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Abstract

Temporal logic is gaining recognition as an attractive and versatile formalism for
rigorously specifying and reasoning about computer programs, digital circuits and
message-passing systems. This book introdUeespura a programming lan-
guage based on temporal logic. Tempura provides a way of directly executing
suitable temporal logic specifications of digital circuits, parallel programs and
other dynamic systems. Since every Tempura statement is also a temporal for-
mula, the entire temporal logic formalism can be used as the assertion language
and semantics. One result is that Tempura has the two seemingly contradictory
properties of being a logic programming language and having imperative con-
structs such as assignment statements.

The presentation investigatbgerval Temporal Logica formalism with
conventional temporal operators suchiCa@ex) andO (alwayg as well as lesser
known ones such ashop This provides the basis for Tempura. The design of
an interpreter for Tempura is also included as are a variety of sample Tempura
programs illustrating how to model both hardware and software.
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Chapter 1

Introduction

Temporal logic 28, 140] has been recently put forward as a useful tool for rea-
soning about concurrent programs and hardware. Within temporal logic, one can
express logical operators corresponding to time-dependent concepts sath as “
ways and “sometimes.Consider, for example, the English sentence

“If the propositions P and Q are always true, then P is always
true’”

This can be represented in temporal logic by the formula
OPAQ) D OP.

Here the operatofd corresponds to the notioraltvays” Thus, the subformula
O(P A Q) can be understood aP‘and Q are always trué.

Typically, temporal logic has been thought of as a tool for specifying and
proving properties of programs written in, say, Hoare’s C3® ¢r variants of
Pascal with concurrenci2@]. This distinction between temporal logic and pro-
gramming languages has troubled us since it has meant that we must simultane-
ously use two separate notations. Programming formalisms such as Hoare logic
[19], dynamic logiclL5,138], and process logid; [16] also reflect this dichotomy.

For example, the following Hoare clause specifies thhatdfinitially 3, then after
it increases by 1, its value is 4:

{1=3}1:=1+1{I =4}

Here we have the formulds= 3 andl = 4 as well as the statemeht=| 4 1.

One way to bridge the gap between logic and programs is by finding ways
of using temporal logic itself as a tool for programming and simulation. With
this in mind, we have develop&@&mpura an imperative programming language

2
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based on subsets of temporal logic. Every Tempura statement is a temporal logic
formula. This lets us specify and reason about Tempura programs without the
need for two notations.

The underlying formalism used is callégterval Temporal LogiqITL)
[34, 114, 36] and includes such conventional temporal operator® &sex) and
O (alwayg as well as lesser known ones suchcasp This provides a basis
for the Tempura programming language. We present ITL and Tempura and de-
scribe several sample Tempura programs illustrating how to model the structure
and behavior of hardware and software systems in a unified way. The design of
an interpreter for Tempura is also discussed.

1.1 Organization of Presentation

We start off in chaptel by describing the syntax and semantics of a temporal
logic having the operators (alway9 and O (nex). In chapteid a number of
additional temporal constructs are derived and then used in chdpetebuild

legal Tempura programs. We extend ITL and Tempura in chd&pterinclude
constructs for list structures as well as existential and universal quantifiers. The
operatorchopis introduced in chaptd® and used to express for-loops and other
iterative constructs. A variety of Tempura programming examples are then given
in chapterl7 to show the utility of the language in dealing with hardware and
software. After this is a discussion in chapg8on the details of implementing

an interpreter for Tempura. In chap@rve investigate the concept td#mporal
projectionas well as lambda expressions and pointers. Chéftéwoks at the
current status of work on Tempura interpreters and discusses future plans and
related research.



Chapter 2

Basic Features of Temporal Logic

Before describing Tempura, it is necessary to have an understanding of the un-
derlying temporal logic. Some of the constructs described here are later used in
Tempura programs. Others facilitate reasoning about program behavior. Rather
than presenting the entire logic at once, we first introduce some basic operators.
In later chapters, additional operators are considered.

2.1 Background

Let us first motivate the usage of temporal logic for specifying and reasoning about
dynamic behavior. Readers who are already familiar with temporal logic can omit
this discussion.

Predicate calculuslfl] is a versatile and precise notation for formally
specifying situations. For example, we can readily express the statehegpiis
2 and J equals | plus”lby means of the following formula:

(I=2A[0=1+1),

However, dynamic behavior is more problematic. For instance, the statefrent *
variable | at one time equals 1 and later equalsnot satisfactorily handled by
a formula such as

(I=1)Vv(l=2).

This just describes a static situation in whicltould equal either 1 or 2. The

formula
(I=2)A (=2

is certainly not appropriate here since it is logically equivalerfialsd
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One way to get around the static nature of logic is by modelling time-
dependent variables as explicit functions of time. For example, we might specify
the changing values @fusing the following formula:

Lt (E<tIA[I) = AI() =2).

Here the variables andt’ indicate the two time points whelités values are ex-
amined. This technique for representing dynamic behavior is very powerful but
suffers from the proliferation of extra time variables and quantifiers.

In this and subsequent sections we look at an alternative approach to rea-
soning about periods of time. We base it on temporal logic, a formalism that in-
cludes conventional logical operators suchhnaand= as well as time-dependent
ones such a8l (read ‘always) and < (read ‘sometiméey. Although originally
developed for application in philosophy, temporal logic has been put forward by
Burstall 5], Pnueli 39 and others as a useful tool for dealing with computer
programs and digital hardware.

Within the framework of temporal logic, it is possible to describe dynamic
behavior in a simple and elegant fashion. For example, the stateirsrWways
greater than 3 and sometimes less thancén be expressed by means of the
formula

Ol >3)AS(1 < 6).

The formula
O[(l=1) A0 =2)]

describes an interval of time in which the variablat some time equals 1 and at
some later time equals 2. Properties of time can also be expressed. For instance,
if I always equals 1 antiIsometimes equals 3 then we can infer that the bwi
sometimes equals 4:

[D0=1)AC0=3)] (1 +I=4).

These examples convey only a vague idea of the utility and convenience of tempo-
ral logic. As will be shown, temporal logic provides a natural means for describing
such dynamic notations as stability, termination and interval length. Let us now
look at the basic syntax and semantics of the formalism.

2.2 Syntax of the Logic

The initial set of constructs includes conventional logical operators such as =
(equality) and A (logical-and. In addition, there are the two temporal operators
O (nexd andO (alwaysg.
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2.2.1 Syntax of expressions

Expressions are built inductively as follows:
¢ Individual variablesA, B, C, ...

e Functions: f(ey,...,&), wherek > 0 andey,...,e are expressions. In
practice, we use functions such-asandmod Constants such as 0 and 1
are treated as zero-place functions.

e Next: Oe, whereeis an expression.

Here are two examples of syntactically legal expressions:

| +(0d)+1,  (O1)+I—00(I+0J).

2.2.2 Syntax of formulas

Formulas are built inductively as follows:

e Predicatesp(ey,...,e), wherek>0andey, ..., are expressions. Pred-
icates include< and other basic relations.

e Equality: e;=e», wheree; ande, are expressions.

e Logical connectives:-w andw; Awp, wherew, wy andw, are formulas.
e Next: Ow, wherew is a formula.

e Always: Ow, wherew is a formula.

Here are some syntactically legal ITL formulas:

(I=2)A0(I =3),
(D[ =3)A-([03] =4),
O(O[l =3]A00[J = 4]).

Note that the operatap can be used both for expressions (ecgl) and for for-
mulas (e.g.O(l = 3)).
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2.3 Models

A model is a triple(D, Z, M) containing a data domai®, a set of stateX and

an interpretatio giving meaning to every function and predicate symbol. For
the time being, we take the data domdirto be the integers. A state is a function
mapping variables to values . We letZ be the set of all such functions. For
a statesin X and a variableA, we letS[A]] denoteA’s value ins. Eachk-place
function symbolf has an interpretatiofM] f]] which is a function mappind
elements inD to a single value:

M[f] € (D" — D).
Interpretations of predicate symbols are similar but map to truth values:
M]p] € (DX — {true false}).

We assume that/ gives standard interpretations to operators such asd<.

The semantics given here keep the interpretations of function and predi-
cate symbols independent of intervals. They can however be generalized to allow
for functions and predicates that take into account the dynamic behavior of pa-
rameters.

Using the states i&, we construcintervalsof time fromZ ™, the set of alll
nonempty, finite sequences of states, tfandu are states iz, then the following
are possible intervals:

(s), (sttsus, (tttt).

Note that an interval always contains at least one state.

We now introduce some basic notation for manipulating intervals. Let us
use to denote the set of all intervals. For the moment, we take be the set
>+, Later on we will restrictl somewhat. Given an interval in I, we let|g]
be thelengthof 0. Our convention is that an interval’'s length is the number of
stateaminus oneThus the intervals above have respective lengths 0, 5 and 3. The
individual states of an interval are denoted byg, o1, ... ,0|qf- For instance, the
following equality is true iff the variablé has the value 5 io’s final state:

Ojol[lA] = 5.

The model described here views time as being discrete and is not intended
to be a realistic representation of the world around us. Nonetheless, it provides a
sound basis for reasoning about many interesting dynamic phenomena involving
timing-dependent and functional behavior. Furthermore, a discrete-time view of
the world often corresponds to our mental model of digital systems and computer
programs. In any case, we can always make the granularity of time arbitrarily fine.
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2.4 Interpretation of Expressions and Formulas

We now extend the interpretatioi to give meaning to expressions and formulas
on intervals. The construd¥/e] will be defined to equal the value i» of the
expressiore on the intervab. Similarly, Mg [w] will equal the truth value of the
formulaw ona.

At first glance, the following definitions may seem somewhat arbitrary.
We therefore suggest that an initial reading be rather cursory since the subsequent
discussion and examples provide motivation. The definitions can then be refer-
enced as needed.

o Ms[V]=o00[V], whereV isa variable.
Thus, a variable’s value on an interval equals the variable’s value in the
interval’s initial state.

o Mo[f(ey,.... &) = MIF|(Mo[er],. .., Molle]).

The interpretation of the function symbolis applied to the interpreta-
tions ofey, ..., &.

o %[[O e]] = 9‘/[<010‘0‘>[[e]]’ If ’0-’ 2 1
We leave the value ab e unspecified on intervals having length 0.

o Ms[p(er,....e)] = Mp[(Ms[ea], ..., Mo[e])-
o Mo[er=er] =true iff Msler] = Ms[e].
o My[-W] =true iff Ms[w] = false

o My[wiAw,] = true iff
Ms[[wa] = true and Mg[[w.]| = true.

o Ms[Ow] =true iff |o|>1 andM(ol...o\c\)[[Wﬂ = true.
o Ms[Ow] =true iff

foralli <|ol, -‘M<oi...o‘0‘>[[W]] = true.

Examples

We now illustrate the use o#f by considering the semantics of the sample tem-
poral formulas given earlier. Latt andu be states in which the variableandJ
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have the following values:

I J
s 1 2
t 3 4
u 3 1

The formula
(J=2)A0O(l =3)

is true on an intervab iff o has length> 1, the value of] in the stateog is 2 and
the value ofl in the stateo; is 3. Thus, the formula is true on the interyatu.
On the other hand, the formula is false on the inteftal) becausel's initial
value on this interval is 4 instead of 2.
The formula
(0Ol =3))A-([0J] = 4)

is true on any intervabt having length> 1 and in whichl equals 3 in the states

01, ..., 0|q| andJ does not equal 4 io;. Thus the formula is true on the interval
(sututy but is false ont) and(stuty.
The formula

Oo(O[l =3]A00[J =4])

is true on an intervab having length> 3 and in which the variable equals 3 in
the statesy, ... 0| and the variabld equals 4 in the states. Thus this formula
is true of the interva{suuty but is false ons) and(sutuy.

2.5 Satisfiability and Validity

A formulaw is satisfiedby an intervalo iff the meaning ofw on o equalstrue:

Mo ([wW] = true.

This is denoted as follows:
oEw

If all intervals satisfyw thenw is valid, written = w.

Example (Validity):

The following formula is true on an interval iff |o| > 1, the variabld always
equals 1 and in the statm, | equals 2:

O =1)AO(1 =2).
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No interval can have all of these characteristics. Therefore the formula is false on
all intervals and its negation is always true and hence valid:

= =[O0 =1)A0(1=2)].



Chapter 3

Deriving Other Operators

The kinds of interval behavior one can describe with the constructs so far intro-
duced may seem rather limited. In fact, this is not at all the case since we can
develop quite a variety of derived operators. We now present a few that have
proved useful in reasoning about simple computations.

3.1 Boolean Operators

The conventional boolean construetsV w» (logical-or), wi D wy (implication)
andw; = w» (equivalencgcan be expressed in terms-efand A. We can define
logical-or as shown below:

W1 VWo  =(ef ﬁ(—\W]_ AN —\Wz).
We then express implication and equivalence as follows:

W1 DWp  =def —W1V Wy,
W1 =W  =(ef (Wl D Wz) A (W2 D) Wl).

The boolean constructsue andfalsecan also be derived as can the conditional
formula
if wythernw, elsews.

Example (Implication):

If in an intervalo, the variabld always equals 1 and in the statgthe variable]
equals 2 then it follows that the expression J equals 3 ino;. This fact can be
expressed by the following valid formula:

= [O(1=1)A00=2)]>0(1+J=3).

11
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Example (Equivalence):

The formula
o(l =113 =2))

is true on an intervat iff o has length> 1 and in the state, the variabld has
the value 1 and the variablehas the value 2. It turns out that the conjunction

Ol = 1) AOJ = 2)

has the same meaning. The equivalence of these two formulas is expressible as
follows:
ol =1A[d=2) = [0l =1) A0 =2)].

This formula is true on all intervals and is therefore valid. In general, if two
formulasw; andw, have the same meaning on all intervals, then the equivalence
wi = wWs is valid.

3.2 The Operator<

The constructow is true on an intervad if there is some suffix subinterval on
which the formulaw is true:

Ms[Ow] =true iff for somei < |a], Mci,.,o‘cv[[w]].
This behavior can be given in terms of the operatoesndC:
OW =gt 0w

Thus the operator§ and< are in fact duals.

Example (Present and future):

The following formula illustrates important differences between various temporal
constructs:
(=) A0 =2)AO(1 =3).

This is true on an intervad having length at least 2 in which the variableas the
value 1 in the initial statey, the value 2 in the next statg and eventually equals
3 in some subsequent state.
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3.3 The Operatorsemptyand more

The formulaemptyis true on an interval iff the interval has length O:
o =empty iff |o|=0.

We can define@mptyas follows:
empty =qef —Otrue.

The formulamoreis true on an interval iff the interval has nonzero length.
We can expressioreas follows:

more =g Oftrue.
From these definitions it readily follows thiadoreis the opposite oémpty

= more= —empty

Example (Testing the length of an interval):

We can use the constructs and emptyto test the length of an interval. For
example, the formula
OOOempty

is true on an intervad iff o has length 3.

3.4 The Operatorsgetsand stable

It is sometimes necessary to say that over time one expressinuals another
expressiore, but with a one-unit delay. We use the constrygetse, to represent
this and define it as follows:

ergetse; =ger O(mored [(Oer) =ey]).

The testmoreensures that we do not “run off” the edge of the interval by erro-
neously attempting to examine the value of the expressian the nonexistent
stateoq| 1.

For instance, the formuld get2K is true on an intervab iff the variable
K is repeatedly doubled from each state to its successor:

o = Kget2K iff foralli<|ol|, oi11[K] =2-ai[K].

The constructstablee is true iff the value of the expressiaremains
unchanged. We can readily defisiablein terms ofgets

stablee =g4et egetse
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Example (Expressing an invariant condition):

The following formula is true on an intervalin which | andJ are both initially
0 andl repeatedly increases by 1 ahdepeatedly increases by 2:

(1=0AJ=0)A(Igetd +1) A (Jgets]+2).

In any interval for which this is true) always equal@l. Below is a valid property
that formalizes this:

= [0=0AJ=0)A(Igetd +1)A(Jgets]+2)] D O =2l).

This shows how the operatdr can express an invariant condition.

Example (Stability):

The formula
(I =1) Astabld

is true iff | initially equals 1 and its value remains unchanged. This is the same
as saying that always equals 1. The following valid property expresses this
equivalence:

= [(1=1)Astabld] = O(I =1).

3.5 The Operatorhalt

We can specify that a formulat becomes true only at the end of an interodly
using the formuldaltw:

haltw =gt O(W=empty.

Thusw must be false until the last state at which timés true. For example, the
formula
halt(l > 100)

is true ono iff the value of the variablé exceeds 100 in exactly the last statesof

Example (Repeatedly doubling a number):

From what we have so far presented, it can be seen that the formula

(I =1) Ahalt(l > 100) A (I gets2l)



Executing Temporal Logic Programs/B. Moszkowski 9 February 2000 15

IS true on an interval where the variablis initially 1 and repeatedly doubles until
it exceeds 100. The following valid implication states that intervals on which this
formula is true will terminate upohequalling the value 128:

= [(1=1)Ahalt(l > 100) A (I gets2l)] > halt(l = 128).

3.6 Temporal Equality

The construce; ~ e is calledtemporal equalityand is true iff the expressioms
ande, are always equal:

e =qf UO(er=e).

Example (Computing factorials):
Consider the following formula for running through factorials:
(1=0)A(lgetd +1)A (I ~=1!).

The value of] can be seen to start at 1 and then repeatedly be multipli¢d-tdy
This is expressed by the following property:

= [1=0A(lgetd +D)AI~I)] D
[A=1)AJgets]l +1]-J)].

3.7 The Operator®

In order for the construcdw to be true on an intervas, the length ofo must
be at least 1. We therefore refer to thissd®ng next The related constru@w
is calledweak nextand is true on an intervad if either o has length O or the
subformulaw is true on{o; ... 0|¢). We can expresseak nextn terms ofstrong
next

@W  =gef emptyv Ow.

The operatoweak nexprovides a concise and natural way to express a
construct as a conjunction of its immediate effect and future effect. Here are some
examples:

): Ow = wA®@Ow,

E Ow = moreA®w,

= egugetss;, = [mored ([Oe] = e)] A®(e; getsey),
= haltw = (empty=w)A®(haltw),

= e~e = (e=e)\0e~xe).
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These kinds of equivalences turn out to be useful in the design of interpreters.



Chapter 4

Programming in Temporal Logic

Consider the formula

(M=4)A(N=1)

Ahalt(M = 0) A (M getsM — 1) A (N gets2N). (4.1)

This holds true of intervals of length in which M successively runs through

the values4, 3, 2, 1 and0 andN simultaneously runs through the valugs2,

4, 8, and16. Let us now explore how to automate the process of taking such a
temporal formula and finding an interval satisfying it. One way to do this is by
developing a procedure that analyzes the formula and determines the behavior of
all free variables in every state. The result can itself be expressed as a temporal
formula. For instance, here is one way to represent the result for fordd)a (

(M=4/A[N=1])
AO(M =3]AIN =2))
ANOO(IM =2] AN =4])
ANOOO(M =1 AN = 8])
ANOOOO(IM = 0] A [N = 16] Aempty.

Note that this formula is logically equivalent to the original formddal). We

can view it as a kind of normal form containing state-by-state behavior of all free

variables. The process of determining such a normal form can be computerized.

Itis in essence a form of program execution where the original formula represents

the program and the resulting normal form corresponds to the actual computation.
The general problem of finding a normal form for an arbitrary temporal

formula is unsolvable. However, there are subsets of temporal logic for which the

task is manageable. We have developeohpuraa programming language based

on a subset that seems by experience to be efficiently implementable and of use

in describing interesting and practical computations. For example, forduZa (

17
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Figure 4.1:Execution of formula4.2)

State 0: M= 4 N=1
State 1. M= 3 N= 2
State 2: M= 2 N= 4
State 3: M= 1 N= 8
State 4. M= 0 N=16

Done! Computation length = 4.

is a legal Tempura program which when executed produces the output shown in
figureld. 1

(M = 4) A (N = 1) A halt(M = 0)

A (MgetsM — 1) A (N gets2N) A O display(M, N). (4.2)

This repeatedly prints the values lf andN by means of thelisplay construct.
Note that the program’s behavior is unaffected even if we change the order of the
conjunction’s operands. For instance, the following variant reverses them:

OdisplayM,N) A (N gets2N) A (M getsM — 1)
AhaltM =0)A(N=1)A (M =4).

During the execution of the following program, the user is continually
asked for the values dfby means of theequestconstruct:

Orequestl) Ahalt(l =0) A (3 =0)

A (Jgets]+1) A OdisplayJ). (4.3)

These values are summed idtandJ itself is displayed. The interval terminates
uponl equalling 0. A typical session is given in figuded Numbers in boxes
(e.g.,@) are input by the user.

4.1 Syntax of Tempura

Let us now look at the basic syntax of Tempura. In later chapters, as new temporal
logic constructs are introduced, variants of them will be added to Tempura. The
main syntactic categories in Tempura are locations, expressions and statements.
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Figure 4.2:Execution of formula4.3)

State
State
State
State
State
State
State
State

6]
= [0

= 13

0
=6
8

- - o -
|

Done! Computation length = 3.

4.1.1 Locations

A locationis a place where values are stored and examined. Variables suich as
JandK are permissible locations. In addition] iis a location, so is the temporal
constructOl.

4.1.2 Expressions

Expressions can be either arithmetic or boolean. All numeric constants and vari-
ables are legal arithmetic expressions. In additiore;iind e, are arithmetic
expressions, so are the following operations:

€e1+€, e —€, €€, e-+e, emode.

Relations such ag; = e, ande; > e, are boolean expressions. df by
andb, are boolean expressions, then so are the following:

=b, biAby, biVvby, byiDhy, by=ho

The constantdrue and false and the temporal construcesnptyand more are
boolean expressions as well. In addition, the conditional expression

if bthene; elseey

is permitted. Here; ande, can be either arithmetic or boolean expressions.
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4.1.3 Statements

Certain temporal formulas are legal statements in Tempura. A statement is either
simpleor compound Simple statements are built from the constructs given below:

true (no-operation)
false (abort)
l=e (simple assignment)

empty  (terminate)
more (do not terminate).

The statemenkt = e stores the value of the arithmetic expressein the loca-
tion|. In addition to these statements, the following can be used for requesting
and displaying values:

requestls,...,In) (request values of locations)
displayey,...,en) (display values of expressions).

Compound statements are built from the constructs given below. were
w1 andws, are themselves statements dnd a boolean expression:

W1 A W2 (parallel composition)

bow (implication)
@w (weak next)
Ow (always)

Note that certain temporal formulas can be used as both boolean expres-
sions and statements. Here are three examples:

=3, (J=2)A(K=J+3), (I =0)>empty

On the other hand, the following legal boolean expressions are not Tempura state-
ments even though they are semantically equivalent to the respective formulas
given above:

3=1I, (2=3)AJ+3=K), =(l=0)Vvempty

4.2 Some Other Statements

Other constructs such gets stableandhalt can be readily added to Tempura.
One way to do this is to expand these to statements already described. Here are
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some possible equivalences:

if btherwyelsev, = (bDwp) A(=bDws),
OwW = moreA@w,

lgete = O(-emptyD [(Ol) =€]),

stabld = |Igetd,

haltb = 0O(if bthenemptyelsemore),

l~e = 0O(=e).

An alternative approach is to include these features directly in the base language.

4.3 Determinism

As we mentioned earlier, Tempura statements are limited to a subset of temporal
formulas. However, even syntactically legal programs may possibly be nonexe-
cutable. This is because the interpreter expects the user to completely specify the
behavior of program variables and to indicate when termination should occur. For
example, the formula

| gets(l +1)

lacks information ori’s initial value and does not specify when to stop. Thus it
cannot by itself be transformed to any particular computation sequenicargh

is therefore not considered a complete program. Other details must be included
for the interpreter to operate properly. For similar reasons compound statements
built using the operatorg and< are not permitted. Of course, we could be more
lenient by using backtracking and related techniques to resolve any ambiguities.
However, for the sake of the simplicity and efficiency of the interpreter, it seems

reasonable at the moment to require explicit information on all aspects of variable
behavior.



Chapter 5

Some Additional Constructs

Let us now consider how to add three important features to the temporal logic.
These arestatic variables lists and quantifiers We subsequently use them as

a basis for deriving one operator that specifies interval length and another that
describes in-place assignment.

5.1 Static Variables

For a given variablé and an intervad, it is possible forA to have a different value
in each ofo’s statesdo, 01, . .., 0|g). For this reasom is called astate variable It
turns out to be useful to introduce a category of variables caligiic variables
Our convention is to have them start with a lower-case letter @ fgeeandaBg).
We now constrain the sdt of permitted intervals so that for any intenalin 7
and any static variabla, the values o on ag’s states are all identical:

Mo, [[a]] = Mo, [&]) = - - - = Mo, [a].
Thus a static variable is stable:
= stablea.

Identifiers starting with upper-case letters (eAyandTre€ remain state
variables and can change from state to state. Furthermore, even a static variable
can have different values on two distinct intervalando’.

Example (Computing powers):

The following formula has the variablesuccessively equal the powers, mt,

e, ..., mw
(I1=0AJ=1)A(Igetd +1) A (Jgetsm-J) Ahalt(l =n).

22
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The variablesn andn are static and therefore do not need to be kept explicitly
stable.

5.2 Quantified Formulas

We permit formulas of the form
dV:w,

whereV is any variable anav is itself a formula. This is calledxistential quan-
tification. Note thatv can be either a static or state variable. Below is an instance
of this construct:

00 =2).

Existential quantification readily generalizes to many variables:
VL,V Veew = 3V (Ve (L (FVeiw))).

Universal quantificatiorhas the formivV:w and is defined as the dual of
existential quantification:

WiW =g —IV:i-W

Here are the semantics 8f

Ms[[3V:w] =true iff
for some intervab’ € I, 0 ~y 0’ and My [w] = true.

The relationo ~y 0’ is defined to be true iff the intervatsando’ have the same

length and agree on the behavior of all variables except possibly the variable

Example

Consider the following states and their assignments to the variables]:

wh D

I

2
0
2

c —~+wm

We assume tha t andu agree on assignments to all other variables.
The formula
. 0Jd=2l)
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IS intuitively true on any interval on which we can constructlasuch thatJ
always equalgl. This is the same as saying thhis always even. For example,
the interval(ttt) satisfies the formula. From the semantic§ afiven previously it
follows that to show this we need to construct an inteovdbr which the relation

(ttt) ~ 0’ is true and which satisfies the subformtl@] = 21). The interval(sss
achieves both of these constraints. Therefttte satisfies the original formula.
Other intervals satisfying the formula includsss itself and (ssty but not (u)

or (stut). Existential quantification is a tricky concept and the reader should not
necessarily expect to grasp it immediately.

Example (Hiding a variable):

The formula below hag always equalling twice the value of a hidden variable
The value ofl is initially O and repeatedly increases by 1:

{1 =0)A(lgetd +1)A(J=21)].
This is logically equivalent to initializing to O and repeatedly increasing it by 2:
(J=0)A(JgetsI+2).
We can express this equivalence as the following property:

E @:[(1=0A(Igetd +1)A(I==21)])
=[(J=0)A(Jgets] +2)].

The following formula has two distinct variables that are both cdlled
(1 =0)A(lgets +1) Ahalt(l =5)A3I:[(1 = 1) A (1 gets3l)].

The firstl runs from 0 to 5 and in parallel the seconi$ repeatedly tripled from
1 to 243. The use of existential quantificatiat) keeps the twad’s separate and
in effect hides the second one. In fact the formula is logically equivalent to its
subformula
(I =0)A(l gets 4+ 1) Ahalt(l =5).

As these examples illustrate, the operat@rovides a means of creating locally
scoped variables.

5.3 Enlarging the Data Domain

Until now we have assumed that the underlying data dordaiconsists of the
integers. Let us now enlarge it to include the boolean vatuesandfalseas well
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as nested finite lists of values. Here are some sample lists:

(3), 0, ({true,2),(),(1,(2 falsg)).

The following constructs are now included among the temporal logic’s
expressions and are later added to Tempura:

e Simple list construction{ey, ...,en_1),
wheren > 0 andey, ...,e,_1 are expressions.

e Iterative list construction{e;:v < &),
wheree; ande, are expressions ands a static variable.

e Subscriptinges[e;], wheree; andey are expressions.

e Listlength:|e

,  Whereeis an expression.
In addition, there is the following new predicate:
e List predicatelist(e1,er), wheree; ande, are expressions.

The semantics of the various expressions for manipulating lists are as one
might expect. Our convention regarding subscripting is to index from the left
starting with 0. For example, the following expressions are all equal:

3, |(falsel,4)|, (O,true,3)[2], (7—i:i<8)[4].

The predicatdist(e, e) is true on an interval if the initial value of the expression
e is a list of lengthe,.

When no ambiguity arises, we express a subscripted expression such as
L[i] using the notatiofh;.
Example (Computing lists of powers):
Here is one way to compute lists of successive powers of 0, 1, 2 and 3:

(I =0)A (I getd +1) Ahalt(l = 10) AO(L = (0',1',2',3')).

Alternatively, the following formula can be used:

(1 =0) A (1 getsl + 1) Ahalt(l = 10) A [Olist(L,4)]
ALo= O A (L= 1Y A (Lo~ 2 A (Ls~3).

We now present a number of useful operators derived from the constructs
so far introduced.
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5.4 The Operatorlen

The formulalen(e) is true on an interval having length exactty
Mslen(e)]] =true iff Ms[€e] = |o|.

It turns out that we can expreles1 by means of existential quantification and other
previously introduced constructs. Here is one way:

len(e) =gt 3:[(I =€) A(Igetsd —1)Ahalt(l =0)],

wherel does not occur freely ie. We use as a hidden counter that is initialized
to €'s value and then keeps track of how much time remains in the interval.

Example (Doubling a variable):
The following formula has the variabhé run through the first few powers of 2:
len(5) A (N =1) A (Ngets2N).

Thelenconstruct is used to specify the length of the computation.

5.5 Bounded Quantification

We now introduce formulas of the form
Yv < ew,

wherev is a static variableg is an expression analis a formula. The construct is
referred to adounded universal quantificatiand can be defined as follows:

W<ew =g YWV:(0<v<eDw).

This is especially useful for processing elements of a list variable in parallel.
Bounded existential quantification can be defined in an analogous way. In ad-
dition, it is easy to generalize this notation to handle ranges suetxas and

e <v<en.

Example (Generalized computation of powers):

The following formula successively assigns the lighe firstn+ 1 powers of the
numbers 0, 1, ...m— 1

J:[(1 =0) A (I getd —1)

Ahalt(l =n) A (L~ (K:k<m))]. (5.1)
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Figure 5.1:Execution of formula.1)

State 0: L=<1,1,1,1,1>

State 1: L=<0,1,2,3,4>

State 2: L=<0,1,4,9,16>
State 3: L=<0,1,8,27,64>
State 4: L=<0,1,16,81,256>
State 5: L=<0,1,32,243,1024>
State 6: L=<0,1,64,729,4096>

Done! Computation length = 6.

Figure[5.1 shows the behavior df for m=5 andn = 6. The actual program
consists of the conjunction of the above formula with the statement

OdisplayL).

Here is another technique which is logically equivalent and uses bounded univer-
sal quantification to simultaneously manipulate each of the elemehts of

len(n) A [Olist(L, m)]
AVK < m[(Lg = 1) A (Lxgetsk- Ly)].

5.6 The Operatorfin

The formulafinw is true on an intervab iff the formulaw is itself true on the final
subintervaloq|). We express$inw as follows:

finw =g O(emptyD w).
The formulafinw is weaker tharhaltw sincefinw only looks at the last state

whereadaltw tests behavior throughout.

Example (Doubling a variable):

The following formula is true on an interval iff |o| = 3 and| is initially 1 and
repeatedly doubles:
len(3) A (I =1) A(l gets2l).
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One effect is that ends up equal to 8. This is expressed by the valid implication
given below:

= [len(3)A (I =1)A (I get21)] O fin(l = 8).

5.7 Temporal Assignment

The formulae; — e is true for an interval if the initial value of the expressign
equals the final value of the expressmnWe define this as follows:

e—e& =g Jaf(a=e)Afin(e=a),

where the static variabledoes not occur freely in eithef or e;. The stability of
the value ofais used to compare the valuessmfande; at different times. We call
this constructemporal assignmenEor example, the formule+ 1 — | is true on
an intervalo iff the value ofl 4+ 1 in the initial stateog equals the value dfin the
final stateo|q. If desired, we can reverse the direction of the arrow:

| — I +1.

The formula
(Il—=1+DHA T —I+I)

is then true on an interval iff increases by 1 and in parallélincreases by.
Similarly, the following specifies that the values of the state variabl@sdB are
exchanged:

(A—=B)A(B—A).

Unlike the assignment statement in conventional programming languages,
temporal assignment only affects variables explicitly mentioned; the values of
other variables do not necessarily remain fixed. For example, the formulas

|l —14+1

and
(I —=1+1)AJ<J)

are not equivalent since the first formula does not reqlérmitial and final values
to be equal. Thus, temporal assignment lacks the so-dadlete assumptian
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Example (Maximum of two numbers):

The temporal formula
if 1 > Jthen(l — I)else(l — J)

is true in any interval wherkBs value in the final state equals the maximum of the
values ofl andJ in the initial state. This can be seen by case analysis on the test
| >J.

Let the functionmax(, j) equal the maximum of the two valuesnd j.
The following temporal formula therefore places the maximurharfidJ into I :

| — max1,J)
The equivalence of the two approaches is expressed by the following property:
= [l «—max1,J)] =[if | > Jthen(l «— I)else(l — J)].

5.8 Incorporating these Constructs into Tempura

We now extend Tempura to allow locations, expressions and statements in the
ways described below.

5.8.1 Locations

Static variables such asandx are now permitted as locations. In additiorn i§
a location ance is an expression, then the subscript constt{gtis a permitted
location.

5.8.2 Expressions

The following are now legal expressions:

v (static variables)
(eg,...,en-1) (simple list constructor)
(e1:v< &) (iterative list constructor)
eie] (subscripting)
= (list length).
Herevis a static variable and ey, ey, ...,e,_1 are all expressions.
In addition, we permit function invocations of the form
f(es,....en)

wheref is a function defined in the manner described laterrmprd) andey, ...,
e, are expressions.
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5.8.3 Statements

We now allow variables to be assigned not only integers, but boolean and list
values are well. Here are some examples:

Done=true, L=(1,2,4), Flaggets(—Flag).

In addition, the following are permitted statements:

list(l,e) (list declaration)

len(e) (interval length)

Vi, .., Vaiw (existential quantification)
YWw<ew (bounded universal quantification)
finw (terminal statement)

| —e (temporal assignment).

Herel is a locationgis an expression\/ is any variabley is a static variable, and
w is a statement.
We also permit predicate invocations of the form

p(ey,...,en)

wherep is a predicate defined in the manner described belownand ande;,
.., &, are expressions. The interpreter uses call-by-reference when passing pa-
rameters.
Statements of the following forms can be used to define functions and
predicates respectively:

definef (V1,...,Vh) =€
definep(Vy,...,Vh) = w.

The formal parametend, ..., V, are state variables or static variables amslan
expression and/ is a statement. The identifier used in placef air p should be
static. Here are two sample definitions:

define mifi, j) = (if i < jthenielsej),
define doubléM) = (M gets2M).

Note that recursive definitions are permitted. Furthermore, the body of a definition
can include temporal constructs. Thus our actual usage of predicates and functions
is more general than indicated in the temporal logic semantics presented earlier
in section2.3 It is not difficult to adjust the semantics to take this into account
although we omit the details.



Chapter 6

The Operator chop

Temporal logic contains various constructs suchlragppandwhile that are rather
similar to certain kinds of statements found in Algol and related programming
languages. We first extend the syntax and semantics of the temporal logic to
includechop The resulting formalism is called Interval Temporal Logic. Within

it we define a number of interval-dependent operators and subsequently expand
Tempura to include them.

6.1 Syntax and Semantics ofhop
We now permit formulas of the following form:

wi; W,  wherew; andw, are formulas.

The operator “;” is known ashop A formulawsz;ws is true on an intervat iff
there is at least one way to spfitinto two subintervals such that the formwia
is true on the left subinterval and the formwa s true on the right subinterval:

Mo[[wa;wo]| = true  iff
for somei < |a],
Mg,..cy [Wi]l = trueand Mg, g, W] = true.

Note that the two subintervalyp...o;) and(c;... 0|0|> share the state;.

Example (Sequential composition of assignments):

The formula
(K+1—K);(K+2—K)

31
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is true on an intervad iff there is some < |g| such that the subformuk+1 — K

is true on the subintervdby...o;) and the subformul& + 2 — K is true on the
remaining subintervala; ... o|q). The net effect is tha increases by 3. This is
expressed by the following property:

E [(K+2—=K);(K+1—K)] D> (K+3—K).

Example (Usingchopto express® and 0O):

By varying the operands athop we can selectively examine different kinds of
subintervals. For example, a formula of the form

true;w

is true on an interval if the formulev is true on some suffix subinterval. Thus
this provides a way of expressing the operatoand consequently as its dual.
Similarly, a formula of the form

true; w; true

is true on an interval ifv is true on some arbitrary subinterval. Sinc®opis
associative, we can omit parentheses without being ambiguous.

6.2 Discussion of the Operatorchop

The constructhopis rather different from the conventional temporal operafors
andO. The latter examine an interval’s suffix subintervals wheokagpsplits the
interval and tests both parts. This facilitates looking at arbitrary subintervals of
time.

Harel, Kozen and PariklilB] appear to be the first to mentimmopas a
temporal construct. It is considered in more detail by Chandra, Halpern, Meyer
and Parikh§]. In references14] and [34] we usechopto facilitate reasoning
about time-dependent digital hardware. Our subsequent woiB7jnapd [35]
useschopto give specifications and properties of simple algorithms and message-
passing systems. In the rest of this section we exawctio@and other ITL con-
structs and then extend Tempura to include some of them.
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6.3 Simple For-Loops

The following simple for-loop repeats for e times in succession, whereis a
formula ande is an expression:

for etimesdaw.

This can also be writtem®. Here is one way to state that the variablacreases
by 1 for 4 times in succession:

for4timesdql +1—1).
This is equivalent to the formula
(I4+1=0;0I+1=1)0+1=1);(1+1—=1).
In the case of zero iterations, the for-loop is equivalergrtgpty
= (forOtimesdav) = empty

Note that there is no requirement that the iterations of a loop take any time. Thus,
a formula such as
for5timesdgl — 1)

is readily satisfied by an empty interval:
= emptyD [for5timesddl — 1)].

The formulaw* (read ‘w star”) is true if the subformulav occurs some
number of times in succession. This operator is sometimes knowhaogsstar
We can express it in terms of a simple for-loop:

W =gef INn:(n> OA [forntimesdaw]),
wheren does not occur freely iw. For example, the formula
(I+1—1)"

is true on an interval if repeatedly increases over some unspecified number of
iterations.
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6.4 Indexed For-Loops

In addition to the simple for-loop, we permit an indexed variant having the fol-
lowing syntax:
forv < edow.

Herev is a static variableg is an expression and is a formula. For instance, the
formula
fork <4do(l +k—1).

is equivalent to

(I+0—=1);+1—=1);(1+2=1);(14+3—=1).

6.5 While-Loops and Related Constructs

Thetemporal while-loops another important construct in ITL. The basic form is
similar to that of a while-loop in Algol:

whilew; dows.

Both w; andw, are themselves formulas. The while-loop obeys the following
general expansion property:

whilew; dow, =
if wq then(ws; [whilew; dows)) elseempty

Thus, ifwy is true, the body of the loopy,, is examined after which the loop is
repeated. lfv; is false, the interval must have length 0. Tdiep-staroperator
can in fact be derived from a while-loop:

w* = whilemoredow.
A repeat-loophas the form
repeatvs untilwy
and can be expressed using a while-loop:
repeatviuntilwe  =ger  Wi; (While—wodows).
Another loop construct has the form

loopw; exitwherw, otherwiseaws,
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wherewy, wo andws are themselves formulas. The formwla is used to exit
from the loop. Here is how to express the loop in terms of#hée construct:

loopwy exitwhem, otherwisenvs  =get
wy; (While=wp do[ws; wy)).

In sectiori8.2 we use this style of loop to describe the basic algorithm used by a
Tempura interpreter.

Example (Greatest common divisor):

Consider the following assignment which specifies tiatfinal value equals the
initial value of the greatest common divisorfandN:

N < gcd(M,N).
The formula below implies this:

while(M # 0)do([M <« NmodM] A [N « M]).

6.6 Deriving For-Loops and While-Loops

Let us look at one way to express for-loops and while-loops entirely in terms of
chopand other ITL constructs already introduced. This discussion can be omitted
by the reader. We first define the predicats_pointél, n) to be true on intervals
wherel is a list of n+ 1 offsets indicating the end points of some successive
subintervals corresponding to iterations:

end_pointfl,n) =ges
list(I,n+1) A (Io =0) Alen(In) AVI < n:(li <lit1).

Thus the elementy equals 0 since this is the start of any initial iteration. The
final element, analogously equals the length of the interval. Furthermore, the
sequence formed dys elements is weakly increasing.

We also make use of the construwration(l,n,i,w). This is true on
an interval if the formulaw is true on the subinterval corresponding to tkté
iteration with respect to the valueslo@ndn (i.e., the subinterval bound Byand
li+1). Here is one way to expregsration:

iteration(l,n,i,w) =gt len(ly); w; len(l, —liy1).
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The simple for-loop construct can now be expressed as follows:

for etimesdav  =get
3l,n:(n= ¢
Aend_pointdl, n)
AVi < n:iteration(l, n,i,w)

),

wherei, | andn do not occur freely ire or w. The technique for the indexed
for-loop is analogous:

forv<edow =gef
Jl,n:(n=¢
Aend_pointdl, n)
AVI < niiteration(l, n,i, 3v: [v=iAw)|)

),

wherei, | andn do not occur freely irv, e or w.
Below is the derivation of the while-loop:

whilewsdow,  =get
31, n: (end_pointgdl, n)
AV <n+1:[(j <n)=(len(lj);wi)]
AVi < n:iteration(l, n,i,wy)
).
Here the formulav; must be true at the beginning of every iteration but false at
the end. Furthermore, the formuwa must be true on each iteration.

6.7 The Constructskip

The construcskipis true on an intervab iff o has length 1. We can expressp
as follows:
skip =get Oempty

Example (Measuring the length of an interval):

An interval’s length can be tested usiskipandchop For example, the formula
skip skip; skip

is true on intervals having length 3. It follows that this formula is equivalent to
len(3):
= len(3) = (skip skip skip).
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Example (Unit-length iterations):

The following while-loop simultaneously decremehtand sumd into J over
each unit of time until equals 0O:

while(l # 0)do(skipA [l — 1 =1 A[J — I +1)).

The body of the loop contains thekip operator in order that the length of each
iterative step be 1. The behavior can also be expressed haihgndgets Here
is a semantically equivalent way of doing this:

halt(l =0) A (I getsl —1) A (JgetsI+1).

Example (Expressing the operatorgety:

A formula such ag&\getB can be alternatively expressed as an unspecified number
of iterations, each of unit length:

= (AgetsB) = (skipA[A— B))™.

6.8 Incorporating these Constructs into Tempura

We now extend Tempura to include the following statements based on the ITL
constructs just introduced:

skip (unit interval)

W1; Wo (sequential composition)
foretimesdav (simple for-loop)

forv < edow (indexed for-loop)
whilebdow (while-loop)
repeatvuntilb (repeat-loop)

loopws exitwherbotherwisew, (exit-loop)

Herew, w; andw, are themselves statemenésis an expressiorny is a static
variable and is a boolean test.

Example (Computing sums):
The following Tempura program uses a while-loop to compute a sum:

(I =4)A(J=0)ADdisplayl,J)
A[whilel # 0do(skipA [l «— I =1 A[J«— J+1])].

Figurele. 1 shows the program’s behavior when run.

(6.1)
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Figure 6.1:Execution of formula.])

State 0:1=4 J=0
State 1. =3 J=14
State 2:I=2 J=7
State 3:I=1 J=9
State 4: I= 0 J=10

Done! Computation length = 4.

Example (Computing powers):

Consider the problem of finding the value of the expressfoand placing it in
another variabl&. We can specify this using the temporal assignment

K17,
The following Tempura statement achieves this by lookingjsabinary structure:
(K = 1) A[while(J > 0) do(skipAw)],
where the statememt has the form
if (Jmod2=0)

then[(1 —1-1)A(J—J+=2)A (K +—K)]
else[( =NAQJ—=I-DAK—K-D].



Chapter 7

Some Applications

We now present some sample Tempura programs for summing the leaves of a tree,
partitioning a list and sorting a list. Afterwards programs are given for simulat-
ing a simple multiplication circuit, generating digital pulses and testing a latch.
The final two examples deal with synchronized communication between paral-
lel processes. Most of the programming constructs used here have already been
introduced. Those that have not are briefly described where mentioned.

7.1 Tree Summation

Suppose we have a binary tree of values such as either of the ones shown in fig-
ure[Z.1 They can be linearly represented by the following list structures:

(((1,1),(1,1),{(1,1),(L, 1)), {{1,(23)),(45).
Let the functionleaf_suntree) determine the sum of a tree’s leaves:

leaf_sunftree)  =ges
if is_integeftree) thentree
elseleaf_suiftreey) + leaf_sunftreey ).

Here the predicatés_integeftree) is true when the parametéeeis an integer
(i.e., aleaf) and false whdreeis a pair.

Now consider the task of designing an algorithm to reduce a tree in-place
to a single value indicated bgaf_sum If the variableTreeinitially equals such a
binary tree, we can specify the problem as follows:

Tree«— leaf_sunfiTree).

Let us look at a serial and a parallel implementation of this.

39
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Figure 7.1:Two binary trees

7.1.1 Serial solution

One approach to achieving our goal is given by the predisat&al _sum_tree
defined in figuréZ.2 This terminates if the tree is already an integer-valued leaf.
Otherwise, the predicatum_subtreés used to first reduce the left subtree and
then the right subtree. Finally, the statement

skipA (Tree«— Tregy+ Treey)

is used to reduce the tree to a single value. Note that when either of the two sub-
trees is being reduced Bum_subtreethe other one is kept stable. In addition,

the built-in predicatestable_strucis used in the predicatum_subtre¢o main-

tain the tree’s main node intact so that the two subtrees can continue to be properly
accessed. We can expresable_structs follows:

stable_strucek =g DO[moreD list([O€], |e])].

Thus, if the expressioa is initially a list of some particular length, it remains a
list of that length throughout the interval. If this operation were omitted, there
would be no mention of whether the root of the tree remains a pair.
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Figure 7.2:Predicates to sequentially sum a binary tree

define serial_sum_tr¢€ree) =
if is_integef Tree) thenempty
elsg
sum_subtre@ree 0);
sum_subtre@ree 1);
(
skipA (Tree— Treey+ Treg)
)
).

define sum_subtré€ree i) =
serial_sum_tre€lreq)
A stable_structTree
A stableTreg ;.

We initialize the tree and invokeerial_sum_tredy means of the follow-
ing sort of formula:

Tree= (((1,1),(1,1)),((1,1),(1,1)))
A serial_sum_tre€lree) A O display(Tree).

FigurelZ.3shows the resulting behavior for the two different trees mentioned.

7.1.2 Parallel solution

The predicat@ar_sum_treén figure[7.4is similar toserial_sum_treexcept that
it recursively reduces each half of a pair in parallel rather than sequentially. A vari-
able namedoneis used to monitor the progress of the two subtrees. It equeds
when they are both finally integers. At this time the sum of the two values can be
assigned to the tree variable. The subordinate predicate tree_procesBone Tree)
reduces its tree parameter and then keeps the tree stable until tizofiadpe-
comes true. This ensures that the two parallel invocatiorsuof _tree_process
finish at the same time. Figui€3 shows the behavior gfar_sum_treeon the
two trees discussed above. As might be expected, the computation length is less
than that required by the serial algorithm.

Note that the body of the predicaseim_tree_process figure[7.4is a
statement of the fornprocessw. The processconstruct has no special logical
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State
State
State
State
State
State
State
State

Donel!

State
State
State
State
State

Done!

Figure 7.3:Two executions of serial tree summation

NoaohkhwhkRO

Tree=<<<1,1>,<1,1>>,<<1,1>,<1,1>>>
Tree=<<2,<1,1>>,<<1,1>,<1,1>>>
Tree=<<2,2>,<<1,1>,<1,1>>>
Tree=<4,<<1,1>,<1,1>>>
Tree=<4,<2,<1,1>>>

Tree=<4,<2,2>>

Tree=<4,4>

Tree=8

Computation length = 7.

RwhRO

Tree=<<1,<2,3>>,<4,5>>
Tree=<<1,5>,<4,5>>
Tree=<6,<4,5>>
Tree=<6,9>

Tree=15

Computation length = 4.
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Figure 7.4:Predicates to sum a binary tree in parallel

define par_sum_tré&ree) =

if is_integef Tree) thenempty

elsg

JDone (

(Donex [is_intege(Tree) Ais_integefTreq )])
A haltDone
A stable_struct Tree
Asum_tree_proce§Bone Treq))
Asum_tree_proce§Bone Treq )

skipA (Tree— Tregy+ Tree)

)
).

define sum_tree_procé&mne Tree) =
proces$
par_sum_tre€Tree);
(
haltDone
A stableTree

43
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Figure 7.5:Two executions of parallel tree summation

State 0: Tree=<<<1,1>,<1,1>>,<<1,1><1,1>>>
State 1. Tree=<<2,2>,<2,2>>

State 2: Tree=<4,4>

State 3: Tree=8

Done! Computation length = 3.

State 0: Tree=<<1,<2,3>>,<4,5>>
State 1. Tree=<<1,5>,9>

State 2. Tree=<6,9>

State 3. Tree=15

Done! Computation length = 3.

semantics:
procesw  =gef W.

It is used when several Tempura statements are run in parallel and each indepen-
dently determines the interval length. See sed@@for a discussion.

7.1.3 Correctness and performance

ITL can be used to specify the correctness and relative speeds of the two algo-
rithms just introduced. Here are the basic correctness properties:

= serial_sum_tre@lree) O (Tree« leaf_suniTreg)),
= par_sum_tre€Tree) O (Tree« leaf_suniTreg)).

The invariant and rate of progress for the serial version are shown below:

E  serial_sum_tre€lree) D
(stabldeaf_suniTree)
A [leaf_coun(Tree) getdeaf _countTree) — 1)).

Here the functioreaf_countequals the number of leaves in a tree. The property
states that even though the tree is changing, the sum of its leaves remains stable.
Furthermore, the number of leaves decreases by 1 every unit of time. The invari-
ant for the parallel algorithm is identical to that of the serial algorithm although
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the rate of progress is more complicated. The tree’s leaf count decreases by the
number of internal nodes whose two sons are both integers.

The computation length for the serial and parallel algorithms is expressed
as follows:

= serial_sum_tre€lree) O len(leaf_countTree) — 1),
= par_sum_tre€Tree) D len(tree_heightTree)).

Here the expressideaf_counfTree) — 1 equals the number of internal nodes in
the tree. The functiotree_heights defined to equal the length of the longest path
from the tree’s root to a leaf:

tree_heighftree) =get
if is_integertree) then0
elsel + max(tree_heighttreey), tree_heighttreey )).

7.2 Partitioning a List

We now describe a technique for partitioning a list. This will be subsequently
used in some quicksort algorithms. The predicate

partition_list(L, key left_len)

defined in figuréZ.g uses the predicateart_loopto iteratively permute the ele-
ments of the list parametér so that those less than the valuekelyend up to
the left of elements greater than or equakéy. Each step of the loop invokes the
predicatepart_step The length of the left side is finally stored in the static param-
eterleft_len For example, suppose tHhatnitially equals the list1,3,2,3,0,1,3)
andkeyhas the valu@. The final value oL is then the list1,1,0,3,2,3,3) and
the value ofleft_lenis 3. In figurelZ.7 we depict the behavior df in each state
and display the value d&ft_lenin the final state. Note that the predicatat_step
references a predicate callediap _list This has the general form

swap_listL,i, j)

and exchanges the valueslgfandLj, leaving the remaining elements of the list
L unchanged. Here is one way to express this in ITL:

VK < |[LJ:
[if k=ithen(Ly < L;)
elsdf k = jthen(Ly «— L) elsg(Ly « Ly)].



Executing Temporal Logic Programs/B. Moszkowski 9 February 2000

Figure 7.6:Predicates for partitioning a list

define partition_listL, key left_len =
3,3 (
(I=0)A =L
A(
part_loopL,keyl,J);
[emptyA (left_len=1)]
)
).

define part_loofL, key1,J) =
whilel < Jdo(
skipA part_steglL, key|,J)
).

define part_stef, key l,J) =
if L} < key
then(
stableL
ANl —=T4+DHAQD <)
)
elseg
swap_listL,1,J—1)
ANl—=DHAJ—I-1)
).

46
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Figure 7.7:Execution of predicate for partitioning

State 0: L=<1,3,2,3,0,1,3>
State 1: L=<1,3,2,3,0,1,3>
State 2: L=<1,3,2,3,0,1,3>
State 3: L=<1,1,2,3,0,3,3>
State 4. L=<1,1,2,3,0,3,3>
State 5: L=<1,1,0,3,2,3,3>
State 6: L=<1,1,0,3,2,3,3>
State 7: L=<1,1,0,3,2,3,3>
State 7: left len= 3

Done! Computation length = 7.

7.2.1 Correctness opartition_list

The correctness of this algorithm can be expressed using two properties. The first
one states that the list variahilés final value is a permutation of its initial one:

= partition_list(L,key left_len)
O [list_to_badL) « list_to_badL)].

Here the functiorist_to_badL) equals the bag (multi-set) corresponding.to
Thus we express the fact that the initial and final bags fare identical.

The second property states thed final value is partitioned according to
key.

= partition_list(L, key, left_len)
> fin(vi < |L|: [(i < left_len = (L < key)]).

The definition ofpartition_listuses the predicaggart_loopwhich iterates
overL while the variable$ andJ index the start and end of the sublist of elements
not yet processed. The following property states faat_loopleaves the multi-
set representation af stable:

= part_loopL,keyl,J) D stabldist_to_badL).

In addition, throughout the computation the eleménts . .,L,_1 are all less than
the key and the elementsg, Ly 1, ...,L; |1 are greater than or equal to the key:

= part_loogL, keyl,J) D
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[OVK < 1: (Lg < key)
ADOVK: ([J <k < |L|] D [Lk > key)].

Eventual termination opart_loopis indicated by the fact that in every
step the value of is greater than or equal to that lo&nd either increases od
decreases by 1. Therefore, the differedeel continues to decrease by 1:

= part_loopL,keyl,J) D [(J—1)gets(J—1—1)].

Sincel is initially 0 andJ is initially |L|, it follows that|L| units of time are
required for the entire computation:

E  part_loopL,keyl,J) D len(|L]).

7.3 Quicksort

Let sort(e) be a function equalling the list expressies sorted value. We can
then specify the in-place sort of a list variakhléy means of the formula

L — sort(L).
Another way to express this is as follows:
[list_to_badL) < list_to_badL)] A [finsortedL)].

Here the predicateortede) is true if the list expressioe is sorted. Thus, the
overall formula states thafs final value is a permutation of its original one since
the bag corresponding o remains unchanged. Furthermotés final value is

in sorted order. One way to sort a list is by using the predisat@l_quicksort
shown in figuréZ.8 We use a special subscripting construct of the feffe . . e3].
This is a sublist of the expressien of lengthe; — e; and has the form

(e1led]. er[e2+1],... ex[e3—1]).
It can be expressed as follows
eille..€3] =qef (€1fij&2<i<ey),

where the static variabledoes not occur freely ie;. Note thate;[es] is not
included among the sublist’s elements. We generally write a sublist expression
such ad.[0..K] in the formLg_.
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Figure 7.8:Predicates for serial quicksort

define serial_quicksoft) =
if |L| < 1thenempty
elsedpivot (
quick_partitior(L, pivot);
serial_sort_partsL, pivot)

).

define serial_sort_partk, k) =
(
serial_quicksortLg, k)
Astablely
);
(
serial_quicksortL 1), ||)
Astablelg (k+1)

).

define quick_partitiofi, pivot) =
(
partition_list(Lo_ |1, L -1, Pivot)
/\Stabld_“_‘,l

(
skipA swap_listL, pivot, [L| — 1)

).
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The quicksort algorithm presented here leaves the list unchanged if it has
0 or 1 elements and otherwise partitions it into two main parts with a pivot el-
ement in between. The left half has elements less than the pivot and the right
half has elements greater than or equal to the pivot. The left part is then recur-
sively sorted, after which the right part is itself sorted. Throughout this time,
the pivot is kept stable. The partitioning operation is performed by the predicate
quick_partitionand the subsequent sorting of the two parts is achieved by the
predicateserial_sort_partsBoth of these are described below.

Here is a program for testing the quicksort predicate:

fixed_listL,7) Afixed_lis{T,7) A OdisplayL, T)
A(L=(4,5,2,0,6,1,3)) Aserial_quicksortL)
AVI < |L|:[Ti = (if i = LijthenlelseD)].

The statementixed_listL,7) specifies that is always a list of length 7. It is
logically equivalent to the formula

Olist(L,7)

but turns out to be more natural and much more efficient to use in Tempura. We
include a list variabld that has the same length lasnd shows which elements

of L are in their proper positions. For any |L|, thei-th element ofT has the
value 1 in a state iff the value &f in that state equals Of course, this technique
only works if L’s initial value is a permutation of the integers 0, 1, .|L|,— 1.
Figure[Z.9 shows the program’s execution. The lisitself is partitioned from
state O to state 7 with the valiBeused as the key. In particular, from state 6 to
state 7, the value 3 is moved to its proper positiohgnFrom state 7 to state 12,

the left sublistLg, 3 (i.e., Lo, L1 andLy) is sorted. From state 12 to state 17, the
right sublistL,4, 7 (i.e., L4, Ls andLg) is sorted.

7.3.1 Explanation ofquick_partition

The predicateyuick_partitior(L, pivot) permuted. and assigns the static param-
eterpivot an index intoL so that the elementsy, ..., Lpivot—1 are all less than
L pivot @and the elementspivoty 1, - - .,L|L|_1 are all greater than or equal kgjyot.
This is achieved by first invoking the predicqt@rtition_listdescribed previously
in sectioriZ.2on the sublisty, ..., L |_» with the rightmost elemert, |, acting
as key. The value df |, is itself keep stable. Afterwards, the valuepifot is
an index to the start of the second half of the partition. The eleigny is then
exchanged with. pjyot.
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State
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State
State
State
State
State
State
State
State
State
State
State
State
State

Donel!

Computation length

Figure 7.9:Execution of serial quicksort

L=<4,5,2,0,6,1,3>
L=<1,5,2,0,6,4,3>
L=<1,5,2,0,6,4,3>
L=<1,6,2,0,5,4,3>
L=<1,0,2,6,5,4,3>
L=<1,0,2,6,5,4,3>
L=<1,0,2,6,5,4,3>
L=<1,0,2,3,5,4,6>
L=<1,0,2,3,5,4,6>
L=<1,0,2,3,5,4,6>
L=<1,0,2,3,5,4,6>

: L=<1,0,2,3,5,4,6>
: L=<0,1,2,3,5,4,6>
: L=<0,1,2,3,5,4,6>
: L=<0,1,2,3,5,4,6>
: L=<0,1,2,3,5,4,6>
: L=<0,1,2,3,5,4,6>
: L=<0,1,2,3,4,5,6>

T=<0,0,1,0,0,0,0>
T=<0,0,1,0,0,0,0>
T=<0,0,1,0,0,0,0>
T=<0,0,1,0,0,0,0>
T=<0,0,1,0,0,0,0>
T=<0,0,1,0,0,0,0>
T=<0,0,1,0,0,0,0>
T=<0,0,1,1,0,0,1>
T=<0,0,1,1,0,0,1>
T=<0,0,1,1,0,0,1>
T=<0,0,1,1,0,0,1>
T=<0,0,1,1,0,0,1>
T=<1,1,1,1,0,0,1>
T=<1,1,1,1,0,0,1>
T=<1,1,1,1,0,0,1>
T=<1,1,1,1,0,0,1>
T=<1,1,1,1,0,0,1>
T=<1,1,1,1,1,1,1>

= 17.
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Figure 7.10:Predicates for parallel quicksort

define par_quicksoft) =
if |IL| < 1thenempty
elsedpivot (
quick_partitior{L, pivot);
par_sort_part$L, pivot)

).

define par_sort_partg, pivot) =
JDone ReadylReady2(
(Done~ (Readyln Ready?)
A haltDone
Asort_proces@Done Readyllo. pivot)
Asort_proces@Done Ready?2L pivott-1. L |)

)

VAN Stabld_ pivot.

define sort_proce¢Pone Readyl ) =
process$

(
par_quicksorfL) A (Ready~ empty
)i

(
(haltDone) A (stablel) A (stableReady

)
).

7.3.2 Explanation ofserial_sort_parts

The predicateerial_sort_partsl, pivot) first sorts the left partitiohy, . . ., L pivot—1

and after this the right partitiobpivott1, - .., Ljj—1. During the sorting of either
side, the other remains stable. Throughout the entire period the value of the pivot
elementL pivot is left unchanged since it is already in its proper position.

7.3.3 Parallel quicksort

The predicateoar_quicksortshown in figurdZ.10is a parallel variant of the se-
rial algorithm just described. As the execution in figilt&1 demonstrates, this
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Figure 7.11:Execution of parallel quicksort

State 0: L=<45,2,0,6,1,3> T=<0,0,1,0,0,0,0>
State 1. L=<1,5,2,0,6,4,3> T=<0,0,1,0,0,0,0>
State 2: L=<1,5,2,0,6,4,3> T=<0,0,1,0,0,0,0>
State 3: L=<1,6,2,0,5,4,3> T=<0,0,1,0,0,0,0>
State 4. L=<1,0,2,6,5,4,3> T=<0,0,1,0,0,0,0>
State 5: 1L=<1,0,2,6,5,4,3> T=<0,0,1,0,0,0,0>
State 6: L=<1,0,2,6,5,4,3> T=<0,0,1,0,0,0,0>
State 7: L=<1,0,2,3,5,4,6> T=<0,0,1,1,0,0,1>
State 8: L=<1,0,2,3,5,4,6> T=<0,0,1,1,0,0,1>
State 9: L=<1,0,2,3,5,4,6> T=<0,0,1,1,0,0,1>
State 10: L=<1,0,2,3,5,4,6> T=<0,0,1,1,0,0,1>
State 11: L=<1,0,2,3,5,4,6> T=<0,0,1,1,0,0,1>
State 12: L=<0,1,2,3,4,5,6> T=<1,1,1,1,1,1,1>
Done! Computation length = 12.

version of quicksort can take fewer computational steps than the serial one. The
basic change to the sorting technique is seen in the predliaatsort_parts This
sorts the two sublists df in parallel rather than in succession.

Each sublist has a flag (i.&keadylor Ready2 associated with an invoca-
tion of the predicatsort_processThis predicate recursively sorts the sublist and
then sets the flag to true indicating completion. It then waits for theDiage
which becomes true when both sublists are finished. In the meantime, the sublist
is kept stable.

7.4 A Multiplication Circuit

Figurd7.12depicts a simple multiplication circuit containing a number of compo-
nent types such dBpflop, zero_tesandadder. This was originally designed and
verified by Mike Gordon using the LSM behavioral notatid][ In figure[7Z.13

we define the components as predicates in ITL. Gordon used the boolean values
true andfalseto represent bit signals. We follow the same convention as can be
seen in such devices asro_testandor_gate The componentszg andflipflop

in the original specification both provide a form of unit delay and can be mod-
elled by the ITL construagets The overall multiplier is then given in figuig14
Various internal signals such &l andL3 are hidden by means of existential
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Figure 7.12:Block diagram of multiplication circuit

inl in2
|
dec zero_test |zerg
’ T
| | ] — | ||
mux mux mux
[ ]
reg zero_test zero_test mux
! |
|
dec or_gate reg
il
dec adder
e !
[
flipflop
—

Done Out
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Figure 7.13:Definitions of individual components

define mufSwitchInl,In2, Out) =
O(if SwitchthenOut = InlelseOut= In2).

define regin, Out) = (Outgetsn).
define flipflopln, Out) = (Outgetsn).

define de@n,Out) =
Out~ (if In = OthenOelseln — 1).

define addefinl, In2,0ut) = (Out~ [In1+ In2)).
define zero_te&in, Out) = (Out~ [In = 0]).
define or_gatéinl, In2,Out) = (Out~ [In1V In2]).

define zer@ut) = (Out= 0).

guantification fl). The signhalgnl, in2, DoneandOut are left accessible. The
device’s structure is represented as a conjunction of instances of the individual
components. In addition, equalities are included to properly initialize the signals
Done OutandL2.

In order to test the multiplier, we feed the circuit some data and then
terminate when the circuit has the answer. The following program performs these
tasks and has the multiplier determine the product of 4 and 9:

mult_im@4,9,Done Out)
A (OhaltDone) A Odisplay Dong Out).

The execution of this is shown in figurel3 Note that the flagponeis initialized
to true and the simulation halts the next time it becomes true.

7.5 Pulse Generation

We now demonstrate how Tempura can be used to generate, manipulate and dis-
play simple digital waveforms. Let us first extend the boolean operatorsand
V to permit the bit values 0 and 1. For example the value of the expres8ianl
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Figure 7.14:Definition of multiplier

define mult_imfinl,in2, Done Out) =
dB1,B2,B3,B4,L1,L.2,L3,L4,L5,L6,L7,L8,L9,L10: (
muxDoneL9,L8,L7)
Areg(L7,0ut)
Aadder(L9,Out L8)
Adedinl,L6)
AmuxDoneL6,L4,L5)
AmuxDoneinl,L3,L1)
Areg(L1,L2)
NdeqL2,L3)
NdedL3,L4)
AzerdL10)
AmuxB4,L10,in2,L9)
A zero_testinl, B4)
Nzero_tediL5,B1)
Nzero_teditin2,B2)
Aor_gatgB1,B2,B3)
N flipflop(B3, Done)
A (Done= true) A (Out=0) A (L2 =0)

Figure 7.15:Simulation of multiplier

State 0: Done=true Out= 0
State 1: Done=false Out= 9
State 2: Done=false Out=18
State 3: Done=false Out=27
State 4. Done=true Out=36

Done! Computation length = 4.
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Figure 7.16:Program to generate some digital waveforms

W=0)A(X=0)A(Y=0)A
for 5timesdq

len(3) A (stableV)];

[skipA (W «— =W)]
)
A (X getsV) A (Y getsX)
AN(Z~[WAXAY]).

and the value oL A0 is 0. We use these constructs in the program in figuié

This controls the behavior of the four bit variabl&s X, Y andZ. The signaW

is initialized to 0 and then successively oscillates 5 times over 4-unit intervals by
means of the following form of sequential iteration:

for 5timesdq
[len(3) A stableW]; [skipA (W «— =W)]
).

The total length of the period is therefore 20 units. In parallel with this, the signal
X is initialized to0 and then receives the values\Wfbut with unit delay. The
same happens froxi to Y. The value ofZ is always the bit-and oiv, X andY.

In figure[7.17 we display the behavior of the combined system in the form of a
timing diagram. This is best viewed when turned sideways. The style of output
used here is not hard to generate in Tempura although we omit the details.

7.6 Testing a Latch

The device shown in figufé.18is a simple latch built out of two cross-coupled
nor-gates. When the bit inpu&andR are held stable long enough, the outpQts
andQ respond to them according to the table in figdrg9 If SandR are both
0, the device retains its current state. The values of the inputs should not be held
simultaneously at 1 since this can result in the latch’s outputs later oscillating.
The program in figur&.20simulates the latch for values of the inp&s
andR. We model each nor-gate as having unit delay. Note that the vaGalsle
referred to a®bar in the program. The resulting system behavior is displayed in
figure[Z.2Z1 The iterative construct

forv e edow
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Figure 7.17:Execution of waveform generator

State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State

Done!

CoNITORWNEOO

N

Y

X W
I
I
I
I

I
I
I
I
I
|
I
|
I
|
|
|
I
I
I
|

Computation length = 20.
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Figure 7.18:Block diagram of SR-latch

Ql

Figure 7.19:SR-latch operation

operation | S|R| Q Q
setto 1 10 1 0
clearto0 | 0| 1 0 1
nochange 0| 0 | oldQ | oldQ
undefined| 1| 1 - -

Figure 7.20:Program to simulate SR-latch

(S=0)A(R=0)A(Q=0)A(Qbar=0)A
forl € ((1,0),(0,0),(0,1),(1,0),(0,0))
do (

len(5) A (Sgetdp) A (Rgetd)
)
A (Qgets—[RV Qbar])
A (Qbargets-[SV Q)).
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Figure 7.21:Simulation of SR-latch

State
State
State
State
State
State
State
State
State
State
State
State 10:
State 11:
State 12:
State 13:
State 14:
State 15:
State 16:
State 17: |
State 18: |
State 19: |
State 20: |
State 21: |

I

I

I

I

Qbar Q R S

I I I

I I I
I I

I

I

I

CONIORWNMNREOO

State 22:
State 23:
State 24:

I
|
|
|
I
I
|
|
|
State 25: |

Done! Computation length = 25.
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Figure 7.22:Block diagram of sender-receiver system

input list—{ Sender | = Receiver |— output list
Stream

is used to sequentially assign a locally scoped variabiie elements of the given
list expressiore and execute the statememtvith each such binding.

7.7 Synchronized Communication

Tempura can be used to model parallel processes that periodically send or receive
data from one another. Figue22shows a block diagram containing two mod-
ules with a connection between them. The left module transmits information to
the right one by means ofsireampackage that we have implemented in Tempura.
We omit the implementation details but give a sample execution of the system in
figure[/.23 In states 3, 6, 9, 12 and 15 a value is passed on. The end-of-stream
marker is passed in state 18. In the final state, the receiver shows that it has suc-
cessfully accepted the five data messages.

In figure[Z.24 is a block diagram of a system that does parallel lexical
analysis, parsing and evaluation of a string of characters representing an arith-
metic expression. The heart of the corresponding Tempura program is shown in
figure[Z.28 Here four processes are connected together by means of streams.
The first one takes the string and feeds it character-by-character into the lexical
analyzer. This simultaneously outputs tokens to the parser. This in turn outputs
reverse Polish notation to the evaluator. Eventually the evaluator determines the
expression’s numeric value. An execution of the system processing the string
"10 _+2_" is shown in figuré.26 We use the characterto visibly represent a
space. Note that in states 13 and 24 two communications occur at once.
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Figure 7.23:Execution of sender-receiver system

State
State
State
State
State
State
State
State
State
State <>

State <<20>>

State 10: <>

State 11: <>

State 12: <<30>>

State 13: <>

State 14: <>

State 15: <<40>>

State 16: <>

State 17: <>

State 18: <<>>

State 19: <>

State 20: <>

State 21. <>

State 22: <>

State 23: <>

State 24: <>

State 25: <>

State 26: <>

State 26: output list = <0,10,20,30,40>

Stream_status
<>

<>

<>
<<0>>
<>

<>
<<10>>
<>

CONITRONMNREOO

Done! Computation length = 26.
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Figure 7.24:Block diagram of parallel lexer-parser-evaluator

_ String
string—| to — | Lex

Chars| Chars

|l Tokens

Parse| = | Eval [—answer
Polish

Figure 7.25:Heart of parallel lexer-parser-evaluator

Alist_to_port_procegsSig_list,
string_inputsender_portChar_strean)

Alexer_processSSig_list,
receiver_portChar_stream,
sender_porfToken_strear)

A parser_procegsig_lisb,
receiver_portToken_stream
sender_pottPolish_stream)

Aeval_processSig_list,
receiver_portPolish_stream answej
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State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State
State

Done!

Figure 7.26:Execution of lexer-parser-evaluator &40 _+2 "

0: Char Token
0: <> <>

1. <> <>

2. <> <>

3 <<"1">> <>

4 <> <>

5 <> <>

6: <<"0">> <>

7 <> <>

8: <> <>

9 << "> <>
10: <> <>
11; <> <<10>>
12: <> <>
13 <<"+">> <>

14: <> <>
15: <> <<"+">>
16: <> <>
17: <<"2">> <>

18: <> <>
19;: <> <>
20: << > <>
21 <> <>
22: <> <<2>>
23 <> <>
24: <<>> <>
25: <> <>
26; <> <<>>
27 <> <>
28: <> <>
29: <> <>
30: <> <>
31 <> <>
32 <> <>
33 <> <>
34: <> <>
34: Final answer = 12
Computation length = 34.

Polish
<>
<>
<>

<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<<10>>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<>
<<2>>
<>
<>
<>
<<"+">>
<>
<>
<<>>
<>
<>
<>
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Chapter 8

An Interpreter for Tempura

Let us now consider how to built an interpreter for Tempura. The aim of the pre-
sentation is to give an idea of how to execute Tempura programs. Therefore a
number of low-level aspects of the implementation are not described. This mate-
rial can be skipped.

Before discussing the design of the system, we look at how the approach
is applied to the following program:

(OCempty A (I =0)A(lgetd +1)ADI=2-1). (8.1)

This is true on intervals of length 2 in whi¢kassumes the successive values 0, 1,
and 2 whileJ simultaneously assumes the values 0, 2, and 4.

One way to execute such a formula is to transform it to a logically equiv-
alent conjunction of the two formulgsesent_statand®@what_remains

present_state @®what_remains

Here, the formulgresent_stateonsists of assignments to the program variables
and also indicates whether or not the interval is finished. The formludd_remains
is what is executed in subsequent states if the interval does indeed continue on.
Thus, it can be viewed as a kind of continuation.

For the formula under consideratigmesent_statbas the following value:

(I =0)A(J=0) Amore
The value ofwhat_remainss the formula
(Oempty A (Il =1)A(lgetd +1) AT =2-1).

In figurelB.1we show the effects of such transformations before and after each of
the three states of the execution.
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Figure 8.1:Transformation of formuld8_.J)

Before state O:
(OCempty A (Il =0)A(lgetd +1)AO(JI=2-1)
After state O:
[(1 =0)A(J=0)Amorg
A®[(OCempty A (I =1)A(lgetd +1)ADJ=2-1)]

Before state 1:
(Cempty A(l =1)A(lgetd +1)AOJ=2-1)
After state 1:
[(1=1)A(J=2)Amord
A®[emptyr (I =2) A (I getd +1) A0 =2-1)]

Before state 2:
empty\ (I =2) A (lgetd + ) AO(I=2-1)
After state 2:
[(I =2) A (3= 4) Aempty
A®[falsen (1 getd +1) AD(I =2-1)]
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8.1 Variables Used by the Interpreter

The operation of the Tempura interpreter is based on the technique just described.
When executing a Tempura program, the interpreter makes use of the four vari-
ablesProgram Memory Current_Envand Current_Done_Cell They are ac-
cessed by the interpreter’s various routines. Below is a summary of each of these
variables:

e Program This is a variable that initially contains the Tempura program
itself. After the execution of each state, it is transformed to a formula of
the form@w, wherew describes what should be done in the next state.

e Memory Thisis an indexed list of cells. Each cell can be empty or contain
a value such as an integer or a list descriptor. At the beginning of each
state, every cell is assigned the empty {jsthus indicating that no value
is being stored. When a valass to be placed in the cell, the cell’s actual
contents are assigned the singlefon

e Current_Env This contains an environment, which is a list having a sep-
arate entry for each variable in the Tempura program. Each entry is a pair
with the name of the associated variable as well as an index to a memory
cell that holds the variable’s value. For the Tempura program described
earlier, the value o€urrent_Envmight be the following:

(("17,0), (*J", 1)).

e Current_Done_Cell This equals the index of a memory cell called the
done-flag The Tempura program places eitliere or falsein the done-
flag during every state, thus indicating whether or not that state is the final
one. For example, in a state where the statereenityis encountered,
the interpreter puts the valueie in the done-flag cell. If the statement
moreis encountered, the valdalseis used instead. If the user fails to
assign a value to the done-flag in a particular state, the interpreter detects
this and flags an error.

8.2 Basic Execution Algorithm

The basic algorithm used by the interpreter can be represented in the following
procedural form:

begin



Executing Temporal Logic Programs/B. Moszkowski 9 February 2000 68

local ProgramyMemory Current_EnyCurrent_Done_Ce]l
prepare_execution_of program
loop
execute_single_state
exit when MemofrfCurrent_Done_Cell= (true)
otherwise
advance_to_next_state
end

Here is a more detailed look at each part of the process:

e prepare_execution_of progranihe interpreter’s variablBrogramis as-
signed the program’s syntax tree and the varighlerent_Enwvs initial-
ized to indicate suitable references into the memory. The memory itself
is allocated to have one cell for each program variable as well as a cell
whose index is placed iGurrent_Done_Cell All the memory cells are
initially emptied (i.e., set t@)).

e execute_single_statdhe value of the variabl®rogramis transformed
until it is of the form@w. A check is made to ensure that the done-flag
indexed byCurrent_Done_Celhas been set tyue or false The actual
transformations used for each Tempura construct are described later on.
All assignments occurring in the current state are reflected in the values
of the memory’s cells.

e advance_to_next_statdf the current state is not the last, preparations
are made for processing the next one. This is done by emptying the con-
tents of all the memory cells and deleting the leading operafoom the
formula held inProgram

Figurel8.2 shows the details of executing the simple progrdm)(

8.3 Description of the Procedureexecute_single_state

We now define the proceduexecute_single_ state

procedure execute_single_state
begin
while —is_reduced_stniProgram) do
transform_stmtProgram);
if MemoryCurrent_Done_Cell= () then
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Figure 8.2:Details of execution of formuldB(J)
Current_Env ((“1”,0), (“J",1)),
Current_Done_Cell2.

Before state O:
Program
(COCempty A (I =0)A(lgetd + 1) AOIT=2-1),
Memory ((), (), ()).
After state O:
Program
@[ (Cempty A (I =1)A(Igetd +1) AOI=2-1)],
Memory ((0), (0), (false).

Before state 1:
Program (Oempty A (I =1)A(l getd + 1) ADO(J=2-1),
Memory ((), (), ())-

After state 1:
Program @[empty\ (I =2) A(lgetd +1) ADJ =2-1)],
Memory ((1), (2), (false).

Before state 2:
Program emptyA (I =2) A (1 getd + 1) AO(J=2-1),
Memory ((), (), {)).

After state 2:
Program ®@[falseA (I getd +1) AO(J =2-1)],
Memory ((2), (4), (true)).
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error(“Termination status not specified.”
end.

The while-loop repeatedly transforms the program using the procdcams-
form_stmtuntil the test

is_reduced_stniProgram)

is true, signifying that the program is reduced to the fopw. Each iteration

of the loop corresponds to one pass over the program. Sometimes many passes
can be required to completely process one state. Once this is achieved, no further
transformations take place in that state. A check is then made to ensure that the
done-flag has been properly set. The operatiomasfsform_stmts explained in

detail below.

8.4 Description of the Procedurdransform_stmt

The proceduréransform_stmhas the form
transform_stmiStatement

It makes a single left-to-right pass over a Tempura statement held in the parameter
Statemenand transforms it, while simultaneously extracting information about
Tempura variables and termination. The contents of the memory cells are updated
in the process. Furthermore, when a Temp@guestor display statement is
reduced, communication with the user takes place.

As noted in the presentation of Tempura’s syntax, a formula such as

(I=2)Ad=1+3)

can be viewed as both a statement and as a boolean test. In addition, a variable
such ad can be considered either a location or an expression. Therefore, there
exist two other reduction routines. The proceduassform_locis for locations
and the procedur&ransform_expris for expressions. These are both used by
transform_stmand are described in sectid@3 and8.6, respectively.

Let us now consider the behavior wansform_stmbn individual types
of Tempura statements.

8.4.1 Implementing the statements$rue and false

When the statemeritue is encountered, it is immediately reduced to the form
@true. The values of the memory cells are not affected. Ttrug,can be thought
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of as a no-operation statement. On the other hand, vidieais encountered as
a statement, the interpreter terminates execution with an error. This provides the
user a way to abnormally stop the program if inconsistencies are detected.

8.4.2 Implementing equalities

An equality has the general form= e, wherel is a location anct is an expres-
sion. This is executed by first transformih@nde to new formsl’ ande. See
sectiongB.5and8.8for details. If eithed’ or € is not yet fully reduced, the state-
ment

I"=¢

is returned as the result. If both are successfully reduced,ehsra constant
andl’ has one of the following two forms:

@logk), Ol”.

The construct@lodk) is an internal location descriptor that references
the memory cell indexed by the intederlf I’ is such a descriptor, the equality is
processed by placing the constaim thek-th cell. A check is made to ensure that
the cell is empty prior to the assignment. The overall statement is then reduced to
the form@true. This is returned as the result.

If the locationl’ is of the formO1” then the assignment is transformed to
the conditional statement

if morethen®(1” = c) elsefalse

This postpones the actual assignment to the next statendheconstruct is used
to ensure that the interval does indeed continue. If the test fails, the statement
falseis executed, thus resulting in an error.

8.4.3 Implementingemptyand more

The transformation of the statemeaarhptyplaces the valugrue in the done-flag
currently indexed by the variableurrent_Done_Cell The statement is then re-
duced to@false The transformation omoreplaces the valuélsein the done-
flag indexed byCurrent_Done_Celénd then reduces ttrue. In the case of both
statements, a check is made that the done-flag is empty (i.e., égual®r to the
assignment.
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8.4.4 Implementingrequestand display

A statement of the form
requestls,...,In)

is processed by first prompting the userrioaluescy, . .., c, and then transform-
ing the statement to a conjunction of equalities

(|1:Cl)/\---/\(|n:Cn).

This is then re-reduced.
During the execution of a statement

diSpla)(e]_, cee ;Q’])?

the expressions;, ..., e, are all transformed. If any fail to completely reduce,
the statement is returned unchanged. Otherwise, the resulting values are displayed
and the statement is reducedatrue.

8.4.5 Implementing conjunctions

A conjunctionw; AW, is processed by first reducing both operands to forps
andw,. If this is successful, the statemesi will be of the form@w] and the
statementv, will be of the form@ws;. The overall statement can then be reduced
to the form®@(wj Aws3). If eitherw; orws; is true, it can be omitted from the result.

If w; orw, is not yet fully reduced, the conjunctiavj AW, is returned instead.

8.4.6 Transforming the operatorsnextand always

A statement of the forn®w is already in reduced form and requires no further
processing. Statements of the foria andC w are rewritten using the following
equivalences and then reprocessed:

Ow = moreA®w
Ow = wA®Ow,
8.4.7 Implementing implication

A conditional statement of the forim> w is treated by first reducing the boolean
expressiorb to eithertrue or false If b reduces tdrue, the overall statement is
changed tav and again transformed. lifreduces tdalse the result ismtrue.
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8.4.8 Implementing some other statements

As was mentioned earlier, statements using the operatoifs gets stableand
halt can be converted to equivalent forms expressed in terms of the constructs
described above. For example, a statenhgbtse is first expanded to the form

O[moreD ([O1] = e)]

and then re-reduced. Execution efficiency can be greatly increased if each new
operator has its own specialized transformation sequence.

8.5 Implementing Locations

The proceduréransform_lochas the form
transform_lo¢Loc).

The parametekoc contains a location construct that is to be reduced. A loca-
tion that is a variable such &r J is transformed by converting it to an internal
descriptor@lock), wherek is the variable’s cell number as indexed by the envi-
ronment contained i€urrent_Env Locations can also be of the foran, where

| is itself a location. These are considered to already be in reduced form.

8.6 Implementing Expressions

The proceduréransform_exphas the form
transform_expfExpr).

It attempts to reduce the contents of the paramEtgr using transformations
that are suitable for expressions. An expression is in reduced form if it is either an
arithmetic or boolean constant. Since constants suGaasltrue are already in
reduced form, they require no further processing. A variable sutlisasandled
by first reducing it as a location. The result is an internal location descriptor of the
form @logk). The actual value dk is determined by looking dts entry in the
current environment. The descriptor is immediately re-reduced as an expression.
Alocation descripto@lod(k) is itself transformed by examining the mem-
ory cell indexed by the integéx. If that cell is empty (i.e., equal tQ), the de-
scriptor is returned unchanged. Otherwise, the value stored in the cell is returned
instead of the descriptor. For example, if the cell equals the singlgiorthe
constant 4 is the result.
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An expression such as the swen+ e, is handled by first transforming
e; ande; and then adding them if both are successfully reduced to constants. A
conditional expression of the foribthene; elses; is transformed by reducing
b and then selecting eitheq or e, for further processing. Boolean expressions
such as-b andb; A by can be expanded to conditional expressions and then re-
reduced. The boolean expressi@mptyand more are transformed to the con-
structs@loc(done-cel) and -@loc(done-cel), respectively, wherelone-cellis
the value ofCurrent_Done_Cell The new expressions are then immediately re-
reduced.

8.7 Static Variables, Lists and Quantifiers

We now consider how to extend the interpreter to handle static variables, lists and
quantifiers. The operatotsn, fin and« as well as predicates and functions are
also discussed.

8.7.1 Implementing static variables

Static variables are implemented by altering the memory slightly to include an
extra boolean flag in every cell. This is setitoe if the cell has been designated

as static. When a memory cell is allocated for a state variable, the cell’s flag is set
to false While clearing memory, the interpreter only empties those cells whose
flag equaldalse Thus once a value is put in a static cell, it is never lost.

8.7.2 Implementing lists

The value of a list is represented as a special list descriptor of the form
@list(length offsed.

Herelengthequals the number of list elements asftsetis the index of the first
of a series of consecutive memory cells for storing the elements.

8.7.3 Implementinglist, fixed_listand stable_struct

A statement of the forrfist(l,e) is processed by first reducing the locatioand
expressiore. A series of consecutive memory cells are then allocated, one for
each list element. If the cell referenced by locatios designated static, then so
are these cells. Afterwardsss cell is assigned a suitable list descriptor.
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The implementation of the construfiked_listl,e) mentioned in sec-
tion[Z.3is similar to that ofist(l,e). However, the memory cells initially allocated
for the list elements continue to be used during the entire interval. This is done
by simply reassigning the list description stored in locatidrom state to state.
Thus a statement such as
fixed_list Table 20)

is much more efficient that the logically equivalent form
Olist(Table 20)

since storage for the 20 elementslableneed only be allocated once rather than
in every state. Furthermore, by usifixed_list we ensure that the locations of the
elements offabledo not change over time. This turns out to be very important
when passing them as parameters to temporal predicates.

The construcstable_struck mentioned in sectidid.1.1has an implemen-
tation similar to that fofixed_listin that the list descriptor stored ins repeatedly
reassigned throughout execution. However, the list elemertar@ assumed to
be already allocated. The conjunction

list(l,e) A stable_struck
can in fact be used to implement the statement

fixed_listl,e).

8.7.4 Implementing list constructors

A list constructor of the form

(€0, ...,en1)

is evaluated by first reducing the expressiens.. ., e,_1 and then allocating
consecutive static memory cells in which the valuesf . ., e, 1 are stored. A
suitable list descriptor is then returned as the overall value of the expression. The
iterative list constructor is implemented in a similar way.

8.7.5 Implementing subscripts

A subscripted locatioh[€] is processed by first evaluating the locatloand the
expressiore. The value of’s cell is fetched and checked to ensure that it is a list.
Furthermore, a check is made to ensure #mvalue is within the list's range.
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A location of the form@log(k) is then returned, wherleis the sum of the list's
offset into memory and's value.

An expressiore;[e;] is treated in a similar manner. However once the
relevant element’s location has been determined, the value in the corresponding
memory cell is fetched.

The sublist construdte; .. e;] mentioned in sectioff.3 is implemented
by first reducing the locatiohand the expressiores ande,. We then form a list
descriptor with offset to the elementlimeferenced by; and with lengthe, — e;.

This descriptor is stored in a new cell and the location of that cell is the result of
the reduction.

8.7.6 Implementing the list-length operator

An expressiorje| is reduced by first determining the list descriptor of the expres-
sione and then returning the length field stored in it.

8.7.7 Implementing existential quantification
A statement of the form
Vi, ... ,Vhiw

is processed by creating a new environmamtcontaining entries for the quanti-
fied variabled/y, ...,V Each of these variables has a fresh memory cell allocated
for it. The entries irenvfor other variables are the same as in the surrounding en-
vironment contained irfCurrent_Env The statement is then transformed to an
internal construct of the form

@existgenv,w).

This is immediately re-reduced. Such a statement is evaluated by saving the
contents ofCurrent_Eny settingCurrent_Envto envand then transforming the
statemeniv. Afterwards, the old contents @urrent_Envare restored. If the
transformation resull/ is successful, it has the formw’. Therefore, the overall
statement is converted to the form

o] @existsenyw’)]
and returned. Ifv is not fully reduced, the overall statement is given the form
@existgenyw)

and returned.
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8.7.8 Implementing universal quantification
A statement of the form
YWw<ew

can be readily handled by first reducing the expressitna constant and then
building a conjunction of the form

Gv:i[(v=0)AW)ABV:[(v=D)AW)A---A(BVv:[(V=Cc—1) AW]).

The conjunction is immediately re-reduced.

8.7.9 Implementing the operatorden, fin and chg

The implementation of a statemdan(e) first reduces the expressieno another
expressiore. If this is not a constant, the overall statement is changéen(@)
and returned. On the other handgifis a constant, the statement is reduced
using the equivalence

len(c) = if (c=0)thenemptyelseClen(c—1).

A statement of the fornfinw is rewritten as the logically equivalent for-
mula
if emptythenwelse(@finw)

and then immediately re-reduced. A temporal assignrhente is processed
by first reducing the expressiato a constant. The overall statement is then
changed to the form

fin(l =c).

This is immediately re-reduced.

8.7.10 Implementing predicate and function definitions

A predicate definition has the form
definegp(Vy,...,Vh) = w.
We execute this by creating a special descriptor of the form
@predicat¢eny, (Vi,...,Vn),W),

whereenvis the current contents of the environment varigblerent_Env The
descriptor is stored in the predicate variapkmemory cell and provides enough
information to properly access the predicate when it is invoked. The overall pred-
icate definition is then reduced to the fomrue. Function definitions are simi-
larly handled.
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8.7.11 Implementing predicate and function invocations

A predicate invocation has the form

p(ey,...,en).

We first access the value iois memory cell and determine that it is indeed a
special descriptor of the form

@predicatéeny, (Vi,...,Vn),W).

The locations of actual parametezs ..., e, are then reduced. If any are in
fact constants or expressions, their values are stored in freshly allocated static
memory cells. A new environmertw is created in which each formal parameter
V1, ..., Vn has an entry pointing to the corresponding actual parameter’s location.
The entries for other variables are made identical to those found in the predicate-
descriptor’s environmergnv.

We now transform the predicate invocation to the statement

@callenv,w),

whereenv is the environment just constructed amds the statement contained in
the predicate-descriptor. The internal operaall is then processed by saving
the current contents of the varialfleirrent_Eny settingCurrent_Enwvto env, re-
ducingw and then restorinGurrent_Enis old value. If the transformed statement
w is completely reduced, then it has the fosrw’. The overall invocation is then
rewritten as follows:

@[ @call(env,w")].

On the other hand, if the transformation is not complete, the statement
@call(env,w)

is returned so that this can be executed during the current state’s next pass.
Function invocations are similarly handled. They are eventually reduced
to something of the form
@call(env,c),

whereenvis an environment and is a constant. At this time, we discard the
operator@call and the environment and transform the overall expression to be
simply the constant.
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8.8 Implementingchopand Iterative Operators

We now turn to the implementation ohopand related operators suchfas and
while.

8.8.1 Implementing the operatorchop

Thechopconstruct has the form
W1, Wao,

wherew; andw, are formulas. The first step in processing this is to allocate
a memory cell to serve as the local done-flag associated with the subinterval in
whichw; is executed. Thehopstatement is then transformed to the internal form

@chogdone-cellwy, w,).

Heredone-cellis the index of the memory cell serving as the local done-flag.

The construct@chopis executed by first saving the current value of the
variable Current_Done_Celhnd settingCurrent_Done_Celto the indexdone-
cell. The statement is transformed in this context. Afterwards, we restore the
old value ofCurrent_Done_CellIf the transformation’s resul¢/ is not yet fully
reduced, th&@chopstatement is altered to have the form

@chogdone-cellw,w,)

and then returned as the overall result. Howevew ifs fully reduced, it has
the form@w’. The @chopstatement is therefore transformed to the following
conditional form:

if @log(done-cell thenw; elseO @chogdone-cellw’,ws).

This is immediately re-reduced. Thus, if the value of the local done-flag is true,
the subinterval in whickv; was executed is empty and therefarecan be started
right away. If the local done-flag is false, then the execution ofdehopstate-
ment is continued to the next state of the overall interval. Note that the operator
strong-nexis used to indicate that the overall interval is not yet finished.

8.8.2 Implementing iterative operators

A statement of the form
for etimesdav
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is transformed by first reducing the expresssio a constant. The overall
statement is then rewritten as the conditional form

if ¢ = Othenemptyelse(w; [for c — Ltimesdaw])

and again reduced.
The implementation of an indexed for-loop of the form

forv < edow

first reduces the expressietio a constant. The statement is then transformed to
the related construct
for0 < v < cdow.

This is expanded using the following rule:

forci <v<cydow =
if c1 > cothenempty
else([3v: (v=cy Aw)];[forc; +1 < v < cpdow]).

A while-loop is reduced using the equivalence
whilebdow = (if bthen|w; whilebdow] elseempty.

The iterative constructepeatandloop are treated similarly.

8.8.3 Implementing the operatorskip

The operatoskipis first transformed to the form
Oempty

and then re-reduced.

8.9 Alternative Interpreters

The interpreter described here represents one technique for executing Tempura
programs. Itis rather easy to understand but suffers from being relatively slow. Let
us now consider some alternative approaches and features. Most of them increase
execution efficiency at the expense of generality. With a proper mix of these
techniques, we feel that we can achieve speeds comparable with conventional
imperative programming languages.
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8.9.1 Immediate assignments

When the interpreter encounters the equality
ol =1

it postpones the actual assignment tmtil the next state by using the form
®(1 =1).

The interpreter can be modified to perform the assignment immediately. This
leads to increased execution efficiency. However, one drawback is that statements
with parallel assignments such as the following are not properly handled:

(O =14+ A(OJ]=I+I).

In this example, we would altéis value before being able to compute the expres-
sionJ+ 1. Thus, the next value af would be unknown. One way to get around
this is to reorder the statement as follows:

([0J] =I+H)A (O] =1+1).

8.9.2 Two-level memory

So far, the interpreter we have presented maintains a single data value for each
location. Itis often attractive to maintain two such values: one for the current state
and one for the next state. This permits the technique of immediate assignment
described above to properly work on parallel assignments such as

(O] =1 +1)A([0I] =I+1).

Note that static locations still only require a single value.

8.9.3 Single-pass processing

The current interpreter can make a number of left-to-right passes over a statement
within each executed state. For example, the compound statement

G=1+2)A(1 =1)

requires two passes. During the first pass the valukifdetermined and during
the second pass the value fbrs determined. On the other hand, the following
statement can be completely reduced in a single pass:

I=)A@=1+2).
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If we use an interpreter having immediate assignment, then many useful
programs can be written which require only one pass per executed state. Once they
are debugged, such programs have the potential of being executed much faster
since the interpreter need not do the extra processing required to detect and handle
multiple passes. For example, when a memory cell is read, no test need be made
regarding whether a value is already stored.

8.9.4 Time stamps

A time stamp can be included as part of each memory cell. Whenever the cell is
stored into, the current state number is included with the data. When the cell is
accessed, its state number can be checked to ensure that the data is current and
not left over from a previous state. This approach eliminates the need to empty
all cells at the beginning of every state. Many debugged programs require only
one pass per executed state and can therefore be executed without the interpreter
having to regularly empty memory cells or use time stamps.

8.9.5 Ignoring the operatorstable

As we have noted, many debugged Tempura programs can be run using one pass
per state and without emptying memory cells or maintaining time stamps. Any
statement of the formtabld in such programs can be ignored since the value of
the locationl’s memory cell will automatically remain unchanged.| i a list,

then the effect will safely propagate to its elements. Thus, the savings gained by
not processingtablecan be considerable. This technique should be used with
great care since time-dependent errors can go undetected.

8.9.6 Redundant assignments

The interpreter does not permit two or more redundant assignments to the same
location to occur in a single state. For example, the statement

(I=2)A(l=1)
causes an error in processing even though it is logically equivalent to the statement
| =1

The principle of nonredundancy also applies to interval termination con-
structs such asmpty Only one such construct should be used in each state of an
interval. Thus a formula such as

empty\ empty
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although logically consistent, results in an error when executed. Tempura con-
structs such as the operat@mpty more halt andO affect interval length. Con-
structs such as, @ andO do not in themselves specify anything about termina-
tion.

If desired, the interpreter can be modified to permit the kind of redundant
assignments mentioned here. We currently have reservations but more experience
is needed to resolve this issue.

8.9.7 Special-purpose constructs

Various constructs can be added to Tempura in order to speed execution. For
instance, the operatot is calledunit assignmenand is like temporal assignment
(«). However, unit assignment only works in intervals of length 1 and turns out
to be more efficiently implementable. A statemént e is first transformed to
the form

(Ol)=e

and then re-reduced. In addition, a test is made to ensure that the interval is indeed
of unit length. Note that= can also be viewed as a restricted forngets

8.9.8 Suppressing checks

Programming systems usually have facilities for checking subscript ranges, de-
tecting undefined variables and performing other such tests. The Tempura inter-
preter includes additional consistency checks regarding temporal behavior. For
example, a statement such as

I=1)A(=2)

is erroneous since the same variable cannot receive two values in one state. Simi-
larly, the interpreter detects an error in the following program because no value is
specified for the variablkein the second state:

(I = 1) A[skig (skipA [l « I +1])] AOdisplayl).
These types of temporal checks can be suppressed. This increases the speed of ex-

ecution but of course can result in various time-dependent bugs going unnoticed.

8.9.9 Call-by-name

When a function or predicate is invoked, the interpreter determines the locations
of all actual parameters and uses them to build an environment. The effect is to
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implement parameter passing using call-by-reference. As in other programming
languages, this is more efficient than call-by-name but has certain drawbacks.
For example, when a subscripted element such[ldccurs as a parameter, its
location is determined only once. Therefore any change in the value of the index
I is not reflected in the corresponding formal parameter. Our experience is that
most subscripts tend to be static expressions (gl4.or L[i]) so this is not a great
limitation. A more subtle problem occurs if one specifies tha a list using a
statement such as

Olist(L,3).

In every state, new memory cells are allocated.feithree elements. Therefore, a
reference to, say,[2] will change over time. Thus, If[2] is passed as a parameter

to a temporal predicate, the reference used becomes obsolete after the first state.
This is one reason we use the constrdiotsd_listandstable_strucfor creating

and maintaining such lists. Both of them ensure that the locations of list elements
do not move around.

If one desires, itis not hard to alter the interpreter to implement parameter
passing using call-by-name. It should be noted that the current interpreter permits
one to simulate call-by-name by means of parameterless functions. For example,
suppose we define the functidrand the predicatp as follows:

definef() = L[I],
definep(g) = (g() getsg() +1)).

The predicate invocatiop( f) is therefore equivalent to the statement

L[l]gets(L[l] +1).



Chapter 9

Experimental Features

In this section we examine some experimental constructs that are not especially
well understood, yet have interesting applications and properties. The first in-
volves the concept of temporal projection. Following this is a brief look at lambda
expressions and their application to representing pointers. Finally, we discuss the
use of thgprocesconstruct in parallel programs and the use ofgfedixconstruct

in specifying the premature termination of computations.

9.1 Temporal Projection

When modelling hardware, it is natural to look at a circuit’s behavior at different
granularities of time. For example, the units of time might correspond to nanosec-
onds or clock ticks. We use the tet@mporal projectiorto denote the process

of mapping from one level of time to another. In earlier watk, [34] we looked

at one way to add operators for temporal projection to ITL. Since then we have
developed an approach which is a bit easier to use and can be readily incorporated
into Tempura. The main new construct is a formula of the form

W1 proj wy,
wherew; andw, are themselves formulas. This has the following semantics:

Mo (w1 projw,] = true  iff
for some relative timeso, 11,...,Tm € {0,1,...,|0|},
the following are true:
O=1<T1<--- <=0,
and%crri...oqm [wy]] = true, for alli < m,

and Mcroorl...orm> [[WZ]] = true.

85
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Figure 9.1:Example of projection

len(4) A (I =0) A(l getsl +1)

g

Op O2 O4 Og Og
o 01 O O3 d4 Os dg O7  Og
len(2) len(2) Ienv(2) Ier‘l'(Z)

This definition makes the formula; projw., true on any interval meeting two
conditions. First, the interval can be broken up into a series of consecutive subin-
tervals, each having the form, . .. oy, , for somei < mand satisfying the formula
wy. Second, the projected interv@y, 0, ... Oy,,) formed from the string of end-
states of the subintervals satisfies

Consider, for example, the formula

len(2) proj[len(4) A (1 = 0) A (1 getsl +1)].

This is true on any interval whose length is 8 and in whicdls value starts at
0 and increases by 1 frowy to o,, from o> to 04 and so forth. To show this,
we use the definition gbroj with m equalling 4 and witlt’s elements having the
assignments

T0=0 11=2, 12=4 13=6, T14=8.

Thus the left operankkn(2) is true on each of the following subintervalsaf
(000102), (020304), (040506), (060708).

The right operand
len(4) A (I =0) A(l getsl +1)

is true on the projected interval
0002040603.

Figure@.1 illustrates the projection pictorially. The value lofn odd-numbered
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states is not specified. This example is in fact logically equivalent to the formula
(I =0) Afor4dtimesdglen(2) A[l — I +1]).

Note that different projections can be combined in parallel as well as with other
kinds of formulas.

9.1.1 Incorporating proj in Tempura
We add projection to Tempura by permitting statements of the form
W1 Projwa.

Herew; andw, are themselves statements. Let us now look at two Tempura
programs based on this construct.

Example (Describing intermediate states):

The following formula initializes the variabl to 1 and then doubles it in every
third state for 4 times:
([len(2) A stableM]; skip)
proj[len(4) A (M = 1) A (M gets2M)].
FurthermoreM remains stable during intermediate states of the projection. Fig-
ure0.2 gives an execution depicting the behaviovbf

(9.1)

Example (Variable-length projection):
Let us define the predicat®unt_and_suras follows:

count_and_suifh,J) =qef
len(4) A(I =0)A(IJ=0)A(l getd +1) A (JgetsI+1).

This initializes the variables andJ to 0 and then repeatedly increadeby 1
andJ by | for four units of time. The following formula uses this predicate in a
projection that has ever widening gaps dependentsovalues:

([len(1) A stabld A stablel]; skip)

proj[count_and_sum, J)]. (9.2)

The projection has the valueslodndJ remain stable in intermediate states. This
formula is executed in figui@.3 Note that if we are not interested in the behavior
of I andJ in intermediate states, the projection can be specified as follows:

[len(l +1)] proj[count_and_suih, J)].
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Figure 9.2:Execution of formula@.7)
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Done! Computation length = 12.

Figure 9.3:Execution of formula[®.2)

State 0: 1= 0 =0
State 1. I=1 =0
State 2: I=1 =0
State 3. I= 2 =1
State 4. |I= 2 =1
State 5: I= 2 =1
State 6: I= 3 =3
State 7: 1= 3 =3
State 8. I= 3 =3
State 9. I= 3 =3
State 10: I= 4 =6

Done! Computation length = 10.
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9.1.2 Universal projection

The kind of projection so far presented can be cadlgdtential projectiorsince
it is true on an interval if there iat leastone way to break up the interval. The
operator

W1 UProjw,

is calleduniversal projectiorand is true on an interval if for every waywe break
up o usingws, the projected result satisfias. We can expressproj as the dual
of proj:

Wi UProjwe  =gef  —(W1 proj —ws).

At present, we do not see how to include universal projection in Tempura.

Example (Projection of a clocked system):

Universal projection provides a way of abstracting from digital behavior involving
an explicit clock signal to behavior at the register-transfer level. As an example
of this, let us consider a simple system driven by clock pulses. We first define the
pulse operatot | Clockto be true on intervals where the bit sigi@dbckrises and

then falls:

TIClock =get
(Clock= 0); skip; (Clock~ 1); skip; (Clock~ 0).

The system we have in mind has the three bit sig@ddgk X andY. Universal
projection facilitates examining those propertiesxodndY that are true across
clock pulses independent of where we mark the beginning and end of each indi-
vidual pulse. We can use projection of the form

(T/Clock) uprojw

to specify and reason about a formulalescribing the behavior of andY at the
register-transfer level. For example, the following formula is tru¥ i repeat-
edly inverted andf remains stable over a series of clock pulses:

(11 Clock) uproj[ (X gets—X) A stableY].

9.2 Lambda Expressions and Pointers

Lambda expressions provide a natural means of representing functions as values.
We now briefly sketch how to incorporate them into ITL and Tempura. We also
show how lambda expressions can be used to represent pointers.
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9.2.1 Lambda expressions

A lambda expression has the form
)\Vl, e 7Vn: e,

whereVy, ..., V, are variables and is an expression. The body efcan itself
contain lambda expressions. In addition, we permit lambda predicates having the
syntax

AVi,...,VhiW,

whereVy, ..., V, are variables and is a formula.

First order lambda constructs can be viewed as temporal functions and
predicates. To date, we do not have an adequate semantics for higher order lambda
expressions.

An invocation of a lambda construct has the form

(€1, --,€n),
wheren > 0 andey, ..., e, are expressions. The value&fshould be a lambda

construct of arityn.

9.2.2 Pointers

We can represent a pointer to a variaBlby means of the parameterless lambda
expression
AA

For example, suppose the static variablbas this as its value. The variabde
can then be indirectly accessed through the function invocdiipn Thus, the
following formula is true on intervals wherincreases by 1.:

b= (A:A)]A[b() «b()+1].

Let us now introduce some operators to make the pointer notation look
more conventional. The expression

ref(l)
equals a pointer to the locatidnlt can be defined as follows:

I‘Ef(l) =gef A:l.



Executing Temporal Logic Programs/B. Moszkowski 9 February 2000 91

A pointer expressioe can be dereferenced using the construct
deref(e).

Itis defined as follows:
deref(e) =get €()-

Thus the sample formula given above can be also expressed as follows:

[b=ref(A)] A [deref(b) — deref(b) + 1].

9.3 TheprocesLonstruct

In section8.9.6 we mentioned that two separate statements can not in parallel
determine the length of an interval. If one has a number of statemeni®, . . .,

Wy, to be run in parallel and each individually determines interval length, then all
but one should be used with the unary operatocess

W1 A (processvo) A --- A (Processvy).
For instance, the following statement is permitted:

[(I =0) A (1 getd +1) Ahalt(l =5)]
Aproces$(J = 0) A (Jgets] + 2) Ahalt(J = 10)].

The predicatsum_tree_process sectiori/.1.2and the predicatsort_procesi
sectioriZ.3.3both make use gbrocess This is so that multiple instances of them
can be run in parallel. Note that tipeocessconstruct has no logical semantics
and can be defined as follows:

processV  =def W.

Its purpose is merely to explicitly indicate to the interpreter that redundant speci-
fications of interval termination are present.

9.4 Theprefix Construct

When a program is designed, it is often necessary to provide facilities for termi-
nating execution before the normal end is reached. For example, an interpreter
might detect an error in the code it is processing and therefore wish to leave a
number of recursive calls via an error exit. In conventional Algol-like languages
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this kind of behavior is readily achieved by means of a go-to statement which can
immediately exit from any level of nesting in a program. This technique appears
inappropriate for Tempura since Tempura does not have go-to statements and the
underlying ITL formalism seems incapable of supporting them.

It turns out the one can achieve the effect of error exits by means of the
prefix operator. The formularefixw is true on an intervad iff o is a prefix of
some intervab’ on whichw s itself true:

Mo [[prefixw] = true  iff
there is some’ in I such that
|0’| > |o|, My [W]] = trueando = (0’00’1...0"0‘>.
For example, the following formula is true on any interval having length not
greater than 5:

prefixlen(5)].

9.4.1 Incorporating prefix in Tempura

We introduce Tempura statements of the fgrrafixw wherew is itself a state-
ment. Here are some simple applications.

Example (Early termination of iteration):

Consider the following formula:
halt(l = 16) A prefi{len(10) A (1 = 1) A (1 gets21)]. (9.3)

The operand oprefixspecifies that the variableepeatedly doubles over an inter-
val of length 10. However, the outbalt construct overrides this and terminates
the interval uponr reaching the value 16, i.e., after four units of time. Fida#
shows the behavior of the formula.

Example (Early termination of nested recursion):

Figure[0.5 depicts a modified version of the serial tree summation program de-
scribed earlier in sectioid. 1.1 The predicates reference a global variabdg
which normally equals the empty lig} except at the end of the execution of
pfx_sum_treavhen it is assigned the singletdtmue). However, if an invocation

of the predicatefx_sum_tree_bodynds a leaf having the value 0, the value of
Tagis set to the singletokfalse. The following program handles initialization
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Figure 9.4:Execution of formula.3

State 0: I= 1
State 1: I= 2
State 2. I= 4
State 3. I= 8
State 4: =16

Done! Computation length = 4.

Figure 9.5:Tree summation with prefix computations

define pfx_sum_tr¢€ree) =
pfx_sum_tree_bodyree);
(

skipA (Tag+«— (true)) A (stableTree)

)

define pfx_sum_tree_bddyee =
if is_integefTree) then(
if Tree> Othenempty
else(
skipA (Tag« (false) A (stableTree)
)
)
else(
pfx_sum_subtréd@ree 0);
pfx_sum_subtréé@ree 1);
(
skipA (Tree«— Tree) + Treey) A (stableTag)
)
).

define pfx_sum_subtré&egi) =
pfx_sum_tree_bodyreq)
A stable_struct Tree
A stableTreg ;.
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State 0: Tag=<>
State 1: Tag=<>
State 2: Tag=<>
State 3: Tag=<>
State4: Tag=<>
State 5: Tag=<>
State 6: Tag=<>
State 7: Tag=<>

Figure 9.6:Execution of formula@.4)

Tree=<<<1,1>,<1,1>> <<1,1> <1,1>>>
Tree=<<2,<1,1>><<1,1> <1,1>>>
Tree=<<2,2>,<<1,1>,<1,1>>>
Tree=<4,<<1,1>,<1,1>>>
Tree=<4,<2,<1,1>>>

Tree=<4,<2,2>>

Tree=<4,4>

Tree=8

State 8: Tag=< true> Tree=8

Done! Computation length = 8.

State 0: Tag=<>
State 1: Tag=<>
State 2: Tag=<>
State 3: Tag=<>

Tree=<<<1,1>,<1,1>>,<<0,1>,<1,1>>>
Tree=<<2,<1,1>><<0,1><1,1>>>
Tree=<<2,2>,<<0,1>,<1,1>>>
Tree=<4,<<0,1>,<1,1>>>

State4: Tag=< false>Tree=<4,<<0,1><1,1>>>

Done! Computation length = 4.
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and includes therefix construct to facilitate early termination upon the detection

of such a leaf:

(Tree= initial_tree) A (Tag= ())

Ahalt(|Tag = 1) A prefi{ pfx_sum_tre@ree)].

(9.4)

This invokes the predicatefx_sum_treeand terminates when the variablag
becomes a singleton. We assume that the static varaiti@ tree equals the
starting value for the variabléree Figure[d.6 shows the formula’s behavior for

two possible trees. The first computation processes a tree containing all 1's. The
second computation operates on a variant of the tree in which one leaf has the
value O.

9.5 Implementing these Constructs

We now discuss how the various constructs just introduced can be implemented
in the Tempura interpreter. This presentation can be skipped if desired.
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9.5.1 Implementing temporal projection

The interpreter handles a statement of the farprojws by first allocating a new
memory cell and then transforming the statement to the internal construct

@proj(done-cellwy, w,).

This is immediately re-reduced. Hedene-cellis the index of the memory cell.
The cell serves as a local done-flag for the projected interval in which the state-
mentws is executed.

We execute theproj construct by first saving the value of the variable
Current_Done_Celand setting it to the indedone-cell The statemenir is then
transformed in this context to a new statemeht Afterwards the old value of
Current_Done_Celis restored. Iiw is not yet fully reduced, the overat®proj
statement is rewritten as

@proj(done-cellwy, w).

This is returned as the result of the transformation. On the other hasdsifully
reduced and thus of the formw’, then the overall projection is transformed to
the following conditional statement and then immediately re-reduced:

if @lo(done-cel) thenempty
elsg wy; @proj(done cell,wy,w")].

This tests the localized done-flag indexeddmye-cell If it is true, the interval in
which w, was transformed is finished and therefore the overall projection termi-
nates. Otherwise, the statementis executed followed by the resumption of the
projection statement.

9.5.2 Implementing lambda expressions and pointers

The lambda constructs implemented in the Tempura interpreter can uniformly
handle both first-order and higher-order variants. The approach taken is basically
the same as for processing predicate and function definitions. See

for a presentation of this.

The technique of using lambda expressions for representing pointers ac-
tually works in the current Tempura interpreter. However, the constrett&nd
derefcan be implemented in a more efficient but less general manner by means of
a new type of descriptor specifically for pointers. We omit the details.
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9.5.3 Implementing theprocessconstruct
When reducing a statement of the form
processv

we first allocate a memory cell to serve as a local done-flag. The statement is then
transformed to the internal construct

@proces&done-cellw)

and immediately re-reduced. Hatene-cellis the index of the memory cell.

The @procesgonstruct is itself implemented by saving the value of the
variableCurrent_Done_Celand setting it to the indestone-cell The statemeny
is transformed within this context to a new statem&ntAfterwards the variable
Current_Done_Celis restored to its old value.

If the statementv is not yet fully reduced, the statement

@proces&done-cellw)

is returned as the result. Otherwisepifis fully reduced then it has the formw”
for somew’. We therefore transform th@processconstruct to the following
conditional statement:

if [empty= @loqdone-cel)]
then[® @proces&done-cellw’)] elsefalse

This tests to make sure that the current done-flag and the local done-flag used
by the @processoperator agree in value. If they do, the statemghis placed

within the @processconstruct in preparation for any subsequent states. If the
done-flags are not equal, the statenfatgeis executed, thus generating an error.
Note that once a Tempura program is debugged, the consistency check between
the done-flags can be suppressed.

9.5.4 Implementing theprefix construct

The prefix construct is implemented in the same way as ghecessconstruct.
However, the following conditional statement is used in place of the one given
previously:

if =[moreA @loc(done-cel)]
then[® @prefiXdone-cellw’)] elsefalse

The conditional test ensures that the interval of the prefixed statement does not
terminate before the outer interval does.



Chapter 10

Discussion

We now discuss the status of Tempura and some directions for further research.
Afterwards we look at programming formalisms that seem related to Tempura and
also review some other work on temporal logic.

10.1 Experience and Further Work

Using the ideas discussed here, we have implemented a prototype Tempura inter-
preter in Lisp. Its design is based on the interpreter presented in s@ciod it
includes facilities for experimenting with some of the alternative execution strate-
gies mentioned in sectid®.9 A great variety of Tempura programs have been
written and successfully run. Roger Hale, a PhD student at Cambridge University,
has more recently implemented a faster version of the interpreter in the program-
ming language€. In [13], he describes the application of ITL and Tempura to the
modelling of a digital ring network. Another interpreter has been developed in
Prolog by Masahiro Fujita, Shinji Kono and others at Tokyo University.

In the future we plan to build a compiler and bootstrap Tempura in itself.
We also hope to describe the operational semantics of Tempura in ITL. This
will enable us to formalize the relation between various execution strategies, both
sequential and parallel. It seems likely that we will generalize ITL to permit
infinite intervals in order to handle nonterminating computations.

So far we have made little mention of ITL's proof theory. This is much
less developed than the model theory. Work by Halpern and Moszkowski has
shown that one propositional subset of ITL is undecidable and that another is
decidable (see Moszkowsk34] for details). Although it is not hard to come up
with sound axioms and inference rules for ITL, no systematic work has been done
to date. We therefore feel that ITL's proof theory represents a promising area for

97
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future research.

10.2 Related Programming Formalisms

Let us now consider some behavioral formalisms and programming languages that
seem related to ITL and Tempura.

10.2.1 The programming languageé._ucid

The functional programming languagecid [2, l45] developed by Ashcroft and
Wadge is similar to parts of Tempura. For example, the Lucid program

|=0fby(I+1); J=0fby(J+I)
roughly corresponds to the temporal formula
(I=0A(J=0)A(lgetd +1)A(JgetsI+1).

This illustrates how the operatgetscan be handled in Lucid. On the other
hand, Algol-like temporal constructs such«aschopandwhile do not have direct
analogs in Lucid. Thus, a Tempura statement such as

while(M # 0) do(skipA [M « M — 1] A [N « 2N])

cannot be readily translated. If]] Ashcroft and Wadge develop a calculus for
reasoning about Lucid programs.

10.2.2 CCSand CSP

Milner's Calculus of Communicating Systelf32] as well as Hoare’Commu-
nicating Sequential Processf&?] are popular notations for describing and rea-
soning about parallel systems. Related work includes MilG¢RCAL [31] for
modelling hardware and the CSP-inspired programming langoegg M [24].

In CCS and CSP, multiple processes interact with one another by mutually syn-
chronizing on events. There are operators for composing processes, waiting for
events and concealing events.

Let us look at some of the constructs used in CSP. The farmm P
denotes a process that awaits the eveand then executes the subprocess
Similarly, the form

a— (b—P)
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describes a process that first waits for the evweand then waits fob before
executing the subproce®s The construcP || Q runs the processdzandQ in
parallel. Thus the form

(@—-P)|(@—=Q

has the evera separately trigger each of the procesBendQ. This is viewed
as equivalent to havingtriggerP andQ together:

@—=P)@=Q = a—=(P[Q).

The CSP notation includes channels for synchronized communication be-
tween parallel processes. An event of the fatmsends the value of the variable
v to the channet. Similarly, the event? awaits the receipt of an input from
channek and places the value in the variable

The treatment of time is not a central issue in CCS and CSP. However, itis
possible to describe a clock process that serves as a source of events representing
ticks. A variant of CCS calle&ynchronous CCBiodels concurrent systems that
operate in lock step.

10.2.3 Predicative programming

Hehner [L7] views programs as logical predicates that describe the input-output
behavior of variables. Various Algol-based constructs such as assignmef (*
sequencing (*) and while-loops are treated. Their semantics are given by means
of special temporal operators. The consti¢tead % in") represents the value
of the variablex before executing some statement. The analogous construct
(read *x out) represents the value of the variablafter the statement finishes.
For example, the following formula specifies tixahcreases by 1 angremains
unchanged:

X=X+ A(Yy=Y). (10.2)

This is similar to the ITL formula
(X —=X+1A(Y <Y).

Hehner reduces the meaning of a statement to a formula based on these operators.
For example, in a program with two variabbeandy, the meaning of the simple
assignmenx := x+ 1 might correspond to formul@0.1

The precise amount of time taken by a statement can not be directly
specified. However, if one desires to formalize properties regarding computa-
tion length, an extra clock variable can be used. Hehner then goes on to introduce
concurrency with interprocess communication through CSP-like channels.
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Figure 10.1:Sample Esterel program

var SPEED: int in
loop
everylOseconds do
SPEED:=0(;
every METER do
SPEED:= SPEED+ 1
end
end;
emit SPEED_MEASURBPEED
end
end

10.2.4 The programming languagedsterel

Most programming languages have no formal notion of time. For example, even
if such languages permit statements specifying delay, the semantics of these kinds
of constructs are usually imprecise. Tempura is an exception to this rule as is
the language Esterel presented by Berry and CossélraPfograms in Esterel

can include constraints involving computation length. In figl®el we show an
example in which the duration of loops is specified in units of time or distance
covered. Berry and Cosserat characterize the behavior of Esterel programs using
transition rules based on a discrete model of time.

10.2.5 The programming languagédrolog

The programming languaderolog [9, 23] uses Horn clauses in first order logic
as a means of describing computations. Kowal2kj 26], Colmerauer et al/1(]
and others originally applied this approach to expressing algorithms for such tasks
as natural language understanding and theorem proving. This led to the use of res-
olution as the basis for executing Prolog programs. Subsequent work by Clark,
McCabe and Gregory7[ 8], Shapiro 2], and others has generalized logic pro-
gramming to deal with concurrent systems.

Let us consider how to express the following two predicate definitions in
Prolog:

is_doublél,J) =gt (J=2I),
is_doublell,J) =qef
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Figure 10.2:Prolog predicates for doubling a value

is_doublél,J) C Jis2xl.
is_double10,0).
is_doublell,J) C
(1 £0)A(11isl —1)
Ais_doublell1,J1) A (Jis J1+2).

if | =OthenJ =0
elsedl1,JL[(11=1-1)
Ais_doublelI1,J1) A (J = J1+2)].

We assume that all the variables mentioned here range over the nonnegative in-
tegers. The definition ab_doublelis recursive but well founded since the first
parameter repeatedly decreased luntil it reaches 0. Both predicates are true if

the second parameté&equals twice the first parameterThus, the predicates are

in fact equivalent:

= is_doubl¢l,J) =is_doublell,J).

In figure[10.2 we show Prolog programs corresponding to bisthdoubleand
is_doublel The Prolog versions of the predicates illustrate how definitions gen-
erally consist of lists of implications. Furthermore, hidden variables are not ex-
plicitly quantified.

The developers of Prolog strongly believe in distinguishing between logic
and any procedural aspects of implementation. As a consequence, Prolog and
its offspring do not have any notion of time and therefore are unable to directly
express imperative constructs such as assignments. Furthermore, there is no di-
rect means of logically specifying or reasoning about such things as computation
length and invariants.

In practice, extra-logical constructs sucheasertandretractcan be used
to get around the lack of assignment statements. They provide a means for adding
and removing facts from a system-maintained database. However, their usage is
generally not considered good programming style. Alternatively, one can stay
completely within the framework of the underlying logic by explicitly represent-
ing dynamically changing objects as lists of values. Whether this represents a
practical and desirable way to express programs and properties remains to be seen.

Compared with Prolog, our approach does not limit itself to a subset of
conventional logic based on Horn clauses. Nonetheless, it is a form of logic pro-
gramming, albeit with temporal logic as the underlying formalism. We feel this
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provides a more natural setting for both programming and reasoning about dy-
namic systems. For example, here are two ITL definitions corresponding to pro-
cedural interpretations of the original logical predicates:

doublgl,J) =gt (emptyr[J=2I]),
doubleXl,J) =qef
(J=0)
Awhilel > 0do(skipA[l «— 1 =1 A[J—J+2]).

These are readily executable in Tempura. Within ITL we can specify various time-
dependent properties. For instance, in both algorithms the final valliegpfals
twice the initial value of:

= doublgl,J) > J 2,
= doubleil,J) D J 2I.

In addition, the following property states that the length of a computation satisfy-
ing doublelequals the initial value dfand that during the computation, the value
of the expressiogl +J remains stable:

= doubleXl,J) O [len(l) Astablg2l + J)].

Note that Tempura does not completely exclude the style of program-
ming used in Prolog. For example, the original logical predicetedoubleand
is_doublelcan be directly embedded in Tempura programs such as the following:

len(5) A (I =0) A (I gets]l 4 1])
AOis_doublell,J) A Odisplayl,J).

One significant difference is the lack of resolution and backtracking in Tempura.
Perhaps a variant of Tempura can be designed that incorporates these features.

10.2.6 Functional programming

Functional programminglfg] is based on the idea that certain types of functions
can be interpreted as executable descriptions of computations. McCarthy’s pro-
gramming languagkisp[27] is perhaps the best known example of this approach.
The functions themselves have no built-in notion of time. Therefore, as is the case
with logic programs, dynamic behavior is in effect modelled indirectly. Recur-
sion seems to be the most common technique used for this. Another approach is
to represent time-dependent variables indirectly as lists or as functions containing
an explicit time parameter.
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Here is a simple recursive function for doubling a nonnegative value:

double_fun(:l) =def
if (I = 0)thenOelsg[2+ double_fund — 1)].

This has the following correctness property:
= double_fund) = 2I.

For reasons of efficiencyail recursionis often used when implementing such
functions. Here is a variant afouble_fundhat is defined in this way:

double_funcll) =get aux_double_fundl,0),

aux_double_fundl,J) =qes
if (1 =0)thenJelseaux_double_funql —1,J+ 2).

The functiondouble_funcis logically equivalent talouble_func The auxiliary
functionaux_double_funcgatisfies the following property:

= aux_double_fundl,J) =2l +J.

Note that all these definitions and properties make perfect sense in ITL. However,
the iterative flow of control suggested by tail recursion can be directly expressed
through while-loops and other such formulas.

Functional languages sometimes include constructs such as piegs
setgandrplacain an ad hoc manner in order to permit in-place assignments and
other imperative operations. Language purists tend to discourage their use. Even
so, such features often seem indispensable for reasons of clarity and efficiency.
For instance, suppose we are maintaining a 1000-element list and wish to peri-
odically alter various elements. It is a great waste of space to have to create a
completely new list on each occasion. Indeed, it is conceptually proper to view
the various operations as being applied to a single, dynamically changing data
structure. This is not directly possible in the functional framework.

Perhaps the biggest justification of functional programming has been its
mathematical elegance and simplicity relative to conventional imperative languages.
We feel that ITL and Tempura may offer an attractive middle ground which per-
mits one to directly program in a procedural manner without compromising on
formal rigor and without distancing oneself from the underlying implementation
on computers with alterable memory.

10.3 Other Work on Temporal Logic

Let us now look at some work on using various kinds of temporal logics to specify
and reason about dynamic systems.
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10.3.1 Interval logic

Schwartz, Melliar-Smith and Vog#ll] develop a formalism callethterval logic
which includes temporal formulas having the syntax

(1w

Herel can be built from a variety of special constructs for indicating the scope
of the interval in which the temporal formulais to be evaluated. Thuscan be
thought of as an “interval designator.” For example, the formula

[(X=Y)= (Y=16)]O(X > 2Z)

is true on an interval iX is greater thai@ throughout the subinterval starting the
first timeX equalsy and ending whel equals 16. Note that the designator is not
itself a temporal formula. This is unlike the approach of ITL in which constructs
used to specify subintervals are themselves always formulas.

10.3.2 Generalizechextoperator

Shasha, Pnueli and Ewald3] propose some generalized forms of tiextoper-
ator in which explicit time offsets are mentioned. For example, the formula

e
ow

is true if the subformulav is true ine units of time from now. This is basically the
same as the ITL formula
len(e); w.

The following two types of formulas are also permitted:

[e1, &)W, (er,e2)W.

They are defined as follows:

e, ew  =ger Vii((e1<i<ep) D O'w),
(er,e)W  =qet Jii((e1 <i<e)AO'W).

These constructs let one express behavior over various suffix subintervals of time
but do not provide access to prefix subintervals in the way Ithspdoes. For
example, the following ITL formula does not seems to be as elegantly expressed
in their notation:

(K—i—l% K);(K—|—2—> K).
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Figure 10.3:Sample program in XYZ/E

O[ (#lb = gecd) = (O#lb = 11);

(#lb= Il) (O#Ix =la) A (O#lb = 12);
(#lb=12) = (O#ly = Ib) A (O#lb = 13);
(#lb= I3) (#Ix=#ly) = (O#lb=16);
(#lb = 13) A (#Ix # #ly) = (O#lb = 14);
(#Ib = 14) A (#Ix > #ly) =

(O#lIx = #Ix—#ly) A (O#lIb = 15);
(#Ib =14) A (#IX < #ly) =

(O#Ix = #ly — #Ix) A (O#lb = 15);
(#lb=15) = (O#lb=13);
(#b=16) = (O#lz=#Ix) A (O#lb=17);
(#lb=17) = (O#lb = stop)]

10.3.3 Temporal logic as an intermediate language

Tang M4] uses temporal logic as the basis for a programming language called
XYZ/E Programs consist of a conjunction of transitions. An individual transition
describes changes to be made to program variables and a special program counter.
The temporal operators seem limitedtandC. Figurg10.3shows an example of

this style. Note that although the operator “;” occurs in the program, the associated
semantics seem to be those of logical-anfirather than othop Tang includes

some transformations that permit one to rewrite an Algol-like program in XYZ/E.
This provides a way for giving temporal semantics to conventional programming
constructs.

10.3.4 Semantics based on transition graphs

Manna and PnueliZ9] discuss ways of translating conventional programming
constructs into transition systems described in temporal logic. The resulting tem-
poral descriptions are then used to reasoning about the original programs. The
programs can include multiple processes which are executed through interleav-
ing.

Figure[10.4 shows a sample program based on this approach. The pro-
gram determines twice the value of the variabland places the result in the
variableJ. Each statement is associated with a temporal formula characterizing
the statement’s behavior. For example, the effect of the assignment statement at
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Figure 10.4:Algorithm for doubling a value

lo: 1:=n

li: J:=0

[o: if | > Othengotolg
30 1:=1-1

l4: J:=J+2

Is: gotols

lg: halt.

locationls can be represented as follows:
Ofatlz D Va,b: ((1,J) = (a,b) > ClatlsgA(l,d) = (a—1,b)])].

Thus, whenever the program is at locatignt ultimately transfers to location

l4. In addition the value of is decremented by 1 and the value Jofemains
unchanged. Invariants, termination properties and other issues can be dealt with.
One drawback of this approach is its lack of compositionality since it can only
deal with complete programs.

10.3.5 Compositional proof rules

Barringer, Kuiper and Pnuel8] use a modified form of interval temporal logic as
part of a compositional proof system for concurrent programs. Assertions have the
syntax{S}w whereSis a statement and is a temporal formula. For example the
following proof rule describes the semantics of an assignment statement within an
individual process:

{v:i=e}[(E) u(N A (Oy=yo|v €)AO(E ¢fin))].

Here the variablg is a vector that associates values with the variables used by

the process. The special propositignis true if the process is inactive ardl

is conversely true if the process is active. Tumgil operator is a temporal

construct used to specify that the process remains inactive until the valua of

y is altered to equad. In general, a temporal formula of the form 77w is true

if the formulaw; remains true until some time when formwa is true. After

performing the assignment, the process stays inactive for the rest of the interval.
The proof rule for the sequential composition of two statem&ptand

S requires one to first demonstrate the assertid$w; and{S}w, for some
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formulasw; andw,. From this one can immediately deduce the assertion

{S1; S Hwi cwo),

where( is simply the temporal operatchop

This approach seems attractive for handling conventional programming
languages since one is not restricted to reasoning about complete programs. How-
ever, in the case of Tempura the distinction between programs and formulas is
minimal thus permitting a relation such &S}w to be readily expressed as the
implicationS> w.

10.3.6 Synthesis from temporal logic

Manna and Wolpei3(] investigate techniques for automatically synthesizing CSP
synchronization code from temporal logic specifications. This holds much promise
since the design of correct routines for interprocess synchronization is generally
regarded as tedious and error-prone. One example considered is Dijkstra’s well
known dining philosophers’ problem. Another system consists of a synchronizer
Sthat regulates the activity of two other procesBeandP, by ensuring that they
never simultaneously operate in their respective critical regions. Let us look at
how this is handled.

The behavior of each proceBsis expressed in temporal logic as a con-
junction of the form shown below:

Shbegin AO(Sbegin D OSend) AO(Send D OSbegin).

Here the constructlbegin represents a request by proc@sto enter its critical
region. Similarly, the constru@end is used whem, is ready to leave the critical
region. Thus, the specification states that each process initially makes a request
to enter its critical region. Furthermore, whenever it enters the region, it subse-
guently exits and whenever it exits it subsequently makes a request to reenter.

The specification o8is a conjunction of two formulas. The first requires
that wheneveP; enters its critical regionk is not allowed in its own critical
region until afterP; exits. This is expressed in temporal logic in the following
way:

O[ Py ?begin, D ([-P2?begin] u[P1?end))].

The second part of the conjunction is similar but reverse the rol€ ahdP..
Theuntil operatoru provides a means of resolving conflicting requests.

Note that the usage of the operatbrsnd ? differs slightly from that of
the version of CSP described previously since process names are given instead
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of channels. This convention is in fact adapted from an earlier variant of CSP
described by Hoare ir2fl].

Given the specifications just described, Manna and Wolper show how to
mechanically produce a set of finite-state automata that satisfy the various con-
straints. The authors then derive CSP programs in a straightforward manner. The
synchronizefS has the following process associated with it:

*[N =1, P, ?begin, — N :=2
IN=1;P,?egin, — N:=3
IN=2;Pi?%endy - N:=1
[N=3;P%nd — N:=1].

The operatok indicates unlimited sequential repetition of the associated state-
ment. The body of the system consists of four transitions separated by the oper-
ator . This specifies that they are to be nondeterministically selected whenever
their respective guard conditions are enabled. The varldleused to maintain

the state of the synchronizer. For example, the transition given below is enabled
whenN equals 1 andP; wishes to enter its critical region:

N =1; P;?begin, — N :=2.
The proces$®; has the following CSP implementation:

*[N = 1; SPegin, — N :=2
[N=2;S%nd — N:=1].

The program for proced® is similar:

*[N = 1; Segin, - N:=2
[N =2;S?%nd, — N:=1].

Even though CSP is the target language used in this work, we imagine
that similar techniques could be applied to synthesizing Tempura programs. One
resulting advantage would be the ability to go from high-level specifications to
implementations without leaving temporal logic.

10.3.7 Automatic verification of circuits

Mishra and Clarkel33] use a temporal logic called CTL in a system that auto-
matically verifies asynchronous digital circuits. The system accepts a behavioral
specification given in CTL and generates a state-transition graph from it. This
graph acts as a model against which various temporal properties can be checked.



Executing Temporal Logic Programs/B. Moszkowski 9 February 2000 109

The graph can also be viewed as an implementation of the original specification.
The main example presented is a self-timed queue element containing signals for
passing data as well as for performing handshaking. Perhaps this kind of verifier
can be modified to handle suitable hardware specifications given in ITL.

10.4 Conclusions

The present work has investigated Tempura, a programming language based on
Interval Temporal Logic. The ITL formalism provides a way to treat such pro-
gramming concepts as assignment and loops as formulas about intervals of time.
Therefore, Tempura programs, their specifications and their properties can all be
expressed in the same formalism. Furthermore, this approach provides a unified
way for modelling both hardware and software. In the future, we hope to gain
more experience with using ITL and Tempura to simulate and reason about de-
scriptions of hardware devices and other types of parallel systems. In addition,
we plan to explore the feasibility of using Tempura as a general-purpose program-
ming language.
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