Rotation about an Arbitrary Axis

Dr. Thomas W. Sederberg 23 February 2005

1 Eye Position

The standard way to compute a rotation about an arbitrary axis through the origin is to concatenate five rotation matrices. This note shows how vector algebra makes it easy to rotate about an arbitrary axis in a single step.

Figure 1 shows a point \mathbf{P} which we want to rotate an angle θ about an axis that passes through \mathbf{B} with a direction defined by unit vector \mathbf{n} . So, given the angle θ , the unit vector \mathbf{n} , and Cartesian coordinates for the points \mathbf{P} , \mathbf{B} , we want to find Cartesian coordinates for the point \mathbf{P}' .

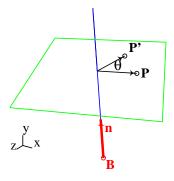


Figure 1: Rotation about an Arbitrary Axis

The key insight needed is shown in Figure 2. Let \mathbf{u} and \mathbf{v} be any two three-dimensional

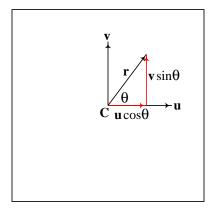


Figure 2: Key Insight

vectors that satisfy $u \cdot v = 0$ (that is, they are perpendicular) and $|\mathbf{u}| = |\mathbf{v}| \neq 0$ (that is, they are they same length but not necessarily unit vectors). We want to find a vector \mathbf{r} that is obtained by rotating \mathbf{u} an angle θ in the plane defined by \mathbf{u} and \mathbf{v} . As suggested in Figure 2,

$$\mathbf{r} = \mathbf{u}\cos\theta + \mathbf{v}\sin\theta. \tag{1}$$

With that insight, it is easy to compute a rotation about an arbitrary axis. Referring

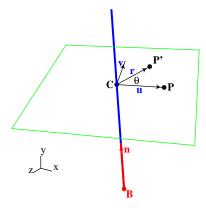


Figure 3: Rotation about an Arbitrary Axis

to Figure 3, we compute

$$C = B + [(P - B) \cdot n]n. \tag{2}$$

$$\mathbf{u} = \mathbf{P} - \mathbf{C} \tag{3}$$

$$\mathbf{v} = \mathbf{n} \times \mathbf{u} \tag{4}$$

Then, \mathbf{r} is computed using equation (1), and

$$\mathbf{P}' = \mathbf{C} + \mathbf{r}.\tag{5}$$

It is possible to take these simple vector equations and to create from them a single 4×4 transformation matrix for rotation about an arbitrary axis. Let $\mathbf{P} = (x, y, z)$, $\mathbf{P}' = (x', y', z')$, $\mathbf{B} = (B_x, B_y, B_z)$, and $\mathbf{n} = (n_x.n_y, n_z)$. We seek a 4×4 matrix M such that

$$M \left\{ \begin{array}{c} x \\ y \\ z \\ 1 \end{array} \right\} = \left\{ \begin{array}{c} x' \\ y' \\ z' \\ 1 \end{array} \right\}$$

$$(C_x, C_y, C_z) = (B_x, B_y, B_z) + [xn_x + yn_y + zn_z - \mathbf{B} \cdot \mathbf{n}](n_x, n_y, n_z)$$

$$(6)$$

$$C_x = xn_x^2 + yn_xn_y + zn_xn_z + B_x - (\mathbf{B} \cdot \mathbf{n})n_x \tag{7}$$

$$C_y = xn_x n_y + yn_y^2 + zn_y n_z + B_y - (\mathbf{B} \cdot \mathbf{n})n_y$$
 (8)

$$C_z = xn_xn_z + yn_yn_z + zn_z^2 + B_z - (\mathbf{B} \cdot \mathbf{n})n_z$$
 (9)

$$\mathbf{u} = (x, y, z) - (C_x, C_y, C_z) \tag{10}$$

$$u_x = x(1 - n_x^2) - yn_x n_y - zn_x n_z + (\mathbf{B} \cdot \mathbf{n})n_x - B_x \tag{11}$$

$$u_y = -xn_x n_y + y(1 - n_y^2) - zn_y n_z + (\mathbf{B} \cdot \mathbf{n})n_y - B_y$$
(12)

$$u_z = -xn_x n_z - yn_y n_z + (1 - n_z^2) + (\mathbf{B} \cdot \mathbf{n})n_z - B_z$$
 (13)

$$v_x = n_y u_z - n_z u_y \tag{14}$$

$$v_y = n_z u_x - n_x u_z \tag{15}$$

$$v_z = n_x u_y - n_y u_x \tag{16}$$

$$r_x = u_x \cos \theta + (n_y u_z - n_z u_y) \sin \theta \tag{17}$$

$$r_y = u_y \cos \theta + (n_z u_x - n_x u_z) \sin \theta \tag{18}$$

$$r_y = u_y \cos \theta + (n_x u_y - n_y u_x) \sin \theta \tag{19}$$

$$(x', y', z') = (C_x + r_x, C_y + r_y, C_z + r_z)$$
(20)

$$x' = xn_x^2 + yn_xn_y + zn_xn_z + B_x - (\mathbf{B} \cdot \mathbf{n})n_x +$$
 (21)

$$(x(1-n_x^2) - yn_xn_y - zn_xn_z + (\mathbf{B} \cdot \mathbf{n})n_x - B_x)\cos\theta + \tag{22}$$

$$n_y(-xn_xn_z - yn_yn_z + (1 - n_z^2) + (\mathbf{B} \cdot \mathbf{n})n_z - B_z)\sin\theta -$$
(23)

$$n_z(-xn_xn_y + y(1-n_y^2) - zn_yn_z + (\mathbf{B} \cdot \mathbf{n})n_y - B_y)\sin\theta$$
 (24)

$$x' = x[n_x^2(1 - n_x^2)\cos\theta] + y[n_x n_y(1 - \cos\theta) - n_z\sin\theta] + z[n_x n_z(1 - \cos\theta) + n_y\sin\theta] + (B_x - (\mathbf{B} \cdot \mathbf{n})n_x)(1 - \cos\theta) + n_z B_y - n_y B_z. (25)$$

Since $n_x^2 + n_y^2 + n_z^2 = 1$, $(1 - n_x^2) = n_y^2 + n_z^2$. In like manner we can come up with an expression for y' and z', and our matrix M is thus

$$\begin{bmatrix} n_x^2 + (n_y^2 + n_z^2)\cos\theta & n_x n_y (1 - \cos\theta) - n_z \sin\theta & n_x n_z (1 - \cos\theta) + n_y \sin\theta & T_1 \\ n_x n_y (1 - \cos\theta) + n_z \sin\theta & n_y^2 + (n_x^2 + n_z^2)\cos\theta & n_y n_z (1 - \cos\theta) - n_x \sin\theta & T_2 \\ n_x n_z (1 - \cos\theta) - n_y \sin\theta & n_y n_z (1 - \cos\theta) + n_x \sin\theta & n_z^2 + (n_x^2 + n_y^2)\cos\theta & T_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(26)

with

$$T_1 = (B_x - (\mathbf{B} \cdot \mathbf{n})n_x)(1 - \cos \theta) + n_z B_y - n_y B_z$$

$$T_2 = (B_y - (\mathbf{B} \cdot \mathbf{n})n_y)(1 - \cos \theta) + n_z B_x - n_x B_z$$

$$T_3 = (B_z - (\mathbf{B} \cdot \mathbf{n})n_z)(1 - \cos \theta) + n_z B_y - n_y B_z$$