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Preface

In the latter half of the 1950’s, Noam Chomsky began to develop math-
ematical models for the description of natural languages. Two disciplines 
originated in his work and have grown to maturity. The first of these is the 
theory of formal grammars, a branch of mathematics which has proven 
to be of great interest to information and computer sciences. The second 
is generative, or more specifically, transformational linguistics. Although 
these disciplines are independent and develop each according to its own 
aims and criteria, they remain closely interwoven. Without access to the 
theory of formal languages, for example, the contemporary study of the 
foundations of linguistics would be unthinkable.

The collaboration of Chomsky and the psycholinguist George Miller, 
around 1960, led to a considerable impact of transformational linguistics 
on the psychology of language. During a period of near feverish experi-
mental activity, psycholinguists studied the various ways in which the new 
linguistic notions might be used in the development of models for language 
user and language acquisition. A good number of the original conceptions 
were naïve and could not withstand critical test, but in spite of this, genera-
tive linguistics has greatly influenced modern psycholinguistics.

The theory of formal languages, transformational linguistics, psycho
linguistics, and their mutual relationships have been the theme of my 
three-volume book Formal Grammars in Linguistics and Psycholinguistics, 
published in 1974. Volume I of Formal Grammars was an introduction to 
the theory of formal languages and automata; grammars are treated only 
as formal systems in that volume. Volume II in turn dealt with applica
tions of those mathematical models to linguistic theory. Volume III,  
finally, treated applications of grammatical systems to models of the  
language user and language learner, i.e., psycholinguistic applications. A 
new, single-volume edition of Formal Grammars is about to appear with 
John Benjamins Publishing Company. 



x	 Preface

The present text is a re-edition of Volume I. It is an entirely self-
contained introduction to the theory of formal grammars and automata, 
which hasn’t lost any of its relevance. Of course, major new developments 
have seen the light since this introduction was first published, but it still 
provides the indispensible basic notions from which later work proceeded. 
Moreover, I had undertaken the writing of this text for three reasons, 
which are still relevant. First, other available texts tend to be beyond 
the reach of many students of linguistics and psychology because they 
suppose an acquaintance with sophisticated mathematical theories and 
methods. The present introduction is kept at a rather elementary level; a 
general knowledge of college mathematics will be sufficient to follow the 
text, although familiarity with the elements of set theory and statistics will 
certainly be an advantage.

Second, I intended to write an introduction specifically for linguists 
and psycholinguists. Other introductions often treat a number of subjects 
which have little obvious relation to linguistics or psychology, or alterna-
tively lack a treatment of topics which are especially relevant to students of 
language. Probabilistic grammars and grammatical inference, for example, 
were not treated at the time in any of the existing introductions, whereas, 
over the years, their relevance for linguistics and psycholinguistics have 
become obvious. 

The third reason for writing this introduction was, of course, to pro-
vide students of language with a reference text for the basic notions in 
the theory of formal grammars and automata, as they keep being referred 
to in linguistic and psycholinguistic publications, among them my Formal 
Grammars. The subject index of this introduction can be used to find 
definitions of a wide range of technical terms: definitions are indicated by 
italicized page numbers.

I am much aware of important theoretical progress in this field over 
the last three decades, much of which has found applications in linguistic 
and psycholinguistic theory. I therefore add an appendix with further ref-
erences to some of these core new developments. 

This text, in fact all of Formal Grammars, was written during a sab-
batical year at The Institute for Advanced Study in Princeton. I am for 
ever grateful to Duncan Luce, who had invited me and, of course, to the 
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Institute. It was a privilege to have an office there adjacent to Aravind 
Joshi’s. Without recourse to his invaluable expertise in this field, writing 
this introduction would have been a lot harder for me.  Who could have 
predicted that Aravind Joshi would help me again some 35 years later in 
preparing the re-edition of the present text and of Formal Grammars? 
Thank you, Aravind.

� Willem J. M. Levelt 
� Nijmegen

� May 2008





Chapter 1

Grammars as formal systems

1.1  Grammars, automata, and inference

1.2  The definition of `grammar´

1.3  Examples

1.1	 Grammars, automata, and inference

The theory of formal languages originated in the study of natural lan-
guages. The description of a natural language is traditionally called a 
grammar; it should indicate how the sentences of a language are com-
posed of elements, how elements form larger units, and how these units 
are related within the context of the sentence. The theory of formal lan-
guages proceeds from the need to provide a formal mathematical basis for 
such descriptions.

Chomsky, the founder of the theory, envisaged more than a simple re-
finement of traditional linguistic description. He was primarily concerned 
with a more thorough examination of the basis of linguistic theory. This 
involves such questions as “what are the goals of linguistic theory?”, “what 
conditions must a grammar fulfill in order to be adequate in view of these 
goals?”, and “what is the general form of a linguistic theory?” Without 
a formal basis, these and similar questions cannot be handled with suf-
ficient precision. A formal language can serve as a mathematical model 
for a natural language, while a formal grammar can act as a model for a 
linguistic theory.

From a mathematical point of view, grammars are formal systems, 

like Turing machines, computer programs, prepositional logic, theories 
of inference, neural nets, and so forth. Formal systems characteristi-
cally transform a certain input into a particular output by means of 
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completely explicit, mechanically applicable rules. Input and output are 
strings of symbols taken from a particular alphabet or vocabulary. For 
a formal grammar the input is an abstract start symbol; the output is 
a string of ‘words’ which constitutes a ‘sentence’ of the formal ‘language’. 
Therefore a grammar may be considered as a generative system; this 
feature is often emphasized by the use of the term generative gram-

mar. The quotation marks around ‘word’, ‘sentence’, and ‘language’ indi-
cate that these terms are not used in their full linguistic sense, but rather 
are concepts which must be strictly defined within the formal system. In 
linguistic applications of formal language theory, care must be taken to 
establish the relationships between the formal and linguistic notions. In 
the present text, however, we will no longer use the quotation marks, and 
will omit the adjective ‘formal’ for both language and grammar where the 
context allows.

A second type of formal system can use the sentences of a language as 
input; its output is generally an abstract stop symbol. Systems of this type 
are called automata, and may be considered as accepting systems. 

The theory of automata is older than that of formal language, and his-
torically it was rather surprising that the two theories showed such close 
parallels that they often appeared to be mere notational variants. One 
can very well use an automaton rather than a formal grammar as a model 
for a theory of natural language, but although this has in fact been done, 
the generative grammar remains the preferred model. The interchange-
ability of grammars and automata indicates that the distinction between 
generative and accepting is less fundamental than it may at first appear. It 
is primarily a conceptual distinction; there are indeed automata with no  
‘preferential direction’ such as Turing machines, and grammars which 
are accepting rather than generative systems such as categorical gram-
mars. However, from the point of view of presentation and application, 
the dichotomy has its merits. In psycholinguistics in particular it has a 
natural interpretation with reference to speaker-hearer models.

The third and last type of formal system which will be discussed in 
this volume takes a sample of the sentences of a language as input; its 
output is a grammar which is in some way adequate for the language. 
Such systems are called grammatical inference procedures. They can 
serve as models not only for linguistic discovery procedures (how can one 
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find a grammar for a given corpus of sentences?) but also for theories of 
language acquisition.

The mathematical growth of formal language theory has resulted in  
an enormous extension of its range of applications. Beyond its obvious 
applications in the analysis of computer languages, the theory is also used 
for the formal description of visual patterns (‘picture grammars’), in for-
mal logic and semantics, and in several other fields which deal with the 
formal representation of knowledge.

Conversely, the integration of formal language theory into the theory 
of formal systems has made various mathematical tools, such as recur-
sive function theory, available to the study of formal languages.

The reader, however, need not be acquainted with such areas of math-
ematics in order to understand the present text, which is meant to be an 
introduction. Our discussion will be limited to the relationship between 
formal language theory on the one hand and the theories of automata and 
inference on the other. Each of these has rather direct linguistic and psy-
cholinguistic applications, and it is precisely the possibility of application 
which has served as the principal criterion for selecting properties of the 
theories for discussion. This does not alter the fact that it is better to treat the 
structure of grammar, of automata, and of inference from an abstract than 
from an applied point of view. Such is the method which we shall follow 
here, beginning with a formal definition of the concept ‘grammar’.

1.2	 The definition of `grammar´

For the formal definition of ‘grammar’ we must introduce four concepts: 
terminal vocabulary, nonterminal vocabulary, production rule, and start 
symbol.

The terminal vocabulary VT is the set of terminal elements with 
which the sentences of a language may be constructed. Elements of VT  will 
be denoted by lower case letters from the beginning of the Latin alphabet. 
We write a ∈VT  or a in VT  when a belongs to the terminal vocabulary.

The nonterminal vocabulary VN  consists of elements which are only 
used in the derivation of a sentence; they never occur as such in the sen-
tences of the language. Elements of VN  are indicated by upper case Latin 
letters and are called variables or category symbols.
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VN and VT are disjoint: their intersection, VN  ∩ VT , is empty. To-
gether VN and VT form the vocabulary V of the grammar, thus V = VN ∪ 
VT . A string of elements in V, regardless of whether they are variables, 
terminal elements, or both, will be denoted by a lower case letter of the 
Greek alphabet. A string may have 0, 1, or more elements; the string of 
0 elements is called the null-string, and is represented by λ. A string 
consisting exclusively of terminal elements may be denoted by a lower 
case letter from the end of the Latin alphabet.

The symbol V*T  is used to denote the set of all finite strings of elements 
from the terminal vocabulary. For example, if VT consists of two elements, 
a and b, i.e. VT = {a, b}, V*T  consists of λ, a, b, aa, ab, bb, ba, aaa, aab, aba, 
bba, … If we wish explicitly to exclude the null-string λ, we write V+

T , the 
set of all strings of positive length. Thus V+

T  = V*T – λ. Obviously, therefore, 
if VT  is not empty, then V+

T  and V*T  contain an infinite number of elements 
(strings). Analogously, one can define V* as the set of all possible strings 
of vocabulary elements, and V+ as the set of all possible strings of vocabu-
lary elements except the null-string. The length of a string α is denoted by 
|α|; thus |a| = 1, |aab| = 3, and |λ| = 0.

The production rules or productions of a grammar are ordered pairs 
of strings. They take the form α → β, where α ∈V+ and β ∈V*. This means 
that string of elements α of positive length can be replaced by, or rewritten 
as, string of elements β, possibly λ. Such rules apply in any context, i.e. if α 
is part of a longer string γαδ, then γαδ may be rewritten as γβδ by the same 
rule. When a string is rewritten as another string by a single application of 
a production rule, we use the symbol ⇒; thus γαδ ⇒ γβδ. The latter string 
derives directly from the former. If there are productions such that  
αl ⇒ α2, α2 ⇒ α3, … αn–l ⇒ αn, we may write α1 *⇒ αn, read “α1 derives αn”. 
The set of productions of a grammar is denoted by P; the set may also be 
described as a cartesian product. The set of all possible rules consists 
of all ordered pairs of strings which can be constructed in this manner; 
it may be denoted by V+ ×  V*, the Cartesian product of V+ and V*. The 
productions of a grammar are a subset of this product: some strings of V+ 
may be replaced by some strings in V*. Thus P ⊂ V+  ×  V*.

The start symbol of a grammar is denoted by S (originally for 
‘sentence’); it is a particular element of VN .

We can at this point define a grammar as follows.
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A grammar G = (VN , VT ,  P, S) is a system consisting of a nonterminal 
vocabulary VN , a terminal vocabulary VT , a set of productions P, and a 
start symbol S, with the following properties:

1.  VN , VT and P are finite, nonempty sets.
2.  VN ∩ VT = 0.
3.  P ⊂ V+ × V*.
4.  S ∈VN .

A sentence generated by G is every element s of V*T for which S *⇒ s, 
i.e. it is a terminal string derivable from S by the productions of P.

The language L(G) generated by G is the set of sentences generated 
by G.

Two grammars G1 and G2 are (weakly) equivalent if  L(G1) =  L(G2), 
i.e. if they generate the same set of sentences. 

1.3	 Examples

Example 1.1  Let G = (VN , VT ,  P, S), where VN = {S}, i.e. S is the only 
nonterminal symbol, VT = {a, b}, P = {S → aS, S → b}. Which language 
is generated by G? Repeated application of the first production gives  
S ⇒ aS ⇒ aaS ⇒ aaaS, etc. None of these strings is a sentence, for all 
include the nonterminal symbol S. The only way to eliminate S is by use 
of the second production S  → b. This will produce sentences such as b, 
ab, aab, aaab, etc. A sentence generated by G is thus a string of a’s fol-
lowed by a single b. A simple notation for language L(G) is {a*b}, where 
a* is any string of a’s of length ≥ 0.

Example 1.2  Let G = (VN , VT , P, S), where VN   =   {S}, VT   =   {a, b}, P   =     
{S  →  aSa, S  →  bSb, S  →  aa, S  →  bb}. The first two rules may be ap-
plied and repeated in any order. This will produce such derivations as  
S ⇒ aSa ⇒ abSba ⇒ abbSbba ⇒ abbaSabba. The only way to derive sen-
tences from such strings is by use of the third or fourth production; these 
replace S with aa or bb. In all cases the result is a string of a’s and b’s, fol-
lowed by the same string in reverse order. G is said to generate language 
{ww R}, where w R represents the reflection of w, and |w| ≥1. L(G) is called 
a mirror image language.
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Example 1.3  Let G = (VN , VT ,  P, S), where VN = {S, E, F}, VT = {a, b, c, d},  
P = {S → ESF, S → EF, E → ab, F → cd}. By applying the first production 
of P n–1 times, we obtain the string E n–1SF n–1 (the exponent indicates 
the number of successive occurrences of the element). By then using the 
second production once, one obtains E nF n. When, by application of the 
third and fourth productions respectively, all the E ’s are replaced by ab 
and all the F ’s by cd, the resulting string consists of n ab-pairs followed  
by n cd-pairs. Language L(G) consists of all sentences of the form (ab)n 

(cd)n, where n ≥ 1.
In this example a alternates with b, and c with d in the sentences of 

L(G). It is possible to modify the grammar in such a way that the terminal 
elements will be neatly grouped in the sentences of L: first all a’s, then all 
b’s, etc. This will be the case in the following example.

Example 1.4  Language {a n b n c n d n}, where n ≥ 1, is generated by grammar  
G = (VN , VT ,  P, S), in which VN = {S, E, F, B, C}, VT = {a, b, c, d}, and P con-
sists of the following productions:

1.  S → ESF	 4.  F → Cd	 7.  BC → be
2.  S → EF	 5.  Ba → aB	 8.  Bb → bb
3.  E → aB	 6.  dC → Cd	 9.  cC → cc

The first four productions are essentially the same as those of Ex-
ample 1.3. They produce strings of the form (aB)n (Cd)n, where n ≥ 1. The 
other five productions serve in the further grouping of the elements. By 
means of production 5 one can replace a string aBaBaB … of arbitrary 
length by a string of a’s followed by a string of B’s. Production 6 acts 
similarly with respect to CdCdCd … sequences. We must now see to it 
that further rewriting in terminal symbols is possible only when these 
arrangements have in fact been performed; this is the purpose of rules 7 
through 9. Rule 7 serves to replace the pair BC in the center of the string 
with terminal elements, but it can be applied only if B and C are found in 
the right place in the center of the string. By means of production 8 the 
variables B are replaced by the terminal symbol b, on condition that each 
B is located directly to the left of a b. The process can be completed only 
when all the B’s are already in the correct positions. Finally production 9 
acts similarly in the right hand half of the string. The result is a string of 
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the desired form, a n b n c n d n; sentences of other forms cannot be gener-
ated by this grammar.

Example 1.5  It is possible to write a still more compact grammar for  
language {a n b n c n d n}, namely G = (VN , VT 

, P, S), in which VN = {S, E, F},  
VT = {a, b, c, d}, and P consists of the following productions:

1.  S → ESF	 4.  dF → Fd
2.  S → abcd	 5.  Eb → abb
3.  Ea → aE	 6.  cF → ccd

The reader may now want to experiment with the operation of this 
grammar.





Chapter 2

The hierarchy of grammars

2.1  Classes of grammars

2.2  Regular grammars

2.3  Context-free grammars

2.4  Context-sensitive grammars

2.1	 Classes of grammars

The definition of grammar given in the preceding chapter is absolutely 
general in the following intuitive sense: if a mechanical procedure can be 
contrived, according to which the sentences of language L can be enu-
merated in some order, then language L can be generated by a grammar 
in the defined form. We call this statement intuitive because the concept 
‘mechanical procedure’ has not yet been defined. One definition of it 
will be given in paragraph 7.4 but for the present one can roughly con-
ceive of it as follows. Let us assume that we dispose of a general purpose 
computer with unlimited memory. Let us further assume that a program 
can be written for this computer according to which each sentence of L, 
and only sentences of L, will appear in the output after a finite number 
of operations. (The program might, for example, produce the sentences 
in order of length: first λ if it is in the language, then the sentences of 
length 1, followed by the sentences of length 2, etc.) We could then say 
that a procedure exists for the enumeration of the sentences of L, and 
that L is recursively enumerable. Every recursively enumerable language 
can be generated by a grammar corresponding to the definition (we shall 
return to this matter in paragraph 7.4).

The class of recursively enumerable languages is large, but it is of 
little interest from a linguistic point of view. One would expect that nat-
ural languages have characteristic properties which would rather limit 
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the range of possible syntactic structures in certain respects. The class 
of recursively enumerable languages is therefore an unattractive model 
for natural languages because it is defined by procedures which may be 
completely arbitrary. Models of empirical interest will result only from 
the definition of more limited classes of grammars. It is better to reject 
too strong a model with good reason than to maintain a weak model 
and never discover the characteristic structure of a language. The class 
of recursively enumerable languages is the weakest conceivable model. 
Chomsky (1959 a,b) devised a schema for the classification of grammars 
which is now in general use. It is based on three increasingly restrictive 
conditions on the production rules.

First limiting condition:  For every production α → β in P, |α| ≤ |β|. Thus 
the grammar contains no productions whose application would result in 
a decrease of string length.

Second limiting condition:  For every production α → β in P, (1) α con-
sists of only one variable, i.e. α ∈VN , and (2) β ≠ λ. The productions are of 
the form A → β, where β ∈V +.

Third limiting condition:  For every production α → β in P, (1) α ∈VN , 
and (2) β has the form a or aB, where a ∈VT  and β ∈VN . The rules are thus 
either of the form A → a or of the form A → aB.

With these limiting conditions, grammars may be classified in the  
following way.

Type-0 grammars are grammars which are not restricted by any of the 
limiting conditions. Their definition is simply that of ‘grammar’; they are 
also called unrestricted rewriting systems. Productions are of the 
form α → β.

Type-1 grammars are grammars restricted by the first limiting condi-
tion. Productions have the form α → β, where |α| ≤ |β|. Type-1 grammars 
are also called context-sensitive grammars for reasons to be men-
tioned in paragraph 2.4. They obviously constitute a subclass of type-0 
grammars. In fact they are a strict subset of the set of type-0 grammars,  
for there are type-0 grammars which are not of type-1, namely, those 
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grammars with at least one production where |α| > |β|. The grammars 
given in Examples 1.1 through 1.5 satisfy this first condition and are 
therefore context-sensitive.

Type-2 grammars are grammars restricted by the second limiting condi-
tion. Productions have the form A → β where β ≠ λ. Grammars of this 
type are called context-free grammars. The second condition implies 
the first: from |β| ≥ 1 and |A| = 1 it follows that |A| ≤ |β|. Context-free 
grammars are therefore context-sensitive, but the inverse is not true; the 
class of context-free grammars is a strict subset of the class of context-
sensitive grammars. The grammars given in Examples 1.1, 1.2, and 1.3 are 
context-free.

Type-3 grammars are grammars restricted by the third limiting condi-
tion. Productions have the form A → a or A → aB. These are regular 
grammars (in linguistic literature they are often called finite state 
grammars), In its turn the third limiting condition implies the sec-
ond. Therefore the class of regular grammars is a subclass of the class of  
context-free grammars; in fact it is a strict subset. The grammar given in 
Example 1.1 is a regular grammar.

Language types may be defined according to the various classes of 
grammars. A type-3 grammar generates a regular language (or finite state 
language), a type-2 grammar generates a context-free language, a type-1 
grammar generates a context-sensitive language, and a type-0 grammar 
generates a (recursively enumerable) language.

It does not follow, however, from the relations of inclusion which exist 
among the various types of grammars that corresponding languages are 
bound by the same relations of inclusion. We cannot exclude the pos-
sibility a priori that for every context-free grammar there might exist an 
equivalent regular grammar. In that case all context-free languages might 
be generated by regular grammars, and consequently regular languages 
would not form a strict subset of context-free grammars. However in the 
following it will become apparent that the language types do show the same 
relations of strict inclusion as the grammar types: there are type-0 languag-
es which are not context-sensitive, context-sensitive languages which are not 
context-free, and context-free languages which are not regular. Figure 2.1., 
illustrates this hierarchical relation, called the Chomsky Hierarchy.
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recursively enumerable languages

context-sensitive languages

context-free languages

regular languages

Figure 2.1.  The Chomsky Hierarchy of languages

It is obvious that the null-string can be present only in type-0 lan-
guages. Sometimes, however, it is convenient to add it to other languages 
as well. In the following we shall suppose in all cases, except in Chapter 3, 
that λ has been added to the language, unless otherwise stated.

In the remaining part of this chapter we shall deal with a few proper-
ties of each of the grammars.

2.2	 Regular grammars

Most properties of regular grammars (RG ’s) can best be treated on the 
basis of the theory of automata (cf. chapter 4). Our discussion here will 
be limited to five theorems which will be needed in the remainder of the 
present chapter; four of them can easily be explained without reference to 
automata theory.

We must first introduce a means of visually representing grammatical 
derivations, called derivation trees, tree diagrams, or phrase mark-
ers (P-markers). The procedure is a general one which may be used not 
only for regular grammars, but also for context-free grammars and some 
context-sensitive grammars. An example will illustrate the procedure.

Example 2.1  Let G = (VN , VT , P, S), where VN = {S, B}, VT = {a, b}, and  
P = {S → aB, B → bS, B → b}. G is thus a regular grammar. The sentences 
in L(G) consist of alternating a’s and b’s, beginning with a and ending with b. 
Thus L(G) = {(ab)*} (by convention λ ∈L(G)).

Let us examine the derivation of the sentence ababab; it can be gen-
erated only in the following way: S ⇒ aB ⇒ abS ⇒ abaB ⇒ ababS ⇒ 
ababaB ⇒ ababab. Figure 2.2.a. gives the tree diagram for this derivation, 
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clearly illustrating each step. Beginning at S (at the top of the diagram), 
the tree divides into two branches, one leading to a, the other to B; this 
is the first step in the derivation. From B two further branches lead to b 
and to S respectively, showing the second step. The remaining steps in the 
derivation are easily discovered by inspection.

Formally speaking, a (derivation) tree is a system of nodes and branches 
(or edges). Branches are directed connections between nodes, i.e. branches 
enter and leave the nodes. A tree has only one node which no branch en-
ters; it is called the root or origin of the tree. Exactly one branch enters 
each of the remaining nodes. Moreover, a path may be found from each 
node to the root of the tree. Finally, each node bears a label.

S

a B

S

a B

S

a B

b

S

a B

Sb

b

b

a. b.

Figure 2.2.  a.  Derivation tree for the sentence ababab (Example 2.1). 
b.  Incomplete derivation tree

A derivation in a context-free grammar can be represented by a tree 
diagram, all the nodes of which are labeled with elements of V. The root is 
the start symbol S, nodes from which branches leave are elements of VN , 
and nodes from which no branches leave are elements of VT . Each of these 
features can easily be verified in Figure 2.2.a.

Sometimes it is considered unnecessary to show the entire deriva-
tion, and only the first few steps are given in an incomplete tree, as in  
Figure 2.2.b. In such a case it is possible that nodes from which no branches 
leave may be labeled as elements of VN .
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We can now return to the subject of regular grammars. It is evident 
that each string in a regular grammar derivation contains at most one 
variable, and that this variable is the last element of the string. Conse-
quently, tree diagrams for such derivations branch to the right, i.e. at each 
step it is the rightmost node which further divides into two branches.

The definition given for regular grammars is in some sense economi-
cal. It is possible that the class of languages generated by regular grammars 
be generated also by grammars with a more complicated rule structure. 
While this fact is not interesting in itself, it should caution us against con-
cluding on the class to which a language might belong solely on the basis 
of the type of grammar by which it is generated. An example will serve to 
illustrate this.

Example 2.2  Let G = (VN , VT , P, S), with VN = {S}, VT = {a}, and P =  
{S → aSa, S → aa, S → a}. This is obviously a context-free grammar; the 
productions are not of the form of those of regular grammars. But L(G) 
is a regular language, for there is also a regular grammar by which it can 
be generated. L(G) consists of all possible strings of a’s; it can likewise be 
generated by grammar G' with P' = {S → aS, S → a}. G' is thus a regular 
grammar equivalent to G, and consequently L(G) is a regular language.

A grammar is called right-linear if all its productions are of the 
form A → xB or A → x (notice that x represents a string of terminal  
elements).

Theorem 2.1  The class of right-linear grammars generates precisely the 
class of regular languages.

Proof  All regular grammars are right-linear, and therefore all regular 
languages can be generated by right-linear grammars. The inverse, that 
each right-linear grammar has an equivalent regular grammar, must also 
be shown to be true. Let G = (VN ,VT , P, S) be a right-linear grammar. We 
must show that there is a regular grammar G' such that L(G' ) = L(G). Take 
G' = (V'N , V'T , P', S) with the following composition. For every production 
A → x in P, where x = a1a2 … an, P' contains the following set of produc-
tions: A → a1A1, A1 → a2A2, …, An–2 → an–1An–1 and An–1 → An. These 
productions are clearly of the prescribed regular form, and A generates x. 
If we see to it that the variables A1, A2, … , An–1 do not occur in any other 
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production of P', G' will generate only x. Likewise for each production of 
the type A → xB in P, where x = b1b2 … bm, let P' contain a set of produc-
tions A → b1B1, B1 → b2B2, … , Bm–1 → bmB, also taking care that the new 
variables B1, B2, …, Bm–1 appear only in these productions. Further, let the 
nonterminal vocabulary V'N contain VN plus all the new variables intro-
duced in the above way, and V'T = VT . It follows from the construction that 
L(G' ) = L(G).

Theorem 2.2  A context-free grammar, with productions such that all 
derivations are either of the form xB or of the form x, generates a regular 
language. The same holds if all derivations are of the form Bx or x.

Proof (summarized)  If all the derivations of a context-free grammar 
must be of the form xB or x, then all the productions must have the form 
A → xB or A → x. It follows from Theorem 2.1 that such grammars only 
generate regular languages. A similar argument holds for grammars, all 
the derivations of which have the form Bx or x, but it must be shown that 
grammars with productions exclusively of the form A → Ba or A → a 
generate only regular languages.

Theorem 2.3   All finite languages are regular.

Proof  Let L be the finite set {s1, s2, … , sn}, where si = (ai1ai2 … aiki
 ). One 

can generate si by a finite set of regular productions, namely S → ai1Ai1, 
Ai1 → ai2Ai2, … Aiki–1 → aiki

, following the construction used in the proof 
of Theorem 2.1. The combination of all sets of productions for all si gives 
a finite regular grammar which generates L.

Theorem 2.4  The union of two regular languages is regular.

Proof  Let L1 and L2 be regular languages. We must show that L3, where  
L3 = L1 ∪ L2 (i.e. L3 consists of all the sentences of L1 and all the sentences 
of L2), is also regular. Let G1 = (V 1N , V 1T , P 1, S 1) be a regular grammar which 
generates L1 and G2 = (V 2N  , V 2  T , P 2, S 2) be a regular grammar which generates 
L2, taking care that V lN   ∩V  2N  = ø (i.e. empty; this is always possible). We 
compose grammar G3 = (V 3N   , V 3T   , P 3, S) as follows. (1) V 3N   =V 1N    ∪ V 2N   ∪ S, 
i.e. V 2N  contains the variables of G1 and G2 plus a new variable S, which 
will also serve as the start symbol of G3. (2) V 3T   = V 1T   ∪V  2T .  (3) P3 contains  
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all productions P1 and P2 as well as all possible productions S → α, such 
that either S1 → α is a production in P1, or S 2 → α is a production in 
P 2. Thus S ⇒ α in G3 in precisely the cases where S1 ⇒ α in G1 and S2 ⇒ α  
in G2. Therefore L3 = L1 ∪ L2. Because all the productions of G3 are of the 
required regular form, L3 is regular.

L3 may be called the product of L1 and L2 if L3 consists of all strings 
xy with x in L1 and y in L2.

Theorem 2.5  The product of two regular languages is regular. (This theo-
rem will be proven in paragraph 4.4 in connection with the discussion of 
finite automata.)

2.3	 Context-free grammars

The definition of context-free grammars (CFG) is less economical than 
that of regular grammars. Any production of the form A → β, where  
|β| ≠ 0, is allowed; β can therefore be any string of terminal and nontermi-
nal elements. However, one can greatly simplify the form of productions 
without diminishing the generative capacity of the grammars. Such sim-
plified forms of grammars are called normal-forms. The most important 
normal-forms of context-free grammars are the chomsky normal-form 
and the greibach normal-form. We shall discuss each of these, and will 
likewise prove that every context-free grammar is equivalent to a grammar 
of the Chomsky normal-form.

2.3.1	 The Chomsky normal-form

A grammar is said to be in Chomsky normal-form if all productions have 
the form A → BC or A → a.

Theorem 2.6  Any context-free language can be generated by a grammar 
in Chomsky normal-form.

Proof  By definition a context-free language can be generated by a 
grammar with productions of the form A → β. We can distinguish 
three possibilities for such productions: (1) β ∈VT , (2) β ∈VN and 
(3) all other cases. In order to construct a grammar G' in Chomsky  
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normal-form and equivalent to context-free grammar G, we must see 
if production forms (1), (2), and (3) can be replaced by the appropriate 
normal production forms. (1) Productions A → β, where β = a, are of 
the required form and call for no further discussion. (2) If A → B is a 
production of G, there are two possibilities: (a) G contains no produc-
tions of the form B → x, i.e. B cannot be further rewritten; in this case 
we can simply ignore the production A → B in the construction of G'. 
(b) B can be further rewritten in G, for instance by the productions  
B → β1, B → β2, … , B → βn. Without diminishing the generative capac-
ity of the grammar we can now replace these productions, as well as  
A → B with the set of productions A → β1, A → β2, … , A → βn. In 
spite of rewriting, one or more of these new productions may retain 
the same form, for instance A → C. In that case we can repeat the 
procedure and replace A → C by the productions A → γi for every 
γi for which C → γi. This can in its turn lead to the same problem, 
but, as G contains a finite number of variables, the process will reach 
an end, except if the replacement chain contains a loop (for example  
A → β, Β → C, C → A). But in that case, the variables in the loop are 
interchangeable, and one of them, A for instance, can replace the others 
in all the productions of the grammar. The result is that all the newly 
constructed productions are of form (1) or (3). Those of form (1) are 
in Chomsky normal-form. Both the new productions of form (3) and 
the original form (3) productions from G can be treated as follows.  
(3) In the remaining productions A → β, β consists of terminal and/or 
nonterminal elements. We replace all the terminal elements with new 
variables. Assume that the ith element of β is a terminal element bi , 
we replace it with a new variable Bi , and add the production Bi → bi, 
which is of the required normal form. By repeating the operation for all 
terminal elements in β, we replace the production A → β by a produc-
tion A → B1B2 … Bn and a terminal production of the form mentioned 
above. Finally we must replace nonterminal productions with produc-
tions of the form A → BC. Here we again apply the construction used 
in the proof of theorem 2.1, replacing production A→ B1B2 … Bn with a 
set of productions A → B1D1, D1 → B2D2, … , Dn–2 → Bn–1Bn, which are 
all of the required form. It follows from the construction that grammar 
G' thus obtained is equivalent to G and in Chomsky normal-form.
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Example 2.3 Let G = (VN , VT , P, S), where VN = {S, A, B}, VN = {a, b}, and 
Ρ contains the following productions:

1.  S → aSB	 3.  A → ab
2.  S → A	 4.  Β → b

G generates all strings of the form anbn (n ≥ 1 when λ is excluded). Sen-
tence a3b3, for example, has the following derivation: S ⇒ aSB ⇒ aaSBB 
⇒ aaSBb ⇒ aaSbb ⇒ aaabbb. We shall now construct a grammar G' in 
Chomsky normal-form and equivalent to G.

The only production in the required form is production 4; all oth-
ers must be replaced. Beginning with production 1, we replace S → aSB 
with two productions S → CSB and C → a, as in (2) in the above proof.  
S → CSB can in turn be replaced by S → CD and D → SB, as in (1).

In production 2 we first replace A with the strings as which it can 
be directly rewritten. In the present case, the only such string is ab (cf. 
production 3), and production 2 is thus replaced by A → ab. The normal-
form can be obtained by the replacement of a and b with new variables and 
the addition of two terminal productions. As we already dispose of termi-
nal productions C → a (from production 1) and Β → b (production 4), it 
is sufficient to replace production 2 with S → CB. Production 3 is at the 
same time replaced by productions of the required form. Thus G' contains 
the following productions:

1.  S → CB	 4.  C → a
2.  D → SB	 5.  B → b
3.  S → CD

The derivation of sentence a3b3 in G' is therefore S ⇒ CD ⇒ aD ⇒ aSB 
⇒ aCDb ⇒ aaDb ⇒ aaSBb ⇒ aaSbb ⇒ aaabbb.

Although grammars G and G' are equivalent, the derivations differ. This 
can easily be observed from the derivation trees for sentence a3b3 given in 
Figure 2.3.a. (derivation in G) and Figure 2.3.b. (derivation in G' ).

2.3.2	 The Greibach normal-form

A grammar is in Greibach normal-form if all the productions are of the 
form A → aβ, where β is a string of 0 or more variables (β ∈V *N).
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Theorem 2.7  Any context-free language can be generated by a grammar 
in Greibach normal-form.

For the proof of this theorem we refer the reader to Greibach (1965). 
Our discussion here will be limited to the following example.

A

Sa B

S

Sa. b. c.S S

a D

a

a B B b

bb

D B

C

a

C

a S B

B b

ba

C

D b

S B

Da B

b

b

a b

Figure 2.3.  Derivation trees for a3b3. a. Derivation tree in G. b. Derivation 
tree in G' (Chomsky normal-form). c. Derivation tree in G'' (Greibach 
normal-form)

Example 2.4  Let us once again consider grammar G of Example 2.3. In 
order to find a grammar G" in Greibach normal-form which is equivalent 
to it, we may use grammar G' in Chomsky normal-form as starting point. 
The variables of G' are S, B, C, and D. We number these in an arbitrary 
order, indicating the number by subscript: thus, S1, B2, C3, D4. We shall at 
this point change the productions in such a way that the direct rewriting 
of a variable has as its first element either a terminal element or a vari-
able with a higher number. Production 1 (S1 → C3 B4) and production 3  
(S1 → C2D4) already have this form. Production 2 (D4 → S1B2) can be 
adapted by first replacing S1 with the strings as which it can be directly 
rewritten, namely C3B2 and C3D4, giving D4 → C3B2B2 and D4 → C1D4B2. 
It remains the case that the subscripts decrease (from 4 to 3), but the re-
quired form can be obtained by replacing C3 in both productions with the 
only string as which it can be rewritten, a (see production 4). This gives 
the productions D4 → aB2B2 and D4 → aD4B2. Productions 4 (C → a) and 
5 (B → b) are already of the required form. Recapitulating, at this point 
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we have the following productions: S1 →  C3B2, S1 → C3D4, D4 → aD4B2, 
D4 → aB2B2, C3 → a, B2 → b.1

The first two productions are not yet of Greibach normal-form; we 
thus replace the variable C3 in these two productions with the only string 
as which it can be rewritten, a, thus also eliminating the need for the 
production C3 → a. In this way we arrive at the following productions for 
grammar G" in Greibach normal-form (the subscripts are no longer nec-
essary):

1.  S → aB	 4.  D → aDB
2.  S → aD	 5.  B → b
3.  D → aBB

Grammar G" will thus generate sentence a3b3 as follows: S ⇒ aD ⇒ aaDB 
⇒ aaaBBB ⇒ aaaBBb ⇒ aaaBbb ⇒ aaabbb. The tree diagram for this 
derivation is given in Figure 2.3.c.

2.3.3	 Self-embedding

The economical production forms for context-free languages, especially 
the Chomsky normal-form (A → a, A → BC), show the minute difference 
in type of production which distinguishes context-free and regular lan-
guages (the regular form is A → a or A → bC). What is the characteristic 
difference between these two classes of languages? One important prop-
erty characterizing all nonregular context-free languages and absent in 
regular languages is that of self-embedding.

A context-free grammar G = (VN , VT , P, S) is called self-embedding if 
there is a variable Β in VN , and elements α and γ in V+ such that Β *⇒   αBγ.

Thus there is a variable Β which, by application of the productions, 
can be rewritten as a string in which Β itself occurs, but neither at the 
beginning nor at the end. The definition implies that a regular grammar is 
not self-embedding, since nonterminal symbols occur in regular deriva-
tions only at the end of a string.

.  This example is relatively simple, as the case where the two subscripts are 
equal does not occur. In that case a special procedure is applied, and it is this 
which is the heart of Greibach’s proof. We refer the reader to her original article, 
or to Hopcroft and Ullman (1969). 
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A language is self-embedding if all grammars generating it are self-
embedding.

It is therefore not sufficient that one of its grammars be self-embedding, 
as some self-embedding grammars merely generate regular languages. 
This is the case with the grammar of Example 2.2. Its productions are  
S → aSa, S → aa, S → a, generating the language {an|n ≥ 1}. The language 
is regular, but the grammar is self-embedding because S ⇒ aSa. The same 
example showed that G', with productions S → aS and S → a, gener-
ates the same language. Grammar G' is not self-embedding, and generates 
L(G), and consequently, by definition, L(G) is not self-embedding.

Theorem 2.8  All nonregular context-free languages are self-embedding, 
and all self-embedding languages are nonregular.

Proof  The second member of this theorem follows directly from the 
definitions. A self-embedding language is generated exclusively by self-
embedding grammars; a self-embedding grammar is, as we have seen, 
nonregular. Therefore a self-embedding language is nonregular.

The first member of the theorem can be otherwise formulated. It 
must be shown that all grammars of a nonregular context-free language 
are self-embedding. This can be done by proving that if a language L is 
generated by a non-self-embedding grammar, it is necessarily a regular 
language. To do this, however, we shall have to refer to a lemma which 
in turn will be easy to prove after the discussion of finite automata in 
Chapter 4.

Lemma  Let L1 and L2 be regular languages, and a be a terminal element 
of L1. Let L3 be a language consisting of all sentences in L1 in which the 
element a does not occur, as well as all strings which can be obtained by 
replacing the element a in the remaining sentences of L1 with a sentence 
of L2 (if L2 is infinite, this can be done in an infinite number of ways).  
L3 is then a regular language.

We shall now prove that a language generated by a grammar which is 
not self-embedding is a regular language. Let language L be generated by 
a grammar G which is not self-embedding and which contains the vari-
ables A1, A2, … , An.

Let us assume that grammar G is connected: a grammar is con-
nected if for each pair of variables Ai , Aj (i, j = 1, 2, … , n, where n is  
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the number of variables in the grammar), there are strings α1 and α2 in 
V * such that Ai *⇒  α1Αjα2. Let Ai , Aj be an arbitrary pair of variables in G. 
Since G is connected, we have Ai *⇒  φ1Αjφ2 for some pair φ1, φ2. Let us 
further assume that |φ1| > 0. Let Ak, Al also be an arbitrary pair of vari-
ables in G, with Ak *⇒  ψ1Αlψ2, and assume that |ψ2| > 0. Let us examine 
the consequences of the two conditions |φ1| > 0 and |ψ2| > 0. It follows 
from the fact that G is connected that strings ω1 and ω2 exist such that Aj 
*⇒   ω1Αkω2 and that one can therefore make the following derivation in G: Ai 
= φ1Ajφ2 ⇒ φ1ω1Αkω2φ2 *⇒  φ1ω1ψ1Αιψ2ω2φ2. But it follows from the same  
fact that Ai *⇒  ξ1Αiξ2. Therefore we have the following derivation in G: 
Ai *⇒ φ1ω1ψ1ξ1Αiξ2ψ2ω2φ2. It follows from the two additional conditions 
that Ai is self-embedding in G. But G is not self-embedding. At least one 
of the additional conditions must not be valid for a grammar to be con-
nected, i.e. if a connected grammar has a pair of variables Ai, Aj for which 
Ai *⇒ α1Ajα2 with |α1| > 0, then there is no pair of variables for which  
|α2| > 0, including the pair Αi, Aj. Therefore all the derivations in G are 
either all of the forms xA and x, or all of the forms Ax and x. It follows 
from Theorem 2.2 that G is regular. Theorem 2.8 is thus valid for connect-
ed grammars. We must show that the theorem also holds for grammars 
which are not connected.

A nonconnected grammar has at least one pair of variables Ai, Aj , 
for which it is not the case that Ai *⇒   α1Ajα2 for some pair α1, α2. We shall 
prove the theorem for such cases by mathematical induction, in two 
steps: (i) we must first show that the theorem is valid for grammars with 
only one variable, S; (ii) then we assume that it holds for all grammars 
with less than n variables (the induction-hypothesis) and prove that in 
that case the theorem also holds for grammars with n variables. It fol-
lows from (i) and (ii) that the theorem holds for all grammars with one 
or more variables. (i) G has only one variable, S. The only possible pair 
of variables is thus S, S, and consequently there is no pair α1 and α2 such 
that S  *⇒   α1Sα2. Since all productions are of the form S → x, language 
L(G) is finite; on the basis of Theorem 2.3 it is regular. The theorem is 
thus valid for nonconnected grammars with one variable. (ii) Let us as-
sume that the theorem is valid for all grammars with less than n variables 
(the induction-hypothesis). Take grammar G with n variables A1, A2, … , An, 
where S = Α1. Because S is the start symbol, it is true for all variables 
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which may occur in the derivation of a sentence (we suppose without 
loss of generality that G contains no ‘dummy’ variables from which no 
derivation is possible) that S *⇒  φ1Αjφ2 ( j > 1) and for strings φ1 and φ2  
in V *. Because G is not connected, there must be a variable A1 such that 
it is not true that Ai *⇒  α1Sα2 for a pair α1, α2. Otherwise we would have  
Ai *⇒  α1φ1Αjφ1α2, but we know that there is at least one pair Ai , Aj for 
which this is not the case.

Let us first examine the case where i > 1, that is, where Ai ≠ S. We can 
construct a grammar G' with n – 1 variables by removing all productions 
of the form Ai → ψ from G, and by replacing Ai in all productions with 
a new terminal element a. From the induction-hypothesis it follows that 
L(G' ) is regular. Next let us examine the set Κ of terminal strings x for 
which Ai  *⇒     x in G, Κ = {x|Ai  *⇒    x}. This set can be generated by a gram-
mar G" which includes all the productions of G except those containing S  
(Ai *⇒    α1Sα2 is impossible), and with Ai as start symbol. Because G" has 
fewer than n variables, Κ is regular (by the induction-hypothesis). L(G), 
however, is precisely the language which results from the replacement of 
the element a in the strings of L(G') with strings χ from K. It follows from 
the lemma that L(G) is regular.

Let us now consider the case where Ai = S. Take the productions in G 
of the form S → α; an arbitrary αi can be rewritten as a string of terminal 
and/or nonterminal elements ξ1, ξ2, … , ξm. For each ξj in αi we can define 
a set of strings Lj for which ξj  

*⇒   x on the basis of the productions in G. 
Thus Lj = {x|ξj

 *⇒  x}. From the induction-hypothesis it follows that Lj is 
regular for all j’s. Let Ki be the set of strings y for which αi  

*⇒     y, i.e. Ki = 
{y|αi  

*⇒  y}. From the composition of αi it follows that each y consists of 
a sequence of x’s respectively taken from L1, L2, … , Lm, all of which are 
regular. From Theorem 2.5 it then follows that Κi is regular. L(G) is the 
union of all Ki’s. As a consequence of Theorem 2.4, therefore, L(G) is 
itself regular. This completes the proof of Theorem 2.8.

2.3.4	 Ambiguity

The generation of a sentence by a context-free grammar can be represented 
by a tree diagram. This however does not mean that a given tree diagram 
corresponds to only one way in which a sentence can be derived.
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Example 2.5  Let G be a context-free grammar with the following pro-
ductions:
1.  S → AB	 5.  Β → Sd
2.  S → CD	 6.  C → aS
3.  S → bc	 7.  D → d
4.  A → a
The sentence abcd can be derived from this grammar as follows: S ⇒ AB 
⇒ aB ⇒ aSd ⇒ abcd. The corresponding derivation tree is shown in  
Figure 2.4. There are, however, other derivations of abcd which corre-
spond to the same tree, for example, the derivation S ⇒ AB ⇒ ASd ⇒ 
Abcd ⇒ abcd, where the productions are applied in a different order. This 
cannot be detected in the tree diagram, which fact corresponds to our 
intuition that the two derivations determine the same syntactic structure. 
Therefore we cannot consider this to be a case of real ambiguity.

S

A B

d

b

a

d

S

Figure 2.4.  Derivation tree for the sentence abcd (Example 2.5)

In order to define ambiguity in terms of derivations, we must intro-
duce the concept of leftmost derivation. We can speak of a leftmost 
derivation of x if at each step in the derivation S *⇒     x it is the variable far-
thest to the left of the string which is rewritten. A leftmost derivation of 
the sentence abcd can begin with S ⇒ AB. At this stage the leftmost vari-
able is A; thus the following step will be AB ⇒ aB. The leftmost variable is 
now B, and the next step is aB ⇒ aSd, and the final step, aSd ⇒ abcd. The 
first derivation given in this example was in fact a leftmost derivation. It 
is clear that every tree diagram corresponds to no more than one leftmost 
derivation, and every leftmost derivation with only one tree diagram.

A grammar G is ambiguous if there is a sentence in L(G) for which 
there are two or more leftmost derivations.

The grammar given in Example 2.5 is ambiguous, for sentence abcd 
has another leftmost derivation: S ⇒ CD ⇒ aSD ⇒ abcD ⇒ abcd. The 
tree diagram for this derivation is shown in Figure 2.5.
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S

A B

d

b d

Sa

Figure 2.5.  Alternative derivation tree for the sentence abcd (Example 2.5)

A language L is (inherently) ambiguous if all grammars which gener-
ate it are ambiguous.

Although grammar G of Example 2.5 is ambiguous, L(G) is not. 
Language L(G) consists of sentences a*bcd*, which can be generated by 
grammar G' with productions S → aSd and S → bc; G' is not ambiguous. 
Languages exist, however, which are inherently ambiguous. An example 
is the union of {aibic j} and {aib jc j}, briefly noted L = {aib jc k|i = j or j = k, 
where i, j, k > 1}. Any grammar for L will generate sentences with i = j 
by a different process than sentences with j = k. But then sentences with  
i = j = k can be generated by both processes.

2.3.5	 Linear grammars

A production is called linear if it is of the form A → x By, i.e. if the string 
derived contains only one variable. A right-linear production has the 
form A → xB; a left-linear production has the form A → Bx.

A grammar is linear if each of its productions is either linear or of the 
form A → x; a grammar is right-linear if each of its productions is either 
right-linear or of the form A → x; a grammar is left-linear if each of its 
productions is either left-linear or of the form A → x.

It follows from Theorem 2.1 that a right-linear grammar generates 
a regular language. Left-linear grammars also generate only regular lan-
guages.

An example of a linear grammar is G' mentioned in the preceding 
paragraph, with productions S → aSd and S → bc. The language generat-
ed by it, {anbcdn}, is not regular; it is therefore self-embedding. Although 
the class of linear grammars has a greater generative capacity than the 
class of regular grammars, it does not coincide with the class of context-
free languages.
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Theorem 2.9  There are context-free languages for which no linear gram-
mar exists.
For a proof of this theorem2 we refer the reader to Chomsky and  
Schützenberger (1963). An example of a context-free language for 
which no linear grammar can be found is language L with sentences am1 
bm1am2bm2 … amkbmk, where mi > 0 and k > 0, thus strings of alternat-
ing sequences of a’s and b’s, where each sequence of b's is as long as the 
sequence of a’s which precedes it. A grammar for this language has the 
productions S → SS, S → aSb, S → ab. The first of these productions is 
not linear. All other grammars of this language likewise have at least one 
nonlinear production.

2.4	 Context-sensitive grammars

2.4.1	 Context-sensitive productions

The definition of context-sensitive grammars (grammars in which all 
productions are of the form α → β, where |α| ≤ |β|) does not indicate in 
what way such grammars are ‘sensitive to context’. The original definition 
given by Chomsky (1959a) was in fact different from the present one. He 
defined context-sensitive grammars (CSG) as grammars the productions 
of which have the form α1Aα2 → α1βα2, where α1 and α2 are elements of 
V *,  and β is an element of V+. Thus A can be replaced by β only if A ap-
pears in the context α1 – α2. This type of context-sensitive production can 
also be written as A → β/α1 – α2. In spite of the change of definition, the 
following theorem remains valid.

Theorem 2.10  The class of languages generated by grammars exclusively 
containing context-sensitive productions is the class of type-1 languages.

Proof  Let G1 be any type-1 grammar, and Gc be a grammar exclusively 
containing context-sensitive productions. Every Gc is evidently also a G1, 
because for all productions α → β in Gc it is true that |α| ≤ |β|. However it 
must likewise be shown that for every G1 there is an equivalent Gc.

.  Though with an incorrect example grammar, as pointed out to me by Geoffrey 
Pullum.
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Let G1 = (VN , VT , P, S) be a type-1 grammar. There is a grammar G' = 
(V'N , V'T , P', S' ) equivalent to it, where all the productions α → β in Ρ' have 
the following ‘normal-form’: either both α and β are strings exclusively 
containing variables, or α and β are of the forms A and a respectively (i.e. 
the productions are of the type A → a). This will become evident from 
the following. Let V 'N  consist of all the elements in VN  as well as an ad-
ditional variable Xa for each element a in VT , thus V  'N  = VN ∪ {Χa|a ∈VT}. 
To compose P' we must change the productions of Ρ in such a way that 
every terminal element a in them is replaced by Xa, then add productions  
Xa → a for every a in VT . Thus all productions in P' are of the ‘normal-
form’ (note that this normal-form can also be used for all type-0 gram-
mars), and L(G' ) = L(G1).

We must now find a grammar G" which contains only context-sensitive 
productions, and is equivalent to G'. Let α → β be a production in P', with α = 
Α1 Α2 … Am, and β = Β1 B2 … Bn , where n ≥ m. We replace this production 
with the following set of equivalent context-sensitive productions in P":

A1 → A'1 / ‒ A2 A3 … Am	 and	 A'1 → B1 
A2 → A'2 / A'1 ‒ A3 … Am	 and	 A'2 → B2

	   	 
Am→ A'm / A'1 … A'm+1‒	 and	 A'm → BmBm+1… Bn

The first group of context-sensitive productions (Α1 though Am) replaces 
α = A1A2 … Am to a string of new variables A'1  A'2 … A'm . This can in turn 
be replaced by B1B2 … Bn by way of the second group of context-sensitive 
productions (A'1 through A'm) if n ≥ m. When all the productions of P' 
have been replaced in this way by sets of context-sensitive productions, 
and V"N  includes V'N  and the newly introduced variables, then G" is equiv-
alent to G' and consequently also to G'. G", however, is a Gc.

Example 2.6  The production CD → DC is of type-1 form. Application 
of the procedure mentioned above yields the following set of context- 
sensitive productions equivalent to CD → DC:

1.  C → C'/ ‒D	 3.  C → D
2.  D → D'/C'‒	 4.  D' → C

An advantage of a type-1 grammar in context-sensitive form (that 
is, containing productions exclusively in context-sensitive form) is that 
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the derivation of a sentence in it can be represented by means of a tree 
diagram. Context-sensitive productions, in effect, replace only one vari-
able in the string at each step; each step, therefore, corresponds to the 
branches leaving only one node. This will be illustrated by the following 
example.

Example 2.7  Let us examine the derivation of sentence aabbccdd in 
grammar G of Example 1.5. G contains the following productions:

1.  S → ESF	 4.  dF → Fd
2.  S → abcd	 5.  Eb → abb
3.  Ea → aE	 6.  cF → ccd

As a first step we replace grammar G with grammar G', containing the 
following ‘normal form’ productions, obtained by application of the pro-
cedure explained in the proof of Theorem 2.10:

1.  S → ESF	 6.  Xb → b
2.  S → Xa Xb Xc Xa	 7.  EXb → Xa Xb Xb
3.  EXa → Xa E	 8.  Xc F → Xc Xc Xd
4.  Xa → a	 9.  Xc → c
5.  Xd F → FXd	 10.  Xd → d

The productions are now replaced by context-sensitive productions, 
where necessary by application of the procedure given in Example 2.6. 
This yields the following productions; productions 3–6 and 8–11 were 
obtained by means of this procedure:

1.  S → ESF	 9.  Xd → X'd/–F'
2.  S → Xa Xb Xc Xd	 10.  F' → Xd
3.  E → E' / – Xa	 11.  X'd → F
4.  Xa→ X'a / E'–	 12.  Xb → b
5.  E' → Xa	 13.  E → Xa Xb / – Xb
6.  X'a → E	 14.  F → Xc Xd / Xc –
7.  Xa → a	 15.  Xc → c
8.  F → F' / Xd –	 16.  Xd → d

These productions can be used to derive the sentence aabbccdd in the 
following way (the numbers over the arrows refer to the productions  
applied):
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	 	 S  1⇒    ESF  2⇒    EXa Xb Xc Xd F  3⇒    E'Xa Xb Xc Xd F
		   4⇒    E'X'a Xb Xc Xd F  5⇒    Xa X'a Xb Xc Xd F  6⇒    Xa EXb Xc Xd F
		   8⇒    Xa EXb Xc Xd F'  9⇒    Xa EXb Xc X'd F' 10⇒    Xa EXb Xc X'd Xd

		�  11⇒ Xa EXb Xc FXd 13⇒ Xa Xa Xb Xb Xc FXd 14⇒ Xa Xa Xb Xb Xc Xc Xd Xd  
7,12,15,16  aabbccdd.

All sixteen productions have been used in this derivation. Figure 2.6. gives 
the corresponding tree diagram.

S

E

Eʹ

E F

S

Xa

Xʹa

Xa

Xa

a a b b c c d d

Xb Xc Xd

Xd

Xʹd

Xb Xc Xd

F

Fʹ

Figure 2.6.  Derivation tree for the sentence aabbccdd (Example 2.7)

Nevertheless, tree diagrams for derivations in context-sensitive gram-
mars are less exhaustive in illustrating the precise steps of derivation than 
tree diagrams for derivations in context-free grammars. More specifically, 
the diagrams do not show the contextual restrictions operative at the vari-
ous steps of rewriting in a context-sensitive grammar, and it is possible 
that two derivations, based on different sets of productions, will be rep-
resented by the same tree diagram. For a context-sensitive derivation, as 
opposed to a context-free derivation, the ‘ambiguity of x’ does not cor-
respond to ‘more than one possible tree diagram for x’.

2.4.2	 The Kuroda normal-form

In the preceding paragraph two restricted forms of context-sensitive pro-
ductions were discussed; they may be called normal-forms. The first of 
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them contains two types of production, α → β with α and β in V +N and  
|α| ≤ |β|, and A → a. The second is the context-sensitive form A→ β/α1– α2, 
with α1 and α2 in V * and β in V +. We shall now introduce a third normal-
form, developed by Kuroda, which is relevant not only to the discussion 
of the relationship between context-sensitive grammars and automata 
(chapter 6), but also to the proof of certain essential properties of trans-
formational grammars (see Formal Grammars, II, chapter 5).

Theorem 2.11  Every context-sensitive grammar is equivalent to a context-
sensitive grammar with productions exclusively in the following forms:
�(i) S → SB, (ii) CD → EF, (iii) G → H, (iv) A → a, where the variables A, B, 
C, D, E, F, and Η are different from the start symbol S (G may be identi-
cal to S).

Proof  It is striking that no string in these production forms has more 
than two elements. We shall first show that if G is context-sensitive, there 
exists a grammar G' equivalent to it, in which for each production α → β, 
|α| ≤ 2, and |β| ≤ 2. In the second place we will prove that there is a gram-
mar Gn in the Kuroda normal-form which is equivalent to G'.

Let G = (VN , VT , P, S) be a context-sensitive grammar. We already 
know that there is an equivalent grammar G" of the first normal-form, 
i.e. with production types A → a and α → β, where α and β are strings of 
variables such that |β| ≥ |α| > 0. Suppose that the maximum length of any 
string of a production of G" is n. We must construct a grammar G'" = (V'''N , 
VT , P''', S) equivalent to G" (and thus also to G), for which the maximum 
string length for any production is not greater than n – 1. To do so, we let P" 
include all the productions of P" where the string length is no greater than 
2; the remaining productions have string lengths of 3 or more. (If n = 1 or 
n = 2, G" already conforms to the limitation on string length and this step 
may be omitted.) Let α → β be such a production; we write it then as

	 Aα' → BCDβ' (where |α'| ≥ 0 and |β'| ≥ 0).

If α' = λ, we create two new variables A1 and A2, and add the following 
productions to P'":

	 A → A1 A2 
	 A1→ BC 
	 A2 → Dβ'
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If |α' | > 0, α' can be replaced by Eα". In that case we add the following 
productions to P'":

	 AE → Α'Ε'
	 A' → Β
	 Ε'α" → CDβ'

It is clear that in both cases no string length is greater than n – 1. If we 
follow this procedure for all the productions of P" and add the resulting 
productions to P'", in virtue of the construction, G'" will be equivalent to 
G", and consequently also to G. By induction on n it follows that there is a 
grammar G' = (V'N  ,VT , P', S) in which the length of the strings in produc-
tions is limited to 2, and which is equivalent to G.

At this point we must show that there is a grammar Gn which is 
equivalent to G' and G, and which contains only productions of types (i) 
through (iv). Take grammar Gn = (V n

N ,VT , P n, S' ), where V nN = {V'N ∪ S'  
∪ Q}. Thus we have added two new variables, one of which, S', is a new 
start symbol. The productions in P n are the following:

1.  S' → S''Q
2.  S' → S
3.  QA → AQ
4.  AQ → QA } for all variables A in G'

5.  A → B for all productions A → B in G'
6.  A → b for all productions A → b in G'
7.  AB → CD for all productions AB → CD in G'
8.  AQ → BC for all productions A → BC in G'

It is clear that the productions of Gn are subject to the same restriction 
of string length as the productions of G'; all strings in productions are of 
a length no greater than 2. Productions 1 through 8, moreover, are all of 
types (i) through (iv). (Note that the start symbol is S', while S is an ordi-
nary variable.)

Finally, we must prove that Gn is equivalent to G'; to do so it will be 
necessary to show that if x ∈L(Gn), it is also true that x ∈L(G' ), as well as 
the inverse. (1) If x ∈L(Gn), then S' *⇒ x. When every S' in the derivation is 
replaced by S and all Q's are omitted, every step of the derivation is in G'. 
This may be seen when the same operation is performed on the eight pro-
ductions of Gn. The first and second productions become S → S (which 



32	 An Introduction to the Theory of Formal Languages and Automata

adds nothing essential); the third and fourth productions become A → A 
(which is equally uninteresting); the fifth, sixth, and seventh productions 
remain unchanged, and the eighth production becomes A → BC. Thus if 
S'  *⇒      x, each step in the derivation of x can be simulated by the application 
of the productions of G', and therefore it is true that x ∈L(G' ).

(2) Let x ∈L(G' ); then S *⇒     x. It is true of every production α → β in 
G' that it is either contained in Gn or has been replaced by a production of 
type 8, AQ → BC. Therefore, in order to generate x in Gn we must see to it 
that there is exactly one Q available for each step of derivation in which a 
production of the type A → BC is involved. The Q must be placed directly 
to the right of the variable A to be rewritten. This can easily be done in 
Gn: we first count the number of steps in the derivation S  *⇒ x in which 
the situation occurs, for instance n times. We then begin the derivation 
of x in Gn by applying the first production n times; this may be written as  
S' → S'Qn. Next we replace S' with S by means of the second production, 
thus S'Qn ⇒ SQn. The rest of the derivation can proceed in the same way 
as the derivation S  *⇒ x, except where the eighth type of production is 
involved. In this latter case we must move one Q to the position directly 
to the right of the variable to be rewritten; this is done by application  
of productions of the third and fourth types. The Q is then eliminated 
upon application of a production of the eighth type. In this way Gn can 
generate x.

It follows from (1) and (2) that L(Gn) = L(G' ). Since G' is equivalent to 
G, Gn in Kuroda normal-form is also equivalent to G. This concludes the 
proof of Theorem 2.11.

We would note in conclusion that Kuroda called his normal-form a 
‘linear bounded grammar’, analogous to the equivalent automaton of the 
same name (cf. chapter 6).



Chapter 3

Probabilistic grammars

3.1  Definitions and concepts

3.2  Classification

3.3  Regular probabilistic grammars

3.4  Context-free probabilistic grammars

3.1	 Definitions and concepts

Until now we have limited the concept of grammar to a system of rules 
according to which the sentences of a language may be generated. On the 
basis of such a concept one can distinguish differences in the sentenc-
es of a language only in their derivation, also called their structural  
description. However, one might also consider the differences in fre-
quency with which sentence types occur in a language. One reason for 
doing so, as we shall see in chapter 8, is to facilitate the choice between 
two or more grammars which generate the same language. One might 
determine the efficiency of a grammar on the basis of the frequencies with 
which particular derivationas or sentencce types occur in a language. But 
the concept ‘efficiency’ has not been clearly defined, and the usefulness of 
a probabilistic interpretation of it will have to be considered in each con-
crete situation. We shall return to this subject in chapter 8.

We shall limit our discussion in the present chapter to an extension of 
the concept ‘grammar’ which will enable us to describe the probability of 
occurrence of sentences in a language. Therefore, we shall first define the 
concept of a probabilistic grammar.

A probabilistic grammar G is a system (VN , VT , P, S) in which:

1.  VN (the nonterminal vocabulary), VT  (the terminal vocabulary), and 
P (the productions) are finite, nonempty sets.
2.  VN ∩ VT = Ø.
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3.  Let VN ∪ VT = V; Ρ is composed of ordered groups of three elements 
(αi , βj , pij ), ordinarily written αi →

pij
  

βj where αi ∈V+, βj ∈V*, and pij is a real 
number indicating the probability that a given string αi will be rewrit-
ten as βj. The number pij is called the production probability of αi → βj. 
4.  S ∈VN .

This definition differs from the original definition of grammar only 
in that a probability is assigned to every production.

A probabilistic grammar is normalized if for every production  
αi →

pij  βj it is true that ∑
j

ijp for every αi in the productions. This means 
that if αi occurs in a derivation, the total probability that αi will be re-
written by means of some production is equal to 1. A production whose 
probability is equal to 0 cannot be used; it can simply be excluded from 
P. The reason for allowing the possibility that p = 0 is only of practical 
interest in some calculations. In the following, however, we shall suppose 
that every pij > 0 unless otherwise mentioned.

We use the notation αi ⇒
p
*   β for a derivation αi ⇒

p1  ξ1 ⇒
p2  ξ2 … ⇒

pn  β, where 
each step is the result of the application of one production, and where  
p = f (p1, p2, ... , pn). The analogy with standard notation is obvious, but 
to avoid crowding symbols above the arrow, we shall omit the asterisk, 
except where doing so might lead to confusion, and write αi ⇒

p
  β.

Function f is determined by the interdependence, or lack of it, between 
the various steps of the derivation. A probabilistic grammar is called un-
restricted if the steps of a derivation in it are mutually independent; in this 
case p = p1 · p2 · … · pn. As no considerable literature exists on the subject 
of restricted probabilistic grammars, we shall limit our discussion to un-
restricted probabilistic grammars. In applications of the theory, however, 
it will be necessary to estimate the validity of the presupposition that the 
productions are mutually independent.

A sentence generated by a probabilistic grammar is a finite string s 
of terminal elements, where S ⇒

p
  s and p > 0.

A probabilistic grammar G is ambiguous if at least one sentence can 
be derived in it in more than one way. A sentence is k-times ambiguous if
there are k derivatives S ⇒

p1  s, S ⇒
p2  s,…, S ⇒

pk  s.
A probabilistic language L, generated by a probabilistic grammar 

G, is the set of pairs (s, p(s)), where: (1) s is a sentence generated by G, and 
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(2) 
=

= ∑
1

( ) ( )
k

i
i

p s p s  where k is the number of difference ways in which s can
be derived from S. We call p (s) the probability of s in L. A probabilistic  
language can also be defined, without reference to a grammar, as a subset 
of V *T for which a probability distribution has been defined (VT is any  
finite vocabulary).

Two probabilistic grammars G1 and G2 are equivalent if they gener-
ate the same probabilistic language L, i.e. the same set of pairs (s, p (s)). 
Notice that equivalence here requires also that the probabilities of the 
sentences be the same.

A probabilistic language L = {(s, p (s))} is normalized if  
∈
∑ ( )i
s L

p s =1. This

means that the language has a total probability of 1. We shall see later 
that a normalized probabilistic grammar need not generate a normalized 
probabilistic language.

3.2	 Classification

Probabilistic grammars may be classified as follows in a way completely 
analogous to that used in Chapter 2.

Type-0 probabilistic grammars are all probabilistic grammars which 
satisfy the definition given above. Type-1 or context-sensitive prob-
abilistic grammars are those probabilistic grammars in which, for all 
productions αi →

pij  
βj , it is true that |αi| ≤ |βj|. Type-2 or context-free 

probabilistic grammars are those probabilistic grammars in which, for all 
productions αi →

pij  βj , it is true that αi = Ai ∈VN . Type-3 or regular proba-
bilistic grammars are type-2 probabilistic grammars whose productions 
are exclusively of the forms A →

p  
aB and A →

p   
a.

It is obvious that this classification is completely independent of the 
probabilistic aspect of the grammars. This is also true of the classification 
of probabilistic languages generated by probabilistic grammars. Thus we 
have type-0 probabilistic languages, type-1 or context-sensitive probabi-
listic languages, type-2 or context-free probabilistic languages, and type-3 
or regular probabilistic languages.

In the present chapter only the much used regular and context-free 
probabilistic grammars will be treated.
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3.3	 Regular probabilistic grammars

Three theorems will be treated in this paragraph. The first of them is of direct 
practical interest. The second, on the other hand, appears to be somewhat 
alarming from a practical point of view, but the third, which has not as yet 
been proven, suggests that things might not be as problematic as they seem.

Theorem 3.1   Every normalized regular probabilistic grammar generates 
a normalized regular probabilistic language.

In such a case, the probabilistic grammar is said to be consistent, 
and the theorem is therefore called a consistency-theorem.

The theorem is of practical interest in determining the frequencies 
of sentences in a language. To do so one would wish to be certain that  
the sum of the corresponding probabilities is equal to 1. The theorem states 
that this is guaranteed if the regular grammar in question is normalized.

The proof of this theorem supposes some acquaintance with matrix 
algebra. For readers who prefer to omit it we shall first present an exam-
ple which holds the essence of the proof without requiring knowledge of  
matrix algebra. The general proof will be given later.

Example 3.1   Let G be a regular probabilistic grammar with the follow-
ing productions:

1. 
1
2S a→ 	 4. 

2
3B b→

2. 
1
2S aB→ 	 5. 1A a→

3. 
1
3B bA→

G is normalized because for every variable the total probability of being 
rewritten is equal to 1. Only three sentences can be generated by G: a, ab, 
aba. The derivations with their respective probabilities are as follows:

1
12
2

1 2
2 3 11 2

2 3 3
1 1
2 13 111 1 62 3

...... ( )

....... ( )

. ....... ( )

p aS a

S aB ab p ab

S aB abA p abaaba

=⇒

⇒ ⇒ = =

⇒ ⇒ ⇒ = =

L(G) is evidently normalized, because
 ( )

( )i
s L G

p s
∈
∑ 1 1 1

2 3 6
1= + + =
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On the basis of this example we shall now show that there is a simple 
method for determining the probability that a regular probabilistic gram-
mar will generate sentences up to a certain length. To do so we present the 
probabilities of the productions in G in matrix form1 as follows:

=

1 10 0 2 2
0 0 0 1

210 03 3
0 0 0 1

T

T

S A B V

S

A
C

B

V

Let us examine the first row (row-element S). It shows the probabilities for 
the respective column-elements to appear in direct or ‘one step’ derivations

from S. There are only two productions for rewriting S, 
1
2S aB→  and 

1
2 .S a→

The matrix element under B in row S has the value 1
2  because of the first of 

these productions, and the matrix-element under VT in the same row has 
the value 1

2  because of the second production. Column VT thus serves for all 
productions in which a variable is rewritten as a terminal element, regard-
less of which terminal element it is. Row A shows how the variable A can be 
rewritten in one step, and with what probability, thus A can be rewritten only 
as a terminal element, with probability 1. Row Β shows to which elements 
the variable Β can be rewritten, and with what probability, thus it can be 
rewritten as A with probability 1

3  and as a terminal element with probability  
2
3 . The fourth row, row VT , is added to the matrix for further calculations; it 
is composed of zeros, except the rightmost element which has the value 1.

This matrix, which we shall call matrix C, has a pleasant property 
which may be explained as follows. We know that by definition sentences 
are derived from S. If we wish to know the probability of a sentence with 
length 1, we look at row S under VT , and find the value 1

2
. What then is 

the probability of a sentence of length 1 or 2? Such sentences are derived 
by going from S to VT by two steps at most. The variables S, A, or Β may be 

1.
 
 A matrix is a rectangular grid with one or more rows and one or more col-

umns. Each row is denoted by a row-element xi , and each column by a column- 
element yi. At the intersection of row i and column j is the matrix-element aij.
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present in the first derived string. Consequently there are four possibili-
ties of arriving at a sentence with a length of 2:

1.  From S a string is derived in which S is present, then S is replaced 
by a terminal element. One can immediately see in the matrix that these 
two steps have respective probabilities of 0 and 1

2
. The total probability 

of such a derivation is thus 0 · 1
2  = 0.

2.  From S the variable A is first derived, then a terminal element is 
derived from A. The probability of this is 0 · 1 = 0.
3.  From S a string is derived with the variable B, then a terminal element 
is derived from B. The probability of this is 1

2
. 2

3
 = 1

3
.

4.  A terminal element is directly derived from S. The probability of this  
is 1

2
. The total probability of a sentence with length 1 or 2 is the sum of these 

four probabilities, 0 + 0 + 1
3  + 1

2  = 5
6 . This is precisely the probability of the

sentence a  
  

1
2

 plus the probability of the sentence ab  
  

1
3

, the only two 
sentences of the grammar in this category.

This operation can also be carried out systematically by means of 
matrix-multiplication. The four steps which we have just performed 
correspond to the multiplication in pairs of the elements in row S with 
the elements in column VT , followed by the addition of the four products:

10
2

   
    + (0 . 1) + 21 1 1

32 2
   +      

     
 

5
6

.=  We say then that the row-vector S
is multiplied by the column-vector VT . Let us make a new matrix C 2, and 
put the result 5

6  at the intersection of row S and column VT . The remaining 
matrix-elements of C 2 are obtained in a similar way, that is the multiplica-
tion of a given row-vector in C with a given column-vector in C yields the 
matrix-element in C 2 for the intersection of the row and column in ques-
tion. For example, the matrix-element in C 2 for the intersection of row S 
and column A is 1

6
. This is obtained by multiplying the row-vector S in C 

by the column-vector A: (0 . 0) + (0 . 0) + 11 1 1 0
32 62

   +    =    
     

   The value  1
6  

means that there is one chance out of six of deriving a string with A from S 
in no more than two steps. Matrix C 2 is called the square of matrix C.

= 2

1 50 06 6
0 0 0 1
0 0 0 1
0 0 0 1

T

T

S A B V

S

A C
B

V
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By multiplying C by C 2 (multiplying the row-vectors in C by the  
column-vectors in C 2) we obtain matrix C 3:

= 3

0 1 0 1
0 0 0 1
0 0 0 1
0 0 0 1

T

T

S A B V

S
A

C
B

V

In row S under VT we find the value 1. This means that the probability of 
obtaining a sentence the length of which is three or smaller is equal to 1. 
The grammar, as we have observed, generates no longer sentences.

In this example we see that the critical matrix-element in row S under 
VT increases with the power of the matrix from 1

2  to 5
6  to 1. The proof of 

Theorem 3.1 consists of showing that this is a generally valid theorem for 
matrices such as matrix C. By increasing the power of the matrix, i.e. the 
sentence length, the critical element approaches the value 1. The sum of 
the probabilities for all sentences, i.e. for the sentences of all lengths, is 
thus equal to 1, and L(G) is normalized.

Proof  Let G be a normalized regular probabilistic grammar. We suppose 
that G has no redundant variables, i.e. for each A ∈Vn there is at least one 
production A pÆ a, a ∈VT , for which p > 0. This supposition implies no 
loss of generality (cf. Huang and Fu 1971). Let us define a matrix C = [cij], 
i,j = 1, 2, ..., n + 1, as follows:

1

( ) for , , and where is the  
.production probability of 

( ) for , 1

T

T

iij j
a V

j

iij
a V

c p A aA i j n   p 
A aA

p A a i n  j = n+c

∈

∈

= → ≤
→

= → ≤

∑

∑

 cij = 0	 for i = n + 1, j ≤ n
 cn+l, n+l = 1

C is a stochastic matrix2 because for each row the sum of the elements is 
equal to 1, and G is normalized. The right hand column-vector in matrix 

2.  A stochastic matrix is a square matrix, the matrix-elements of which are 
nonnegative, and the sums of the rows of which are equal to 1 (cf. Feller 1968).
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C k shows the probability that a string of k or fewer elements will be de-
rived from the variable Ai. If A1 = S, then ck

1, n+1 is the probability that the 
grammar generates a sentence of k or fewer elements. We are interested 
in the value of ck

1, n +1 when k → ∞, i.e. the sum of the probabilities of  
all sentences generated by the grammar. We have supposed that it is true
of every variable A that 

Ta V

p
∈
∑ ( ) 0A a→ >  that is, that there are no 

redundant variables. C may therefore be written as C  =
A B

10
, where all

the elements of column-vector Β have a value > 0. Then C 2 = A2 AB + B
10 ,

and in general, C k = = .Ak (Ak−1 + Ak−2...A0)B
10

Ak D
10

. But for each of 

the row-vectors in A, the sum of the row-elements is smaller than 1, and 
consequently

→∞
=lim 0k

k
A .

 
But C n is a stochastic matrix because C is a sto-

chastic matrix (this theorem is treated in Feller 1968), and thus for every 
row in C k the sum of the row elements is also equal to 1. The limit of each 
of the row-vector in C k is thus [0 0 … 0 1] and thus +→∞

=1, 1lim 1nk
c which is 

what we set out to prove.
A normalized regular grammar generates a normalized regular lan-

guage. But let us examine the situation from the other side. Let L be a 
regular language for which a probability distribution has been defined. 
There is thus a value p(s) for every s in L. Let us support that L is normal-
ized, i.e. that 

s L

p
∈
∑ ( ) 1s = . Is there a regular probabilistic grammar which

generates precisely the pairs (s, p(s))? This is known as the problem of 
representation. We have the following theorem.

Theorem 3.2.   There is a regular language L, and a probability distribu
tion for the sentences in L with the property 

s L

p
∈
∑ ( ) 1s = , for which no  

regular probabilistic grammar exists. 

There are thus normalized regular probabilistic languages for which no 
normalized regular probabilistic grammar exists. The practical implication 
seems to be that not every sample (corpus) of sentences of a regular language 
can be described by a regular probabilistic grammar. However, the proof of 
this theorem, for which reference is made to Ellis (1969), is based on an 
argument which is completely without practical implications. It is shown, in 
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effect, that one can assign a normalized probability distribution to a regular 
language such that for some sentences s, p(s) cannot be the product of any 
production probabilities whatsoever. The argument is based on the con-
sideration that there are real numbers which are not rational. It supposes 
that some sentences of L have nonrational probabilities, and shows that in 
certain circumstances it is impossible to represent those probabilities as 
the product of production probabilities.

In every empirical situation, however, we have to do with samples of 
the sentences of a language L, and can therefore write the estimates of p(s) 
as fractions. On the basis of this consideration, Suppes (1970) suggested 
the following general representation theorem for probabilistic languages; 
the theorem has not yet been proven.

Theorem 3.3   If L is a type-i language, and a normalized probability dis-
tribution p(s) has been defined for the sentences of L, then there is a type-i 
normalized probabilistic grammar which generates a probability distribu-
tion p¢(s) for the sentences of L, and for every finite sample s of L the null-
hypothesis that s is drawn from (L, p¢(s)) cannot be rejected.

In other words, we can find a probabilistic grammar for every sample 
(corpus) of sentences, according to which the original probability distri-
bution can be approached so closely that it is impossible to decide (on the 
basis of a statistical test) if we are dealing with L(p¢) or with L(p).

3.4	 Context-free probabilistic grammars

Two normal-forms for context-free grammars were introduced in chapter 2, 
and it was shown that every context-free grammar is equivalent to a gram-
mar in Chomsky normal-form and to a grammar in Greibach normal-form. 
In the present paragraph we shall show that these equivalences are also 
valid for context-free probabilistic grammars. Afterwards we shall discuss 
the consistency-problem for context-free probabilistic grammars.

3.4.1	 Normal-forms

Normal-forms pose an additional problem for context-free probabilis-
tic grammars, for not only must the normal-form grammar be equiva-
lent to the original one with respect to the sentences generated, but it 
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must also be equivalent to the original grammar with respect to the 
probabilities of the sentences generated. This can be done only by giv-
ing the production probabilities in the normal-form grammar a certain 
relation to those of the original grammar. It is not certain in advance 
that this can always be done. For the Chomsky normal-form we shall 
state and derive the relations. The Greibach normal-form will only be 
mentioned.

Theorem 3.4   (Chomsky normal-form). Every normalized context-
free probabilistic grammar G is equivalent to a normalized context-free 
grammar, the productions of which are exclusively of the A →

p   
BC and  

A  →
p   

a.

Proof   The proof is carried out in three steps. We first construct a gram-
mar Gʹ equivalent to G, and in which no productions of the form A →

p   
B 

occur. Next we compose a grammar Gʹʹ equivalent to Gʹ, and in which the 
productions are exclusively of the forms A →

p  
a and A →

p  
B1B2 … Bn(n ≥ 2). 

Finally we compose Gn in the normal-form, equivalent to Gʹʹ, and conse-
quently also to G.

i.  Let there be such productions in G of the form A  →
p   

B that derivations  
of the form A ⇒

p1  B1 ⇒
p2  B2 … ⇒

pn 
 
Bn 

 
 α, where α ∉ VN . We can replace every 

derivation of this kind by adding a production to P ¢ in the form A →
p   

a, where

(1)  p = p1 ∙ p2∙ … ∙ pn+1

This is only possible where there are no ‘loops’ in such a derivation chain. 
For these cases we do the following. We speak of a loop when productions 
of the following form occur in P:3

A →
p0  

B
A →

pi  αi	 i = 1, … , n
B →

q0  A
B →

qj  βj	 j = 1, … , m

3.  Notation: In the following probabilities p always corresponds to productions 
where A occurs to the left of the arrow, and q corresponds to productions where 
Β occurs to the left of the arrow.
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These productions can be replaced by the following productions in Pʹ:

A →
rj  βj	 j = 1, … , m

B →
si  αi	 i = 1, … , n

A →
ti  αi	 i = 1, … , n

B →
uj   βj	 j = 1, …, m

where,

= = = =
− − − −

0 0

0 0 0 0 0 0 0

(2) , , ,
1 1 1 1

j i i i
i i ij

j

p q p q p q
r t s u

p q p q p q p q

To show this let us examine in detail the productions A →
rj  

βj in Gʹ;  
the derivation for the other three types follows the same pattern. βj can 
be derived in G in an infinite number of ways when there is a loop of the
form A →

p0  
B  and B →

q0  
A, thus:

	 A ⇒
p0  

B ⇒
qi  βj

	 A ⇒
p0  B ⇒

q0 
A ⇒

p0  
B ⇒

qj  
βj

	 A ⇒
p0  

B ⇒
q0 

A ⇒
p0  

B ⇒
q0 

A ⇒
p0 

B ⇒
qj  

βj, etc

The total probability that βj be derived from A is thus

p0qj + p0(q0 p0)qj + p0(q0 p0)2qj + … =

∞

=
=

−∑ 0
0 0 0

0 0 0
( ) .

1
jn

j
n

p q
p q q p

p q

By the same procedure we can deal with ti , si , and uj .
By eliminating all loops in this way, we obtain grammar Gʹ, equivalent 

to G, and in which there are no productions of the form A →
p   

B.

ii. Grammar Gʹʹ  will contain all the productions of Gʹ except those 
of the form A →

p  
β, where β consists of terminal elements and pos-

sibly also variables (|β| ≥ 2). All these productions are rewritten as 
productions which contain only variables; there will also be a set of 
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terminal productions. If bi is a terminal element in the string β, we 
introduce a new variable Bi in Gʹʹ, and a new terminal production  
Bi →

1  bi. In this way all the productions of the form A →
p  

 β are replaced 
by productions of the form A →

p 
 B1 B2… Bn. It is clear that with this set 

of productions A ⇒
p1  βi in Gʹʹ, and in general that Gʹʹ is equivalent to Gʹ.

iii. At this point all productions in Gʹʹ which are not of the form A →
p 

  a or  
A →

p 
  BC must be reduced to the form A →

p
  BC. The only productions in 

question here are those of the form A →
p

  B1B2 … Bn(n > 2). We replace 
each of these productions by a set of new productions as follows:

A →
p  

B1 D1

D1 →
1   B2 D2

Dn–2 →
1   Bn–1 Bn

where Di is a new variable (i = 1, ..., n–2).
When Gn contains these new productions and these new variables as 

well as the productions of Gʹʹ of the form A → β with |β| ≤ 2, then Gn is 
obviously equivalent to Gʹʹ and therefore also to G, and moreover Gn is of 
Chomsky normal-form.

This proof also shows what the relations must be between the produc-
tion probabilities of the grammar in Chomsky normal-form and those of 
the original grammar. They are found in the proof under (1) and (2).

Example 3.2  Let G = (VN ,  VT ,  P, S) be a context-free probabilistic gram-
mar where VN = {S, A, B}, VT = {a, b}, and Ρ consists of the following 
productions:

1.  S → aS
0.8

3.  A → B
0.5

4.  A → a
0.4

2.  S → ABb
0.2

5.  A → aA
0.1

7.  B → Bb
0.2

8.  B → b
0.4

6.  B → A
0.4

( p2 = 0.1)
(q0 = 0.4)

(q1 = 0.2)
(q2 = 0.4)

(p0 = 0.5)
(p1 = 0.4)

Grammar G is clearly normalized. To find an equivalent grammar in Chom-
sky normal-form, we must first construct a grammar Gʹ, equivalent to G, 
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and in which the loop A →0.5
 B, B →0.4

 A no longer occurs. To do so, we replace 
productions 3 to 8 with the following eight productions (cf. Proof (i)):

A →r1
  
Bb	 A →t1  

aA

A →r2
  
b	 A →t2   

a

B →s1
  
aA	 B →u1   

Bb

B →s2  
a	 B u2   

b

In order to calculate the values of r, s, t, and u, we use the following 
formulas:

 

×= = = =
− − ×

×= = =
−

×= = =
−

×= = =
−

= = =
−

= = =
−

= = =
−

0 1
1

0 0

0 2
2

0 0

0 2
1

0 0

0 1
2

0 0

2
1

0 0

1
2

0 0

1
1

0 0

2

0.5 0.2 0.1
0.125

1 1 0.5 0.4 0.8
0.5 0.4

0.25
1 0.8

0.4 0.1
0.05

1 0.8
0.4 0.4

0.2
1 0.8

0.1
0.125

1 0.8
0.4

0.5
1 0.8

0.2
0.25

1 0.8

p q
r

p q
p q

r
p q

q p
s

p q
q p

s
p q

pt
p q

pt
p q

qu
p q

u = = =
−

2

0 0

0.4
0.5

1 0.8
q
p q

If we add the first and second productions of G to Gʹ, grammar Gʹ is 
equivalent to G.

Grammar Gʹʹ is obtained by replacing the productions in Gʹ with pro-
ductions exclusively of the forms A →p 

  a and A →p 
 β, where every β is 

made up only of variables. This yields the following productions in Gʹʹ:
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S → A1S
0.8

S → ABB1
0.2

B1 → b1

A1 → a1
A → BB2

0.125

A → b
0.25

B → A2A0.05

B2 → b1
A2 → a

1

A2 → A3A
0.125

A3 → a1

B → a0.2
A → a

0.5

B3 → b
1

B → b0.5

B → BB3
0.25

Finally, grammar Gn in Chomsky normal-form can be obtained by replac-
ing the production 

S → A1S
0.8

S → ABB1
0.2

B1 → b1

A1 → a1
A → BB2

0.125

A → b
0.25

B → A2A0.05

B2 → b1
A2 → a

1

A2 → A3A
0.125

A3 → a1

B → a0.2
A → a

0.5

B3 → b
1

B → b0.5

B → BB3
0.25

 with 
1.  S → A1S

0.8

3.  A → BB2
0.125

4.  A → A3A
0.125

5.  A → a
1

2.  S → AC
0.2

9.  A3 → a
1

8.  A2 → a
1

7.  A1 → a
1

6.  A → b
0.25

13.  B → a
0.2

12.  B → b
0.5

11.  B → A2A
0.05

10.  B → BB3
0.25

17.  C → BB1
1

16.  B3 → b
1

15.  B2 → b
1

14.  B1 → b
1

 and 

1.  S → A1S
0.8

3.  A → BB2
0.125

4.  A → A3A
0.125

5.  A → a
1

2.  S → AC
0.2

9.  A3 → a
1

8.  A2 → a
1

7.  A1 → a
1

6.  A → b
0.25

13.  B → a
0.2

12.  B → b
0.5

11.  B → A2A
0.05

10.  B → BB3
0.25

17.  C → BB1
1

16.  B3 → b
1

15.  B2 → b
1

14.  B1 → b
1

.
The grammar in Chomsky normal-form will then contain the seventeen 

following productions:

1.  S → A1S
0.8

3.  A → BB2
0.125

4.  A → A3A
0.125

5.  A → a
1

2.  S → AC
0.2

9.  A3 → a
1

8.  A2 → a
1

7.  A1 → a
1

6.  A → b
0.25

13.  B → a
0.2

12.  B → b
0.5

11.  B → A2A
0.05

10.  B → BB3
0.25

17.  C → BB1
1

16.  B3 → b
1

15.  B2 → b
1

14.  B1 → b
1

This grammar is clearly normalized. But one cannot immediately see that 
a sentence generated by G has the same probability as a sentence gener-
ated by Gn. This is because every sentence generated by G has an infinity 
of possible leftmost derivations as a result of the loop. This emphasizes the 
advantage of a grammar in Chomsky normal-form, since such a grammar 
has only a finite number of leftmost derivations for each sentence.

Theorem 3.5   (Greibach normal-form) Every normalized context-free 
probabilistic grammar G is equivalent to a normalized context-free probabi
listic grammar Gʹ, in which all productions are of the form A →

p
   aα, where 

α ∈ V*N .
For proof of this theorem, as well as for the derivation of the produc-

tion probabilities, we refer the reader to Huang and Fu (1971).

3.4.2	� Consistency conditions for context-free  
probabilistic grammars

The theorems on the normal-forms tell us something of equivalence for 
normalized probabilistic grammars. But it is of interest to recall the defini-
tion: two normalized grammars may well generate the same probabilistic 
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language, but that need not mean that the language is also normalized. The 
following theorem shows that one may not take it for granted that a nor-
malized context-free grammar generates a normalized language. Context-
free probabilistic grammars are not necessarily consistent.

Theorem 3.6  (Inconsistency theorem) There are normalized context-free 
probabilistic grammars which do not generate normalized probabilistic 
languages.

Proof  For proof of this theorem it is sufficient to show an example of 
such a grammar. Let G = ({S}, {a}, P, S ) be a grammar with the following 
productions in P:

1.  S →
2 –3   SS	 2.  S →

1 –3   a.

This grammar is normalized (and moreover in Chomsky normal-form); 
it generates the language L = {an}, where n ≥ 1. The respective derivations 
of sentences a and aa are as follows:

	 S ⇒
1 –3   a 		  p(a) = 1–

3

	 S ⇒
2 –3   SS ⇒

1 –3   aS ⇒
1 –3   aa	 p(a2) =  2—

27

For the sentence aaa, there are two leftmost derivations possible:

	 S ⇒
2 –3   SS ⇒

2 –3   SSS ⇒
1 –3   aSS ⇒

1 –3   aaS ⇒
1 –3   aaa

	 S ⇒
2 –3   SS ⇒

1 –3   aS ⇒
2 –3   aSS ⇒

1 –3   aaS ⇒
1 –3   aaa

The reader will notice here that these derivations correspond to two 
different tree diagrams; G is therefore ambiguous. For p(a3) we find 

2 2 1 1 1
3 3 3 3 3

         
    

+ 2 1 2 1 1
3 3 3 3 3

         
      = 2 ∙ 

22
3

 
   ∙ 

31
3

 
   = 

8
243

.

In general we can state that p(an) = (n – 1) 2
3

1n− 
   1

3
,

n 
  where n > 1.  

After some calculation it appears that
1

1
2( )n

n
p a

∞

=
=∑ , instead of the 1  

required for normalization. G is therefore inconsistent.
It is possible, however, to pose conditions under which a normalized 

context-free probabilistic grammar will be consistent. For the following 
discussion of such conditions, some acquaintance with matrix algebra 
will again be required. We would advise readers who wish to omit the 
remainder of this paragraph that in any case every nonambiguous nor-
malized context-free probabilistic grammar is consistent.



48	 An Introduction to the Theory of Formal Languages and Automata

The conditions of consistency for a context-free grammar can best 
be discussed on the basis of the n × n matrix A = [aij]. Before defin-
ing the elements aij, we must first indicate what they are to represent. 
The value aij must be the total probability that the variable Ai generates  
at least one Aj in a derivation. Take the following productions for Ai and 
the corresponding probabilities:

Ai → α1	 p(Ai → α1)
Ai → α2	 p(Ai → α2)

	 	 with probabilities	
Ai → αk	 p(Ai → αk)

and suppose that in the hth production Ai → αh, the element Aj appears in 
the derivation mijh times. The production will thus be as follows:

�Ai → β1Aj β2 Aj … βmijh
 Aj βmijh +1, where |βl| > 0  

for l = 1, …, mijh+1.

We define aijh as follows: aijh = mijh ∙ p(A → αh). The definition of aij is then:

aij = 
1

k

k=
∑aijh

  with i, j = 1, 2, …, N, where N is the number of variables in VN.  
In order to construct a consistent context-free probabilistic eventually 
every variable, and consequently also A1 = S, is rewritten as a terminal 
element. From this point of view, matrix A here fulfills precisely the 
same function as matrix C in the proof of Theorem 3.1. It is established 
(cf. Booth 1969, for example) that the limit is equal to the null-matrix 0, 
when the eigenvalue of A, with the highest absolute value λmax, is small-
er than 1. If λmax > 1, the grammar is inconsistent; λmax = 1 produces 
various special problems which we will leave out of our discussion.

Let us again consider grammar G of Theorem 3.6, with productions 
S → SS and S → a. Let p(S → SS) = p, and p(S → a) = 1 – p. Under what 
conditions will G be consistent? In this case matrix A has one cell: A = [2p], 
because S occurs twice to the right of the arrow in the production S → SS 
with probability p. The only eigenvalue of A is then 2p, and the gram-
mar is consequently consistent when 2p < 1 or p < 1

2
 . It is inconsistent if  

p > 1
2

 (as was the case in the original example where p = 23 ). In this case the
grammar is also consistent when p = 1

2 
.



Chapter 4

Finite automata

4.1  Definitions and concepts

4.2  Nondeterministic finite automata

4.3  Finite automata and regular grammars

4.4  Probabilistic finite automata

In the present chapter we shall regard that which generative systems give 
as output, as the input of accepting systems. By definition, grammars are 
finite systems of rules by which potentially infinite sets of sentences can 
be generated. In this and the following chapters we shall show that for  
every language-type a mechanism can be constructed which is able to ac-
cept precisely the sentences of a language. In other words, given a language  
L of type-i, an automaton can be devised which can decide, after a finite 
number of operations, for the sentences of L and for no other string, that 
a sentence belongs to L. In generating a sentence, a grammar ascribes a 
structural description to it in passing; in a similar way, when an equiva-
lent automaton accepts a sentence, an equivalent structural description 
unfolds.

It would, however, be incorrect to conclude from this symmetry that 
a mechanism finite in size can accept anything which is generated by a 
finite grammar. Such a mechanism can indeed be of finite description, but 
in most cases it will have to contain an infinite number of parts. In fact, 
only one of the language types which we have treated – the class of regular 
languages – is recognizable through finite means.

In this chapter we shall present a survey of the theory of finite au-
tomata, and we shall show (1) that there is a finite recognition-automaton 
for every regular language, and (2) that for every set of strings which is 
accepted by a given finite automaton, a regular grammar can be found 
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which generates precisely the same strings. Some special types of finite 
automata, such as nondeterministic and k-limited automata, will also be 
briefly discussed. In the final paragraph we shall mention some of the 
properties of probabilistic finite automata.

4.1  Definitions and concepts

A finite automaton, FA, is a system (S, Ι, δ, s0, F ) in which

1.  S is a finite nonempty set of states. At any given moment the autom-
aton must be in one of these states. Individual states are generally denoted 
by the letters s or t, with subscripts when needed.
2.  I is a finite nonempty (input) vocabulary. Its elements (‘words’) 
are represented by letters from the beginning of the Latin alphabet. I* is 
the set of strings, finite in length, composed of the elements of I, includ-
ing the null-string λ. Elements of I* may be represented by letters from 
the end of the Latin alphabet.
3.  δ is a (state) transition function which indicates how the autom-
aton changes states under the influence of an input word. The notation is 
as follows: δ(s,a) = t means that the automaton in state s changes to state t 
at the insertion of word a, where s and t are elements of S. The transforma-
tion function is defined for every possible pair of state and input-element: 
for every s ∈ S and every a ∈ I, δ(s,a) is either a state in S or φ, where φ 
means that the automaton blocks and no further step is possible. The tran-
sition function is also said to map the Cartesian product S × I into S ∪ φ  
Because S × I is finite, the transition function consists of a finite set of rules 
called transition rules.
4.  s0 is a particular element of S, called the initial state. It is the state 
of the automaton when the input process begins.
5.  F is a nonempty set of final states in S.

A finite automaton FA = (S, I, δ, s0, F ) is said to accept a string x ∈ I*, 
if FA, first operating in the initial state s0, passes through a sequence of 
states, the last of which is a final state in F, under the influence of the 
successive elements of x.

Ordinarily the δ-notation is not limited to the input of individual elements 
of I, but is also used for the input of strings from I*. If x = a1a2 … an, and 
FA contains the following transition rules: δ(s1, a1) = s2, δ(s2, a2) = s3, … ,  
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δ(sn, an) = sn+1, where s1 = s and sn+1 = t, we may write δ(s, x) = t. Thus 
δ(s, xa) = d(d(s, x), a). By convention δ(s, λ) = s. Expanded in this way, the 
transition function maps S × I* in S ∪ φ. We may also say that the automa-
ton accepts x ∈ I* if δ(s0, x) ∈ F.

The language Τ accepted by the finite automaton FA is {x|δ(s0, x) ∈ F }, 
the set of strings accepted by the automaton. Such strings are also called 
sentences.

Two finite automata are equivalent if they accept the same language.
Finite automata can be pictured as in Figure 4.1. They consist of a 

control-unit and a reading head along which an input tape runs 
from right to left. A string of input symbols appears on the tape (in the 
figure x = a1a2 … an). The control-unit can be in only one of a finite 
number of states at a time. When the reading head begins to read the first 
symbol, the control-unit is in the initial state s0. When the first element 
(a1 in the figure) is read, the state of the control-unit can change (accord-
ing to the transition rule concerned). The tape then moves one space to 
the left. The next input symbol (a2 in the figure) is read in the new state, 
and a second change of state may take place, according to the respective 
transition rule. The tape again moves one space to the left. This process 
continues until the control-unit arrives at a final state in F. The string of 
symbols read up to that point is then said to have been accepted by the 
automaton. Figure 4.1. shows the initial and final phases.

Figure 4.1.  The Accepting of a String x = a1a2 … an by a Finite Automaton

a1 a2 a3 an−1 an...

a1 a2 a3 an−1 an...

x

x

Reading head

Control-unit
In initial
state s0

In �nal
state є F

Final Phase

Initial Phase
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It is also possible visually to represent what occurs in the control-
unit during reading; this is done by means of a transition-diagram. We 
shall illustrate this with a few examples.

Example 4.1  Let FA = {S, Ι, δ, s0 , F} be a finite automaton with S = {s0, s1}, 
I = {a, b}, F = {s1}, and where δ contains the following transition rules:

	 δ(s0, a) = s1	 δ(s0, b) = φ
	 δ(s1, b) = s0	 δ(s1, a) = φ

The transition-diagram for this automaton is given in Figure 4.2.

Figure 4.2.  Transition-Diagram for Finite Automaton FA (Example 4.1).  
initial state is s0 final state (circled twice) is s1

a

b

s0 s1

Such a diagram should be read in the following terms. Every state is shown 
by means of a circle in which the name of the state is given. For every non-
blocking transition rule δ(s, a) = t, there is an arrow in the diagram going 
from the circle labeled s to the circle labeled t; the input symbol a is written 
near the arrow. In Figure 4.2. it is clear that the automaton in question has 
two states, that it passes from state s0 to state s1 when a is read, and that it 
returns from state s1 to state s0 when b is read. String a is obviously accepted 
by this automaton, because beginning in the initial state s0, it passes to the 
(only) final state s1 when a is read. Another way of coming to the final state 
s1 is by reading the string aba: the automaton passes successively from s0 to 
s1, then back to s0, and again to s1; because s0 is an initial state and s1 is a final 
state, the string aba, by definition, is accepted. This automaton accepts all 
strings a, aba, ababa, … The language is Τ = {a(ba)*}.

Example 4.2  Let FA = (S, Ι, δ, s0, F ) be a finite automaton with S = 
{s0, s1, s2}, I = {a, b, c, d, e, f }, F = {s0}, and with the following transition 
rules in δ:

	 δ(s0, a) = s1	 δ(s2, e) = s0
	 δ(s1, b) = s1	 δ(s2, f ) = s0
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	 δ(s1, c) = s2	 δ (‒, ‒) =  φ for all other pairs
	 δ(s1, d) = s2

The transition-diagram for this automaton is given in Figure 4.3

Figure  4.3.  Transition-Diagram for Finite Automaton FA (Example 4.2)

f

d

e

e

b

as0 s1 s2

Here s0 is both an initial and a final state. One can easily see from the 
diagram that the automaton will accept all strings which bring it from the 
initial state s0 back to the final state s0; these are such strings as adf, ace, 
ade, abdf, abbce, etc. Each of these strings is composed of first an a, then 
a string of 0 or more b’s, then either a d or a c (d ∨c), and finally either 
an e or an f (e ∨f ), thus strings of the form ab*(c ∨d ) (e ∨f ). As in the 
preceding example, however, after returning to the final state s0, one can 
make still another turn in the automaton, returning once again to s0, and 
continue doing so. The language accepted by this automaton is Τ = {(ab* 
(c ∨d) (e ∨f ))*}. The machine also accepts λ, because by definition  
δ (s0, λ) = s0, bringing the automaton from the initial to the final state.

Beside the fact that initial and final states are identical, this automaton 
has the peculiarity of allowing loops, by which a state s1 can be trans-
formed into itself again. Moreover, there are two pairs of equivalent 
input symbols, d and c, and e and f, which under all circumstances have 
the same effect on the operation of the automaton.

Instead of a transition-diagram, one can also use a transition-table to 
show the structure of an automaton. A transition-table is a matrix in which 
the row-elements represent the states of an automaton, and the column- 
elements represent the possible input symbols. Every matrix-element 
shows a state (or φ) which is reached from a given state (row-element) and 
a given input symbol (column-element). An example of such a matrix is 
the following transition-table for finite automaton FA of Example 4.2.
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input elements

s0 s1

a b c d e f

s1 s2 s2

s0 s0

φ

φ

φ

φ φ φ

φ

φ

φ φ φ

φs1

s2

Ordinarily the φ is omitted in such a matrix. A transition-table contains 
precisely the same information as a transition-diagram.

Some finite automata are k-limited. A k-limited automaton is a finite 
automaton the state of which is determined at every moment by the last 
k (or fewer) accepted input symbols. The automaton of Example 4.2 is 
1-limited. As is clear from the transition-diagram (Figure 4.3.), the au-
tomaton, after having accepted a, can be only in state s1; after accepting 
b, only in state s1; after accepting c, only in state s2; after accepting d, only 
in state s2; after accepting e, only in state s0; and after accepting f, only in 
state s0. Likewise in each column of the transition-table, only one state is 
mentioned.

A 2-limited automaton is shown in Figure 4.4, both in diagrammatic 
and in tabular form. It is clear that immediately after accepting an a, the 
machine can be in one of two states, either s1 or s2. The automaton is 
therefore not 1-limited, but 2-limited, for after accepting aa, it is in state s2 
after accepting ab it is in s0, and after ba, in s1. It can never accept bb.

Figure 4.4.  Transition-Diagram and Transition-Table for a 2-limited 
Automaton

s2

s0 s1

a b

s1

s0s2

s0

a

ab

s1

s2

Figure 4.5. shows that not all finite automata are k-limited; it repre-
sents an automaton which is k-limited for no finite k. Even when this 
automaton has accepted an arbitrarily long string of b’s, we do not know 
if it is in state s0 or in state s1.
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If s0 is the initial state and s1 the final state, then the language which 
the automaton accepts is Τ = {b*ab*}. The k-limited automaton is of some 
interest in dealing with Markov processes (cf. formal grammars, II, 6.1., 
and III, 3.2.).

4.2  Nondeterministic finite automata

The finite automaton defined in the preceding paragraph has the prop-
erty that for every state and input symbol, the state which follows (or φ) 
is unambiguously determined. Such an automaton is therefore called a 
deterministic automaton. But, for two reasons, it remains necessary to 
define the nondeterministic variant of finite automata here. The first rea-
son is that such a definition will allow us more easily to establish the 
relationship between finite automata and regular grammars. The second 
reason is that the probabilistic automaton (cf. paragraph 4.4) is in turn a 
generalization of the nondeterministic finite automaton.

A nondeterministic finite automaton NFA is a system (S,  Ι,  δ,  s0,  F ) 
which is in every way equal to a deterministic finite automaton, except for 
the transition rules δ. The transition rules of a nondeterministic finite au-
tomaton have the following form: S(s, a) = {t1, t2, …, tk} = D, where 0 ≤ k < ∞; 
s, ti ∈ S, and D ⊂ S. In other words, for every pair of state and input symbols, 
there is a finite set of states at which the automaton can arrive. δ is said to 
be a mapping of S × I into the subset of S (where φ is the empty or blocking 
subset). A deterministic finite automaton is actually a particular case of non-
deterministic finite automata: it covers those cases where for all transition 
rules k = 1 or k = 0.

When can one say that x ∈ I* is accepted by a nondeterministic finite 
automaton? Suppose that x = a1a2 … an, and that the finite automaton FA 

Figure  4.5.  Transition-Diagram and Transition-Table for an Automaton 
which is k-limited for no Finite k

s1

s0 s1 s0

a b

s1

s0

a bb

s1
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contains the following transition rules: δ(s0, a1) = D1,  s1 ∈ D1;  δ(s1, a2) = D2,  
s2 ∈ D2; …; δ(sn–1, an) = Dn,  sn ∈ Dn and sn ∈F, then x is said to be accepted 
by the automaton. Thus, if there is some succession of states allowed by the 
transition rules, according to which x brings the automaton from s0 to a 
final state, the nondeterministic finite automaton is said to accept x.

The operation of a nondeterministic finite automaton is also easy 
to represent by way of a transition diagram, as becomes apparent in the  
following example.

Example 4.3  Let NFA = (S, Ι, δ, s0, F ) be a nondeterministic finite automa-
ton where s = {s0, s1, s2}, I = {a, b}, F = {s2}, and δ contains the following 
transition rules:

 	 δ(s0, a) = {s0, s1}
	 δ(s1, a) = {s2}
	 δ(s1, b) = {s1, s2}
 	 δ(‒, ‒) = φ for all other pairs.

Figure 4.6. shows the transition-diagram for this automaton. Among the 
strings which can bring the automaton from the initial state s0 to the final 
state s2 are the following: aa, ab, aaa, aab, aba, abb, and so forth. In gen-
eral, the language accepted by this automaton is Τ = {a*ab*(a ∨b)}.

Figure 4.6.  Transition-Diagram for the Nondeterministic Finite  
Automaton NFA (Example 4.3.). The final state s2 is circled twice

s2s0 a
s1

a ab

b

The following important theorem is valid for nondeterministic finite 
automata.

Theorem 4.1  For every nondeterministic finite automaton there exists an 
equivalent deterministic finite automaton.

The proof of this theorem, for which we refer the reader to Rabin 
and Scott (1959), will be briefly discussed later. We shall first illustrate 
it by returning to Example 4.3. We can construct a finite automaton FA 
equivalent to the nondeterministic finite automaton NFA of that example 
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in the following way. NFA had three states, i.e. S = {s0, s1, s2}; the corre-
sponding FA will have seven states, namely, [s0], [s1], [s2], [s0, s1], [s0, s2], 
[s1, s2], and [s0, s1, s2]. These states are thus called after all possible non-
empty subsets of S. We maintain the input vocabulary, and in order to 
establish the new set of transition rules we proceed as follows. Let us 
begin with δʹ([s0], a). In NFA δ(s0, a) = {s0, s1}; in FA let δʹ([s0], a) = [s0, s1].  
Notice that this latter is one state and not two. Further let δʹ([s1], a) = 
[s2] because δ(s1, a) = {s2}, and δʹ([s2], a) = φ because δ(s2, a) = φ. For 
δʹ([s0, s1], a) we proceed as follows. In NFA δ(s0, a) = {s0, s1} and δ(s1, a) = 
{s2}. The union of δ(s0, a) and δ(s1, a) is thus {s0, s1, s2}, and in FA we let 
δ’([s0, s1], a) = [s0, s1, s2]. Again the latter is a single state. Similarly we 
construct S’([s0, s2], a) = [s0, s1], etc. This procedure leads to the estab-
lishment of the following list of transition rules:

	 δʹ([s0], a) = [s0 , s1]	 δʹ([s0, s2], a) = [s0, s1]
	 δʹ([s1], a) = [s2]	 δʹ([s1, s2], a) = [s2]
 	 δʹ([s1], b) = [s1, s2]	 δʹ([s1, s2], b) = [s1, s2]
 	 δʹ([s0, s1], a) = [s0, s1, s2]	 δʹ([s0, s1, s2], a) = [s0, s1, s2]
 	 δʹ([s0, s1], b) = [s1, s2]	 δʹ([s0, s1, s2], b) = [s1, s2]
	 For all other cases δʹ (‒, ‒) = φ.

The set of final states Fʹ in FA is defined as consisting of those states in 
which the label of a final state of NFA occurs. The only final state in NFA 
is s2, and therefore Fʹ = {[s2], [s0, s2], [s1, s2], [s0, s1, s2]}. Finally we take [s0]  
as the initial state in FA, and we affirm that FA is equivalent to NFA.

Figure 4.7.  Deterministic Finite Automaton Equivalent to the  
Nondeterministic Finite Automaton in Figure 4.6

[s0] [s0, s1]

[s2]

[s1, s2]

[s0, s1, s2]

a

a

a

a

b

b
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The transition-diagram for FA is given in Figure 4.7. The final states 
in the diagram are circled twice. The reader should notice that states [s1] 
and [s0, s1] do not appear in the figure; this is because neither of them 
serves as the output of any transition rule. They are superfluous and con-
sequently omitted. The diagram shows that FA accepts precisely the lan-
guage {a*ab*(a ∨b)}.

Proof of theorem 4.1 (résumé)  The proof follows the construction which 
we have just described. The states of FA correspond to the nonempty sub-
sets of S in NFA. The transition rules are constructed as we have shown, 
and the set of final states F ’ in FA consists of those states which have one or 
more elements of F in their labels. By induction on the length of the string 
of input symbols it can be shown that FA is equivalent to NFA.

Because, inversely, deterministic finite automata are special cases of 
nondeterministic finite automata, we can conclude that the class of finite 
automata is equivalent to the class of nondeterministic finite automata; 
they accept the same class of languages.

4.3  Finite automata and regular grammars

In this paragraph we shall give proof of the equivalence of finite automata 
and regular grammars. The languages accepted by finite automata are ex-
actly the same as those generated by regular grammars, and vice versa.

Theorem 4.2  For every finite automaton FA there exists a regular grammar 
G such that T(FA) = L(G).

Proof  Let FA = (S, Ι, δ, s0, F ) be a finite automaton. We must construct a 
regular grammar G = (VN ,VT , P, S) such that 

	 i.  VN = S
	ii.  VT = I
	iii.  S = s0
	iv. � A → aB is in Ρ as δ(Α, a) = Β 

A → a is in Ρ as δ(A, a) = C, where C ∈ F 
(notice that Β and C are used here as labels for states)

We shall now show that G is equivalent to FA. For this, two conditions 
must be fulfilled: (1) If x ∈ T(FA), then x ∈ L(G), and (2) if x ∈ L(G), then 
x ∈ T(FA).
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1.  x ∈ T(FA). If this is so, then by definition S(s0, x) in F. We write x as 
a1a2 … an. We presuppose that λ ∉ T(FA), and that therefore n > 0. In 
that case δ(s0, x) = δ(δ(s0, a1a2 … an–1), an) (cf. paragraph 4.1. (5)), and 
continuing in the same way δ(s0, x) = δ(δ(… (s0, a1), a2), …), an). Because 
δ(s0, x) in F, there is a sequence of states s0, s1, …, sn (si ∈ S; si and sj are not 
necessarily different) such that δ(s0, a1) = s1, δ(s1, a2) = δ(δ(s0, a1), a2) = 
s2, … , δ(sn–1, an) = sn, where sn ∈ F. But then there are also productions  
S = s0 → a1s2, s1 → a2s2, … , sn–1 → an in P, on the basis of the construc-
tion of G. It is then clear that S  *⇒ a1a2 … an = x.
2.  x ∈ L(G). By definition S  *⇒  x. Let x be written as α1α2 … an. Then 
there are productions S = s0 → a1s1, s1 → a2s2, … , sn–2 → an–1sn–1 and  
sn–1 → an in Ρ for certain s1 in VN. But that means that FA contains the fol-
lowing transition rules: δ(s0, a1) = s1, δ(s1, a2) = s2 , … , δ(sn–2, an–1) = sn–1, 
δ(sn–1, an) = sn with sn in F (this follows from the definition of G). It is evi-
dent that with these transition rules FA accepts the string a1a2 … an = x. 

It follows from (1) and (2) that FA and G are equivalent for sen-
tences of length > 0. If FA also accepts λ, the theorem holds only if we 
maintain the convention of paragraph 2.1, i.e. that by definition G also 
generates λ.

Example 4.4  Let us construct a grammar equivalent to the finite automa-
ton FA in Example 4.1. We recall that FA = (S, I, δ, s0, F ), where S = {s0, s1}, 
I = {a, b}, F = {s1}, and with the following transition rules: δ(s0, a) = s1 and 
δ(s1, b) = s0 (for all other pairs δ (‒, ‒) = φ).

The construction as shown in the proof is as follows: G = (VN, VT,  P, S), 
with VN = {s0 = S, s1}, VT = {a, b}, and Ρ = {s0 → as1,  s0 → a,  s1 → bs0}. Notice 
that on the basis of (iv), the transition rule δ(s0, a) = si leads to two pro-
ductions in G: s0 → as1 and s0 → a.

Theorem 4.3  For every regular grammar G there exists a finite automaton 
FA such that Τ(FA) = L(G).

Proof  We shall prove that a nondeterrninistic finite automaton NFA can 
be found so that T(NFA) = L(G). The theorem is then valid because for 
every nondeterrninistic finite automaton NFA there exists an equivalent 
finite automaton FA (Theorem 4.1).
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Let G = (Vn , Vt , P, S) be a regular grammar. We construct NFA =  
(S, Ι, δ, s0, F ) as follows:

	 i.  S = VN ∪ Χ
	ii.  I = VT
	iii. � δ(Α, a) contains X (inter alia) if A → a in Ρ 

δ(Α, a) contains every Β for which A → aB in Ρ 
δ(Χ, a) = φ for every a in VT

	iv.  s0 = S
	 v.  F = {X}, if λ ∉ L(G); F = {X, S}, if λ ∈ L(G)

Once again the proof of equivalence takes place in two steps. First it 
must be shown that if x ∈ L(G), where x = a1a2 … an, then x ∈ T(NFA). 
Afterward the inverse must be shown.

1.  x ∈ L(G). If x ∈ L(G) and |x| > 0, then there is a derivation S ⇒ a1A1 
⇒ … ⇒ a1a2 … an–1An–1 ⇒ a1a2 … an for some sequence A1, … , An–1 of 
variables in VN . Ρ thus contains the productions S → a1Α1,  Α1 → a2A2, … , 
An–1 → an. It appears, then, from the construction of NFA that Α1 ∈ δ(S, a1), 
Α2 ∈ δ(A1, a2), … , X ∈ δ(Αn–1, an). But if the transition rules are valid, x = 
a1a2 … an is in T(NFA). If λ ∈ L(G), then S ∈ F (see (v)), and because δ (S, 
λ) contains S by definition, λ ∈ T(NFA).
2.  x ∈ T(NFA). If |x| > 0 and x is accepted by NFA, then there are states 
S, A1, …, An–1, X, where A1 ∈ δ(S, a1), Α2 ∈ δ(Α1, α2), … , Χ ∈ δ(An–1, an). 
But from the construction of NFA it appears that Ρ must also have pro-
ductions S → a1A1, … , An–1 → an. It follows from this that S   *⇒ a1a2 …  
an = x. If λ ∈ T(NFA), then S ∈ F. But S ∈ F only if λ ∈ L(G) (see (v)).

The equivalence of G and NFA follows from arguments (1) and (2). It 
follows from Theorem 4.1 that there must also exist an FA equivalent to G.

Example 4.5  Let us construct a nondeterministic finite automaton NFA 
which accepts the language generated by regular grammar G in Example 2.1. 
We recall that G = (VN, VT, P, S) where VN = {S, B}, VT = {a, b}, and Ρ = {S →  
aB, Β → bS, Β → b}, and that L(G) = {(ab)*}. We shall now construct NFA =  
(S, Ι, δ, s0, F ) according to the procedure given in the proof. Thus S = {S, 
B, X}, I = {a, b},  δ contains the following transition rules: δ(S, a) = {Β},  
δ(Β, b) = {X, S},  δ(‒, ‒) = φ for all other pairs; finally, F = {X, S}. The transition-
diagram for automaton NFA is given in Figure 4.8.
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Together Theorems 4.2 and 4.3 show the equivalence of finite automata 
and regular grammars. We can employ this equivalence in order to prove cer-
tain theorems concerning regular grammars by means of theorems concern-
ing finite automata, and vice-versa. Theorem 2.5 is a good example of this.

Theorem 2.5  The product of two regular languages is regular.

Proof  Let L1 and L2 be regular languages; let L3 consist of the strings xy 
where x ∈ L1 and y ∈ L2. There is a regular grammar for L1, and therefore 
we know, on the basis of the equivalency theorem, that there is also a finite 
automaton which accepts L1. We shall call this finite automaton FA1 = (S, 
Ι1, δ1, s0, F1). Likewise there is a finite automaton FA2 = (T, I2, δ2,  t0,  F2) 
which precisely accepts L2. F1 and F2 can always be chosen such that they 
have no states in common. We must now construct a nondeterministic 
finite automaton NFA = (U, I3,  δ3,  u0,  F3), which, in a way, connects FA1 
and FA2 ‘in series’. We define NFA as follows:

	 i.  U = S ∪ Τ.
	ii.  I3 = I1 ∪ I2.
	iii. � δ3(u, a) = {δ1(s, a)} for every s in S – F1. In this way NFA can begin with 

a given input as if it were FA1. 
δ3(u, a) = {δ1(s, a), δ2(t0, a)} for every s in F1. If NFA arrives at a final 
state of FA1, it can freely (nondeterministically) either continue to an-
other state of FA1 (if this is also possible for FA1) or pass on to FA2. 
This latter is possible only when NFA has already reached a final state 
of F1 (the transition rule is applicable only if s is in F1) and when a can 
be the first symbol of a sentence of L2 (notice that the initial state of 
FA2 is t0). 
d3(u, a) = {δ2(t, a)} for every t in T. This guarantees that once NFA has 
‘transferred’ to FA2 it will continue to operate as FA2.

Figure 4.8.  Transition-Diagram for Nondeterministic Finite Automaton 
NFA which accepts language {(ab)*}

BS Χ

a

b

b
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	iv.  u0 = s0.
	 v. � F3 = F2 if λ ∉ L2. This guarantees that NFA accepts the input when the 

end of a sentence of L2 is reached. F3 = F1 ∪ F2 if λ ∈ L2. If FA2 accepts 
the null-string, it accepts all sentences x λ = x, i.e. the sentences of L1. 
The automaton must be able to accept in each of the final states of F1.

The construction of NFA guarantees that it will accept precisely the 
sentences xy ∈ L3. But, on the basis of Theorem 4.1, there is also a deter-
ministic finite automaton FA which does the same.

It follows from Theorem 4.2 that there is a regular grammar for L3, 
and that L3 is consequently regular.

The reader may now want to prove the lemma which was used at the 
proof of Theorem 2.8, with the help of finite automata.1

4.4  Probabilistic  finite  automata

Probabilistic automata will only be discussed in the present paragraph 
on finite automata. For recent developments in non-finite probabilistic 
automata, I refer the reader to the appendix.

The probabilistic finite automaton (PFA) is a generalization of the nonde-
terministic finite automaton; a probability is assigned to every possible transi-
tion. Before presenting a formal definition of probabilistic finite automata, we 
shall discuss the manner, step by step, in which the generalization is made.

If it is true for a nondeterministic finite automaton NFA that δ{s, a} =  
{s1, s2, … , sn}, we can define pi(s, a) for a probabilistic finite automaton 
PFA as the probability that the automaton will pass from state s to state si, 
given the input symbol a. We shall suppose that every probabilistic finite 
automaton is normalized, i.e.

( )
1

, 1
n

i
p s ai

=
=∑

1.  To do so one should construct a nondeterministic finite automaton NFA which 
normally operates as FA1 (which accepts L1) except with transitions δ(s, a) where 
a is the critical terminal element. In such cases FA2 (which accepts L2) should be 
made to ‘take over’ until a state in F2 is reached. This should then act as δ(s, a), in 
order for NFA to be able to go on functioning as FA1.
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In other words, the total probability of a state transition under the influence 
of a given input is 1. We shall return to the merits of this convention at the end 
of this paragraph. There is no reason why the probability of transition to a par-
ticular state could not be zero. In general we shall suppose that 1 ≥ pi(s, a) ≥ 0.  
Because transitions which cannot take place in a nondeterministic finite 
automaton can in a probabilistic finite automaton be considered as transi-
tions where p = 0, we may give a more general definition of the transition 
function δ in a probabilistic finite automaton. If such an automaton PFA 
has n states, then δ(s, a) can unambiguously be regarded as a row (vector)  
(p1, p2, … , pn), where pi = pi(s, a). For impossible transitions pi = 0; for all oth-
er transitions pi is the transition probability. Thus for every pair (s, a) where 
s ∈ S and a ∈ Ι, δ is a vector of n numbers. If, for an element a, we wish to 
represent all the vectors, we can represent them in matrix form as follows:

p11 p12 ...

...
...

...
...

...
...

...
...

...

...

...

...

...

...

...

...

...

p22p21

δ(s1, a)
δ(s2, a)

δ(si, a)

δ(sn, a)

sns2s1 sj

pi2pi1

pn2pn1

p1j p1n
p2np2j

pij

pnj pnn

pin

For the sake of brevity we shall call this entire matrix M(a), the transition-
matrix for element a. Matrix-element pij in Μ(a) means that if the au-
tomaton is in state si and reads the input symbol a, there is a probability 
of pij that a transition to state sj will take place. Normalization guarantees 
that the sum of the elements in a row in this matrix is equal to 1. The ma-
trix is square (n × n), and is thus a stochastic matrix.

To include all the transition rules in PFA we would have to compose 
similar matrices for each of the input elements. If I = {a1, a2, …, am}, we 
define Μ as the set of transition-matrices for the elements of I. Thus Μ = 
{M(a1), M(a2), …, M(am)}.

Finally, we wish to open the possibility that the initial state of PFA is 
also random. For each of the n states we must define an initial probability 
p(s), which represents the probability that at the first input the automaton 
is in state s. Since we wish PFA with certainty to be initially in one of the n

states, we let ( )
1

1
n

i
i

p s
=

=∑ .
 
One can now no longer speak of an initial state,
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but rather of an initial distribution; this simply means the string of 
initial probabilities (p(s1), p(s2), …, p(sn)). This vector is denoted by s0.

At this point we can define a probabilistic finite automaton.
A probabilistic finite automaton is a system PFA = (S, I, Μ, s0, F ), 

in which S is a finite set of states, I is a finite input vocabulary, Μ is the set of 
transition-matrices, s0 is the initial distribution and F ⊂ S is the set of final 
states.

Example 4.6  Take the probabilistic finite automaton PFA = ({s1,  s2},

{a,  b}, {M(a), M(b)}, (1, 0), {s2}) with 
0 1

( ) 0 1M a
 

=  
 

 and 
2 1
3 3
1 2
3 3

( )M b  =   
.

PFA has two states and the probability of starting in s1 is 1 (because s0 = (1, 0)). 
From transition-matrix M(a) we learn that when the automaton is in state s1 
and reads the input symbol a, it has a probability of 1 to change to state s2; if in 
state s2 input of a leads with probability 1 to transition to s2, i.e. PFA remains 
in s2. Transition-matrix M(b) shows what happens when the input is the 
symbol b. Once again all this is better shown by a transition-diagram. In  
a transition-diagram for a probabilistic finite automaton, the various  
arrows are labeled not only with the respective input elements, but also with 
the corresponding transition probabilities. Figure 4.9. gives the diagram 
for the automaton in this example. Arrows for transitions the probabilities 
of which are equal to 0 have been omitted.

Figure 4.9.  Transition-Diagram for a Probabilistic Finite Automaton  
(Example 4.6)

b

b

a b

a

b

(1)

(1)

s1 s2
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The diagram shows that starting in state s1 the automaton has a prob-
ability of 1 to pass to final state s2 when the input symbol a is read; this 
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probability becomes 1
3

 when the input symbol is b. What will be the prob-
ability of the transition if the input is the string ab?

The element a brings the automaton, with a probability of 1, to 
state s2;  the element b will maintain the automaton in state s2 with 
a probability of 2

3
. If the transitions are independent of each oth-

er (which is our presupposition here), the string ab brings the au-
tomaton to state s2 with a probability of 1. 2

3
= 2

3
. What then will be 

the probability that the string ab will bring the automaton back to 
state s1? Obviously this will be 1 . 1

3
= 1

3
. Likewise the string ab will 

take the automaton from state s2 back to state s2 with the probability  
1 . 2

3 = 2
3

, and from state s1 back to state s1 with probability 1 . 1
3

= 1
3

. 
In this way we have in fact found a transition-matrix for the string ab:

	

1 2
3 3
1 2
3 3

.( )M ab  =    �

It is also quite easy to see that M(ab) is the matrix product of M(a) 
and M(b):

	
. =0 1

0 1M(ab) = .
1
3

2
3

2
3

1
3

2
3

1
3

1
3

1
3 �

In general we can define the transition-matrix M(x) for a string  
x = a1a2 … an as the product M(x) = M(a1) . M(a2) . … . M(an). In such a 
matrix one can read, for all pairs si, sj, the probability that the entry of an 
input x will cause the probabilistic finite automaton to change from state  
si to state sj.

For the interested reader we can likewise easily indicate, in matrix 
notation, the probability that a final state be reached at all with a given 
string, given vector s0, the string of initial probabilities. For this purpose, 
we define a final vector sf as a string of n numbers, analogous to s0, cor-
responding to the n states in S and in the same order. For every state, the 
corresponding number is 1 if the state is a final state, and 0 when this is 
not the case. Thus sf = (q1, q2, … , qn) where qi = 1 if si ∈ F, and qi = 0 if Si 
∉ F. The final vector in Example 4.6 is thus (0, 1), for only s2 is a final state. 
The probability that x will bring the automaton to a final state is given in 



66	 An Introduction to the Theory of Formal Languages and Automata

matrix notation as s0M(x) sfʹ .2 Thus the probability that the string ab will 
bring the automaton of Example 4.6 to a final state is equal to

	
. 2

3(1,0) . == . .      
      

,1
3

2
3

0
1

1
3

2
3

2
3

1
3

0
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With these means at our disposition, we are able to define the language 
which is accepted by a probabilistic finite automaton. We should like to 
define that language as the set of strings by which the automaton reaches a 
final state with a certain minimum probability. What that minimum prob-
ability precisely is remains quite arbitrary. We can call it the cut-point 
probability, η.

The η-stochastic language T(PFA, η) is the set of strings which bring 
the probabilistic finite automaton PFA to a final state with a probability > η. 
Formally stated, T(PFA, η) = {x|s0M(x)sʹf > η}.

If η = 0, the situation is simple; every sentence by which a final state 
can be reached belongs to T. But stricter conditions can be posed. The op-
posite extreme is η = 1. However, the probability that a sentence will bring 
the automaton to a final state is never greater than 1, and thus T(PFA, 1) 
is empty for every PFA.

Theorem 4.4  A regular language is η-stochastic for 0 ≤ η < 1.

Proof  Let L be a regular language, and FA, a finite automaton, where 
T(FA) = L. We begin to construct probabilistic finite automaton PFA by 
borrowing I and F from FA. The set of states Sʹ in PFA will be S ∪ sφ, where 
sφ is a ‘dummy’ state. A transition-matrix is composed for every a ∈ I in 
PFA as follows: pij = 1 if δ(si , a) = sj; pij = 0 if δ(si , a) ≠ sj , for every pair  
si , sj in S. We let piφ = 1 if δ(si , a) = φ, and piφ = 0 in all other cases, for si ∈ S. 
Finally, we let Ρφφ = 1, and pφi = 0 for every si ∈ S. In this way every matrix 
M(a) is stochastic, and for every sentence x in T(FA) there is a probability 
of 1 that x will be accepted by PFA, while a final state will be reached with 
no other string. Because for every sentence s in L , the probability p(s) = 1 
in T(PFA), it is true for every 0 ≤ η < 1 that T(PFA, η) = L.

2.  s’f is the transposition of the row-vector, i.e. the row-vector is set up vertically 
like a column, with the leftmost element at the top. Notice that the definition of a 
transition-matrix for x supposes the stochastic independence of the transitions.



	 Chapter 4.  Finite automata	 67

The inverse of Theorem 4.4 does not hold, but the following theorem 
is valid.

Theorem 4.5  Every 0-stochastic language is regular.

Proof  Let PFA = (S, I, M, s0, F ) be the probabilistic finite automaton which 
accepts the 0-stochastic language T. We must first construct a nondeter-
ministic finite automaton NFA(i ) for a state si with initial probability in 
PFA: p(si) > 0. We make NFA(i) such that it accepts every sentence which 
brings PFA from state si to a final state, with probability > 0. For this purpose 
we let the initial state of NFA(i) be si ,  F be the set of final states in NFA(i), 
and sl in δ(sjak) if the element pjl is greater than 0 in the transition-matrix 
M(ak). The language Ti accepted by NFA(i) is regular (Theorems 4.1 and 4.2).
If we construct a NFA(i) for every si in S for which p(si) > 0, it follows that 
every sentence which is accepted by PFA, with probability greater than 0, 
will also be accepted by at least one of the NFA’s, and that every sentence 
accepted by one of the NFA’s will also be accepted by PFA with probability 
greater than 0. We conclude that the union of all the languages Ti is also 
regular (Theorem 2.5).

We close this paragraph with a remark on normalization as used with 

probabilistic finite automata. The basis for normalization
 

( )
1

, 1
i

n

ip s a
=

=∑
is the input symbol: each input symbol leads to a transition with a prob-
ability of 1. The consequence of this normalization is that it is not gener-
ally valid that the sentence probabilities in a stochastic language add up 
to 1. In the degenerate case, for example, where the matrix contains only 
1’s and 0’s, every sentence of the language has a probability of 1, while the 
language can indeed contain more than one sentence. There is therefore 
no simple relationship between probabilistic finite automata and regular 
probabilistic grammars which are normalized on the basis of a nonter-
minal element. As we have seen, in that case a normalized probabilistic 
language is generated. Probabilistic finite automata can, of course, also be 
normalized on another basis, namely the state. In that case the total prob-
ability of transition from a given state, taken over all inputs, is equal to 1,

thus ( ), 1i j
i j

p s a =∑∑ . It then becomes possible to show equivalences

to probabilistic grammars.





Chapter 5

Push-down automata

5.1  Definitions and concepts

5.2 � Nondeterministic push-down automata 

and context-free languages

In the preceding chapter we showed that regular languages can be ac-
cepted by finite automata. For languages of a higher order we shall have 
to refer to systems which are, in some way, infinite in size. To clarify the 
notion, let us consider a digital computer.

A digital computer is a finite automaton because it has a finite num-
ber of parts, say n, each of which can be in a finite number of states, say k 
at most. The machine will therefore have no more than kn states, a finite 
number. Consequently a computer can accept, in principle, only regular 
languages; it cannot accept context-free or higher order languages.

One may wonder if there is any practical interest in studying autom-
ata which can accept higher order languages, since, in principle, they can 
never be built. However, the theoretical finiteness of such automata is of 
little consequence in practice; kn is an astronomically high number for 
modern computers. For practical purposes, then, a computer is of unlim-
ited size. It can, within limits which in practice are never reached, accept 
higher order languages. Most computer languages are in fact context-free 
or higher order languages.

In this chapter we will discuss one simple infinite automaton, the 
push-down automaton. This automaton is infinite because its store, 
the push-down store, is of unlimited capacity. In all other respects it is 
a finite automaton. We shall show that pushdown automata are equivalent 
to context-free grammars.
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5.1  Definitions and concepts

A push-down automaton is a finite automaton to which an unlimited 
push-down store has been added. A push-down store is somewhat com-
parable to a narrow knapsack. Imagine that a hiker has placed his matches 
at the very bottom of his knapsack, then put in his jacket and other ar-
ticles of clothing, and finally a can of soup, a can opener, and cooking 
utensils. When the hiker becomes hungry and reaches a brook, he may 
wish to eat the soup. He removes the cooking utensils, can opener, and the 
can of soup; this poses no problems, as the last articles placed in the sack 
are the first to come out. Also, he can add water from the brook. But if he 
wishes to light a fire to warm the soup, he must first remove the clothing 
and jacket before he is able to reach the matches: the first things placed in 
the sack are the last to come out.

We can make an analogy between the hiker and a push-down au-
tomaton: the knapsack can be compared to the push-down store (with 
the matches as the start element), the water and firewood to inputs, and 
warmth and satisfaction for hunger to state transitions.

The formal definition of a push-down automaton is as follows. A 
push-down automaton PDA is a system (S, Ι, Γ, δ, s0, γ0) where:

1.  S is a finite nonempty set of states, with s0 ∈ S as initial state.
2.  I is a finite (input) vocabulary.
3.  Γ is a finite push-down vocabulary, with γ0 ∈ Γ as pushdown 
start symbol, the only element in the store when input begins. Other 
push-down symbols are y1, y2, … The set of finite strings of push-down 
symbols is Γ*. Elements of Γ* are represented by lower case letters from 
the end of the Greek alphabet, such as χ, ψ, ω. The topmost symbol 
which at a given moment is found in the push-down store is called the 
top symbol.
4.  δ is the set of transition rules. Each rule indicates what will 
occur when, at a given state, with a given top symbol, a given input 
symbol (possibly also λ) is introduced, i.e. it shows what the follow-
ing state will be and by what the top symbol will be replaced. The top 
symbol may be replaced by (a) an element of Γ; (b)  itself ‒ a special 
case of (a), the content of the store remains unchanged; (c) an element of 
Γ*, thus, a string of symbols replaces the top symbol; or (d) the null-string 
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λ ‒ a special case of (c), this amounts to simply removing the top symbol. 
The notation for these cases is as follows:

  a. � δ(si , a,γk) = (sj ,γ1), where si and sj are states in S, a is an input sym-
bol in I, and γk and γ1 are push-down symbols in Γ.

  b.  δ(si , a, γk) = (sj , γk)
  c. � δ(si , a, γk) = (sj , χ), where χ is a string in Γ*. If χ = ψγk for some ψ 

in Γ*, and thus δ(si , a, γk) = (si , ψγk), then ψ is added to the store. 
Notice that the last added element is noted at the left.

  d. � δ (si , a, γk) = (sj , λ). Because λ is the null-string, this simply means 
that the top symbol γk is removed.

It can also occur that δ (si, a, γk) = φ; the automaton is then said to block.
The function δ maps the Cartesian product S × (I ∪ λ) × Γ into S × 

Γ* ∪ φ.
A configuration in a push-down automaton is a combination of 

state and store content. A transition rule in δ can bring the automaton 
from one configuration to another. If there is a rule δ(si , a, γk) = (si , χ), 
then the introduction of the input element a can change the configuration 
from (si , γkω) to (sj , χω). The notation for this is:

	 a: (si , γkω) ˇ (sj , χω).

This change is called a transition in the automaton. Unless otherwise stat-
ed, we shall suppose that δ(s, λ, γ) = (s, γ) for every s in S and for every γ in Γ; 
in other words, the input of λ changes neither state nor store content. Thus:

	 λ: (s, ω) ˇ (s, ω) for every s ∈ S and every ω ∈ Γ*.

In specially mentioned cases where it is permitted that δ(s, λ, γ) ≠ (s, γ) 
(i.e. where the automaton can make a real change of state without in-
put), we must allow that δ(s, a, γ) = φ for every a in I, for otherwise the 
automaton could make various different transitions when the input a is 
introduced. The initial configuration of a push-down automaton is 
by definition (s0, γ0).

We write x = a1a2 … an: (s, ω) ⊢* (sʹ, ωʹ ), if δ allows transitions ai:  
(si , ωi) ˇ (si+1, ωi+1), where i = 1, 2, … , n, such that s1 = s,  ω1 = ω,  sn+1 = sʹ, 
and ωn+1 = ω'. String x makes the automaton change from configuration 
(s, ω) to configuration (sʹ, ωʹ ).
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A string x is accepted by a PDA if at the end of the processing of 
x the push-down store is empty. Formally, string x is accepted by PDA 
if x: (s0, γ0) ⊢*  (s, λ). Note that this definition is not based on the attain-
ment of a final state, as was the case with finite automata. There exists a 
description of push-down automata which does refer to the attainment 
of a final state; it is completely equivalent to the description used here, 
and we shall not bring it into the discussion.

The language T(PDA) accepted by a push-down automaton is the 
set of strings which are accepted by that automaton, T(PDA) = {x|x:  
(s0, γ0) ⊢*  (s, λ)}.

Figure 5.1 shows how a push-down automaton accepts a string.

Example 5.1  In order to demonstrate the operation of the pushdown 
automaton, we take a PDA which only uses its store, and never changes 
states. The automaton accepts strings of a’s, b’s, and c’s, with as many a’s as 
b’s, and one c at the end of the string: e.g. c, abc, aabbc, baabc, etc.

PDA = (S, Ι, Γ, δ, s0, γ0), with S = {s0}, I = {a, b, c}, Γ = {γ0, γa, γb}, and 
where δ consists of the following transition rules:

1.  δ(s0, α, γ0) = (s0, γa γ0)	 5.  δ(s0, b, γb) = (s0, γb γb)
2.  δ(s0, a, γa) = (s0, γα γα)	 6.  δ(s0, b, γa) = (s0, λ)
3.  δ(s0, a, γb) = (s0, λ)	 7.  δ(s0, c, γ0) = (s0, λ)
4.  δ(s0, b, γ0) = (s0, γb γ0)	 For all other (s, c, γ), δ(s, c, γ) = φ.
By convention δ (s, λ, γ) = (s, γ) for all s, γ.

We shall now show how the automaton accepts the string aabbbbaac. 
The following list gives the successive transitions and the rules applied.

a:  (s0,γ0) ˇ (s0,γaγ0)	 (rule 1)
a:  (s0,γa γ0) ˇ (s0,γaγaγ0)	 (rule 2)
b:  (s0,γaγaγ0) ˇ (s0,γaγ0)	 (rule 6)
b:  (s0,γaγ0) ˇ (s0,γ0)	 (rule 6)
b:  (s0,γ0) ˇ (s0,γbγ0)	 (rule 4)
b:  (s0,γbγ0) ˇ (s0,γbγbγ0)	 (rule 5)
a:  (s0,γbγbγ0) ˇ (s0,γbγ0)	 (rule 3)
a:  (s0,γbγ0) ˇ (s0,γ0)	 (rule 3)
c:  (s0,γ0) ˇ (s0, λ)	 (rule 7)

Thus aabbbbaac: (s0, γ0) ⊢*  (s0, λ).
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Example 5.2  Let PDA = (S, Ι, Γ, δ, s0, γ0) be a push-down automaton where 
S = {s0, s1}, I = {a, b, c}, Γ = {γ0, γa, γb}, with the following transition rules:

1.  δ(s0, a, γ0) = (s0, γa γ0)	 7.  δ(s0, c, γ0) = (s0, λ)
2.  δ(s0, a, γa) = (s0, γa γa)	 8.  δ(s0, c, γa) = (s1, γa)

Figure 5.1.  A Push-Down Automaton in Operation. a. Situation at start.  
b. Automaton while processing string x. c. Automaton after accepting string x
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3.  δ(s0, a, γb) = (s0, γaγb)	   9.  δ(s0, c, γb) = (s1, γb)
4.  δ(s0, b, γ0) = (s0, γbγ0)	 10.  δ(s1, a, γa) = (s1, λ)
5.  δ(s0, b, γb) = (s0, γbγb)	 11.  δ(s1,  b, γb) = (s1, λ)
6.  δ(s0, b, γa) = (s0, γbγa)	 12.  δ(s1, λ, γ0) = (s1, λ)
δ(s, λ, γ) = (s, γ) for everγ other s, γ and in all other cases δ(s, ‒, γ) = φ.

This push-down automaton accepts all symmetric sentences, where c 
may occur only in the middle of the sentence. If w is a string of a’s and 
b’s, and wR is the ‘mirror image’ of w, then the language accepted by PDA 
is {wcwR}. In essence, the PDA places a γa into the store for every incom-
ing a, and a γb for every incoming b until a c is introduced. From that 
point the state changes from s0 to s1, and the process is reversed: for every 
incoming a it removes the top symbol if it is γa, and for every incoming b 
it removes the top symbol if it is γb. This continues until γ0 is the top sym-
bol, and by rule 12 the automaton removes γ0 without further input.

The sequence of transitions for string aabbcbbaa is as follows:

	 (s0, γ0) ˇ (s0, γαγ0) ˇ (s0, γbγαγ0) ˇ (s0, γbγbγαγ0) ˇ (s1, γbγbγαγ0) ˇ
	 (s1, γbγαγ0) ˇ (s1, γαγ0) ˇ (s1, γ0) ˇ (s1, λ).

It is obvious that push-down automata can do more than finite automata. 
The languages which are accepted by the automata in the last two examples 
are both context-free languages, and there is no finite automaton which can 
accept them. But push-down automata cannot accept all context-free lan-
guages; the languages which they accept are called deterministic lan-
guages. A class of grammars is known which generates precisely these 
deterministic languages, namely the class of LR(k)-grammars. These are 
equivalent to push-down automata. We shall not discuss LR(k)-grammars 
here. The interested reader may consult Knuth (1965).

However, there is equivalence between context-free languages and 
nondeterministic push-down automata.

5.2 � Nondeterministic push-down automata  
and context-free languages

A nondeterministic push-down automaton NPDA differs from a PDA 
only in that each of its transition rules is of the following form:

	 δ(s, a, γ) = {(s1, γ1), (s2, γ2), … , (sn, γn)}.
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This means that in each configuration the automaton is not limited to a 
single possible transition, but can make a ‘choice’ among the elements of 
a set of transitions.1 The construction of a nondeterministic push-down 
automaton is completely analogous to that of a nondeterministic finite 
automaton, and the same is true of the definition of accepting. A NPDA 
accepts a string x, if, when x is introduced as input, there is at least one 
possible sequence of transitions for which x: (s0, r0) ⊢*  (s, λ).

Example 5.3  Let us construct a simple NPDA which will accept the lan-
guage {anbn | n ≥ 1}. Let NPDA = ({s0}, {a, b}, {γ0, γα, γb}, δ, s0, γ0), with the 
following transition rules in δ:

1.  δ(s0, λ, γ0) = {(s0, γaγb), (s0, γaγ0γb)}
2.  δ(s0, a, γa) = {(s0, λ)}
3.  δ(s0, b, γb) = {(s0, λ)}

By convention, δ(s, λ, γ) = (s, γ) for every s and γ, and δ(s, ‒, γ) = φ for 
all other δ.

Only rule 1 is nondeterministic. To show how NPDA operates, we 
give the successive transitions in the accepting of the string aaabbb:

  λ:  (s0,γ0) ˇ (s0,γaγ0γb)	 (rule 1)
  a:  (s0,γaγ0γb) ˇ (s0,γ0γb)	 (rule 2)
  λ:  (s0,γ0γb) ˇ (s0, γaγ0γbγb)	 (rule 1)
  a:  (s0,γaγ0γbγb) ˇ (s0, γ0γbγb)	 (rule 2)
  λ:  (s0,γ0γbγb) ˇ (s0, γaγbγbγb)	 (rule 1)
  a:  (s0,γaγbγbγb) ˇ (s0, γbγbγb)	 (rule 2)
  b:  (s0,γbγbγb) ˇ (s0, γbγb)	 (rule 3)
  b:  (s0,γbγb) ˇ (s0, γb)	 (rule 3)
  b:  (s0,γb) ˇ (s0,  λ)	 (rule 3)

Thus aaabbb = λaλaλabbb: (s0, γ0) ⊢*  (s0, λ).
This example also shows how a push-down automaton can make 

spontaneous transitions (when the input is λ), and how the initial symbol 
γ0 can be removed from the store before the store is empty.

1.  At this point we drop the condition that if δ(s, λ, γ) ≠ φ, then δ(s, a, γ) = φ for 
every a in I. This condition was necessary in order to exclude the possibility of a 
nondeterministic transition when an input a is introduced into the automaton.
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Theorems 5.1 and 5.2 together show the equivalence of non-
deterministic push-down automata and context-free grammars.

Theorem 5.1  For every context-free language L, there is a non- 
deterministic push-down automaton which accepts L and only L.

Proof  In fact we shall prove a somewhat stronger theorem, namely, 
that there is a nondeterministic push-down automaton with only one 
state which can accept the context-free language L. Let L be a context-
free language, and G = (VN , VT , P, S), a grammar in Greibach normal-
form which generates language L (according to Theorem 2.7, such a 
grammar exists). The productions in G are thus exclusively of the form 
A → aα, where α is a string of 0 or more variables. We construct a 
nondeterministic push-down automaton NPDA = (S, J, Γ, δ, s0, γ0) as 
follows: S = {s0}, I = VT (with elements ai), Γ = VN ∪VT = V (with ele-
ments ai in VT and elements Ai, S in VN), γ0 = S. The input vocabu-
lary of NPDA is the terminal vocabulary of G; the pushdown symbols  
of NPDA are the elements of V in G, and the push-down start symbol  
of NPDA is the start symbol S of G. Let NPDA have the following 
transition rules:

1. � δ(s0, λ, A) contains (s0, aα) for every production A Æ aα in Ρ (where α 
can have length 0).

2.  δ(s0, a, a) = {(s0, λ)} for every a in VT .

The push-down automaton will in general be nondeterministic, for if A 
can be rewritten in more than one way in G (e.g. A Æ α and A Æ β), then 
δ(s0, λ, A) likewise has more than one possible transition ((s0, α) and (s0, β) 
in the present example).

We must show that T(NPDA) = L(G). We shall first show that if x ∈ 
L(G), then x ∈ L(NPDA); afterwards we shall show the inverse.
(1) If x = a1a2 … an in L(G), then S *⇒ x with the following leftmost 
derivation: S ⇒ a1α1 ⇒ a1a2α2 ⇒ … ⇒ a1a2 … an–1An–1 ⇒ a1a2 … an. 
This derivation is performed by rewriting the leftmost variable of αi 
at each step. If we wish explicitly to show this variable in the deriva-
tion, we can write S ⇒ a1Α1β1 ⇒ a1a2Α2β2 ⇒ … ⇒ a1a2 … an–1An–1 ⇒ 
a1a2 … an, where βi represents the string of remaining variables. The fol-
lowing shows how NPDA precisely simulates this leftmost derivation for  
x = a1a2 … an:
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λ:  (s0, S) ˇ (s0, a1Α1β1)	 (rule 1)
a1:  (s0, a1A1 β1) ˇ (s0, A1β1)	 (rule 2)
λ:  (s0, A1β1) ˇ (s0, a2A2β2)	 (rule 1)
a2:  (s0, a2Α2β2) ˇ (s0, Α2β2)	 (rule 2)

	

an–1:  (s0, an–1An–1) ˇ (s0, An–1)	 (rule 2)
λ:  (s0, An–1) ˇ (s0, an)	 (rule 1)
an:  (s0, an) ˇ (s0, λ)	 (rule 2)

Thus x ∈ T(NPDA).
(2) If x = b1b2 … bm is accepted by NPDA, then bi ∈ I. The transitions 
in NPDA in accepting x take place when the input b is introduced, or 
‘spontaneously’ when the input is λ. We can therefore write x = a1a2 … 
an, where αi = λ, or ai = bj while maintaining the order and in such a way 
that exactly one transition of NPDA goes together with each ai in the  
acceptance of x. Thus we have the following steps for accepting x:

a1:  (s0, S) ˇ (s0, ω1)
a2:  (s0, ω1) ˇ (s0, ω2)
	
an:  (s0, ωn–1) ˇ (s0, λ)

With regard to rule 2, it follows directly that ωn–1 = an, and trivially ωn–1 *⇒ an 
in grammar G. We shall now take as an inductive hypothesis that ωi  *⇒ ai+1, … , 
an in G, and show that ωi–1 ⇒ ai … an. It then follows by induction (going 
back to n – 1, for which the theorem is valid) that ω0 = S  *⇒ a1 … an.

We thus suppose that ωi  *⇒ ai+1 … an. We know that ai: (s0, ωi–1) ˇ (s0, ωi–). 
There are two possibilities: ai ∈ VT or ai = λ. Let us first suppose that ai ∈ 
VT . In that case the transition ai: (s0, ωi–1) ˇ (s0, ωi) can only have taken 
place by means of rule 2, and consequently ωi–1 = αiωi. But because ωi  *⇒ 
ai+1 … an, (induction hypothesis), it is true that ωi–1 = aiωi  *⇒ aiai+1 … an, 
which we had to prove.

Now let us suppose that ai = λ. In this case the transition ai= λ: (s0, ωi–1) ̌   
(s0, ωi) can only have taken place by means of rule 1, and consequently ωi–1 =  
Αω'i–1 and ωi = aαω'i –1. Because A → aα is by definition a production in G, it 
is true that Αω'i–1 ⇒ aαω'i–1, or otherwise formulated ωi–1 ⇒ ωi. According 
to the induction hypothesis, however, ωi = ai+1 … an, and consequently we 
have the following derivation: ωi–1 ⇒ ai +1 … an = λαi +1 … an = aiai+1 … an, 
which is what we had to prove. We conclude, then, that ω0 = S  *⇒ x.
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To illustrate Theorem 5.1., we offer the following example.

Example 5.4   Take context-free language L = {ancbn}, n ≥ 0. A simple 
grammar for L is G = ({S, B}, {a, b, c}, {S Æ aSB, Β Æ b, S Æ c}, S), which 
is in Greibach normal-form. According to the procedure given in the 
proof of Theorem 5.1., we construct the following push-down automaton 
which accepts language L: NPDA = (S, Ι, Γ, δ, s0, γ0), with S = {s0}, I = VT =  
{a, b, c}, Γ = V = {a, b, c, S, B}, γ0 = S, and with the following transition 
rules in δ:

1.  δ(s0, λ, S) = {(s0, aSB), (s0, c)}
2.  δ(s0, λ, Β) = {(s0, b)}
3.  δ(s0, a, a) = {(s0, λ)}
4.  δ(s0, b, b) = {(s0, λ)}
5.  δ(s0, c, c)  = {(s0, λ)}

The following list shows the various steps by which NPDA accepts the 
sentence aacbb:

  λ:  (s0, S) ˇ (s0, aSB)	 (rule 1)
  a:  (s0, aSB) ˇ (s0, SB)	 (rule 3)
  λ:  (s0, SB) ˇ (s0, aSBB)	 (rule 1)
  a:  (s0, aSBB) ˇ (s0, SBB)	 (rule 3)
  λ:  (s0, SBB) ˇ (s0, cBB)	 (rule 1)
  c:  (s0, cBB) ˇ (s0, BB)	 (rule 5)
  λ:  (s0, BB) ˇ (s0, bB)	 (rule 2)
  b:  (s0, bB) ˇ (s0, B)	 (rule 4)
  λ:  (s0, B) ˇ (s0, b)	 (rule 2)
  b:  (s0, b) ˇ (s0, λ)	 (rule 4)

To complete the proof of equivalence between nondeterministic push-down 
automata and context-free grammars, we must prove the following theorem.

Theorem 5.2   For every language Τ which is accepted by a non-
deterministic push-down automaton, there is a context-free grammar 
G which generates precisely T.

Proof  Let Τ be the language accepted by NPDA = (S, Ι, Γ, δ, s0, γ0). We 
must construct a context-free grammar G = (VN , VT , P, S) as follows:
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	 i. � VN consists of compound elements [si, γ, sj], where si and sj are elements 
of S, and γ is an element of Γ. VN also contains S, which is not a com-
pound triad.

	ii.  VT = I.
	iii.  Ρ contains the following productions:
	 1.  S Æ [s0, γ0, s] for every s in S.
	 2. � {[s, γ, sn+1] Æ a[s1, γ1, s2] [s2, γ2, s3] … [sn, γn, sn+1] for any num-

bering of states in S}, for every transition rule in δ of the form: 
δ(s, α, γ) contains (s1, γ1γ2 … γn).

The second rule gives productions in G for every transition rule in NPDA. 
These productions are in Greibach normal-form: to the right of the arrow 
there is a terminal element followed by 0 or more variables. The case of 
0 variables occurs when γ1γ2 … γn = λ, thus in transition rules in which  
δ(s, a, γ) includes (s1,  λ); this gives the following productions in G: [s, γ, si] 
Æ a for all si in S.

Although the first production is not Greibach normal-form, every 
leftmost derivation of G is as follows: S ⇒ α0 ⇒ a1α1 ⇒ a1a2α2 ⇒ … ⇒ 
a1a2 … an, where every α is a string of variables. Each of these variables 
is composed of three elements. If we examine the components γ in these 
variables, we find that they stand for every α1 precisely in the order they 
take on in the pushdown store when a1a2 … ai is introduced into the au-
tomaton. Thus the grammar simulates the push-down automaton. Before 
continuing the proof of the theorem, we present an example in which this 
simulation is clearly to be seen.

Example 5.5  Let NPDA = (S, Ι, Γ, δ, s0, γ0) be a nondeterministic push-
down automaton with S = {s0, s1}, I = {a,b}, Γ = {γ0, γ1}, and the transition 
rules given in Table 5.1. We must construct a grammar G = (VN , VT , P, S)  
according to the above procedure: VN consists of S and all triples [si,  a∨b, sj].  
For convenience we use a separate upper case letter to denote each of 
these compound variables:

�A = [s0, γ0, s0], Β = [s0, γ0, s1], C = [s0, γ1, s0], D = [s0, γ1, s1], E = [s1, γ0, s0],  
F = [s1, γ0, s1], G = [s1, γ1, s0], H = [s1, γ1, s1].

Further VT = {a, b}; the productions are given in Table 5.1. in both com-
plete and abbreviated notation, grouped according to the corresponding 
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transition rules. The abbreviated notation clearly shows that only the num-
bered productions lead to terminal strings.

Table 5.1.  Transition Rules of NPDA and Corresponding Productions of 
Equivalent Grammar G (Example 5.5.)
			   Abbreviated
Transition rules NPDA		  Productions G	 notation

	   1.	 S Æ [s0, γ0, s0]	 S Æ A
	   2.	 S Æ [s0, γ0, s1]	 S Æ Β

(a) δ(s0, a, γ1) = {(s1, γ1)}		  [s0, γ1, s0] Æ a[s1, γ1, s0]	 C Æ aG
	   3.	 [s0, γ1, s1] Æ a[s1, γ1, s1]	 D Æ aH

(b) δ(s0, b, γ0) = {(s0, γ1γ0)}		  [s0, γ1, s1] Æ b[s0, γ0, s0] [s0, γ0, s0]	 A Æ bCA
	   4.	 [s0, γ0, s0] Æ b[s0, γ1, s1] [s1, γ0, s0]	 A Æ bDE
		  [s0, γ0, s1] Æ b[s0, γ1, s0] [s0, γ0, s1]	 B Æ bCB
	   5.	 [s0, γ0, s1] Æ b[s0, γ1, s1] [s1, γ0, s1]	 B Æ bDF

(c) δ(s0, b, γ1) = {(s0, γ1γ1)}		  [s0, γ1, s0] Æ b[s0, γ1, s0] [s0, γ1, s0]	 C Æ bCC
		  [s0, γ1, s0] Æ b[s0, γ1, s1] [s1, γ1, s0]	 C Æ bDG
		  [s0, γ1, s1] Æ b[s0, γ1, s1] [s0, γ1, s1]	 D Æ bCD
	   6.	 [s0, γ1, s1] Æ b[s0, γ1, s1][s1, γ1, s1]	 D Æ bDH

(d) δ(s0, λ, γ0) = {(s0, λ)}	   7.	 [s0, γ0, s0] Æ λ	 A Æ λ

(e) δ(s1, λ, γ0) = {(s0, γ0)}	   8.	 [s1, γ0, s0] Æ a[s0, γ0, s0]	 Ε Æ aA
	   9.	 [s1, γ0, s1] Æ a[s0, γ0, s1]	 F Æ aB

(f) δ(s1, b, γ1) = {(s1, λ)}	 10.	 [s0, γ1, s1] Æ b	 H Æ b
		  [s1, γ1, s0] Æ b	 G Æ b

In order to show how G simulates NPDA, we give first the acceptance 
of the sentence bbabba by NPDA, and then the generation of the same 
sentence by G. Acceptance by NPDA:

	 b:  (s0, γ0) ˇ (s0, γ1γ0)	 (rule b)
	 b:  (s0, γ1γ0) ˇ (s0, γ1γ1γ0)	 (rule c)
	 a:  (s0, γ1γ1γ0) ˇ (s1, γ1γ1γ0)	 (rule a)
	 b:  (s1, γ1γ1γ0) ˇ (s1, γ1γ0)	 (rule f)
	 b:  (s1, γ1γ0) ˇ (s1, γ0)	 (rule f)
	 a:  (s1, γ0) ˇ (s0, γ0)	 (rule e)
	 λ:  (s0, γ0) ˇ (s0, λ)	 (rule d)
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Derivation by G:

	 S ⇒ A	 (production 1)
	 A ⇒ bDE	 (production 4)
	 bDE ⇒ bbDHE	 (production 6)
	 bbDHE ⇒ bbaHHE	 (production 3)
	 bbaHHE ⇒ bbabHE	 (production 10)
	 bbabHE ⇒ bbabbE	 (production 10)
	 bbabbE ⇒ bbabbaA	 (production 8)
	 bbabbaA ⇒ bbabba	 (production 7)

It should be noticed that the last step in this derivation is an abbreviation 
although this is theoretically not permitted with a context-free grammar. 
The abbreviation is a result of production 7 in Table 5.1, but this produc-
tion is actually only a formalization of the convention introduced in para-
graph 2.1., that λ can be added to a context-free language.

We can now continue with the proof of Theorem 5.2. We must show 
that T(NPDA) = L(G). The proof follows two steps: first we must show 
that if x ∈ T, then x is also generated by G; then we must show the inverse 
of this statement.

(1)  If x = a1a2 … am is in T(NPDA), then S  *⇒ x. To prove this we must 
show by induction that for every n the following is true: if x: (si, γ) ⊢* (s, λ)  
in n transitions, then [si, γ, sj]  *⇒ x by the productions of G. We first 
prove the theorem for n = 1, then show that it is also valid for n – 1 or 
fewer steps, and consequently that it holds for n steps; thence follows 
general validity. From that point it is not difficult to show that if x is 
accepted by NPDA, then it is also generated by G.

If n = 1, then either x = a (where a ∈ I), or x = λ. In both cases x: (si, γ) ̌   
(sj , λ), and therefore (si, x, γ) must include (sj , λ), so that G (according to 
production 2) includes the production [si, γ, sj] Æ x. It follows directly 
that [si, γ, sj] ⇒ x is a derivation of G.

Let us now suppose that the theorem holds for fewer than n transi-
tion steps. Let us examine x = a1a2 … am (m ≥ 0), for which x: (si, γ) ⊢*  
(sj, λ) in precisely n transitions. The first step in this process is as follows: 
a: (si, γ) ˇ (s1, γ1γ2 … γk). The element a here is either λ, or the first element 
a1 of x. After the first step, the push-down store thus contains γ1γ2 … γk, 
and n – 1 transitions remain to be made before this string is completely  
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removed from the store. We know that this does finally occur, and that the 
respective γi’s are successively removed. This, however, need not proceed 
directly, and might, on the contrary, follow various detours (γi might, for 
example, be replaced by a whole string of new push-down symbols, which 
will be removed when later elements of x are introduced into the input). 
Nevertheless it must remain possible to articulate the string x = aia2 … am 
in such a way that it can be written as aw1w2 … wk where a = λ or a = a1 
(dependent on the nature of the first step), and where every wi leads to 
the removal of γi, when the operation on the step began in the proper 
state si. But if γi can be removed from the store with wi as input, then it 
also holds that if γi should be the only element in the push-down store 
while the automaton is in state si , then wi: (si, γi) ⊢*  (si+1, λ), where si+1 
is precisely the state beginning with which wi+1 would empty the store 
if only γi+1 were in it. For every w this process of emptying takes fewer 
than n steps, and there are productions in G such that [si , γi , si+l]  *⇒ wi 
(induction hypothesis). It holds also that the string of variables [s1, γ1, s2] 
[s2, γ2, s3] … [sk, γ, sk+1] can be rewritten by means of the productions in 
G as the terminal string w1w2 … wk. From a: (si, γ) ˇ(si, γ1γ2 … γk), how-
ever, we know that (s1, γ1γ2 … γk) is an element of δ(si , α, γ), and there-
fore G (according to production 2) includes the production [si, γ, sk+1] Æ  
a[s1, γ1, s2] [s2, γ2, s3] … [sk , γk , sk+1]. It therefore holds that [si , γ, sk+1]  *⇒ aw1w2 
… wk = x, from which we see that the theorem also holds for n transitions. 
By induction, the theorem is valid in general.

It is true of every x which is accepted by ΝPDA that x: (s0, γ0) ⊢*  
(s, λ), and consequently, by the theorem as proven, [s0, γ0, s] *⇒ x in G. Ac-
cording to production 1, S → [s0, γ0, s] for every s in S; therefore S  *⇒ x.

(2) If S  *⇒ x, then x ∈ T(NPDA). We shall first prove that for every  
n > 0, if [si , γ, sj] *⇒ x in G in n transitions, then x: (si , γ) ⊢* (sj , λ) in NPDA. 
Let n = 1. Then [si , γ, sj] Æ x is a production of G, and consequently, given 
the construction of G, either x ∈ VT or x = λ. Likewise δ(si, x, γ) includes  
(sj , λ), from which follows that the theorem holds for n = 1.

Let the theorem hold for derivations in G with fewer than n steps (in-
duction hypothesis). Let [s, γ, t]  *⇒ x = a1a2 … am be a derivation which 
demands exactly n steps. This is possible, given the form of production 2, if 
a leftmost derivation is as follows: [s, γ, t] ⇒ a[t1] [t2] … [tk]  *⇒ aw1[t2] 
[t3] … [tk]  *⇒ …   *⇒ aw1w2 … wk = a1a2 … am = x. Here [ti] represents 
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the triad [si, γi, si+1], and wi is a string of one or more successive elements 
a from x. Every wi can be derived from [ti] by the productions of G, and 
in general [ti]  *⇒ wi in fewer than n steps. On the basis of the induction 
hypothesis, however, wi: (si, γi)  ⊢* (si+1, λ) for every i = 1, … , k. But then it 
is also the case that w1w2 … wk: (s1, γ1γ2 … γk) ⊢* (s2, γ2 … γk) ⊢* … ⊢* 
(sk+1, λ), and consequently also x: (s + γ) ⊢* (t = sk+1, λ). By induction, the 
theorem holds for every n > 0.

The derivation S  *⇒ x can be written S ⇒ [s0, γ0, s]  *⇒ x. If x is gener-
ated by G, then [s0, γ0, s]  *⇒  x, so that, on the basis of the just proven theorem, 
it is the case that x: (s0, γ0) ⊢*  (s, λ), which by definition means that x ∈ 
T(NPDA).

It follows from Theorems 5.1 and 5.2 that the class of languages which 
are accepted by nondeterministic push-down automata is precisely the 
same as the class of languages generated by context-free grammars.





Chapter 6

Linear bounded automata

6.1  Definitions and concepts

6.2 � Linear bounded automata and context- 

sensitive grammars

An automaton has been discovered which accepts precisely the languages 
of the context-sensitive class. Like the push-down automaton, it is unlim-
ited, but in an interesting way. In effect, it disposes of as much storage  
capacity as the input string is long: the store is small for a short string, large 
for a long string. It is as if one had to calculate the sum of two numbers and 
were given exactly the same amount of space on a blackboard for counting 
as the two original numbers occupy. One would be allowed to write and to 
erase as often as desired, but could use no more space than that allowed.

The automaton in question is called linear bounded automaton, 
LBA. In this chapter we shall show that linear bounded automata are 
equivalent to context-sensitive grammars. But the proof of this equiva-
lence is considerably more complicated than those in the preceding 
chapters, and we will not be able to discuss it fully within the scope of 
this book. Therefore we shall limit ourselves here to a global proof of the 
theorem that for every context-sensitive grammar there is an equivalent 
linear bounded automaton. We have chosen this particular theorem for 
proof because it refers to Kuroda’s normal-form which Formal Grammars 
(II) uses in dealing with linguistic applications, and because it provides a 
good illustration of the way linear bounded automata work.

6.1	 Definitions and concepts

In several ways linear bounded automata resemble finite automata.  
In chapter 4 we observed that finite automata begin operating in an initial state 



and first read the leftmost symbol on the input tape. They then proceed to 
read the input symbols from left to right, until a final state is reached. Like 
finite automata, linear bounded automata also have a limited number of 
states, and they too begin their operation in an initial state by reading 
the leftmost symbol on the input tape. But linear bounded automata are 
capable of more than finite automata in two respects. In the first place, 
they can both read and write: they can write over a symbol which they 
have read, and replace it with another symbol. In the second place, they 
can move the input tape not only from left to right, but also from right 
to left; moreover, at a transition (a change of state or the replacement  
of a symbol in the input tape), they can remain at the same position on 
the tape. In writing they can use ‘auxiliary symbols’ which are not part  
of the input vocabulary. Because linear bounded automata may write 
only within the boundaries of the original input string, two boundary 
symbols (#) are placed on the tape, to the left of the first element and  
to the right of the last. Linear bounded automata always start in an initial 
state at the left-hand boundary symbol; they are said to accept the input 
when they pass over the right-hand boundary symbol in a final state. This 
latter is possible, of course, only after they have dealt with each element 
between the boundary symbols. The formal definitions are as follows.

A linear bounded automaton is a system LBA = (S, Ι, Γ, δ, s0, #, F) in 
which:

1.  S is a finite, nonempty set of states, with s0 ∈ S as initial state, and 
F ∈ S as the set of final states. (States are, as usual, denoted by the letter 
s with a subscript, or by r, s, t, ...)
2.  I is a finite input-vocabulary (notation as usual).
3.  Γ is a finite set of tape symbols, the vocabulary of symbols which can 
appear on the tape. I belongs to this set, as do all auxiliary symbols which 
can be used in writing. (Notation: tape symbols are in general denoted 
by γ with a subscript; strings of auxiliary symbols are denoted by lower 
case letters from the end of the Greek alphabet, χ, ψ, ω. If it is known that 
a tape symbol belongs to the input vocabulary, the notation for I can be 
used.) There is also a special tape symbol #, the boundary symbol.
4.  δ is a finite set of transition rules. A transition rule indicates 
for a pair of state and tape symbols what the following state and tape 
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symbol will be; it also indicates if the tape remains at the same place, 
goes one place to the right, or one place to the left. This is written as 
follows: we say that (sm, γn, k) is in δ(si , γj) if the automaton, in state  
si and reading γj , can change to state sm and write γn in the place of 
γj . The letter k shows in which direction the automaton moves on 
the tape: k = –1 indicates that it goes to the left; k = 1 indicates that  
it goes to the right; k = 0 indicates that it remains in the same place 
and reads the symbol it has written in the place of γn. By convention, 
δ(s, γ) always contains (s, γ, 0). We say ‘can change’ because linear 
bounded automata are nondeterministic; a linear bounded automaton 
has in principal several possible transitions for each configuration, δ 
maps the Cartesian product S × Γ into subsets of S × Γ × {–1, 0, 1} ∪ φ. 
In every operation the boundary symbols must remain in place; thus, 
whenever the automaton reads # it writes # over it. In formal terms, if 
(s', γ, k) is in δ(s, #), then γ = # for every s', and vice versa if (s', #, k) is 
in δ(s, γ), then γ = #.

The concept of ‘configuration’ calls for some further clarification. This 
can best be done with a visual representation of the operation of a linear 
bounded automaton, as in Figure 6.1. In that figure we see the initial and 
final situations in the process of accepting the string x = a1a2 ... an , as well 
as two possible situations during the operation.

A useful way of showing the entire configuration of automaton and 
tape is to write the state of the automaton to the left of the symbol which 
is being read. The configuration in Figure 6.1.a can thus be denoted by 
s0#a1 ... an# because the automaton is in state s0 and is reading the left-hand 
boundary symbol. For the configuration in Figure 6.1.b. we write #γ1γ2 ...  
γksjak+1 ... an#, in which we see that the tape symbol ak+1 is being read in 
state sj. The configuration in Figure 6.1.c. is written # ... skγiγj ... an#; that 
represented in Figure 6.1.d. is written # ... #sf . If the automaton passes 
from configuration C to configuration C' in one step, we write C ˇ C', and 
when the change takes place by an undetermined number of transitions, 
the notation is C ⊢* C'. A linear bounded automaton LBA accepts a string 
x when s0#x# ⊢* #ω#sf , where x ∈ I*, ω ∈ Γ *, and sf ∈ F. The language 
T(LBA) accepted by LBA is the set of strings which are accepted by LBA: 
T(LBA) = {x|s0#x# ⊢* #ω#sf , x ∈ I*, ω ∈ Γ *, sf ∈ F}.
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Example 6.1   Let LBA = (S, I, Γ, δ, s0, #, F) be a linear bounded automaton 
in which S = {s0, s1, s2, s3, s4, sf }, I = {a, b}, Γ = {a, b, γa, γb, #}, F = {sf  }, and 
with the following transition rules in δ:

1.  δ(s0, #)	 =	{(s1, #, 1)}	   7.  δ(s2, γb)	=	{(s3, γb, –1)}
2.  δ(s1, a)	 =	{(s2, γa , 1)}	   8.  δ(s2, #)	 =	 {(s3, #, –1)}
3.  δ(s1, #)	 =	{(sf , #, 1)}	   9.  δ(s3, b)	 =	 {(s4, γb, –1)}
4.  δ(s1, γb)	=	{(s1, γb, 1)}	 10.  δ(s4, a)	 =	 {(s4, a, –1)}
5.  δ(s2, a)	 =	{(s2, a, 1)}	 11.  δ(s4, b)	 =	{(s4, b, –1)}
6.  δ(s2, b)	 =	{(s2, b, 1)}	 12.  δ(s4, γa)	=	 {(s1, γa, 1)}
δ(s, γ) = φ for all other cases for which no convention holds.

a.

x

b.

c.

d.

γ1 γ2

sj

γk ## . . . . . .ak+1 an

a1 a2

s0

## . . . an

sk

## . . .. . . γjγi an

s f є F

## . . .

Figure 6.1. A Linear Bounded Automaton in Operation a. Situation 
at start. b., c., Possible situations during operation, d. Situation after 
accepting x
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It is immediately obvious that this automaton is deterministic: there 
is never more than one possible transition. We shall first show how 
the automaton accepts the string ab. The input tape carries the string 
#ab#, and the first configuration is s0#ab#, i.e. LBA is reading the left- 
hand boundary symbol in the initial state s0. The successive steps are 
as follows:

	 s0#ab# ˇ #s1ab#	 (rule 1)
	 #s1ab# ˇ #γas2b#	 (rule 2)
	 #γas2b# ˇ #γabs2#	 (rule 6)
	 #γabs2# ˇ #γas3b#	 (rule 8)
	 #γas3b# ˇ #s4γaγb#	 (rule 9)
	 #s4γaγb# ˇ #γas1γb#	 (rule 12)
	 #γas1γb# ˇ #γaγbs1#	 (rule 4)
	 #γaγbs1# ˇ γ#aγb#sf	 (rule 3)

The following shows in short how the automaton accepts the string aabb: 

s0#aabb# ˇ #s1aabb# ˇ #γas2abb# ⊢* #γaabbs2# ˇ #γaabs3b# ˇ #γbas4bγb# 
⊢* #s4γaabγb# ˇ #γas1abγb# ˇ #γaγas2bγb# ˇ #γaγabs2γb# ˇ #γaγas3bγb# ˇ 
#γas4γaγbγb# ˇ #γaγas1γbγb# ⊢* #γaγaγbγb#sf  .

Thus this automaton shifts back and forth between the boundary 
symbols until every a has been converted into γa, and every b into γb. It 
can reach the final state sf only if there are as many γa’s as γb’s, and when 
the γa’s are in the left-hand half of the tape, and the γb’s in the right hand 
half. This automaton accepts the language {an bn | n ≥ 0}.

6.2	 Linear bounded automata and context-sensitive grammars

The equivalence of linear bounded automata and context-sensitive gram-
mars is established in Theorems 6.1 and 6.2.

Theorem 6.1  For every context-sensitive language L, there is a linear 
bounded automaton which accepts L and only L.

Proof (summarized) Let L be a context-sensitive language. According 
to Theorem 2.11., there is a grammar G in Kuroda normal-form which 
generates L. We must construct a linear bounded automaton such that Τ 
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(LBA) = L(G). Let G = (VN , VT , P, S). The automaton LBA = (S, Ι, Γ, δ, s0, 
#, F) must have the following construction:

   i.  S = {s0, s1, t0, t1, {tA}, r0, r1}, with s0 as both initial and final state: F = 
{s0}.
 ii.  I = VT
iii.  Γ = VN ∪ VT ∪ #
 iv.  δ contains the following transition rules:
	   1.  δ(s0, #) = {(s1, #, 1)}
	   2.  δ(s1, a) = {(s1, a, 1)}	 for every a in VT
	   3.  δ(s1, #) = {(t0, #, –1)}
	   4.  δ(t0, A) contains (t0, A, 1)	 for every A in VN
	   5.  δ(t0, A) contains (t0, A, –1)	 for every A in VN
	   6.  δ(t0, a) contains (t0, a, 1)	 for every a in VT
	   7.  δ(t0, a) contains (t0, a, –1)	 for every a in VT
	   8.  δ(t0, B) contains (t0, A, 0)	 for all productions A → B in P
	   9.  δ(t0, a) contains (t0, A, 0)	 for all productions A → a in Ρ
	 10.  δ(t0, C) contains (tA, A, 1)
	 11.  δ(tA, D) contains (t0, B, 0)  }	 for all productions AB → CD in Ρ

	 12.  δ(t0, S) contains (r0, S, –1)
	 13.  δ(r0, #) = {(r1, #, 1)}
	 14.  δ(r1, s) = {(t1, #, 1)}
	 15.  δ(t1, A) = {(t0, S, 0)}}	 for all productions S → SA in Ρ

	 16.  δ(t1, #) = {(s0, #, 1)}
	 In all other cases where no convention holds, δ(s, γ) = φ.

We shall now show, without complete proof by mathematical induction, 
that this linear bounded automaton simulates the derivations of G and 
only those of G. The states s0 and s1 function to verify that a string of 
terminal elements is found between the two boundary symbols #. Rules 1 
and 2 show that the automaton starting at the left-hand boundary symbol 
passes over all terminal elements until the right-hand boundary symbol is 
reached. Rule 3 indicates that at that point state t0 is reached. If symbols 
other than terminal elements are found between the boundary symbols, 
the machine blocks and the string is not accepted. Rules 4 through 7  
allow the automaton to move freely to the left or to the right without alter-
ing the content of the input; it can simply write the symbol it reads. Rules 8 
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through 11 see to it that the automaton can transpose elements or pairs 
of elements only according to the productions in P. Rules 12 through 15 
handle the correct inversion of productions S → SA, the only rules in 
Kuroda normal-form in which S can appear to the right of the arrow.  
Because these are the only expanding productions in the grammar, it  
must be possible to derive the input string x in grammar G as S ⇒ SA ⇒ 
SAA ⇒...⇒ SA ... A ⇒*  x. This is simulated in reverse order by the linear 
bounded automaton by replacing #SAB ... #, where possible, with ##SB ... #. 
This can occur because when the automaton in the ‘work-state’ t0 reads S, 
it changes to state r0 (rule 12) and moves one place to the left to see if there 
is an S next to the boundary symbol #. If that is the case, the automaton 
changes to state r1 and, provided that S → SA is a production of P, rules 14 
and 15 replace SA with #S, and the work-state t0 is again reached. The 
automaton then sees if SB can be reduced to S; if it is, # # # S ... # appears 
on the tape, and the process continues. In this way the string ## ... #S# will 
appear on the tape only if x can be derived from S. Once the automaton 
has reached state t0, rules 12, 13, and 141 see to it that it goes on to state 
t1 and proceeds to the right in order to read the last boundary symbol.  
According to rule 16, when the automaton reaches the final state s0 and 
the tape is pushed out, string x is accepted.

If we wish to have LBA also accept the null-string λ, we must add a new 
state tλ, and two new transition rules: δ(t0, #) contains (tλ, #, 1), and δ(tλ, #) 
contains (s0, #, 1). With these, when the input is λ, the final state is reached 
immediately after completion of the steps required by rules 1, 2, and 3.

Example 6.2  Take grammar G = (VN , VT , P, S), with VN = {S, A, B}, VT = 
{a, b}, and the following productions:

a.  S → SA	 d.  A → a
b.  S → Β	 e.  Β → b
c.  ΒA → AB

.  Notice that rule 14 exists only if there is indeed a production S → SA in P. If 
this were not the case, the operation would stop. When no such production ex-
ists, language L(G) consists exclusively of sentences of length 1, and it obviously 
remains possible to construct a linear bounded automaton which accepts that 
language and only that language. Also rule 14 strictly violates the convention that 
no new boundary symbols may be written. Paragraph 7.1 gives an easy way out.
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Because of production (c) it is clear that grammar G is context-sensitive 
and that it is in Kuroda normal-form. G generates the language L(G) = 
{aiba j | i + j ≥ 0}. The sentences are thus strings of a’s with one b in them. 
Production (a) generates the string SAn; production (b) replaces the single 
S with B; by production (c) the Β can be moved any number of places 
to the right. Productions (d) and (e) replace the variables with terminal 
symbols.

We can construct a linear bounded automaton LBA which accepts 
L(G), according to the procedure given in the proof of Theorem 6.1. Thus 
LBA = (S, Ι, Γ, δ, s0, #, F ), with S = {s0, s1, t0, t1, tB, r0, r1}, I = {a, b}, Γ =  
{S, A, B, a, b, #}, F = {s0}, and the following transition rules in δ:

  1.  δ(s0, #)	 =	 {(s1, #, 1)}
  2.  δ(s1, a)	 =	 {(s1, a, 1)} because a ∈ VT
  3.  δ(s1, b)	 =	 {(s1, b, 1)} because b ∈ VT
  4.  δ(s1, #)	 =	 {(t0, #, –1)}
  5.  δ(t0, S)	 =	 {(t0, S, 1), (t0 , S, –1), (r0, S, –1)} because S ∈VN
  6.  δ(t0, A)	 =	 {(�t0, A, 1), (t0, A, –1), (tB , B, 1)} because A ∈ VN ,  and BA → 

 AB in Ρ
  7.  δ(t0, B)	 =	 {(t0, B, 1), (t0 , B, –1), (t0, S, 0)} because Β ∈VN , and S → Β  in Ρ
  8.  δ(t0, a)		 =	 {(t0, a, 1), (t0, a, –1), (t0 , A, 0)} because a ∈ VT , and A → a in Ρ
  9.  δ(t0, b)	 =	 {(t0, b, 1), (t0, b, –1), (t0, B, 0)} because b ∈VT , and Β → b in Ρ
10.  δ(tB, B) 	=	 {(t0, A, 0)} because BA → AB in Ρ
11.  δ(r0, #)	 =	 {(r1, #, 1)}
12.  δ(r1, S)	 =	 {(t1, #, 1)} because S → SA in Ρ
13.  δ(t1, A)	 =	 {(t0, S, 0)} because S → SA in Ρ
14.   δ(t1, #)	 =	 {(s0, #, 1)}

The following shows the consecutive configurations in LBA for the ac-
ceptance of the sentence abaa; the numbers over the transition symbols ˇ 
indicate the rule used in the transition.

s0#abaa# ⊢1 #s1abaa# ⊢2 #as1baa# ⊢3 #abs1aa# ⊢2  #abas1a# ⊢2 #abaas1# ⊢4  
#abat0a# ⊢8 #abat0A# ⊢6  #abt0aA# ⊢8 #abt0ΑΑ# ⊢6  #at0bAA# ⊢9 #at0BAA# 
⊢7  #t0aBAA# ⊢8  #t0ABAA# ⊢6  #BtBBAA# ⊢10 #Bt0AAA# ⊢6  #t0BAAA# ⊢7  
#t0SAAA# ⊢5  r0#SAAA# ⊢11  #r1SAAA# ⊢12 ##t1AAA# ⊢13 ##t1SAA#  5,11,12,13 
###t0SA#  5,11,12,13 ####t0s#  5,11,12 #####t1# ⊢14 ######s0
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To complete the statement of equivalence between linear bounded 
automata and context-sensitive grammars, we mention the following 
theorem.

Theorem 6.2  For every linear bounded automaton LBA, there is a context-
sensitive grammar G such that T(LBA) = L(G).

A large number of rules are needed for the construction of such an 
equivalent context-sensitive grammar. The proof of this theorem is be-
yond the scope of this book; for it we refer the reader to Landweber (1963) 
and Kuroda (1964).





Chapter 7

Turing machines

7.1  Definitions and concepts

7.2  A few elementary procedures

7.3  Turing machines and type-0 languages

7.4 � Mechanical procedures, recursive  

enumerability, and recursiveness

An obvious question at this point is whether it is possible to design an 
automaton which could accept type-0 languages. The answer is affirma-
tive; in fact some time before the theory of formal languages came into 
existence, Turing had described an automaton which later proved capable 
of accepting type-0 languages. The turing machine, as the automaton 
is called, is in principle capable of performing every operation which 
one might intuitively qualify as a mechanical (effective) procedure 
(cf. paragraph 2.1). In this chapter we will make the notion of ‘proce-
dure’ more explicit in order to facilitate an understanding of a number of 
important properties of natural languages. However, we shall first show 
that Turing machines accept type-0 languages and only type-0 languages, 
and that there exists a type-0 grammar for every language accepted by a  
Turing machine.

In this chapter, more than in the preceding chapters, theorems will be 
stated without proof. The theory of Turing machines has recourse to re-
fined fields of mathematics, such as recursive function theory, with which 
we can suppose no acquaintance on the part of the reader. Moreover Tur-
ing machines are less of interest to linguistics and psycholinguistics than 
automata of more limited capacity. Therefore, we shall state and discuss 
only a limited number of theorems which are of some importance to  
linguistics.
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7.1	 Definitions and concepts

Several different but equivalent terminologies have been used in describ-
ing Turing machines. The terminology which we shall use here is closely 
akin to that of linear bounded automata used in the preceding chapter.

Like linear bounded automata, a Turing machine is made up of a finite 
automaton and a tape. A Turing machine can read and write tape symbols 
in the same way as a linear bounded automaton, but it is not subject to lin-
ear limitation: it can read and write to the left and to the right of the origi-
nal input. We must suppose that the length of the tape is infinite, and that 
at the beginning of an operation a limited and continuous portion of the 
tape carries input symbols, bordered left and right by boundary symbols. 
To facilitate further formulation, we also suppose that the remainder of the 
tape is filled with boundary symbols. The machine can read the boundary 
symbols and replace them with other tape symbols, but cannot itself write 
boundary symbols. Consequently the tape carries a continuous string of 
input symbols which cannot be interrupted by boundary symbols. On the 
other hand, there may be ‘pseudo-boundary symbols’, equivalent in every 
respect to the ordinary boundary symbols except in that they may also 
be written; in informal treatment of Turing machines, the distinction be-
tween the two types of boundary symbols is often neglected.

The notation will be the same as that used for linear bounded automata.
In formal terms, a Turing machine TM is a system (S, I, Γ, δ, s0, #, F ), 

in which:

1.  S is a finite set of states, with s0 as the initial state, and F ⊂ S as 
the set of final states.
2.  I is a finite set of input symbols.
3.  Γ is a finite set of tape symbols, of which I is a subset. Elements of Γ 
which are not elements of I are called auxiliary symbols, one of which 
is the boundary symbol #. In the initial configuration the tape carries a 
string from I*, bordered on the left and on the right by strings of bound-
ary symbols of infinite length.
4. δ is a finite set of transition rules which indicate, for every pair of state 
and input symbol, what the machine must write (the boundary symbol can-
not be written by the machine), what the following state will be, and whether 
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the machine will remain at the same place on the tape, or move one step to 
the left or right. It is also possible for the machine to block. We can therefore 
say that δ maps S × Γ into S × {Γ – #} × {–1, 0, 1} ∪ φ. The transition rules 
have the form S(s, γ) = (s', γ', k), where k = –1, 0, or 1. They should be inter-
preted as follows: if the Turing machine is in state s and reads the symbol γ, 
it passes to state s', writes γ' over the symbol γ, and moves the tape according 
to the value of k. Turing machines are deterministic; for every combination 
of state and tape symbol, only one transition is possible. It is possible, of 
course, to define nondeterministic Turing machines, but these are equivalent 
to deterministic Turing machines. (We shall use non-deterministic Turing 
machines in the proof of Theorem 7.1).

Before defining the language accepted by a Turing machine, we must 
indicate what is meant here by ‘configuration’. As was the case for linear 
bounded automata, a configuration in a Turing machine includes the con-
tent of the tape, the state of the automaton, and the position of the tape 
content in relation to the automaton. The notation is the same as for con-
figurations in linear bounded automata, but redundant boundary symbols 
are omitted. Thus, for example, s#γ1γ2 … γn# stands for … ##s#γ1γ2 …  
γn# # #…, and means that the Turing machine is in state s and is reading 
the boundary symbol directly to the left of the tape content γ1γ2 … γn. 
The initial configuration is s0#w#, where w ∈ I*. A final configuration is 
every configuration in which the Turing machine is in a final state: ωsf χ, 
where ω and χ are elements of Γ', and sf is an element of F. In this case the 
automaton is said to stop (stopping should not be confused with block-
ing). A string x in I* is accepted by a Turing machine when s0#x# ⊢* ωsf χ. 
The language accepted by a Turing machine is the set of strings in I* 
accepted by the machine. Figure 7.1. illustrates an initial configuration, 
a configuration during operation, and a final configuration of a Turing 
machine in the process of accepting the input string x = a1 … am.

7.2	 A few elementary procedures

In this paragraph we shall give a few examples of operations which can 
be performed by a Turing machine. The operations given here will later 
serve as elementary procedures in the comparison of Turing machines 
and type-0 grammars.
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Example 7.1   The transfer of information on the tape. 

In several cases it is necessary to transfer parts of the original input, or 
of the tape content which develops later, to a different place on the tape. In 
this way information can be stored while other operations are carried out. 
A simple example of this may be seen in the following Turing machine:

TM = (S, Ι, Γ, δ, s0, #, F ), with S = {s0, sA, sB , s1, s2, s3}, I = {a, b}, Γ =  
{#, a, b, c, A, B}, F = {s3}, and where δ contains the following transition rules:

  1.  δ(s0, #) = (s0, #, 1)	 13.  δ(sB, A) = (sB, A, 1)
  2.  δ(s0, a) = (sA, c, 1)	 14.  δ(sB, B) = (sB, B, 1)
  3.  δ(s0, b) = (sB, c, 1)	 15.  δ(sB, #) = (s1, B, –1)
  4.  δ(s0, A) = (s2, a, 1)	 16.  δ(s1, a) = (s1, a, –1)
  5.  δ(s0, B) = (s2, b, 1)	 17.  δ(s1, b) = (s1, b, –1)
  6.  δ(sA, a) = (sA, a, 1)	 18.  δ(s1, c) = (s0, c,1)
  7.  δ(sA, b) = (sA, b, 1)	 19.  δ(s1, A) = (s1, A,–1)
  8.  δ(sA, A) = (sA, A, 1)	 20.  δ(s1, Β) = (s1, B,–1)
  9.  δ(sA, B) = (sA, B, 1)	 21.  δ(s2, A) = (s2, a, 1)
10.  δ(sA, #) = (s1, A,–1)	 22.  δ(s2, B) = (s2, b, 1)
11.  δ(sB, a) = (sB, a, 1)	 23.  δ(s2, #) = (s3, #, 0)
12.  δ(sB, b) = (sB, b, 1)	 δ(–, –) = φ in all other cases.

This Turing machine will replace every string x in I +, where |x| = n, 
with a string cnx; the original string of a’s and b’s is moved exactly its length 
to the right and is replaced by a string of c’s whose length is equal to that 
of the string of a’s and b’s. Let us take for example the transfer of the string 
aab. The following gives the successive configurations in the machine; the 
number of the transition rule involved is given over the transition symbol, 
except where a sequence of operations is repeated, in which case an asterisk 
* appears over the transition symbol.

s0#aab# ⊢1 #s0aab# ⊢2 #csAab# ⊢6 #casAb# ⊢7 #cabsA# ⊢10 #cas1bA# ⊢17 #cs1a 
bA# ⊢16 #s1cabA# ⊢18 #cs0abA# ⊢2 #ccsAbA# ⊢* #ccbs1AA# ⊢19 #ccs1bAA# 
⊢17  #cs1cbAA# ⊢18 #ccs0bAA# ⊢3 #cccsBAA# ⊢* #cccAAsB# ⊢15 #cccAs1AB#  
⊢* #cccs0AAB# ⊢4 #cccas2AB# ⊢21 #cccaas2B# ⊢22 #cccaabs2# ⊢23 #cccaabs3#.

Example 7.2   The comparison of two strings.

At times it is necessary to decide whether two strings of elements are 
identical. One can easily see that this is possible with a Turing machine. 
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Imagine that we are interested in two strings r1 and r2 over a vocabulary V. 
We place the string r1cr2 on the tape, where c ∉ V. The language Τ with 
sentences wcw then is a context-sensitive language with a vocabulary V ∪ c. 
This means that there is a context-sensitive grammar which generates 
the sentences wcw and only the sentences wcw. There is consequently 
a linear bounded automaton LBA which accepts language T, and since 
Turing machines are a generalization of the linear bounded automaton, 
there is a Turing machine which accepts language T. In other words, the 
Turing machine accepts a string r1cr2 on condition that r1 = r2, and can 
therefore be considered an automaton which determines the identity of 
two strings.

7.3	 Turing machines and type-0 languages

It is possible to construct a ‘Universal Turing machine’ UTM, which can 
simulate the operation of any given Turing machine. A description of  
the TM (its transition rules, etc.) would be placed on the input tape of the 
UTM, while the input of the TM would appear in another place on the in-
put tape of the UTM. Thus ‘programmed’, the UTM would imitate the op-
eration of the TM precisely. It is even possible to construct a UTM with 
only two states, but it would need an extremely large tape vocabulary.

However, it is not our intention to discuss Universal Turing machines 
here. We have mentioned them only to render the proposition acceptable 
that various elementary procedures for which Turing machines have been 
constructed can be combined in a single Turing machine. Such a machine 
could switch over from one procedure to another, just as a digital computer 
can switch from one subroutine to another. (The only essential difference 
between a computer and a Turing machine is that the latter disposes of an 
unlimited store: all information presented can be stored on a tape of infinite 
length.) With this background, we can discuss the following theorem.

Theorem 7.1  For every type-0 language L there is a Turing machine such 
that T(TM) = L.

Proof   (summary) The construction of a TM which accepts language 
L is roughly as follows. Let L be a type-0 language, and G the type-0  
grammar which generates it. Let x be a sentence in L. We put the string 
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x on the input tape as #x#, and build in a procedure according to which 
the symbols c and S (neither of which are elements of VT) are added to the 
string as follows: #xcS#. For every production α Æ β in G we construct 
such transition rules for TM that a string α on the tape can be rewritten 
as β. If α is not of the same length as β, it will be necessary at rewriting 
to transfer any information positioned directly to the right of α, either to 
the left or to the right, so that β will fit precisely into place. Therefore we 
must include a transfer procedure in the Turing machine, similar to that 
of Example 7.2.

TM can nondeterministically replace S with some β, where S → β is a 
production in G. Let β = B1B2 ... Bn (where Bi is an element of V, but not 
necessarily of VN). In that case the tape shows #xcB1B2 ... Βn#.

Next we must build a procedure into TM according to which the left-
hand members (αi) of the productions αi → βi can be written on the tape 
with some identification number. The automaton now nondeterministi-
cally chooses an αi and a Bj from the string mentioned above, and switches 
over to a comparison procedure which compares αi element for element 
with BjBj+1 ... Example 7.2 showed that such a comparison procedure is 
possible in principle. If string αi turns out to be identical to string BjΒj+1 ... , 
the latter is replaced by βi, the right-hand member of the production  
αi → βi . By continued replacement of strings between c and # according to 
the productions of G, eventually a string of terminal elements is (nonde-
terministically) composed between c and #. At this point the Turing ma-
chine can switch back to the comparison procedure in order to compare 
this new string with string x. If the two are identical, the machine reaches 
a final state and stops. It is clear that the terminal strings between c and # 
can only be sentences of L(G), and that any sentence in L(G) can appear 
there. Thus TM accepts the sentences of L(G) and only the sentences of 
L(G). If there is a nondeterministic Turing machine which accepts L(G) 
and only L(G), then there is a deterministic Turing machine which does 
the same.

Theorem 7.2   For every language Τ accepted by a TM, there is a type-0 
grammar G such that L(G) = T(TM).

Proof  (summary) Let Τ be the language accepted by Turing machine 
TM. For every x in T, TM goes from its initial state to a final state in a 
finite number of operations: s0#x# ⊢* #ωsf χ#, with sf ∈ F and ω, x ∈ Γ*.  
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We write x as a1a2 … an (n > 0). The first step in the process of accepting 
is as follows: s0#a1a2  … an# ˇ #s0a1a2 … an#. Another transition arbitrarily 
chosen is #ψsγlγ2σ # ̌  #ψs'γlγ'2σ# if TM moves to the left (with s, s' ∈ S, γ1, γ2,  
γ'2 ∈ Γ, and ψ, σ ∈ Γ*). This can be noted down as rewriting triads:

	 (1)	 γ1sγ2 → s'γ1γ'2.

Nothing else changes in the configuration, and given the construction of 
TM, the transition is completely determined by the triad γ1sγ2. There is a 
similar pair of triads for the case that the machine moves to the right. The 
transition has the form #ψsγ1γ2σ# ˇ #ψsγ1ʹsʹ γ2σ# and can be represented as 
a rewrite:

	 (2)	 sγ1γ2 → γ'1s'γ2.

If the machine remains in place, we write:

	 (3)	  sγ2 → s'γ'2.

Because the number of states s and tape symbols γ for each Turing ma-
chine is finite, the number of pairs or triads is also finite. A subset of these 
pairs gives a complete description of the possible operations of the Turing 
machine. Because Turing machines are deterministic, for every triad or 
pair to the left of the arrow there is only one possible triad or pair which 
can follow to the right of the arrow. Therefore, we can conclude that the 
operation of every Turing machine can be completely described by means 
of a finite set of deterministic rewrite rules.

Let TM accept x. We have seen that the final configuration has the 
form #ωsf χ#. It is not difficult to construct a Turing machine TMʹ equiva-
lent to TM, which has as final configuration # sfS' #. For this purpose we 
build TM' in such a way that, just before reaching a final configuration, 
it will follow a procedure to replace all the remaining tape symbols with 
(pseudo) boundary symbols, except the last which is replaced by the as 
yet unused tape symbol S'. The initial and final configurations are there-
fore respectively s0#x# and # sf  S' #.

We can now construct a grammar G for which L(G) = T(TM) = 
T(TM' ). We collect all the rules of types (1), (2), and (3) in TM'. If β Æ α 
is a rule of TMʹ, we make a Æ β a production of G. Given the deter-
ministic character of rules β Æ a, if a Æ β and a' Æ β, then α = α'. Next 
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we add to the productions of G the productions S Æ sf  S' for every sf in 
F, and the production s0# Æ #. It is clear that by means of these produc-
tions, the derivations S ⇒ sf  S' *⇒ x and only these can be made for every 
x in Τ and only if x ∈ T. G is a type-0 grammar, and consequently the 
theorem is proven.

It follows from Theorems 7.1 and 7.2 that Turing machines are equiv-
alent to type-0 grammars or unrestricted rewrite systems.

7.4	� Mechanical procedures, recursive enumerability,  
and recursiveness

Given a type-0 grammar G with a vocabulary VT , there is a Turing machine 
TM which will stop in a final state after a finite number of transitions for 
every string x in V*T  where x ∈ L(G). We call this a mechanical procedure. 
In general we can define a mechanical (effective) procedure as an operation 
which can be performed by a Turing machine in a finite number of steps. 
Thus we replace the temporary definition of ‘procedure’ given in paragraph 2.1 
by the more precise definition ‘that which can be performed by means of a 
Turing machine’. In paragraph 2.1 we imagined a procedure as a computer 
program by which an operation can be performed systematically. It does 
not at first seem evident that anything that can be performed systematically 
in a mechanical way (that is, without the use of human intuition), possibly 
by computer, can also be done on a Turing machine. The Turing machine 
appears to be far too simple a mechanism. But since the publication of 
Turing’s original article (1936) it has become increasingly evident that the 
Turing machine can indeed perform anything which we might intuitively 
qualify as a procedure. For a good survey of the question, see Minsky (1967). 
It is therefore clearly justified formally to define the concept ‘procedure’, as 
we have done, in terms of Turing machines. This opens the possibility of 
establishing with exactitude the problems for which no procedure exists, 
for such are the problems for which no Turing machine can be constructed. 
In the remainder of this chapter we shall speak freely of Turing machines 
whenever it is clear that a mechanical procedure must exist. Whenever we 
can explicitly indicate the consecutive steps of an operation, we conclude 
that the operation can be performed on a Turing machine.
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The acceptance of a sentence by a Turing machine is by definition a  
mechanical procedure, but the same is true of the acceptance of sentences 
by more limited automata. It follows from the hierarchy of languages that 
for every language which is accepted by a finite automaton, a nondetermin-
istic push-down automaton, or a linear-bounded automaton, there exists a 
Turing machine which also accepts it. We can therefore treat the acceptance 
of languages and sentences by automata in general in terms of procedures.

We would point out that the definition of ‘accepting’ has been rather 
weak for all automata. We know that if x ∈ L, there is a procedure (TM) 
which will confirm that x is an element of L. But what happens if a string 
in VT which is not an element of L is introduced as input? The Turing 
machine cannot reach a final state, but rather becomes blocked or goes on 
endlessly computing. We shall return to this point, but we shall first show 
that for every type-0 language L there is a mechanical procedure by which 
each sentence in L can be enumerated within a finite amount of time. L is 
then said to be recursively enumerable.

Theorem 7.3   Every type-0 language is recursively enumerable.

Proof   It is easy to see that the strings in V*T   can be enumerated by 
means of a mechanical procedure. If VT contains k elements, the strings 
of V*T can be considered as numbers in a system with a base k, plus the 
null-string. If, for example, there are ten elements in VT we can give them 
the labels 0, 1, 2, ... , 9. Strings of V*T are thus numbers of the decimal sys-
tem: 0, 1, 2, ... , 10, 11, ... , 100, 101, ... , and it is certainly possible to design 
a Turing machine which will write these sentences in sequence on its 
tape (the Turing machine must be able to perform the operation n+l). 
Each of these numbers appears on the tape after a finite number of oper-
ations, and no number is omitted. The same will hold for k. Furthermore, 
we know that there is a procedure which can determine whether a string 
is an element of L (Theorem 7.1). This procedure can be applied to every 
newly enumerated string of V*T  in order to enumerate the sentences of L. 
There is a problem, however, for we do not know what will occur if the 
string in question is not an element of L. It is possible that the machine 
will go on endlessly computing and will never come to enumerate and 
test the following strings. This situation can be avoided by interrupting 
the test procedure at a given moment in the following way. We number 
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the strings in V*T : λ = 1, a1 = 2, a2 = 3, etc. (this is possible, as we have 
seen), and we indicate by number how many transitions the TM can un-
dergo at a given stage of the test procedure for a given string. The process 
takes place as shown in Table 7.1. In fact we have constructed a new Tur-
ing machine, TM', which simulates the test procedure of TM. TM' first 
tests string 1 to see if it is an element of L by simulating one transition 
of the procedure of TM. If TM' finds that the string is an element of L, it 
enumerates the string and proceeds to test string 2. If it is not yet clear 
whether or not string 1 is an element of L, TM' still proceeds to test string 2. 
According to the table, TM' may simulate again only one transition of 
TM. String 2 is or is not enumerated according to the results of this test. 
According to the table, TM' then goes back to string 1 and simulates two 
steps from TM to test the string. According to the results of this test, 
the string is or is not enumerated, and TM' then goes on to test string 3 
with one step from TM. It goes on in the same way to test string 2 with 
two transitions, string 1 with three transitions, string 4 with one transi-
tion, and so forth. In this way the automaton returns to each string and 
performs one step more than the preceding time to test it. Thus each 
string in V*T   is successively tested for membership in L by way of a finite 
number of transitions. For each x in L the procedure finally leads to the 
acceptance and enumeration of x.

Table 7.1.  Test procedure for the enumeration of the sentences of L

1 1

1
Number of Transitions of TM to be simulated

2 3 4 . . . . .

2

3

5

6

9

10

8

7

2

3

4

4

etc..
.
.

String
Number
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We state without proof that the inverse of Theorem 7.3 is also valid:  
every recursively enumerable language can be generated by a type-0 
grammar.

We have seen that the recursive enumerability of a type-0 language 
follows from the existence of an accepting procedure for the sentences of 
L, and have remarked that this is a weak theorem. We do not know what 
the Turing machine will do to a string in V*T  which does not belong to the 
language. In order to discuss this question further we define the comple-
ment of a language L, with vocabulary VT , as V*T ‒ L. This is the set 
of strings over the terminal vocabulary which are not elements of the 
language. Linguists call this the set of ungrammatical sentences. The 
complement of a language is denoted by CL.

A stronger form of acceptance would be a procedure according to 
which for every string of V*T   it would be indicates if the string belongs to 
L or to CL. One might imagine a ‘twin Turing machine’ which would reach 
a final state for a string in CL, while the original Turing machine would do 
the same for a string in L. One might also imagine a Turing machine with 
two sets of final states, one for accepting, the other for rejecting. For every 
string x in V*T , the Turing machine would reach a final state: the accepting 
final state when x ∈ L , and the rejecting final state when x ∈ CL. If such a 
procedure exists for language L, the automaton is said to recognize (as 
opposed to accept) L. A recognition procedure of this sort is usually called 
an algorithm. An algorithm is thus a procedure according to which for 
every x in V*T , it can be determined whether or not x belongs to L. Because 
algorithms lead to decisions for every string in V*T , the language L ⊂ V*T   
is called a decidable (recursive) set if an algorithm exists for the recog-
nition of L. It follows from the construction of the twin Turing machines 
that a language is recursive if both the language and its complement are 
recursively enumerable.

We know that type-0 languages, and consequently also type-l, type-2, 
and type-3 languages are recursively enumerable, but are the comple-
ments of these languages also recursively enumerable ? That is not the 
case in general. We state without proof that there are type-0 languages 
which are not recursive, because they have complements which are not 
recursively enumerable. This means that the complements are not type-0 
languages. However, the complement of a context-sensitive language is 
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recursively enumerable. Hence, context-sensitive, context-free and regu-
lar languages are all recursive. There are (recognition) algorithms for all 
of these languages.

We have seen that the complement of a type-0 language is not neces-
sarily itself of type-0, but what of the other language types? The comple-
ment of a context-sensitive language is itself context-sensitive. It does not 
hold in general that the complement of a context-free language is also 
context-free, but because any context-free language is context-sensitive, 
its complement is also context-sensitive. The complement of a determinis-
tic context-free language is, however, also deterministic and context-free. 
Regular languages, finally, have complements that are likewise regular.





Chapter 8

Grammatical inference

8.1 � Hypotheses, observations, and  

evaluation

8.2 � The classical estimation of parameters  

for probabilistic grammars

8.3 � The ‘learnability’ of nonprobabilistic  

languages

8.4  Inference by means of Bayes’ theorem

8.1	 Hypotheses, observations, and evaluation

Is it possible on the basis of samples of a language to decide on an accept-
able grammar for that language? In its present form, this question cannot be 
answered, but the day to day work of the linguist, as well as the fast growing 
language capacity of the young child, suggest that an affirmative answer 
might be expected to at least some forms of the question. The answer de-
pends on (1) what is known about the grammar, (2) the composition of the 
sample of data, and (3) what is understood by ‘acceptable’. The investigation 
of these matters is known as the study of grammatical inference.

That which is already known or supposed of a grammar is referred 
to by the term hypothesis-space. The terminal vocabulary VT  , for in-
stance, is ordinarily given. Certain suppositions can also be made as to 
the class to which the grammar belongs (regular, context-free, etc.). In the 
case of a probabilistic grammar, not only can suppositions be made about 
the type of grammar, but inference can also have the more limited goal of 
finding the most acceptable production probabilities for a grammar which 
is given. This latter has rather direct possibilities of application, and we 
will deal with it in some detail in paragraph 8.2 Paragraph 8.3 will treat a 
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number of general findings relative to nonprobabilistic hypothesis-space, 
and paragraph 8.4 will discuss the most general kind of hypothesis-space, 
probabilistic grammars for which both productions and production prob-
abilities must be found.

The term observation-space refers to the composition of the data 
sample; it can take on various forms. If L is the language investigated 
and x is a given string in V*T we can obtain positive information, x ∈ L, 
or negative information, x ∉ L (i.e. x ∈ CL), about L. In the former case 
we speak of a positive instance, in the latter, of a negative instance. 
The information available is called an information sequence. If all 
the instances in the sequence are positive, we have a positive infor-
mation sequence; if negative instances also occur, we have a mixed 
information sequence. A complete information sequence is 
a mixed information sequence in which all positive and negative in-
stances are enumerated; such sequences are generally infinite in length. 
A complete positive information sequence is the enumeration of 
all positive instances; it is called text presentation, since the language 
is presented, sentence for sentence, as a text. Repetitions may occur, pro-
vided that the enumeration is complete, i.e. every sentence of the lan-
guage must occur after a finite number of other sentences. informant 
presentation is the term for a complete mixed information sequence, 
or a sequence in which every positive and negative instance over V*T  
occurs after a finite number of other instances. One might picture this 
as a researcher who wishes to find the grammar of a language and reads 
each string of V*T  to an informant who in turn tells him for every string 
whether it belongs to the language or not. A stochastic text presen-
tation is an infinite sequence I = x1, x2, … , where xi is an element of L, 
and L is a probabilistic language in which for every xi, p(xi = xi) = p(x = x);1 

this means that the probability that string x will be in position i is constant 
and equal to the probability of the string in the language. The sentences thus 
appear successively with their respective probabilities in L. Notice that the 
definition of a stochastic text presentation does not include the property 
of completeness. At the limit, however, the relative frequency of a sentence 

1.  p(x = x) is the probability of x in L. We suppose the variables xi to be indepen-
dent, i.e. p(xi = xi | xj = xj) = p(xi = xi).
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in a stochastic text presentation is equal to its probability in L. The prob-
ability of occurrence of a sentence x in L can be increased by increasing 
the length of the information sequence. A sample of a stochastic text 
presentation of size k consists of the first k elements of that text presenta-
tion. On the basis of the assumption of independence,2 the probability  
of this particular sample is the product of the probabilities of its k  
elements.

What is an ‘acceptable’ grammar? Suppose that the information con-
sists of an information sequence up to a given point k: x1, x2, . . . , xk. Any 
grammar which corresponds to the elements x1, … , xk is, in a weak sense, 
acceptable. By ‘corresponds’ we mean that the positive instances in the 
sequence are generated by the grammar, and the negative instances are 
not. But the criterion of correspondence will in general allow an infinity 
of possible grammars. If we concentrate our attention on the positive 
instances in the text presentation, we find that the one extreme is a gram-
mar which generates only the k elements of the information, whereas the 
other extreme is a universal (regular) grammar over VT which gener-
ates all the strings of V*T . Both these grammars correspond to the infor-
mation, but the former is ‘unnecessarily’ complex, and the latter would 
correspond to any sample, and therefore does not ‘fit’. Both complexity 
and fit must decidedly be included in the standard of evaluation of the 
acceptability of a grammar. To a large extent, complexity is a matter of 
taste and of the preferences of the researcher. That the standard is rela-
tive is probably the only point on which one could expect all to agree. 
Grammars may be compared on the basis of various criteria, such as the 
number of symbols, the number of productions, the number of alter-
natives for each production, etc. These criteria make up the context of 
evaluation; on it depends the complexity of a grammar. The use of the 
mechanism of probabilistic grammars can permit a definition of context 
(without excluding other definitions, as complexity remains a matter of 
taste) in terms of the a priori probability of alternative grammars in the 
hypothesis-space. This will be done in paragraph 8.4; it will at the same 
time permit an evaluation, by way of the Bayes theorem, of the fit of various 
probabilistic grammars.

2.  See note 1.
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In the following paragraph, however, we shall deal only with the clas-
sical statistical evaluation procedure. This method is more efficient in that 
context, and yields results for large samples which scarcely deviate from 
those of a Bayesian analysis.

8.2	� The classical estimation of parameters  
for probabilistic grammars

We will be dealing here with the simple case in which, except for the pro-
duction probabilities, the entire grammar is given. The discussion will be 
limited to nonambiguous context-free grammars.

On the basis of a sample of language L, we must determine which 
probabilistic grammar will be the best for L, that is, we must find an opti-
mal estimate for the production probabilities of the grammar.

Let G be a nonambiguous context-free grammar with Ν productions. 
The respective production probabilities are labeled p1, p2, … , pN . To nor-
malize the grammar, we must see to it that for every variable A in VN ,

1( ) 1.
i

p A a→ =∑  If there are l(l  > 0) productions in which A occurs to

the left of the arrow, then for the productions A → αi (where i = 1, 2, … , l), 
l ‒ 1 production probabilities must be found. (If G has only one production,  
A → x, then p(A → x) = 1.) If VN has Μ variables, and the number of in-
dependent production probabilities in the grammar is denoted by k, then 
k = Ν – Μ. On the basis of the sample, estimates must be found for these k 
parameters, q1, q2, … , qk . When that is done, the production probabilities 
p1, p2, … , pN will follow directly from the normalization.

Given a sample from language L, we proceed as follows. Let the sam-
ple contain n different sentences (or sentence types, since a particular sen-
tence can occur more than once in a sample). The leftmost derivation S  
*⇒  si must be determined for every sentence si (where i = 1, … , n). If the 
productions used in the derivation are independent, then p(S *⇒si) = p(si) 
can be expressed as the product of the production probabilities pi of the

various steps in the derivation. For the derivation ,
s k i lp ppp

iS sa b g⇒ ⇒ ⇒ ⇒  
for example, this is p(si) = p2

j pk pl . This product for each of the n sentence 
types is denoted by πi, and each of its terms can be expressed in param-
eters q1, … , qk .
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We define the likelihood function L for the sentences si, … , sn and the 
parameters q1, … , qk as follows:

+ p p p= 1 2
1 1 1 2( , ... , ; , ... , ) ... ,nf f f

n nks s q q

where fi is the number of times sentence type i occurs in the sample.  
Using logarithms, this is:

log + = f1 log π1 + f2 log π2 + … + fn log πn = ∑
i
 fi log πi .

The best estimate of the parameters q1, …, qk is that which gives a maxi-
mum for +, and thus also for log +. With these parameters, the probability 
of drawing precisely this sample is at a maximum. The various parameter 
estimates q̂1, q̂2, … , q̂k are found by expressing every πi in parameters, and 
then determining the k partial derivatives of L according to q1, … , qk. This

yields a system of k equations log 0,
qi

d
d

=+� the solutions of which are the

desired estimates q̂1, …, q̂k. At this point the probabilities p1, … , pN can be 
calculated.

Example 8.1   Let L be a language over the vocabulary {a, b, c}. Suppose 
we have a sample of L consisting of 100 sentences with the following dis-
tribution of sentence types: c (22 times), aca (42 times), abcba (19 times), 
abbcbba (12 times), abbbcbbba (4 times), and abbbbcbbbba (once). A pos-
sible grammar for these sentence types has the following productions:
	 S q1  aAa		  A 

q2   bAb
	 S  1−q1 c		  A  1−q2  c
Above the arrows we find the production probabilities expressed in  
parameters, and in such a way that the grammar is normalized. The left-
most derivations of the sentences in the sample are given below with the 
probability of the production concerned at each step.

	

1– q1S ⇒ c

q1 q2 1– q2S ⇒ aAa ⇒ abAba ⇒ abcba

q1 1– q2S ⇒ aAa ⇒ aca

etc.

p(c) = 1– q1

p(aca) = q1(1– q2)

p(abcba) = q1q2(1– q2)

p(abbcbba) = q1q2(1– q2)2

p(abbbcbbba) = q1q2(1– q2)4

p(abbbcbbba) = q1q2(1– q2)3
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The likelihood function then becomes:

+  =  [(1 − q1)]22 [q1 (1 − q2)42][q1q2 (1 − q1)]19[q1q2
2 (1 − q2)]12  ×  [q1q2

3  (1 − q2)]4  

[q1q2
4 (1 − q2)] = q1

78 q2
59 (1 − q1)22 (1 − q2)78, and the natural logarithm of 

+ is:

ln + = 78 ln q1 + 59 ln q2 + 22 ln (1 − q1) + 78 ln (1 − q2). The most likely 
values of q1 and q2 are found by taking partial derivatives of ln + with  
respect to q1 and q2 puting them equal to zero and solving the equations:

	 d
d

= − =
−1 1 1

ln 78 22
0

1q q q
+ 	 d

d
= − =

−2 2 2

ln 59 78
0

1q q q
+

	 thus q̂1 = 0.78 		  thus q̂1 = 0.43

With these estimates of the parameters, we can calculate the probabilities  
of the sentence types in the sample. For c we have 1 –  q1 = 0.22, for aca, 
q1(1– q2) = 0.78 × 0.57 = 0.445, and so forth. In a sample of 100 sen-
tences we would expect the sentence c 22 times, and the sentence aca, 
44.5 times, etc. All the values are given in Table 8.1., together with the 
observed values. The correspondence between observed and expected 
values can be measured and evaluated with standard statistical tests such 
as, for example, the chi-square test for goodness of fit.

Table 8.1.  Observed and expected frequencies of sentence types  
(Example 8.1)

Sentence type Observed   Expected Sentence type Observed Expected

c   22 22 abbbcbbba 4 3.5
aca   42    44.5 abbbbcbbbba 1 1.5
abcba   19    19.1 other 0 1.2
abbcbba   12     8.2

8.3	 The ‘learnability’ of nonprobabilistic languages

A number of theorems concerning the ‘learnability’ of non-probabilistic 
languages were presented by Gold in a fundamental article (1967). In this 
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paragraph we shall state some of his more important findings without 
proving them.

Suppose we have a complete (text or informant) information sequence 
for a language of a given class (finite, regular, etc.). An algorithm must be 
found with the following characteristics:3

1. � each time a new input element xi is introduced, the algorithm pro-
duces a grammar (or a code for a grammar) of the given class which is 
consistent with the information received up to that point.

2. � after a finite number of elements has been received, the output 
remains constant: the grammar produced as output is always the same 
or equivalent, and is a grammar of L.

A language is said to be identifiable in the limit or learnable if 
such an algorithm exists for it for every complete information sequence. 
A class of languages is learnable if every language in it is learnable. The 
most important conclusions drawn by Gold from his investigation con-
cerning the various classes of languages are given in Table 8.2.; in it, the 
symbol + denotes ‘learnable’, and the symbol –, ‘not learnable’.

The table calls for some explanation on (a) the broad difference be-
tween ‘learnabilty’ on the basis of text presentation and ‘learnability’ on 
the basis of informant presentation, and (b) the fine differentiation within 
the class of type-0 languages.

(a) Text presentation involves learnability for finite languages only. The 
fact that a finite language can be learned through text presentation can eas-
ily be understood as follows. Every sentence of the language appears after a 
finite number of earlier instances (since the presentation is complete). The 
algorithm can simply be to enumerate all different sentences which have 
appeared in the presentation up till and including the last instance. This list 
of sentences can as well be written as a grammar with rules S → xi with one 
rule for every sentence xi. After a finite amount of time, all the sentences 
of the language will have passed in review (as the number of sentences 

3.  ‘Algorithm’ is used in the same sense here as in the preceding chapter: a Turing 
machine which stops (produces an output) after every input. Gold also analyzes 
learnability as a procedure, but we will not discuss his findings here; they are not 
much different from the results for algorithms.



116	 An Introduction to the Theory of Formal Languages and Automata

is finite), and from that point the grammar will remain unchanged. The 
grammar thus produced will certainly be a grammar of the language.

The process, however, will only succeed with finite languages; not 
even regular languages are learnable, according to Gold’s definition of the 
term, on the basis of text presentation. One might imagine the following 
algorithm for the learning of regular languages on the basis of text pre-
sentation: the first and all following outputs of the algorithm would be 
a universal grammar U, with productions S → a and S → aS for every a 
in VT  . As such a grammar can generate any string in V + T , all subsequent 
outputs would be the same grammar, which will be consistent with all 
further information. But this algorithm would not satisfy condition (2) 
of the definition, because the grammar produced is not a grammar of the 
language (unless the language is the universal language V+

T ). The gram-
mar would then be ‘too broad’ for the language. The algorithm should 
be set up in such a way that the grammar is as narrow as possible at first, 
and is broadened according to the incoming information. As the class of  
finite languages is contained by the class of regular languages (Theorem 2.3),  
it is not impossible that the language here in question be finite. The 
algorithm must begin here with the narrowest conjecture, namely that 
the language is finite. If it is more broadly supposed that the language is 
infinite, while in fact it is finite, the algorithm would never receive infor-
mation incompatible with that supposition. We might, of course, imagine 
an algorithm which decides that a language is finite if it finds k repetitions 
of the same set of sentences, but this still would not solve the problem. 

Table 8.2.  “Learnability” of languages of various classes according to  
text or informant presentation

Language class Text Informant

Type-0 − −
Type-0 (recursive) − −
Type-0 (primitive recursive) − +
Context-sensitive − +
Context-free − +
Regular − +
Finite + +
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Although such an algorithm would yield a correct grammar for a finite 
language, it could mistake an infinite for a finite language. Suppose, for 
example, that from infinite language L a text presentation is prepared as 
follows: take from L subsets F1, F2, … of increasing size. Begin presenting 
the sentences in F1 with k or more repetitions. The algorithm will then 
incorrectly decide that the language is finite. When F2 is introduced, the 
algorithm must review its judgment, but if there are also k or more repeti-
tions of the sentences in F2, it will return to its original decision that the 
language is finite. But the same process will occur when F3 is introduced, 
and so forth. The presentation is complete, for every sentence of the lan-
guage will be presented after a finite amount of time, but the algorithm 
would always produce nothing other than grammars for finite languages. 
Thus an algorithm which functions flawlessly for finite languages cannot 
learn an infinite language, and an algorithm adapted to infinite languages 
will, when presented with a finite language, produce grammars which are 
too broad. Therefore it is impossible to ‘learn’ an infinite language only on 
the basis of text presentation.

(b) In the preceding chapter it was stated that type-0 languages are 
generally not recursive. However there are type-0 languages which are 
recursive, but not context-sensitive; the set of recursive type-0 languages 
does not coincide completely with that of context-sensitive languages. 
The table shows that only ‘primitive recursive’ type-0 languages, a subset 
of recursive type-0 languages, are learnable according to Gold’s defini-
tion of the term. Primitive recursive languages cannot be defined without  
recourse to the theory of recursive functions.4 Suffice it to note that ‘most’ 
recursive languages are primitive recursive (also, in the history of math-
ematics, it has been difficult to find exceptions to this), and that the dis-
tinction between recursive and primitive recursive languages is of little 
importance to the study of natural languages. All recursive grammars 

4.  A language is primitive recursive if its characteristic function is primitive 
recursive. The characteristic function CL of a language L, where L ⊂ V*T , has the 
value 1 for every string in V*T which is an element of L, and the value 0 for every 
string in V*T which is not an element of L. Definitions of recursive functions may 
be found in Kleene (1952), Minsky (1967), Nelson (1968), among others.
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(i.e. grammars of decidable languages) which will be mentioned below 
are in fact primitive recursive.

8.4	 Inference by means of Bayes’ theorem

In paragraph 8.2 we found by ‘classical’ means optimal statistical param-
eters for a given nonambiguous context-free grammar. We renounced the 
possibility of choosing from among several grammars. In paragraph 8.3 the 
procedure was inverse, in a sense. We examined the conditions of presen-
tation under which a grammar may be selected from the class of a priori 
possible grammars, renouncing the probabilistic formulation. The notion 
of ‘learnability’ had to be defined in terms of equivalent grammars, as the 
algorithms cannot select an optimal or ‘most efficient’ (cf. 3.1) grammar from 
the class of equivalent adequate grammars.

Horning (1969) combined the two approaches, and developed a 
method of selecting an optimal probabilistic grammar from a given class 
on the basis of a given information sequence. We shall state some of his 
most important findings here concerning non-ambiguous context-free 
grammars.

We have seen that a standard of evaluation must express two as-
pects: the complexity of the grammar, and the degree to which it fits 
the information which is available at a given moment (paragraph 8.1). 
The complexity of a grammar depends on the context, which includes 
at least

1.  the size of the nonterminal vocabulary,
2.  the number of alternative rewrites for a given variable, and
3.  the length of those alternatives. 

In practical and linguistic situations the context can include far 
more than this. The three aspects mentioned here, however, are constant 
themes in the linguistic literature on the subject. The relative importance 
to be attributed to each of these aspects of context is a matter of taste, but 
there is a method by which this can at least be done in an exact manner. 
The method is by means of a so-called grammar-grammar. We will 
now introduce this notion.
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A grammar is a finite string of symbols; a set of grammars (an  
hypothesis-space) may be regarded as a set of such strings, and thus as a 
kind of ‘language’ itself. A grammar-grammar is a grammar which gen-
erates such a ‘language’. If the grammar-grammar is probabilistic, it will 
define a probability distribution over the ‘sentences’ of the ‘language’, 
and thus over the class of grammars which it generates. The complex-
ity of a grammar can then be defined as minus the base two logarithm 
of its probability, as in information theory. The probabilistic grammar-
grammar is thus a precise definition of the context; moreover, the more 
variables, the more alternatives for each variable, or the longer the al-
ternatives in a generated grammar, the smaller its probability and the 
greater its complexity. The relative importance of each of the aspects 
can be varied by varying the production probabilities of the grammar-
grammar.

We illustrate this with an example. To avoid confusion, name, vari-
ables, and arrow of the grammar-grammar are given in bold face type, 
while those of grammars are in ordinary type.

Example 8.2   Let G be a probabilistic grammar-grammar with the fol-
lowing productions:

1.  S Æ R
0.5

3.  R Æ N → P
1

4.  P Æ A
0.5

6.  A Æ T
0.5

5.  P Æ P, A
0.5

2.  S Æ RR
0.5

11.  N Æ A
0.5

10.  N Æ S
0.5

9.  T Æ b
0.5

8.  T Æ a
0.5

7.  A Æ TN
0.5

This grammar-grammar generates regular grammars with one or two vari-
ables (S, A) and one or two terminal symbols (a, b). We shall show the left-
most derivation of a regular grammar G with the following productions:

	 S → b, bS, aA	 A → a, bA, aS

These are in fact six productions: the commas indicate alternative rewrites 
for a single variable. If we know that G is a context-free grammar, and 
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thus that the first member of every production is a single variable, the 
grammar can be written without ambiguity as follows:

	 S → b, bS, aAA → a, bA, aS

(In the triad aAA, the reader should imagine a caesura between A and A.) 
This is precisely the ‘sentence’ which we wish to derive from G; its leftmost 
derivation is as follows, with successive steps numbered:

	

0.5⇒ S → b, bS, aAA → T, A, A
0.5⇒ S → b, bS, aAA → a, A, A
0.5⇒ S → b, bS, aAA → a, TN, A
0.5⇒ S → b, bS, aAA → a, bN,A
0.5⇒ S → b, bS, aAA → a, bA, A
0.5⇒ S → b, bS, aAA → a, bA, TN
0.5
⇒ S → b, bS, aAA → a, bA, aN
0.5⇒ S → b, bS, aAA → a, bA, aS

⇒ N → PR

⇒ S → PR

⇒ S → P, AR

⇒ S → P, A, AR

S Æ RR1.

2.

3.

4.

5.

⇒ S → b, bS, AR0.5

0.5⇒ S → b, bS, TNR
0.5
⇒ S → b, bS, aNR
0.5⇒ S → b, bS, aAR

11.

12.

13.

14.

1⇒ S → b, bS, aAN → P
0.5⇒ S → b, bS, aAA → P
0.5
⇒ S → b, bS, aAA → P, A
0.5⇒ S → b, bS, aAA → P, A, A
0.5⇒ S → b, bS, aAA → A, A, A

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

0.5

6.

7.

8.

9.

10.

⇒ S → A, A, AR
0.5

⇒ S → T, A, AR0.5

⇒ S → b, A, AR
0.5

⇒ S → b, TN, AR
0.5

⇒ S → b,  bN, AR
0.5

0.5

0.5

0.5

1

The product of the probabilities of the rewrites is p(G) = 0.5,25 and 
the complexity of G in context G is thus – 2log 0.525 = 25. The reader may 
want to verify that grammar U with productions S → a, b, aS, bS (this is the 
universal grammar which generates all strings in V*T) has a complexity of 
15 in context G.
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If we consider it particularly important that a grammar should have 
few variables, we make production 2 less probable; the probability of a 
grammar with two variables decreases, and the complexity increases. If, 
on the other hand, we wish the number of alternative rewrites impor-
tant, we can reduce the probability of production 5, which determines 
the number of alternatives for rewriting of a variable. Finally, if we wish 
to increase the importance of rewrite length, we reduce the probability of 
production 7. Many other variations are possible.5

We suppose that a complexity distribution is defined over the gram-
mars in the hypothesis-space by means either of a grammar-grammar or 
of some other context. We express the ‘credibility’ of a grammar Gi in 
the hypothesis-space as a number p(Gi), such that it is an inverse func-
tion of complexity (whichever way this is defined) with 0 < p(Gi) ≤ 1, and 

( ) 1i
i

p G =∑  for the grammars in the hypothesis-space. These propositions 
hold automatically in the context of a consistent probabilistic grammar-
grammar. The p-values will be treated in all other regards as probabilities. 
We also suppose that the grammars in the hypothesis-space can be enu-
merated according to the order of their a priori credibility or ‘probability’ p. 
(From this point we shall use the word ‘probability’ exclusively.)

The observation-space is assumed to be a stochastic text presentation 
(cf. paragraph 8.1).

As the optimal grammar we consider the a priori most probable 
grammar which is stochastically equivalent to the grammar by which the 
text was derived.

A procedure must be devised (in the sense of a Turing machine) 
which at receiving each new instance can maximize the probability of 
conjecturing the optimal grammar, i.e. it must conjecture the grammar 
with the highest a posteriori probability, given the text and the a priori 
probabilities of the grammars. In order to investigate the existence of such a 

5.  One should, however, remain cautious. A grammar-grammar which generates 
all grammars of a certain type (e.g. regular grammars) will have a terminal vocab-
ulary of infinite size, since the nonterminal vocabulary of every grammar gener-
ated is a subset of the terminal vocabulary of the grammar-grammar. Solutions to 
this problem have been found by Feldman et al. (1969) and Horning (1969).
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procedure we must, therefore, first explicate the relations between a priori 
and a posteriori probabilities of grammars.

The a priori probability of a grammar Gi in the hypothesis-space is 
denoted by p(Gi). The probability of an information sequence (a sample) 
Sj, up to a given moment of the text presentation and given the hypothesis-
space, is p(Sj). The conditional probability that Sj will occur when Gi is 
really the grammar of the language is p(Sj | Gi), and this is equal to the 
product of the probabilities of the sentences in the sample, given gram-
mar Gi (cf. paragraph 8.1). Therefore, if the sample contains the sentences 
s1, s2, . . . , sk, then p(Sj | Gi) = p(s1 |Gi) . (p(s2 | Gi) . . . . . p(sk | Gi), or simply:

1. 
=

= ∏
1

( | ) ( | ).
k

j i j i
j

p S G p S G

On the other hand, we indicate the probability that Gi is really the gram-
mar of L, given the sample Sj, as p(Gi | Sj), which, according to an elemen-

tary rule of probability theory, is equal to 
( , )

,
( )

i j

j

p G S
p S

 where p(Gi, Sj) is the

probability that Gi is correct and that the sample Sj occurs. Therefore:

2.  p(Gi, Sj) = p(Sj) . p(Gi | Sj).

This means that the joint probability of Gi and Sj is the a priori probability 
of Sj, multiplied by the conditional probability that Gi is the real grammar 
when Sj occurs. For the sake of symmetry, this can also be written as follows:

3.  p(Gi, Sj) = p(Gi) . p(Sj|Gi).

On the basis of (1) and (2) we can find the a posteriori probability of Gi:

4. 
⋅

=
( ) ( | )

( | )
( )

i j i
i j

j

p G p S G
p G S

p S
(This is a form of the Bayes theorem.)

If we determine the a posteriori probabilities of all grammars in the hypothesis 
space, given the sample and the a priori probabilities, the denominator in (4), 
p(Sj), remains constant, and only the two terms of the numerator vary. To find 
the optimal grammar, we must therefore find the grammar which yields the 
greatest numerator p(Gi) . p(Sj | Gi). We can write this product as pʹ(Gi | Sj). If 
the sample contains k sentences, by substitution of (1) we get:

5. 
=

= ⋅ ∏
1

'( | ) ( ) ( | ).
k

i j i j i
j

p G S p G p s G
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Horning has proven that a procedure exists by which at every new in-
stance in the text a G in the hypothesis-space can be found for which (5) 
holds, and thus with maximal a posteriori probability. We shall neither 
describe the procedure here nor prove the theorem, but only wonder if 
indeed the optimal grammar can, in the long run, be found in this way. In 
Gold’s terms, does the procedure guarantee that, after a finite number of 
instances, at every new instance the same grammar (or a stochastic equiv-
alent) is produced which is (stochastically) equivalent with the grammar 
of L? The answer is negative. The procedure only yields the somewhat 
weaker result, that every nonoptimal grammar in the hypothesis-space is 
rejected after a finite number of instances. In other words, the probability 
that a nonoptimal grammar be conjectured decreases as the number of 
instances increases. This can also be regarded as a definition of ‘learn-
ability’, although it is weaker than that given by Gold. Taken in this sense, 
however, Horning has shown that probabilistic nonambiguous context-
free grammars are ‘learnable’ by means of a stochastic text presentation.

Until now we have assumed that the hypothesis-space consists of 
probabilistic grammars. However, if the hypothesis-space is generated 
by a probabilistic grammar-grammar this is not the case. Example 8.2 
showed that the output of such a grammar-grammar is a grammar and its 
corresponding probability. Additionally, a way must be found to obtain 
optimal parameter estimates for production probabilities in the gram-
mars in the hypothesis-space. Horning presents a (Bayes) procedure for 
this as well, and shows that the conclusions on learnability which we have 
just mentioned still hold in essence for this complete case.





Historical and bibliographical 
remarks

The theory of formal languages, except for the probabilistic part, is largely 
based on Chomsky’s work. The original publication in which the hierar-
chy of grammars was introduced is Chomsky (1959a,b). A later survey 
is Chomsky (1963) in which the hierarchy of grammars was somewhat 
refined. Grammars with productions exclusively in the context-sensitive 
form were given a separate type number, and consequently the numera-
tion differs there from that of the earlier work. We have followed current 
usage and maintained the original numeration.

The term ‘regular language’ has a history of its own. Originally 
(Chomsky & Miller 1958; Bar-Hillel, Gaifman, & Shamir 1960) these 
languages were called ‘finite state languages’ because of the connection 
with finite or finite state automata. But in mathematics, the theory of  
recursive functions dealt independently with, among other things, ‘regu-
lar sets’, which can be recursively generated by ‘regular expressions’, and 
Kleene showed the equivalence of these sets and the sets accepted by  
finite automata. As type-3 grammars are equivalent to finite automata 
(as in Theorems 4.2 and 4.3 proven by Chomsky & Miller 1958), type-3  
languages are regular sets. Consequently type-3 grammars and languages 
are now generally called ‘regular grammars’ and ‘regular languages’.

Context-free grammars are treated in great detail in Chomsky’s origi-
nal work. The expression ‘normal-form’ originated in Chomsky’s notion 
of a ‘normal grammar’ (Chomsky 1963), the kind of grammars usually 
dealt with in linguistic discussions on constituent structure analysis: pro-
ductions A → a concern the lexicon of the language, and productions 
A → BC lead to binary divisions into constituents. At present, how-
ever, the term ‘normal-form’ is used only to denote standardized forms 
for the productions of grammars. The Greibach normal-form is present-
ed in Greibach (1965). The self-embedding theorem (Theorem 2.8) for 
context-free languages was first formulated by Chomsky (1959a); a com-
plete proof can be found in Salomaa (1969). The notion of ambiguity was 
first handled by Parikh (1961). For later developments see Ginsburg and  
Ullman (1966). For linear grammars see Greibach (1963) and (1966) and 
others. A textbook on context-free grammars is Ginsburg (1966).
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The equivalence of type-1 grammars and grammars with productions 
only in the context-sensitive form was treated by Chomsky (1963). Gram-
mars in what we have called ‘Kuroda’s normal-form’ were called ‘linear 
bounded grammars’ by Kuroda and several other authors, by analogy 
with the automaton. The normal-form theorem (Theorem 2.11) was first 
proven by Kuroda (1964).

The earliest publications on the subject of probabilistic grammars are 
Grenander (1967), Ellis (1969), and Booth (1969). It was an obvious mat-
ter to relate them to the Chomsky hierarchy. The consistency theorem 
for regular grammars (Theorem 3.1) was proven by Ellis (1969) as was 
Theorem 3.2. The hypothesis formulated in Theorem 3.3 can be found 
in Suppes (1970). The Chomsky and Greibach normal-form theorems 
were originally proven by Ellis (1969); in the proof given here, we have  
followed Huang and Fu (1971). The conditions of consistency for prob-
abilistic context-free grammars were investigated by Booth (1969) and  
Ellis (1969) where the reader may find more details on the subject.

The investigation of finite automata originated in the work of  
McCulloch and Pitts (1943), in which they gave models for neural net-
works which could be regarded as finite state machines. Of the many 
early publications on this subject, we mention Rabin and Scott (1959), in 
which the proof of Theorem 4.1 can be found, and Kleene (1956). Lat-
er surveys are those by S. Ginsburg (1962) and by A. Ginzburg (1968). 
The equivalence of finite automata and regular grammars (Theorems 4.2 
and 4.3) was proven by Chomsky and Miller (1958). Probabilistic finite  
automata were introduced by Rabin (1963). Much work in this area was 
done by Salomaa, who gives a good survey in Salomaa (1969).

The notion of the ‘push-down store’ was introduced by Newell, Shaw, 
and Simon (1959). The first formulation of the relationship between 
push-down automata and formal languages is that of Oettinger (1961). 
The relationship between context-free grammars and push-down au-
tomata (Theorems 5.1 and 5.2) was formulated by Chomsky (1963) and 
Evey (1963) more or less independently. The equivalence of deterministic 
push-down automata and LR(k)-grammars was proven by Knuth (1965).

Deterministic linear bounded automata were introduced by Myhill 
(1960); Landweber (1963) gave proof of Theorem 6.2 on deterministic linear 
bounded automata. Kuroda (1964) introduced the nondeterministic linear 
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bounded automaton and proved the equivalence of them and context-free 
grammars (Theorems 6.1 and 6.2).

The Turing machine was presented by Turing (1936) as a machine 
which could perform any computation for which an explicit procedure is 
known. For an introduction to the subject of mechanical (effective) pro-
cedures, see Minsky (1967); in the same work models by Post and Church, 
similar to the Turing machine, are also discussed. The relationship be-
tween Turing machines and type-0 languages formulated in Theorems 7.1 
and 7.2 was first mentioned by Chomsky (1959a). We have borrowed the 
argumentation for Theorem 7.1 from Hopcroft and Ullman (1969). The 
argumentation for Theorem 7.2 was taken from Chomsky (1963), who in 
turn refers to Davis (1958), starting from the fact that type-0 languages 
are recursively enumerable sets. The argumentation for Theorem 7.3 was 
borrowed from Hopcroft and Ullman (1969). The first surveys of the re-
lationship between formal languages and automata were Chomsky (1963) 
and Chomsky and Miller (1963) on the one hand, and Bar-Hillel (1964) 
on the other.

The earliest publication on grammatical inference is Miller and 
Chomsky (1957). Solomonoff (1958, 1964a,b) was the first to develop 
these ideas. The Feldman group, with among them Horning, has also 
done important work in this field (Feldman et al. 1969).

The best original surveys of the subjects treated in this volume are 
Nelson (1968) where various topics are treated within the theory of 
formal systems, and Hopcroft and Ullman (1969) to which the present 
work is indebted and which would serve as excellent further reading, and  
Salomaa (1973). Neither of these books, however, deals with probabilistic 
grammars or probabilistic automata. For the latter, we refer the reader to 
Salomaa (1969) and to the appendix of this book.





Appendix

Some references to new developments

The original theory of formal grammars and automata, as treated in this 
text, is largely a theory of generating or accepting strings (‘sentences’). 
The most important later developments are, from the linguistic and psy-
cholinguistic point of view, the construction of tree adjoining grammars 
and tree automata. They are formal systems operating on trees rather than 
on strings. A natural outcome of this work is the definition of a class of 
languages called ‘Mildly Context-Sensitive Languages’ (MCSL). The chal-
lenging conjecture is that natural languages are in this class.

This class of formal languages was introduced in:

Joshi, A.K. 1985. Tree adjoining grammars: How much context-sensitivity is 
required to provide reasonable structural descriptions? In: D. Dowty, L. Kart-
tunen, & Zwicky, A. (eds), Natural language parsing. Cambridge: University 
Press.

An important reference for modern developments in the theory  
of formal grammars is:

Rozenberg, G. & Salomaa, A. (eds), 1997. Handbook of formal grammars. 3 Vols. 
New York: Springer.

Volume 3, in particular, contains papers on tree grammars, among them 
by Cécseg & Steinby and by Joshi & Schabes:

Cécseg, F. & Steinby, M. 1997. Tree languages. In: Rozenberg & Salomaa, Vol. 3.
Joshi, A.K. & Schabes, Y. 1997. Tree-adjoining grammars. In: Rozenberg &  

Salomaa, Vol. 3.

The standard introduction to grammars and automata, though without 
treatment of probabilistic models or grammatical inference, is by Hopcroft 
et al. and now in its third edition:

Hopcroft, J.E., Motwani, R. & Ullman, J.D. 2006. Introduction to Automata  
Theory, Languages, and Computation. Addison Wesley.
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A mathematical text on tree automata, not specifically from the perspective 
of linguistic applications and without probabilistic applications, is:

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, Ch., 
Tison, S. & Tommasi, M. 2007. Tree Automata Techniques and Applications. 
E-Book http://tata.gforge.inria.fr/

Probabilistic tree automata were introduced by Ellis (1970), relating them 
to probabilistic grammars:

Ellis, C.A. 1970. Probabilistic tree automata. Proceedings Second ACM Sympo-
sium on Theory of Computing, 198–205.

For a more recent overview and linguistic applications of probabilistic 
tree transducers:

Knight, K. & Graehl, J. 2005. An overview of probabilistic tree transducers for 
natural language processing. Proc. of the Sixth International Conference on In-
telligent Text Processing and Computational Linguistics (CICLing). New York: 
Springer.

A bibliographical update on grammatical inference can be found in:

De la Higuera, C. 2005. A bibliographical study of grammatical inference. Pattern 
Recognition, 38, 1332–1348.
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