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About This Book
You can benefit from reading this book if you are interested in supplementing

pre-calculus math studies with a secondary book or seeking a non-traditional

approach to introductory studies of mathematics. This book is suitable for game

developers because it provides a playful approach to learning math. Its use of

Visual Formula provides a ready way for anyone to explore pre-calculus math in

a ready, creative way.

Who Should Read This Book

This book is suitable for anyone who is seeking fundamental knowledge of

algebra and trigonometry. It is also ideal if you are seeking friendly software to help

you along with your studies of math. While it does not provide a comprehensive

examination of either subject, it focuses on those areas that prove essential to

success in pre-calculus studies. This book also provides you with software that

allows you to explore its topics in a way that is engaging and easy to manage.

The Chapters

Chapter 1 provides you with an introduction to the philosophy of this book. It

also provides you with a first glimpse of Visual Formula.

Chapter 2 dwells on number systems and the properties you can apply to them.

In addition, you explore notions concerning sets and ways to work with sets. You

also experience your first user session with Visual Formula.

xiii
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Chapter 3 takes you into a review of exponential and radical numbers.

Chapter 4 allows you to explore the essentials of such notions as domains and

ranges, factoring, and functions.

Chapter 5 provides a deeper view of working with functions and extends the

discussion into inequalities.

Chapter 6 furnishes you with discussion of the lines, slopes, and intercepts.

Chapter 7 includes the distance formula, translation, and shifting. The topics also

include uses of inverse and absolute values.

Chapter 8 ventures into polynomial equations, the FOIL method, and long

division involving polynomials.

Chapter 9 centers on solving quadratic equations. Among the topics are com-

pleting the square and working with the discriminant.

Chapter 10 showcases the use of Visual Formula. Although you explore Visual

Formula in almost every chapter in the book, Chapter 10 provides you with a

multitude of examples that allow you to deepen and broaden your knowledge of

how to use Visual Formula.

Chapter 11 involves you in a discussion of systems of equations and matrices.

You explore equations with two, three, and more variables.

Chapter 12 finishes off your study by introducing several topics of trigonometry.

Among these are the six basic ratios of trigonometry and their associated functions.

Appendix A provides you with solutions to the problems the book provides.

Appendix B shows you how to install Visual Formula and obtain support packages

from Microsoft.

The CD

You can find Visual Formula on the CD that accompanies this book. Instructions

for installing Visual Formula appear in Appendix B, which is also on the CD. In

addition, you can find an additional software package called Visual Code on the

CD. While Visual Code allows you to explore programming pre-calculus pro-

blems using C#, no reference is made to it in the book.
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Answers to the Exercises

You’ll find the solutions to almost all of the problems in this text in Appendix A,

which is available as a PDF file on the CD. The solutions are worked out. Most

math books do not provide worked out problems, so the appendix that contains

them is fairly long and must be presented electronically.

Worked-out means precisely that: rather than just an answer, you find the

solution to each problem presented in steps, much as you might expect to find

them in an instructor’s guide.

In addition to the CD, you can find the solutions on the book’s Internet site

(www.courseptr.com). If additions or corrections are added to the versions you

find on the CD, then notice of these will be posted on the Internet site. Otherwise,

you can assume that the Internet and CD versions are the same.

www.courseptr.com
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About
Pre-Calculus

It is shocking to find how many people do not believe they can learn, and

how many more believe learning to be difficult.
—Frank Herbert, Dune (from ‘‘The Humanity of Maud’Dib’’

by the Princess Irulan)

This book attempts, amongother things, to presentmath in a fairly open-endedway.

It offerswhat youmight viewas a conversational approach tomath,which is anolder

wayof teachingmath. If you survey thehistory ofmathbooks, you see that a hundred

or more years ago authors often tended to teach math using dialogues. In other

words, as a reader youwould follow a conversation among twoormore characters in

a dialogue, much along the lines of reading a play. That is not precisely the way this

book unfolds, but it is in the background. This book draws from experiences of

teaching in computer game development and play settings. When you learn to

develop or play a computer game, you seldom stand back and spend a long while

learning formal rules. Instead, you follow a path that involves immediately immers-

ing yourself in playing or developing the game. This book tries to follow the same

path. It attempts tomake learning aboutmathmore an activity of conversation than

of applying rules. Your study of math then becomes a relaxed form of conversation.

To explore this notion in a bit more detail, this chapter offers the following topics:

n Language and conversation

n Visual Formula as a way to play games with math

n Starting the conversation with algebra and trigonometry
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Talk of Math
In a short book about his life, friends, colleagues, and thoughts called A Math-

ematician’s Apology, the renowned mathematician G. H. Hardy wrote, ‘‘It is quite

true that most people can do nothing well.’’ The value of such a reflection in an

autobiographical work by one of the great mathematicians of the twentieth

century is that it proves to be one of the most helpful of all beginnings for

someone trying to learn math. Professor Hardy’s contention was not an attempt

to disgrace or criticize anyone. In fact, more than anything else, it was an

observation about his own discovery of his love of math.

One of the world’s greatest mathematicians, he did not regard math as something

he did particularly well. In fact, he did not really care whether he did it parti-

cularly well. He just did it. That he could just do it, without consideration of what

others thought or whether what he did he did particularly well allowed him to

become a preeminent mathematician.

Most people do not have this perspective when they attempt to advance their

study of math. Further, math teaching often promotes the notion that if you are

going to do math, then you must do it well. If you do not do it well, then you

are advised to find something else to do. The consequences of this approach are

somewhat enormous. Consider, for example, that in places like the United States,

some experts say that around 90 percent of the population is math illiterate.

Granted, that figure might be exaggerated, but even if you lower the figure, the

fact is that most people go through their lives and spend almost no time at all

doing or learning math.

It is easy to get the impression that being able to do math is something along the

lines of a genetically established capability. If you are genetically endowed, it is

worth your while to involve yourself in it. Otherwise, you need to find something

else to do.

Imagine what it would be like if participating in conversations with friends,

relatives, and others was based on such an assumption. You might find your

cell phone privileges revoked. You might find yourself barred from cafes,

political meetings, school lunchrooms, and churches. You might have to take a

test before being allowed to order a sandwich or tell your neighbor good

morning.

Such notions are extreme and absurd, but it remains that if you speak with people

who have given up on math, you often find such reasoning at work.
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Why don’t people allow themselves to just do it, even badly, in the same way that

they talk or ride a bicycle? Why isn’t it open for exploration and enjoyment in the

same way that conversation is open for exploration and enjoyment?Why is it that

it has to be presented in a context in which G. H. Hardy’s observation is com-

pletely forgotten?

These are not intended as criticisms. Many math teachers do, indeed, seem to

agree with Professor Hardy. On the other hand, many clearly do not. As one

student reported after failing introductory calculus, ‘‘The teacher told us that the

purpose of first-year calculus is to determine who cannot do math.’’

Most People
To pursue Professor Hardy’s notion a step further, consider that many people

cannot tell you the difference between a participle and an infinitive. Still, they

carry on endless conversations. Such conversations go in many directions and

ultimately end up leading to beneficial results.

The student who contended that college calculus is a way that college professors

determine who cannot do math lacked the perspective afforded by a trade school

teacher who once remarked, ‘‘Not everyone can do all the math that there is to

do, but almost everyone can do some.’’

This perspective could probably cause something on the order of a revolution if

extended to encompass college classrooms and other arenas in which people set

about trying to learn math. This perspective ultimately leads to the idea that

math can become a medium of conversation.

When something is a medium of conversation, it becomes a language itself rather

than a topic you address using a language. You just do it. You do not question

whether you can do it, have the genetic capacity to do it, or have earned the right

to do it.

Professor Hardy’s notion was that math is a medium of conversation, something

you just do. When you do it, you do not need to make the first question one of

whether you do it well. You do not need to judge yourself or be judged.

Places for Games
Some games are matters of play. Others are matters of rules. Most are mixtures of

both. A game that is wholly defined by play might not have goals or ways of
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winning. It might be something akin to an ongoing conversation in which the

objective is one of just continuing to converse.

Rules strictly regulate other games, to the point that there seems to be almost no

play at all. The focus of such games is on winning. The play is often reduced to the

exercise of meticulously planned strategies.

Figure 1.1 provides a simple rendition of these notions. A game is a context in

which you can explore play or rules. It can work in any number of ways. Games

are endless. Some people play games to figure out rules. Others play games to

apply rules. Still others play to defy rules.

When you deal with math as a conversation, it becomes a game that you can play

in many ways. The rules can become secondary. The play can become secondary.

Carrying on the conversation becomes an activity of making things up as you go

along.

4 Chapter 1 n About Pre-Calculus
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How is this possible? It is possible in the same way that a coffee shop or a shaded

spot on a sidewalk becomes a place in which people carry on conversations. Such

conversations emerge from the daily activity of life. They emerge because they do

not require you to do anything other than what you are doing.

The notion that conversation can simply spring to life in any given setting is in

part one of the reasons that this book presents its topics in an essential, ran-

domized way. The essential presentation eschews ‘‘word problems.’’ While word

problems are tremendously important and are hardly ever left out of standard

math textbooks, in this context they are left out so that when you decide to flick

to a page and begin a conversation, you can do so immediately.

This is a book of beginnings. It seeks no end other than providing the most direct

possible inroad to a few starting points in your exploration of math. It leaves out

much more than it includes. It avoids systematic learning. It strives instead to be

analogous to a shaded place on a sidewalk or a table in a cafe.

Computer Games and Classrooms
When it comes to the conversation math provides, many people know only

silence or something near silence. It is not even a conversation in a foreign

language for these people. It is not a conversation at all. They have abandoned it

because they have learned that they do not do it well and therefore should not do

it at all.

In many classrooms, math is taught in a non-conversational, exclusionary way.

People who do well with such studies find such settings perfectly comfortable.

They do not learn what they cannot do. Others find the case the complete

opposite. They learn only what they cannot do.

An alternative approach to the classroom would be to make it so that each day

the goal is to find something everyone can do. Each day becomes an occasion of

confirmation.

This book endeavors to be such a classroom. Professor Hardy, it is hoped, would

approve. You are here because you want to carry on a conversation. The con-

versation has no solid end or aim beyond continuing the conversation.

This book is about mathematics for computer game development in the sense

that it provides an approach to math that draws from classrooms in which

computer game development and play have been the central activities. Such
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activities have shaped the understanding and teaching practices of the author. In

such classrooms, the notion has prevailed that each day of class can offer

something to everyone.

What characterizes a classroom extends to the games played and developed in

classrooms. A computer program that allows you to converse mathematically or

otherwise on an open basis often ends up being a computer game. What dis-

tinguishes a computer game from a computer application, a calculator, or a

program is its extensibility—its open-endedness. A computer game that brings

an open-ended, conversational experience to you becomes something similar to a

shaded place on a sidewalk or a coffee shop.

Visual Formula
This book makes use of a computer game that provides you with a way to

experience math as an ongoing conversation. This program is called Visual

Formula. The inventor of Visual Formula is an engineer who decided one day to

see if it might be possible to create a simple, straightforward way that people

seeking to learn math could approach creating an equation in the same way that

they might paint colors on a canvas.

A successful conversation involves continuation and extension of the con-

versation. As mentioned previously, if you speak with people who have told you

that they decided to discontinue the study of math, they often recount an episode

in which they say they encountered a problem they could not solve.

Their account of encountering this problem is usually accompanied by a story

about how they took a test. After encountering the problem, they felt wholly

convinced that they could not or should not go on. The test told them what they

could not do. Officially halted in this way, their conversation with math ended.

Extending a conversation involves finding topics at hand that you feel inclined to

explore. You do not fear them. If you do fear them, your fear does not prove

overwhelming. The topics might prove challenging, but you always have a way

back to what you have already explored. You can try again and again, viewing the

new topic in different ways.

In contrast, you can also listen to people recall how they became lost. They ven-

tured one day into a new area, found everything strange, and panicked. Inevitably,

a few days later a teacher administered a test. The test took them back into the

strange place that provoked the panic. Trauma resulted. The conversation ended.
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Visual Formula is something like a friend who can enter the picture at important

junctures. It allows you to place the problem in a controlled context. It allows you

to explore. If you go into a strange place, it all but provides a panic button. You

can start over. You can see where you have been. The problem is no longer an

event meant to teach you what you cannot do. The problem is an occasion for

confirming what you can do. If a problem is strange, you have at hand a tool with

which to make it familiar.

A Part of Life
Millions of people learn each year that they should feel bad about doing math

because, alas, they do not do it well. This is very strange. It would be such a

different thing if you could dispense with the ‘‘doing it well’’ stipulation. If it

could be taught some other way, then it would become a real conversation, one

that anyone might participate in. It would become a common way that most

people could communicate. People could make it a part of their lives. That

proves a novel notion, of course.

Disorganized Territory
In this book, you find math presented in a fairly unorganized manner, as though

it might be regarded as a conversation that you join whenever you feel like it.

Visual Formula complements this disorganization. It provides a context in which

Disorganized Territory 7
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you can play a game that addresses conversational mathematics. It is designed to

draw you into an activity that forces you to set aside notions that you can do only

what you do well. There is none of that here. You just do what you do and leave it

at that.

To gain the most from such an experience, play with Visual Formula and learn

how to set up equations and view the values and graphs that result from them.

Then change the equations. Each time you change an equation, you extend your

explorations. Each time you change an equation, you make something familiar

strange but at the same time something strange familiar.

Likewise, from the first realize that it is not necessary to be systematic. The

chapters in this book may convey a sense of disorganization. View your study of

math along the lines of a novel by Joseph Conrad. You can venture from island to

island, finding new adventures on each one. Just because one proves a little

strange just now does not mean that you cannot go on to another and return

later. Chance can prevail.

One way to understand this approach to the topic at hand is to consider that in

the vast majority of instances, people study grammar and composition only after

they have learned the language. Along the same lines, if you have a way of

visualizing and playing with math before you pursue a systematic knowledge of

it, your adventure becomes one of recognizing familiar features in new and more

intricate ways.

This provides a way that you can increase the chance that you can acquire

knowledge and feel confident about the knowledge you acquire. It also allows you

to review what you have learned with greater confidence. Along with these

benefits, Visual Formula can serve as a special sort of map that allows you to

explore a new territory in a way you find more comfortable.

Algebra and Trigonometry
Algebra allows you to converse using variables. It allows you to set up equations.

It allows you to explore the properties of numbers. It also allows you to explore

how to graph equations using the Cartesian coordinate system. When you can

graph the relations you explore using algebra, you find that you begin examining

the behavior of numbers as specific types of patterns.

Math might be viewed as a way of formally expressing patterns. Likewise,

everything can be viewed as a pattern. Some patterns are found. Others are

8 Chapter 1 n About Pre-Calculus



created. The serrations of a leaf or the path of a ball when you toss it are patterns

that you find. On the other hand, at times you fidget with math and find a

pattern, and then go looking for something in nature you can use to illustrate the

pattern.

Algebra in part deals with patterns you can explore using linear and nonlinear

relations between sets of numbers. You find one set of numbers, for example, and

then map this set of numbers to another set. The map is an equation.

Trigonometry extends the ways that you can map one set of numbers to another.

It begins with explorations of triangles. A triangle allows you to bring three values

into different relations with each other. These relations constitute the trigono-

metric ratios.

The ratios of trigonometry allow you to extend the notion of patterns to

encompass the different ways that patterns can behave. Among other things,

patterns can be periodic. One period pattern is known as the sine wave. Another

is known as a cosine wave. From cosines and sines you can continue on to

tangents, cotangents, secants, and cosecants.

Algebra and trigonometry together provide a foundation for the study of cal-

culus. They allow you to explore relationships between sets of numbers and to

generate graphical representations of these relationships in a multitude of ways.

They are usually viewed as fundamental mathematics, although there are dis-

ciplines of mathematics in which trigonometry and algebra are studied on

advanced levels. As it is, in the context provided here, the objective remains one

of inviting you to explore math in a conversational way. Everyone can learn

something. Each act of learning is an act of confirmation. Each act of learning

becomes a way to make what is strange familiar. Each act of learning is a way to

extend what you know into new places.

Additional Reading
Hardy, G. H. A Mathematician’s Apology. Forward by C. P. Snow. New York:

Cambridge University Press, 1993.

Herbert, Frank. Dune. Radnor, PA: Chilton Book Company, 1990.
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Number Systems
and Properties

This chapter introduces you to concepts relating to how you identify and talk

about numbers. Not all numbers are the same. Even when they are the same, you

can organize and represent them in different ways. The primary number systems

consist of counting numbers, whole numbers, integers, rational numbers, irra-

tional numbers, and real numbers. In addition to systems of numbers, you

investigate the commutative, associative, and distributive properties of numbers.

Further, you explore how combinations of positive and negative numbers affect

the outcomes of your calculations. With this prospect in view, this chapter offers

the following topics, among others:

n Natural or counting numbers

n Whole numbers

n Integers

n Rational and irrational numbers

n Real numbers

n Number properties

n Inverses and identities of numbers

n Multiplication and division involving negative and positive numbers

11
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Number Systems
When you solve math problems, you work with different systems of numbers.

The systems of numbers often allow you to express the same numbers differently.

In your earlier studies of math, it is likely that you became familiar with some

of the numbering systems. As you study more math, you work extensively

with several systems of numbers. The next few sections discuss the different

systems.

Natural or Counting Numbers

The natural or counting numbers start at 1 and proceed in increments of 1

indefinitely. You work with situations in which your activities may lead to

an object or objects that you might point to, or count. For this reason, it is

fairly easy to recognize that the natural numbers system probably constitutes

the oldest way of counting things. You might imagine, for example, a potter

working in a situation in which he or she makes a series of pots. To count the

pots, it’s necessary only to line them up or draw lines in the earth. Consider

Figure 2.1.

The mathematical symbol for natural numbers is N. Here is one way to math-

ematically describe natural numbers:

N ¼ f1, 2, 3 . . .g
TheN preceding the equals sign indicates that all the numbers belong to the set of

natural or counting numbers. The three periods trailing the 3 indicate that the
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numbers continue indefinitely. The curly braces that enclose the numbers

indicate that they constitute a set of numbers. We read this as the natural

numbers are the set of numbers 1, 2, 3, and so on. A set is a group or collection. In

this light, then, all number systems consist of sets of numbers.

Whole Numbers Offer You Zero

The marks and pots you see in Figure 2.1 provide you with a way to depict things

that you can point to. What happens when you encounter situations in which

you want to explain that you do not have an item of a given type? Suppose that

the potter makes five pots and then sells them all? Enter the concept of zero,

which is a way of saying that you recognize the possibility of having something

even though you do not, in fact, have something at hand to point to. In other

words, you have none of the objects.

Figure 2.2 illustrates how the use of 0 in the whole numbers system proves to be a

useful way of dealing with a complex notion. The whole numbers allow you to

both point to something and point to the absence of something. As with the

counting numbers, historians generally recognize the whole number system as

being fairly old.
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The mathematical symbol for whole numbers isW. As with the natural numbers,

you can mathematically describe whole numbers as a set:

W ¼ f0, 1, 2, 3 . . .g
The W preceding the equals sign indicates that all the numbers belong to the set

of whole numbers. The only difference between the natural numbers system and

the whole numbers system is that the whole numbers system adds the use of 0. As

before, the three periods trailing the 3 indicate that the numbers continue

indefinitely. The curly braces that enclose the numbers indicate that they con-

stitute a set of numbers. The natural numbers (N) are a subset of the whole

numbers (W). That is, every natural number is also a whole number.

Integers Provide Negative Numbers

Given the notion that you can have items at hand or that you can think about

items of a given type without having any at hand, it seems almost inevitable that

you run into another situation. This situation is one in which you need an item of

a given type that is not at hand. Consider, for example, a situation in which you

have no pots at hand but five people approach you and ask for pots. You now

need to make five pots. You express this situation using negative numbers, as

Figure 2.3 illustrates.

Integers include the positive numbers, zero, and the negative numbers. While the

whole numbers start at 0 and proceed indefinitely in a positive way, the set of

integers includes the whole numbers and proceed indefinitely in a negative way.

You can think of 0 as a starting point between the positive and negative groups of

numbers. Themathematical symbol for integers isZ. Here is how tomathematically
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represent the set of integers:

Z ¼ f0, �1, �2, �3, �4, �5 . . .g
As with counting numbers and whole numbers, you see the curly braces, which

represent a set. You also see a plus-or-minus sign preceding each of the numbers in

the set. Use of the plus-or-minus sign serves as a way to shorten the mathematical

expression from its longer form:

Z ¼ f. . .�5,�4,�3,�2,�1, 0,þ1,þ2,þ3,þ4,þ5 . . .g
The second expression conveys the same information as the first, but in this case, a

minus sign (�) precedes each negative number and a positive sign (+) precedes

each positive number. Likewise, you see that ellipses precede and follow the

numbers. Notice the zero possesses no sign. You can certainly apply a sign to a zero

without doing any harm, but the fact remains that the sign has no effect on zero.

Zero is neither negative nor positive.

When you use integers, you never need to indicate a positive value using a plus

sign. As a matter of common practice, if you see a number standing alone

without a sign, it is positive. Here is another way to show the longer form of the

set of integers:

Z ¼ f. . .�5,�4,�3,�2,�1, 0, 1, 2, 3, 4, 5 . . .g
So far you have looked at natural numbers, whole numbers, and integers. The

relationship between these number systems is as follows: Every natural number

and every whole number is a number in the set of integers. In other words,W is a

subset of Z and N is a subset of Z. Also, recall that N is a subset of W.

Rational Numbers

Even if you can count things at hand, recognize things when they are entirely

absent, or count them in a negative or absent form, you still face situations in

which you need to account for things that are not quite whole. To deal with this

situation, one approach involves working with the concept that you can establish

a ratio between two numbers.

As Figure 2.4 illustrates, picture the situation of a potter whom customers have

asked to make five pots. The potter has made three pots. A customer arrives and

requests to know how much of the work of making the pots has been completed.

The potter can reply by asking the customer to imagine the whole set of five pots
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and then another set of three pots. Of the five needed pots, the potter has finished

three. So the reply of the question can be, ‘‘The number is 3 of 5.’’ This expresses

a ratio.

A rational number is a number you use to express a ratio or relationship between

two other numbers. You can communicate a ratio by creating a quotient. A

quotient is a result you obtain when you perform a division.

Consider the ratio of 3 to 5. In simple terms, you divide 3 by 5. Here are a couple

of common ways to express this activity mathematically:

3

5
3 : 5
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The mathematical symbol for rational numbers is Q. Here is how to mathe-

matically represent the set of rational numbers:

Q ¼ p

q

���� p, q 2 Z q 6¼ 0

� �

The vertical bar means ‘‘such that,’’ and the [ means ‘‘is a member of.’’ The

hashed equal sign means ‘‘not equal to.’’ The definition reads, ‘‘A rational

number (Q) is any number p/q, such that p and q are elements of the set of

integers (Z) and q is not equal to 0.’’

Here is a set of rational numbers:

f�1=5,�3=4,�2=3,�1=2,�1=6, 0, 6=7, 4=2, 21g
Notice that the elements in this set are negative, include zero, and positive. Also

note that 0 and 21 can be expressed as ratios: 0/0 and 21/1.

No Division by Zero

When you formally define a rational number, the two numbers you include in

the quotient, p and q, are both integers. The lower number, q, cannot be equal to

0. You cannot divide by 0.

We know that 6
2
¼ 3 because 2 � 3 ¼ 6. If we consider 6

0
, the answer must be a

number that, when multiplied by zero, results in 6 (i.e., 6
0
¼ x where x � 0 ¼ 6),

but x � 0 ¼ 0 for all x’s. Therefore, 6
0
has no value. Mathematicians say that such

a relation where any number is divided by zero is undefined.

S t a y i n g C l e a r o n You r Numbe r s

Just because you can represent a number as a quotient does not mean that it is only a rational
number. The fact is that you can represent counting numbers, whole numbers, integers, and
rational numbers as quotients. Consider the following representations of numbers:

n 2 ¼ 2
1 ¼ 4

2 All of the representations denote 2, which is a counting number, a whole num-
ber, an integer, and a rational number. When the quotient provides a ‘‘rational’’ way to
represent the number, whether in its quotient or non-quotient form, the number remains
a rational number.

n �2 ¼ �2
1 ¼ �6

3 The representations of �2 on each side of the equal sign designate
integers. The number �2 can be represented as �6

3 , �4
2 , �8

4 , or �12
6 . Therefore, it is a

rational number as well as an integer.
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Variations on Rational Numbers

When you carry out division, you end up with different types of quotients. To

repeat, a rational number is a number that you can express as a ratio. You can

express an integer as a ratio, as you can a whole number. In some cases, you can

reduce the quotient form of the number to a whole number. In other cases, the

quotient form of the number cannot be reduced to a whole number, and

therefore has a decimal representation. A number is rational if its decimal

representation is terminating or repeating.

Terminating Rational Numbers

If the decimal representation of the quotient can be expressed by an exact

number of digits, then it is a terminating rational number. Consider the fol-

lowing numbers and their decimal representations:

1

2
¼ 0:5,

1

4
¼ 0:25,

3

4
¼ 0:75,

3

6
¼ 0:5

In each case, the result of the division is exact. A melon can be divided into two

equal parts. It can also be divided into equal fourths. Likewise, you can have

exactly three fourths of a melon, as you can have five sixths of a melon.

Repeating Rational Numbers

In some cases, when you establish a ratio between two numbers, the quotient is

not terminating. You do not end up with exact pieces or proportions (i.e., the

decimal representation does not have an exact number of digits). The most you

can do is approximate the piece or proportion. Consider, for example, what

happens when you divide 1 by 3 or 2 by 3. The result is a repeating rational

number:

1=3 ¼ 0:3333333333 . . . and 2=3 ¼ 0:6666666666 . . .

Mathematicians indicate the repeating part of the fraction by placing a bar above

the number that repeats:

1=3 ¼ 0:3 or 2=3 ¼ 0:6

When a single number repeats, you need only one number bearing a bar. In other

cases, the pattern of repetition involves several numbers. In that case, you use the

bar to designate the sequence of numbers that repeat. Consider the pattern that
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results when you divide 1 by 7 and 1 by 17:

1=7 ¼ 0:142857142857142857142857

1=17 ¼ 0:05882352941176470588235294117647

Whether you encounter a single repeating number or, as in the case of 1/17,

groups of 16 repeating numbers, you are still working with a number that you

can represent explicitly. You can show that at a given point, the number begins to

repeat itself. You need not show the repeating decimals more than once. For

example, you can also represent the numbers this way:

1=7 ¼ 0:142857142857

1=17 ¼ 0:0588235294117647

Irrational Numbers

When you perform some divisions, the number you end up with is neither exact

nor repeating. Consider, for example, the ratio of the length of the circumference

of a circle to the length of its diameter. The ancient Greek letter mathematicians

use to designate this ratio is � (pi). When you try to find a terminating or

repeating rational number to designate �, you fail. The quotient you generate is

not exact, and it does not repeat itself at periodic intervals. Here is a sampling of

the number that results:

3:141592653589793238462643383279502884197169399375 . . .

At this point in history, � has been calculated to billions of digits. No repeating

set of numbers has turned up. Such a number is known as an irrational number.

The mathematical symbol for an irrational number is H. Here is how to math-

ematically represent the set of rational numbers:

H ¼ fx j x 2 R x =2 Qg
Again, the vertical bar means ‘‘such that’’ and the [means ‘‘is a member of.’’ The

R designates the set of real numbers (discussed below), and the =2 means ‘‘is not a

member of.’’ The definition reads, ‘‘An irrational number (H) is any number x,

such that x is an element in the set of real numbers and is not in the set of rational

numbers.’’
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Some other numbers that fall into the irrational category are the square root of

3 (
ffiffiffi
3

p
), the cube root of 5 (

ffiffiffi
53

p
), and the base of the natural logarithm, e (loge x).

A number is irrational if its decimal representation is non-terminating and

non-repeating.

Real Numbers

All of the numbers you have investigated so far are considered real numbers. The

mathematical symbol that represents real numbers is R. Figure 2.5 reveals the

relationship between the various number systems. Accordingly, both rational

and irrational numbers are real numbers.

It remains important to emphasize that a number may be represented in many

number systems. For example, a rational number may also be a counting

number, a whole number, or an integer.
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E x e r c i s e S e t 2 . 1

To test your understanding of the systems of numbers, please identify the number set the
following numbers belong in. Identify the innermost set for each number.

Example: 4=2 2 N

a. �

b. �2

c. �6/3

d. �5/2

e. �2/3

f. 4/5

g. 2/1

h. 1/8

i. 1/5

j.
ffiffiffi
7

p

Properties
When you work with real numbers, you do so according to a set of rules that

mathematicians often describe as properties. The properties of a number system

pertain to how the numbers behave when you carry out operations using them.

Figure 2.6 illustrates the basic properties of the real numbers. These properties

apply to all the number systems you have dealt with so far. However, not all

properties are applicable to all number systems. The next few sections review

these properties in detail.

Commutative Property

When you work with two numbers, a and b, the order in which you add or

multiply them is commutative. The commutative property pertains to addition

and multiplication. Consider these equations:

a þ b ¼ c 3þ 5 ¼ 8 a � b ¼ c 3� 4 ¼ 12

b þ a ¼ c 5þ 3 ¼ 8 b � a ¼ c 4� 3 ¼ 12
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If you start with 3 and then add 5 to it, you obtain the same result as when you

start with 5 and add 3. If you multiply 3 by 4, you obtain the same result as when

youmultiply 4 by 3. The commutative property allows you to change the order in

which you carry out an addition or multiplication operation without changing

the outcome of the operation.

Associative Property

When you work with three or more numbers, a, b, and c, you can group them in

different ways as you perform the addition or multiplication operations that join
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them together. How you associate them depends on the type of operations you

perform with them. The associative property applies to addition and multi-

plication. Consider these equations:

a þ ðb þ cÞ ¼ ða þ bÞ þ c

3þ ð5þ 7Þ ¼ ð3þ 5Þ þ 7

3þ ð12Þ ¼ ð8Þ þ 7

15 ¼ 15

When you add 3 to the sum of 5 and 7, you obtain the same result as when you

add the sum of 3 and 5 to 7. The difference is in the order of operations. The

associative property allows you to alter the way that you group items in an

expression as you reduce or solve the expression.

Distributive Property

Distribution allows you to reorganize the terms of an expression so that you can

more easily work with them. This property applies to addition and multi-

plication. Consider the following equations:

bða � cÞ ¼ bðaÞ � bðcÞ
5ð8� 3Þ ¼ 5ð8Þ � 5ð3Þ

5ð5Þ ¼ 40� 15

25 ¼ 25

In this instance, you can solve the problem in two different ways. What the

distributive property enables is for you to distribute the multiplication activity so

that you multiply 8 by 5 and then 3 by 5. Alternatively, you could just as easily

subtract 3 from 8 and multiply the result by 5.

Now consider the following expression:

3ðx þ 2Þ
In this expression, note that youmay not just add 2 to x because you do not know

the value of x. However, you may distribute the 3. Here is how you would apply
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the distributive property:

3ðx þ 2Þ
¼ 3x þ 3ð2Þ
¼ 3x þ 6

E x e r c i s e S e t 2 . 2

Here are a few equations that relate to commutative, associative, and distributive properties. For
each equation, identify the property or properties that best explain the operations.

a. ð6þ 3Þ þ 7 ¼ ð3þ 6Þ þ 7

b. 2ð6þ 5Þ ¼ ð2� 6Þ þ ð2� 5Þ

c. ð8þ 6Þ þ 3 ¼ 8þ ð6þ 3Þ

d. 4þ 6þ 3 ¼ 3þ 4þ 6

Use the associative property to write an expression equivalent to each of the following:

e. y þ (z þ 3)

f. (3x)y

Use the commutative property to write an expression equivalent to each of the following:

g. a þ 7

h. 9(b þ 2)

Use the distributive property to factor each of the following. Check by multiplying.

i. 4a þ 4b

j. 15 þ 15x

Identity and Inverse Properties

When working with real numbers, there are properties that pertain specifically to

the addition and multiplication of 0 and 1. These properties are called identity

and inverse properties.
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Additive Identity

When you add zero to a number, the outcome is the number itself. Zero in this

case is called the additive identity, such that:

a þ 0 ¼ 0þ a ¼ a

Multiplicative Identity

When you multiply a number by 1, you get the number itself. 1 in this case is

called the multiplicative identity, such that:

a � 1 ¼ 1� a ¼ a

Consider the following equations:

1� a ¼ a �1� a ¼ �a

If you multiply a by 1, you get a. If you multiply a by �1, you still get a, but the

sign of a is now changed to match the sign of 1.

Additive Inverse

For a given number a, if you add a value to a that is equal to and opposite in value

to a, then the result is zero. The number you add to a is called the additive

inverse, or negative, of a such that:

a þ ð�aÞ ¼ ð�aÞ þ a ¼ 0

The additive inverse of a is �a. The additive inverse of �a is a.

Multiplicative Inverse

A number multiplied by its inverse is 1. The inverse of a number is the fraction

(or ratio) by which you can multiply the number to create the value of 1. For a

given number a, as long as a 6¼ 0, there is a number 1
a
, called the multiplicative

inverse, or reciprocal of a, such that:

a � ð1=aÞ ¼ ð1=aÞ � a ¼ 1

Consider the following equations:

a � 1
a
¼ 1; 5 � 1

5
¼ 1; 4000000 � 1

4000000
¼ 1;

3

4
� 4
3
¼ 1

The multiplicative inverse of a is 1
a
. The multiplicative inverse of 5 is 1

5
. The multi-

plicative inverse of 4000000 is 1
4000000

. The last example proves a little more involved
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than the first three. Consider that you can rewrite the equation as 3
1
� 1

4
� 4

1
� 1

3
¼ 1.

Inverses prove useful as ways to reduce the complexity of problems.

Multiplicative Property of Zero

When you multiply a number by zero, the result is zero.

a � 0 ¼ 0� a ¼ 0

Division Involving Zero

While division by zero is undefined, if you divide zero by any number, the result

is zero. The rules for division involving zero are

a

0
¼ undefined

0

a
¼ 0

E x e r c i s e S e t 2 . 3

Here are a few problems that involve working with additive and multiplicative identities, inverses,
and the zero properties. Solve each problem.

a.
1

5
� 5

b.
2

3
� 3

2

c. �10 þ 10

d.
0

9

Change the sign (find the opposite or additive inverse) of each number:

e. �2

f. 45

g. �7.14

h.
9

5

Find �(-x) when x is each of the following:

i. � 3

4

j. 0.12
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Multiplication and Division
When you combine positive and negative numbers through division, results vary

according to the signs of the numbers. There are two general ways to view the

results of multiplication and division operations involving numbers with dif-

ferent signs. First, consider multiplication and division problems involving only

two numbers. Then consider multiplication and division problems involving

more than two numbers.

Multiplication and Division with Two Numbers

When you carry out multiplication and division operations that involve two

numbers, you deal with a few basic possibilities:

n Both numbers are positive. If both numbers are positive, then the result of

the multiplication or division is positive. Here are a few examples:

2� 2 ¼ 4, 2� 2 ¼ 1,
2

2
� 1

2
¼ 2

4
¼ 1

2
, 5� 2

5
¼ 10

5
¼ 2

n Both numbers are negative. If the two numbers are negative, then the result

is positive. Here are a few examples:

ð�4Þ � ð�4Þ ¼ 16,
�4

�2
¼ 2, � 4

3
�� 3

4
¼ 1,

�4

�2
��4

�2
¼ 16

4
¼ 4

In the last example, when you multiply the numerators, �4 and �4, you

arrive at a positive value of 16. Along the same lines, multiplying the deno-

minators,�2 and�2, results in a positive number. Alternatively, you can first

carry out the divisions. In both cases, �4��2, the quotient is positive 2.

n One number is negative and the other is positive. If you multiply a

negative number by a positive number, then the result is negative.

ð�4Þ � ð4Þ ¼ �16,
4

�2
¼ �2, � 4

3
� 3

4
¼ �1,

4

�3
��3

�4
¼ ��12

12
� 1
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In the last example, when you carry out the multiplication of the denomi-

nator, you arrive at a positive number. When you multiply the numerators,

you end up with a negative number. Alternatively, you can first carry out

the divisions. In the first case, you divide a positive number by a negative

number, resulting in a negative number. In the second case, you divide

a negative number by a negative number resulting in a positive number.

The final multiplication then is a negative number multiplied by a positive

number, resulting in a negative number.

Multiplication and Division with More Than Two Numbers

When you deal with a sequence of divisions or multiplications, the outcome

differs according to the last operation you carry out. Consider the following

operations:

ð�4Þ � ð�4Þ � ð�4Þ ¼ �64

�2� 3��3 ¼ 18

�1

2
� 3

8
��3

2
¼ 9

32

ð�2Þ � ð�2Þ � ð�2Þ � ð�2Þ ¼ 16

In the first example, three negative numbers multiplied together result in a

number that is negative (�64). One way to examine this activity involves con-

sidering that the first two numbers when multiplied result in a positive number

(16). When youmultiply 16 by�4, however, you end up with a negative number.

To trace how a negative number results from multiplication of an odd sequence

of negative numbers, consider that when you multiply the first two negative

numbers, the result is positive. However, when you then multiply this number by

a negative number, the result is negative. When you multiply by yet another

negative number, then the result becomes positive. Consider a set of multi-

plications that proceed in this way:

ð�2Þ � ð�2Þ ¼ 4 Two numbers are even:

ð�2Þ � ð�2Þ � ð�2Þ ¼ �8 Three numbers are odd:

ð�2Þ � ð�2Þ � ð�2Þ � ð�2Þ ¼ 16 Four numbers are even:

ð�2Þ � ð�2Þ � ð�2Þ � ð�2Þ � ð�2Þ ¼ �32 Five numbers are odd:
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With respect to division, the same relationship applies:

ð�32Þ � ð�2Þ ¼ 16 Two numbers are even:

ð�32Þ � ð�2Þ � ð�2Þ ¼ �8 Three numbers are odd:

ð�32Þ � ð�2Þ � ð�2Þ � ð�2Þ ¼ 4 Four numbers are even:

ð�32Þ � ð�2Þ � ð�2Þ � ð�2Þ � ð�2Þ ¼ �2 Five numbers are odd:

If you are dealing with a sequence of divisions, and if the sequence contains an

odd number of negative numbers, the result is negative. If it contains an even

number of negative numbers, then the result is positive.

E x e r c i s e S e t 2 . 4

Determine whether the result for each problem is negative or positive and then solve the problem.

a.
ð8þ 7Þð�1Þ

2þ 1

b.
�3

4
��2��2

�4

c.
�3

2
� 1

2
��3

�2

� �

d. 7� 1

�5

e.
�2

3
� 3

�2

f. �10� ð�1Þ þ 10

g. �3(�2)(�5)

h. 16� ð�8Þ

i.
�21

0

j. �5� 1

�5

Multiplication and Division 29



Using Visual Formula
To become acquainted with the appearance of rational and irrational numbers,

use Visual Formula to perform a few divisions that result in different types of

numbers. Here are a few divisions to perform:

a. 1/2

b. 1/3

c. 2/4

d. 4/3

e. 1/17

f. 21/1

g. 0/6

h. 7/3

i. 1/7

j. 5/5

When you use Visual Formula to perform these divisions, one way to proceed

involves creating a ratio with fields you program to receive variable values

equivalent to the two numbers making up the ratio. Figure 2.7 illustrates how
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Visual Formula appears after you set up the ratio. Here are the steps you take to

create it:

1. Click the Quotient menu item in the top menu list Visual Formula

provides. Then click in the upper equation composition area to position

the quotient bar.

2. Click the Value field menu item. To position the Value field, click just

above the quotient bar in the upper equation composition area. Once

again, click the Value field menu item, and this time when you position

the field, click just below the quotient bar.

3. Now name the two fields. Working in the equation composition area, in the

upper (numerator) field of your ratio, type a. In the lower (denominator)

field, type b.

4. Now move to the panel to the left of the equation composition area.

Beneath the Variable label, you see the names of sets of fields. In the top

Name field, type a. In the bottom Name field, type b.

5. To perform the divisions, begin by typing the numerator and denomi-

nator values in the Value fields you have set up in the right panel.

6. After you type the numbers, move to the other side of Visual Formula

and click the button with the equal sign. You see the result of the division

in the field to the right of the button.

Given this beginning, you can now enter new numbers in the Value fields you

have set up. Each time you do so, click the button with the equal sign. If the value

you enter is a repeating decimal, you see the set of repeating numbers. When you

type 1 and 17, for example, you see the following result:

0:0588235294117647

Conclusion
In this chapter, you have reviewed basic number systems and some of the

properties relating to them. In addition to the commutative, associative,

and distributive properties of numbers, you have explored the additive and
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multiplicative identities and inverses of numbers. Also, you have investigated

how use of different combinations of positive and negative values influences the

outcome of operations. Such activities have immediate applications when you

work with exponents, scientific notation, and root and radical expressions, which

are topics of the next chapter.
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Sets, Exponents,
Roots, and Radicals

This chapter explores the concept of sets and how you can use them to help

organize groups of numbers. Among key concepts in this respect are unions,

intersections, and subsets. Additionally, you can have disjunctions. One approach

to illustrating sets involves Venn diagrams, which allow you to visualize rela-

tionships between sets. After investigating sets, you then move on to exponents.

When you work with exponents, you can perform multiplication operations that

involve the same base values by adding the exponents. Likewise, you can perform

division operations by subtracting the exponents. After exploring the pre-

liminaries of exponents, you investigate scientific notation, which provides a

convenient way to represent microcosmic and macrocosmic values. After

exploring scientific notation, you turn to absolute values, which provide a brief

introduction to using the number line to represent numbers. As a final measure,

you return to exponents, this time to explore how to use radical and root notations

in conjunction with exponents. The discussion pursues the following topics,

among others:

n How sets and subsets allow you to more easily group numbers

n Basic operations with exponents, including negative values

n How to work with large and small numbers using scientific notation

n Absolute values

n Radical and root notation as an extension of basic exponents
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Sets
A set is a collection of items. Mathematicians usually refer to the items as ele-

ments. A set is said to contain elements. The order of the elements makes no

difference. A set emerges from the elements that it contains. When you define a

set, such as the set of integers or counting numbers, you define the set of all

elements it can contain. Youmight not name all the elements, however, because a

set can consist of a finite or infinite number of elements. You still define the

condition by which you can determine whether a given item is or is not an

element of the set.

Elements

For example, you might picture a set of prime numbers. A prime number is a

positive integer that you can generate by multiplication using only the number

itself and 1. The other number must be distinct from the prime number. For this

reason, 1 is not a prime number.

Using such a definition, you can describe an infinite set of numbers. At the same

time, you can create sets of prime numbers using definitions that are more

restricted. Here is the set of prime numbers less than or equal to 47:

f2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47g
You identify a set using opening and closing curly braces, and you separate the

elements in a set using commas. To denote that a number is a member of a set,

you provide your set with a name. Although no strict rule applies, mathemati-

cians commonly represent the names of sets with italicized capital letters. You

might see the following, for example:

A ¼ f2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47g
You can employ a small italic letter to represent the element symbolically. You

use [ to designate that an element ‘‘is a member of’’ a set. If a equals 3, then

a 2 A and 3 2 A

The number 1 is not a prime number, nor is 4. Assume that the value of

a equals 1. To designate that 1 and 4 are not members of set A, you use the

following notation:
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If it so happens that you have a set that has no elements, then the set is said to be

empty. To designate an empty set, you can use the symbol ; : A ¼ ;.

Subsets and Supersets

Any collection of items can be a set. At the same time, if you have a set, you can

also create a subset. One set is a subset of another if the elements it contains are

also contained by the superset. Consider the set of prime numbers less than or

equal to 17. Designate that as set B:

B ¼ f2, 3, 5, 7, 11, 13, 17g
Set B is a subset of set A (defined in the previous section as prime numbers less

than or equal to 47), because each element that is in set B is also in set A. The

notation you employ to denote that set B is a subset of set A is as follows:

B � A

You can also designate that A is a superset of B:

A � B

Expressions to Define Sets

When you define a set, you can create a list of the elements of a set, separate them

using commas, and enclose the result in opening and closing curly braces. Such

an approach to set creation suffices in many practical situations. For other

situations, you can use a form of notation that allows you to describe the con-

ditions of membership. In such situations, you make use of a vertical bar and a

few other symbols.

Consider a situation in which you want to designate any number that is an

element of set A. To accomplish this task, you use the following expression:

fa j a 2 Ag
The previous expression reads, ‘‘a such that a is an element of set A.’’ If you want

to designate numbers less than 17, you can write:
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If you want to designate that a number a is less than 17 and is also an element of

set A, then you can use a logical ‘‘and’’ symbol ð^Þ:

fa j a < 17 ^ a j a 2 Ag

This expression reads, ‘‘a such that a is less than 17 and a such that a is an element

of set A.’’

Unions and Intersections

Consider sets A and C:

A ¼ f2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47g
C ¼ f1, 2, 3, 5, 7, 10, 11, 12, 14, 17g

You can find some of the elements of set C in set A and some of the elements of

set A in setC. In other words, between setsA andC exists a group of elements that

are common to both sets. When you have a set of elements that are common to

both sets, you find the intersection of the two sets. To indicate the intersection of

two sets, you employ the \ symbol:

A \ C

More explicitly, you indicate the members of the set using an equation:

A \ C ¼ f2, 3, 5, 7, 11, 17g

Not all of the elements in set C are in set A, and not all of the elements in set A are

in set C. When you combine the elements of the two sets so that you have the

elements of both sets without duplicates, you create the union of the two sets. To

indicate the union of two sets, you employ the [ symbol:

A [ C

To show the union explicitly, you use the same approach you use when showing

an intersection explicitly:
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Disjunctions

Unions and intersections allow you to explore how different sets share elements.

Situations also arise in which you find sets that share no common elements, but

you still want to show that they constitute a set. The logical term that you apply

to such situations is or. Consider, for example, the set of all elements contained in

sets D and E:

D ¼ f1, 2, 3, 4g
E ¼ f6, 7, 8, 9g

Set D contains numbers that are less than 5 and greater than 0, whereas set E

contains numbers that are greater than 5 and less than 10. If you want to create a

set in which you can account for both of these sets, you can start with a logical

expression that employs the or symbol ð_Þ. For example, if a expresses any

number of the two sets, then

fa j a < 5 ^ a j a > 0g _ fa j a > 5 ^ a j a < 10g

This expression allows you to say that the set includes numbers less than 5 and

greater than 0 or numbers greater than 5 and less than 10. It so happens, however,

you can create a set F that consists of a union of these two sets:

F ¼ fa j a < 5 ^ a j a > 0g [ fa j a > 5 ^ a j a < 10g

Venn Diagrams

A Venn diagram allows you to easily show subsets, intersections, unions, and

disjunctions. To create a Venn diagram, you employ rounded figures that you

overlap and shade to show relationships between them. Figure 3.1 illustrates Venn

diagrams that represent different types of relationships between sets. Table 3.1

provides a discussion of each of the diagrams.

Exponents

When you multiply a number by itself, you raise it to a power. A power is a

product in which all of the factors are the same. To indicate that you are raising a

number to a given power, you employ an exponent. An exponent tells you the
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number of times by which you multiply a number by itself to arrive at the value

you seek. Consider the following expressions:

a � a ¼ a2 2� 2 ¼ 22 ¼ 4

a � a � a ¼ a3 2� 2� 2 ¼ 23 ¼ 8

a � a � a � a ¼ a4 2� 2� 2� 2 ¼ 24 ¼ 16

In the expression a2, the a is the base of the expression, and the 2 is the exponent.

The base provides the number you use in the multiplication. The exponent tells

you how many times to multiply the number by itself.
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Figure 3.1
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Negative Numbers with Powers

When you use a negative number as an exponent, you create the inverse of the

power. Consider the following expressions:

a�2 ¼ 1

a2
2�2 ¼ 1

22
¼ 1

4

a�3 ¼ 1

a3
2�3 ¼ 1

23
¼ 1

8

a�4 ¼ 1

a4
2�4 ¼ 1

24
¼ 1

16

In each instance, the negative exponent signals that you are dealing with the

inverse of the number. This holds true for all numbers not equal to zero and all

exponents greater than zero. A number multiplied by its inverse equals 1.

Multiplication

If you are working with base numbers that are the same, then you can add the

exponents of the numbers to multiply the numbers. Consider the following
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Table 3.1 Venn Diagram Descriptions

Item Discussion

Diagram 1 Set A forms a union with set B. In this relationship, the two sets share
common elements, but at the same time, the resulting set consists of all
elements that the two sets contain.

Diagram 2 Set A forms an intersection with set B. The two sets contain common
elements, and the common elements constitute the intersection of the
two sets.

Diagram 3 The disjunction of the two sets, A and B, creates a situation in which you
must form an ‘‘or’’ statement to account for the elements of the two sets.

Diagram 4 Set B is a subset of set A. In this case, each element of set B is also an
element of set A.

Diagram 5 This is a compound relationship. First, you create an intersection between
sets A and B. Given this intersection, you then find the union of the
intersected elements and set C.

Diagram 6 This is a compound relationship. First, you find a union of sets A and B.
Such a union takes the form of Diagram 1. However, the second part of
the statement defining Diagram 6 calls for set C to form an intersection
with the union of A and B. The intersection then excludes elements that
are not common to A, B, and C.



expression with relation to multiplication:

am � an ¼ amþn

22 � 24 ¼ 22þ4 ¼ 26 ¼ 64

Both of the terms provide 2 as a base. Given this situation, as long as you express

the numbers you are working with using the same base terms, you can add the

exponents to carry out the multiplication.

What if the bases are not the same? If you start with numbers that differ, you can

in many cases change them so that they represent the same base. Consider this

example:

22 � 42 ¼ 22 � 24 ¼ 22þ4 ¼ 26 ¼ 64

In the first expression, the bases 2 and 4 are not the same. However, 4 = 22 and

42 ¼ 22 � 22 ¼ 22þ2 ¼ 24. By manipulating the base, you can create an expres-

sion that allows you to add the exponents to carry out the multiplication.

Division

If you are working with the same base number and you divide one base number

by the other, then you can subtract one exponent from the other. Consider the

following:

am � an ¼ am�n

24 � 22 ¼ 24�2 ¼ 22 ¼ 4

Alternatively, to test the relationship, do the multiplication for each term:

24 � 22 ¼ 16� 4 ¼ 4

When youmultiply a number that has a positive exponent by a number that has a

negative exponent, you create a situation characterized by division. Here is such a

situation:

an � b�n ¼ an � 1

bn
¼ an

bn

22 � 3�2 ¼ 22 � 1

32
¼ 4� 1

32
¼ 4

9

In this instance, in the lower example, the negative exponent turns 3 into 1
3
. At the

same time, 3 is still raised to the power of 2, so you see 1
32
or 1

9
. The first term, 2,

possesses a positive exponent, and 22 ¼ 4:
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Division with a Negative Exponent

Consider likewise the effect of dividing a number by a number that possesses a

negative exponent:

43

4�4
¼ 43 � 44 ¼ 43þ4 ¼ 47

Dividing 43 by 4�4 is the same as multiplying 43 by 44.

Negative Numbers and Exponents

When you raise a negative number to a given power, whether you raise it an even

or odd number of times makes a difference. If you raise a negative number by an

even power, then youmultiply it by itself an even number of times, so the result is

positive. If you raise a negative number by an odd power, then you multiply the

number by itself an odd number of times, so the result is negative. Consider the

following expressions:

ð�3Þ2 ¼ ð�3Þ � ð�3Þ ¼ 9 Even number power is positive:

ð�3Þ3 ¼ ð�3Þ � ð�3Þ � ð�3Þ ¼ �27 Odd number power is negative:

ð�3Þ4 ¼ ð�3Þ � ð�3Þ � ð�3Þ � ð�3Þ ¼ 81 Even number power is positive:

Powers of Powers

You can raise a power by a power. In this case, you multiply one exponent by

another. Here is an example:

ð22Þ3 ¼ 22�3 ¼ 26 ¼ 64

ð52Þ2 ¼ 52�2 ¼ 54 ¼ 625

Powers of Zero and One

A number that possesses an exponent of 1 is equal to itself:

a1 ¼ a 31 ¼ 3
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A number raised to the power of zero is equal to 1:

a0 ¼ 1 30 ¼ 1



Worked Problems with Exponents

Here are a few worked problems. Study them to prepare yourself for the next

section.

x6 � x5
x�3

¼ x11

x�3
¼ x11þ3 ¼ x14

In this example, you face the problem of first adding the exponents on the top of

the fraction. Then, on the bottom, you have a negative exponent, so you divide by
1
x3
, which is the same as multiplying by x3.

x2y3z�4

x7y z�8
¼ x2y3 1

z4

x7y 1
z8

¼
x2y3

z4

x7y1

z8

¼ x2y3

z4
� z8

x7y1
¼ x2y3z8

x7y1z4
¼ x�5y2z4 ¼ y2z4

x5

The key here lies in recognizing the need to deal with the two negative exponents.

After you have created fractions that remove the negative signs, you can then

carry out the divisions. You invert the bottom fraction, placing z8 on the top of

the fraction. In the end, to remove the negative exponent from the top (x�5), you

end up with a fraction.

ðx2 þ y2Þ7
ðx2 þ y2Þ�3

¼ ðx2 þ y2Þ7 � ðx2 þ y2Þ3 ¼ ðx2 þ y2Þ7þ3 ¼ ðx2 þ y2Þ10

This problem presents difficulties because it anticipates work with polynomials,

which receives attention in the next chapter. You cannot reduce an expression

like (x2 þ y2) without factoring it, so to work with it in this context, you treat it

as a single term.

E x e r c i s e S e t 3 . 1

Simplify these problems involving exponents:

a. 72 � ð6þ 3Þ

b. 2ð�52Þ þ 22

c. 6�2 ��ð�12Þ � ð�1Þ

d.
ð82 þ 7Þð�1Þ

2þ 1

e. ð22Þ2 � 40

f.
�2

3
� 3�2

�2
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g. �90� ð�3Þ2 þ 10

h. n2 � n30

i.
ðaþ bÞ9
ðaþ bÞ9

j.
r9s8

r0s4

T h i n g s T h a t G o W r ong

Simple uses of exponents sometimes create situations in which it is easy to make mistakes. To
investigate how this happens, begin by considering the following situation, in which you are
dealing with a sum enclosed in parentheses and then raised by the power of 3:

ð2þ 3Þ3 ¼ 53 ¼ 125

This solution for the problem is correct. You carry it out by first resolving the addition enclosed in the
parentheses. The result of the addition is 5. You then raise 5 to the power of 3, which results in 125.

Here are a couple of other such problems, each solved correctly:

ð2þ 5Þ2 þ ð2þ 4Þ2 ¼ 49þ 36 ¼ 85

ð22 þ 4Þ2 þ ð4þ 2Þ2 ¼ ð4þ 4Þ2 þ ð6Þ2 ¼ 82 þ 62 ¼ 64þ 36 ¼ 100

With both of these problems, you first attend to the operations enclosed in the parentheses before
dealing with the exponents that apply to the value within the parentheses.

Things go wrong, however, if you inappropriately apply the distributive property to such opera-
tions. Here is the wrong approach to solving a problem:

ð2þ 3Þ3 ¼ 23 þ 33 ¼ 8þ 27 ¼ 35 Not correct

This is not the correct approach to solving problems because you cannot distribute the operation
of the exponent across the two values in the parentheses. The parentheses make (2 þ 3) into one
expression. You must add these values before you move on to working with the power of 3.

Here is another way you can represent the problem:

ð2þ 3Þ3 ¼ ð2þ 3Þð2þ 3Þð2þ 3Þ ¼ 5� 5� 5 ¼ 125

In this representation of the problem, the expression in the parentheses is multiplied by itself
three times. This is what the power 3 instructs you to do. It applies to the whole expression, not to
the values in the parentheses separately.

Scientific Notation
The large numbers that characterize many scientific problems become much

easier to manage if you employ scientific notation. Scientific notation involves

taking a large, bulky number and replacing it with an expression that involves
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two numbers that express the value of the large, bulky number but do so in a

more compact way. Of the two numbers, the first usually consists of a rational

number less than 10. For example, you might see 3.4, 4.5, or 9.2. The second

consists of 10 with an exponent. For example, you might see 102 , 1022, or 1022.

The exponent can be negative or positive, depending on whether you are

addressing a number less than 1 or a number greater than 1. An example of a

number less than one is 0.0003.

The first part of an expression given in scientific notation is usually called the

coefficient of the number. The second part offers 10 raised exponentially.

Consider, for example, the distance to the sun in miles. Expressed without

scientific notation, this number is usually rounded to 92.9 million miles, which

you express in this way:

92, 900, 000

Expressed in terms of scientific notation, this number becomes

9:29� 107

Table 3.2 provides a few other representative values expressed in scientific

notation.

To represent the mass of the earth, you shift the decimal point to the right. The

figure of 6:6� 1021 becomes

6,600,000,000,000,000,000,000
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Table 3.2 Numbers Rendered in Scientific Notation

Item Scientific Notation As a Number

Distance from sun to farthest galaxy 1:49� 1010 light years 14,900,000,000

Distance from sun to Andromeda 2:14� 106 light years 2,140,000

Distance to farthest object yet seen 1:57� 1010 light years 15,700,000,000

Age of the solar system 4:6� 109 years 4,600,000,000

Age of the universe 1:65� 1010 years 16,500,000,000

Mass of the earth 6:6� 1021 tons

Speed of light in miles per second 1:86� 105 186,000

100 1:0� 102 100

1/10,000 1:0� 10�4 0.0001

Mass of an electron 9:1� 10�31 kilograms

Wavelength of a gamma ray 3:0� 10�13 centimeter

Planck’s Constant 6:626� 10�34 joules



Very small numbers, such as Planck’s Constant, are represented with a negative

exponent, and the effect is to shift the decimal point 34 places to the left.

Represented literally, 6:626� 10�34 becomes

0:0000000000000000000000000000000006626

Carrying out calculations using scientific notation involves performing the usual

mathematical operations with the coefficients, and then using the practices that

pertain to exponents to deal with the powers of 10. Consider, for example, the

problem of how far light travels in a year. If you begin with the speed of light as

shown in Table 3.2, it is 1:86� 105. On the other hand, there are (generally

speaking) 365 days per year. To calculate the number of seconds in a year, you

can use the relationship of days to hours, hours to minutes, and minutes to

seconds: 365� 24� 60� 60 ¼ 31, 536, 000 seconds per year.

Expressed scientifically, you have 3:1536� 107 seconds. To calculate the distance

light travels in years you can set up the following expression:

ð1:86� 105Þð3:1536� 107Þ ¼
ð1:86� 3:1536Þ � 105þ7 ¼ 5:865696� 1012 miles per year

A Few Worked Problems
Here are a few worked problems that involve various uses of scientific notation.

n This problem calls for you to convert a number in scientific notation to

an integer value.

6:3� 104 ¼ 6:3� 10,000 ¼ 63,000
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To convert a number from its scientific form to an integer, you begin with

the rational form of the number, and thenmultiply it by a number consisting

of 1 and a number of zeros corresponding to the number of the exponent

of 10.

n When you deal with values that are a fraction of 1, you can determine

how to shift the number by converting the exponential form of 10 into a

fraction.

6:3� 10�2 ¼ 6:3

102
¼ 6:3

100
¼ 6:3� 1

100
¼ 0:063

10 raised to the power of 2 is 100, and when you multiply 6.3 by 1/100, you

shift the decimal point two digits to the left.



n In this situation, to represent the rational number in scientific notation, you

begin by converting the denominator to a power of ten.

5:2

1000
¼ 5:2

103
¼ 5:2� 10�3

You then use a negative exponent to convert the number into scientific

notation.

n Here are a couple of examples of converting back and forth. In the first

example, you shift the decimal point to the right two places to reflect the

exponent of 10. In the lower example, you begin with an integer value. To

make it clearer how to convert the number from scientific notation to a

rational number, you can convert the integer to a rational number, and then

shift the decimal point three digits to the left.

2:908� 102 ¼ 290:8

4� 10�3 ¼ 4:0� 10�3 ¼ :004

n If you can find ways to reduce the complexity of fractions, then it becomes

easier to deal with scientific notation. In this case, you begin with a numerator

that requires you to multiply two numbers given in scientific notation.

2� 105ð4� 10�3Þ
8� 10�7 ¼ 8� 102

8� 10�7 ¼ 1� 102

10�7 ¼ 102�ð�7Þ ¼ 102þ7 ¼ 109

You multiply 2 by 4 to arrive at 8 in the numerator. When you rewrite the

expression so that 8/8 equals 1, then you are in a position to work with only

the exponents of 10. To carry out the division, you subtract the negative

exponent of the denominator from the positive exponent of the numerator,

resulting in 10 to the power of 9.

E x e r c i s e S e t 3 . 2

Solve the following problems. Express the answer in scientific notation.

a. ð3:45� 106Þ � ð5:0765� 103Þ

b. ð5:43� 10�3Þ2

c.
2:56� 103

3:45� 104

d. From Table 3.2, what is the ratio of the age of the solar system to the age of the universe?
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Convert these numbers to scientific notation.

e. 73,400

f. 0.04764

g. 0.000000000000000000002

h. 1,354,050,000,000,000

Answer the following questions.

i. Without performing actual computations, explain why 4� 10�14 is smaller than 3� 10�14.

j. Why is scientific notation so useful?

Absolute Values
Consider what happens when you provide someone with directions to a given

destination. You might receive instructions that indicate distances without

necessarily providing you with the direction in which you are traveling. Con-

sider, for example, an instruction that reads,

‘‘After you turn onto Highway 36, proceed 7 miles.’’

Given this instruction, Figure 3.2 illustrates two scenarios. Starting at a given

point, you can then proceed in one of two directions. The distance you travel

involves real movement regardless of whether it takes you nearer to or farther

from your destination. The distance you travel, then, has an absolute value.

Absolute value is the value of a number without respect to whether it is positive

or negative. A number line provides a convenient way to illustrate an absolute

value. Figure 3.3 illustrates a number line. You can use a number line to represent

the arrows depicted in Figure 3.2 in numerical terms. Given this vision, the

number line translates the absolute values of the two directions Figure 3.2

depicts. The number line depicts the distances from 0 to 7 and from 0 to �7. In

both cases, the absolute value is 7.

To express mathematically the absolute values of positive and negative numbers,

you enclose the number in vertical bars.
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j �7 j ¼ 7

j 7 j ¼ 7



The absolute value of a positive number is the number itself. The absolute

value of a negative number is the additive inverse of the number. Consider the

following operations with respect to absolute values:

48 Chapter 3 n Sets, Exponents, Roots, and Radicals

Figure 3.2
Distance without direction involves absolute values.

Figure 3.3
The number line depicts the absolute value.

j � 7� 3 j ¼ j � 7 j � j 3 j ¼ 7� 3 ¼ 21



Radicals and Roots
In a previous section, you examined the fundamentals of using exponents. You

can also express exponents as fractions, and when you do so you enter the realm

of roots and radicals. To explore a root, begin with the notion that to discover the

power of a number, you begin by multiplying the number by itself, as the dis-

cussion in Chapter 2 detailed:

a � a ¼ a2 3� 3 ¼ 9 The square of 3 is 9:

a � a � a ¼ a3 3� 3� 3 ¼ 27 The cube of 3 is 27:

If you raise 3 by the power of 2, you obtain its square. If you raise 3 by the power

of 3, you obtain its cube. Suppose now that you begin with 9 and 27. You ask the

following questions:

n Given 9, what number can you multiply by itself to arrive at 9? What is the

square root of 9?

n Given 27, what number can you raise by a power of 3, or multiply by itself

three times to arrive at 27? What is the cube root of 27?

To represent a root, you use one of two options. First, you can employ a fractional

exponent. The denominator indicates the degree or value of the root. The

numerator indicates the power to which you are raising the number. A numerator

of 1 allows you to indicate any simple root you choose. As a second option, you

can translate the exponent using a radical sign (H). If you use the radical sign

alone, by convention it indicates the square root of the number it designates. Here

are examples of exponential and radical approaches to expressing roots:

9
1
2 ¼ ffiffiffi

9
p ¼ 3

8
1
3 ¼ ffiffiffi

8
3
p ¼ 2

You can work with any number of fractional forms of exponents, and these allow

you to express powers and roots simultaneously. Consider the following expression:

3
5
2 ¼

ffiffiffiffiffi
35

2
p

As Figure 3.4 illustrates, positive exponents render radical expressions in which

the numerator designates the power and the denominator then serves as the root.

Figure 3.5 illustrates a further extension of such activity. When you work with a

negative exponent, the result, as with other exponents, renders the multiplicative

inverse of the entire radical expression.
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Generally, you can manipulate fractional exponential expressions in the same

way that you manipulate other fractions. Consider the following expression:

a
5
6 � a

2
3 ¼ a

5
6 � a

4
6 ¼ a

9
6 ¼ a

3
2 ¼

ffiffiffiffiffi
a3

p

In this case, the common denominator of 5
6
and 2

3
allows you to perform the

multiplication operation by adding the two exponents. This gives you 9
6
, which

you can then reduce and convert to a radical form.

A Few Worked Problems
Here are a few more worked problems. Study them to acquaint yourself with the

use of different operations you can perform with exponents.
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Figure 3.4
With positive fractional exponents, you convert the numerator to the power.

Figure 3.5
Fractional exponents translate into radicals, and negatives behave in the same way as exponents.



n This problem combines a cube root with the multiplicative inverse of a value:

8
�1
3 ¼ 1

8
1
3

¼ 1ffiffiffi
83

p ¼ 1

2

In this instance, the negative exponent (�1/3) calls for the multiplicative

inverse of the cube root of 8. Having expressed the problem in this form, you

can then extract the root and arrive at 1/2.

n This problem involves working with both a negative exponent and the need

to simplify an expression that involves a root and a power:

4
�3
2 ¼ 1

4
3
2

¼ 1

ð ffiffiffi
4

p Þ3 ¼
1

23
¼ 1

8

With this problem, you begin by dealing with the negative exponent. You

change the exponent into radical notation and then work on simplifying the

radical. There are a few approaches to this. One involves emphasizing thatffiffiffi
4

p ¼ 2. You can then raise 2 to the third power, which results in 8. An

alternative approach is to write the denominator asffiffiffiffiffiffiffiffi
ð4Þ3

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� 4� 4
p ¼ ffiffiffiffiffi

64
p ¼ 8

n This problem involves a situation in which you must carry out a multi-

plication operation in the denominator of the fraction.

4
7
3

4
2
3 � 4

5
3

¼ 4
7
3

4
7
3

¼ 4
7
3
�7

3 ¼ 40 ¼ 1

To carry out the multiplication, since you are working with the same base

(4), you can add the exponents (2/3 þ 5/3) of the two numbers in the

denominators. Then, to carry out the division, you can subtract the ex-

ponent of the denominator from the exponent of the numerator. The result

is 0, and any number raised to the power of 0 is equal to 1.

n This problem has a denominator that includes several radical expressions:

25
�2
3

25
1
3�8

1
3

¼ 1

25
1
3�25

2
3�8

1
3

¼ 1

25
1
3
þ2

3�8
1
3

¼ 1

251�8
1
3

¼ 1

25� ffiffiffi
83

p ¼ 1

25�2
¼ 1

50

Resolution of the problem involves first moving the numerator to the de-

nominator, and then adding the two exponents of 25.When you add 1/3 and

2/3, the result is 1, and any number raised to the power of 1 is the number
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itself. When you express the fractional exponent of 8 in a radical form, you

see clearly that you are looking for the cube root of 8, which is 2.

E x e r c i s e S e t 3 . 3

Write the equivalent expression using radical notation.

a. a
4
5

b. a
3
2b

�1
3

c. 14
3
4

d. 64
2
3

Write the equivalent expression using exponential notation.

e.
ffiffiffiffiffi
a45

p

f.

ffiffiffiffiffi
a3

p
ffiffiffi
b3

p

g.
ffiffiffiffiffiffiffi
143

4
p

h.
ffiffiffiffiffiffiffi
642

3
p

Write the equivalent expression with positive exponents and simplify.

i. 8
�1
3

j. ð3a8aÞ
�5
2

Using Visual Formula
Visual Formula allows you to work with problems involving exponents. You can

use Visual Formula to check your work. You can also extend the work you have

started in new directions. Here are a few problems to get you started with

expressions involving exponents:

a. 92 � ð6þ 5Þ2

b. 3ð�72Þ þ 23

c. 6�3 ��ð�12Þ � ð�1Þ

d.
ð24 þ 4Þð�1Þ

3þ 1
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e. ð22Þ2 � 60

f.
�2

3
� 3�2

�2

No t e

To delete a sign, field, or other item as you are implementing a problem in Visual Formula,
position the cursor on the item, press the Shift key, and click the left mouse button.

When you use Visual Formula to solve these problems, you make frequent use of

the Power menu option. You also use the quotient bar. To demonstrate the use of

Visual Formula for these operations, consider the following problem:

32

6
þ 23

5

To implement this problem so that you can generate its solution, refer to

Figure 3.6 and perform these steps:

1. Click the Quotient menu item. Then click in the upper equation compo-

sition area to position the quotient bar. Resize the quotient area by clicking

on the bottom edge and pulling it down.

2. Click the Value fieldmenu item. In the upper (numerator) part of the quotient

area, click to position the Value field. Then click in the field and type 3.

3. Click the Power menu item. To the upper right of the numerator Value field,

click to place the exponent field. When you click to position the exponent,

note that 2 is the default value. Leave this value.

4. Click the Value menu item and position the corresponding (denominator)

field below the quotient bar. Click in the field and type 6.
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Figure 3.6
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5. Click the Add menu item and to the right of the quotient you just created,

click to position the plus sign.

6. Click the Quotient menu item and position it after the plus sign. Resize it so

that it is the same size as the first quotient area.

7. Click the Value menu and position the field in the numerator area of the

second quotient. Click in the field and type 2.

8. Click the Power menu item and position it to the upper right of the Nu-

merator field. Click in the field and type 3 for the exponent.

9. Click the Value menu and position the field in the denominator area of the

second quotient. Click in the field and type 5 as the value.

10. To calculate the value, click on the button with the equal sign. You see the

answer in the field to the right of the button.

No t e

As you go, it is not necessary to start from scratch. If you press the Shift key and click on the left
mouse button, you can delete items. You can then insert new items. To change a value in the field,
just activate the field and use the Backspace key to delete the number in the field.

Conclusion
In this chapter, you have explored how to use sets to help you conceptualize the

relationships between groups of numbers. Among the key concepts in this

respect are unions and intersections. You also made use of subsets and dis-

junctions. While sets prove endlessly engaging, other equally engaging topics also

prove useful when working with relationships between numbers. In this respect,

you explored exponents. Exponents allow you to represent how numbers can be

raised to powers. Through negative values, they also allow you to create the

inverses of values. Working with basic exponents enables you to use powers of

ten in conjunction with rational representations of numbers to express extremely

large and extremely small values. Along with this discussion, you explored the

uses of absolute values, which enable you to view both negative and positive

distances in terms of absolutes relative to zero. Finally, you investigated the use of

roots and radicals to complement and extend the use of exponents.
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Expressions, Relations,
and Functions

In this chapter, you learn the fundamentals of factoring. Factoring allows you to

reverse the work of the distributive property. When you factor an expression, you

end up with a product. In other words, you end up with an expression that allows

you to carry out a multiplication. If you carry out this multiplication, it allows

you to check your work because it restores the expression to the form you started

with. In addition to factoring, you investigate the notion of relations among

numbers. You arrange numbers into sets based on the relationship the elements

in the set have with each other. You can also use the notion of a relationship to

see that numbers in a given set correspond to numbers in another set. One of the

most primary relationships of this type is between the numbers in an ordered

pair. An ordered pair consists of two values, one that constitutes a domain value,

and the other that constitutes a range value. You can readily illustrate ordered

pairs using the Cartesian coordinate system. When you generate ordered pairs in

which the domain value corresponds to only one range value, then you create a

function. You can test functions by using the vertical line test. Given this over-

view, this chapter includes the following topics of discussion:

n Factoring and the largest common factor

n The order of operations

n Cartesian coordinates and quadrants

n Expressions for functions
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Basic Factoring
In an earlier chapter, you explored the distributive property of numbers. As a

refresher, here is an example of the applications of the principle of distribution to

a multiplication problem:

4ð5þ 3Þ ¼ 4ð5Þ þ 4ð3Þ ¼ 20þ 12 ¼ 32

4ð5� 3Þ ¼ 4ð5Þ � 4ð3Þ ¼ 20� 12 ¼ 8

To perform the distributions, you begin by evaluating the terms in parentheses in

relation to the numbers that are applied to them. You can then rearrange the

terms so that you preserve the operators that characterize the relations between

them. You can rearrange the terms because 4 constitutes a number that is

common to each term. You distribute the multiplication activities of 4 so that

you apply them separately to the numbers within the parentheses.

When you factor the terms of an expression, you reverse this activity. You begin

with a situation in which a common number is applied to a set of terms. You then

rewrite the expression so that you combine the common terms into groups. Here

is how you factor the expressions shown previously:

4ð5Þ þ 4ð3Þ ¼ 4ð5þ 3Þ
4ð5Þ � 4ð3Þ ¼ 4ð5� 3Þ

These expressions both have 4 distributed across multiplication operations

involving 3 and 5. To factor the expressions 4(5) and 4(3), you observe that 4

constitutes a common term. You can then factor this common term so that you

apply it to the other terms in a collective way.

When you factor out a term, you usually try to factor out the largest common

factor. The largest common factor represents other factors combined. Consider

this equation:

14a � 56

You can rewrite this expression so that each expression consists of the lowest

common factors:

ð1Þð2Þð7Þa � ð1Þð2Þð2Þð2Þð7Þ
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You are then in a position to group the common factors so that they reveal the

largest common factor:

½ð1Þð2Þð7Þ	a � ½ð1Þð2Þ	ð2Þð2Þ½ð7Þ	
If you carry out the implied multiplication, you arrive at the largest common

factor for the two terms:

ð14Þa � ð14Þð2Þð2Þ ¼ 14a � 14ð4Þ ¼ 14ða � 4Þ
One of the key notions in factoring is that when you factor an expression, you

end up with a product. As Figure 4.1 illustrates, factoring two expressions results

in a new expression that implies that a multiplication can take place. Generally,

then, youhave successfully factored an expressionwhen you rewrite it as a product.

Given that you factor a term, you can then check the correctness of your activities

if you carry out the implied multiplication:

14ða � 4Þ ¼ 14a � 56

A further extension of factoring involves collecting like terms. If an expression

contains terms that are exactly alike, then you can rewrite the expression so that

you use one instead of several instances of the like term in the expression. As in

previous examples, when you collect like terms, you create a product. As

examples of expressions possessing collectable terms, consider the following:

8c þ 6c ¼ ð8þ 6Þc ¼ 14c

7a2 þ 5a2 þ 6a3 � 3a3 ¼ ð7þ 5Þa2 þ ð6� 3Þa3 ¼ 12a2 þ 3a3 ¼ 3ð4a2 þ a3Þ
In the first example, c is common to both terms, so you can use the distributive

property to factor the sum of 8 and 6 into a single expression that you can

multiply by c. After you regroup the integers, you can carry out the addition and

arrive at a single term, 14c.
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Figure 4.1
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In the second expression, you perform slightly more involved activities. The

expression contains two like terms, a2 and a3. You can group the coefficients of

these terms into expressions that involve addition and subtraction. When you

carry out these operations, you end up with 12 and 3 as coefficients. You then

carry the process a step further by factoring 3 out of the expression.

E x e r c i s e S e t 4 . 1

Here are a few problems for factoring. Find the largest common factor or the like terms.

a. 20aþ 4bþ 15c

b. 7aþ 42

c. abþ a

d. 2a� 2b� 2b

e. 2
4a� 3

4b� 1
4

f. 9aþ 5aþ 7þ 3b� 2b� 3

g. 2
ffiffiffi
4

p
cþ ffiffiffiffiffi

16
p

c� 4

h. 15x5 � 12x4 þ 27x3 � 3x2

i. 30x3 þ 24x2

j. 7a6 � 10a4 � 14a2

Order of Operations
When you work with equations to simplify them, you work in specific ways.

Generally, you perform multiplication and division first, working from left to

right. Then you perform addition and subtraction, working from left to right.

Consider these expressions.

3� 3� 2 ¼ 9� 2 ¼ 7

3� 3� 2� 2� 2 ¼ 9� 2� 4 ¼ 7� 4 ¼ 3

3� 3� 2� 2� 2 ¼ 9� 2� 1 ¼ 7� 1 ¼ 6

If you find the multiplication and division operations and perform those first,

you are usually on safe ground. Still, to make it so that the order of operations is
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easier to understand, you can employ parentheses:

ð3� 3Þ � 2 ¼ 9� 2 ¼ 7

ð3� 3Þ � 2� ð2� 2Þ ¼ 9� 2� 4 ¼ 7� 4 ¼ 3

ð3� 3Þ � 2� ð2� 2Þ ¼ 9� 2� 1 ¼ 7� 1 ¼ 6

Parentheses override the standard order of operations. When you work with

parentheses, you perform the operations in the innermost parentheses first and

then proceed outward. After calculating the innermost grouping symbols, you

then simplify the exponential expressions. After that, you carry out operations

according to the usual order. Here is an example:

23 þ 33� ð3þ 4ð2þ 2ÞÞ � ð3� 3Þð3Þ
¼ 23 þ 33� ð3þ 4ð4ÞÞ � ð9Þð3Þ
¼ 23 þ 33� ð3þ 16Þ � ð27Þ
¼ 23 þ 33� ð19Þ � ð27Þ
¼ 8þ 33� ð19Þ � ð27Þ
¼ 8þ ð33� 19Þ � 27

¼ 8þ 627� 27

¼ 635� 27

¼ 608

E x e r c i s e S e t 4 . 2

Here are a few problems involving orders of operation. Reduce the expressions.

a. 4a� ð2aþ 6Þ

b. 16b� c� 5ð33a� 2b�þ5bÞ

c. ð3aþ 12bÞ � 3ð4a� 16bÞ

d. ð6� 2Þ2

e. ð�rÞ2

f. �r2
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g. 16� 8þ 5½4þ 3ð2� 4Þ3	

h. 5s� 9þ 2ð4sþ 5Þ

i. 98� 32� 98� 32

j. ð8� 2 � 3Þ � 9

More on Sets
In Chapter 3, you investigated some of the activities that involve sets. To extend

the previously developed notions, consider that when you define a set, you can

define it so that its elements bear relationships with each other. If you investigate

a set that consists of numbers that are less than 10 and greater than zero, for

example, then you can create a definition along the following lines:

fa j a < 10 ^ a j a > 0g
This expression reads along the lines of ‘‘a such that a is less than 10 and a such

that a is greater than 0.’’ While the numbers 0 and 10 are not part of the set, all the

numbers in the set are defined by two common features: They must be greater

than 0 and they must be less than 10. As Figure 4.2 illustrates, the features of the

numbers are based on relations.

As shown in Figure 4.2, you can illustrate the numbers greater than 0 and less

than 10 just by listing them within curly braces:

f1, 2, 3, 4, 5, 6, 7, 8, 9g
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As the discussion in Chapter 3 emphasized, you can relate any set to any other set

through such operations as union, intersection, or disjunction. In this respect,

then, it becomes evident that you can view some sets as collections of pairs.

As Figure 4.3 illustrates, the relations between elements in the two sets allow you

to see domain-range relations in the bottom set.

When you begin examining how sets of elements can be defined through

relations, you can extend the discussion to include the notion of ordered pairs.

A pair is a set of two items. These items can be elements you take from different

sets. Likewise, when you can use one element in the pair to define the other

element in the pair through a relationship that you can explicitly state, then the

two elements exist as an ordered pair.

Consider a relationship in which the first element in the ordered pair is 1 less

than the second element. You might state this formally using this expression:

(a, b) j a ¼ b � 1. Figure 4.4 illustrates the ordered pairs that follow from this

relationship.

Formally defining a relationship and then generating values is one way to create

ordered pairs. Another approach is to begin with a collection of ordered pairs

that you somehow discover, and then search for a way to formally describe how
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Figure 4.3
Correspondence can pertain between elements in the same set or elements in different sets.



the paired numbers relate to each other. Dealing with the ordered pairs Figure 4.4

illustrates, for example, you can observe that as you go from 1 to 8, you can detect

a pattern. The pattern is that if you begin with the first number and add 1, then

you get the second number. As Figure 4.5 illustrates, you can proceed to

mathematically express the relationship.

As shown in Figure 4.6, when you are dealing with ordered pairs, a number line

becomes an effective starting place for making mathematical translations of the

relationships you observe.
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Figure 4.4
A relation establishes a way to discern ordered pairs.

Figure 4.5
A set relation provides a standard way to generate ordered pairs of numbers.



Correspondence Between Sets
To take the examination of ordered pairs into slightly more detail, suppose that

you create two sets, A and B, and you assign them elements as follows:

A ¼ f1, 2, 3, 4g B ¼ fw, x, y, zg
You then examine the correspondence between the two sets and create the fol-

lowing ordered pairs:

ð1,wÞ ð1, xÞ ð1, yÞ ð1, zÞ
ð2,wÞ ð2, xÞ ð2, yÞ ð2, zÞ
ð3,wÞ ð3, xÞ ð3, yÞ ð3, zÞ
ð4,wÞ ð4, xÞ ð4, yÞ ð4, zÞ

To create these pairs, you begin with the first element from set A and pair it with

the first element of set B. You then again draw on the first element of set A and go

to the second element of set B. You continue this way until you have paired the

first element of set A with all the elements of set B. You then use the second

element of set A and proceed as before, pairing it with each element of set B. You

continue this activity until you have created all possible ordered pairs that can

pertain between sets A and B.

This correspondence of elements in the two sets is known as the Cartesian

product of the two sets. You represent a Cartesian product as A� B. The � in
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Figure 4.6
Use a number line to explore a relation that allows you to define ordered pairs.



this case represents the exploration of the way the elements of the two sets relate

to each other. The result of the exploration is called the product of the two sets.

When you proceed in this manner, you begin with a specific pattern of creating a

correspondence—or product. At the same time, after you have created the

Cartesian product, you can continue on to discover certain subsets. For example,

consider the subset of all ordered pairs that contain 1 as a first element. On the

other hand, as Figure 4.7 illustrates, you might also describe a subset that consists

of the pairs with y as a second element.

Domain and Range
When you generate a set of ordered pairs, the set of all elements occurring first in

the pairs is the domain of the relation. The set of all elements occurring second is

the range of the relation. With respect to the subset of ordered pairs Figure 4.8
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Figure 4.7
If you examine the pairs in a Cartesian product, you can discern subsets.

Figure 4.8
The domain is the set of the first elements, the range is the set of the second elements.



depicts, you can establish a domain that consists of the set {1, 2, 3, 4}. You can

establish a range that consists of the set {y, z}.

Cartesian Coordinates
When Rene Descartes (1596–1650) invented the system of mapping coordinates

that bears his name, he was lying ill in bed, watching a fly negotiate the

space above him. To be able to determine the location of the fly as it buzzed above

him, Descartes imagined a flattened world in which the fly moved around on a

plane that roughly corresponded in dimensions to the ceiling.

To make it so he could trace the path of the fly on the plane, the mathematician

drew axes that divided the ceiling area into four quadrants. He labeled the

quadrants using Roman numerals, as shown in Figure 4.9. At the intersection he

placed the origin of his mapping. The axes he divided into equal segments

identified with positive and negative values. The vertical axis he labeled as the

y axis. The horizontal axis he labeled as the x axis.

The horizontal axis of the Cartesian plane represents domain values. The x axis

of the Cartesian plane represents range values. Each point on the Cartesian

plane is a coordinate, and each coordinate consists of an ordered pair of values.

The x value always occurs first in an ordered pair. The y value always occurs

second.

Mathematicians sometimes refer to the first number in an ordered pair as the

abscissa. They sometimes refer to the second number as the ordinate. Each

number is a coordinate. The ordered pair designates a point within the quadrants

of the coordinate system. At the center of the system, where the two axes

intersect, you find the origin of the system.

If you picture the system upright, the quadrants of the Cartesian plane are set

up so that quadrant I is in the upper right. You then move counter-clockwise

through the quadrants. Quadrant II is on the top left. Quadrant III is on

the bottom on the left. Quadrant IV lies on the bottom on the right. If you

trace the flight of the fly, you can discern that the positive and negative values

of the ordered pairs take on a specific pattern. Table 4.1 provides a summary of

this pattern.
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Table 4.1 Quadrant Characteristics

Quadrant Values Discussion

I ( 1 , 1 ) Both x and y are positive. In other words, both the domain and
range values are positive.

II ( 2 , 1 ) The value of y is positive, but the value of x becomes negative. In
other words, the domain values become negative while the range
values remain positive.

III ( 2 , 2 ) The value of x is negative, as is the value of y. In this instance, both
the domain and the range become negative.

IV ( 1, 2 ) The value of x is positive, but the value of y becomes negative. In
this instance, the domain is positive, and the range is negative.

Figure 4.9
The Cartesian coordinate system makes it possible to map a domain to a range.



E x e r c i s e S e t 4 . 3

Here is a Cartesian coordinate system with a grid to help you position ordered pairs. Use the
system to determine the quadrant in which the ordered pairs belong.

a. (3, 5)

b. (---4, 3)

c. (5, ---1)

d. (---4, ---4)

e. (7, ---5)

f. (---8, ---1)
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g. (---6, 7)

h. (1, ---6)

i. (2, 2)

j. (---2, ---2)

Functions
A function results when you discover a relationship between the values in a

domain and the values in a range. Certain limitations apply to this relation-

ship, however. First, each domain value must be unique. Second, each range

value must correspond to only one domain value. Expressed differently, if you

designate a number in the domain, then you find only one number in the

range that corresponds to it. In this respect, since a one-to-one correspon-

dence pertains between the values in the domain and the values in the range,

the value of the number in the domain determines the value of the number in

the range.

In Figure 4.10, a Cartesian system allows you to illustrate the functional rela-

tionship. This function establishes a pattern that relates the values of the domain

with those of the range. The domain and range constitute sets. While the

numbers in the domain form a union with the numbers in the range, it remains

that the domain-range pairs that result are all unique. The equation that gen-

erates these pairs is y ¼ x þ 1.

Given this equation, then, each value you designate for the domain generates a

unique value. The equation, then, is a proper function. It is an equation or

relationship that allows you to generate unique range values by using a set of

domain values that are themselves unique. No two domain values generate the

same range value.

Non-Functional Relationship
Not every pair of sets designating a domain and a range represent a functional

relationship. One test you can use to determine whether the graphical depiction

of a set of coordinates represents a function involves using a vertical line.

Accordingly, if you apply the vertical line test to a graph, the graph cannot pass

over the line more than once.
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Figure 4.11 illustrates, once again, the path of a fly. The fly’s path does not

constitute a function. In quadrants II and IV, you see that two of the pairs feature

5 as the domain (x) value. In quadrants II and III, you see that again, the domain

value repeats itself, this time as �5. Given these redundancies, while it is clear

that relations exist between the values of the domain and the range, the mapping

of the domain to the range does not represent a function.
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Figure 4.10
A function describes the relation between the domain and the range in which a value in the domain
determines a value in the range.



Figure 4.12 illustrates three instances in which the vertical line test reveals that the

graphs of lines do not represent functions. Graph A fails the test because any pair

you identify above the x axis has a corresponding pair below the x axis. Graph B

fails in the same way. For Graph C, the situation is a bit more complex, but the

problem remains the same. Consider, for example, that the line crosses the y axis

four times.
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Figure 4.11
The path of a fly does not unfold as a function.



Discontinuous Lines

Graphs that represent functions do not have to be continuous. Figure 4.13

illustrates a graph of a discontinuous line. The graph passes the vertical line test

because all domain values generate unique range values. The fact that no values

can be found along the x axis that are less than 5 and greater than �5 does not

change things. The y, or range values, are all the same for the ordered pairs you
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Figure 4.12
The vertical line test reveals that the graphical representations of different sets of coordinates do not
represent functions.



might name for the function. You can formally represent the function in this

way:

y ¼ 1, where fx 
 �5 [ x � 5g

In this expression, you define the values of x as a union of all the values greater

than or equal to 5 and less than or equal to �5.

Designating Functions
The notation you employ to designate functions allows you to substitute a short

statement for the full expression of an equation. The substitution typically

involves using a letter, such as f or g, to designate the equation. You then employ
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Figure 4.13
Lines can be discontinuous, but the outcome corresponds to a function.



opening and closing parentheses to identify the value to use with the equation.

You read the expression f (x) as ‘‘f of x.’’ To indicate that you are expressing a

given equation as a function, you can use the equal sign to associate the function

notation with the equation. Here’s an example:

f ðxÞ ¼ 3x þ 2

In this case, f (x) becomes a way of saying 3(x) þ 2. You then employ the

function notation to designate that you are generating a y (or range) value using

the function. A table of values proves convenient as a way to organize your

operations. Given a table of generated values, you can then create a graphical

representation of the line, as Figure 4.14 illustrates.
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Figure 4.14
Function notation allows you to conveniently display work and generate tables of values to use in
creating graphs.



E x e r c i s e S e t 4 . 4

Carry out the operations indicated.

a. f (5), for f (x) ¼ 3x þ 7

b. f (2), for f (x) ¼ 3x þ 5

c. f (x þ 1), for f (x) ¼ 4x þ 5 � 2x

d. f (x � 3), for f (x)¼ 4x þ 5 � 2x

e. f (2x), for f (x)¼ 4x þ 5 � 2x

f. g (�1), for g (n)¼ 3n2 � 2n

g. s (0), for s (x)¼ 5x2 þ 4n

h. s (2a), for s (x) ¼ 5x2 þ 4n

i. g (�4), for g (x)¼ x � 2

j. g (a � 1), for g (x)¼ x � 2

Using Visual Formula
Visual Formula allows you to explore relations between domain and range

values. The equations you work with as you conduct these explorations can be

characterized as functional relations. In subsequent chapters you explore such

relations in greater detail. For now, you can use Visual Formula to program

variables for fields so that you can explore how equations create domain-range

relations.

To set up functions using Visual Formula, you use the f()Func menu item, which

generates the f() operator. This operator captures the expression you place

between its open and closing parentheses. The output of the operation is stored

in a special Visual Formula variable, z. As Figure 4.15 illustrates, the f() operator

allows you to operate on values you assign to x. You then access the value of the z

variable in the lower equation composition area. When you click the equal sign

button in the solution panel of the upper equation composition area, you retrieve

the value of z.

Here are a few functions you can set up in the upper equation composition area.

Refer to Figure 4.16 as you work. Detailed instructions for setting up the basic

function follow.
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1. f (x)¼ x þ 9

a. f(2 þ 1)

b. f(5)

c. f(9)

d. f(x þ 1)
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Figure 4.15
The z variable allows you to access the output of a function.

Figure 4.16
Set up a formula you can alter to accommodate different expressions.



2. f (x)¼ 3x þ 5

a. f(4)

b. f(2)

c. f(5 � 4)

3. f (x)¼ 4x þ 5 � 2x

a. f(1)

b. f(8 � 3)

c. f(23)

To delete individual operators or fields, hold down the Shift key and click on the

operator or field using the left mouse button.

To set up the function in the upper equation composition area illustrated in

Figure 4.16, use these steps:

1. Click the f()Func menu item and position the f() operator in the upper

equation composition area. Use the mouse cursor to pull the closing par-

enthesis to the right.

2. Click the ()Parens menu item and place a set of parentheses between the

parentheses of the function operator. Use the mouse cursor to pull the inner

closing parenthesis to the right.

3. Now successively click the Value menu item three times and with each click

place a Value field, as shown in Figure 4.16. You place one just after the

opening inner parenthesis. You place a second just before the closing inner

parenthesis. You then place a third before the closing outer parenthesis.

4. To add operators, click the Add menu item twice in succession and with

each click place a plus sign in your function. The first plus sign follows the

first Value field. The second plus sign follows the closing inner parenthesis.

5. Having set up the shell of a function, you can now proceed to add constants

and variables to it. Toward this end, type x, a, and 9, as shown in Figure 4.16.

6. To identify and assign values to the variables, in the top Name field of the

Variable panel, type x. In the Value field to the right of this field, type 3.

Follow up by typing an a in the lower Name field. Type 0 for the value you

associate with this field.
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7. Now proceed to the lower equation composition area. Click the Value menu

item and place the corresponding field in the lower composition area. Type z

in this field. The z variable allows you to capture the output of the function

you have created in the upper equation composition area.

8. Given this work, you can now click the equal sign button in the upper

solution panel and see the output of your function. It appears in the upper

solution panel answer field. When you add 3 to 0 and then add this sum to 9,

the outcome is 12.

Using your work in the preceding steps as a starting point, alter the function so

that it accommodates the example functions given in items 1 through 3 pre-

ceding the detailed instructions. Change variable values, fields, and operators to

accomplish these tasks.

Conclusion
In this chapter, you began with an exploration of basic factoring. A review of

factoring at this point is worthwhile because it anticipates work to come in the next

chapter and also serves as an occasion for reviewing the basic properties of numbers.

In this respect, it also proves worthwhile to briefly review the order of operations as

you solve problems. Given this start, the discussion then turned to an extension of

the previous explorations of sets. In this context, the focus of attention lay on

showing that you can define relations between numbers by using sets.

A central notion in this respect is that of the domain and range of an ordered pair

of numbers. Given a relation that generates ordered pairs, you can identify

the first element of each ordered pair as belonging to a set you can designate as

the domain. You can identify the second element as belonging to another set, the

range. Relations lead to functions, which formalize the expression of the corre-

spondence of the values you find in the domain and range of a relation. You can

plot functions using a Cartesian coordinate system. After plotting the domain

and range values of ordered pairs, you can apply the vertical line rule to it to

determine whether the relation constitutes a valid function.
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Functions and
More Functions

In Chapter 4 you examined fundamental notions related to presenting numerical

data in graphical form. The discussion ended with a review of approaches to

representing and working with functions. In this chapter, you take up the theme

of working with equations, which allows you to solve the problems that functions

embody. When you solve an equation, you work with addition and multi-

plication to ‘‘undo’’ operations so that you can solve the equation for a specific

value. You also make use of least common denominators to clear equations of

fractions. When you solve equations, you can end up with a single solution or a

set of solutions. Among the equations that generate sets of solutions are those

involving absolute values and inequalities. A review of these concepts at this

point helps focus the activities of previous chapters so that you can begin using

Cartesian graphical representations to work with linear equations. Among topics

this chapter covers are the following:

n Rethinking the fundamentals of equations

n Uses of addition and subtraction

n Dealing with fractions

n Absolute values and the number line

n Inequalities and the number line
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Thinking About Equations
When you equate one thing to another, you usually proceed such that you

examine two things in succession and then conclude they represent the same

thing. When you look at a picture of a bird in flight and think about being free to

sing, dance, or write a poem, you deal with an analogical form of equality. As

Figure 5.1 illustrates, you can analogically equate an oval and a circle. The two

forms are rounded, for example, or of the same shade. To the idea of analogy, you

can also add that of balance. You can balance a single block on a scale with three

smaller blocks if the combined weights of the three smaller blocks equal that of

the larger block. With both analogy and balance, you establish equality by using a

given quality or attribute to relate two or more items to each other.

When you equate two things to each other, you can do so because they possess a

quality or qualities in common. Mathematicians assert generally that everything

in the universe can be related to everything else using numbers. Numbers provide

a universal medium of relation.

When you study math, it sometimes becomes easy to forget that numbers are

abstractions of things. For example, you see an expression along the following

lines:

7 ¼ 2þ 4þ 1

80 Chapter 5 n Functions and More Functions

Figure 5.1
Analogy and balance provide two ways to examine equality.



This is a relationship of equality between numbers that might stand for other

things, such as the weights of blocks or days of the week. Reasserting that numbers

represent such things becomes important at times.

As Figure 5.2 illustrates, when you deal with equations, you deal with both

analogy and balance, but in many ways the notion of a balance proves most
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effective as a way of understanding how equations work. Working with an

equation is a process of balancing. When you relate numbers to each other using

an equation, you make it so that you can change the way you represent numbers.

As you change the way you represent the numbers, you can solve the equation for

specific values.

An equation, then, consists of a relation you establish between numbers. When

you establish the relation, you assert that a balance or condition exists between

the representations you provide of the numbers.

You balance equations bymanipulating their terms. As the discussion in Chapter 2

emphasized, you manipulate the terms of an equation using the properties of ad-

dition, subtraction, multiplication, and division. When you manipulate the terms

and expressions of an equation, the goal of your activity is to preserve the equality

of the terms.

Addition and Subtraction

Solving equations using addition and subtraction provides what proves to be the

easiest approach to viewing how equations work. Here’s an equation:

x þ 3 ¼ 7

This equation involves one unknown term (x). If you solve the equation, you find

the value of the unknown term. To find this value, you can subtract 3 from both

sides of the equation:

x þ 3� 3 ¼ 7� 3

x þ 0 ¼ 4

x ¼ 4

As you carry out the operation, you preserve the equality. In the end, you

eliminate enough terms from the equation to find the lone value of x.

Subtraction constitutes a form of addition (adding the inverse). You can begin

with an equation of a slightly different form:

x � 3 ¼ 7

x � 3þ 3 ¼ 7þ 3

x ¼ 10
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In this instance, the actions you take amount to undoing or reversing the actions

you take when you perform the subtraction. Still, by adding the same value to

both sides, you eliminate terms to the point that you are left with only x and its

value.

With both forms of the equation, when you substitute your final answer back

into the original equation, you can check your solution. Here is the equation

involving addition:

x þ 3 ¼ 7

ð4Þ þ 3 ¼ 7

7 ¼ 7

Here is the equation involving subtraction:

x� 3 ¼ 7

ð10Þ � 3 ¼ 7

7 ¼ 7

E x e r c i s e S e t 5 . 1

a. x þ 5 ¼ 45

b. x � 12þ 25 ¼ 415

c. 6x � 12þ 25 ¼ 2x þ 3

d. 5b� 125 ¼ 2bþ 33

e. t þ 9 ¼ �4

f. �5 ¼ t þ 8

g. w � 8 ¼ 5

h. y � 6 ¼ �14

i. 4c� 5 ¼ 5cþ 8

j. 35 ¼ 6y � 5
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Multiplication and Division

When you work with multiplication and division to solve equations, your actions

proceed along lines similar to those you use when you work with addition and

subtraction. Because division often involves work with fractions, however, your

activities take on greater complexity. Still, the essential work of maintaining equality

between expressions remains the same. Here is an equation you solve using division:

2x ¼ 10

To or undo the relationship between 2 and x, you divide the expression by 2.

When you divide by 2, you employ the multiplicative inverse of 2. The effect of

this activity is to transform the coefficient of x into 1 while dividing 10 in a way

that equates with this action. Here is how you proceed:

2x

2
¼ 10

2
Multiply by the multiplicative inverse of 2, or

1

2

1x ¼ 5

x ¼ 5

The multiplication brings about a division of 10 by 2. At the same time, it isolates x.

When you undo a relation between two terms, you are able to isolate one of the

terms to discover its value. As Figure 5.3 illustrates, as long as the operations you

perform on both sides of the equation result in equal changes, you can proceed

with such activities until you reach the solution of the equation.

What applies to division also applies to multiplication. Here is an equation that

begins with a division:
x

3
¼ 7
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Solving this equation involves undoing the division that characterizes the value

of x. To undo the division, you can multiply by a value that results in 1x.

Accordingly, you can multiply by 3:

3� x

3
¼ 3ð7Þ Multiply by the multiplicative inverse of

1

3
, or 3

3

3
x ¼ 21

1x ¼ 21

x ¼ 21

As you proceed, then, you preserve the equality of the terms on both sides of the

equation and isolate the unknown term on the one side so that in the end you can

identify its value on the other side.

As with addition and subtraction, you can check your division and multiplication

activities by substituting the values you arrive at back into the original equations.

Accordingly, for the equation you solve using division:

2x ¼ 10 The original equation:

2ð5Þ ¼ 10 Substituting the solution:

5 ¼ 5

Likewise, for the equation you solve using multiplication:

x

3
¼ 7 The original equation:

21

3
¼ 7 Substituting and dividing:

7 ¼ 7

E x e r c i s e S e t 5 . 2

a.
3x

2
¼ 60

b.
4x

2
¼ 42

c.
6x

2
¼ 30
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d.
6b

2
� 12 ¼ 2

e.
2

7
¼ x

3

f.
�r

5
¼ 9

g. � 6

7
t ¼ 6

7

h.
r

4
¼ 13

i. b� 1

6
¼ � 2

3

j.
1

5
þ x ¼ � 3

10

Combining Operations

Your ability to solve equations substantially increases when you combine addi-

tion andmultiplication. With the combination of operations, you can proceed to

undo relations that have bound numbers to each other in several ways. Here is an

equation that combines numbers through addition and multiplication. You use

division and subtraction to undo the relations. You begin by working with the

addition:

2x þ 3 ¼ 7

2x þ 3� 3 ¼ 7� 3 Undo the addition:

2x þ 0 ¼ 4

2x

2
¼ 4

2
Then undo the multiplication:

x ¼ 2

When you work with an expression such as 2x þ 3, to solve for x you begin by

removing the integer 3 from the left side of the equation. You then remove

the coefficient of x, 2. To remove the 3 from the right side, you subtract it
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from both sides of the equation. To remove the coefficient of x, you divide both

sides by 2.

Along a slightly different path, consider the same equation you just worked with.

There is more than one way to solve it. Instead of starting by undoing the

addition, you can start by undoing the multiplication. In this case, you can begin

by dividing. You start off by dividing both sides of the equation by 2:

2x þ 3 ¼ 7

2x þ 3

2
¼ 7

2
Undo the multiplication:

2

2
x þ 3

2
¼ 7

2

x þ 3

2
¼ 7

2

x þ 3

2
� 3

2
¼ 7

2
� 3

2
Undo the addition:

x ¼ 4

2

x ¼ 2

When you divide by 2, you end up with fractions. The fraction associated with

the unknown, x , however, is 2/2, which is equal to 1. In this way, then, you isolate

the variable x. You can then use subtraction to deal with the fraction that remains

on the left side. To verify that the solution you reached is correct, you insert it

into the original equation:

2x þ 3 ¼ 7

2ð2Þ þ 3 ¼ 7

4þ 3 ¼ 7

7 ¼ 7

Approaching Equations in Different Ways

The previous section reveals that you can approach solving equations in dif-

ferent ways. The specific approach you use can be a matter of figuring out the

approach you find easiest. Consider, for example, this approach to solving the
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problem presented previously:
x

2
� 4 ¼ 7

x

2
� 4þ 4 ¼ 7þ 4 Undo the addition:

x

2
¼ 11

2
x

2

� 	
¼ ð11Þ2 Undo the division:

x ¼ 22

In this case, multiply by 2 to remove the fraction. When you remove the fraction,

at the same time you first add 4 to both sides, and then multiply both sides by 2.

You might just as well have started out by multiplying both sides by 2 but by first

adding 4 you reduce the amount of work. To check the solution, you substitute it

into the original equation:
x

2
� 4 ¼ 7

22

2
� 4 ¼ 11� 4

22

2
� 4 ¼ 7

Here is another problem that involves multiple stages of undoing before you

reach a solution. When you start off, the denominator of the fraction on the left

consists of added terms. The most direct approach to dealing with this situation

involves multiplying both sides right off by 7:

3x þ 2

7
¼ 4

7
3x þ 2

7

� �
¼ 7ð4Þ Multiply by 7 to ‘‘clear’’ the equation of fractions:

3x þ 2 ¼ 28 Now the fraction is gone:

3x þ 2� 2 ¼ 28� 2 Undo the addition:

3x ¼ 26 Undo the multiplication:

x ¼ 26

3



To check this solution, you substitute it back into the original equation:

3x þ 2

7
¼ 4

3
26

3

� �
þ 2

7
¼ 4 Substituting the value for x:

78

3
þ 2

7
¼ 4 Divide 78 by 3:

26þ 2

7
¼ 4 Add 26 and 2:

28

7
¼ 4 Divide 28 by 7:

4 ¼ 4 The solution is correct:

E x e r c i s e S e t 5 . 3

a.
3x

2
¼ 60� 10

b.
4x

2
þ 3� 1

2
¼ 42

c.
6x

2
� 4 ¼ 30

d.
6b
2
4

� 12 ¼ 2

e. y � 5

6
¼ 7

8

f. bþ 1

3
¼ 8

3

g.
1

8
þ sþ 3

8
¼ 5

8

h. � 1

5
þ e ¼ � 1

4
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i. a� 3

4
¼ 5

6

j.
8x

2
þ 3� x ¼ 24

Least Common Denominators and Clearing Fractions

In the previous section, you multiplied by given values (such as 7) to get rid

fractions. This activity is known generally as clearing an equation of fractions. To

clear a fraction in an efficient way, you often make use of least common

denominators. The least common denominator (LCD) is the number you get if

you multiply together the denominators of the terms of the equation.

The least common denominator allows you to evaluate the terms of an equation

according to a common denominator value. From there, you can then proceed to

cancel terms. Here is an equation worked with on this basis:

x

3
þ 4

7
¼ 2

3

21
x

3
þ 4

7

� �
¼ 21

2

3

� �

21x

3
þ 21ð4Þ

7
¼ 21

1

� �
2

3

� �
LCD is 21:

Clearing the fraction.

7x þ 12 ¼ 14

7x þ 12� 12 ¼ 14� 12 Undoing the addition:

7x ¼ 2

7x

7
¼ 2

7
Undoing the multiplication:

x ¼ 2

7

With this equation, you multiply by 21, which you arrive at using the common

multiples of 3 and 7. This is the least common denominator. After multiplying

the terms of the equation by 21, you cancel terms and reduce the fractions. By
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first carrying out the work involving the fractions, you can more easily attend to

the operations related to addition and multiplication.

Once again, when you substitute the solution back into the original equation,

you can test the solution for validity. In this case, you also work with the least

common denominator to reduce the resulting fraction to its most simple form:

x

3
þ 4

7
¼ 2

3
Original equation:

x � 1

3
þ 4

7
¼ 2

3
Original equation rewritten:

2

7
� 1

3
þ 4

7
¼ 2

3
Substitute solution into equation:

2

21
þ 4

7
¼ 2

3
Do the multiplication first:

2

21
þ 4ð3Þ
7ð3Þ ¼

2

3
Find LCD on left side:

2

21
þ 12

21
¼ 2

3

14

21
¼ 2

3

Finding the most simple form.

As has been discussed previously, with many equations you make your work

easier if you perform some preliminary activities involving addition or sub-

traction. Here’s an example of a problem in which you start off by reversing an

addition operation and then moving on to clear a fraction and solve for x:

2x

3
þ 4 ¼ 21

2x

3
þ 4� 4 ¼ 21� 4 Undoing the addition:

Clearing the fraction.

Thinking About Equations 91

2x ¼ 51

x ¼ 51

2



Substituting the solution back into the original equation allows you test the

validity of your solution:

2� 51

2
3

þ 4 ¼ 21 Substituting the solution:

102

2
� 1

3
þ 4 ¼ 21 Multiplying by 2 and dividing by 3:

102

6
þ 24

6
¼ 21 Finding a common denominator:

Canceling and clearing.

Here is one final example. You begin by clearing the fraction on the right side of

the equation. To accomplish this, you multiply both sides of the equation by the

value 6. This is a value you find in the denominator on the right side of the

equation. Having cleared the right side of the equation, you can then more easily

work to isolate the variable on the left side of the equation.

2x

3
þ 4

3
¼ 5

6

Multiply by 6 to clear the fraction.

12x

3
þ 24

3
¼ 5 Carry out the multiplications:

12x

3
þ 24

3
¼ 5

4x þ 8 ¼ 5

4x þ 8� 8 ¼ 5� 8 Undo the addition:

4x

4
¼ �3

4
Undo the multiplication:

x ¼ � 3

4
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As with the previous examples, you can now substitute the solution back into the

original equation to test its validity.

2x

3
þ 4

3
¼ 5

6

2 � 3

4

� �
3

þ 4

3
¼ 5

6
Substituting the solution:

�6
4

3
þ 4

3
¼ 5

6
Multiplying by 2:

�3
2

3
þ 4

3
¼ 5

6
Simplifying:

�3

2
� 1
3
þ 4

3
¼ 5

6
Dividing by 3:

�3

6
þ 4

3
¼ 5

6
Multiplying:

�3

6
þ 4ð2Þ
3ð2Þ ¼

5

6
Finding the common denominator:

�3

6
þ 8

6
¼ 5

6
Simplifying:

5

6
¼ 5

6
The solution is correct:

E x e r c i s e S e t 5 . 4

a.
x

3
þ 2

7
¼ 4

6

b.
4x

2
þ 1

5
¼ 4

20

c.
4x

3
þ 6

3
¼ 4

6

d.
6b
2
4

� 2

8
¼ 2

4
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e.
5

4
mþ 1

4
m ¼ 2mþ 1

2
þ 3

4
m

f.
3

4
3y � 1

2

� �
� 2

3
¼ 1

3

g.
1

2
þ 4t ¼ 3t � 5

2

h.
7

8
b� 1

4
þ 3

4
b ¼ 1

16
þ b

i.
4

3
ð5aþ 1Þ ¼ 8

j.
2

3
þ 1

4
x ¼ 6

More on Absolute Values
When you work with absolute values, recall that the absolute value of a number is

its distance from zero. Given the use of the number line, any number and its

additive inverse possess the same absolute value. You represent this situation as

follows:

j3j ¼ 3

j � 3j ¼ 3

When you translate this set of relations so that you explicitly identify the values of

x in a formal way, you can create an expression that assumes this form:

If jxj ¼ 3 ) x ¼ 3, � 3:

Such a statement reads, ‘‘Given that the absolute value of some number x is 3,

then x can be either 3 and�3.’’ As Figure 5.4 illustrates, if you employ a number

line, you can easily show the two values.
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With the use of a number line, you distinguish the absolute value with respect to

the origin of the number line, which is zero. The absolute value of a number is its

distance from the origin.

Given such an understanding, when you solve an equation that involves an

absolute value, then you deal with two absolute distances. Consider this equation:

jx � 2j ¼ 5

Working with this problem involves two solutions. You arrive at these solutions

by anticipating that jx� 2j can be equal to either a positive or negative number.

The positive or negative number in this instance is 5 or �5. Given this situation,

your solution involves two equations:

x � 2 ¼ 5

x � 2þ 2 ¼ 5þ 2

x ¼ 7

x � 2 ¼ �5

x � 2þ 2 ¼ �5þ 2

x ¼ �3

To verify the correctness of these solutions, you substitute them back into the

original equation:

j7� 2j ¼ j5j ¼ 5 j � 3� 2j ¼ j � 5j ¼ 5

Here is a second example. It works the same way. You begin with an equation

that includes an expression that embodies an absolute value. You then solve the

equation for the two values the absolute value allows:

jx þ 7j ¼ 8

You then proceed with solutions as follows:

x þ 7 ¼ 8

x þ 7� 7 ¼ 8� 7

x ¼ 1

x þ 7 ¼ �8

x þ 7� 7 ¼ �8� 7

x ¼ �15

As with the previous example, to test the correctness of these solutions, you

substitute them back into the original equation:
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E x e r c i s e S e t 5 . 5

a.
x

3
þ 2

7
¼ 4

6

����
����

b. x þ 27j j ¼ 85

c. x � 2

3

����
���� ¼ 8

6

d. jx þ 7� 4j ¼ 8� 3

e.
2x � 1

3

����
���� ¼ 5

f.
4� 5x

6

����
���� ¼ 3

g.
3x � 2

5

����
���� ¼ 2

h. j7x� 2j ¼ �9

i. x � 7j þ 1 ¼ 4j

j. 7jxj þ 2 ¼ 16

Inequalities
Figure 5.5 illustrates the four types of relations that describe inequalities. The

relationships that characterize inequalities can unfold in inclusive and exclusive

(or non-inclusive) ways. When you use a number line, representing inclusion or

exclusion involves two basic activities:

n A range of numbers can be greater than a given value on a number line. To

show that the range of numbers is greater than a given number, you employ

an open circle. The circle excludes the circled number from the range.

n A range of numbers can be greater than or equal to a given value on a

number line. To show that the number is included in the range, you use a

filled circle.

The same approaches apply to ranges of numbers that are less than or equal to a

given value.
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When you work with equations that deal with inequalities, you solve them in

largely the same way you solve equations that involve equalities, but a few dif-

ferences apply. Subsequent sections discuss these differences in detail.

Addition and Subtraction of Values

When you add values to both sides of an equation that involves inequalities, you

do not alter the relation of the inequality between the two expressions. In other

words, the relations

a < b and a 
 b

remain the same if you extend them through addition:

a þ c < b þ c and a þ c 
 b þ c

Likewise, the relations

a > b and a � b
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remain the same if you extend them through addition:

a þ c > b þ c and a þ c � b þ c

Given that you can extend these relations to include the addition of additive

inverses, you can safely add or subtract values to remove or isolate values on both

sides of the inequality without changing the relation.

Here is an equation that involves inequalities and addition:

x þ 4 < 6

x þ 4� 4 < 6� 4 Undoing the addition of 4:

x < 2

You can represent this inequality by graphing it on a number line. The filled

circle indicates that valid solutions are any numbers less than 2. In other words,

2 and any number greater than 2 are not members of the solution set.

As with equations involving relations of equality, you can substitute your

solution into the original equation to test its validity. In this instance, the

solution consists of a range of numbers less than 2, which you can designate as

x jx < 2. This expression reads that the solution is any number x such that x is

less than 2. Using this expression as a guide, you can arbitrarily designate the

following set:

f�2, 0, 1, 1:5g
Given this set, you can substitute the solutions into the original equation:

ð�2Þ þ 4 < 6 ¼ 2 < 6

ð1:5Þ þ 4 < 6 ¼ 5:5 < 6

ð0Þ þ 4 < 6 ¼ 4 < 6

ð1Þ þ 4 < 6 ¼ 5 < 6

In each instance, the expression proves true, verifying the validity of your

solution set.
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Multiplication and Division of Values

Addition and subtraction of terms in an equation involving inequality renders no

change in the relation of inequality. This situation changes with multiplication

and division. Specifically, it changes in instances in which you multiply and

divide by negative numbers. Why this is so relates the properties of real numbers.

As was discussed in an earlier chapter, if you multiply a negative number by a

negative number, a positive number results. Likewise, if you divide a negative

number by a negative number, a positive number results:

�a ��a ¼ a

�a

�a
¼ a

The effect of such activity is that when you work with an inequality, you must

reverse the inequality sign if you divide or multiply a negative number by a

negative number. Here is an example of how this happens:

8� 4x > 6 Original inequality

8� 8� 4x > 6� 8 Remove the 8: No change in sign:

�4x > �2 Simplify:

�4x

�4
<

�2

�4
Divide by �4 and reverse the inequality sign:

x <
1

2
Simplify:

When you divide by �4, the result of the division on the right side is a positive

value, 1/2. This changes the inequality. You must reverse sign to compensate for

this fact.

To test the validity of members of your solution set, substitute them into the

original equation. You can graph the primary solution on a number line. The

graphical representation shows that the solution is less than 1/2, so you use an

open circle.
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As an example of the effect of multiplying by a negative number, consider this

inequality:

�6

5

 �4x

ð5Þ�6

5

 ð5Þð�4xÞ Multiply by ð5Þ to clear the fraction:

ð�1Þð�6Þ � ð�1Þð�20xÞ Multiply by ð�1Þ and reverse inequality to clear

the negative:

6 � 20x Simplify:

6

20
� x Divide by a positive number: No change:

3

10
� x Reduce:

When you multiply by�1 to make the inequality easier to work with, you render

the values on both sides of the inequality positive. This change makes it necessary

to reverse the inequality sign.

As in the previous example, to verify the correctness of the solution set, you can

first graph it on a number line.

To check the inequality, you can substitute the primary solution into the original

inequality:
�6

5

 �4

3

10

� �
�6

5

 �12

10
�6

5

 �6

5

E x e r c i s e S e t 5 . 6

a. x þ 2

7

 4

6

b.
4x

2
þ 1

5
<

4

20
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c.
4x

3
þ 3 >

4

6

d.
6b

2
� 10 � 20

e. � 3

4
x � 5

8

f. x < �3

g. x � �4

h. x � 20 
 �6

i. 5zþ 13 > 28

j. 9z < �81

Conclusion
In this chapter, you have examined different ways to solve equations. You started

out with the notion that an equation involves a relation of equality or balance. To

solve an equation, you engage in a process of changing the equation in a way that

sustains the balance but at the same time allows you to isolate a given variable so

that you can determine its value. To solve equations, you use the properties of

addition and multiplication. You use these properties to ‘‘undo’’ operations that

the equation contains. In addition to working with addition and multiplication

(which includes subtraction and division), you also dealt with the use of least

common denominators to clear fractions from equations. You also worked with

absolute values, which leave you with equations that have two solutions, and

inequalities, which often leave you with extended sets with an indefinite number

of elements.
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Lines, Slopes,
and Functions

This chapter introduces how to generate lines and work with linear equations.

You can use the slope-intercept equation to characterize a linear equation.

When you make use of this equation, you examine how the slope of a linear

equation changes, depending on whether its slope is positive or negative. You

also explore how the y-intercept value is associated with the slope-intercept

equation. The slope of a linear equation does not change. To determine a slope,

you use the ratio of rise to run of the line. If you know the slope of a line and have

one set of coordinates for the line, then you can use the point-slope equation to

create an equation for the line. Among the topics this chapter covers are the

following:

n Further explorations of domains, ranges, and ordered pairs

n How the slopes of lines change

n How a line shifts depending on its y-intercept

n How you can use the rise and run of a line to determine the slope

n How to use the slope and a coordinate to create an equation

n Combining several functions into one
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Reviewing Domain and Range
Chapter 4 provided a discussion of how domain and range values can be

understood in the context of relations. When you can establish a relation between

a set you designate as a domain and another set you designate as a range, then you

can usually create a function that defines the relation. A function constitutes a

formalized relation between the values in the domain and the values in the range.

As Figure 6.1 illustrates, you can depict this formalization using set notation. The

expression f ðxÞ reads, ‘‘the function of x’’ or, more briefly, ‘‘f of x.’’ It formally

designates an equation that relates the domain and range. When you use such a

function, you employ the values of the domain to generate the values of the range.

As discussed in Chapter 4, you identify an equation as a function. Here is an

example of how to accomplish this:

f ðxÞ ¼ 3x þ 2

You identify f (x) with the value the expression 3x ¼ 2 generates. You might just

as well write the function as y¼ 3xþ 2. Expressed as a function, (f (x)) generates

the value of y. It remains, however, that y is a variable that stands for the result of

the application of f (x).

When you define a function, you can designate or describe its permissible

domain and range values. For example, a function can serve as a way to relate an

element from the set of real numbers to another element in the set of real

numbers. With f (x)¼ 3xþ 2, you can arrive at the following generalizations:

Domain ¼ fAll real numbersg
Range ¼ fAll real numbersg

Along narrower but equally formal lines, for an equation such as y ¼ ffiffiffi
x

p
, you

can qualify the value of y so that it must be 0 or greater:

Domain ¼ fAll real numbersg
Range ¼ fy j y � 0g
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Figure 6.1
Set notation allows you to formalize how you express relations.



The goal here is to designate that you cannot solve the equation for y if the value

of x is less than 0.

No t e

For much of the discussion in this book, consider function and equation to be nearly
synonymous. Not all equations can be interpreted as functions, however. Generally, a function and
an equation both relate the values of a range to the values of a domain.

Linear Functions
Certain functions are linear. A linear function is a function that generates a

straight line. Here are a couple of examples of linear equations:

y ¼ 2x þ 3

4a � 3a ¼ 12

Generally, when you formally identify such equations, you use the following

expressions:

y ¼ mx þ b

Ax þ By ¼ C

In these equations, y and x represent variables. You can view x as representing the

domain value and y as representing the range value. In both cases, these are

variable values. The other letters (m, b, A, B, and C), represent constant values. A

constant value is a value you see literally expressed. In the first equation, 2 and 3

serve as constants. In the second equation, 4 and 3 furnish the constants.

The equation y ¼ mx þ b is known as the slope-intercept equation. The variable

m identifies the slope. The letter b identifies the y-intercept. Here’s yet another

rewriting of the equation:

value of range ¼ slope ðvalue of domainÞ þ y-intercept

Table 6.1 provides discussion of the primary features of the slope-intercept

equation. Subsequent sections discuss the features of the equation in detail.
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Slope

To understand how the slope-intercept equation works, consider the graph that

Figure 6.2 illustrates. At the top of the figure, the equation allows you to see how

constants and variable values combine to generate a straight line. When you set
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Table 6.1 The Slope-Intercept Equation

Item Discussion

y ¼ mx þ b The standard way you can express the equation. This is a linear equation if you
generate range values (y) using domain values (x).

f(x) ¼ mx þ b You can designate the equation as a function.

Graphical form The graph of the slope-intercept equation is a straight line.

m The constant m designates the slope of the line.

b The constant b designates the point at which the line crosses the y axis of the
Cartesian plane. You refer to this point as the y-intercept.

(0,b) If you want to designate the position of the y-intercept using an ordered pair, then
you set the domain value (x) to 0 and assign b to the domain value (y).

Figure 6.2
The constant m establishes how much the line rises as it extends relative to the x axis.



the value of the slope (m) to 1 and the value of the intercept (b) to 0, then you

generate a line that crosses the y axis at 0. If the value ofm is positive, then the line

slopes up and to the right of the y axis.

When you set the slope (m) to 1, youmultiply the value of the domain (x) by 1, so

as you move into quadrant I, for each unit on the x axis, you generate a corre-

sponding and equal unit on the y axis. For example, when the line with slope 1

reaches the dashed graph line for the value of 4 on the x axis, it also reaches the

dashed graph line for the value of 4 on the y axis.

The situation changes when you set the slope (m) to 4. When you set the slope

to 4, then each unit in a positive direction on the x axis corresponds to a

movement of 4 units on the y axis. In the Cartesian plane Figure 6.2 illustrates,

you increase the value of the slope until you reach 8, at which point the ‘‘rise’’ of

the line has progressed at a rate of 8 units for every 1 unit in the ‘‘run’’ (1, 8). At

this point, you are out of room for expansion. Given a larger coordinate system,

you could continue to increase the slope indefinitely.

In the same way, when you set the slope to 1
2, then for each unit on the x axis, you

find only half a unit on the y axis. When the line with a slope of 1
2 reaches the

dashed line for the value of 6 on the x axis, it has climbed only to the value of 3 on

the y axis (3, 6). The larger the value of the denominator of the slope, the smaller

the rise of the line. For a slope of 1
8, for example, when the line reaches the

dashed line corresponding to the value of 8 on the x axis, you find that it has

climbed only to 1 on the y axis (8, 1).

y-Intercept

As mentioned previously, the constant b in the slope-intercept equation

designates the point at which the line crosses the y axis of the Cartesian plane.

Figure 6.3 illustrates lines with the same slopes as shown in Figure 6.2. In this

instance, however, you change the value of the y-intercept (b). When you

assign a value other than 0 to the y-intercept, the line no longer crosses the

x axis at its origin. When you set the y-intercept to a positive value, it crosses

the y axis above the x axis.

When you set the value of the y-intercept (b) to 4 in Figure 6.3, the line crosses the

y axis at 4. When you set it at 2, it crosses the y axis at 2. For the line with a slope

of 1
2, when you set the y-intercept value (b) to 1, then you shift the line upward

by 1, so it crosses at 1. In each chase, changing the y-intercept does not alter the

slope of the line. It affects only the position at which the line crosses the y axis.
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Negative Slopes

As Figure 6.4 shows, when you assign a negative number to the slope value of the

slope-intercept equation, you reverse the slope. The slope now slants from the

upper left (quadrant II) toward the lower right (quadrant IV). The general rela-

tions between values you see with positive slopes continue to apply, however. If you

set the slope to �1, then the y value that corresponds to 1 on the x axis becomes

�1. If you set the slope to �4, then the y value that corresponds to 1 on the x axis

becomes �4. Similarly, for 6 on the x axis, if you set the slope to �1
2, you find that
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Figure 6.3
The value of the y-intercept (b) increases the value of the product of mx.



the corresponding value on the y axis is �3. The same applies to the y-intercept

values. A value of 2 for the y-intercept causes the line to cross the y axis at 2.

As the lines in quadrant II of Figure 6.4 reveal, when a domain (x) value is

negative, multiplying by a negative slope generates a positive range value. As a

result, the value of y continues to grow as x becomes more negative. On the other

hand, since the values of x are positive, multiplying by a negative slope generates

a negative number, so the range values become more negative in quadrant IV as

the positive value of x increases.
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Figure 6.4
When you use a negative value for the slope, the line slopes from quadrant II to IV.



Negative Shifts

You can define linear equations so that the y-intercept is negative. As Figure 6.5

illustrates, when you combine a negative slope value with a negative y-intercept,

the line shifts down on the y axis and slopes downward toward quadrant IV. It

no longer passes through quadrant I. When you set the slope to �1 and the

y-intercept to �2, then the line crosses the y axis at �2. The value of y when x

equals 2 is�4. On the other side of the y axis, when x is equal to�2, y is equal to 0.

Multiplying a negative value of x by the negative slope generates a positive value,

so the value of y continues to increase as the negative values of x increase.
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Figure 6.5
With a negative slope and a negative y-intercept, the line slopes toward quadrant IV.



E x e r c i s e S e t 6 . 1

For each line, find the slope and y-intercept. Graph the line.

a. y ¼ 4x þ 3

b. y ¼ �2x� 2

c. y ¼ �2x þ 3

d. y ¼ 3x � 2

e. y ¼ �5x þ 5

f. y � 3 ¼ 5

g. y ¼ 3
7 x þ 5

h. y ¼ 9
4 x � 7

i. y ¼ �2
5 x

j. y ¼ �3
8 x þ 6

What Makes a Function Linear?
In the graphs presented in the previous sections, you worked with straight lines

defined by different slope and y-intercept values. In each instance, the line you

generated sloped upward into quadrant I or downward into quadrant IV,

depending on whether you assigned a negative or positive value to the slope

constant (m). The slope of a function is defined as the ratio between its rise and

run. As Figure 6.6 illustrates, a key defining feature of functions identified as

linear is that regardless of the position at which you examine a line you generate

using a linear function, the ratio of the rise to the run remains the same.

You can express the ratio of the rise to the run of a linear function using the

capital letter delta (D) from ancient Greek:

slope ¼ m ¼ rise

run
¼ Dy

Dx

In Figure 6.6, to make it easier to view the ratio, you measure the rise and the run

of the line with triangles with a height of 2 and a base of 2, but the slope (m)

throughout remains 1. In other words, for each rise of 1 unit, the line runs by
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1 unit. As Figure 6.7 illustrates, as long as the slope does not change, whether the

slope is 1, �1, 4, or �4 makes no difference. The function remains linear.

Slopes That Do Change
As a momentary contrast with linear functions, consider at this point the graph of

a function that generates a line with a slope that does change. Figure 6.8 illustrates

a curve that you can generate using a quadratic equation. The lower part of the

curve reveals a slope of approximately 1. For every one unit on the y axis,

the lower part of the curve moves one unit on the x axis. However, after the line

climbs past 1 on the y axis, the slope changes. For one unit on the x axis, the line

climbs 3 units on the y axis. The slope for this part of the curve is approximately 3.

In this respect, then, the line does not reveal the work of a linear function.
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Figure 6.6
The ratio of the rise to the run of a linear function does not change.
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A linear function generates a line that possesses a slope that remains constant throughout. A
non-linear function does not.

Points, Intercepts, and Slopes
Figure 6.9 illustrates the rise and run of a line you generate with a linear equation.

To identify the slope, consider first that you can identify a line using two points.

In Figure 6.9, you create three lines using unique sets of coordinates. Each line

starts at the origin of the Cartesian plane. For the middle line, the coordinate set

is as follows:
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Figure 6.7
The slopes of linear functions do not change.

ð0, 0Þ ð2, 2Þ
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Figure 6.8
The line of a non-linear function reveals a slope that changes, depending on the segment of the line you
investigate.

Figure 6.9
You use two sets of coordinates to identify a slope.



Given this set of coordinates, you can then determine the slope of the line if you

establish the ratio of the rise (y) to the run (x). Here is the equation and work that

accomplishes this task:

m ¼ Dy
Dx

¼ y2 � y1

x2 � x1
¼ 2� 0

2� 0
¼ 2

2
¼ 1

The slope, then, is 1.

For the upper line, you start with this set of coordinates:

ð0, 0Þ ð4, 8Þ
As with the middle line, you determine the slope of the upper line if you establish

the ratio of the rise (y) to the run (x):

m ¼ Dy
Dx

¼ y2 � y1

x2 � x1
¼ 8� 0

4� 0
¼ 8

4
¼ 2

The slope is 2.

For the bottom line, you follow the same approach as before. Your starting

coordinates are these:

ð0, 0Þ ð8, 2Þ
As with the middle and lower lines, you can determine the slope of the line if you

establish the ratio of the rise to the run:

m ¼ Dy
Dx

¼ y2 � y1

x2 � x1
¼ 2� 0

8� 0
¼ 2

8
¼ 1

4

For each unit the line rises, it runs 4 units. The slope is 1
4
.

Using the slope-intercept equation, you can shift the line you generate for a linear

equation above or below the x axis by using a constant to designate the

y-intercept:

y ¼ mx þ b

The letter b designates the y-intercept. A line by definition connects two points.

To establish one of these two points, as Figure 6.9 reveals, you can use the

coordinate values of the origin. On the other hand, if the line does not pass

through the origin, you can work with the coordinates that define the y-intercept.
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In both instances, after you calculate the slope of the line, you can use the slope to

calculate other coordinates.

When you work with the y-intercept, the first coordinate that defines the

intercept is 0, which establishes the value of the run (x). The second coordinate

establishes the value of the y-intercept. Here is a representative equation con-

taining a y-intercept:

y ¼ 2x þ 3

Given this equation, you know that the line generated includes one coordinate

pair in which x equals 0 and y equals 3.

As Figure 6.10 illustrates, using the y-intercept as a starting point, you can use the

slope information to determine new points. The slope is 2. If you move to the

right by 1 unit along the x axis, you know that you move upward by 2 units on
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Figure 6.10
The slope and y-intercept allow you to generate points on the line.



the y axis. If you start at the y-intercept, you can then arrive at a coordinate of

(1, 5). Here is how you calculate this value using the slope-intercept equation:

y ¼ 2x þ 3

y ¼ 2ð1Þ þ 3

y ¼ 2þ 3

y ¼ 5

The Point-Slope Equation
The previous sections reveals that if you start with the y-intercept and the slope of

a line, you can generate additional coordinate sets. When you determine points

in this way, you work with differences between the two sets of coordinates

(the deltas). As Figure 6.11 illustrates, you can always employ the differences you

find between the run and rise values of two coordinates to calculate the slope of

the line. At the same time, you can make use of a given point along with the slope

to determine the position of another point.
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Figure 6.11
The slope remains a ratio between the rise and the run of a line.



To examine relating the point to the differences of the values of two points,

consider that if you take the ratio shown in Figure 6.11, you develop this

equation. On the top, you present the ratio and the slope:

ðy2 � y1Þ
ðx2 � x1Þ ¼ m

ðy2 � y1Þ ¼ mðx2 � x1Þ
When you rewrite the equation in the second form, the result is known as the

point-slope equation. This equation gives a formal definition to the notion that if

you know the coordinates of a point on a line and the slope of the line, then you

can create an equation for the line.

Consider the line shown in Figure 6.12.
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Figure 6.12
Two points allow you to create an equation.



Given the points in the graph featured in Figure 6.12, you can determine the

slope if you substitute coordinate values into the point-slope equation:

m ¼ Dy
Dx

¼ 11� 5

4� 1
¼ 6

3
¼ 2

No t e

It is important to retain a specific ordering of the coordinate values when you determine the slope.
Figure 6.13 illustrates a situation in which the order of the x coordinates is the reverse of the
order of the y coordinates:

When you know the slope of the line that connects the two points, you can

proceed to find the equation of the line. To accomplish this, you make use of the

point-slope equation. This equation reads as follows:

ðy2 � y1Þ ¼ mðx2 � x1Þ
You now substitute the slope and values from one of the coordinate pairs. Using

the values from Figure 6.12, this leaves you with this form of the equation:

y � ð5Þ ¼ 2ðx � 1Þ

If you solve for y, you arrive at the standard form of a linear equation:

y � 5 ¼ 2ðx � 1Þ
y ¼ 2x � 2þ 5

y ¼ 2x þ 3

This, then, is the equation for the line shown in Figure 6.12.
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Figure 6.13
Preserve the order of the pairs.



E x e r c i s e S e t 6 . 2

Determine the line’s slope-intercept equation for the line containing the given pair of points.

a. (1, 4) and (3, �4)

b. (4, �5) and (0, 5)

c. (6, �2) and (4, 5)

d. (0, 3) and (5, 12)

e. (4, �3) and (�2, 4)

f. (3, 7) and (4, 8)

g. (�3, 5) and (�1, �3)

h. (�1, 2) and (3, 8)

i. (2, 2) and (�1, 4)

j. (�3, 6) and (4, �2)

Using Visual Formula
Among many other things, you can use Visual Formula to explore negative

slopes. You create a negative slope when you make the m (slope) value of the

line’s slope-intercept equation negative. The equation then assumes the form

y ¼ �m(x)þ b. Here are a few equations to try:

a. y ¼ �4x þ 3

b. y ¼ �6x þ 1

c. y ¼ �5x þ 2

To implement equation a, work in the upper composition area and use the

following steps:

1. Click the Value menu item and then to position the Value field, click in the

upper equation composition area. This is the field that corresponds to the

coefficient m. Click in the field and then type �4.
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2. Click the Multiply menu item. Click to the right of the Value field to

position the multiplication sign.

3. Click the Value field item. This time, click to the right of the multiplication

sign to position the field. Click in this field and type x.

4. Click the Addmenu item and position the plus sign to the right of the x field.

5. Click the Value menu once again. This time position the Value field after the

plus sign. This is the field for the y-intercept value. Click in this field, and

then type 3.

6. Now in the lower-right panel find the From and To fields for the X Range

setting beneath the Chart for Formula 1 button. Click the From control and

set the value to �10. Click the To control and set the value to 10.

7. Now click the Chart for Formula 1 button. As Figure 6.14 illustrates, the

negative slope slants down to the right.
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Figure 6.14
Negative slopes slant down and to the right.



8. To show more of the graph, place the cursor on the top border of the graph

and drag it to the top of the lower equation composition area by holding

down the left mouse button and moving the mouse up.

9. To show more values on the graph, in the lower-left panel find the Zoom

fields for X and Y. Click the X control and set the value to �2. Click the

y control and set the value to �2.

After implementing the first equation, try the others or improvise to explore

different slopes and intercept values.

Conclusion
In this chapter, you have explored how relations between domain and range

values allow you to understand linear equations. In your explorations of linear

equations, you generated lines that have slopes that do not change. A line with a

slope of 2 maintained its slope for its entire length, which might have extended

indefinitely. In contrast, you explored how lines for other types of equations,

such as parabolas, do not maintain the same slope throughout.

In your exploration of linear functions, you used the line’s slope-intercept

equation. This equation allowed you to bring the slope and y-intercept of a line

into a formal relationship. If you assigned a negative value to the slope of an

equation, you forced the line to slope downward into quadrant IV of the

Cartesian plane. If you assigned a negative value to the y-intercept, you shifted

the point at which the line of your equation intersected the y axis.

In addition to changing slopes and shifting y-intercepts, you also explored the

way to use the point-slope equation. If you know the slope of a line and one point

on it, then you can use the point-slope equation to create an equation for your

line. This chapter provides preparation for more work with linear equations in

the next chapter, and that chapter in turn equips you to begin working with

non-linear equations.
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Distances and Other
Things

In this chapter, you extend the work begun in the last chapter to investigate

different types of linear and non-linear relationships. You start with a review of

the slope-intercept equation and how you can use the pattern it provides to

quickly establish equations if you are given two points in a coordinate plane that

define a line. From there, you work with different properties of lines, such as how

to shift them up and down. As you go, you also explore perpendicular lines and

lines you create using absolute values. From there, you proceed to explore how a

line can be symmetrical to a point or another line. In addition, you look briefly at

how you can invert the values of an equation. You also explore absolute values

using Visual Formula. Here are some representative topics:

n Simplifying approaches used to create equations

n How to apply the Pythagorean theorem

n Exploring how you can find a line perpendicular to another

n Moving lines up and down

n The effect of absolute values on lines

n How lines are symmetrical with respect to lines, axes, and points
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More Slopes
In Chapter 6, you investigated the slope-intercept and point-slope equations.

These equations allowed you to become familiar with a number of activities you

can perform to explore relationships between sets of numbers. You can view such

equations as functions. As explained previously, you can view a function as a

formal mechanism for interpreting or transforming the values of a domain into

those of a range.

Making It Easy

When you create a linear equation, you can make use of the point-slope equa-

tion. As the discussion in Chapter 6 indicates, expressed in its entirety, this

equation takes this form:

ðy � y1Þ ¼ mðx � x1Þ
This equation is for a line with slopem that contains the point ðx1, y1Þ. The slope-
intercept equation also uses a slope and a point. The point is called the

y-intercept. The equation appears in one of two forms:

y ¼ mx þ b

Ax þ By ¼ C

Drawing on the discussion in Chapter 6, consider a situation in which you know

the slope of a line is 2. You can then write the following, preliminary equation of

a line:
y ¼ 2x þ b

If you know the coordinates of a point on the line, then you can substitute the

x and y values that define the point into the slope-intercept equation. Assume, for

example, that you are working with the point (4, 11). You can substitute the x and

y values of this point into the standard slope-intercept equation in this way:

11 ¼ 2ð4Þ þ b

Having made this substitution, you can then solve for b:

11 ¼ 8þ b

11� 8 ¼ b

3 ¼ b



Having solved the equation for b, you can then substitute the values of the slope

and b (the y-intercept) into the original slope-intercept equation to create the

equation for your line:

y ¼ 2x þ 3

Making It Still Easier

In Chapter 6, you also dealt with the ratio that exists between the rise and run of a

line. You expressed that ratio in this way:

m ¼ Dy
Dx

¼ y2 � y1

x2 � x1

The Greek letter delta signifies changes in the ratio. The ratio works for all

ordered pairs on a line. If you return to the ordered pair you dealt with in the

previous section (4, 11), you can substitute as follows:

m ¼ y � 11

x � 4

Since you know the slope of the function is 2, you can set up this equation:

m ¼ y � 11

x � 4
) 2ðx � 4Þ ¼ y � 11

You can then solve the equation for y:

2ðx � 4Þ ¼ y � 11

2x � 8 ¼ y � 11

2x � 8þ 11 ¼ y

2x þ 3 ¼ y

Again, given the basic versions of the point-slope form of a linear function,

mðx2 � x1Þ ¼ ðy2 � y1Þ
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or

ðy2 � y1Þ ¼ mðx2 � x1Þ,



you can then proceed to develop different equations with relative ease. You derive

the slope using a ratio of the values you find in two points anywhere on the line:

ðy2 � y1Þ
ðx2 � x1Þ ¼ m

You then proceed to take any ordered pair on the line and substitute it into a

version of the point-slope equation. If you are working with a line that has a slope

of �3, for example, and you know that the ordered pair (2, �7) lies on the line,

then you substitute in this way:

y � ð�7Þ ¼ �3ðx � 2Þ
or

y þ 7 ¼ �3ðx � 2Þ
You then solve these for y to arrive at the slope-intercept form:

y þ 7 ¼ �3x � 3ð�2Þ
y þ 7 ¼ �3x þ 6

y ¼ �3x � 1

E x e r c i s e S e t 7 . 1

Write the slope-intercept equation for the line containing the given pair of points.

a. (0, 0) and (12, 4)

b. (0, 2) and (12, 8)

c. (0, 4) and (10, 12)

d. (0, 0) and (2, 10)

e. (0, 2) and (12, 6)

Write the point-slope equation for the line passing through each pair of points.

f. (�2, 7) and (4, �3)

g. (1, 2) and (3, 7)

h. (�3, 1) and (4, 3)

i. (2, 1) and (7, 2)
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The Distance Between Points
To take the preceding discussion a step further, consider once again the distance

between two points on a line. In Figure 7.1, you establish a relationship between

two ordered pairs, (4, 9) and (1, 5). As the figure reveals, the distance between the

two points can be viewed in terms of the differences between the corresponding

elements of the two ordered pairs. Accordingly, the difference between 9 and 5 is

4 and the difference between 4 and 1 is 3. The figure uses the delta character to

show this difference (or change).

Applying the Pythagorean Theorem

The two points in Figure 7.1 define two of three points in a triangle. The difference

between the corresponding x values of the two points gives you the distance that

defines the base of the triangle. The difference between the corresponding y values
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Figure 7.1
The change in the rise is 4 and the change in the run is 3.



of the two points gives you the distance that defines one side of the triangle. Given

the measurements of the base and a side of a triangle, you can then draw upon the

Pythagorean theorem to find out more about the triangle.

According to the Pythagorean theorem, the square of the hypotenuse of a right-

angled triangle is equal to the sum of the squares of the remaining two sides. The

theorem is usually expressed along the following lines:

c2 ¼ a2 þ b2

where c represents the hypotenuse and a and b represent the remaining two sides.

If you know that one side of a triangle is equal to 2 and another is equal to 4, then

proceed to solve the equation in this manner:

32 þ 42 ¼ d2

9þ 6 ¼ d2

25 ¼ d2ffiffiffiffiffi
25

p ¼ d

5 ¼ d

E x e r c i s e S e t 7 . 2

Using the Pythagorean theorem, use these values for the sides of triangles and calculate the
length of the hypotenuse.

a. 12, 5

b. 32, 24

c. 3, 4

d. 24, 10

e. 12, 9
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The Distance Formula

Given the grounding the previous section provides, you can set up an equation to

calculate the distance between two points in this way:

Dx2 þ Dy2 ¼ d2



The d is the distance between the two points. From the perspective afforded by

the Pythagorean theorem, the difference the delta sign signifies is the difference

between the corresponding elements in the coordinate pairs you use in your

calculations.

To return to the discussion of the point-slope equation, you can revise it slightly

using what you know about the Pythagorean theorem. Consider a line on which

you have identified two points, ðx1, y1Þ and ðx2, y2Þ. Drawing upon the for-

mulation of the Pythagorean theorem introduced in the previous section

Dx2 þ Dy2 ¼ d2

you can then proceed to establish a specific formula, called the distance formula,

for determining the distance between two points:

ðy2 � y1Þ2 þ ðx2 � x1Þ2 ¼ d2

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2 � y1Þ þ ðx2 � x1Þ

p
Having attended to these preliminaries, you can then ascertain the distance

between any two points on a line in a fairly ready manner. Assume, for example,

that you begin with two ordered pairs (2, �3) and (4, 7). You substitute these

values into the primary terms of the equation:

Dy ¼ 7� ð�3Þ ¼ 10

Dx2 ¼ 4� 2 ¼ 2

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
102 þ 22

p
d ¼ ffiffiffiffiffiffiffi

104
p

E x e r c i s e S e t 7 . 3

Use these ordered pairs with the distance formula to find the distance between points.

a. (1, 0) (13, 4)

b. (2, 1) (14, 9)

c. (0, 4) (10, 16)

d. (0, 0) (2, 10)

e. (1, 2) (13, 8)
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Perpendicular Lines

Figure 7.2 provides an illustration of a basic linear function y¼ 3x þ 2. The

y-intercept is 2. The slope is 3. The line extends upward into quadrant I

since the slope is positive. You see three coordinates on the line, the top of which

is (2, 8). At the same time, the graph features a second line, one that slopes

downward into quadrant IV. This second line runs perpendicular to the first line.

It intersects the x axis at (6, 0).

To create an equation that generates a line that is perpendicular to another line,

consider in Figure 7.2 the equation that generates the line with the positive slope.

The y-intercept is at (0, 2). The line slopes up into quadrant I. In addition to this
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Figure 7.2
The inverse creates a perpendicular line.



line, you see another line. The second line has a negative slope. It slopes

downward, into quadrant IV. It passes through the y-intercept (0, 2). Among the

points in its path are (3, 1) and, as mentioned previously, (6, 0). The second line

is perpendicular to the line with the positive slope.

To investigate the features of the perpendicular line, consider the expression you

use to determine the slope of a line:

y2 � y1

x2 � x1

To make use of this expression, you can substitute the values given by the two

ordered pairs as follows:

2� 1

0� 3
¼ 1

�3

This gives you the slope of the second line (�1
3), and given that you know the slope

of the second line, you can then write the following slope-intercept equation:

y ¼ � 1

3
x þ 2

You then have at hand an equation you can use to determine the point at which

the line crosses the x axis. Toward this end, you can rewrite the equation so that

you set y to 0 and solve for x:

� 1

3
x þ 2 ¼ 0

� 1

3
x ¼ �2

ð�3Þ � 1

3

� �
x ¼ ð�2Þð�3Þ

x ¼ 6

To explore this notion from a slightly different perspective, here is an equation

that provides the following negative slope:

y ¼ �2

3
x þ 4
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As Figure 7.3 indicates, the y-intercept for this line is (0, 4). If you solve the

equation for the point at which the line crosses the x axis, you arrive at (6, 0). If

you set x to 3 for this equation, you find that the value of y is 2.

To create a perpendicular line beginning at the coordinate (3, 2), you can an add

2 to the run value and 3 to the rise value. In other words, you invert the values

you obtain from the original slope, and then add them to the original slope. This

gives you a point at (5, 5). Now you draw a line from the your initial set of

coordinates to your new set of coordinates. You can then find a slope for the new

line. You proceed along this path:

m ¼ y2 � y1

x2 � x1
¼ 5� 2

5� 3
¼ 3

2
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Figure 7.3
The multiplicative inverse of the slope allows you to generate a perpendicular line.



The multiplicative inverse of 3
2
is 2

3
. Your first slope was �2

3
, however, so when

you carry out the multiplication, you end up with �1.

�2

3
� 3
2
¼ �1

E x e r c i s e S e t 7 . 4

Write the equations for the lines perpendicular to the given lines.

a. y ¼ 3

4
x þ 2

b. y ¼ 3x � 2

c. y ¼ 1

4
x þ 3

d. y ¼ 2

3
x þ 2

e. y ¼ �3x

Determine whether each set of equations represents perpendicular lines.

f. y ¼ 4x � 5,
4y ¼ 8� x

g. 2x � 5y ¼ �3,
2x þ 5y ¼ 4

h. y ¼ 5� 3x,
�y þ 3x ¼ 8

i. x � 2y ¼ 5,
2x þ 4y ¼ 8

j. 2x þ 3y ¼ 1,
3x � 2y ¼ 1

Depicting Absolute Values
You can view a given absolute value as representing two values, one positive and

one negative. Consider, for example, that you begin with an equation such as

y ¼ jxj. If you solve this equation for values ranging from 0 to 14, you end up

with the graph Figure 7.4 illustrates. The values of x extend in positive and

negative directions that reflect distances of the value from zero. The distances can

be negative or positive.
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When you create a graph in which the points are at equal positions across a given

line, they are symmetric with respect to the line. For example in Figure 7.4, the

y axis is a line of symmetry for the two values you generate as you work with the

absolute values of x. You can also refer to points you generate in this way as

reflections of each other. As reflections, they are mirrored across the y axis.

Translation and Shift
You can alter functions that incorporate absolute values so that you move your

graph along the x or y axis. This activity is known as translation. To see how this

is so, consider again the equation used to generate a graph that is symmetrical to

the y axis (see Figure 7.4):

f ðxÞ ¼ j x j
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Figure 7.4
The graph of an absolute value rises to the left and right of the y axis.



If you add a value to the absolute value of x, you can move the resulting graph up

or down the y axis. A positive value moves it up. A negative value moves it down.

To see how this is so, consider an equation that involves translating the graph up

by 4:

y ¼ 4þ j x j
Even if x is a negative value, the absolute value sign makes it positive. For this

reason, adding 4 to the value of x always increases the corresponding y value by 4.

As Figure 7.5 illustrates, on both the positive and negative sides of the y axis, then,

the slope of the line remains consistent but is shifted upward. Both lines are

translated in a consistent, symmetrical way.

As Figure 7.5 reveals, adding a value to the absolute value of x, you translate

coordinates vertically upward. On the other hand, if the value you add is

negative, the translation moves the line downward.
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Figure 7.5
Translation preserves the symmetry of the graph across the y axis.



Horizontal translation differs from vertical translation because the addition or

subtraction you perform is within the absolute value signs. You are changing the

value of x, as such, before you determine its absolute value. The effect of such an

addition is that you move along the x axis to the right if you subtract a value. You

move to the left if you add a value.

This equation shifts the graph to the left:

y ¼ j xþ 4 j
This equation shifts the graph to the right:

y ¼ j x� 4 j
For Figure 7.6, you replace x with the expression x þ 4. This activity moves to

graph to the left.

E x e r c i s e S e t 7 . 5

Graph the results of the following equations.

a. y ¼ 3þ j x j
b. y ¼ �2þ j 3 j
c. y ¼ ð�3Þj 4 j
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Figure 7.6
The expression | x þ 4 | translates the graphs to the left.



d. y ¼ 4

3
x

����
����

e. y ¼ j 4þ x j

Slopes

If you change the slopes of functions that involve absolute values, you still

preserve the symmetry of the lines that result. Consider, for example, the effect of

altering the value of the slope from 1
2 to 2. Here are the resulting functions:

f ðxÞ ¼ ð2Þj x j

f ðxÞ ¼ 1

2

� �
j x j

For the first equation, when you set the slope to 2, for every 1 unit of run, you

generate 2 units of rise. On the other hand, when the slope is 1
2 for every 1 unit

of run, you generate only half a unit of rise. When you explore these slopes with

respect to absolute values, then the lines illustrated by Figure 7.7 result.
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Figure 7.7
Slopes sustain symmetry.



More on Symmetry

When you work with functions that involve absolute values, the slopes of lines

allow them to be symmetric relative to either the y axis or some other line. Such a

line is known as the line of reflection. As is evident from the discussion of lines

generated with absolute values, you can create a set of such lines such that each

point on one line corresponds to a point on another line. When you create such

sets of lines, you can mirror them horizontally, vertically, or at other angles. If

you mirror them horizontally, they are symmetric with respect to the x axis. If

you mirror them vertically, the are symmetric with respect to the y axis.

A parabola provides a mirrored graph that you create with an equation that is not

linear. A parabola provides a graphical form that you can manipulate in largely

the same ways that you manipulate the mirrored lines of an equation containing

absolute values. Here are equations that create parabolas mirrored across the y

and x axes:

x2 ¼ y Generates a line mirrored across the y axis:

y2 ¼ x Generates a line mirrored across the x axis:

Figure 7.8 illustrates lines you can generate from these two equations.

No t e

A parabola that is symmetrical to the x axis is not properly a function if you apply the horizontal
line rule.

Alternate Forms of Symmetry

The use of an even-numbered exponent in the previous section resulted in

parabolas that are symmetrical across an axis. Yet another form of symmetry

occurs when you use an odd-numbered exponent. In this case, the graph that

results is symmetrical to a given point. The origin of the Cartesian plane lies at

point (0,0). You can draw many geometrical figures that are symmetrical to this

point. Drawn symmetrical to this point, a line is said to be symmetrical to the

origin.

Figure 7.9 illustrates a line generated using the cube of x, ðx3Þ. The line slopes
down from quadrant I, across the origin, and into quadrant III. The points you

map in the two quadrants mirror each other, but the coordinate pairs in

quadrant III contain negative x and y values while those in quadrant I do not. The

resulting graph is symmetrical with respect to the origin.
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Figure 7.8
Exponents generate lines mirrored across the x and y axes.1

3
9
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Plot coordinate pairs for these equations and determine whether they are symmetrical to the
x axis, the y axis, or a point.

a. 2y ¼ x2 þ 6

b. 4y ¼ 4x2 � 3

c. 2y3 ¼ 3x2

d. 4y ¼ 5x þ 4

e. 3y2 þ 4 ¼ x2
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Figure 7.9
A cube generates a line symmetrical to the origin.



Inverses Generally
In previous sections, you have explored how the multiplicative inverse of a

slope creates a line that is perpendicular to the line the slope defines. When a

function is the inverse of another function, the situation differs. In such a case,

as Figure 7.10 illustrates, the values of the x and y coordinates that make up the
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Figure 7.10
Equations that are the inverse of each other generate inverted ordered pairs.



coordinate pairs of the two lines occur in reversed order. Rather than being

perpendicular to each other, the lines are symmetrical.

At the top of Figure 7.10, there is a table in which the coordinate pairs on the left

are the reverse of those on the right. Above the table you see equations that

represent the inverses of each other. The graph shows the two lines.

When you solve the inverse equations using the set of values, the lines that you

generate mirror each other. The line of symmetry can be identified if you use the

equation y¼ x, as the dashed line in Figure 7.10 reveals.

E x e r c i s e S e t 7 . 7

Plot values for the following equations to determine if the lines that result are symmetrical to the
line you get when you plot x¼ y.

a. x þ y ¼ 6

b. 3xþ 3y ¼ 5

c. yx ¼ 12

d. xy ¼ 4

e. y ¼ j x j

Using Visual Formula
Use Visual Formula to implement a linear equation involving an absolute value.

Toward this end, generate a graph that shifts the vertex of the graph to the left on

the x axis 4 units. Here is the equation that accomplishes this task:

y ¼ j 4þ x j
To implement the equation, refer to Figure 7.11 and use the following steps:

1. Double click the menu item for absolute values (kAbs). Then click in the

equation composition area to position the absolute value bars. Use the

mouse cursor to pull the bars for the absolute value area far enough apart to

accommodate two value fields and a plus sign (see Figure 7.11).

2. Click the Value menu item. Position the field just to the right of the left

absolute value bar. Click in the field and type 4.

3. Click the Add menu item and position the plus sign to the right of the Value

field.
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4. Click the Value menu item again and position the field after the plus sign

and inside the absolute value bars. Click in the field and type x.

5. In the lower part of the Visual Formula window,move the cursor to the top of

the Cartesian plane so that it turns into parallel bars. Pull the Cartesian plane

up until it is even with the bottom of the top equation composition area.

6. In the lower-right panel find the From and To fields for the X Range setting

beneath the Chart for Formula 1 button. Click the To control and set the

value to �12. Click the From control and set the value to 8.

7. In the lower-left-panel, find the Zoom label. Click the controls for the X and

Y fields for the Zoom label, and set both fields to �2.

8. In the Chart 1 area, set the Width field to 2.

9. Click the Chart for Formula 1 button. You see the graph shown in

Figure 7.11.
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Figure 7.11
Adding to the number inside the absolute value bars shifts the graph to the left.



To experiment, insert the following values in the field preceding the plus sign and

observe the results: 2, 3, 5, 6. In each instance, the distance you shift the graph to

the left on the x axis changes. To shift the graph so that its vertex moves to the

right, use values of �2, �3, and �6. As you go, remember to click on the Chart

for Formula 1 button to refresh the graph each time you change a value. Also,

increase the value of the X Range To control to 12.

Conclusion
This chapter has provided a context in which you have explored several types of

work related to linear equations. Exploring how to calculate slopes allowed you

to gain a stronger sense of the way that coordinate pairs relate to each other. You

extended this understanding to encompass use of the Pythagorean theorem,

which allowed you to calculate the distances separating points on a line. From

there, you moved on to investigate the slopes of lines and their inverses, which

enabled you to find perpendicular lines.

You also worked with such things as translation of lines and symmetry, and these

activities will prove important as you move on to work with quadratic and other

equations. When you explored absolute values, you were able to generate sym-

metrical lines by mirroring positive and negative values. In your explorations of

symmetry relative to points, axes, and lines, you saw that if you generate values

that are the square of x, you arrive at a line that is symmetrical to the y axis. If you

generate values that are the cube of x, you arrive at a line that is symmetrical to

the origin of the Cartesian plane. Still other lines are symmetrical to the line you

create with the equation x¼ y.
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Polynomial
Equations

In this chapter, you examine a number of operations you can perform to solve

polynomial equations. To start things off, you review the definition of a poly-

nomial. To identify polynomials, you also examine monomial, binomial, and

trinomial expressions. Given a basic definition of what counts as a polynomial,

you then proceed to work with different operations that pertain to polynomials.

Among the more involved of these operations are those dealing with multi-

plication and division. One approach to dividing one polynomial by another

involves using long division. Among helpful approaches to multiplication is the

FOIL approach. Along with the FOIL approach, it is helpful to be familiar with

equations dealing with the sums and differences of binomials. Among the topics

covered in this chapter are the following:

n Why a monomial usually does not feature a negative exponent

n Working with curves characteristic of nonlinear functions

n Terms that are important to know when you work with polynomials

n How to use a model from arithmetic to perform multiplication

n Dealing with terms in a formalized manner

n How to use long division for polynomials
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Polynomials
Polynomials constitute what you can regard as a superset that contains other

types of expressions, such as monomials, binomials, and trinomials. A monomial

consists of a constant coefficient and a single variable. The coefficient must be a

real number. The variable often possesses an exponent. If it does, then the

exponent must be an integer, and it may not be negative. Here are a few examples

of monomials:

5x2, 2x2, �2, 0, 3x4, 2

Monomials are polynomials, as are binomials and trinomials. A binomial con-

sists of two monomials. A trinomial consists of three monomials. A polynomial,

generally, can consist of a monomial or a combination of monomials. If you

combine monomials to create a polynomial, you use only addition and sub-

traction to do so. To put it differently, a polynomial provides a sum or difference

of monomials, not the quotient or a product. Here are some examples of

polynomials:

2x2 þ 2x, 15a3 þ 2a, 15a3, a3, �15a, 6xþ 1

2
x, 0

Adding or subtracting monomials creates a polynomial. If you multiply or divide

monomials, however, you do not create a polynomial. Also, if the variable in an

expression contains a negative number, then it is not considered a monomial.

Here are a few examples of terms that are not monomials or polynomials:

1

x
þ 2x,

2x

x2 þ 3
,

2þ x

2� x

In the first expression, 1/x represents a negative exponent (x�1). The second

expression contains two monomial expressions (2x and x2 þ 3), but dividing

one by the other does not create a relation based on addition and subtraction.

With the third example, the situation is the same. Although the expression

includes two monomials, the relation between them is that of division.

E x e r c i s e S e t 8 . 1

Determine whether the following expressions constitute polynomials, monomials, or neither
polynomials nor monomials.

a.
1

2
x2 þ 2x2

b. 3x
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c. 3x�2

d.
aþ 2

aþ 2

e.
1

3x2

f. �9x2

g. 17

h. s3 þ 4

i. 4x3 � 2x2 þ 1

x

j. 6aþ 7

Working with Polynomials
Given a review of how to identify a polynomial, it is also appropriate to review a few

of the characteristic activities you perform in association with polynomials. First,

when you replace the variable in a polynomial with a number, you find the value of

the polynomial. Along the same lines, when you employ operations to determine

the value of the variable in a polynomial, then you evaluate the polynomial.

When you state a polynomial so that you represent the variable of the polynomial

on one side of an equal sign, and then place another variable on the other side to

represent the value of the polynomial, then you create a polynomial equation.

Many of the equations you have dealt with in preceding chapters have been, in

this respect, polynomial equations.

As you have seen repeatedly, to evaluate such an equation, a standard approach

involves supplying a value to the variable of the expression, and then solving the

equation for the value of the variable. The value of the equation corresponds to

the value of the variable, so in this way, you create an ordered pair. When you

have generated two or more ordered pairs in this way, you can plot them in the

Cartesian plane to create a graph of the equation.

In previous chapters, you have extensively explored graphs of linear equations. In

a few instances, you explored graphs that did not involve linear equations. As

mentioned previously, a linear equation generates a line that possesses a slope

that does not change. In contrast, a non-linear equation generates a line that

possesses a slope that does change.
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To review the notion of a changing slope, consider Figure 8.1. To generate the

values for the graph shown in the figure, you use this equation:

0:06a2 þ 3a þ 1:5

As the figure illustrates, the curve that results from calculating representative

values of x creates something akin to an arc tracing the path of an arrow. Along its

ascending path, the slope is consistent and resembles that of the graph of a linear

equation. Then the path changes and with it the slope. The slope evens out and

then turns downward.

The graph of this polynomial might represent the effectiveness of a given brand

of mosquito repellent in relation to the number of hours that elapse after you

apply it. Accordingly, for the first few hours, the number of mosquitoes that

alight and immediately retreat without biting increases consistently. After around

25 hours, however, this trend changes. At a declining rate, the mosquitoes fail to

retreat, and the trend shows that after roughly 50 hours, the effects of the repellent

completely disappear.

A polynomial function allows you to trace such changing trends because its slope

does not remain consistent throughout its extent. In the instance of the mosquito

repellent, the slope changes from one moving in a positive direction to one
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Figure 8.1
A polynomial establishes a hypothetical trend for the effect of a mosquito repellent.



moving in a negative direction. It shows a trend characterized by a moment of

maximum effectiveness preceded and followed by periods of increasing and

declining effectiveness.

Solving Equations
In previous chapters, when you have solved equations, you have put to work a

variety of tools that have allowed you to manipulate the expressions and terms

equations contain. These tools can be brought forward and extended as you solve

polynomial equations. Table 8.1 lists a few of the fundamental concepts you work

with as you solve polynomial equations. Subsequent sections of this chapter

elaborate on these concepts.

Addition and Subtraction Activities
When you add the terms that a polynomial contains, one of the first steps is to

group like terms. Like terms identify what you are adding. Here is an equation

with like terms:

2x þ 3x

In this instance, the terms of the equation constitute like terms because each term

consists of the variable x. Each of the like terms is associated with an integer

coefficient. To solve for x, you put the distributive property to work:

ð2þ 3Þx ¼ 5x

Here is an extended example of the same type of operation:

6x þ 7x � 4x þ 8x � x

¼ ð6x þ 7xÞ � 4x þ 8x � x

¼ ð13x � 4xÞ þ 8x � x

¼ ð9x þ 8xÞ � x

¼ ð17x � xÞ
¼ 16x

For each step, you successively group like terms, and then carry out additions or

subtractions. In the end, you have combined all terms in the polynomial and are

left with the final term.
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You can also group terms with exponents. Here are a couple of expressions that

you canmore easily view as monomials if you combine the like terms they contain:
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Table 8.1 Concepts Related to Solving Polynomial Equations

Practice Discussion

Addition The addition property allows that if you begin with an equation such as a ¼ b, then
you can add equal values to both sides of the equation: a þ c ¼ b þ c.

Multiplication The multiplication property allows that if you begin with an equation such as
a ¼ b, then you can multiply both sides of the equation by equal values to
obtain an equivalent equation: a � c ¼ b � c. When you multiply the sides of
an equation by an expression that contains a variable, you must take a few
precautions. One involves checking whether you are multiplying by a value that is
equal to zero.

Coefficients With a term such as 3a2, the constant (3) preceding the variable a is the coefficient of
the term. In a polynomial, you often find several coefficients for any given variable:
4b2 þ 3b3 þ 4b4. In this polynomial, you find three coefficients for three separate
instances of the variable b.

Like Terms If you find terms that are raised to the same power, such terms are like terms. You
can also refer to them as similar terms.

Degrees The degree of a term is the value of its exponent. For the term 3x5, the variable x
possesses an exponent of 5, and this is the degree of the term. For the term 3x, the
degree is 1. Each term of a polynomial that contains a variable also possesses a
degree. When a polynomial contains several terms, each with a different degree, then
the degree of the polynomial is the largest degree of the constituent terms. For
example, with 3x2 þ 4x3 þ 3x4, the degree of the polynomial is 4, because the
highest degree of the terms is 4.

Order You can organize the terms in a polynomial according to ascending or descending
order. To organize the terms of a polynomial in ascending order, begin on the left with
the term that contains the smallest exponent ð3x2 þ 4x3 þ 3x4Þ. To organize the
terms of a polynomial in descending order, begin on the left with the term that
contains the largest exponent ð3x4 þ 4x3 þ 3x2Þ.

Zero Products If you begin with two numbers, and one of the numbers is equal to 0, then the product
is zero. Along the same lines, if you start with either a ¼ 0 or b ¼ 0, then you can
create an equivalent equation that reads ab ¼ 0.

Missing Terms If you want to write expressions in standard ways, you can use the coefficient 0 to
identify terms that are absent or missing from a polynomial. For example, you can
rewrite a2 þ a4 þ a5 as a2 þ 0a3 þ a4 þ a5.

Classification A polynomial consisting of one term is a monomial. A polynomial consisting of two
terms is a binomial. A polynomial consisting of three terms is a trinomial.

x2 �x5 ¼ x2þ 5 ¼ x7 Add the exponents with the same base value:

x3 �x�2 ¼ x3�2 ¼ x1 ¼ x



If you consider that the commutative and associate properties of numbers allow

you to express exponents in different ways, you can extend the work you perform

by grouping like terms. Consider this expression:

6x2y �8xy3
6�8�x2x1 �y1y3 Group like terms:

48x3y4

Here is an example that incorporates negative exponents. While the grouping

creates a fraction, it still serves to simplify the terms:

�2xy�4 �5x3y ¼ ð�2�5Þðx1x3Þðy�4y1Þ
¼ �10x4y�3 ¼ �10x4

y3
Rewrite to make the negative

exponent positive:

Using the distributive property, you can regroup like terms along the following

lines:

6x1y2ð3x4 � 5xy2Þ
¼ 6x1y2ð3x4Þ � 6x1y2ð5x1y2Þ Distribute the multiplications:

¼ 18x5y2 � 30x2y4

With this expression, you begin by using the distributive property to extract the

terms beginning with the coefficients 3 and 5 from the parentheses. You can then

group the resulting line terms and multiply the variables. To perform the mul-

tiplications, you add the exponents.

No t e

You employ an exponent of 1 (x1) to make operations clearer. Normally, you do not need to use an
exponent of 1 because a number with an exponent of 1 equals itself (x ¼ x1).

Multiplication and Division Activities
When you approach situations in which you must divide one polynomial

by another, grouping like terms allows you to use the properties of expo-

nents more readily. Often, such work begins with expressions or terms that
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involve combinations of positive and negative exponents. Here is such an

expression.

18x5y�3

3x�4y2

18

3
� x5

x�4
� y

�3

y2
Rearrange so that like terms are visible:

6�x5�ð�4Þ �y�3�2 Rearrange so that you can perform operations:

6�x9 �y�5

6x9

y5
Rearrange to remove the negative exponent:

In each step above, you avoid most of the complexity the division might involve

by rearranging the expression so that you can carry out the divisions using

exponential arithmetic.

Here is another expression that involves exponents. In this instance, the

numerator contains a binomial that you approach by making the denominator

explicit for each of the terms in the binomial.

6x2y3 � 4x5y

2xy3

¼ 6x2y3

2xy3
� 4x5y

2xy3
Distribute the division:

¼ 6

2
ðx2�1y3�3Þ � 4

2
ðx5�1y1�3Þ Rearrange with negative exponent:

¼ 3x � 2ðx4y�2Þ Carry out the divisions:

¼ 3x � 2x4

y2
Rearrange to remove the negative exponent:
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Here is another problem that appears involved until you rearrange its terms so

that you can view them in relative isolation:

2x2y3z

6x3y5z�3
� 8x1y�4z�5

10x2y3

ð2�8Þðx2x1Þðy3y�4Þz1z�5

ð6�10Þðx3x2Þðy5y3Þðz�3Þ Group like terms:

16x2þ1y3�4z1�5

60x3þ2y5þ3z�3
Perform multiplications:

16x3y�1z�4

60x5y8z�3
Simplify:

16

60
� x

3

x5
� y

�1

y8
� z

�4

z�3
Group like terms:

4

15
� x3�5 � y�1�8 � z�4�ð�3Þ Perform divisions:

4

15
� x�2 � y�9 � z�1 Simplify:

4

15x2y9z1
Remove negative exponents:

To work with this problem, you proceed in two distinct phases. For the first

phase, you group like terms and carry out the multiplications. For the second

phase, you again group like terms, but this time you carry out the divisions.

Monomial and Binomial Expressions
As emphasized previously, the distributive property proves important when

carrying out multiplication operations. When you multiply a polynomial by an

expression consisting of only one term, you apply the single term to each of the

terms in the polynomial expression. Here is an example:

3xð4x þ 2Þ
ð3xÞð4xÞ þ 3xð2Þ 3x applied to both of the terms in the binomial:

12x2 þ 6x Completing the multiplications:
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When you work with binomial expressions, the same practice applies. You must

apply both of the terms in the first expression to both of the terms in the second

expression. A common form of binomial multiplication problem involves two

binomials that add terms:

ðx þ 6Þðx þ 5Þ Binomial expressions:

xðx þ 5Þ þ 6ðx þ 5Þ Distribute the multiplications:

x2 þ 5x þ 6x þ 30 Carry out the multiplications:

x2 þ 11x þ 30 Simplify:

As Figure 8.2 illustrates, you can visualize a binomial multiplication

problem if you use a series of blocks to represent the values the multi-

plication involves.

You also commonly encounter binomial problems in which the first expression

adds terms, while the second expression subtracts one term from another. You

employ the same procedure as before. Using distribution, youmultiply each term

in the second expression by each term in the first:

154 Chapter 8 n Polynomial Equations

Figure 8.2
Blocks allow you to visualize the values involved in a multiplication problem.

ð5mþ 4Þðm� 3Þ
5mðmÞ � 5mð3Þ þ 4ðmÞ � 4ð3Þ
5m2 � 15mþ 4m� 12

5m2 � 11m� 12

In this instance, the twomiddle terms are of opposite signs, and whether the final

middle term is positive depends on the values of the terms combined.



A third form of binomial that occurs commonly involves two expressions that are

characterized by subtraction. Here is an example:

ð3x � 5Þð4x � 3Þ
3xð4xÞ � 3xð3Þ � 5ð4xÞ � ð5Þð�3Þ
12x2 � 9x � 20x þ 15

12x2 � 29x þ 15

In such expressions, the multiplication of a negative by a negative value generates

a positive value. The middle term, likewise, is negative, because when you create

the values for the middle term, you combine two negative terms.

Sums, Differences, and Squares
Table 8.2 provides a summary of operations involving a few of the most common

forms of binomial expressions. The discussion that follows examines a few

expressions that illustrate the application of these generalized approaches to

working with binomials.

As an illustration of the product of the sum and difference of the same binomial,

consider this expression:

ðmþ 3Þðm� 3Þ
¼ m2 � 3mþ 3m� 9 The middle terms cancel out:

¼ m2 � 9 The difference of the squares remains:

Here is an example of the square of the sum of two terms:

ðmþ 3Þ2
¼ mðmÞ þ 3mþ 3mþ 3ð3Þ
¼ m2 þ 6mþ 9
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Table 8.2 Sums, Differences, and Squares

Item Discussion

ða� bÞðaþ bÞ ¼ a2 � b2 The product of the sum and the difference of the same two terms consists of
the square of the second term subtracted from the square of the first term.

ðaþ bÞ2 ¼ a2 þ 2abþ b2 The square of the sum of two terms consists of the sum of the square of the first
term, twice the product of the two terms, and the square of the second term.

ða� bÞ2 ¼ a2 � 2abþ b2 The square of the difference of two terms consists of the square of the first
term minus twice the product of the first and second terms, plus the square of
the second term.



Finally, here is an example of the square of the difference of two terms:

ðm� 3Þ2
¼ ðm� 3Þðm� 3Þ
¼ mðmÞ � 3m� 3mþ 3ð3Þ
¼ m2 � 6mþ 9

E x e r c i s e S e t 8 . 2

Identify each expression as a sum, difference, or square (see Table 8.2).

a. ðx2 þ 1Þðx2 � 1Þ
b. ð4x þ 3Þð4x2 � 3Þ
c. ð3m2 þ 2Þ2

d. ð3m2 � 2Þ2

e. 6þ 1
2


 �2

FOIL Strategies
As the examples in the previous section reveal, you can proceed methodically

when you multiply binomial terms. The most universally adopted method in

this respect is identified with the acronym FOIL (First, Outer, Inner, and Last).

Figure 8.3 illustrates how the FOIL approach to multiplication works.
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Figure 8.3
The FOIL approach allows you to work more effectively with multiplication of binomials.



As an example of the application of the FOIL technique of multiplying binomials,

consider this problem:

ðmþ 4Þðm2 þ 9Þ
F O I L

¼ mðm2Þ þmð9Þ þ 4ðm2Þ þ 4ð9Þ
¼ m3 þ 9mþ 4m2 þ 36

Figure 8.4 illustrates the relationships that exist between the values generated

using the FOIL approach and the areas of a rectangle that represent the

values.

Polynomial Multiplication
When you explore multiplication of polynomials consisting of trinomial

expressions, the process does not vary from those of other types of polynomial

multiplications, but they do become more involved. Here is a multiplication
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Figure 8.4
A set of rectangles allows you to visualize the FOIL approach.



problem involving a binomial and a trinomial. You must multiply each term of

the first expression by each term of the second expression.

ðx2 þ 3x � 4Þð2x2 þ 3Þ Trinomial and binomial:

x2ð2x2 þ 3Þ þ 3xð2x2 þ 3Þ � 4ð2x2 þ 3Þ Distribution:

x2ð2x2Þ þ x2ð3Þ þ 3xð2x2Þ þ 3xð3Þ � 4ð2x2Þ � 4ð3Þ Multiplying:

2x4 þ 3x2 þ 6x3 þ 9x � 8x2 � 12 Collect terms:

2x4 þ 6x3 þ 3x2 � 8x2 þ 9x � 12 Group like terms:

2x4 þ 6x3 � 5x2 þ 9x � 12 Simplify:

When you deal with polynomials that consist of several terms, you can use

approaches drawn from arithmetic. When you use such approaches, ordering the

terms in a polynomial by degree constitutes an important step. You can then

arrange the expressions in columns and carry out the multiplications. Here is an

example involving a trinomial and a binomial:

4x2y � 3xy þ 2y

xy þ 3y

8x2y2 � 9xy2 þ 6y2 Multiply by the 3y:

3x3y2 � 3x2y2 þ 2xy2 Then multiply by xy:

3x3y2 � 5x2y2 � 7xy2 þ 6y2 Add the products:

E x e r c i s e S e t 8 . 3

Solve each equation.

a. 4x5 � 4x3

b. 3n2 � ð2nþ 3Þ

c. �2x2ð2x � 2Þ

d. ð2z2 þ 2Þð3z2 þ 4Þ

e. ð3t2 � 3Þðt2 þ 2t þ 5Þ

f. ðaþ 4Þðaþ 4Þ

g. ð2a� 1Þð3aþ 1Þ
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h. ð3z2 � 2Þðz4 � 2Þ

i. ð�5t3Þðt2 þ 5t þ 25Þ

j. ðaþ 1Þða2 � aþ 1Þ

Reviewing Long Division
You can perform division operations involving polynomial expressions using the

procedures employed for long division in arithmetic. Here is a typical progres-

sion of steps for a long division problem involving whole numbers.

You divide 8600 by 41. It goes 200 times. To indicate that it goes 200 times, you

place the 2 in the hundreds place. You multiply 41 by 200 and subtract the

product from 8642.

You divide 442 by 41. It goes 10 times. To indicate that it goes 10 times, you

place the 1 in the tens place. You multiply 41 by 10 and subtract the product

from 442.
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At this point, you discover that you cannot divide 32 by 41 and produce a whole

number. For this reason, you place a 0 in the 1’s place. To indicate that the

division has resulted in a remainder, you show a fraction of 32/41.

Long Division in Algebra
When you perform divisions involving polynomials, you use an approach similar to

the one you employ for arithmetic. To perform such divisions, you group like terms

and combine them. You also order the terms relative to their degree in descending

order. Likewise, it is helpful if you remove fractions and in other respects simplify

the expressions as much as possible before attempting the division.

As an example of a polynomial division problem, consider this expression:

2x2 þ 3x þ 7

x þ 3

The terms in the numerator appear in descending order with respect to the degrees

of their exponents. In this case, the largest degree is that of the square of x. The

same applies to the terms of the denominator, where the highest degree is 1.

To set up the division, you proceed in the same manner you did when you

performed long division involving whole numbers:

To perform the division, you concentrate first on the term with the exponent of

the highest degree. Carrying out such a division is analogous to long division in

arithmetic. You can envision 8642 in this way:

8 � 103 þ 6 � 102 þ 4 � 101 þ 2 � 100

In the previous section, for example, in essence you first divide 8� 103 by 41. Ten

raised to the power of 3 constituted the highest degree of ten as given in the problem.

Having dealt with the highest degree of 10, you then move on to the second highest

degree.

In this instance, you concentrate first on the highest power of x, which is 2.

Isolating the terms involved, the division takes this form:
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2x2

x
¼ 2x2�1 ¼ 2x



You then multiply xþ 3 by 2x to arrive at the expression you subtract from the

dividend. The multiplication proceeds as follows:

2xðx þ 3Þ ¼ 2x2 þ 6x

Given this term, you then subtract the term from the dividend and find the

remainder:

To carry out the subtraction, it is necessary to consider the signs of the terms in

the subtracted expression. To prevent errors, you can treat the subtraction as an

addition problem and change the signs of all terms in the subtracted expression:

You then carry out the next step, which involves dividing �3xþ 7 by xþ 3.

To carry out this division, you again concentrate on x, this time with an exponent

of 1:

�3x

x
¼ �3

When you perform the long division, youmultiply xþ 3 by�3, to obtain�3x� 9:

After you carry out the subtraction, the remainder in this instance is 16, so the

answer is 2x� 3þ 16
xþ 3

.
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E x e r c i s e S e t 8 . 4

Solve each equation using long division.

a. ð2x2 þ 11x � 5Þ � ðx þ 6Þ

b. ða2 þ 4a� 12Þ � ðx � 2Þ

c. ðy2 � 10y � 20Þ � ðy � 5Þ

d. ð3b2 � 2b� 13Þ � ðb� 2Þ

e. ð12a4 � 3a2Þ � ða� 3Þ

Using Visual Formula
Use Visual Formula to test the values you generate when you square the sumof two

terms. Here is the equation for working with the square of the sum of two terms:

ða þ bÞ2 ¼ a2 þ 2ab þ b2

Assume that you are dealing with the expression ð3þ 4Þ2 and that you want to

test whether both sides of the standard equation for quadratics of this type does,

indeed, render equal values.

To implement the left side of the equation, refer to Figure 8.5 and use the

following steps:

1. For starters, position the cursor on the top of the Cartesian plane. When it

turns into parallel bars, pull the Cartesian plane down so that you do not see

it. You are interested in this session only in the values that appear in the

Solution panels on the right side of the equation composition areas.

2. Click the ( )Parens menu item and position the parentheses in the upper

equation composition area. Pull the parentheses far enough apart to

accommodate two fields and a plus sign.

3. Click the Value menu item. Position the field just to the right of the left

parentheses. Click in this field and type 3.

4. Click the Add menu item and position the plus sign to the right of the Value

field.
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5. Click the Value menu item again and position the field after the plus sign and

inside the closing parenthesis after the plus sign. Click in this field and type 4.



6. Click the Power menu item and position the exponent field to the upper

right of the closing parenthesis. By default, you see a 2 in this field. Do not

change this value.

7. Click the equal button to the right of the upper composition field. You see

49 in the field.

Now implement the right side of the equation in the lower equation composition

area. The form the expression on the right assumes is a2 þ 2ab þ b2. Refer to

Figure 8.5 and follow these steps:

1. For five fields in succession, click on the Value menu item, and then place

the field in the lower equation composition area. Position the fields so that

you leave space for an exponent field and an operator between the first and

second fields.

Using Visual Formula 163

Figure 8.5
Confirm the equations used to work with the square of the sum of two terms.



2. Starting on the right, type 3 in the first field, 2 in the second, 3 in the third,

and 4 in the fourth and fifth fields. Verify your work with Figure 8.5.

3. Click the Powermenu item and to the upper right of the first field, position the

exponent field. The value in this field is by default 2. Do not change this value.

4. Click the Add menu item, and to the right of the exponent field and in line

with the base field, position the plus sign.

5. Click the Multiply menu item and place a multiplication sign after the

second field. Click the Multiply menu item again and place a multiplication

sign after the third field.

6. Click the Add menu item, and between the fourth and last field, place a plus

sign.

7. Click the Power menu item and place the exponent to the right and just

above the last menu item. Do not change the default value of 2.

8. Set the Chart 1 Width field to 2.

9. Click the button with the equal sign in the lower Solution panel. Confirm

that the value you see in the field matches the value in the upper Solution

panel.

Conclusion
In this chapter, you have reviewed a number of activities relating to polynomial

expressions. A polynomial expression consists of a monomial expression or two

or more monomial expressions combined through operations involving addition

or subtraction. When you work with polynomials, it helps to be able to distin-

guish them according to whether they are binomials. Among commonly used

binomials are those that involve squares or the sum and difference of the same

terms. In addition to using standard equations to work with such binomials, you

can also use the FOIL approach. This approach allows you to quickly combine

terms. For polynomials involving several variables, you can use forms of mul-

tiplication and division derived from arithmetic. When you perform operations

of these types, it is important to order the terms of the polynomials according to

the degrees of their exponents.
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Quadratic Equations

In this chapter, you explore the quadratic equation. This equation is a polynomial

of the second degree and generates a parabola. The standard form of the quadratic

equation reads ax2 þ bx þ c. In the same way that you could change the shape

and position of sets of lines used to graph absolute values, you can also change the

shape and position of the parabolas you create using quadratic equations. You can

make the parabola narrower or wider by changing the coefficient of the x variable.

You translate the parabola along the x axis by interpreting x as x � h, where h

establishes the line of symmetry for the parabola. You can also shift the parabola

up and down the y axis by using a value that corresponds to c in the standard

formula. To solve for the x-intercepts of a quadratic equation, you can start by

completing the square. You can also use the quadratic formula. Such topics

provide many interesting ways to interpret events mathematically. Among the

topics that you examine as you explore how this is so are the following:

n How to define a quadratic equation in its standard form

n Reviewing the notions of constant and changing slopes

n How to make a parabola narrower or wider

n Translating a parabola along the x axis

n Making a parabola so that it opens downward

n Completing squares and the quadratic formula
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Quadratic Equations
A quadratic equation is a polynomial of the second degree. In other words, one of

its terms possesses an exponent of 2. A quadratic equation usually consists of

three terms. Here is the standard form of a quadratic equation:

ax2 þ bx þ c ¼ 0

In such an equation, the constant a cannot be equal to 0, because then the variable

x is also 0. As already mentioned, the degree of the quadratic equation is based on

the value of the exponent for the variable x, which is 2. On the other hand, the

constants c and b can be zero.

To solve quadratic equations, you can employ a set of techniques. Using this set

of techniques provides a much easier way to solve quadratic equations than if you

approach them intuitively. To understand how to use these techniques, consider

working with the following equation:

x2 ¼ 36

Such an equation falls into the standard quadratic category, but to see it as such,

you must realize that b and c are equal to zero. Think of the equation as

x2 þ 0x � 36 ¼ 0

Since little is accomplished by using the second term, you can drop it. You are

then left with this equation:

x2 � 36 ¼ 0

To solve for the value of x, you can draw from the discussion in Chapter 8 and

factor the equation. To factor the equation, you draw on observations con-

cerning the difference of two squares. You take the square roots of both of the

terms in the expression. Accordingly, while x � x ¼ x2, it also stands thatffiffiffiffiffi
36

p � ffiffiffiffiffi
36

p ¼ 36: If you then rearrange the resulting term so that you show the

difference of two squares, your work appears as follows:
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x2 � 36 ¼ 0 Set equal to 0:

ðx � ffiffiffiffiffi
36

p Þðx þ ffiffiffiffiffi
36

p Þ ¼ 0 Factor:

x � ffiffiffiffiffi
36

p ¼ 0 or x þ ffiffiffiffiffi
36

p ¼ 0 Solve for each factor:

x ¼
ffiffiffiffiffi
36

p
or x ¼ �

ffiffiffiffiffi
36

p
Possible solution set:



To generalize then, solving for the two terms,
ffiffiffi
a

p
and � ffiffiffi

a
p

, it is necessary to

consider a set of observations that apply to the solutions of all quadratic equa-

tions. These observations are as follows:

n If the value of a is greater than zero, then there are two solutions (� ffiffiffi
a

p
).

n If the value of a equals zero, then only one solution is correct.

n If the value of a is less than zero, no solution exists. (You cannot in this

situation find the square root of a negative number.)

Quadratic Appearances

You can draw on the discussion that previous chapters provided to explore a few

basic ideas that apply to representing quadratic equations. Consider, for exam-

ple, that quadratic equations possess a degree of 2. A variable with an exponent of

2 represents a square. When you graph values you generate using a square, the

values you generate are positive. For this reason, in the functional form of a

quadratic equation, the values of a domain (x) generate positive values of a

range (y). The resulting geometrical representation for this graph is a parabola.

Figure 9.1 illustrates a parabola generated by the equation y ¼ x2.
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Figure 9.1
A rudimentary quadratic function generates a parabola.



Figure 9.2
The slope changes, becoming more pronounced due to work of the exponent.

1
6
8



The graph you generate using a quadratic equation differs from the graph you

generate using a linear equation. The most fundamental characteristic of this

difference is that the slope of a parabola changes, whereas that of a straight line

defined by a linear equation does not.

To review this notion, consider the slopes shown in Figure 9.2. The slope of the

parabola tends to become steeper the larger the value of y becomes. On the other

hand, the slope of the linear equation remains constant throughout. The capacity

to show the change in the slope of a line provides you with a powerful tool with

which to examine rates of change. Central to this idea is that, as the value of the

x axis increases, you can discern a continuously steeper or more accentuated

change in the value of the y axis.With change comes a change in the rate of change.

As Figure 9.2 reveals, the change of the slope reveals a changing relationship

between the base number and the resulting value of y. Contrast what happens if

you add 2 to 2 or 3. Each time, you perform the same action. You add 2 to a

number. The slope of the graph that represents this activity stays the same. This

activity differs from what happens when you employ an exponent.

When you employ an exponent, if you raise 2 to the power of 2, the relation

between 2 and the base number changes as you increase the value of the expo-

nent. With each successive exponential operation, the ratios between the values

of x and y change, and the shape of the curve changes. When you can change the

slope in this way, you arrive at a way of representing or describing phenomena

that significantly expands the work you perform using linear equations.

Changing Appearances

The work you performed in Chapter 7 when examining absolute values anticipates

the work you perform with quadratic equations. As Figure 9.3 illustrates, you can

view the V shape of the graph you generate when working with absolute values as

similar to the rounded U shape you generate when you work with quadratic

equations. In both cases, the graph is symmetrical with respect to an axis. Two lines

meet to form the vertex of an angle. In the same way the point that corresponds to

the lowest (or highest) reach of the parabola is called the vertex of the parabola.

In most cases, the figures you generate are symmetrical with respect to the y axis,

but you can also generate graphs that are symmetrical with respect to the x axis.

Generally, however, if you apply the vertical line rule to the graph of a quadratic

equation, then functions you define using quadratic equations remain sym-

metrical with respect to the y axis.
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Positive and Negative

As with a linear equation generated using absolute values, a quadratic equation

possesses attributes that allow you to adjust the appearance of the graph in a

number of ways. In the most basic form of a quadratic equation, the vertex of the

parabola opens upward and the parabola is symmetrical to the y axis. You can alter
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Figure 9.3
You can adjust the appearance of a graphical representation of a quadratic equation in a number of ways.



this situation if you apply a negative coefficient to the x variable of the quadratic.

Figure 9.4 illustrates the effect of a negative coefficient. On the top, the parabola

opens upward. The coefficient of x establishes a positive slope, so the parabola

opens upward. On the bottom, the coefficient is negative, and the result is that the

values you generate establish a negative slope. The parabola opens downward.

Widening a Parabola

As you can change a quadratic equation so that its vertex opens up or down, so

you can change the width of a parabola. As with direction of the vertex, you

adjust the coefficient of the x in a quadratic to change the width. If you make the

value of the equation less than 1, then the parabola becomes less steep. Its mouth

widens. Its rate of climb becomes less pronounced. Figure 9.5 illustrates this
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Figure 9.4
A negative coefficient establishes a downward slope.
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Figure 9.5
If the coefficient is less than one, the climb becomes more gradual.



situation. On the left, you see a parabola defined with a coefficient of 1. In the

middle, the value of the coefficient becomes 1
2. On the right, the value of

the coefficient becomes 14. As the value of the coefficient decreases, the slope of the

line tends to become more gradual.

Narrowing a Parabola

As you might expect after experimenting with values less than 1 in relation to the

coefficient of x in a quadratic equation, when you make the coefficient of x

greater than 1, you increase the steepness of the parabola’s climb (or slope).

Figure 9.6 illustrates how this happens. On the left, the parabola you see is

defined by an equation in which the coefficient of x is 1. In the center, the value of

the coefficient increases to 2. The steepness of the climb increases. On the right,

the value of the coefficient increases to 3. The steepness of the climb becomes

even greater. In each case, as the value of the coefficient increases, the steepness of

the parabola becomes more pronounced.

Translation Along the x and y Axes
When you graph a quadratic equation, in many instances, you find that the

vertex of the parabola you generate corresponds to the origin of the Cartesian

plane (0, 0). The discussions of linear equations in Chapter 7 and elsewhere

emphasize that while many linear equations cross or intersect with the origin of

the Cartesian plane, by shifting an intercept value, you can raise or lower the

intercept point. The same situation arises when you work with quadratic

equations.

When you consider the coordinate pair that defines the vertex of a parabola, you

deal with the minimum value of the parabola if it opens upward. You deal with

the maximum value of the parabola if it opens downward. You can shift this

value so that it moves along the x axis or along the y axis. If you move it along the

x axis, you translate it horizontally. If youmove it along the y axis, you translate it

vertically. You translate the vertex in a positive fashion if you shift it up or to the

right. You translate the vertex in a negative fashion if you translate it downward

or to the left.

To understand the mechanics of translating the vertex of a parabola along the

x axis, consider an expression of the following form:
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Figure 9.6
If the coefficient is greater than 1, the climb becomes more pronounced.
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You can rewrite this expression so that you replace the variable x with a different

expression. The new expression allows you to view x as the difference or sum of

two other values. Accordingly, you might rewrite the expression in this way:

aðx � hÞ2 Replacing x with x � h

You now have a situation in which you are dealing with the square of the

difference of two terms. In this case, h designates a value you can use to translate

the vertex of a parabola along the x axis.

Translating to the Right

As Figure 9.7 shows, when h is a positive number, then the translation is to the

right. On the left of the figure, the value of h is set to 0, so no shift occurs. On the

right, the value is set to 4, so the shift is four units to the right. As you can see

from the figure, if the equation is of the form aðx � hÞ2, and the constant a is a

positive number, the vertex of the parabola opens upward. The position of the

vertex is defined by the ordered pair (h, 0). Given this position on the x axis, you

can locate the line of symmetry at the position on the x axis that corresponds to

the value of h. Since a has a positive value, the vertex of the parabola opens up, so

the minimum value of the parabola is 0.
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A positive value creates a difference of two terms and shifts the vertex to the right.



Translating to the Left

If you again rewrite the expression ax2 so that x can be defined by the difference

of two values, you arrive at an expression that reads aðx � hÞ2. If you then

substitute a negative value for h, you end up with an expression that appears as

aðx � ð�hÞÞ2. Figure 9.8 illustrates a situation in which you use a negative value

in a quadratic equation in this way. The basic effect of this operation is the same

as if you carried out an addition of the form ðx þ hÞ2. The result in the graph is

that the vertex of the parabola is shifted to the left of the origin on the x axis by

4 units.

As with the previous example, the position of the vertex is defined by a coor-

dinate pair in which the value of the first coordinate is 0. In this instance, the

value of the second coordinate is a negative number (0,–4). The location of the

line of symmetry on the x axis is the value of –4. As in the previous example, since

the value of a is positive, the parabola opens upward.

Inverting and Translating

As you might expect, no restriction prevents you from both inverting and

translating a parabola. To accomplish this, you set the slope value (a) to a

negative number. As in the previous sections, you can also continue to substitute

the expression x � h for x to shift the vertex along the x axis. For example, if you

176 Chapter 9 n Quadratic Equations

Figure 9.8
A negative value creates a difference of two terms and shifts the vertex to the left.



set h to –2, you invert the parabola, and if you set a to –3, you shift it to the right.

You arrive at a parabola similar to the one Figure 9.9 illustrates.

In Figure 9.9, since the value of a is a negative value (–3), the parabola has a

negative slope. The coordinates defining the vertex are (0, –3), so�3 is the line of

symmetry.

Arbitrary Vertex Positions
In addition to translating the vertex of the parabola along the x axis, you can

move it vertically, along the y axis. Toward this end, consider what happens if you

add a constant k to the basic quadratic equation you have worked with in the

previous sections. Here is the new form of the equation:

aðx � hÞ2 þ k

This form of the equation allows you to adjust the y-intercept of the parabola.

When you assign a value to k, you can translate the position of the vertex of the

parabola up or down relative to the y axis.

As Figure 9.10 illustrates, if you assign a positive value to k, then you translate the

vertex of the equation upward on the y axis. If the value of a is positive, then

the vertex of the parabola opens upward, so the coordinates (x, y þ k) establish
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Figure 9.9
You can translate and invert parabolas simultaneously.



the minimum vertex value. Since k is a positive value, the vertex is translated

upward along the y axis.

As Figure 9.10 illustrates, since the equation also includes the expression x � 4,

the parabola is shifted to the right along the x axis. The vertex lies on the x axis,

and the parabola opens up into quadrant I of the Cartesian plane. Note that since

you have shifted the position of the vertex, the parabola intercepts the y axis when

y equals 19.

You achieve a different effect if you employ negative numbers to define the a and

h constants of the quadratic equation. Consider the following equation:

�2½x � ð�4Þ	2 þ 3

This equation unfolds so that the coefficient or slope of x is negative. For this

reason, the vertex of the parabola points downward. Since the value of h is

negative (–4), you shift the vertex to the left of the y axis. While youmake the first

two constants negative, you set the value that corresponds k to 3. This action, as

in the previous example, translates the vertex upward. As Figure 9.11 illustrates,

the vertex of the parabola lies in quadrant II of the Cartesian plane. The max-

imum value lies at (–4, 3).
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Figure 9.10
By setting the values of a, k, and h to positive numbers, you position the parabola so that it opens
upward in quadrant I of the Cartesian plane.



The x-intercepts

The points at which the graph of the quadratic equation cross the x axis are

known as the x-intercepts. If you can determine the vertex of the parabola, and

know whether the parabola opens upward or downward, then you are in an

excellent position to calculate the x-intercepts. As the previous examples

reveal, not all quadratic equations have x-intercepts. For example, if a parabola

opens upward and is shifted upward from the x axis, it does not intercept the

x axis.

Figure 9.12 provides a summary view of a few possibilities with respect to

quadratic equations. Accordingly, parabola A has one x-intercept because its

vertex lies on the x axis. The same is true of parabola C. Parabolas B and D have
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Figure 9.11
A negative slope and a negative shift value invert the parabola and move it to the left, but you still shift
it upward 3 units.



two solutions each because they intersect the x axis in two places. Parabola E has

no solutions because its origin lies above the x axis and it opens upward.

Standard Forms
If you consider the examples quadratic equations offered in the previous sec-

tions, you find that the standard form of the equation can prove useful as a way to

easily discern the basic features of the parabola the equation generates. To

recapitulate, consider again the extended form of the equation:

aðx � hÞ2 þ k

If you know the value of a, then you can determine how wide or narrow the

parabola is likely to appear. If a is positive, the parabola opens upward. If a is
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Figure 9.12
When you solve for the values of a quadratic equation, you determine if the parabola the equation
generates intersects with the x axis.



negative, the parabola opens downward. If the value of h is positive, then the

vertex of the parabola shifts to the right, or positive, direction on the x axis. If it is

negative, then the vertex of the parabola shifts to the left, or negative, direction

on the x axis. If the value of k is positive, then the vertex shifts upward on the y

axis. If the value of k is negative, then the vertex shifts downward on the y axis.

The equation in this form proves so valuable that it is worthwhile knowing how

to convert quadratic equations so that they appear in this form. Toward this end,

consider again the standard form of a quadratic equation:

ax2 þ bx þ c

To alter an equation you find in this form so that you can discern its component

variables, you perform an operation known as completing the square. The next

section covers in detail the procedure for completing the square of a quadratic

equation. For now it remains important to focus on the notion that the extended

form of the equation consists of a restatement of the standard form of the equa-

tion. Table 9.1 provides a summary of the features of the extended form of the

equation. Subsequent sections of this chapter discuss features not covered in the

previous sections.
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Table 9.1 Features of the Standard Form

Item Discussion

ax2 þ bx þ c Standard form of a quadratic equation. You can set the constants b and c to 0, resulting in
an expression of the form ax2, but you may not set the constant a to 0. By definition, the
quadratic equation is an equation of the second degree, so if you eliminate the term with
the coefficient corresponding to the second-degree variable, you change the equation
so that it no longer corresponds to the definition of a quadratic equation.

aðx � hÞ2 þ k This is the form a quadratic equation can assume if you rewrite it by completing the square.

(h, k) This coordinate pair establishes the position of the vertex. If h is negative, then the
vertex lies to the left of the y axis. If h is positive, then the vertex lies to the right of the y
axis. If the variable k is positive, then the vertex is above the x axis. If the variable k is
negative, then it lies below the x axis.

h The value of h defines the line of symmetry for the parabola. If this is a positive value, then
the line of symmetry shifts to the right of the y axis. If the value is negative, then the line
of symmetry shifts to the left of the y axis.

a The value of a determines how sharply the parabola rises. If the value is greater than 1,
then the parabola narrows and rises more precipitately. If the value is less than 1, then the
parabola becomes wider and rises less precipitately.

k The constant k establishes the y intercept for the parabola. If the value of k is positive,
then the vertex moves upward relative to the x axis. If the value of k is negative, then the
vertex shifts downward.



Completing the Square
Working with the basic form of the quadratic equation the previous section

afforded, you gain some sense of what it is to complete the square of an expres-

sion to solve a quadratic equation. For starters, recall that these two equations

represent standard forms of polynomials that incorporate squares:

ða þ bÞ2 ¼ a2 þ 2ab þ b2

ða � bÞ2 ¼ a2 � 2ab þ b2

Generally, completing the square begins with examining an equation to discover

whether you can rewrite it in a way that allows you to make a perfect square on

the left side of the equal sign. To understand how this works, consider the

following equation:
a2 � 6a � 12 ¼ 0

This is a standard quadratic equation. To make it so that it represents the square

of two expressions, you begin by considering the first two terms. The first term is

a square. The second term might represent the combined square roots of two

squares. (The variable a, for example, is the square root of a2.) The third term,

however, does not easily fit into this scheme. For this reason, you move 12 to the

right side of the equal sign:
a2 � 6a ¼ 12

You then find a term that you can add to the left side of the equation that allows

you to create a perfect square. To arrive at this number, you use an expression you

derive from the standard form of the quadratic equation. Accordingly, the second

term of the standard equation is bx. If you divide b, the coefficient of x, by 2 and

square the result, then you arrive at an expression that completes the square. Here

is how this approach unfolds for the equation at hand:
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a2 � 6a þ 6

2

� �2

¼ 12þ 6

2

� �2

Add half the coefficient squared:

a2 � 6a þ 32 ¼ 12þ 32

a2 � 6a þ 9 ¼ 12þ 9

a2 � 6a þ 9 ¼ 21

ða � 3Þ2 ¼ 21



You can then solve the last form of the equation using the approaches rehearsed

previously: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða � 3Þ2

q
¼ �

ffiffiffiffiffi
21

p

a � 3 ¼ �
ffiffiffiffiffi
21

p

a ¼ 3�
ffiffiffiffiffi
21

p

Since the value of a is greater than zero, two solutions exist. The solution set is as

follows:

3þ
ffiffiffiffiffi
21

p
, 3�

ffiffiffiffiffi
21

pn o
Figure 9.13 reviews the general technique you use to complete squares.

In many instances, completing the square involves working with coefficients

of the first term that are greater than 1. Consider, for example, the following

equation:

2x2 � 3x � 1 ¼ 0

In this instance, the coefficient of the first term is 2. To alter the equation so that

you proceed as before with completing the square, you multiply the equation by
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Figure 9.13
To complete the square, divide the coefficient of the second term by 2 and square the result.



the inverse of the coefficient. In this case, the inverse of 2 is 1
2
, so your work takes

the following form:

2x2

2
� 3x

2
� 1

2
¼ 0 Multiply by

1

2
:

x2 � 3

2
x ¼ 1

2

x2 � 3

2
x þ

3

2

2

 !2
¼ 1

2
þ

3

2

2

 !2

x2 � 3

2
x þ 9

16
¼ 1

2
þ 9

16

x2 � 3

2
x þ 9

16
¼ 8

16
þ 9

16

x2 � 3

2
x þ 9

16
¼ 17

16

x � 3

4

� �2

¼ 17

16

x � 3

4
¼ �

ffiffiffiffiffi
17

16

r

Having proceeded this far, you can then rationalize the denominator of the

expression on the left side of the equation. This gives you

x � 3

4
¼ �

ffiffiffiffiffi
17

p

4

The solution set for the equation is as follows:

3þ ffiffiffiffiffi
17

p

4
,
3� ffiffiffiffiffi

17
p

4

� �

E x e r c i s e S e t 9 . 1

Solve by completing the square.

a. p2 þ 5p� 3 ¼ 0

b. q2 � 10q� 22 ¼ 0
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c. 4a2 þ 8aþ 3 ¼ 0

d. 2a2 þ 5aþ 2 ¼ 0

e. a2 � 6a ¼ 0

f. b2 þ 6b ¼ 7

g. b2 þ 10 ¼ 6b

h. 2x2 � 5x � 3 ¼ 0

i. 9x2 þ 18x þ 8 ¼ 0

j. 6t2 � t ¼ 15

The Quadratic Formula
Completing the square provides a reliable approach to solving quadratic equa-

tions, but you can also use an approach that involves applying the quadratic

formula. To use the quadratic formula, you first put the equation you are dealing

with in a standard form. As mentioned before, the standard form of a quadratic

equation is as follows:

ax2þ bx þ c ¼ 0

It is not absolutely necessary that you set up the equation in this way, but if you

do, then it becomes easier to use the quadratic formula to work with it. The

quadratic formula is stated as follows:

x ¼ �b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a

Consider the following quadratic equation:

2x2þ 3x ¼ 7

To rewrite the equation in standard form, you add �7 to both sides:

2x2þ 3x � 7 ¼ 0

You can then identify a, b, and c as follows: a¼ 2, b¼ 3, and c¼�7.
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Substituting these values into the quadratic formula, you arrive at this equation:

x ¼ �3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 � 4ð2Þð�7Þ

p
2ð2Þ

x ¼ �3� ffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 56

p
4

x ¼ �3� ffiffiffiffiffi
65

p

4

For a solution set, you can use a calculator to arrive at a decimal value that

represents the root or an approximation of the root:

x � �3� 8:06

4
� �11:06

4
� �2:756

x � �3þ 8:06

4
� 5:06

4
� 1:265

The Discriminant
In the quadratic equation, you refer to the expression

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
as the dis-

criminant. The result of the expression allows you to determine the values that

are acceptable as solutions of the quadratic formula:

n If you find that b2 � 4ac ¼ 0, then the equation possesses only one real

number solution.

n If you find that b2 � 4ac > 0, then two real number solutions satisfy the

equation.

n If you find that b2 � 4ac < 0, then no real number solution exists for the

equation.

As mentioned previously, the values you arrive at when you examine the dis-

criminant allow you to determine whether the lines of the parabola the equation

generates intersect with the x axis.
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Solve the following equations using the quadratic formula. After you solve the equation, use the
value of the discriminant to determine which solutions are valid.

a. 3x2 � 8x ¼ 4

b. x2 þ 7x � 3 ¼ 0

c. 9u2 � 8uþ 3 ¼ 0

d. x2 � 5x þ 6 ¼ 0

e. 2x2 � x ¼ �6

f. 3a2 � 18a ¼ 4

g. r2 þ 4 ¼ 6r

h. h2 þ hþ 1 ¼ 0

i. 12b2 þ 9b ¼ 1

j. 3x � xðx � 2Þ ¼ 4

Using Visual Formula
Use Visual Formula to implement a quadratic equation. Then use this equation

to test different values for quadratic. Set up the quadratic equation using the

standard form of a quadratic equation:

f ðxÞ ¼ ax2 þ bx þ c

Here is an equation you can use for practical purposes of implementation:

f ðxÞ ¼ 3x2 þ 3x � 1

To implement this equation, use the upper equation composition area. Refer to

Figure 9.14 and follow these steps:

1. Click the Value menu item five times in succession and, with each click,

position a field in the upper equation composition area. Position the first

two fields in close proximity to each other, skip enough space to allow for a

field and an operator, and then position the third and fourth fields in close
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proximity. Leave enough space for an operator, and then position the last

field.

2. In the first and third fields type 3. In the second and fourth fields type x. In

the last field type 1.

3. Move the fields apart from each other so that they correspond roughly

to the fields shown in Figure 9.14. You will need more room between some

of the fields than others. Make enough room so that the fields you place

in the next few steps do not overlap. Recall that if you make a mistake, press

the Shift key and left click on a field to delete it.

4. Click the Power menu item and to the right and just above the second x field

position the exponent. The default value is 2. Do not change this value.
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Figure 9.14
Set up a quadratic equation to generate a graph.



5. Click the Subtract menu twice in succession. With the first click, position

the minus sign after the exponent field and level with the x field. With the

second click, position the minus sign before the final x field.

6. Click on the equal button to the right of the equation composition area.

7. Position the cursor on the top of the Cartesian plane. When it turns into

parallel bars, pull the Cartesian plane up to the bottom of the equation

composition area.

8. Now proceed to the lower-right panel. Beneath the Chart for Formula 1

button, set the X Range From control to �12. Set the X Range To control

to 12.

9. In the lower-left Chart panel, set the Zoom X and Y fields to �2.

10. Set the Width field for Chart 1 to 2.

11. Click the Chart for Formula 1 button to see your work.

To view changes in the behavior of your equation, change its values. Before

working with these values, in the Chart panel, click the controls for the X and Y

Zoom fields and set the values for both fields to �4. Then work through these

values and see how the parabola changes:

Conclusion
This chapter has allowed you to explore how quadratic equations work. A

quadratic equation is a second degree equation that generates a parabola. When

you generate a parabola using a quadratic equation, three basic possibilities exist
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with respect to how the parabola relates to the x axis. Both of its arms can

intersect the x axis. It’s vertex can lie on the axis, or it can open upward or

downward and never intersect with the x axis at all. To help you determine the

type of quadratic equation you are dealing with, you can use techniques such as

completing the square. You can also apply the quadratic formula. When you

apply the quadratic formula, you can determine the type of parabola you are

dealing with from the values the discriminant of the formula generates.
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Visual Formula,
Important Graphs,
Inequalities, and
Other Things

The activities this chapter covers allow you to use Visual Formula to work with

many of the equations discussed in previous chapters. Visual Formula equips you

to quickly plot the values you generate using various equations. When you do

this, you can explore how changing such items as the slopes or y-intercepts of

equations changes the shapes of the graphs that result. As you work with Visual

Formula in this chapter, first perform the operations the steps guide you

through. Then retrace the steps and change the values on your own to broaden

and deepen your understanding of the equations and their features. As you go,

experiment. If you create equations that do not work, click the Clear Formula 1

or Clear Formula 2 buttons to erase your work. The topics covered in this chapter

include the following:

n Changing positive slopes of linear equations

n Charting parallel lines

n Adding y-intercept values to shift linear equations

n Working with absolute values

n Creating parabolas

n Flipping and shifting parabolas
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Compare and Contrast
Other chapters of this book discuss in detail several of the graphs you encounter

in this chapter. The purpose of this chapter is to expand on material you have

already covered by allowing you to experiment with it in a safe, painless way.

Visual Formula provides a tool that allows you to go in this direction.

A key activity involves creating pairs of graphs. When you create pairs of graphs,

you can explore changes in a relative manner. One graph can serve as a starting

point or contrasting point for the other. As you go, keep in mind that instruction

sets accompanying each exercise are intended to isolate your activities so that you

can easily jump around the chapter and try experiments at random.

When you examine the graphs in this way, you gain a sense of the extent to which

graphing the output of functions furnishes a stronger sense of how algebra relates

to geometric visualization.

To work with the graphs in this chapter, use Visual Formula to set up the named

equations and generate graphs of them. Many of the examples show that when

you type an x in the Value field of your equation, Visual Formula automatically

generates enough plotted values to draw a graph. In cases in which the default

setting for the number of plotted points proves too small and results in a skewed

graph, use the Points control in the bottom-left Chart panel of Visual Formula to

set the graph so that more points for plotting are available.

Linear Graphs
A linear function generates a graph characterized by a slope that does not change.

The line-slope-intercept equation provides a way to experiment with linear

equations. Here is the line-slope-intercept equation as you have seen it in pre-

vious chapters:

f ðxÞ ¼ mx þ b or y ¼ mx þ b

Drawing from Table 10.1, you can use this equation to generate a line with a

positive slope of 2 and a y-intercept at 3:

y ¼ 2x þ 3
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Refer to Figure 10.1 as you go, and implement this equation in Visual Formula

using the following steps:

1. Click the Value menu item. To position the field the Value menu activates,

click in the top equation composition area. This creates a field for constants

that corresponds to the m constant. This constant defines the slope of

the equation. For the value for the field, click in the box and type 2.

2. Click the Multiply menu item. Then click to place the multiplication

symbol immediately after the Value field.

3. Following the multiplication sign, double-click to create a second Value

field. Type an x in this field. The x represents a range of values you use to

generate the graph of a line.

4. After setting up the Value field for x, click the Add menu item. To place the

plus sign in the equation composition area, click just after the x Value field.

5. Click the Value menu item. Then click in the composition area after the plus

sign to place the Value field for the y-intercept constant. Type 3 in this field.

See the equation composition area of Figure 10.1 for the appearance of the

equation after you have implemented it. To test your work, click the button on

the right of the composition that contains the equal sign. You see 2 in the field

adjacent to it.
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Table 10.1 Experiments with Linear Equations

Item Discussion

y ¼ 2x þ 3 Creates an equation that slopes upward into quadrant I with the y-intercept at 3.

y ¼ � 1
2 x þ 3 Creates a line that is perpendicular to the line you create with y ¼ 2x þ 3.

y ¼ 1
2 x þ 3 Reduces the severity of the slope you generate with y ¼ 2x þ 3.

y ¼ �2x þ 3 Causes the slope to trail downward from quadrant II to quadrant IV. Passes through
quadrant I from the y-intercept at 3.

y ¼ 2x � 3 Moves the y-intercept below the x axis. The line you generate in this way parallels
the line you generate with y ¼ 2x þ 0.

y ¼ �2x � 3 Reverses the slope and places the y-intercept below the x axis.

y ¼ 2x þ 0 Causes the line to cross the origin of the Cartesian system (value of the y-intercept
is 0). The line remains perpendicular to y ¼ � 1

2 x þ 3.



Now you can proceed to generate a graphical representation of the equation.

Toward this end, first move the cursor to the top of the Cartesian plane. As you do

so, the cursor turns into a horizontal line with arrows extending up and down.

Press the left mouse button and pull the Cartesian plane upward until its top edge

is even with the bottom of the composition area that contains your equation.

Figure 10.1 illustrates Visual Formula after you have extended the Cartesian plane.

Having extended the Cartesian plane, you are ready to generate the line. To

accomplish this, click on the Chart for Formula 1 button on the lower right panel

of the Visual Formula window. You see the line illustrated in Figure 10.1.

Changing the Intercept Value

To work with the linear equation you have set up in the previous exercise, find

the y-intercept field in your equation in the composition area. You have assigned
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Figure 10.1
Create and graph a linear equation.



an initial value of 3 to the y-intercept. The value corresponds to the b constant in

the slope-line-intercept equation. The goal here involves altering this value to see

the difference that results in the position of the line.

Referring to Figure 10.2, change the value of the y-intercept to 3. To do so, click

to activate the field. Press the back arrow key to delete the previous value. Type 2

to replace it. To verify your value, click the button with the equal sign on the

right. The value you see is 2, as Figure 10.2 illustrates.

Now click the Chart for Formula 1 button in the lower-right panel. The position

at which the line crosses the y axis changes. You see the line intercept with 2 on

the y axis, as Figure 10.3 illustrates. After changing the y-intercept to 2, change it

back to 3. Try other values, such as 1 and 4.
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Figure 10.3
When you change your y-intercept value, you change the point at which the line intersects with the y axis.

Figure 10.2
The equation allows you to change the slope.



Changing the Scale

Prior to proceeding with further operations, find the Zoom fields in the Chart

panel (see Figure 10.4). The Zoom fields allow you to adjust the number of

crosshatches you see on the x and y axes. In this instance, adjust the settings of

both of the fields so that you see values of �3. Figure 10.5 illustrates the fields

after you have adjusted the values. If you compare Figure 10.3 with Figure 10.5,

you can see the scale of the lines is now much finer than before. The number of

cross hatches on both axes increases.

To explore the use of the Zoom controls, adjust the scale up and down. As long as

you adjust the two controls in tandem, the appearance of the slope does not

change. Figure 10.5 illustrates the Zoom controls set with values of �3. Positive

values draw the crosshatches farther apart. Negative values draw them closer

together.

Setting Up a Contrasting Line

To make it so that you can contrast the work of one equation with that of

another, you make use of the upper and the lower equation composition areas. If

you have performed the exercises in the previous sections, you have pulled the

Cartesian plane over the lower composition area. You did this in part to be able
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Figure 10.4
Adjust the Zoom fields so that you see more points on the x and y axes.



to adjust the scale of the crosshatches on the axes. Now that you have adjusted the

lines to accommodate your work, you can pull the Cartesian plane back so that it

no longer conceals the lower equation composition area.

Toward this end, position the cursor on the top of the Cartesian plane until

it appears as a horizontal bar with arrows extending up and down. Then press

the left mouse button and pull downward on the bottom edge of the lower

composition area. Pull it until it is even with the Chart panel, as shown in

Figure 10.6.

Now you have two equation composition areas to work with. The equation you

created before is still in the upper equation composition area. The lower com-

position area remains blank.

To create a contrasting equation, consider another of the equations in Table 10.1:

y ¼ 1

2
x þ 3

Since the slope of this equation is 1
2, the line it generates appears more horizontal

than a line with the slope of 2. To see how this is so, implement this equation in
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Figure 10.5
Adjust the Zoom fields so that you see more points on the x and y axes.



the lower equation composition area. Refer to Figure 10.7 and use the following

steps:

1. Click the Value menu item. Then in the lower equation composition area,

click to position the Value field. As in the previous exercise, this field cor-

responds to the m constant. This constant defines the slope of the equa-

tion. Type 1
2 in this field. When you type this value, type 1, a forward

slash (/), and then 2.

2. Click the Multiply menu item. Then click to place the multiplication

symbol immediately after the Slope field.

3. Following the multiplication symbol, click the Value menu item. To place

the second Value field, click to the right of the multiplication sign. Type

an x in this field. The x represents a range of values Visual Formula can

use to generate the graph of a line.
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Figure 10.6
Pull the lower equation composition area open above the Cartesian plane.



4. After setting up the Value field for x, click the Add menu item. Then click in

the composition area to place the plus sign immediately after the x Value

field.

5. Now click the Value menu item. To position the corresponding field, click

in the composition area to the right of the plus sign. This field is for the

y-intercept. Enter 3 in this field.

Having implemented the equation, click the Chart for Formula 2 button. As

Figure 10.7 illustrates, the shorter, more gradually sloped line appears. To change

the color of the line, click Color option on the Chart panel and select from the

color palette.

You can use a similar approach to generate graphs for other linear equations.

Table 10.1 provides some of the common forms of linear equations. Work

through the examples the table provides.
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Figure 10.7
Use both composition areas to graph contrasting equations.



No t e

If you want to delete an element you have placed in the equation composition area, hold down
the Shift key and click on the element.

Lines that Parallel the x and y Axes
Some linear functions are known as constant functions. They are characterized

by vertical or horizontal lines that run parallel to the y or x axes. These functions

assume one of two forms. In the first form, the value of y remains the same

regardless of the position you plot relative to the x axis. This line runs parallel to

the x axis and is distinguished only by the changing value of x.

y ¼ a
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Figure 10.8
A constant value on the y axis creates a line that parallels the x axis.



In y ¼ a, a identifies a constant value. When you plot such a function, the graph

assumes the form shown in Figure 10.8. You equate the lines this figure shows as

a flat slope. In other words, the slope has no rise, only a run. For all values of x, y

remains the same.

To use Visual Formula to plot constant values, click on the Value menu item.

Then click in the upper equation composition area to position the Value field.

Type 5 in the field. The equation you implement takes the form of y ¼ a, as is

illustrated in Figure 10.8. Click the Chart for Formula 1 button to view the graph.

Figure 10.9 illustrates the result.

To generate the lower line in the Cartesian plane, click the Value menu item.

Then click in the lower of the two equation composition areas. In the field that

results, type �3. Then in the lower-right panel, Click Chart for Formula 2. As

Figure 10.9 illustrates, the lower line is beneath and parallel to the x axis.
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Figure 10.9
Generate parallel lines by setting the y value to a constant.



To set Visual Formula so that the lines and scales resemble those shown in

Figure 10.9, type �20 in the From field beneath the X Range label for the Chart

for Formula 1 button. In the To field, type 20. In the Chart panel, set the Zoom

values to �3. Set the Width fields to 2. If you click the Color fields, you can

choose the colors you find preferable from the color palette.

Absolute Values
The absolute value of a number corresponds to two values, one positive, the

other negative. Because the graphs you create using absolute values depict both of

these values, they are reflected across the y axis.

Here is an equation involving an absolute value that equates the absolute value of

x with y :
y ¼ jxj

For each value on the y axis, you find corresponding negative and positive values

of x. Figure 10.10 illustrates a graph of an equation that does not involve an

absolute value ðy ¼ xÞ. To the right of the graph of this equation, you see the

graph of an equation that contains an absolute value. The darkened arrow

emphasizes how the negative values of x generate positive y values. From this arises

a typical V representation of a linear equation that involves an absolute value.

You can employ Visual Formula to implement a linear equation involving an

absolute value. Use the following steps (refer to Figure 10.11):

1. Double-click the menu item for absolute values (Abs). Then click in the

equation composition area to position the absolute value bars. Use the

mouse cursor to pull the bars apart enough to accommodate a field.

2. Click menu item for Value, and then click in the equation composition area

to place the Value field between the absolute value bars.

3. Type an x in the Value field. The x represents a range of values Visual

Formula uses to generate a graph.

4. Now in the lower-right panel, click the Chart for Formula 1 button. (See

Figure 10.12.) The graph of the absolute value function appears in the

Cartesian plane.

202 Chapter 10 n Visual Formula, Important Graphs, Inequalities, and Other Things

5. To adjust the lengths of the lines you see graphed, click the X Range number

controls.



Figure 10.10
The effect of the absolute value is to make the values of y positive.
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Figure 10.12
A linear equation containing an absolute value generates only positive y values.

Figure 10.11
Position the absolute value bars before you position the Value field.



Non-linear Absolute Values
Equations can contain terms that possess exponents and that are also absolute values.

The graph of such an equation in someways resembles the graph of a linear equation

that possesses an absolute value because the values you plot for the y axis are all

positive, while those you plot for the x axis are both negative and positive. Here is an

example of an equation that requires you to plot the absolute value of the cube of x :

y ¼ jx3j
As the graph on the right in Figure 10.13 illustrates, when you do not designate

the absolute value of a cube, an equation with a cube can generate negative

numbers. This is so because an expression such as �x � �x � �x renders a

negative product. The graph of an equation involving a cube for this reason can

extend into quadrant III. However, if you perform this operation in the context

provided by an absolute value, then the product is positive. The expression

j�x � �x � �x j renders positive y values.
To employ Visual Formula to implement an equation that generates values using

the absolute value of a cube, use the following steps (refer to Figure 10.14):

1. Click the menu item for absolute values (Abs). Then click in the equation

composition area to position the absolute value bars. Verify if the Show

Handles check box on the right of the composition area is checked. If it is

not checked, then click it.

2. Use the mouse cursor to resize the area between the absolute value bars. To

accomplish this, position the cursor on the right absolute value bar and

when the cursor turns into a line with arrows on either end, drag the

absolute value bar to the right. To make the area longer, position the cursor

on the bottom of the area between the absolute value bars and when the

cursor turns into a line with arrows on either end, drag the area down.

3. Click on the Value menu item. Then place a Value field in the absolute value

area. Type an x in the value field.

4. Click on the Power menu. Then place a field for the exponent to the upper

right of the Value field. Type a 3 in the Exponent field.

5. In the lower-right panel, click the Chart for Formula 1 button. The graph of

the absolute value function appears in the Cartesian plane (see Figure 10.15).
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6. To adjust the lengths of the lines you see graphed, click the X Range number

controls.



Figure 10.13
The absolute value of a cube renders the values of y positive.
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Even and Odd Exponential Values
Plotting the values for the cube of x introduces a notion that proves essential to

working with the graphs of exponents. As Figure 10.16 illustrates, in situations

where the exponent for the number is even, you see graphs that open upward.

Such graphs are symmetrical with respect to the y axis.

In contrast, in situations where the exponent of the variable is odd, then only one

arm of the graph extends upward. As Figure 10.17 shows, the graph that results is

symmetrical with respect to the origin of the Cartesian coordinate plane.
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Figure 10.15
The absolute value of a cube generates positive y values.

Figure 10.14
Position the absolute value bars before you position the Value field.

You can use Visual Formula to implement two equations at a time and, in this

way, compare the actions of even and odd exponents and negative base values.



Figure 10.16
Graphs with even exponents open upward.
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Figure 10.17
Odd exponents used with negative numbers result in graphs that are symmetrical with respect to the origin.
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Refer to Figure 10.18, and use these steps:

1. Create an equation with an even exponent and a negative base value.

Click the Parens menu item. Then click in the equation composition area

to position the parentheses. Pull the parentheses apart far enough to

accommodate a field for a value.

2. Click the Subtract menu item. Then click inside the parens in the equa-

tion composition area to create a minus sign (�). Move the minus sign

snugly against the left parenthesis.

3. Click on the Value item in the menu. In the equation composition area

just after the minus sign, click to place the Value field inside the parens.

In this field, type x.

4. Click on the menu item for Power (or exponent). Then place the field for

the exponent to the upper right of the closing parenthesis. Type a 6 in the

Exponent field.
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Figure 10.18
A graph of negative values raised to an even power is symmetrical to the y axis.



5. Now in the lower-right panel, click on the Chart for Formula 1 button.

The graph shown in Figure 10.18 appears in the Cartesian plane.

6. To thicken the line for the graph so that it appears as shown in

Figure 10.18, click on the Chart 1 Width field in the Chart panel. You

can also use the Color palette to select a darker color.

Now add a second equation that generates a graph using an odd exponent. When

you use a negative sign with the base value in an equation that contains an odd

exponent, the upper arm of the graph extends up into quadrant II, while the lower

arm extends down into quadrant IV. To see how this is so, refer to Figure 10.19

and use the following steps:

1. If you have not done so, position the mouse cursor on the top edge of the

Cartesian plane. When it becomes a horizontal bar with arrows extending

up and down, pull the Cartesian plane down so that the lower equation

composition area is exposed.
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Figure 10.19
The exponent with an odd number generates a graph symmetrical to the origin of the Cartesian plane.



2. Click the Parens menu item. Then click in the lower equation composi-

tion area to position the parentheses. Pull them apart far enough to ac-

commodate a field for a negative sign and a Value field.

3. Click the Subtract menu item. Then click inside the parens in the equa-

tion composition area to create a minus sign (�). Move the minus sign

so that it rests against the left parenthesis.

4. Click on the Value item in the menu. In the equation composition after

the minus sign, click to place the Value field. In this field, type x.

5. Now click on the menu item for Power, and place a field for the exponent

to the upper right of the closing parenthesis. Type a 7 in the Exponent

field.

6. Now in the lower-right panel, click on the Chart for Formula 2 button.

As Figure 10.19 reveals, you now see a second graph in the Cartesian

plane. Unlike the first, this graph is symmetrical with respect to the

origin of the Cartesian plane. Its course is from quadrant II to

quadrant IV.

To thicken the lines for the graphs so that they appear as shown in Figure 10.19,

click on theWidth controls in the Chart panel. To change the color, select a color

from the Color palette.

In Figure 10.19, the shape of the graph the negative values generate is the reverse

of what you see if you do not make the base value negative. To see how this is

so, remove the minus sign from the lower of the two equations. To remove the

minus sign, hold down the Shift key and click on the minus sign. This action

deletes it.

Then click the Chart for Formula 2 button. The effect is that the odd graph travels

from quadrant I to quadrant III instead of from quadrant II to quadrant IV.

Roots
For rational numbers, the use of radicals restricts the output to positive values, as

Figure 10.20 reveals. However, if you multiply the extracted root by a negative

number, such as �1, then you reverse the values that result so that the curve of

the graph falls below the x axis.
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Figure 10.20
Multiplying the root by a negative flips the graph of the root.
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Graphs of Inverses
When you work with inverse values, such as 1

x
, you create a graph that is

undefined at x = 0. The domain of such graphs consists of all real numbers

except 0. Zero is excluded because division by 0 is not defined. For this reason,

when you use Visual Formula to generate a graphical representation of inverse

values, you must use the Exclude option to prevent calculations that might

involve using 0 as the divisor.

No t e

Visual Formula issues a warning if you set up an equation that allows you to divide by 0. To adjust
for this situation, use the Exclude option to restrict the range of values you allow for the
calculation.

To employ Visual Formula to implement an equation that generates values

that are the inverses of the domain values, use the following steps (refer to

Figure 10.21):

1. Click the menu item for Value. Then click in the equation composition area

to position a Value field. Type a 1 in the Value field.

2. Click the Divide menu item. Then click to the right of the Value field to

position the division sign.

3. Again, click on the Value menu item. Place a Value field immediately after

the division sign. Type an x in the Value field.

4. Now proceed to the lower-right panel and find the Exclude controls. As

mentioned previously, you must exclude 0 from the values that are used in

the calculations of the inverse of the domain values. To exclude 0, designate

the range of values to exclude. To exclude a range that includes only�0.1 to

0.1, manually type �0.3 in the From field or use the control arrows. Then

manually type 0.1 in the To field or use the control arrows.

5. Verify that the Exclude option is checked. If it is not checked, check it.

6. In the Chart panel, set the Zoom values to�3 and the Width values to 3. Set

the Points value to 8.

7. Click the Chart for Formula 1 button to generate the graph. Figure 10.21

illustrates the graph of inverse values that results.

214 Chapter 10 n Visual Formula, Important Graphs, Inequalities, and Other Things



For the inverses of domain values you define using exponents, the appearance

of the graph that results depends on whether the exponent is even or odd.

Figure 10.22 illustrates the graph of the inverse of a square. The domain values

are all greater than 0 and symmetrical with respect to the y axis.

To implement the equation shown in Figure 10.22, begin with the equation you

create for Figure 10.21. Click the Power menu item. To position the exponent,

click to the upper right of the x field. Then type 2 in the exponent field. Click the

Chart for Formula 1 button to refresh the graph.

Inverse squares generate graphs that are symmetrical to the y axis. Inverses of all

domain values with even-numbered exponents are likewise symmetrical with

respect to the y axis. With odd-numbered exponents, the situation changes. The
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Figure 10.21
Graphs of the inverse values of the domain are undefined at 0.



graph that results is symmetrical with respect to the origin of the Cartesian plane.

Figure 10.23 illustrates how this is so. As with other graphs of inverse values,

these also exclude 0.

Varieties of Translation
Translating the curves generated by equations with exponents entails performing

operations similar to those you perform with linear equations. On one basic

level, translation involves moving the vertex of a parabola along the y axis. To

move a vertex along the y axis, you first consider the position of a parabola with

its vertex resting on the origin of the Cartesian plane. You can then add values to

this position to shift it up or down the y axis.
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Figure 10.22
Range values using the inverse of a square are greater than zero.



Parabolas

When you calculate values for a parabola, you use an exponent of an even value.

The result is a graph that is symmetrical with respect to the y axis. A parabola

crosses the y axis once, so if you employ an equation of the form y ¼ x2 þ c, the

value of c provides a translation value that is also the value of the y-intercept.

As a translation value, the constant c moves the graph up or down the y axis.

Figure 10.24 provides a few examples of translation.

Each parabola shown in Figure 10.24 represents an equation that includes a

constant for the y-intercept. In the first use of the equation, you can rewrite it as

x2 þ 0. When the vertex rests on the coordinates (0,0), the y-intercept value is 0.

The other two uses of the equation set the y-intercept at values greater than or

less than zero. The first adds 3. The second explicitly subtracts 3.
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Figure 10.23
Inverse values with numbered exponents generate graphs that are symmetrical with respect to the
origin.



Figure 10.24
Add a constant value to shift the graph up and down along the y axis.
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The generalization then arises that if the value of the y-intercept exceeds 0, then

the graph shifts upward. On the other hand, if the value of the y-intercept is less

than 0, then the graph shifts downward. When the value of the y-intercept

equals 0, then the vertex of the graph rests on the x axis.

To employ Visual Formula to implement a set of non-linear equations that are

shifted along the y axis, use these steps (refer to Figure 10.25):

1. Click the menu item for Value. To position the Value field, click in the upper

equation composition area. Type x in the Value field.

2. Click the Power menu item. Click to place the field for the exponent to the

upper right of the Value field. Type 2 in the Exponent field.

3. Click the Add menu item. Then click to the right of the Value field to

position the plus sign.
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Figure 10.25
Different y-intercept values shift the parabolas up and down the y axis.



4. Select Value from the menu, and then click to place the Value field after

the plus sign. This is the y-intercept of the equation. To raise the vertex

of the parabola 3 units above the x axis, type 3.

5. Now proceed to the lower-right panel and click the Chart for Formula 1

button to generate the graph. As Figure 10.25 illustrates, the vertex of the

parabola that results rests above the x axis.

The y-intercept forced the top parabola in Figure 10.25 to shift three units above

the x axis. To generate the bottom parabola, perform the following steps:

1. Click the menu item for Value. Then click in the lower equation compo-

sition area to position the Value field. Type x in the Value field.

2. Click the Power menu item. Position the field for the exponent to the upper

right of the Value field. Type 2 in the Power field.

3. Click the Subtract menu item. To position the minus sign, click to the right

of the Value field.

4. Click Value in the menu. To position the Value field, click after the minus

sign. To lower the vertex of the parabola 3 units below the x axis, type 3.

5. In the Chart panel, set the x axis and y axis Zoom fields to 1 and �3,

respectively.

6. In the lower-right panel, click the Chart for Formula 2 button to generate

the graph. As Figure 10.25 illustrates, the vertex of the graph that appears

rests three units below the x axis.

Parallel Lines

The general form of the line’s slope-intercept equation is y ¼ mx þ b. In this

equation, m describes the slope of the equation, and b provides the value of the

y-intercept. Given that a set of equations possesses the same slope, if you vary

only the value of b, you end up with a set of parallel lines.

Figure 10.26 illustrates the graphs of three lines. The middle line crosses the

origin of the Cartesian plane. You could rewrite it as y ¼ x þ 0. The other two

lines include positive and negative values for the y-intercept. The top line pro-

vides a y-intercept of 3. The lower line provides a y-intercept value of �3.
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Figure 10.26
The value of the y-intercept raises or lowers the line on the y axis.
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A generalization emerges from the work of these intercepts. If the intercept value

is 0, then the line crosses the origin. If it is greater than zero, then the line crosses

the y axis above the origin. If it is less than 0, then the line crosses the y axis

below the origin. Whatever the y-intercept value, as long as the slopes remain the

same, the lines remain parallel.

You can create parallel lines if you set the slope of the line to 1. In this instance,

the equation assumes the form y ¼ x þ b, for the slope, m, equals 1. To use

Visual Formula to generate a set of lines’ slopes set to 1 but y-intercept defini-

tions set at distinct values, follow these steps (refer to Figure 10.27):

1. Click the menu item for Value. Then click in the upper equation compo-

sition area to position the Value field. Type x in the Value field.

2. Click the Add menu item. Then click to the right of the Value field to

position the plus sign.
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Figure 10.27
Use y-intercept settings to generate parallel lines.



3. Click the Value menu item. To position the Value field, click to the right of

the plus sign. This is the y-intercept of the equation. To raise the y-intercept

3 units above the x axis, type 3 in the field.

4. Now proceed to the lower-right panel, and click the Chart for Formula 1

button to generate the graph. As Figure 10.27 illustrates, the line that results

intersects the y axis above the x axis.

In Figure 10.26, you created a line that intercepts the y axis 3 units above the

x axis. To create a line that intercepts the y axis 3 units below the x axis, use the

following steps:

1. Click the menu item for Value. Then click in the lower equation composition

area to position Value field. Type x in the Value field.

2. Click the Subtract menu item. Then click to the right of the Value field to

position the minus sign.

3. Click the Value menu item. To position the Value field, click after the minus

sign. To set the y-intercept 3 units below the x axis, type 3 in this field.

4. To generate the graph of the line, in the lower-right panel click the Chart for

Formula 2 button. As Figure 10.27 illustrates, the resulting graph crosses the

y axis below the x axis.

Odd Exponents and Translations

When you work with odd-numbered exponents and do not translate them up or

down the y axis, the graphs you generate are symmetrical with respect to the origin

of the Cartesian plane. When you change the position of the y-intercept for such

equations, the shape of the graph remains the same, but it is no longer symmetrical

with respect to the origin. Figure 10.28 illustrates the graphs of equations con-

taining cubed variables. Both equations take the form y ¼ x3 þ b. On the right

side, the value of b is negative. On the left side, the value of b is positive.

To use Visual Formula to create graphs of lines generated by equations that

contain variables with odd-numbered exponents, follow these steps (refer to

Figure 10.29):

1. For the first equation ðy ¼ x3 þ bÞ, click the menu item for Value. Then

click in the upper equation composition area to position the Value field.

Type x in the Value field.
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Figure 10.28
The value of the y-intercept moves the graph up or down without distorting it.
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2. Click the Power menu item. Then click to the upper right of the Value field

to position the Exponent field. After you position the Exponent field, type 3

in it.

3. Now click the Addmenu item and in the equation composition area, click to

the right of the Value field to position the plus sign the Add menu item

provides.

4. Click the Value menu item. To position the Value field, click after the plus

sign. This is the y-intercept of the equation. Type 4 in the field.

5. Set the Zoom values to �5.

6. To generate the graph, locate the lower-right panel and click the Chart for

Formula 1 button. As Figure 10.29 reveals, the cubic exponent, combined
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with the positive value of the y-intercept, causes the graph to cross the y axis

above the x axis.

You see the second, lower graph in Figure 10.29. The lower graph crosses the

y axis 4 units below the x axis. To create the equation that generates this graph,

use the following steps:

1. Click the menu item for Value. Then click in the lower equation compo-

sition area to position Value field. Type x in the Value field.

2. Click the Power menu item. To position the Exponent field, click to the

upper right of the value. After you position the Exponent field, type 3

in it.

3. Click the Subtract menu item. Then click to the right of the Value field to

position the minus sign.

4. Now click Value in the menu. To position the Value field, click after the

minus sign. Type 4 four in the field. This value lowers the vertex of the

parabola 4 units below the x axis.

5. To generate the graph, locate the lower-right panel of Visual Formula and

click the Chart for Formula 2 button. As Figure 10.29 illustrates, a second

graph appears, lower than the first.

Translating Absolute Values

As previous exercises emphasized, when you plot the solutions to an equation that

contains an absolute value, the graph that results is symmetrical with respect to

the y axis, and you can shift equations containing absolute values along the y axis.

Shifting involves changing the value of the y-intercept. Figure 10.30 illustrates

shifting using positive and negative y-intercept values. One graph moves the

y-intercept up to 6. The other moves it down to �6.

To use Visual Formula to graph the solutions of equations that shift the graphs of

absolute values, follow these steps (refer to Figure 10.31):

1. For an equation that reads y ¼ jxj þ b, work in the top equation compo-

sition area. First, click the Abs menu item. Then click in the equation

composition area to position the absolute value bars.

226 Chapter 10 n Visual Formula, Important Graphs, Inequalities, and Other Things



Figure 10.30
Equations involving absolute values generate graphs that are symmetrical to the y axis.
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2. Click the menu item for Value. To position the Value field, click between the

absolute value bars. Type x in the Value field.

3. Click the Add menu item. To position the plus sign, click to the right of the

second absolute value bar.

4. Select Value from the menu, and then click to place the Value field after the

plus sign. This is the y-intercept of the equation. Type 6 in this field.

5. Now proceed to the lower-right panel of Visual Formula. Locate the

X Range fields under the Chart for Formula 1 button. Click the From

control and set the value of the field to �10. Click the To control and set

the value of the field to 10.
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Figure 10.31
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6. In the Chart panel, locate the Zoom field. Click the x axis control and set the

field value to �7. Click the y axis control and again set the field value

to �7.

7. Now click the Chart for Formula 1 button to generate the graph.

To experiment with the graph of the absolute value figure you see in Figure 10.31,

return to the upper equation composition area and change the value of the

y-intercept to 4, 5, �4, and �6. The changes you make to the y-intercept value

move the graph along the y axis without distorting it.

Flipping Across the Axis
Whether you are working with a linear or a non-linear equation, a negative

coefficient has the effect of reversing the slope of the graph. A typical scenario

with a linear equation involves seeing the line change so that instead of going

from quadrant III to quadrant I, the line goes from quadrant II to quadrant IV.

With a parabola, you see the vertex of the parabola flipped so that it opens downward.

Linear Flips

To use Visual Formula to show how changing the coefficient of a variable alters

the slope or orientation of a graph, you can start out by working with a linear

equation and generating a graph of a line with a positive slope. Then you can

create a line with a negative slope. The following sections review the necessary

steps. Refer to Figure 10.32 as you go.

The Positive Slope

Assume you are working with an equation that takes the form y ¼ mðxÞ þ b. To

implement this equation, work in the top equation composition area. Use the

following steps:

1. Click the menu item for Value. Then click in the equation composition area

to position the Value field. Type 2 in the Value field. This is the field that

corresponds to the coefficient m.

2. Click the Multiply menu item. Then click to the right of the Coefficient field

to position the multiplication sign.

3. Click the Value field again and position the field to the right of the multi-

plication sign in the equation composition area. Type x in this field.
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4. Click the Addmenu item and position the plus sign to the right of the x field.

5. Click to activate the Value menu item. Click after the plus sign to position

the field. This is the field for the y-intercept value. Type 2 in the field.

6. Now go to the lower-right panel and find the To and From fields for the

X Range setting. Click the To control and set the value of the field to �10.

Click the From control and set the value of the field to 10.

7. On the Chart panel, find the Zoom fields. Click the x axis control and set the

value of �7. Likewise, click the y axis control and set the value to �7.

8. Also, for the Width values, use the controls to set the Chart 1 and Chart 2

values to 2.
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Figure 10.32
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9. Now click the Chart for Formula 1 button. As Figure 10.32 illustrates, a

graph of a linear equation with a positive slope of 2 and a y-intercept of 2

appears in the Cartesian plane.

The Negative Slope

In the previous section, you generated a line with a positive slope. Now com-

plement this work by generating a line with a negative slope. The equation you

work with in this instance assumes the form y ¼ �mðxÞ þ b. To implement

this equation, work in the lower equation composition area. Use the following

steps:

1. Click the menu item for Value. Then click in the lower equation compo-

sition area to position the Value field. Type�2 in the Value field. This is the

field that corresponds to the coefficient m. The minus sign establishes a

slope opposite of the one you implemented previously.

2. Click the Multiply menu item. Then click to the right of the Coefficient

field to position the multiplication sign.

3. Click the Value field again, and position the field to the right of the

multiplication sign in the lower equation composition area. Type x in

this field.

4. Click the Add menu item, and position the plus sign to the right of the x field.

5. Click the Value menu item, and then position the Value field after the

plus sign. This is the field for the y-intercept value. As before, type 2 in

the field.

6. Now go to the lower-right panel and find the To and From fields for the

X Range setting beneath the Chart for Formula 2 button. These values should

already be set to correspond with those of the Chart for Formula 1 button, but

to verify that this is so, click the To control and set the value of the field to�10.

Click the From control and set the value of the field to 10.

7. Now click the Chart for Formula 2 button on the right. You can also click

the Chart for Formula 1 button to refresh the previous graph. Graphs of the

equations with slopes �2 and 2 and y-intercept 2 appear in the Cartesian

plane. As Figure 10.32 illustrates, the negative slope slants down to the

right.
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Absolute Value Flips

An equation for an absolute value takes the form y ¼ jxj. Such an equation

generates a graph in a V shape. The vertex of the V opens upward. To flip this

graph so that its vertex opens downward, you introduce a negative slope. The

form of the equation becomes y ¼ �mjxj. Figure 10.33 illustrates two graphs of

equations that possess absolute values. The V above the x axis represents a

positive slope. The V below the x axis represents a negative slope.

To use Visual Formula to implement these two equations, use the following

approach:

1. Click the Abs (absolute value) menu item. Then click in the upper equa-

tion composition area to position the absolute value bars. Pull the bars

apart so that they can accommodate a variable.

Figure 10.33
You can flip the graphs of equations containing absolute values if you multiply by a negative value.
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2. Click the Value menu item. Then click between the absolute value bars

to place the Value field. In this field type x.

3. To generate the graph of this absolute value equation, locate the Chart for

Formula 1 button in the lower-right panel and click on it. You see the

graph that appears above the x axis in Figure 10.33.

To implement an absolute value function that generates the inverted graph

shown in Figure 10.33, follow these steps:

1. Click the Subtract menu item. To position the minus sign the Subtract

menu generates, click in the lower equation composition area.

2. Click the Abs (absolute value) menu item. Then click in the lower equation

composition area to the right of the minus sign to position the absolute

value bars. Pull the bars apart far enough to accommodate a variable.

3. Click the Value menu item. To position the Value field, click between the

absolute value bars.

4. Now click the Chart for Formula 2 buttons to see the graph. This graph

appears below the x axis.

To give your graphs the appearance of those illustrated in Figure 10.33, use the

following approach:

1. Locate the X Range fields below both of the Chart for Formula 1 and Chart

for Formula 2 buttons. These are in the lower-right panel.

2. Click the arrow controls for the From fields and set them to �10.

3. Click the arrow controls for the To fields and set them to 10.

4. On the Chart panel, set the x and y Zoom values to �7. Set the Width fields

for both charts to 2.

5. Finally, set the Points field to 2.

Flipping Parabolas

To flip a parabola, you provide a negative value as the coefficient of x. Consider,

for example, the equation y ¼ x2. You can rewrite this equation as y ¼ ax2. In

this instance, the constant a equals 1, so if you make the equation explicit, then it

reads y ¼ ð1Þx2. The value of the coefficient is 1, and the coefficient defines how
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the vertex of the parabola the equation generates opens. A positive value makes it

open upward.

If you change the equation so that the value of the coefficient becomes negative,

then the equation takes on this form: y ¼ ð�1Þx2. When you make the coeffi-

cient negative, you change the way the parabola opens. It now opens downward.

To put Visual Formula to work to implement an equation that generates a

parabola that opens upward, you implement the equation that reads y ¼ ð1Þx2.
To accomplish this task, use the following steps:

1. Click the menu item for Value. To position the Value field, click in the upper

equation composition area. Type x in the Value field.

2. Then, to create an exponent, click the Power menu item. To position this

field, click to the upper right of the Value field. After you position the

Exponent field, type 2 in it.

3. To generate the graph of the equation, proceed to the lower-right panel

and click the Chart for Formula 1 button. As illustrated in Figure 10.34,

you see a parabola that opens upward from the x axis.

Figure 10.34 illustrates a second parabola, one that opens downward. You can

express the equation that generates this parabola as y ¼ ð�1Þa2. Use these steps
in Visual Formula to implement the equation:

1. Click the menu item for Subtract. Then click in the lower equation com-

position area to position the minus sign that corresponds to the Subtract

menu item.

2. Next, click the Parens menu item. Click after the minus sign to position the

parentheses, and then pull them far enough apart to accommodate a Value field.

3. Click the Value menu item. Click inside the parentheses to place the cor-

responding field. Type x in the Value field.

4. Click the Power menu item. To position the Exponent field, click to the

upper right of the closing parenthesis. After you position the Exponent field,

type 2 in it.

5. To generate the graph, in the lower-right panel of Visual Formula, click the

Chart for Formula 2 button.
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Inverting and Shifting Parabolas
In addition to inverting parabolas, you can shift them along the x axis. To shift a

parabola, you set up an equation that involves using the square of the difference of

two values. The equationwithwhich you shift a parabola assumes the following form:

y ¼ ðx � bÞ2

In this form of the equation, the value of b designates the distance along the x axis

you want to shift the vertex of the parabola. If b is a positive number, then you

shift the parabola to the right on the x axis. If b is a negative number, then you

shift the parabola to the left. Here is how you can rewrite the equation when b

consists of a negative value.
y ¼ ðx � ð�bÞÞ2

y ¼ ðx þ bÞ2

Inverting and Shifting Parabolas 235

Figure 10.34
Multiplication by a negative value inverts a parabola.



This equation shifts the parabola to the left on the x axis. Following the path

explored in the previous section, in addition to altering its position on the x axis,

you can invert the parabola. To invert the parabola, you multiply the square of

the difference or sum that characterizes the position of the parabola on the x axis

by negative 1. Here is how you can write this equation so that you both invert the

parabola and shift it to the left:

y ¼ �1ðx þ bÞ2

Multiplication by �1 flips the parabola. The vertex opens downward. The

addition of the value associated with b shifts it to the left. In the sections that

follow, you use Visual Formula to explore these and a few other activities.

To the Right

An equation that features the square of the differences of two values allows you to

shift a parabola. As mentioned previously, if the value of b is positive, the

expression ðx � bÞ2 shifts the vertex of the parabola to the right. The top

equation composition area in Figure 10.35 illustrates the implementation of an

equation of this type. The result is the parabola in the Cartesian plane with its

vertex facing upward. On the other hand, the bottom equation composition area

illustrates the implementation of an inverted parabola, which appears below the

x axis in the Cartesian plane. Here are the procedures in Visual Formula for

implementing these equations (refer to Figure 10.35):

1. To implement the equation that reads y ¼ ðx � 4Þ2, click the Parens menu

item. Then click in the upper equation composition area to position the

parentheses. Pull the parentheses far enough apart to accommodate two

fields and a minus sign.

2. Then click the menu item for Value. To position the field the Value menu

item generates, click just after the opening parenthesis. Type x in the field.

3. Next, click the Subtract menu item. Click after the field inside the

parentheses to position it.

4. Click the Valuemenu item again. Click inside the parentheses after the minus

sign to position the field the Value menu generates. Type 4 in this field.

5. To create an exponent, click the Power menu item. To position the

Exponent field the Power menu item provides, click to the upper right of the

closing parentheses. In the Exponent field, type 2.
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6. In the lower-right panel, set the X Range From field to �8 and the To field

to 13.

7. To generate the graph, proceed to the lower-right panel and click the button

for Chart for Formula 1. You see a parabola that opens upward from the

x axis.

In Figure 10.35, the Cartesian plane shows the graphs of two equations. One

opens upward; the other opens downward. The equation that opens downward

reads y ¼ �ðx � 4Þ2. It is the same as the previous equation, except the value

that orients whether the parabola opens up or down is �1. To implement this

equation, use these steps:

1. Click the menu item for Subtract. To position the minus sign, click in the

lower equation composition area.
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Defining an x-intercept and setting the value for the x axis allows you to shift and invert a parabola.



2. Click the Parens menu item. To position the parentheses, click to the right of

the minus sign. Pull the parentheses apart to allow for two fields and aminus

sign.

3. Click the Value menu item. Inside the parentheses in the lower equation

composition area, click to position the Value field. Type x in this field.

4. Now click the menu item for Subtract. To position the minus sign, click to

the right of the Value field.

5. Then click the Value menu item again, and place the corresponding field to

the right of the minus sign. Type 4 in the field.

6. Click the Power menu item. To position the Exponent field, click to the

upper right of the closing parenthesis. After you position the Exponent field,

type 2 in it.

7. Set the Zoom x axis value to �4 and the y axis value to �3.

8. To generate the graph, in the lower-right panel of Visual Formula, click the

Chart for Formula 2 button.

To the Left

As Figure 10.36 shows, the square of the sum of two values generates parabolas

that are shifted to the left of the y axis. Multiplying the sums by negative numbers

inverts the parabolas. The equations you employ to shift and generate parabolas of

this type work in the same fashion as the equations discussed in the previous

section. The difference is only that the parabolas are shifted to the left.

When you shift the parabolas to the left, you in essence subtract a negative value.

You can write the equation as y ¼ ðx � ð�bÞÞ2, but it is just as easy to write it in

the form you see depicted in Figure 10.36. When you multiply the sum by �1,

you invert the parabola.

To implement these two parabolas as shown in Figure 10.36, follow the steps in

the previous section. At Step 3 in the upper equation and at Step 4 in the lower

equation, instead of using a minus sign between the two fields within the par-

entheses, click the Add menu item and position the plus sign after the first Value

field.
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Absolute Values

In Figure 10.37, equations that feature the differences and sums of absolute

values generate shifts to the right and the left of the y axis. You shift the V that is

on the right of the y axis by subtracting 4 from the variable x. The equation that

accomplishes this is y ¼ jx � bj.
The equation that features the sum of two values generates the shift to the left.

The V on the left of the y axis has been shifted by adding 4 to the value of the

variable. The equation that accomplishes this is y ¼ jx þ bj.
To implement the top equation, refer to Figure 10.37 and use the following steps:

1. Click the Abs menu item. To position the bars for the absolute value, click in

the upper equation composition area. Pull the bars far enough apart to

accommodate two fields and a minus sign.
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Figure 10.36
You shift the parabola to the right by squaring the sum of two numbers.



2. Click the Value menu item. Click inside the absolute bars to position the

Value field. Type x in this field.

3. To create the minus sign, click on the Subtract menu item. To position the

minus sign, click inside the absolute value bars after the x Value field.

4. To create the field for the (?) shift constant (b), click the Value menu item.

Then click within the absolute value bars after the minus sign. Type a 4 in

this field.

5. To generate the graph of the absolute value equation, in the lower-right

panel click the Chart for Formula 1 button. The V you see on the right of the

y axis in Figure 10.37 appears.
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A V also appears on the left side of the y axis in Figure 10.37. To generate this

figure, work within the lower of the two equation composition areas and use the

following steps:

1. Click the Abs menu item. To position the bars for the absolute value, click in

the lower equation composition area. Pull the bars far enough apart to

accommodate two fields and a plus sign.

2. Click the Value menu item. Click inside the absolute bars to position the

Value field. Type x in this field.

3. To create the plus sign, click on the Add menu item. To position the plus

sign, click inside the absolute value bars after the x Value field.

4. To create the field for the (?) shift constant (b), click the Value menu

item. Then click within the absolute value bars after the plus sign. Type a

4 in this field.

5. To generate the graph of the absolute value equation, in the lower-right

panel click the Chart for Formula 2 button. The V you see on the left of the

y axis in Figure 10.37 appears.

Conclusion
In this chapter, you have used Visual Formula to explore the equations and

relations discussed in other chapters. Having at hand a software application like

Visual Formula that allows you to easily manipulate graphical representations of

solutions of equations enables you to gain an understanding of how predictable

patterns characterize the solutions of equations. For example, if a linear equation

possesses a positive slope, then it slants upward into quadrant I. If a parabola

possesses a negative coefficient, then its vertices open downward. Such basic

observations of the patterns that characterize graphs allow you to work more

confidently with the solutions of equations because, as you work with an

equation, you can anticipate the solutions your work results in.
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Systems and Matrices

In this chapter, you explore how to find the solutions to equations that possess

two variables. One of the most ready ways of solving such equations involves

substitution. Given this groundwork, you then explore how to work with systems

of equations that involve two or more variables. When you work with systems of

equations, you can solve them by employing addition and subtraction to elim-

inate variables from the equations on a selective basis. This approach to solving

systems of equations allows you to investigate how to view systems of equations

as matrices. This chapter includes the following topics:

n Solving for two variables using substitution

n Using addition and multiplication

n Recognizing no solution and infinite solution scenarios

n Solving using different approaches to elimination

n Basic matrices

n Extended matrices

Shared Solutions
As Figure 11.1 illustrates, when two or more equations can generate the same sets

of ordered pairs, they form a system of equations. When you solve a system of

equations, you find sets of values that both equations generate. You can approach
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solving systems of equations in various ways. One way is to generate ordered

pairs, and then compare the ordered pairs to determine if any are the same for

both equations. Another approach involves generating graphs for the equations

that you plot on one Cartesian coordinate plane and then compare. If you are

working with linear equations, the point at which the lines intersect constitutes a

solution for the system of equations.

Any given equation is likely to generate an indefinite number of ordered pairs.

The ordered pair that a given equation generates is a solution set. As with any two

sets, if the sets share common elements, then the shared elements are known as

the intersection of the two sets. Consider this set of equations:

y � x ¼ 1

y þ x ¼ 2

Given this set of equations, you can then ask whether a coordinate pair exists that

satisfies both equations. To apply the graphical approach to answering this

question, you can use Visual Formula to implement the equations and generate

graphs of them. To implement the equations in Visual Formula, you must

rewrite them in this way:
y ¼ x þ 1

y ¼ 2� x

Figure 11.2 illustrates these equations as implemented in Visual Formula. For

both equations, you create two Value fields. In the top equation, you use the Add

menu item to position a plus sign between the fields. For the lower equation, you
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use the Subtract menu item to position a minus sign between the fields. You type

the variable x and the constant values as shown. You can then click on the Chart

Formula 1 and Chart Formula 2 buttons to generate the graph. In the left panel,

you change the Color and Width fields for the lines to achieve the effects shown.

When you inspect the point of intersection between the two lines in Figure 11.2,

you can assess that the solution pair is likely to be (0.5, 1.5). To test these values,

you insert them into the equations. The test for the first equation shows the pair

to be valid:
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Figure 11.2
The intersection of the two lines constitutes the intersection of the solution sets of the two equations.

y � x ¼ 1

1:5� 0:5 ¼ 1

1 ¼ 1



The test for the second equation also shows the pair to be valid:

y þ x ¼ 2

1:5þ 0:5 ¼ 2

2 ¼ 2

Substitution
To solve a system of equations in a more systematic way, you use substitution.

Toward this end, you first solve one of the equations in the system for one of its

variables. You then substitute the solution into the other equation.

Here is a system of equations that you can solve in this way:

x þ y ¼ 12

3x þ y ¼ 4

To solve this set of equations through substitution, you can solve either equation

for either variable. In this instance, begin by solving the first equation for y :

x þ y ¼ 12

y ¼ 12� x

You can then proceed to substitute the expression 12� x into the second of the

equations. To do so, you proceed as follows:

3x þ y ¼ 4

3x þ ð12� xÞ ¼ 4

2x þ 12 ¼ 4

2x ¼ 4� 12

x ¼ �8

2

x ¼ �4

Having arrived at this solution for x, you can then return to either of the

equations in the system and solve for y. Accordingly, if you use the first equation,
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you proceed as follows: �4þ y ¼ 12

y ¼ 12þ 4

y ¼ 16

Given the solution to y, you then have at hand the ordered pair (�4, 16). You can

test the validity of this ordered pair by substituting its two values into the

equations:

�4þ 16 ¼ 12

12 ¼ 12

Likewise, with the second equation,

16 ¼ 12� ð�4Þ
16 ¼ 16

E x e r c i s e S e t 1 1 . 1

Use substitution to solve these systems of equations for the value of x and y. Check your answers.

a. 6x � 2y ¼ �4
3x þ 4y ¼ 1

b. 4x þ 6y ¼ �6
�4x þ 4y ¼ 16

c. x � 6y ¼ 4
2x � 2y ¼ 7

d. 3x � 2y ¼ 7

x þ y ¼ 1

2

e. 2x þ y ¼ 6
3x þ 4y ¼ 4

Systems Solved by Adding and Multiplying
In addition to graphing the results of equations and using the substitution

method, you can also solve equations with a method that involves using mul-

tiplication and addition processes to eliminate variables from the equations. To

use this approach, you first assess the system of equations to determine a value by
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which you canmultiply one of the equations so that you canmake one or another

of its coefficients the additive inverse of the corresponding coefficient in the

other equation. You then multiply by this value and carry out an addition

operation to arrive at a new equation in which you have eliminated one of the

variables. You repeat this process until you arrive at values for each of the

variables in the system.

To see how this works, consider this system of equations:

4x � 4y ¼ �1

�4x þ 2y ¼ 0

When you assess this system of equations, you can see that the coefficients of x

are additive inverses. Since your goal is to arrive at a new equation in which you

eliminate one of the two variables, adding these two equations immediately

provides you with a desired result. When you carry out the addition, your activity

takes the following form:

4x � 4y ¼ �1

�4x þ 2y ¼ 0

--2y ¼ --1

The addition eliminates x as a variable and leaves youwith the equation�2y ¼ �1.

To find the value of y, you need to eliminate the coefficient of y, and to

accomplish this, you multiply the equation by 1
2
:

�2y ¼ �1
1

2

� �

The result of this activity is the value of y :

y ¼ 1

2

This, then, provides you with half of your goal. Now that you have the value of y,

you can proceed with discovering the value of x. To discover the value of x, you

bring forward the first equation from the system of equations:

4x � 4y ¼ �1
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Your goal this time around is to eliminate the coefficient of y. To accomplish this,

you make use of the fact that you know the value of y. The coefficient of y in the

equation is�4. Youmust multiply the equation that establishes the value of y by a



number that generates the additive inverse of �4. To reach this goal, you mul-

tiply y ¼ 1
2
by 4. Your activity in this respect takes the following form:

y 4ð Þ ¼ 1

2
4ð Þ

4y ¼ 4

2

4y ¼ 2

The result is an equation that eliminates the y variable if you add it to the first

equation in the system of equations. Here is the operation that accomplishes

this task:

4x � 4y ¼ �1

4y ¼ 2

4x ¼ 1

The result of the operation is an equation that isolates x. You can then multiply

this equation by 1
4
to arrive at the value of x. Here is the multiplication and the

result:

1

4
4xð Þ ¼ 1

1

4

� �

x ¼ 1

4

Now you know the values of both x and y. The value of x is 1
4
, and the value of

y is 1
2
.

To test the correctness of your calculations, you can substitute the values of x and

y into the equations of the original system. Here is the substitution for the first

equation:
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ð4Þ 1
4
� ð4Þ 1

2
¼ �1

1� 2 ¼ �1

�1 ¼ �1



Here is the substitution for the second equation:

�4
1

4
þ 2

1

2
¼ 0

�1þ 1 ¼ 0

0 ¼ 0

E x e r c i s e S e t 1 1 . 2

Solve the following systems of equations using the elimination method. Check your answers.

a. 3aþ 2b ¼ 5
aþ 4b ¼ 10

b. a� 2b ¼ 6
2a� 3b ¼ 4

c. 6a� 12b ¼ 16
3a� 4b ¼ 8

d. 5aþ 4b ¼ 5
2a� 4b ¼ 8

e. 2aþ 3b ¼ 17
5aþ 7b ¼ 29

Variations on Themes
While it is best to conform to the basic addition and multiplication routines for

solving systems of equations, in a few instances, you benefit if you perform a few

preliminary activities to make your work easier. The actions you take involve

practical measures that you often take when working with fractions.

Change the Order

One measure involves examining the system of equations to discover whether it

might be best to switch the order of the equations to make addition and mul-

tiplication activities easier. Here is an example involving the system of equations

that resembles the one you explored in the previous section:
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�4x þ 2y ¼ 0

x � 4y ¼ �1



You can make it easier to work with this system of equations if you leave the

coefficient of x in the second equation unchanged and instead manipulate the

first equation. To make it possible to preserve the coefficient of x in the second

equation, you reverse the order of the equations. The second equation becomes

the first:

x � 4y ¼ �1

�4x þ 2y ¼ 0

The changed order does not alter the value the equations generate. It only makes

it so you can work with them more readily. Given this reordering, then, you can

proceed with the elimination of the x variable.

Preliminary Multiplications

In some instances, you work with systems of equations that contain decimal

values. In such situations, if you inspect the decimal values, you might find that if

you multiply them by a power of 10 (10, 100, and so on), you can eliminate the

decimal values. Elimination of the decimal values makes it much easier to pro-

ceed as you work with multiplications you require to eliminate the x or y vari-

ables. Here is an example of a system of equations that contains decimal values:

�0:4x þ 0:6y ¼ 0:04

0:02x � 0:4y ¼ 1:4

For both of these equations, if youmultiply by 100, you can eliminate the decimal

points and so arrive at terms that consist of integers. Your actions take the

following form:

�0:4x þ 0:6y ¼ 0:04 ðmultiply by 100Þ
0:02x � 0:4y ¼ 1:4 ðmultiply by 100Þ

This multiplication results in a new version of the system that preserves the value

relationship of the first:

�40x þ 60y ¼ 4

2x � 40y ¼ 140

Given this adjusted view of the system of equations, you can now proceed much

more readily toward a solution for the system.
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E x e r c i s e S e t 1 1 . 3

Solve each system of equations. Check your answers.

a. 6aþ 4b ¼ 15
aþ 2b ¼ 12

b. a� 4b ¼ 12
7a� 6b ¼ 8

c. 6x � 12y ¼ 16
3x � 4y ¼ 8

Systems with No Solutions
Figure 11.3 illustrates two lines with the same slope. They are parallel to each

other, so they never intersect. The equations as given read this way:

y ¼ x þ 3

y ¼ x � 3
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Figure 11.3
Lines that do not intersect have no solution.



If you consider the two equations that generate these lines, you end up with a

system that has this appearance:

x � y ¼ �3

x � y ¼ 3

If you try to arrive at a solution for this system of equations, you might proceed

by multiplying by �1 so that you can eliminate the x variable. Your work pro-

ceeds along the following lines:

x � y ¼ �3

� xþ y ¼ 3

Given this result, you can then add �x þ y ¼ 3 to the first equation:

x � y ¼ 3

�x þ y ¼ 3

0þ 0 ¼ 6

The addition operation produces an equation that is inconsistent because 0 is not

equal to 6. As it is, when you attempt to find values that allow you to create a

consistent addition product, your efforts fail. The system does not allow the lines

to intersect, so no solution exists.

E x e r c i s e S e t 1 1 . 4

Determine which of these equations creates parallel lines.

a. 6aþ 4b ¼ 15
aþ 2b ¼ 12

b. a� 3b ¼ 1
�2aþ 6b ¼ 5

c. 6x � 12y ¼ 16
3x � 4y ¼ 8

d. y ¼ �3x þ 5
y ¼ �3x � 2

e. 3y � 2x ¼ 6
�12y þ 8x ¼ �24
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An Infinite Number of Solutions
If an inconsistent system has no solutions, another type of system, known as a

dependent system, possesses an infinite number of solutions. The reason this

occurs is that when you evaluate such systems, you find that you can express one

variable in terms of the other. You have at hand such a system when you can

multiply one of the equations in the system by some value that produces an

equation that is the same as the other equation in the system. Equations that

possess such a relationship with each other are known as dependent equations.

To see how this can happen, consider this system of equations:

4x þ 6y ¼ 2

8x þ 12y ¼ 4

To make it easier to work with the two equations, reverse them:

8x þ 12y ¼ 4

4x þ 6y ¼ 2

Then to make it so that you can eliminate one of the variables, multiply the

second equation by �2 to create an equivalent equation:

4x þ 6y ¼ 2 ðmultiply by �2Þ

The outcome of this activity is this equation:

�8x � 12y ¼ �4

If you then add this equation to the first of the equations in the system, your

activity proceeds along the following lines:

8xþ 12y ¼ 4

�8x � 12y ¼ �4

0 þ 0 ¼ 0

The system you are dealing with, then, consists of one equation expressed in two

different ways, so to reach a solution for the system, you can solve 8x þ 12y ¼ 4

for x and y. One approach to this involves substitution and finding the solution
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for x. Accordingly, you might proceed in this way:

4x þ 6y ¼ 2

4x

4
þ 6y

4
¼ 2

4

x þ 3y

2
¼ 1

2

x ¼ 1

2
� 3y

2

x ¼ 1� 3y

2

Given this finding, you can identify an ordered pair by using the value you

possess for the y variable. This takes the following form:

1� 3y

2
, y

� �

Working from this basis, you can proceed to furnish any value you choose for y

to arrive at the value of x. In this way, you can potentially generate an infinite

number of ordered pairs. Among these are the following:

ð�4; 3Þ � 5

2
, 2

� �
ð�13; 9Þ

E x e r c i s e S e t 1 1 . 5

Explore these systems of equations and determine if they are dependent.

a.
1

3
þ 1

4
¼ 1

16

1

6
þ 1

2
¼ 12

16

b. 6x þ 5y ¼ 22
18x þ 15y ¼ 32

c. 4x þ 2y ¼ 20
24x þ 12y ¼ 8

d. 3y � 2x ¼ 6
�12y þ 8x ¼ �24

e. y ¼ �3x þ 5
y ¼ �3x � 2
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Systems with Three Variables
When you deal with systems of three equations with three variables, you extend

the addition and multiplication activities you perform when you work with

systems of two equations with two variables. The goals and procedures remain

the same. Your task is to move through the equations, multiplying and adding so

that you can express the equations so that they identify the values of the con-

stituent variables.

To examine how to work with a system of three equations with three variables,

consider this system:

2x � 4y þ 6z ¼ 22 A

4x þ 2y � 3z ¼ 4 B

3x þ 3y � z ¼ 4 C

To make it easier to identify the equations, you can associate them with letters of

the alphabet. As you go, the letters allow you to continue to identify the equations

as you rewrite after performing operations involving addition and subtraction on

them.

STEP 1

For starters, the first goal involves examining the system to see if there is a

convenient way to isolate the x variable. Toward this end, you multiply equation

A by 1
2
, eliminating the coefficient of x.

2x � 4y þ 6z ¼ 22 A Original version of A:

1

2
ð2xÞ � 1

2
ð4yÞ þ 1

2
ð6zÞ ¼ 1

2
ð22Þ A Multiply A by

1

2
:

x � 2y þ 3z ¼ 11 A Simplify A:

4x þ 2y � 3z ¼ 4 B Not changed:

3x þ 3y � z ¼ 4 C Not changed:

If you examine equation B, you see that you can multiply the new form of

equation A by �4 to obtain an equation that eliminates the x variable from
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equation B. Along the same lines, if you multiply the new form of equation A by

�3, you obtain an equation you can use to eliminate the x variable from equation

C. Here is the form your work assumes:

x � 2y þ 3z ¼ 11 A From the previous rewriting:

4x þ 2y � 3z ¼ 4 B Original version of B:

�4x þ 8y � 12z ¼ �44 A Multiply A by �4:

10y � 15z ¼ �40 B Add Að�4Þ to B:

Then you attend to equation C:

3x þ 3y � z ¼ 4 C Original version of C:

�3x þ 6y � 9z ¼ �33 A Multiply A by �3:

9y � 10z ¼ �29 C Add Að�3Þ to C:

STEP 2

You now have a system of equations in which you have eliminated the x vari-

able from two of the equations. You now need to isolate the y and z variables in

the same way. Here is the system of equations as you have rewritten them thus

far:

x � 2y þ 3z ¼ 11 A Coefficient of x is 1:

10y � 15z ¼ �40 B Added A to remove x:

9y � 10z ¼ �29 C Added A to remove x:

To proceed with the isolation of y in equation B, you multiply equation B by 1
10
.

In this way, you reduce the coefficient of y in equation B to 1. Here is the form

your work assumes:

10y � 15z ¼ �40 B Start with B from STEP 2:

y � 15

10
z ¼ � 40

10
B Multiply B by

1

10
:

y � 3

2
z ¼ �4 B Rewrite to simplify:
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You can now put this rewritten version of B to work to eliminate the y variable

from equation C. To accomplish this, you multiply B by�9 because 9 is the value

of the coefficient of y in equation C. Here is how your work proceeds:

9y � 10z ¼ �29 C Start with C from STEP 2:

ð�9Þy � ð�9Þ 3
2
z ¼ ð�9Þð�4Þ B Multiply B by �9:

�9y þ 27

2
z ¼ 36 B Simplify Bð�9Þ:

7

2
z ¼ 7 C Add Bð�9Þ to C:

To solve equation C for z at this point, you use these steps:

2

7

� �
7

2
z ¼ 7

2

7

� �
C Remove the coefficient:

z ¼ 14

7
C The coefficient of z is 1:

z ¼ 2 C z is known:

STEP 3

The system now takes this form:

x � 2y þ 3z ¼ 11 A Need to isolate x:

y � 3

2
z ¼ �4 B Need to isolate y:

z ¼ 2 C z is known:

Given that you have identified the value of z, you can now use your knowledge to

eliminate the z variable from equations A and B. To accomplish this, you first

work with equation B. Then you work from there to equation A.

Beginning with equation B, then, given that the coefficient of z is �3
2
, you

multiply equation C by 3
2
to arrive at an equation you can add to B to eliminate z.
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Here is how your work proceeds:

y � 3

2
z ¼ �4 B Start with B from STEP 3:

z ¼ 2 C Start with C from STEP 3:

3

2

� �
z ¼ 3

2
ð2Þ C Multiply C by

3

2
:

3

2
z ¼ 3 C Simplify C

3

2

� �
:

y ¼ �1 B Add C
3

2

� �
to B; y known:

This then provides you with the value of y. At the same time, it remains for you to

eliminate the z variable from equation A. To eliminate the z variable from

equation A, you repeat much of the activity you just performed. This time around,

you consider that the coefficient of z in equation A is 3. Given this value, you

multiply equation C by�3 to arrive at an equation you can subtract from equation

A to remove the z variable from equation A. Here is how your work proceeds:

x � 2y þ 3z ¼ 11 A Start with A from STEP 3:

ð�3Þz ¼ �3ð2Þ C Multiply C by �3:

�3z ¼ �6 C Simplify C:

x � 2y ¼ 5 A Add C to A:

STEP 4

Now that you have eliminated the z variable from equation A, your system of

equations takes the following form:

x � 2y ¼ 5 A x not yet isolated:

y ¼ �1 B y is known:

z ¼ 2 C z is known:

You have yet to isolate x. When you accomplish that task, you then have all the

values for the three variables. From your work so far on equation B, you know

that y ¼ �1, so you can use this knowledge to eliminate the y variable from

equation A in a ready fashion. Accordingly, the coefficient of y in equation A is
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�2, so you can multiply equation B by 2 to arrive at an equation you can add to

equation A to eliminate the y variable. Here is how you proceed:

x � 2y ¼ 5 A Start with A from STEP 4:

2y ¼ ð2Þ � 1 B Multiply B by 2:

2y ¼ �2 B Simplify B:

x ¼ 3 A Add B to A:

STEP 5

With the isolation of x, you now have values for all three of the variables in the

equation. You can show them as follows:

x ¼ 3 A x is known:

y ¼ �1 B y is known:

z ¼ 2 C z is known:

To write the solutions for the original set of equations, you can employ par-

entheses in which you list the solutions in the order x, y, and z:

ð3,�1, 2Þ
E x e r c i s e S e t 1 1 . 6

Solve the systems of equations.

a. 2x þ y þ z ¼ �2
2x � y þ 3z ¼ 6
3x � 5y þ 4z ¼ 7

b. 2x � 3y þ z ¼ 5
x þ 3y þ 8z ¼ 22
3x � y þ 2z ¼ 12

c. x þ 2y þ c ¼ 1
7x þ 3b� z ¼ �2
x þ 5y þ 3z ¼ 2

d. aþ bþ 0c ¼ 0
aþ 0bþ c ¼ 1
2aþ bþ c ¼ 2

e. aþ bþ c ¼ 6
2a� bþ 3c ¼ 9
�aþ 2bþ 2c ¼ 9
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Matrices
If your work is a system of equations, you work primarily with the coefficients of

the terms of the equations. If you organize the terms of an equation so that their

variables are in a standard order, then you arrive at the representation of systems

of equations you have worked with so far in this chapter. Consider, for example, a

system along the lines of the following:

3x � 4y ¼ 1

5x þ 2y ¼ 19

You can proceed to solve the system of equations for the x and y values by using the

approach given in the previous section. At the same time, you can use an approach

that involves using matrices. A matrix consists of an array or collection of num-

bers. In a matrix, you organize the numbers in a rectangular fashion, in rows and

columns. Matrices are always identified according to their rows and columns. If a

matrix contains 2 rows and 3 columns, then it is said to be a 2� 3 matrix. If a

matrix contains 2 rows and 2 columns, then it is said to be a 2� 2 matrix.

Mathematicians usually identify matrices by enclosing them in square brackets.

They identify the elements within by using letters with subscripts or by providing

the numbers themselves. A 3� 3 matrix might be represented this way:

a1b1c1

a2b2c2

a3b3c3

2
64

3
75

A 2� 2 matrix might be represented this way:

a1b1

a2b2

� 

A vast and interesting field of study investigates the behavior of matrices, and the

use of matrices in programming related to the graphics for computer game

development and the logic of games involves matrices extensively. In this con-

text, matrices provide an alternative approach to solving the system of equations.

If you examine the coefficients of the system of equations given above, you see

that you can create a 2� 3 matrix. In other words, the matrix consists of 2 rows

and 3 columns. You can write it as follows:
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3 4 1

5 2 19

� 



If you work with a set of three equations with three variables for which you want

to find values, you might start with this set of equations:

x � y þ 5z ¼ �6

3x þ 3y � z ¼ 10

x þ 3y þ 2z ¼ 5

This becomes the basis of a 3� 4 matrix, which you present in this way:

1 �1 5 � 6

3 3 �1 10

1 3 2 5

2
64

3
75

When a variable has no visible coefficient, implicitly its coefficient is 1. You use this

fact when you create a matrix to represent a system of equations. Implicit coef-

ficients appear as 1. Along the same lines, negative coefficients remain negative.

One further point is that you can combine equations with different numbers of

variables. For example, a system similar to the one just shown might take the

following form:

x � 5z ¼ �6

3x þ 3y � z ¼ 10

3y þ 2z ¼ 5

When you translate such a system of equations into a matrix, to preserve the

orders of the variables, you insert zeros. Here is how you represent such a system:

1 0 �5 �6

3 3 �1 10

0 3 2 5

In this system of equations, you account for the missing y and x variables in the

first and third equations by inserting zeros.

No t e

In the discussion in this chapter, the enclosing square braces that often characterize matrices do
not appear. This is a measure taken to make the presentation of the matrices easier. For general
purposes, enclosing braces is often regarded as a matter of personal preference.
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Working with a 2-by-3 Matrix

A matrix provides a convenient way to systematically solve for the values of a

system. Your activity in this respect proceeds in the same way that it did when

you worked with systems of equations and left the variables visible. When you

work with matrices, however, you work with a system that consists of rows and

columns, and the goal of your activity is to arrive at matrices that take the

following form:

1 0 0 j a

0 1 0 j b

0 0 1 j c

2
64

3
75 or

1 0 j x

0 1 j y

� 

Accordingly, for each row in the matrix, you proceed with multiplication and

addition activities, as you did in the previous section, and your goal is to elim-

inate all values save those that correspond to one of the columns and the final

column. The final column provides you with a variable value.

The system of equations presented in the previous section appears as follows:

3x � 4y ¼ 1

5x þ 2y ¼ 19

The matrix you create using its coefficients assumes this form:

3 �4 1

5 2 19

� 

To solve for the values of this matrix, you begin by examining the first row and

determining a value that allows you to transform the 3 into 1. This value is the

multiplicative inverse of 3, which is 1
3
. Accordingly, when you carry out this

multiplication, you arrive at this matrix:

1 � 4

3

1

3

5 2 19

You can then proceed to evaluate the second row. Your goal is to discover the

number by which you can multiply the first row in order to eliminate a column.

You seek a number that allows you to transform the first row so that you can

add it to the second and eliminate the value (5) in the first column. This number

Matrices 263



is �5. Accordingly, your work proceeds in this way:

1 � 4

3

1

3
First row:

�5
20

3
� 5

3
First row multiplied by �5:

You then add the first row as transformed to the second row:

5 2 19 Second row:

�5
20

3
� 5

3
Add the new first row:

0
26

3

52

3
Result of the addition:

Your matrix now assumes this form:

1 � 4

3

1

3

0
26

3

52

3

At this point, you evaluate the second row to discover a way to reduce the value in

the second column to 1. To accomplish this, you can multiply the elements in the

row by 3
26
, the multiplicative inverse of 26

3
. Here is the form this activity assumes:

0
26

3

52

3
The original row:

0 1
156

78
Multiply by

3

26
:

0 1
2ð78Þ
ð78Þ Factor:

0 1 2 Eliminate the fractions:

You now have a new matrix, which appears this way:

1 � 4

3

1

3
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Your target now becomes finding a way to eliminate the second column value

from the first row. To accomplish this, you multiply the second row by a number

that transforms it so that when you add it to the second row you eliminate the

target value. This number is 4
3
. To carry out these activities, you proceed in this

way:

0 1 2 The original row:

0
4

3

8

3
Multiplied by

4

3
:

Given this transformation of the second row, you add it to the first:

1 � 4

3

1

3
First row:

0
4

3

8

3
Transformed second row:

1 0
9

3
The result of the addition:

1 0 3 Simplify the first row:

Your matrix now assumes its final form:

1 0 3

0 1 2

Given this matrix, you can identify the solutions of the system as x ¼ 3 and y ¼ 2.

E x e r c i s e S e t 1 1 . 7

Here are some systems of equations to transform into matrices and solve for two values.

a. 3x þ 2y ¼ �4
5x � y ¼ 2

b. 5x þ 2y ¼ 7
6x þ y ¼ 8

c. 3x þ 2y ¼ �4
2x � y ¼ �5

d. aþ 4b ¼ 8
3aþ 5b ¼ 3

e. 6a� 2b ¼ 4
7aþ b ¼ 13
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Working with a 3-by-4 Matrix

To work with 3� 4 matrices, you follow the same path you follow with 2� 3

matrices. The only difference is that a few more steps are involved. Consider, for

example, this system of equations:

x � y þ 5z ¼ �6

3x þ 3y � z ¼ 10

x þ 3y þ 2z ¼ 5

If you transform this into a 3� 4matrix, you assign values of 1 to the appropriate

coefficients and drop the variables:

1 �1 5 �6

3 3 �1 10

1 3 2 5

To develop a solution set for this matrix, your goal involves arriving at a matrix

that possesses this form:

1 0 0 j a

0 1 0 j b

0 0 1 j c

2
64

3
75

For each row, then, you seek to transform the values so that you see a 1 and a

corresponding value.

For the current matrix, the first column of the first row is already set to 1, so you

can shift your attention to the second row. You find a value by which you can

multiply the first row that allows you to eliminate the first element from the

second row. This value is�3. To multiply the first row by this value, your actions

take the following course:

You then add the transformed version of the first row to the second row:

266 Chapter 11 n Systems and Matrices

3 3 �1 10

�3 3 �15 18

0 6 �16 28 Result of the addition:

1 �1 5 �6

�3 3 �15 18 Multiply first row by �3:



This gives you the following matrix:

The next step involves determining the value by which you can multiply the first

row to make it possible to eliminate the first element from the third row. It ends

up that you can achieve this goal if you multiply by �1. Accordingly, you carry

out the multiplication:

You then add the transformed version of the first row to the third row:

1 3 2 5

�1 1 �5 6

0 4 �3 11 Result of the addition:

Your rewritten matrix takes this form:

You now have the first column of the matrix in good form, so you can proceed to

work with the second column. Toward this end, you inspect the second row. To

transform the second element of this row so that it becomes a 1, you multiply by
1
6
. The result of the multiplication is this row:

0 1 � 16

6

28

6

After you factor the fractions, your matrix assumes this form:
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1 �1 5 �6

0 1 � 8

3

14

3

0 4 �3 11

1 �1 5 �6

0 6 �16 28

1 3 2 5

1 �1 5 �6

�1 1 �5 6 Multiply first row by �1:

1 �1 5 �6

0 6 �16 28

0 4 �3 11
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To eliminate the second element from the first row, you can make use of the

transformed version of the second row. The value of the second element in the

second row is 1, so you do not have to make any changes to reach your objective.

You simply add the second row to the first. When you do so, your work takes on

this form:

1 �1
15

3
�18

3
Previous first row set up for the addition:

0 1 � 8

3

14

3
The transformed second row:

1 0
7

3
� 4

3
New first row:

Here is the new matrix:

You now proceed to multiply the second row by�4 to create values that you can

add to the third row to eliminate the second element. Here are the activities you

perform:

0 4 �9

3

33

3
Change third row to fractions:

0 �4
33

3
� 56

3
Second row multiplied by �4:

0 0
23

3
� 23

3
New third row ðsecond row þ first rowÞ:

Here is the new matrix:

1 0
7

3
� 4

3

0 1 � 8

3

14

3

0 0
23

3
� 23

3

1 0
7

3
� 4

3

0 1 � 8

3

14

3

0 4 �3 11



You can now reach the first of the major goals of your operation, which is to

discover the value that corresponds to the third row. Toward this end, you

multiply the third row by the multiplicative inverse of 23
3
. Here is the matrix that

results from this operation:

Given that you know the value of the third element in the third row, you can

multiply this row by � 7
3
to create a set of values you can add to the first row to

eliminate the third element from that row. The result of the multiplication is as

follows:

0 0 � 7

3

7

3

When you add this row to the first, your matrix that results takes this form:

To eliminate the third element from the second row, you multiply the third row

by 8
3
. The result of the multiplication takes this form:

0 0
8

3
� 8

3

When you add this to the second row, your matrix then assumes its final form:

1 0 0 1

0 1 0 2

0 0 1 � 1

You can write the solution values for this matrix as x ¼ 1, y ¼ 2, and z ¼ �1.
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1 0
7

3
� 4

3

0 1 � 8

3

14

3

0 0 1 �1

1 0 0 1

0 1 � 8

3

14

3

0 0 1 �1



E x e r c i s e S e t 1 1 . 8

Here are some systems of equations with three values that you can solve using matrices.

a. 4x � y þ 3z ¼ �3
3xþ yþ z¼ 0
2x� yþ 4z¼ 0

b. x � 2y þ 3z ¼ 4
5xþ 7y� z¼ 2
2xþ 2y� 5z¼ 3

c. x þ y þ z ¼ 4
2x� y� 3z¼ 4
4xþ 2y� z¼ 1

d. x � 2y � 3z ¼ 3
2x� y� 2z¼ 4
4xþ 5yþ 6z¼ 4

e. 3x þ 2y þ 2z ¼ 3
xþ 2y� z¼ 5
2x� 4yþ z¼ 0

Conclusion
In this chapter, you have investigated how to solve equations that contain two

variables. A central approach in this respect involves substitution. Accordingly,

you solve an equation for one of its values, and then substitute the solution back

into the equation to solve for the remaining value. Working with substitution

provided a starting point for examining systems of equations. Systems of

equations can involve any number of different variables. They can also involve

any number of equations.

In this chapter, you started out by examining how to work with systems of two

equations. You then moved to three. You first used multiplication and addition

to approach equations as sets of variables with coefficients. From this you pro-

ceeded to examine systems of equations on a different basis. This basis involved

matrices. By considering only the coefficient values of systems of equations, you

could generate the elements of matrices. In this chapter, you concentrated on

working with 2� 3 and 3� 4 matrices. While matrices of much larger dimen-

sions exist, working with these has introduced you to the skills that prove most

primary in working with systems of equations.
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Trigonometry

In this chapter, you explore the basic notions of trigonometry. You begin by

reviewing the Pythagorean theorem. Exploring the standard triangle in this way

puts you in a position to begin a preliminary inquiry into the notion of how you

can arrive at a ratio between the lengths of the sides of a triangle from which you

can know the sine of an angle. A further step involves exploring ways to measure

angles. You can measure angles in degrees or radians. A radian can be viewed as

an arc of a circle equal in length to the radius of the circle. Radians allow you

to begin to explore trigonometric ratios and extend the sine ratio. These ratios

consist of those involving the cosine, tangent, cotangent, secant, and cosecant.

Toward familiarizing you with such notions, this chapter addresses the following

topics, among others:

n How the slope of a linear graph relates to the side of a triangle

n Recognizing the standard form of a right triangle

n Transferring knowledge of a right triangle to a coordinate plane

n Interpreting a coordinate plane as a circle

n Explaining an angle using a unit circle

n Using a unit circle to explore the trigonometric ratios
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The Ratios of Trigonometry
A set of functions, known as the trigonometric functions, allow you to extend the

work of algebra and geometry in several directions. To understand the trigo-

nometric functions, you can start by examining the ratios that exist between the

angles and sides of a right triangle. To explore how these ratios are related to

the activities previous chapters discussed, you can begin with an examination of

the right triangle and how it relates to a line you generate using a linear equation.

Angles and Sides

Two of the angles of a right triangle are acute angles. In other words, they are

angles of less than 908. One is usually labeled as angle A. The other is labeled as

angle B. A third angle is equal to 908. According to the standard way of depicting

a right triangle, the 908 angle is labeled as C. Likewise, a small square tucked into

the angle identifies angle C as a right angle (see Figure 12.1).

The line opposite angle A is line BC. It is called the opposite side. You can

designate the length of this line using the letter a. The line opposite to angle B is

called the adjacent side. It is adjacent to angle A. You can designate its length with

the letter b.

Opposite the right angle is the hypotenuse of the triangle. This side of the right

triangle is always the longest side of the triangle. You can refer to it geometrically

as line AB. You can also designate the length of this side using the letter c.
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Figure 12.1
Identify angles and lines of a right triangle in a standard way.



The Pythagorean Theorem

Given the standard way of identifying a right triangle, you can then introduce the

Pythagorean theorem as a way to relate the three sides of a right triangle. Here’s

the standard equation for the Pythagorean theorem:

c2 ¼ a2 þ b2

You rewrite this equation to eliminate the exponent of c :

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p

When you put the Pythagorean theorem to work in a Cartesian plane, you can see

that the lines you create using linear equations can be mapped in a fairly direct

way to a right triangle. As Figure 12.2 illustrates, if you regard the origin of the

coordinate system as corresponding to angle A, then you can establish the rise

and the run of the triangle as the opposite and adjacent sides. The adjacent side

follows the x axis. The rise of the opposite side follows the y axis. You can regard

the line itself as the hypotenuse. You use the Pythagorean theorem to determine

the length of the line.
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Figure 12.2
The length of the line is 5.



The position of the right triangle you create when you generate a figure using

linear equations gives you a point of reference that centers on the origin of the

Cartesian plane. For a triangle you depict the angle according to the standard

model discussed in the previous section; this is angle A. A convenient way to label

an angle is to use the Greek letter theta, �. Accordingly, the angle of � is always

relative to the run and rise of the triangle.

As Figure 12.3 illustrates, if you work within the first coordinate of the Cartesian

plane, as the angle of � increases, the slope of the line becomes more pronounced.

The length of the opposite side increases. The length of the adjacent side

decreases. As you saw when you investigated slopes, the ratio of the adjacent to

the opposite side allows you to determine a value for �.

Circles and the Sine of 2

You can transfer a right triangle you construct in a Cartesian coordinate system

to a circle. When you translate the triangle to a circle, the center of focus remains

on the angle that characterizes the origin (�). As Figure 12.4 illustrates, the

hypotenuse of the triangle provides a way to establish the radius of the

circle. Along with the hypotenuse of the circle, you can also establish a chord

on the circle. The chord in this instance is one that is twice the length of

the opposite side. To create such a chord, you can flip the right triangle down-

ward, from quadrant I into quadrant IV. You identify the chord by using the

term 2�.

If you take half the distance of the cord, you have a line that you define using �
alone. This line is known as the sine of �. The sine of theta, then, corresponds to
the ratio that you establish between the distance of the hypotenuse and the

distance of the opposite side.

sin y ¼ y

r

If you want to determine the sine of � as shown in Figure 12.4, you can put to

work the information the graph provides. Accordingly, if you work within

quadrant I of the Cartesian plane, you can see that the coordinate pair that

describes the point on the circumference of the circle for the line is (4,3).

To calculate the length of the line that extends from the center of the circle (or

the origin of the Cartesian plane), you use the Pythagorean theorem. Following
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Figure 12.3
The ratio of the run to the rise corresponds to the ratio between the adjacent and opposite sides of a right triangle.

2
7
5



the generalization of the situation Figure 12.5 provides, you can see you can

calculate the sine of � using the data you possess with the point (4,3). First you

calculate r, the hypotenuse. Then you find the ratio of y to r.

Degrees and Radians
When you first learn to relate an angle to a circle, your activity often begins with an

orientation toward the circle that begins with the Cartesian plane. As Figure 12.6

illustrates, you extend a line (r) from the center of a circle to its perimeter. Using

the standard form of an angle, you identify the x axis extending to the right

from the origin as the initial side of the angle. The line that creates the angle

constitutes the terminal side. You measure the angle (�) created by the initial side

and the terminal sides in degrees that describe the perimeter of the circle.
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Figure 12.4
Trigonometric notions arise from explorations of circles and coordinates.
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Figure 12.5
The ratio of the rise to the hypotenuse gives you the sine of the angle.

Figure 12.6
Degrees of a circle allow you to measure angles.



The measure of an angle � has no maximum value in degrees. If it extends

upward from the origin, following the path of the y axis of the Cartesian plane, its

measure is 908. Since the line is perpendicular to the initial side, you call it a right

angle. If the line extends to the left of the origin, its measure is 1808, and you call

it a straight angle. An angle of 2708 follows the y axis downward and is also

perpendicular to the initial side. You can call it a right angle, also.

If an angle measures 4508, it is the same as one revolution of the circle plus 908, so
it is a right angle. If an angle measures 5408, it is the same as one revolution of the

circle plus 1808, and it is a straight angle. In this respect, if someone tells you to

turn a screw 14408 degrees to the right, then, you determine the number of terms

by dividing the degrees by the circumference of a circle: 14408
3608 ¼ 4. The measure of

the angle from the initial size to the terminal side is 0. No remainder is left after

the division.

Circumference and Radians

The radius of a circle consists of a line extending from the center of the circle to

any point on its perimeter. The circumference of a circle is a measure of the arc of

a complete circle. To calculate the circumference of a circle, you multiply 2 times

� by the radius of the circle. Here is the equation:

C ¼ 2�r

The variable C signifies the circle’s circumference, while r represents the radius,

and � is an irrational number with an approximate value of 3.14. Given this

representation of a circle, you can describe a circle in terms of radians.

A radian is an arc on the perimeter of a circle that is equal in length to the radius

of the circle. Given the equation C ¼ 2�r, then, there are 2� radians in a

complete circle. In other words, if you travel around the circle a distance equal

in length to the radius multiplied by 2�, you end up where you started.

A radian is an arc equal in length to the radius of a circle. If you use

an approximate value for � of 3.14 and multiply by 2, then you can say

that 6.28 radians can be placed head to tail to complete one revolution of a

circle.

As Figure 12.7 illustrates, you can relate the size of an angle using radians. The

procedure involves using � alone or making � part of a quotient. To accomplish

this task, consider how to designate the four directions of the compass using
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radians. You start to the east. This direction corresponds to the positive direction

of the x axis.

East is usually considered the initial side of angles, so this is at degree 0. The

radian value of east is also 0. To now set the compass values for north, west, and

south, consider that if a complete revolution of a circle involves 2� radians, then

half a revolution (1808—west) involves � radians. If half a revolution involves �
radians, then a quarter of a revolution (908—north) involves �

2
radians. When

you add �
2
radians to � radians, you arrive at 3 �

2
radians. This is three-quarters of a

revolution or an angle of 2708—or south.

Table 12.1 provides you with radian and degree measurements for the angles that

represent the cardinal directions of the compass.

Degrees and Radians 279

Figure 12.7
Radians allow you to readily measure angles.



Degrees to Radians

To convert degrees to radians, you use this formula:

Angle in degrees

180
¼ Angle in radians

Here are a few examples of use of this conversion:

180 degrees ¼ 180

180
¼ ð1Þ� radians

120 degrees ¼ 120

180
¼ 2�

3
radians

25 degrees ¼ 20

180
¼ �

9
radians

E x e r c i s e S e t 1 2 . 1

For each of the following degree measurements, identify the measurement in radians.

a. 308

b. 608

c. 1808

d. 908

e. 3158

f. 458
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Table 12.1 Compass Direction Measurements

Degrees Radians Compass Direction

0 0 East

458 p
4 Northeast

908 p
2 North

1358 3 p
4 Northwest

1808 p West

2258 5 p
4 Southwest

2708 3 p
2 South

3158 7 p
4 Southeast



g. 3608

h. 1358

i. 2708

j. 2108

Radians to Degrees

To convert radians to degrees, you multiply by 180
� . Here are a few examples:

�

4
radians ¼ �

4
� 180
�

¼ 180

4
¼ 458

7
�

4
radians ¼ 7�

4
� 180
�

¼ 1260

4
¼ 3158

2�

3
radians ¼ 2�

3
� 180
�

¼ 360

3
¼ 1208

E x e r c i s e S e t 1 2 . 2

For each of the following radian values, name the corresponding degree value.

a. �
4

b. �
6

c. �
2

d. �
3

e. 3�
2

f. 5�
4

g. 2�

h. �
9

i. 7�
4

j. �
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Trigonometric Ratios
You measure angles using degrees and radians. You usually measure the lengths

of sides using real numbers. You relate the measurements of angles to the

measurements of sides using ratios. A set of six such ratios constitute the primary

trigonometric ratios. You have already examined the ratio that generates the sine

of the angle (theta) �.

If you extend the discussion that began with the sine of the angle �, you can then

work forward to explore the ratios defined for the cosine and tangent of �. You
then move on from there to explore the ratios defined for cotangent, secant, and

cosecant. Figure 12.8 illustrates the standard form of the right triangle with the

sides explicitly identified.

Each of the trigonometric ratios provides information on the angle �. In this

respect, then, you refer to ‘‘the sine of theta,’’ ‘‘the cosine of theta,’’ and so on,

and in each instance, the ratio that you explore involves a relation between two of

the three sides of a right triangle. Table 12.2 details the ratios.
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Figure 12.8
The opposite and adjacent sides and the hypotenuse of the right triangle generate the trigonometric
ratios.

Table 12.2 Trigonometric Ratios

Item Ratio Mnemonic

Sine sin y ¼ opposite
hypotenuse

O
H

Cosine cos y ¼ adjacent
hypotenuse

A
H

Tangent tan y ¼ opposite
adjacent

O
A

Cotangent cot y ¼ adjacent
opposite

A
O

Secant sec y ¼ hypotenuse
adjacent

H
A

Cosecant csc y ¼ hypotenuse
opposite

H
O



No t e

Figure 12.9 features a mnemonic diagram that might prove useful as you memorize the trigo-
nometric ratios. The letter O designates the opposite side, the letter A designates the adjacent
side, and the letter H designates the hypotenuse. Start with STS to remember sine, tangent, and
secant. For the names of the other ratios, you prefix ‘‘co.’’ Then proceed from the notion that the
sine of theta is the ratio of O/H.

E x e r c i s e S e t 1 2 . 3

Show all six trigonometric ratios for right triangles with the designated values. Where the value of
the hypotenuse is not given, calculate it and proceed from there.

a. Opposite --- 3, Adjacent --- 4

b. Opposite --- 5, Adjacent --- 4, Hypotenuse --- 6

c. Opposite --- 5, Adjacent 4, Hypotenuse ---
ffiffiffiffiffi
41

p

Ratios and Degrees
Generating values for the geometric ratios usually involves either knowing the

lengths of three sides of a right triangle or calculating this information using the

information available to you. As discussed previously, the most common starting

position for using the ratios involves employing the Pythagorean theorem to
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Figure 12.9
Recall STS, begin with sine and O/H.



calculate the length of the hypotenuse. If you know the length of the hypotenuse

and the lengths of the two sides, then you can proceed to calculate any of the

values made available to you through the trigonometric ratios.

To extend this notion, consider a right triangle that possesses adjacent

and opposite sides that are 1 unit in length. Figure 12.10 illustrates such a

triangle. Given this version of a right triangle, you can then readily substitute the

values the triangle provides. For the sine and cosine values, the approximate

value of 1ffiffi
2

p is 0.707. For the secant and cosecant values, the approximate value offfiffi
2

p
1
is 1.414.

The important feature of such calculations is that they enable to you familiarize

yourself with a basic way to generate values for different types of angles. Some

angles appear often in trigonometric operations. Among these are 30 and

60 degrees.

Figure 12.11 illustrates an equilateral triangle. The significance of an equilateral

triangle, among other things, rests in the fact that you can create such a triangle

by joining the adjacent sides of two right triangles, as Figure 12.11 shows. If the

length of the opposite side of the right triangles is 1 and the hypotenuse is 2, then
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Figure 12.10
Set the sides to 1 to calculate basic values.



you can employ the Pythagorean theorem to calculate values to use in the tri-

gonometric ratios.

If you apply the Pythagorean theorem to slightly modified versions of the triangle

Figure 12.10 illustrates, you can readily arrive at the trigonometric ratios for two

other angles that prove important. These are the values that correspond to 308
and 608. Table 12.3 lists the calculations that result when you the apply the

trigonometric ratios to the information Figure 12.11 provides using an equi-

lateral triangle.
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Figure 12.11
Calculate the value of the adjacent side.

Table 12.3 Ratios Applied to Other Angles

Values for 308 Values for 608

sin 30 ¼ opposite
hypotenuse ¼ 1

2 sin 60 ¼ opposite
hypotenuse ¼

ffiffi
3

p
2

cos 30 ¼ adjacent
hypotenuse ¼

ffiffi
3

p
2 cos 60 ¼ adjacent

hypotenuse ¼ 1
2

tan 30 ¼ opposite
adjacent ¼ 1ffiffi

3
p tan 60 ¼ opposite

adjacent ¼
ffiffi
3

p
1

cot 30 ¼ adjacent
opposite ¼

ffiffi
3

p
1 cot 60 ¼ adjacent

opposite ¼ 1ffiffi
3

p

sec 30 ¼ hypotenuse
adjacent ¼ 2ffiffi

3
p sec 60 ¼ hypotenuse

adjacent ¼ 2
1

csc 30 ¼ hypotenuse
opposite ¼ 2

1 csc 60 ¼ hypotenuse
opposite ¼ 2ffiffi

3
p



No t e

When working with the values shown in Table 12.3, it is common to manipulate the resulting
quotients so that radicals do not appear in the denominators. To eliminate the radical, you
multiply by 1 using the value given by the square root. Here are a few examples:

sec 308 ¼ hypotenuse

adjacent
¼ 2ffiffiffi

3
p �

ffiffiffi
3

p
ffiffiffi
3

p ¼ 2
ffiffiffi
3

p

3

cot 608 ¼ adjacent

opposite
¼ 1ffiffiffi

3
p �

ffiffiffi
3

p
ffiffiffi
3

p ¼
ffiffiffi
3

p

3

Rotation
The trigonometric ratios all translate into functions that can generate distinct

patterns when applied to a Cartesian plane. As you increase the values you in-

troduce to the functions, the patterns change in restricted, predictable ways. The

most ready way to generate such patterns involves translating the three sides of

the standard triangle (opposite, adjacent, and hypotenuse) so that you can

understand them in relation to the coordinates you plot on the Cartesian plane

(x, y). Work earlier in this chapter anticipates this activity. Table 12.4 shows you

how the sides of a triangle relate to the values you generated using values typical

of your work with the Cartesian plane. In each instance, you work with a stan-

dard triangle.

As Figure 12.12 illustrates, if you use combinations of negative and positive

values for x and y, you rotate the triangle around the origin of the plane through

all four quadrants. The values x and y correspond to the values of x and y on the

axes of the plane if the vertex of angle � resides at (0,0).
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Table 12.4 Trigonometric Ratios

Item Ratio Mnemonic

Sine sin y ¼ opposite
hypotenuse sin y ¼ y

r

Cosine cos y ¼ adjacent
hypotenuse cos y ¼ x

r

Tangent tan y ¼ opposite
adjacent tan y ¼ y

x

Cotangent cot y ¼ adjacent
opposite cot y ¼ x

y

Secant sec y ¼ hypotenuse
adjacent sec y ¼ r

x

Cosecant csc y ¼ hypotenuse
opposite csc y ¼ r

y



Rotation and the Unit Circle
The unit circle is a convenient vehicle for working with rotation and other

trigonometric activities. A unit circle is a circle that you graph with its center on

the origin of a Cartesian plane and its radius set to 1. Figure 12.13 illustrates a

unit circle. Such a representation of a circle proves useful when you seek a

convenient way to relate measurements of angles to measurements of rotation.

When you set the diameter of a circle to 1, if an angle measures, for example,
�
2
(908), then the radian measure of the angle also tells you the length of the arc

that the angle designates on the perimeter of the circle. At the same time, as

emphasized previously, even though you work with radians, you can always

convert back to degrees if you have a need to do so.

If you employ a unit circle to map the cardinal and a few other coordinates and

their related sine values, you see a pattern unfold. With each revolution, you

move a distance of 2� radians. Regardless of how large the angle of rotation, it is
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Figure 12.12
As you rotate a standard triangle around a circle centered on the origin of the Cartesian plane, the
values that describe the perimeter of the circle change from positive to negative depending on the
quadrant.



still the case that the same set of values can be used to map the arc. When you

factor 4� radians, you find that the terminal side of the angle rests on the x axis, as

does the terminal angle of 6� or 8� radians. The same holds true for all the other

angles that are multiples of 2� as well. As the arc rotates around the circle, it visits

the same points over and over. While the length of the arc grows, factoring allows

you to understand the arc in terms of a stable set of radian and degree values.

Figure 12.14 illustrates inner and outer rings surrounding a unit circle. The inner

ring shows you the coordinate values of the points on the perimeter of the unit

circle. The outer ring displays radian values associated with the plotted points.

Plotting Sine Values
Figure 12.15 illustrates what happens if you calculate the sine values of the angles

depicted in Figure 12.14. To make it so that the graph provides a fuller repre-

sentation of the way that the values fluctuate from positive to negative, the range

has been extended beyond that of a single rotation of a circle. The extension of

the range does not affect the overall pattern.
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Figure 12.13
A unit circle allows you to relate angles and arcs.
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Figure 12.14
The inner shaded ring provides coordinate values while the outer ring shows radians.

Figure 12.15
When you plot sine values, you create a periodic pattern that fluctuates evenly from 1 to �1 on the
y axis.



The overall pattern assumes a value of 0 at the origin—which represents an angle

of 0. If you move to the right, allowing the x axis to map the increase of the value

of the angles, the resulting sine values using the y coordinate increase to 1. This

occurs when you reach the x value of �
2
. As you move past �

2
, the value of the sine

decreases, reaching 0 when you are at � on the x axis. As you move past �, the
value of the sine drops into the negative range. When you reach 3�

2
, the value on

the y axis is �1. This represents the lowest point. After that, the value begins to

rise, and at 2� you are back at 0. The name usually applied to this pattern is

sinusoidal. It is a periodic pattern that evenly fluctuates from 1 to �1 for each

distance of 2� represented by the x axis.

Negative Values
Figure 12.15 involves negative values on the x axis. The negative values reflect the

fact that angles can be negative. When an angle is negative, the direction you

move on the perimeter of the circle is in a counterclockwise direction. In this

situation, you measure angles and radians just as you would if you moved in a

clockwise direction, except that the value of��
2
ð�908Þ is found on the lower part

of the y axis, while �3�
2
ð�1808Þ is found on the upper part. Figure 12.16 illus-

trates a few negative angles you encounter as you move along a negative arc of a

unit circle.

Plotting Cosine Values
As Figure 12.17 illustrates, when you plot cosine values using a Cartesian plane,

plot angle values on the x axis, and move to the right to show increasing values of

angles, the resulting y coordinate value is 1 when the angle of your circle is 0.

When you reach �
2
(908), the value of the y coordinate value drops to 0. From

there, as you move past �
2
, the value of the cosine decreases, reaching �1 when

you are at �. As you move past �, the value of the cosine begins to

increase, reaching 0 again at 3�
2
. After that, the value begins to rise, and at 2�

you are back at 1.

The same pattern characterizes movement in the negative direction along the

x axis. As Figure 12.17 illustrates, at � �
2
, the value of the cosine falls to 0. From

there, it proceeds further downward to�1 at��. As youmove to� 3�
2
, the values

of the cosine increase, and at �2� you are back to 1.
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Figure 12.16
When you move in a negative direction, the values progress in a predictable way, and you move in a
counterclockwise direction.

Figure 12.17
At 0 on the x axis, the value of the cosine is 1.



Defining Tangents and Cotangents
Table 12.5 provides you with a summary of how to generate tangent and

cotangent values. To generate a tangent value, you divide sin � by cos �. To
generate a secant value, you use the reciprocal of cos �. A variety of approaches to

arriving at the different values of the trigonometric functions exist. The approach

given in Table 12.5 proves one of the easiest to follow.

Plotting Tangent Values
When you plot tangent values on the Cartesian plane, you cannot define them at

certain points. These points are those that occur as 0 when you plot cosine values.

Such values are �
2
, � �

2
, � 3�

2
, 3�

2
. You can see why this occurs if you consider

the shapes of the periodic waves that characterize the plotting of the cosine of y
(see Figure 12.17 earlier in this chapter). Whenever the value of the cosine

reaches 0, then the value of the tangent is undefined.

It is undefined because, as you plot tangent values on a Cartesian plane, the

resulting curve rises or falls indefinitely as it approaches lines extending vertically
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Table 12.5 Generating Tangent and Cotangent Values

Item Discussion

tan y ¼ sin y
cos y If the value of the of cos y in this function is 0, then the value of the tangent is undefined.

When you plot tangent values on a Cartesian plane, the resulting curve rises indefinitely as
it approaches a line extending vertically from any point on the x coordinate at which cos y
is 0. To formally state this, you can say that tanu is not defined at any value of p

2 þ kp. In
this case, k is any integer value. As you see in Figure 12.18, such values are p

2, � p
2,

3p
2 , and

� 5p
2 . Given this situation, the period of the tangent values is p.

cot y ¼ cosy
sin y

If the value of the of sin y is 0, then the value of the cosecant is undefined. When you plot
cotangent values on a Cartesian plane, the resulting curve rises indefinitely as it
approaches a line extending vertically from any point on the x coordinate at which sin y is
0. A formal way to say this is that csc y is not defined at any value of p þ kp. The value
of k is any integer. As you see in Figure 12.19, such values are p, 2p, �p, �2p, 3p, and 0.
Given this situation, the period of the tangent values is p.

sec y ¼ 1
cos y The cosine and secant functions are reciprocals of each other. The value of the cosecant is

undefined when it falls on a vertical line passing through a point on the x axis at which the
cosine value is 0. Given this situation, the period of the secant values is 2p.

csc y ¼ 1

siny
The sine and cosecant functions are reciprocals of each other. The value of the cosecant is
undefined when it falls on a vertical line passing through a point on the x axis at which the
sine value is 0. Given this situation, the period of the cosecant values is 2p.



from points on the x coordinate at which cos y is 0. Such a curve occurs when the
value of the denominator becomes increasingly smaller. The tangent values in

turn become increasingly larger. The values increase indefinitely. This is known

as an asymptotic curve.

As Table 12.5 explains, you can formally state that certain values are undefined if

you say that tan � lacks definition at any value of �
2
þ k�. The value of k is any

integer. In Figure 12.18, among the values of x defined in this way are �
2
, � �

2
, 5�

2
,

and � 5�
2
.

Plotting Cotangent Values
When you plot cotangent values on the Cartesian plane, as with tangent values,

at certain points you cannot define them. As the discussion in Table 12.5 indi-

cates, if the value of the sin � is 0, then the value of the cotangent is undefined.

When you plot cotangent values, the resulting curve rises indefinitely as it

approaches a line extending vertically from any point on the x coordinate at

which sin � is 0.
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Figure 12.18
As you approach values at which the cosine reaches 0, the tangent values become undefined.



A formal way to say this is that cot � is not defined at any value of � þ k�. The
value of k can be any integer. Given this situation, as Figure 12.19 illustrates, such

values are 0, p, 2p, 3p, ��, �2p.

Plotting Secant Values
The value of the secant is undefined when it falls on a vertical line passing

through a point on the x axis at which the cosine value is 0. The cosine and secant

functions are reciprocals of each other.

When you plot a secant value, if you begin on the x axis at 0, the value of the

secant is 1. As you move toward �
2
from 0, the value of the secant rises on an

asymptotic basis. In other words, it approaches �
2
but never reaches it, and its

value becomes infinitely large.

After passing �
2
, you are in the next phase of the secant. At this point, the secant

values shift to below the x axis. They start at an infinitely negative value, and then

increase in the range that is greater than �
2
. The increase continues until you reach

�. At � the value of the secant is �1. Then values begin to infinitely decrease as

they near 3�
2
. To complete the period, the secant values shift to above the x axis.
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Figure 12.19
As you approach point values at which the sine reaches 0, the cotangent values become undefined.



They begin infinitely large at 3�
2
and then decrease as they near 2�. At 2� the

secant value is 1.

The secant values create a periodic pattern that alternates above and below the x

axis, and the period of the secant graph is 2�. In Figure 12.20, for example, you

can identify a period as beginning at 0 and extending to 2�.

Plotting Cosecant Values
The value of the cosecant is undefined when it falls on a vertical line passing

through a point on the x axis at which the sine value is 0. The sine and cosecant

functions are reciprocals of each other.

To plot a cosecant value, you can begin on the x axis at �
2
. The value of the

cosecant at this point is 1. As you move to the left, toward 0 from �
2
, the value of

the secant rises infinitely as it approaches 0. It is undefined at 0. Moving in a

positive direction along the x axis from �
2
, the value of the cosecant increases. As

they approach �, they become infinitely large. At � the value for the secant is not

defined. After passing beyond �, the cosecant values, shift to below the x axis.

They begin at an infinitely large negative value, and then increase as they move

toward 3�
2
. At 3�

2
the value of the cosecant is �1.
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Figure 12.20
The secant is undefined where the cosine value is 0.



The cosecant values create a periodic pattern that alternates above and below the

x axis, and the period of the secant graph is 2�. As Figure 12.21 illustrates, a

period begins at 0 and extends to 2�.

Using Visual Formula
You can use Visual Formula to explore a variety of trigonometric relationships.

To view the trigonometric functions Visual Formula provides, click the Trigo-

nometry menu item. You see a selection that includes the six basic trigonometric

functions. To explore but one possibility, consider the notion that the value of

the cosecant is the reciprocal of the value of the sine:

csc y ¼ 1

sin y

You can superimpose one graph on another using Visual Formula to see how

this is so. You know, for example, that at any point at which the value of

the sine equals 0, the value of the cosecant is undefined. In other words, it
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Figure 12.21
The cosecant is undefined where the sine value is 0.



constitutes an infinitely large or infinitely small value that you cannot represent

on a graph.

To employ Visual Formula to examine this relationship between the two trigo-

nometric functions, refer to Figure 12.22 and follow these steps:

1. Click the Trigonometry menu item. You see a selection of six trigonometric

functions. Select the sin (sine) item. Then click in the upper equation

composition area to position the function.

2. Click the Value menu item. Then immediately to the right of the sin

function box, click to position the Value field. Click in the box and

type x.
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Figure 12.22
The cosecant and sine are reciprocals, and where the value of the sine is 0, the value of the cosecant is
undefined.



3. Now move to the lower-right panel and locate the X Range fields. Click

the control for the From field and set the value to �10. Click the control

for the To field and set the value to 10. (You can also type the values �10

and 10.)

4. Now locate the Chart panel and set the Zoom values. Click the control for

the X field and set it to �2. Click the control for the Y field and set it to �3.

5. Set the Width field to 2 for Chart 1.

6. Set the two Color fields to red and purple (or darker colors that you can

readily distinguish).

7. Click the picker for the Points field and set the value to 8. The picker sets the

number of points Visual Formula uses to plot graphs. For this operation, it

is essential to set this value to 8.

8. Then click the Chart for Formula 1 button. You see the graph of the sine

function.

Now you proceed to chart the function that is the reciprocal of the sine function.

This is the cosecant function. When you chart the cosecant function, the two

graphs show you that when the value of the sine is 0, the value of the cosecant is

undefined. Refer to Figure 12.22 and follow these steps:

1. Now move to the Visual Formula top menu and click the Trigonometry

menu item. You see the six trigonometric functions. Click the csc item.

2. Click in the lower of the two equation composition areas to position the csc

function.

3. Click the Value menu item. Then click immediately to the right of the csc

function to position the Value field. Type an x in this field.

4. Now find the X Range fields that lie beneath the Chart for Formula 2 button.

Set the From field to �10. Set the To field to 10.

5. Click the Exclude check box. In the From field, type �0.1. In the To field,

type 0.1.

6. Click the Chart for Formula 2 button to generate the graph for the cosecant.

The arms of the graph extend infinitely upward at points at which the sine

values are 0.
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After generating the graphs shown in Figure 12.22, generate other graphs using

the same approach. Here are some primary relationships to explore:

cot y ¼ 1

tan y

sec y ¼ 1

cos y

Conclusion
This chapter brings to an end your exploration of pre-calculus as presented in

this book. Accordingly, you first reviewed the Pythagorean theorem and exam-

ined the standard right triangle. When you examined this triangle, you took a

close look at the ratio between the lengths of the sides of the triangle and how

they allow you to see how one of the most fundamental of the trigonometric

ratios, the sine, comes to life.

Having explored these beginnings, you then examined ways to measure angles.

While degrees provide a reliable approach to such measurements, radians often

prove easier to work with. A radian is the arc of a circle equal in length to the

radius of the circle. Using radian measures, you are able to express angles of a

circle and translate them to a Cartesian coordinate system that allows you to

plot different trigonometric values. Toward this end, you explored standard

graphs depicting cosine, tangent, cotangent, secant, and cosecant values. Such

values generate periodic graphs that can be understood if you consider a few key

points.

As is explained in the opening chapters of this book, the intent has not been to

provide you with a comprehensive context in which to explore all the topics you

might explore in an examination of pre-calculus mathematics. Instead, the

intention is to provide you with points of contact that you can use to reacquaint

or familiarize yourself with some aspects of pre-calculus mathematics that might

benefit from an alternative type of presentation.

While successfully meeting the challenges a calculus course presents depends to a

great extent on systematically studying algebra and trigonometry, it remains that

viewing such studies in the context of a game leading to a bigger game puts you in

a position to gain much more satisfaction than you would otherwise from your

endeavors. To learn anything is a victory.
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Memorizing rules and applying them in silent ways is a traditional approach

to mathematics. Engaging in a gradually expanding discussion in which you

continuously broaden your ability to voice what you know provides an alter-

native approach to the study of math. It is an approach often spoken about in

classes involving students and others interested in developing games. It is the

approach that forms the starting and ending points of this book. If such an

approach enables you to have a greater sense that you can learn mathematics,

then this book has served its purpose.

300 Chapter 12 n Trigonometry



Answers to the
Exercise Sets

You’ll find the solutions to almost all of the problems in this text in the PDF file

on the CD.

As mentioned at the front of the book, most math books do not provide worked

out problems, so the appendix that contains these is presented electronically. The

electronic presentation makes it possible to provide step-by-step solutions to the

problems rather than just the answers. Also, solutions to almost all of the pro-

blems are provided rather than those for just the even or odd ones.

To access the solutions place the CD in you disc drive and follow the instructions.

Copying the pdf file to your drive is a good idea.

You can print pages from the PDF file to have solutions ready at hand when you

work the problems. Use this approach to start with. It provides you with a

comfort zone as you work. As you become more confident, you might then

simply view the solutions electronically.
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Symbols
( ) (parentheses), 56

+ (positive sign), 15

, (comma), 34

- (minus sign), 15

{ } (curly braces), 34

A
abscissa, 65

absolute values, 94–96

depicting, 133–134

exponents, 47–48

flipping, 232–233

quadratic equations, 170–171

shifting, 239–241

slopes, 137

symmetry, 138

translation, 134–137, 226–229

Visual Formula, 142–144, 202–204

Visual Formula, non-linear, 205–207

accessing functions, 75

adding. See also addition

constant values, 218

exponents, 150

numbers inside absolute value bars, 143

operators, 76

addition

associative property, 22–23

combining, 86–87

commutative property, 21–22

distributive property, 23–24

equations, 82–86

equations, solving by, 247–250

identify property, 24–26

inverse property, 24–26

order of operations, 58–60

polynomial equations, 149–151

relations, 97–98

systems, with three variables, 256–260

additive identity, 25

algebra, 8–9

long division, 160–162

alternate forms of symmetry, 138–140

A Mathematician’s Apology, 2

analogy, 80

angles

measuring, 277

relations, 288

transferring, 274–276

trigonometry, 272

values, calculating, 284

applying

2-by-3 matrices, 263–265

3-by-4 matrices, 266–270

polynomial equations, 147–149

Pythagorean theorem, 127–129

quadratic equation formulas, 185–186

arbitrary vertex positions, 177–179

arcs, 278. See also circles; radians

relations, 288

associative property, 22–23

axes

arbitrary vertex positions, 177–179

Cartesian coordinates, 65

flipping, 229–235

parabolas. See parabolas

parallel lines, 200–202

quadratic equations, translation, 173–177
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axes (continued )

symmetry, 138–140

translation, 134–137

viewing, 197

B
balance, 80

basic factoring, 56–58

binomials, 146

expressions, 153–156

C
calculating. See also equations; formulas

hypotenuse, 128, 284

slopes, 117

values, parabolas, 217–220

Cartesian coordinate systems, 8, 63, 65–68

slopes, 113–117

trigonometry, 274–276

y-axis intercepts, 107–108

circles. See also radians

degrees, 276–281

rotation, 287–288

trigonometry, 274–276

circumferences, 278–280

clearing fractions, 90–94

coefficients

multiple, 172

positive and negative, 170–171

quadratic equations, translation, 173–177

squares, completing, 182–185

combining operations, 86–87

comma (,), 34

common denominators, least, 90–94

commutative property, 21–22

comparing even and odd exponential

values, 207–212

composition areas, moving, 198

computer games. See games

constants

absolute values, shifting, 240

parabolas, calculating, 217–220

contrasting lines, formatting, 196–200

converting degrees and radians, 280–281

coordinates. See also Cartesian

coordinate systems

inverses, 141–142

perpendicular lines, creating, 132–133

correspondence, sets, 63–64

cosecant values, plotting, 295–296

cosine values, plotting, 290–292

cotangents, defining, 292–294

counting numbers, 12–13

curly braces ({}), 34

D
decimals

equations, systems, 251–252

numbers, generating with, 53

defining

cotangents, 292–294

ordered pairs, 63

relationships, 61

sets, 35–36, 60–63

tangents, 292–293

degrees

radians, converting, 280–281

ratios, 283–286

trigonometry, 276–281

deleting. See also subtraction

operators, 76

dependent systems, 254–255

depicting absolute values, 133–134

Descartes, Rene, 65

designating functions, 72–74

differences, polynomial equations, 155–156

discontinuous lines, functions, 71–72

discriminants, 186–187

disjunctions, sets, 37

distance

absolute values, depicting, 133–134

formulas, 128–129

between points, 127–133

trigonometry, 273–276

distribution, factoring, 56–58

distributive property, 23–24

division

combining, 86–87

equations, 84–86

exponents, 40–41

long, algebra, 160–162

long, polynomial equations, 159–160

multiplication, with more than two

numbers, 28–29

multiplication, with two numbers, 26–28

negative numbers, 99

order of operations, 58–60

polynomial equations, 151–153

values, 99–101

Visual Formula, 30–31
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zeros, 17

by zeros, 26

domains, 64–65, 104–105

functions, 68

inverses, graphs, 215

Visual Formula, 74–77

E
elements

domains and ranges, 64–65

sets, 34–35

sets, defining, 61

equality, 80, 97–98

equations

absolute values, 94–96

addition, 82–86

balance, 80

confirming (Visual Formula), 163

division, 84–86

fractions, clearing, 90–94

functions, 80–90

functions, linear, 105

graphing, 8

inequalities, 96–97

least common denominators, 90–94

linear, generating graphs (Visual Formula),

192–200

matrices. See matrices

multiplication, 84–86

multiplication, values, 99–101

operations, combining, 86–87

order of operations, 58–60

perpendicular lines, 130–133

point-slope, 117–120, 124

polynomial, 146–147

polynomial, applying, 147–149

quadratic, 165–167

quadratic, arbitrary vertex positions, 177–179

quadratic, completing squares, 182–185

quadratic, discriminants, 186–187

quadratic, formulas, 185–186

quadratic, modifying, 169–170

quadratic, narrowing parabolas, 173

quadratic, positive and negative

coefficients, 170–171

quadratic, representing, 167–169

quadratic, solving, 166–167

quadratic, standard forms, 180–181

quadratic, Visual Formula, 187–189

quadratic, widening parabolas, 171–173

quadratic, x and y axes

translation, 173–177

quadratic, x-intercepts, 179–180

slope, 105–107

slope-intercept, 126

subtraction, 82–86

systems, 243

systems, decimals, 251–252

systems, fractions, 250–252

systems, infinite solutions, 254–255

systems, no solutions, 252–253

systems, shared solutions, 243–246

systems, solving by addition and

multiplication, 247–250

systems, substitution, 246–247

systems, three variables, 256–260

evaluating polynomial equations, 147

even exponential values, 207–212

exponential values, even

and odd, 207–212

exponents, 33, 37–48

absolute values, 47–48

division, 40–41

multiplication, 39–40

negative, 50, 152

negative numbers with powers, 39

odd, translation, 223–226

positive, 50, 152

powers of powers, 41

powers of zero and one, 41

quadratic equations.

See quadratic equations

scientific notation, 43–45

terms, grouping (polynomial equations), 150

Visual Formula, 52–54

expressions, 55–56

basic factoring, 56–58

binomials, 155–156

binomial, 153–155

discriminants, 187

distributive property, 23–24

formulas, formatting, 75

monomial, 153–155

order of operations, 58–60

polynomial equations. See polynomial

equations

reducing, 59

sets, 60–63

sets, defining, 35–36

slopes, lines, 131
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F
factoring, 56–58

fields

deleting, 76

moving, 204

Zoom picker, modifying, 196–197

First, Outer, Inner, and Last. See FOIL

flipping

absolute values, 232–233

axes, 229–235

parabolas, 233–235

FOIL (First, Outer, Inner, and Last), 156–157

f () operator, 74

formatting

contrasting lines, 196–200

formulas, expressions, 75

squares, 182–185

forms, standard, 180–181

formulas

degrees and radians, converting, 280–281

distance, 128–129

distance, trigonometry, 273–276

expressions, formatting, 75

quadratic equations, 185–186

fractions, 250–252

clearing, 90–94

functions, 55–56, 68

absolute values, 94–96

access, 75

designating, 72–74

discontinuous lines, 71–72

equations, 80–90

fractions, clearing, 90–94

inequalities, 96–97

least common denominators, 90–94

linear, 105, 111–112

linear, slopes, 113

multiplication, values, 99–101

non-linear, 114

operations, combining, 86–87

polynomial equations. See polynomial equations

relations, 97–98

relationships, 68–71

G
games, 4–6

generating

cosecant values, 295–296

cotangent values, 293–294

graphs, linear (Visual Formula), 192–200

graphs, quadratic equations, 188

parabolas, 167

parallel lines, 201, 222

secant values, 294–295

tangent values, 292–293

graphs

absolute values, 134

absolute values, 226–229

contrasting lines, 199

discontinuous lines, 71

even exponential values, 208

inverses, 214–216

linear, Visual Formula, 192–200

non-linear absolute values, 205–207

odd exponents, 209, 223–226

quadratic equations, 167–169

quadratic equations, generating, 188

quadratic equations, modifying, 169–170

groups

associative property, 22–23

terms (polynomial equations), 149

H
Hardy, G.H., 2–3

H (irrational number symbol), 19

horizontal translation, 136

hypotenuse, calculating, 128, 284

I
identifying slopes, 114

identify property, 24–26

inequalities, 96–97

addition and subtraction of values, 97

division and multiplication of values, 99–101

integers

negative numbers, 14–15

rational numbers, 15–17

intercepts, 113–117

absolute values, 228

parallel lines, 221

slope-intercept equations, 126

values, modifying, 194–196

x-intercepts, 179–180

y axis, 107–108

intersections

equations, systems, 245

sets, 36

inverses

coordinates, 141–142

graphs, 214–216

multiplicative, 25–26
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parabolas, 179, 235–239

perpendicular lines, creating, 130–133

properties, 24–26

quadratic equations, translating, 176–177

relations, extending, 98

squares, completing, 184

irrational numbers, 19–20

division, 30–31

italics, 34

L
least common denominators, 90–94

left

parabolas, inverting and shifting, 236–238

quadratic equations, translating to, 175–176

linear flips, 229–232

linear functions, 105, 111–112

slopes, 113

linear graphs (Visual Formula), 192–200

lines

contrasting, formatting, 196–200

expressions, slopes, 131

parallel, Visual Formula, 220–223

parallel, x and y axes, 200–202

perpendicular, 130–133

Pythagorean theorem, 273

ratios, 125

straight, linear functions, 105

trigonometry, 272

long division

algebra, 160–162

polynomial equations, 159–160

M
mathematics, study of, 3

matrices, 261–262

2-by-3, 263–265

3-by-4, 266–270

measuring

angles, 277

trigonometry ratios, 282–286

minus sign (�), 15

modifying

equations, reordering, 250–252

quadratic equations, 169–170

slopes, 195

standard forms, 180–181

values, intercepts, 194–196

Zoom picker fields, 196–197

monomials, 146

expressions, 153–155

moving

absolute value fields, 204

composition areas, 198

multiple coefficients, 172

multiplication

associative property, 22–23

combining, 86–87

commutative property, 21–22

distributive property, 23–24

division, with more than two numbers, 28–29

division, with two numbers, 26–28

equations, 84–86

equations, solving by, 247–250

exponents, 39–40

factoring, 56–58

FOIL, 156–157

identify property, 24–26

inverse property, 24–26

negative numbers, 100

negative slopes, 109

order of operations, 58–60

parabolas, inverting, 235–239

polynomial equations, 151–153, 157–159

roots, 212–213

systems, with three variables, 256–260

values, 99–101

multiplicative identity, 25

multiplicative inverse, 25–26

slopes, generating perpendicular lines, 132

multiplicative property of zero, 26

N
narrowing parabolas, 173

natural numbers, 12–13

negative coefficients, 170–171

negative exponents, 41, 50, 152

negative numbers

absolute values, 94

division, 99

integers, 14–15

multiplication, 100

with powers, exponents, 39

negative shifts, 110–111

negative slopes, 108–110

linear flips, 231–232

Visual Formula, 120–122

negative values, trigonometry, 290

negative y-intercepts, 110
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N (natural number symbol), 12

nonfunctional relationships, 68–71

non-linear absolute values, 205–207

non-linear functions, 114

notation, functions, 72–74

numbers

absolute values, 94

adding, inside absolute value bars, 143

counting, 12–13

decimals, generating with, 53

irrational, 19–20

irrational, division, 30–31

natural, 12–13

negative, 14–15

negative, division, 99

negative, multiplication, 100

ordered pair of, generating, 61

rational, 15–20

rational, division, 30–31

real, 20–21

scientific notation. See scientific notation

systems, 12–21

whole, 13–14

zeros, no division by, 17

O
odd exponents

translation, 223–226

values, 207–212

one, powers of, 41

operations

combining, 86–87

order of, 58–60

operators

adding, 76

deleting, 76

f (), 74

ordered pairs. See also pairs

Cartesian coordinate system, 67

distance formulas, 129

equations, systems, 243–244

of numbers, generating, 61

ratios, 125

order of operations, 58–60

ordinates, 65

overriding order of operations, 59

P
pairs

Cartesian coordinate system, 67

defining, 61–63

distance formulas, 129

domains and ranges, 64–65

equations, systems, 243–244

ratios, 125

sets, correspondence between, 63–65

symmetry, 138

parabolas

flipping, 233–235

inverses, 179, 235–239

inverting, 176–177

narrowing, 173

positive and negative coefficients, 170–171

quadratic equations, representing, 167–169

shifts, 235–239

standard forms, 180–181

vertices, translation, 173–177

Visual Formula, 217–220

widening, 171–173

x-intercepts, 179–180

parallel lines

Visual Formula, 220–223

x and y axes, 200–202

parentheses ( ), 56

patterns, 8

perpendicular lines, 130–133

plains, Cartesian, 65

plotting

cosecant values, 295–296

cosine values, 290–292

cotangent values, 293–294

secant values, 294–295

sine values, 288–290

tangent values, 292–293

points, 113–117

distance between, 127–133

point-slope equations, 117–120, 124

polynomial equations, 146–147

addition and subtraction, 149–151

applying, 147–149

differences, 155–156

division, 151–153

FOIL, 156–157

long division, 159–160

multiplication, 151–153, 157–159

quadratic equations. See quadratic equations

solving, 149
squares, 155–156

sums, 155–156

Visual Formula, 162–164

positive coefficients, 170–171

positive exponents, 50, 152
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positive numbers, 94

positive sign (þ), 15

positive slopes, linear flips, 229–231

powers

of powers, exponents, 41

of zero and one, exponents, 41

products

Cartesian, 63

factoring, 57

properties, 21–26

associative, 22–23

commutative, 21–22

distributive, 23–24

identify, 24–26

inverse, 24–26

Pythagorean theorem

applying, 127–129

trigonometry, 273–276

trigonometry, ratios, 285

Q
Q (rational number symbol), 17

quadrants, Cartesian planes, 65

quadratic equations, 165–167

arbitrary vertex positions, 177–179

axes, x and y translation, 173–177

discriminants, 186–187

formulas, 185–186

modifying, 169–170

parabolas, narrowing, 173

parabolas, widening, 171–173

positive and negative coefficients, 170–171

representing, 167–169

solving, 166–167

squares, completing, 182–185

standard forms, 180–181

Visual Formula, 187–189

x-intercepts, 179–180

R
radians

circumferences, 278–280

degrees, converting, 280–281

trigonometry, 276–281

radicals, 33, 49–52

ranges, 64–65, 104–105

functions, 68
inequalities, 96

Visual Formula, 74–77

rational numbers, 15–20

division, 30–31

ratios, 15–17, 125

degrees, 283–286

degrees, radians, 276–281

linear functions, 112

point-slope equations, 117

rotation, 286–288

trigonometry, 272–276, 282–286

real numbers, 20–21

reducing expressions, 59

regrouping terms (polynomial equations), 151

relations, 55–56

angles, 288

arcs, 288

domains and ranges, 64–65

notation, 104

Visual Formula, 74–77

relationships, 15–17

defining, 61

functions, 68–71

undoing, 84

reordering equations, 250–252

repeating rational numbers, 18–19

representing

elements, 34

quadratic equations, 167–169

quadratic equations, modifying, 169–170

roots, 49

reversing slopes, 108–110

right

parabolas, inverting and shifting, 236–238

quadratic equations, translating to, 175–176

roots, 33, 49–52

Visual Formula, 212–213

rotation

circles, 287–288

trigonometry, 286–288

R (real number symbol), 19

rules, 4

S
scientific notation, exponents, 43–45

secant values, plotting, 294–295

sequences, 28

sets, 33–37

correspondence, 63–64

disjunctions, 37

elements, 34–35

expressions, 60–63

expressions, defining, 35–36

intersections, 36
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sets (continued )

notation, 104

subsets, 35

unions, 36

Venn diagrams, 37

shifts, 134–137

absolute values, 239–241

negative, 110–111

parabolas, 235–239

sides, trigonometry, 272

sine of 2, trigonometry, 274–276

sine values, plotting, 288–290

slope-intercept equations, 126

slopes, 105–107, 113–117, 124–126

absolute values, 137

calculating, 117

expressions, lines, 131

linear functions, 113

modifying, 195

negative, 108–110

negative, coefficients, 171

negative, linear flips, 231–232

negative, Visual Formula, 120–122

point-slope equation, 117–120

polynomial equations, 147–148

positive, linear flips, 229–231

quadratic equations, 168

that change, 112–113

y-intercepts, 116

solving

equations, by addition and

multiplication, 247–250

equations, infinite solutions,

254–255

equations, no solutions, 252–253

equations, polynomial, 149

equations, quadratic, 166–167

equations, substitution, 246–247

squares

polynomial equations, 155–156

quadratic equations, 182–185

standard forms, 180–181

statements, absolute values, 94

straight lines, linear functions, 105

subsets, 35

substitution, equations, 246–247

subtraction

absolute values, shifting, 240

combining, 86–87

equations, 82–86
order of operations, 58–60

polynomial equations, 149–151

relations, 97–98

Subtract menu (Visual Formula), 245

sums

polynomial equations, 155–156

polynomial equations, Visual Formula, 162

supersets, 35. See also polynomial equations

symbols

comma (,), 34

curly braces ({}), 34

H (irrational number), 19

� (minus sign), 15

N (natural number), 12

parentheses ( ), 56

þ (positive sign), 15

Q (rational number), 17

R (real number), 19

W (whole number), 12

Z (integer), 14

symmetry

absolute values, 138

alternate forms of, 138–140

slopes, 137

systems

Cartesian coordinate systems. See Cartesian

coordinate systems

equations, 243

equations, decimals, 251–252

equations, fractions, 250–252

equations, infinite solutions, 254–255

equations, no solutions, 252–253

equations, shared solutions, 243–246

equations, solving by addition and

multiplication, 247–250

equations, substitution, 246–247

equations, three variables, 256–260

matrices. See matrices

numbers, 12–21

T
tangents, defining, 292–293

terminating rational numbers, 18

terms, adding (polynomial equations), 149

testing validity, 98

3-by-4 matrices, 266–270

transferring angles, 274–276

translation, 134–137

absolute values, 226–229

odd exponents, 223–226

quadratic equations, 173–177

Visual Formula, 216–217
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triangles, 272

trigonometry, 8–9, 271

angles, 272

circles, 274–276

cosine values, plotting, 290–292

cotangents, defining, 292–294

degrees, 276–281

negative values, 290

Pythagorean theorem, 273–276

radians, 276–281

ratios, 272–276, 282–286

rotation, 286–288

sides, 272

sine of 2, 274–276

sine values, plotting, 288–290

tangents, defining, 292–293

Visual Formula, 296–300

trinomials, 146, 157–159

2-by-3 matrices, 263–265

U
undoing

operations, combining, 86–87

relationships, 84

unions, sets, 36

unit circles, rotation, 287–288

V
validity, testing, 98

values

absolute, 94–96

absolute, depicting, 133–134

absolute, exponents, 47–48

absolute, flipping, 232–233

absolute, quadratic equations, 170–171

absolute, shifting, 239–241

absolute, slopes, 137

absolute, symmetry, 138

absolute, translation, 134–137, 226–229

absolute, Visual Formula, 142–144, 202–204

angles, calculating, 284

calculating, 284

Cartesian planes, 65–66

cosecant, generating, 295–296

cosine, plotting, 290–292

cotangent, generating, 293–294

division, 99–101

domains, 104–105

even and odd exponential, 207–212

functions, 68

inequalities, 96

intercepts, modifying, 194–196

inverses, graphs, 214–216
least common denominators, 90–94

matrices, 263. See also matrices

multiplication, 99–101

negative, trigonometry, 290

parabolas, calculating, 217–220

polynomial equations, 147

ranges, 104–105

relations, 97–98

secant, generating, 294–295

sine, plotting, 288–290

slopes, 107

tangent, generating, 292–293

Visual Formula, 74–77

variables

equations, eliminating, 247–250

systems with three, 256–260

z, 75

Venn diagrams, 37

vertical translation, 136

vertices

arbitrary positions, 177–179

parabolas, translation, 173–177

viewing axes, 197

Visual Formula, 192

absolute values, 142–144, 202–204

absolute values, non-linear, 205–207

absolute values, shifting, 239–241

axes, flipping, 229–235

division, 30–31

equations, systems, 244–246

even and odd exponential values, 207–212

exponents, 52–54

inverses, graphs, 214–216

linear graphs, 192–200

negative slopes, 120–122

overview of, 6–7

parabolas, 217–220

parabolas, inverting and shifting, 235–239

parallel lines, 220–223

parallel lines, x and y axes, 200–202

polynomial equations, 162–164

quadratic equations, 187–189

relations, 74–77

roots, 212–213

translation, 216–217

translation, absolute values, 226–229

translation, odd exponents, 223–226

trigonometry, 296–300
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W
whole numbers, 13–14

long division (polynomial equations), 159

widening parabolas, 171–173

W (whole number symbol), 13–14

X
x axis

parallel lines, 200–202

quadratic equations, translation, 173–177

symmetry, 138–140

translation, 134–137

viewing, 197

x-intercepts, 179–180

Y
y axis

arbitrary vertex positions, 177–179

parallel lines, 200–202

quadratic equations, translation, 173–177

symmetry, 138–140

translation, 134–137

viewing, 197

y-intercepts, 107–108

absolute values, 228

modifying, 194–196

parallel lines, 221

slopes, 116

Z
zeros

absolute values, 94–96

division, 17, 26

multiplicative property of, 26

powers of, exponents, 41

whole numbers, 13–14

Z (integer symbol), 14

Zoom picker fields, modifying,

196–197

z variable, 75
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