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Abstract

Temporal logic is gaining recognition as an attractive and versatile formalism for
rigorously specifying and reasoning about computer programs, digital circuits and
message-passing systems. This book introducesTempura, a programming lan-
guage based on temporal logic. Tempura provides a way of directly executing
suitable temporal logic specifications of digital circuits, parallel programs and
other dynamic systems. Since every Tempura statement is also a temporal for-
mula, the entire temporal logic formalism can be used as the assertion language
and semantics. One result is that Tempura has the two seemingly contradictory
properties of being a logic programming language and having imperative con-
structs such as assignment statements.

The presentation investigatesInterval Temporal Logic, a formalism with
conventional temporal operators such as© (next) and2 (always) as well as lesser
known ones such aschop. This provides the basis for Tempura. The design of
an interpreter for Tempura is also included as are a variety of sample Tempura
programs illustrating how to model both hardware and software.
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Chapter 1

Introduction

Temporal logic [28, 40] has been recently put forward as a useful tool for rea-
soning about concurrent programs and hardware. Within temporal logic, one can
express logical operators corresponding to time-dependent concepts such as “al-
ways” and “sometimes.” Consider, for example, the English sentence

“ If the propositions P and Q are always true, then P is always
true.”

This can be represented in temporal logic by the formula

2(P∧Q) ⊃ 2P.

Here the operator2 corresponds to the notion “always.” Thus, the subformula
2(P∧Q) can be understood as “P and Q are always true.”

Typically, temporal logic has been thought of as a tool for specifying and
proving properties of programs written in, say, Hoare’s CSP [22] or variants of
Pascal with concurrency [20]. This distinction between temporal logic and pro-
gramming languages has troubled us since it has meant that we must simultane-
ously use two separate notations. Programming formalisms such as Hoare logic
[19], dynamic logic [15, 38], and process logic [6, 16] also reflect this dichotomy.
For example, the following Hoare clause specifies that ifI is initially 3, then after
it increases by 1, its value is 4:

{I = 3} I := I +1 {I = 4}.

Here we have the formulasI = 3 andI = 4 as well as the statementI := I +1.
One way to bridge the gap between logic and programs is by finding ways

of using temporal logic itself as a tool for programming and simulation. With
this in mind, we have developedTempura, an imperative programming language

2
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based on subsets of temporal logic. Every Tempura statement is a temporal logic
formula. This lets us specify and reason about Tempura programs without the
need for two notations.

The underlying formalism used is calledInterval Temporal Logic(ITL)
[34, 14, 36] and includes such conventional temporal operators as© (next) and
2 (always) as well as lesser known ones such aschop. This provides a basis
for the Tempura programming language. We present ITL and Tempura and de-
scribe several sample Tempura programs illustrating how to model the structure
and behavior of hardware and software systems in a unified way. The design of
an interpreter for Tempura is also discussed.

1.1 Organization of Presentation

We start off in chapter2 by describing the syntax and semantics of a temporal
logic having the operators2 (always) and© (next). In chapter3 a number of
additional temporal constructs are derived and then used in chapter4 to build
legal Tempura programs. We extend ITL and Tempura in chapter5 to include
constructs for list structures as well as existential and universal quantifiers. The
operatorchop is introduced in chapter6 and used to express for-loops and other
iterative constructs. A variety of Tempura programming examples are then given
in chapter7 to show the utility of the language in dealing with hardware and
software. After this is a discussion in chapter8 on the details of implementing
an interpreter for Tempura. In chapter9 we investigate the concept oftemporal
projectionas well as lambda expressions and pointers. Chapter10 looks at the
current status of work on Tempura interpreters and discusses future plans and
related research.



Chapter 2

Basic Features of Temporal Logic

Before describing Tempura, it is necessary to have an understanding of the un-
derlying temporal logic. Some of the constructs described here are later used in
Tempura programs. Others facilitate reasoning about program behavior. Rather
than presenting the entire logic at once, we first introduce some basic operators.
In later chapters, additional operators are considered.

2.1 Background

Let us first motivate the usage of temporal logic for specifying and reasoning about
dynamic behavior. Readers who are already familiar with temporal logic can omit
this discussion.

Predicate calculus [11] is a versatile and precise notation for formally
specifying situations. For example, we can readily express the statement “I equals
2 and J equals I plus 1” by means of the following formula:

(I = 2)∧ (J = I +1).

However, dynamic behavior is more problematic. For instance, the statement “The
variable I at one time equals 1 and later equals 2” is not satisfactorily handled by
a formula such as

(I = 1)∨ (I = 2).

This just describes a static situation in whichI could equal either 1 or 2. The
formula

(I = 1)∧ (I = 2)

is certainly not appropriate here since it is logically equivalent tofalse!

4
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One way to get around the static nature of logic is by modelling time-
dependent variables as explicit functions of time. For example, we might specify
the changing values ofI using the following formula:

∃t, t ′:([t ≤ t ′]∧ [I(t) = 1]∧ [I(t ′) = 2]).

Here the variablest andt ′ indicate the two time points whereI ’s values are ex-
amined. This technique for representing dynamic behavior is very powerful but
suffers from the proliferation of extra time variables and quantifiers.

In this and subsequent sections we look at an alternative approach to rea-
soning about periods of time. We base it on temporal logic, a formalism that in-
cludes conventional logical operators such as∧ and= as well as time-dependent
ones such as2 (read “always”) and 3 (read “sometimes”). Although originally
developed for application in philosophy, temporal logic has been put forward by
Burstall [5], Pnueli [39] and others as a useful tool for dealing with computer
programs and digital hardware.

Within the framework of temporal logic, it is possible to describe dynamic
behavior in a simple and elegant fashion. For example, the statement “I is always
greater than 3 and sometimes less than 6” can be expressed by means of the
formula

2(I > 3)∧3(I < 6).

The formula
3[(I = 1)∧3(I = 2)]

describes an interval of time in which the variableI at some time equals 1 and at
some later time equals 2. Properties of time can also be expressed. For instance,
if I always equals 1 andJ sometimes equals 3 then we can infer that the sumI +J
sometimes equals 4:

[2(I = 1)∧3(J = 3)] ⊃3(I +J = 4).

These examples convey only a vague idea of the utility and convenience of tempo-
ral logic. As will be shown, temporal logic provides a natural means for describing
such dynamic notations as stability, termination and interval length. Let us now
look at the basic syntax and semantics of the formalism.

2.2 Syntax of the Logic

The initial set of constructs includes conventional logical operators such as =
(equality) and∧ (logical-and). In addition, there are the two temporal operators
© (next) and2 (always).
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2.2.1 Syntax of expressions

Expressions are built inductively as follows:

• Individual variables:A, B, C, . . .

• Functions: f (e1, . . . ,ek), wherek≥ 0 ande1, . . . ,ek are expressions. In
practice, we use functions such as+ andmod. Constants such as 0 and 1
are treated as zero-place functions.

• Next: ©e, wheree is an expression.

Here are two examples of syntactically legal expressions:

I +(©J)+1, (© I)+J−©©(I +©J).

2.2.2 Syntax of formulas

Formulas are built inductively as follows:

• Predicates:p(e1, . . . ,ek), wherek≥ 0ande1, . . . ,ek are expressions. Pred-
icates include≤ and other basic relations.

• Equality: e1=e2, wheree1 ande2 are expressions.

• Logical connectives:¬w andw1∧w2, wherew, w1 andw2 are formulas.

• Next: ©w, wherew is a formula.

• Always: 2w, wherew is a formula.

Here are some syntactically legal ITL formulas:

(J = 2)∧©(I = 3),
(©2[I = 3])∧¬([©J] = 4),
©(2[I = 3]∧©©[J = 4]).

Note that the operator© can be used both for expressions (e.g.,©J) and for for-
mulas (e.g.,©(I = 3)).
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2.3 Models

A model is a triple(D,Σ,M ) containing a data domainD, a set of statesΣ and
an interpretationM giving meaning to every function and predicate symbol. For
the time being, we take the data domainD to be the integers. A state is a function
mapping variables to values inD. We letΣ be the set of all such functions. For
a states in Σ and a variableA, we lets[[A]] denoteA’s value ins. Eachk-place
function symbol f has an interpretationM[[ f ]] which is a function mappingk
elements inD to a single value:

M[[ f ]] ∈ (Dk →D).

Interpretations of predicate symbols are similar but map to truth values:

M[[p]] ∈ (Dk →{true, false}).

We assume thatM gives standard interpretations to operators such as+ and<.
The semantics given here keep the interpretations of function and predi-

cate symbols independent of intervals. They can however be generalized to allow
for functions and predicates that take into account the dynamic behavior of pa-
rameters.

Using the states inΣ, we constructintervalsof time fromΣ+, the set of all
nonempty, finite sequences of states. Ifs, t andu are states inΣ, then the following
are possible intervals:

〈s〉, 〈sttsus〉, 〈tttt〉.
Note that an interval always contains at least one state.

We now introduce some basic notation for manipulating intervals. Let us
useI to denote the set of all intervals. For the moment, we takeI to be the set
Σ+. Later on we will restrictI somewhat. Given an intervalσ in I , we let |σ|
be thelengthof σ. Our convention is that an interval’s length is the number of
statesminus one.Thus the intervals above have respective lengths 0, 5 and 3. The
individual states of an intervalσ are denoted byσ0, σ1, . . . ,σ|σ|. For instance, the
following equality is true iff the variableA has the value 5 inσ’s final state:

σ|σ|[[A]] = 5.

The model described here views time as being discrete and is not intended
to be a realistic representation of the world around us. Nonetheless, it provides a
sound basis for reasoning about many interesting dynamic phenomena involving
timing-dependent and functional behavior. Furthermore, a discrete-time view of
the world often corresponds to our mental model of digital systems and computer
programs. In any case, we can always make the granularity of time arbitrarily fine.
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2.4 Interpretation of Expressions and Formulas

We now extend the interpretationM to give meaning to expressions and formulas
on intervals. The constructMσ[[e]] will be defined to equal the value inD of the
expressione on the intervalσ. Similarly, Mσ[[w]] will equal the truth value of the
formulaw on σ.

At first glance, the following definitions may seem somewhat arbitrary.
We therefore suggest that an initial reading be rather cursory since the subsequent
discussion and examples provide motivation. The definitions can then be refer-
enced as needed.

• Mσ[[V]] = σ0[[V]], whereV is a variable.
Thus, a variable’s value on an interval equals the variable’s value in the
interval’s initial state.

• Mσ[[ f (e1, . . . ,ek)]] = M[[ f ]](Mσ[[e1]], . . . ,Mσ[[ek]]).
The interpretation of the function symbolf is applied to the interpreta-
tions ofe1, . . . ,ek.

• Mσ[[©e]] = M〈σ1...σ|σ|〉[[e]], if |σ| ≥ 1.
We leave the value of©eunspecified on intervals having length 0.

• Mσ[[p(e1, . . . ,ek)]] = M[[p]](Mσ[[e1]], . . . ,Mσ[[ek]]).

• Mσ[[e1=e2]] = true iff Mσ[[e1]] = Mσ[[e2]].

• Mσ[[¬w]] = true iff Mσ[[w]] = false.

• Mσ[[w1∧w2]] = true iff
Mσ[[w1]] = trueandMσ[[w2]] = true.

• Mσ[[©w]] = true iff |σ| ≥ 1 andM〈σ1...σ|σ|〉[[w]] = true.

• Mσ[[2w]] = true iff
for all i ≤ |σ|, M〈σi ...σ|σ|〉[[w]] = true.

Examples

We now illustrate the use ofM by considering the semantics of the sample tem-
poral formulas given earlier. Lets, t andu be states in which the variablesI andJ
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have the following values:
I J

s 1 2
t 3 4
u 3 1

The formula
(J = 2)∧©(I = 3)

is true on an intervalσ iff σ has length≥ 1, the value ofJ in the stateσ0 is 2 and
the value ofI in the stateσ1 is 3. Thus, the formula is true on the interval〈stu〉.
On the other hand, the formula is false on the interval〈ttu〉 becauseJ’s initial
value on this interval is 4 instead of 2.

The formula
(©2[I = 3])∧¬([©J] = 4)

is true on any intervalσ having length≥ 1 and in whichI equals 3 in the states
σ1, . . . ,σ|σ| andJ does not equal 4 inσ1. Thus the formula is true on the interval
〈sutut〉 but is false on〈t〉 and〈stutu〉.

The formula
©(2[I = 3]∧©©[J = 4])

is true on an intervalσ having length≥ 3 and in which the variableI equals 3 in
the statesσ1, . . . ,σ|σ| and the variableJ equals 4 in the stateσ3. Thus this formula
is true of the interval〈suutu〉 but is false on〈s〉 and〈sutuu〉.

2.5 Satisfiability and Validity

A formulaw is satisfiedby an intervalσ iff the meaning ofw on σ equalstrue:

Mσ[[w]] = true.

This is denoted as follows:
σ |= w.

If all intervals satisfyw thenw is valid, written |= w.

Example (Validity):

The following formula is true on an intervalσ iff |σ| ≥ 1, the variableI always
equals 1 and in the stateσ1, I equals 2:

2(I = 1)∧©(I = 2).
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No interval can have all of these characteristics. Therefore the formula is false on
all intervals and its negation is always true and hence valid:

|= ¬[2(I = 1)∧©(I = 2)].



Chapter 3

Deriving Other Operators

The kinds of interval behavior one can describe with the constructs so far intro-
duced may seem rather limited. In fact, this is not at all the case since we can
develop quite a variety of derived operators. We now present a few that have
proved useful in reasoning about simple computations.

3.1 Boolean Operators

The conventional boolean constructsw1∨w2 (logical-or), w1 ⊃ w2 (implication)
andw1 ≡ w2 (equivalence) can be expressed in terms of¬ and∧. We can define
logical-or as shown below:

w1∨w2 ≡def ¬(¬w1∧¬w2).

We then express implication and equivalence as follows:

w1⊃ w2 ≡def ¬w1∨w2,
w1≡ w2 ≡def (w1⊃ w2)∧ (w2⊃ w1).

The boolean constructstrue andfalsecan also be derived as can the conditional
formula

if w1 thenw2elsew3.

Example (Implication):

If in an intervalσ, the variableI always equals 1 and in the stateσ1 the variableJ
equals 2 then it follows that the expressionI +J equals 3 inσ1. This fact can be
expressed by the following valid formula:

|= [2(I = 1)∧©(J = 2)] ⊃ ©(I +J = 3).

11
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Example (Equivalence):

The formula
©([I = 1]∧ [J = 2])

is true on an intervalσ iff σ has length≥ 1 and in the stateσ1, the variableI has
the value 1 and the variableJ has the value 2. It turns out that the conjunction

©(I = 1)∧©(J = 2)

has the same meaning. The equivalence of these two formulas is expressible as
follows:

©([I = 1]∧ [J = 2]) ≡ [©(I = 1)∧©(J = 2)].

This formula is true on all intervals and is therefore valid. In general, if two
formulasw1 andw2 have the same meaning on all intervals, then the equivalence
w1≡ w2 is valid.

3.2 The Operator3

The construct3w is true on an intervalσ if there is some suffix subinterval on
which the formulaw is true:

Mσ[[3w]] = true iff for some i ≤ |σ|, M〈σi ...σ|σ|〉[[w]].

This behavior can be given in terms of the operators¬ and2:

3w ≡def ¬2¬w.

Thus the operators2 and3 are in fact duals.

Example (Present and future):

The following formula illustrates important differences between various temporal
constructs:

(I = 1)∧©(I = 2)∧3(I = 3).

This is true on an intervalσ having length at least 2 in which the variableI has the
value 1 in the initial stateσ0, the value 2 in the next stateσ1 and eventually equals
3 in some subsequent state.
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3.3 The Operatorsemptyand more

The formulaemptyis true on an interval iff the interval has length 0:

σ |= empty iff |σ|= 0.

We can defineemptyas follows:

empty ≡def ¬© true.

The formulamoreis true on an interval iff the interval has nonzero length.
We can expressmoreas follows:

more ≡def © true.

From these definitions it readily follows thatmoreis the opposite ofempty:

|= more≡ ¬empty.

Example (Testing the length of an interval):

We can use the constructs© and emptyto test the length of an interval. For
example, the formula

©©©empty

is true on an intervalσ iff σ has length 3.

3.4 The Operatorsgetsand stable

It is sometimes necessary to say that over time one expressione1 equals another
expressione2 but with a one-unit delay. We use the constructe1getse2 to represent
this and define it as follows:

e1 getse2 ≡def 2(more⊃ [(©e1) = e2]).

The testmoreensures that we do not “run off” the edge of the interval by erro-
neously attempting to examine the value of the expressione1 in the nonexistent
stateσ|σ|+1.

For instance, the formulaK gets2K is true on an intervalσ iff the variable
K is repeatedly doubled from each state to its successor:

σ |= K gets2K iff for all i < |σ|, σi+1[[K]] = 2·σi [[K]].

The constructstablee is true iff the value of the expressione remains
unchanged. We can readily definestablein terms ofgets:

stablee ≡def egetse.
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Example (Expressing an invariant condition):

The following formula is true on an intervalσ in which I andJ are both initially
0 andI repeatedly increases by 1 andJ repeatedly increases by 2:

(I = 0)∧ (J = 0)∧ (I getsI +1)∧ (JgetsJ+2).

In any interval for which this is true,J always equals2I . Below is a valid property
that formalizes this:

|= [(I = 0)∧ (J = 0)∧ (I getsI +1)∧ (JgetsJ+2)] ⊃ 2(J = 2I).

This shows how the operator2 can express an invariant condition.

Example (Stability):

The formula
(I = 1)∧stableI

is true iff I initially equals 1 and its value remains unchanged. This is the same
as saying thatI always equals 1. The following valid property expresses this
equivalence:

|= [(I = 1)∧stableI ] ≡ 2(I = 1).

3.5 The Operatorhalt

We can specify that a formulaw becomes true only at the end of an intervalσ by
using the formulahaltw:

haltw ≡def 2(w≡ empty).

Thusw must be false until the last state at which timew is true. For example, the
formula

halt(I > 100)

is true onσ iff the value of the variableI exceeds 100 in exactly the last state ofσ.

Example (Repeatedly doubling a number):

From what we have so far presented, it can be seen that the formula

(I = 1)∧halt(I > 100)∧ (I gets2I)
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is true on an interval where the variableI is initially 1 and repeatedly doubles until
it exceeds 100. The following valid implication states that intervals on which this
formula is true will terminate uponI equalling the value 128:

|= [(I = 1)∧halt(I > 100)∧ (I gets2I)] ⊃ halt(I = 128).

3.6 Temporal Equality

The constructe1≈ e2 is calledtemporal equalityand is true iff the expressionse1

ande2 are always equal:

e1≈ e2 ≡def 2(e1 = e2).

Example (Computing factorials):

Consider the following formula for running through factorials:

(I = 0)∧ (I getsI +1)∧ (J≈ I !).

The value ofJ can be seen to start at 1 and then repeatedly be multiplied byI +1.
This is expressed by the following property:

|= [(I = 0)∧ (I getsI +1)∧ (J≈ I !)] ⊃
[(J = 1)∧ (Jgets[I +1] ·J)].

3.7 The Operator©w

In order for the construct©w to be true on an intervalσ, the length ofσ must
be at least 1. We therefore refer to this asstrong next. The related construct©w w
is calledweak nextand is true on an intervalσ if either σ has length 0 or the
subformulaw is true on〈σ1 . . .σ|σ|〉. We can expressweak nextin terms ofstrong
next:

©w w ≡def empty∨©w.

The operatorweak nextprovides a concise and natural way to express a
construct as a conjunction of its immediate effect and future effect. Here are some
examples:

|= 2w ≡ w∧©w 2w,
|= ©w ≡ more∧©w w,
|= e1 getse2 ≡ [more⊃ ([©e1] = e2)] ∧©w (e1 getse2),
|= haltw ≡ (empty≡ w)∧©w (haltw),
|= e1≈ e2 ≡ (e1 = e2)∧©w (e1≈ e2).
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These kinds of equivalences turn out to be useful in the design of interpreters.



Chapter 4

Programming in Temporal Logic

Consider the formula

(M = 4)∧ (N = 1)
∧halt(M = 0)∧ (M getsM−1)∧ (N gets2N). (4.1)

This holds true of intervals of length4 in which M successively runs through
the values4, 3, 2, 1 and0 andN simultaneously runs through the values1, 2,
4, 8, and16. Let us now explore how to automate the process of taking such a
temporal formula and finding an interval satisfying it. One way to do this is by
developing a procedure that analyzes the formula and determines the behavior of
all free variables in every state. The result can itself be expressed as a temporal
formula. For instance, here is one way to represent the result for formula (4.1):

([M = 4]∧ [N = 1])
∧©([M = 3]∧ [N = 2])
∧©©([M = 2]∧ [N = 4])
∧©©©([M = 1]∧ [N = 8])
∧©©©©([M = 0]∧ [N = 16]∧empty).

Note that this formula is logically equivalent to the original formula (4.1). We
can view it as a kind of normal form containing state-by-state behavior of all free
variables. The process of determining such a normal form can be computerized.
It is in essence a form of program execution where the original formula represents
the program and the resulting normal form corresponds to the actual computation.

The general problem of finding a normal form for an arbitrary temporal
formula is unsolvable. However, there are subsets of temporal logic for which the
task is manageable. We have developedTempura, a programming language based
on a subset that seems by experience to be efficiently implementable and of use
in describing interesting and practical computations. For example, formula (4.2)

17
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Figure 4.1:Execution of formula (4.2)

State 0: M= 4 N= 1
State 1: M= 3 N= 2
State 2: M= 2 N= 4
State 3: M= 1 N= 8
State 4: M= 0 N=16

Done! Computation length = 4.

is a legal Tempura program which when executed produces the output shown in
figure4.1.

(M = 4)∧ (N = 1)∧halt(M = 0)
∧ (M getsM−1)∧ (N gets2N)∧2display(M,N). (4.2)

This repeatedly prints the values ofM andN by means of thedisplayconstruct.
Note that the program’s behavior is unaffected even if we change the order of the
conjunction’s operands. For instance, the following variant reverses them:

2display(M,N)∧ (N gets2N)∧ (M getsM−1)
∧halt(M = 0)∧ (N = 1)∧ (M = 4).

During the execution of the following program, the user is continually
asked for the values ofI by means of therequestconstruct:

2 request(I)∧halt(I = 0)∧ (J = 0)
∧ (JgetsJ+ I)∧2display(J). (4.3)

These values are summed intoJ andJ itself is displayed. The interval terminates
upon I equalling 0. A typical session is given in figure4.2. Numbers in boxes
(e.g., 6 ) are input by the user.

4.1 Syntax of Tempura

Let us now look at the basic syntax of Tempura. In later chapters, as new temporal
logic constructs are introduced, variants of them will be added to Tempura. The
main syntactic categories in Tempura are locations, expressions and statements.
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Figure 4.2:Execution of formula (4.3)

State 0: I = 6
State 0: J = 0
State 1: I = 2
State 1: J = 6
State 2: I = 5
State 2: J = 8
State 3: I = 0
State 3: J = 13

Done! Computation length = 3.

4.1.1 Locations

A location is a place where values are stored and examined. Variables such asI ,
J andK are permissible locations. In addition, ifl is a location, so is the temporal
construct© l .

4.1.2 Expressions

Expressions can be either arithmetic or boolean. All numeric constants and vari-
ables are legal arithmetic expressions. In addition, ife1 and e2 are arithmetic
expressions, so are the following operations:

e1 +e2, e1−e2, e1 ·e2, e1÷e2, e1 mode2.

Relations such ase1 = e2 ande1 ≥ e2 are boolean expressions. Ifb, b1

andb2 are boolean expressions, then so are the following:

¬b, b1∧b2, b1∨b2, b1⊃ b2, b1≡ b2.

The constantstrue and false and the temporal constructsemptyand more are
boolean expressions as well. In addition, the conditional expression

if bthene1elsee2

is permitted. Heree1 ande2 can be either arithmetic or boolean expressions.
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4.1.3 Statements

Certain temporal formulas are legal statements in Tempura. A statement is either
simpleor compound. Simple statements are built from the constructs given below:

true (no-operation)
false (abort)
l = e (simple assignment)
empty (terminate)
more (do not terminate).

The statementl = e stores the value of the arithmetic expressione in the loca-
tion l . In addition to these statements, the following can be used for requesting
and displaying values:

request(l1, . . . , ln) (request values of locations)
display(e1, . . . ,en) (display values of expressions).

Compound statements are built from the constructs given below. Herew,
w1 andw2 are themselves statements andb is a boolean expression:

w1∧w2 (parallel composition)
b⊃ w (implication)
©w w (weak next)
2w (always)

Note that certain temporal formulas can be used as both boolean expres-
sions and statements. Here are three examples:

I = 3, (J = 2)∧ (K = J+3), (I = 0)⊃ empty.

On the other hand, the following legal boolean expressions are not Tempura state-
ments even though they are semantically equivalent to the respective formulas
given above:

3 = I , (2 = J)∧ (J+3 = K), ¬(I = 0)∨empty.

4.2 Some Other Statements

Other constructs such asgets, stableandhalt can be readily added to Tempura.
One way to do this is to expand these to statements already described. Here are
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some possible equivalences:

if bthenw1elsew2 ≡ (b⊃ w1)∧ (¬b⊃ w2),
©w ≡ more∧©w w,
l getse ≡ 2(¬empty⊃ [(© l) = e]),
stablel ≡ l getsl ,
haltb ≡ 2(if bthenemptyelsemore),
l ≈ e ≡ 2(l = e).

An alternative approach is to include these features directly in the base language.

4.3 Determinism

As we mentioned earlier, Tempura statements are limited to a subset of temporal
formulas. However, even syntactically legal programs may possibly be nonexe-
cutable. This is because the interpreter expects the user to completely specify the
behavior of program variables and to indicate when termination should occur. For
example, the formula

I gets(I +1)

lacks information onI ’s initial value and does not specify when to stop. Thus it
cannot by itself be transformed to any particular computation sequence onI and
is therefore not considered a complete program. Other details must be included
for the interpreter to operate properly. For similar reasons compound statements
built using the operators∨ and3 are not permitted. Of course, we could be more
lenient by using backtracking and related techniques to resolve any ambiguities.
However, for the sake of the simplicity and efficiency of the interpreter, it seems
reasonable at the moment to require explicit information on all aspects of variable
behavior.



Chapter 5

Some Additional Constructs

Let us now consider how to add three important features to the temporal logic.
These arestatic variables, lists and quantifiers. We subsequently use them as
a basis for deriving one operator that specifies interval length and another that
describes in-place assignment.

5.1 Static Variables

For a given variableAand an intervalσ, it is possible forA to have a different value
in each ofσ’s statesσ0,σ1, . . . ,σ|σ|. For this reason,A is called astate variable. It
turns out to be useful to introduce a category of variables calledstatic variables.
Our convention is to have them start with a lower-case letter (e.g.,a, treeandaBc).
We now constrain the setI of permitted intervals so that for any intervalσ in I
and any static variablea, the values ofa on σ’s states are all identical:

Mσ0[[a]] = Mσ1[[a]] = · · ·= Mσ|σ|[[a]].

Thus a static variable is stable:

|= stablea.

Identifiers starting with upper-case letters (e.g.,A andTree) remain state
variables and can change from state to state. Furthermore, even a static variable
can have different values on two distinct intervalsσ andσ′.

Example (Computing powers):

The following formula has the variableJ successively equal the powersm0, m1,
m2, . . . ,mn:

(I = 0)∧ (J = 1)∧ (I getsI +1)∧ (Jgetsm·J)∧halt(I = n).

22
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The variablesm andn are static and therefore do not need to be kept explicitly
stable.

5.2 Quantified Formulas

We permit formulas of the form
∃V:w,

whereV is any variable andw is itself a formula. This is calledexistential quan-
tification. Note thatV can be either a static or state variable. Below is an instance
of this construct:

∃I :2(J = 2I).

Existential quantification readily generalizes to many variables:

∃V1,V2, . . . ,Vn:w ≡ ∃V1:(∃V2:(. . .(∃Vn:w))).

Universal quantificationhas the form∀V:w and is defined as the dual of
existential quantification:

∀V:w ≡def ¬∃V:¬w.

Here are the semantics of∃:

Mσ[[∃V:w]] = true iff
for some intervalσ′ ∈ I , σ∼V σ′ andMσ′[[w]] = true.

The relationσ∼V σ′ is defined to be true iff the intervalsσ andσ′ have the same
length and agree on the behavior of all variables except possibly the variableV.

Example

Consider the following states and their assignments to the variablesI andJ:

I J
s 2 4
t 0 4
u 2 3

We assume thats, t andu agree on assignments to all other variables.
The formula

∃I . 2(J = 2I)
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is intuitively true on any interval on which we can construct anI such thatJ
always equals2I . This is the same as saying thatJ is always even. For example,
the interval〈ttt〉 satisfies the formula. From the semantics of∃ given previously it
follows that to show this we need to construct an intervalσ′ for which the relation
〈ttt〉 ∼I σ′ is true and which satisfies the subformula2(J = 2I). The interval〈sss〉
achieves both of these constraints. Therefore〈ttt〉 satisfies the original formula.
Other intervals satisfying the formula include〈sss〉 itself and〈sst〉 but not 〈u〉
or 〈stut〉. Existential quantification is a tricky concept and the reader should not
necessarily expect to grasp it immediately.

Example (Hiding a variable):

The formula below hasJ always equalling twice the value of a hidden variableI .
The value ofI is initially 0 and repeatedly increases by 1:

∃I : [(I = 0)∧ (I getsI +1)∧ (J≈ 2I)].

This is logically equivalent to initializingJ to 0 and repeatedly increasing it by 2:

(J = 0)∧ (JgetsJ+2).

We can express this equivalence as the following property:

|= (∃I : [(I = 0)∧ (I getsI +1)∧ (J≈ 2I)])
≡ [(J = 0)∧ (JgetsJ+2)].

The following formula has two distinct variables that are both calledI :

(I = 0)∧ (I getsI +1)∧halt(I = 5)∧∃I : [(I = 1)∧ (I gets3I)].

The firstI runs from 0 to 5 and in parallel the secondI is repeatedly tripled from
1 to 243. The use of existential quantification (∃) keeps the twoI ’s separate and
in effect hides the second one. In fact the formula is logically equivalent to its
subformula

(I = 0)∧ (I getsI +1)∧halt(I = 5).

As these examples illustrate, the operator∃ provides a means of creating locally
scoped variables.

5.3 Enlarging the Data Domain

Until now we have assumed that the underlying data domainD consists of the
integers. Let us now enlarge it to include the boolean valuestrueandfalseas well
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as nested finite lists of values. Here are some sample lists:

〈3〉, 〈〉, 〈〈true,2〉,〈〉,〈1,〈2, false〉〉〉.

The following constructs are now included among the temporal logic’s
expressions and are later added to Tempura:

• Simple list construction:〈e0, . . . ,en−1〉,
wheren≥ 0 ande0, . . . ,en−1 are expressions.

• Iterative list construction:〈e1:v < e2〉,
wheree1 ande2 are expressions andv is a static variable.

• Subscripting:e1[e2], wheree1 ande2 are expressions.

• List length: |e|, wheree is an expression.

In addition, there is the following new predicate:

• List predicate:list(e1,e2), wheree1 ande2 are expressions.

The semantics of the various expressions for manipulating lists are as one
might expect. Our convention regarding subscripting is to index from the left
starting with 0. For example, the following expressions are all equal:

3, |〈false,1,4〉|, 〈0, true,3〉[2], 〈7− i: i < 8〉[4].

The predicatelist(e1,e2) is true on an interval if the initial value of the expression
e1 is a list of lengthe2.

When no ambiguity arises, we express a subscripted expression such as
L[i] using the notationLi .

Example (Computing lists of powers):

Here is one way to compute lists of successive powers of 0, 1, 2 and 3:

(I = 0)∧ (I getsI +1)∧halt(I = 10)∧2(L = 〈0I ,1I ,2I ,3I 〉).

Alternatively, the following formula can be used:

(I = 0)∧ (I getsI +1)∧halt(I = 10)∧ [2 list(L,4)]
∧ (L0≈ 0I )∧ (L1≈ 1I )∧ (L2≈ 2I )∧ (L3≈ 3I ).

We now present a number of useful operators derived from the constructs
so far introduced.
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5.4 The Operator len

The formulalen(e) is true on an interval having length exactlye:

Mσ[[len(e)]] = true iff Mσ[[e]] = |σ|.

It turns out that we can expresslenby means of existential quantification and other
previously introduced constructs. Here is one way:

len(e) ≡def ∃I : [(I = e)∧ (I getsI −1)∧halt(I = 0)],

whereI does not occur freely ine. We useI as a hidden counter that is initialized
to e’s value and then keeps track of how much time remains in the interval.

Example (Doubling a variable):

The following formula has the variableN run through the first few powers of 2:

len(5)∧ (N = 1)∧ (N gets2N).

The lenconstruct is used to specify the length of the computation.

5.5 Bounded Quantification

We now introduce formulas of the form

∀v < e:w,

wherev is a static variable,e is an expression andw is a formula. The construct is
referred to asbounded universal quantificationand can be defined as follows:

∀v < e:w ≡def ∀v:(0≤ v < e⊃ w).

This is especially useful for processing elements of a list variable in parallel.
Bounded existential quantification can be defined in an analogous way. In ad-
dition, it is easy to generalize this notation to handle ranges such asv≤ e and
e1≤ v < e2.

Example (Generalized computation of powers):

The following formula successively assigns the listL the firstn+1 powers of the
numbers 0, 1, . . . ,m−1:

∃I : [(I = 0)∧ (I getsI −1)
∧halt(I = n)∧ (L≈ 〈kI :k < m〉)]. (5.1)
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Figure 5.1:Execution of formula (5.1)

State 0: L=<1,1,1,1,1>
State 1: L=<0,1,2,3,4>
State 2: L=<0,1,4,9,16>
State 3: L=<0,1,8,27,64>
State 4: L=<0,1,16,81,256>
State 5: L=<0,1,32,243,1024>
State 6: L=<0,1,64,729,4096>

Done! Computation length = 6.

Figure5.1 shows the behavior ofL for m = 5 andn = 6. The actual program
consists of the conjunction of the above formula with the statement

2display(L).

Here is another technique which is logically equivalent and uses bounded univer-
sal quantification to simultaneously manipulate each of the elements ofL:

len(n)∧ [2 list(L,m)]
∧∀k < m: [(Lk = 1)∧ (Lk getsk ·Lk)].

5.6 The Operatorfin

The formulafinw is true on an intervalσ iff the formulaw is itself true on the final
subinterval〈σ|σ|〉. We expressfinw as follows:

finw ≡def 2(empty⊃ w).

The formulafinw is weaker thanhaltw sincefinw only looks at the last state
whereashaltw tests behavior throughout.

Example (Doubling a variable):

The following formula is true on an intervalσ iff |σ| = 3 andI is initially 1 and
repeatedly doubles:

len(3)∧ (I = 1)∧ (I gets2I).
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One effect is thatI ends up equal to 8. This is expressed by the valid implication
given below:

|= [len(3)∧ (I = 1)∧ (I gets2I)] ⊃ fin(I = 8).

5.7 Temporal Assignment

The formulae1→ e2 is true for an interval if the initial value of the expressione1

equals the final value of the expressione2. We define this as follows:

e1→ e2 ≡def ∃a: [(a = e1)∧ f in(e2 = a)],

where the static variablea does not occur freely in eithere1 or e2. The stability of
the value ofa is used to compare the values ofe1 ande2 at different times. We call
this constructtemporal assignment.For example, the formulaI +1→ I is true on
an intervalσ iff the value ofI +1 in the initial stateσ0 equals the value ofI in the
final stateσ|σ|. If desired, we can reverse the direction of the arrow:

I ← I +1.

The formula
(I ← I +1)∧ (J← J+ I)

is then true on an interval iffI increases by 1 and in parallelJ increases byI .
Similarly, the following specifies that the values of the state variablesA andB are
exchanged:

(A→ B)∧ (B→ A).

Unlike the assignment statement in conventional programming languages,
temporal assignment only affects variables explicitly mentioned; the values of
other variables do not necessarily remain fixed. For example, the formulas

I ← I +1

and
(I ← I +1)∧ (J← J)

are not equivalent since the first formula does not requireJ’s initial and final values
to be equal. Thus, temporal assignment lacks the so-calledframe assumption.



Executing Temporal Logic Programs/B. Moszkowski 9 February 2000 29

Example (Maximum of two numbers):

The temporal formula

if I ≥ Jthen(I ← I)else(I ← J)

is true in any interval whereI ’s value in the final state equals the maximum of the
values ofI andJ in the initial state. This can be seen by case analysis on the test
I ≥ J.

Let the functionmax(i, j) equal the maximum of the two valuesi and j.
The following temporal formula therefore places the maximum ofI andJ into I :

I ←max(I ,J)

The equivalence of the two approaches is expressed by the following property:

|= [I ←max(I ,J)] ≡ [if I ≥ Jthen(I ← I)else(I ← J)].

5.8 Incorporating these Constructs into Tempura

We now extend Tempura to allow locations, expressions and statements in the
ways described below.

5.8.1 Locations

Static variables such asa andx are now permitted as locations. In addition ifl is
a location ande is an expression, then the subscript constructl [e] is a permitted
location.

5.8.2 Expressions

The following are now legal expressions:

v (static variables)
〈e0, . . . ,en−1〉 (simple list constructor)
〈e1:v < e2〉 (iterative list constructor)
e1[e2] (subscripting)
|e| (list length).

Herev is a static variable ande, e0, e1, . . . ,en−1 are all expressions.
In addition, we permit function invocations of the form

f (e1, . . . ,en)

where f is a function defined in the manner described later andn≥ 0 ande1, . . . ,
en are expressions.
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5.8.3 Statements

We now allow variables to be assigned not only integers, but boolean and list
values are well. Here are some examples:

Done= true, L = 〈1,2,4〉, Flaggets(¬Flag).

In addition, the following are permitted statements:

list(l ,e) (list declaration)
len(e) (interval length)
∃V1, . . . ,Vn:w (existential quantification)
∀v < e:w (bounded universal quantification)
finw (terminal statement)
l ← e (temporal assignment).

Herel is a location,e is an expression,V is any variable,v is a static variable, and
w is a statement.

We also permit predicate invocations of the form

p(e1, . . . ,en)

wherep is a predicate defined in the manner described below andn≥ 0 ande1,
. . . , en are expressions. The interpreter uses call-by-reference when passing pa-
rameters.

Statements of the following forms can be used to define functions and
predicates respectively:

definef (V1, . . . ,Vn) = e,
definep(V1, . . . ,Vn)≡ w.

The formal parametersV1, . . . ,Vn are state variables or static variables ande is an
expression andw is a statement. The identifier used in place off or p should be
static. Here are two sample definitions:

define min(i, j) = (if i ≤ j theni elsej),
define double(M)≡ (M gets2M).

Note that recursive definitions are permitted. Furthermore, the body of a definition
can include temporal constructs. Thus our actual usage of predicates and functions
is more general than indicated in the temporal logic semantics presented earlier
in section2.3. It is not difficult to adjust the semantics to take this into account
although we omit the details.



Chapter 6

The Operator chop

Temporal logic contains various constructs such aschopandwhile that are rather
similar to certain kinds of statements found in Algol and related programming
languages. We first extend the syntax and semantics of the temporal logic to
includechop. The resulting formalism is called Interval Temporal Logic. Within
it we define a number of interval-dependent operators and subsequently expand
Tempura to include them.

6.1 Syntax and Semantics ofchop

We now permit formulas of the following form:

w1;w2, wherew1 andw2 are formulas.

The operator “;” is known aschop. A formula w1;w2 is true on an intervalσ iff
there is at least one way to splitσ into two subintervals such that the formulaw1

is true on the left subinterval and the formulaw2 is true on the right subinterval:

Mσ[[w1;w2]] = true iff
for somei ≤ |σ|,

M〈σ0...σi〉[[w1]] = trueandM〈σi ...σ|σ|〉[[w2]] = true.

Note that the two subintervals〈σ0 . . .σi〉 and〈σi . . .σ|σ|〉 share the stateσi .

Example (Sequential composition of assignments):

The formula
(K +1→ K);(K +2→ K)

31
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is true on an intervalσ iff there is somei ≤ |σ| such that the subformulaK+1→K
is true on the subinterval〈σ0 . . .σi〉 and the subformulaK +2→ K is true on the
remaining subinterval〈σi . . .σ|σ|〉. The net effect is thatK increases by 3. This is
expressed by the following property:

|= [(K +2→ K);(K +1→ K)] ⊃ (K +3→ K).

Example (Usingchopto express3 and 2):

By varying the operands ofchop, we can selectively examine different kinds of
subintervals. For example, a formula of the form

true;w

is true on an interval if the formulaw is true on some suffix subinterval. Thus
this provides a way of expressing the operator3 and consequently2 as its dual.
Similarly, a formula of the form

true;w; true

is true on an interval ifw is true on some arbitrary subinterval. Sincechop is
associative, we can omit parentheses without being ambiguous.

6.2 Discussion of the Operatorchop

The constructchopis rather different from the conventional temporal operators2
and©. The latter examine an interval’s suffix subintervals whereaschopsplits the
interval and tests both parts. This facilitates looking at arbitrary subintervals of
time.

Harel, Kozen and Parikh [16] appear to be the first to mentionchopas a
temporal construct. It is considered in more detail by Chandra, Halpern, Meyer
and Parikh [6]. In references [14] and [34] we usechop to facilitate reasoning
about time-dependent digital hardware. Our subsequent work in [37] and [35]
useschopto give specifications and properties of simple algorithms and message-
passing systems. In the rest of this section we examinechopand other ITL con-
structs and then extend Tempura to include some of them.
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6.3 Simple For-Loops

The following simple for-loop repeatsw for e times in succession, wherew is a
formula ande is an expression:

for etimesdow.

This can also be writtenwe. Here is one way to state that the variableI increases
by 1 for 4 times in succession:

for4timesdo(I +1→ I).

This is equivalent to the formula

(I +1→ I);(I +1→ I);(I +1→ I);(I +1→ I).

In the case of zero iterations, the for-loop is equivalent toempty:

|= (for0timesdow) ≡ empty.

Note that there is no requirement that the iterations of a loop take any time. Thus,
a formula such as

for5timesdo(I → I)

is readily satisfied by an empty interval:

|= empty⊃ [for5timesdo(I → I)].

The formulaw∗ (read “w star”) is true if the subformulaw occurs some
number of times in succession. This operator is sometimes known aschop-star.
We can express it in terms of a simple for-loop:

w∗ ≡def ∃n:(n≥ 0∧ [forntimesdow]),

wheren does not occur freely inw. For example, the formula

(I +1→ I)∗

is true on an interval ifI repeatedly increases over some unspecified number of
iterations.
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6.4 Indexed For-Loops

In addition to the simple for-loop, we permit an indexed variant having the fol-
lowing syntax:

for v < edow.

Herev is a static variable,e is an expression andw is a formula. For instance, the
formula

for k < 4do(I +k→ I).

is equivalent to

(I +0→ I);(I +1→ I);(I +2→ I);(I +3→ I).

6.5 While-Loops and Related Constructs

Thetemporal while-loopis another important construct in ITL. The basic form is
similar to that of a while-loop in Algol:

whilew1dow2.

Both w1 andw2 are themselves formulas. The while-loop obeys the following
general expansion property:

whilew1dow2 ≡
if w1 then(w2; [whilew1dow2])elseempty.

Thus, if w1 is true, the body of the loop,w2, is examined after which the loop is
repeated. Ifw1 is false, the interval must have length 0. Thechop-staroperator
can in fact be derived from a while-loop:

w∗ ≡ whilemoredow.

A repeat-loophas the form

repeatw1untilw2

and can be expressed using a while-loop:

repeatw1untilw2 ≡def w1;(while¬w2dow1).

Another loop construct has the form

loopw1exitwhenw2otherwisew3,
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wherew1, w2 andw3 are themselves formulas. The formulaw2 is used to exit
from the loop. Here is how to express the loop in terms of thewhileconstruct:

loopw1exitwhenw2otherwisew3 ≡def

w1;(while¬w2do[w3;w1]).

In section8.2 we use this style of loop to describe the basic algorithm used by a
Tempura interpreter.

Example (Greatest common divisor):

Consider the following assignment which specifies thatN’s final value equals the
initial value of the greatest common divisor ofM andN:

N← gcd(M,N).

The formula below implies this:

while(M 6= 0)do([M ← N modM]∧ [N←M]).

6.6 Deriving For-Loops and While-Loops

Let us look at one way to express for-loops and while-loops entirely in terms of
chopand other ITL constructs already introduced. This discussion can be omitted
by the reader. We first define the predicateend_points(l ,n) to be true on intervals
where l is a list of n+ 1 offsets indicating the end points of some successive
subintervals corresponding to iterations:

end_points(l ,n) ≡def

list(l ,n+1)∧ (l0 = 0)∧ len(ln)∧∀i < n:(l i ≤ l i+1).

Thus the elementl0 equals 0 since this is the start of any initial iteration. The
final elementln analogously equals the length of the interval. Furthermore, the
sequence formed byl ’s elements is weakly increasing.

We also make use of the constructiteration(l ,n, i,w). This is true on
an interval if the formulaw is true on the subinterval corresponding to thei-th
iteration with respect to the values ofl andn (i.e., the subinterval bound byl i and
l i+1). Here is one way to expressiteration:

iteration(l ,n, i,w) ≡def len(l i); w; len(ln− l i+1).
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The simple for-loop construct can now be expressed as follows:

for etimesdow ≡def

∃l ,n:([n = e]
∧end_points(l ,n)
∧∀i < n: iteration(l ,n, i,w)

),

where i, l andn do not occur freely ine or w. The technique for the indexed
for-loop is analogous:

for v < edow ≡def

∃l ,n:([n = e]
∧end_points(l ,n)
∧∀i < n: iteration(l ,n, i,∃v: [v = i∧w])

),

wherei, l andn do not occur freely inv, eor w.
Below is the derivation of the while-loop:

whilew1dow2 ≡def

∃l ,n:(end_points(l ,n)
∧∀ j < n+1:[( j < n)≡ (len(l j);w1)]
∧∀i < n: iteration(l ,n, i,w2)

).

Here the formulaw1 must be true at the beginning of every iteration but false at
the end. Furthermore, the formulaw2 must be true on each iteration.

6.7 The Constructskip

The constructskip is true on an intervalσ iff σ has length 1. We can expressskip
as follows:

skip ≡def ©empty.

Example (Measuring the length of an interval):

An interval’s length can be tested usingskipandchop. For example, the formula

skip;skip;skip

is true on intervals having length 3. It follows that this formula is equivalent to
len(3):

|= len(3) ≡ (skip;skip;skip).
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Example (Unit-length iterations):

The following while-loop simultaneously decrementsI and sumsI into J over
each unit of time untilI equals 0:

while(I 6= 0)do(skip∧ [I ← I −1]∧ [J← J+ I ]).

The body of the loop contains theskip operator in order that the length of each
iterative step be 1. The behavior can also be expressed usinghalt andgets. Here
is a semantically equivalent way of doing this:

halt(I = 0)∧ (I getsI −1)∧ (JgetsJ+ I).

Example (Expressing the operatorgets):

A formula such asAgetsB can be alternatively expressed as an unspecified number
of iterations, each of unit length:

|= (AgetsB) ≡ (skip∧ [A← B])∗.

6.8 Incorporating these Constructs into Tempura

We now extend Tempura to include the following statements based on the ITL
constructs just introduced:

skip (unit interval)
w1;w2 (sequential composition)
foretimesdow (simple for-loop)
for v < edow (indexed for-loop)
whilebdow (while-loop)
repeatwuntilb (repeat-loop)
loopw1exitwhenbotherwisew2 (exit-loop)

Here w, w1 and w2 are themselves statements,e is an expression,v is a static
variable andb is a boolean test.

Example (Computing sums):

The following Tempura program uses a while-loop to compute a sum:

(I = 4)∧ (J = 0)∧2display(I ,J)
∧ [whileI 6= 0do(skip∧ [I ← I −1]∧ [J← J+ I ])]. (6.1)

Figure6.1shows the program’s behavior when run.
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Figure 6.1:Execution of formula (6.1)

State 0: I= 4 J= 0
State 1: I= 3 J= 4
State 2: I= 2 J= 7
State 3: I= 1 J= 9
State 4: I= 0 J=10

Done! Computation length = 4.

Example (Computing powers):

Consider the problem of finding the value of the expressionIJ and placing it in
another variableK. We can specify this using the temporal assignment

K ← IJ.

The following Tempura statement achieves this by looking atJ’s binary structure:

(K = 1)∧ [while(J > 0)do(skip∧w)],

where the statementw has the form

if (Jmod2 = 0)
then[(I ← I · I)∧ (J← J÷2)∧ (K ← K)]
else[(I ← I)∧ (J← J−1)∧ (K ← K · I)].



Chapter 7

Some Applications

We now present some sample Tempura programs for summing the leaves of a tree,
partitioning a list and sorting a list. Afterwards programs are given for simulat-
ing a simple multiplication circuit, generating digital pulses and testing a latch.
The final two examples deal with synchronized communication between paral-
lel processes. Most of the programming constructs used here have already been
introduced. Those that have not are briefly described where mentioned.

7.1 Tree Summation

Suppose we have a binary tree of values such as either of the ones shown in fig-
ure7.1. They can be linearly represented by the following list structures:

〈〈〈1,1〉,〈1,1〉〉,〈〈1,1〉,〈1,1〉〉〉, 〈〈1,〈2,3〉〉,〈4,5〉〉.

Let the functionleaf_sum(tree) determine the sum of a tree’s leaves:

leaf_sum(tree) =def

if is_integer(tree) thentree
else leaf_sum(tree0)+ leaf_sum(tree1).

Here the predicateis_integer(tree) is true when the parametertree is an integer
(i.e., a leaf) and false whentree is a pair.

Now consider the task of designing an algorithm to reduce a tree in-place
to a single value indicated byleaf_sum. If the variableTreeinitially equals such a
binary tree, we can specify the problem as follows:

Tree← leaf_sum(Tree).

Let us look at a serial and a parallel implementation of this.

39
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Figure 7.1:Two binary trees
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7.1.1 Serial solution

One approach to achieving our goal is given by the predicateserial_sum_tree
defined in figure7.2. This terminates if the tree is already an integer-valued leaf.
Otherwise, the predicatesum_subtreeis used to first reduce the left subtree and
then the right subtree. Finally, the statement

skip∧ (Tree← Tree0 +Tree1)

is used to reduce the tree to a single value. Note that when either of the two sub-
trees is being reduced bysum_subtree, the other one is kept stable. In addition,
the built-in predicatestable_structis used in the predicatesum_subtreeto main-
tain the tree’s main node intact so that the two subtrees can continue to be properly
accessed. We can expressstable_structas follows:

stable_structe ≡def 2[more⊃ list([©e], |e|)].

Thus, if the expressione is initially a list of some particular length, it remains a
list of that length throughout the interval. If this operation were omitted, there
would be no mention of whether the root of the tree remains a pair.
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Figure 7.2:Predicates to sequentially sum a binary tree

define serial_sum_tree(Tree)≡
if is_integer(Tree) thenempty
else(

sum_subtree(Tree,0);
sum_subtree(Tree,1);
(

skip∧ (Tree← Tree0 +Tree1)
)

).

define sum_subtree(Tree, i)≡
serial_sum_tree(Treei)
∧stable_structTree
∧stableTree1−i .

We initialize the tree and invokeserial_sum_treeby means of the follow-
ing sort of formula:

Tree= 〈〈〈1,1〉,〈1,1〉〉,〈〈1,1〉,〈1,1〉〉〉
∧serial_sum_tree(Tree)∧2display(Tree).

Figure7.3shows the resulting behavior for the two different trees mentioned.

7.1.2 Parallel solution

The predicatepar_sum_treein figure7.4is similar toserial_sum_treeexcept that
it recursively reduces each half of a pair in parallel rather than sequentially. A vari-
able namedDoneis used to monitor the progress of the two subtrees. It equalstrue
when they are both finally integers. At this time the sum of the two values can be
assigned to the tree variable. The subordinate predicatesum_tree_process(Done,Tree)
reduces its tree parameter and then keeps the tree stable until the flagDonebe-
comes true. This ensures that the two parallel invocations ofsum_tree_process
finish at the same time. Figure7.5 shows the behavior ofpar_sum_treeon the
two trees discussed above. As might be expected, the computation length is less
than that required by the serial algorithm.

Note that the body of the predicatesum_tree_processin figure 7.4 is a
statement of the formprocessw. The processconstruct has no special logical
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Figure 7.3:Two executions of serial tree summation

State 0: Tree=<<<1,1>,<1,1>>,<<1,1>,<1,1>>>
State 1: Tree=<<2,<1,1>>,<<1,1>,<1,1>>>
State 2: Tree=<<2,2>,<<1,1>,<1,1>>>
State 3: Tree=<4,<<1,1>,<1,1>>>
State 4: Tree=<4,<2,<1,1>>>
State 5: Tree=<4,<2,2>>
State 6: Tree=<4,4>
State 7: Tree=8

Done! Computation length = 7.

State 0: Tree=<<1,<2,3>>,<4,5>>
State 1: Tree=<<1,5>,<4,5>>
State 2: Tree=<6,<4,5>>
State 3: Tree=<6,9>
State 4: Tree=15

Done! Computation length = 4.



Executing Temporal Logic Programs/B. Moszkowski 9 February 2000 43

Figure 7.4:Predicates to sum a binary tree in parallel

define par_sum_tree(Tree)≡
if is_integer(Tree) thenempty
else(
∃Done:(

(Done≈ [is_integer(Tree0)∧ is_integer(Tree1)])
∧haltDone
∧stable_structTree
∧sum_tree_process(Done,Tree0)
∧sum_tree_process(Done,Tree1)

);
(

skip∧ (Tree← Tree0 +Tree1)
)

).

define sum_tree_process(Done,Tree) ≡
process(

par_sum_tree(Tree);
(

haltDone
∧stableTree

)
).
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Figure 7.5:Two executions of parallel tree summation

State 0: Tree=<<<1,1>,<1,1>>,<<1,1>,<1,1>>>
State 1: Tree=<<2,2>,<2,2>>
State 2: Tree=<4,4>
State 3: Tree=8

Done! Computation length = 3.

State 0: Tree=<<1,<2,3>>,<4,5>>
State 1: Tree=<<1,5>,9>
State 2: Tree=<6,9>
State 3: Tree=15

Done! Computation length = 3.

semantics:
processw ≡def w.

It is used when several Tempura statements are run in parallel and each indepen-
dently determines the interval length. See section9.3for a discussion.

7.1.3 Correctness and performance

ITL can be used to specify the correctness and relative speeds of the two algo-
rithms just introduced. Here are the basic correctness properties:

|= serial_sum_tree(Tree) ⊃ (Tree← leaf_sum(Tree)),
|= par_sum_tree(Tree) ⊃ (Tree← leaf_sum(Tree)).

The invariant and rate of progress for the serial version are shown below:

|= serial_sum_tree(Tree) ⊃
(stableleaf_sum(Tree)
∧ [leaf_count(Tree)getsleaf_count(Tree)−1]).

Here the functionleaf_countequals the number of leaves in a tree. The property
states that even though the tree is changing, the sum of its leaves remains stable.
Furthermore, the number of leaves decreases by 1 every unit of time. The invari-
ant for the parallel algorithm is identical to that of the serial algorithm although
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the rate of progress is more complicated. The tree’s leaf count decreases by the
number of internal nodes whose two sons are both integers.

The computation length for the serial and parallel algorithms is expressed
as follows:

|= serial_sum_tree(Tree) ⊃ len(leaf_count(Tree)−1),
|= par_sum_tree(Tree) ⊃ len(tree_height(Tree)).

Here the expressionleaf_count(Tree)−1 equals the number of internal nodes in
the tree. The functiontree_heightis defined to equal the length of the longest path
from the tree’s root to a leaf:

tree_height(tree) =def

if is_integer(tree) then0
else1+max(tree_height(tree0), tree_height(tree1)).

7.2 Partitioning a List

We now describe a technique for partitioning a list. This will be subsequently
used in some quicksort algorithms. The predicate

partition_list(L,key, left_len)

defined in figure7.6 uses the predicatepart_loop to iteratively permute the ele-
ments of the list parameterL so that those less than the value ofkeyend up to
the left of elements greater than or equal tokey. Each step of the loop invokes the
predicatepart_step. The length of the left side is finally stored in the static param-
eterleft_len. For example, suppose thatL initially equals the list〈1,3,2,3,0,1,3〉
andkeyhas the value2. The final value ofL is then the list〈1,1,0,3,2,3,3〉 and
the value ofleft_len is 3. In figure7.7 we depict the behavior ofL in each state
and display the value ofleft_lenin the final state. Note that the predicatepart_step
references a predicate calledswap_list. This has the general form

swap_list(L, i, j)

and exchanges the values ofLi andL j , leaving the remaining elements of the list
L unchanged. Here is one way to express this in ITL:

∀k < |L|:
[if k = i then(Lk ← L j)
elseif k = j then(Lk ← Li)else(Lk ← Lk)].
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Figure 7.6:Predicates for partitioning a list

define partition_list(L,key, left_len)≡
∃I ,J : (

(I = 0)∧ (J = |L|)
∧ (

part_loop(L,key, I ,J);
[empty∧ (left_len= I)]

)
).

define part_loop(L,key, I ,J) ≡
whileI < Jdo(

skip∧part_step(L,key, I ,J)
).

define part_step(L,key, I ,J)≡
if LI < key
then(

stableL
∧ (I ← I +1)∧ (J← J)

)
else(

swap_list(L, I ,J−1)
∧ (I ← I)∧ (J← J−1)

).
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Figure 7.7:Execution of predicate for partitioning

State 0: L=<1,3,2,3,0,1,3>
State 1: L=<1,3,2,3,0,1,3>
State 2: L=<1,3,2,3,0,1,3>
State 3: L=<1,1,2,3,0,3,3>
State 4: L=<1,1,2,3,0,3,3>
State 5: L=<1,1,0,3,2,3,3>
State 6: L=<1,1,0,3,2,3,3>
State 7: L=<1,1,0,3,2,3,3>
State 7: left_len= 3

Done! Computation length = 7.

7.2.1 Correctness ofpartition_list

The correctness of this algorithm can be expressed using two properties. The first
one states that the list variableL’s final value is a permutation of its initial one:

|= partition_list(L,key, left_len)
⊃ [list_to_bag(L)← list_to_bag(L)].

Here the functionlist_to_bag(L) equals the bag (multi-set) corresponding toL.
Thus we express the fact that the initial and final bags forL are identical.

The second property states thatL’s final value is partitioned according to
key:

|= partition_list(L,key, left_len)
⊃ fin(∀i < |L| : [(i < left_len)≡ (Li < key)]).

The definition ofpartition_listuses the predicatepart_loopwhich iterates
overL while the variablesI andJ index the start and end of the sublist of elements
not yet processed. The following property states thatpart_loopleaves the multi-
set representation ofL stable:

|= part_loop(L,key, I ,J) ⊃ stablelist_to_bag(L).

In addition, throughout the computation the elementsL0, . . . ,LI−1 are all less than
the key and the elementsLJ, LJ+1, . . . ,L|L|−1 are greater than or equal to the key:

|= part_loop(L,key, I ,J) ⊃
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[2∀k < I : (Lk < key)
∧2∀k:([J≤ k < |L|] ⊃ [Lk ≥ key])].

Eventual termination ofpart_loop is indicated by the fact that in every
step the value ofJ is greater than or equal to that ofI and eitherI increases orJ
decreases by 1. Therefore, the differenceJ− I continues to decrease by 1:

|= part_loop(L,key, I ,J) ⊃ [(J− I)gets(J− I −1)].

Since I is initially 0 and J is initially |L|, it follows that |L| units of time are
required for the entire computation:

|= part_loop(L,key, I ,J) ⊃ len(|L|).

7.3 Quicksort

Let sort(e) be a function equalling the list expressione’s sorted value. We can
then specify the in-place sort of a list variableL by means of the formula

L← sort(L).

Another way to express this is as follows:

[list_to_bag(L)← list_to_bag(L)]∧ [finsorted(L)].

Here the predicatesorted(e) is true if the list expressione is sorted. Thus, the
overall formula states thatL’s final value is a permutation of its original one since
the bag corresponding toL remains unchanged. Furthermore,L’s final value is
in sorted order. One way to sort a list is by using the predicateserial_quicksort
shown in figure7.8. We use a special subscripting construct of the forme1[e2 . .e3].
This is a sublist of the expressione1 of lengthe3−e2 and has the form

〈e1[e2],e1[e2 +1], . . . ,e1[e3−1]〉.

It can be expressed as follows

e1[e2 . .e3] =def 〈e1[i]:e2≤ i < e3〉,

where the static variablei does not occur freely ine1. Note thate1[e3] is not
included among the sublist’s elements. We generally write a sublist expression
such asL[0. .k] in the formL0. .k.
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Figure 7.8:Predicates for serial quicksort

define serial_quicksort(L)≡
if |L| ≤ 1thenempty
else∃pivot:(

quick_partition(L,pivot);
serial_sort_parts(L,pivot)

).

define serial_sort_parts(L,k)≡
(

serial_quicksort(L0. .k)
∧stableLk. .|L|

);
(

serial_quicksort(L(k+1). .|L|)
∧stableL0. .(k+1)

).

define quick_partition(L,pivot) ≡
(

partition_list(L0. .|L|−1,L|L|−1,pivot)
∧stableL|L|−1

);
(

skip∧swap_list(L,pivot, |L|−1)
).
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The quicksort algorithm presented here leaves the list unchanged if it has
0 or 1 elements and otherwise partitions it into two main parts with a pivot el-
ement in between. The left half has elements less than the pivot and the right
half has elements greater than or equal to the pivot. The left part is then recur-
sively sorted, after which the right part is itself sorted. Throughout this time,
the pivot is kept stable. The partitioning operation is performed by the predicate
quick_partitionand the subsequent sorting of the two parts is achieved by the
predicateserial_sort_parts. Both of these are described below.

Here is a program for testing the quicksort predicate:

fixed_list(L,7)∧fixed_list(T,7)∧2display(L,T)
∧ (L = 〈4,5,2,0,6,1,3〉)∧serial_quicksort(L)
∧∀i < |L|: [Ti ≈ (if i = Li then1else0)].

The statementfixed_list(L,7) specifies thatL is always a list of length 7. It is
logically equivalent to the formula

2 list(L,7)

but turns out to be more natural and much more efficient to use in Tempura. We
include a list variableT that has the same length asL and shows which elements
of L are in their proper positions. For anyi < |L|, the i-th element ofT has the
value 1 in a state iff the value ofLi in that state equalsi. Of course, this technique
only works if L’s initial value is a permutation of the integers 0, 1, . . . ,|L| −1.
Figure7.9 shows the program’s execution. The listL itself is partitioned from
state 0 to state 7 with the value3 used as the key. In particular, from state 6 to
state 7, the value 3 is moved to its proper position inL3. From state 7 to state 12,
the left sublistL0. .3 (i.e., L0, L1 andL2) is sorted. From state 12 to state 17, the
right sublistL4. .7 (i.e.,L4, L5 andL6) is sorted.

7.3.1 Explanation ofquick_partition

The predicatequick_partition(L,pivot) permutesL and assigns the static param-
eterpivot an index intoL so that the elementsL0, . . . , Lpivot−1 are all less than
Lpivot and the elementsLpivot+1, . . . ,L|L|−1 are all greater than or equal toLpivot.
This is achieved by first invoking the predicatepartition_listdescribed previously
in section7.2on the sublistL0, . . . ,L|L|−2 with the rightmost elementL|L|−1 acting
as key. The value ofL|L|−1 is itself keep stable. Afterwards, the value ofpivot is
an index to the start of the second half of the partition. The elementL|L|−1 is then
exchanged withLpivot.
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Figure 7.9:Execution of serial quicksort

State 0: L=<4,5,2,0,6,1,3> T=<0,0,1,0,0,0,0>
State 1: L=<1,5,2,0,6,4,3> T=<0,0,1,0,0,0,0>
State 2: L=<1,5,2,0,6,4,3> T=<0,0,1,0,0,0,0>
State 3: L=<1,6,2,0,5,4,3> T=<0,0,1,0,0,0,0>
State 4: L=<1,0,2,6,5,4,3> T=<0,0,1,0,0,0,0>
State 5: L=<1,0,2,6,5,4,3> T=<0,0,1,0,0,0,0>
State 6: L=<1,0,2,6,5,4,3> T=<0,0,1,0,0,0,0>
State 7: L=<1,0,2,3,5,4,6> T=<0,0,1,1,0,0,1>
State 8: L=<1,0,2,3,5,4,6> T=<0,0,1,1,0,0,1>
State 9: L=<1,0,2,3,5,4,6> T=<0,0,1,1,0,0,1>
State 10: L=<1,0,2,3,5,4,6> T=<0,0,1,1,0,0,1>
State 11: L=<1,0,2,3,5,4,6> T=<0,0,1,1,0,0,1>
State 12: L=<0,1,2,3,5,4,6> T=<1,1,1,1,0,0,1>
State 13: L=<0,1,2,3,5,4,6> T=<1,1,1,1,0,0,1>
State 14: L=<0,1,2,3,5,4,6> T=<1,1,1,1,0,0,1>
State 15: L=<0,1,2,3,5,4,6> T=<1,1,1,1,0,0,1>
State 16: L=<0,1,2,3,5,4,6> T=<1,1,1,1,0,0,1>
State 17: L=<0,1,2,3,4,5,6> T=<1,1,1,1,1,1,1>

Done! Computation length = 17.
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Figure 7.10:Predicates for parallel quicksort

define par_quicksort(L)≡
if |L| ≤ 1 thenempty
else∃pivot:(

quick_partition(L,pivot);
par_sort_parts(L,pivot)

).

define par_sort_parts(L,pivot)≡
∃Done,Ready1,Ready2:(

(Done≈ (Ready1∧Ready2))
∧haltDone
∧sort_process(Done,Ready1,L0. .pivot)
∧sort_process(Done,Ready2,Lpivot+1. .|L|)

)
∧stableLpivot.

define sort_process(Done,Ready,L) ≡
process(

(
par_quicksort(L)∧ (Ready≈ empty)

);
(

(haltDone)∧ (stableL)∧ (stableReady)
)

).

7.3.2 Explanation ofserial_sort_parts

The predicateserial_sort_parts(L,pivot) first sorts the left partitionL0, . . . ,Lpivot−1

and after this the right partitionLpivot+1, . . . , L|L|−1. During the sorting of either
side, the other remains stable. Throughout the entire period the value of the pivot
elementLpivot is left unchanged since it is already in its proper position.

7.3.3 Parallel quicksort

The predicatepar_quicksortshown in figure7.10 is a parallel variant of the se-
rial algorithm just described. As the execution in figure7.11demonstrates, this
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Figure 7.11:Execution of parallel quicksort

State 0: L=<4,5,2,0,6,1,3> T=<0,0,1,0,0,0,0>
State 1: L=<1,5,2,0,6,4,3> T=<0,0,1,0,0,0,0>
State 2: L=<1,5,2,0,6,4,3> T=<0,0,1,0,0,0,0>
State 3: L=<1,6,2,0,5,4,3> T=<0,0,1,0,0,0,0>
State 4: L=<1,0,2,6,5,4,3> T=<0,0,1,0,0,0,0>
State 5: L=<1,0,2,6,5,4,3> T=<0,0,1,0,0,0,0>
State 6: L=<1,0,2,6,5,4,3> T=<0,0,1,0,0,0,0>
State 7: L=<1,0,2,3,5,4,6> T=<0,0,1,1,0,0,1>
State 8: L=<1,0,2,3,5,4,6> T=<0,0,1,1,0,0,1>
State 9: L=<1,0,2,3,5,4,6> T=<0,0,1,1,0,0,1>
State 10: L=<1,0,2,3,5,4,6> T=<0,0,1,1,0,0,1>
State 11: L=<1,0,2,3,5,4,6> T=<0,0,1,1,0,0,1>
State 12: L=<0,1,2,3,4,5,6> T=<1,1,1,1,1,1,1>

Done! Computation length = 12.

version of quicksort can take fewer computational steps than the serial one. The
basic change to the sorting technique is seen in the predicatepar_sort_parts. This
sorts the two sublists ofL in parallel rather than in succession.

Each sublist has a flag (i.e.,Ready1or Ready2) associated with an invoca-
tion of the predicatesort_process. This predicate recursively sorts the sublist and
then sets the flag to true indicating completion. It then waits for the flagDone,
which becomes true when both sublists are finished. In the meantime, the sublist
is kept stable.

7.4 A Multiplication Circuit

Figure7.12depicts a simple multiplication circuit containing a number of compo-
nent types such asflipflop, zero_testandadder. This was originally designed and
verified by Mike Gordon using the LSM behavioral notation [12]. In figure 7.13
we define the components as predicates in ITL. Gordon used the boolean values
true andfalseto represent bit signals. We follow the same convention as can be
seen in such devices aszero_testandor_gate. The componentsreg andflipflop
in the original specification both provide a form of unit delay and can be mod-
elled by the ITL constructgets. The overall multiplier is then given in figure7.14.
Various internal signals such asB1 and L3 are hidden by means of existential
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Figure 7.12:Block diagram of multiplication circuit
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Figure 7.13:Definitions of individual components

define mux(Switch, In1, In2,Out)≡
2(if SwitchthenOut= In1elseOut= In2).

define reg(In,Out)≡ (OutgetsIn).

define flipflop(In,Out)≡ (OutgetsIn).

define dec(In,Out)≡
Out≈ (if In = 0then0elseIn−1).

define adder(In1, In2,Out)≡ (Out≈ [In1+ In2]).

define zero_test(In,Out)≡ (Out≈ [In = 0]).

define or_gate(In1, In2,Out)≡ (Out≈ [In1∨ In2]).

define zero(Out)≡ (Out≈ 0).

quantification (∃). The signalsin1, in2, DoneandOut are left accessible. The
device’s structure is represented as a conjunction of instances of the individual
components. In addition, equalities are included to properly initialize the signals
Done, Out andL2.

In order to test the multiplier, we feed the circuit some data and then
terminate when the circuit has the answer. The following program performs these
tasks and has the multiplier determine the product of 4 and 9:

mult_imp(4,9,Done,Out)
∧ (©haltDone)∧2display(Done,Out).

The execution of this is shown in figure7.15. Note that the flagDoneis initialized
to trueand the simulation halts the next time it becomes true.

7.5 Pulse Generation

We now demonstrate how Tempura can be used to generate, manipulate and dis-
play simple digital waveforms. Let us first extend the boolean operators¬, ∧ and
∨ to permit the bit values 0 and 1. For example the value of the expression¬0 is 1
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Figure 7.14:Definition of multiplier

define mult_imp(in1, in2,Done,Out)≡
∃B1,B2,B3,B4,L1,L2,L3,L4,L5,L6,L7,L8,L9,L10 : (

mux(Done,L9,L8,L7)
∧ reg(L7,Out)
∧adder(L9,Out,L8)
∧dec(in1,L6)
∧mux(Done,L6,L4,L5)
∧mux(Done, in1,L3,L1)
∧ reg(L1,L2)
∧dec(L2,L3)
∧dec(L3,L4)
∧zero(L10)
∧mux(B4,L10, in2,L9)
∧zero_test(in1,B4)
∧zero_test(L5,B1)
∧zero_test(in2,B2)
∧or_gate(B1,B2,B3)
∧flipflop(B3,Done)
∧ (Done= true)∧ (Out= 0)∧ (L2 = 0)

).

Figure 7.15:Simulation of multiplier

State 0: Done=true Out= 0
State 1: Done=false Out= 9
State 2: Done=false Out=18
State 3: Done=false Out=27
State 4: Done=true Out=36

Done! Computation length = 4.
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Figure 7.16:Program to generate some digital waveforms

(W = 0)∧ (X = 0)∧ (Y = 0)∧
for5timesdo(

[len(3)∧ (stableW)];
[skip∧ (W←¬W)]

)
∧ (X getsW)∧ (Y getsX)
∧ (Z≈ [W∧X∧Y]).

and the value of1∧0 is 0. We use these constructs in the program in figure7.16.
This controls the behavior of the four bit variablesW, X, Y andZ. The signalW
is initialized to 0 and then successively oscillates 5 times over 4-unit intervals by
means of the following form of sequential iteration:

for5timesdo(
[len(3)∧stableW]; [skip∧ (W←¬W)]

).

The total length of the period is therefore 20 units. In parallel with this, the signal
X is initialized to0 and then receives the values ofW but with unit delay. The
same happens fromX to Y. The value ofZ is always the bit-and ofW, X andY.
In figure7.17, we display the behavior of the combined system in the form of a
timing diagram. This is best viewed when turned sideways. The style of output
used here is not hard to generate in Tempura although we omit the details.

7.6 Testing a Latch

The device shown in figure7.18is a simple latch built out of two cross-coupled
nor-gates. When the bit inputsSandRare held stable long enough, the outputsQ
andQ respond to them according to the table in figure7.19. If SandR are both
0, the device retains its current state. The values of the inputs should not be held
simultaneously at 1 since this can result in the latch’s outputs later oscillating.

The program in figure7.20simulates the latch for values of the inputsS
andR. We model each nor-gate as having unit delay. Note that the variableQ is
referred to asQbar in the program. The resulting system behavior is displayed in
figure7.21. The iterative construct

for v∈ edow
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Figure 7.17:Execution of waveform generator

State 0: Z Y X W
State 0: | | | |
State 1: | | | |
State 2: | | | |
State 3: | | | |
State 4: | | | |
State 5: | | | |
State 6: | | | |
State 7: | | | |
State 8: | | | |
State 9: | | | |
State 10: | | | |
State 11: | | | |
State 12: | | | |
State 13: | | | |
State 14: | | | |
State 15: | | | |
State 16: | | | |
State 17: | | | |
State 18: | | | |
State 19: | | | |
State 20: | | | |

Done! Computation length = 20.
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Figure 7.18:Block diagram of SR-latch
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Figure 7.19:SR-latch operation

operation S R Q Q
set to 1 1 0 1 0
clear to 0 0 1 0 1
no change 0 0 old Q old Q
undefined 1 1 – –

Figure 7.20:Program to simulate SR-latch

(S= 0)∧ (R= 0)∧ (Q = 0)∧ (Qbar= 0)∧
for l ∈ 〈〈1,0〉,〈0,0〉,〈0,1〉,〈1,0〉,〈0,0〉〉
do (

len(5)∧ (Sgetsl0)∧ (Rgetsl1)
)
∧ (Qgets¬[R∨Qbar])
∧ (Qbargets¬[S∨Q]).
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Figure 7.21:Simulation of SR-latch

State 0: Qbar Q R S
State 0: | | | |
State 1: | | | |
State 2: | | | |
State 3: | | | |
State 4: | | | |
State 5: | | | |
State 6: | | | |
State 7: | | | |
State 8: | | | |
State 9: | | | |
State 10: | | | |
State 11: | | | |
State 12: | | | |
State 13: | | | |
State 14: | | | |
State 15: | | | |
State 16: | | | |
State 17: | | | |
State 18: | | | |
State 19: | | | |
State 20: | | | |
State 21: | | | |
State 22: | | | |
State 23: | | | |
State 24: | | | |
State 25: | | | |

Done! Computation length = 25.
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Figure 7.22:Block diagram of sender-receiver system

input list−→ Sender
Stream
=⇒ Receiver −→output list

is used to sequentially assign a locally scoped variablev the elements of the given
list expressioneand execute the statementw with each such binding.

7.7 Synchronized Communication

Tempura can be used to model parallel processes that periodically send or receive
data from one another. Figure7.22shows a block diagram containing two mod-
ules with a connection between them. The left module transmits information to
the right one by means of astreampackage that we have implemented in Tempura.
We omit the implementation details but give a sample execution of the system in
figure7.23. In states 3, 6, 9, 12 and 15 a value is passed on. The end-of-stream
marker is passed in state 18. In the final state, the receiver shows that it has suc-
cessfully accepted the five data messages.

In figure 7.24 is a block diagram of a system that does parallel lexical
analysis, parsing and evaluation of a string of characters representing an arith-
metic expression. The heart of the corresponding Tempura program is shown in
figure 7.25. Here four processes are connected together by means of streams.
The first one takes the string and feeds it character-by-character into the lexical
analyzer. This simultaneously outputs tokens to the parser. This in turn outputs
reverse Polish notation to the evaluator. Eventually the evaluator determines the
expression’s numeric value. An execution of the system processing the string
"10 +2 " is shown in figure7.26. We use the characterto visibly represent a
space. Note that in states 13 and 24 two communications occur at once.
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Figure 7.23:Execution of sender-receiver system

State 0: Stream_status
State 0: <>
State 1: <>
State 2: <>
State 3: <<0>>
State 4: <>
State 5: <>
State 6: <<10>>
State 7: <>
State 8: <>
State 9: <<20>>
State 10: <>
State 11: <>
State 12: <<30>>
State 13: <>
State 14: <>
State 15: <<40>>
State 16: <>
State 17: <>
State 18: <<>>
State 19: <>
State 20: <>
State 21: <>
State 22: <>
State 23: <>
State 24: <>
State 25: <>
State 26: <>
State 26: output list = <0,10,20,30,40>

Done! Computation length = 26.
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Figure 7.24:Block diagram of parallel lexer-parser-evaluator

string−→
String

to
Chars Chars

=⇒ Lex

⇓ Tokens

Parse
Polish
=⇒ Eval −→answer

Figure 7.25:Heart of parallel lexer-parser-evaluator

. . .
∧ list_to_port_process(Sig_list0,

string_input,sender_port(Char_stream))
∧ lexer_process(Sig_list1,

receiver_port(Char_stream),
sender_port(Token_stream))

∧parser_process(Sig_list2,
receiver_port(Token_stream),
sender_port(Polish_stream))

∧eval_process(Sig_list3,
receiver_port(Polish_stream),answer)

. . .
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Figure 7.26:Execution of lexer-parser-evaluator on"10 +2 "

State 0: Char Token Polish
State 0: <> <> <>
State 1: <> <> <>
State 2: <> <> <>
State 3: <<"1">> <> <>
State 4: <> <> <>
State 5: <> <> <>
State 6: <<"0">> <> <>
State 7: <> <> <>
State 8: <> <> <>
State 9: <<" ">> <> <>
State 10: <> <> <>
State 11: <> <<10>> <>
State 12: <> <> <>
State 13: <<"+">> <> <<10>>
State 14: <> <> <>
State 15: <> <<"+">> <>
State 16: <> <> <>
State 17: <<"2">> <> <>
State 18: <> <> <>
State 19: <> <> <>
State 20: <<" ">> <> <>
State 21: <> <> <>
State 22: <> <<2>> <>
State 23: <> <> <>
State 24: <<>> <> <<2>>
State 25: <> <> <>
State 26: <> <<>> <>
State 27: <> <> <>
State 28: <> <> <<"+">>
State 29: <> <> <>
State 30: <> <> <>
State 31: <> <> <<>>
State 32: <> <> <>
State 33: <> <> <>
State 34: <> <> <>
State 34: Final answer = 12

Done! Computation length = 34.



Chapter 8

An Interpreter for Tempura

Let us now consider how to built an interpreter for Tempura. The aim of the pre-
sentation is to give an idea of how to execute Tempura programs. Therefore a
number of low-level aspects of the implementation are not described. This mate-
rial can be skipped.

Before discussing the design of the system, we look at how the approach
is applied to the following program:

(©©empty)∧ (I = 0)∧ (I getsI +1)∧2(J = 2· I). (8.1)

This is true on intervals of length 2 in whichI assumes the successive values 0, 1,
and 2 whileJ simultaneously assumes the values 0, 2, and 4.

One way to execute such a formula is to transform it to a logically equiv-
alent conjunction of the two formulaspresent_stateand©w what_remains:

present_state∧©w what_remains.

Here, the formulapresent_stateconsists of assignments to the program variables
and also indicates whether or not the interval is finished. The formulawhat_remains
is what is executed in subsequent states if the interval does indeed continue on.
Thus, it can be viewed as a kind of continuation.

For the formula under consideration,present_statehas the following value:

(I = 0)∧ (J = 0)∧more.

The value ofwhat_remainsis the formula

(©empty)∧ (I = 1)∧ (I getsI +1)∧2(J = 2· I).

In figure8.1we show the effects of such transformations before and after each of
the three states of the execution.

65
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Figure 8.1:Transformation of formula (8.1)

Before state 0:
(©©empty)∧ (I = 0)∧ (I getsI +1)∧2(J = 2 · I)

After state 0:
[(I = 0)∧ (J = 0)∧more]
∧©w [(©empty)∧ (I = 1)∧ (I getsI +1)∧2(J = 2· I)]

Before state 1:
(©empty)∧ (I = 1)∧ (I getsI +1)∧2(J = 2· I)

After state 1:
[(I = 1)∧ (J = 2)∧more]
∧©w [empty∧ (I = 2)∧ (I getsI +1)∧2(J = 2· I)]

Before state 2:
empty∧ (I = 2)∧ (I getsI +1)∧2(J = 2· I)

After state 2:
[(I = 2)∧ (J = 4)∧empty]
∧©w [false∧ (I getsI +1)∧2(J = 2· I)]
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8.1 Variables Used by the Interpreter

The operation of the Tempura interpreter is based on the technique just described.
When executing a Tempura program, the interpreter makes use of the four vari-
ablesProgram, Memory, Current_Envand Current_Done_Cell. They are ac-
cessed by the interpreter’s various routines. Below is a summary of each of these
variables:

• Program: This is a variable that initially contains the Tempura program
itself. After the execution of each state, it is transformed to a formula of
the form©w w, wherew describes what should be done in the next state.

• Memory: This is an indexed list of cells. Each cell can be empty or contain
a value such as an integer or a list descriptor. At the beginning of each
state, every cell is assigned the empty list〈〉, thus indicating that no value
is being stored. When a valuec is to be placed in the cell, the cell’s actual
contents are assigned the singleton〈c〉.

• Current_Env: This contains an environment, which is a list having a sep-
arate entry for each variable in the Tempura program. Each entry is a pair
with the name of the associated variable as well as an index to a memory
cell that holds the variable’s value. For the Tempura program described
earlier, the value ofCurrent_Envmight be the following:

〈〈“ I ” ,0〉,〈“J” ,1〉〉.

• Current_Done_Cell: This equals the index of a memory cell called the
done-flag. The Tempura program places eithertrue or falsein the done-
flag during every state, thus indicating whether or not that state is the final
one. For example, in a state where the statementemptyis encountered,
the interpreter puts the valuetrue in the done-flag cell. If the statement
more is encountered, the valuefalse is used instead. If the user fails to
assign a value to the done-flag in a particular state, the interpreter detects
this and flags an error.

8.2 Basic Execution Algorithm

The basic algorithm used by the interpreter can be represented in the following
procedural form:

begin
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local Program,Memory,Current_Env,Current_Done_Cell;
prepare_execution_of_program;
loop

execute_single_state
exit when Memory[Current_Done_Cell] = 〈true〉
otherwise

advance_to_next_state
end.

Here is a more detailed look at each part of the process:

• prepare_execution_of_program: The interpreter’s variableProgramis as-
signed the program’s syntax tree and the variableCurrent_Envis initial-
ized to indicate suitable references into the memory. The memory itself
is allocated to have one cell for each program variable as well as a cell
whose index is placed inCurrent_Done_Cell. All the memory cells are
initially emptied (i.e., set to〈〉).

• execute_single_state: The value of the variableProgram is transformed
until it is of the form©w w. A check is made to ensure that the done-flag
indexed byCurrent_Done_Cellhas been set totrue or false. The actual
transformations used for each Tempura construct are described later on.
All assignments occurring in the current state are reflected in the values
of the memory’s cells.

• advance_to_next_state: If the current state is not the last, preparations
are made for processing the next one. This is done by emptying the con-
tents of all the memory cells and deleting the leading operator©w from the
formula held inProgram.

Figure8.2shows the details of executing the simple program (8.1).

8.3 Description of the Procedureexecute_single_state

We now define the procedureexecute_single_state:

procedure execute_single_state:
begin

while¬is_reduced_stmt(Program) do
transform_stmt(Program);

if Memory[Current_Done_Cell] = 〈〉 then
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Figure 8.2:Details of execution of formula (8.1)
Current_Env: 〈〈“ I ” ,0〉,〈“J” ,1〉〉,
Current_Done_Cell: 2.

Before state 0:
Program:

(©©empty)∧ (I = 0)∧ (I getsI +1)∧2(J = 2 · I),
Memory: 〈〈〉,〈〉,〈〉〉.

After state 0:
Program:

©w [(©empty)∧ (I = 1)∧ (I getsI +1)∧2(J = 2· I)],
Memory: 〈〈0〉,〈0〉,〈false〉〉.

Before state 1:
Program: (©empty)∧ (I = 1)∧ (I getsI +1)∧2(J = 2· I),
Memory: 〈〈〉,〈〉,〈〉〉.

After state 1:
Program: ©w [empty∧ (I = 2)∧ (I getsI +1)∧2(J = 2· I)],
Memory: 〈〈1〉,〈2〉,〈false〉〉.

Before state 2:
Program: empty∧ (I = 2)∧ (I getsI +1)∧2(J = 2· I),
Memory: 〈〈〉,〈〉,〈〉〉.

After state 2:
Program: ©w [false∧ (I getsI +1)∧2(J = 2· I)],
Memory: 〈〈2〉,〈4〉,〈true〉〉.
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error(“Termination status not specified.”)
end.

The while-loop repeatedly transforms the program using the proceduretrans-
form_stmtuntil the test

is_reduced_stmt(Program)

is true, signifying that the program is reduced to the form©w w. Each iteration
of the loop corresponds to one pass over the program. Sometimes many passes
can be required to completely process one state. Once this is achieved, no further
transformations take place in that state. A check is then made to ensure that the
done-flag has been properly set. The operation oftransform_stmtis explained in
detail below.

8.4 Description of the Proceduretransform_stmt

The proceduretransform_stmthas the form

transform_stmt(Statement).

It makes a single left-to-right pass over a Tempura statement held in the parameter
Statementand transforms it, while simultaneously extracting information about
Tempura variables and termination. The contents of the memory cells are updated
in the process. Furthermore, when a Tempurarequestor display statement is
reduced, communication with the user takes place.

As noted in the presentation of Tempura’s syntax, a formula such as

(I = 2)∧ (J = I +3)

can be viewed as both a statement and as a boolean test. In addition, a variable
such asI can be considered either a location or an expression. Therefore, there
exist two other reduction routines. The proceduretransform_locis for locations
and the proceduretransform_expris for expressions. These are both used by
transform_stmtand are described in sections8.5and8.6, respectively.

Let us now consider the behavior oftransform_stmton individual types
of Tempura statements.

8.4.1 Implementing the statementstrue and false

When the statementtrue is encountered, it is immediately reduced to the form
©w true. The values of the memory cells are not affected. Thus,truecan be thought
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of as a no-operation statement. On the other hand, whenfalse is encountered as
a statement, the interpreter terminates execution with an error. This provides the
user a way to abnormally stop the program if inconsistencies are detected.

8.4.2 Implementing equalities

An equality has the general forml = e, wherel is a location ande is an expres-
sion. This is executed by first transformingl ande to new formsl ′ ande′. See
sections8.5and8.6 for details. If eitherl ′ or e′ is not yet fully reduced, the state-
ment

l ′ = e′

is returned as the result. If both are successfully reduced, thene′ is a constantc
andl ′ has one of the following two forms:

@loc(k), © l ′′.

The construct@loc(k) is an internal location descriptor that references
the memory cell indexed by the integerk. If l ′ is such a descriptor, the equality is
processed by placing the constantc in thek-th cell. A check is made to ensure that
the cell is empty prior to the assignment. The overall statement is then reduced to
the form©w true. This is returned as the result.

If the locationl ′ is of the form© l ′′ then the assignment is transformed to
the conditional statement

if morethen©w (l ′′ = c)elsefalse.

This postpones the actual assignment to the next state. Themoreconstruct is used
to ensure that the interval does indeed continue. If the test fails, the statement
falseis executed, thus resulting in an error.

8.4.3 Implementingemptyand more

The transformation of the statementemptyplaces the valuetrue in the done-flag
currently indexed by the variableCurrent_Done_Cell. The statement is then re-
duced to©w false. The transformation ofmoreplaces the valuefalse in the done-
flag indexed byCurrent_Done_Celland then reduces to©w true. In the case of both
statements, a check is made that the done-flag is empty (i.e., equals〈〉) prior to the
assignment.
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8.4.4 Implementingrequestand display

A statement of the form
request(l1, . . . , ln)

is processed by first prompting the user forn valuesc1, . . . ,cn and then transform-
ing the statement to a conjunction of equalities

(l1 = c1)∧·· ·∧ (ln = cn).

This is then re-reduced.
During the execution of a statement

display(e1, . . . ,en),

the expressionse1, . . . , en are all transformed. If any fail to completely reduce,
the statement is returned unchanged. Otherwise, the resulting values are displayed
and the statement is reduced to©w true.

8.4.5 Implementing conjunctions

A conjunctionw1∧w2 is processed by first reducing both operands to formsw′
1

andw′
2. If this is successful, the statementw′

1 will be of the form©w w′′
1 and the

statementw′
2 will be of the form©w w′′

2. The overall statement can then be reduced
to the form©w (w′′

1∧w′′
2). If eitherw′′

1 or w′′
2 is true, it can be omitted from the result.

If w′
1 or w′

2 is not yet fully reduced, the conjunctionw′
1∧w′

2 is returned instead.

8.4.6 Transforming the operatorsnext and always

A statement of the form©w w is already in reduced form and requires no further
processing. Statements of the forms©w and2w are rewritten using the following
equivalences and then reprocessed:

©w ≡ more∧©w w
2w ≡ w∧©w 2w.

8.4.7 Implementing implication

A conditional statement of the formb⊃ w is treated by first reducing the boolean
expressionb to eithertrue or false. If b reduces totrue, the overall statement is
changed tow and again transformed. Ifb reduces tofalse, the result is©w true.
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8.4.8 Implementing some other statements

As was mentioned earlier, statements using the operators©, if , gets, stableand
halt can be converted to equivalent forms expressed in terms of the constructs
described above. For example, a statementl getse is first expanded to the form

2[more⊃ ([© l ] = e)]

and then re-reduced. Execution efficiency can be greatly increased if each new
operator has its own specialized transformation sequence.

8.5 Implementing Locations

The proceduretransform_lochas the form

transform_loc(Loc).

The parameterLoc contains a location construct that is to be reduced. A loca-
tion that is a variable such asI or J is transformed by converting it to an internal
descriptor@loc(k), wherek is the variable’s cell number as indexed by the envi-
ronment contained inCurrent_Env. Locations can also be of the form© l , where
l is itself a location. These are considered to already be in reduced form.

8.6 Implementing Expressions

The proceduretransform_exprhas the form

transform_expr(Expr).

It attempts to reduce the contents of the parameterExpr using transformations
that are suitable for expressions. An expression is in reduced form if it is either an
arithmetic or boolean constant. Since constants such as3 andtrue are already in
reduced form, they require no further processing. A variable such asI is handled
by first reducing it as a location. The result is an internal location descriptor of the
form @loc(k). The actual value ofk is determined by looking atI ’s entry in the
current environment. The descriptor is immediately re-reduced as an expression.

A location descriptor@loc(k) is itself transformed by examining the mem-
ory cell indexed by the integerk. If that cell is empty (i.e., equal to〈〉), the de-
scriptor is returned unchanged. Otherwise, the value stored in the cell is returned
instead of the descriptor. For example, if the cell equals the singleton〈4〉, the
constant 4 is the result.
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An expression such as the sume1 + e2 is handled by first transforming
e1 ande2 and then adding them if both are successfully reduced to constants. A
conditional expression of the formif bthene1elsee2 is transformed by reducing
b and then selecting eithere1 or e2 for further processing. Boolean expressions
such as¬b andb1∧b2 can be expanded to conditional expressions and then re-
reduced. The boolean expressionsemptyandmoreare transformed to the con-
structs@loc(done-cell) and¬@loc(done-cell), respectively, wheredone-cellis
the value ofCurrent_Done_Cell. The new expressions are then immediately re-
reduced.

8.7 Static Variables, Lists and Quantifiers

We now consider how to extend the interpreter to handle static variables, lists and
quantifiers. The operatorslen, fin and← as well as predicates and functions are
also discussed.

8.7.1 Implementing static variables

Static variables are implemented by altering the memory slightly to include an
extra boolean flag in every cell. This is set totrue if the cell has been designated
as static. When a memory cell is allocated for a state variable, the cell’s flag is set
to false. While clearing memory, the interpreter only empties those cells whose
flag equalsfalse. Thus once a value is put in a static cell, it is never lost.

8.7.2 Implementing lists

The value of a list is represented as a special list descriptor of the form

@list(length,offset).

Herelengthequals the number of list elements andoffsetis the index of the first
of a series of consecutive memory cells for storing the elements.

8.7.3 Implementinglist, fixed_listand stable_struct

A statement of the formlist(l ,e) is processed by first reducing the locationl and
expressione. A series of consecutive memory cells are then allocated, one for
each list element. If the cell referenced by locationl is designated static, then so
are these cells. Afterwards,l ’s cell is assigned a suitable list descriptor.
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The implementation of the constructfixed_list(l ,e) mentioned in sec-
tion 7.3is similar to that oflist(l ,e). However, the memory cells initially allocated
for the list elements continue to be used during the entire interval. This is done
by simply reassigning the list description stored in locationl from state to state.
Thus a statement such as

fixed_list(Table,20)

is much more efficient that the logically equivalent form

2 list(Table,20)

since storage for the 20 elements ofTableneed only be allocated once rather than
in every state. Furthermore, by usingfixed_list, we ensure that the locations of the
elements ofTabledo not change over time. This turns out to be very important
when passing them as parameters to temporal predicates.

The constructstable_structl mentioned in section7.1.1has an implemen-
tation similar to that forfixed_listin that the list descriptor stored inl is repeatedly
reassigned throughout execution. However, the list elements ofl are assumed to
be already allocated. The conjunction

list(l ,e)∧stable_structl

can in fact be used to implement the statement

fixed_list(l ,e).

8.7.4 Implementing list constructors

A list constructor of the form

〈e0, . . . ,en−1〉

is evaluated by first reducing the expressionse0, . . . , en−1 and then allocatingn
consecutive static memory cells in which the values ofe0, . . . ,en−1 are stored. A
suitable list descriptor is then returned as the overall value of the expression. The
iterative list constructor is implemented in a similar way.

8.7.5 Implementing subscripts

A subscripted locationl [e] is processed by first evaluating the locationl and the
expressione. The value ofl ’s cell is fetched and checked to ensure that it is a list.
Furthermore, a check is made to ensure thate’s value is within the list’s range.
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A location of the form@loc(k) is then returned, wherek is the sum of the list’s
offset into memory ande’s value.

An expressione1[e2] is treated in a similar manner. However once the
relevant element’s location has been determined, the value in the corresponding
memory cell is fetched.

The sublist constructl [e1 . . e2] mentioned in section7.3 is implemented
by first reducing the locationl and the expressionse1 ande2. We then form a list
descriptor with offset to the element inl referenced bye1 and with lengthe2−e1.
This descriptor is stored in a new cell and the location of that cell is the result of
the reduction.

8.7.6 Implementing the list-length operator

An expression|e| is reduced by first determining the list descriptor of the expres-
sioneand then returning the length field stored in it.

8.7.7 Implementing existential quantification

A statement of the form
∃V1, . . . ,Vn:w

is processed by creating a new environmentenvcontaining entries for the quanti-
fied variablesV1, . . . ,Vn. Each of these variables has a fresh memory cell allocated
for it. The entries inenvfor other variables are the same as in the surrounding en-
vironment contained inCurrent_Env. The statement is then transformed to an
internal construct of the form

@exists(env,w).

This is immediately re-reduced. Such a statement is evaluated by saving the
contents ofCurrent_Env, settingCurrent_Envto envand then transforming the
statementw. Afterwards, the old contents ofCurrent_Envare restored. If the
transformation resultw′ is successful, it has the form©w w′′. Therefore, the overall
statement is converted to the form

©w [@exists(env,w′′)]

and returned. Ifw′ is not fully reduced, the overall statement is given the form

@exists(env,w′)

and returned.
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8.7.8 Implementing universal quantification

A statement of the form
∀v < e:w

can be readily handled by first reducing the expressione to a constantc and then
building a conjunction of the form

(∃v: [(v = 0)∧w])∧ (∃v: [(v = 1)∧w])∧·· ·∧ (∃v: [(v = c−1)∧w]).

The conjunction is immediately re-reduced.

8.7.9 Implementing the operatorslen, fin and chg

The implementation of a statementlen(e) first reduces the expressione to another
expressione′. If this is not a constant, the overall statement is changed tolen(e′)
and returned. On the other hand, ife′ is a constantc, the statement is reduced
using the equivalence

len(c) ≡ if (c = 0) thenemptyelse© len(c−1).

A statement of the formfinw is rewritten as the logically equivalent for-
mula

if emptythenwelse(©w finw)

and then immediately re-reduced. A temporal assignmentl ← e is processed
by first reducing the expressione to a constantc. The overall statement is then
changed to the form

fin(l = c).

This is immediately re-reduced.

8.7.10 Implementing predicate and function definitions

A predicate definition has the form

definep(V1, . . . ,Vn) ≡ w.

We execute this by creating a special descriptor of the form

@predicate(env,〈V1, . . . ,Vn〉,w),

whereenv is the current contents of the environment variableCurrent_Env. The
descriptor is stored in the predicate variablep’s memory cell and provides enough
information to properly access the predicate when it is invoked. The overall pred-
icate definition is then reduced to the form©w true. Function definitions are simi-
larly handled.
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8.7.11 Implementing predicate and function invocations

A predicate invocation has the form

p(e1, . . . ,en).

We first access the value inp’s memory cell and determine that it is indeed a
special descriptor of the form

@predicate(env,〈V1, . . . ,Vn〉,w).

The locations of actual parameterse1, . . . , en are then reduced. If any are in
fact constants or expressions, their values are stored in freshly allocated static
memory cells. A new environmentenv′ is created in which each formal parameter
V1, . . . ,Vn has an entry pointing to the corresponding actual parameter’s location.
The entries for other variables are made identical to those found in the predicate-
descriptor’s environmentenv.

We now transform the predicate invocation to the statement

@call(env′,w),

whereenv′ is the environment just constructed andw is the statement contained in
the predicate-descriptor. The internal operator@call is then processed by saving
the current contents of the variableCurrent_Env, settingCurrent_Envto env′, re-
ducingw and then restoringCurrent_Env’s old value. If the transformed statement
w′ is completely reduced, then it has the form©w w′′. The overall invocation is then
rewritten as follows:

©w [@call(env′,w′′)].

On the other hand, if the transformation is not complete, the statement

@call(env′,w′)

is returned so that this can be executed during the current state’s next pass.
Function invocations are similarly handled. They are eventually reduced

to something of the form
@call(env,c),

whereenv is an environment andc is a constant. At this time, we discard the
operator@call and the environment and transform the overall expression to be
simply the constantc.
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8.8 Implementingchopand Iterative Operators

We now turn to the implementation ofchopand related operators such asfor and
while.

8.8.1 Implementing the operatorchop

Thechopconstruct has the form

w1;w2,

wherew1 and w2 are formulas. The first step in processing this is to allocate
a memory cell to serve as the local done-flag associated with the subinterval in
whichw1 is executed. Thechopstatement is then transformed to the internal form

@chop(done-cell,w1,w2).

Heredone-cellis the index of the memory cell serving as the local done-flag.
The construct@chopis executed by first saving the current value of the

variableCurrent_Done_Celland settingCurrent_Done_Cellto the indexdone-
cell. The statementw1 is transformed in this context. Afterwards, we restore the
old value ofCurrent_Done_Cell. If the transformation’s resultw′ is not yet fully
reduced, the@chopstatement is altered to have the form

@chop(done-cell,w′,w2)

and then returned as the overall result. However, ifw′ is fully reduced, it has
the form©w w′′. The @chopstatement is therefore transformed to the following
conditional form:

if @loc(done-cell) thenw2else©@chop(done-cell,w′′,w2).

This is immediately re-reduced. Thus, if the value of the local done-flag is true,
the subinterval in whichw1 was executed is empty and thereforew2 can be started
right away. If the local done-flag is false, then the execution of the@chopstate-
ment is continued to the next state of the overall interval. Note that the operator
strong-nextis used to indicate that the overall interval is not yet finished.

8.8.2 Implementing iterative operators

A statement of the form
foretimesdow
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is transformed by first reducing the expressione to a constantc. The overall
statement is then rewritten as the conditional form

if c = 0thenemptyelse(w; [for c−1timesdow])

and again reduced.
The implementation of an indexed for-loop of the form

for v < edow

first reduces the expressione to a constantc. The statement is then transformed to
the related construct

for0≤ v < cdow.

This is expanded using the following rule:

for c1≤ v < c2dow ≡
if c1≥ c2 thenempty
else([∃v:(v = c1∧w)]; [for c1 +1≤ v < c2dow]).

A while-loop is reduced using the equivalence

whilebdow≡ (if bthen[w;whilebdow]elseempty).

The iterative constructsrepeatandloopare treated similarly.

8.8.3 Implementing the operatorskip

The operatorskip is first transformed to the form

©empty

and then re-reduced.

8.9 Alternative Interpreters

The interpreter described here represents one technique for executing Tempura
programs. It is rather easy to understand but suffers from being relatively slow. Let
us now consider some alternative approaches and features. Most of them increase
execution efficiency at the expense of generality. With a proper mix of these
techniques, we feel that we can achieve speeds comparable with conventional
imperative programming languages.
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8.9.1 Immediate assignments

When the interpreter encounters the equality

(© I) = 1

it postpones the actual assignment toI until the next state by using the form

©w (I = 1).

The interpreter can be modified to perform the assignment immediately. This
leads to increased execution efficiency. However, one drawback is that statements
with parallel assignments such as the following are not properly handled:

([© I ] = I +1)∧ ([©J] = J+ I).

In this example, we would alterI ’s value before being able to compute the expres-
sionJ+ I . Thus, the next value ofJ would be unknown. One way to get around
this is to reorder the statement as follows:

([©J] = J+ I)∧ ([© I ] = I +1).

8.9.2 Two-level memory

So far, the interpreter we have presented maintains a single data value for each
location. It is often attractive to maintain two such values: one for the current state
and one for the next state. This permits the technique of immediate assignment
described above to properly work on parallel assignments such as

([© I ] = I +1)∧ ([©J] = J+ I).

Note that static locations still only require a single value.

8.9.3 Single-pass processing

The current interpreter can make a number of left-to-right passes over a statement
within each executed state. For example, the compound statement

(J = I +2)∧ (I = 1)

requires two passes. During the first pass the value forI is determined and during
the second pass the value forJ is determined. On the other hand, the following
statement can be completely reduced in a single pass:

(I = 1)∧ (J = I +2).
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If we use an interpreter having immediate assignment, then many useful
programs can be written which require only one pass per executed state. Once they
are debugged, such programs have the potential of being executed much faster
since the interpreter need not do the extra processing required to detect and handle
multiple passes. For example, when a memory cell is read, no test need be made
regarding whether a value is already stored.

8.9.4 Time stamps

A time stamp can be included as part of each memory cell. Whenever the cell is
stored into, the current state number is included with the data. When the cell is
accessed, its state number can be checked to ensure that the data is current and
not left over from a previous state. This approach eliminates the need to empty
all cells at the beginning of every state. Many debugged programs require only
one pass per executed state and can therefore be executed without the interpreter
having to regularly empty memory cells or use time stamps.

8.9.5 Ignoring the operatorstable

As we have noted, many debugged Tempura programs can be run using one pass
per state and without emptying memory cells or maintaining time stamps. Any
statement of the formstablel in such programs can be ignored since the value of
the locationl ’s memory cell will automatically remain unchanged. Ifl is a list,
then the effect will safely propagate to its elements. Thus, the savings gained by
not processingstablecan be considerable. This technique should be used with
great care since time-dependent errors can go undetected.

8.9.6 Redundant assignments

The interpreter does not permit two or more redundant assignments to the same
location to occur in a single state. For example, the statement

(I = 1)∧ (I = 1)

causes an error in processing even though it is logically equivalent to the statement

I = 1.

The principle of nonredundancy also applies to interval termination con-
structs such asempty. Only one such construct should be used in each state of an
interval. Thus a formula such as

empty∧empty,
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although logically consistent, results in an error when executed. Tempura con-
structs such as the operatorsempty, more, halt and© affect interval length. Con-
structs such as∧, ©w and2 do not in themselves specify anything about termina-
tion.

If desired, the interpreter can be modified to permit the kind of redundant
assignments mentioned here. We currently have reservations but more experience
is needed to resolve this issue.

8.9.7 Special-purpose constructs

Various constructs can be added to Tempura in order to speed execution. For
instance, the operator:= is calledunit assignmentand is like temporal assignment
(←). However, unit assignment only works in intervals of length 1 and turns out
to be more efficiently implementable. A statementl := e is first transformed to
the form

(© l) = e

and then re-reduced. In addition, a test is made to ensure that the interval is indeed
of unit length. Note that:= can also be viewed as a restricted form ofgets.

8.9.8 Suppressing checks

Programming systems usually have facilities for checking subscript ranges, de-
tecting undefined variables and performing other such tests. The Tempura inter-
preter includes additional consistency checks regarding temporal behavior. For
example, a statement such as

(I = 1)∧ (I = 2)

is erroneous since the same variable cannot receive two values in one state. Simi-
larly, the interpreter detects an error in the following program because no value is
specified for the variableI in the second state:

(I = 1)∧ [skip;(skip∧ [I ← I +1])] ∧2display(I).

These types of temporal checks can be suppressed. This increases the speed of ex-
ecution but of course can result in various time-dependent bugs going unnoticed.

8.9.9 Call-by-name

When a function or predicate is invoked, the interpreter determines the locations
of all actual parameters and uses them to build an environment. The effect is to
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implement parameter passing using call-by-reference. As in other programming
languages, this is more efficient than call-by-name but has certain drawbacks.
For example, when a subscripted element such asL[I ] occurs as a parameter, its
location is determined only once. Therefore any change in the value of the index
I is not reflected in the corresponding formal parameter. Our experience is that
most subscripts tend to be static expressions (e.g.,L[1] or L[i]) so this is not a great
limitation. A more subtle problem occurs if one specifies thatL is a list using a
statement such as

2 list(L,3).

In every state, new memory cells are allocated forL’s three elements. Therefore, a
reference to, say,L[2] will change over time. Thus, ifL[2] is passed as a parameter
to a temporal predicate, the reference used becomes obsolete after the first state.
This is one reason we use the constructsfixed_listandstable_structfor creating
and maintaining such lists. Both of them ensure that the locations of list elements
do not move around.

If one desires, it is not hard to alter the interpreter to implement parameter
passing using call-by-name. It should be noted that the current interpreter permits
one to simulate call-by-name by means of parameterless functions. For example,
suppose we define the functionf and the predicatep as follows:

definef () = L[I ],
definep(g) ≡ (g()gets[g()+1]).

The predicate invocationp( f ) is therefore equivalent to the statement

L[I ]gets(L[I ]+1).



Chapter 9

Experimental Features

In this section we examine some experimental constructs that are not especially
well understood, yet have interesting applications and properties. The first in-
volves the concept of temporal projection. Following this is a brief look at lambda
expressions and their application to representing pointers. Finally, we discuss the
use of theprocessconstruct in parallel programs and the use of theprefixconstruct
in specifying the premature termination of computations.

9.1 Temporal Projection

When modelling hardware, it is natural to look at a circuit’s behavior at different
granularities of time. For example, the units of time might correspond to nanosec-
onds or clock ticks. We use the termtemporal projectionto denote the process
of mapping from one level of time to another. In earlier work [14, 34] we looked
at one way to add operators for temporal projection to ITL. Since then we have
developed an approach which is a bit easier to use and can be readily incorporated
into Tempura. The main new construct is a formula of the form

w1 projw2,

wherew1 andw2 are themselves formulas. This has the following semantics:

Mσ[[w1 projw2]] = true iff
for some relative timesτ0,τ1, . . . ,τm∈ {0,1, . . . , |σ|},
the following are true:

0 = τ0≤ τ1≤ ·· · ≤ τm = |σ|,
andM〈στi ...στi+1〉[[w1]] = true, for all i < m,

andM〈στ0στ1...στm〉[[w2]] = true.
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Figure 9.1:Example of projection
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This definition makes the formulaw1 proj w2 true on any interval meeting two
conditions. First, the interval can be broken up into a series of consecutive subin-
tervals, each having the formστi . . .στi+1 for somei < mand satisfying the formula
w1. Second, the projected interval〈στ0στ1 . . .στm〉 formed from the string of end-
states of the subintervals satisfiesw2.

Consider, for example, the formula

len(2)proj [len(4)∧ (I = 0)∧ (I getsI +1)].

This is true on any intervalσ whose length is 8 and in whichI ’s value starts at
0 and increases by 1 fromσ0 to σ2, from σ2 to σ4 and so forth. To show this,
we use the definition ofproj with m equalling 4 and withτ’s elements having the
assignments

τ0 = 0, τ1 = 2, τ2 = 4, τ3 = 6, τ4 = 8.

Thus the left operandlen(2) is true on each of the following subintervals ofσ:

〈σ0σ1σ2〉, 〈σ2σ3σ4〉, 〈σ4σ5σ6〉, 〈σ6σ7σ8〉.

The right operand
len(4)∧ (I = 0)∧ (I getsI +1)

is true on the projected interval

σ0σ2σ4σ6σ8.

Figure9.1 illustrates the projection pictorially. The value ofI in odd-numbered
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states is not specified. This example is in fact logically equivalent to the formula

(I = 0)∧ for4timesdo(len(2)∧ [I ← I +1]).

Note that different projections can be combined in parallel as well as with other
kinds of formulas.

9.1.1 Incorporating proj in Tempura

We add projection to Tempura by permitting statements of the form

w1 projw2.

Here w1 and w2 are themselves statements. Let us now look at two Tempura
programs based on this construct.

Example (Describing intermediate states):

The following formula initializes the variableM to 1 and then doubles it in every
third state for 4 times:

([len(2)∧stableM];skip)
proj [len(4)∧ (M = 1)∧ (M gets2M)]. (9.1)

FurthermoreM remains stable during intermediate states of the projection. Fig-
ure9.2gives an execution depicting the behavior ofM.

Example (Variable-length projection):

Let us define the predicatecount_and_sumas follows:

count_and_sum(I ,J) ≡def

len(4)∧ (I = 0)∧ (J = 0)∧ (I getsI +1)∧ (JgetsJ+ I).

This initializes the variablesI and J to 0 and then repeatedly increasesI by 1
andJ by I for four units of time. The following formula uses this predicate in a
projection that has ever widening gaps dependent onI ’s values:

([len(I)∧stableI ∧stableJ];skip)
proj [count_and_sum(I ,J)]. (9.2)

The projection has the values ofI andJ remain stable in intermediate states. This
formula is executed in figure9.3. Note that if we are not interested in the behavior
of I andJ in intermediate states, the projection can be specified as follows:

[len(I +1)] proj [count_and_sum(I ,J)].
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Figure 9.2:Execution of formula (9.1)

State 0: M= 1
State 1: M= 1
State 2: M= 1
State 3: M= 2
State 4: M= 2
State 5: M= 2
State 6: M= 4
State 7: M= 4
State 8: M= 4
State 9: M= 8
State 10: M= 8
State 11: M= 8
State 12: M=16

Done! Computation length = 12.

Figure 9.3:Execution of formula (9.2)

State 0: I= 0 J= 0
State 1: I= 1 J= 0
State 2: I= 1 J= 0
State 3: I= 2 J= 1
State 4: I= 2 J= 1
State 5: I= 2 J= 1
State 6: I= 3 J= 3
State 7: I= 3 J= 3
State 8: I= 3 J= 3
State 9: I= 3 J= 3
State 10: I= 4 J= 6

Done! Computation length = 10.
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9.1.2 Universal projection

The kind of projection so far presented can be calledexistential projectionsince
it is true on an interval if there isat leastone way to break up the interval. The
operator

w1 uprojw2

is calleduniversal projectionand is true on an intervalσ if for every waywe break
up σ usingw1, the projected result satisfiesw2. We can expressuproj as the dual
of proj:

w1 uprojw2 ≡def ¬(w1 proj¬w2).

At present, we do not see how to include universal projection in Tempura.

Example (Projection of a clocked system):

Universal projection provides a way of abstracting from digital behavior involving
an explicit clock signal to behavior at the register-transfer level. As an example
of this, let us consider a simple system driven by clock pulses. We first define the
pulse operator↑↓Clock to be true on intervals where the bit signalClockrises and
then falls:

↑↓Clock ≡def

(Clock≈ 0);skip;(Clock≈ 1);skip;(Clock≈ 0).

The system we have in mind has the three bit signalsClock, X andY. Universal
projection facilitates examining those properties ofX andY that are true across
clock pulses independent of where we mark the beginning and end of each indi-
vidual pulse. We can use projection of the form

(↑↓Clock)uprojw

to specify and reason about a formulaw describing the behavior ofX andY at the
register-transfer level. For example, the following formula is true ifX is repeat-
edly inverted andY remains stable over a series of clock pulses:

(↑↓Clock)uproj[(X gets¬X)∧stableY].

9.2 Lambda Expressions and Pointers

Lambda expressions provide a natural means of representing functions as values.
We now briefly sketch how to incorporate them into ITL and Tempura. We also
show how lambda expressions can be used to represent pointers.
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9.2.1 Lambda expressions

A lambda expression has the form

λV1, . . . ,Vn:e,

whereV1, . . . , Vn are variables ande is an expression. The body ofe can itself
contain lambda expressions. In addition, we permit lambda predicates having the
syntax

ΛV1, . . . ,Vn:w,

whereV1, . . . ,Vn are variables andw is a formula.
First order lambda constructs can be viewed as temporal functions and

predicates. To date, we do not have an adequate semantics for higher order lambda
expressions.

An invocation of a lambda construct has the form

e0(e1, . . . ,en),

wheren≥ 0 ande0, . . . , en are expressions. The value ofe0 should be a lambda
construct of arityn.

9.2.2 Pointers

We can represent a pointer to a variableA by means of the parameterless lambda
expression

λ:A.

For example, suppose the static variableb has this as its value. The variableA
can then be indirectly accessed through the function invocationb(). Thus, the
following formula is true on intervals whereA increases by 1:

[b = (λ:A)]∧ [b()← b()+1].

Let us now introduce some operators to make the pointer notation look
more conventional. The expression

ref(l)

equals a pointer to the locationl . It can be defined as follows:

ref(l) =def λ: l .
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A pointer expressionecan be dereferenced using the construct

deref(e).

It is defined as follows:
deref(e) =def e().

Thus the sample formula given above can be also expressed as follows:

[b = ref(A)]∧ [deref(b)← deref(b)+1].

9.3 TheprocessConstruct

In section8.9.6, we mentioned that two separate statements can not in parallel
determine the length of an interval. If one has a number of statementsw1, w2, . . . ,
wn to be run in parallel and each individually determines interval length, then all
but one should be used with the unary operatorprocess:

w1∧ (processw2)∧·· ·∧ (processwn).

For instance, the following statement is permitted:

[(I = 0)∧ (I getsI +1)∧halt(I = 5)]
∧process[(J = 0)∧ (JgetsJ+2)∧halt(J = 10)].

The predicatesum_tree_processin section7.1.2and the predicatesort_processin
section7.3.3both make use ofprocess. This is so that multiple instances of them
can be run in parallel. Note that theprocessconstruct has no logical semantics
and can be defined as follows:

processw ≡def w.

Its purpose is merely to explicitly indicate to the interpreter that redundant speci-
fications of interval termination are present.

9.4 Theprefix Construct

When a program is designed, it is often necessary to provide facilities for termi-
nating execution before the normal end is reached. For example, an interpreter
might detect an error in the code it is processing and therefore wish to leave a
number of recursive calls via an error exit. In conventional Algol-like languages
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this kind of behavior is readily achieved by means of a go-to statement which can
immediately exit from any level of nesting in a program. This technique appears
inappropriate for Tempura since Tempura does not have go-to statements and the
underlying ITL formalism seems incapable of supporting them.

It turns out the one can achieve the effect of error exits by means of the
prefix operator. The formulaprefixw is true on an intervalσ iff σ is a prefix of
some intervalσ′ on whichw is itself true:

Mσ[[prefixw]] = true iff
there is someσ′ in I such that
|σ′| ≥ |σ|, Mσ′[[w]] = trueandσ = 〈σ′

0σ′
1 . . .σ′

|σ|〉.

For example, the following formula is true on any interval having length not
greater than 5:

prefix[len(5)].

9.4.1 Incorporating prefix in Tempura

We introduce Tempura statements of the formprefixw wherew is itself a state-
ment. Here are some simple applications.

Example (Early termination of iteration):

Consider the following formula:

halt(I = 16)∧prefix[len(10)∧ (I = 1)∧ (I gets2I)]. (9.3)

The operand ofprefixspecifies that the variableI repeatedly doubles over an inter-
val of length 10. However, the outerhalt construct overrides this and terminates
the interval uponI reaching the value 16, i.e., after four units of time. Figure9.4
shows the behavior of the formula.

Example (Early termination of nested recursion):

Figure9.5 depicts a modified version of the serial tree summation program de-
scribed earlier in section7.1.1. The predicates reference a global variableTag
which normally equals the empty list〈〉 except at the end of the execution of
pfx_sum_treewhen it is assigned the singleton〈true〉. However, if an invocation
of the predicatepfx_sum_tree_bodyfinds a leaf having the value 0, the value of
Tag is set to the singleton〈false〉. The following program handles initialization
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Figure 9.4:Execution of formula (9.3)

State 0: I= 1
State 1: I= 2
State 2: I= 4
State 3: I= 8
State 4: I=16

Done! Computation length = 4.

Figure 9.5:Tree summation with prefix computations

define pfx_sum_tree(Tree)≡
pfx_sum_tree_body(Tree);
(

skip∧ (Tag← 〈true〉)∧ (stableTree)
)

define pfx_sum_tree_body(Tree)≡
if is_integer(Tree) then(

if Tree> 0thenempty
else(

skip∧ (Tag← 〈false〉)∧ (stableTree)
)

)
else(

pfx_sum_subtree(Tree,0);
pfx_sum_subtree(Tree,1);
(

skip∧ (Tree← Tree0 +Tree1)∧ (stableTag)
)

).

define pfx_sum_subtree(Tree, i)≡
pfx_sum_tree_body(Treei)
∧stable_structTree
∧stableTree1−i .
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Figure 9.6:Execution of formula (9.4)
State0: Tag=<> Tree=<<<1,1>,<1,1>>,<<1,1>,<1,1>>>
State 1: Tag=<> Tree=<<2,<1,1>>,<<1,1>,<1,1>>>
State2: Tag=<> Tree=<<2,2>,<<1,1>,<1,1>>>
State3: Tag=<> Tree=<4,<<1,1>,<1,1>>>
State 4:Tag=<> Tree=<4,<2,<1,1>>>
State 5: Tag=<> Tree=<4,<2,2>>
State6: Tag=<> Tree=<4,4>
State7: Tag=<> Tree=8
State 8: Tag=< true> Tree=8

Done! Computation length = 8.

State 0: Tag=<> Tree=<<<1,1>,<1,1>>,<<0,1>,<1,1>>>
State1: Tag=<> Tree=<<2,<1,1>>,<<0,1>,<1,1>>>
State2: Tag=<> Tree=<<2,2>,<<0,1>,<1,1>>>
State 3: Tag=<> Tree=<4,<<0,1>,<1,1>>>
State4: Tag=< false> Tree=<4,<<0,1>,<1,1>>>

Done! Computation length = 4.

and includes theprefixconstruct to facilitate early termination upon the detection
of such a leaf:

(Tree= initial_tree)∧ (Tag= 〈〉)
∧halt(|Tag|= 1)∧prefix[pfx_sum_tree(Tree)]. (9.4)

This invokes the predicatepfx_sum_treeand terminates when the variableTag
becomes a singleton. We assume that the static variableinitial_tree equals the
starting value for the variableTree. Figure9.6 shows the formula’s behavior for
two possible trees. The first computation processes a tree containing all 1’s. The
second computation operates on a variant of the tree in which one leaf has the
value 0.

9.5 Implementing these Constructs

We now discuss how the various constructs just introduced can be implemented
in the Tempura interpreter. This presentation can be skipped if desired.
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9.5.1 Implementing temporal projection

The interpreter handles a statement of the formw1projw2 by first allocating a new
memory cell and then transforming the statement to the internal construct

@proj(done-cell,w1,w2).

This is immediately re-reduced. Heredone-cellis the index of the memory cell.
The cell serves as a local done-flag for the projected interval in which the state-
mentw2 is executed.

We execute the@proj construct by first saving the value of the variable
Current_Done_Celland setting it to the indexdone-cell. The statementw2 is then
transformed in this context to a new statementw′. Afterwards the old value of
Current_Done_Cellis restored. Ifw′ is not yet fully reduced, the overall@proj
statement is rewritten as

@proj(done-cell,w1,w′).

This is returned as the result of the transformation. On the other hand, ifw′ is fully
reduced and thus of the form©w w′′, then the overall projection is transformed to
the following conditional statement and then immediately re-reduced:

if @loc(done-cell) thenempty
else[w1;@proj(done_cell,w1,w′′)].

This tests the localized done-flag indexed bydone-cell. If it is true, the interval in
which w2 was transformed is finished and therefore the overall projection termi-
nates. Otherwise, the statementw1 is executed followed by the resumption of the
projection statement.

9.5.2 Implementing lambda expressions and pointers

The lambda constructs implemented in the Tempura interpreter can uniformly
handle both first-order and higher-order variants. The approach taken is basically
the same as for processing predicate and function definitions. See section8.7.10
for a presentation of this.

The technique of using lambda expressions for representing pointers ac-
tually works in the current Tempura interpreter. However, the constructsref and
deref can be implemented in a more efficient but less general manner by means of
a new type of descriptor specifically for pointers. We omit the details.



Executing Temporal Logic Programs/B. Moszkowski 9 February 2000 96

9.5.3 Implementing theprocessconstruct

When reducing a statement of the form

processw

we first allocate a memory cell to serve as a local done-flag. The statement is then
transformed to the internal construct

@process(done-cell,w)

and immediately re-reduced. Heredone-cellis the index of the memory cell.
The@processconstruct is itself implemented by saving the value of the

variableCurrent_Done_Celland setting it to the indexdone-cell. The statementw
is transformed within this context to a new statementw′. Afterwards the variable
Current_Done_Cellis restored to its old value.

If the statementw′ is not yet fully reduced, the statement

@process(done-cell,w′)

is returned as the result. Otherwise, ifw′ is fully reduced then it has the form©w w′′

for somew′′. We therefore transform the@processconstruct to the following
conditional statement:

if [empty≡@loc(done-cell)]
then[©w @process(done-cell,w′′)] elsefalse.

This tests to make sure that the current done-flag and the local done-flag used
by the@processoperator agree in value. If they do, the statementw′′ is placed
within the @processconstruct in preparation for any subsequent states. If the
done-flags are not equal, the statementfalseis executed, thus generating an error.
Note that once a Tempura program is debugged, the consistency check between
the done-flags can be suppressed.

9.5.4 Implementing theprefix construct

The prefix construct is implemented in the same way as theprocessconstruct.
However, the following conditional statement is used in place of the one given
previously:

if ¬[more∧@loc(done-cell)]
then[©w @prefix(done-cell,w′′)] elsefalse.

The conditional test ensures that the interval of the prefixed statement does not
terminate before the outer interval does.



Chapter 10

Discussion

We now discuss the status of Tempura and some directions for further research.
Afterwards we look at programming formalisms that seem related to Tempura and
also review some other work on temporal logic.

10.1 Experience and Further Work

Using the ideas discussed here, we have implemented a prototype Tempura inter-
preter in Lisp. Its design is based on the interpreter presented in section8 and it
includes facilities for experimenting with some of the alternative execution strate-
gies mentioned in section8.9. A great variety of Tempura programs have been
written and successfully run. Roger Hale, a PhD student at Cambridge University,
has more recently implemented a faster version of the interpreter in the program-
ming languageC. In [13], he describes the application of ITL and Tempura to the
modelling of a digital ring network. Another interpreter has been developed in
Prolog by Masahiro Fujita, Shinji Kono and others at Tokyo University.

In the future we plan to build a compiler and bootstrap Tempura in itself.
We also hope to describe the operational semantics of Tempura in ITL. This
will enable us to formalize the relation between various execution strategies, both
sequential and parallel. It seems likely that we will generalize ITL to permit
infinite intervals in order to handle nonterminating computations.

So far we have made little mention of ITL’s proof theory. This is much
less developed than the model theory. Work by Halpern and Moszkowski has
shown that one propositional subset of ITL is undecidable and that another is
decidable (see Moszkowski [34] for details). Although it is not hard to come up
with sound axioms and inference rules for ITL, no systematic work has been done
to date. We therefore feel that ITL’s proof theory represents a promising area for
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future research.

10.2 Related Programming Formalisms

Let us now consider some behavioral formalisms and programming languages that
seem related to ITL and Tempura.

10.2.1 The programming languageLucid

The functional programming languageLucid [2, 45] developed by Ashcroft and
Wadge is similar to parts of Tempura. For example, the Lucid program

I = 0 f by (I +1); J = 0 f by (J+ I)

roughly corresponds to the temporal formula

(I = 0)∧ (J = 0)∧ (I getsI +1)∧ (JgetsJ+ I).

This illustrates how the operatorgetscan be handled in Lucid. On the other
hand, Algol-like temporal constructs such as←, chopandwhiledo not have direct
analogs in Lucid. Thus, a Tempura statement such as

while(M 6= 0)do(skip∧ [M ←M−1]∧ [N← 2N])

cannot be readily translated. In [1], Ashcroft and Wadge develop a calculus for
reasoning about Lucid programs.

10.2.2 CCSand CSP

Milner’s Calculus of Communicating Systems[32] as well as Hoare’sCommu-
nicating Sequential Processes[22] are popular notations for describing and rea-
soning about parallel systems. Related work includes Milne’sCIRCAL [31] for
modelling hardware and the CSP-inspired programming languageoccamTM [24].
In CCS and CSP, multiple processes interact with one another by mutually syn-
chronizing on events. There are operators for composing processes, waiting for
events and concealing events.

Let us look at some of the constructs used in CSP. The forma → P
denotes a process that awaits the eventa and then executes the subprocessP.
Similarly, the form

a→ (b→ P)
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describes a process that first waits for the eventa and then waits forb before
executing the subprocessP. The constructP ‖ Q runs the processesP andQ in
parallel. Thus the form

(a→ P) ‖ (a→Q)

has the eventa separately trigger each of the processesP andQ. This is viewed
as equivalent to havinga triggerP andQ together:

(a→ P) ‖ (a→Q) = a→ (P ‖Q).

The CSP notation includes channels for synchronized communication be-
tween parallel processes. An event of the formc!v sends the value of the variable
v to the channelc. Similarly, the eventc?v awaits the receipt of an input from
channelc and places the value in the variablev.

The treatment of time is not a central issue in CCS and CSP. However, it is
possible to describe a clock process that serves as a source of events representing
ticks. A variant of CCS calledSynchronous CCSmodels concurrent systems that
operate in lock step.

10.2.3 Predicative programming

Hehner [17] views programs as logical predicates that describe the input-output
behavior of variables. Various Algol-based constructs such as assignment (“:=”),
sequencing (“;”) and while-loops are treated. Their semantics are given by means
of special temporal operators. The constructx̀ (read “x in”) represents the value
of the variablex before executing some statement. The analogous constructx́
(read “x out”) represents the value of the variablex after the statement finishes.
For example, the following formula specifies thatx increases by 1 andy remains
unchanged:

(x́ = x̀+1)∧ (ý = ỳ). (10.1)

This is similar to the ITL formula

(X ← X +1)∧ (Y←Y).

Hehner reduces the meaning of a statement to a formula based on these operators.
For example, in a program with two variablesx andy, the meaning of the simple
assignmentx := x+1 might correspond to formula10.1.

The precise amount of time taken by a statement can not be directly
specified. However, if one desires to formalize properties regarding computa-
tion length, an extra clock variable can be used. Hehner then goes on to introduce
concurrency with interprocess communication through CSP-like channels.
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Figure 10.1:Sample Esterel program

var SPEED: int in
loop

every10seconds do
SPEED:= 0;
every METER do

SPEED:= SPEED+1
end

end;
emit SPEED_MEASURE(SPEED)

end
end

10.2.4 The programming languageEsterel

Most programming languages have no formal notion of time. For example, even
if such languages permit statements specifying delay, the semantics of these kinds
of constructs are usually imprecise. Tempura is an exception to this rule as is
the language Esterel presented by Berry and Cosserat [4]. Programs in Esterel
can include constraints involving computation length. In figure10.1we show an
example in which the duration of loops is specified in units of time or distance
covered. Berry and Cosserat characterize the behavior of Esterel programs using
transition rules based on a discrete model of time.

10.2.5 The programming languageProlog

The programming languageProlog [9, 23] uses Horn clauses in first order logic
as a means of describing computations. Kowalski [25, 26], Colmerauer et al. [10]
and others originally applied this approach to expressing algorithms for such tasks
as natural language understanding and theorem proving. This led to the use of res-
olution as the basis for executing Prolog programs. Subsequent work by Clark,
McCabe and Gregory [7, 8], Shapiro [42], and others has generalized logic pro-
gramming to deal with concurrent systems.

Let us consider how to express the following two predicate definitions in
Prolog:

is_double(I ,J) ≡def (J = 2I),

is_double1(I ,J) ≡def
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Figure 10.2:Prolog predicates for doubling a value

is_double(I ,J) ⊂ J is 2∗ I .

is_double1(0,0).
is_double1(I ,J) ⊂

(I 6= 0)∧ (I1 is I −1)
∧ is_double1(I1,J1)∧ (J is J1+2).

if I = 0thenJ = 0
else∃I1,J1: [(I1 = I −1)

∧ is_double1(I1,J1)∧ (J = J1+2)].

We assume that all the variables mentioned here range over the nonnegative in-
tegers. The definition ofis_double1is recursive but well founded since the first
parameter repeatedly decreases by1 until it reaches 0. Both predicates are true if
the second parameterJ equals twice the first parameterI . Thus, the predicates are
in fact equivalent:

|= is_double(I ,J) ≡ is_double1(I ,J).

In figure 10.2 we show Prolog programs corresponding to bothis_doubleand
is_double1. The Prolog versions of the predicates illustrate how definitions gen-
erally consist of lists of implications. Furthermore, hidden variables are not ex-
plicitly quantified.

The developers of Prolog strongly believe in distinguishing between logic
and any procedural aspects of implementation. As a consequence, Prolog and
its offspring do not have any notion of time and therefore are unable to directly
express imperative constructs such as assignments. Furthermore, there is no di-
rect means of logically specifying or reasoning about such things as computation
length and invariants.

In practice, extra-logical constructs such asassertandretractcan be used
to get around the lack of assignment statements. They provide a means for adding
and removing facts from a system-maintained database. However, their usage is
generally not considered good programming style. Alternatively, one can stay
completely within the framework of the underlying logic by explicitly represent-
ing dynamically changing objects as lists of values. Whether this represents a
practical and desirable way to express programs and properties remains to be seen.

Compared with Prolog, our approach does not limit itself to a subset of
conventional logic based on Horn clauses. Nonetheless, it is a form of logic pro-
gramming, albeit with temporal logic as the underlying formalism. We feel this
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provides a more natural setting for both programming and reasoning about dy-
namic systems. For example, here are two ITL definitions corresponding to pro-
cedural interpretations of the original logical predicates:

double(I ,J) ≡def (empty∧ [J = 2I ]),

double1(I ,J) ≡def

(J = 0)
∧whileI > 0do(skip∧ [I ← I −1]∧ [J← J+2]).

These are readily executable in Tempura. Within ITL we can specify various time-
dependent properties. For instance, in both algorithms the final value ofJ equals
twice the initial value ofI :

|= double(I ,J) ⊃ J← 2I ,

|= double1(I ,J) ⊃ J← 2I .

In addition, the following property states that the length of a computation satisfy-
ing double1equals the initial value ofI and that during the computation, the value
of the expression2I +J remains stable:

|= double1(I ,J) ⊃ [len(I)∧stable(2I +J)].

Note that Tempura does not completely exclude the style of program-
ming used in Prolog. For example, the original logical predicatesis_doubleand
is_double1can be directly embedded in Tempura programs such as the following:

len(5)∧ (I = 0)∧ (I gets[I +1])
∧2 is_double1(I ,J)∧2display(I ,J).

One significant difference is the lack of resolution and backtracking in Tempura.
Perhaps a variant of Tempura can be designed that incorporates these features.

10.2.6 Functional programming

Functional programming [18] is based on the idea that certain types of functions
can be interpreted as executable descriptions of computations. McCarthy’s pro-
gramming languageLisp [27] is perhaps the best known example of this approach.
The functions themselves have no built-in notion of time. Therefore, as is the case
with logic programs, dynamic behavior is in effect modelled indirectly. Recur-
sion seems to be the most common technique used for this. Another approach is
to represent time-dependent variables indirectly as lists or as functions containing
an explicit time parameter.
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Here is a simple recursive function for doubling a nonnegative value:

double_func(I) =def

if (I = 0) then0else[2+double_func(I −1)].

This has the following correctness property:

|= double_func(I) = 2I .

For reasons of efficiency,tail recursion is often used when implementing such
functions. Here is a variant ofdouble_functhat is defined in this way:

double_func1(I) =def aux_double_func1(I ,0),

aux_double_func1(I ,J) =def

if (I = 0) thenJelseaux_double_func1(I −1,J+2).

The functiondouble_func1is logically equivalent todouble_func. The auxiliary
functionaux_double_func1satisfies the following property:

|= aux_double_func1(I ,J) = 2I +J.

Note that all these definitions and properties make perfect sense in ITL. However,
the iterative flow of control suggested by tail recursion can be directly expressed
through while-loops and other such formulas.

Functional languages sometimes include constructs such as Lisp’sprog,
setqandrplaca in an ad hoc manner in order to permit in-place assignments and
other imperative operations. Language purists tend to discourage their use. Even
so, such features often seem indispensable for reasons of clarity and efficiency.
For instance, suppose we are maintaining a 1000-element list and wish to peri-
odically alter various elements. It is a great waste of space to have to create a
completely new list on each occasion. Indeed, it is conceptually proper to view
the various operations as being applied to a single, dynamically changing data
structure. This is not directly possible in the functional framework.

Perhaps the biggest justification of functional programming has been its
mathematical elegance and simplicity relative to conventional imperative languages.
We feel that ITL and Tempura may offer an attractive middle ground which per-
mits one to directly program in a procedural manner without compromising on
formal rigor and without distancing oneself from the underlying implementation
on computers with alterable memory.

10.3 Other Work on Temporal Logic

Let us now look at some work on using various kinds of temporal logics to specify
and reason about dynamic systems.
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10.3.1 Interval logic

Schwartz, Melliar-Smith and Vogt [41] develop a formalism calledinterval logic
which includes temporal formulas having the syntax

[I ]w.

Here I can be built from a variety of special constructs for indicating the scope
of the interval in which the temporal formulaw is to be evaluated. ThusI can be
thought of as an “interval designator.” For example, the formula

[(X = Y)⇒ (Y = 16)] 2(X > Z)

is true on an interval ifX is greater thanZ throughout the subinterval starting the
first timeX equalsY and ending whenY equals 16. Note that the designator is not
itself a temporal formula. This is unlike the approach of ITL in which constructs
used to specify subintervals are themselves always formulas.

10.3.2 Generalizednext operator

Shasha, Pnueli and Ewald [43] propose some generalized forms of thenextoper-
ator in which explicit time offsets are mentioned. For example, the formula

e
©w

is true if the subformulaw is true ineunits of time from now. This is basically the
same as the ITL formula

len(e);w.

The following two types of formulas are also permitted:

[e1,e2]w, 〈e1,e2〉w.

They are defined as follows:

[e1,e2]w ≡def ∀i:((e1≤ i < e2) ⊃ ©i w),
〈e1,e2〉w ≡def ∃i:((e1≤ i < e2)∧©i w).

These constructs let one express behavior over various suffix subintervals of time
but do not provide access to prefix subintervals in the way ITL’schopdoes. For
example, the following ITL formula does not seems to be as elegantly expressed
in their notation:

(K +1→ K);(K +2→ K).
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Figure 10.3:Sample program in XYZ/E

2[ (#lb = gcd)⇒ (©#lb = l1);
(#lb = l1) ⇒ (©#Ix = Ia)∧ (©#lb = l2);
(#lb = l2) ⇒ (©#Iy = Ib)∧ (©#lb = l3);
(#lb = l3)∧ (#Ix = #Iy) ⇒ (©#lb = l6);
(#lb = l3)∧ (#Ix 6= #Iy) ⇒ (©#lb = l4);
(#lb = l4)∧ (#Ix > #Iy) ⇒

(©#Ix = #Ix−#Iy)∧ (©#lb = l5);
(#lb = l4)∧ (#Ix≤ #Iy) ⇒

(©#Ix = #Iy−#Ix)∧ (©#lb = l5);
(#lb = l5) ⇒ (©#lb = l3);
(#lb = l6) ⇒ (©#Iz= #Ix)∧ (©#lb = l7);
(#lb = l7) ⇒ (©#lb = stop)]

10.3.3 Temporal logic as an intermediate language

Tang [44] uses temporal logic as the basis for a programming language called
XYZ/E. Programs consist of a conjunction of transitions. An individual transition
describes changes to be made to program variables and a special program counter.
The temporal operators seem limited to© and2. Figure10.3shows an example of
this style. Note that although the operator “;” occurs in the program, the associated
semantics seem to be those of logical-and (∧) rather than ofchop. Tang includes
some transformations that permit one to rewrite an Algol-like program in XYZ/E.
This provides a way for giving temporal semantics to conventional programming
constructs.

10.3.4 Semantics based on transition graphs

Manna and Pnueli [29] discuss ways of translating conventional programming
constructs into transition systems described in temporal logic. The resulting tem-
poral descriptions are then used to reasoning about the original programs. The
programs can include multiple processes which are executed through interleav-
ing.

Figure10.4shows a sample program based on this approach. The pro-
gram determines twice the value of the variableI and places the result in the
variableJ. Each statement is associated with a temporal formula characterizing
the statement’s behavior. For example, the effect of the assignment statement at
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Figure 10.4:Algorithm for doubling a value

l0: I := n
l1: J := 0
l2: if I > 0thengotol6
l3: I := I −1
l4: J := J+2
l5: goto l2
l6: halt.

locationl3 can be represented as follows:

2[at l3 ⊃ ∀a,b:(〈I ,J〉= 〈a,b〉 ⊃ 3[at l4∧〈I ,J〉= 〈a−1,b〉])].

Thus, whenever the program is at locationl3 it ultimately transfers to location
l4. In addition the value ofI is decremented by 1 and the value ofJ remains
unchanged. Invariants, termination properties and other issues can be dealt with.
One drawback of this approach is its lack of compositionality since it can only
deal with complete programs.

10.3.5 Compositional proof rules

Barringer, Kuiper and Pnueli [3] use a modified form of interval temporal logic as
part of a compositional proof system for concurrent programs. Assertions have the
syntax{S}w whereS is a statement andw is a temporal formula. For example the
following proof rule describes the semantics of an assignment statement within an
individual process:

{v := e}[(E)U(Π∧ (©y = y◦ [v← e])∧©(EU fin))].

Here the variabley is a vector that associates values with the variables used by
the process. The special propositionE is true if the process is inactive andΠ
is conversely true if the process is active. Theuntil operatorU is a temporal
construct used to specify that the process remains inactive until the value ofv in
y is altered to equale. In general, a temporal formula of the formw1U w2 is true
if the formulaw1 remains true until some time when formulaw2 is true. After
performing the assignment, the process stays inactive for the rest of the interval.

The proof rule for the sequential composition of two statementsS1 and
S2 requires one to first demonstrate the assertions{S1}w1 and{S2}w2 for some
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formulasw1 andw2. From this one can immediately deduce the assertion

{S1;S2}(w1C w2),

whereC is simply the temporal operatorchop.
This approach seems attractive for handling conventional programming

languages since one is not restricted to reasoning about complete programs. How-
ever, in the case of Tempura the distinction between programs and formulas is
minimal thus permitting a relation such as{S}w to be readily expressed as the
implicationS⊃ w.

10.3.6 Synthesis from temporal logic

Manna and Wolper [30] investigate techniques for automatically synthesizing CSP
synchronization code from temporal logic specifications. This holds much promise
since the design of correct routines for interprocess synchronization is generally
regarded as tedious and error-prone. One example considered is Dijkstra’s well
known dining philosophers’ problem. Another system consists of a synchronizer
Sthat regulates the activity of two other processesP1 andP2 by ensuring that they
never simultaneously operate in their respective critical regions. Let us look at
how this is handled.

The behavior of each processPi is expressed in temporal logic as a con-
junction of the form shown below:

S!begini ∧2(S!begini ⊃ ©S!endi)∧2(S!endi ⊃ ©S!begini).

Here the constructS!begini represents a request by processPi to enter its critical
region. Similarly, the constructS!endi is used whenPi is ready to leave the critical
region. Thus, the specification states that each process initially makes a request
to enter its critical region. Furthermore, whenever it enters the region, it subse-
quently exits and whenever it exits it subsequently makes a request to reenter.

The specification ofS is a conjunction of two formulas. The first requires
that wheneverP1 enters its critical region,P2 is not allowed in its own critical
region until afterP1 exits. This is expressed in temporal logic in the following
way:

2[P1?begin1 ⊃ ([¬P2?begin2]U[P1?end1])].

The second part of the conjunction is similar but reverse the roles ofP1 andP2.
Theuntil operatorU provides a means of resolving conflicting requests.

Note that the usage of the operators! and? differs slightly from that of
the version of CSP described previously since process names are given instead
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of channels. This convention is in fact adapted from an earlier variant of CSP
described by Hoare in [21].

Given the specifications just described, Manna and Wolper show how to
mechanically produce a set of finite-state automata that satisfy the various con-
straints. The authors then derive CSP programs in a straightforward manner. The
synchronizerShas the following process associated with it:

∗[N = 1; P1?begin1→ N := 2
[]N = 1; P2?begin2→ N := 3
[]N = 2; P1?end1→ N := 1
[]N = 3; P2?end2→ N := 1].

The operator∗ indicates unlimited sequential repetition of the associated state-
ment. The body of the system consists of four transitions separated by the oper-
ator []. This specifies that they are to be nondeterministically selected whenever
their respective guard conditions are enabled. The variableN is used to maintain
the state of the synchronizer. For example, the transition given below is enabled
whenN equals 1 andP1 wishes to enter its critical region:

N = 1; P1?begin1→ N := 2.

The processP1 has the following CSP implementation:

∗[N = 1; S?begin1→ N := 2
[]N = 2; S?end1→ N := 1].

The program for processP2 is similar:

∗[N = 1; S?begin2→ N := 2
[]N = 2; S?end2→ N := 1].

Even though CSP is the target language used in this work, we imagine
that similar techniques could be applied to synthesizing Tempura programs. One
resulting advantage would be the ability to go from high-level specifications to
implementations without leaving temporal logic.

10.3.7 Automatic verification of circuits

Mishra and Clarke [33] use a temporal logic called CTL in a system that auto-
matically verifies asynchronous digital circuits. The system accepts a behavioral
specification given in CTL and generates a state-transition graph from it. This
graph acts as a model against which various temporal properties can be checked.
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The graph can also be viewed as an implementation of the original specification.
The main example presented is a self-timed queue element containing signals for
passing data as well as for performing handshaking. Perhaps this kind of verifier
can be modified to handle suitable hardware specifications given in ITL.

10.4 Conclusions

The present work has investigated Tempura, a programming language based on
Interval Temporal Logic. The ITL formalism provides a way to treat such pro-
gramming concepts as assignment and loops as formulas about intervals of time.
Therefore, Tempura programs, their specifications and their properties can all be
expressed in the same formalism. Furthermore, this approach provides a unified
way for modelling both hardware and software. In the future, we hope to gain
more experience with using ITL and Tempura to simulate and reason about de-
scriptions of hardware devices and other types of parallel systems. In addition,
we plan to explore the feasibility of using Tempura as a general-purpose program-
ming language.
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