate could be interested in finding regions where there is pine forest and the
annual precipitation is between 1000 mm and 1500 mm. These regions are the
intersections of the regions labeled “pine forest” in the vegetation map and the
regions labeled “1000-1500" in the precipitation map.

2.1 Line Segment Intersection

We first study the simplest form of the map overlay problem, where the two map
layers are networks represented as collections of line segments. For example, a
map layer storing roads, railroads, or rivers at a small scale. Note that curves can
be approximated by a number of small segments. At first we won’t be interested
in the regions induced by these line segments. Later we shall look at the more
complex situation where the maps are not just networks, but subdivisions of
the plane into regions that have an explicit meaning. To solve the network
overlay problem we first have to state it in a geometric setting. For the overlay
of two networks the geometric situation is the following: given two sets of
line segments, compute all intersections between a segment from one set and a
segment from the other. This problem specification is not quite precise enough
yet, as we didn’t define when two segments intersect. In particular, do two
segments intersect when an endpoint of one of them lies on the other? In other
words, we have to specify whether the input segments are open or closed. To
make this decision we should go back to the application, the network overlay
problem. Roads in a road map and rivers in a river map are represented by
chains of segments, so a crossing of a road and a river corresponds to the interior
of one chain intersecting the interior of another chain. This does not mean that



there is an intersection between the interior of two segments: the intersection
point could happen to coincide with an endpoint of a segment of a chain. In
fact, this situation is not uncommon because windy rivers are represented by
many small segments and coordinates of endpoints may have been rounded
when maps are digitized. We conclude that we should define the segments to be
closed, so that an endpoint of one segment lying on another segment counts as
an intersection.

To simplify the description somewhat we shall put the segments from the two
sets into one set, and compute all intersections among the segments in that set.
This way we certainly find all the intersections we want. We may also find
intersections between segments from the same set. Actually, we certainly will,
because in our application the segments from one set form a number of chains,
and we count coinciding endpoints as intersections. These other intersections
can be filtered out afterwards by simply checking for each reported intersection
whether the two segments involved belong to the same set. So our problem
specification is as follows: given a set S of n closed segments in the plane, report
all intersection points among the segments in S.

This doesn’t seem like a challenging problem: we can simply take each pair
of segments, compute whether they intersect, and, if so, report their intersection
point. This brute-force algorithm clearly requires O(n?) time. In a sense this is
optimal: when each pair of segments intersects any algorithm must take Q(n?)
time, because it has to report all intersections. A similar example can be given
when the overlay of two networks is considered. In practical situations, however,
most segments intersect no or only a few other segments, so the total number of
intersection points is much smaller than quadratic. It would be nice to have an
algorithm that is faster in such situations. In other words, we want an algorithm
whose running time depends not only on the number of segments in the input,
but also on the number of intersection points. Such an algorithm is called an
output-sensitive algorithm: the running time of the algorithm is sensitive to the
size of the output. We could also call such an algorithm intersection-sensitive,
since the number of intersections is what determines the size of the output.

How can we avoid testing all pairs of segments for intersection? Here we
must make use of the geometry of the situation: segments that are close together
are candidates for intersection, unlike segments that are far apart. Below we
shall see how we can use this observation to obtain an output-sensitive algorithm
for the line segment intersection problem.

Let S :={s1,s2,...,5, be the set of segments for which we want to compute
all intersections. We want to avoid testing pairs of segments that are far apart.
But how can we do this? Let’s first try to rule out an easy case. Define the
y-interval of a segment to be its orthogonal projection onto the y-axis. When the
y-intervals of a pair of segments do not overlap—we could say that they are far
apart in the y-direction—then they cannot intersect. Hence, we only need to test
pairs of segments whose y-intervals overlap, that is, pairs for which there exists
a horizontal line that intersects both segments. To find these pairs we imagine
sweeping a line £ downwards over the plane, starting from a position above all
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Chapter 2 segments. While we sweep the imaginary line, we keep track of all segments
LINE SEGMENT INTERSECTION  intersecting it—the details of this will be explained later—so that we can find
the pairs we need.

This type of algorithm is called a plane sweep algorithm and the line £ is called
; the sweep line. The status of the sweep line is the set of segments intersecting it.
\ /. = ' / The status changes while the sweep line moves downwards, but not continuously.

event point

Only at particular points is an update of the status required. We call these points
the event points of the plane sweep algorithm. In this algorithm the event points
are the endpoints of the segments.

The moments at which the sweep line reaches an event point are the only
moments when the algorithm actually does something: it updates the status of
the sweep line and performs some intersection tests. In particular, if the event
point is the upper endpoint of a segment, then a new segment starts intersecting
the sweep line and must be added to the status. This segment is tested for
intersection against the ones already intersecting the sweep line. If the event
point is a lower endpoint, a segment stops intersecting the sweep line and must
be deleted from the status. This way we only test pairs of segments for which
there is a horizontal line that intersects both segments. Unfortunately, this is
not enough: there are still situations where we test a quadratic number of pairs,
whereas there is only a small number of intersection points. A simple example
is a set of vertical segments that all intersect the x-axis. So the algorithm is not
output-sensitive. The problem is that two segments that intersect the sweep line
can still be far apart in the horizontal direction.

Let’s order the segments from left to right as they intersect the sweep line,
to include the idea of being close in the horizontal direction. We shall only
test segments when they are adjacent in the horizontal ordering. This means
that we only test any new segment against two segments, namely, the ones
immediately left and right of the upper endpoint. Later, when the sweep line has
moved downwards to another position, a segment can become adjacent to other
segments against which it will be tested. Our new strategy should be reflected in
the status of our algorithm: the status now corresponds to the ordered sequence
N of segments intersecting the sweep line. The new status not only changes at

‘-~

endpoints of segments; it also changes at intersection points, where the order

of the intersected segments changes. When this happens we must test the two

segments that change position against their new neighbors. This is a new type
of event point.

new neighbors Before trying to turn these ideas into an efficient algorithm, we should

convince ourselves that the approach is correct. We have reduced the number

of pairs to be tested, but do we still find all intersections? In other words, if

two segments s; and s intersect, is there always a position of the sweep line ¢

where s; and s are adjacent along £? Let’s first ignore some nasty cases: assume

that no segment is horizontal, that any two segments intersect in at most one

point—they do not overlap—, and that no three segments meet in a common

point. Later we shall see that these cases are easy to handle, but for now it

is convenient to forget about them. The intersections where an endpoint of a

22 segment lies on another segment can easily be detected when the sweep line
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reaches the endpoint. So the only question is whether intersections between the  Section 2.1
interiors of segments are always detected. LINE SEGMENT INTERSECTION

Lemma 2.1 Let s; and s; be two non-horizontal segments whose interiors
intersect in a single point p, and assume there is no third segment passing
through p. Then there is an event point above p where s; and s; become
adjacent and are tested for intersection.

Proof. Let £ be a horizontal line slightly above p. If ¢ is close enough to p then

s; and s; must be adjacent along £. (To be precise, we should take ¢ such that . sj
there is no event point on ¢, nor in between £ and the horizontal line through '\ /’ Vi
p-) In other words, there is a position of the sweep line where s; and s; are ‘ ./ZQ: ‘
adjacent. On the other hand, s; and s; are not yet adjacent when the algorithm

starts, because the sweep line starts above all line segments and the status is
empty. Hence, there must be an event point ¢ where s; and s; become adjacent
and are tested for intersection. Hl

So our approach is correct, at least when we forget about the nasty cases
mentioned earlier. Now we can proceed with the development of the plane
sweep algorithm. Let’s briefly recap the overall approach. We imagine moving
a horizontal sweep line £ downwards over the plane. The sweep line halts at
certain event points; in our case these are the endpoints of the segments, which
we know beforehand, and the intersection points, which are computed on the
fly. While the sweep line moves we maintain the ordered sequence of segments
intersected by it. When the sweep line halts at an event point the sequence of
segments changes and, depending on the type of event point, we have to take
several actions to update the status and detect intersections.

When the event point is the upper endpoint of a segment, there is a new segment I
intersecting the sweep line. This segment must be tested for intersection against e s& 1
its two neighbors along the sweep line. Only intersection points below the v Sj v
sweep line are important; the ones above the sweep line have been detected

already. For example, if segments s; and s; are adjacent on the sweep line, and AN
a new upper endpoint of a segment s; appears in between, then we have to test \
s; for intersection with s; and s;. If we find an intersection below the sweep > ~ intersection
line, we have found a new event point. After the upper endpoint is handled we detected
continue to the next event point.

When the event point is an intersection, the two segments that intersect
change their order. Each of them gets (at most) one new neighbor against which
it is tested for intersection. Again, only intersections below the sweep line are
still interesting. Suppose that four segments s;, s, s;, and s, appear in this
order on the sweep line when the intersection point of s and s; is reached. Then

st and s; switch position and we must test s; and s; for intersection below the
sweep line, and also s; and s,,. The new intersections that we find are, of course,
also event points for the algorithm. Note, however, that it is possible that these
events have already been detected earlier, namely if a pair becoming adjacent
has been adjacent before. 23
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When the event point is the lower endpoint of a segment, its two neighbors
now become adjacent and must be tested for intersection. If they intersect below
the sweep line, then their intersection point is an event point. (Again, this event
could have been detected already.) Assume three segments s, §;, and s, appear
in this order on the sweep line when the lower endpoint of s; is encountered.
Then sy and s,, will become adjacent and we test them for intersection.

After we have swept the whole plane—more precisely, after we have treated
the last event point—we have computed all intersection points. This is guaran-
teed by the following invariant, which holds at any time during the plane sweep:
all intersection points above the sweep line have been computed correctly.

After this sketch of the algorithm, it’s time to go into more detail. It’s also
time to look at the degenerate cases that can arise, like three or more segments
meeting in a point. We should first specify what we expect from the algorithm
in these cases. We could require the algorithm to simply report each intersection
point once, but it seems more useful if it reports for each intersection point a
list of segments that pass through it or have it as an endpoint. There is another
special case for which we should define the required output more carefully,
namely that of two partially overlapping segments, but for simplicity we shall
ignore this case in the rest of this section.

We start by describing the data structures the algorithm uses.

First of all we need a data structure—called the event queue—that stores the
events. We denote the event queue by Q. We need an operation that removes the
next event that will occur from Q, and returns it so that it can be treated. This
event is the highest event below the sweep line. If two event points have the same
y-coordinate, then the one with smaller x-coordinate will be returned. In other
words, event points on the same horizontal line are treated from left to right.
This implies that we should consider the left endpoint of a horizontal segment
to be its upper endpoint, and its right endpoint to be its lower endpoint. You
can also think about our convention as follows: instead of having a horizontal
sweep line, imagine it is sloping just a tiny bit upward. As a result the sweep
line reaches the left endpoint of a horizontal segment just before reaching the
right endpoint. The event queue must allow insertions, because new events will
be computed on the fly. Notice that two event points can coincide. For example,
the upper endpoints of two distinct segments may coincide. It is convenient to
treat this as one event point. Hence, an insertion must be able to check whether
an event is already present in Q.

We implement the event queue as follows. Define an order < on the event
points that represents the order in which they will be handled. Hence, if p and ¢
are two event points then we have p < ¢ if and only if p, > ¢, holds or p, = g,
and py < g, holds. We store the event points in a balanced binary search tree,
ordered according to <. With each event point p in Q we will store the segments
starting at p, that is, the segments whose upper endpoint is p. This information
will be needed to handle the event. Both operations—fetching the next event
and inserting an event—take O(logm) time, where m is the number of events



in Q. (We do not use a heap to implement the event queue, because we have to
be able to test whether a given event is already present in Q.)

Second, we need to maintain the status of the algorithm. This is the ordered
sequence of segments intersecting the sweep line. The status structure, denoted
by 7, is used to access the neighbors of a given segment s, so that they can be
tested for intersection with s. The status structure must be dynamic: as segments
start or stop to intersect the sweep line, they must be inserted into or deleted
from the structure. Because there is a well-defined order on the segments in
the status structure we can use a balanced binary search tree as status structure.
When you are only used to binary search trees that store numbers, this may be
surprising. But binary search trees can store any set of elements, as long as
there is an order on the elements.

In more detail, we store the segments intersecting the sweep line ordered
in the leaves of a balanced binary search tree J. The left-to-right order of
the segments along the sweep line corresponds to the left-to-right order of the
leaves in J. We must also store information in the internal nodes to guide the
search down the tree to the leaves. At each internal node, we store the segment
from the rightmost leaf in its left subtree. (Alternatively, we could store the
segments only in interior nodes. This will save some storage. However, it is
conceptually simpler to think about the segments in interior nodes as values
to guide the search, not as data items. Storing the segments in the leaves also
makes some algorithms simpler to describe.) Suppose we search in T for the
segment immediately to the left of some point p that lies on the sweep line. At
each internal node v we test whether p lies left or right of the segment stored
at v. Depending on the outcome we descend to the left or right subtree of v,
eventually ending up in a leaf. Either this leaf, or the leaf immediately to the left
of it, stores the segment we are searching for. In a similar way we can find the
segment immediately to the right of p, or the segments containing p. It follows
that each update and neighbor search operation takes O(logn) time.

The event queue Q and the status structure T are the only two data structures
we need. The global algorithm can now be described as follows.

Algorithm FINDINTERSECTIONS(S)
Input. A set S of line segments in the plane.
Output. The set of intersection points among the segments in S, with for each
intersection point the segments that contain it.
1. Initialize an empty event queue Q. Next, insert the segment endpoints into
Q; when an upper endpoint is inserted, the corresponding segment should
be stored with it.
Initialize an empty status structure 7J.
while Q is not empty
do Determine the next event point p in Q and delete it.
HANDLEEVENTPOINT(p)

Nk

We have already seen how events are handled: at endpoints of segments we
have to insert or delete segments from the status structure T, and at intersection
points we have to change the order of two segments. In both cases we also
have to do intersection tests between segments that become neighbors after the

Section 2.1

LINE SEGMENT INTERSECTION

25



Chapter 2

LINE SEGMENT INTERSECTION

Figure 2.2

An event point and the changes in the

26

status structure

event. In degenerate cases—where several segments are involved in one event
point—the details are a little bit more tricky. The next procedure describes how
to handle event points correctly; it is illustrated in Figure 2.2.

HANDLEEVENTPOINT(p)

1.

SNk w

7.
8.
9.

10.
11.
12.
13.
14.
15.
16.

Let U(p) be the set of segments whose upper endpoint is p; these segments
are stored with the event point p. (For horizontal segments, the upper
endpoint is by definition the left endpoint.)
Find all segments stored in 7 that contain p; they are adjacent in J. Let
L(p) denote the subset of segments found whose lower endpoint is p, and
let C(p) denote the subset of segments found that contain p in their interior.
if L(p) UU(p) UC(p) contains more than one segment
then Report p as an intersection, together with L(p), U(p), and C(p).
Delete the segments in L(p) UC(p) from T.
Insert the segments in U (p) UC(p) into T. The order of the segments in T
should correspond to the order in which they are intersected by a sweep
line just below p. If there is a horizontal segment, it comes last among all
segments containing p.
(* Deleting and re-inserting the segments of C(p) reverses their order. *)
itU(p)UC(p) =0
then Let s; and s, be the left and right neighbors of p in 7.
FINDNEWEVENT(s;, s, p)
else Let s be the leftmost segment of U (p) UC(p) in 7.
Let s; be the left neighbor of s’ in 7.
FINDNEWEVENT(s;,s’, p)
Let s” be the rightmost segment of U (p) UC(p) in 7.
Let s, be the right neighbor of s” in 7.
FINDNEWEVENT(s", s, p)

Note that in lines 8—16 we assume that s; and s, actually exist. If they do not
exist the corresponding steps should obviously not be performed.



The procedures for finding the new intersections are easy: they simply test
two segments for intersection. The only thing we need to be careful about is,
when we find an intersection, whether this intersection has already been handled
earlier or not. When there are no horizontal segments, then the intersection
has not been handled yet when the intersection point lies below the sweep line.
But how should we deal with horizontal segments? Recall our convention that
events with the same y-coordinate are treated from left to right. This implies
that we are still interested in intersection points lying to the right of the current
event point. Hence, the procedure FINDNEWEVENT is defined as follows.

FINDNEWEVENT(s;, s\, p)

1. if s5; and s, intersect below the sweep line, or on it and to the right of the
current event point p, and the intersection is not yet present as an
event in Q

2. then Insert the intersection point as an event into Q.

What about the correctness of our algorithm? It is clear that FINDINTERSEC-
TIONS only reports true intersection points, but does it find all of them? The
next lemma states that this is indeed the case.

Lemma 2.2 Algorithm FINDINTERSECTIONS computes all intersection points
and the segments that contain it correctly.

Proof. Recall that the priority of an event is given by its y-coordinate, and that
when two events have the same y-coordinate the one with smaller x-coordinate
is given higher priority. We shall prove the lemma by induction on the priority
of the event points.

Let p be an intersection point and assume that all intersection points g with
a higher priority have been computed correctly. We shall prove that p and
the segments that contain p are computed correctly. Let U(p) be the set of
segments that have p as their upper endpoint (or, for horizontal segments, their
left endpoint), let L(p) be the set of segments having p as their lower endpoint
(or, for horizontal segments, their right endpoint), and let C(p) be the set of
segments having p in their interior.

First, assume that p is an endpoint of one or more of the segments. In that
case p is stored in the event queue Q at the start of the algorithm. The segments
from U(p) are stored with p, so they will be found. The segments from L(p)
and C(p) are stored in T when p is handled, so they will be found in line 2 of
HANDLEEVENTPOINT. Hence, p and all the segments involved are determined
correctly when p is an endpoint of one or more of the segments.

Now assume that p is not an endpoint of a segment. All we need to show is
that p will be inserted into Q at some moment. Note that all segments that are
involved have p in their interior. Order these segments by angle around p, and
let s; and s; be two neighboring segments. Following the proof of Lemma 2.1
we see that there is an event point with a higher priority than p such that s; and
s j become adjacent when ¢ is passed. In Lemma 2.1 we assumed for simplicity
that s; and s; are non-horizontal, but it is straightforward to adapt the proof for
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horizontal segments. By induction, the event point g was handled correctly,
which means that p is detected and stored into Q. &l

So we have a correct algorithm. But did we succeed in developing an output-
sensitive algorithm? The answer is yes: the running time of the algorithm is
O((n+k)logn), where k is the size of the output. The following lemma states
an even stronger result: the running time is O((n+I)logn), where I is the
number of intersections. This is stronger, because for one intersection point the
output can consist of a large number of segments, namely in the case where
many segments intersect in a common point.

Lemma 2.3 The running time of Algorithm FINDINTERSECTIONS for a set S
of n line segments in the plane is O(nlogn+ I'logn), where I is the number of
intersection points of segments in S.

Proof. The algorithm starts by constructing the event queue on the segment
endpoints. Because we implemented the event queue as a balanced binary
search tree, this takes O(nlogn) time. Initializing the status structure takes
constant time. Then the plane sweep starts and all the events are handled. To
handle an event we perform three operations on the event queue Q: the event
itself is deleted from Q in line 4 of FINDINTERSECTIONS, and there can be one
or two calls to FINDNEWEVENT, which may cause at most two new events to
be inserted into Q. Deletions and insertions on Q take O(logn) time each. We
also perform operations—insertions, deletions, and neighbor finding—on the
status structure T, which take O(logn) time each. The number of operations
is linear in the number m(p) := card(L(p) UU (p) UC(p)) of segments that are
involved in the event. If we denote the sum of all m(p), over all event points p,
by m, the running time of the algorithm is O(mlogn).

It is clear that m = O(n+ k), where k is the size of the output; after all,
whenever m(p) > 1 we report all segments involved in the event, and the only
events involving one segment are the endpoints of segments. But we want
to prove that m = O(n+1I), where I is the number of intersection points. To
show this, we will interpret the set of segments as a planar graph embedded in
the plane. (If you are not familiar with planar graph terminology, you should
read the first paragraphs of Section 2.2 first.) Its vertices are the endpoints of
segments and intersection points of segments, and its edges are the pieces of
the segments connecting vertices. Consider an event point p. It is a vertex of
the graph, and m(p) is bounded by the degree of the vertex. Consequently, m is
bounded by the sum of the degrees of all vertices of our graph. Every edge of
the graph contributes one to the degree of exactly two vertices (its endpoints),
so m is bounded by 2n,, where 7, is the number of edges of the graph. Let’s
bound 7, in terms of n and /. By definition, n,, the number of vertices, is at
most 2n+1I. It is well known that in planar graphs n, = O(n,), which proves our
claim. But, for completeness, let us give the argument here. Every face of the
planar graph is bounded by at least three edges—provided that there are at least
three segments—and an edge can bound at most two different faces. Therefore
ny, the number of faces, is at most 27, /3. We now use Euler’s formula, which
states that for any planar graph with n, vertices, n, edges, and ny faces, the



following relation holds: Section 2.2
ny—he+ng > 2. THE DOUBLY-CONNECTED EDGE LIST

Equality holds if and only if the graph is connected. Plugging the bounds on n,
and ny into this formula, we get

2n,
2< (2n+1) —ne—&—% = (2n+1)—n./3.

Sone < 6n+31—6,and m < 12n+ 61 — 12, and the bound on the running time
follows. H]

We still have to analyze the other complexity aspect, the amount of storage
used by the algorithm. The tree T stores a segment at most once, so it uses O(n)
storage. The size of Q can be larger, however. The algorithm inserts intersection
points in Q when they are detected and it removes them when they are handled. -« - ———— - >
When it takes a long time before intersections are handled, it could happen that .\ - ><
Q gets very large. Of course its size is always bounded by O(rn+1), but it would
be better if the working storage were always linear.

There is a relatively simple way to achieve this: only store intersection
points of pairs of segments that are currently adjacent on the sweep line. The S5
algorithm given above also stores intersection points of segments that have 3
been horizontally adjacent, but aren’t anymore. By storing only intersections 54 52
among adjacent segments, the number of event points in Q is never more than
linear. The modification required in the algorithm is that the intersection point
of two segments must be deleted when they stop being adjacent. These segments
must become adjacent again before the intersection point is reached, so the
intersection point will still be reported correctly. The total time taken by the
algorithm remains O(nlogn+Ilogn). We obtain the following theorem:

-—

Theorem 2.4 Let S be a set of n line segments in the plane. All intersection
points in S, with for each intersection point the segments involved in it, can be
reported in O(nlogn+Ilogn) time and O(n) space, where I is the number of
intersection points.

2.2 The Doubly-Connected Edge List

We have solved the easiest case of the map overlay problem, where the two
maps are networks represented as collections of line segments. In general,
maps have a more complicated structure: they are subdivisions of the plane into
labeled regions. A thematic map of forests in Canada, for instance, would be
a subdivision of Canada into regions with labels such as “pine”, “deciduous”,
“birch”, and “mixed”.
Before we can give an algorithm for computing the overlay of two subdivi-
sions, we must develop a suitable representation for a subdivision. Storing a
subdivision as a collection of line segments is not such a good idea. Operations
like reporting the boundary of a region would be rather complicated. It is better 29
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to incorporate structural, topological information: which segments bound a
given region, which regions are adjacent, and so on.

The maps we consider are planar subdivisions induced by planar embeddings
of graphs. Such a subdivision is connected if the underlying graph is connected.
The embedding of a node of the graph is called a vertex, and the embedding of
an arc is called an edge. We only consider embeddings where every edge is a
straight line segment. In principle, edges in a subdivision need not be straight.
A subdivision need not even be a planar embedding of a graph, as it may have
unbounded edges. In this section, however, we don’t consider such more general
subdivisions. We consider an edge to be open, that is, its endpoints—which are
vertices of the subdivision—are not part of it. A face of the subdivision is a
maximal connected subset of the plane that doesn’t contain a point on an edge
or a vertex. Thus a face is an open polygonal region whose boundary is formed
by edges and vertices from the subdivision. The complexity of a subdivision
is defined as the sum of the number of vertices, the number of edges, and the
number of faces it consists of. If a vertex is the endpoint of an edge, then we
say that the vertex and the edge are incident. Similarly, a face and an edge on
its boundary are incident, and a face and a vertex of its boundary are incident.

What should we require from a representation of a subdivision? An opera-
tion one could ask for is to determine the face containing a given point. This
is definitely useful in some applications—indeed, in a later chapter we shall
design a data structure for this—but it is a bit too much to ask from a basic
representation. The things we can ask for should be more local. For example, it
is reasonable to require that we can walk around the boundary of a given face,
or that we can access one face from an adjacent one if we are given a common
edge. Another operation that could be useful is to visit all the edges around a
given vertex. The representation that we shall discuss supports these operations.
It is called the doubly-connected edge list.

A doubly-connected edge list contains a record for each face, edge, and vertex



of the subdivision. Besides the geometric and topological information—to
be described shortly—each record may also store additional information. For
instance, if the subdivision represents a thematic map for vegetation, the doubly-
connected edge list would store in each face record the type of vegetation of
the corresponding region. The additional information is also called attribute
information. The geometric and topological information stored in the doubly-
connected edge list should enable us to perform the basic operations mentioned
earlier. To be able to walk around a face in counterclockwise order we store a
pointer from each edge to the next. It can also come in handy to walk around
a face the other way, so we also store a pointer to the previous edge. An edge
usually bounds two faces, so we need two pairs of pointers for it. It is convenient
to view the different sides of an edge as two distinct half-edges, so that we have
a unique next half-edge and previous half-edge for every half-edge. This also
means that a half-edge bounds only one face. The two half-edges we get for a
given edge are called twins. Defining the next half-edge of a given half-edge
with respect to a counterclockwise traversal of a face induces an orientation on
each half-edge: it is oriented such that the face that it bounds lies to its left for
an observer walking along the edge. Because half-edges are oriented we can
speak of the origin and the destination of a half-edge. If a half-edge € has v as its
origin and w as its destination, then its twin Twin(¢) has w as its origin and v as
its destination. To reach the boundary of a face we just need to store one pointer
in the face record to an arbitrary half-edge bounding the face. Starting from
that half-edge, we can step from each half-edge to the next and walk around the
face.

What we just said does not quite hold for the boundaries of holes in a face:
if they are traversed in counterclockwise order then the face lies to the right. It
will be convenient to orient half-edges such that their face always lies to the
same side, so we change the direction of traversal for the boundary of a hole to
clockwise. Now a face always lies to the left of any half-edge on its boundary.
Another consequence is that twin half-edges always have opposite orientations.
The presence of holes in a face also means that one pointer from the face to an
arbitrary half-edge on its boundary is not enough to visit the whole boundary:
we need a pointer to a half-edge in every boundary component. If a face has
isolated vertices that don’t have any incident edge, we can store pointers to them
as well. For simplicity we’ll ignore this case.

Let’s summarize. The doubly-connected edge list consists of three collections
of records: one for the vertices, one for the faces, and one for the half-edges.
These records store the following geometric and topological information:

m The vertex record of a vertex v stores the coordinates of v in a field called
Coordinates(v). It also stores a pointer IncidentEdge(v) to an arbitrary
half-edge that has v as its origin.

m  The face record of a face f stores a pointer OuterComponent(f) to some

half-edge on its outer boundary. For the unbounded face this pointer is nil.

It also stores a list InnerComponents(f), which contains for each hole in
the face a pointer to some half-edge on the boundary of the hole.

Section 2.2
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m  The half-edge record of a half-edge € stores a pointer Origin(€) to its origin,
a pointer Twin(€) to its twin half-edge, and a pointer IncidentFace(€) to
the face that it bounds. We don’t need to store the destination of an edge,
because it is equal to Origin(Twin(¢)). The origin is chosen such that
IncidentFace(€) lies to the left of € when it is traversed from origin to
destination. The half-edge record also stores pointers Next(€) and Prev(é)
to the next and previous edge on the boundary of IncidentFace(€). Thus
Next(€) is the unique half-edge on the boundary of IncidentFace(€) that has
the destination of € as its origin, and Prev(€) is the unique half-edge on the
boundary of IncidentFace(€) that has Origin(€) as its destination.

A constant amount of information is used for each vertex and edge. A face may
require more storage, since the list InnerComponents(f) has as many elements
as there are holes in the face. Because any half-edge is pointed to at most once
from all InnerComponents(f) lists together, we conclude that the amount of
storage is linear in the complexity of the subdivision. An example of a doubly-
connected edge list for a simple subdivision is given below. The two half-edges
corresponding to an edge e; are labeled €; | and €; ».

Vertex Coordinates IncidentEdge

VI (0,4) €11
V2 (2,4) €42
V3 (2, 2) 5271
V4 ( 1 5 1) 52’2

Face OuterComponent InnerComponents
f] nil é 1,1
/2 €41 nil

Half-edge Origin Twin IncidentFace Next Prev

€11 Vi €12 S €p €31
€12 V2 €11 f2 &2 €4
€1 V3 € fi €p €42
€ V4 € S &1 e
€31 V3 €2 S €11 €
€32 Vi €31 f2 €1 €12
€41 v3 €42 f2 €12 &2
€42 1) €41 fi €1 e

The information stored in the doubly-connected edge list is enough to perform
the basic operations. For example, we can walk around the outer boundary
of a given face f by following Nexz(€) pointers, starting from the half-edge
OuterComponent(f). We can also visit all edges incident to a vertex v. Itis a
good exercise to figure out for yourself how to do this.

We described a fairly general version of the doubly-connected edge list. In
applications where the vertices carry no attribute information we could store



their coordinates directly in the Origin() field of the edge; there is no strict need  Section 2.3
for a separate type of vertex record. Even more important is to realize thatin  cOMPUTING THE OVERLAY OF TWO
many applications the faces of the subdivision carry no interesting meaning  SUBDIVISIONS
(think of the network of rivers or roads that we looked at before). If that is the

case, we can completely forget about the face records, and the IncidentFace()

field of half-edges. As we will see, the algorithm of the next section doesn’t

need these fields (and is actually simpler to implement if we don’t need to

update them). Some implementations of doubly-connected edge lists may also

insist that the graph formed by the vertices and edges of the subdivision be

connected. This can always be achieved by introducing dummy edges, and

has two advantages. Firstly, a simple graph transversal can be used to visit all

half-edges, and secondly, the InnerComponents() list for faces is not necessary.

2.3 Computing the Overlay of Two Subdivisions

Now that we have designed a good representation of a subdivision, we can tackle
the general map overlay problem. We define the overlay of two subdivisions 8;
and 8; to be the subdivision O(81,8,) such that there is a face f in O(8;,8,)
if and only if there are faces f| in 8; and f; in 8, such that f is a maximal
connected subset of f] N f>. This sounds more complicated than it is: what it
means is that the overlay is the subdivision of the plane induced by the edges
from 8; and 8;. Figure 2.4 illustrates this. The general map overlay problem

Figure 2.4
Overlaying two subdivisions

is to compute a doubly-connected edge list for O(8;,8,), given the doubly-
connected edge lists of 8§ and 8,. We require that each face in O(81,8;) be
labeled with the labels of the faces in 8; and §; that contain it. This way we
have access to the attribute information stored for these faces. In an overlay of a
vegetation map and a precipitation map this would mean that we know for each
region in the overlay the type of vegetation and the amount of precipitation.

Let’s first see how much information from the doubly-connected edge lists
for 81 and 8, we can re-use in the doubly-connected edge list for O(8,8S,).
Consider the network of edges and vertices of 81. This network is cut into pieces
by the edges of §;. These pieces are for a large part re-usable; only the edges
that have been cut by the edges of S, should be renewed. But does this also 33
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hold for the half-edge records in the doubly-connected edge list that correspond
to the pieces? If the orientation of a half-edge would change, we would still
have to change the information in these records. Fortunately, this is not the case.
The half-edges are oriented such that the face that they bound lies to the left;
the shape of the face may change in the overlay, but it will remain to the same
side of the half-edge. Hence, we can re-use half-edge records corresponding to
edges that are not intersected by edges from the other map. Stated differently,
the only half-edge records in the doubly-connected edge list for O(81,8;) that
we cannot borrow from 81 or 8, are the ones that are incident to an intersection
between edges from different maps.

This suggests the following approach. First, copy the doubly-connected
edge lists of §; and 8, into one new doubly-connected edge list. The new
doubly-connected edge list is not a valid doubly-connected edge list, of course,
in the sense that it does not yet represent a planar subdivision. This is the task
of the overlay algorithm: it must transform the doubly-connected edge list into
a valid doubly-connected edge list for O(81,8,) by computing the intersections
between the two networks of edges, and linking together the appropriate parts
of the two doubly-connected edge lists.

We did not talk about the new face records yet. The information for these
records is more difficult to compute, so we leave this for later. We first describe
in a little more detail how the vertex and half-edge records of the doubly-
connected edge list for O(81,8,) are computed.

Our algorithm is based on the plane sweep algorithm of Section 2.1 for com-
puting the intersections in a set of line segments. We run this algorithm on the
set of segments that is the union of the sets of edges of the two subdivisions
S1 and S;. Here we consider the edges to be closed. Recall that the algorithm
is supported by two data structures: an event queue Q, which stores the event
points, and the status structure J, which is a balanced binary search tree storing
the segments intersecting the sweep line, ordered from left to right. We now
also maintain a doubly-connected edge list D. Initially, D contains a copy
of the doubly-connected edge list for 8§; and a copy of the doubly-connected
edge list for S,. During the plane sweep we shall transform D to a correct
doubly-connected edge list for O(8;,8,). That is to say, as far as the vertex
and half-edge records are concerned; the face information will be computed
later. We keep cross pointers between the edges in the status structure T and
the half-edge records in D that correspond to them. This way we can access the
part of D that needs to be changed when we encounter an intersection point.
The invariant that we maintain is that at any time during the sweep, the part of
the overlay above the sweep line has been computed correctly.

Now, let’s consider what we must do when we reach an event point. First
of all, we update T and Q as in the line segment intersection algorithm. If the
event involves only edges from one of the two subdivisions, this is all; the event
point is a vertex that can be re-used. If the event involves edges from both
subdivisions, we must make local changes to D to link the doubly-connected
edge lists of the two original subdivisions at the intersection point. This is
tedious but not difficult.
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We describe the details for one of the possible cases, namely when an edge
e of 81 passes through a vertex v of 8, see Figure 2.5. The edge e must be
replaced by two edges denoted ¢’ and ¢”. In the doubly-connected edge list, the
two half-edges for e must become four. We create two new half-edge records,
both with v as the origin. The two existing half-edges for e keep the endpoints of
e as their origin, as shown in Figure 2.5. Then we pair up the existing half-edges
with the new half-edges by setting their Twin() pointers. So ¢’ is represented
by one new and one existing half-edge, and the same holds for ¢”’. Now we
must set a number of Prev() and Next() pointers. We first deal with the situation
around the endpoints of e; later we’ll worry about the situation around v. The
Next() pointers of the two new half-edges each copy the Nexz() pointer of the
old half-edge that is not its twin. The half-edges to which these pointers point
must also update their Prev() pointer and set it to the new half-edges. The
correctness of this step can be verified best by looking at a figure.

It remains to correct the situation around vertex v. We must set the Nexz()
and Prev() pointers of the four half-edges representing ¢’ and e”, and of the four
half-edges incident from 8, to v. We locate these four half-edges from 8, by
testing where ¢’ and ¢” should be in the cyclic order of the edges around vertex
v. There are four pairs of half-edges that become linked by a Nexz() pointer
from the one and a Prev() pointer from the other. Consider the half-edge for
¢’ that has v as its destination. It must be linked to the first half-edge, seen
clockwise from ¢’, with v as its origin. The half-edge for ¢’ with v as its origin
must be linked to the first counterclockwise half-edge with v as its destination.
The same statements hold for ¢”.

Most of the steps in the description above take only constant time. Only
locating where ¢’ and ¢” appear in the cyclic order around v may take longer:
it will take time linear in the degree of v. The other cases that can arise—
crossings of two edges from different maps, and coinciding vertices—are not
more difficult than the case we just discussed. These cases also take time O(m),
where m is the number of edges incident to the event point. This means that
updating D does not increase the running time of the line segment intersection
algorithm asymptotically. Notice that every intersection that we find is a vertex
of the overlay. It follows that the vertex records and the half-edge records of the
doubly-connected edge list for O(8;,S,) can be computed in O(nlogn+klogn)
time, where n denotes the sum of the complexities of §; and 8;, and k is the
complexity of the overlay.

Section 2.3
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Figure 2.5
An edge of one subdivision passing
through a vertex of the other

\
first clockwise half-edge
from ¢’ with v as its origin
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After the fields involving vertex and half-edge records have been set, it remains
to compute the information about the faces of O(81,8;). More precisely, we
have to create a face record for each face f in O(8;,8,), we have to make
OuterComponent(f) point to a half-edge on the outer boundary of f, and we
have to make a list InnerComponents(f) of pointers to half-edges on the bound-
aries of the holes inside f. Furthermore, we must set the IncidentFace() fields
of the half-edges on the boundary of f so that they point to the face record of f.
Finally, each of the new faces must be labeled with the names of the faces in
the old subdivisions that contain it.

How many face records will there be? Well, except for the unbounded face,
every face has a unique outer boundary, so the number of face records we have
to create is equal to the number of outer boundaries plus one. From the part of
the doubly-connected edge list we have constructed so far we can easily extract
all boundary cycles. But how do we know whether a cycle is an outer boundary
or the boundary of a hole in a face? This can be decided by looking at the
leftmost vertex v of the cycle, or, in case of ties, at the lowest of the leftmost
ones. Recall that half-edges are directed in such a way that their incident face
locally lies to the left. Consider the two half-edges of the cycle that are incident
to v. Because we know that the incident face lies to the left, we can compute
the angle these two half-edges make inside the incident face. If this angle is
smaller than 180° then the cycle is an outer boundary, and otherwise it is the
boundary of a hole. This property holds for the leftmost vertex of a cycle, but
not necessarily for other vertices of that cycle.

To decide which boundary cycles bound the same face we construct a
graph G. For every boundary cycle—inner and outer—there is a node in G.
There is also one node for the imaginary outer boundary of the unbounded
face. There is an arc between two cycles if and only if one of the cycles is the
boundary of a hole and the other cycle has a half-edge immediately to the left
of the leftmost vertex of that hole cycle. If there is no half-edge to the left of the
leftmost vertex of a cycle, then the node representing the cycle is linked to the
node of the unbounded face. Figure 2.6 gives an example. The dotted segments
in the figure indicate the linking of the hole cycles to other cycles. The graph
corresponding to the subdivision is also shown in the figure. The hole cycles
are shown as single circles, and the outer boundary cycles are shown as double
circles. Observe that C3 and Cg are in the same connected component as C,.
This indicates that C3 and C¢ are hole cycles in the face whose outer boundary
is C,. If there is only one hole in a face f, then the graph § links the boundary
cycle of the hole to the outer boundary of f. In general this need not be the case:
a hole can also be linked to another hole, as you can see in Figure 2.6. This
hole, which lies in the same face f, may be linked to the outer boundary of f,
or it may be linked to yet another hole. But eventually we must end up linking a
hole to the outer boundary, as the next lemma shows.

Lemma 2.5 Each connected component of the graph G corresponds exactly to
the set of cycles incident to one face.

Proof. Consider a cycle € bounding a hole in a face f. Because f lies locally
to the left of the leftmost vertex of C, C must be linked to another cycle that also
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Figure 2.6
A subdivision and the corresponding
graph §

bounds f. It follows that cycles in the same connected component of G bound
the same face.

To finish the proof, we show that every cycle bounding a hole in f is in
the same connected component as the outer boundary of f. Suppose there is a
cycle for which this is not the case. Let C be the leftmost such cycle, that is, the
one whose the leftmost vertex is leftmost. By definition there is an arc between
the € and another cycle €’ that lies partly to the left of the leftmost vertex of €.
Hence, €’ is in the same connected component as €, which is not the component
of the outer boundary of f. This contradicts the definition of C.

Lemma 2.5 shows that once we have the graph G, we can create a face record
for every component. Then we can set the IncidentFace() pointers of the half-
edges that bound each face f, and we can construct the list InnerComponents(f)
and the set OuterComponent(f). How can we construct §? Recall that in the
plane sweep algorithm for line segment intersection we always looked for the
segments immediately to the left of an event point. (They had to be tested
for intersection against the leftmost edge through the event point.) Hence, the
information we need to construct G is determined during the plane sweep. So,
to construct G, we first make a node for every cycle. To find the arcs of G,
we consider the leftmost vertex v of every cycle bounding a hole. If € is the
half-edge immediately left of v, then we add an arc between the two nodes
in G representing the cycle containing € and the hole cycle of which v is the
leftmost vertex. To find these nodes in G efficiently we need pointers from every
half-edge record to the node in G representing the cycle it is in. So the face
information of the doubly-connected edge list can be set in O(n+ k) additional
time, after the plane sweep. 37
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One thing remains: each face f in the overlay must be labeled with the names of
the faces in the old subdivisions that contained it. To find these faces, consider an
arbitrary vertex v of f. If v is the intersection of an edge ¢; from §; and an edge
e from §; then we can decide which faces of 8 and 8, contain f by looking
at the IncidentFace() pointer of the appropriate half-edges corresponding to e;
and e;. If v is not an intersection but a vertex of, say, 81, then we only know
the face of §; containing f. To find the face of S, containing f, we have to
do some more work: we have to determine the face of S, that contains v. In
other words, if we knew for each vertex of §; in which face of §, it lay, and
vice versa, then we could label the faces of O(81,8,) correctly. How can we
compute this information? The solution is to apply the paradigm that has been
introduced in this chapter, plane sweep, once more. However, we won’t explain
this final step here. It is a good exercise to test your understanding of the plane
sweep approach to design the algorithm yourself. (In fact, it is not necessary to
compute this information in a separate plane sweep. It can also be done in the
sweep that computes the intersections.)

Putting everything together we get the following algorithm.

Algorithm MAPOVERLAY(S,87)

Input. Two planar subdivisions 8 and §; stored in doubly-connected edge lists.

Output. The overlay of 8§ and 8, stored in a doubly-connected edge list D.

1. Copy the doubly-connected edge lists for §; and 8, to a new doubly-
connected edge list D.

2. Compute all intersections between edges from §; and S, with the plane
sweep algorithm of Section 2.1. In addition to the actions on T and Q
required at the event points, do the following:

m  Update D as explained above if the event involves edges of both §;
and 8,. (This was explained for the case where an edge of §; passes
through a vertex of 8;.)

m  Store the half-edge immediately to the left of the event point at the
vertex in D representing it.

3. (* Now D is the doubly-connected edge list for O(8,8,), except that the
information about the faces has not been computed yet. *)

4. Determine the boundary cycles in O(8;,8,) by traversing D.

5. Construct the graph § whose nodes correspond to boundary cycles and
whose arcs connect each hole cycle to the cycle to the left of its leftmost ver-
tex, and compute its connected components. (The information to determine
the arcs of G has been computed in line 2, second item.)

6. for each connected component in §

7. do Let C be the unique outer boundary cycle in the component and let
f denote the face bounded by the cycle. Create a face record for f,
set OuterComponent(f) to some half-edge of €, and construct the
list InnerComponents(f) consisting of pointers to one half-edge in
each hole cycle in the component. Let the IncidentFace() pointers
of all half-edges in the cycles point to the face record of f.



8. Label each face of O(8,8;) with the names of the faces of §; and §;
containing it, as explained above.

Theorem 2.6 Let S| be a planar subdivision of complexity n;, let 8 be a
subdivision of complexity ny, and let n := ny +ny. The overlay of 8 and 8;
can be constructed in O(nlogn + klogn) time, where k is the complexity of the
overlay.

Proof. Copying the doubly-connected edge lists in line 1 takes O(n) time, and
the plane sweep of line 2 takes O(nlogn + klogn) time by Lemma 2.3. Steps 4—
7, where we fill in the face records, takes time linear in the complexity of
0(81,82). (The connected components of a graph can be determined in linear
time by a simple depth first search.) Finally, labeling each face in the resulting
subdivision with the faces of the original subdivisions that contain it can be
done in O(nlogn+ klogn) time.

2.4 Boolean Operations

The map overlay algorithm is a powerful instrument that can be used for various
other applications. One particular useful one is performing the Boolean opera-
tions union, intersection, and difference on two polygons P; and P;. See Figure
2.7 for an example. Note that the output of the operations might no longer be a
polygon. It can consist of a number of polygonal regions, some with holes.

Py

I J

I _ | _ -
[ -7

l - ,.
intersection difference

To perform the Boolean operation we regard the polygons as planar maps
whose bounded faces are labeled P; and P;, respectively. We compute the
overlay of these maps, and we extract the faces in the overlay whose labels
correspond to the particular Boolean operation we want to perform. If we want
to compute the intersection P; N P,, we extract the faces in the overlay that are
labeled with P and P,. If we want to compute the union P UP;, we extract the
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The Boolean operations union,
intersection and difference on two

polygons P and P,

39



Chapter 2
LINE SEGMENT INTERSECTION

40

faces in the overlay that are labeled with P; or P,. And if we want to compute
the difference P \ P,, we extract the faces in the overlay that are labeled with
P, and not with P,.

Because every intersection point of an edge of P and an edge of P, is
a vertex of P; N P,, the running time of the algorithm is O(nlogn + klogn),
where n is the total number of vertices in P} and P, and k is the complexity of
P1NP,. The same holds for the other Boolean operations: every intersection of
two edges is a vertex of the final result, no matter which operation we want to
perform. We immediately get the following result.

Corollary 2.7 Let P be a polygon with n; vertices and P, a polygon with n,
vertices, and let n := ny +ny. Then Py NPy, Py UP,, and Py \ P, can each be
computed in O(nlogn + klogn) time, where k is the complexity of the output.

2.5 Notes and Comments

The line segment intersection problem is one of the most fundamental problems
in computational geometry. The O(nlogn + klogn) solution presented in this
chapter was given by Bentley and Ottmann [47] in 1979. (A few years earlier,
Shamos and Hoey [351] had solved the detection problem, where one is only
interested in deciding whether there is at least one intersection, in O(nlogn)
time.) The method for reducing the working storage from O(n + k) to O(n)
described in this chapter is taken from Pach and Sharir [312], who also show
that the event list can have size Q(nlogn) before this improvement. Brown [77]
describes an alternative method to achieve the reduction.

The lower bound for the problem of reporting all line segment intersections
is Q(nlogn + k), so the plane sweep algorithm described in this chapter is
not optimal when £ is large. A first step towards an optimal algorithm was
taken by Chazelle [88], who gave an algorithm with O(nlog®n/loglogn + k)
running time. In 1988 Chazelle and Edelsbrunner [99, 100] presented the first
O(nlogn+ k) time algorithm. Unfortunately, it requires O(n+ k) storage. Later
Clarkson and Shor [133] and Mulmuley [288] gave randomized incremental
algorithms whose expected running time is also O(nlogn + k). (See Chapter 4
for an explanation of randomized algorithms.) The working storage of these
algorithms is O(n) and O(n+ k), respectively. Unlike the algorithm of Chazelle
and Edelsbrunner, these randomized algorithms also work for computing inter-
sections in a set of curves. Balaban [35] gave the first deterministic algorithm
for the segment intersection problem that works in O(nlogn + k) time and O(n)
space. It also works for curves.

There are cases of the line segment intersection problem that are easier than
the general case. One such case is where we have two sets of segments, say
red segments and blue segments, such that no two segments from the same
set intersect each other. (This is, in fact, exactly the network overlay problem.
In the solution described in this chapter, however, the fact that the segments
came from two sets of non-intersecting segments was not used.) This so-called
red-blue line segment intersection problem was solved in O(rnlogn + k) time



and O(n) storage by Mairson and Stolfi [262] before the general problem was
solved optimally. Other optimal red-blue intersection algorithms were given
by Chazelle et al. [101] and by Palazzi and Snoeyink [315]. If the two sets of
segments form connected subdivisions then the situation is even better: in this
case the overlay can be computed in O(n + k) time, as has been shown by Finke
and Hinrichs [176]. Their result generalizes and improves previous results on
map overlay by Nievergelt and Preparata [293], Guibas and Seidel [200], and
Mairson and Stolfi [262].

The line segment intersection counting problem is to determine the number
of intersection points in a set of n line segments. Since the output is a single
integer, a term with & in the time bound no longer refers to the output size
(which is constant), but only to the number of intersections. Algorithms that do
not depend on the number of intersections take O(n*/?log¢ n) time, for some
small constant ¢ [4, 95]; a running time close to O(nlogn) is not known to exist.

Plane sweep is one of the most important paradigms for designing geometric
algorithms. The first algorithms in computational geometry based on this
paradigm are by Shamos and Hoey [351], Lee and Preparata [250], and Bentley
and Ottmann [47]. Plane sweep algorithms are especially suited for finding
intersections in sets of objects, but they can also be used for solving many other
problems. In Chapter 3 plane sweep solves part of the polygon triangulation
problem, and in Chapter 7 we will see a plane sweep algorithm to compute the
so-called Voronoi diagram of a set of points. The algorithm presented in the
current chapter sweeps a horizontal line downwards over the plane. For some
problems it is more convenient to sweep the plane in another way. For instance,
we can sweep the plane with a rotating line—see Chapter 15 for an example—or
with a pseudo-line (a line that need not be straight, but otherwise behaves more
or less as a line) [159]. The plane sweep technique can also be used in higher
dimensions: here we sweep the space with a hyperplane [213, 311, 324]. Such
algorithms are called space sweep algorithms.

In this chapter we described a data structure for storing subdivisions: the doubly-
connected edge list. This structure, or in fact a variant of it, was described by
Muller and Preparata [286]. There are also other data structures for storing
subdivisions, such as the winged edge structure by Baumgart [40] and the quad
edge structure by Guibas and Stolfi [202]. The difference between all these
structures is small. They all have more or less the same functionality, but some
save a few bytes of storage per edge.

2.6 Exercises

2.1 Let S be a set of n disjoint line segments whose upper endpoints lie on the
line y = 1 and whose lower endpoints lie on the line y = 0. These segments
partition the horizontal strip [—oo : o] x [0 : 1] into n+ 1 regions. Give an
O(nlogn) time algorithm to build a binary search tree on the segments
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in S such that the region containing a query point can be determined in
O(logn) time. Also describe the query algorithm in detail.

The intersection detection problem for a set S of n line segments is to
determine whether there exists a pair of segments in S that intersect. Give
a plane sweep algorithm that solves the intersection detection problem in
O(nlogn) time.

Change the code of Algorithm FINDINTERSECTIONS (and of the pro-
cedures that it calls) such that the working storage is O(n) instead of
O(n+k).

Let S be a set of n line segments in the plane that may (partly) overlap
each other. For example, S could contain the segments (0,0)(1,0) and
(—1,0)(2,0). We want to compute all intersections in S. More precisely,
we want to compute each proper intersection of two segments in S (that
is, each intersection of two non-parallel segments) and for each end-
point of a segment all segments containing the point. Adapt algorithm
FINDINTERSECTIONS to this end.

Which of the following equalities are always true?

Twin(Twin(é)) = @
Next(Prev(é)) = ¢
Twin(Prev(Twin(€))) = Next(€)
IncidentFace(é) = IncidentFace(Next(€))

Give an example of a doubly-connected edge list where for an edge e the
faces IncidentFace(€) and IncidentFace(Twin(€)) are the same.

Given a doubly-connected edge list representation of a subdivision where
Twin(€) = Next(€) holds for every half-edge ¢, how many faces can the
subdivision have at most?

Give pseudocode for an algorithm that lists all vertices adjacent to a
given vertex v in a doubly-connected edge list. Also, give pseudocode
for an algorithm that lists all edges that bound a face in a not necessarily
connected subdivision.

Suppose that a doubly-connected edge list of a connected subdivision is
given. Give pseudocode for an algorithm that lists all faces with vertices
that appear on the outer boundary.

Let S be a subdivision of complexity n, and let P be a set of m points. Give
a plane sweep algorithm that computes for every point in P in which face
of § it is contained. Show that your algorithm runs in O((n+ m)log(n+
m)) time.

Let S be a set of n circles in the plane. Describe a plane sweep algorithm
to compute all intersection points between the circles. (Because we deal



with circles, not discs, two circles do not intersect if one lies entirely
inside the other.) Your algorithm should run in O((n + k)logn) time,
where k is the number of intersection points.

2.12 Let S be a set of n triangles in the plane. The boundaries of the triangles
are disjoint, but it is possible that a triangle lies completely inside another
triangle. Let P be a set of n points in the plane. Give an O(nlogn)
algorithm that reports each point in P lying outside all triangles.

2.13* Let S be a set of n disjoint triangles in the plane. We want to find a set of
n— 1 segments with the following properties:

m Each segment connects a point on the boundary of one triangle to a
point on the boundary of another triangle.

m  The interiors of the segments are pairwise disjoint and they are disjoint
from the triangles.

m  Together they connect all triangles to each other, that is, by walking
along the segments and the triangle boundaries it must be possible to
walk from a triangle to any other triangle.

Develop a plane sweep algorithm for this problem that runs in O(nlogn)
time. State the events and the data structures that you use explicitly, and

describe the cases that arise and the actions required for each of them.

Also state the sweep invariant.

2.14 Let S be a set of n disjoint line segments in the plane, and let p be a
point not on any of the line segments of S. We wish to determine all
line segments of S that p can see, that is, all line segments of S that
contain some point g so that the open segment pg doesn’t intersect any
line segment of S. Give an O(nlogn) time algorithm for this problem that
uses a rotating half-line with its endpoint at p.

Section 2.6
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3 Polygon Triangulation
Guarding an Art Gallery

Works of famous painters are not only popular among art lovers, but also among
criminals. They are very valuable, easy to transport, and apparently not so
difficult to sell. Art galleries therefore have to guard their collections carefully.

Figure 3.1
An art gallery

During the day the attendants can keep a look-out, but at night this has to be

done by video cameras. These cameras are usually hung from the ceiling and

they rotate about a vertical axis. The images from the cameras are sent to TV Q o ’_’J
&,

screens in the office of the night watch. Because it is easier to keep an eye on
few TV screens rather than on many, the number of cameras should be as small
as possible. An additional advantage of a small number of cameras is that the
cost of the security system will be lower. On the other hand we cannot have
too few cameras, because every part of the gallery must be visible to at least

one of them. So we should place the cameras at strategic positions, such that ¢ Tv@
each of them guards a large part of the gallery. This gives rise to what is usually

referred to as the Art Gallery Problem: how many cameras do we need to guard

a given gallery and how do we decide where to place them? 45
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Figure 3.2

A simple polygon and a possible

46

triangulation of it

3.1 Guarding and Triangulations

If we want to define the art gallery problem more precisely, we should first
formalize the notion of gallery. A gallery is, of course, a 3-dimensional space,
but a floor plan gives us enough information to place the cameras. Therefore we
model a gallery as a polygonal region in the plane. We further restrict ourselves
to regions that are simple polygons, that is, regions enclosed by a single closed
polygonal chain that does not intersect itself. Thus we do not allow regions with
holes. A camera position in the gallery corresponds to a point in the polygon. A
camera sees those points in the polygon to which it can be connected with an
open segment that lies in the interior of the polygon.

How many cameras do we need to guard a simple polygon? This clearly
depends on the polygon at hand: the more complex the polygon, the more
cameras are required. We shall therefore express the bound on the number of
cameras needed in terms of n, the number of vertices of the polygon. But even
when two polygons have the same number of vertices, one can be easier to guard
than the other. A convex polygon, for example, can always be guarded with one
camera. To be on the safe side we shall look at the worst-case scenario, that is,
we shall give a bound that is good for any simple polygon with n vertices. (It
would be nice if we could find the minimum number of cameras for the specific
polygon we are given, not just a worst-case bound. Unfortunately, the problem
of finding the minimum number of cameras for a given polygon is NP-hard.)

Let P be a simple polygon with n vertices. Because P may be a complicated
shape, it seems difficult to say anything about the number of cameras we need
to guard P. Hence, we first decompose P into pieces that are easy to guard,
namely triangles. We do this by drawing diagonals between pairs of vertices.

AN

d

A diagonal is an open line segment that connects two vertices of P and lies in
the interior of P. A decomposition of a polygon into triangles by a maximal
set of non-intersecting diagonals is called a triangulation of the polygon—see
Figure 3.2. (We require that the set of non-intersecting diagonals be maximal to
ensure that no triangle has a polygon vertex in the interior of one of its edges.
This could happen if the polygon has three consecutive collinear vertices.)
Triangulations are usually not unique; the polygon in Figure 3.2, for example,
can be triangulated in many different ways. We can guard P by placing a camera
in every triangle of a triangulation T9 of P. But does a triangulation always
exist? And how many triangles can there be in a triangulation? The following
theorem answers these questions.




Theorem 3.1 Every simple polygon admits a triangulation, and any triangula-
tion of a simple polygon with n vertices consists of exactly n — 2 triangles.

Proof. We prove this theorem by induction on n. When n = 3 the polygon itself
is a triangle and the theorem is trivially true. Let n > 3, and assume that the
theorem is true for all m < n. Let P be a polygon with n vertices. We first prove
the existence of a diagonal in P. Let v be the leftmost vertex of P. (In case of
ties, we take the lowest leftmost vertex.) Let u and w be the two neighboring
vertices of v on the boundary of . If the open segment uw lies in the interior of
P, we have found a diagonal. Otherwise, there are one or more vertices inside
the triangle defined by u, v, and w, or on the diagonal uw. Of those vertices, let
V' be the one farthest from the line through « and w. The segment connecting v/
to v cannot intersect an edge of P, because such an edge would have an endpoint
inside the triangle that is farther from the line through u and w, contradicting
the definition of v'. Hence, v/ is a diagonal.

So a diagonal exists. Any diagonal cuts P into two simple subpolygons P;
and P,. Let m; be the number of vertices of Py and m; the number of vertices
of P,. Both m; and m; must be smaller than n, so by induction P; and P; can
be triangulated. Hence, P can be triangulated as well.

It remains to prove that any triangulation of P consists of n — 2 triangles. To
this end, consider an arbitrary diagonal in some triangulation J+. This diagonal
cuts P into two subpolygons with m; and m; vertices, respectively. Every
vertex of P occurs in exactly one of the two subpolygons, except for the vertices
defining the diagonal, which occur in both subpolygons. Hence, m| +my = n+2.
By induction, any triangulation of P; consists of m; — 2 triangles, which implies
that T consists of (m; —2) + (my —2) = n— 2 triangles. Hl

Theorem 3.1 implies that any simple polygon with n vertices can be guarded
with n — 2 cameras. But placing a camera inside every triangle seems overkill.
A camera placed on a diagonal, for example, will guard two triangles, so by
placing the cameras on well-chosen diagonals we might be able to reduce the
number of cameras to roughly n/2. Placing cameras at vertices seems even
better, because a vertex can be incident to many triangles, and a camera at that
vertex guards all of them. This suggests the following approach.

Let T be a triangulation of P. Select a subset of the vertices of P, such
that any triangle in T has at least one selected vertex, and place the cameras at
the selected vertices. To find such a subset we assign each vertex of P a color:
white, gray, or black. The coloring will be such that any two vertices connected
by an edge or a diagonal have different colors. This is called a 3-coloring of a
triangulated polygon. In a 3-coloring of a triangulated polygon, every triangle
has a white, a gray, and a black vertex. Hence, if we place cameras at all gray
vertices, say, we have guarded the whole polygon. By choosing the smallest
color class to place the cameras, we can guard P using at most |n/3] cameras.

But does a 3-coloring always exist? The answer is yes. To see this, we look
at what is called the dual graph of T. This graph §(T») has a node for every
triangle in 5. We denote the triangle corresponding to a node v by ¢(Vv). There
is an arc between two nodes v and p if #(v) and 7(u) share a diagonal. The arcs

Section 3.1
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in §(Top) correspond to diagonals in Tp. Because any diagonal cuts P into two,
the removal of an edge from §(T+) splits the graph into two. Hence, G(T+)
is a tree. (Notice that this is not true for a polygon with holes.) This means
that we can find a 3-coloring using a simple graph traversal, such as depth first
search. Next we describe how to do this. While we do the depth first search,
we maintain the following invariant: all vertices of the already encountered
triangles have been colored white, gray, or black, and no two connected vertices
have received the same color. The invariant implies that we have computed a
valid 3-coloring when all triangles have been encountered. The depth first search
can be started from any node of §(Tp); the three vertices of the corresponding
triangle are colored white, gray, and black. Now suppose that we reach a node
v in G, coming from node y. Hence, 7(v) and #(1t) share a diagonal. Since the
vertices of #(t) have already been colored, only one vertex of (V) remains to
be colored. There is one color left for this vertex, namely the color that is not
used for the vertices of the diagonal between #(v) and (). Because G(T) is
a tree, the other nodes adjacent to v have not been visited yet, and we still have
the freedom to give the vertex the remaining color.

We conclude that a triangulated simple polygon can always be 3-colored. As a
result, any simple polygon can be guarded with |n/3] cameras. But perhaps we
can do even better. After all, a camera placed at a vertex may guard more than
just the incident triangles. Unfortunately, for any n there are simple polygons
that require |n/3| cameras. An example is a comb-shaped polygon with a long
horizontal base edge and |n/3 | prongs made of two edges each. The prongs are
connected by horizontal edges. The construction can be made such that there is
no position in the polygon from which a camera can look into two prongs of the
comb simultaneously. So we cannot hope for a strategy that always produces
less than |n/3] cameras. In other words, the 3-coloring approach is optimal in
the worst case.

We just proved the Art Gallery Theorem, a classical result from combinato-
rial geometry.

Theorem 3.2 (Art Gallery Theorem) For a simple polygon with n vertices,
|n/3] cameras are occasionally necessary and always sufficient to have every
point in the polygon visible from at least one of the cameras.

Now we know that |n/3] cameras are always sufficient. But we don’t have
an efficient algorithm to compute the camera positions yet. What we need is a
fast algorithm for triangulating a simple polygon. The algorithm should deliver
a suitable representation of the triangulation—a doubly-connected edge list, for
instance—so that we can step in constant time from a triangle to its neighbors.
Given such a representation, we can compute a set of at most |n/3| camera
positions in linear time with the method described above: use depth first search
on the dual graph to compute a 3-coloring and take the smallest color class
to place the cameras. In the coming sections we describe how to compute a
triangulation in O(nlogn) time. Anticipating this, we already state the final
result about guarding a polygon.



Theorem 3.3 Let P be a simple polygon with n vertices. A set of |n/3| camera  Section 3.2
positions in P such that any point inside P is visible from at least one of the =~ PARTITIONING A POLYGON INTO
cameras can be computed in O(nlogn) time. MONOTONE PIECES

3.2 Partitioning a Polygon into Monotone Pieces

Let P be a simple polygon with n vertices. We saw in Theorem 3.1 that a
triangulation of P always exists. The proof of that theorem is constructive and
leads to a recursive triangulation algorithm: find a diagonal and triangulate
the two resulting subpolygons recursively. To find the diagonal we take the
leftmost vertex of P and try to connect its two neighbors u and w; if this fails
we connect v to the vertex farthest from uw inside the triangle defined by u,
v, and w. This way it takes linear time to find a diagonal. This diagonal
may split P into a triangle and a polygon with n — 1 vertices. Indeed, if we
succeed to connect u and w this will always be the case. As a consequence,
the triangulation algorithm will take quadratic time in the worst case. Can we
do better? For some classes of polygons we surely can. Convex polygons, for
instance, are easy: Pick one vertex of the polygon and draw diagonals from
this vertex to all other vertices except its neighbors. This takes only linear time.
So a possible approach to triangulate a non-convex polygon would be to first
decompose P into convex pieces, and then triangulate the pieces. Unfortunately,
it is as difficult to partition a polygon into convex pieces as it is to triangulate it.
Therefore we shall decompose P into so-called monotone pieces, which turns
out to be a lot easier.

&

A simple polygon is called monotone with respect to a line ¢ if for any line s

¢ perpendicular to £ the intersection of the polygon with ¢’ is connected. In
other words, the intersection should be a line segment, a point, or empty. A
polygon that is monotone with respect to the y-axis is called y-monotone. The
following property is characteristic for y-monotone polygons: if we walk from
a topmost to a bottommost vertex along the left (or the right) boundary chain,
then we always move downwards or horizontally, never upwards.

Our strategy to triangulate the polygon P is to first partition P into y-monotone
pieces, and then triangulate the pieces. We can partition a polygon into mono-
tone pieces as follows. Imagine walking from the topmost vertex of P to the
bottommost vertex on the left or right boundary chain. A vertex where the
direction in which we walk switches from downward to upward or from upward
to downward is called a furn vertex. To partition P into y-monotone pieces we
should get rid of these turn vertices. This can be done by adding diagonals. If
at a turn vertex v both incident edges go down and the interior of the polygon
locally lies above v, then we must choose a diagonal that goes up from v. The
diagonal splits the polygon into two. The vertex v will appear in both pieces.
Moreover, in both pieces v has an edge going down (namely on original edge
of P) and an edge going up (the diagonal). Hence, v cannot be a turn vertex
anymore in either of them. If both incident edges of a turn vertex go up and

RORLL
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Figure 3.3
Five types of vertices

the interior locally lies below it, we have to choose a diagonal that goes down.
Apparently there are different types of turn vertices. Let’s make this more
precise.

If we want to define the different types of turn vertices carefully, we should
pay special attention to vertices with equal y-coordinate. We do this by defining
the notions of “below” and “above” as follows: a point p is below another
point ¢ if p, < g, or p, = g, and p, > ¢q,, and p is above g if py, > ¢, or
Py = gy and p, < g. (You can imagine rotating the plane slightly in clockwise
direction with respect to the coordinate system, such that no two points have
the same y-coordinate; the above/below relation we just defined is the same as
the above/below relation in this slightly rotated plane.)

O = start vertex

m = end vertex

e =regular vertex
A = split vertex
w = merge vertex

V10

We distinguish five types of vertices in P—see Figure 3.3. Four of these
types are turn vertices: start vertices, split vertices, end vertices, and merge
vertices. They are defined as follows. A vertex v is a start vertex if its two
neighbors lie below it and the interior angle at v is less than 7; if the interior
angle is greater than 7 then v is a split vertex. (If both neighbors lie below
v, then the interior angle cannot be exactly 7.) A vertex is an end vertex if
its two neighbors lie above it and the interior angle at v is less than x; if the
interior angle is greater than & then v is a merge vertex. The vertices that
are not turn vertices are regular vertices. Thus a regular vertex has one of its
neighbors above it, and the other neighbor below it. These names have been
chosen because the algorithm will use a downward plane sweep, maintaining the
intersection of the sweep line with the polygon. When the sweep line reaches
a split vertex, a component of the intersection splits, when it reaches a merge
vertex, two components merge, and so on.

The split and merge vertices are sources of local non-monotonicity. The
following, stronger statement is even true.

Lemma 3.4 A polygon is y-monotone if it has no split vertices or merge vertices.

Proof. Suppose P is not y-monotone. We have to prove that P contains a split
or a merge vertex.



Since P is not monotone, there is a horizontal line ¢ that intersects P in
more than one connected component. We can choose ¢ such that the leftmost
component is a segment, not a single point. Let p be the left endpoint of this
segment, and let g be the right endpoint. Starting at g, we follow the boundary
of P such that P lies to the left of the boundary. (This means that we go up from
q.) At some point, let’s call it r, the boundary will intersect ¢ again. If r # p, as
in Figure 3.4(a), then the highest vertex we encountered while going from ¢ to r
must be a split vertex, and we are done.

() _ & split vertex

\
merge vertex \; PY Z

If r = p, as in Figure 3.4(b), we again follow the boundary of P starting

at g, but this time in the other direction. As before, the boundary will intersect /.

Let 7 be the point where this happens. We cannot have 7' = p, because that
would mean that the boundary of P intersects £ only twice, contradicting that £
intersects P in more than one component. So we have r’ # p, implying that the
lowest vertex we have encountered while going from ¢ to ¥ must be a merge
vertex. Hl

Lemma 3.4 implies that P has been partitioned into y-monotone pieces once
we get rid of its split and merge vertices. We do this by adding a diagonal going
upward from each split vertex and a diagonal going downward from each merge
vertex. These diagonals should not intersect each other, of course. Once we
have done this, P has been partitioned into y-monotone pieces.

Let’s first see how we can add the diagonals for the split vertices. We use a plane
sweep method for this. Let vi,vs,...,v, be a counterclockwise enumeration
of the vertices of P. Let ey, ..., e, be the set of edges of P, where ¢; = v;v;1|
for 1 <i < nand e, =V,v7. The plane sweep algorithm moves an imaginary
sweep line ¢ downward over the plane. The sweep line halts at certain event
points. In our case these will be the vertices of P; no new event points will be
created during the sweep. The event points are stored in a event queue Q. The

event queue is a priority queue, where the priority of a vertex is its y-coordinate.

If two vertices have the same y-coordinate then the leftmost one has higher

priority. This way the next event to be handled can be found in O(logn) time.

(Because no new events are generated during the sweep, we could also sort the
vertices on y-coordinate before the sweep, and then use the sorted list to find
the next event in O(1) time.)

Section 3.2
PARTITIONING A POLYGON INTO
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Figure 3.4
Two cases in the proof of Lemma 3.4
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diagonal will be added

when the sweep line
reaches vy,
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The goal of the sweep is to add diagonals from each split vertex to a vertex
lying above it. Suppose that the sweep line reaches a split vertex v;. To which
vertex should we connect v;? A good candidate is a vertex close to v;, because
we can probably connect v; to this vertex without intersecting any edge of P.
Let’s make this more precise. Let e; be the edge immediately to the left of v;
on the sweep line, and let ¢; be the edge immediately to the right of v; on the
sweep line. Then we can always connect v; to the lowest vertex in between
ej and eg, and above v;. If there is no such vertex then we can connect v; to
the upper endpoint of ¢; or to the upper endpoint of e;. We call this vertex the
helper of e; and denote it by helper(e;). Formally, helper(e;) is defined as the
lowest vertex above the sweep line such that the horizontal segment connecting
the vertex to e; lies inside P. Note that helper(e;) can be the upper endpoint of
ej itself.

Now we know how to get rid of split vertices: connect them to the helper of the
edge to their left. What about merge vertices? They seem more difficult to get
rid of, because they need a diagonal to a vertex that is lower than they are. Since
the part of P below the sweep line has not been explored yet, we cannot add
such a diagonal when we encounter a merge vertex. Fortunately, this problem
is easier than it seems at first sight. Suppose the sweep line reaches a merge
vertex v;. Let e; and ey be the edges immediately to the right and to the left of
v; on the sweep line, respectively. Observe that v; becomes the new helper of ¢;
when we reach it. We would like to connect v; to the highest vertex below the
sweep line in between e; and e;. This is exactly the opposite of what we did
for split vertices, which we connected to the lowest vertex above the sweep line
in between e; and e;. This is not surprising: merge vertices are split vertices
upside down. Of course we don’t know the highest vertex below the sweep line
when we reach v;. But it is easy to find later on: when we reach a vertex v,
that replaces v; as the helper of ¢}, then this is the vertex we are looking for.
So whenever we replace the helper of some edge, we check whether the old
helper is a merge vertex and, if so, we add the diagonal between the old helper
and the new one. This diagonal is always added when the new helper is a split
vertex, to get rid of the split vertex. If the old helper was a merge vertex, we
thus get rid of a split vertex and a merge vertex with the same diagonal. It can
also happen that the helper of ¢; is not replaced anymore below v;. In this case
we can connect v; to the lower endpoint of e;.

In the approach above, we need to find the edge to the left of each vertex.
Therefore we store the edges of P intersecting the sweep line in the leaves
of a dynamic binary search tree J. The left-to-right order of the leaves of
T corresponds to the left-to-right order of the edges. Because we are only
interested in edges to the left of split and merge vertices we only need to store
edges in T that have the interior of P to their right. With each edge in T we store
its helper. The tree T and the helpers stored with the edges form the status of the
sweep line algorithm. The status changes as the sweep line moves: edges start
or stop intersecting the sweep line, and the helper of an edge may be replaced.

The algorithm partitions P into subpolygons that have to be processed



further in a later stage. To have easy access to these subpolygons we shall store  Section 3.2

the subdivision induced by P and the added diagonals in a doubly-connected  PARTITIONING A POLYGON INTO
edge list D. We assume that P is initially specified as a doubly-connected edge =~ MONOTONE PIECES
list; if P is given in another form—Dby a counterclockwise list of its vertices, for

example—we first construct a doubly-connected edge list for P. The diagonals

computed for the split and merge vertices are added to the doubly-connected

edge list. To access the doubly-connected edge list we use cross-pointers

between the edges in the status structure and the corresponding edges in the

doubly-connected edge list. Adding a diagonal can then be done in constant

time with some simple pointer manipulations. The global algorithm is now as

follows.

Algorithm MAKEMONOTONE(P)

Input. A simple polygon P stored in a doubly-connected edge list D.

Output. A partitioning of P into monotone subpolygons, stored in D.

1. Construct a priority queue Q on the vertices of P, using their y-coordinates

as priority. If two points have the same y-coordinate, the one with smaller

x-coordinate has higher priority.

Initialize an empty binary search tree 7.

while Q is not empty

do Remove the vertex v; with the highest priority from Q.

Call the appropriate procedure to handle the vertex, depending on
its type.

DA

We next describe more precisely how to handle the event points. You should first
read these algorithms without thinking about degenerate cases, and check only
later that they are also correct in degenerate cases. (To this end you should give
an appropriate meaning to “directly left of” in line 1 of HANDLESPLITVERTEX
and line 2 of HANDLEMERGEVERTEX.) There are always two things we must
do when we handle a vertex. First, we must check whether we have to add a
diagonal. This is always the case for a split vertex, and also when we replace
the helper of an edge and the previous helper was a merge vertex. Second, we
must update the information in the status structure 7. The precise algorithms
for each type of event are given below. You can use the example figure on the
next page to see what happens in each of the different cases.

HANDLESTARTVERTEX(Vv;)
1. Inserte; in T and set helper(e;) to v;.

At the start vertex vs in the example figure, for instance, we insert es into the
tree J.

HANDLEENDVERTEX(v;)

1. if helper(e;—1) is a merge vertex

2. then Insert the diagonal connecting v; to helper(e;—1) in D.
3. Delete ¢;_1 from 7.

In the running example, when we reach end vertex vys, the helper of the edge

€14 1S v14. v14 1S not a merge vertex, so we don’t need to insert a diagonal. 53
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HANDLESPLITVERTEX(v;)

1. Searchin 7 to find the edge e; directly left of v;.

2. Insert the diagonal connecting v; to helper(e;) in D.
3. helper(ej) < v;

4. Inserte; in T and set helper(e;) to v;.

For split vertex vi4 in our example, eg is the edge to the left. Its helper is vg, so
we add a diagonal from v4 to vs.

HANDLEMERGEVERTEX(V;)

1. if helper(e;_1) is a merge vertex

2 then Insert the diagonal connecting v; to helper(e;_1) in D.
3. Delete ¢;_; from 7.

4. Searchin 7 to find the edge e; directly left of v;.

5. if helper(e;) is a merge vertex

6 then Insert the diagonal connecting v; to helper(e;) in D.

7. helper(ej) < v

For the merge vertex vg in our example, the helper v, of edge e7 is a merge
vertex, so we add a diagonal from vg to v,.

The only routine that remains to be described is the one to handle a regular
vertex. The actions we must take at a regular vertex depend on whether P lies
locally to its left or to its right.

HANDLEREGULARVERTEX(V;)

1. if the interior of P lies to the right of v;

2 then if helper(e;—1) is a merge vertex

3 then Insert the diagonal connecting v; to helper(e;—1) in D.
4. Delete e;_; from 7.

5. Insert e; in T and set helper(e;) to v;.

6 else Search in 7 to find the edge e; directly left of v;.

7 if helper(e;) is a merge vertex

8 then Insert the diagonal connecting v; to helper(e;) in D.

9 helper(e;) < v

For instance, at the regular vertex vg in our example, we add a diagonal from vg
to vy.

It remains to prove that MAKEMONOTONE correctly partitions P into monotone
pieces.

Lemma 3.5 Algorithm MAKEMONOTONE adds a set of non-intersecting diag-
onals that partitions P into monotone subpolygons.

Proof. Tt is easy to see that the pieces into which P is partitioned contain no
split or merge vertices. Hence, they are monotone by Lemma 3.4. It remains
to prove that the added segments are valid diagonals (that is, that they don’t
intersect the edges of P) and that they don’t intersect each other. To this
end we will show that when a segment is added, it intersects neither an edge



of P nor any of the previously added segments. We shall prove this for the
segment added in HANDLESPLITVERTEX; the proof for the segments added
inHANDLEENDVERTEX, HANDLEREGULARVERTEX, and HANDLEMERGE-
VERTEX is similar. We assume that no two vertices have the same y-coordinate;
the extension to the general case is fairly straightforward.

Consider a segment V,,v; that is added by HANDLESPLITVERTEX when v;
is reached. Let e; be the edge to the left of v;, and let ¢, be the edge to the right
of v;. Thus helper(e;) = v,, when we reach v;.

We first argue that v,,v; does not intersect an edge of P. To see this, consider
the quadrilateral Q bounded by the horizontal lines through v,, and v;, and by
e; and ¢;. There are no vertices of P inside Q, otherwise v,, would not be the
helper of e;. Now suppose there would be an edge of P intersecting v,,v;. Since
the edge cannot have an endpoint inside Q and polygon edges do not intersect
each other, it would have to intersect the horizontal segment connecting v,, to
e; or the horizontal segment connecting v; to e;. Both are impossible, since for
both v,, and v;, the edge e; lies immediately to the left. Hence, no edge of P can
intersect v,,,v;.

Now consider a previously added diagonal. Since there are no vertices of P
inside Q, and any previously added diagonal must have both of its endpoints
above v;, it cannot intersect v,,v;.

We now analyze the running time of the algorithm. Constructing the priority
queue Q takes linear time and initializing 7T takes constant time. To handle an
event during the sweep, we perform one operation on Q, at most one query,
one insertion, and one deletion on T, and we insert at most two diagonals into
D. Priority queues and balanced search trees allow for queries and updates in
O(logn) time, and the insertion of a diagonal into D takes O(1) time. Hence,
handling an event takes O(logn) time, and the total algorithm runs in O(nlogn)
time. The amount of storage used by the algorithm is clearly linear: every vertex
is stored at most once in Q, and every edge is stored at most once in J. Together
with Lemma 3.5 this implies the following theorem.

Theorem 3.6 A simple polygon with n vertices can be partitioned into y-
monotone polygons in O(nlogn) time with an algorithm that uses O(n) storage.

3.3 Triangulating a Monotone Polygon

We have just seen how to partition a simple polygon into y-monotone pieces
in O(nlogn) time. In itself this is not very interesting. But in this section we
show that monotone polygons can be triangulated in linear time. Together these
results imply that any simple polygon can be triangulated in O(rlogn) time,
a nice improvement over the quadratic time algorithm that we sketched at the
beginning of the previous section.

Let P be a y-monotone polygon with n vertices. For the moment we assume
that P is strictly y-monotone, that is, we assume that P is y-monotone and does
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not contain horizontal edges. Thus we always go down when we walk on the
left or right boundary chain of P from the highest vertex of P to the lowest
one. This is the property that makes triangulating a monotone polygon easy:
we can work our way through P from top to bottom on both chains, adding
diagonals whenever this is possible. Next we describe the details of this greedy
triangulation algorithm.

The algorithm handles the vertices in order of decreasing y-coordinate. If two
vertices have the same y-coordinate, then the leftmost one is handled first. The
algorithm requires a stack 8 as auxiliary data structure. Initially the stack is
empty; later it contains the vertices of P that have been encountered but may
still need more diagonals. When we handle a vertex we add as many diagonals
from this vertex to vertices on the stack as possible. These diagonals split off
triangles from P. The vertices that have been handled but not split off—the
vertices on the stack—are on the boundary of the part of P that still needs to be
triangulated. The lowest of these vertices, which is the one encountered last, is
on top of the stack, the second lowest is second on the stack, and so on. The
part of P that still needs to be triangulated, and lies above the last vertex that
has been encountered so far, has a particular shape: it looks like a funnel turned
upside down. One boundary of the funnel consists of a part of a single edge of
P, and the other boundary is a chain consisting of reflex vertices, that is, the
interior angle at these vertices is at least 180°. Only the highest vertex, which is
at the bottom of the stack, is convex. This property remains true after we have
handled the next vertex. Hence, it is an invariant of the algorithm.

Now, let’s see which diagonals we can add when we handle the next vertex.
We distinguish two cases: v, the next vertex to be handled, lies on the same
chain as the reflex vertices on the stack, or it lies on the opposite chain. If v;
lies on the opposite chain, it must be the lower endpoint of the single edge e
bounding the funnel. Due to the shape of the funnel, we can add diagonals from
v; to all vertices currently on the stack, except for the last one (that is, the one
at the bottom of the stack); the last vertex on the stack is the upper vertex of e,
so it is already connected to v;. All these vertices are popped from the stack.
The untriangulated part of the polygon above v; is bounded by the diagonal
that connects v; to the vertex previously on top of the stack and the edge of P
extending downward from this vertex, so it looks like a funnel and the invariant
is preserved. This vertex and v; remain part of the not yet triangulated polygon,
so they are pushed onto the stack.

The other case is when v; is on the same chain as the reflex vertices on the
stack. This time we may not be able to draw diagonals from v; to all vertices on
the stack. Nevertheless, the ones to which we can connect v; are all consecutive
and they are on top of the stack, so we can proceed as follows. First, pop one
vertex from the stack; this vertex is already connected to v; by an edge of P.
Next, pop vertices from the stack and connect them to v; until we encounter
one where this is not possible. Checking whether a diagonal can be drawn from
v; to a vertex v on the stack can be done by looking at v, vk, and the previous
vertex that was popped. When we find a vertex to which we cannot connect v},
we push the last vertex that has been popped back onto the stack. This is either



the last vertex to which a diagonal was added or, if no diagonals have been
added, it is the neighbor of v; on the boundary of P—see Figure 3.5. After this
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has been done we push v; onto the stack. In both cases the invariant is restored:
one side of the funnel is bounded by a part of a single edge, and the other side
is bounded by a chain of reflex vertices. We get the following algorithm. (The
algorithm is actually similar to the convex hull algorithm of Chapter 1.)

Algorithm TRIANGULATEMONOTONEPOLYGON(P)
Input. A strictly y-monotone polygon P stored in a doubly-connected edge
list D.

Output. A triangulation of P stored in the doubly-connected edge list D.

1. Merge the vertices on the left chain and the vertices on the right chain of P
into one sequence, sorted on decreasing y-coordinate. If two vertices have
the same y-coordinate, then the leftmost one comes first. Let uy,...,u,
denote the sorted sequence.

2. Initialize an empty stack S, and push u; and u; onto it.

3. forj<—3ton—1

4. do if u; and the vertex on top of 8 are on different chains

5. then Pop all vertices from S.

6. Insert into D a diagonal from u; to each popped vertex,
except the last one.

7. Push u; 1 and u; onto 8.

8. else Pop one vertex from 8.

9. Pop the other vertices from § as long as the diagonals from
u; to them are inside P. Insert these diagonals into D. Push
the last vertex that has been popped back onto 8.

10. Push u; onto 8.

11. Add diagonals from u, to all stack vertices except the first and the last one.

How much time does the algorithm take? Step 1 takes linear time and Step 2
takes constant time. The for-loop is executed n — 3 times, and one execution
may take linear time. But at every execution of the for-loop at most two vertices
are pushed. Hence, the total number of pushes, including the two in Step 2, is
bounded by 2n — 4. Because the number of pops cannot exceed the number of
pushes, the total time for all executions of the for-loop is O(n). The last step of
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the algorithm also takes at most linear time, so the total algorithm runs in O(n)
time.

Theorem 3.7 A strictly y-monotone polygon with n vertices can be triangulated
in linear time.

We wanted a triangulation algorithm for monotone polygons as a subroutine
for triangulating arbitrary simple polygons. The idea was to first decompose
a polygon into monotone pieces and then to triangulate these pieces. It seems
that we have all the ingredients we need. There is one problem, however: in
this section we have assumed that the input is a strictly y-monotone polygon,
whereas the algorithm of the previous section may produce monotone pieces
with horizontal edges. Recall that in the previous section we treated vertices
with the same y-coordinates from left to right. This had the same effect as a
slight rotation of the plane in clockwise direction such that no two vertices
are on a horizontal line. It follows that the monotone subpolygons produced
by the algorithm of the previous section are strictly monotone in this slightly
rotated plane. Hence, the triangulation algorithm of the current section operates
correctly if we treat vertices with the same y-coordinate from left to right
(which corresponds to working in the rotated plane). So we can combine the
two algorithms to obtain a triangulation algorithm that works for any simple
polygon.

How much time does the triangulation algorithm take? Decomposing the
polygon into monotone pieces takes O(nlogn) time by Theorem 3.6. In the
second stage we triangulate each of the monotone pieces with the linear-time
algorithm of this section. Since the sum of the number of vertices of the pieces
is O(n), the second stage takes O(n) time in total. We get the following result.

Theorem 3.8 A simple polygon with n vertices can be triangulated in O(nlogn)
time with an algorithm that uses O(n) storage.

We have seen how to triangulate simple polygons. But what about polygons
with holes, can they also be triangulated easily? The answer is yes. In fact,
the algorithm we have seen also works for polygons with holes: nowhere in
the algorithm for splitting a polygon into monotone pieces did we use the fact
that the polygon was simple. It even works in a more general setting: Suppose
we have a planar subdivision § and we want to triangulate that subdivision.
More precisely, if B is a bounding box containing all edges of 8 in its interior,
we want to find a maximal set of non-intersecting diagonals—line segments
connecting vertices of 8 or B that do not intersect the edges of S—that partitions
B into triangles. Figure 3.6 shows a triangulated subdivision. The edges of
the subdivisions and of the bounding box are shown bold. To compute such a
triangulation we can use the algorithm of this chapter: first split the subdivision
into monotone pieces, and then triangulate the pieces. This leads to the following
theorem.

Theorem 3.9 A planar subdivision with n vertices in total can be triangulated
in O(nlogn) time with an algorithm that uses O(n) storage.



3.4 Notes and Comments

The Art Gallery Problem was posed in 1973 by Victor Klee in a conversation
with Vasek Chviétal. In 1975 Chvatal [128] gave the first proof that |n/3|
cameras are always sufficient and sometimes necessary; a result that became
known as the Art Gallery Theorem or the Watchman Theorem. Chvétal’s proof
is quite complicated. The much simpler proof presented in this chapter was
discovered by Fisk [178]. His proof is based on the Two Ears Theorem by
Meisters [277], from which the 3-colorability of the graph that is a triangulation
of a simple polygon follows easily. The algorithmic problem of finding the
minimum number of guards for a given simple polygon was shown to be NP-
hard by Aggarwal [10] and Lee and Lin [246]. The book by O’Rourke [298]
and the overview by Shermer [355] contain an extensive treatment of the Art
Gallery Problem and numerous variations.

A decomposition of a polygon, or any other region, into simple pieces is useful in
many problems. Often the simple pieces are triangles, in which case we call the
decomposition a triangulation, but sometimes other shapes such as quadrilaterals
or trapezoids are used—see also Chapters 6, 9, and 14. We only discuss the
results on triangulating polygons here. The linear time algorithm to triangulate a
monotone polygon described in this chapter was given by Garey et al. [188], and
the plane sweep algorithm to partition a polygon into monotone pieces is due to
Lee and Preparata [250]. Avis and Toussaint [32] and Chazelle [85] described
other algorithms for triangulating a simple polygon in O(nlogn) time.

For a long time one of the main open problems in computational geome-
try was whether simple polygons can be triangulated in o(nlogn) time. (For
triangulating subdivisions with holes there is an Q(nlogn) lower bound.) In
this chapter we have seen that this is indeed the case for monotone polygons.
Linear-time triangulation algorithms were also found for other special classes of
polygons [108, 109, 170, 184, 214] but the problem for general simple polygons
remained open for a number of years. In 1988 Tarjan and Van Wyk [368] broke
the O(nlogn) barrier by presenting an O(nloglogn) algorithm. Their algorithm
was later simplified by Kirkpatrick et al. [237]. Randomization—an approach
used in Chapters 4, 6, 9, and 11—proved to be a good tool in developing even

Section 3.4
NOTES AND COMMENTS

Figure 3.6
A triangulated subdivision

59



60

Chapter 3
POLYGON TRIANGULATION

faster algorithms: Clarkson et al. [134], Devillers [141], and Seidel [345] pre-
sented algorithms with O(nlog*n) running time, where log*n is the iterated
logarithm of n (being the number of times you can take the logarithm before the
result is smaller than 1). These algorithms are not only slightly faster than the
O(nloglogn) algorithm, but also simpler. Seidel’s algorithm is closely related
to the algorithm for constructing a trapezoidal decomposition of a planar subdi-
vision described in Chapter 6. However, the question whether a simple polygon
can be triangulated in linear time was still open. In 1990 this problem was finally
settled by Chazelle [92, 94], who gave a (quite complicated) deterministic linear
time algorithm. A randomized linear time algorithm was developed later by
Amato et al. [15].

The 3-dimensional equivalent to the polygon triangulation problem is this: de-
compose a given polytope into non-overlapping tetrahedra, where the vertices of
the tetrahedra must be vertices of the original polytope. Such a decomposition is
called a tetrahedralization of the polytope. This problem is much more difficult
than the two-dimensional version. In fact, it is not always possible to decompose
a polytope into tetrahedra without using additional vertices. Chazelle [86] has
shown that for a simple polytope with n vertices, ®(n?) additional vertices may
be needed and are always sufficient to obtain a decomposition into tetrahedra.
This bound was refined by Chazelle and Palios [110] to ®(n+r?), where r is the
number of reflex edges of the polytope. The algorithm to compute the decompo-
sition runs in O(nr + r*logr) time. Deciding whether a given simple polytope
can be tetrahedralized without additional vertices is NP-complete [330].

3.5 Exercises

3.1 Prove that any polygon admits a triangulation, even if it has holes. Can
you say anything about the number of triangles in the triangulation?

3.2 Arectilinear polygon is a simple polygon of which all edges are horizontal
or vertical. Let P be a rectilinear polygon with n vertices. Give an example
to show that |n/4 | cameras are sometimes necessary to guard it.

3.3 Prove or disprove: The dual graph of the triangulation of a monotone
polygon is always a chain, that is, any node in this graph has degree at
most two.

3.4  Suppose that a simple polygon P with n vertices is given, together with a
set of diagonals that partitions P into convex quadrilaterals. How many
cameras are sufficient to guard P? Why doesn’t this contradict the Art
Gallery Theorem?

3.5 Give the pseudo-code of the algorithm to compute a 3-coloring of a
triangulated simple polygon. The algorithm should run in linear time.



3.6

3.7

3.8
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3.10

3.11

3.12

3.13

3.14

Give an algorithm that computes in O(nlogn) time a diagonal that splits
a simple polygon with n vertices into two simple polygons each with at
most |2n/3] 4 2 vertices. Hint: Use the dual graph of a triangulation.

Let P be a simple polygon with n vertices, which has been partitioned
into monotone pieces. Prove that the sum of the number of vertices of the
pieces is O(n).

The algorithm given in this chapter to partition a simple polygon into
monotone pieces constructs a doubly-connected edge list for the parti-
tioned polygon. During the algorithm, new edges are added to the DCEL
(namely, diagonals to get rid of split and merge vertices). In general,
adding an edge to a DCEL cannot be done in constant time. Discuss
why adding an edge may take more than constant time, and argue that in
the polygon-partitioning algorithm we can add a diagonal in O(1) time
nevertheless.

Show that if a polygon has O(1) turn vertices, then the algorithm given in
this chapter can be made to run in O(n) time.

Can the algorithm of this chapter also be used to triangulate a set of n
points? If so, explain how to do this efficiently.

Give an efficient algorithm to determine whether a polygon P with n
vertices is monotone with respect to some line, not necessarily a horizontal
or vertical one.

The pockets of a simple polygon are the areas outside the polygon, but
inside its convex hull. Let P; be a simple polygon with m vertices, and
assume that a triangulation of P; as well as its pockets is given. Let P
be a convex polygon with n vertices. Show that the intersection P; NP,
can be computed in O(m + n) time.

The stabbing number of a triangulated simple polygon P is the maximum
number of diagonals intersected by any line segment interior to P. Give
an algorithm that computes a triangulation of a convex polygon that has
stabbing number O(logn).

Given a simple polygon P with n vertices and a point p inside it, show
how to compute the region inside P that is visible from p.

Section 3.5
EXERCISES

pockets

61



4 Linear Programming
Manufacturing with Molds

Most objects we see around us today—from car bodies to plastic cups and
cutlery—are made using some form of automated manufacturing. Computers
play an important role in this process, both in the design phase and in the
construction phase; CAD/CAM facilities are a vital part of any modern factory.
The construction process used to manufacture a specific object depends on
factors such as the material the object should be made of, the shape of the object,
and whether the object will be mass produced. In this chapter we study some
geometric aspects of manufacturing with molds, a commonly used process for
plastic or metal objects. For metal objects this process is often referred to as
casting.

f
va - U
R [wa

Figure 4.1
The casting process

Figure 4.1 illustrates the casting process: liquid metal is poured into a mold, it
solidifies, and then the object is removed from the mold. The last step is not
always as easy as it seems; the object could be stuck in the mold, so that it
cannot be removed without breaking the mold. Sometimes we can get around
this problem by using a different mold. There are also objects, however, for
which no good mold exists; a sphere is an example. This is the problem we
shall study in this chapter: given an object, is there a mold for it from which it
can be removed?
We shall confine ourselves to the following situation. First of all, we assume
that the object to be constructed is polyhedral. Secondly, we only consider 63
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molds of one piece, not molds consisting of two or more pieces. (Using molds
consisting of two pieces, it is possible to manufacture objects such as spheres,
which cannot be manufactured using a mold of a single piece.) Finally, we
only allow the object to be removed from the mold by a single translation. This
means that we will not be able to remove a screw from its mold. Fortunately,
translational motions suffice for many objects.

4.1 The Geometry of Casting

If we want to determine whether an object can be manufactured by casting,
we have to find a suitable mold for it. The shape of the cavity in the mold is
determined by the shape of the object, but different orientations of the object
give rise to different molds. Choosing the orientation can be crucial: some
orientations may give rise to molds from which the object cannot be removed,
while other orientations allow removal of the object. One obvious restriction on
the orientation is that the object must have a horizontal top facet. This facet will
be the only one not in contact with the mold. Hence, there are as many potential
orientations—or, equivalently, possible molds—as the object has facets. We call
an object castable if it can be removed from its mold for at least one of these
orientations. In the following we shall concentrate on determining whether an
object is removable by a translation from a specific given mold. To decide on
the castability of the object we then simply try every potential orientation.

Let P be a 3-dimensional polyhedron—that is, a 3-dimensional solid bounded
by planar facets—with a designated top facet. (We shall not try to give a precise,
formal definition of a polyhedron. Giving such a definition is tricky and not
necessary in this context.) We assume that the mold is a rectangular block
with a cavity that corresponds exactly to P. When the polyhedron is placed in
the mold, its top facet should be coplanar with the topmost facet of the mold,
which we assume to be parallel to the xy-plane. This means that the mold has
no unnecessary parts sticking out on the top that might prevent P from being
removed.

We call a facet of P that is not the top facet an ordinary facet. Every ordinary
facet f has a corresponding facet in the mold, which we denote by f.

We want to decide whether P can be removed from its mold by a single transla-
tion. In other words, we want to decide whether a direction d exists such that
P can be translated to infinity in direction d without intersecting the interior
of the mold during the translation. Note that we allow P to slide along the
mold. Because the facet of P not touching the mold is its top facet, the removal
direction has to be upward, that is, it must have a positive z-component. This is
only a necessary condition on the removal direction; we need more constraints
to be sure that a direction is valid.

Let f be an ordinary facet of P. This facet must move away from, or slide
along, its corresponding facet f of the mold. To make this constraint precise,
we need to define the angle of two vectors in 3-space. We do this as follows.



Take the plane spanned by the vectors (we assume both vectors are rooted at  Section 4.1

the origin); the angle of the vectors is the smaller of the two angles measured in  THE GEOMETRY OF CASTING
this plane. Now £ blocks any translation in a direction making an angle of less
than 90° with 7} (f), the outward normal of f. So a necessary condition on dis
that it makes an angle of at least 90° with the outward normal of every ordinary
facet of P. The next lemma shows that this condition is also sufficient.

Lemma 4.1 The polyhedron P can be removed from its mold by a translation
in direction d if and only if d makes an angle of at least 90° with the outward
normal of all ordinary facets of P.

Proof. The “only if” part is easy: if d made an angle less than 90° with some
outward normal 7j(f), then any point ¢ in the interior of f collides with the
mold when translated in direction d.

To prove the “if” part, suppose that at some moment P collides with the
mold when translated in direction d. We have to show that there must be an
outward normal making an angle of less than 90° with d. Let p be a point of
P that collides with a facet f of the mold. This means that p is about to move
into the interior of the mold, so 7j( f ), the outward normal of £, must make an
angle greater than 90° with d. But then d makes an angle less than 90° with the
outward normal of the ordinary facet f of P that corresponds to f. Hl

Lemma 4.1 has an interesting consequence: if P can be removed by a
sequence of small translations, then it can be removed by a single translation.
So allowing for more than one translation does not help in removing the object
from its mold.

We are left with the task of finding a direction d that makes an angle of at
least 90° with the outward normal of each ordinary facet of P. A direction in

3-dimensional space can be represented by a vector rooted at the origin. We z=1
already know that we can restrict our attention to directions with a positive LT
z-component. We can represent all such directions as points in the plane z = 1, 8
where the point (x,y, 1) represents the direction of the vector (x,y, 1). This way
every point in the plane z = 1 represents a unique direction, and every direction y
with a positive z-value is represented by a unique point in that plane.

Lemma 4.1 gives necessary and sufficient conditions on the removal direc- X
tion d. How do these conditions translate into our plane of directions? Let
1 = (T, Ty, Ti;) be the outward normal of an ordinary facet. The direction

d= (dx,dy, 1) makes an angle at least 90° with 7j if and only if the dot product

of d and 7} is non-positive. Hence, an ordinary facet induces a constraint of the
form
M+ Tydy +1; < 0.

This inequality describes a half-plane on the plane z = 1, that is, the area left or
the area right of a line on the plane. (This last statement is not true for horizontal
facets, which have 7, = 7j, = 0. In this case the constraint is either impossible
to satisfy or always satisfied, which is easy to test.) Hence, every non-horizontal
facet of P defines a closed half-plane on the plane z = 1, and any point in the 65
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common intersection of these half-planes corresponds to a direction in which P
can be removed. The common intersection of these half-planes may be empty;
in this case P cannot be removed from the given mold.

We have transformed our manufacturing problem to a purely geometric problem
in the plane: given a set of half-planes, find a point in their common intersection
or decide that the common intersection is empty. If the polyhedron to be
manufactured has n facets, then the planar problem has at most n — 1 half-planes
(the top facet does not induce a half-plane). In the next sections we will see
that the planar problem just stated can be solved in expected linear time—see
Section 4.4, where also the meaning of “expected” is explained.

Recall that the geometric problem corresponds to testing whether P can be
removed from a given mold. If this is impossible, there can still be other molds,
corresponding to different choices of the top facet, from which P is removable.
In order to test whether P is castable, we try all its facets as top facets. This
leads to the following result.

Theorem 4.2 Let P be a polyhedron with n facets. In O(n?) expected time and
using O(n) storage it can be decided whether P is castable. Moreover, if P is
castable, a mold and a valid direction for removing P from it can be computed
in the same amount of time.

4.2 Half-Plane Intersection

Let H = {hy,hy,...,h,} be a set of linear constraints in two variables, that is,
constraints of the form
aix+biy < ¢,

where a;, b;, and c; are constants such that at least one of a; and b; is non-zero.
Geometrically, we can interpret such a constraint as a closed half-plane in R?,
bounded by the line a;x+ b;y = ¢;. The problem we consider in this section is to
find the set of all points (x,y) € R? that satisfy all n constraints at the same time.
In other words, we want to find all the points lying in the common intersection
of the half-planes in H. (In the previous section we reduced the casting problem
to finding some point in the intersection of a set of half-planes. The problem we
study now is more general.)

The shape of the intersection of a set of half-planes is easy to determine: a
half-plane is convex, and the intersection of convex sets is again a convex
set, so the intersection of a set of half-planes is a convex region in the plane.
Every point on the intersection boundary must lie on the bounding line of some
half-plane. Hence, the boundary of the region consists of edges contained in
these bounding lines. Since the intersection is convex, every bounding line can
contribute at most one edge. It follows that the intersection of n half-planes
is a convex polygonal region bounded by at most n edges. Figure 4.2 shows
a few examples of intersections of half-planes. To which side of its bounding



line a half-plane lies is indicated by dark shading in the figure; the common
intersection is shaded lightly. As you can see in Figures 4.2 (ii) and (iii), the
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intersection does not have to be bounded. The intersection can also degenerate
to a line segment or a point, as in (iv), or it can be empty, as in (v).

We give a rather straightforward divide-and-conquer algorithm to compute the
intersection of a set of n half-planes. It is based on a routine INTERSECTCON-
VEXREGIONS to compute the intersection of two convex polygonal regions. We
first give the overall algorithm.

Algorithm INTERSECTHALFPLANES(H)

Input. A set H of n half-planes in the plane.

Output. The convex polygonal region C :=(,cqy h.

1. ifcard(H)=1

2 then C «+ the unique half-plane 7 € H

3 else Split H into sets H; and H; of size [n/2] and |n/2].
4, C| —INTERSECTHALFPLANES(H/)

5 Cy < INTERSECTHALFPLANES(H))

6 C «—INTERSECTCONVEXREGIONS(C},(,)

What remains is to describe the procedure INTERSECTCONVEXREGIONS. But
wait—didn’t we see this problem before, in Chapter 2? Indeed, Corollary 2.7
states that we can compute the intersection of two polygons in O(nlogn +
klogn) time, where 7 is the total number of vertices in the two polygons. We
must be a bit careful in applying this result to our problem, because the regions
we have can be unbounded, or degenerate to a segment or a point. Hence,
the regions are not necessarily polygons. But it is not difficult to modify the
algorithm from Chapter 2 so that it still works.

Let’s analyze this approach. Assume we have already computed the two regions
C and C, by recursion. Since they are both defined by at most n/2 + 1 half-
planes, they both have at most /2 + 1 edges. The algorithm from Chapter 2
computes their overlay in time O((n + k)logn), where k is the number of
intersection points between edges of C; and edges of C,. What is k? Look
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at an intersection point v between an edge e; of C; and an edge e, of C,. No
matter how e and e, intersect, v must be a vertex of C; NC,. But C; NC; is the
intersection of n half-planes, and therefore has at most n edges and vertices. It
follows that k < n, so the computation of the intersection of C; and C, takes
O(nlogn) time.

This gives the following recurrence for the total running time:

~foq), ith=1,
Tin)= {O(nlogn)+2T(n/2), ifn>1.

This recurrence solves to T'(n) = O(nlog®n).

To obtain this result we used a subroutine for computing the intersection of
two arbitrary polygons. The polygonal regions we deal with in INTERSECT-
HALFPLANES are always convex. Can we use this to develop a more efficient
algorithm? The answer is yes, as we show next. We will assume that the regions
we want to intersect are 2-dimensional; the case where one or both of them is a
segment or a point is easier and left as an exercise.

First, let’s specify more precisely how we represent a convex polygonal region
C. We will store the left and the right boundary of C separately, as sorted lists
of half-planes. The lists are sorted in the order in which the bounding lines of
the half-planes occur when the (left or right) boundary is traversed from top to
bottom. We denote the left boundary list by L (C), and the right boundary
list by Lyien(C). Vertices are not stored explicitly; they can be computed by
intersecting consecutive bounding lines.

To simplify the description of the algorithm, we shall assume that there are
no horizontal edges. (To adapt the algorithm to deal with horizontal edges, one
can define such edges to belong to the left boundary if they bound C from above,
and to the right boundary if they bound C from below. With this convention
only a few adaptations are needed to the algorithm stated below.)

The new algorithm is a plane sweep algorithm, like the one in Chapter 2: we
move a sweep line downward over the plane, and we maintain the edges of C;
and C; intersecting the sweep line. Since C; and C; are convex, there are at most
four such edges. Hence, there is no need to store these edges in a complicated
data structure; instead we simply have pointers left_edge_C1, right_edge_Cl,
left_edge_C2, and right_edge_C2 to them. If the sweep line does not intersect
the right or left boundary of a region, then the corresponding pointer is nil.
Figure 4.3 illustrates the definitions.

How are these pointers initialized? Let y; be the y-coordinate of the topmost
vertex of Cy; if C; has an unbounded edge extending upward to infinity then
we define y; = co. Define y; similarly for C,, and let ystart = min(yy,y2). To
compute the intersection of C; and C, we can restrict our attention to the part
of the plane with y-coordinate less than or equal to yg .. Hence, we let the
sweep line start at yg,rt, and we initialize the edges left_edge_C1, right_edge Cl,
left_edge_C2, and right_edge_C2 as the ones intersecting the line y = ygart.
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In a plane sweep algorithm one normally also needs a queue to store the events.
In our case the events are the points where edges of C; or of C, start or stop to
intersect the sweep line. This implies that the next event point, which determines
the next edge to be handled, is the highest of the lower endpoints of the edges
intersecting the sweep line. (Endpoints with the same y-coordinate are handled
from left to right. If two endpoints coincide then the leftmost edge is treated
first.) Hence, we don’t need an event queue; the next event can be found in
constant time using the pointers left_edge_C1, right_edge_C1, left_edge_C2, and
right_edge_C2.

At each event point some new edge e appears on the boundary. To handle
the edge e we first check whether e belongs to C; or to C,, and whether it is on
the left or the right boundary, and then call the appropriate procedure. We shall
only describe the procedure that is called when e is on the left boundary of C;.
The other procedures are similar.

Let p be the upper endpoint of e. The procedure that handles e will discover three
possible edges that C might have: the edge with p as upper endpoint, the edge
with e N left_edge_C2 as upper endpoint, and the edge with e N right_edge_C2
as upper endpoint. It performs the following actions.

m  First we test whether p lies in between left_edge_C2 and right_edge_C2. If
this is the case, then e contributes an edge to C starting at p. We then add
the half-plane whose bounding line contains e to the list Lef (C).

m  Next we test whether e intersects right_edge_C2. If this is the case, then the
intersection point is a vertex of C. Either both edges contribute an edge to
C starting at the intersection point—this happens when p lies to the right
of right_edge_C2, as in Figure 4.4(i)—or both edges contribute an edge
ending there—this happens when p lies to the left of right_edge_C2, as in
Figure 4.4(ii). If both edges contribute an edge starting at the intersection
point, then we have to add the half-plane defining e to L (C) and the
half-plane defining right_edge_C2 to Lygn (C). If they contribute an edge
ending at the intersection point we do nothing; these edges have already
been discovered in some other way.

m Finally we test whether e intersects left_edge_C2. If this is the case, then the 69
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® (ii)

right_edge_C2
right_edge_C2

intersection point is a vertex of C. The edge of C starting at that vertex is
either a part of e or it is a part of left_edge_C2. We can decide between these
possibilities in constant time: if p lies to the left of left_edge_C2 then it is a
part of e, otherwise it is a part of left_edge_C2. After we decided whether e
or left_edge_C2 contributes the edge to C, we add the appropriate half-plane
to L]eﬂ(c )

Notice that we may add two half-planes to L (C): the half-plane bounding e
and the half-plane bounding left_edge_C2. In which order should we add them?
We add left_edge_C2 only if it defines an edge of C starting at the intersection
point of left_edge_C2 and e. If we also decide to add the half-plane of e, it
must be because e defines an edge of C starting at its upper endpoint or at
its intersection point with right_edge_C2. In both cases we should add the
half-plane bounding e first, which is guaranteed by the order of the tests given
above.

We conclude that it takes constant time to handle an edge, so the intersection of
two convex polygons can be computed in time O(n). To show that the algorithm
is correct, we have to prove that it adds the half-planes defining the edges of C
in the right order. Consider an edge of C, and let p be its upper endpoint. Then
p is either an upper endpoint of an edge in C; or C,, or it is the intersection of
two edges e and ¢’ of Cy and Cs, respectively. In the former case we discover the
edge of C when p is reached, and in the latter case when the lower of the upper
endpoints of e and ¢’ is reached. Hence, all half-planes defining the edges of C
are added. It is not difficult to prove that they are added in the correct order.
We get the following result:

Theorem 4.3 The intersection of two convex polygonal regions in the plane can
be computed in O(n) time.

This theorem shows that we can do the merge step in INTERSECTHALF-
PLANES in linear time. Hence, the recurrence for the running time of the
algorithm becomes

P — {00 ifn=1,
YV 0m) +2T(m)2), ifn> 1,

leading to the following result:



Corollary 4.4 The common intersection of a set of n half-planes in the plane
can be computed in O(nlogn) time and linear storage.

The problem of computing the intersection of half-planes is intimately
related to the computation of convex hulls, and an alternative algorithm can be
given that is almost identical to algorithm CONVEXHULL from Chapter 1. The
relationship between convex hulls and intersections of half-planes is discussed
in detail in Sections 8.2 and 11.4. Those sections are independent of the rest of
their chapters, so if you are curious you can already have a look.

4.3 Incremental Linear Programming

In the previous section we showed how to compute the intersection of a set of
n half-planes. In other words, we computed all solutions to a set of n linear
constraints. The running time of our algorithm was O(nlogn). One can prove
that this is optimal: as for the sorting problem, any algorithm that solves the
half-plane intersection problem must take Q(nlogn) time in the worst case. In
our application to the casting problem, however, we don’t need to know all
solutions to the set of linear constraints; just one solution will do fine. It turns
out that this allows for a faster algorithm.

Finding a solution to a set of linear constraints is closely related to a well-
known problem in operations research, called linear optimization or linear
programming. (This term was coined before “programming” came to mean
“giving instructions to a computer”.) The only difference is that linear program-
ming involves finding one specific solution to the set of constraints, namely the
one that maximizes a given linear function of the variables. More precisely, a
linear optimization problem is described as follows:

Maximize cix;1+caxp+---+caxyg

Subjectto @y 1xi +---+aigxqa < by
a x1+-+argxy < by

Ap X1+ +apaxqg < by

where the ¢;, and a; ;, and b; are real numbers, which form the input to the
problem. The function to be maximized is called the objective function, and
the set of constraints together with the objective function is a linear program.
The number of variables, d, is the dimension of the linear program. We already
saw that linear constraints can be viewed as half-spaces in R?. The intersection
of these half-spaces, which is the set of points satisfying all constraints, is
called the feasible region of the linear program. Points (solutions) in this region
are called feasible, points outside are infeasible. Recall from Figure 4.2 that
the feasible region can be unbounded, and that it can be empty. In the latter
case, the linear program is called infeasible. The objective function can be
viewed as a direction in R?: maximizing cix + caxz + - - - + c4x4 means finding

Section 4.3
INCREMENTAL LINEAR
PROGRAMMING

71



Chapter 4

LINEAR PROGRAMMING

feasible region

ol

solution

Figure 4.5

Different types of solutions to a linear

72

program.

apoint (xq,...,x;) that is extreme in the direction ¢ = (cy,...,c4). Hence, the
solution to the linear program is a point in the feasible region that is extreme
in direction ¢. We let fz denote the objective function defined by a direction
vector ¢.

Many problems in operations research can be described by linear programs,
and a lot of work has been dedicated to linear optimization. This has resulted in
many different linear programming algorithms, several of which—the famous
simplex algorithm for instance—perform well in practice.

Let’s go back to our problem. We have n linear constraints in two variables
and we want to find one solution to the set of constraints. We can do this
by taking an arbitrary objective function, and then solving the linear program
defined by the objective function and the linear constraints. For the latter step
we can use the simplex algorithm, or any other linear programming algorithm
developed in operations research. However, this particular linear program is
quite different from the ones usually studied: in operations research both the
number of constraints and the number of variables are large, but in our case the
number of variables is only two. The traditional linear programming methods
are not very efficient in such low-dimensional linear programming problems;
methods developed in computational geometry, like the one described below,
do better.

We denote the set of n linear constraints in our 2-dimensional linear program-
ming problem by H. The vector defining the objective function is ¢ = (cy,¢y);
thus the objective function is fz(p) = cxpx + cypy. Our goal is to find a point
p € R? such that p € H and fx(p) is maximized. We denote the linear program
by (H,c), and we use C to denote its feasible region. We can distinguish four
cases for the solution of a linear program (H,c). The four cases are illustrated
in Figure 4.5; the vector defining the objective function is vertically downward
in the examples.

® (ii) (iii) @iv)
X £ <

(1) The linear program is infeasible, that is, there is no solution to the set of
constraints.

(i) The feasible region is unbounded in direction ¢. In this case there is a ray
p completely contained in the feasible region C, such that the function f;
takes arbitrarily large values along p. The solution we require in this case
is the description of such a ray.

(iii) The feasible region has an edge e whose outward normal points in the
direction c. In this case, there is a solution to the linear program, but it is
not unique: any point on e is a feasible point that maximizes fz(p).

(iv) If none of the preceding three cases applies, then there is a unique solution,
which is the vertex v of C that is extreme in the direction c.



Our algorithm for 2-dimensional linear programming is incremental. It adds the
constraints one by one, and maintains the optimal solution to the intermediate
linear programs. It requires, however, that the solution to each intermediate
problem is well-defined and unique. In other words, it assumes that each
intermediate feasible region has a unique optimal vertex as in case (iv) above.

To fulfill this requirement, we add to our linear program two additional
constraints that will guarantee that the linear program is bounded. For example,
if ¢x > 0 and ¢, > 0 we add the contraints p, < M and p, < M, for some
large M € R. The idea is that M should be chosen so large that the additional
constraints do not influence the optimal solution, if the original linear program
was bounded.

In many practical applications of linear programming, a bound of this form
is actually a natural restriction. In our application to the casting problem, for
instance, mechanical limitations will not allow us to remove the polyhedron in
a direction that is nearly horizontal. For instance, we may not be able to remove
the polyhedron in a direction whose angle with the xy-plane is less than 1 degree.
This constraint immediately gives a bound on the absolute value of py, py.

We will discuss in Section 4.5 how we can correctly recognize unbounded
linear programs, and how we can solve bounded ones without enforcing artificial
constraints on the solution.

For preciseness, let’s give a name to the two new constraints:

P <M ife, >0
U= —pe <M otherwise

and
R <M ife, >0
27 —py <M otherwise

Note that m,my are chosen as a function of ¢ only, they do not depend on the
half-planes H. The feasible region Cy = m| Nmy is an orthogonal wedge.

Another simple convention now allows us to say that case (iii) also has a
unique solution: if there are several optimal points, then we want the lexico-
graphically smallest one. Conceptually, this convention is equivalent to rotating
¢ alittle, such that it is no longer normal to any half-plane.

We have to be careful when doing this, as even a bounded linear program
may not have a lexicographically smallest solution (see Exercise 4.11). Our
choice of the two constraints m1; and m; is such that this cannot happen.

With these two conventions, any linear program that is feasible has a unique
solution, which is a vertex of the feasible region. We call this vertex the optimal
vertex.

Let (H,¢) be a linear program. We number the half-planes Ay, h, ..., h,. Let
H; be the set of the first i constraints, together with the special constraints m
and my, and let C; be the feasible region defined by these constraints:

H; .= {ml,mz,hl,hz...,h,’},
Ci:= mnNmNhNhyN---Nh;.
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By our choice of Cy, each feasible region C; has a unique optimal vertex, denoted
v;. Clearly, we have
G 2C2G---2C,=C.

This implies that if C; = @ for some i, then C; = 0 for all j > i, and the linear
program is infeasible. So our algorithm can stop once the linear program
becomes infeasible.

The next lemma investigates how the optimal vertex changes when we add a
half-plane A;. It is the basis of our algorithm.

Lemma 4.5 Let 1 < i < n, and let C; and v; be defined as above. Then we have
(i) Ifvi_| € h;, thenv; =v;_y.
(ii) Ifvi_y & h;, then either C; = 0 or v; € {;, where {; is the line bounding h;.

Proof. (i) Let v;_1 € h;. Because C; = C;—1 Nh; and v;— € C;_ this means that
vi—1 € C;. Furthermore, the optimal point in C; cannot be better than the
optimal point in C;_1, since C; C C;_1. Hence, v;_ is the optimal vertex in
C; as well.

(ii) Let v, & h;. Suppose for a contradiction that C; is not empty and that v;
does not lie on ¢;. Consider the line segment v;_v;. We have v;_; € C;_
and, since C; C Cj_1, also v; € C;—1. Together with the convexity of C;_1,
this implies that the segment ¥;—1v; is contained in C;_;. Since v;_; is the
optimal point in C;_; and the objective function f; is linear, it follows that
fz(p) increases monotonically along v;—jv; as p moves from v; to v;_;. Now
consider the intersection point ¢ of v;_1v; and ¢;. This intersection point
exists, because v;_| & h; and v; € C;. Since v;_v; is contained in C;_1, the
point ¢ must be in C;. But the value of the objective function increases along
Vi_1vi, 80 fz(q) > fz(vi). This contradicts the definition of v;.

Figure 4.6 illustrates the two cases that arise when adding a half-plane.
In Figure 4.6(i), the optimal vertex v4 that we have after adding the first four
half-planes is contained in /5, the next half-plane that we add. Therefore the
optimal vertex remains the same. The optimal vertex is not contained in /g,
however, so when we add hg we must find a new optimal vertex. According

@® hs h3 () g s s
/’l4 h4

(oY}

4 =Vs Ve
h hy hy V5 Iy

to Lemma 4.5, this vertex vg is contained in the line bounding /g, as is shown
in Figure 4.6(ii). But Lemma 4.5 does not tell us how to find the new optimal
vertex. Fortunately, this is not so difficult, as we show next.



Assume that the current optimal vertex v;_; is not contained in the next half-
plane &;. The problem we have to solve can be stated as follows:

Find the point p on ¢; that maximizes fz(p), subject to the con-
straints p € h, for h € H;_;.

To simplify the terminology, we assume that ¢; is not vertical, and so we can
parameterize it by x-coordinate. We can then define a function fz : R — R
such that f+(p) = fz(px) for points p € ¢;. For a half-plane h, let o (h,¢;) be the
x-coordinate of the intersection point of ¢; and the bounding line of /. (If there
is no intersection, then either the constraint 4 is satisfied by any point on ¢;, or
by no point on ¢;. In the former case we can ignore the constraint, in the latter
case we can report the linear program infeasible.) Depending on whether ¢; N A
is bounded to the left or to the right, we get a constraint on the x-coordinate of
the solution of the form x > o (h,¢;) or of the form x < o(h,¢;). We can thus
restate our problem as follows:

Maximize fz(x)

subjectto x> o(h,¢;), h€ H;_;and ¢;Nhis bounded to the left
x< o(h¢;), heH;_and/{;Nhisbounded to the right

This is a 1-dimensional linear program. Solving it is very easy. Let

Xleft = hrenf?x {o(h, ;) : ;N his bounded to the left}
i—1
and
Xright = hg}}inl {o(h,¢;): ¢;Nhis bounded to the right}.

The interval [Xief; : Xighe] is the feasible region of the 1-dimensional linear
program. Hence, the linear program is infeasible if xjef; > Xrighc, and otherwise
the optimal point is the point on /; at either xjef; Or Xyjgn, depending on the
objective function.

Note that the 1-dimensional linear program cannot be unbounded, due to
the constraints m and m,.

We get the following lemma:

Lemma 4.6 A 1-dimensional linear program can be solved in linear time. Hence,
if case (ii) of Lemma 4.5 arises, then we can compute the new optimal vertex v;,
or decide that the linear program is infeasible, in O(i) time.

We can now describe the linear programming algorithm in more detail. As
above, we use ¥; to denote the line that bounds the half-plane A;.

Algorithm 2DBOUNDEDLP(H, ¢, m;,my)

Input. A linear program (H U {m;,m,},¢), where H is a set of n half-planes,
¢ € R2, and m;, m, bound the solution.

Output. If (HU{m,m;},¢) is infeasible, then this fact is reported. Otherwise,
the lexicographically smallest point p that maximizes fz(p) is reported.
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1. Let vg be the corner of Cy.

2. Lethy,..., h, be the half-planes of H.

3. fori—1ton

4. doifv, | €h;

5. then v; — v;_;

6. else v; —the point p on ¢; that maximizes fz(p), subject to the
constraints in H;_.

7. if p does not exist

8. then Report that the linear program is infeasible and quit.

9. returnv,
We now analyze the performance of our algorithm.

Lemma 4.7 Algorithm 2DBOUNDEDLP computes the solution to a bounded
linear program with n constraints and two variables in O(n*) time and linear
storage.

Proof. To prove that the algorithm correctly finds the solution, we have to show
that after every stage—whenever we have added a new half-plane /;—the point
v; is still the optimum point for C;. This follows immediately from Lemma 4.5.
If the 1-dimensional linear program on ¢; is infeasible, then C; is empty, and
consequently C = C, C C; is empty, which means that the linear program is
infeasible.

It is easy to see that the algorithm requires only linear storage. We add the
half-planes one by one in n stages. The time spent in stage i is dominated by the
time to solve a 1-dimensional linear program in line 6, which is O(i). Hence,
the total time needed is bounded by

Z 0(i) = 0(n?). )

Although our linear programming algorithm is nice and simple, its running
time is disappointing—the algorithm is much slower than the previous algorithm,
which computed the whole feasible region. Is our analysis too crude? We
bounded the cost of every stage i by O(i). This is not always a tight bound:
Stage i takes ©(i) time only when v;_; ¢ h;; when v;_; € h; then stage i takes
constant time. So if we could bound the number of times the optimal vertex
changes, we might be able to prove a better running time. Unfortunately the
optimum vertex can change n times: there are orders for some configurations
where every new half-plane makes the previous optimum illegal. The figure in
the margin shows such an example. This means that the algorithm will really
spend ©(n?) time. How can we avoid this nasty situation?

4.4 Randomized Linear Programming

If we have a second look at the example where the optimum changes n times,
we see that the problem is not so much that the set of half-planes is bad. If we



had added them in the order %, h,_1, ..., h3, then the optimal vertex would not
change anymore after the addition of #,. In this case the running time would be
O(n). Is this a general phenomenon? Is it true that, for any set H of half-planes,
there is a good order to treat them? The answer to this question is “yes,” but
that doesn’t seem to help us much. Even if such a good order exists, there
seems to be no easy way to actually find it. Remember that we have to find the
order at the beginning of the algorithm, when we don’t know anything about
the intersection of the half-planes yet.

We now meet a quite intriguing phenomenon. Although we have no way to
determine an ordering of H that is guaranteed to lead to a good running time,
we have a very simple way out of our problem. We simply pick a random
ordering of H. Of course, we could have bad luck and pick an order that leads
to a quadratic running time. But with some luck, we pick an order that makes it
run much faster. Indeed, we shall prove below that most orders lead to a fast
algorithm. For completeness, we first repeat the algorithm.

Algorithm 2DRANDOMIZEDBOUNDEDLP(H, ¢, my,my)

Input. A linear program (H U {m;,m,},¢), where H is a set of n half-planes,
¢ € R?, and m;, my bound the solution.

Output. If (HU {m;,my},¢) is infeasible, then this fact is reported. Otherwise,
the lexicographically smallest point p that maximizes fz(p) is reported.

1. Let vy be the corner of Cy.

2. Compute a random permutation hy,..., h, of the half-planes by calling
RANDOMPERMUTATION(H |1 - - - n]).

3. fori—1ton

4. doifv,_; €h;

5. then Vi< Vi1

6. else v; —the point p on ¢; that maximizes fz(p), subject to the

constraints in H;_1.
7. if p does not exist
8. then Report that the linear program is infeasible and quit.

9. returnv,

The only difference from the previous algorithm is in line 2, where we put the
half-planes in random order before we start adding them one by one. To be able
to do this, we assume that we have a random number generator, RANDOM(k),
which has an integer k as input and generates a random integer between 1 and k
in constant time. Computing a random permutation can then be done with the
following linear time algorithm.

Algorithm RANDOMPERMUTATION(A)

Input. An array A[l---n].

Output. The array A[l---n] with the same elements, but rearranged into a
random permutation.

1. for k < n downto 2

2. do rndindex —RANDOM(k)

3. Exchange A[k] and A[rndindex].
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The new linear programming algorithm is called a randomized algorithm; its
running time depends on certain random choices made by the algorithm. (In
the linear programming algorithm, these random choices were made in the
subroutine RANDOMPERMUTATION.)

What is the running time of this randomized version of our incremental linear
programming algorithm? There is no easy answer to that. It all depends on
the order that is computed in line 2. Consider a fixed set H of n half-planes.
2DRANDOMIZEDBOUNDEDLP treats them depending on the permutation cho-
sen in line 2. Since there are n! possible permutations of n objects, there are
n! possible ways in which the algorithm can proceed, each with its own run-
ning time. Because the permutation is random, each of these running times
is equally likely. So what we do is analyze the expected running time of the
algorithm, which is the average running time over all n! possible permutations.
The lemma below states that the expected running time of our randomized linear
programming algorithm is O(n). It is important to realize that we do not make
any assumptions about the input: the expectancy is with respect to the random
order in which the half-planes are treated and holds for any set of half-planes.

Lemma 4.8 The 2-dimensional linear programming problem with n constraints
can be solved in O(n) randomized expected time using worst-case linear storage.

Proof. As we observed before, the storage needed by the algorithm is linear.

The running time RANDOMPERMUTATION is O(n), so what remains is to
analyze the time needed to add the half-planes &y, ...,h,. Adding a half-plane
takes constant time when the optimal vertex does not change. When the optimal
vertex does change we need to solve a 1-dimensional linear program. We now
bound the time needed for all these 1-dimensional linear programs.

Let X; be a random variable, which is 1 if v;_; & h;, and 0 otherwise. Recall
that a 1-dimensional linear program on i constraints can be solved in O(i) time.
The total time spent in line 6 over all half-planes A1, ..., h, is therefore

To bound the expected value of this sum we will use linearity of expectation: the
expected value of a sum of random variables is the sum of the expected values
of the random variables. This holds even if the random variables are dependent.
Hence, the expected time for solving all 1-dimensional linear programs is

But what is E[X;]? It is exactly the probability that v;_; & h;. Let’s analyze this
probability.

We will do this with a technique called backwards analysis: we look at the
algorithm “backwards.” Assume that it has already finished, and that it has
computed the optimum vertex v,. Since v, is a vertex of G, it is defined by at



least two of the half-planes. Now we make one step backwards in time, and  Section 4.5

look at C,,—. Note that C,,— is obtained from C, by removing the half-plane /,,. UNBOUNDED LINEAR PROGRAMS
When does the optimum point change? This happens exactly if v, is not a vertex
of C,,_; that is extreme in the direction ¢, which is only possible if 4, is one of
the half-planes that define v,,. But the half-planes are added in random order, so
hy, is a random element of {h;,hy, ..., h,}. Hence, the probability that 4, is one
of the half-planes defining v, is at most 2/n. Why do we say “at most”? First, it
is possible that the boundaries of more than two half-planes pass through v,. In
that case, removing one of the two half-planes containing the edges incident to
v, may fail to change v,,. Furthermore, v, may be defined by m; or m;, which
are not among the n candidates for the random choice of #,,. In both cases the
probability is less than 2/n.

The same argument works in general: to bound E[X;], we fix the subset
of the first i half-planes. This determines C;. To analyze what happened in
the last step, when we added 4;, we think backwards. The probability that
we had to compute a new optimal vertex when adding 4; is the same as the
probability that the optimal vertex changes when we remove a half-plane from
C;. The latter event only takes place for at most two half-planes of our fixed set
{h1,...,h;}. Since the half-planes are added in random order, the probability
that /; is one of the special half-planes is at most 2/i. We derived this probability
under the condition that the first i half-planes are some fixed subset of H. But
since the derived bound holds for any fixed subset, it holds unconditionally.
Hence, E[X;] < 2/i. We can now bound the expected total time for solving all
1-dimensional linear programs by

o

Vn

] % =0(n).

We already noted that the time spent in the rest of the algorithm is O(n) as
well.

Note again that the expectancy here is solely with respect to the random
choices made by the algorithm. We do not average over possible choices for
the input. For any input set of n half-planes, the expected running time of the
algorithm is O(n); there are no bad inputs.

4.5 Unbounded Linear Programs

In the preceding sections we avoided handling the case of an unbounded linear
program by adding two additional, artificial constraints. This is not always a
suitable solution. Even if the linear program is bounded, we may not know a
large enough bound M. Furthermore, unbounded linear programs do occur in
practice, and we have to solve them correctly.
Let’s first see how we can recognize whether a given linear program (H,¢)
is unbounded. As we saw before, that means that there is a ray p completely 79
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contained in the feasible region C, such that the function fz takes arbitrarily
large values along p.

If we denote the ray’s starting point as p, and its direction vector as d, we
can parameterize p as follows:

p={p+Ad:1>0}.

The function fz takes arbitrarily large values if and only if d-2>0. On the
other hand, if 7} (k) is the normal vector of a half-plane h € H oriented towards
the feasible side of /’s bounding line, we have d - 7j (h) > 0. The next lemma
shows that these two necessary conditions on d are sufficient to test whether a
linear program is unbounded.

Lemma 4.9 A linear program (H,c) is unbounded if and only if there is a vector
d withd-¢> 0 such thatd -7j(h) > O for all h € H and the linear program (H',¢)
is feasible, where H' = {h € H : 7j(h)-d = 0} .

Proof. The “only if” direction follows from the argument above, so it remains
to show the “if” direction.

We consider a linear program (H,¢) and a vector d with the conditions of
the lemma. Since (H’,¢) is feasible, there is a point p € (,cx h. Consider now
the ray po := {po+Ad : A > 0}. Since d-7j(h) = 0 for h € H', the ray po is
completely contained in each h € H'. Furthermore, since d-¢>0the objective
function fz takes arbitrarily large values along py.

For a half-plane i € H\ H', we have d - 7j (h) > 0. This implies that there is
a parameter A;, such that po+Ad € h for all A > A;,. Let A/ := MaXyecp\ g A

and p := po+ A'd. It follows that the ray
p={p+Ard: 1 >0}

is completely contained in each half-plane h € H, and so (H,¢) is unbounded.

We can now test whether a given 2-dimensional linear program (H,¢) is
unbounded by proceeding similarly to Section 4.1, and solving a 1-dimensional
linear program.

Let’s first rotate the coordinate system so that ¢ is the upward vertical
direction, ¢ = (0,1). Any direction vector d = (dy,dy) with d-Z>0can be
normalized to the form d = (dy, 1), and be represented by the point dy on the
line y = 1. Given a normal vector 7j (k) = (1,1, ), the inequality

Jﬁ(h) :dxnx+ny 20

translates to the inequality dy1, > —n,. We thus obtain a system of n linear
inequalities, or, in other words, a 1-dimensional linear program H. (This
is actually an abuse of the terminology, since a linear program consists of
constraints and an objective function. But since at this point we are only
interested in feasibility, it is convenient to ignore the objective function.)



If H has a feasible solution d;, we identify the set H " C H of half-planes h
for which the solution is tight, that is, where d; 1, 4 1, = 0. We still need to
verify that the system H' is feasible. Are we again left with a 2-dimensional
linear programming problem? Yes, but a very special one: For each h € H’
the normal 7j (k) is orthogonal to d = (d*,1), and that means that the bounding
line of & is parallel to d. Tn other words, all half-planes in H’ are bounded
by parallel lines, and by intersecting them with the x-axis, we have again a
1-dimensional linear program H’. If H' is feasible, then the original linear
program is unbounded, and we can construct a feasible ray p in time O(n) as in
the lemma above. If H' is infeasible, then so is H’ and therefore H.

If H does not have a feasible solution, by the lemma above the original
linear program (H,¢) is bounded. Can we extract some more information in this
case? Recall the solution for 1-dimensional linear programs: H is infeasible if
and only if the maximum boundary of a half-line /; bounded to the left is larger
than the minimum boundary of a half-line h, bounded to the right. These two
half-lines 4, and /4, have an empty intersection. If 4; and &, are the original
half-planes that correspond to these two constraints, then this is equivalent to
saying that ({h;,h,},¢) is bounded. We can call & and hy certificates: they
‘prove’ that (H,¢) is really bounded.

How useful certificates are becomes clear with the following observation:
After finding the two certificates 41 and hy, we can use them like m; and m; in
2DRANDOMIZEDBOUNDEDLP. That means that we no longer need to make an
artificial restriction on the range in which we allow the solution to lie.

Again, we must be careful. It can happen that the linear program ({h1,h2},¢)
is bounded, but has no lexicographically smallest solution. This is the case
when the 1-dimensional linear program is infeasible due to a single constraint
hi, namely when 7j(h;) = —¢ = (0,—1). In that case we scan the remaining
list of half-planes for a half-plane A with 1. (h2) > 0. If we are successful,
hi and hy are certificates that guarantee a unique lexicographically smallest
solution. If no such &, exists, the linear program is either infeasible, or it
has no lexicographically smallest solution. We can solve it by solving the
1-dimensional linear program formed by all half-planes & with 7, (k) = 0. If it
is feasible, we can return a ray p in direction (—1,0), such that all points on p
are feasible optimal solutions.

We can now give a general algorithm for the 2-dimensional linear program-
ming problem:

Algorithm 2DRANDOMIZEDLP(H, ¢)

Input. A linear program (H,¢), where H is a set of n half-planes and & € R?.

Output. If (H,¢) is unbounded, a ray is reported. If it is infeasible, then two or
three certificate half-planes are reported. Otherwise, the lexicographically
smallest point p that maximizes fz(p) is reported.

1. Determine whether there is a direction vector d such that d - ¢ > 0 and

d-1j(h) = 0forall he H.

if d exists
then compute H' and determine whether H’ is feasible.

4. if H' is feasible

wn
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hd

then Report a ray proving that (H,¢) is unbounded and quit.

else Report that (H,c) is infeasible and quit.

7. Let hy,hy € H be certificates proving that (H,¢) is bounded and has a

unique lexicographically smallest solution.

Let v, be the intersection of ¢; and /5.

9. Leths,hy,..., h, be arandom permutation of the remaining half-planes in
H.

10. fori<—3ton

11. doifv, | €h;

o

*®

12. then v; < v;_;
13. else v; —the point p on ¢; that maximizes fz(p), subject to the
constraints in H;_.
14. if p does not exist
15. then Let hj, by (with j, k <) be the certificates (possibly
hj = hy) with h; N Ay N =0.
16. Report that the linear program is infeasible, with

hi,hj,hy as certificates, and quit.
17. returnv,

We summarize our results so far in the following theorem.

Theorem 4.10 A 2-dimensional linear programming problem with n constraints
can be solved in O(n) randomized expected time using worst-case linear storage.

4.6* Linear Programming in Higher Dimensions

The linear programming algorithm presented in the previous sections can be
generalized to higher dimensions. When the dimension is not too high, then the
resulting algorithm compares favorably with traditional algorithms, such as the
simplex algorithm.

Let H be a set of n closed half-spaces in RY. Given a vector ¢ = (cy,...,cq), we
want to find the point p = (py, ..., pg) € R? that maximizes the linear function
fz(p) :==ci1p1+---+capa, subject to the constraint that p lies in / for all h € H.
To make sure that the solution is unique when the linear program is bounded,
we agree to look for the lexicographically smallest point that maximizes fz(p).

As in the planar version, we maintain the optimal solution while incremen-
tally adding the half-space constraints one by one. For this to work, we again
need to make sure that there is a unique optimal solution at each step. We do
this as in the previous section: We first determine whether the linear program is
unbounded. If not, we obtain a set of d certificates hy,hy,...,hy € H that guar-
antee that the solution is bounded and that there is a unique lexicographically
smallest solution. We’ll look at the details of finding these certificates later, and
concentrate on the main algorithm for the moment.

Let hy,hy,...,hy be the d certificate half-spaces obtained by checking that
the linear program is bounded, and let 4,1, hg1o, ..., h, be a random permuta-
tion of the remaining half-spaces in H. Furthermore, define C; to be the feasible



region when the first i half-spaces have been added, for d <i < n: Section 4.6*

LINEAR PROGRAMMING IN HIGHER
Ci:=hNhyN---Nh;. DIMENSIONS

Let v; denote the optimal vertex of C;, that is, the vertex that maximizes fz.
Lemma 4.5 gave us an easy way to maintain the optimal vertex in the 2-
dimensional case: either the optimal vertex doesn’t change, or the new optimal
vertex is contained in the line that bounds the half-plane A; that we are adding.
The following lemma generalizes this result to higher dimensions; its proof is a
straightforward generalization of the proof of Lemma 4.5.

Lemma 4.11 Let 1 < i< n, and let C; and v; be defined as above. Then we have

(i) Ifvi_1 € h;, thenv; =v;_.

(ii) Ifvi_; & h;, then either C; = 0 or v; € g;, where g; is the hyperplane that
bounds h;.

If we denote the hyperplane that bounds the half-space &; by g;, the optimal
vertex v; of C; can be found by finding the optimal vertex of the intersection
&nNCi-1.

But how do we find the optimal vertex of g; N C;—1? In two dimensions this
was easy to do in linear time, because everything was restricted to a line. Let’s
look at the 3-dimensional case. In three dimensions, g; is a plane, and g; NC;_1
is a 2-dimensional convex polygonal region. What do we have to do to find the
optimum in g; NC;_;? We have to solve a 2-dimensional linear program! The
linear function f; defined in R? induces a linear function in g;, and we need to
find the point in g; N C;_; that maximizes this function. In case ¢ is orthogonal to
gi, all points on g; are equally good: following our rule, we then need to find the
lexicographically smallest solution. We achieve this by choosing the objective
function correctly—for instance, when g; is not orthogonal to the x;-axis, we
obtain the vector ¢ by projecting the vector (—1,0,0) onto g;.

So in the 3-dimensional case we find the optimal vertex of g; N C;_1 as
follows: we compute the intersection of all i — 1 half-spaces with g;, and project

the vectors
—1 0 0

o |, | -1 ], [ o
0 0 ~1

\,ﬁl

on g; until a projection is non-zero. This results in a linear program in two
dimensions, which we solve using algorithm 2DRANDOMIZEDLP.

By now you can probably guess how we will attack the general, d-dimensional
case. There, g; is a hyperplane, a (d — 1)-dimensional subspace, and we have
to find the point in the intersection C;_; N g; that maximizes fz. This is a linear
program in d — 1 dimensions, and so we will solve it by making a recursive call
to the (d — 1)-dimensional version of our algorithm. The recursion bottoms out
when we get to a 1-dimensional linear program, which can be solved directly in
linear time.
We still need to determine whether the linear program is unbounded, and to
find suitable certificates if that is not the case. We first verify that Lemma 4.9 83
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holds in arbitrary dimensions. The lemma and its proof need no change. The
lemma implies that the d-dimensional linear program (H, c) is bounded if and
only if a certain (d — 1)-dimensional linear program is infeasible. We will solve
this (d — 1)-dimensional linear program by a recursive call.

If the (d — 1)-dimensional linear program is feasible, we obtain a direction
vector d. The d-dimensional linear program is then either unbounded in di-
rection d, or infeasible. This can be determined by verifying whether (H',¢)
is feasible, where H' is as defined in Lemma 4.9. The boundaries of all the
half-spaces in H' are parallel to d, and so this can be decided by solving a
second (d — 1)-dimensional program, with a second recursive call.

If the (d — 1)-dimensional linear program is infeasible, its solution will give
us k certificate half-spaces hy,hy, ..., b € H, with k < d, that ‘prove’ that (H,c)
is bounded. If k < d, then the set of optimal solutions to ({Ay,...,/h},¢) is
unbounded. In that case, these optimal solutions form a (d — k)-dimensional
subspace. We determine whether the linear program restricted to this subspace
is bounded with respect to the lexicographical order. If not, we can report
the solution, otherwise we can repeat the process until we obtain a set of
d certificates with a unique solution.

The global algorithm now looks as follows. Again we use g; to denote the
hyperplane that bounds the half-space 4;.

Algorithm RANDOMIZEDLP(H, ¢)

Input. A linear program (H,¢), where H is a set of n half-spaces in R? and
¢eRe

Output. If (H,c) is unbounded, a ray is reported. If it is infeasible, then at most
d + 1 certificate half-planes are reported. Otherwise, the lexicographically
smallest point p that maximizes fz(p) is reported.

1. Determine whether a direction vector d exists such that d - & > 0 and

d-ij(h) >0forallh e H.

2. if d exists

3. then compute H’' and determine whether H' is feasible.

4. if H' is feasible

5. then Report a ray proving that (H,¢) is unbounded and quit.

6. else Report that (H,¢) is infeasible, provide certificates, and
quit.

7. Lethy,hy,... hy be certificates proving that (H,¢) is bounded.

8. Let v,y be the intersection of g1,¢2,...,84.

9. Compute a random permutation A4, 1, ... ,h, of the remaining half-spaces

in H.
10. fori<—d+1ton
11. doifv, | €h;

12. then v; < v;_;

13. else v; —the point p on g; that maximizes fz(p), subject to the
constraints {Ay,...,hi_}

14. if p does not exist

15. then Let H* be the at most d certificates for the infeasi-

bility of the (d — 1)-dimensional program.



16. Report that the linear program is infeasible, with  Section 4.6*
H* Uh,; as certificates, and quit. LINEAR PROGRAMMING IN HIGHER
17. returnv, DIMENSIONS

The following theorem states the performance of RANDOMIZEDLP. Although
we consider d a constant, which means we can state an O(n) bound on the
running time, it is useful to have a close look at the dependency of the running
time on d—see the end of the proof the following theorem.

Theorem 4.12 For each fixed dimension d, a d-dimensional linear programming
problem with n constraints can be solved in O(n) expected time.

Proof. We must prove that there is a constant C; such that the algorithm takes
at most Cyn expected time. We proceed by induction on the dimension d. For
two dimensions, the result follows from Theorem 4.10, so let’s assume d > 2.
The induction step is basically identical to the proof of the 2-dimensional cases.

We start by solving at most d linear programs of dimension d — 1. By the
induction assumption, this takes time O(dn) +dCy_1n.

The algorithm spends O(d) time to compute v,. Testing whether v;_; € h;
takes O(d) time. The running time is therefore O(dn) as long as we do not
count the time spent in line 13.

In line 13, we need to project ¢ on g;, in time O(d), and to intersect i
half-spaces with g;, in time O(di). Furthermore, we make a recursive call with
dimension d — 1 and i — 1 half-spaces.

Define a random variable X;, which is 1 if v;_ ¢ h;, and O otherwise. The
total expected time spent by the algorithm is bounded by

O(dn)+dCy_1n+ i (0(di)+Cy-1(i—1))-E[Xj].
i=d t1

To bound E[X;], we apply backwards analysis. Consider the situation after
adding h1,...,h;. The optimum point is a vertex v; of C;, so it is defined by d of
the half-spaces. Now we make one step backwards in time. The optimum point
changes only if we remove one of the half-spaces defining v;. Since hg41,...,h;
is a random permutation, the probability that this happens is at most d/(i — d).

Consequently, we get the following bound for the expected running time of
the algorithm:

n
d
O(dn) +dCq_in+ Y. (O(di)+Cy_1(i—1))—
i=d+1 i—d

This can be bounded by Cyn, with C; = O(C;_d), so Cqy = O(c?d!) for a
constant ¢ indpendent on the dimension. Hl

When d is a constant, it is correct to say that the algorithm runs in linear
time. Still, that would be quite misleading. The constant factor C; grows so fast
as a function of d that this algorithm is useful only for rather small dimensions. 85



Chapter 4
LINEAR PROGRAMMING

86

4.7* Smallest Enclosing Discs

The simple randomized technique we used above turns out to be surprisingly
powerful. It can be applied not only to linear programming but to a variety of
other optimization problems as well. In this section we shall look at one such
problem.

Consider a robot arm whose base is fixed to the work floor. The arm has to pick
up items at various points and place them at other points. What would be a good
position for the base of the arm? This would be somewhere “in the middle” of
the points it must be able to reach. More precisely, a good position is at the
center of the smallest disc that encloses all the points. This point minimizes the
maximum distance between the base of the arm and any point it has to reach.
We arrive at the following problem: given a set P of n points in the plane (the
points on the work floor that the arm must be able to reach), find the smallest
enclosing disc for P, that is, the smallest disc that contains all the points of P.
This smallest enclosing disc is unique—see Lemma 4.14(i) below, which is a
generalization of this statement.

As in the previous sections, we will give a randomized incremental algorithm for
the problem: First we generate a random permutation py, ..., p, of the points in
P.Let P, :={pi,...,pi}. We add the points one by one while we maintain D;,
the smallest enclosing disc of P,.

In the case of linear programming, there was a nice fact that helped us to
maintain the optimal vertex: when the current optimal vertex is contained in the
next half-plane then it does not change, and otherwise the new optimal vertex
lies on the boundary of the half-plane. Is a similar statement true for smallest
enclosing discs? The answer is yes:

Lemma 4.13 Let 2 < i < n, and let P, and D; be defined as above. Then we
have

(i) Ifp,€D;_1,then D;=D;_;.

(ii) If p; & D;_, then p; lies on the boundary of D;.

We shall prove this lemma later, after we have seen how we can use it to
design a randomized incremental algorithm that is quite similar to the linear
programming algorithm.

Algorithm MINIDISC(P)
Input. A set P of n points in the plane.
Output. The smallest enclosing disc for P.

1. Compute a random permutation py,..., p, of P.

2. Let D; be the smallest enclosing disc for {p;, p2}.

3. fori—3ton

4. do if pi€Di_1

5 then D,' — D,'_l

6 else D; — MINIDISCWITHPOINT({p1,...,pi-1},Pi)
7. return D,



The critical step occurs when p; € D;_;. We need a subroutine that finds the
smallest disc enclosing P,, using the knowledge that p; must lie on the boundary
of that disc. How do we implement this routine? Let g := p;. We use the same
framework once more: we add the points of P,_; in random order, and maintain
the smallest enclosing disc of P,_; U{q} under the extra constraint that it should
have g on its boundary. The addition of a point p; will be facilitated by the
following fact: when p; is contained in the currently smallest enclosing disc

then this disc remains the same, and otherwise it must have p; on its boundary.

So in the latter case, the disc has both ¢ and p; and its boundary. We get the
following subroutine.

MINIDISCWITHPOINT(P, q)

Input. A set P of n points in the plane, and a point ¢ such that there exists an
enclosing disc for P with g on its boundary.

Output. The smallest enclosing disc for P with g on its boundary.

1. Compute a random permutation py,..., p, of P.

2. Let D; be the smallest disc with ¢ and p; on its boundary.

3. forj«<—2ton

4. dOifijDj,1

5 thenD; — D; 4

6 else D; < MINIDISCWITH2POINTS({p1,...,pj-1},Pj,q)

7. return D,

How do we find the smallest enclosing disc for a set under the restriction that
two given points g; and g, are on its boundary? We simply apply the same
approach one more time. Thus we add the points in random order and maintain
the optimal disc; when the point p; we add is inside the current disc we don’t
have to do anything, and when py is not inside the current disc it must be on
the boundary of the new disc. In the latter case we have three points on the disc
boundary: ¢qi, g2, and pg. This means there is only one disc left: the unique
disc with g1, g2, and py on its boundary. This following routine describes this
in more detail.

MINIDISCWITH2POINTS(P, q1,92)

Input. A set P of n points in the plane, and two points ¢g; and g» such that there
exists an enclosing disc for P with ¢g; and ¢» on its boundary.

Output. The smallest enclosing disc for P with g and ¢, on its boundary.

1 Let Dy be the smallest disc with g; and g on its boundary.

2. fork—1ton

3 doif p; € Dy

4. then D, — Dy,

5 else D «the disc with g1, g2, and py on its boundary

6. return D,

This finally completes the algorithm for computing the smallest enclosing disc
of a set of points. Before we analyze it, we must validate its correctness by
proving some facts that we used in the algorithms. For instance, we used the

Section 4.7*
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fact that when we added a new point and this point was outside the current
optimal disc, then the new optimal disc must have this point on its boundary.

Lemma 4.14 Let P be a set of points in the plane, let R be a possibly empty set

of points with PN R = 0, and let p € P. Then the following holds:

(i) If there is a disc that encloses P and has all points of R on its boundary,
then the smallest such disc is unique. We denote it by md(P,R).

(i) If p e md(P\{p},R), then md(P,R) = md(P\ {p},R).

(iii) If p ¢ md(P\{p},R), thenmd(P,R) = md(P\ {p},RU{p}).

Proof. (i) Assume that there are two distinct enclosing discs Dy and D; with
centers xp and xp, respectively, and with the same radius. Clearly, all points
of P must lie in the intersection Dy N D;. We define a continuous family
{D(A) |0 < A < 1} of discs as follows. Let z be an intersection point of
dDy and dDj, the boundaries of Dy and D;. The center of D(A) is the
point x(A) := (1 — A)xo + Ax, and the radius of D(A) is r(A) :=d(x(1),z).
We have DoND; C D(A) for all A with 0 < A < 1 and, in particular, for
A = 1/2. Hence, since both Dy and D; enclose all points of P, so must
D(1/2). Moreover, dD(1/2) passes through the intersection points of dDg
and dD;. Because R C dDyN dDy, this implies that R C dD(1/2) . In other
words, D(1/2) is an enclosing disc for P with R on its boundary. But the
radius of D(1/2) is strictly less than the radii of Dy and D;. So whenever
there are two distinct enclosing discs of the same radius with R on their
boundary, then there is a smaller enclosing disc with R on its boundary.
Hence, the smallest enclosing disc md(P,R) is unique.

(ii) Let D := md(P\ {p},R). If p € D, then D contains P and has R on its
boundary. There cannot be any smaller disc containing P with R on its
boundary, because such a disc would also be a containing disc for P\ {p}
with R on its boundary, contradicting the definition of D. It follows that
D =md(P,R).

(iii) Let Do := md(P\ {p},R) and let D| := md(P,R). Consider the family
D(A) of discs defined above. Note that D(0) = Dy and D(1) = Dy, so the
family defines a continous deformation of Dy to D;. By assumption we
have p € Dy. We also have p € Dy, so by continuity there must be some
0 < A* < 1 such that p lies on the boundary of D(A*). As in the proof of
(i), we have P C D(A*) and R C dD(A*). Since the radius of any D(1) with
0 < A < 1is strictly less than the radius of Dy, and D; is by definition the
smallest enclosing disc for P, we must have A* = 1. In other words, D; has
p on its boundary. (]|

Lemma 4.14 implies that MINIDISC correctly computes the smallest enclos-
ing disc of a set of points. The analysis of the running time is given in the proof
of the following theorem.

Theorem 4.15 The smallest enclosing disc for a set of n points in the plane can
be computed in O(n) expected time using worst-case linear storage.

Proof. MINIDISCWITH2POINTS runs in O(n) time because every iteration of
the loop takes constant time, and it uses linear storage. MINIDISCWITHPOINT



and MINIDISC also need linear storage, so what remains is to analyze their
expected running time.

The running time of MINIDISCWITHPOINT is O(n) as long as we don’t
count the time spent in calls to MINIDISCWITH2POINTS. What is the prob-
ability of having to make such a call? Again we use backwards analysis to
bound this probability: Fix a subset {py,...,p;}, and let D; be the smallest disc
enclosing {pi, ..., p;} and having ¢ on its boundary. Imagine that we remove
one of the points {py,...,p;}. When does the smallest enclosing circle change?
That happens only when we remove one of the three points on the boundary.
One of the points on the boundary is g, so there are at most two points that cause
the smallest enclosing circle to shrink. The probability that p; is one of those
points is 2/i. (When there are more than three points on the boundary, then the
probability that the smallest enclosing circle changes can only get smaller.) So
we can bound the total expected running time of MINIDISCWITHPOINT by

Applying the same argument once more, we find that the expected running time
of MINIDISC is O(n) as well. Hl

Algorithm MINIDISC can be improved in various ways. First of all, it is not
necessary to use a fresh random permutation in every instance of subroutine
MINIDISCWITHPOINT. Instead, one can compute a permutation once, at
the start of MINIDISC, and pass the permutation to MINIDISCWITHPOINT.
Furthermore, instead of writing three different routines, one could write a single
algorithm MINIDISCWITHPOINTS(P, R) that computes md(P,R) as defined in
Lemma 4.14.

4.8 Notes and Comments

In this chapter we have studied an algorithmic problem that arises when one
wants to manufacture an object using casting. Other manufacturing processes
lead to challenging algorithmic problems as well, and a number of such problems
have been studied within computational geometry over the past years—see for
example the book by Dutta et al. [152] or the surveys by Janardan and Woo [220]
and Bose and Toussaint [72].

The computation of the common intersection of half-planes is an old and
well-studied problem. As we will explain in Chapter 11, the problem is dual to
the computation of the convex hull of points in the plane. Both problems have a
long history in the field, and Preparata and Shamos [323] already list a number
of solutions. More information on the computation of 2-dimensional convex
hulls can be found in the notes and comments of Chapter 1.

Computing the common intersection of half-spaces, which can be done
in O(nlogn) time in the plane and in 3-dimensional space, becomes a more
computationally demanding problem when the dimension increases. The reason
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is that the number of (lower-dimensional) faces of the convex polytope formed
as the common intersection can be as large as ®(n[d/ 2J) [158]. So if the only
goal is to find a feasible point, computing the common intersection explicitly
soon becomes an unattractive approach.

Linear programming is one of the basic problems in numerical analysis and
combinatorial optimization. It goes beyond the scope of this chapter to survey
this literature, and we restrict ourselves to mentioning the simplex algorithm
and its variants [139], and the polynomial-time solutions of Khachiyan [234]
and Karmarkar [227]. More information on linear programming can be found
in books by Chvatal [129] and Schrijver [339].

Linear programming as a problem in computational geometry was first
considered by Megiddo [273], who showed that the problem of testing whether
the intersection of half-spaces is empty is strictly simpler than the computa-
tion of the intersection. He gave the first deterministic algorithm for linear
programming whose running time is of the form O(Cyn), where Cy is a factor
depending on the dimension only. His algorithm is linear in n for any fixed
dimension. The factor C; in his algorithm is 22'. This was later improved
to 3‘"2 [130, 153]. More recently, a number of simpler and more practical ran-
domized algorithms have been given [132, 346, 354]. There are a number of
randomized algorithms whose running time is subexponential, but still not poly-
nomial in the dimension [222, 267]. Finding a strongly polynomial algorithm,
that is of combinatorial polynomial complexity, for linear programming is one
of the major open problems in the area.

The simple randomized incremental algorithm for two and higher dimen-
sions given here is due to Seidel [346]. Unlike in our presentation, he deals
with unbounded linear programs by treating the parameter M symbolically. This
is probably more elegant and efficient than the algorithm we present, which
was chosen to demonstrate the relationship between unbounded d-dimensional
linear programs and feasible (d — 1)-dimensional ones. In Seidel’s version, the
factor C; can be shown to be O(d!).

The generalization to the computation of smallest enclosing discs is due to
Welzl [385], who also showed how to find the smallest enclosing ball of a set
of points in higher dimensions, and the smallest enclosing ellipse or ellipsoid.
Sharir and Welzl further generalized the technique and introduced the notion
of LP-type problems, which can be solved efficiently with an algorithm similar
to the ones described here [189, 354]. Generally speaking, the technique is
applicable to optimization problems where the solution either does not change
when a new constraint is added, or the solution is partially defined by the new
constraint so that the dimension of the problem is reduced. It has also been
shown that the special properties of LP-type problems give rise to so-called
Helly-type theorems [16].

Randomization is a technique that often produces algorithms that are simple and
efficient. We will see more examples in the following chapters. The price we
pay is that the running time is only an expected bound and—as we observed—
there is a certain chance that the algorithm takes much longer. Some people
take this as a reason to say that randomized algorithms cannot be trusted and



shouldn’t be used (think of a computer in an intensive care station in a hospital,
or in a nuclear power plant).

On the other hand, deterministic algorithms are only perfect in theory. In
practice, any non-trivial algorithm may contain bugs, and even if we neglect
this, there is the risk of hardware malfunction or “soft errors”: single bits in
core memory flipping under the influence of ambient a-radiation. Because
randomized algorithms are often much simpler and have shorter code, the
probability of such a mishap is smaller. Therefore the total probability that a
randomized algorithm fails to produce the correct answer in time need not be
larger than the probability that a deterministic algorithm fails. Moreover, we
can always reduce the probability that the actual running time of a randomized
algorithm exceeds its expected running time by allowing a larger constant in the
expected running time.

4.9 Exercises

4.1 In this chapter we studied the casting problem for molds of one piece. A
sphere cannot be manufactured in this manner, but it can be manufactured
if we use a two-piece mold. Give an example of an object that cannot be
manufactured with a two-piece mold, but that can be manufactured with
a three-piece mold.

4.2  Consider the casting problem in the plane: we are given polygon P and a
2-dimensional mold for it. Describe a linear time algorithm that decides
whether P can be removed from the mold by a single translation.

4.3 Suppose that, in the 3-dimensional casting problem, we do not want the
object to slide along a facet of the mold when we remove it. How does
this affect the geometric problem (computing a point in the intersection
of half-planes) that we derived?

4.4 Let P be a castable simple polyhedron with top facet f. Let d be aremoval
direction for P. Show that any line with direction d intersects P if and
only if it intersects f. Also show that for any line ¢ with direction d, the
intersection ¢ NP is connected.

4.5 Let P be a simple polyhedron with n vertices. If P is castable with some
facet f as top facet, then a necessary condition is that the facets adjacent
to f must lie completely to one side of &y, the plane through f. (The
reverse is not necessarily true, of course: if all adjacent facets lie to one
side of /iy then P is not necessarily castable with f as top facet.) Give a
linear time algorithm to compute all facets of P for which this condition
holds.

4.6*% Consider the restricted version of the casting problem in which we insist
that the object is removed from its mold using a vertical translation
(perpendicular to the top facet).
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4.7

4.8

4.9

4.10

4.11

4.12

4.13

a. Prove that in this case there is always only a constant number of
possible top facets.

b. Give a linear time algorithm that determines whether for a given object
a mold exists under this restricted model.

Instead of removing the object from the mold by a single translation, we
can also try to remove it by a single rotation. For simplicity, let’s consider
the planar variant of this version of the casting problem, and let’s only
look at clockwise rotations.

a. Give an example of a simple polygon P with top facet f that is not
castable when we require that P should be removed from the mold by
a single translation, but that is castable using rotation around a point.
Also give an example of a simple polygon P with top facet f that is
not castable when we require that P should be removed from the mold
by a rotation, but that is castable using a single translation.

b. Show that the problem of finding a center of rotation that allows us
to remove P with a single rotation from its mold can be reduced to
the problem of finding a point in the common intersection of a set of
half-planes.

The plane z =1 can be used to represent all directions of vectors in 3-
dimensional space that have a positive z-value. How can we represent
all directions of vectors in 3-dimensional space that have a non-negative
z-value? And how can we represent the directions of all vectors in 3-
dimensional space?

Suppose we want to find all optimal solutions to a 3-dimensional linear
program with n constraints. Argue that Q(nlogn) is a lower bound for
the worst-case time complexity of any algorithm solving this problem.

Let H be a set of at least three half-planes with a non-empty intersection
such that not all bounding lines are parallel. We call a half-plane h € H
redundant if it does not contribute an edge to (|H. Prove that for any
redundant half-plane h € H there are two half-planes 4’,h" € H such that
W' NK' C h. Give an O(nlogn) time algorithm to compute all redundant
half-planes.

Give an example of a 2-dimensional linear program that is bounded, but
where there is no lexicographically smallest solution.

Prove that RANDOMPERMUTATION(A) is correct, that is, prove that every
possible permutation of A is equally likely to be the output. Also show that
the algorithm is no longer correct (it no longer produces every permutation
with equal probability) if we change the k in line 2 to n.

In the text we gave a linear time algorithm for computing a random
permutation. The algorithm needed a random number generator that can
produce a random integer between 1 and 7 in constant time. Now assume
we have a restricted random number generator available that can only



4.14

4.15

4.16

generate a random bit (0 or 1) in constant time. How can we generate a
random permutation with this restricted random number generator? What
is the running time of your procedure?

Here is a paranoid algorithm to compute the maximum of a set A of n real
numbers:

Algorithm PARANOIDMAXIMUM(A)

1. ifcard(A) =1

2 then return the unique element x € A

3 else Pick a random element x from A.

4. x' <~ PARANOIDMAXIMUM(A \ {x})

5 if x <X

6 then return x’

7 else Now we suspect that x is the maximum, but to be
absolutely sure, we compare x with all card(A) — 1
other elements of A.

8. return x

What is the worst-case running time of this algorithm? What is the
expected running time (with respect to the random choice in line 3)?

A simple polygon P is called star-shaped if it contains a point g such
that for any point p in P the line segment pq is contained in P. Give
an algorithm whose expected running time is linear to decide whether a
simple polygon is star-shaped.

On n parallel railway tracks » trains are going with constant speeds vy,
V2, ..., V. Attime t = 0 the trains are at positions ki, k2, ..., k,. Give an
O(nlogn) algorithm that detects all trains that at some moment in time
are leading. To this end, use the algorithm for computing the intersection
of half-planes.

4.17* Show how to implement MINIDISC using a single routine MINIDISC-

WITHPOINTS(P, R) that computes md(P,R) as defined in Lemma 4.14.
Your algorithm should compute only a single random permutation during
the whole computation.
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5 Orthogonal Range Searching

Querying a Database

At first sight it seems that databases have little to do with geometry. Nevertheless,
many types of questions—from now on called queries—about data in a database
can be interpreted geometrically. To this end we transform records in a database
into points in a multi-dimensional space, and we transform the queries about
the records into queries on this set of points. Let’s demonstrate this with an

example.
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Consider a database for personnel administration. In such a database the
name, address, date of birth, salary, and so on, of each employee are stored. A
typical query one may want to perform is to report all employees born between
1950 and 1955 who earn between $3,000 and $4,000 a month. To formulate
this as a geometric problem we represent each employee by a point in the
plane. The first coordinate of the point is the date of birth, represented by the
integer 10,000 x year + 100 x month + day, and the second coordinate is the
monthly salary. With the point we also store the other information we have
about the employee, such as name and address. The database query asking -
for all employees born between 1950 and 1955 who earn between $3,000 and 95
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19,500,000 19,559,999

$4,000 transforms into the following geometric query: report all points whose
first coordinate lies between 19,500,000 and 19,559,999, and whose second
coordinate lies between 3,000 and 4,000. In other words, we want to report all
the points inside an axis-parallel query rectangle—see Figure 5.1.

What if we also have information about the number of children of each
employee, and we would like to be able to ask queries like “report all employees
born between 1950 and 1955 who earn between $3,000 and $4,000 a month and
have between two and four children”? In this case we represent each employee
by a point in 3-dimensional space: the first coordinate represents the date of
birth, the second coordinate the salary, and the third coordinate the number of
children. To answer the query we now have to report all points inside the axis-
parallel box [19,500,000 : 19,559,999]%[3,000 : 4,000]x [2 : 4]. In general, if
we are interested in answering queries on d fields of the records in our database,
we transform the records to points in d-dimensional space. A query asking to
report all records whose fields lie between specified values then transforms to
a query asking for all points inside a d-dimensional axis-parallel box. Such a
query is called a rectangular range query, or an orthogonal range query, in
computational geometry. In this chapter we shall study data structures for such
queries.

5.1 1-Dimensional Range Searching

Before we try to tackle the 2- or higher-dimensional rectangular range searching
problem, let’s have a look at the 1-dimensional version. The data we are given
is a set of points in 1-dimensional space—in other words, a set of real numbers.
A query asks for the points inside a 1-dimensional query rectangle—in other
words, an interval [x : x'].

Let P:= {p1,p2,-..,Pn} be the given set of points on the real line. We can
solve the 1-dimensional range searching problem efficiently using a well-known
data structure: a balanced binary search tree J. (A solution that uses an array is
also possible. This solution does not generalize to higher dimensions, however,
nor does it allow for efficient updates on P.) The leaves of T store the points
of P and the internal nodes of T store splitting values to guide the search. We
denote the splitting value stored at a node v by x,. We assume that the left
subtree of a node v contains all the points smaller than or equal to x,, and that
the right subtree contains all the points strictly greater than x.

To report the points in a query range [x : x| we proceed as follows. We
search with x and x’ in T. Let ¢ and p’ be the two leaves where the searches
end, respectively. Then the points in the interval [x : x'| are the ones stored in the
leaves in between p and p’ plus, possibly, the point stored at p and the point
stored at (. When we search with the interval [18 : 77] in the tree of Figure 5.2,
for instance, we have to report all the points stored in the dark grey leaves, plus
the point stored in the leaf ¢. How can we find the leaves in between u and
u'? As Figure 5.2 already suggests, they are the leaves of certain subtrees in
between the search paths to t and p’. (In Figure 5.2, these subtrees are dark
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Figure 5.2
A 1-dimensional range query in a binary
search tree

grey, whereas the nodes on the search paths are light grey.) More precisely, the
subtrees that we select are rooted at nodes v in between the two search paths
whose parents are on the search path. To find these nodes we first search for
the node Vpic Where the paths to x and x split. This is done with the following
subroutine. Let lc(v) and rc(Vv) denote the left and right child, respectively, of a
node v.

FINDSPLITNODE(T, x,x)

Input. A tree T and two values x and x’ with x < x'.

Output. The node v where the paths to x and x’ split, or the leaf where both
paths end.

. v root(7)

2. while v is not a leaf and (' < x, or x > xy)

3 doifx' <x,

4. then v — c(v)

5 else v —re(v)

6. return v

Starting from Vypj;c we then follow the search path of x. At each node where the
path goes left, we report all the leaves in the right subtree, because this subtree
is in between the two search paths. Similarly, we follow the path of x’ and we I
report the leaves in the left subtree of nodes where the path goes right. Finally, the selected subtrees "
we have to check the points stored at the leaves where the paths end; they may
or may not lie in the range [x : xX'].

Next we describe the query algorithm in more detail. It uses a subroutine
REPORTSUBTREE, which traverses the subtree rooted at a given node and
reports the points stored at its leaves. Since the number of internal nodes of any
binary tree is less than its number of leaves, this subroutine takes an amount of
time that is linear in the number of reported points.

Algorithm 1DRANGEQUERY(T, [x : X'])

Input. A binary search tree T and a range [x : x'].

Output. All points stored in 7 that lie in the range.

1. Vgiiy —FINDSPLITNODE(T, x,x')

2. if Vg is a leaf

3. then Check if the point stored at Vqpj;c must be reported. 97
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4. else (x Follow the path to x and report the points in subtrees right of the
path. x)

5. V — lC(Vspht)

6. while v is not a leaf

7. do if x < xy

8. then REPORTSUBTREE(rc(V))

9. v —le(v)

10. else v« re(v)

11. Check if the point stored at the leaf v must be reported.

12. Similarly, follow the path to x’, report the points in subtrees left of

the path, and check if the point stored at the leaf where the path
ends must be reported.

We first prove the correctness of the algorithm.

Lemma 5.1 Algorithm 1DRANGEQUERY reports exactly those points that lie
in the query range.

Proof. We first show that any reported point p lies in the query range. If p is
stored at the leaf where the path to x or to x’ ends, then p is tested explicitly for
inclusion in the query range. Otherwise, p is reported in a call to REPORTSUB-
TREE. Assume this call was made when we followed the path to x. Let v be the
node on the path such that p was reported in the call REPORTSUBTREE(rc(V)).
Since v and, hence, rc(Vv) lie in the left subtree of vy, we have p < Xy
Because the search path of x’ goes right at Vg this means that p < x’. On the
other hand, the search path of x goes left at v and p is in the right subtree of v,
s0 x < p. It follows that p € [x : x']. The proof that p lies in the range when it is
reported while following the path to x’ is symmetrical.

It remains to prove that any point p in the range is reported. Let u be the
leaf where p is stored, and let v be the lowest ancestor of  that is visited by the
query algorithm. We claim that v = u, which implies that p is reported. Assume
for a contradiction that v # u. Observe that v cannot be a node visited in a call
to REPORTSUBTREE, because all descendants of such a node are visited. Hence,
v is either on the search path to x, or on the search path to x’, or both. Because
all three cases are similar, we only consider the third case. Assume first that u
is in the left subtree of v. Then the search path of x goes right at v (otherwise v
would not be the lowest visited ancestor). But this implies that p < x. Similarly,
if p is in the right subtree of v, then the path of x’ goes left at v, and p > x’. In
both cases, the assumption that p lies in the range is contradicted. Hl

We now turn our attention to the performance of the data structure. Because
it is a balanced binary search tree, it uses O(n) storage and it can be built in
O(nlogn) time. What about the query time? In the worst case all the points
could be in the query range. In this case the query time will be @(n), which
seems bad. Indeed, we do not need any data structure to achieve ®(n) query
time; simply checking all the points against the query range leads to the same
result. On the other hand, a query time of ®(n) cannot be avoided when we
have to report all the points. Therefore we shall give a more refined analysis



of the query time. The refined analysis takes not only n, the number of points
in the set P, into account, but also k, the number of reported points. In other
words, we will show that the query algorithm is output-sensitive, a concept we
already encountered in Chapter 2.

Recall that the time spent in a call to REPORTSUBTREE is linear in the

number of reported points. Hence, the total time spent in all such calls is O(k).
The remaining nodes that are visited are nodes on the search path of x or x'.

Because 7 is balanced, these paths have length O(logn). The time we spend
at each node is O(1), so the total time spent in these nodes is O(logn), which
gives a query time of O(logn + k).

The following theorem summarizes the results for 1-dimensional range
searching:

Theorem 5.2 Let P be a set of n points in 1-dimensional space. The set P
can be stored in a balanced binary search tree, which uses O(n) storage and
has O(nlogn) construction time, such that the points in a query range can be
reported in time O(k 4 logn), where k is the number of reported points.

5.2 Kd-Trees

Now let’s go to the 2-dimensional rectangular range searching problem. Let
P be a set of n points in the plane. In the remainder of this section we assume
that no two points in P have the same x-coordinate, and no two points have the
same y-coordinate. This restriction is not very realistic, especially not if the
points represent employees and the coordinates are things like salary or number
of children. Fortunately, the restriction can be overcome with a nice trick that
we describe in Section 5.5.

A 2-dimensional rectangular range query on P asks for the points from P lying
inside a query rectangle [x:x] x [y:)']. A point p := (py, py) lies inside this
rectangle if and only if

Py € [x:X] and py € ly:y].

We could say that a 2-dimensional rectangular range query is composed of two
1-dimensional sub-queries, one on the x-coordinate of the points and one on the
y-coordinate.

In the previous section we saw a data structure for 1-dimensional range
queries. How can we generalize this structure—which was just a binary search
tree—to 2-dimensional range queries? Let’s consider the following recursive
definition of the binary search tree: the set of (1-dimensional) points is split into
two subsets of roughly equal size; one subset contains the points smaller than or
equal to the splitting value, the other subset contains the points larger than the
splitting value. The splitting value is stored at the root, and the two subsets are
stored recursively in the two subtrees.

In the 2-dimensional case each point has two values that are important:
its x- and its y-coordinate. Therefore we first split on x-coordinate, next on
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Figure 5.3

A kd-tree: on the left the way the plane
is subdivided and on the right the
corresponding binary tree
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y-coordinate, then again on x-coordinate, and so on. More precisely, the process
is as follows. At the root we split the set P with a vertical line £ into two subsets
of roughly equal size. The splitting line is stored at the root. Py, the subset of
points to the left or on the splitting line, is stored in the left subtree, and Pgh,
the subset to the right of it, is stored in the right subtree. At the left child of the
root we split Pg into two subsets with a horizontal line; the points below or on
it are stored in the left subtree of the left child, and the points above it are stored
in the right subtree. The left child itself stores the splitting line. Similarly, the
set Bijgn is split with a horizontal line into two subsets, which are stored in the
left and right subtree of the right child. At the grandchildren of the root, we
split again with a vertical line. In general, we split with a vertical line at nodes
whose depth is even, and we split with a horizontal line at nodes whose depth is
odd. Figure 5.3 illustrates how the splitting is done and what the corresponding
binary tree looks like. A tree like this is called a kd-tree. Originally, the name
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stood for k-dimensional tree; the tree we described above would be a 2d-tree.
Nowadays, the original meaning is lost, and what used to be called a 2d-tree is
now called a 2-dimensional kd-tree.

We can construct a kd-tree with the recursive procedure described below.
This procedure has two parameters: a set of points and an integer. The first
parameter is the set for which we want to build the kd-tree; initially this is the
set P. The second parameter is depth of recursion or, in other words, the depth
of the root of the subtree that the recursive call constructs. The depth parameter
is zero at the first call. The depth is important because, as explained above,
it determines whether we must split with a vertical or a horizontal line. The
procedure returns the root of the kd-tree.

Algorithm BUILDKDTREE(P, depth)

Input. A set of points P and the current depth depth.

Output. The root of a kd-tree storing P.

1. if P contains only one point

2. then return a leaf storing this point

3. else if depth is even

4. then Split P into two subsets with a vertical line ¢ through the
median x-coordinate of the points in P. Let P; be the set of



points to the left of £ or on ¢, and let P, be the set of points
to the right of £.

5. else Split P into two subsets with a horizontal line ¢ through
the median y-coordinate of the points in P. Let P; be the
set of points below ¢ or on ¢, and let P, be the set of points

above /.
6. Vieft < BUILDKDTREE(P],depth+ 1)
7. Viight ¢~ BUILDKDTREE(P2,depth + 1)
8. Create a node Vv storing ¢, make Vi the left child of v, and make
Viight the right child of v.
9. return v

The algorithm uses the convention that the point on the splitting line—the one
determining the median x- or y-coordinate—belongs to the subset to the left of,
or below, the splitting line. For this to work correctly, the median of a set of n
numbers should be defined as the [n/2]-th smallest number. This means that
the median of two values is the smaller one, which ensures that the algorithm
terminates.

Before we come to the query algorithm, let’s analyze the construction time
of a 2-dimensional kd-tree. The most expensive step that is performed at every
recursive call is finding the splitting line. This requires determining the median
x-coordinate or the median y-coordinate, depending on whether the depth is
even or odd. Median finding can be done in linear time. Linear time median
finding algorithms, however, are rather complicated. A better approach is to
presort the set of points both on x- and on y-coordinate. The parameter set P is
now passed to the procedure in the form of two sorted lists, one on x-coordinate
and one on y-coordinate. Given the two sorted lists, it is easy to find the median
x-coordinate (when the depth is even) or the median y-coordinate (when the
depth is odd) in linear time. It is also easy to construct the sorted lists for the
two recursive calls in linear time from the given lists. Hence, the building time
T (n) satisfies the recurrence

{o), ifn—1,
Tin)= {0(n)+2T([n/2D, ifn>1,

which solves to O(nlogn). This bound subsumes the time we spend for presort-
ing the points on x- and y-coordinate.

To bound the amount of storage we note that each leaf in the kd-tree stores
a distinct point of P. Hence, there are n leaves. Because a kd-tree is a binary
tree, and every leaf and internal node uses O(1) storage, this implies that the
total amount of storage is O(n). This leads to the following lemma.

Lemma 5.3 A kd-tree for a set of n points uses O(n) storage and can be con-
structed in O(nlogn) time.

We now turn to the query algorithm. The splitting line stored at the root
partitions the plane into two half-planes. The points in the left half-plane are
stored in the left subtree, and the points in the right half-plane are stored in the
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Figure 5.4
Correspondence between nodes in a
kd-tree and regions in the plane
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right subtree. In a sense, the left child of the root corresponds to the left half-
plane and the right child corresponds to the right half-plane. (The convention
used in BUILDKDTREE that the point on the splitting line belongs to the left
subset implies that the left half-plane is closed to the right and the right half-
plane is open to the left.) The other nodes in a kd-tree correspond to a region
of the plane as well. The left child of the left child of the root, for instance,
corresponds to the region bounded to the right by the splitting line stored at
the root and bounded from above by the line stored at the left child of the root.
In general, the region corresponding to a node V is a rectangle, which can be
unbounded on one or more sides. It is bounded by splitting lines stored at
ancestors of v—see Figure 5.4. We denote the region corresponding to a node
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v by region(v). The region of the root of a kd-tree is simply the whole plane.
Observe that a point is stored in the subtree rooted at a node Vv if and only if it
lies in region(v). For instance, the subtree of the node v in Figure 5.4 stores
the points indicated as black dots. Therefore we have to search the subtree
rooted at v only if the query rectangle intersects region(v). This observation
leads to the following query algorithm: we traverse the kd-tree, but visit only
nodes whose region is intersected by the query rectangle. When a region is
fully contained in the query rectangle, we can report all the points stored in
its subtree. When the traversal reaches a leaf, we have to check whether the
point stored at the leaf is contained in the query region and, if so, report it.
Figure 5.5 illustrates the query algorithm. (Note that the kd-tree of Figure 5.5
could not have been constructed by Algorithm BUILDKDTREE; the median
wasn’t always chosen as the split value.) The grey nodes are visited when we
query with the grey rectangle. The node marked with a star corresponds to a
region that is completely contained in the query rectangle; in the figure this
rectangular region is shown darker. Hence, the dark grey subtree rooted at this
node is traversed and all points stored in it are reported. The other leaves that are
visited correspond to regions that are only partially inside the query rectangle.
Hence, the points stored in them must be tested for inclusion in the query range;
this results in points pg and p1; being reported, and points p3, p12, and p;3 not
being reported. The query algorithm is described by the following recursive
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A query on a kd-tree

procedure, which takes as arguments the root of a kd-tree and the query range R.
It uses a subroutine REPORTSUBTREE(V), which traverses the subtree rooted
at a node v and reports all the points stored at its leaves. Recall that lc(v) and
rc(v) denote the left and right child of a node v, respectively.

Algorithm SEARCHKDTREE(V, R)

Input. The root of (a subtree of) a kd-tree, and a range R.
Output. All points at leaves below Vv that lie in the range.
1. ifvisaleaf

2 then Report the point stored at v if it lies in R.

3 else if region(lc(v)) is fully contained in R

4 then REPORTSUBTREE(/c(V))

5. else if region(ic(v)) intersects R

6 then SEARCHKDTREE(Ic(V),R)

7 if region(rc(v)) is fully contained in R {(v)
8 then REPORTSUBTREE(rc(V)) o(v)keft

9. else if region(rc(v)) intersects R

10. then SEARCHKDTREE(r¢(V),R)

The main test the query algorithm performs is whether the query range R
intersects the region corresponding to some node v. To be able to do this test region(lc(v))
we can compute region(Vv) for all nodes v during the preprocessing phase and
store it, but this is not necessary: one can maintain the current region through
the recursive calls using the lines stored in the internal nodes. For instance, the
region corresponding to the left child of a node v at even depth can be computed
from region(v) as follows:

region(V)

region(lc(v)) = region(v) N (V)"

where (V) is the splitting line stored at v, and £(v)"* is the half-plane to the -
left of and including ¢(V). 103
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Observe that the query algorithm above never assumes that the query range
R is arectangle. Indeed, it works for any other query range as well.

We now analyze the time a query with a rectangular range takes.

Lemma 5.4 A query with an axis-parallel rectangle in a kd-tree storing n points
can be performed in O(v/n+ k) time, where k is the number of reported points.

Proof. First of all, note that the time to traverse a subtree and report the points
stored in its leaves is linear in the number of reported points. Hence, the total
time required for traversing subtrees in steps 4 and 8 is O(k), where k is the
total number of reported points. It remains to bound the number of nodes
visited by the query algorithm that are not in one of the traversed subtrees.
(These are the light grey nodes in Figure 5.5.) For each such node v, the query
range properly intersects region(V), that is, region(Vv) is intersected by, but not
fully contained in the range. In other words, the boundary of the query range
intersects region(V). To analyze the number of such nodes, we shall bound the
number of regions intersected by any vertical line. This will give us an upper
bound on the number of regions intersected by the left and right edge of the
query rectangle. The number of regions intersected by the bottom and top edges
of the query range can be bounded in the same way.

Let ¢ be a vertical line, and let T be a kd-tree. Let £(root(T)) be the splitting
line stored at the root of the kd-tree. The line £ intersects either the region to
the left of £(root(T)) or the region to the right of £(root(T)), but not both. This
observation seems to imply that Q(n), the number of intersected regions in a
kd-tree storing a set of n points, satisfies the recurrence Q(n) = 1+ Q(n/2). But
this is not true, because the splitting lines are horizontal at the children of the
root. This means that if the line ¢ intersects for instance region(lc(root(7T)), then
it will always intersect the regions corresponding to both children of lc(root(T)).
Hence, the recursive situation we get is not the same as the original situation,
and the recurrence above is incorrect. To overcome this problem we have to
make sure that the recursive situation is exactly the same as the original situation:
the root of the subtree must contain a vertical splitting line. This leads us to
redefine Q(n) as the number of intersected regions in a kd-tree storing n points
whose root contains a vertical splitting line. To write a recurrence for Q(n) we
now have to go down two steps in the tree. Each of the four nodes at depth
two in the tree corresponds to a region containing n/4 points. (To be precise, a
region can contain at most [[n/2]/2] = [rn/4] points, but asymptotically this
does not influence the outcome of the recurrence below.) Two of the four nodes
correspond to intersected regions, so we have to count the number of intersected
regions in these subtrees recursively. Moreover, ¢ intersects the region of the
root and of one of its children. Hence, Q(n) satisfies the recurrence

{on), ifn=1,
Q(n)_{2+2Q(n/4), ifn> 1.

This recurrence solves to Q(n) = O(y/n). In other words, any vertical line
intersects O(+/n) regions in a kd-tree. In a similar way one can prove that the



total number of regions intersected by a horizontal line is O(y/n). The total
number of regions intersected by the boundary of a rectangular query range is
bounded by O(+/n) as well.

The analysis of the query time that we gave above is rather pessimistic: we
bounded the number of regions intersecting an edge of the query rectangle by the
number of regions intersecting the line through it. In many practical situations
the range will be small. As a result, the edges are short and will intersect much
fewer regions. For example, when we search with a range [x : x| x [y : y]—this
query effectively asks whether the point (x,y) is in the set—the query time is
bounded by O(logn).

The following theorem summarizes the performance of kd-trees.

Theorem 5.5 A kd-tree for a set P of n points in the plane uses O(n) storage
and can be built in O(nlogn) time. A rectangular range query on the kd-tree
takes O(\/n+ k) time, where k is the number of reported points.

Kd-trees can also be used for point sets in 3- or higher-dimensional space.
The construction algorithm is very similar to the planar case: At the root, we
split the set of points into two subsets of roughly the same size by a hyperplane
perpendicular to the xj-axis. In other words, at the root the point set is partitioned
based on the first coordinate of the points. At the children of the root the partition
is based on the second coordinate, at nodes at depth two on the third coordinate,
and so on, until at depth d — 1 we partition on the last coordinate. At depth
d we start all over again, partitioning on first coordinate. The recursion stops
when there is only one point left, which is then stored at a leaf. Because a
d-dimensional kd-tree for a set of n points is a binary tree with n leaves, it uses
O(n) storage. The construction time is O(nlogn). (As usual, we assume d to
be a constant.)

Nodes in a d-dimensional kd-tree correspond to regions, as in the plane. The
query algorithm visits those nodes whose regions are properly intersected by
the query range, and traverses subtrees (to report the points stored in the leaves)
that are rooted at nodes whose region is fully contained in the query range. It
can be shown that the query time is bounded by O(n'~'/4 + k).

5.3 Range Trees

Kd-trees, which were described in the previous section, have O(v/n+ k) query
time. So when the number of reported points is small, the query time is relatively
high. In this section we shall describe another data structure for rectangular
range queries, the range tree, which has a better query time, namely 0(10g2 n—+
k). The price we have to pay for this improvement is an increase in storage from
O(n) for kd-trees to O(nlogn) for range trees.

As we observed before, a 2-dimensional range query is essentially composed of
two 1-dimensional sub-queries, one on the x-coordinate of the points and one
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on the y-coordinate. This gave us the idea to split the given point set alternately
on x- and y-coordinate, leading to the kd-tree. To obtain the range tree, we shall
use this observation in a different way.

Let P be a set of n points in the plane that we want to preprocess for
rectangular range queries. Let [x : X'] x [y : y/| be the query range. We first
concentrate on finding the points whose x-coordinate lies in [x : x'], the x-
interval of the query rectangle, and worry about the y-coordinate later. If we
only care about the x-coordinate then the query is a 1-dimensional range query.
In Section 5.1 we have seen how to answer such a query: with a binary search
tree on the x-coordinate of the points. The query algorithm was roughly as
follows. We search with x and ¥’ in the tree until we get to a node Vsplit Where
the search paths split. From the left child of Vgpjic we continue the search with x,
and at every node v where the search path of x goes left, we report all points
in the right subtree of v. Similarly, we continue the search with x’ at the right
child of vy, and at every node v where the search path of x’ goes right we
report all points in the left subtree of v. Finally, we check the leaves y and '
where the two paths end to see if they contain a point in the range. In effect, we
select a collection of O(logn) subtrees that together contain exactly the points
whose x-coordinate lies in the x-interval of the query rectangle.

Let’s call the subset of points stored in the leaves of the subtree rooted at a
node Vv the canonical subset of v. The canonical subset of the root of the tree,
for instance, is the whole set P. The canonical subset of a leaf is simply the
point stored at that leaf. We denote the canonical subset of node v by P(v). We
have just seen that the subset of points whose x-coordinate lies in a query range
can be expressed as the disjoint union of O(logn) canonical subsets; these are
the sets P(v) of the nodes v that are the roots of the selected subtrees. We are
not interested in all the points in such a canonical subset P(Vv), but only want to
report the ones whose y-coordinate lies in the interval [y : y']. This is another
1-dimensional query, which we can solve, provided we have a binary search tree
on the y-coordinate of the points in P(Vv) available. This leads to the following
data structure for rectangular range queries on a set P of n points in the plane.

m  The main tree is a balanced binary search tree 7T built on the x-coordinate of
the points in P.

m  For any internal or leaf node v in T, the canonical subset P(V) is stored in
a balanced binary search tree Tpss0c(V) on the y-coordinate of the points.
The node Vv stores a pointer to the root of Tyss0c(V), Which is called the
associated structure of v.

This data structure is called a range tree. Figure 5.6 shows the structure of a
range tree. Data structures where nodes have pointers to associated structures
are often called multi-level data structures. The main tree T is then called
the first-level tree, and the associated structures are second-level trees. Multi-
level data structures play an important role in computational geometry; more
examples can be found in Chapters 10 and 16.

A range tree can be constructed with the following recursive algorithm, which
receives as input the set P := {py, ..., p,} of points sorted on x-coordinate and



binary search tree on
x-coordinates

binary search tree
on y-coordinates

P(v)

returns the root of a 2-dimensional range tree T of P. As in the previous section,
we assume that no two points have the same x- or y-coordinate. We shall get rid
of this assumption in Section 5.5.

Algorithm BUILD2DRANGETREE(P)

Input. A set P of points in the plane.

Output. The root of a 2-dimensional range tree.

1. Construct the associated structure: Build a binary search tree Jygs0c On the
set P, of y-coordinates of the points in P. Store at the leaves of Tys50c NOt
just the y-coordinate of the points in P, but the points themselves.

2. if P contains only one point

then Create a leaf v storing this point, and make T4 the associated
structure of v.

4. else Split P into two subsets; one subset Pf; contains the points with
x-coordinate less than or equal to xp,iq, the median x-coordinate,
and the other subset P contains the points with x-coordinate
larger than xyq.

et

5. Vieft < BUILD2DRANGETREE(Pief)

6. Viight <~ BUILD2DRANGETREE(F;ignt)

7. Create a node Vv storing xp;iq, make Vi the left child of v, make
Viight the right child of v, and make T50c the associated structure
of v.

8. return v

Note that in the leaves of the associated structures we do not just store the
y-coordinate of the points but the points themselves. This is important because,
when searching the associated structures, we need to report the points and not
just the y-coordinates.

Lemma 5.6 A range tree on a set of n points in the plane requires O(nlogn)
storage.

Proof. A point p in P is stored only in the associated structure of nodes on the
path in T towards the leaf containing p. Hence, for all nodes at a given depth of 7,
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the point p is stored in exactly one associated structure. Because 1-dimensional
range trees use linear storage it follows that the associated structures of all nodes
at any depth of J together use O(n) storage. The depth of T is O(logn). Hence,
the total amount of storage required is bounded by O(nlogn).

Algorithm BUILD2DRANGETREE as it is described will not result in the
optimal construction time of O(nlogn). To obtain this we have to be a bit
careful. Constructing a binary search tree on an unsorted set of n keys takes
O(nlogn) time. This means that constructing the associated structure in line 1
would take O(nlogn) time. But we can do better if the points in P, are presorted
on y-coordinate; then the binary search tree can be constructed bottom-up in
linear time. During the construction algorithm we therefore maintain the set of
points in two lists, one sorted on x-coordinate and one sorted on y-coordinate.
This way the time we spend at a node in the main tree 7 is linear in the size of
its canonical subset. This implies that the total construction time is the same as
the amount of storage, namely O(nlogn). Since the presorting takes O(nlogn)
time as well, the total construction time is again O(nlogn).

The query algorithm first selects O(logn) canonical subsets that together contain
the points whose x-coordinate lie in the range [x : x']. This can be done with
the 1-dimensional query algorithm. Of those subsets, we then report the points
whose y-coordinate lie in the range [y : y']. For this we also use the 1-dimensional
query algorithmy; this time it is applied to the associated structures that store the
selected canonical subsets. Thus the query algorithm is virtually the same as
the 1-dimensional query algorithm 1DRANGEQUERY; the only difference is
that calls to REPORTSUBTREE are replaced by calls to IDRANGEQUERY.

Algorithm 2DRANGEQUERY(T, [x : X] X [y : y'])

Input. A 2-dimensional range tree T and a range [x : X'] X [y : y'].
Output. All points in T that lie in the range.

1. Vgpiit <~ FINDSPLITNODE(T, x,x")

2. if vgp)j is a leaf

3. then Check if the point stored at Vgpj;c must be reported.

4, else (x Follow the path to x and call IDRANGEQUERY on the subtrees
right of the path. *)

5. V — lC(Vspm)

6. while v is not a leaf

7. do if x < xy

8. then I DRANGEQUERY (Tyssoc (r¢(V)), [y : ¥'])

9. v —lc(v)

10. else v« rc(v)

11. Check if the point stored at v must be reported.

12. Similarly, follow the path from rc(Vgpii) to x’, call IDRANGE-

QUERY with the range [y : y'] on the associated structures of sub-
trees left of the path, and check if the point stored at the leaf where
the path ends must be reported.



Lemma 5.7 A query with an axis-parallel rectangle in a range tree storing n
points takes O(log?n+ k) time, where k is the number of reported points.

Proof. Ateachnode v in the main tree T we spend constant time to decide where
the search path continues, and we possibly call IDRANGEQUERY. Theorem 5.2
states that the time we spend in this recursive call is O(logn + kv ), where ky is
the number of points reported in this call. Hence, the total time we spend is

ZO(logn—i—kv),
v

where the summation is over all nodes in the main tree T that are visited. Notice
that the sum Y, k, equals k, the total number of reported points. Furthermore,
the search paths of x and x’ in the main tree T have length O(logn). Hence,
Y, O(logn) = O(log”n). The lemma follows.

The following theorem summarizes the performance of 2-dimensional range
trees.

Theorem 5.8 Let P be a set of n points in the plane. A range tree for P uses
O(nlogn) storage and can be constructed in O(nlogn) time. By querying this
range tree one can report the points in P that lie in a rectangular query range in
O(log? n+ k) time, where k is the number of reported points.

The query time stated in Theorem 5.8 can be improved to O(logn+k) by a
technique called fractional cascading. This is described in Section 5.6.

5.4 Higher-Dimensional Range Trees

It is fairly straightforward to generalize 2-dimensional range trees to higher-
dimensional range trees. We only describe the global approach.

Let P be a set of points in d-dimensional space. We construct a balanced
binary search tree on the first coordinate of the points. The canonical subset
P(v) of a node Vv in this first-level tree, the main tree, consists of the points
stored in the leaves of the subtree rooted at v. For each node v we construct
an associated structure Tyss0c(V); the second-level tree Tyssoc(V) is a (d — 1)-
dimensional range tree for the points in P(V), restricted to their last d — 1
coordinates. This (d — 1)-dimensional range tree is constructed recursively in
the same way: it is a balanced binary search tree on the second coordinate of the
points, in which each node has a pointer to a (d —2)-dimensional range tree of
the points in its subtree, restricted to the last (d —2) coordinates. The recursion
stops when we are left with points restricted to their last coordinate; these are
stored in a 1-dimensional range tree—a balanced binary search tree.

The query algorithm is also very similar to the 2-dimensional case. We use
the first-level tree to locate O(logn) nodes whose canonical subsets together
contain all the points whose first coordinates are in the correct range. These
canonical subsets are queried further by performing a range query on the cor-
responding second-level structures. In each second-level structure we select
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O(logn) canonical subsets. This means there are O(log>n) canonical subsets
in the second-level structures in total. Together, they contain all points whose
first and second coordinate lie in the correct ranges. The third-level structures
storing these canonical subsets are then queried with the range for the third
coordinate, and so on, until we reach the 1-dimensional trees. In these trees we
find the points whose last coordinate lies in the correct range and report them.
This approach leads to the following result.

Theorem 5.9 Let P be a set of n points in d-dimensional space, where d > 2.
A range tree for P uses O(nlogd_l n) storage and it can be constructed in
O(nlogd” n) time. One can report the points in P that lie in a rectangular query
range in 0(logd n+k) time, where k is the number of reported points.

Proof. Let Ty(n) denote the construction time for a range tree on a set of n points
in d-dimensional space. By Theorem 5.8 we know that 7 (n) = O(nlogn). The
construction of a d-dimensional range tree consists of building a balanced binary
search tree, which takes time O(nlogn), and the construction of associated
structures. At the nodes at any depth of the first-level tree, each point is stored
in exactly one associated structure. The time required to build all associated
structures of the nodes at some depth is O(7,_;(n)), the time required to build
the associated structure of the root. This follows because the building time is at
least linear. Hence, the total construction time satisfies

T;(n) = O(nlogn) 4+ O(logn) - Ty— (n).

Since T»(n) = O(nlogn), this recurrence solves to O(nlog? ' n). The bound
on the amount of storage follows in the same way.

Let Q4(n) denote the time spent in querying a d-dimensional range tree on
n points, not counting the time to report points. Querying the d-dimensional
range tree involves searching in a first-level tree, which takes time O(logn), and
querying a logarithmic number of (d — 1)-dimensional range trees. Hence,

Q4(n) = O(logn) + O(logn) - Q4—1(n),

where Q»(n) = O(log® n). This recurrence easily solves to Qy(n) = O(log? n).
We still have to add the time needed to report points, which is bounded by O(k).
The bound on the query time follows.

As in the 2-dimensional case, the query time can be improved by a logarith-
mic factor—see Section 5.6.

5.5 General Sets of Points

Until now we imposed the restriction that no two points have equal x- or y-
coordinate, which is highly unrealistic. Fortunately, this is easy to remedy. The
crucial observation is that we never assumed the coordinate values to be real
numbers. We only need that they come from a totally ordered universe, so that



we can compare any two coordinates and compute medians. Therefore we can
use the trick described next.

We replace the coordinates, which are real numbers, by elements of the so-called
composite-number space. The elements of this space are pairs of reals. The
composite number of two reals a and b is denoted by (a|b). We define a total
order on the composite-number space by using a lexicographic order. So, for
two composite numbers (a|b) and (d'|b’), we have

(alb) < (d|b)) & a<dor(a=d andb<b).

Now assume we are given a set P of n points in the plane. The points are
distinct, but many points can have the same x- or y-coordinate. We replace each
point p := (py, py) by a new point p := ((px|py), (py|px)) that has composite
numbers as coordinate values. This way we obtain a new set Pofn points.
The first coordinate of any two points in P are distinct; the same holds true for
the second coordinate. Using the order defined above one can now construct
kd-trees and 2-dimensional range trees for P.

Now suppose we want to report the points of P that lie in a range R :=
[x:x]x[y:y]. To this end we must query the tree we have constructed for P.
This means that we must also transform the query range to our new composite
space. The transformed range R is defined as follows:

R:=[(x] —o0) : ('] +o0)] x [(¥] = 20) : (/| +0)]-

It remains to prove that our approach is correct, that is, that the points of P that
we report when we query with R correspond exactly to the points of P that lie in
R.

Lemma 5.10 Let p be a point and R a rectangular range. Then
PER & pe R.

Proof. LetR:= [x:x'] x [y:y'] and let p := (px, py). By definition, p lies in R
if and only if x < p, <x’ and y < py <y'. This is easily seen to hold if and only
if (x] = o0) < (pxlpy) < (8] +e0) and (y] = o) < (py|px) < ('] + o), that is, if

~

and only if p lies in R. Hl

We can conclude that our approach is indeed correct: we will get the correct
answer to a query. Observe that there is no need to actually store the transformed
points: we can just store the original points, provided that we do comparisons
between two x-coordinates or two y-coordinates in the composite space.

The approach of using composite numbers can also be used in higher dimen-
sions.

5.6* Fractional Cascading

In Section 5.3 we described a data structure for rectangular range queries in the
plane, the range tree, whose query time is O(logzn + k). (Here n is the total
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number of points stored in the data structure, and k is the number of reported
points.) In this section we describe a technique, called fractional cascading, to
reduce the query time to O(logn+k).

Let’s briefly recall how a range tree works. A range tree for a set P of points
in the plane is a two-level data structure. The main tree is a binary search
tree on the x-coordinate of the points. Each node v in the main tree has an
associated structure Tyss0¢(V), Which is a binary search tree on the y-coordinate
of the points in P(Vv), the canonical subset of v. A query with a rectangular
range [x: X'] x [y :y'] is performed as follows: First, a collection of O(logn)
nodes in the main tree is identified whose canonical subsets together contain the
points with x-coordinate in the range [x : x']. Second, the associated structures of
these nodes are queried with the range [y : y']. Querying an associated structure
Tassoc (V) is a 1-dimensional range query, so it takes O(logn + ky ) time, where
ky is the number of reported points. Hence, the total query time is O(log® n + k).

If we could perform the searches in the associated structures in O(1 + k)
time, then the total query time would reduce to O(logn + k). But how can we
do this? In general, it is not possible to answer a 1-dimensional range query in
O(1+ k) time, with k the number of answers. What saves us is that we have to
do many 1-dimensional searches with the same range, and that we can use the
result of one search to speed up other searches.

We first illustrate the idea of fractional cascading with a simple example. Let S
and S, be two sets of objects, where each object has a key that is a real number.
These sets are stored in sorted order in arrays A; and A;. Suppose we want to
report all objects in S; and in S, whose keys lie in a query interval [y : y']. We
can do this as follows: we do a binary search with y in A; to find the smallest
key larger than or equal to y. From there we walk through the array to the right,
reporting the objects we pass, until a key larger than y’ is encountered. The
objects from S, can be reported in a similar fashion. If the total number of
reported objects is k, then the query time will be O(k) plus the time for two
binary searches, one in A| and one in A;. If, however, the keys of the objects in
S> are a subset of the keys of the objects in S, then we can avoid the second
binary search as follows. We add pointers from the entries in A to the entries
in Ap: if A1 [i] stores an object with key y;, then we store a pointer to the entry
in A, with the smallest key larger than or equal to y;. If there is no such key
then the pointer from A; [i] is nil. Figure 5.7 illustrates this. (Only the keys are
shown in this figure, not the corresponding objects.)

How can we use this structure to report the objects in S7 and S, whose keys
are in a query interval [y : y']? Reporting the objects in S; is still done as before:
do a binary search with y in Ay, and walk through A to the right until a key
larger than y' is encountered. To report the points from S, we proceed as follows.
Let the search for y in A; end at A[i]. Hence, the key of A[{] is the smallest one
in S that is larger than or equal to y. Since the keys from S, form a subset of
the keys from S}, this means that the pointer from A[¢] must point to the smallest
key from S, larger than or equal to y. Hence, we can follow this pointer, and
from there start to walk to the right through A;. This way the binary search in



Ap | 31019 30 |37 ({59 | 62| 70 | 80 | 100 | 105

Ay 10 19 62 70 80 100

Aj is avoided, and reporting the objects from S, takes only O(1 + k) time, with
k the number of reported answers.

Figure 5.7 shows an example of a query. We query with the range [20 : 65].

First we use binary search in A; to find 23, the smallest key larger than or equal
to 20. From there we walk to the right until we encounter a key larger than

65. The objects that we pass have their keys in the range, so they are reported.

Then we follow the pointer from 23 into A;. We get to the key 30, which is the
smallest one larger than or equal to 20 in A;. From there we also walk to the
right until we reach a key larger than 65, and report the objects from S, whose
keys are in the range.

Now let’s return to range trees. The crucial observation here is that the canonical
subsets P(lc(v)) and P(rc(v)) both are subsets of P(v). As a result we can
use the same idea to speed up the query time. The details are slightly more
complicated, because we now have two subsets of P(v) to which we need
fast access rather than only one. Let T be a range tree on a set P of n points

in the plane. Each canonical subset P(Vv) is stored in an associated structure.

But instead of using a binary search tree as associated structure, as we did
in Section 5.3, we now store it in an array A(v). The array is sorted on the
y-coordinate of the points. Furthermore, each entry in an array A(V) stores two
pointers: a pointer into A(lc(v)) and a pointer into A(rc(v)). More precisely,
we add the following pointers. Suppose that A(V)[i] stores a point p. Then we
store a pointer from A(Vv)[i] to the entry of A(lc(Vv)) such that the y-coordinate of
the point p’ stored there is the smallest one larger than or equal to py. As noted
above, P(lc(Vv)) is a subset of P(v). Hence, if p has the smallest y-coordinate
larger than or equal to some value y of any point in P(V), then p’ has the smallest
y-coordinate larger than or equal to y of any point in P(lc(v)). The pointer
into A(rc(V)) is defined in the same way: it points to the entry such that the
y-coordinate of the point stored there is the smallest one that is larger than or
equal to p,.

This modified version of the range tree is called a layered range tree;
Figures 5.8 and 5.9 show an example. (The positions in which the arrays are
drawn corresponds to the positions of the nodes in the tree they are associated
with: the topmost array is associated with the root, the left array below it is
associated with the left child of the root, and so on. Not all pointers are shown
in the figure.)

Let’s see how to answer a query with a range [x : x’] X [y : Y] in a layered
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Figure 5.8

The main tree of a layered range tree:
(2,19) (7,10) (12,3) (17,62) (21,49) (41,95) (58,59) (93,70)

the leaves show only the x-coordinates;
the points stored are given below (5,80) (8,37) (15,99) (33,30) (52,23) (67,89)
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Figure 5.9

The arrays associated with the nodes in
the main tree, with the y-coordinate of
the points of the canonical subsets in
sorted order (not all pointers are shown) Yyvy Yv Vv Vv yvoyy v
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range tree. As before we search with x and x’ in the main tree T to determine
O(logn) nodes whose canonical subsets together contain the points with x-
coordinate in the range [x : x']. These nodes are found as follows. Let Vsplit be
the node where the two search paths split. The nodes that we are looking for
are the ones below Vqp; that are the right child of a node on the search path to x
where the path goes left, or the left child of a node on the search path to x’ where
the path goes right. At vy, we find the entry in A(vspm) whose y-coordinate is
the smallest one larger than or equal to y. This can be done in O(logn) time by
binary search. While we search further with x and x’ in the main tree, we keep
track of the entry in the associated arrays whose y-coordinate is the smallest one
larger than or equal to y. They can be maintained in constant time by following
the pointers stored in the arrays. Now let v be one of the O(logn) nodes we
selected. We must report the points stored in A(v) whose y-coordinate is in
the range [y : y'|. For this it suffices to be able to find the point with smallest
y-coordinate larger than or equal to y; from there we can just walk through the
array, reporting points as long as their y-coordinate is less than or equal to y'.
This point can be found in constant time, because parent(Vv) is on the search
path, and we kept track of the points with smallest y-coordinate larger than or
equal to y in the arrays on the search path. Hence, we can report the points of
A(V) whose y-coordinate is in the range [y : y'] in O(1 +ky) time, where ky, is
the number of reported answers at node v. The total query time now becomes
O(logn+k).

Fractional cascading also improves the query time of higher-dimensional range
trees by a logarithmic factor. Recall that a d-dimensional range query was
solved by first selecting the points whose d-th coordinate is in the correct range
in O(logn) canonical subsets, and then solving a (d — 1)-dimensional query
on these subsets. The (d — 1)-dimensional query is solved recursively in the
same way. This continues until we arrive at a 2-dimensional query, which can
be solved as described above. This leads to the following theorem.

Theorem 5.11 Let P be a set of n points in d-dimensional space, withd > 2. A
layered range tree for P uses O(nlogd_1 n) storage and it can be constructed in
O(nlogd_1 n) time. With this range tree one can report the points in P that lie
in a rectangular query range in O(log? ' n+ k) time, where k is the number of
reported points.

5.7 Notes and Comments

In the 1970s—the early days of computational geometry—orthogonal range
searching was one of the most important problems in the field, and many people
worked on it. This resulted in a large number of results, of which we discuss a
few below.

One of the first data structures for orthogonal range searching was the
quadtree, which is discussed in Chapter 14 in the context of meshing. Un-
fortunately, the worst-case behavior of quadtrees is quite bad. Kd-trees, de-
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scribed first by Bentley [44] in 1975, are an improvement over quadtrees.
Samet’s books [333, 334] discuss quadtrees, kd-trees, and their applications
in great detail. A few years later, the range tree was discovered indepen-
dently by several people [46, 251, 261, 387]. The improvement in query time
to O(logn + k) by fractional cascading was described by Lueker [261] and
Willard [386]. Fractional cascading applies in fact not only to range trees, but
in many situations where one does many searches with the same key. Chazelle
and Guibas [105, 106] discuss this technique in its full generality. Fractional
cascading can also be used in a dynamic setting [275]. The most efficient
data structure for 2-dimensional range queries is a modified version of the
layered range tree, described by Chazelle [87]; he succeeded in improving
the storage to O(nlogn/loglogn) while keeping the query time O(logn +k).
Chazelle [90, 91] also proved that this is optimal. If the query range is un-
bounded to one side, for instance when it is of the form [x : x'] x [y : +o9],
then one can achieve O(logn) query time with only linear space, using a pri-
ority search tree—see Chapter 10. In higher dimensions the best result for
orthogonal range searching is also due to Chazelle [90]: he gave a structure for
d-dimensional queries with O(n(logn/loglogn)¢~") storage and polylogarith-
mic query time. Again, this result is optimal. Trade-offs between storage and
query time are also possible [338, 391].

The lower-bound result is only valid under certain models of computation.
This allows for improved results in specific cases. In particular, Overmars [300]
describes more efficient data structures for range searching when the points lie
onaU x U grid, yielding query time bounds of O(loglogU +k) or O(\/U +k),
depending on the preprocessing time allowed. The results use data structures
described earlier by Willard [389, 390]. When compared with the general case,
better time bounds can be obtained for many problems in computational ge-
ometry once the coordinates of the objects are restricted to lie on grid points.
Examples are the nearest neighbor searching problem [224, 225], point loca-
tion [287], and line segment intersection [226].

In databases, range queries are considered the most general of three basic types
of multi-dimensional queries. The two other types are exact match queries
and partial match queries. Exact match queries are simply queries of the
type: Is the object (point) with attribute values (coordinates) such and such
present in the database? The obvious data structure for exact match queries
is the balanced binary tree that uses, for instance, a lexicographical order on
the coordinates. With this structure exact match queries can be answered in
O(logn) time. If the dimension—the number of attributes—increases, it can
be useful to express the efficiency of queries not only in terms of n, but also
in the dimension d. If a binary tree is used for exact match queries, the query
time is O(dlogn) because it takes O(d) time to compare two points. This can
easily be reduced to O(d +logn) time, which is optimal. A partial match query
specifies only a value for a subset of the coordinates and asks for all points with
the specified coordinate values. In the plane, for instance, a partial match query
specifies only an x-coordinate, or only a y-coordinate. Interpreted geometrically,
a partial match query in the plane asks for the points on a horizontal line, or on



a vertical line. With a d-dimensional kd-tree, a partial match query specifying s
coordinates (with s < d) can be answered in O(nl"“/ dy k) time, where k is the
number of reported points [44].

In many applications the data that we are given are not a set of points, but a
set of certain objects such as polygons. If we want to report the objects that
are completely contained in a query range [x : x'] x [y : y'], then it is possible
to transform the query to a query on point data in higher dimensions—see
Exercise 5.13. Often one also wants to find the objects that are only partially
in the range. This specific problem is called the windowing problem and is
discussed in Chapter 10.

Other variants of the range searching problem are obtained by allowing
other types of query ranges, such as circles or triangles. Many of these variants

can be solved using so-called partition trees, which are discussed in Chapter 16.

5.8 Exercises

5.1 In the proof of the query time of the kd-tree we found the following

recurrence:
{o), ifn=1,
Qm) = {2+2Q(n/4), ifn> 1.

Prove that this recurrence solves to Q(n) = O(y/n). Also show that
Q(+/n) is a lower bound for querying in a kd-tree by defining a set of n
points and a query rectangle appropriately.

5.2 Describe algorithms to insert and delete points from a kd-tree. In your
algorithm you do not need to take care of rebalancing the structure.

5.3 In Section 5.2 it was indicated that kd-trees can also be used to store
sets of points in higher-dimensional space. Let P be a set of n points
in d-dimensional space. In parts a. and b. you may consider d to be a
constant.

a. Describe an algorithm to construct a d-dimensional kd-tree for the
points in P. Prove that the tree uses linear storage and that your
algorithm takes O(nlogn) time.

b. Describe the query algorithm for performing a d-dimensional range
query. Prove that the query time is bounded by O(n' ="/ 1 k).

c. Show that the dependence on d in the amount of storage is linear, that
is, show that the amount of storage is O(dn) if we do not consider d to
be a constant. Give the dependence on d of the construction time and
the query time as well.

5.4 Kd-trees can be used for partial match queries. A 2-dimensional partial
match query specifies a value for one of the coordinates and asks for
all points that have that value for the specified coordinate. In higher
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5.5

5.6

5.7

5.8

dimensions we specify values for a subset of the coordinates. Here we
allow multiple points to have equal values for coordinates.

a. Show that 2-dimensional kd-trees can answer partial match queries in
O(\/n+ k) time, where k is the number of reported answers.

b. Explain how to use a 2-dimensional range tree to answer partial match
queries. What is the resulting query time?

c. Describe a data structure that uses linear storage and solves 2-dimen-
sional partial match queries in O(logn + k) time.

d. Show that with a d-dimensional kd-tree we can solve a d-dimensional
partial match query in O(n' =%/ 4 k) time, where s (with s < d) is the
number of specified coordinates.

e. Describe a data structure that uses linear storage and that can answer
d-dimensional partial match queries in O(logn + k) time. Hint: Use a
structure whose dependence on d in the amount of storage is exponen-
tial (more precisely, a structure that uses O(d2%n) storage).

Algorithm SEARCHKDTREE can also be used when querying with other
ranges than rectangles. For example, a query is answered correctly if the
range is a triangle.

a. Show that the query time for range queries with triangles is linear in
the worst case, even if no answers are reported at all. Hint: Choose all
points to be stored in the kd-tree on the line y = x.

b. Suppose that a data structure is needed that can answer triangular range
queries, but only for triangles whose edges are horizontal, vertical,
or have slope +1 or —1. Develop a linear size data structure that
answers such range queries in O(n*/* k) time, where k is the number
of points reported. Hint: Choose 4 coordinate axes in the plane and
use a 4-dimensional kd-tree.

c. Improve the query time to O(nz/ 3+ k). Hint: Solve Exercise 5.4 first.

Describe algorithms to insert and delete points from a range tree. You
don’t have to take care of rebalancing the structure.

In the proof of Lemma 5.7 we made a rather rough estimate of the query
time in the associated structures by stating that this was bounded by
O(logn). In reality the query time is dependent on the actual number of
points in the associated structure. Let n,, denote the number of points in
the canonical subset P(Vv). Then the total time spent is

Z@(lognv +kv),
v

where the summation is over all nodes in the main tree 7 that are vis-
ited. Show that this bound is still ®(log?n + k). (That is, our more
careful analysis only improves the constant in the bound, not the order of
magnitude.)

Theorem 5.8 showed that a range tree on a set of n points in the plane
requires O(nlogn) storage. One could bring down the storage require-



5.9

5.10

5.11

5.12

ments by storing associated structures only with a subset of the nodes in
the main tree.

a. Suppose that only the nodes with depth 0, 2, 4, 6, ... have an associated
structure. Show how the query algorithm can be adapted to answer
queries correctly.

b. Analyze the storage requirements and query time of such a data struc-
ture.

c. Suppose that only the nodes with depth 0, L% logn], L% logn], ... have
an associated structure, where j > 2 is a constant. Analyze the storage
requirements and query time of this data structure. Express the bounds
inn and j.

One can use the data structures described in this chapter to determine
whether a particular point (a,b) is in a given set by performing a range
query with range [a : a] X [b: b].

a. Prove that performing such a range query on a kd-tree takes time
O(logn).

b. What is the time bound for such a query on a range tree? Prove your
answer.

In some applications one is interested only in the number of points that
lie in a range rather than in reporting all of them. Such queries are often
referred to as range counting queries. In this case one would like to avoid
having an additive term of O(k) in the query time.

a. Describe how a 1-dimensional range tree can be adapted such that a
range counting query can be performed in O(logn) time. Prove the
query time bound.

b. Using the solution to the 1-dimensional problem, describe how d-
dimensional range counting queries can be answered in O(log? n)
time. Prove the query time.

c.* Describe how fractional cascading can be used to improve the running
time with a factor of O(logn) for 2- and higher-dimensional range
counting queries.

Let S} be a set of # disjoint horizontal line segments and let S» be a set
of m disjoint vertical line segments. Give a plane-sweep algorithm that
counts in O((n+m)log(n+m)) time how many intersections there are
inS; USs.

In Section 5.5 it was shown that one can treat sets of points in the plane
that contain equal coordinate values using composite numbers. Extend
this notion to points in d-dimensional space. To this end you should define
the composite number of d numbers and define an appropriate order on
them. Next, show how to transform the point p := (py,...,ps) and the
range R := [ry : r}] X -+ X [rq : ¥;] using this order; the transformation
should be such that p € R if and only if the transformed point lies in the
transformed range.
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a. Let S be a set of n axis-parallel rectangles in the plane. We want to
be able to report all rectangles in S that are completely contained in
a query rectangle [x : x'] X [y : y']. Describe a data structure for this
problem that uses O(nlog®n) storage and has O(log*n + k) query
time, where k is the number of reported answers. Hint: Transform the
problem to an orthogonal range searching problem in some higher-
dimensional space.

b. Let P consist of a set of n polygons in the plane. Again describe
a data structure that uses O(nlog>n) storage and has O(log*n + k)
query time to report all polygons completely contained in the query
rectangle, where k is the number of reported answers.

c.* Improve the query time of your solutions (both for a. and b.) to
O(log*n+k).

5.14* Prove the O(nlog?~! n) bounds on the storage and construction time in
Theorem 5.11.
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6 Point Location
Knowing Where You Are

This book has, for the most part, been written in Europe. More precisely, it has
been written very close to a point at longitude 5°6’ east and latitude 52°3’ north.
Where that is? You can find that out yourself from a map of Europe: using the
scales on the sides of the map, you will find that the point with the coordinates
stated above is located in a little country named “the Netherlands”.

In this way you would have answered a point location query: Given a map
and a query point g specified by its coordinates, find the region of the map
containing g. A map, of course, is nothing more than a subdivision of the plane
into regions, a planar subdivision, as defined in Chapter 2.

5°6'

Figure 6.1
Point location in a map

Point location queries arise in various settings. Suppose that you are sailing on
a sea with sand banks and dangerous currents in various parts of it. To be able
to navigate safely, you will have to know the current at your present position.
Fortunately there are maps that indicate the kind of current in the various parts
of the sea. To use such a map, you will have to do the following. First, you must
determine your position. Until not so long ago, you would have to rely for this 121
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on the stars or the sun, and a good chronometer. Nowadays it is much easier
to determine your position: there are little boxes on the market that compute
your position for you, using information from various satellites. Once you have
determined the coordinates of your position, you will have to locate the point on
the map showing the currents, or to find the region of the sea you are presently
in.

One step further would be to automate this last step: store the map electroni-
cally, and let the computer do the point location for you. It could then display
the current—or any other information for which you have a thematic map in
electronic form—of the region you are in continuously. In this situation we have
a set of presumably rather detailed thematic maps and we want to answer point
location queries frequently, to update the displayed information while the ship
is moving. This means that we will want to preprocess the maps, and to store
them in a data structure that makes it possible to answer point location queries
fast.

Point location problems arise on a quite different scale as well. Assume that we
want to implement an interactive geographic information system that displays a
map on a screen. By clicking with the mouse on a country, the user can retrieve
information about that country. While the mouse is moved the system should
display the name of the country underneath the mouse pointer somewhere on
the screen. Every time the mouse is moved, the system has to recompute which
name to display. Clearly this is a point location problem in the map displayed
on the screen, with the mouse position as the query point. These queries occur
with high frequency—after all, we want to update the screen information in real
time—and therefore have to be answered fast. Again, we need a data structure
that supports fast point location queries.

6.1 Point Location and Trapezoidal Maps

Let 8 be a planar subdivision with n edges. The planar point location problem
is to store S in such a way that we can answer queries of the following type:
Given a query point ¢, report the face f of S that contains ¢g. If ¢ lies on an edge
or coincides with a vertex, the query algorithm should return this information.

To get some insight into the problem, let’s first give a very simple data structure
to perform point location queries. We draw vertical lines through all vertices of
the subdivision, as in Figure 6.2. This partitions the plane into vertical slabs.
We store the x-coordinates of the vertices in sorted order in an array. This
makes it possible to determine in O(logn) time the slab that contains a query
point g. Within a slab, there are no vertices of S. This means that the part of the
subdivision lying inside the slab has a special form: all edges intersecting a slab
completely cross it—they have no endpoint in the slab—and they don’t cross
each other. This means that they can be ordered from top to bottom. Notice
that every region in the slab between two consecutive edges belongs to a unique
face of 8. The lowest and highest region of the slab are unbounded, and are part
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Figure 6.2
Partition into slabs

of the unbounded face of S. The special structure of the edges intersecting a
slab implies that we can store them in sorted order in an array. We label each
edge with the face of § that is immediately above it inside the slab.

The total query algorithm is now as follows. First, we do a binary search
with the x-coordinate of the query point g in the array storing the x-coordinates
of the vertices of the subdivision. This tells us the slab containing g. Then we
do a binary search with g in the array for that slab. The elementary operation
in this binary search is: Given a segment s and a point g such that the vertical
line through ¢ intersects s, determine whether ¢ lies above s, below s, or on s.
This tells us the segment directly below ¢, provided there is one. The label
stored with that segment is the face of & containing ¢. If we find that there is no
segment below ¢ then ¢ lies